

Lecture Notes in Computer Science 6998
Commenced Publication in 1973
Founding and Former Series Editors:
Gerhard Goos, Juris Hartmanis, and Jan van Leeuwen

Editorial Board

David Hutchison
Lancaster University, UK

Takeo Kanade
Carnegie Mellon University, Pittsburgh, PA, USA

Josef Kittler
University of Surrey, Guildford, UK

Jon M. Kleinberg
Cornell University, Ithaca, NY, USA

Alfred Kobsa
University of California, Irvine, CA, USA

Friedemann Mattern
ETH Zurich, Switzerland

John C. Mitchell
Stanford University, CA, USA

Moni Naor
Weizmann Institute of Science, Rehovot, Israel

Oscar Nierstrasz
University of Bern, Switzerland

C. Pandu Rangan
Indian Institute of Technology, Madras, India

Bernhard Steffen
TU Dortmund University, Germany

Madhu Sudan
Microsoft Research, Cambridge, MA, USA

Demetri Terzopoulos
University of California, Los Angeles, CA, USA

Doug Tygar
University of California, Berkeley, CA, USA

Gerhard Weikum
Max Planck Institute for Informatics, Saarbruecken, Germany

Manfred A. Jeusfeld Lois Delcambre
Tok Wang Ling (Eds.)

Conceptual Modeling –
ER 2011
30th International Conference, ER 2011
Brussels, Belgium, October 31 - November 3, 2011
Proceedings

13

Volume Editors

Manfred A. Jeusfeld
Tilburg University
Warandelaan 2
5037 AB Tilburg, The Netherlands
E-mail: manfred.jeusfeld@acm.org

Lois Delcambre
Portland State University
Maseeh College of Engineering and Computer Science
P.O. Box 751
Portland, OR 97207-0751, USA
E-mail: lmd@cs.pdx.edu

Tok Wang Ling
National University of Singapore
Department of Computer Science
13 Computing Drive
Singapore 117417
E-mail: lingtw@comp.nus.edu.sg

ISSN 0302-9743 e-ISSN 1611-3349
ISBN 978-3-642-24605-0 e-ISBN 978-3-642-24606-7
DOI 10.1007/978-3-642-24606-7
Springer Heidelberg Dordrecht London New York

Library of Congress Control Number:

CR Subject Classification (1998): D.2, F.3, D.3, I.2, F.4.1, D.2.2-4

LNCS Sublibrary: SL 3 – Information Systems and Application, incl. Internet/Web
and HCI

© Springer-Verlag Berlin Heidelberg 2011

This work is subject to copyright. All rights are reserved, whether the whole or part of the material is
concerned, specifically the rights of translation, reprinting, re-use of illustrations, recitation, broadcasting,
reproduction on microfilms or in any other way, and storage in data banks. Duplication of this publication
or parts thereof is permitted only under the provisions of the German Copyright Law of September 9, 1965,
in its current version, and permission for use must always be obtained from Springer. Violations are liable
to prosecution under the German Copyright Law.
The use of general descriptive names, registered names, trademarks, etc. in this publication does not imply,
even in the absence of a specific statement, that such names are exempt from the relevant protective laws
and regulations and therefore free for general use.

Typesetting: Camera-ready by author, data conversion by Scientific Publishing Services, Chennai, India

Printed on acid-free paper

Springer is part of Springer Science+Business Media (www.springer.com)

Foreword

We are proud to present the proceedings of the International Conference of
Conceptual Modeling (ER 2011) lasted in Belgium. We devoted all our energy
to make it a scientific, social, and artistic success.

Belgium has a long tradition, rooted in the early 1970s, in database research
and particularly in database modeling. This 30th ER conference was organized
by the CoDE Research department of the Université libre de Bruxelles and the
PReCISE Research Center of the Université de Namur, both very active in the
database community.

Belgium is also the country of beer, character cheese, French fries, comic
strips, Art Nouveau, and surrealism, but above all of institutional intricacy.
This was thus the ideal venue for an anniversary conference of a series devoted
to reducing and mastering information system complexity.

Nothing would have been possible without the unfailing and experienced
contribution of the ER Steering Committee as well as the Program, Publicity,
Workshop, Tutorial, Panel, Industrial Track (a new one), Demos and Posters,
and Doctoral Consortium Chairs and Committees. Organizing such a wide-scope
international conference and making it a success require countless competences,
ranging from financial manager to webmaster. They all did an excellent job. Spe-
cial thanks also to all our sponsors and sister scientific societies for their support:
FNRS, Microsoft Research, NSF, Euranova, IBM, FWO, Intergraph, Springer,
la Ville de Bruxelles, OM Partners, CETIC, Océ, ReveR, ACM SIGMIS, ACM
SIGMOD, as well as the Université libre de Bruxelles and the Université de
Namur.

Finally, there is no scientific conference without high-quality contributors,
attendees, and readers: thanks to all of you.

On behalf of all the persons and partners that contributed to making this
conference a success, we hope you find the proceedings interesting and valuable
for your research.

July 2011 Esteban Zimányi
Jean-Luc Hainaut

Preface

The ER conference is the leading international forum for presenting research
results and discussing future trends in conceptual modeling. ER 2011 was the
30th such meeting and took place in Brussels, the vibrant “capital” of Europe.

While keeping a strong focus on conceptual modeling, the ER conference has
always been open to new trends, such as goal modeling and process modeling. In
2011, the extension of conceptual modeling to requirements engineering, human
and social factors in modeling, ontologies, model development and evolution,
and data model theory were major trends among the papers accepted for the
main conference.

The Program Committee (PC) received 157 submissions to the main pro-
gram. Each paper was reviewed by at least three members of the Program Com-
mittee. Additionally, six senior reviewers moderated the discussion on disputed
papers and wrote meta-reviews when necessary. The PC ultimately decided to
accept 39 papers of excellent academic quality for the main program, of which 25
regular-length papers and 14 short papers. The overall acceptance rate was thus
24.8%. The acceptance rate of regular-length papers is 15.9%. The reason for the
distinction between regular-length and short papers was the observation that a
number of submissions had a very good technical quality, but were perhaps a bit
less fully developed. So, the PC wanted these papers in the main program but
to have them in some sense distinguished from the regular-length papers.

The scientific program included three keynote talks by Alon Halevy, Ste-
fano Spaccapietra, and Carson Woo, spanning a breadth of topics in conceptual
modeling. The proceedings also include a summary of the panel discussion and
of the tutorial program. We graciously thank the authors for submitting their
work, the PC members for writing reviews and participating in lively discus-
sions, and the six senior reviewers for processing all the reviews and providing
recommendations.

July 2011 Manfred Jeusfeld
Lois Delcambre
Tok Wang Ling

Organization

General Conference Chairs

Esteban Zimányi Université Libre de Bruxelles, Belgium
Jean-Luc Hainaut Université de Namur, Belgium

Program Committee Co-chairs

Manfred A. Jeusfeld Tilburg University, The Netherlands
Lois Delcambre Portland State University, USA
Tok Wang Ling National University of Singapore, Singapore

Industrial Co-chairs

Alkis Simitsis HP Labs, USA
Hans Van Mingroot IBM, Belgium

Workshops Co-chairs

Olga De Troyer Vrije Universiteit Brussel, Belgium
Claudia Bauzer Medeiros University of Campinas, Brazil

PhD Colloquium Co-chairs

Christophe Claramunt Naval Academy Research Institute, France
Markus Schneider University of Florida, USA

Poster and Demonstration Chair

Roland Billen Université de Liège, Belgium

Tutorials Co-chairs

Alejandro Vaisman University of Buenos Aires, Argentina
Jef Wijsen Université de Mons, Belgium

Panel Chair

Torben Bach Pedersen Aalborg University, Denmark

X Organization

Publicity Chair

Anthony Cleve Université de Namur and Université Libre
de Bruxelles, Belgium

Travel Award Chair

Min Song New Jersey Institute of Technology, USA

Financial Chair

Frédéric Servais Université Libre de Bruxelles, Belgium

Steering Committee Liaison

Sudha Ram University of Arizona, USA

Local Organization Committee

Stijn Vansummeren (Chair) Université Libre de Bruxelles, Belgium
Vinciane de Wilde Université Libre de Bruxelles, Belgium
Serge Boucher Université Libre de Bruxelles, Belgium
François Picalusa Université Libre de Bruxelles, Belgium

Webmaster

Boris Verhaegen Université Libre de Bruxelles, Belgium

Program Committee

Jacky Akoka CNAM, France
Paolo Atzeni Università Roma Tre, Italy
Carlo Batini University of Milano-Bicocca, Italy
Boualem Benatallah University of New South Wales, Australia
Sonia Bergamaschi Università di Modena e Reggio Emilia, Italy
Arne Berre SINTEF, Norway
Sourav Saha Bhowmick Nanyang Technological University, Singapore
Alexander Borgida Rutgers University, USA
Mokrane Bouzeghoub Université de Versailles, France
Shawn Bowers Gonzaga University, USA
Stephane Bressan National University of Singapore, Singapore
Marco A. Casanova Pontificia Universidade Catolica do Rio

de Janeiro, Brazil

Organization XI

Silvana Castano Università degli Studi di Milano
Dickson Chiu Dickson Computer Systems, China
Isabel Cruz University of Illinois at Chicago, USA
Karen Davis University of Cincinnati, USA
Umeshwar Dayal HP Labs, USA
Olga De Troyer Vrije Universiteit Brussel, Belgium
Gillian Dobbie University of Auckland, New Zealand
Johann Eder University of Klagenfurt, Austria
Jérôme Euzenat INRIA & LIG, France
Joerg Evermann Memorial University of Newfoundland, Canada
Xavier Franch Universitat Politècnica de Catalunya, Spain
Helena Galhardas Technical University of Lisbon, Portugal
Jaap Gordijn Vrije Universiteit Amsterdam, The Netherlands
Giancarlo Guizzardi Universidade Federal do Espirito Santo, Brazil
Peter Haase Fluid Operations, Germany
Sven Hartmann Clausthal University of Technology, Germany
Brian Henderson-Sellers University of Technology Sydney, Australia
Howard Ho IBM Almaden Research Center, USA
Arantza Illarramendi Basque Country University, Spain
Matthias Jarke RWTH Aachen, Germany
Paul Johannesson Stockholm University, Sweden
Kamalakar Karlapalem IIIT Hyderabad, India
Larry Kerschberg George Mason University, USA
Vijay Khatri Indiana University, USA
Michael Kifer State University of New York at Stony Brook,

USA
Hiroyuki Kitagawa University of Tsukuba, Japan
Alberto Laender Universidade Federal de Minas Gerais, Brazil
Wolfgang Lehner Technical University of Dresden, Germany
Julio Cesar Leite Pontif́ıcia Universidade Catolica do Rio

de Janeiro, Brazil
Qing Li City University of Hong Kong, China
Mong Li Lee National University of Singapore, Singapore
Stephen Liddle Brigham Young University, USA
Mengchi Liu Carleton University, Canada
Peri Loucopoulos Loughborough University, UK
Jiaheng Lu Renmin University of China, China
Kally Lyytinen Case Western Reserve University, USA
Jan Mendling Humboldt University Berlin, Germany
Xiaofeng Meng Renmin University of China, China
Michele Missikoff IASI-CNR, Italy
Wilfred Ng Hong Kong University of Science and

Technology, China
Antoni Olivé Universitat Politècnica de Catalunya, Spain

XII Organization

Jose Palazzo M. de Oliveira Universidade Federal do Rio Grande do Sul,
Brazil

Andreas Opdahl University of Bergen, Norway
Sylvia Osborn University of Western Ontario, Canada
Jeffrey Parsons Memorial University of Newfoundland, Canada
Oscar Pastor Technical University of Valencia, Spain
Barbara Pernici Politecnico di Milano, Italy
Alain Pirotte Université Catholique de Louvain, Belgium
Dimitris Plexousakis University of Crete, Greece
Rachel Pottinger University of British Columbia, Canada
Erik Proper Public Research Center Henri Tudor,

Luxemburg
Sandeep Purao Penn State University, USA
Christoph Quix RWTH Aachen, Germany
Jolita Ralyté University of Geneva, Switzerland
Colette Rolland University Paris 1 Pantheon-Sorbonne, France
Michael Rosemann Queensland University of Technology, Australia
Gustavo Rossi Universidad de la Plata, Argentina
Motoshi Saeki Tokyo Institute of Technology, Japan
Klaus-Dieter Schewe Software Competence Center Hagenberg,

Austria
Mário Silva IST, Portugal
Richard Snodgrass University of Arizona, USA
Il-Yeol Song Drexel University, USA
Veda C. Storey Georgia State, USA
Ernest Teniente Universitat Politècnica de Catalunya, Spain
James Terwilliger Microsoft Corporation, USA
Riccardo Torlone Università Roma Tre, Italy
Juan Trujillo University of Alicante, Spain
Susan Urban Texas Tech University, USA
Inge Van De Weerd Utrecht University, The Netherlands
Axel Van Lamsweerde Université Catholique de Louvain, Belgium
Panos Vassiliadis University of Ioannina, Greece
Vania Vidal Universidade Federal do Ceara, Brazil
Gerd Wagner Brandenburg University of Technology,

Germany
Masatoshi Yoshikawa Kyoto University, Japan
Eric Yu University of Toronto, Canada
Ge Yu Northeastern University, China
Yanchun Zhang Victoria University, Australia
Xiaofang Zhou University of Queensland, Australia
Shuigeng Zhou Fudan University, China

Organization XIII

Senior Reviewers

David W. Embley Brigham Young University, USA
Avigdor Gal Technion - Israel Institute of Technology, Israel
John Mylopoulos Università di Trento, Italy
Moira Norrie ETH Zurich, Switzerland
Sudha Ram University of Arizona, USA
Bernhard Thalheim University of Kiel, Germany

External Reviewers

Mohammad
Allah-Bakhsh

Yubin Bao
Moshe Chai Barukh
George Baryannis
Seyed M.R. Beheshti
Domenico Beneventano
Maria Bergholtz
Yi Cai
Cinzia Cappiello
Cyril Carrez
Marco Comerio
Evangelia Daskalaki
Julian Eberius
Alfio Ferrara
Giorgos Flouris
Bernhard Freudenthaler
Lizhen Fu
Rigel Gjomemo
Roy Grønmo
Francesco Guerra
Dirk Habich
Stephen Hegner

Behzad Hezarkhani
Guangyan Huang
Felipe Hummel
Zheng Huo
Sergio Ilarri
Ritu Khare
Yicong Liang
Hui Ma
Jiangang Ma
Youzhong Ma
José Macedo
Fabiana Marinho
Bruno Martins
Andrea Maurino
Eduardo Mena
Stefano Montanelli
Mirella M. Moro
Christine Natschläger
Oana Nicolae
Marius Octavian Olaru
Matteo Palmonari
Laura Po
Raúl Mazo

Dumitru Roman
Marcus Roy
Altigran S. Da Silva
Emanuel Santos
Yingjie Shi
Gonçalo Simões
Fabrizio Smith
Serena Sorrentino
Young-Kyoon Suh
Francesco Taglino
Ornsiri Thonggoom
Wee Hyong Tok
Gaia Varese
Kevin Vlaanderen
Haiyong Wang
Jing Wang
Ingo Weber
Haoran Xie
Chrysostomos Zeginis
Rui Zhang
Xiaojian Zhang
Ming Zhong

Organized by

Université Libre de Bruxelles, Belgium
Université de Namur, Belgium

In Cooperation with

ACM SIGMIS
ACM SIGMOD

XIV Organization

Gold Sponsors

Silver Sponsors

Bronze Sponsors

Table of Contents

Keynotes

The Role of Conceptual Modeling in Managing and Changing the
Business . 1

Carson Woo

Adding Meaning to Your Steps (Keynote Paper) . 13
Stefano Spaccapietra and Christine Parent

Best-Effort Modeling of Structured Data on the Web 32
Alon Halevy

Modeling Goals and Compliance

CSRML: A Goal-Oriented Approach to Model Requirements for
Collaborative Systems . 33

Miguel A. Teruel, Elena Navarro, Vı́ctor López-Jaquero,
Francisco Montero, and Pascual González

Establishing Regulatory Compliance for Software Requirements 47
Silvia Ingolfo, Alberto Siena, and John Mylopoulos

Making Explicit Some Implicit i* Language Decisions 62
Lidia López, Xavier Franch, and Jordi Marco

Human and Socio-Technical Factors

The Impact of Perceived Cognitive Effectiveness on Perceived
Usefulness of Visual Conceptual Modeling Languages 78

Kathrin Figl and Michael Derntl

Effects of External Conceptual Models and Verbal Explanations on
Shared Understanding in Small Groups . 92

Wolfgang Maass, Veda C. Storey, and Tobias Kowatsch

Sociotechnical Trust: An Architectural Approach . 104
Amit K. Chopra, Elda Paja, and Paolo Giorgini

Ontologies

Generating SPARQL Executable Mappings to Integrate Ontologies 118
Carlos R. Rivero, Inma Hernández, David Ruiz, and
Rafael Corchuelo

XVI Table of Contents

Enterprise Monitoring Ontology . 132
Patŕıcio de Alencar Silva and Hans Weigand

Multilingual Ontologies for Cross-Language Information Extraction
and Semantic Search . 147

David W. Embley, Stephen W. Liddle, Deryle W. Lonsdale, and
Yuri Tijerino

Data Model Theory

Querying Conceptual Schemata with Expressive Equality Constraints . . . 161
Andrea Cal̀ı, Georg Gottlob, and Andreas Pieris

A Precious Class of Cardinality Constraints for Flexible XML Data
Processing . 175

Flavio Ferrarotti, Sven Hartmann, and Sebastian Link

Formal Semantics and Ontological Analysis for Understanding
Subsetting, Specialization and Redefinition of Associations in UML 189

Dolors Costal, Cristina Gómez, and Giancarlo Guizzardi

Model Development and Maintainability

Developing RFID Database Models for Analysing Moving Tags in
Supply Chain Management . 204

Wilfred Ng

Semi-automatic Conceptual Data Modeling Using Entity and
Relationship Instance Repositories . 219

Ornsiri Thonggoom, Il-Yeol Song, and Yuan An

Impact of MDE Approaches on the Maintainability of Web
Applications: An Experimental Evaluation . 233

Yulkeidi Mart́ınez, Cristina Cachero, Maristella Matera,
Silvia Abrahao, and Sergio Luján

User Interfaces and Software Classification

From Pattern-Based User Interfaces to Conceptual Schemas
and Back . 247

Ravi Ramdoyal and Anthony Cleve

Automatically Mapping and Integrating Multiple Data Entry Forms
into a Database . 261

Yuan An, Ritu Khare, Il-Yeol Song, and Xiaohua Hu

Table of Contents XVII

External Variability of Software: Classification and Ontological
Foundations . 275

Iris Reinhartz-Berger, Arnon Sturm, and Yair Wand

Evolution, Propagation and Refinement

Context Schema Evolution in Context-Aware Data Management 290
Elisa Quintarelli, Emanuele Rabosio, and Letizia Tanca

Modeling the Propagation of User Preferences . 304
Paolo Ciaccia and Riccardo Torlone

Towards a Theory of Refinement for Data Migration 318
Bernhard Thalheim and Qing Wang

UML and Requirements Modeling

Design by Selection: A Reuse-Based Approach for Business Process
Modeling . 332

Ahmed Awad, Sherif Sakr, Matthias Kunze, and Mathias Weske

System Identification for Adaptive Software Systems: A Requirements
Engineering Perspective . 346

Vı́tor E. Silva Souza, Alexei Lapouchnian, and John Mylopoulos

Using UML Profiles for Sector-Specific Tailoring of Safety Evidence
Information . 362

Rajwinder Kaur Panesar-Walawege, Mehrdad Sabetzadeh, and
Lionel Briand

Views, Queries and Search

Merging Relational Views: A Minimization Approach 379
Xiang Li and Christoph Quix

Ontology Evolution in Data Integration: Query Rewriting to the
Rescue . 393

Haridimos Kondylakis and Dimitris Plexousakis

Object-Oriented XML Keyword Search . 402
Huayu Wu and Zhifeng Bao

A Hidden Markov Model Approach to Keyword-Based Search over
Relational Databases . 411

Sonia Bergamaschi, Francesco Guerra, Silvia Rota, and
Yannis Velegrakis

XVIII Table of Contents

Requirements and Business Intelligence

A Modularization Proposal for Goal-Oriented Analysis of Data
Warehouses Using I-Star . 421

Alejandro Maté, Juan Trujillo, and Xavier Franch

Strategic Models for Business Intelligence . 429
Lei Jiang, Daniele Barone, Daniel Amyot, and John Mylopoulos

Evolving Requirements in Socio-Technical Systems: Concepts and
Practice . 440

Anna Perini, Nauman Qureshi, Luca Sabatucci, Alberto Siena, and
Angelo Susi

Composite Indicators for Business Intelligence . 448
Daniele Barone, Lei Jiang, Daniel Amyot, and John Mylopoulos

MDA and Ontology-Based Modeling

Incorporating Traceability in Conceptual Models for Data Warehouses
by Using MDA . 459

Alejandro Maté and Juan Trujillo

Lightweight Verification of Executable Models . 467
Elena Planas, Jordi Cabot, and Cristina Gómez

Towards a Model of Services Based on Co-creation, Abstraction and
Restriction . 476

Maria Bergholtz, Paul Johannesson, and Birger Andersson

A Semantic Oriented Method for Conceptual Data Modeling in
OntoUML Based on Linguistic Concepts . 486

Lucia Castro, Fernanda Baião, and Giancarlo Guizzardi

Process Modeling

Content-Based Validation of Business Process Modifications 495
Maya Lincoln and Avigdor Gal

Visual Change Tracking for Business Process Models 504
Sonja Kabicher, Simone Kriglstein, and Stefanie Rinderle-Ma

An Empirical Analysis of Human Performance and Error in Process
Model Development . 514

Alexander Nielen, Denise Költer, Susanne Mütze-Niewöhner,
Jürgen Karla, and Christopher M. Schlick

Table of Contents XIX

Panel: New Directions for Conceptual Modeling . 524
Jeffrey Parsons, Antoni Olivé, Sudha Ram, Gerd Wagner,
Yair Wand, and Eric Yu

Panel: Modeling for the Future Internet . 526
Arne Berre and Michele Missikoff

Author Index . 529

M. Jeusfeld, L. Delcambre, and T.W. Ling (Eds.): ER 2011, LNCS 6998, pp. 1–12, 2011.
© Springer-Verlag Berlin Heidelberg 2011

The Role of Conceptual Modeling in Managing and
Changing the Business

Carson Woo

Sauder School of Business,
The University of British Columbia

carson.woo@ubc.ca

Abstract. Conceptual modeling has been used mainly for supporting
information systems (IS) development. In order to better capture requirements
for developing IS, we have been extending conceptual models to include more
business context (e.g., mission of the organization). This seems to interest
organizational workers in using those conceptual models to solve problems. We
propose dual roles for conceptual modeling: developing IS, and managing the
changes occurring in the business. To fulfill the second role, conceptual
modeling must provide constructs that are not biased toward IS background and
thinking, but assist organizational workers to better understand the business and
its operations. Research and literature on management will be useful to
accomplish this objective. Our research in this direction suggests much
potential in expanding conceptual modeling to support organizational workers.

Keywords: information systems analysis, business perspective, business
context, management concepts, organizational actors, organizational goals,
thought process.

1 Introduction

Traditionally, conceptual modeling has been used mainly by information systems
developers. We see a lot of potential in expanding conceptual modeling to support
organizational workers in their problem solving. The objective of this paper is to
explain this potential, provide examples, and suggest research directions.

Mylopoulos [14] defines conceptual modeling as “the activity of formally
describing some aspects of the physical and social world around us for purposes of
understanding and communication.” The outcome of conceptual modeling is usually
some kind of a diagram or conceptual model. However, conceptual modeling has
been used mainly as a means for systems analysts to gather requirements from
organizational workers so that information systems can be developed. As stated by
Olive [15], “the main purpose of conceptual modeling is to elicit the conceptual
schema of the corresponding information system”.

Unfortunately, every business evolves and changes over time, due to growth,
downsizing, product changes, and new generations of consumers. The changes can be
so complex that even organizational workers involved in the change may have only
their own narrow perspective of the business. This can result in problems such as

2 C. Woo

duplication of work and conflicting messages to customers. For a systems analyst in
such an organization, it can be very challenging to gather requirements for conceptual
modeling.

An approach to addressing this challenge is to incorporate more business context
when gathering requirements. We have been extending conceptual models to capture
more contextual information such as the vision and mission of the company. When
communicating these conceptual models to users, we found that users discovered
previously unknown information, and utilized the conceptual models to support their
problem solving. For example, the conceptual models we developed for a unit in a
business school helped some middle managers to revise their interpretations of the
school’s need, and aligned them with the strategic intent [18].

Including business context in conceptual models can therefore lead users to
discover new information, and this is an opportunity for conceptual modeling.
Systems analysts are trained to map abstract knowledge into explicit knowledge in the
conceptual models needed to develop information systems. If systems analysts could
go one step further and utilize their conceptual models to assist organizational
workers in problem solving, then conceptual modeling will have a dual role:
developing IT, and facilitating the changes occurring in the business.

In Section 2, we explain the limitations of existing work in capturing business
context and what can be done to overcome them. Section 3 discusses how conceptual
modeling can provide values for organizational workers, and examples from our
research in accomplishing this objective. Finally, Section 4 concludes this paper and
calls for more work in this direction.

2 Limitations of Existing Work and Possible Extensions

This section is not meant to be a complete literature review. Rather, we hope that a
few examples will show the limitations of existing work and the potential for
extending the role of conceptual modeling.

The idea of using conceptual models to support organizational workers in their
problem solving is not new. Business process diagrams have been used by managers
to reengineer their organization [7] for over a decade now. Managers would discover
the inefficiency and ineffectiveness of their existing business processes and utilize the
diagrams to design more effective and efficient ones. The same business process
diagrams were later used to develop information systems. This is the only conceptual
modeling framework we are aware of that has been used to support organizational
workers in their problem solving (i.e., designing business processes). However, not
every aspect of the business can be represented using business process diagrams, and
the potential for extending conceptual modeling lies in discovering whether other
types of conceptual models can be used to represent the business. We will provide
some examples later in the paper.

The idea of providing more business context in requirements gathering for
conceptual modeling is also not new. For examples, the work system approach [1]
includes both the information technology (IT) and non-IT parts of organizational work
and describes both of them from a business viewpoint; Penker and Han-Erik [17] extend
UML for modeling business (business vision, structure, processes, and behavior); the i*
diagram represents the underlying motivations behind organizational work and can aid

 The Role of Conceptual Modeling in Managing and Changing the Business 3

early phase requirements gathering [23]; the enterprise architecture frameworks such as
the Zackman Framework [24], TOGAF [20], and DoDAF [3] capture both the business
and information systems perspectives for describing the organization. However, the
major outcome of these frameworks is to provide business capabilities to help
management understand, manage, prioritize, and/or invest in information systems
development. We could not find much use of conceptual models beyond supporting
information systems development. To elaborate this point, we will use the i* strategic
dependency model and the “goal” concept.

2.1 The Strategic Dependency Model in the i* Framework

The strategic dependency model in the i* framework represents the dependency of the
depender who needs something from the dependee [23]. The idea of resource
dependency was proposed for studying how organizations adapt to changes in the
environment [16; 21]. The proposal is that organizations lacking certain resources
will seek to establish relationships with others in order to acquire the needed
resources. A resource can be anything valued by the organization, including
information, materials, capital, and access to markets. In order to ensure continuing
access to the needed resources, a depender will seek to formalize agreements with the
dependee that govern the exchange of resources. The i* strategic dependency model
represents the relationship for acquiring resources but does not include the agreements
that govern the exchange of resources. This is because the relationships are needed to
develop information systems, but the agreements governing exchanges are outside the
scope of developing information systems.

Tillquist et al. [19] developed a Dependency Network Diagram (DND) to capture
both the relationships for acquisition and the agreements governing exchange. In
their case study, they found the addition of governance control (i.e., agreements
governing exchange) in the DND, enables senior management to better understand
organizational relationships, to design control and coordination of organizational
work explicitly, and to diagnose the impact of IT implementation. The conceptual
model, in this case, plays the dual role of providing requirements for information
systems development and helping senior management to solve problems outside of
information systems development. Although the i* strategic dependency model can
also help senior management to solve some of their problems, adding governance
control extends the contribution of conceptual modeling to organizational work.

Figure 1 provides a pictorial view of the potential extension of conceptual
modeling. The figure has two circles, representing the problem solving needs in
business and the requirement-gathering (or IT) needs in information systems
development. Most of the current work that provides business context focuses on the
business needs that intersect with IT needs. The potential for conceptual modeling
lies in extending it beyond IT needs, and into the business context.

2.2 The Different Facets of Goals in Business and IT

The concept of goals in goal-based requirements engineering [9] is another example
of the intersection of business and IT needs, and it can potentially be extended into
the full business needs area in Figure 1.

4 C. Woo

Fig. 1. Pot

A goal is, in general, c
decomposed into sub-goals
designed or performed. D
[2], where AND means all
goal, while OR means al
contribution analysis shows
level goal. This works we
structure helps in designing
rationale for management to
too general for business use

Fig

We will use the contrib
current view of goals is t
President sets a mission

tential area of expansion for conceptual modeling

considered an objective to achieve [10; 23]. It can
s comprising finer and more structured tasks that can
ecomposition, in general, can be done using AND or
the sub-goals must be achieved in order to accomplish
lternative ways of accomplishing the same goal. T
s how achieving a particular goal can help to reach a hig
ell for information systems development because this g
g the modules of the information systems and provide
o make decisions on the IT project. However, this view
e.

g. 2. A Contribution Analysis Diagram

bution analysis diagram in Figure 2 to explain why
too general for business use. Let’s say a Universit
for the university, like “become second to none.”

n be
n be
OR
the

The
gher
goal
es a
w is

the
ty’s
To

 The Role of Conceptual Modeling in Managing and Changing the Business 5

accomplish this objective, she relies on her Vice Presidents to do something in their
respective roles. Let’s say the Vice President of Administration sees “hiring the best
support staff” as a goal that can contribute to the top strategic goal of “becoming
second to none.” This hiring goal is then interpreted by the Web Manager as
“developing the best web site” as a goal that will eventually contribute to the
“becoming second to none” goal, because the site will attract the best people to apply.
When we look at the Web Manager’s goal, we start to ask questions such as, can an
attractive web site really contribute to the “becoming second to none” goal? If yes,
by how much? Is it possible that, because a Web Manager always thinks about web
development, it is not surprising that he sees “developing an attractive web site” as
contributing to all higher level goals? Should the President invest in this web
development project and how much money should she invest? Obviously, more
information is needed in order to answer these questions.

Goal-setting at different levels of the organization has different meanings,
considers different factors, and is dependent on the organizational workers at each
level. For example, at the top organizational level, the President and Vice Presidents
consider external factors and may set higher than possible to achieve goals that lack
operational considerations. At the operation level, organizational workers consider
factors such as resources available to them, the importance of their role (so that they
will not be laid off), and maximizing budgets for their projects, but may be less
interested in enterprise wide achievements. This is why simply showing how a goal
contributes to another goal in a contribution analysis diagram will not provide
sufficient information for top management to make a decision.

An example of research that tries to address the different characteristics or
attributes associated with goals at different levels of organizations, and the
relationships between those goals, is that of Singh and Woo [18]. This approach will
be further discussed in Section 3.1.

3 Providing Values for Organizational Workers

There is evidence that organizational workers are already using conceptual models for
their problem solving. For example, Fettke [5] reported in his survey that
practitioners are using conceptual model diagrams for non-IT related work such as
human resource management. He also reported that a critical success factor for
conceptual modeling is that nontechnical people should easily understand the models.
This means that organizational workers will use conceptual models more often if we
use familiar terminology, and show them the value that can result. To illustrate how
conceptual models can assist organizational workers in problem solving, we present
examples from our research.

We focused on developing approaches to conceptual modeling that are derived
from research on management. Examples include strategic management literature,
human resource management literature, and personnel psychology literature. We
looked for management concepts (rather than IT concepts) to use in conceptual
models that could potentially support the organizational worker. We also sought to
avoid any biases in our IT background and thinking.

6 C. Woo

To reach this objective, we viewed business as consisting of organizational actors,
who each represent a role in organizational work having a goal and a thought process.
The idea of looking into organizational worker is not new. Jacobson et al. [8] used the
concept of actors, and identify cases as a starting point for understanding
requirements in their use-case analysis; Yu [23] used agent as the focus to understand
dependencies and rationales. Checkland [4] stated that “… at a higher level, every
situation in which we undertook action research was a human situation in which
people were attempting to take purposeful action which was meaningful for them”
(p.S14). This is consistent with our view of considering business as a context where
organizational workers play roles, and have goals and thought processes.

When an organizational worker performs his/her work, other organizational
workers might be interested in knowing how the work affects or contributes to their
work (inter-actor view) and why the work was performed in a specific way (intra-
actor view). We can capture these inter-actor and intra-actor views in conceptual
models. A specific type of inter-actor view occurs in the business-IT alignment,
where an organizational worker’s accomplishments might contribute to his/her
supervisor’s goal. Regarding the intra-actor view, the different backgrounds, beliefs,
and abilities of organizational workers affects their thought processes or what
Checkland [4] called “(what is) meaningful for them.” Representing their thought
processes in conceptual models might help organizational workers to better
understand each other and react accordingly, when cooperating or collaborating.

3.1 Conceptual Models for Business-IT Alignment

Singh and Woo [18] did an extensive search in management literature and came up
with these types of goals that need to be distinguished in organizations. They are:

(1) Strategic goals: These are the goals of the organizational vision. They are set by
and for top management.

(2) Assigned goals: These are operational goals that will contribute to the
achievement of the strategic goals. They are set by top management for middle
managers.

(3) Interpreted goals: These are interpretations by individual organizational
workers of the assigned goals.

Distinguishing these goals is necessary because of the goal-setting issues mentioned
at the end of Section 2.2. Interpreted goals are needed because organizational workers
can interpret goals differently due to factors such as experience, ability, past success,
task complexity, and performance constraints. Interpretations that are not aligned
with strategic goals can, therefore, affect organizational performance or outcomes.

The attributes associated with (or concepts used in) each of these goals, and the
relationships between the goals, are discussed in greater detail in [18]. For the purpose
of this paper, we will provide examples of the attributes associated with the strategic
goal. Strategic choice (or vision) and strategic process (a set of related procedures to
implement the strategic choice) are concepts used to formulate strategic goals.
Factors such as internal competencies and the environment guide the selection of
strategic choice and strategic process.

 The Role of Conceptual Modeling in Managing and Changing the Business 7

We conducted two case studies using this framework of goals. In the first study,
we found that the three types of goals are insufficient to provide a contribution
analysis diagram that would be meaningful for organizational workers. Both assigned
and interpreted goals can occur at different levels of organizations and it is important
to further distinguish the goals according to different levels of organizations.

In the second case study, we retained the strategic goals but added tactical level
goals and operation level goals. Tactical goals are set by and for middle level
managers while operation goals are set by and for the lowest level managers. This
distinction is important because middle managers play a critical role in
operationalizing strategic goals. Figure 3 shows an example of a contribution analysis
diagram that we presented to organizational workers to assist their problem solving.

In these two case studies, we discovered that these conceptual models help
organizational workers to

• Understand the coherence of and congruency among operational, tactical, and
strategic goals.

• Identify critical goals at the operational level that directly contribute to
multiple strategic goals. This is an important discovery because organizations
often lay off employees when they eliminate the need to accomplish certain
goals, but this elimination and lay off indirectly hurts other strategic goals.
Having such a diagram helps senior management to understand the impact of
their intended changes.

• Better understand their interpretation of strategic goals. For example, the
diagram forced a human resources manager to think through the goals in
depth, and revised her interpretation of the assigned goal so that it aligned with
the strategic intent.

We also discovered that the distinction between assigned goals and organizational
workers’ interpretation of the assigned goals (i.e., interpreted goals) is more
pronounced among middle management than at the higher and lower levels of the
organization. This illustrates the need to incorporate tactical level goals in the
contribution analysis diagram. It will be useful to study how conceptual models can
aid middle managers in better aligning their goals with strategic goals.

In addition, it was interesting to discover that decomposing goals using ORs
(alternative ways of accomplishing the same goal) was not needed by upper and
middle managers, because of the nature of the tactical goals and the process used to
determine them. The process seemed to include an agreement among managers to
accomplish organizational intent in a coherent and consistent way. Having
alternatives would make it more difficult for them to ensure the intended
organizational outcomes.

3.2 Conceptual Models for Thought Process

We mentioned earlier in Section 3 that representing thought processes might help
organizational workers to better understand each other, and react accordingly when
cooperating or collaborating. In this section we report our research experience and
findings in this line of work.

8 C. Woo

We use the following concepts to represent the internal behavior of organizational
workers: perception/input, belief, learning, goal, intention, reasoning, capability,
output, and action [13]. We called this the organizational actor framework.
Perception/input represents the attributes of things in the world that the organizational
worker is aware of. Beliefs are assumptions about the world that are based on the
organizational worker’s observations of the world. The mechanism by which the
observations turn into beliefs is represented by learning. The goal is the main

Fig. 3. An example of mapping operational goals to strategic goals [18]

 The Role of Conceptual Modeling in Managing and Changing the Business 9

objective of the organizational worker, and how the organizational worker wants to
act to achieve a goal is called an intention. The process by which an actor decides
what to do is represented by reasoning. The actual changes s/he creates in the
environment are represented by actions that create some output (or specific attribute
of the environment).

None of the above concepts in the organizational actor framework are new and
they have been used in the field of intelligent agents and multi-agent systems for
many years. However, we are unaware of work that uses these concepts to help
organizational workers in their problem-solving. Monu and Woo [13] provided
evidence that organizational workers unintentionally use those concepts in their
problem solving. In an exploratory study with 10 subjects, we found that subjects
prefer to use the organizational actor model, over i* models, in explaining a domain
application to other people. From the rationale provided by the subjects, we found the
learning and reasoning concepts of organizational workers (which are not available in
the i* models) are useful for understanding and communication. Learning and
reasoning are concepts that represent the thought process of organizational workers.

An example of an organizational actor diagram is shown in Figure 4. We used the
description and i* diagrams provided in [6] to derive this organizational actor
diagram. It will provide a useful comparison to the corresponding i* diagrams in [6].

To further understand the usefulness of the organizational actor framework, we
applied it to two domains: marketing and disaster management. For the marketing
case study [11], we represented a scenario involving a price war between two
companies so that we could use the organizational actor diagram to create a
simulation of agents in this situation. The marketing expert used the diagram and
discovered that the objectives of the respective retailer actor was not solely what
drove pricing behavior but the actors' reasoning and learning.

In the disaster management case study [12], where we represented the conceptual
model of actors in a disaster management scenario, senior disaster professionals found
that a major resource for them was not technical manuals but everyday sources (e.g.,
student newspapers and community meetings) that provided information about the
“pulse” of the community. In addition, disaster recovery personnel were able to
discover assumptions in the disaster plan. For example, they discovered that their
major assumption had been that key personnel in the disaster recovery would always
be able to interact during the disaster. Assumptions are represented in the
organizational actor diagram as beliefs, and beliefs can be changed by learning. This
is therefore another example of the usefulness of representing the thought process of
organizational workers in a conceptual model.

4 Conclusion

Conceptual modeling started in the area of database design, and expanded into
gathering requirements for information systems development. In this paper, we
provide a further extension, because we realize we can move away from using it
purely for IT; we can help organizational workers to better understand the
organization and support them in their problem solving. To do this, we needed to
represent aspects that we had not modeled previously, and we needed to base the

10 C. Woo

development of those aspects in management literature. In this paper, we provided a
few examples of how to accomplish this: (a) agreements that govern the exchange of
resources in Section 2.1, (b) attributes associated with goals at different levels of
organizations in Section 3.1, and (c) the thought process of reasoning and learning in
Section 3.2.

Fig. 4. An Example Organizational Actor Diagram [13]

 The Role of Conceptual Modeling in Managing and Changing the Business 11

We are extending our object-oriented modeling approach to include business
context [22]. When applying the approach in real world situations, we discovered that
most of our diagrams are too complex for use by organizational workers. One way to
resolve this challenge is to provide summary information useful for their problem
solving (e.g., a bar chart showing hours spent in different activities) or allow them to
query the database containing the conceptual model (e.g., what are the sub-goals that
contribute to a higher level goal). However, in order to produce this kind of
aggregated information for organizational workers, we need to ensure consistency in
capturing requirements and in the meanings used by different people in this open-
ended world.

We see a lot of potential in expanding conceptual modeling to support
organizational workers. Although these conceptual models might need some
intermediate mapping before they can be used for IT development, the conceptual
models developed for organizational workers should help to refine the requirements
needed to develop information systems, and this can open up many avenues for future
research.

Acknowledgement. This research was funded in part by a grant from the Natural
Sciences and Engineering Research Council of Canada (NSERC). The author is
indebted to the comments and feedback of this work from Izak Benbasat, Andrew
Burton-Jones, Kafui Monu, and Yair Wand.

References

[1] Alter, S.: The Work System Method: Conncecting People, Process, and IT for Business
Results. Work System Press, Larkspur (2006)

[2] Bresciani, P., Giorgini, P., Giunchiglia, F., Mylopoulos, J., Perini, A.: TROPOS: An
Agent-Oriented Software Development Methodology. Autonomous Agents and Multi-
Agent Systems 8, 203–236 (2004)

[3] The Department of Defense Architecture Framework (DoDAF), http://cio-
nii.defense.gov/sites/dodaf20/ (access June 29, 2011)

[4] Checkland, P.: Soft Systems Methodology: A Thirty Year Retrospective. In: Systems
Research and Behavioral Science, Syst. Res., vol. 17, pp. S11–S58. John Wiley & Sons,
Ltd., Chichester (2000)

[5] Fettke, P.: How Conceptual Modeling Is Used. Communications of the Association for
Information Systems 25(1), 571–592 (2009)

[6] Giunchiglia, F., Mylopoulos, J., Perini, A.: The Tropos Software Development Method:
Processes, Models and Diagrams. In: Proceedings of the First International Joint Conference
on Autonomous Agents and Mutiagent Systems: Part 1 Bologna, Italy (July 2002)

[7] Hammer, M., Champy, J.: Reengineering the Corporation. HarperCollins Publishers, Inc.,
New York (2001)

[8] Jacobson, I., Christerson, M., Jonsson, P., Overgaard, G.: Object-Oriented Sofware
Engineering: A Use Case Driven Approach. ACM Press, New York (1992)

[9] Kavakli, E., Loucopoulos, P.: Goal Driven Requirements Engineering: Evaluation of
Current Methods. In: Proceedings of the 8th CAiSE/IFIP8.1 International Workshop on
Evaluation of Modeling Methods in Systems Analysis and Design (EMMSAD), Velden,
Austria, June 16-17 (2003)

12 C. Woo

[10] van Lamsweerde, A.: Goal-Oriented Requirements Engineering: A Guided Tour. In:
Proceedings of the 5th IEEE International Symposium on Requirements Engineering,
August 27-31 (2001)

[11] Monu, K., Wand, Y., Woo, C.: Intelligent Agents as a Modelling Paradigm. In:
Proceedings of the International Conference on Information Systems (ICIS 2005), Las
Vegas, December 12-14, pp. 167–179 (2005)

[12] Monu, K., Woo, C.: Conceptual modeling in disaster planning using agent constructs. In:
Laender, A.H.F., Castano, S., Dayal, U., Casati, F., de Oliveira, J.P.M. (eds.) ER 2009.
LNCS, vol. 5829, pp. 374–386. Springer, Heidelberg (2009)

[13] Monu, K., Woo, C.: Determining the Usefulness of Representing Organizational Actor
Thought-Processes Using Conceptual Modeling. In: Proceedings of the tenth AIS
SIGSAND Symposium, Bloomington, Indiana, USA, June 3-4 (2011)

[14] Mylopoulos, J.: Conceptual modeling and Telos. In: Loucopoulos, P., Zicari, R. (eds.)
Conceptual Modeling, Databases, and case: an Integrated view of Information Systems
Development, pp. 50–68. John Wiley & Sons, Inc., Chichester (1992)

[15] Olivé, A.: Conceptual Modeling of Information Systems. Springer, Heidelberg (2007)
[16] Pfeffer, J., Salancik, G.: The External Control of Organizations: A Resource Dependence

Perspective. Harper and Row, New York (1978)
[17] Penker, M., Han-Erik, E.: Business Modeling with UML: Business Patterns at Work.

Wiley, New York (2000)
[18] Singh, S.N., Woo, C.: Investigating Business-IT Alignment Through Multi-Disciplinary

Goal Concepts. In: Requirements Engineering, vol. 14, pp. 177–207. Springer,
Heidelberg (2009)

[19] Tillquist, J., King, J.L., Woo, C.: A Representational Scheme for Analyzing Information
Technology and Organizational Dependency. Management Information Systems
Quarterly (MISQ) 26(2), 91–118 (2002)

[20] The Open Group Architecture Framework (TOGAF),
http://pubs.opengroup.org/architecture/togaf9-doc/arch/
(access June 29, 2011)

[21] Ulrich, D., Barney, J.: Perspectives on Organizations: Resource Dependence, Efficiency
and Population. Academy of Management Review 9(3), 471–481 (1984)

[22] Wand, Y., Woo, C., Wand, O.: Role and Request Based Conceptual Modeling – A
Methodology and a CASE Tool. In: Li, Q., Spaccapietra, S., Yu, E., Olivé, A. (eds.) ER
2008. LNCS, vol. 5231, pp. 540–541. Springer, Heidelberg (2008)

[23] Yu, E.: Modelling Organizations for Information Systems Requirements Engineering. In:
Proceedings of the First IEEE Symposium on Requirements Engineering, San Diego,
U.S.A, pp. 34–41 (January 1993)

[24] Zackman, J.A.: Zackman Framework, http://www.zachman.com/ (access June 28,
2011)

M. Jeusfeld, L. Delcambre, and T.W. Ling (Eds.): ER 2011, LNCS 6998, pp. 13–31, 2011.
© Springer-Verlag Berlin Heidelberg 2011

Adding Meaning to Your Steps
(Keynote Paper)

Stefano Spaccapietra1 and Christine Parent2

1 Swiss Federal Institute of Technology (EPFL), IC, Station 14, 1015 Lausanne, Switzerland
2 University of Lausanne, HEC-ISI, 1015 Dorigny, Switzerland

stefano.spaccapietra@epfl.ch, christine.parent@unil.ch

Abstract. Mobility data is becoming an important player in many application
domains. Many techniques have been elaborated to extract statistical knowledge
from the data sets gathering raw data tracks about the moving objects of interest
to an application. These data tracks obey the physical-level specifications of the
devices used for data acquisition (GPS, GSM, RFID, smart phones, and other
sensors). Nowadays, interest has shifted from raw data tracks analysis to more
application-oriented ways of analyzing more meaningful movement records
suitable for the specific purposes of the application at hand. This trend has
promoted the concept of semantically rich trajectories, rather than raw
movement, as the core object of interest in mobility studies.

This keynote paper intends to provide the foundations of a semantic
approach to data about movement. It focuses on the definitions of the most
important concepts about mobility data, concepts that are frequently used but
rarely rigorously defined.

Keywords: Mobility data, moving objects, movement tracks, trajectory,
semantic trajectory, trajectory behavior.

1 Introduction

Mobility is one of the major keywords that characterize the current development of
our society. People, goods, and ideas are moving faster and more frequently than
ever. This entails a considerable boom in all logistics geared to make moving easier.
From the computer science perspective such logistics targets on the one hand the
provision of contextualized information (via location-based systems), and on the other
hand the capture, management and exploitation of movement data (generated via the
use of GPS, sensors, RFIDs, cellphones, smartphones, and alike). Tracking moving
objects can produce huge amounts of movement data. Unfortunately these data,
basically GPS records containing sequences of spatio-temporal positions, do not
readily convey information about their meaning from an application viewpoint. Hence
their use remains quite limited.

To enable richer use of movement data, recent research has been investigating
ways to enrich movement tracks to make them better correspond to application
requirements and scenarios. These enriched movement tracks are nowadays referred
to as semantic trajectories.

14 S. Spaccapietra and C. Parent

As a new type of objects, semantic trajectories call for new definitions in terms of
modeling and manipulation, including the ability to define multiple interpretations on
the basis of application criteria. This paper provides a set of basic definitions that
form a consistent framework to talk about how GPS records of movement tracks can
be turned into meaningful information, the semantic trajectories. Definitions follow
the inspirational work on semantic trajectories first done within the GeoPKDD project
[8] (in particular [4], [15], [22]), and currently continued within the MODAP EU
Coordination Action [20]. Other important prior background work includes work on
spatio-temporal databases [13] and the work by Güting et al. on moving objects [11].

The next section discusses the step leading from raw movement to raw trajectories.
Section 3 moves us from raw trajectories to semantic trajectories. In section 4 we
analyze how the concept of behavior inherently applies to trajectory analyses. Section
5 concludes this short contribution.

2 Raw Movement Tracks

Movement in this paper refers to time-stamped changes in the spatial position of an
object, called the moving object. It is therefore, by the virtue of this definition,
movement in geographical space, as opposed, for instance, to metaphorical
movements such as the career path expressing the progression of a person in a work-
related abstract space. Intuitively, movement can be defined as the result of an action
performed to 1) go from one place to another, if the moving object controls its
movement (e.g. a person, an animal, a car), or 2) move an object from one place to
another, if the moving object is passive and is moved (e.g., a parcel). We do not
include in this study other kinds of movements that are not intended for changing the
spatial position: E.g., eye or finger movements, body movements as in gymnastic
exercises, or movement intended to change the spatial distribution of a set of objects,
as e.g. in military games.

We also do not address issues related to shape and shape deformations that may
accompany movement. For example, a pollution cloud is likely to change shape over
time while it moves. To avoid dealing with the complexity of tracking the shape of
the object, we ignore the object’s shape and consider that the moving object is
spatially represented as a single moving point. The chosen point may be the centroid
of the object’s shape or any other point deemed to suitably represent the current
position of the object.

The object's movement is usually captured using GPS devices, as is the case for
GPS embedded in cars, cell phones, and various transmitters attached to animals. It
may also be sensed via tags (e.g., RFID tags), attached to the moving object, a
technique frequently used with passive objects, e.g., parcels and products. The
accumulation of captured data forms the movement track of the moving object,
defined as the sequence of spatio-temporal positions, i.e. (instant, point) pairs, that
contains the evolving position of the object. In Figure 1 the dotted line shows part of a
movement track in space and time where X and Y are the spatial coordinates and time
is the vertical axis. The continuous line in the X, Y plan shows the spatial trace of the
moving object. Notice that the three vertical segments of the spatio-temporal trace,

 Adding Meaning to Your Steps 15

(t1, P1)–(t2, P1), (t3, P2)–(t4, P2), and (t5, P3)–(t6, P3), show that the object did not
move during the three time intervals: [t1,t2], [t3,t4] and [t5,t6].

Figure 2 uses a 2D visualization on the background geographical map to show the
spatial trace of a pedestrian visiting the EPFL campus.

Fig. 1. A movement track in a 3D

 (2D space + time) representation
Fig. 2. The spatial trace of a movement
on a background map

To differentiate the captured track from other kinds of tracks that will be
introduced in the sequel, we call raw data the captured data. Notice that while simple
devices only transmit (id, t, x, y [, z]) spatio-temporal positions (where id denotes the
device identifier and x, y, z are the spatial coordinates in either 2D or 3D space), more
sophisticated devices can transmit more data, such as the instant speed or stillness,
instant direction, instant rotation, instant acceleration.

The movement track of an object can be captured all along the lifespan of the
object. However, many applications are not interested in keeping and analyzing
exhaustive movement records. For example, ecologists tracking the movement of
birds may be interested in analyzing birds' movement only during their annual
migration periods, in spring and autumn. During the other seasons the signals
transmitted by the devices equipping the birds are simply ignored (not stored). We
call trajectories the segments of the object's movement that are of interest for a given
application (see Figure 3). Each trajectory is identified by its performing object and
two specific spatio-temporal positions, called Begin and End, which are the first and
the last positions of the object for this trajectory [22].

Fig. 3. Trajectories extracted from a movement track visualized as a line

16 S. Spaccapietra and C. Parent

We call raw trajectory a trajectory containing only raw data. A raw trajectory is
formally defined as:

(trajectoryID, movingObjectID, track: LISTOF position(instant, point))

Notice that the movement track contains only positions recorded at some sampling
instants. Therefore it is an approximation of the real movement. Interpolation
functions are frequently used to compute the likely position of the moving object for
any instant between two consecutive sampled positions. The computed positions
complement the captured positions, thus reconstructing continuity.

It is, however, often the case that a movement track shows an abnormal (greater
than the sampling rate) temporal gap between two consecutive positions. This means
that over some periods of time the information on the movement of the object is
missing. If this is accidental (e.g., because of device malfunction) we say there is a
hole in the track. If this is deliberate (e.g., an employee deactivating her GPS when
going for lunch) we say there is a semantic gap. Semantic gaps have to be explicitly
recorded in order to differentiate them from the holes. Holes may sometimes be
“filled”, using e.g. linear interpolation algorithms that compute the missing positions.
Semantics gaps, instead, are not to be filled, as the positions are intentionally missing.

3 From Raw Trajectories to Semantic Trajectories

Even when complemented with the definition of semantic gaps, raw trajectories are
not sufficient for many applications that need more semantics. Raw trajectories are
well fitted for applications that aim only at locating some moving objects (e.g. where
was parcel #371 at 8am PST on October 30, 2011?) or computing statistics on the
spatio-temporal characteristics of the trajectory (e.g. which percentage of trajectories
show speed over 50km/h?). On the other hand, most applications analyses require
trajectories that are linked to the application context. For example, understanding
characteristics of persons' trajectories in a city usually requires knowledge of the
underlying city map. Thanks to city information, spatio-temporal coordinates can be
replaced with streets and crossings names, or with names of places of interest, such as
buildings, housings, shops, restaurants, cafes, schools, enterprises, and sports centers.
Traffic monitoring applications, for example, also need information about ongoing
events, e.g. football games, fairs, and concerts, to be able to differentiate what
happens under normal traffic conditions from what happens under exceptional traffic
conditions. Such information is recovered from external data sources, in particular
sources containing geo- and time-referenced objects. Let us generically call
application data repository these external sources, be they application’s databases or
other sources such as GIS or web pages.

All these information, as well as others, may be attached to the trajectory track or
to specific parts of it. For example, an application may need to record the goal of each
trajectory trip, e.g. was it for visiting a customer or a provider? An application dealing
with apes may need to record at each instant the activity pursued by the animals, e.g.
resting, feeding, moving, and escaping. An application monitoring persons in a city
may need to record the transportation means used at each instant by each moving
person. Following today's practice we call annotation any additional data that
enriches the knowledge about a trajectory (or about any part of the trajectory) and that

 Adding Meaning to Your Steps 17

is stored with the trajectory data. Annotations may be captured by observers (e.g., the
activity of apes) or by sensors (e.g. instant speed), or may be inferred by reasoning
(e.g., the transportation means of the persons in a city may be inferred from the
velocity and acceleration of the person, and from knowledge about the transport and
road networks) [10]. An annotation value is an attribute value (e.g. in the apes'
trajectories, the string "feeding" is a value for the activity annotation) or a link to an
object of the application data repository (e.g. in a relational database about persons'
trajectories in a city, the key of the tuple "bus_line_13" of the Transportation table
may be a value for the transportation means annotation). It may also be a complex
value composed of attribute values and links to objects. For instance in the apes
application, a complex annotation value for a trajectory of the ape 26 could be
("picking lice off", ape_33) where ape_33 is a reference to the object representing
another ape of the studied group.

Fig. 4. Different annotations on a trajectory: kind_of_place (home, office, market),
kind_of_path (road, train_track, pathway), means_of_transportation (bus, metro, walk)

Another way of enhancing the knowledge on trajectories is to identify, within
them, specific segments that are semantically meaningful for the application in view
of specific trajectory data analyses. An episode [17] is a maximal sub-sequence of a
trajectory such that all its spatio-temporal positions comply with a given predicate
that bears on the spatio-temporal positions and/or their annotations. Usually a
trajectory is segmented into a list of episodes of several types according to a set of
predicates, each predicate defining a type of episodes. For instance, a vehicle
trajectory may be segmented into episodes of two types, "stop" and "move",
according to the two predicates: 1) for stops: speed<3km/h, 2) for moves:
speed≥3km/h.

Fig. 5. Segmentation into episodes by mode of transportation

A given trajectory may be structured into episodes in many different ways, i.e.
using different sets of predicates. For example, a trajectory of a person within a city
may be segmented into episodes based on 1) the value of the annotation
“means_of_transportation” (e.g., on_foot, by_bus, by_car) [28], 2) the time period
corresponding to the instant of the spatio-temporal position (e.g. morning, noon,
afternoon, evening, night), and 3) the category of the area of the city corresponding to

18 S. Spaccapietra and C. Parent

the location of the spatio-temporal position (e.g. residential, mixed residential-
commercial, commercial, industrial, special). We call each list of episodes an
interpretation of the trajectory. We call semantic trajectory a trajectory enhanced
with annotations and/or one or several alternative interpretations.

Episodes themselves can be annotated. For instance, in the case of persons'
trajectories in a city, the episodes of type stop may be annotated with the reference to
the application object of type "Point of Interest" that is the nearest one and most likely
to have been visited by the moving person during this stop.

At this point we can formally define a trajectory of an object as:

Trajectory = (trajectoryID, objectID, trajAnnotations,
track: LISTOF position(t, p, posAnnotations),
semanticGaps: LISTOF gap(t1,t2),
interpretations : SETOF interpretation(interpretationID,

 episodes: LISTOF episode(t'1, t'2, type, episodeAnnotations)))

where:
trajectoryID is the identifier of the trajectory;
objectID is the identifier of the moving object;
trajAnnotations is the (possibly empty) set of annotations associated to the trajectory

as a whole (e.g. its goal or cause, its duration, its length)
track is the list of spatio-temporal positions of the moving object. The list is

temporally ordered, according to ascending t
t, ti specify a temporal element. Usually they are instants. All ti are disjoint.
p specifies a spatial element. Without loss of generality we assume it is a point, i.e.

2D coordinates (x, y) or 3D coordinates (x, y, z)
posAnnotations denotes a (possibly empty) set of annotations (e.g. activity,

transportation means) associated with the spatio-temporal position.
The first spatio-temporal position is called Begin: Begin=(tBegin, pBegin, annotationsBegin)
The last spatio-temporal position is called End: End=(tEnd, pEnd, annotationsEnd);
semanticGaps is a (possibly empty) list of semantic gaps in the trajectory. Each gap

is defined by two instants t1 and t2 where t1 and t2 are instants (t) in positions,
such that t2 immediately follows t1 in positions: t1=positioni.t and
t2=positioni+1.t

interpretations is the (possibly empty) set of interpretations of the trajectory
interpretationID is the identifier of the interpretation, e.g. "StopMoveEpisodes" or

"activityEpisodes";
episodes is the list of episodes for this interpretation
t'1 and t'2 are instants (t) recorded in two positions, such that:
 t'1< t'2 and episodei+1.t'1 ≥ episodei.t'2 + 1
type is the type of the episode, e.g. "stop" or "move" for the interpretation

"stop/moveEpisodes", "playing", "eating", or "resting" for the
interpretation "activityEpisodes";

episodeAnnotations is the (possibly empty) set of annotations associated to the
episode.

 Adding Meaning to Your Steps 19

Let us use the example of trajectories of cars in a city with a unique interpretation,
StopMoveEpisodes, and only one annotation: an annotation of episodes of type stop
containing the reference to a place of interest. Then the above definition reduces to:

(trajectoryID, objectID, positions: LISTOF position(t, p),
episodes: LISTOF episode (t'1, t'2, type, episodeAnnotations))

where: type = "stop" or "move"
episodeAnnotations =

for stops: a link to a PlaceOfInterest object of the application data repository
for moves: /

A raw trajectory is formally defined as:
(trajectoryID, ObjectID, positions: LISTOF position(t, p))

Knowing what is in a trajectory, we can now look at how to analyze trajectories to
infer further characterization of the information they convey.

4 Basic Concepts for Describing Trajectory Behaviors

The goal of this section is to introduce, identify, and define a set of basic concepts for
understanding past and future works on analyses of trajectory behaviors. Behavioral
analysis is not a new discipline. The last 20+ years have seen numerous contributions
from computer science as well as from many application domains (e.g. transports,
ecology). However, on the one hand the analysis techniques and tools (e.g. data
mining and knowledge extraction) have significantly evolved, and on the other hand
the growth of mobility data has recently lead to new facilities, new problems and new
solutions. Thus, an introduction on trajectory behaviors and their identification and
use seems appropriate.

The number of behaviors that can be defined is unbounded, as any application
domain has its own typical requirements and any application adds its specific
requirements. We purposely abstain from trying to define a behavior taxonomy. We
instead discuss ways to classify behaviors based on their important and identifiable
features. Of particular importance in clarifying the broad vision of behaviors is the
separation between individual and collective behaviors, which we discuss in
subsections 4.2 and 4.3. Other categorizations of interest are discussed in subsections
4.4 to 4.6. Compliance to behaviors is introduced in subsection 4.7. Finally,
subsection 4.8 suggests a categorization of research concerns about trajectory
behaviors.

4.1 Introducing Trajectory Behaviors and Their Identification

There are many ways to use trajectory data. The simplest one is by querying the data
to find mobility facts about some moving object. For example, the tracking database
of an express delivery company allows customers to find out where their shipment is
at any point in time. Similarly, relatives of airline passengers can ask when a given
flight departed and when it arrived. More frequently applications focus on analytical
querying, to extract higher-level information from the trajectory database. For
example, a city traffic management application may statistically analyze trajectories

20 S. Spaccapietra and C. Parent

to identify the most traveled routes depending on time periods within a day or
depending on days within a week. This kind of knowledge is not about a specific
trajectory or about a specific moving object. It is related to the fact that a sufficient
number of trajectories share something in common. For example, if many car
trajectories traverse a given square in the city within the same one-hour period one
can infer that during this hour the square qualifies as a traffic congestion area. By
"congestion area" we refer to both the location and the time period. Actually, the
higher-level information targeted by our traffic application will rather be to find all
congestion areas within the city. Once this factual result achieved, the application
may wish to further analyze trajectories to check if alternative traffic regulations (e.g.
using a different network of one-way streets) could possibly lead to the removal of
some congested areas. One way to address this goal can be to analyze, for each
congestion area, the set of trajectories participating in the congestion and look for
groups of trajectories that follow similar routes before and after they traverse the
congestion area. Then the remaining task is to find alternate routes for the largest
groups.

This complex analysis process uses two kinds of trajectory characterization:

1) Identifying which trajectories cross the congestion area. The filtering of the
trajectories is done by applying the predicate "Does the trajectory cross the congestion
area during the congestion period?" to each one of the trajectories in the trajectory
database.

2) Among the set of trajectories selected for a given congestion area, select the
groups of trajectories that use similar routes before and after the congestion area. The
predicate for this selection is: "Do all trajectories in the group follow similar routes at
least from 1km before up to 1km after the congestion?" Unlikely to the previous case,
this condition has to be checked not for each trajectory, but for each potential
maximal group of trajectories crossing the congestion.

In the literature on mobility, the predicate used to characterize trajectories is said to
define a trajectory behavior (or trajectory pattern or behavioral pattern). The
trajectories selected by the predicate are said to show the corresponding behavior.
Both terms behavior and pattern denote some characteristic that is typically
distinguishable in the trajectories provided some appropriate technique (from simple
selections to complex knowledge extraction processes) is used to analyze the set of
trajectories. In this paper we consider the terms behavior and pattern as synonyms and
choose to use behavior as this term has a more definite flavor of spatio-temporality
that goes well with trajectories.

The predicate defining a behavior can just be anything. It totally depends on the
application at hand. It may rely on the spatio-temporal characteristics of the
trajectories, like speed (e.g. the Speeding behavior that characterizes vehicles
speeding above the limit), or the starting or ending points (e.g. the Meet behavior [7]
that characterizes a group of trajectories ending at the same place at the same time).
These spatio-temporal predicates usually use spatial, temporal and spatio-temporal
relationships, like crossing a specific area or line during a specific time interval. The
behavior predicate may also rely on the semantic information conveyed via the
annotations of the trajectory, in particular on any object of the application repository
(and therefore of the environment) that is referenced by an annotation (see Section 3
for more about annotations and the links between the trajectory and the environment).

 Adding Meaning to Your Steps 21

For instance, the predicate of the behavior HomeToWork relies on the types of the
starting and ending places of the trajectory (respectively HomePlace and WorkPlace
types). These semantic information may be stored directly in the annotations of the
Begin and End positions of the trajectory (e.g. the annotation "PlaceType" whose
values are: 'work', 'home', 'shop', 'restaurant'…), or they may be characteristics of the
objects referenced by the annotation (e.g. the annotation "PlaceOfInterest" whose
value is a reference to an object in the environment database and one characteristics
of this object is its type which says if the object is a work place, a home place or
another kind of place).

It is essential for a mobility application to define the trajectory behaviors that are
relevant to its goals. Being able to choose or get inspiration from an existing
taxonomy certainly helps application designers. For this reason research has been
devoted to build such taxonomy. For example, Dodge et al. [7] undertook a study of
the literature on data mining and visual analysis dealing with movement data and
extracted definitions of various movement behaviors, most of which refer to
behaviors of groups of moving objects. The extracted types of behaviors have been
organized in an informal taxonomy. Their classification is based on the spatial and
temporal characteristics of the trajectories with no semantic annotation. It provides
intuitive rather than formal definitions and classification. The authors have also set up
a web site where interested researchers can contribute to the further development of
the taxonomy (http:// movementpatterns. pbworks.com/w/page/21692527/Patterns-of-
Movement).

Similar efforts towards a list of behaviors include Thériault et al. [23], whose main
focus is on spatio-temporal behaviors, Laube et al. [14] whose peculiarity is studying
movement of individuals within a group, Andrienko and Andrienko [3] who addresses
single and collective behavior taking also into consideration terrain features (e.g.
obstacles) as well as some semantic annotations (e.g. means of transportation), and
Wood and Galton [26] who develop a deeper investigation into concepts for collective
behaviors. The latter is particularly interesting as it discusses in detail the works we
just quoted, including [7]. Their conclusion is that no work is sufficiently mature and
comprehensive to establish a general taxonomy.

4.2 Individual Trajectory Behavior versus Collective Behavior

Back to our example on using car trajectories to determine congestion areas, we have
seen that for the purpose of finding how to prevent congestions we need two kinds of
characterizations of trajectories:

 1) Characterizing each trajectory individually, by associating to it the congestion
areas it traverses, if any. Other examples include qualifying each human trajectory in
a city as: a Shopping trajectory (a trajectory that stops in several shops or shopping
centers), a Tourist trajectory (a trajectory that stops in hotels, museums, and
monuments), a HomeToWork trajectory (a trajectory that goes form the home place of
the object to her/his work place), and son on. Similarly, we can seek to qualify each
animal trajectory as e.g. a Leadership trajectory (a trajectory that moves in front of
the trajectories of the other animals of its group);

 2) Characterizing groups of trajectories, e.g. in the traffic application the groups
of vehicle trajectories traversing the same congestion area with similar routes.

22 S. Spaccapietra and C. Parent

Characterization of groups of trajectories is very frequent in animal monitoring
applications as animals of many species use to move in groups. Popular examples
include V-Shape trajectories for migrating birds and Meet trajectories for humans (a
group of people that reach the same place roughly at the same time).

The conclusion from the examples is that two kinds of trajectory behavior exist:
individual trajectory behaviors, and collective behaviors.

Figure 6 illustrates that for individual behaviors each trajectory is checked against
the behavior predicate. This determines if the trajectory shows this behavior or not.
Collective behaviors cannot be checked by considering a single trajectory. They need
multiple, usually simultaneous trajectories by different objects. Two trajectories may
be checked against e.g. a Meet behavior, while more trajectories are needed to check
for a Flock behavior [5].

Fig. 4. Individual (Shopping) versus Collective (Meet) Behaviors

Definition: Let T be a trajectory. A trajectory individual behavior is a Boolean
predicate p(T). The predicate can bear on any characteristics of the trajectory.

Trajectories satisfying the predicate are said to show the corresponding behavior.
Behaviors can be formally defined. We use for this purpose a generic logic

formalism. A quite different formalism, tailored for collective behaviors, has been
proposed by Laube et al. [14]. For example, let us define a TrajectoryByBus behavior
for trajectories that have an interpretation called TransportModeInterpretation with
episodes of type: bus, foot, car, train, subway and bike. We define TrajectoryByBus as
the fact of having at least one episode by bus and possibly some episodes by foot, but
no other type of episode (no car, train, subway or bike episode). The formal definition
of the TrajectoryByBus behavior then is:

Let T be a trajectory with a formal definition as defined in Section 2.

TrajectoryByBus(T): ∃i∈T.interpretations (i.interpretationID="TransportModeInterpretation" ∧
 ∃e∈i.episodes (e.type=bus) ∧
¬∃e∈i.episodes (e.type=train ∧ e.type=subway ∧ e.type=bike ∧ e.type=car)
)

 Adding Meaning to Your Steps 23

In this example the defining predicate requires that the trajectory data include a
specific interpretation (TransportModeInterpretation), because the behavior predicate
bears on the associated episodes. A much simpler example is the CrossTheChamps-
Elysées behavior that bears only on the spatial data (the trajectory route) used to
evaluate the involved topological Cross relationship with the line representing the
Champs-Elysées.

Definition. Let ST be a set of trajectories such that |ST|>1. A trajectory collective
behavior is a Boolean predicate p(ST). The predicate can bear on any characteristics
of the trajectories.

A collective behavior can be defined for:

- known pre-existing groups. E.g. a herd of sheep shepherded by a dog shows the
Flock behavior, and the same applies to a platoon of soldiers.

- groups that are defined on the spot by the evaluation of the behavior predicate.
E.g. the groups of similar trajectories that follow the same route before and after
crossing a congestion area.

Consider, for example, a crowd making a protest march. We can decide that the
whole set of people in the crowd makes up a single group, and analyze the behavior
of the group, e.g. in terms of initial gathering, peaceful marching, stopping, listening
to a speaker, and disbanding. We could also identify a group of individuals in the
crowd that do not show the expected behavior, for example frequently moving from
one position within the crowd to a different position, frequently getting in and out of
the crowd, tending to reach the border between the crowd and security staff. Such
atypical behavior can be defined as the behavior of a group of potential rioters. We
have coexistence of behaviors for a known group (the crowd) and behaviors for a
group (the rioters) that can only be identified a posteriori.

Following Dodge et al., we use group to denote a priori known groups, and cohort
to denote groups identified by applying the behavior predicate.

As an example of formal definition for a collective behavior, let us give the
definition of the Convergence behavior:

Let ST be a set of trajectories, SPACE the set of points of the application space,
and Δs the desired spatial approximation threshold (a distance),

convergence(ST, Δs): ∃pc∈SPACE (∀T∈ST (distance(T.pEnd, pc)≤Δs) ∧
 ∀T∉ST (distance(T.pEnd, pc)>Δs))

This convergence behavior can be turned into a Meet (spatio-temporal) behavior by
adding a temporal condition requiring that convergence of ST happens within a
certain timeframe:

Let ST be a set of trajectories, SPACE the set of points of the application space,
TIME the set of instants of the application time, Δs a spatial threshold (a distance),
and Δt a temporal threshold (a duration):

meet(ST, Δs, Δt): ∃pm∈SPACE ∃tm∈TIME (∀T∈ST (distance(T.pEnd, pm)≤Δs ∧ |T.tEnd - tm|≤Δt) ∧ ∀T∉ST (distance(T.pEnd, pm)>Δs ∨ |T.tEnd - tm|>Δt))

24 S. Spaccapietra and C. Parent

4.3 More on Collective Behaviors

Groups are essential for collective behaviors. But what exactly is a group and what
are its relevant properties? Wood and Galton have produced several papers on an
ontological analysis of the group concept (called collective in their approach) [25] and
the group motion concept [26, 27]. Identified properties of a group include:

• Membership: Does the group have always the same set of members?
• Location: Does the group have a location? Is it fixed or variable? How is it

related to the location of its members?
• Causal versus purpose: Does the group exist because of a cause or purpose?
• Roles: Do all the members have the same role, or are there various roles?
• Depth: Are some members themselves groups?

Given these properties, an application can move from the analysis of collective
trajectory behaviors to the analysis of the corresponding groups of moving objects.
Considering movement of groups raises further questions on the interplay between the
movement of the group and the movement of each member of the group (e.g., are
movements coordinated or not?), as well as interplays between movements of
different members in the group (e.g. the typical leadership/follower behaviors inside
groups of animals).

The analysis of trajectory behavior remains a very open research domain and
significant new results can be expected by ongoing and future work. In the next three
subsections we turn our attention to providing some more categorizations to help
organizing the research domain. These three categorizations are orthogonal to each
other, i.e. all combinations are possible.

4.4 Spatial / Temporal / Spatio-Temporal / Semantic Behaviors

Different views on the characteristics of trajectories lead to different categorizations
of their behaviors. Following the definition of trajectory in Section 3, trajectory
characteristics include spatio-temporal positions, annotations (at various levels) and
interpretations consisting of episodes. The latter is clearly semantic, application-
driven information. The former, positions, is by definition spatio-temporal
information, offering the possibility of considering space and time separately or
together, as needed. Annotations may be: 1) of spatio-temporal nature, e.g. instant
speed at each position, 2) semantic information, e.g. the activity of observed apes or
the transportation means of moving persons, and 3) a combination of spatio-temporal
and semantic information, e.g. the average speed during an episode.

Based on the trajectory characteristics, the following behavior categories for both
individual and collective behaviors can be found e.g. in [7] taxonomy:

• Spatial behaviors, whose defining predicate only bears on the spatial
information, i.e. the points of the spatio-temporal positions. These predicates usually
use spatial relationships like those defined in [11]. Examples of individual spatial
behaviors include: the CrossAreaA behavior that selects the trajectories that cross the
spatial extent of the area identified as A, and all “shape” behaviors that select the
trajectories whose path shows the corresponding shape, e.g., Straight pattern, Loop
pattern, Star pattern. Examples of spatial collective behaviors include Co-location and
Concentration [7].

 Adding Meaning to Your Steps 25

• Temporal behaviors, whose defining predicate uses only the temporal
information, i.e. the instants of the spatio-temporal positions. These predicates usually
use temporal relationships like those defined in [1, 11, 19]. Examples of individual
temporal behaviors include: Trajectories that start before 7am in the morning,
trajectories whose total stop duration exceeds the total move duration, and trajectories
during a given time interval. An example of temporal collective behavior is
Synchronization [7].

• Spatio-temporal behaviors, whose defining predicate uses both spatial and
temporal information. These predicates usually use spatial, temporal and spatio-
temporal relationships like those defined in [11, 19]. Simple individual behaviors
include: the TemporalCross behavior that adds a temporal constraint to the
CrossAreaA behavior, e.g., cross the area A within a given time interval, the StartAt
behavior selecting trajectories that start at some given point at some given time, and
the Speeding behavior that selects car trajectories where speed reaches higher than a
given threshold. A popular behavior in this category is the Sequence behavior: It is a
complex behavior that selects the trajectories that satisfy a list of spatial (or spatio-
temporal) simple predicates in a given temporal order, e.g. start at a given point P1,
later cross the area A1, and later stop during a while inside the area A2. Examples of
spatio-temporal collective behaviors include Convergence/Divergence,
Expansion/Contraction, Progression/Regression, and Deformation [23], Flock [7].

More recently trajectories have been enhanced with semantic features, thus
enabling an additional category:

• Semantic behaviors, whose defining predicate uses the semantic
information, i.e. the semantic annotations and episodes. A popular example is
behaviors related to episodes of type stop [22], trying to characterize for which
purpose the moving object stopped, e.g., persons' trajectories that stop at a restaurant,
car trajectories that stop at a petrol station belonging to a competitor petrol company.
Already quoted examples are Shopping behavior, denoting any trajectory such that at
least 70% of its stop duration is made in places of interest of kind Shop, and
HomeToWork behavior, denoting any trajectory such that its Begin is in a place of
kind HomePlace and its End is in a place of kind WorkPlace.

• Mixed behaviors, whose defining predicate uses some semantic
characteristics together with spatial, temporal and/or spatio-temporal characteristics.
They are the most frequent behaviors. Most of the spatio-temporal behaviors have
their mixed counterpart. The CrossTheChampsElysées we already mentioned
illustrates this mix. It characterizes the trajectories that cross the spatial extent of a
given geo-object of the application. Examples of collective mixed behavior are
FlockEscapingFromPredator and TouristGroup. The TouristGroup behavior denotes a
Flock behavior with most of its stops in places of kind Museum, Monument,
SouvenirShop, and Restaurant.

4.5 Global versus Local Behaviors

This classification, orthogonal to the two previous one, is rooted on the scope of the
defining predicate which may be either the whole trajectory or a segment of it. This
defines two classes of behavior:

26 S. Spaccapietra and C. Parent

• Global behaviors, defined by predicates that constrain the whole trajectory,
like selecting trajectories that spend more time during the stops than during the
moves, or trajectories whose global shape is a star.

• Local behaviors, defined by predicates that constrain only a sub-segment of
the trajectory, i.e., the predicate selects the trajectories that contain at least a sub-
segment that satisfies the predicate. Trajectories that start before 7am, trajectories that
pass nearby a given geo-object during their first episode are two examples of local
behaviors.

Some predicates may be used to define both global and local behaviors. For
instance, the predicate that selects trajectories that contain at least a move that draws a
star shape is a local star behavior, while the predicate that selects trajectories whose
whole sequence of positions draws a star shape is a global star behavior.

4.6 Simple versus Complex Behaviors

As trajectories are temporally ordered lists of positions, many individual behaviors do
not specify a predicate on a unique position of the trajectory, they specify a sequence
of predicates that have to be satisfied in the order of the sequence: The trajectory has
to satisfy each predicate in turn as the moving object makes its trajectory. These
sequences of predicates are usually called sequence patterns or sequence behaviors.
An example of sequence behavior is: Trajectories that begin in place P1, then cross
area A2, and later stop in place P3 for at least 10 minutes. Sequence behaviors have
been thoroughly investigated.

As sequence behaviors may be quite complex, a language has to be defined for
expressing the various sequence operators. The most usual operators are:

• THEN_NEXT: the next spatio-temporal position, the next instant, or the next
episode must comply with the predicate

• THEN_LATER: there must be, later within the trajectory, a spatio-temporal
position, instant, or episode that complies with the predicate

• repetitions: for exactly (or at least, at most) N consecutive spatio-temporal
positions, instants, or episodes the predicate must be fulfilled

• optionality: for 0 or 1 consecutive spatio-temporal position, instant, or
episode the predicate must be fulfilled.

The languages that are most frequently used for defining sequence behaviors are ad
hoc languages based on lists of predicates coupled to temporal constraints ("time
ordered sequence of query atoms"), and languages based on regular grammar or
expressions. An example of the first kind are the "sequence queries" defined in [12].
A sequence query is a list of spatial predicates coupled to temporal constraints that are
either absolute (e.g. "on November 1st, 2011") or relative (e.g. "10 days later" or
simply "later"). Another example is the query language defined in [16]. This language
is based on constraints languages.

Regular grammars and expressions work on sequences of characters, so their
principles can be easily adapted to trajectories that are sequences of positions or
episodes. For instance in [18] a trajectory is the recording of the list of zones that the
moving object crossed with associated time durations. In [9] a trajectory is made up
of episodes of kind stop and move. Each stop is annotated with a place of interest. In

 Adding Meaning to Your Steps 27

both cases, a language based on regular grammars allows defining predicates on these
sequences of zones or places of interest.

Laube et al. followed a similar approach. They defined a language for describing
individual and collective behaviors (respectively called sequence and incident
patterns) based on the spatio-temporal characteristics of the trajectories, like speed or
direction [14]. Their language is also based on regular expressions. The novelty is that
the language may define individual and collective behaviors, thanks to a model that
represents the trajectories and the set of moving objects. The repetition and optional
operators can be applied to the sequence of instants of a trajectory or to the set of
moving objects, thus supporting the description of collective behaviors that involve
sets of objects.

In [21] Sakr and Güting follow another approach. Based on their long experience
on databases for moving objects, they designed a powerful language that relies on
"lifted predicates". A lifted predicate is any regular predicate (like "Is the car over-
speeding?" or the spatial predicate "Is the car inside area A?") that is applied to time-
varying objects, and in particular to moving objects (instead of being applied to a
snapshot view). The result of a lifted predicate is a time-varying Boolean, i.e. a
function from Time to Boolean. For instance, the predicate "Is the car over-
speeding?" may generate the following result for the day November 1st, 2011: (False
[8h05, 8h45]), (True [8h46, 9h12]), (False [9h12, 10h08])… These lifted predicates
allow Sakr and Güting to express any kind of complex sequence behavior. In
particular, they allow expressing sequence operators of kind THEN_NEXT,
THEN_LATER, DURING, BEFORE…

Our last classification of behaviors defines simple and complex behaviors. We
call simple those behaviors whose defining predicate consists in a set of conditions
connected by the regular Boolean operators AND, OR, and NOT. We call complex
those behaviors whose defining predicate consists in a set of conditions connected by
the Boolean operators and by at least one sequence operator. According to this last
classification, sequence patterns are complex behaviors

4.7 Checking If Trajectories Comply with a Behavior

Behavioral analysis includes checking if given trajectories comply with given
behavior predicates, or finding which trajectories from a trajectory database comply
with given behavior predicates.

For individual behaviors, the predicate that defines the behavior may refer only to
the trajectory itself (e.g. HomeToWork, CrossLine, Star), or refer to the trajectory and
some other one(s) (e.g. the PeacockCourtshipDance behavior of a peacock in front of
a few peahens), or refer to the "semantic" group to which the trajectory belongs (e.g.
the Leadership behavior that characterizes the alpha wolf of a pack of wolves).

Checking collective behaviors on pre-existing groups runs as a check for individual
behaviors, except that compliance is evaluated at the group level instead of at the
individual level.

On the other hand, checking collective behaviors on cohorts (groups that are
defined by the collective behavior) runs as an iterative process. Assume we have a set
of n trajectories {T1, T2, …, Tn}, and we are looking for subsets of converging
trajectories (same end point). We can use the following algorithm (Convergence
behavior):

28 S. Spaccapietra and C. Parent

Initialize a first cohort, C1 := {T1}
FOR each trajectory T in {T2, T3,…, Tn}, DO:

Check with the existing cohorts {C1, C2,…, Ck} IF T converges with one of
these cohorts (say Cj)
THEN add T to Cj
ELSE create a new cohort, Ck+1 := {T}

END of FOR

As an example of why finding cohorts may be very useful, let us consider an
application willing to determine places of interest within a city or a region. Running
the compliance evaluation for the behavior SharedStop (the trajectories share at least
a common stop location) will determine how many moving objects stop at the same
place. The higher the number of involved objects, the higher the appropriateness of
qualifying this point as a place of interest.

In most cases the matching between a behavior and trajectories does not need to be
an exact match (in Section 4.2 our definition of Meet includes both a spatial and a
temporal approximation) thus replacing a point with a region around it. An alternative
approach is to introduce a compliance measure to replace the compliant/not compliant
result by a rating such as e.g., 80% compliant.

Local behaviors (Section 4.5) introduce an additional complexity in compliance
checks. Given a local individual behavior LB, a trajectory T can be searched to find if
it complies with the LB trajectory behavior. Although conceptually very simple,
matching T against LB requires the LB predicate to be checked for all possible sub-
sequences of spatio-temporal positions of T (LB defines a kind of sliding window
continuous query). Similar reasoning applies to local collective behaviors.

4.8 Looking for Behaviors a Posteriori versus Using Predefined Behaviors

Two types of trajectory behavior research exist. On the one hand we have researches
that, given a set of trajectories, aim at identifying which behaviors can be found in the
set. No a priori behavior or application-defined behavior is assumed. Techniques for
this kind of research typically include data mining, machine learning, and knowledge
extraction in general. It is worth noting that in some application domains, e.g. video-
surveillance, trajectories are indeed analyzed to find characteristic behaviors but the
found behaviors are not of interest per se, they are only used to detect unusual
behaviors, i.e. trajectories that do not comply with any of the characteristic behaviors.
Tung et al. [24] survey a number of proposed techniques to find unusual behaviors,
mainly based on neural networks once the characteristic behaviors have been
identified in a training phase.

On the other hand we have researches that for a given problem domain use a set of
behaviors that have been predefined by the experts in the domain. For example, Carey
et al. [6] analyze behavior of flies in a cage by looking for six predefined behaviors:
walking, moving, flying, feeding, drinking, and resting. Issues in these approaches
basically relate to detection, quantification-evaluation, and visualization of the
considered behaviors.

Relevant work is analyzing trajectories frequent behaviors in order to infer
semantic information about the environment, like finding the places of interest in a

 Adding Meaning to Your Steps 29

city, the places favored by migrating birds for feeding and resting or the places that
are the most dangerous for them.

Finally, there are research efforts aiming at defining behaviors in a given domain
in a more abstract way, e.g. not for the purpose of a specific application. The already
quoted taxonomic work of [7] belongs to this category, as do the works in [4] and [2],
where for example the Flock, Leadership and SingleFile behaviors are proposed.
These behaviors stem from an observation of possible spatio-temporal configurations
of moving objects and are assumed to be relevant to a variety of applications.

4.9 Conclusion

In this paper we have first defined the basic concepts that underline trajectory
management, emphasizing aspects related to a semantic view of trajectories. Secondly
we have shown how trajectory behaviors can be described by predicates involving
movement attributes and/or relations to the context and/or semantic annotations.
Complex behaviors can be decomposed into simpler behaviors linked by various
temporal relations. We have introduced the concepts of individual and collective
behaviors and considered the distinction between local and global behaviors. We have
also considered on a general level three kinds of behavior analysis: (1) checking for
compliance with a particular behavior; (2) searching for occurrences of particular
behaviors; and (3) observing and describing existing behaviors.

We do expect the corpus of concepts and techniques related to semantic
trajectories to significantly increase in the short term. We hope this paper provides a
stable basis for evolution. We expect an even more important development of new
applications and new domains where semantic trajectories will significantly help new
results.

Acknowledgments. This paper results from preparatory work we did to contribute to
a survey on semantic trajectories [20]. The work was done within Working Group 3
of the MODAP EU project (www.modap.org). We are definitely indebted to the
colleagues with whom we shared the surveying task: Chiara Renso, Natalya and
Gennady Andrienko, Vania Bogorny, Maria Luisa Damiani, Aris Gkoulalas-Divanis,
Jose Macedo, Nikos Pelekis, Yannis Theodoridis, and Zhixian Yan.

References

1. Allen, J.F.: Maintaining knowledge about temporal intervals. Communications of the
ACM 26(11) (November 1983)

2. Andersson, M., Gudmundsson, J., Laube, P., Wolle, T.: Reporting leadership pattern
among trajectories. In: 22nd Annual ACM Symposium on Applied Computing, Seoul,
Korea, pp. 3–7 (2007)

3. Andrienko, N., Andrienko, G.: Designing visual analytics methods for massive collections
of movement data. Cartographica 42(2), 117–138 (2007)

4. Andrienko, N., Andrienko, G., Pelekis, N., Spaccapietra, S.: Basic concepts of movement
data. In: Giannotti, F., Pedreschi, D. (eds.) Mobility, Data Mining and Privacy, pp. 15–38.
Springer, Heidelberg (2008)

30 S. Spaccapietra and C. Parent

5. Benkert, M., Gudmundsson, J., Hübner, F., Wolle, T.: Reporting flock patterns. Ecological
Modelling 113(1-3), 141–156 (1998)

6. Carey, J.R., et al.: A high-resolution system for recording the daily and lifetime behavioral
and movement patterns of individual tephritid fruit flies. In: Proceedings of Measuring
Behavior 2010, Eindhoven, The Netherlands, August 24-27 (2010)

7. Dodge, S., Weibel, R., Lautenschütz, A.K.: Taking a systematic look at movement:
Developing a taxonomy of movement patterns. In: The AGILE Workshop on
GeoVisualization of Dynamics, Movement and Change, Girona, Spain (May 5, 2008)

8. Giannotti, F., Pedreschi, D. (eds.): Mobility, Data Mining and Privacy. Springer,
Heidelberg (2008)

9. Gomez, L., Kuijpers, B., Vaisman, A.: Aggregation languages for moving object and place
of interest. In: Proceedings SAC 2008, Fortaleza, Ceara, Brazil, March 16-20 (2008)

10. Guc, B., May, M., Saygin, Y., Korner, C.: Semantic annotation of GPS trajectories. In:
11th AGILE International Conference on Geographic Information Science, Gerona, Spain
(2008)

11. Güting, R.H., Böhlen, M.H., Erwing, M., Jensen, C.S., Lorentzos, N.A., Schneider, M.,
Vazirgiannis, M.: A foundation for representing and querying moving objects. ACM
Transactions on Database Systems 25(1), 1–42 (2000)

12. Hadjileftheriou, M., Kollios, G., Balakov, P., Tsotras, V.: Complex spatio-temporal pattern
queries. In: Proc. of VLDB 2005, Trondheim, Norway, August 30 - September 2 (2005)

13. Koubarakis, M., et al. (eds.): Spatio-Temporal Databases: The CHOROCHRONOS
Approach. LNCS, vol. 2520. Springer, Heidelberg (2003)

14. Laube, P., Van Kreveld, M., Imfeld, S.: Finding REMO - Detecting relative motion
patterns in geospatial lifelines. In: Developments in Spatial Data Handling, Part 5, pp.
201–215. Springer, Heidelberg (2005)

15. Macedo, J., et al.: Trajectory data models. In: Giannotti, F., Pedreschi, D. (eds.) Mobility,
Data Mining and Privacy, pp. 123–150. Springer, Heidelberg (2008)

16. Mokhtar, H.M.O., Su, J.: A query language for moving object trajectories. In: Proc. of the
17th Int. Conf. on Scientific and Statistical Database Management, Santa Barbara, CA
(2005)

17. Mountain, D., Raper, J.F.: Modelling human spatio-temporal behaviour: a challenge for
location-based services. In: Proceedings of the 6th International Conference on
GeoComputation, Brisbane, Australia, September 24–26 (2001)

18. Du Mouza, C., Rigaux, P.: Mobility patterns. Geoinformatica 9(4), 297–319 (2005)
19. Parent, C., Spaccapietra, S., Zimanyi, E.: Conceptual Modeling for Traditional and Spatio-

Temporal Applications: The MADS Approach. Springer, Heidelberg (2006)
20. Parent, C., et al.: Survey on Semantic Trajectories Modeling and Analysis, submitted for

publication (2011)
21. Sakr, M.A., Güting, R.H.: Spatiotemporal pattern queries, Geoinformatica, August 12

(2010), doi:10.1007/s10707-010-0114-3
22. Spaccapietra, S., Parent, C., Damiani, M.L., Macedo, J.A., Porto, F., Vangenot, C.: A

conceptual view on trajectories. Data & Knowledge Engineering 65, 126–146 (2008)
23. Thériault, M., Claramunt, C., Villeneuve, P.Y.: A spatio-temporal taxonomy for the

representation of spatial set behaviours. In: Böhlen, M.H., Jensen, C.S., Scholl, M.O.
(eds.) STDBM 1999. LNCS, vol. 1678, pp. 1–18. Springer, Heidelberg (1999)

24. Tung, F., Zelek, J.S., Clausi, D.A.: Goal-Based trajectory analysis for unusual behavior
detection in intelligent surveillance. Image and Vision Computing (29), 230–240 (2011)

 Adding Meaning to Your Steps 31

25. Wood, Z., Galton, A.: A taxonomy of collective phenomena. Applied Ontology 4, 267–
292 (2009)

26. Wood, Z., Galton, A.: Classifying Collective Motion. In: Gottfried, B., Aghajan, H. (eds.)
Behavior Monitoring and Interpretation – BMI, pp. 129–155. IOS Press, Amsterdam
(2009)

27. Wood, Z., Galton, A.: Zooming in on collective motion. In: Bhatt, M.H., Guesgen, H.,
Hazarika, S. (eds.) Spatio-temporal dynamics, Proceedings of Workshop 21, 19th
European Conference on Artificial Intelligence, ECAI 2010, Lisbon, Portugal, August 16-
20, pp. 25–30 (2010)

28. Zheng, Y., Chen, Y., Xie, X., Ma, W.-Y.: Understanding transportation modes based on
GPS data for Web applications. ACM Transaction on the Web 4(1) (January 2010)

Best-Effort Modeling of Structured Data on the

Web

Alon Halevy

Google Research,
1600 Amphitheatre Parkway,

Mountain View, California, USA

The World-Wide Web provides access to millions of data tables with high-quality
content, formatted either in HTML tables, HTML lists, or other structured for-
mats, or stored in on-line data management services. These tables contain data
about virtually every domain of interest to mankind. Several reasearch projects
aim at enabling search over these data sets and ultimately the ability to answer
queries and to combine data from multiple sources.

In addition to the challenges involved in extracting the high-quality data sets
from the Web, there is a fundamental challenge concerning how and whether
to create a conceptual model of the data that can be used by the higher-level
services. Creating a conceptual model, in the traditional sense, for such a collec-
tion of data is impractical because of (1) the breadth of the data, (2) the fact
that domains overlap in complex ways, and (3) that modeling assumptions differ
depending on the level of detail and cultural context.

Several projects at Google have the goal of leveraging this collection of data
and to make it easier to create and share new data sets. In each case, inter-
esting challenges arise from the lack of a conceptual model. In the WebTables
Project [1,3] we collected over 100 million high-quality HTML tables, developed
search over this collection. We used information from text on the Web to recover
some of the semantics of these tables. In Google Fusion Tables [2], we make it
easy for data owners to upload and manipulate their data, create visualizations
and discover other data sets that may be relevant to them, all this without re-
quiring them to a priori create a model of their data. The experiences from these
projects suggest that we may require a fundamentally different approach to data
modeling in the context of the Web.

References

1. Cafarella, M.J., Halevy, A.Y., Wang, D.Z., Wu, E., Zhang, Y.: WebTables: Exploring
the Power of Tables on the Web. PVLDB 1(1), 538–549 (2008)

2. Gonzalez, H., Halevy, A., Jensen, C., Langen, A., Madhavan, J., Shapley, R., Shen,
W., Goldberg-Kidon, J.: Google Fusion Tables: Web-Centered Data Management
and Collaboration. In: SIGMOD (2010)

3. Venetis, P., Halevy, A., Madhavan, J., Pasca, M., Shen, W., Wu, F., Miao, G., Wu,
C.: Recovering semantics of tables on the web. In: PVLDB (2011)

M. Jeusfeld, L. Delcambre, and T.W. Ling (Eds.): ER 2011, LNCS 6998, p. 32, 2011.
c© Springer-Verlag Berlin Heidelberg 2011

M. Jeusfeld, L. Delcambre, and T.W. Ling (Eds.): ER 2011, LNCS 6998, pp. 33–46, 2011.
© Springer-Verlag Berlin Heidelberg 2011

CSRML: A Goal-Oriented Approach to Model
Requirements for Collaborative Systems

Miguel A. Teruel, Elena Navarro, Víctor López-Jaquero, Francisco Montero,
and Pascual González

LoUISE Research Group,
Computing Systems Department,

University of Castilla - La Mancha
{MiguelAngel.Teruel,Elena.Navarro,VictorManuel.Lopez,

Francisco.MSimarro,Pascual.Gonzalez}@uclm.es

Abstract. A collaborative system is software which allows several users to
work together and carry out collaboration, communication and coordination
tasks. To perform these tasks, the users have to be aware of other user’s actions,
usually by means of a set of awareness techniques. In previous works, we found
by means of empirical studies that the most suitable Requirements Engineering
approach to specify the requirements of this kind of systems is the Goal-
Oriented one, and more precisely i* approach. In this paper, CSRML
(Collaborative Systems Requirements Modelling Language) is presented, an
extension of i* to deal with the specification of the requirements of these
systems in which the collaboration and the awareness of other users presence /
actions are crucial. In order to validate this proposal, a case study has been
carried out by modelling a jigsaw activity: a cooperative-learning technique in
which students individually do some research in a proposed problem and then
they teach each other what they have learned by sharing each individual view of
the problem.

Keywords: Collaborative systems, Awareness, Requirements Engineering,
Goal-Oriented, i*, CSRML.

1 Introduction

Requirements elicitation is one of the first stages in the Software Development
Process [1,2]. If this phase fails to properly capture the requirements of the
application, it is very likely that the rest of the process will fail as well, hence
entailing important time and monetary costs. Therefore, the generation of an accurate
requirements model is a highly important issue for any kind of system.

Collaborative Systems (a.k.a. Computer Supported Cooperative Work system,
CSCW system) are not exempt from this need. They are a special kind of software
whose users can perform collaboration, communication and coordination tasks.
Unlike conventional single-user systems, CSCW systems have to be specified by
using a special set of requirements, usually of a non-functional nature, which usually
result from the users' need of being aware of the presence and activity of other remote

34 M.A. Teruel et al.

or local users with who to perform the above mentioned collaborative tasks, that is,
the Workspace Awareness.

Gutwin et al. [3] define Workspace Awareness (WA) as “the up-to-the-moment
understanding of another person’s interaction within a shared workspace”. WA
involves knowledge about where others are working, what they are doing now, and
what they are going to do next. They presented a conceptual framework to establish
what information makes up workspace awareness. This information is obtained by
answering the questions “who, what and, where”. That is, when several users work
jointly in a physical shared space, they know who they are working with, what they
are doing, where they are working, when various events happen, and how these events
happen.

In this context, a proper specification of the system, identifying clearly the
requirements of the system-to-be, specially the awareness requirements, is one of the
first steps to overcome this problem. Awareness requirements can be considered as
non-functional requirements (NFR) or extra-functional requirements (EFR), because
they are usually constraints regarding quality (e.g. functionality, usability) [4].
However, the specification of this kind of requirements is not a trivial issue, because
of the high number and diversity of requirements they are related to, and their high
impact in terms of the final architecture of the system. Therefore, the proper selection
of the requirements specification technique becomes a challenging and important
decision.

We can define our research methodology as follows: in a previous work [5], it was
analyzed, by using the DESMET guidelines [6], which is the is more appropriate
technique, Goal-Oriented (GO) [7], Use Cases [8,9] or Viewpoints [10], to specify the
requirements of collaborative systems. It was found that GO provides more facilities
to model the requirements of this kind of systems. Once we determined GO as the
most suitable technique, we analyzed which GO approach deals with CSCW systems
in a better way [11]. The analyzed approaches for the specification of collaborative
systems were NFR Framework [12], i* Framework [13] and KAOS Methodology [7],
paying special attention to awareness requirements. In order to carry out this study,
the awareness requirements of a real system (Google Docs) [14] were specified. After
modelling the system, an empirical analysis was conducted in order to compare these
different GO techniques. As a result of this experiment we concluded that the
analyzed GO approaches are not fully appropriate to model collaborative systems
characteristics because of its lack of representation for the collaboration mechanisms
between users and the awareness requirements, as well as the inappropriate actors and
roles management for CSCW systems.

These conclusions, together with the results of [5] support our initial hypothesis: a
RE technique to address the problems detected during this study is required. This
technique should adopt some features from the analyzed GO approaches and should
cover the lack of expressiveness in certain aspects that current GO techniques present.
This constitutes the main aim of this work: to adapt/extend a GO notation for this kind
of systems. Concretely, and according to the conclusions of our previous study [11],
the most appropriate approach to deal with this kind of systems is i*. Therefore, in
this paper CSRML (Collaborative Systems Requirements Modelling Language)
notation is described, as an extension of i* notation aiming at providing the necessary
expressiveness to model the special characteristics of CSCW systems requirements. In

CSRML: A Goal-Oriented Approach to Model Requirements for Collaborative Systems 35

addition, a set of heuristics and restrictions are applied to the original i* approach
aimed at improving the ease of use of the proposed graphical language and the
understandability of the models created by using CSRML.

This paper is structured as follows. After this introduction, in Section 2, we offer
an analytical background about Goal-Oriented techniques and, specially, about the i*
approach. In Section 3, we present CSRML, our proposal for dealing with
Requirements Engineering in CSCW systems. In Section 4, we present our case
study: a collaborative learning jigsaw activity that will be modelled in Section 5 by
using CSRML. Finally, in Section 6, conclusions and future work are presented.

2 Goal-Oriented Techniques and the i* Approach

This section provides an analytical background about GO techniques, focusing on i*
approach, which constitutes the main foundation of our proposal.

2.1 Goal-Oriented Requirements Engineering

In the context of RE, GO approach [7] has been found useful for eliciting and
defining requirements. Other techniques, such as Use Cases [8], only focus on
establishing the features (i.e. activities and entities) that the system-to-be should
support. Nevertheless, GO proposals focus on why systems are being constructed, by
providing the motivation and rationale to justify the software requirements
specification. Furthermore, they are not only useful for analyzing goals, but also for
elaborating and refining them.

A GO model can be specified in a variety of formats, by using a more or less
formally defined notation. It is built as a directed graph by means of a refinement of
the systems goals. This refinement is performed until goals have enough granularity
and detail so as to be assigned to an agent (software or environment). Thus, they are
verifiable within the system-to-be. This refinement process is performed by using
AND/OR/XOR refinement relationships. There is a wide number of proposals ranging
from elicitation to validation activities in the RE process (see [15] for an exhaustive
survey). However, some concepts are common to all of them:

• Goal describes why a system is being developed, or has been developed, from the
point of view of the business, organization or the system itself. In order to specify
it, both functional goals, i.e., expected services of the system, and softgoals, related
to quality of service, constraints on the design, etc., should be determined.

• Agent is any active component, either from the system itself or from the
environment, whose cooperation is needed to define the operationalization of a
goal, that is, how the goal is going to be provided by the system-to-be. This
operationalization of the goals is exploited to maintain the traceability throughout
the Software Development Process.

• Refinement Relationships: AND/OR/XOR relationships enable the construction of
the goal model as a directed graph. These relationships are applied by means of a
refinement process (from generic goals towards sub-goals) until they have enough
granularity to be assigned to a specific operationalization.

36 M.A. Teruel et al.

It must be pointed out that one of the main advantages exhibited by this approach is
that it introduces mechanisms for reasoning about the specification. Thus, it facilitates
the process of evaluating designs or alternative specifications of the system-to-be
[16].

2.2 i* Framework

Fig. 1. Objects of i* Framework

The i* Framework [2,13] distinguishes between two kinds of elements: objects (Fig. 1)
and relationships (Fig. 2). The objects considered in i* are:

• An actor is a person or a system that has a relationship with the system to be
developed. i* identifies three kinds of actors:

─ Agent is an actor who has a concrete physical representation, e.g. a person or a
system.

─ Role defines the behaviour of an actor within a specific context. An actor can
have several roles, and a role can be assigned to multiple actors.

─ Position is a set of roles that can be typically played by one agent. An agent can
play several positions.

• Goal: A goal answers “why?” questions. It describes a certain state in the world
that an actor would like to achieve. However, a goal does no prescribe how it
should be achieved.

• Task: A task specifies a particular way of doing something. Typically a task
consists of a number of steps (or sub-tasks) that an actor must perform to execute
it.

• Resource: A resource is a (physical or informational) entity that the actor needs to
achieve a goal or perform a task. The main concern about a resource is whether it
is available and from whom.

• Softgoal: A softgoal is a condition in the world that the actor would like to achieve,
but unlike the concept of (hard) goal, the condition to achieve it is not sharply
defined. A softgoal is typically a quality attribute that constrains other element,
such as a goal, a task or a resource. A softgoal is considered to be fulfilled if there
is sufficient positive evidence for its fulfilment and little evidence against it.

CSRML: A Goal-Oriented Approach to Model Requirements for Collaborative Systems 37

Fig. 2. Relationships of the i* Framework

The previous objects are related between them through this set of relationships:

• Dependency: A dependency in i* documents a relationship between a depender and
a dependee for a dependum. The depender and the dependee are actors. The
depender depends on the dependee for achieving a goal, performing a task, or
using a resource. The dependum is the object which the dependee must deliver and
which the depender depends on. It can be a goal, a task, a resource, or a softgoal. If
the dependee fails to deliver the required dependum, the depender’s ability to
achieve its own goals is affected. In other words, it becomes difficult or impossible
for the depender to achieve a goal, perform a task, or use a resource. Based on the
type if dependum, i* distinguishes four types of dependencies: (i) Goal dependency
determines that the depender assumes that the dependee achieves the goal, but does
not prescribe how it should achieve the goal; (ii) Task dependency defines that the
dependee must perform the assigned task to achieve a goal; (iii) Resource
dependency: expresses that the depender depends on the availability of a physical
or informational resource that is provided by the dependee; (iv) Softgoal
dependency expresses that the depender depends on the dependee to perform a task
that leads to the achievement of a softgoal. The criteria to determine how to
achieve the softgoal are not clearly defined. Typically, the dependee offers several
alternatives for achieving the softgoal, and the judgement of whether the softgoal is
achieved or not is up to the depender.

• Means-end link: A means-end link documents which softgoals, tasks, and/or
resources contribute to achieving a goal. A means-end link also facilitates the
documentation and evaluation of alternative ways to satisfy a goal, i.e., different
decompositions of goal into subgoals, tasks, and resources.

38 M.A. Teruel et al.

• Task decomposition link: A task decomposition link documents the essential
elements of a task. A task decomposition link relates the task to its components,
which can be any combination of sub-goals, sub-tasks, resources, or softgoals. The
decomposition of a task can thus comprise sub-tasks that must be performed, sub-
goals that must be achieved, resources that are needed, and softgoals that typically
define quality goals for the task.

• Contribution link: A contribution link documents a positive (+) or negative (-)
influence on softgoals from tasks or other softgoals. A contribution link describes
whether a task or a softgoal contributes to satisfy a softgoal positively or
negatively. It does not define precisely which kind of support is offered or the
extent of the given support.

3 CSRML: A Requirement Language for Collaborative Systems

In order to deal with the special kind of requirements of CSCW systems, and based on
the two studies aforementioned [5,11], CSRML has been developed (Collaborative
Systems Requirements Modelling Language). This language consists in an extension
of i* including some elements to model the special collaboration features of CSCW
systems that can be applied to several domains that implies collaboration between
users. CSRML elements (Fig. 3), excluding those whose meaning is the same as in i*,
are:

• Role: A role is a designator for a set of related tasks to be carried out. The
difference between i* and CSRML is that an actor playing a role can participate in
individual or collaborative tasks (through participation links) and can be the
responsible for the accomplishment of a goal (through responsibility links). In
addition, the graphical notation is also different from the i* role (the concept of
role/actor boundary is not used in CSRML).Actor: An actor is a user, program, or
entity with certain acquired capabilities (skills, category, and so forth) that can play
a role in executing (using devices) or being responsible for actions [17]. An actor
has to play a role (specified by means of a playing link, see Fig. 3) in order to
participate in the system.

• Task: The concept of task in CSRML is the same as in i*. They only differ in the
introduced notation to define the importance of a task: one, two or three
exclamation marks, depending on the importance of the task. Two kinds of
CSRML tasks has been identified:

─ Abstract task: This kind of task consists in an abstraction of a set of concrete
tasks and, possibly, other elements. We are not able to assign participation links
directly to this kind of tasks. It helps in task decomposition.

─ Concrete task: These are the tasks the participants are involved in. The abstract
tasks are refined in these ones. Participants will be assigned to the task through
participation links. There are four types of these tasks:
o Individual task is a task that an actor can perform without any kind of

interaction with other actors.

CSRML: A Goal-Oriented Approach to Model Requirements for Collaborative Systems 39

o Collaboration / Communication / Coordination task two or more actors are
involved in order to perform any kind of collaboration / communication /
coordination among them.

• Awareness softgoal: CSRML refines the i* concept of softgoal into a new
specialization: awareness softgoal, that represents a special need of perception of
other user’s presence / actions, without which the task the user wants to perform
would be affected negatively or even could not be done.

• Awareness resource: This special kind of resource corresponds to an
implementation or a design solution to accomplish an awareness softgoal.

• Playing link: A playing link is used to represent when an actor assumes a role. This
link has a guard condition that represent when a role can be played by an actor.

• Participation link: A participation link denotes who are involved in a task. This
link has an attribute to specify its cardinality, i.e., the number of users that can be
involved in a task.

• Responsibility link: A responsibility link assigns a role (played by an actor) to a
(soft)goal or task. This link represents who is the stakeholder responsible for a
goal/task accomplishment. It is not necessary that this stakeholder is involved in
the goal sub-tasks. Nevertheless, if the role is responsible for a goal or task, this
role is also responsible for the elements it is divided into, unless a responsibility
link reaches one of the elements it is divided into.

Fig. 3. CSRML elements

The reason to introduce these new elements was despite i* already had enough
elements, these elements suffered an important expressivity overload, especially when
dealing with CSCW systems. Due to this, we refined some elements and relationships
into new ones. For example, based on i* softgoals, we defined our awareness
softgoals to model those requirements related to the users need of be aware of others
users with whom to perform collaboration tasks.

It is worth noting an additional difference between CSRML and i*: CSRML is
practically hierarchical (see Fig. 4 to Fig. 10). Thus, it fosters the scalability of the

40 M.A. Teruel et al.

model created by using this notation. In a first level, we have the Responsibility
diagram, in which the system's main goal is decomposed into main tasks and quality
softgoals. Also, in this diagram, the goals and tasks responsibilities are defined.

In a second level appear Task refinement diagrams, in which the system's main
tasks are decomposed into new goals, softgoals, tasks and resources, and roles are
assigned to tasks. This constitutes another difference between CSRML and i*.
Because CSRML has been thought for collaborative systems, i* boundaries for
actors/roles were discarded, since they would not allow for assigning a task to more
than one role. In addition, the Quality factors diagram completes the system
specification showing the quality softgoals and the elements that contribute to their
accomplishment.

Some guidelines to model a collaborative system can be seen in Section 5, in
which we model the case study defined in Section 4. Nevertheless, we consider as a
further work to define more formal guidelines to model CSCW systems with CSRML.

4 Case Study: Jigsaw Activity

Classroom Assessment Techniques (CATs) can help students in developing problem
solving and group work skills. There are many types of collaborative activities that
students can carry out. One simple activity that can be put into practice in a wide
range of contexts is the jigsaw activity [18]. This is a cooperative-learning technique
in which students individually do some research in a proposed problem and then they
teach each other what they have learned by sharing each individual view of the
problem.

Students are divided into small groups, usually of four or six students each. Each
student is given a piece of the jigsaw to learn or to investigate. For example, a long
reading assignment can be broken into six smaller pieces. Each student takes a piece
and becomes an expert on that content. When the pieces of the jigsaw are put together
or when the group comes back together, each student will share what he/she has
learnt. There are a lot of jigsaw activity variants. In our study case, we are going to
use the following one, based on an interactive and real-time e-learning approach.
When this activity is carried out by means of a Computer Assisted Learning system, it
entails five steps:

1. Create teams: All the students should enter into the system. Then, the teacher
creates the student's groups and assigns the students. The number of groups
depends on the number of students who participate into the activity. To do this, the
teacher has to be aware of connected student's status. When all the students become
part of a team, we can proceed to the next step.

2. Individual work: First, the group members have to designate a coordinator for the
team. Then, each group member must select a jigsaw piece. In this step each
member has to do research individually to explain what he/she has learnt to the rest
of the group later. Each student has to make an individual work report describing
what he/she has found out.

3. Experts meeting: In this step, students with the same jigsaw piece have an "experts
meeting". First, each experts group designates a coordinator. Then, each member

CSRML: A Goal-Oriented Approach to Model Requirements for Collaborative Systems 41

explains his/her individual work to the rest of the group in order to improve each
member's work. Each expert group have to make an experts report in a
collaborative manner.

4. Team meeting: After the experts meeting, the work teams meet again to teach each
other what they have learnt and improved thanks to the other expert’s knowledge.
Similarly to the previous step, they have to elaborate a collaborative team report.

5. Evaluate activity: The last step consists of the evaluation of the student’s individual
and collaborative work. To do this, the teacher evaluates the individual, experts
and team report. Finally, the teacher provides feedback to the students through an
evaluation document.

In addition, in order to ensure certain success level, the activity must pursue these
educational quality factors:

• Heterogeneous grouping: It is necessary that the students work together in
heterogeneous groups in terms of gender, ethnicity, academic performance level,
etc. Also, the group size must be between two and six students.

• Positive interdependence: The student must be aware that he/she only will be
successful if his/her partners are successful too.

• Individual responsibility: passive students who take advantage of his/her partners'
work to obtain his/her goals must be avoided.

• Equal opportunities for success: All the students, regardless of his/her level, have
to be able of making contributions to the improvement of the group results.

• Promoter interaction: Students have to promote and facilitate the progress of
his/her partners through mutual aid, support and encouragement of efforts to learn
from all group members.

• Cognitive information processing: The primary goal is to improve the academic
performance of all students, promoting the construction of higher quality learning.
The cognitive processing of information involves to balancing different points of
view, explanations, interpretations, clarify doubts, formulating examples, etc.

• Using cooperative skills: The teacher should pay the same attention and rigor to the
treatment of interpersonal skills and group work practice, that to the content of the
school syllabus.

• Group evaluation: The effectiveness of cooperative learning depends largely on the
establishment of group evaluation dynamics within the teams, which serve to
regulate their own performance.

5 The Jigsaw Activity with CSRML

In this section, the previous case study is modelled by using the CSRML notation in
order to illustrate its expressiveness capacity for CSCW systems. First, in Fig. 4, we
can see the system goals diagram, in which the system main goals are defined. As can
be seen, we are going to achieve the system goals by means of the realization of the
system's main task: the Jigsaw activity

42 M.A. Teruel et al.

Fig. 4. System goals diagram

Fig. 5 shows the responsibility diagram with the main system’s task and its
decomposition in quality softgoals and tasks. In this figure, it can be observed that the
use of responsibility links shows who is responsible for goals and tasks. Note that if a
role is responsible for a goal or task, this role is also responsible for the elements it is
divided into, unless a responsibility link is specified to one of the elements it is
divided into. Also, the playing links are used to represent the condition that must be
met for an actor to play a role. For the sake of model readability, task decomposition
will be shown in subsequent figures.

Fig. 5. Responsibility diagram

Fig. 6 depicts Create teams task refinement diagram. In this figure, tasks are refined
into more specific ones and into new goals until individual or collaborative
(collaboration, coordination or communication) tasks are specified. It can be observed
that for collaborative tasks, more than an actor (playing a role) is involved through
participation links. Also, an awareness softgoal, namely Be aware of unassigned
students, has been specified related to the Create student teams task. The rationale for
include this awareness softgoal is that to perform Create student teams task, a teacher
must be aware of what students are waiting to be assigned to a team. To achieve this,
an awareness resource, namely Participant list with assignment status, has been
introduced, that is, a likely implementation of the Be aware of unassigned students
softgoal.

CSRML: A Goal-Oriented Approach to Model Requirements for Collaborative Systems 43

Fig. 6. Create teams task refinement diagram

Fig. 7. Individual work task refinement diagram

Next, Fig. 7 presents the decomposition of the Individual work task. In this figure
different cardinalities for participation links are used. For example, to Distribute
work, two or more (at most the team maximum number of components) must
participate. This cardinality has been specified with 2..* in Fig. 7.

Fig. 8 illustrates the four degrees of priority that can be assigned to tasks: normal,
high ([!]), very high ([!!]) and highest ([!!!]). Additionally, this figure includes two
awareness softgoals. One of them is similar to the one above mentioned, but the other
awareness softgoal corresponds to the use of remote cursors (an implementation of
Gutwin’s telepointers [19]).

Fig. 9 shows another system tasks refinements. Do team work task refinement
diagram is similar to that on Fig. 8.

Do Experts work

[!] Give
permission

to an expert
for exposing

[!!] Attend
expert meeting

[!!] Expose at
expert meeting

[!!!] Make
experts report

Be aware of
expert group

members

Participant list with
exposition order

See the other
experts activity

Remote cursors
with user

identification

Experts report

Experts
coordinator

Expert
Student

+
+

[Expert Coordination time]

[Expert work time]

1

1
1 2..*

[!] Designate
experts

coordinator

2..* 2..*

Fig. 8. Do experts work task refinement diagram

44 M.A. Teruel et al.

Fig. 9. Do team work task refinement diagram

Finally, Fig. 10 corresponds to the Quality factors diagram. In this model, the
quality factors that contribute to achieve the jigsaw activity with a high quality level
are shown. These factors are represented as softgoals and they are related to the main
quality softgoal by means of contribution links with positive contributions. The
achievement of all these quality softgoals is obtained in different ways. For instance,
the Heterogeneous grouping softgoal is achieved by means of an awareness softgoal
and its corresponding awareness resource consists of a students' video embodiment,
and the Group evaluation softgoal is accomplished through the Evaluate team
members of the Evaluate activity task refinement diagram.

With this last diagram, we have defined the entire system, verifying the
applicability of CSRML to the CSCW systems specification, trying to cover the
deficiencies found in i* for this kind of systems.

Fig. 10. Quality factors diagram

6 Conclusions and Further Works

In our previous works [5,11], we found out that GO techniques (and especially i*) can
be used to deal with collaborative systems requirements modelling. Nevertheless, we
also found out that this ilk of specifications suffer from an important lack of
expressiveness for some characteristics related to user collaboration, awareness
representation or quality factors. To address these shortcomings, we propose CSRML,
an extension of i* Goal-Oriented specification to model CSCW systems requirements.

CSRML: A Goal-Oriented Approach to Model Requirements for Collaborative Systems 45

To illustrate the use of this language, we have modelled a collaborative system. For
the sake of clarity, in this paper an excerpt of this system, consisting in a cooperative
e-learning jigsaw activity, has been presented. This case study was modelled because
it has a set of characteristics that were hard or impossible to be represented with the
original i* notation. These characteristics were properly described by introducing a
set of new elements and links into i* notation. The quality and awareness
representation has been made possible by means of new awareness elements and the
inclusion of a new set of diagrams in order to provide some structure to the
specification.

To sum up, CSRML helps in improving understandability and maintainability of
requirements models for CSCW systems by adding new elements and relationships to
i*. These new elements facilitate the specification of awareness requirements, which
are paramount in the Software Development Process of any CSCW systems.

One of our ongoing works is closely related to the development of e-learning
systems. Since LoUISE research group [20] has been working during the last years in
this kind of systems, several patterns have been described up to date. One of the main
problems they have is that they have been specified in an informal way that cannot be
easily reused for the specification of different systems. Therefore, we are studying
how CSRML can be used to improve their specification.

In addition we are currently working in the definition of formal guidelines to use
our proposal. Finally, we are assessing the understandability of CSRML models by
means of a family of empirical experiments. Its results are currently being analysed.

Acknowledgements. This work has been partially supported by the grant (PEII09-
0054-9581) from the Junta de Comunidades de Castilla-La Mancha and by the grant
(DESACO, TIN2008-06596-C02-01) from the Spanish Government.

References

[1] Pressman, R.S.: Software engineering: a practitioners approach. McGraw-Hill
Science/Engineering/Math (2009)

[2] Pohl, K.: Requirements Engineering: Fundamentals, Principles, and Techniques.
Springer, Heidelberg (2010)

[3] Gutwin, C., Greenberg, S.: A Descriptive Framework of Workspace Awareness for Real-
Time Groupware. Computer Supported Cooperative Work 11, 411–446 (2002)

[4] Hochmuller, H.: Towards the Proper Integration of Extra-Functional Requirements.
Australasian Journal of Information Systems 6, 98–117 (1999)

[5] Teruel, M.A., Navarro, E., López-Jaquero, V., Montero, F., González, P.: An Empirical
Evaluation of Requirement Engineering Techniques for Collaborative Systems. In: 15th
International Conference on Evaluation and Assessment in Software Engineering,
Durham, UK (2011)

[6] Kitchenham, B.: A methodology for evaluating software engineering methods and tools.
In: Rombach, H., Basili, V., Selby, R. (eds.) Experimental Software Engineering Issues:
Critical Assessment and Future Directions. LNCS, vol. 706, pp. 121–124. Springer,
Heidelberg (1993)

46 M.A. Teruel et al.

[7] van Lamsweerde, A.: Goal-Oriented Requirements Engineering: A Guided Tour. In:
Proceedings of the Fifth IEEE International Symposium on Requirements Engineering,
pp. 249–263. IEEE Computer Society, Los Alamitos (2001)

[8] Cockburn, A.: Writting Effective Use Cases. Addison-Wesley, Reading (2000)
[9] Booch, G., Rumbaugh, J., Jacobson, I.: The Unified Modeling Language User Guide.

Addison-Wesley, Reading (2005)
[10] Finkelsetin, A., Kramer, J., Nuseibeh, B., Finkelstein, L., Goedicke, M.: Viewpoints: A

Framework for Integrating Multiple Perspectives in System Development. International
Journal of Software Engineering and Knowledge Engineering 2, 31–57 (1992)

[11] Teruel, M.A., Navarro, E., López-Jaquero, V., Montero, F., González, P.: A Comparative
of Goal-Oriented Approaches to Modelling Requirements for Collaborative Systems. In:
6th International Conference on Evaluation of Novel Software Approaches to Software
Engineering, Beijing, China (2011)

[12] Cysneiros, L.M., Yu, E.: Non-Functional Requirements Elicitation (Perspectives on
Software Requirements). Springer, Heidelberg (2003)

[13] Castro, J., Kolp, M., Mylopoulos, J.: A requirements-driven development methodology.
In: Dittrich, K.R., Geppert, A., Norrie, M.C. (eds.) CAiSE 2001. LNCS, vol. 2068, pp.
108–123. Springer, Heidelberg (2001)

[14] Google, Google Docs (2001)
[15] Kavakli, E., Loucopoulos, P.: Goal Modeling in Requirements Engineering: Analysis and

Critique of Current Methods. In: Information Modeling Methods and Methodologies, pp.
102–124 (2004)

[16] Chung, L., Nixon, B., Yu, E., Mylopoulos, J.: No Non-Functional Requirements in
Software EngineeringTitle. Kluwer Academic Publishers, Dordrecht (1999)

[17] Noguera, M., González, M., Garrido, J.L., Hurtado, V., Rodríguez, M.: System Modeling
for Systematic Development of Groupware Applications. In: International Conference on
Software Engineering Research and Practice, pp. 750–756 (2006)

[18] Pozzi, F.: Using Jigsaw and Case Study for supporting online collaborative learning.
Computers & Education 55, 67–75 (2010)

[19] Gutwin, C., Greenberg, S., Roseman, M.: Workspace Awareness in Real-Time
Distributed Groupware: Framework, Widgets, and Evaluation. In: Proceedings of HCI on
People and Computers XI, pp. 281–298. Springer, Heidelberg (1996)

[20] Fardoun, H., Montero, F., López-Jaquero, V.: eLearniXML: Towards a model-based
approach for the development of e-Learning systems considering quality. Advances in
Engineering Software 40, 1297–1305 (2009)

Establishing Regulatory Compliance for

Software Requirements

Silvia Ingolfo, Alberto Siena, and John Mylopoulos

University of Trento,
Trento, Italy

silvia.ingolfo@studenti.unitn.it, a.siena@disi.unitn.it,

jm@cs.toronto.edu

Abstract. A software system complies with a regulation if its operation
is consistent with the regulation under all circumstances. The impor-
tance of regulatory compliance for software systems has been growing,
as regulations are increasingly impacting both the functional and non-
functional requirements of legacy and new systems. HIPAA and SOX
are recent examples of laws with broad impact on software systems, as
attested by the billions of dollars spent in the US alone on compliance.
In this paper we propose a framework for establishing regulatory compli-
ance for a given set of software requirements. The framework assumes as
inputs models of the requirements (expressed in i*) and the regulations
(expressed in Nòmos). In addition, we adopt and integrate with i* and
Nòmos a modeling technique for capturing arguments and establishing
their acceptability. Given these, the framework proposes a systematic
process for revising the requirements, and arguing through a discussion
among stakeholders that the revisions make the requirements compliant.
Our proposed framework is illustrated through a case study involving
fragments of the HIPAA regulation.

Keywords: Regulatory compliance, requirement engineering, argumen-
tation.

1 Introduction

The problem of legal compliance of information systems is gaining relevance in
recent years. Government regulations that impact software systems are becoming
ever-more prevalent in current legislative scenarios around the world. Organiza-
tions that don’t comply with regulations are vulnerable to fines and prosecution
that could damage both their financial and marketing prospects both in the
short and long term. The impact of this situation has been immense on Software
Engineering as much as on business practices. It has been estimated that in
the Healthcare domain, organizations have spent $17.6 billion over a number of
years to align their systems and procedures with a single law, the Health Insur-
ance Portability and Accountability Act (HIPAA), introduced in 19961. In the
1 Medical privacy – national standards to protect the privacy of personal health infor-

mation. Office for Civil Rights, US Department of Health and Human Services, 2000.

M. Jeusfeld, L. Delcambre, and T.W. Ling (Eds.): ER 2011, LNCS 6998, pp. 47–61, 2011.
c© Springer-Verlag Berlin Heidelberg 2011

48 S. Ingolfo, A. Siena, and J. Mylopoulos

Business domain, it was estimated that organizations spent $5.8 billion in one
year alone (2005) to ensure compliance of their reporting and risk management
procedures with the Sarbanes-Oxley Act (SOX)2. In short, compliance is a costly
proposition and dealing with it is not an option.

A key issue for the requirements compliance problem concerns the form of
evidence provided that indeed a requirements model complies with a given law
(fragment). There is an abundance of formal method techniques developed in AI
and Software Engineering (SE) for dealing with this issue [1,2,3]. Unfortunately,
such techniques are generally heavy-weight in the notations they use for modeling
laws and requirements, as well as in the reasoning tools they employ to establish
compliance.

In our work, we lower the bar. Instead of capturing the essence of laws
and requirements by using heavy-handed techniques for establishing compliance
through formal reasoning, we adopt a conceptual modeling approach whereby
laws and requirements are captured through conceptual models. Moreover, com-
pliance is not established through automated proof, but rather through argu-
mentation among the stakeholders who state positions, e.g., “this requirement
does not comply with this part of the law” and argue for or against them until
(hopefully) consensus is reached.

The objective of this paper is to propose a systematic process for establishing
compliance of system requirements to a given law using argumentation as a
means. The process takes as input a requirements model R and a law model L.
Designers iteratively revise R = R(0) into revised requirements models R(1), ...,
R(i), ... and discuss each with stakeholders until the stakeholders agree that a
revised model R(N)indeed complies with L.

The contribution of the paper includes an extension of the Nòmos frame-
work [4] for dealing with compliance. With this extension we are able to both
detect compliance and pinpoint which requirements does not comply and need
to be revised. To do this, we integrate into Nòmos the structural and algorithmic
richness of an argumentation framework. Through a systematic process, compli-
ance of software requirements to a given law is established. The process ends
with a revised version of the input model that is compliant with the law.

The rest of the paper is structured as follows. Section 2 presents an overview
of the modeling concepts and the validation method we have adopted. Section 3
presents our framework for supporting a compliance discussion. Section 4 de-
scribes the process we propose for establishing compliance through argumenta-
tion. Section 5 presents a case study involving fragments of the HIPAA regulation
that shows how our proposed method works. Section 6 summarizes related work.
Finally, section 7 concludes the paper.

2 Research Baseline

Requirements Models. Requirements engineering frameworks are generally
based on the study and analysis of stakeholder needs. i* [5] is an agent-oriented
2 Online news published in dmreview.com, November 15, 2004.

Establishing Regulatory Compliance for Software Requirements 49

modeling framework for requirements centering on the intentions of stakeholders
and their inter-dependencies. The two main components of an i* model are a
Strategic Dependency (SD) model and a Strategic Rationale (SR) model. The
former is used to describe the dependencies that actors have to accomplish their
goals. The latter models the goals within an actor, and the tasks by which these
can be fulfilled.

i* doesn’t natively support the representation of legal concepts, but it can be
extended for this purpose. Nòmos [4] is an extension of i*, specifically tailored to
express legal concepts. Nòmos is goal-oriented, law-driven intended to generate
requirements through which the system-to-be can comply to a given law (these
are referred to as compliance requirements). It relies on a metamodel, based on
the concept of right [6]. A right is held by a legal subject towards another sub-
ject. Rights are declared in normative propositions (NP) [1], which are the most
atomic piece of law able to carry a normative meaning. Normative propositions
also contain a legal modality (whether it is a duty, privilege or else) and the
actual object of the right. Legal rights are put in (compliance) relation with
intentional elements to derive compliance requirements. When an actor of the
domain is recognized to be a subject of law (e.g., when “John” is recognized to
be of such class of actors referred to as “Doctor” in a certain law), the actor
is put in embodiment relation with the legal subject. To represent an actor ac-
tually complying with a given normative proposition, the realization relation
is introduced, which links an actor’s goal with the normative proposition it is
intended to comply with. Finally, in order to cope with the rich expressivity of
the language used in law, the Nòmos framework introduces a dominance relation
to establish the priority of a right over another: NP1 > NP2 characterizes the
fact that as long as NP1 holds, NP2 doesn’t.

John

Healthcare
assistant

Keep patient
data closed

Store data
Use strong
password

Store data
electronically

AND

embodies

Actor

Goal

Task
AND

Legend

And-deco
mposition

Norm

embodies

Embodiment
relation

Realization
relation

Fig. 1. A Nòmos model representing a compliance solution

The i*/Nòmos model is shown in figure 1. In the figure John, who embodies
the figure of Healthcare operator, has by law the duty of keeping old patient
records. A possible solution to this, is that of assigning to John the responsibil-
ity for storing patient data only electronically; this, in turn, can operationally
be done by storing the data and using a strong password to protect it.

However, a major drawback of this model-based approach is that the seman-
tics of the compliance relations is extremely rich and doesn’t depend only on the
strategic decisions of the analyst. For example, the relation between John and

50 S. Ingolfo, A. Siena, and J. Mylopoulos

Healthcare operator depends on the definition of Healthcare operator, which has
to be differently interpreted. Similarly, the thesis that the “Store data electron-
ically” goal is all that is necessary to comply with the given prescription can
be debated and refuted. Moreover, regulations are often subject to changes over
time, so the parameters that shape and define compliance change accordingly.
It is often the case that interpretations by the court or revisions of a regulation
lead to revised policies and procedures that need to be reflected accordingly in
operational systems

This example shows how challenging is dealing with compliance of software
requirements. A truth-theoretic proof of compliance is beyond the state of the
art, so we need alternative ways to support compliance evidence of a requirement.

Argumentation. The fundamental objective of Requirement Engineering (RE)
concerns how to effectively capture the needs of stakeholders. While the analysis
of the system-to-be proceeds, there is the need to verify and validate the re-
quirements against the stakeholders. [7] proposes the ACceptability Evaluation
framework (ACE) a propositional reasoning framework that allows the repre-
sentation of a discussion and provides algorithms to automatically verify the
acceptability of the proposed RE artifacts.

When discussing the validity of a solution, stakeholders iteratively provide
arguments for/against its validity. Eventually the discussion reaches an end and
a decision about the topic is taken. The core element of a discussion is therefore
this set of statements, for or against the validity of a given solution.

All information gathered during the discussion is represented in ACE as a
directed labeled graph G, with a set of vertices and lines. A proposition is repre-
sented as a vertex v ∈ V (G) and can have four labels {i, I, C, P}. The label i is for
information vertex (i.e. statements made by participants), while the other ver-
tices identify an Implication, Conflict or P reference vertex. The resulting graph
connecting information, the propositions and some labeling functions form the
syntax of the language.

Together with a syntax, two important algorithms are defined in [7].
The FindDiscussion algorithm returns a specific discussion by performing a
breadth-first search to retrieve all vertices in favor or against a given vertex.
The EvaluateDiscussion algorithm traverses the discussion while evaluating
the acceptability of the proposed solution (root vertex). Based on some labeling
deduction rules and to some procedures handling cycles and transitive relations,
all vertices of the graph are labelled. Depending on the label of the vertex rep-
resenting the proposed solution, its acceptability is either accepted, rejected or
inconclusive.

3 Proposed Framework

The key idea proposed here is that the evidence of requirements compliance
with respect to a given law results from a discussion about the requirements
and how they relate to the law. If acceptance is established, then the discussion
is said to support the claim of compliance. Otherwise, new information is added

Establishing Regulatory Compliance for Software Requirements 51

Fig. 2. Metamodel of the argumentation framework for a compliance discussion

to the discussion. If no more information can be added, and no acceptance is
established, then the discussion is said to reject the claim. The discussion is rep-
resented by means of the ACE language, and its algorithms are used to evaluate
its acceptability.

The cost to maintain this argumentation-based treatment of compliance
though, is the introduction of additional elements in the models, which may
result in comprehension bottlenecks. We address this problem by splitting the
model in 2 layers: in the first layer (argumentation layer) the discussions takes
place; in the second layer (solution layer) the compliance solution is modeled.
The argumentation layer records the structure and other information regard-
ing every discussion behind any change in the solution layer. If a change is not
accepted by a discussion at the argumentation level, it is not recorded in the solu-
tion layer. The solution layer represents the goal-oriented soon-to-be-compliant
version of the model and consequently it is expressed within the Nòmos frame-
work. This way, the argumentation layer provides a justification for the solution
layer. Modifications accepted in the argumentation layer are represented in this
layer. Rejected changes and their discussions are still recorded at argumentation
layer and are maintained for both traceability and possible future reuse.

As the ACE framework handles two types of information (Propositions and
Arguments), we need to expand and integrate its model to allow us to evaluate
and discuss the validity of Nòmos relations. We have therefore expanded this
argumentative framework and integrated with Nòmos within the context of a
discussion (figure 2). As we can see in the metamodel of figure 2, we have com-
bined the Nòmos modeling language with the metamodel of the ACE framework.
A discussion handles regular statements made by participants (Propositions), i*
entities represent strategic requirements, and Nòmos concepts represent the law
fragments addressing requirements. Some Nòmos elements need to be discussed
so they capture a different type of information (“compliance issues”). The struc-
ture of the discussion allows us to relate Information with the three relations

52 S. Ingolfo, A. Siena, and J. Mylopoulos

offered by the ACE framework. Their combination, called an Argument, is the
core concept of a discussion. When arguments are put forward, a discussion is
generated and it eventually evaluates the acceptability of the subject. For more
details on the metamodel of the framework see [8]. The justification framework
of ACE, combined with the expressivity of Nòmos, allows to discuss the accept-
ability the latest version of the requirements model with respect to compliance.
These discussions (compliance discussions) can manage not only information
provided by participants, but also all existing components of the Nòmos model.

So how do we define compliance in terms of argumentation? Anytime a regu-
lation applies, we can loosely say that its compliance is determined by two facts:
the new legal requirements are met by the system [compliance], and no part of
the system is in conflict with the regulation [conformity] [9]. The compliance
with new regulations can be identified and represented with the realize relation
in Nòmos, a concept expressing the suitability of an element to fulfill a NP. To ar-
gue non-conformity, we need to be able to identify which part of the system does
not comply and needs to be amended. We have therefore introduced the concept
of irregularity in Nòmos (see figure 2). We define as irregular a situation where
either an element of the model directly violates a norm, or where an element
is addressed by a regulation and therefore needs to be checked for compliance.
For example, a task such as “Post original CD tracks in a webpage for public
download” is in violation with copyright regulations as its aim is directly against
regulation. A goal like “Share music” identifies the more general situation not
in direct violation, but that it is surely affected by copyright regulations and
that therefore needs to be investigated. Eventually, two compliance conditions
(compliance and conformity) can be related to the existence or absence in the
model of these specific key relations (realize, affect/violate). The proof of compli-
ance of our system is therefore based on the discussions and the argumentations
regarding these relations. To prove compliance, argumentation regulates the in-
troduction of realize relation in the model. To prove conformity, the absence of
irregularity relations in the model (affect/violate) has to be achieved.

4 Compliance Process

The definition of compliance we have provided before, clearly outlines that reach-
ing compliance is a gradual process to achieve some compliance properties. We
therefore need a systematic process to modify and revise the initial requirements
model to guarantee that these two properties are met by the final model. The
procedure we propose is structured along three logical phases:

1. The analysis phase [step 1 and 2] takes as input the model of requirements,
expressed as a set of goals to be achieved and tasks to be performed by
stakeholders, and a set of NPs with possible irregularities highlighted.

2. The model is then followed by a compliance check [step 3] where the criteria
for compliance are evaluated. If the model is compliant, the process returns
the model, else we move to the next phase.

Establishing Regulatory Compliance for Software Requirements 53

3. The modeling phase [steps 4 and 5] aims at amending a requirements model
that is not compliant. The model is expanded and revised by requirement
engineers to satisfy the two compliance constraints. A discussion evaluates
the acceptability and validity of the solution proposed.

Since this last step modifies the initial model, the process is iterated to ensure
that no irregularities have been introduced during modeling. When a cycle is
completed without introducing modifications in the solution layer – i.e., in the
models – the process ends and compliance is said to be achieved.

The key part of the approach is to be able to guarantee that the revisions
actually make the system compliant: all the corrections made to the system — as
well as the assumptions behind the corrections — are based on the fundamental
concept of providing validation through argumentation. In the next sections we
will see in detail the five steps of the compliance process.

4.1 Step 1. Embodiment

The main goal of this step is to ensure a correct and exhaustive binding between
the legal subjects addressed in the NPs and the actor of the system. All the
actors addressed by the law have to comply with the respective set of NPs that
concern them. Once the correspondence is given, all NPs related to the legal
entity are added to the actor boundary.

In this step we therefore evaluate the possible embodiments between actors
and legal subjects (algorithm 1). When the validity of an embodiment is accepted
by a discussion, the embody link is added in the solution layer between the actor
and the legal subject. Also, the NPs associated to that legal subject are added
to the actor boundary.

Forall legal subject lsi and forall stakeholder sj do:

evaluate "sj
embody−→ lsi"

if discussion accepts sj
embody−→ lsi then

add "sj
embody−→ lsi" in the solution layer;

add NPs in the actor boundary

else skip

→ [step 2]

Algorithm 1. Embodiment step (step 1)

4.2 Step 2. Find Irregularities

The main goal of this step is to identify the irregularities that the model has
with respect to the newly added NPs. The model is therefore analyzed with
the purpose of finding all the elements of the model that contribute to the
noncompliance of the system.

54 S. Ingolfo, A. Siena, and J. Mylopoulos

Forall normative npi and forall element iej do:

evaluate "iej
violate−→ npi"

if discussion accepts iej
violate−→ npi then

add "iej
violate−→ npi" in the solution layer;

else evaluate "npi
affect−→ iej"

if discussion accepts npi
affect−→ iej then

add "npi
affect−→ iej" in the solution layer;

else skip

→ [step 3]

Algorithm 2. Identification of irregularities in a requirements model (step 2)

With the same argumentation process used in the previous step, the validity
of each affect/violate relation introduced at solution-level has to be supported by
a discussion at argumentation level that accepts it. All elements of the model are
analyzed by a discussion that assess the situation between every one of them and
the NP. A discussion evaluates a possible violate relation between the two. When
it doesn’t subsist, then the affect relation is considered. Upon the acceptance
of either relation, the link is added to the solution layer, otherwise the next
pair [element,NP] can be analyzed. With this systematic approach, all IEs are
evaluated by a discussion as possible irregularity in the system.

4.3 Step 3. Compliance Check

The important goal of this step is to evaluate whether the given model satisfies
the compliance properties.

if forall npi ∈ NP[
{∃ ie : ie

realize−→ npi} or {∃npj ∈ NP : npj < npi and ∃ ie : ie
realize−→ npj}

and

{/∃ ie : np
affect−→ ie}

]
then system is compliant → exit

else system is not compliant → [step 4]

Algorithm 3. Pseudocode for the compliance check procedure (step 3)

As we have seen, the definition of compliance is expressed by two conditions
that the system has to meet (algorithm 3): 1) each NP in the system must: have
(at least) one goal that realizes it or have a correct dominance relation with a
realized one; 2) no element in the system is irregular with respect to any NP.
When these two conditions are met, the system is compliant and the process
terminates, otherwise it proceeds in the modeling phase.

Establishing Regulatory Compliance for Software Requirements 55

4.4 Step 4. Solve Irregularities

The main goal of this step is to solve all irregularities that are present in the
model. The model has to be revised by requirement engineers that propose
new elements, new operalizations and changes. A discussion will then evalu-
ate whether the changes made are sufficient for the irregularity to be considered
solved (algorithm 4). The model is revised until the discussion rejects the va-
lidity of the irregularity (e.g. topic1 = ie

affect−→ np is rejected) and the relation
is deleted from the solution layer. At the end of this step each irregularity has
been considered and solved by revising the model.

Forall iei such that (npj
affect−→ iei or iei

violate−→ npj)

repeat: revise model;

start discussion evaluating the irregularity

until: ("npj
affect−→ iei" is rejected) or ("iei

violate−→ npj" is rejected)

→ [step 5]

Algorithm 4. Addressing irregularities in the requirements model (step 4)

4.5 Step 5. Find Realizations

The main goal of this step is to identify all elements of the model that contribute
and prove its compliance. In fact it is necessary that all legal requirements ex-
pressed as NPs are met by the system.

In this step we search the model for elements that directly realize each NP. A
discussion will evaluate whether each element can be considered as realization
for the considered NP. Then we consider all NPs for which a realize relation was
not found, and go through the same revision process used to solve irregularities.
Requirement engineers will revise the model and a discussion will evaluate the
acceptability of the realization of a suggested element.

Forall npi and forall iej do:

start discussions evaluating iej
realize−→ npi

Forall npi /∃ iej : iej
realize−→ npi

repeat: revise model;

start discussion evaluating the realization

Algorithm 5. Pseudocode for finding a realization for all NPs (step 5)

At the end of this fifth step — also the end of the modeling phase — the iden-
tified irregularities have been solved and all NP are realized in the model. With
respect to the model that has been analyzed in the analysis phase, the output of
this phase is inevitably different in some parts. Before entering the compliance

56 S. Ingolfo, A. Siena, and J. Mylopoulos

check again it is necessary to analyze this new model to check whether possible
irregularities have been introduced. Also, in case new actors have been added
during the modeling revision, there is also the need to reevaluate possible em-
bodiments. Consequently the output model is passed on to the analysis phase
for a back up check.

5 Preliminary Evaluation: A Case Study

In this section we exemplify the described process by means of a case study re-
garding the HIPAA regulation.3 We consider a scenario where a hospital wants
to collect PHI (Personal Health Information) to evaluate the quality of its ser-
vices. The input to our model is an i* requirements model and the NPs extracted
from §164.502 and related to the non-disclosure of PHI (see [4]).

1. Embodiment. In the following example we consider the legal subject “Cov-
ered Entity” (CE) defined in the HIPAA regulation (§160.103) and how the
actors of a hospital system are affected by the regulation. As we have seen, the
main goal of this step is to correctly bind all actors with the legal subjects. As
we can see from figure 3, our process evaluates the possible embodiment between
all actors and the legal entity we are considering. A discussion is then started to
evaluate the acceptability of the relation.

Fig. 3. The solution and argumentation layer evaluating the embodiments for the legal
subject “Covered Entity”

For example, when evaluating whether a “Patient” is a CE, statements are
made to reject the validity of this embodiment: p1 = “The patient receives health
care services”, p2 = “The patient doesn’t transmit any information”, and so
on. The embodiment relation is eventually rejected and the next embodiment
is then evaluated. When evaluating the relation “Hospital

embody−→ CE”, a user
immediately points out that p3 = “The Hospital bills for health care” and p4 =
“The Hospital receives payment for health care”. As a consequence p5 = “The
Hospital is a health care provider” (p3, p4

imply−→ p5). After another user says that
p6 = “The Hospital sends health care information electronically”, the discussion
is concluded and accepts the validity of the relation. The embody relation is
therefore added to the solution layer and all the NPs associated with the legal
entity are added to the actor boundary.
3 http://www.hipaa.org/, http://www.hhs.gov/ocr/privacy/index.html

http://www.hipaa.org/
http://www.hhs.gov/ocr/privacy/index.html

Establishing Regulatory Compliance for Software Requirements 57

2. Find Irregularities. In the following example we consider the Hospital
actor and the NP regarding the non disclosure of PHI (np1). We assume that
the initial goal-model of the hospital is the one depicted in the left side of figure 4
All the element of the model are analyzed by a discussion to evaluate possible
irregularity. For example, when g2 is analyzed as a possible violation of the NP
(t1 = g2

violate−→ np1), immediately a user points out that p7 = “The aim of the
collection is research” (p7

attack−→ t1) and p8 = “The collection of PHI is allowed

for research purposes” (p8
imply−→ p7). As the discussion terminates, it is evaluated

and the topic rejected. When the affect relation is evaluated (t2 = np1
affect−→

g2), the users agree that p9 = “The user must be informed if the purpose of

disclosure” (p9
imply−→ t2) and p10 = “PHI should be collected with the patient’s

consent” (p10
imply−→ t2). As the discussion terminates, the acceptability of the topic

is evaluated and since it is accepted, the affect relation is added to the model.

Fig. 4. The solution and argumentation layer evaluating the irregularity relation
between np1 and g2

3. Compliance Check. Considering the example of the Hospital goal-model
from figure 4, we can see that the (lone) normative proposition is not realized by
any element of the model, so the step terminates and we move to the modeling
phase. In fact, if either constraint fails, we have established non-compliance.

4. Solve Irregularities. Considering the example of figure 4, we are asked
to revise the model in order to solve the irregularity np1

affect−→ g2. After the
revision, a discussion evaluates the acceptability of the new model. Despite the
assessment that previously identified problems (expressed by the propositions
p16, p17, p22, p23 and p24) have been addressed in the present model (G4, . . . , G8

support their validity), some other issues are still open and the irregularity is
still valid. In fact the participants point out that G2 is still affected by NP1

because p25 = “The collected PHI might be accessed by unauthorized person-
nel” (p25

imply−→ t2). Also, other users argue that p26 = “After PHI are collected,
the forms could be accessed by unauthorized personnel” and also p27 = “The
electronic access to PHI has to be protected”. As the acceptability of the affect
relation is still accepted (left side of figure 5), the model has to be revised again.
The following revision (right side of figure 5) is evaluated by a discussion that
assesses that the irregularity doesn’t hold anymore, and it is therefore deleted
from the model.

58 S. Ingolfo, A. Siena, and J. Mylopoulos

Fig. 5. Requirement engineers revise the model on the left into the right one, as a
discussion assesses that the irregularity is still present in the model

5. Find Resolutions. In this last step an irregularity-free version of the model
is passed as input and it is searched for elements that realize the NP (right
side of figure 6). Discussions evaluate the validity of each element of the model
as a possible realization for the NP. For example, when G11 is considered (dis-
cussion with topic t3 = G11

realize−→ NP1) a participant states that p33 = “PHI
disclosure depends on the way information with PHI is handled after collection”
and that in the present model p34 = “Collected PHI is not disclosed without
authorization”. As evidence of this last statement, goals g12, g13 and g14 are in
fact presented ({g12, g13, g14}imply−→ p34). As this discussion ends, the algorithm
EvaluateDiscussion accepts the realization, and the relation is added to the
model (see figure 6).

Establishing Regulatory Compliance for Software Requirements 59

Fig. 6. A realization link is added to the model as a discussion accepts that goal g11

realizes the normative proposition np1

6 Related Work

Analysis of regulatory compliance of a system has been also examined in [10]
where the authors suggest using a production rule model to check for compliance.
Differently from our work, their work was aimed at providing support for a
compliance check, while our work extends this concept with both a framework
and a systematic process for obtaining compliance through the traceability and
soundness provided by argumentation.

A more targeted approach dealing specifically with privacy law, was investi-
gated by Ghanavanti et al. [2]. They use the Goal-oriented Requirements Lan-
guage (GRL) to model goals and actions prescribed by laws and they intro-
duce a framework that models the business processes of a hospital and binds it
with the legislation on privacy of health information. Our work instead relies on

60 S. Ingolfo, A. Siena, and J. Mylopoulos

argumentation to establish compliance. Similarly Rifaut et al.[11] developed a
framework based on the i* goal model to capture legal requirements and analyze
business process compliance with respect to related published regulations.

Also, Antón and Young [3] extract software requirements by analyzing the
commitments, privileges, and rights conveyed within online policy documents.
Differently from our goal-oriented approach, their work involved a systematic
analysis of policy documents to obtain software requirements.

Robinson developed the REQMON framework to monitor at runtime software
requirements to ensure compliance with regulations [12]. While his approach
focused on runtime compliance with system requirements, we aim establishing
design-time compliance to an initial model thanks to a framework that directly
integrates the means to obtain compliance (argumentation) within the modeling
capabilities of Nòmos.

I. Habli et al. [13] have shown how argumentation is used to assure the de-
composition and traceability of requirements. C.B. Haley et al. [14] have shown
how argumentation can be successfully employed to clarify how a system can
satisfy its security requirements. Moreover, T. Ghetiu et al. [15] pioneer the
concept Argument-Driven Validation (ADV), structured arguments used as va-
lidity building blocks. Our work improves these approaches as we provide an
actual extension to the argumentation framework that directly integrates the
legal concepts needed to manage the compliance of requirements.

7 Conclusions

The present work proposes goal-oriented, norm-driven requirements modeling
framework for modeling law, requirements and compliance solutions of require-
ments with respect to law. However, a number of issues remain open, because the
semantics of constructs, such as “realization” or “embodiment” is hardly formal-
izable, often subjective and therefore debatable in concrete situations. Laws are
also soften subject to changes over time, so a flexible approach is needed to man-
age these situations. The key idea proposed in this paper is that argumentation
can be adopted to establish compliance. Through a systematic process, irreg-
ularities are identified in the models and solutions, once found, are associated
to an argumentation tree, which justifies them. Given a discussion, compliance
amounts to evaluating the acceptability of the argumentations. This process
has been successfully applied to a case study, revising an input requirements
model with respect to a law fragment and returning its compliance-acceptable
version. However, research is currently ongoing to make more systematic the
whole framework.

A number of issues still remain open. Firstly, our systematic process for estab-
lishing compliance needs to be refined to offer better guidelines for interpreting
concepts such as ”realization” and ”embodiment”. Secondly, laws are subject
to amendments and revisions. Accordingly, we need to enrich our framework
to accommodate the co-evolution of laws and requirements for a given software
system.

Establishing Regulatory Compliance for Software Requirements 61

References

1. Sartor, G.: Fundamental legal concepts: A formal and teleological characterisation.
Artificial Intelligence and Law 14, 101–142 (2006)

2. Ghanavati, S., Amyot, D., Peyton, L.: Towards a framework for tracking legal
compliance in healthcare. In: Krogstie, J., Opdahl, A.L., Sindre, G. (eds.) CAiSE
2007 and WES 2007. LNCS, vol. 4495, pp. 218–232. Springer, Heidelberg (2007)

3. Young, J.D., Anton, A.I.: A method for identifying software requirements based
on policy commitments. In: IEEE Int. Conf. Req. Eng., pp. 47–56 (2010)

4. Siena, A.: Engineering law-compliant requirements. The Nòmos framework. PhD
thesis, University of Trento, Italy (2010)

5. Yu, E.: Modelling Strategic Relationships for Process Reengineering. PhD thesis,
University of Toronto, Canada (1995)

6. Hohfeld, W.N.: Fundamental Legal Conceptions as Applied in Judicial Reasoning.
Yale Law Journal 23(1) (1913)

7. Jureta, I., Mylopoulos, J., Faulkner, S.: Analysis of multi-party agreement in re-
quirements validation. In: IEEE Int. Conf. Req. Eng., pp. 57–66 (2009)

8. Ingolfo, S.: Establishing compliance of software requirements through argumenta-
tion, Master’s thesis, University of Trento, Italy (2010)

9. Guzman, A.T.: A compliance-based theory of international law. California Law
Review 90(6), 1823–1887 (2002)

10. Maxwell, J., Anton, A.: Checking existing requirements for compliance with law
using a production rule model. In: Second International Workshop on Requirements
Engineering and Law (RELAW), pp. 1–6 (2009)

11. Rifaut, A., Dubois, E.: Using goal-oriented requirements engineering for improving
the quality of iso/iec 15504 based compliance assessment frameworks, pp. 33–42.
IEEE Computer Society, Los Alamitos (2008)

12. Robinson, W.N.: Implementing rule-based monitors within a framework for con-
tinuous requirements monitoring. In: Hawaii International Conference on System
Sciences, vol. 7, p. 188a (2005)

13. Habli, I., Wu, W., Attwood, K., Kelly, T.: Extending argumentation to goal-
oriented requirements engineering. In: Hainaut, J.-L., Rundensteiner, E.A., Kirch-
berg, M., Bertolotto, M., Brochhausen, M., Chen, Y.-P.P., Cherfi, S.S.-S., Doerr,
M., Han, H., Hartmann, S., Parsons, J., Poels, G., Rolland, C., Trujillo, J., Yu, E.,
Zimányie, E. (eds.) ER Workshops 2007. LNCS, vol. 4802, pp. 306–316. Springer,
Heidelberg (2007)

14. Haley, C.B., Moffett, J.D., Laney, R., Nuseibeh, B.: Arguing security: validating
security requirements using structured argumentation. In: SREIS 2005 (2005)

15. Ghetiu, T., Polac, F., Bown, J.: Argument-driven validation of computer simu-
lations - a necessity, rather than an option. In: Advances in System Testing and
Validation Lifecycle (VALID), pp. 1–4 (August 2010)

M. Jeusfeld, L. Delcambre, and T.W. Ling (Eds.): ER 2011, LNCS 6998, pp. 62–77, 2011.
© Springer-Verlag Berlin Heidelberg 2011

Making Explicit Some Implicit i* Language Decisions

Lidia López, Xavier Franch, and Jordi Marco

Universitat Politècnica de Catalunya (UPC)
c/Jordi Girona, 1-3, E-08034 Barcelona, Spain

{llopez,jmarco}@lsi.upc.edu, franch@essi.upc.edu

Abstract. The i* (i-star) framework is one of the most widely adopted modelling
approaches by several communities (business modelling, requirements
engineering, ...). Probably due to its highly strategic nature, the definition of the
modelling language offered by the framework does not make explicit the full
behaviour of some basic constructs, leaving them thus open to several
interpretations. This looseness may not be important in some contexts, even it
may be beneficial since it leaves room for researchers to customize the framework
to their needs. However, it becomes an obstacle in other situations, e.g., model
interoperability and model-driven development. In this paper we identify
ambiguities and silences in the i* language definition in a systematic manner, and
then we propose an interpretation to deal with them. In some cases, the proposal
may include the addition of some annotation into some language construct. The
result is a formal definition taking the form of a UML conceptual data diagram
(a metamodel) with several important integrity constraints.

Keywords: i* framework, i-star, iStar, ambiguity, silence.

1 Introduction

The i* (pronounced eye-star) framework [1] is currently one of the most widespread
goal- and agent-oriented modelling and reasoning frameworks. It has been applied for
modelling organizations, business processes and system requirements, among others.

Throughout the years, different research groups have proposed variations to the
modelling language proposed in the i* framework (for the sake of brevity, we will
name it “the i* language”). Some variations come from paradigm shifts (e.g., using i*
for modelling services [2], see [3] for a compilation), others propose some particular
type of new construct (e.g., for dealing with security aspects [4]), but others just issue
slight modifications related to the core of the i* language (from now on, “the i*
language core”). This third type of variations mainly appear because the definition of
the i* language core is loose at some parts, and researchers may have interpreted the
same constructs in different ways. The absence of a universally agreed metamodel has
accentuated this effect [5].

Looseness is partly due to the high strategic nature of the i* framework: the
emphasis is more on high-level concepts like actors, goals and dependencies, than on
low-level details. Thus, it may be argued that the mentioned ambiguities and silences
may not be important in some contexts (e.g., interactive creativity meetings with

 Making Explicit Some Implicit i* Language Decisions 63

stakeholders). Being this true, it also happens that there are other contexts in which
ambiguities and silences become an obstacle:

– Model interoperability. Accepting a community scenario in which different
variants for i* exist, supporting the interchange of models and the interconnection
of tools seems to be a reasonable goal. In a previous work [6], we have reported
how different interpretations of the i* language core may hamper and eventually
prevent automatic model interchange among tools.

– Model-driven development (MDD). Several works are addressing the use of i*
diagrams as starting point in MDD processes [7]. Due to their very nature, MDD
processes require models with a clear and non-ambiguous meaning.

– Precise definition of some i* constructs. In the available definitions of the i*
language core, some constructs were not defined up to the last level of detail. For
instance, in [8] we have explored the i* subtyping construct at the level of
Strategic Rationale (SR) diagrams. In this work, we have identified some
looseness that forced us to make some decisions about the i* language.

Our position is that each and every modeling language definition should be complete
and consistent regardless of its intended use. This is the ultimate motivation of our
work. Those contexts that require a more informal or agile use should lead to lighter
versions of the language but still these should be complete and consistent, as well as
compatible with the full version.

The work presented here addresses these problems and specifically tries to answer
the following research questions:

– RQ1. Which ambiguities and silences exist in the current definition of the i*
language core?
o RQ1.1. What constructs can be considered to form the i* language core?

– RQ2. What decisions can be made to solve these ambiguities and silences?
o RQ2.1. Is it necessary to include additional features in the i* language core

to implement these decisions?
o RQ2.2. Are there particular issues that deserve further research before an

informed decision can be made?
– RQ3. What is the final form that an ambiguity- and silence-free i* language core

definition should take?

The rest of the paper is structured as follows. Section 2 enumerates and analyses the
sources consulted. Section 3 shows the methodology used to drive our work. Sections
4 to 7 are the core of the work, complemented with section 8 where we formulate our
final proposal for the i* language core. Section 9 provides the conclusions and future
work. Basic knowledge of i* is assumed, see [1] and the i* wiki [9] for details.

2 Background: Analysis of the i* Framework

There is a great deal of research made by the i* community that is relevant to our
objectives. This section tries to summarize the most important observations after
analysing eight types of sources. It is clear that we cannot aim at giving details in the

64 L. López, X. Franch, and J. Marco

paper for every individual type of source, so we have decided just to enumerate the
most significant sources considered in each type and provide in the second subsection
a global consolidation of observations.

2.1 Sources of Our Work

The types of inputs considered have been the following:

Main dialects. Arguably, we may consider that there exist three main streams of i*
variants: 1) the seminal proposal of the i* framework [1], updated in [9]; 2) the Goal-
oriented Requirement Language (GRL) which is part of the User Requirements
Notation (URN) [10]; 3) Tropos, an agent-oriented software methodology that adopts
i* as its modelling language [11].

Metamodels. Several contributions exist that propose metamodels for i* with different
purposes: 1) metamodels for particular i* variants like GRL’s [12] and Tropos’ [13];
2) metamodels for supporting model interoperability [14]; 3) metamodels for
providing a reference framework [15][16]; 4) metamodels as the basis for tool
construction [17].

Literature. In [14] we performed a literature review as a baseline for model
interoperability analysis. Since we focused on the analysis of i* constructs, the results
of the review are applicable also in this paper. The review was conducted over the
following conferences and journals for the period 2006-2010: ER, CAiSE, REJ, DKE,
IS Journal, RE, RiGiM, WER, i* workshop, and it included also the recent book on i*
[3]. After some filtering, we selected 63 contributions proposing addition, removal or
modification of basic i* constructs as described in Table 1.

Tools. We experimented with the some of the most (if not the most) used i* modeling
tools: Open OME [18], jUCMNav [19], REDEPEND [20] and TAOM4E [21]. Being
modelling tools, they necessarily provide (intentionally or not) answers to some of
these ambiguities and silences.

Techniques. Similarly to tools, what makes interesting the definition of techniques is
that they provide an interpretation to all i* constructs. Two main types of techniques
exist, evaluation procedures [22][23] and qualitative reasoning techniques [24].

Evaluation reports. Some works exist that similarly to our aim, have provided an
analysis of different aspects of i*: 1) Analysis of current uses, best practices and
misunderstandings [25][26]; 2) direct comparison of several major proposals [15][16];
3) reflections about i* subordinated to the analysis of its visual notation [27]; 4)
definition of a model interchange format [28].

Real experiences. The experiences of i* in real projects provides insights about how
the framework has been used in industrial projects, cf. [29][30][31] among others.

Personal feedback. Last but not least, interaction with researchers in the community,
discussions, attendance to talks, etc., had provided us useful insights on the use of i*.

 Making Explicit Some Implicit i* Language Decisions 65

Table 1. Variations proposed by the i* community in the last 5 years (selected venues only).
Each paper increments each column at most in 1

 Actors Actor links Dependencies Intentional elements (IE) IE links

 New 4 24 10 21 21
 Removed 8 5 2 1 0
 Changed 3 1 1 36 43

2.2 Observations

We have built our work from the analysis of the sources above. The first output is the
decision of which elements form the i* language core. The rationale adopted is: an
element is included in the i* language core if it is adopted or accepted (sometimes
implicitly) by all the sources mentioned above. To start with, we consolidate this core
into a preliminary UML conceptual data schema that includes classes for the core
concepts and associations among them (see Fig. 1). In the next sections we will add
the required information into this conceptual schema until we reach a non-ambiguous
and complete definition of the core.

The data schema shows the three key concepts of i*: Actor, Dependency and
IntentionalElement. Actors have a boundary that includes their InternalElements,
a subtype of intentional element. Both actors and internal elements may be related
through Links. Concerning dependencies, they connect DependencyParticipant
(either actors or internal elements) acting as dependers or dependees through some
Dependum (another type of intentional element). We remark that in this initial model
we are not including any type of constraint (even we do not include cardinality), since
for all the concepts we may find several interpretations that could violate these
constraints, regardless how general we try to be.

Fig. 1. The i* language core: preliminary representation as a UML conceptual data schema

3 Systematic Management of Ambiguities and Silences

To proceed further in the formulation of the core of the i* language, we wanted to
apply some systematic process to ensure the completeness of the analysis. We opted
for designing a set of questions to apply to each element in the core. Since elements
are represented in a data schema, we derived these questions from the analysis of the

66 L. López, X. Franch, and J. Marco

UML superstructure [32] regarding to the metaelements that we will use in the core
definition: classes, associations, specializations and attributes.

Table 2 summarizes the most important questions. In the analysis, we left out from
the very beginning information that appears in the UML metamodel but that it is not
of interest in our context, e.g. questions related to visibility. We have not shown in the
table either some questions that were applied but that have provided a consistent
result in all cases (e.g., we first had two questions to find out if some association or
attribute were derived, or also to check for overlapping specializations, but since the
answer was always negative, we do not show them). Concerning the rest of questions:

Table 2. Summary of questions for ambiguity and silence systematic detection

Concept Id Question

Class C1 Is the class specialized according to some criteria (type, ...)?
 C2 For each criterion in C1, is the specialization complete or incomplete?
 C3 Does the class have any attribute?
Associations A1 Which are the characteristics of the different roles (cardinality, ordering, ...)?
 A2 Is the association of a specific type (composition, aggregation)?
 A3 Is it an association class? (if so, Class’ questions also apply)
Attributes P1 Which type is it?
 P2 Which is the cardinality (univalued, multivalued, optional, ...)?
All types T1 Is there any other constraint involving one or more elements of the model?

– r classes, most questions are related to their possible participation in specialization
hierarchies: possible classification criteria and their completeness. The last
question refers to the existence of attributes.

– Concerning associations, the questions are designed to find out: characteristics of
roles; nature of the association (e.g., aggregation, composition...); and if it is an
association class (and then class questions also apply).

– For attributes, fundamental questions are about their type and cardinality.
– Last, a general question was applicable to all type of elements, searching for

properties that relate different elements of the model or express characteristics of
one particular type of element (e.g., reflexivity, transitivity, ...).

The next sections discuss the application of these questions to the different parts of
the data schema shown in Fig. 1, although we will not show continuously the
questions and how they were applied. References to elements of the final metamodel
presented in Section 8 are written in Courier style.

4 Actors and Actor Links

Question C1 applied over Actor could be matter of discussion, since not all the
proposals found in the literature propose distinguishing types of actors. However,
those that do, adhere to the classical distinction: Role, Position, Agent. The most
remarkable exception is GRL/URN in all its sources (language report, metamodel and
jUCMNav tool) but even here we may find some ambiguity, since at some documents

 Making Explicit Some Implicit i* Language Decisions 67

it is said that the type of actor can be stated using metadata, therefore we conclude
that introducing ActorTypes does not cause a severe conflict with GRL/URN.

Question C2 over actors reveals one typical situation of silence in most sources.
However, we find some examples in which non-classified actors coexist with actors
of a particular type. Another argument that could be given is that if we consider the
model development process, even if we want to end up with a model with all actors
belonging to a given type, intermediate states could still keep actors whose type is still
not determined. Therefore, we allow General actors to coexist with specialized ones.

When it comes to ActorLink, first of all we find several ActorLinkTypes in the
literature. Those sources that distinguish actor types, also provide the classical links
plays, occupies and covers, applied to the correct types (IC5-7). In addition,
specialization (is-a) and aggregation (is-part-of) are often mentioned and for those
sources that don’t, it seems more that simply it was not an objective of the work than
an intended decision. Therefore, we also propose them. The main problem at this
moment is the instance (INS) relationship among agents. This concept appears in the
seminal Yu’s proposal but it is not formally defined, it is just used in the examples. A
fundamental question arises here: is it really a construct that must appear at the model
itself, or does it belong to a different modelling level? In some sense, referring to the
MOF specification [33], it could be argued that agents’ instances belong to M0 whilst
the rest of an i* model is at M1. Therefore, we do not include the instance relationship
in our current core proposal, instead we formulate our open issue (OI):

OI1: Does the instance relationship belong to the i* core?

When we explore the ActorLink association (A1 and A2, and also T1), we find the
typical scenario that we feel justifies the need of this paper. There are very permissive
scenarios that do not include any constraint (e.g., the OpenOME tool) and others that
state some concrete rules (e.g., the Tropos metamodel). Several issues get different
responses in different sources, or they are not mentioned at all:

– Cardinalities: e.g., may an actor be specialization of more than one actor (see
Fig. 2, left)? May different actor links have different cardinalities?

– Constraints among types of connected actors: e.g., may an actor of a given type be
a subtype or part of an actor of another type (see Fig. 2, center)?

– Simultaneous application of actor links: e.g., may an actor be at the same part a
subtype and a part of two other actors, or even of the same actor (see Fig. 2, right)?

A

B

is-a
is-part-of

Fig. 2. Some forbidden situations in the i* language core for actor links

68 L. López, X. Franch, and J. Marco

As a result of this analysis, we make the following decisions:

– We do not allow an actor being a subtype of more than one actor (IC8). Reason is
simplicity: multiple inheritance is known as a source of confusion for modellers.
Specially because, as we will see in Section 5, there are a lot of questions about
the meaning of these links when intentional elements are considered.

– We do not allow neither is-a nor is-part-of to involve actors of different type
(IC3) or to be applied to the same pair of actors (IC4). Not just simplicity is behind
this decision, also conceptual clarity (from an ontological point of view) and
compliance to community behaviour: some proposals state this constraint
explicitly (remarkably the Wiki does) and those that don’t, seem more not having
paid attention to the issue that having made a conscious decision.

– We do not allow cycles, not just for the same type of link, but for all (IC2). We
have not found any meaningful situation where cycles should be allowed.

– There is no special property for the ActorLink association. We just paid attention
to the possibility of plays being an association derived from covers and
occupies, but clearly this is not the case, since an agent may play a role without
an intermediate position. Also we discarded is-part-of to be an aggregation.

5 Internal Elements and Internal Element Links

Internal elements configure the rationale of actors. A review of the sources shows a
clear consensus in four types (albeit some minor terminological differences): goal,
softgoal, task and resource. The existence of a fifth type, belief, is not so clear.
The main dialects use it inconsistently: whilst Yu’s thesis named them, in fact it does
not make use of them, but then the wiki clearly defines them. URN/GRL includes
beliefs from the very beginning, whilst Tropos just do it sometimes. Similar dissi-
milarities may be found in the rest of sources. In our core proposal, we are including
beliefs in the IEType intentional elements’ type because we think that they are really
modelling something that cannot be modelled otherwise (“a condition about the world
that the actor holds to be true” [9]). Following GRL metamodel, they cannot be part
of a dependency (IC9,14). Since this could be a controversial point we identify an OI:

OI2: Does the belief relationship belong to the i* core?

When it comes to internal element links (IELinks), we find fundamental questions
that are typically answered differently by different sources:

Types of Links. There is agreement on task decompositions (TD), means-end
links (ME) and contributions to softgoals (CSG). Other variants are rare and it
does not seem advisable to include them. Still some problems arise (see Fig. 3):

– For TD, the elements that decompose are considered in AND relationship.
Therefore, it is not possible to decompose any other type of internal element other
than task with an AND decomposition.

– For ME, there is no consensus about which relationships are valid between
sources and targets of the links, e.g., may a resource be an end? Also, it is not
clear whether the means are exclusive (XOR) or not (OR).

 Making Explicit Some Implicit i* Language Decisions 69

– For CSG, there is agreement that contributions must be typed, but there is no
consensus about the admitted types. One of the most used values’ domain includes
also AND and OR types, and then it is not clear whether this prevents the use of
softgoals as root for TD and ME.

Joint Use. In general, it is not stated whether an internal element may be decomposed
using more than one type of link. E.g., if it is a task, may it be both decomposed with
TD and ME?

Cycles. Although in general cycles are not allowed, we have the specific case of
CSG: if softgoal A contributes negatively to softgoal B and the other way round, is it
possible to state both relationships together in the model?

Roots. Usually it is not stated if more than one root is possible inside an actor’s
boundary, although by observation of examples this seems to be the usual case.
Constraints on the type of the root(s) are usually not given either.

(a) Means-end (b) Contributions to softgoals (c) Mixing links (d) Cycles

Fig. 3. Some extreme situations in i* decomposition links

Below we show the decisions made at this respect. We have tried to combine the
following criteria: conceptual clarity, keeping the language as understandable as it
could be; soundness, avoiding situations that could drive to meaningless models;
flexibility, avoiding unnecessary restrictions; expressive power, trying to exploit full
capabilities of goal models; alignment with community, to foster acceptance.

Types of Links

– For TD, we allow the possibility of having other types than task in the root,
therefore the name should change to just decomposition. This could be a highly
controversial point, but in fact note that currently: 1) decomposition of goals into
subgoals is currently proposed in some documents as: first, provide a task means
to the goal end, and then decompose the task into goals, which we believe just
introduces some noise in the model with the same objective; 2) AND-
decomposition of softgoals is supported by contribution as defined e.g. in Wiki.

– For ME, we take the most permissive option and interpret OR instead of XOR.
– In both cases, aligning with URN/GRL position, we tend to remove as many

constraints as possible concerning valid types of internal elements. In other words,
we want the core to be as inclusive as possible since the sources’ analysis has
demonstrated great diversity. Therefore, we just control the use of beliefs: a belief
can be decomposed just into beliefs; a belief can contribute to softgoals (IC10).

70 L. López, X. Franch, and J. Marco

– For contribution, we adhere to the proposal in the Wiki and URN/GRL
(excluding AND/OR contributions, that we consider as decomposition, see above),
a ContType formed by values make, help, some+, unknown, some-, hurt, break.

Joint Use. An internal element cannot be decomposed using more than one decom-
position type (IC13). A decomposed softgoal may be the target of contribution links.

Cycles. Only cycles among softgoals are allowed (IC12).

Roots. More than one root of any type is allowed.
The connexion between internal elements and actors is implemented through the
boundary association (see Fig. 1). It is declared as composition since an internal
element belongs to exactly one actor and its life is dependant of its actor’s life.

A last point that needs attention is the effect of actor links on internal elements. In
other words, if there is a link from actor A to actor B, what effect has this on the
internal elements in A? This question arose when we used intensively the is-a
relationship in our models and motivated a line of research that is still ongoing [8]. A
lot of open issues had been to be tackled, e.g., which modifications are allowed inside
A of the elements inherited from B? We foresee that the same questions may arise
when considering the other types of actor links. The answer to these questions
motivates an OI that in fact is many-fold (one for each type of actor link):

OI3: Which are the consequences on internal elements of actors that are related
 to other actors via actor links?

6 Dependencies

Dependums are at the heart of dependencies and their nature is one of the most agreed
concepts in i*: they have the same type IEType than internal elements but not
including beliefs (IC9), so we adhere to this position.

When it comes to dependencies, we find several issues that deserve discussion:

Source and Target Elements. We may find all possible situations of connection
among internal elements and actors depending on the internal knowledge about
involved actors. Therefore, we allow any possible situation. The initial metamodel at
Fig. 1 supports this decision with the IntentionalElement class. However, a twilight
zone appears when considering what happens e.g. with a dependency among two ac-
tors when a third actor inherits from one of the former [8]. We identify an OI:

OI4: Which are the relationships between dependencies and actor links?

Strength. Basically the discussion is whether strengths should be part of the core or
not. A lot of researchers in the community simply do not use strengths. However, we
still believe that they have a potential and their use could be of interest in several
contexts (since they provide both information about criticality and effort).

Multiplicity. A situation that is not completely specified in i* proposals is whether a
dependency can have multiple dependees or dependers and in this case, what is the
meaning. We find two different style repetitions: the dependum is repeated in

 Making Explicit Some Implicit i* Language Decisions 71

different dependencies; or the dependum has several links stemming or going to.
After examining the existing proposals, the decision made is (see Fig. 4):

– We allow both: 1) one dependency with multiple dependers and dependees (see
Fig. 4, left); 2) several dependencies with the same dependum, provided that the
same pair (depender, dependee) does not appear in more than one of them (IC14).

– If a dependency has several dependees, then the satisfaction of the dependum
depends on all of them altogether. This is the most usual intent in the models in
which we have found this situation. As drawback, this decision prevents to express
that a single dependee could make a dependum satisfied.

– If a dependency has several dependers, then all the dependers depend on that
dependum the same way. If needed for clarity of the drawing, we admit to split the
dependency into several since no ambiguity is possible (see Fig. 4, right, bottom).

– If there are two dependencies with the same dependum d (see Fig. 4, right, top), it
means that d is describing some kind of entity that appears in 2 different contexts.

A

B

d

C

E

A

C

B
d

d

A

C

B

d

A

B

d C
s

=
A

B C

Bd

d
s

s

Fig. 4. General framework for dependencies in the i* language core

We remark that we explicitly avoid in our core some scarce uses that may be found
in some proposals (more in examples than in formal definitions themselves), e.g.:
dependencies involving intentional elements inside an actor, or dependency links that
include some contribution value.

7 Some Addition of Information into i* Models

In the previous analysis we have strictly adhered to consensus and intentionally avoid
any proposal that could be considered out of the current trends in i* (with the only
exception of task-decomposition converted into decomposition). However, we still
find some situations whose resolution cannot be implemented without adding some
information in i* models. We are identifying next these situations and providing a
way of modelling them (shown in Fig. 5). Remarkably, we will provide default
actions that makes the classical i* models compliant to our definition. We also try to
provide a uniform graphical view in terms of notation, as the figure shows.

Generalization Sets. In some models we have needed to specialize an actor according
to different criteria. For instance, in a Travel Agency case, we needed to specialize the

72 L. López, X. Franch, and J. Marco

TravelAgency actor with respect to the target type of customer (Individual,
Organization) and the type of agency (Internet, Traditional). We faced two problems:
first, i* does not support the grouping of subactors by criterion, so that the model
didn’t catch the intended meaning; second, we were not able to distinguish the
disjoint nature of the first criterion from the overlapping criterion of the second one.
We propose to make i* more expressive at this respect, adding: 1) the ability to group
subactors; 2) the ability to classify the specialization according to completeness and
disjointness. We propose to use the UML metamodel concept of GeneralizationSet
to specify these issues. As default case, we choose one single complete and disjoint
specialization criterion without explicit name.

Decomposition Links. As commented in Section 4, we are proposing an AND-
decomposition link beyond task decomposition, and we also have the means-end links
that are a kind of OR-decomposition. Putting both things together, we propose to
follow Tropos’ proposal in which we have just the Decomposition link that can be
qualified as AND or OR, and in fact we propose also XOR as a third type of
qualification to support expressiveness to obtain then an attribute of type
LogicalType. By default, AND-decomposition links are interpreted as
decomposition, and OR- and XOR-decomposition links as means-ends.

Dependency Links. We find a similar situation than above for dependency links in the
dependee’s side. We propose the same solution: to qualify the type of combination of
dependees with AND, OR, XOR (attribute in Dependency of type LogicalType).

 (a) generalization set (b) decomposition (c) dependency

Fig. 5. Proposals for the i* language core

To conclude with, we identify a final OI:

OI5: How much acceptable those proposals could be in the i* community.

8 The i* Language Core: Final Representation

In this section we show the result of the analysis undertaken in the four previous
sections. The metamodel is shown in Fig. 6 and the integrity constraints in Table 3.

It is important to remark that we have a degree of freedom when one class has
some specialization criterion with respect to the representation in UML of each value
of this criterion. Given a class C in which a classification criterion may take values
k1, ..., kn, we may create k subclasses of C, one for each ki, or we may create an

 Making Explicit Some Implicit i* Language Decisions 73

Table 3. Integrity constraints over the i* core language

Id. Concept Integrity Constraint
IC1 name attribute There cannot be two model elements with the same name except for:
IC1.1InternalElement internal elements: name restriction applies inside actors’ boundary

IC2

ActorLink

Cycles are not allowed regardless of the type of ActorLink
IC3 The links is-a and is-part-of must connect actors of the same type

IC4 The is-a and is-part-of links cannot be applied to the same pair of
Actors

IC5 The link occupies must connect an Agent with a Position
IC6 The link covers must connect an Position with a Role
IC7 The link plays must connect an Agent with a Role
IC8 An Actor cannot be a subtype of more than one Actor
IC9 Dependum Dependums cannot have Belief as type
IC10

InternalElement
Link

Beliefs can be decomposed only into beliefs
IC11 Contributions can only have softgoals as to
IC12 The only cycles allowed are those that involve only contribution links
IC13 An internal element can be decomposed using one type of decomposition
IC14

Dependency
A dependum cannot appear twice among the same pair of Actors

IC15 Depender and dependee actors must be different
IC16 Beliefs cannot be neither depender nor dependee

Fig. 6. The i* language core: final representation as a UML conceptual data schema

74 L. López, X. Franch, and J. Marco

Enumeration type with values k1, ..., kn and then an attribute of this type in C. We
have decided to avoid creation of specialization relationships to keep the model
simple, and thus the only situation in which sub-classes are created is when some
attribute has to be defined in at least one of the ki. This is a change with respect to
some former metamodels we have proposed (e.g., [16]), but after some experience
with them we think that it is worth keeping the class diagram simple. The rest of the
metamodel just reflects the decisions made in the paper.

9 Conclusions

In this paper we have formulated a precise definition of the core constructs of the i*
language. We have organized the research into several research questions (see Section
1) which we hope have been satisfactorily answered:

– We have undertaken a comprehensive analysis of the existing body of knowledge
for the i* framework with focus on the language. The analysis has relied upon
several types of sources. As a result, we have identified the i* language constructs
whose formal definition is not completely defined (research question RQ1) and
determined which part of the language can be considered to be the core (RQ1.1).

– We have proposed how to deal with the identified ambiguities and silences. For
most of them, we have provided in this paper our interpretation of the problem and
then we have made a particular decision to solve it (RQ2). In some cases, we have
added and formally defined some minor notational elements to the i* language to
fulfil this goal (RQ2.1). These new elements are always optional in nature. Last,
we have identified some open issues that cannot be decided in the paper but
require a more detailed analysis (RQ2.2). We remark the intended decision of
keeping separated RQ2 from RQ1: whilst RQ1 is answered through analysis, RQ2
is requiring decisions to be made, which can always be a matter of discussion.

– We have articulated our proposal around a UML data schema with integrity
constraints to fully define the meaning of the i* language constructs (RQ3).

As a summary, we may say that we have provided a first consolidated step towards
having a community agreement of the formal meaning of i* constructs up to a level of
detail that is not currently available. As mentioned in the introduction, we think that
the results of this work can be useful in several contexts that really require this level
of detail, like model-driven development, model interchange and tool interoperability.
We also remark that although the paper has focused on the i* language, we believe
that the method and criteria used could eventually be applied in other domains facing
a similar scenario.

In this paper, we have assumed that “a” (i.e., exactly one) i* language core exists.
An open question that requires further investigation is whether different contexts
could require different language cores. For instance, does the i* language needed for
conducting creativity meetings share the same core with model-driven development-
oriented i*?

At a first sight, this work may seem to contradict somehow some of our previous
work on the construction of an i* metamodel [15][5][16][14]. In these works, we
advocate for an i* metamodel general enough to host most of the proposed variants of

 Making Explicit Some Implicit i* Language Decisions 75

i*. But in fact we argue that the two approaches are complementary. In these cited
works, we design a general metamodel but the i* language core is embedded into it.
What we are proposing here is to make more accurate the expression of the core. Thus
putting both lines of research together, we could include the decisions made in this
paper into the metamodel proposed in these sources. Thus, any new i* variant could
configure the metamodel to its own needs (e.g., by adding some new type of
intentional element, or restricting the allowed types of links decomposition) but at the
same time, relying on a stable i* core with a clearly defined semantics, eventually
shared by all variants.

As future work, we first mention the consideration of the open issues identified in
the paper. In addition, we have identified two lines of research:

1) building an ontological foundation for the i* core language, using a foundational
ontology like UFO [34];

2) adapting existing techniques to the proposed i* language core, which requires
reflecting about the concept of satisfactibility of intentional elements.

Acknowledgments. This work has been supported by the Spanish project TIN2010-
19130-c02-01. The authors want to thank Carlos Cares for his suggestions in early
versions of the work; Renata and Giancarlo Guizzardi for our fruitful discussions on
the topic; and the anonymous reviewers for their valuable feedback.

References

1. Yu, E.: Modelling Strategic Relationships for Process Reengineering. PhD.Computer
Science University of Toronto, Toronto (1995)

2. Estrada, H., Martínez, A., Pastor, O., Mylopoulos, J., Giorgini, P.: Extending
organizational modeling with business services concepts: An overview of the proposed
architecture. In: Parsons, J., Saeki, M., Shoval, P., Woo, C., Wand, Y. (eds.) ER 2010.
LNCS, vol. 6412, pp. 483–488. Springer, Heidelberg (2010)

3. Yu, E., Giorgini, P., Maiden, N., Mylopoulos, J. (eds.): Social Modeling for Requirements
Engineering. The MIT Press, Cambridge (2011)

4. Mouratidis, H., Giorgini, P., Manson, G.: Integrating Security and Systems Engineering:
Towards the Modelling of Secure Information Systems. In: Eder, J., Missikoff, M. (eds.)
CAiSE 2003. LNCS, vol. 2681, Springer, Heidelberg (2003)

5. Franch, X.: Fostering the Adoption of i* by Practitioners: Some Challenges and Research
Directions. In: International Perspectives on Information Systems Engineering. Springer,
Heidelberg (2010)

6. Colomer, D., López, L., Franch, X., Cares, C.: Model Interchange and Tool
Interoperability in the i* Framework: An Experiment. In: WER 2011 (2011)

7. Alencar, F., Marín, B., Giachetti, G., Pastor, O., Castro, J., Pimentel, J.H.: From i*
requirements models to conceptual models of a model driven development process. In:
Persson, A., Stirna, J. (eds.) PoEM 2009. LNBIP, vol. 39, pp. 99–114. Springer,
Heidelberg (2009)

8. López, L., Franch, X., Marco, J.: Defining Inheritance in i* at the Level of SR Intentional
Elements. In: iStar 2008 (2008)

9. The i* Wiki, http://istar.rwth-aachen.de (last accessed July 2011)
10. ITU-T Recommendation Z.151 (11/08), User Requirements Notation (URN) - Language

Definition (2008), http://www.itu.int/rec/T-REC-Z.151/en

76 L. López, X. Franch, and J. Marco

11. Bresciani, P., Giorgini, P., Giunchiglia, F., Mylopoulos, J., Perini, A.: Tropos: An Agent-
Oriented Software Development Methodology. Autonomous Agents and Multi-Agent
Systems 8(3) (2004)

12. Amyot, D., Horkoff, J., Gross, D., Mussbacher, G.: A lightweight GRL profile for i*
modeling. In: Heuser, C.A., Pernul, G. (eds.) ER 2009. LNCS, vol. 5833, pp. 254–264.
Springer, Heidelberg (2009)

13. Susi, A., Perini, A., Mylopoulos, J.: The Tropos Metamodel and its Use. Informatica
(2005)

14. Cares, C., Franch, X.: A metamodelling approach for i* model translations. In: Mouratidis,
H., Rolland, C. (eds.) CAiSE 2011. LNCS, vol. 6741, pp. 337–351. Springer, Heidelberg
(2011)

15. Ayala, C., Cares, C., Carvallo, J.P., Grau, G., Haya, M., Salazar, G., Franch, X., Mayol, E.,
Quer, C.: A Comparative Analysis of i*-Based Agent-Oriented Modeling Languages. In:
SEKE 2005 (2005)

16. Cares, C., Franch, X., Mayol, E., Quer, C.: A Reference Model for i*. Book chapter in [3]
(2011)

17. Lucena, M., Santos, E., Silva, C., Alencar, F., Silva, M.J., Castro, J.: Towards a unified
Metamodel for i*. In: RCIS 2008 (2008)

18. OpenOME Tool, http://www.cs.toronto.edu/km/openome/ (last accessed,
March 2011)

19. jUCMNav Tool, http://jucmnav.softwareengineering.ca (last accessed,
March 2011)

20. Lockerbie, J., Maiden, N.: REDEPEND: Extending i* Modelling into Requirements
Processes. In: RE 2008 (2008)

21. TAOM4E Tool, http://selab.fbk.eu/taom/ (last accessed, March 2011)
22. Horkoff, J., Yu, E.: Finding solutions in goal models: An interactive backward reasoning

approach. In: Parsons, J., Saeki, M., Shoval, P., Woo, C., Wand, Y. (eds.) ER 2010. LNCS,
vol. 6412, pp. 59–75. Springer, Heidelberg (2010)

23. Amyot, D., Ghanavati, S., Horkoff, J., Mussbacher, G., Peyton, L., Yu, E.: Evaluating
Goal Models within the Goal-oriented Requirement Language. International Journal of
Intelligent Systems 25(8) (2010)

24. Giorgini, P., Mylopoulos, J., Nicchiarelli, E., Sebastiani, R.: Reasoning with goal models.
In: Spaccapietra, S., March, S.T., Kambayashi, Y. (eds.) ER 2002. LNCS, vol. 2503, p.
167. Springer, Heidelberg (2002)

25. Horkoff, J., Elahi, G., Abdulhadi, S., Yu, E.: Reflective analysis of the syntax and
semantics of the i* framework. In: Song, I.-Y., Piattini, M., Chen, Y.-P.P., Hartmann, S.,
Grandi, F., Trujillo, J., Opdahl, A.L., Ferri, F., Grifoni, P., Caschera, M.C., Rolland, C.,
Woo, C., Salinesi, C., Zimányi, E., Claramunt, C., Frasincar, F., Houben, G.-J., Thiran, P.
(eds.) ER Workshops 2008. LNCS, vol. 5232, pp. 249–260. Springer, Heidelberg (2008)

26. Webster, I., Amaral, J., Cysneiros, L.M.: A Survey of Good Practices and Misuses for
Modelling with i* Framework. In: WER 2005 (2005)

27. Moody, D., Heymans, P., Matulevicius, R.: Visual Syntax does matter: Improving the
Cognitive Effectiveness of the i* Visual Notation. Req. Engineering Journal 15(2) (2010)

28. Cares, C., Franch, X., Perini, A., Susi, A.: Towards Interoperability of i* Models using
iStarML. Computer Standards & Interfaces 33(1) (2011)

29. Carvallo, J.P., Franch, X.: On the use of i* for architecting hybrid systems: A method and
an evaluation report. In: Persson, A., Stirna, J. (eds.) PoEM 2009. LNBIP, vol. 39, pp. 38–
53. Springer, Heidelberg (2009)

 Making Explicit Some Implicit i* Language Decisions 77

30. Annosi, A., Pascale, A., Gross, D., Yu, E.: Analyzing Software Process Alignment with
Organizational Business Strategies using an Agent- and Goal-oriented Analysis Technique.
In: iStar (2008)

31. Maiden, N., Jones, S., Ncube, C., Lockerbie, J.: Using i* in Requirements Projects: Some
Experiences and Lessons Learned. Book chapter in [3] (2011)

32. OMG 2.2 Unified Modelling Language Superstructure (2009)
33. MOF 2.0 Core Final Adopted Specification (2006)
34. Guizzardi, G., Wagner, G.: Using UFO as a Foundation for General Conceptual Modeling

Languages. In: Theory and Application of Ontologies. Springer, Heidelberg (2010)

The Impact of Perceived Cognitive Effectiveness

on Perceived Usefulness of Visual Conceptual
Modeling Languages

Kathrin Figl1 and Michael Derntl2

1 Institute for Information Systems and New Media, Vienna University of
Economics and Business, Austria

kathrin.figl@wu.ac.at
2 Information Systems and Databases, RWTH Aachen University, Germany

derntl@dbis.rwth-aachen.de

Abstract. Users’ perceptions and beliefs are relevant for the adoption
of conceptual modeling languages in practice. This paper examines the
relationship between user perception of the quality of a conceptual mod-
eling language from a cognitive point of view and its perceived usefulness.
The article builds on Moody’s framework of quality characteristics of vi-
sual modeling languages. By means of an empirical study with 198 user
ratings of diagrams drawn with different modeling languages used in the
e-learning domain, we provide evidence that users’ perception of criteria
such as perceptual discriminability, graphic economy, a balanced com-
bination of text and symbols, and semiotic clarity influence perceived
usefulness of visual conceptual modeling languages. These findings and
their implications for practice and research are discussed.

1 Introduction

Conceptual models are known to support the analysis, design, development, and
documentation of software and data intensive systems. In particular, they are
used for defining stakeholder requirements and for conceptualizing diffuse knowl-
edge in a domain. Models document the stakeholders’ understanding of a domain
and the functionality of an information system. One main goal of requirements
engineering is “conveying and promoting the understanding of the application
domain” [1]. Consequently, models can improve the requirements engineering
process and facilitate common understanding of domains and processes between
users and system engineers [2]. Because of the positive effects, a large number
of different modeling approaches targeting different levels or viewpoints within
information systems—also addressing different domains—have been proposed.
Yet, there is a discrepancy between (a) the attention paid to creating and devel-
oping modeling languages in research and (b) their actual usage by practitioners
in real-world applications. For instance, in the e-learning domain, instructional
designers find it difficult in practice to use visual modeling languages to describe
their design artifacts due to their unfamiliarity and the intrinsic complexity of
the languages used [3].

M. Jeusfeld, L. Delcambre, and T.W. Ling (Eds.): ER 2011, LNCS 6998, pp. 78–91, 2011.
c© Springer-Verlag Berlin Heidelberg 2011

Perceived Usefulness of Visual Conceptual Modeling Languages 79

The broad spectrum of available modeling languages makes beliefs and choices
of users an important issue. Choice of modeling language is particularly relevant
because “the world (reality) is never given to us in and of itself, but only through
interpretation in some language” [4, p.148]. The perception of the (cognitive) ef-
fectiveness of a modeling language is likely to influence whether or not users
perceive a language as useful and become interested in using the language. This
is highly relevant in fields where there is no de-facto standard modeling lan-
guage. Prior research showed that perceived ontological deficiencies in a model-
ing language negatively influence perceived usefulness and ease of use [5]. Other
characteristics may have similar effects and influence the users’ intentions to use
a modeling language. For instance, research in several domains has shown that
design aesthetics positively influence usage perceptions [6]. This paper follows
up on this line of research. It goes beyond identifying and discussing cognitive
effectiveness criteria of conceptual modeling languages, by connecting them to
practitioners’ usage beliefs. This approach differs from prior studies in that we
investigate not only one, but a variety of criteria for cognitive effectiveness that
users would be able to judge from a first impression of a language. Based on this
we analyze which criteria are relevant for users’ perception of the usefulness of
the languages.

We use a theoretical framework on desirable cognitive characteristics of vi-
sual modeling languages [7] to assess the users’ perceptions. Although there are
already a number of frameworks available for evaluating modeling approaches,
empirical research is still rare [1]. In previous research these frameworks were
primarily used to conduct analytical expert evaluations of different modeling
languages and analyze these in detail (e.g. [8,9,10,11]). We complement this
thread of work by turning to the users’ point of view and examine specifically
how users’ perception of quality characteristics relate to usage beliefs of con-
ceptual modeling languages. In an empirical study 198 domain experts’ ratings
of different diagrams were collected. The ratings reflect the experts’ judgment
of three different visual modeling languages with regard to perceived cognitive
characteristics and perceived usefulness. The data analysis demonstrates that
these two dimensions are positively associated, which offers relevant input to
understanding of the interaction between people and the conceptual modeling
languages they use.

The rest of this paper is structured as follows. We begin with an overview of
quality aspects in conceptual modeling. Then, we describe the research questions
and the method employed in our empirical study. The next section presents
our data analysis and an examination of the results. Finally, we present the
implications of our research and discuss the limitations of our work.

2 Theoretical Background

2.1 Visual Modeling Languages

From a practical point of view, a conceptual modeling language is fundamen-
tal in order to allow a community to share their practices [12]. Using a visual

80 K. Figl and M. Derntl

modeling language—that is, a conceptual modeling language with a visual nota-
tion system—is the first step in narrating practices, and therefore to engage in
reflective thinking as presented, for example, in Schön’s reflection on action [13].
In the context of this paper we are interested in modeling languages that come
with a visual notation. Such languages include “a set of graphical symbols, a set
of compositional rules for how to form valid visual sentences, and definitions of
their meanings” [7, p.756]. On the one hand, there are general-purpose visual
modeling languages like the UML (Unified Modeling Language) [14] which can
be used for modeling various perspectives on almost any kind of (information)
system. On the other hand there are domain specific languages which are tai-
lored for use by persons in a particular domain. A domain specific modeling
language “directly represents the problem space by mapping modeling concepts
to domain concepts” [15, p.19]. It matches vocabularies and mental representa-
tions of the domain experts and can therefore be a powerful and easy-to-use tool
in a particular domain.

Visual models can support practitioners and their community to conceptual-
ize problem spaces by providing a ‘workbench’ and toolkit for problem solving
in exploring, creating, refining and redesigning design solutions. A shared, com-
mon language means that a community has a means to name and describe its
environment and its inner dynamics, to identify problems, analyze them, and
describe design solutions. As such, a shared language is the medium for the cre-
ation of a common ground [16], i.e. a shared understanding of a problem and
of its possible solutions, and eventually of a shared culture in terms of the col-
lection and construction of solutions and principles over time. Therefore, the
language may improve communication, e.g. in design team meetings with fewer
misunderstandings between experts and stakeholders due to the existence of a
consistent terminology. It further enables designers and developers to generate
and share design patterns by capturing the essential bits and pieces of a design
solution to be adapted and reused for similar problems [17,18,19]. Last, but not
least, by specifying requirements in specific settings, visual models may help to
bridge the gap between design and implementation of a system. The provision
of a detailed and unambiguous model can then be transformed into a working
application.

2.2 Quality of Conceptual Models and Modeling Languages

Lindland et al. [20] proposed one of the first frameworks on the quality of
conceptual models. It distinguishes three types of quality, namely syntactic qual-
ity, pragmatic quality and semantic quality. The framework is based on lin-
guistics and considers four main elements: language, the modeling domain, the
actual model, and the respective user. In this framework the syntactic quality
refers to the consistency between the language and a model that was created
by using the language. This consistency can be controlled via a comparison
with the corresponding language grammar—that is, the modeling language’s
meta-model—and is therefore simple to assess. Pragmatic quality, however, de-
scribes a model’s ability to help users in understanding the domain. In doing so,

Perceived Usefulness of Visual Conceptual Modeling Languages 81

pragmatic quality connects the dimensions ‘model’ and ‘user interpretation’ of
the model. Up to now, empirical studies often included the assessment of the
user’s perception (i.e. how easy/difficult it was to understand) and the usabil-
ity (i.e. the perceived value, perceived ease of use, user satisfaction, and ease of
use) [21]. Semantic quality captures the relationship between the domain and a
model and determines how well a model conveys the intended meaning. Krogstie
et al. [22] extended Lindland’s framework with a fourth dimension: the perceived
semantic quality. This dimension refers to the correspondence between the user
interpretation (what a user thinks a model depicts) and the domain knowledge
(what a user thinks a model should include). Semantic quality is difficult to
measure, because it is hard to define what part of ‘reality’ is actually visual-
ized in a specific model. There is a variety of studies comparing models against
meta-models, or studies conducting ontological analyses to find out whether a
grammar includes ontological deficiencies that may lead to scripts with low se-
mantic quality [21].

Maes and Poels [21] additionally stress that a discussion of the quality of
conceptual models from the users’ point of view is relevant. By adapting mea-
sures stemming from popular information system success models to the area of
conceptual modeling, they demonstrate that beliefs such as perceived ease of
understanding and perceived semantic quality influence various attitudes such
as perceived usefulness and, eventually, user satisfaction. Perceived usefulness
is an important concept for measuring the users’ overall quality evaluation of
a modeling language. Since the actual objective of using a concepual model or
a modeling language can have a variety of external influence factors, perceived
usefulness is generally a robust success measure [21]. In the realm of conceptual
modeling, we define perceived usefulness by replacing the term ‘system’ with
‘conceptual model’ in the original definition by Davis [23, p. 320]: “the degree
to which a person believes that using a particular [conceptual model] would
enhance his or her job performance”.

There are several factors contributing to the quality of a modeling language.
Effectiveness means how well a modeling language assists in accomplishing mod-
eling goals, and efficiency refers to the resources needed to use a modeling lan-
guage [1]. The users’ interaction with modeling languages includes two main
aspects, namely (a) the creation (authoring) of models, and (b) the understand-
ing (assimilation) of models [1]. Not all modeling languages require the same
effort (e.g. time, subjective ease-of-use) to learn to read and use the language.
That is, models created with different modeling languages are likely to differ
according to the effort required to interpret them and to develop an under-
standing. The form of visual information representation can have a significant
impact on the efficiency of information search, the explicitness of information,
and problem solving [24]. Moody [7] proposed 9 principles for high-quality de-
sign of visual languages from a cognitive viewpoint. These are semiotic clarity,
graphic economy, perceptual discriminability, visual expressiveness, dual coding,
semantic transparency, cognitive fit, complexity management and cognitive in-
tegration. Since one main interest in our study is to investigate users’ perception

82 K. Figl and M. Derntl

of modeling languages, we will detail quality characteristics which users can per-
ceive and judge also based on a first impression, i.e. without training on reading
and using the language. Criteria like cognitive fit, complexity management, and
cognitive integration are not further considered here, since users will only be able
to judge these criteria after they develop interest in the language and become
familiar with it to a certain degree. From Moody’s criteria we therefore adopt
the following for our study:

Perceptual Discriminability: Perceptual discriminability is defined as the
“ease and accuracy with which graphical symbols can be differentiated from
each other” [7].

Graphic Economy: A reasonable balance between the expressiveness of a lan-
guage and the number of the symbols is demanded by the principle of graphic
economy.

Dual Coding: A wise combination of text and graphical representation is re-
ferred to as dual coding, representing a further dimension for cognitively
effective visual languages [7].

Visual Expressiveness: Visual languages which fully exploit the range of
visual variables (e.g. spatial dimensions, shape, size, color, brightness, orien-
tation, and texture) for their symbols offer a higher degree of visual expres-
siveness. If symbols differ according to several visual variables (e.g. color and
size), they can be easily distinguished, and if a symbol has a unique value in
the form of a visual variable, it is easily recognized.

Semantic Transparency: Semantic transparency describes whether symbols
and their corresponding concepts are easily associated [7]. Similarly, Mc-
Dougall [25, p. 489] refers to semantic distance to describe the continuum
of “the closeness of the relationship between the symbol and what it is in-
tended to represent”. Icons, for example, are easily associated with their
referent real-world concepts, because there is a direct relationship between
them and their meaning.

Semiotic Clarity: Semiotic clarity refers to the importance of a one-to-one
correspondence between selected concepts and their visual representation
by a symbol. Anomalies such as symbol redundancy (more than one symbol
representing the same concept), overload (one symbol representing more than
one concept), symbol excess and deficit (when there are graphical symbols
without a correspondence to a semantic construct, or vice versa) should be
avoided, since they lead to ambiguity and additional unnecessary cognitive
load for the user [7]. Research on the creation of domain-specific modeling
languages reveals typical problems, e.g. that too many generic concepts for
the domain or too many semantically overlapping concepts are chosen for a
language; or that the language developer puts too much emphasis on specific
concepts while neglecting other equally important concepts [26].

3 Research Questions

Having laid out the relevant theoretical background to examine cognitive effec-
tiveness criteria related to the quality of visual modeling languages, we will now

Perceived Usefulness of Visual Conceptual Modeling Languages 83

Fig. 1. Research model

explore how perceived usefulness varies depending on the perception of these
quality characteristics. Hence, the main research question is: “How are users’
perceptions of cognitive effectiveness criteria associated with their beliefs about
the usefulness of the modeling language?”

The research model shown in Fig. 1 proposes that perceived usefulness is influ-
enced by perceivable cognitive effectiveness criteria. The main proposition is that
secondary quality criteria of a modeling language influence the formation of be-
liefs towards the language. This is backed up by previous research in conceptual
modeling (e.g. [5]) and research on product perceptions (e.g. [6]). Prior research
has found that there is a positive relationship between perceived usefulness and
quality characteristics such as semiotic clarity of a language [5], perceived se-
mantic quality and perceived ease of understanding [21]. Therefore, we expect
a positive influence on perceived usefulness in case that users perceive sym-
bols as highly discriminable, visually expressive and semantically transparent,
graphic-economically chosen, and with appropriate use of the dual coding prin-
ciple. Additionally, we hypothesize that perceived existence of construct deficit
and excess would negatively affect perceived usefulness, since construct deficit
is expected to limit expressiveness and modeling options.

4 Method

4.1 Design

To answer the research question and test the hypotheses we used a correlational
study design. In a web-based questionnaire nine examples of diagram types from
three different modeling languages were presented to users in random order. The
users were asked to rate each diagram according to its cognitive effectiveness

84 K. Figl and M. Derntl

and its usefulness. They were instructed to rate the visual characteristics of the
diagrams without paying specific attention to the actual content in the examples.

4.2 Materials

For the study, three modeling languages used in the e-learning domain for in-
structional design of learning processes and environments were selected as the
object of evaluation. This specific domain was chosen because we had access to
a large number of experts in that domain. Visual instructional design languages
are important tools for e-learning design practitioners for several reasons related
to the complexity of the domain [27]: for instance, instructional designers typi-
cally work in teams and therefore need a means of communication; for ensuring
consistency between idea and implementation while retaining compliance with
needs, goals and constraints; also, constraints and affordances of the available
technologies need to be considered, which is becoming increasingly complex given
the rate of technological innovation.

A visual instructional design language is defined as a set of concepts that
support the structuring of the instructional design (i.e. specification) and/or the
development (i.e. production) to support conceiving innovative solutions [28].
It is a conceptual tool for achieving more standardized and, at the same time,
more creative design solutions, as well as enhancing communication and trans-
parency in the design process. The main goal of a visual instructional design
language is therefore the description of the “content and process within a ‘unit
of learning’ from a pedagogical perspective in order to support reuse and inter-
operability” [29, p.10].

For this study we selected 9 diagram types defined in 3 different instructional
design languages. As depicted in Fig. 2 we used diagram types from the following
languages:

– Educational Environment Modeling Language (E2ML) [30]: Goal Diagram,
Dependencies Diagram, and Activity Flow Diagram;

– Perspective-oriented Educational Modeling Language (PoEML) [31]: Func-
tional Goals Perspective Diagram, Participants’ Perspective Diagram, and
Order Perspective Diagram;

– Cooperative UML (coUML) [32]: Course Activity Diagram, Document Dia-
gram, and Role Diagram.

4.3 Instrument

For most cognitive quality characteristics of modeling languages, there were no
existing scales available. We therefore constructed two-item scales for each crite-
rion in a way that they could be answered based on a single given diagram. The
item construction was theoretically grounded on Moody’s framework of desirable
properties of visual languages [7]. The only exception was semiotic/ontological
clarity, for which we could build on items previously developed by [5]. As men-
tioned in Section 2.2, knowledge of more diagram types and their relationships

Perceived Usefulness of Visual Conceptual Modeling Languages 85

Fig. 2. Diagrams used in the user evaluation

would be necessary to evaluate the criteria of cognitive fit, complexity manage-
ment and cognitive integration. Therefore, these criteria were not included in
the questionnaire. To measure perceived usefulness of diagram types we adapted
a scale proposed by [21] for the specific domain of the languages.

We ran a pre-test with 3 participants for ensuring content validity and for
ensuring the understandable formulation of items before administering the ques-
tionnaire. Reliability analysis revealed adequate internal consistency for all scales
(Cronbach’s α > .8), with the exception of visual expressiveness (α = .6) and
semiotic clarity (α = .2). Cronbach’s α should be greater than or equal to .7 to
consider items to be uni-dimensional, therefore we analyzed single item scores
instead of scale means for semiotic clarity. All items as well as detailed results
of the reliability analysis can be found in the Appendix.

4.4 Sample

The final sample consisted of 198 user ratings of diagrams. Each of the 22 domain
experts (12 males, 10 females), aged 34 years on average, had evaluated all
9 diagrams. Most participants were higher education teachers (13); the others
were e-learning support staff at different universities (3) or researchers in the
context of instructional design (6). Concerning experience with the domain, on

86 K. Figl and M. Derntl

Table 1. Influence factors for perceived usefulness

Parameter Estimate Std. Error df t Sig.

Intercept -.33 .60 73 -.54 .588
Perceptual Discriminability .18 .10 89 1.76 .082 +

Graphic Economy .20 .11 67 1.87 .066 +

Dual Coding .28 .10 85 2.93 .004 *
Visual Expressiveness -.10 .12 92 -.84 .404
Semantic Transparency .15 .11 90 1.34 .182
Semiotic Clarity: Absence of Construct Deficit .21 .07 82 2.90 .005 *
Semiotic Clarity: Absence of Construct Excess .06 .08 88 .74 .464
+. . . p < .1 *. . . p < .05

average each participant had already been involved in the creation of 5 different
instructional designs (e.g. courses or trainings).

5 Results

Hypotheses were tested using the linear mixed-effects models (MIXED) proce-
dure in SPSS 19.0 with cognitive effectiveness criteria as independent variables
and perceived usefulness as the dependent variable. The MIXED procedure can
handle fixed and random effects. We included the variables ‘domain expert’ and
‘diagram’ as random factors in the model and assumed that each expert as well
as each diagram would have a different intercept. The different experts had dif-
ferent intercepts (WaldZ = 2.21, p = .027), while the different diagrams did not
have different intercepts (WaldZ = 1.52, p = .128).

Table 1 provides details of the analysis showing the parameter estimates of
the fixed effects and significance levels. As expected, dual coding (p = .004)
and absence of construct deficit (p = .005) had a significant positive effect.
Additionally there was a trend that perceptual discriminability (p = .082) and
graphic economy (p = .066) had a positive effect on perceived usefulness. The
subjects’ perceptions of semantic transparency, visual expressiveness and absence
of construct excess did not have a statistically significant effect on perceived
usefulness.

6 Discussion

The empirical study set out to investigate associations between users’ percep-
tions of cognitive effectiveness of a modeling language and their beliefs about
its usefulness. Results reveal that users’ perception of criteria as perceptual dis-
criminability, graphic economy, a balanced combination of text and symbols and
absence of construct deficit are relevant influence factors for perceived useful-
ness of a visual modeling language. In line with our hypotheses, these results
demonstrate that if users have the overall impression that a language is not well
constructed, they will also tend to disregard its usefulness.

Perceived Usefulness of Visual Conceptual Modeling Languages 87

6.1 Limitations

Although the effects found in this study are evident and in line with previous
research, there are some noteworthy limitations.

First, we acknowledge that the relationships between the variables could be
examined in greater detail with artificially constructed test materials in which
the criteria systematically vary. This could also shed more light on why criteria
such as semantic transparency, visual expressiveness and construct excess were
not relevant for perceived usefulness. One could argue that these are simply not
as important. However, there may be other possible interpretations. Although
we selected 9 different diagrams for the evaluation it could be that the diagrams
did not vary enough for these criteria to be measured. Another explanation could
be that these criteria were harder to judge for study participants.

Second, we recognize that further factors in the experimental materials (e.g.
semantic quality of the diagrams) could have a deterring influence on the rela-
tionships that were investigated. However, in order to control for this possible
threat to validity we had included nine different diagrams from different lan-
guages. In doing so, influences of external factors should be negligible. Never-
theless, future research could include even more diagrams and their evaluations
to provide additional evidence.

Third, another limitation is that this study used a specific domain (instruc-
tional design) as a research object. Future research will have to take other do-
mains into account to test the effects found in this study. Practitioners and
modeling languages from other domains that have more (or less) tradition and
affinity with visual modeling could be included.

Fourth, the selection of variables in the research model could further be ex-
tended and the influence or perception of quality characteristics on actual or
intended use should be investigated in greater detail. Future research could ex-
amine additional variables—e.g. the perceived ease of use or actual use—to ex-
tend the research model we used.

6.2 Implications

The work presented in this paper carries implications for both research and
practice.

For research streams investigating user attitudes and beliefs of conceptual
modeling languages, our study adds to the current body of knowledge by inves-
tigating cognitive effectiveness criteria of modeling languages and their effect on
perceived usefulness. Our results provide further indication into the importance
of cognitive quality criteria of modeling languages as proposed by [7]. The results
add to the growing body of analytical expert evaluations of modeling languages
using this framework. Additionally, our work provides a first contribution on
how to measure these quality criteria empirically through questionnaires.

From a practical viewpoint, the results reported here offer valuable suggestions
for the design and construction of visual modeling languages. If adoption in
practice is an objective (which it should be), efforts should not only be spent on

88 K. Figl and M. Derntl

the underlying basic concepts and constructs of the modeling language, but also
on quality characteristics such as visual appearance and choice of symbols.

7 Conclusion

The study reported in this paper investigated the association of users’ perception
of quality criteria in visual modeling languages with their perceived usefulness.
Based on Moody’s criteria of cognitive effectiveness [7] we built a research model
that enabled testing the effect of selected criteria on the perceived usefulness of
visual modeling languages. The selection of criteria enables judgment of specific
diagrams without requiring previous knowledge or expertise with the modeling
language.

A set of 9 diagrams from 3 different visual instructional design languages was
presented to study participants to judge. The results showed that four of the
criteria included in the research model have a statistically significant positive
influence on perceived usefulness. These are:

– Easy discrimination between different visual symbols (perceptual discrim-
inability);

– Balance between high expressiveness and limited number of symbols (graphic
economy);

– Balanced combination of textual and symbolic representations (dual coding);
– Absence of construct deficit, i.e. all relevant concepts are or can be repre-

sented in the modeling language (semiotic clarity).

These findings enable developers of visual modeling languages to propel the
adoption by practitioners by considering the relevant criteria and thus improving
the perceived usefulness of a language. This paper is intended as a contribution
to raise awareness about and demonstrate the importance of cognitively effective
design of visual conceptual modeling languages.

References

1. Gemino, A., Wand, Y.: A framework for empirical evaluation of conceptual mod-
eling techniques. Requirements Engineering 9(4), 248–260 (2004)

2. Moody, D.L.: Theoretical and practical issues in evaluating the quality of concep-
tual models: Current state and future directions. Data and Knowledge Engineer-
ing 15(3), 243–276 (2005)

3. Boot, E.W., Nelson, J., van Merriënboer, J., Gibbons, A.S.: Stratification, elab-
oration, and formalization of design documents: Effects on the production of in-
structional materials. British Journal of Educational Technology 38(5), 917–933
(2007)

4. Hirschheim, R., Klein, H.K., Lyytinen, K.: Information Systems Development and
Data Modeling: Conceptual and Philosophical Foundations. Cambridge University
Press, Cambridge (1995)

Perceived Usefulness of Visual Conceptual Modeling Languages 89

5. Recker, J., Rosemann, M., Green, P., Indulska, M.: Do ontological deficiencies in
modeling grammars matter. Management Information Systems Quarterly 35(1)
(2011)

6. Sonderegger, A., Sauer, J.: The influence of design aesthetics in usability testing:
Effects on user performance and perceived usability. Applied Ergonomics 41(3),
403–410 (2010)

7. Moody, D.L.: The physics of notations: Towards a scientific basis for constructing
visual notations in software engineering. IEEE Transactions on Software Engineer-
ing 35(5), 756–779 (2009)

8. Moody, D.L., Heymans, P., Matulevicius, R.: Improving the effectiveness of visual
representations in requirements engineering: An evaluation of i* visual syntax. In:
Proceedings of the 17th IEEE International Requirements Engineering Conference,
RE 2009, pp. 171–180. IEEE Computer Society, Washington, DC, USA (2009)

9. Moody, D., Hillegersberg, J.: Software Language Engineering, pp. 16–34. Springer,
Heidelberg (2009)

10. Genon, N., Heymans, P., Amyot, D.: Analysing the cognitive effectiveness
of the BPMN 2.0 visual notation. In: Malloy, B., Staab, S., van den Brand, M.
(eds.) SLE 2010. LNCS, vol. 6563, pp. 377–396. Springer, Heidelberg (2011)

11. Figl, K., Mendling, J., Strembeck, M., Recker, J.: On the cognitive effectiveness
of routing symbols in process modeling languages. In: Aalst, W., Mylopoulos, J.,
Rosemann, M., Shaw, M.J., Szyperski, C., Abramowicz, W., Tolksdorf, R. (eds.)
BIS 2010. Lecture Notes in Business Information Processing, vol. 47, pp. 230–241.
Springer, Heidelberg (2010)

12. Lave, J., Wenger, E.: Situated Learning: Legitimate Peripheral Participation. Cam-
bridge University Press, Cambridge (1991)

13. Schön, D.: The Reflective Practitioner. How professionals think in action. Temple
Smith, London, UK (1983)

14. Object Management Group: Unified Modeling Language (UML) 2.3 (2010),
http://www.omg.org/spec/UML/2.3/

15. Cao, L., Ramesh, B., Rossi, M.: Are domain-specific models easier to maintain
than uml models? IEEE Software 26(4), 19–21 (2009)

16. Clark, H.H., Brennan, S.E.: Grounding in communication. In: Resnick, L.B.,
Levine, J.M., Teasley, S.D. (eds.) Perspectives on Socially Shared Cognition, pp.
127–149. American Psychological Association, Hyattsville (1991)

17. Alexander, C., Ishikawa, S., Silverstein, M., Jacobson, M., Fiksdahl-King, I., Angel,
S.: A Pattern Language - Towns, Buildings, Construction. Oxford University Press,
New York (1977)

18. Gamma, E., Helm, R., Johnson, R.E., Vlissides, J.: Design patterns: Abstraction
and reuse of object-oriented design. In: European Conference on Object-Oriented
Programming (ECOOP), Kaiserslautern, Germany, pp. 406–431 (1993)

19. Derntl, M., Botturi, L.: Essential use cases for pedagogical patterns. Computer
Science Education 16(2), 137–156 (2006)

20. Lindland, O.I., Sindre, G., Sølvberg, A.: Understanding quality in conceptual mod-
eling. IEEE Softw. 11, 42–49 (1994)

21. Maes, A., Poels, G.: Evaluating quality of conceptual modelling scripts based on
user perceptions. Data & Knowledge Engineering 63(3), 701–724 (2007)

22. Krogstie, J., Sindre, G., Jorgensen, H.D.: Process models representing knowledge
for action: a revised quality framework. European Journal of Information Sys-
tems 15(1), 91–102 (2006)

http://www.omg.org/spec/UML/2.3/

90 K. Figl and M. Derntl

23. Davis, F.D.: Perceived usefulness, perceived ease of use, and user acceptance of
information technology. MIS Quarterly 13(3), 319–340 (1989)

24. Larkin, J.H., Simon, H.A.: Why a diagram is (sometimes) worth ten thousand
words. Cognitive Science 11(1), 65–100 (1987)

25. McDougall, S.J.P., Curry, M.B., Bruijn, O.D.: Measuring symbol and icon char-
acteristics: Norms for concreteness, complexity, meaningfulness, familiarity, and
semantic distance for 239 symbols. Behavior Research Methods, Instruments, &
Computers 31(3), 487–519 (1999)

26. Kelly, S., Pohjonen, R.: Worst practices for domain-specific modeling. IEEE Soft-
ware 26(4), 22–29 (2009)

27. Derntl, M., Parrish, P., Botturi, L.: Beauty and precision: Weaving complex educa-
tional technology projects with visual instructional design languages. International
Journal on E-Learning 9(2), 185–202 (2010)

28. Gibbons, A.S., Brewer, E.: Elementary principles of design languages and design
notation systems for instructional design. In: Spector, M., Wiley, D. (eds.) Innova-
tions to Instructional Technology: Essays in Honor, Lawrence Erlbaum, New Jersey
(2004)

29. Rawlings, A., van Rosmalen, P., Koper, R., , M., Rodrguez Artacho, M., Lefrere,
P.: Cen/isss ws/lt learning technologies workshop - survey of educational mod-
elling languages (emls) (2002), http://www.eifel.org/publications/standards/
elearning-standard/cenissslt/emlsurvey

30. Botturi, L.: E2ML: A visual language for the design of instruction. Educational
Technology Research and Development 54(3), 265–293 (2006)

31. Caeiro-Rodŕıguez, M.: PoEML: A separation-of-concerns proposal to Instructional
Design. In: Botturi, L., Stubbs, T. (eds.) Handbook of Visual Languages in Instruc-
tional Design: Theories and Practices, pp. 185–209. Information Science Reference,
Hershey (2008)

32. Derntl, M., Motschnig-Pitrik, R.: coUML – A Visual Language for Modeling Co-
operative Environments. In: Botturi, L., Stubbs, T. (eds.) Handbook of Visual
Languages for Instructional Design: Theories and Practices, pp. 155–184. Informa-
tion Science Reference, Hershey (2008)

Appendix: Questionnaire

– What is your age? (years)
– What is your gender? (Male/Female)
– What is your main role in the context of instructional design? (Instructor/E-

learning support team of a university/Instructional design support of a uni-
versity/Researcher in the context of instructional design)

– In the creation of how many different instructional designs (e.g. courses)
have you already been involved? (instructional designs)

Instruction: “Please take a look at the following instructional design models and
answer the questions based on these models! Details of the model content are
less important as the models are only examples!”

The 9 different diagrams were shown as depicted in Fig. 2 followed by these
questions:

http://www.eifel.org/publications/standards/elearning-standard/cenissslt/emlsurvey
http://www.eifel.org/publications/standards/elearning-standard/cenissslt/emlsurvey

Perceived Usefulness of Visual Conceptual Modeling Languages 91

– Dimension: Perceptual Discriminability (Cronbach’s α = .956)
• There are symbols that are difficult to differentiate.
• There are symbols that can easily be confused with each other.

– Dimension: Graphic Economy (Cronbach’s α = .904)
• The diagram is difficult to understand due to the large number of sym-

bols.
• I think the amount of different symbols should be reduced.

– Dimension: Dual Coding (Cronbach’s α = .846)
• The combination of text and symbols makes the diagram type easier to

understand.
• Textual annotations improve understanding of the diagram type.

– Dimension: Visual Expressiveness (Cronbach’s α = .597)
• The visual expressiveness of the symbols should be increased by variation

of color, size, form or brightness.
• I perceive the symbols as visually expressive.

– Dimension: Semantic Transparency (Cronbach’s α = .924)
• The symbols are intuitively understandable.
• Even without explanation it is clear what the symbols represent.

– Dimension: Semiotic Clarity (adapted from [5]) (Cronbach’s α = .223)
• Construct deficit - The diagram type could be made more complete by

adding new symbols to represent relevant real-world phenomena of in-
structional design.
• Construct excess - There are symbols that do not represent any relevant

real-world phenomena of instructional design.
– Dimension: Perceived Usefulness (adapted from [21]) (Cronbach’s α =

.930)
• Overall, I think the diagram improves my performance when understand-

ing the instructional design.
• Overall, I found the diagram useful for understanding the instructional

design.
• Overall, I think the diagram would be an improvement to a textual

description of the instructional design.

M. Jeusfeld, L. Delcambre, and T.W. Ling (Eds.): ER 2011, LNCS 6998, pp. 92–103, 2011.
© Springer-Verlag Berlin Heidelberg 2011

Effects of External Conceptual Models and Verbal
Explanations on Shared Understanding in Small Groups

Wolfgang Maass1,3, Veda C. Storey2, and Tobias Kowatsch3

1 Saarland University, 66123 Saarbrücken, Germany
2 University Plaza, Georgia State University, Atlanta 30399 United States

3 Institute of Technology Management (ITEM), University of St. Gallen, Switzerland
wolfgang.maass@iss.uni-saarland.de, vstorey@gsu.edu,

tobias.kowatsch@unisg.ch

Abstract. Effective conceptual modeling requires a shared understanding of the
concepts that are found in an application domain. Achieving such understanding,
especially for large design problems, is a challenging, and long-standing problem.
Conceptual models tend to be either subjective representations of individuals that
require mutual knowledge sharing between members of a modeling team or
externalized normative representations that require knowledge transfer from
model preceptors to model receptors. Model preceptors have either created a
conceptual model or conceived it by another preceptor. In prior studies, normative
conceptual models were used to investigate knowledge transfer between
preceptors and receptors. This research, in contrast, investigates knowledge
transfer of conceptual models between model owners and receptors. A 2x2 study
design with modeling novices was used that varied the type of conceptual
modeling language and the type of information system. Further testing
investigated whether knowledge transfers were affected by additional verbal
explanations given by the preceptor. Each modeler was provided access to two
conceptual modeling languages that naturally support structure or process
representations. The study investigated whether the use of particular conceptual
modeling languages differ in their effects on shared understanding between two
persons and whether additional verbal explanations might increase shared
understanding. The results of this exploratory empirical study provide useful
insights into the use of Conceptual Modeling Language pairs for shared
understanding in conceptual modeling in small groups.

1 Introduction

The conceptual modeling phase of systems development involves the process of
abstracting the real world to represent it by a model that focuses on key entities and
relationships of an application domain [1]. Conceptual models that accurately
represent an application domain provide a critical means for shared understanding in
an information system development team [2, 3]. A long-standing challenge in
information systems research is that many information systems projects fail either
completely or partially [2, 4]. Prior studies have concluded that mis-understanding
between team members is one of the key issues for such failures [5, 6]. People from

 Effects of External Conceptual Models and Verbal Explanations 93

different departments use incompatible languages for expressing their ideas and
understandings of the envisioned information system [7]. Software engineers, for
example, use UML tools, database modelers use ER diagrams; graphical designers are
accustomed to scribbles and storyboards; and people from marketing use textual
descriptions on customer relationship measurements.

There have been few empirical studies on understanding these communication
problems in terms of the social processes associated with conceptual modeling [2].
Little empirical research has been conducted that examines how different conceptual
modeling languages (CML) support shared understandings within modeling teams.
Instead, researchers have focused on how normative conceptual models represented
by a particular CML support individual understanding of a conceptual model (CM)
[3]. In such studies, CMs were created and evaluated by modeling experts. In practice,
however, CMs are rarely created by modeling experts; rather, they are created quite
loosely for transferring individual understandings of a subjective CM to another team
member. It is an open research question as to how non-experts use various CML for
creating CMs and then use these CMs for creating a shared understanding with other
non-experts.

The objective of our exploratory research is to examine the subjective side of
understanding the conceptual modeling process with emphasis on supporting shared
understanding amongst information systems non-expert modelers. To do so, an
empirical analysis is carried out on small groups participating in a design task. The
contribution of the research is to understand whether (and how) different types of
CML with additional verbal explanations can assist small groups of non-experts in a
shared understanding of domain concepts in order to create effective conceptual
models.

2 Theoretical Background

2.1 Conceptual Models

A conceptual model expresses the meaning of terms and concepts used by domain
experts to discuss a design problem, and to identify the relationships among different
concepts [8]. The conceptual modeling phase of information systems development is
intended to clarify the meaning of various terms, and to ensure that problems with
different interpretations do not occur. The conceptual model is mapped into the
physical design for implementation. It is, thus, important that conceptual models are
well defined and represent the essence of an application domain. A conceptual model
can be described using various notations, such as UML or OMT for object modeling,
or IE or IDEF1X for entity-relationship models [9].

Regardless of the notation, it is crucial that the essence of the domain be accurately
captured. The process involved in conceptual modeling involves collaboration between
requirements engineering (RE) participants (e.g., user-representatives and systems
analysts) where knowledge regarding the system requirements is shared, absorbed, and
constructed. The main challenge of the collaborative interaction is for the participants to
arrive at a shared frame of reference and conceptualization regarding system
requirements. This requires understanding the process of “collaborative sense-making

94 W. Maass, V.C. Storey, and T. Kowatsch

and knowledge transfer that results in the convergence of diverse mental models” [2].
Conceptual models are complex knowledge structures that can be normative versus
subjective; semi-formal versus formal, external (documented) versus internal (mental)
representations; and individual understanding and mental models versus cross
understanding and shared understanding.

Several CML have been proposed that focus on (1) business process modeling
(e.g., [10]), (2) general software engineering (e.g., [11]), (3) semantic data models
(e.g., [12]), and meta-data models and computational ontologies [13]. Grammars
provided by CMLs require ontologies for defining the fundamental entities and
structures that should be focused by CMs [14].

Fig. 1. Generic model of conceptual modeling

Figure 1 provides a generic model for conceptual modeling. In an idealized form,
conceptual modeling transforms existing external or internal CMs into an integrated
CM(D, L, O), by means of a modeling method M and a conceptual language L based
on a domain ontology D and a fundamental information systems ontology O.

Initially a CM is a subjective conceptualization of a domain created by an
individual, also called a mental model [15]. By explication processes and a CM
language (CML), an individual translates his/her subjective CM into an external CM.
CML support informal, semi-formal, or formal representations. External conceptual
models are either used in knowledge transfers or knowledge sharing activities.
Knowledge transfer situations are governed by principal-agent settings between
preceptors and receptors and thus use external CM in a normative manner. Normative
CMs are either explained to receptors by the creator of this external CM or by trained
preceptors. In the latter case, the external CM supports indirect knowledge transfers.
If knowledge transfers are based on a normative CM alone, it will support individual
understanding of an objective conceptualization whereas a receptor’s understanding
of the creator’s model must be derived by additional reasoning. Indirect knowledge
transfers of normative conceptual models without additional explanations by
preceptors has been the core focus of empirical studies (e.g., [16]).

It could be argued that additional explanations given by a preceptor might provide
additional cues that allow receptors to directly gain an understanding of the creator’s

 Effects of External Conceptual Models and Verbal Explanations 95

subjective CM. Davidson argues that the theoretic assumption of knowledge transfers
based on normative CMs contradict the reality of requirements elicitation, often
described as “chaotic and non-linear” [17] and non-deterministic [2]. This means that
external CM are not isolated but embedded into a communication discourse between
various members of a group. Because conceptual models based on current CML are
static descriptions, it is reasonable to expect that, at least for some domains and
organizational settings, knowledge transfers can be improved by additional verbal
explanations and discussions.

2.2 Design and Mental Models

Based on a representational theory of the mind [18], the concept of an individual
mental model has been introduced that represents models of real-world or idealistic
situations. Mental models are representations that are formed by individuals as
internal descriptions of perceived and imagined situations [19]. For representations of
perceived situations, mental models are conceived as model representations of
external realities that can be used for mental processing such as mental rotations [20,
21]. During the design phases of an Information System, an internal CM is a mental
model that cannot be derived by direct perception but from auxiliary descriptions such
as narratives and diagrams. For framing the general problem during early design
stages, narratives are more helpful representations for qualitative and ambiguous
descriptions than graphics [22]. However, diagrammatic representations are very
helpful during later design phases. Therefore, we assume that external CMs in the
form of narratives are used early for conceiving a basic internal CM that can be
enhanced by subsequently given diagrammatic CM.

2.3 Shared Understanding

Shared understanding should help to produce a better CM, by helping the people
involved in the design realize a shared mental model, i.e. similar individual mental
models [23]. This is especially important in designs that require a group effort in the
requirements analysis and conceptual modeling phases. Group performance, in
general, depends on interactions between group members for choosing goals and
objectives, selecting solutions to achieve the group’s goals, resolving conflicts, and
performing activities that help to achieve group tasks [24]. These interactions require
communication between group members that are intended to promote group behavior
[25]. In the requirements elicitation phase, textual and diagrammatic CML have been
created that facilitate communication and subsequent shared understanding by
building shared mental models between members of a design team [2, 3].

Effective group performance requires that groups hold common or overlapping
mental representations (referred to as shared mental models or team mental models),
of goals, task requirements, procedures, role responsibilities, and situations [23].
Shared experience and information is the basis for further information sharing and,
thus, strengthens understanding and collaboration within a team [26]. With respect to
requirements engineering, shared mental models are mental representations of a
conceptual model that are assumed by group members to be mutually agreed upon
and used as a basis for group behavior, such as consensus building, problem solving,
decision making, and inferencing [27, 28].

96 W. Maass, V.C. Storey, and T. Kowatsch

3 Research Model and Hypotheses

In the following, we describe an exploratory study that investigates the effects of
different conceptual modeling languages (CMLs) on individual and shared
understanding in small information systems (IS) design groups. By adopting a non-
normative stance, we also investigate the role of CML for knowledge transfer
between team members.

The key questions addressed are:

− How do different CML affect individual understanding and shared
understanding?

− How do textual explanations of external CM affect individual and shared
understanding?

− Is shared understanding on CM affected by different types of information
systems?

Our study is framed by the following constraints:

− How do external conceptual models support a shared understanding in non-
normative situations with low heterogeneity of prior modeling knowledge
between members of small teams?

− How do additional verbal explanations affect this shared understanding (same
moderating factors).

4 Research Method

This research tests 'surface understanding' [16] in the sense of shared understanding.
If shared understanding is missing, problem-solving is not possible. An external
conceptual model is not tested because the study is intended to test how CM and
explanations affect knowledge transfers in a small team from an originating modeler
to a model user. Otherwise, we would need to test how a normative, objective CM
would be explained by one person to another.

4.1 Study Design

A laboratory experiment with two-person teams was carried out to investigate our
research questions. Each subject was given one of the following two situations
representing different types of IS, i.e. one Online IS and one Ubiquitous IS:

− Online IS: Michael is overweight and suffers from hazelnut allergy. Today he
wants to order at his preferred online restaurant FirstMeal that supports him
during his diet program. Due to his profile a series of salads and several
vegetarian dishes, including such vegetarian pizza and potato dishes, are
proposed. He opts for a vegetarian pizza and chooses an additional tofu topping
from a list. Because he has met his last week’s training program, he is awarded
to choose a complimentary dessert from a menu. He opts for a smoothie with
mango-coconut flavor from the category of lactose-free desserts.

 Effects of External Conceptual Models and Verbal Explanations 97

− Ubiquitous IS: Anna gets site-specific weather information when she is brushing
her teeth in the bathroom. Based on weather information and her calendar, free-
time event suggestions are given, e.g. "Today, 8 p.m. - Miss Marple Night at
CinemaOne. Do you want to order tickets?”

With ubiquitous computing technologies [29], information services can be integrated
in any kind of physical environment and provide information to users when they enter
these environments. These technologies provide the basis for the class of information
systems, called ubiquitous information systems [30], that support individual users and
groups by providing information and communication services adapted to dynamically
changing situations and user needs. Ubiquitous information systems are appropriate to
include because of the increase in ubiquitous computing, emphasis on inter-
organizational applications, and demands for shorter project life-cycles which have
introduced new techniques and changed the risk profile of requirements development
project [31].

To develop an external model of these situations, two conceptual modeling
languages (CML) were introduced to the subjects. The first CML combines
ontologies and UML activity diagrams, both of which are denoted as CML1. On one
hand, ontology describes subsumptions and other relationships between concepts, i.e.
it reflects explicitly formal specifications of the terms in the domain of question and
relationships among them [32]. Sharing common understanding of the structure of
information among people or software agents is one of the more common goals in
developing ontologies [32, 33]. On the other hand, UML activity diagrams describe
interactions between instances of concepts over time that are also called workflows
(cf. OMG 2011, http://www.uml.org).

The second CML combines the notations of UML use case diagrams and sequence
diagrams. This combination is denoted as CML2. UML use cases show a set of use
cases and actors with an association between each interacting pair of actor and use
case [34]. In contrast, a UML sequence diagram shows how messages within an IS
are exchanged by considering the order of interactions (cf. OMG 2011,
http://www.uml.org). Both CMLs have been selected as they provide a tool to model:
(1) general structures and static relations of an IS (Ontology and UML use case
diagram notations); and (2) workflows within an IS (UML activity diagrams and
UML sequence diagrams).

The study was carried out in three steps. First, both subjects were asked to model
one IS from one of the two situations with a given CML separately. To account for the
bias that would appear from a static IS-CML combination, subjects in a team were
assigned to crosswise different IS-CML combinations. Each subject was given a short
introduction to the corresponding CML and exemplary diagrams were presented. By
this procedure, each subject was able to become accustomed to the assigned CML.
Then, each subject was allowed 30 minutes to develop an external model of the
assigned situation with pen and paper. In the second step of the survey, each subject
had to evaluate the teammate’s model without any further explanations with regard to
unambiguity, consistency and understandability of the model. These constructs
were derived from [35] and corresponding questionnaire items have been created (cf.
Table 2).

98 W. Maass, V.C. Storey, and T. Kowatsch

In the third and final step of the survey, each subject had to explain his or her own
model in no more than five minutes to his or her teammate. Then, again, each subject
had to evaluate the teammate’s model with regard to the items given in Table 2. In
addition to demographical data, two constructs were also measured during this step:
first, the extrinsic power of a CML for an individual understanding of the future IS
regarding the given situation and second, the extrinsic power of a CML for a shared
(team) understanding. In summary, the experimental design is shown in Table 1 and
the questionnaire items are given in Table 2. All questionnaire items were rated on 7-
point Likert scales ranging from strongly disagree (1) to strongly agree (7).

Table 1. Study design. Note: 34 subjects were randomly assigned to the four groups

 Type of Information System
Online IS Ubiquitous IS

Type of
Conceptual
Modeling
Language

(CML)

CML1: Ontology & UML
activity diagram

Group 1
 (n=9)

Group 2
 (n=9)

CML2: UML use case
diagram & sequence diagram

Group 3
 (n=8)

Group 4
 (n=8)

4.2 Results and Discussion

Ten female and 24 male students from a media informatics department participated in
the lab experiment. Their age ranged between 19 and 24 (n=25) and between 25 and
29 (n=6). Three subjects were over 30. The subjects understood the semantics and
practical application of the CMLs (Mean: 5.76; SD: .89) and judged themselves to be
competent in evaluating the corresponding external conceptual models (Mean: 5.32;
SD: 1.06). Overall, the instructions of the study have been understood (Mean: 5.53;
SD: .89) and the length of the study was perceived acceptable (Mean: 4.26; SD: 1.56).
The descriptive statistics of all constructs are presented in Table 2.

Paired-sample t-tests were used to identify any significant differences of
evaluations before and after an explanation was provided regarding one particular
external CM. The results indicate that explanations significantly increased
comprehensibility of the external CMs for both types of information systems (cf.
COM5-9 in Table 2).

Furthermore, high mean values on unambiguity and comprehensibility indicate that
the subjects perceived the provided CM as a sufficient basis for deriving an internal
CM of high quality. With respect to consistency, no significant change was found
when test persons received additional explanations. For consistency, in general, it can
be argued that structural and process elements are well captured by Use cases /
sequence diagrams and ontologies / activity diagrams alike. Only for Ubiquitous IS
and CML2 (UML use case diagrams & sequence diagram) was the consistency of the
external CMs judged higher after the explanation (cf. CON4/6/8 in Table 2). This
could be explained by deficiencies of use case diagrams / sequence diagrams with
respect to modeling domains for UIS.

 Effects of External Conceptual Models and Verbal Explanations 99

Table 2. Instrument and descriptive statistics. Note: SD = standard deviation, MO = Model
Only, M+E = Model + Explanation, Situation 1 = Online IS, Situation 2 = Ubiquitous IS; */**
= .05/.01 significance levels for paired-sample t-test (MO versus M+E).

Construct Mean (SD) MO Mean (SD) M+E

Unambiguity: I think this model of type [CML1/2] accurately represents Situation [1/2].
UNA1: CML1 + Online IS (n=9) 6.11 (0.60) 5.78 (1.20)

UNA2: CML1 + Ubiquitous IS (n=9) 6.00 (1.00) 6.22 (0.44)

UNA3: CML2 + Online IS (n=8) 5.75 (0.89) 5.87 (0.64)

UNA4: CML2 + Ubiquitous IS (n=8) 5.63 (1.06) 6.00 (0.00)

UNA5: Total CML1 (n=18) 6.06 (0.80) 6.00 (0.91)
UNA6: Total CML2 (n=16) 5.69 (0.95) 5.94 (0.44)
UNA7: Total Online IS (n=17) 5.94 (0.75) 5.82 (0.95)
UNA8: Total Ubiquitous IS (n=17) 5.82 (1.02) 6.12 (0.33)

UNA9: Total (n=34) 5.88 (0.88) 5.97 (0.72)
Consistency: I think that this model of type [CML1/2] is consistent as such with regard to
Situation [1/2].

CON1: CML1 + Online IS (n=9) 5.78 (0.67) 5.67 (1.00)

CON2: CML1 + Ubiquitous IS (n=9) 5.78 (1.20) 6.22 (0.83)

CON3: CML2 + Online IS (n=8) 5.38 (1.41) 5.50 (1.93)

CON4: CML2 + Ubiquitous IS (n=8) 5.13 (0.84) 5.75 (1.04)*

CON5: Total CML1 (n=18) 5.78 (0.94) 5.94 (0.94)
CON6: Total CML2 (n=16) 5.25 (1.13) 5.62 (1.50)*
CON7: Total Online IS (n=17) 5.59 (1.06) 5.59 (1.46)
CON8: Total Ubiquitous IS (n=17) 5.47 (1.07) 6.00 (0.94)*

CON9: Total (n=34) 5.53 (1.05) 5.79 (1.23)
Comprehensibility: I think this model of type [CML1/2] is easy to understand with regard
to Situation [1/2].

COM1: CML1 + Online IS (n=9) 6.11 (0.78) 6.44 (0.73)

COM2: CML1 + Ubiquitous IS (n=9) 6.11 (1.67) 6.67 (0.50)

COM3: CML2 + Online IS (n=8) 6.25 (0.71) 6.63 (0.74)

COM4: CML2 + Ubiquitous IS (n=8) 5.75 (1.39) 6.63 (0.52)

COM5: Total CML1 (n=18) 6.11 (0.96) 6.56 (0.62)*
COM6: Total CML2 (n=16) 6.00 (1.01) 6.63 (0.62)*
COM7: Total Online IS (n=17) 6.18 (0.73) 6.53 (0.72)*
COM8: Total Ubiquitous IS (n=17) 5.94 (1.25) 6.65 (0.49)*

COM9: Total (n=34) 6.06 (1.01) 6.59 (0.61)**
Extrinsic power of CML for individual understanding (EPIU): I think that this model of
type [CML1/2] made it easy for me to create an individual understanding of the conceptual
model regarding Situation [1/2].

EPIU1: CML1 + Online IS (n=9) 5.78 (0.67)

EPIU2: CML1 + Ubiquitous IS (n=9) 5.56 (1.88)

EPIU3: CML2 + Online IS (n=8) 5.87 (0.64)

EPIU4: CML2 + Ubiquitous IS (n=8) 4.88 (2.03)

100 W. Maass, V.C. Storey, and T. Kowatsch

Table 2. (Continued)

EPIU5: Total CML1 (n=18) 5.67 (1.37)
EPIU6: Total CML2 (n=16)
EPIU7: Total Online IS (n=17)
EPIU8: Total Ubiquitous IS (n=17)

5.38 (1.54)
5.82 (0.64)
5.24 (1.92)

EPIU9: Total (n=34) 5.53 (1.44)
Extrinsic power of CML for a shared (team) understanding (EPSU): I think that, in
general, the external conceptual model of type [CML1/2] supports a shared understanding in
our team with respect to Situation [1/2].

EPSU1: CML1 + Online IS (n=9) 5.78 (0.97)

EPSU2: CML1 + Ubiquitous IS (n=9) 6.44 (0.53)

EPSU3: CML2 + Online IS (n=8) 5.63 (1.41)

EPSU4: CML2 + Ubiquitous IS (n=8) 6.25 (1.17)

EPSU5: Total CML1 (n=18) 6.11 (0.83)
EPSU6: Total CML2 (n=16)
EPSU7: Total Online IS (n=17)
EPSU8: Total Ubiquitous IS (n=17)

5.94 (1.29)
5.71 (1.16)
6.35 (0.86)

EPSU9: Total (n=34) 6.03 (1.06)

No effects can be found for unambiguity. However the subjects were confident that
all CMs for all CMLs represent target situations on a high level. Further research is
required to assess whether this confidence is stable or whether it is related to a lack of
modeling experience. Nonetheless reassurance after receiving an explanation might
indicate stable confidence. The mean value (5.53) for the extrinsic power of CML for
individual understanding (EPIU) shows that all models are perceived important for
creating internal conceptual models. Only use case diagrams / sequence diagrams
provide less support. However, it might indicate that internal CM extracts structural
information on concepts and relationships from an originating external CM but loses
direct links to the external CM itself. This complex relationship requires further
research.

By conducting an analysis of variance, we could not find any significant
differences with regard to the extrinsic power of a CML for individual or shared
(team) understanding by varying the factors CML and the type of IS. Thus, type of IS
and CML as used in the current study have not influenced the extrinsic power of a
CML for individual understanding or for a shared (team) understanding. However,
mean values show differences for individual and shared understanding (EPIU9 and
EPSU9) that are significant at the .06 level by applying a paired-sample t-test. This
could be explained by different metrics that are used for the internal CM and shared
understanding between team members. For individual CM a test person seems to have
higher requirements than for shared understandings.

The overall high mean values for all variables are surprising because all test
persons were modeling novices. No significant differences were found for the CML
with ontologies / activity diagrams compared to the CML with use cases / sequence
diagrams. This is unexpected because ontologies can be considered rather new tools
for conceptual modeling. In contrast, CM based on use cases diagrams / sequence

 Effects of External Conceptual Models and Verbal Explanations 101

diagrams were significantly improved by explanations with respect to consistency and
comprehensibility. CM represented by ontologies / activity diagrams did not gain
from explanations for consistency but for comprehensibility only. Furthermore,
comprehensibility of both types of CM for both IS types are significantly improved by
verbal explanations. In summary, it can be argued that advantages exist of some CML
types for particular types of IS (e.g., CML1 - UIS). Differences between extrinsic
power of CML combinations for individual and shared understanding indicate that
CML play different roles on individual and group levels. A tentative conclusion is
that it is not important which grammar is used as long as it provides basic
diagrammatic elements. This complex relationship between models and conceptual
models needs further in-depth studies.

5 Summary

This research has investigated how conceptual modeling languages enhanced with
verbal explanations can affect shared understanding of conceptual models between
members of non-expert design teams. An empirical study was carried out in which
two types of information systems (online and ubiquitous) were tested to assess
whether narratives and diagrammatic conceptual modeling languages could provide
rich information so that individuals would perceive them as being unambiguous,
consistent, and comprehensible.

This research is one response to the need for empirical research on topics related to
conceptual modeling [3]. However, further research involving field studies are
required to demonstrate the application of the results to real world requirements
engineering work. This study also raises further research questions; for example,
would similar effects be found for expert groups. Further research is also required to
expand the study to include formal ontology representation tools.

References

1. Stachowiak, H.: Allgemeine Modelltheorie. Springer, Heidelberg (1973)
2. Chakraborty, S., Sarker, S., Sarker, S.: An Exploration into the Process of Requirements

Elicitation: A Grounded Approach. J. Assoc. Inf. Syst. 11, 212–249 (2010)
3. Burton-Jones, A., Meso, P.: The Effects of Decomposition Quality and Multiple Forms of

Information on Novices’ Understanding of a Domain from a Conceptual Model. J. Assoc.
Inf. Syst. 9, 748–802 (2008)

4. CIO Update, http://www.cioupdate.com/insights/article.php/
3813646/Why-Software-Development-Projects-Fail-Part-IV-
Release.htm

5. Vlaar, P., van Fenema, P., Tiwari, V.: Cocreating Understanding and Value in Distributed
Work: How Members of Onsite and Offshore Vendor Teams Give, Make, Demand, and
Break Sense. Mis Quart. 32, 227–255 (2008)

6. Lin, L., Geng, X., Whinston, A.: A Sender-Receiver Framework for Knowledge Transfer.
Mis Quart. 29, 197–219 (2005)

102 W. Maass, V.C. Storey, and T. Kowatsch

7. Urquhart, C.: Exploring Analyst-Client Communication: Using Grounded Theory
Techniques to Investigate Interaction in Informal Requirements Gathering. In: Lee, A.,
Liebenau, J., DeGross, J. (eds.) Information Systems and Qualitative Research, pp. 149–
181. Chapman & Hall, London (1997)

8. Wand, Y., Storey, V.C., Weber, R.: Analyzing the Meaning of a Relationship. ACM Trans.
Database Systems 24, 494–528 (1999)

9. Fowler, M.: Analysis Patterns, Reusable Object Models. Addison-Wesley, Longman,
Amsterdam (1997)

10. Scheer, A.-W.: ARIS. Modellierungsmethoden, Metamodelle, Anwendungen. Springer,
Berlin (1998)

11. Booch, G., Rambaugh, J., et al.: The Unified Modeling Language User Guide. Addision-
Wesley, Redwood City (1999)

12. Chen, P.: The Entity-Relationship Model–Toward a Unified View of Data. ACM
Transactions on Database Systems 1, 9–36 (1976)

13. Bera, P., Krasnoperova, A., Wand, Y.: Using Ontology Languages for Conceptual
Modeling. Journal of Database Management 21, 1–28 (2010)

14. Wand, Y., Monarchi, D., Parsons, J., Woo, C.: Theoretical foundations for conceptual
modelling in information systems development. Decis Support Syst. 15, 285–304 (1995)

15. Storey, V.C., Fracchia, F., Müller, H.: Cognitive design elements to support the
construction of a mental model during software exploration. Journal of Systems and
Software 44, 171–185 (1999)

16. Burton-Jones, A., Meso, P.: Conceptualizing Systems for Understanding: An Empirical
Test of Decomposition Principles in Object-Oriented Analysis. Inform. Syst. Res. 17, 38–
60 (2006)

17. Davidson, E.J.: Technology Frames and Framing: A Socio-Cognitive Investigation of
Requirements Determination. Mis Quart. 26, 329–358 (2002)

18. Fodor, J.A., Pylyshyn, Z.W.: Connectionism and Cognitive Architecture: A Critical
Analysis. In: Pinker, S., Mehler, J. (eds.) Connections and Symbols, pp. 3–71. MIT Press,
Cambridge (1988)

19. Gentner, D., Stevens, A.L.: Mental Models. Lawrence Erlbaum Associates, Hillsdale
(1983)

20. Kosslyn, S.M.: Image and Mind. Harvard University Press, Cambridge (1980)
21. Shepard, R.N., Metzler, J.: Mental rotation of three-dimensional objects. Science 171,

701–703 (1971)
22. Kuechler, W., Vaishnavi, V.: On theory development in design science research: anatomy

of a research project. Eur. J. Inform. Syst. 17, 489–504 (2008)
23. Cannon-Bowers, J.A., Salas, E., Converse, S.: Shared mental models in expert team

decision making. In: Castellan, N.J. (ed.) Individual and Group Decision Making, pp. 221–
246. Lawrence Erlbaum Associates, Hillsdale (1993)

24. McGrath, J.E.: Groups: Interaction and Performance. Prentice-Hall, Englewood Cliffs
(1984)

25. Habermas, J.: The Theory of Communicative Action, Reason and the Rationalization of
Society, vol. 1. Heinemann, London (1984)

26. Wittenbaum, G.M.: Putting communication into the study of group memory. Human
Communication Research 29, 612–623 (2003)

27. Rasker, P., Post, W., Schraagen, J.: Effects of two types of intra-team feedback on
developing a shared mental model in Command & Control teams. Ergonomics 43, 1167–
1189 (2000)

 Effects of External Conceptual Models and Verbal Explanations 103

28. Stout, R.J., Cannon-Bowers, J.A., Salas, E., Milanovich, D.: Planning, shared mental
models, and coordinated performance: An empirical link is established. Human Factors 41,
61–71 (1999)

29. Lyytinen, K., Yoo, Y.: Issues and Challenges in Ubiquitous Computing. Communication
of the ACM 45, 62–65 (2002)

30. Maass, W., Janzen, S.: Pattern-based approach for designing with diagrammatic and
propositional conceptual models. In: Jain, H., Sinha, A.P., Vitharana, P. (eds.) DESRIST
2011. LNCS, vol. 6629, pp. 192–206. Springer, Heidelberg (2011)

31. Mathiassen, L., Tuunanen, T., Saarinen, T., Rossi, M.: A Contingency Model for
Requirements Development. Journal of the Assoication for Information Systems 8, 569–
597 (2007)

32. Gruber, T.R.: A translation approach to portable ontologies. Knowledge Acquisition 5,
199–220 (1993)

33. Noy, N.F., McGuinness, D.L.: Ontology Development 101: A Guide to Creating Your
First Ontology. Technical Report and Stanford Medical Informatics Technical Report
SMI-2001-0880, Stanford Knowledge Systems Laboratory (2001)

34. Cockburn, A.: Writing effective use cases. Addison-Wesley, Upper Saddle River (2001)
35. Fettke, P.: How Conceptual Modeling Is Used. Communications of the Association for

Information Systems 25, 571–592 (2009)

Sociotechnical Trust: An Architectural Approach

Amit K. Chopra, Elda Paja, and Paolo Giorgini

Department of Information Engineering and Computer Science,
University of Trento, Italy

{chopra,paja,paolo.giorgini}@disi.unitn.it

Abstract. Current approaches in sociotechnical systems consider trust to be ei-
ther cognitive—referring to actors’ mental models of each other—or technical—
referring to an actor’s trust of a technical artifact. In this paper, we take a more
expansive view of trust: in addition to the cognitive, we also consider trust in the
architectural sense. Broadly, architectural trust applies at the level of roles. Our
principal claim is that sociotechnical systems are essentially specified in terms of
architectural trust. Whereas previous work has considered dependencies between
actors as a fundamental social relation, we claim that no dependency can exist
without the corresponding architectural trust.

1 Introduction

Sociotechnical Systems (STS) are complex: they consist of humans, organizations, and
their information systems. While STS have been around for a while, sociotechnical ap-
proaches to building such systems are still in their infancy. Traditional approaches to
building information systems focus solely on operational aspects; sociotechnical ap-
proaches would require taking into account even the social relationships among the
actors involved. One of the key challenges in software engineering is coming up with
the right abstractions for modeling sociotechnical systems. Various high-level models
for STS have been proposed—for example, intentional [3], goal-oriented [19], based on
responsibility [18], and so on.

In this paper, we propose sociotechnical trust as the fundamental social relationship
among actors of an STS. When we say sociotechnical trust, we refer to the trustworthi-
ness of an STS. Our key intuition is that STS are organized along trust relationships. Any
STS exists in the first place because actors are not omnipotent; they necessarily depend
on each other to get things done. It is trust that makes dependence on others reasonable.
When an actor trusts another for something, it expects the latter to do that thing. Lacking
such a trust relationship, an actor can hardly depend on another for anything. We want to
make explicit these trust relationships in order to provide prospective participants with
information regarding the dependencies they would have upon the STS in case they de-
cide to interact with it. For example, let’s consider a healthcare STS. Alice would not
make a payment to ModernLabs if she did not trust that ModernLabs would deliver test
results if she paid. We use the notation T(Alice, ModernLabs, paid, delivered) to mean
that Alice trusts ModernLabs to deliver the results if she has paid for the tests.

This paper is about the engineering of sociotechnical trust: how should we de-
sign an STS so that it ensures trust relationships such as the above between Alice and

M. Jeusfeld, L. Delcambre, and T.W. Ling (Eds.): ER 2011, LNCS 6998, pp. 104–117, 2011.
c© Springer-Verlag Berlin Heidelberg 2011

Sociotechnical Trust: An Architectural Approach 105

ModernLabs in the healthcare STS? Ensuring means that we want this relationship to
hold not only between Alice and ModernLabs, but between every patient-laboratory pair
relationship participating in the healthcare STS. In other words, the trust relationship
has to be somehow encoded into the architecture of the STS irrespective of individual
actors. Hence, we refer to such trust relationships as architectural.

Further, we want to be able to compare two STS in a particular domain, and be able
to objectively say which STS fares better from the trust perspective. For example, all
other things being equal, one could objectively say that the healthcare system which
encodes the above trust relationship between patients and laboratories is better for (all)
patients than the system without. Objectively means that anyone, even someone who
has no intention or need of participating in the STS being compared, would come to the
same conclusion.

We make such comparisons all the time in our day to day lives. For example, we intu-
itively know that from a customer’s point of view, an online marketplace that mandates
that merchants refund customers for returned products within a month of purchase is
better than one that does not allow such returns; the customers trust the merchants more
in the former. It is the same reason why we deem credit card holders to be better off in
the credit card system resulting from the passage of the Credit Card Act of 2009 [1]—in
the new system, credit card holders now trust that banks will not arbitrarily raise interest
rates, and so on. This paper explores the computational basis behind such intuitions.

Contributions. Singh proposed the notion of architectural trust [17]; our contributions
are in applying this notion to the engineering of STS, for which we coin the term
sociotechnical trust.

– We characterize the notion of what it means for an STS to ensure more trust than
another. We do this via the notion of one trust relationship supporting another trust
relationship. We give a computational grounding for sociotechnical trust in terms
of communication (commitments). Our conceptual model enables one to claim if
one system is more trustworthy than another from a particular role’s perspective.

– We show the notion of sociotechnical trust to be different from cognitive or tech-
nical trust, two kinds of trust relationships commonly modeled in STS software
engineering.

– We evaluate our approach through a case study on European food safety law (un-
derstood as an STS for ensuring food safety)

Organization. The rest of the paper is organized as follows. Section 2 introduces a
conceptual model of sociotechnical trust, discussing the computational grounding of
trust connectors in terms of commitments. It also discusses what it means to objectively
compare STS from a trust perspective, presenting as well a notation for representing
the system. Section 3 discusses how sociotechnical trust is different from the prevalent
notions of trust and places them all in a single framework. Section 4 evaluates our
approach against a case study from the European food safety law. Section 5 concludes
the paper with a survey of the literature and future directions.

106 A.K. Chopra, E. Paja, and P. Giorgini

2 A Conceptual Model of Sociotechnical Trust

Our conceptual model emphasizes the social entities abstracted away as roles and the
trust relationships among them. In contrast to other approaches in the literature, our
conceptual model is notable in that it does not rely upon intentional—varying from
actor to actor—concepts such as goals, capabilities, risk, and so on.

Following [6], we conceptualize an STS system as a specification of trust relation-
ships with reference to roles, not particular actors. Individual actors, perhaps completely
unknown at the time of the design of STS, would adopt roles in an STS depending on
their business requirements and constraints.

Our idea of a sociotechnical system is that of a set of roles and the trust relationships
that hold between them. Formally, let φ be a set of symbols. Let P be the set of all
propositions over φ (including�, the constant for truth) using the connective of propo-
sitional logic. Let p, q, . . . range overP . LetR be a set of roles; let x, y, . . . be variables
over roles. A system S is a set such that S ⊆ R×R× P × P . We say T(x, y, p, q) if
and only if (x, y, p, q) ∈ S.

For instance, taking again into consideration the healthcare domain, one system, let’s
call it HealthcareSystem1, could be the one composed of the roles Hospital and Patient.
In this system, the Patient trusts the Hospital will provide accurate test results (1).

Another system, HealthcareSystem2, includes the roles Hospital, Patient, and Lab.
In this setting, the Patient trusts the Hospital will provide accurate test results (2). On
the other hand, the Hospital depends on the Lab to analyze test outcomes and produce
accurate results (3). Labs are more specialized entities, hence the reason for Hospitals
to outsource the tests. Also, the Hospital commits to the Patient that personal data will
be confidential and not disclosed to other third parties (4).

T(Patient, Hospital, takeTest, receiveAccurateResults) (1)

T(Patient, Hospital, takeTest, receiveAccurateResults) (2)

T(Hospital, Lab,�, provideAccurateResults) (3)

T(Patient, Hospital, providePersonalData, ensureConfidentiality) (4)

2.1 Computational Grounding

Architecturally, sociotechnical trust is what connects two given participants of the STS.
We propose a commitment-based approach to engineering sociotechnical trust (in the
rest of the paper, when we say trust we mean sociotechnical trust, unless otherwise
specified). Recent advances have proposed commitment-based architectural styles for
SOA [15]. The notion of sociotechnical trust exploits the connection between commit-
ments and architecture. Commitments are a simple yet powerful abstraction to model in-
teractions between two agents in terms of a contractual relation [16]. A commitment is a
quaternary relation C(debtor, creditor, antecedent, consequent) that stands for a promise
made by the debtor to the creditor that if the antecedent is brought about, the consequent
will be brought about. Engineering STS for trust means reasoning from a role-based per-
spective and establish enough commitments into the system so that an agent adopting a
role would trust others adopting other roles. Alice trusts ModernLabs for delivery upon

Sociotechnical Trust: An Architectural Approach 107

payment, that is, T(Alice, ModernLabs, paid, delivered) if ModernLabs has committed
to Alice for doing so, in other words C(ModernLabs, Alice, paid, delivered). In the case
of trust relationships, we refer to x and y as the truster and trustee, respectively, whereas
in the case of commitments, we refer to x and y as the creditor and debtor, respectively.
Commitments have been extensively studied in multiagent systems [16], and have been
recently applied to understanding the notion of dependencies in systems involving mul-
tiple actors [7]. Commitments are rooted in communication: they are created and they
evolve when agents exchange messages. Commitments can be created, discharged, can-
celed, and released. T(x, y, r, u) is created when C(x, y, r, u) is created. Similarly, the
trust is discharged and violated when the corresponding commitment is discharged and
violated; analogously for canceled and released.

Within a given domain there is a variety of STS operating on the basis of trust rela-
tionships among their actors, as explained by the aforementioned example. They offer
different levels of trust with respect to a particular role’s perspective. An actor can either
Join or Leave an STS. Joining means binding to a role and therefore instantiating (par-
tially perhaps) the trust relationships in which the role appears. Ideally, an actor should
not leave the system without fulfilling the expectations that others have of him by way of
instantiated trust relationships. Referring to the two healthcare systems, HealthcareSys-
tem1 and HealthcareSystem2, we could, intuitively and objectively speaking, say that
the second system is better or more trustworthy than the first one from the point of view
of the Patients, as it includes additional trust relationships that contribute positively
to the fulfillment of the basic requirement of receiving accurate test results, thereby en-
hancing Patients’ trust in this system. However, this might not be the case when it come
to Hospitals. From their point of view the first healthcare system is better, as it produces
only one commitment from their part, that is, provide accurate results to the Patients,
whereas the second healthcare system imposes on them more restrictions. They have to
ensure accuracy of results and depend on Labs for this activity. Furthermore, to ensure
confidentiality of Patients’ personal data, they might have to undertake measures to
satisfy this requisite.

Essentially, through the conceptual model we want to make clearer the role perspec-
tive in order to provide each prospective participant of any of the systems within a given
domain with a clear view while choosing the system he wants to play a role at.

However, establishing enough commitments into the system may be not enough; we
also need mechanisms that can support them. Having mechanisms for monitoring or
enforcing commitments supports the establishment of trust relations.

2.2 Trust Supporting Mechanisms

Some of the trust relationships present in the system influence positively on other trust
relationships. We say that these relationships support the satisfaction of other relation-
ships, with respect to a given role’s perspective, enhancing the trust this role has about
the system. We represent this type of relation as in (5). This means that the trust relation
T(x,y,p,q) supports (positively) the trust relation T(x,z,r,s) from x’s perspective.

T(x, y, p, q) � T(x, z, r, s) (5)

108 A.K. Chopra, E. Paja, and P. Giorgini

If we denote T(x,y,p,q) with T1 and T(x,z,r,s) with T2, to express that T1 supports T2

from x’s perspective, we use T1 �x T2 (more generally T1 �R T2, for any x ∈ R).
But, what is the meaning of supports and why it actually increases trust from a role’s

perspective? Our intuition is that T1 �R T2 only if T1 handles exceptions that arise
from T2. Following this intuition, we specify the supports relation through a series
of mechanisms (Table 1), which are used to enhance trust of a role about the system.
The purpose of these mechanisms is to handle exceptions that might arise from the
existing trust relations. By doing so, the resulting system is more robust, and thus more
trustworthy for the given role. Table 1 gives a list of basic trust supporting mechanisms
induced from the set of patterns presented in [15]. It is basic because they refer to the
basic operations concerning commitments such as create, delegate, cancel, etc.

Table 1. Some trust enhancing mechanisms

Name Trust Encoding

delegation(x, y, z, p, q) T(x, y, threatened(x, y, p, q), T(x, z, p, q))
compensate(x, y, p, q, r, s) T(x, y, violated(x, y, p, q), T(x, y, r, s))
undo(x, y, p, q, r) T(x, y,undo(q), T(x, y, r, undo(p)))
renegotiate(x, y, p, q, r, s) T(x, y,unreasonable(p, q), T(x, y, renegotiated(r, s),T(y, x, r, s)))

The propositions violated, threatened, undo, unreasonable, renegotiated, and so on
are domain-specific. Referring to our running example, in case ModernLabs cannot
deliver the test results to Alice, the Hospital can take care of that, offering yet another
way to satisfy Alice’s needs. Delegating the responsibility of delivering the results to
the Hospital, makes the relationship between Alice and ModernLabs more robust (as
long as Alice gets the results, she does not care how they got to her).

Redundancy is another mechanism, but we consider it as a special case of delegation.
The system that offers redundancy is better not only for Alice, but for any patient that
would decide whether to pay and take a test at ModernLabs or any other laboratory that
offers the same services. Generally speaking, for any patient p interacting with some
laboratory l, if Ta and Tb stand for T(p, l, paid, delivered) and T(p, l, threatened(p,
l, paid, delivered), T(p, h, paid, delivered)) respectively, (h stands for hospital), then
Tb �p Ta.

Compensate and undo can be used to capture return-refund scenarios. For exam-
ple, let Tg and Tv be T(p, l, paid, delivered) and T(p, l, violated(p, l, paid, delivered),
refund ∧ discountCoupon)) respectively. Tv � Tg, since the trust relationship for de-
livering the test results upon payment is violated by the laboratory, then a trust rela-
tionship that ensures refunds along with a discount coupon for future tests makes the
relationship more robust from the patient’s point of view. Basically, the laboratory is
compensating for the violation by offering a discount coupon and undoing the payment
done by the patient. As a result, the patient considers the latter system to be a better
choice for him (more trustworthy).

Renegotiate on the other hand offers more alternatives for the role to choose. For
example, in case of Tx: T(p, l, paid, delivered) the laboratory might deliver the results
of the test in a moment of time that is considered late for the patient. The patient may

Sociotechnical Trust: An Architectural Approach 109

renegotiate for the time of the delivery by getting a commitment from the laboratory
that will deliver the results on time, Ty: T(p, l, paid, deliverOnTime). Again Ty �p Tx.

The supports relationship shows how trust within a system is improved, from a roles
perspective, and it helps possible participants while choosing a system from a range of
systems in the domain. By looking at these relationships prospective participants can
determine when an entire system (a set of trust relationships) is better than the rest of
the systems, within the same domain, from their perspective. Taking this into account
we could for instance establish that, if T1 �R T2, a system {T1, T2} is better from R’s
perspective than a system having only {T2}.

We provide a graphical representation of the notions composing the system (Fig. 1).
Roles are graphically represented as ovals, while trust relationships are shown using
double stroke arrows pointing to the trustee, labeled with the actual trust relationship
among two given roles (1a). Fig. 1b depicts the usage of the delegation as a trust sup-
porting mechanism. The supports relation is labeled with the subscript ”Alice” to show
how Alice’s trust is enhanced.

Alice Modern
Labs

T(Alice,ModernLabs,paid,delivered)

(a) Trust relation

Alice Modern
Labs

T(Alice,ModernLabs,paid,delivered)

T(Alice,ModernLabs,threatened(T1),T(Alice,Hospital,paid,delivered))

ϒ Alice

(b) Supports Relation

Fig. 1. Graphical representation of the system

Apart from the mechanisms shown in Table 1 there could be others that influence the
trustworthiness of a system. These mechanisms are domain specific and emerge from
the study and analysis of the given domain. We will use a case study to discover new
mechanisms to support trust (section 4). Our approach for sociotechnical trust is based
on commitments, thus to enhance trust in the system enough commitments are built
to make it more trustworthy. The supports relation reflects this intuition as well. For
instance, let us consider two healthcare systems from our running example, say system
S1 = {Ti} and system S2 = {Ti, Tj , Tk}.

S1 represents a system in which only one trust relationship holds (6). Hospitals com-
mit on ensuring confidentiality of Alice’s personal data (to comply with HIPAA1), hence
the trust relationship between Alice and the Hospital that if Alice provides her personal
data to adhere to Hospital’s services, the Hospital will ensure confidentiality of those
data. Information included in the medical records of the patients should also be pro-
tected and not shared with other parties, unless the patient gives a written permit for
that.

S2 ((7),(8), and (9)) represents a system in which the Hospital commits to ensure
confidentiality of patient’s personal data, it also commits to share patient’s personal
data only upon their written permission, and the doctor attending the patient commits
to protect and ensure privacy of patient information and medical records. The trust

1 https://www.cms.gov/hipaageninfo/

https://www.cms.gov/hipaageninfo/

110 A.K. Chopra, E. Paja, and P. Giorgini

relationships present in S2 emerge from these commitments. S2 involves the trust rela-
tionships Tj and Tk, each of which supports the trust relation Ti (that is, Tj �Alice Ti

and Tk �Alice Ti). Having two more trust relationships (hence more commitments) that
support the basic trust relationship, will influence the overall trust of the system.

We could say that S2 is more trustworthy from the patient’s (Alice) point of view
than S1 because it provides more commitments to ensure confidentiality.

Ti = T(Alice, Hospital, personalData, ensureConfidentiality) (6)

Ti = T(Alice, Hospital, personalData, ensureConfidentiality) (7)

Tj = T(Alice, Doctor, T, privacyOfMedicalRecords) (8)

Tk = T(Alice, Hospital, permit, sharePersonalData) (9)

Definition 1. Let S1 and S2 be two systems. We say that S2 is more trustworthy than
S1 from x’s perspective (S2 �x S1) if and only if:

1. (x, y, p, q) ∈ S1 implies (x, y, p, q) ∈ S2, and
2. ∃(x, z, r, s) ∈ S2 such that T(x, z, r, s) � T(x, y, p, q)

The definition captures the intuition behind the fact that a participant (x) will trust more
the system that will provide more commitments to him (i.e more trust relationships) that
support the initial interaction he wants to start with that system. This initial interaction
is a relation that is provided by both systems to x (1); x considers S2 more trustworthy
because it provides other relations that support the basic interaction (2).

In the aforementioned example, there are two trust relationships in S2, namely Tj

and Tk, that support the trust relation in S1, Ti. Therefore, the system S2 is said to be
more trustworthy from Alice’s point of view.

3 Kinds of Trust in Sociotechnical Systems

We highlight the difference between sociotechnical trust and two other notions of trust
that have been applied to modeling and reasoning about sociotechnical systems. We
show with the help of examples that the three are orthogonal notions, and that each
plays a role in the smooth functioning of a live STS.

3.1 Technical Trust

By actors, we refer only to social entities. In practice, this means only humans and or-
ganizations (or their software surrogates). For example, consider a healthcare system.
Hospitals, patients, doctors, laboratories, insurance companies, and so on are all ac-
tors in the system. A hospital may provide the service of appointment scheduling via
a Web application; clearly, the application itself is not an actor in the same sense that
a hospital is. Similarly, a laboratory may use several devices in providing testing ser-
vices to patients, for example, a CT scanner; clearly, the CT scanner too is not an actor.
Thus, in this paper, we do not talk about technical trust—whether the hospital trusts the
scheduling Web application (to work well) or whether the laboratory trusts the CT scan-
ner. We broadly identify technical trust with assurance [13], also sometimes referred to
as dependability [8].

Sociotechnical Trust: An Architectural Approach 111

The contrast with technical trust is an important one. Technical trust necessarily
treats the system under consideration as a monolithic entity that can be deployed and
evaluated for desirable properties. However, sociotechnical systems are not monolithic.
Each actor is necessarily autonomous and will implement the functionality it desires
independently from other actors. For example, a hospital will implement its informa-
tion systems independently from a laboratory. Therefore, it is impractical to dwell upon
whether a hospital considers a laboratory’s information systems and devices depend-
able; however, it is critically important that the hospital trusts the laboratory for provid-
ing accurate test results. In general, technical trust applies at a lower level than social
trust. Figure 2 illustrates in an architectural sense the difference between social and
technical trust. Incidentally, the traditional model of sociotechnical systems from RE is
similar to Figure 2(B).

Fig. 2. Social versus technical trust

Let TT denote the technical trust relation. For example, TT(ModernLabs, CTScanner,
operatedProperly, deliveredAccurateResults) means that ModernLabs trusts the
CTScanner to deliver accurate results if operated properly.

Technical trust is not relevant for us. It is not the scope of our work. Instead, we
concentrate on the roles interacting in the system, not the information systems or de-
vices being used. We are interested in the actual actors operating the technical systems,
so the technical trust is encapsulated within the social trust. Alice trusts ModernLabs
to deliver accurate results, but she does not care how ModernLabs achieves that. It is
ModernLabs’ responsibility assuring the correctness of the results. As long as the re-
sults are delivered being accurate, Alice trusts ModernLabs. It is this kind of relationship
that we want to exploit.

3.2 Cognitive Trust

Most of the predominant computational approaches to trust have a cognitive bias. In
such approaches, each agent has a mental, and therefore necessarily private, model of
other agents, based on which it chooses whom to interact with. Some approaches to
trust are based on reputation. Although reputation itself is a social concept in that an
agent’s reputation is public, it also is mostly applied in a cognitive way—as an input to
the agents’ mental models.

112 A.K. Chopra, E. Paja, and P. Giorgini

Let TC denote the cognitive trust relation. For example, TC(Alice, ModernLabs,
paid, delivery) means that Alice cognitively trusts ModernLabs. Sociotechnical trust
wants to influence in some way the enhancement of cognitive trust, however we cannot
enforce the latter. If a system inspires more trust than other systems in the same domain,
it might be the case that prospective participants become more willing to participate in
that system.

3.3 Orthogonality

Our conceptual model helps determine whether a system is trustworthy, architecturally
speaking. However we do not address issues dealing with cognitive trust, such as ”within
a system, who to interact with?”, nor issues concerning technical trust. Each of them has
a different consequence on the actors’ decisions (or influences differently actors’ deci-
sions). Let’s consider a situation where hospital SantaChiara is known to be better than
hospital SanCamillo, and in which Alice trusts more (cognitively) Dr.Giusti rather than
Dr.Falconi. Based on sociotechnical trust considerations, we could say objectively that
Alice would rather be visited by Dr.Giusti (Dr.G) in hospital SantaChiara (S.Ch) than
by Dr.Falconi (Dr.F) in hospital SanCamillo (S.Cam) (10). However, we could not say
anything about Alice’s trust (where would she get a visit) in case doctor Dr.Giusti were
to work at hospital SanCamillo and Dr.Falconi were to work at hospital SantaChiara
(11).

T(Alice, Dr.G, S.Ch, goodVisit)�Alice T(Alice, Dr.F, S.Cam, goodVisit) (10)

T(Alice, Dr.G, S.Cam, goodVisit)
�Alice T(Alice, Dr.F, S.Ch, goodVisit) (11)

Similarly, if Alice trusts cognitively ModernLabs to deliver the results once she has paid
for the tests, this does not mean that she technically trusts ModernLabs, and vice versa.

4 The Food Law Case Study

The European Parliament and the Council adopted Regulation (EC)178/20022 on Jan-
uary 2002, to harmonize all Member States food legislation in a general Food Law reg-
ulation, whose primary objective is consumer protection throughout Europe. Food Law
lays down all requirements on food safety. It imposes requirements on any substance
that is intended or expected to be incorporated into a food/feed during its manufacture,
preparation or treatment [5]. These requirements should be applied by all food operators
in order to comply with the regulation.

Identifying Roles and Trust Relationships. Food law exposes the following partici-
pants (roles): Member States (MS), Food Safety Authority(FSA), Food Business Op-
erator (FBO), European Consumer (EC). Stakeholders in the food/feed chain are a lot,
among which food/feed manufacturers, importers, brokers, farmers, distributors, etc.,
but we classify all as FBO. To be in compliance with (EC)178/2002 requirements and
specifications, the trust relations in Table 2 should hold.

2 http://ec.europa.eu/food/food/foodlaw/index_en.htm

http://ec.europa.eu/food/food/foodlaw/index_en.htm

Sociotechnical Trust: An Architectural Approach 113

Table 2. Trust relations based on roles perspective

Trust relation Description

European Consumers’ Perspective

T(C,FBO, onMarket(x), safe(x)) Consumers trust food operators that
every product they placed in the mar-
ket is safe

T(C,FBO, onMarket(x), labelAdequately(x)) Consumers trust food operators that
every product they placed in the mar-
ket is labeled adequately

T(C,FSA,¬safe(x), prohibitPlacingOnMarket(x)) Consumers trust the authorities that if
food is found to be unsafe, it will be
prohibited to be placed on the market

T(C,FBO,
violated(C, FBO, onMarket(x), safe(x)),
T(C, FBO, informOn(x),withdraw(x)))

Consumers trust food operators that if
food is found to be unsafe when it
had already been placed on the market,
they will be informed and food will be
withdrawn from the market

T(C,FBO, hazardsIdentifiedOn(x),
assessRisksRelatedTo(x))

Food operators should perform risk as-
sessment and analysis for any identi-
fied possible hazard related to a given
food product

T(C,FBO, product(x,FBO) ∧ ingredients(x, y0) ∧
... ∧ ingredients(x, yn), record(y0, supplier) ∧ ... ∧
record(yn, supplier) ∧ record(x, customer))

Food operators should keep record of
all the suppliers of ingredients of the
products they sell and of all the imme-
diate customers

Food Business Operator Responsibility

∀suppliersT(FSA, FBO, monitor(suppliers),
risksEarlyDetected)

Problems with food will be detected
early if food operators monitor their
suppliers

T(FSA, FBO, onRisk, notify) Food safety authority expects to re-
ceive notification on risk

T(MS, FSA, notify, inform) Food safety authority should inform
member states when notified for some
risk

Enhancing Consumers’ Trust. We provide a semi-formal graphical representation in
a multilayer perspective (Figure 3) starting from the basic situation (container denoted
with R). The core requirement is that consumers are provided with safe food, that is, ev-
ery food that is placed on the market is safe and adequately labeled. Food operators are
responsible for ensuring this, therefore we show the trust relation that should hold be-
tween consumers and food operators. The Food Safety Law specifies mechanisms that
will help improve this situation, thereby enhancing the chances of achieving the primary
goal of having safe food on the market. These mechanisms are actually the supports re-
lations specific to this domain. The structuring of the trust relationships performed in
Figure 3 serves the purpose of applying the supports relations to improve the sociotech-
nical trust at each layer, introducing them at the appropriate layer. Thus, in the second

114 A.K. Chopra, E. Paja, and P. Giorgini

FBO

FSA

TRACEABILITY

WITHDRAW/RECALL

MONITOR

R

ASSESS RISKS

T(C,FBO,onMarket(x),safe(x))

T(FSA,FBO,
onRisk,notify)

T(C,FBO,onMarket(x),labelAdequately(x))

T(FSA,FBO,
T,monitor)

T(C,FSA,not Safe(x),
prohibitPlacingOnMarket(x))

T(C,FBO,product(x,FBO)&ingredients(x,yi),

record(yi,supplier)&record(x,customer))

T(C,FBO,violated(C,FBO,onMarket(x),safe(x)),T(C,FBO,informOn(x),withdraw(x)))

C

T(C,FBO,hazardsIdentifiedOn(x),assessRisksRelatedTo(x))

ϒ

ϒ

ϒ

ϒ

C

C

C

C

Fig. 3. Food Law System Enhancing Consumers’ Trust

layer (Monitoring) monitoring mechanisms are enabled, such as the ones for monitor-
ing suppliers and food. Monitoring will increase the level of trust consumers will have
on the products placed on the market. However, monitoring alone is not enough. That
is why Traceability mechanisms are applied on top of monitoring (third layer), so that
any time a given risk is identified, it is possible to find the node in the food chain in
which the breach occurred. Whenever a hazard is encountered, traceability is used to
identify the source of such risk, afterward food operators can perform risk assessment
to verify the status of the given product. If it is found to violate food safety require-
ments, customers should be notified and the product needs to be withdrawn or recalled
(forth layer: Withdraw/Recall). Risk assessment procedures will influence the decision
to withdraw or recall a product from the market (fifth layer: Assess Risks).

We use the supports relationship notation labeled with C, at the border between the
subsequent layers, to represent the fact that trust relationships in the above layer support
trust relationships in the layer below, enhancing at each subsequent layer Consumers’
trust about the system.

Conclusion. We presented a graphical representation of an STS from the Food Law
case study showing trust relations that hold between the different roles (mainly con-
sumers and food operators) along the food chain. We used the case study to identify
domain specific supports relationships that aim to increase a consumer’s trust in this
STS. Based on the identified supports relationships, we built a structured graphical rep-
resentation of the trust relations that hold in the system to help possible participants

Sociotechnical Trust: An Architectural Approach 115

decide which system they want to play a role at. This representation makes the role
perspective clearer by showing the relations they may be involved. Furthermore, this
structuring allows to see how trust is increased after each layer by representing the trust
supporting mechanisms. All mechanisms represented in terms of supports trust rela-
tionships serve the purpose of ensuring consumers’ safety and inspiring their trust in
the system.

Is the Approach Scalable for Larger Case Studies? Our approach depends on the
clarity of the information regarding the considered domain, as the process of discover-
ing supports relationships is domain specific.

5 Discussion

In this paper, we captured the intuition behind sociotechnical trust, as referring to the
trustworthiness of an STS. We consider an STS to be organized along trust relationships.
We want to make make explicit these trust relationships in order to provide prospective
participants with information regarding the dependencies they would have upon the STS
in case they decide to play a role in. Based on this information, one is able to decide
whether, on his perspective, an STS is more trustworthy than another. This requires that
we capture sociotechnical trust in an architectural sense as a relationship among roles
in the system. When specific actors adopt the roles, those relationships are instantiated.
We showed the notion of sociotechnical trust to be different from cognitive and techni-
cal trust, two prominent concepts in sociotechnical systems research. We analyzed the
European food safety regulation on the basis of our approach. The case study reveals
that a STS is not a list of trust relationships, but there is structure in the sense that some
trust relationships enhance some others. Understanding the structure of a system will
prove valuable for those who want to decide their participation in a system. A key fea-
ture of our conceptual model is that we take the role perspective in saying whether one
system is more trustworthy than another. Thus whereas a healthcare STS may be more
trustworthy from the patient point of view; it may be less trustworthy from a labora-
tory’s point of view. Such a perspective follows naturally from the fact that trust is a
directed relationship.

The trustworthiness of a software is traditionally seen as a measure of assurance
that the software is free from vulnerabilities [13]. Notably, such a notion of trustwor-
thiness treats software as a monolithic entity; it is technical trust. Examples of such
software include operating systems and browsers. Many trustworthy computing initia-
tives, including Microsoft’s [12], to mitigate security concerns fall under this category.
Castelfranchi [4] lists different kinds of trust that often come into play: trust in the en-
vironment and infrastructure (technical trust), trust in one’s own agent (technical trust
because it amounts to trust in the software that an actor uses), and trust in authorities and
partners (both cognitive). These are all important kinds of trust; however none of these
is sociotechnical. Asnar et al. [2] model trust relationships among actors in order to an-
alyze risk; however in their approach, trust is an agent’s subjective belief about another,
in other words, cognitive. Similar to our approach, Giorgini et al. [9] model social trust
at the role level. They present examples where any agent adopting some role must trust
another adopting some role for something, however, cognitively it may not. Giorgini

116 A.K. Chopra, E. Paja, and P. Giorgini

et al. deem this as a conflict. In our approach, such a situation is not a conflict—social
and cognitive trust are orthogonal concepts. Our idea of assuming domain-specific trust
enhancing (the supports) relationships is not unfounded. Jones et al. [11] present a list
of trust requirements for e-business. Haley et al. [10] introduce the notion of trust as-
sumptions to help discharge concerns about system security. Siena et al. [14] care about
compliance of actors with regulations, we care about understanding the structure of the
regulations themselves, and how the regulation may have potentially come about in the
first place.

Future Directions. In order to build architecturally better systems in terms of trust, we
want to explore a formal semantics for the supports relationship. However, given the
diversity of domains and trust relationships, this is an especially challenging task. Our
initial approach for defining supports was via formulating trust enhancing mechanisms.
We will further exploit commitments to identify more such mechanisms.

Acknowledgments. This work has been partially supported by the EU-FP7-IST-IP-
ANIKETOS and EU-FP7-IST-NOE-NESSOS project. Amit K. Chopra was supported
by a Marie Curie Trentino cofund award.

References

1. Credit card accountability responsibility and disclosure act of (2009),
http://www.govtrack.us/congress/bill.xpd?bill=h111-627

2. Asnar, Y., Giorgini, P., Massacci, F., Zannone, N.: From trust to dependability through risk
analysis. In: Proceedings of the Second International Conference on Availability, Reliability
and Security, pp. 19–26 (2007)

3. Bresciani, P., Perini, A., Giorgini, P., Giunchiglia, F., Mylopoulos, J.: Tropos: An agent-
oriented software development methodology. Autonomous Agents and Multi-Agent Sys-
tems 8(3), 203–236 (2004)

4. Castelfranchi, C., Tan, Y.-H.: The role of trust and deception in virtual societies. International
Journal of Electronic Commerce 6(3), 55–70 (2002)

5. Standing Committee on The Food Chain and Animal Health. Food law implementation
guidelines. World Wide Web electronic publication, January 2010, Lastchecked (December
2010)

6. Chopra, A.K., Dalpiaz, F., Giorgini, P., Mylopoulos, J.: Modeling and reasoning about
service-oriented applications via goals and commitments. In: Pernici, B. (ed.) CAiSE 2010.
LNCS, vol. 6051, pp. 113–128. Springer, Heidelberg (2010)

7. Chopra, A.K., Dalpiaz, F., Giorgini, P., Mylopoulos, J.: Modeling and Reasoning about
Service-Oriented Applications via Goals and Commitments. In: Pernici, B. (ed.) CAiSE
2010. LNCS, vol. 6051, pp. 113–128. Springer, Heidelberg (2010)

8. Dewsbury, G., Sommerville, I., Clarke, K., Rouncefield, M.: A Dependability Model for
Domestic Systems. In: Anderson, S., Felici, M., Littlewood, B. (eds.) SAFECOMP 2003.
LNCS, vol. 2788, pp. 103–115. Springer, Heidelberg (2003)

9. Giorgini, P., Massacci, F., Mylopoulos, J., Zannone, N.: Requirements engineering for trust
management: Model, methodology, and reasoning. International Journal of Information Se-
curity 5, 257–274 (2006)

10. Haley, C., Laney, R., Moffett, J., Nuseibeh, B.: Using trust assumptions with security re-
quirements. Requirements Engineering 11, 138–151 (2006)

 http://www.govtrack.us/congress/bill.xpd?bill=h111-627

Sociotechnical Trust: An Architectural Approach 117

11. Jones, S., Wilikens, M., Morris, P., Masera, M.: Trust requirements in e-business. Commu-
nications of the ACM 43(12), 81–87 (2000)

12. Lipner, S.: The trustworthy computing security development lifecycle. In: Proceedings of the
20th Annual Computer Security Applications Conference, pp. 2–13 (December 2004)

13. Mead, N.R., Jarzombek, J.: Advancing software assurance with public-private collaboration.
IEEE Computer 43(9), 21–30 (2010)

14. Siena, A., Armellin, G., Mameli, G., Mylopoulos, J., Perini, A., Susi, A.: Establishing regula-
tory compliance for information system requirements: An experience report from the health
care domain. In: Parsons, J., Saeki, M., Shoval, P., Woo, C., Wand, Y. (eds.) ER 2010. LNCS,
vol. 6412, pp. 90–103. Springer, Heidelberg (2010)

15. Singh, M.P., Chopra, A.K., Desai, N.: Commitment-based service-oriented architecture.
Computer 42(11), 72–79 (2009)

16. Singh, M.P.: An ontology for commitments in multiagent systems: Toward a unification of
normative concepts. Artificial Intelligence and Law 7, 97–113 (1999)

17. Singh, M.P.: Trust as a basis for social computing (2010),
http://www.csc.ncsu.edu/faculty/mpsingh/papers/positions/
Trust-formal-architecture-talk.pdf

18. Strens, R., Dobson, J.: How responsibility modelling leads to security requirements. In: Pro-
ceedings of the New Security Paradigms Workshop, pp. 143–149 (1993)

19. van Lamsweerde, A.: From system goals to software architecture. In: Bernardo, M., Inver-
ardi, P. (eds.) SFM 2003. LNCS, vol. 2804, pp. 25–43. Springer, Heidelberg (2003)

 http://www.csc.ncsu.edu/faculty/mpsingh/papers/positions/Trust-formal-architecture-talk.pdf
 http://www.csc.ncsu.edu/faculty/mpsingh/papers/positions/Trust-formal-architecture-talk.pdf

Generating SPARQL Executable Mappings to

Integrate Ontologies�,��

Carlos R. Rivero, Inma Hernández, David Ruiz, and Rafael Corchuelo

University of Sevilla, Spain
{carlosrivero,inmahernandez,druiz,corchu}@us.es

Abstract. Data translation is an integration task that aims at populat-
ing a target model with data of a source model by means of mappings.
Generating them automatically is appealing insofar it may reduce inte-
gration costs. Matching techniques automatically generate uninterpreted
mappings, a.k.a. correspondences, that must be interpreted to perform
the data translation task. Other techniques automatically generate ex-
ecutable mappings, which encode an interpretation of these correspon-
dences in a given query language. Unfortunately, current techniques to
automatically generate executable mappings are based on instance ex-
amples of the target model, which usually contains no data, or based on
nested relational models, which cannot be straightforwardly applied to
semantic-web ontologies. In this paper, we present a technique to auto-
matically generate SPARQL executable mappings between OWL ontolo-
gies. The original contributions of our technique are as follows: 1) it is not
based on instance examples but on restrictions and correspondences, 2)
we have devised an algorithm to make restrictions and correspondences
explicit over a number of language-independent executable mappings,
and 3) we have devised an algorithm to transform language-independent
into SPARQL executable mappings. Finally, we evaluate our technique
over ten scenarios and check that the interpretation of correspondences
that it assumes is coherent with the expected results.

Keywords: Information Integration, Data Translation, Semantic-web
Ontologies, SPARQL Executable Mappings.

1 Introduction

Data in current databases are usually modelled using relational or nested rela-
tional models, which include relational and semi-structured schemata [4]. How-
ever, there is an increasing shift towards representing these data by means of
ontological models due to the popularity and maturity of the Semantic Web [35].

� Supported by the European Commission (FEDER), the Spanish and the An-
dalusian R&D&I programmes (grants TIN2007-64119, P07-TIC-2602, P08-TIC-
4100, TIN2008-04718-E, TIN2010-21744, TIN2010-09809-E, TIN2010-10811-E, and
TIN2010-09988-E).

�� See [31] for a demo regarding this paper.

M. Jeusfeld, L. Delcambre, and T.W. Ling (Eds.): ER 2011, LNCS 6998, pp. 118–131, 2011.
c© Springer-Verlag Berlin Heidelberg 2011

Generating SPARQL Executable Mappings to Integrate Ontologies 119

In this paper, we focus on semantic-web ontologies that are represented using
RDF, RDF Schema and OWL ontology languages to model structure and data,
and their data are queried by means of the SPARQL query language [3,10,25].

Existing databases comprise a variety of models, created by different organ-
isations for different purposes, and there is a need to integrate them [4,19,22].
Mediators provide a well-known solution to the problem of integrating models
since they can help bridge the semantic gap amongst them [11,33]. A mediator
relates a source model, which contains the data of interest, to a target model,
which usually contains no data. Mediators can perform two tasks: data integra-
tion and data translation [19,22]. The former deals with answering queries posed
over the target model, which is virtual, using the source model only [15,19,37].
The latter, which is the focus of this paper, aims at populating a target model
with data of a source model [8,12,24,28,29].

Mappings, which are the cornerstone components of mediators, relate source
and target models in different ways [8,9,11,18,19]. Building and maintaining
mappings automatically is appealing insofar this relieves users from the burden
of writing them, checking whether they work as expected or not, making changes
if necessary, and restarting this cycle [4,27]. Mappings can be of various types
but, in this paper, we focus on two: correspondences and executable mappings.

On the one hand, correspondences may be handcrafted with the help of a
visual tool [1], or generated automatically using matching techniques [9,11,30].
They are hints that specify which elements from the source and target models
are related in some unspecified way [5]. Therefore, they must be interpreted
to perform the data translation task. However, this interpretation is far from
trivial since it is not unique, i.e., different approaches interpret correspondences
in different ways [2,5,28]. Consequently, it is mandatory to check whether the
resulting target data are coherent with the expected results.

On the other hand, executable mappings, a.k.a. operational mappings, encode
an interpretation of correspondences in a given query language [14,28,29]. These
mappings are executed by means of a query engine to perform the data transla-
tion task. The main benefit of using these mappings is that the data translation
task is simplified, making it more efficient and flexible: thanks to executable
mappings, instead of relying on ad-hoc programs that are difficult to create and
maintain, the query engine is used as the transformation engine [14]. Further-
more, these engines incorporate a vast knowledge on query manipulation, from
which it is derived that the executable mappings are automatically optimised
for better performance of the data translation task.

In the bibliography, there are a number of techniques to automatically gener-
ate executable mappings. Unfortunately, none of them can be straightforwardly
applied to semantic-web ontologies in the context of the data translation task
due to the following reasons, namely (for further details, see Section 2):

– Some of them are based on instance examples of the target model [29], which
are suitable in scenarios in which the target model is already populated.
However, we focus on scenarios in which the target model has no instances
at all, which seems to be quite usual in practice [2,4,28].

120 C.R. Rivero et al.

– Others focus on nested relational models, which represent trees [13,20,28,36];
however, they cannot be straightforwardly applied to ontologies, which rep-
resent graphs, due to a number of differences between them [17,21,23,32].

In this paper, we present a technique to automatically generate SPARQL exe-
cutable mappings to perform the data translation task between OWL ontologies.
To illustrate it, we use an example that is contextualised in the domain of films
and reviews, using DBpedia and Revyu as data sources. The original contribu-
tions of our technique are that it is based on restrictions and correspondences,
instead of instance examples, which makes it appealing in many practical cases.
Furthermore, we have devised an algorithm to generate language-independent
executable mappings that makes restrictions and correspondences explicit. Fi-
nally, we have devised an algorithm to transform language-independent into
SPARQL executable mappings by creating triple patterns and linking variables
of these patterns.

This paper is organised as follows: Section 2 presents the related work; in
Section 3, we present the algorithms to automatically generate SPARQL ex-
ecutable mappings; Section 4 presents the evaluation of our technique; and,
finally, Section 5 recaps on our conclusions.

2 Related Work

In this section, we study the techniques to automatically generate executable
mappings in both the semantic-web and database research fields.

In the semantic-web research field, Qin et al. [29] devised a technique to gen-
erate executable mappings between ontologies in a semi-automatic way. Their
technique is divided into five modules. The first module deals with the automatic
discovering of correspondences. The second module determines whether two in-
stances in different ontologies represent the same real-world entity. The third
module deals with the clustering of correspondences that are related. The fourth
module takes a set of source and target instances as input and generates a set of
frequent queries of interest between them. Note that target instances have to be
provided by the user when the target is not populated. Finally, the fifth module
generates executable mappings based on frequent queries and correspondences.
This technique generates a set of executable mappings that can be specified in
Web-PDDL (an ontology language devised by the authors), Datalog or SWRL.

Regarding the database research field, Popa et al. [28] proposed a technique to
automatically generate executable mappings for performing the data translation
task between nested relational models. A nested relational model defines a tree
that comprises nested nodes with attributes. The first step of their technique
consists of computing primary paths, each of which is the unique path from
the tree root to a node. Furthermore, this step comprises the identification of
referential constraints that relate two primary paths by an equality expression
between two attributes. The second step consists of applying an extension of
the relational chase algorithm to compute logical relations, each of which is an
enumeration of the logical joins specified by referential constraints. Therefore, a

Generating SPARQL Executable Mappings to Integrate Ontologies 121

logical relation comprises a number of primary paths that are related by referen-
tial constraints. This step is applied in both source and target models. The third
step computes the executable mappings by performing the Cartesian product
between source and target logical relations. For each pair, the technique analy-
ses the correspondences that relate source and target elements in this pair. Note
that this technique takes only one type of correspondence into account: source at-
tribute to target attribute. Finally, the fourth step deals with the transformation
of the previous executable mappings, which are represented in an intermediate
nested-relational query language, into XQuery or XSLT queries.

The technique devised by Popa et al. [28] was the starting point to a number of
subsequent approaches: Fuxman et al. [13] proposed the use of nested mappings
that are generated by correlating Popa et al’s mappings, which are called basic
mappings. Basic and nested mappings can produce redundant target instances,
which motivated the research on the generation of laconic/core mappings that
produce target instances with no redundancy [20,36]. Mappings systems like Clio
or Clip are also based on this technique [1,14].

Finally, ontology and schema matching approaches focus on the automatic
generation of correspondences. Choi et al. [9], Euzenat and Shvaiko [11], and
Rahm and Bernstein [30] are good surveys on the state of the art of schema and
ontology matching techniques. However, it is important to notice that, in this
paper, we assume that correspondences already exist, so we make no contribution
to the schema or ontology matching research fields.

As a conclusion, Qin et al. [29] is suitable to generate executable mappings in
scenarios in which the target model is already populated. In the rest of scenarios,
the user must provide an adequate set of instance examples to ensure that the
technique works properly, not only with the aforementioned examples, but also
with new instances. If the set of instance examples does not capture variability
well-enough, the technique may fail to cover some cases. Furthermore, the tech-
nique may suffer from overfitting, i.e., an overfitted technique works well with
training examples, but may not be able to generalise to adapt to new instances
from the real world.

Regarding the techniques based on nested relational models [13,20,28,36], they
cannot be straightforwardly applied to ontologies due to the following differences:

– Structure: a nested relational model comprises a number of nodes, which
may be nested and have a number of attributes. This model represents a
tree in which there is a unique path from the root to any node or attribute.
Contrarily, an ontology comprises three types of nodes: classes, data proper-
ties and object properties. This ontology represents a graph in which there
may be zero, one or more paths connecting two arbitrary nodes. Note that
these graphs do not have a unique root and may contain cycles.

– Instances: an instance in a nested relational model has a unique type that
corresponds to an existing node. Contrarily, an instance in an ontology may
have multiple types that correspond to a number of existing classes, which
need not be related by specialisation. Furthermore, in a nested relational
model, an instance of a nested node exists as long as there exists an instance

122 C.R. Rivero et al.

mo:hasReview <mo:Review>

V9

dbp:birthName <xsd:string>

dbp:title <xsd:string>

rvu:text <xsd:string>

mo:Artist

mo:artistName <xsd:string>

mo:relatedTo <mo:Movie>

mo:Actor [mo:Artist]

mo:Director [mo:Artist]

mo:actsIn <mo:Movie> [mo:relatedTo]

mo:directs <mo:Movie> [mo:relatedTo]

mo:Movie

mo:movieTitle <xsd:string>

mo:Review

mo:revText <xsd:string>

mo:reviewer <xsd:string>
foaf:nick <xsd:string>

dbp:starring <dbp:Person>

dbp:director <dbp:Person>

rvu:reviewer <rvu:Review>

R3

V1

V2

V3

V4

V5

V6

V7

V10

V8

R1

rvu:reviews <dbp:Film>

R2

dbp:Person

dbp:Film

rvu:Review

foaf:Person

Source Target

MoviesOnline

Fig. 1. Data translation scenario of our running example

of the corresponding parent node. Contrarily, in an ontology, classes, data
properties and object properties can be instantiated independently from each
other by default.

– Queries: in the context of nested relational models, queries to perform the
data translation task are encoded using XQuery or XSLT, which depend on
the structure of the XML documents on which they are executed. Contrarily,
in an ontology, these queries must be encoded in a language that is indepen-
dent of the structure of XML documents, since the same ontology can be
represented by different XML documents.

3 Mapping Generation

In this section, we present our technique to automatically generate SPARQL
executable mappings based on restrictions and correspondences, which is divided
into two steps: Kernel Generation and SPARQL Transformation.

To illustrate it, we use a running example in the domain of movies and re-
views. Our running example builds on a fictitious video-on-demand service called
Movies Online. It provides information about the movies it broadcasts and re-
views of these movies. Movies Online have a number of knowledge engineers
in their staff, and they devised the target ontology of Figure 1, which models
movies and reviews. Instead of performing a handcrafted population of the on-
tology, Movies Online decided to translate information of movies and reviews
from DBpedia [7] and Revyu [16], which are the source ontologies. Note that the
Revyu ontology references the Friend of a Friend ontology, following the prin-
ciples of Linked Data [6]. Note also that, throughout this paper, ‘dbp’, ‘rvu’,
‘foaf’ and ‘mo’ are the prefixes of DBpedia, Revyu, FOAF and Movies Online,
respectively.

Generating SPARQL Executable Mappings to Integrate Ontologies 123

To represent ontologies, we use a tree-based notation in which classes are
represented as circles, data properties as squares and object properties as pen-
tagons. Furthermore, the domain of a data or object property is represented
by nesting the property into the domain class, e.g., dbp:birthName is a data
property whose domain is dbp:Person. The range of a data or object property is
represented by ‘<’ and ‘>’, e.g., dbp:starring is an object property whose range
is dbp:Person. Finally, class and property specialisations are represented by ‘[’
and ‘]’, e.g., mo:Actor is subclass of mo:Artist, and mo:actsIn is subproperty of
mo:relatedTo.

In the following subsections, we present the restrictions and correspondences
that our technique is able to process, and the algorithms to automatically gen-
erate SPARQL executable mappings.

3.1 Restrictions and Correspondences

In this section, we present the restrictions and correspondences of our technique.
Regarding restrictions, we assume that source and target ontologies pre-exist, so
they contain a number of inherent restrictions, e.g., “foaf:Person is the domain
of foaf:nick”. Furthermore, it is possible to specify user-defined restrictions to
adapt existing source and target ontologies to the requirements of a specific
scenario, e.g., R1 restricts reviews to have, at least, one reviewer.

Our technique is able to process six types of restrictions, namely:

– Domain(x, y): data or object property x is domain of class y. For instance,
in Figure 1, Domain(foaf:nick, foaf:Person).

– Range(x, y): object property x is range of class y, e.g., R2 corresponds to
Range(rvu:reviews, dbp:Film).

– StrongDomain(x, y): class x is domain of data or object property y, whose
minimal cardinality is one, e.g., StrongDomain(foaf:Person, foaf:nick). Note
that this restriction is equivalent to a minimal cardinality of one over the
domain class.

– StrongRange(x, y): class x is the range of object property y, whose min-
imal cardinality is one, e.g., R1 corresponds to StrongRange(rvu:Review,
rvu:reviewer). Note that this restriction is equivalent to a minimal cardinal-
ity of one over the range class.

– Subclass(x, y): class x is subclass of class y, e.g., Subclass(mo:Director,
mo:Artist).

– Subproperty(x, y): data or object property x is subproperty of data or object
property y, e.g., Subproperty(mo:actsIn, mo:relatedTo).

We deal with three types of correspondences, namely:

– ClassCorrespondence(x, y): instances of the y target class are copied from
instances of the x source class, e.g., V1 that corresponds to ClassCorrespon-
dence(dbp:Person, mo:Artist).

– DataPropertyCorrespondence(x, y): instances of the y target data property
are copied from instances of the x source data property, e.g., V2 that corre-
sponds to DataPropertyCorrespondence(dbp:birthName, mo:artistName).

124 C.R. Rivero et al.

dbp:birthName <xsd:string>

dbp:starring <dbp:Person>

dbp:director <dbp:Person>

dbp:Person

dbp:Film

«Class»
dbp:Person

«Class»

dbp :Film

«Data Property»

dbp :birthName
«XSD Type»

xsd:string

«Object Property»

dbp:starring

«Object Property»

dbp :director

dom
ran

dom

dom

ran

ran

Tree Notation Graph Notation

RA: Domain(dbp:birthName, dbp:Person)

RB: Range(dbp:birthName, xsd:string)

RC: Domain(dbp:starring, dbp:Film)

RD: Range(dbp:starring, dbp:Person)

RE: Domain(dbp:director , dbp:Film)

RF: Range(dbp:director , dbp:Person)

Restrictions

Fig. 2. An example of the restrictions of an ontology

– ObjectPropertyCorrespondence(x, y): instances of the y target object prop-
erty are copied from instances of the x source object property, e.g., V5 that
corresponds to ObjectPropertyCorrespondence(dbp:starring, mo:actsIn).

Therefore, for a particular scenario, we have a number of source and target
restrictions, and a number of correspondences. Figure 2 presents a part of the
source ontology in our running example that is represented in our tree-based
notation, in a graph-based notation, and the restrictions that are associated to
this part of the ontology, respectively. Note that each of these restrictions models
a directed edge in the ontology graph that has a left and a right entities, e.g., the
left entity of RA in Figure 2 is dbp:birthName, and the right part is dbp:Person.

Finally, it is important to notice that correspondences in isolation are usually
not suitable enough to perform the data translation task. For instance, assume
that we use V5 in isolation to translate instances of dbp:starring into mo:actsIn.
In this context, we translate the domain and range of dbp:starring into the
domain and range of mo:actsIn, respectively. Unfortunately, by doing this, we
are translating dbp:Film into mo:Actor, and dbp:Person into mo:Movie, which
is obviously incorrect. This is the reason why we must take both restrictions and
correspondences into account to generate executable mappings.

3.2 Kernel Generation

In this section, we present the algorithm to automatically generate kernels.
Intuitively, a kernel of a correspondence is a language-independent executable
mapping that comprises those source restrictions, target restrictions and cor-
respondences that we must take into account to produce coherent target data.
The algorithm is shown in Figure 3(a) and it takes a set of correspondences C,
and a set of source and target restrictions as input, RS and RT , respectively.
For each correspondence, it creates a new kernel that is added to the output set
K. A kernel is a three-element tuple (R′

S , R′
T , C′) that comprises a set of source

restrictions R′
S , a set of target restrictions R′

T , and a set of correspondences C′.
To create each kernel, it first calls the Expand algorithm (cf. Figure 3(b)),

which is responsible for finding all restrictions that have to be explicit regarding
an entity. Recall that an entity may be a class, a data property or an object
property. This algorithm takes an entity and a set of restrictions as input, and it
finds all restrictions that are related to this input entity. First, this input entity

Generating SPARQL Executable Mappings to Integrate Ontologies 125

Generate Kernels

Input
C: Set of Correspondence

RS, RT: Set of Restriction
Output:

K: Set of Kernel

Variables :
eS, eT: Entity
R’S, R’T: Set of Restriction

C’: Set of Correspondence

K = ∅

For each (eS, eT) in C
R’S = Expand (eS, RS)

R’T = Expand (eT, RT)

C’ = FindCorrespondences (C, R’S, R’T)

K = K ∩ { (R’S, R’T, C’) }
End for

(a) Generate Kernels

Expand

Input
e: Entity

R: Set of Restriction
Output:

O: Set of Restriction

Variables :
E: Set of Entity
eL, eR: Entity

(O, E) = (∅, e)

Do until no new entity is added to E
For each (eL, eR) in R

If eL ∈ E ∧ (eL, eR) ∉ O
O = O ∩ { (eL, eR) }

E = E ∩ { eL, eR }
End if

End for

End do

(b) Expand

Find Correspondences

Input
C: Set of Correspondence

RS, RT: Set of Restriction
Output:

O: Set of Correspondence

Variables :
ES, ET: Set of Entity
eS, eT: Entity

O = ∅

(ES, ET)= (Entities (RS), Entities (RT))

For each (eS, eT) in C

If eS ∈ ES ∧ eR ∈ ER

O = O ∩ { (eS, eT) }

End if

End for

(c) Find Correspondences

Fig. 3. Algorithms to compute kernels

is added to the set of entities E. Then, for each restriction, it is added to the
output if it is not already present and the left entity of the restriction belongs to
E. Therefore, the Expand algorithm computes the maximal connected subsets
of restrictions out of all of the source or target restrictions. Note that it is called
two times to compute source and target restrictions, respectively.

Finally, the Find Correspondences algorithm finds all correspondences C′ that
relate the entities of source and target restrictions that were found by means of
algorithm Expand (cf. Figure 3(c)). This algorithm takes a set of correspon-
dences, and a set of source and target restrictions as input. First, it computes
all the entities contained in source and target restrictions by means of Entities
algorithm, which is not described because it is straightforward. Then, for each
correspondence, it is added to the output if the entities that are related by this
correspondence belong to source and target entities.

The Generate Kernels algorithm terminates in O(c(s2 + t2 + c)) time in the
worst case, where c is the total number of input correspondences, and s and t
are the total number of input source and target restrictions, respectively. Fur-
thermore, this algorithm generates a total number of c kernels. Note that the
proof of this analysis has been omitted due to space restrictions.

Figure 4 illustrates how this algorithm works. It takes correspondence V9 as
input (cf. Figure 4(a)), which is an object property correspondence that relates
rvu:reviews with mo:hasReview.

The first step (cf. Figure 4(b)) is to expand rvu:reviews using source restric-
tions. In this case, the domain of rvu:reviews is rvu:Review and the range is
dbp:Film, both restrictions are added. Then, rvu:Review has a minimal cardi-
nality restriction with rvu:reviewer, so this restriction is added as well. Our
technique continues with the expansion until no new source restriction is added.

126 C.R. Rivero et al.

mo:hasReviewrvu:reviews
V9

(a) Correspondence

mo:hasReview <mo:Review>

mo:Movie

mo:Review

rvu:reviewer <rvu:Review>

R3

R1 rvu:Review

foaf:Person

rvu:reviews <dbp:Film>

R2

dbp:Film

V9

(b) Expand source and target restrictions

mo:hasReview <mo:Review>

mo:Movie

mo:Review

rvu:reviewer <rvu:Review>

R3

R1 rvu:Review

foaf:Person

rvu:reviews <dbp:Film>

R2

dbp:Film
V3

V9

V7

(c) Find related correspondences

Fig. 4. Example of the Generate Kernels algorithm

The second step (cf. Figure 4(b)) is to expand mo:hasReview using target re-
strictions, the domain of mo:hasReview is mo:Movie, and its range is mo:Review,
both restrictions are added. Furthermore, mo:Review has a minimal cardinality
restriction with mo:hasReview, this restriction is added too and, in this case, the
expansion is finished since no new target restriction is added.

Finally, our technique finds correspondences that relate the entities of both
source and target restrictions (cf. Figure 4(c)). In this case, correspondences V3
and V7 that relate dbp:Film with mo:Movie and rvu:Review with mo:Review,
respectively. Therefore, the final kernel of correspondence V9 is shown in Fig-
ure 4(c). Note that the kernel for correspondence V9 groups correspondences V3
and V7. However, the kernel for correspondence V3 does not group any other
correspondences, i.e., the correspondence itself is a kernel. Therefore, this is the
reason why our technique must process all input correspondences.

3.3 SPARQL Transformation

In this section, we present the algorithm to transform kernels into SPARQL
executable mappings. A key concept of the SPARQL language is the triple pat-
tern, which is a three-element tuple that comprises a subject, a predicate and
an object. A SPARQL executable mapping is a two-element tuple (TC , TW) that
comprises a set of triple patterns of the source and target ontologies, TC (the
CONSTRUCT clause) and TW (the WHERE clause), respectively.

The transformation algorithm is shown in Figure 5(a). Note that Initialise,
Compute Graph and Compute Variables algorithms are not described in detail
due to space limitations. However, we use an example to illustrate them. The

Generating SPARQL Executable Mappings to Integrate Ontologies 127

SPARQL Transformation

Input
K: Set of Kernel

Output:
M: Set of Ex. Mapping

Variables :

k: Kernel
m: Exec. Mapping

M = ∅
For each k in K

m = Initialise (k)
ComputeGraph(k, m)

ComputeVariables(m)
M = M ∩ {m}

End for

(a) Algorithm

rvu:reviewer

foaf:Personrdf:type

CONSTRUCT

dbp:Filmrdf:type

mo:hasReview

WHERE

mo:Reviewrdf:type

mo:Movierdf:type

rvu:reviews

rvu:Reviewrdf:type

(b) Initialisation

rvu:reviewer

foaf:Personrdf:type

CONSTRUCT

dbp:Filmrdf:type

mo:hasReview

WHERE

mo:Reviewrdf:type

mo:Movierdf:type

rvu:reviews

rvu:Reviewrdf:type

(c) Restriction Graph

rvu:reviewer

foaf:Personrdf:type

CONSTRUCT

dbp:Filmrdf:type

mo:hasReview

WHERE

mo:Reviewrdf:type

mo:Movierdf:type

rvu:reviews

rvu:Reviewrdf:type

�� ��

��

��

�� ��

��

��

�� ��

��

(d) Variables

Fig. 5. Algorithm and example of SPARQL Transformation

transformation algorithm takes a set of kernels K as input and it transforms
each kernel into a SPARQL executable mapping, which is added to the output
set M. To compute each SPARQL executable mapping, in the first step, the
algorithm initialises the source triple patterns and the target triple patterns by
means of Initialise algorithm. In this initialisation, for each class, it generates a
triple pattern with an empty node, e.g., mo:Review in Figure 5(b); and for each
data property or object property, it generates a triple pattern with two empty
nodes, e.g., mo:hasReview in Figure 5(b). These empty nodes are assigned with
variables in the following steps.

The second step computes the restriction graph that consists of relating the
empty nodes previously generated by means of source and target restrictions
and correspondences. This restriction graph is computed by the Compute Graph
algorithm. Note that m is an input/output parameter of this algorithm, i.e., m is
modified and returned by the Compute Graph algorithm. Finally, the third step
computes the variables of the CONSTRUCT and WHERE clauses by using
the same variable for nodes that are connected by an edge. These variables
are computed by the Compute Variables algorithm, which also has m as an
input/output parameter.

An example of the SPARQL Transformation algorithm is shown in
Figures 5(b), 5(c), and 5(d). In this case, it transforms the kernel of Figure 4
into a SPARQL executable mapping. The first step (cf. Figure 5(b)) is to create
a triple pattern for each entity that appears in the kernel, e.g., for foaf:Person,
it creates a triple pattern in the WHERE clause that specifies a subject node of
this type, but it does not assign a variable yet. Furthermore, for rvu:reviews, it
creates a triple pattern in which subject and object nodes have blank variables.
The final result of this step is a template of a SPARQL executable mapping
that comprises a set of empty nodes, which are assigned with variables in the
following steps.

The second step (cf. Figure 5(c)) consists of computing the restriction graph
for the triple patterns of the previous template. This step is achieved by

128 C.R. Rivero et al.

Table 1. Results of our evaluation

MO O2M C LP SP ERC ESB ESP SRC SS

Classes 9 72 728 728 728 365 365 365 365 365

Data Properties 8 41 100 100 100 100 100 100 100 100

Object Properties 8 90 726 0 0 363 0 0 363 0

Correspondences 10 11 777 414 414 414 51 51 51 51

Source restrictions 17 695 776 413 413 50 50 50 1502 413

Target restrictions 20 118 776 413 413 1502 170 463 50 50

Executable mappings 10 10 777 414 414 51 51 51 51 51

Time (seconds) 0.08 0.67 0.23 0.19 0.17 18.29 0.22 0.21 27.46 0.25

specifying an edge between two nodes of the triple patterns if there exists
a restriction or correspondence that relates those nodes. For example, since
rvu:Review is the domain of rvu:reviews, there exists an edge between the sub-
ject of the triple pattern of rvu:Review and the subject of the triple pattern of
rvu:reviews. Furthermore, since V3 relates dbp:Film with mo:Movie, there is an
edge between the subjects of their triple patterns. Finally, the third step (cf. Fig-
ure 5(d)) assigns the same variable for nodes that are connected by edges, e.g.,
?m is the variable used for the subject of dbp:Film and the object of rvu:reviews
triple patterns. The final SPARQL executable mapping for correspondence V9
is shown in Figure 5(d).

This algorithm terminates in O(k((e+2)(s+t+c)+e2)) time in the worst case,
where k is the total number of input kernels, e is the total number of entities
in the source and target ontologies, c is the total number of correspondences,
and s and t are the total number of source and target restrictions, respectively.
Furthermore, this algorithm generates a total number of k executable mappings.
Note that the proof of this analysis has been omitted due to space restrictions.

4 Implementation and Evaluation

In this section, we describe the implementation and evaluation of our technique.
We have implemented the algorithms described in Section 3 using Java 1.6 and
the Jena framework 2.6.3. In this evaluation, we compute the time taken by our
technique to automatically generate SPARQL executable mappings. Note that,
to compute these times, we ran the experiments on a PC with a single 2.66
GHz Core 2 Duo CPU and 4 GB RAM, running on Windows XP (SP3) and
JRE 1.6.0. Furthermore, to make these times more precise, we repeated each
experiment 25 times and computed the maximum value.

We have tested our technique with ten different scenarios and the results are
shown in Table 1. Note that we measure the number of classes, data properties
and object properties of both source and target ontologies, the number of cor-
respondences and source and target restrictions, the total number of generated
executable mappings, and the maximum time taken to generate them.

An important issue is whether the interpretation of the correspondences is
coherent with respect to the expected interpretation by experts. Regarding the

Generating SPARQL Executable Mappings to Integrate Ontologies 129

example presented in Section 3 (MO in Table 1), the resulting target instances
after performing the data translation task are as expected by experts. Further-
more, another scenario deals with the integration of semantic-web services with
successful results. Semantic-web services try to reduce the number of limitations
of (non-semantic) web services by enriching them with semantic annotations to
improve their discovery and composition. Therefore, each of these services is
related to one or more ontologies that describe it. In this context, we integrate
OWL-S as the source ontology and the Minimal Service Model (MSM) as the
target ontology [26] (O2M in Table 1). Thanks to our technique, we are able
to automatically populate iServe, which comprises a number of semantic-web
services represented using MSM, based on a number of semantic-web services
represented using OWL-S [26].

Finally, we have tested our technique with a benchmark that provides eight
data translation patterns, which are inspired by real-world data translation prob-
lems [34]. In this benchmark, the data translation task is performed by a set of
queries that are automatically instantiated from a number of query templates
that have been devised by experts. These patterns are the following:

– Copy (C): each class, data property and object property source instance is
copied into a class, data property or object property target instance.

– Lift Properties (LP): the data properties of a set of subclasses in the source
are moved to a common superclass in the target.

– Sink Properties (SP): the data properties of a superclass in the source are
moved to a number of subclasses in the target.

– Extract Related Classes (ERC): the data properties of a class in the source
are grouped into a number of new classes in the target, which are related to
the original one by a number of object properties.

– Extract Subclasses (ESB): a class in the source is split into several subclasses
in the target and data properties are distributed amongst them.

– Extract Superclasses (ESP): a class in the source is split into several super-
classes in the target, and data properties are distributed amongst them.

– Simplify Related Classes (SRC): source classes, which are related by a set of
object properties, are transformed into a target class that aggregates them.

– Simplify Specialisation (SS): a set of specialised classes in the source are
flattened into a single target class.

In all of these patterns, our technique generates the same target instances as
the benchmark. Therefore, we conclude that the interpretation of the correspon-
dences is coherent with the expected results by experts in these patterns.

5 Conclusions

In this paper, we present a technique to automatically generate SPARQL exe-
cutable mappings. Our technique has been devised for semantic-web ontologies
that are represented using the OWL ontology language. It is based on correspon-
dences and source and target restrictions, and it generates SPARQL executable
mappings in two steps: kernel generation and SPARQL transformation.

130 C.R. Rivero et al.

As a conclusion, we have devised a technique that, building on our experi-
ments, seems promising enough for real-world scenarios: we evaluate it over ten
scenarios and, in our evaluation results, executable mappings are generated in
less than thirty seconds in the worst case. Furthermore, we also test the inter-
pretation of correspondences that our algorithm assumes, and the result is that
it is coherent with the results expected by experts.

The original contributions of our technique are as follows: 1) Instead of re-
lying on instance examples of the target ontology, we automatically generate
executable mappings based on restrictions and correspondences, which makes
it appealing in many practical cases. 2) We have devised an algorithm to gen-
erate kernels, which are language-independent executable mappings that makes
restrictions and correspondences explicit. 3) We have devised an algorithm to
transform kernels into SPARQL executable mappings by linking the variables of
triple patterns in these mappings.

References

1. Alexe, B., Chiticariu, L., Miller, R.J., Pepper, D., Tan, W.C.: Muse: a system for
understanding and designing mappings. In: SIGMOD, pp. 1281–1284 (2008)

2. Alexe, B., Tan, W.C., Velegrakis, Y.: STBenchmark: towards a benchmark for
mapping systems. PVLDB 1(1), 230–244 (2008)

3. Antoniou, G., van Harmelen, F.: A Semantic Web Primer, 2nd edn. The MIT Press,
Cambridge (2008)

4. Bernstein, P.A., Haas, L.M.: Information integration in the enterprise. Commun.
ACM 51(9), 72–79 (2008)

5. Bernstein, P.A., Melnik, S.: Model management 2.0: manipulating richer mappings.
In: SIGMOD, pp. 1–12 (2007)

6. Bizer, C.: The emerging web of linked data. IEEE Int. Sys. (2009)
7. Bizer, C., Lehmann, J., Kobilarov, G., Auer, S., Becker, C., Cyganiak, R., Hell-

mann, S.: DBpedia - a crystallization point for the web of data. J. Web Sem.
(2009)

8. Bizer, C., Schultz, A.: The R2R framework: Publishing and discovering mappings
on the web. In: COLD (2010)

9. Choi, N., Song, I.-Y., Han, H.: A survey on ontology mapping. SIGMOD
Record 35(3), 34–41 (2006)

10. Euzenat, J., Polleres, A., Scharffe, F.: Processing ontology alignments with
SPARQL. In: CISIS, pp. 913–917 (2008)

11. Euzenat, J., Shvaiko, P.: Ontology Matching. Springer, Heidelberg (2007)
12. Fagin, R., Kolaitis, P.G., Miller, R.J., Popa, L.: Data exchange: semantics and

query answering. Theor. Comput. Sci. 336(1), 89–124 (2005)
13. Fuxman, A., Hernández, M.A., Ho, C.T.H., Miller, R.J., Papotti, P., Popa, L.:

Nested mappings: Schema mapping reloaded. In: VLDB, pp. 67–78 (2006)
14. Haas, L.M., Hernández, M.A., Ho, H., Popa, L., Roth, M.: Clio grows up: from

research prototype to industrial tool. In: SIGMOD, pp. 805–810 (2005)
15. Halevy, A.Y.: Answering queries using views: A survey. VLDB J. 10(4), 270–294

(2001)
16. Heath, T., Motta, E.: Revyu: Linking reviews and ratings into the web of data. J.

Web Sem. 6(4), 266–273 (2008)

Generating SPARQL Executable Mappings to Integrate Ontologies 131

17. Karvounarakis, G., Magkanaraki, A., Alexaki, S., Christophides, V., Plexousakis,
D., Scholl, M., Tolle, K.: Querying the semantic web with RQL. Computer Net-
works 42(5), 617–640 (2003)

18. Kensche, D., Quix, C., Li, Y., Jarke, M.: Generic schema mappings. In: Parent, C.,
Schewe, K.-D., Storey, V.C., Thalheim, B. (eds.) ER 2007. LNCS, vol. 4801, pp.
132–148. Springer, Heidelberg (2007)

19. Lenzerini, M.: Data integration: A theoretical perspective. In: PODS, pp. 233–246
(2002)

20. Mecca, G., Papotti, P., Raunich, S.: Core schema mappings. In: SIGMOD, pp.
655–668 (2009)

21. Motik, B., Horrocks, I., Sattler, U.: Bridging the gap between OWL and relational
databases. J. Web Sem. 7(2), 74–89 (2009)

22. Noy, N.F.: Semantic integration: A survey of ontology-based approaches. SIGMOD
Record 33(4), 65–70 (2004)

23. Noy, N.F., Klein, M.C.A.: Ontology evolution: Not the same as schema evolution.
Knowl. Inf. Syst. 6(4), 428–440 (2004)

24. Papotti, P., Torlone, R.: Schema exchange: A template-based approach to data
and metadata translation. In: Parent, C., Schewe, K.-D., Storey, V.C., Thalheim,
B. (eds.) ER 2007. LNCS, vol. 4801, pp. 323–337. Springer, Heidelberg (2007)

25. Parreiras, F.S., Staab, S., Schenk, S., Winter, A.: Model driven specification of
ontology translations. In: Li, Q., Spaccapietra, S., Yu, E., Olivé, A. (eds.) ER
2008. LNCS, vol. 5231, pp. 484–497. Springer, Heidelberg (2008)

26. Pedrinaci, C., Liu, D., Maleshkova, M., Lambert, D., Kopecký, J., Domingue, J.:
iServe: a linked services publishing platform. In: ORES (2010)

27. Petropoulos, M., Deutsch, A., Papakonstantinou, Y., Katsis, Y.: Exporting and in-
teractively querying web service-accessed sources: The CLIDE system. ACM Trans.
Database Syst. 32(4) (2007)

28. Popa, L., Velegrakis, Y., Miller, R.J., Hernández, M.A., Fagin, R.: Translating web
data. In: VLDB, pp. 598–609 (2002)

29. Qin, H., Dou, D., LePendu, P.: Discovering executable semantic mappings between
ontologies. In: Chung, S. (ed.) OTM 2007, Part I. LNCS, vol. 4803, pp. 832–849.
Springer, Heidelberg (2007)

30. Rahm, E., Bernstein, P.A.: A survey of approaches to automatic schema matching.
VLDB J. 10(4), 334–350 (2001)

31. Rivero, C.R., Hernández, I., Ruiz, D., Corchuelo, R.: Mosto: Generating sparql
executable mappings between ontologies. In: Jeusfeld, M., Delcambre, L., Ling,
T.W. (eds.) ER 2011. LNCS, vol. 6998, pp. 118–131. Springer, Heidelberg (2011)

32. Rivero, C.R., Hernández, I., Ruiz, D., Corchuelo, R.: On using database techniques
for generating ontology mappings. In: SWWS (2011)

33. Rivero, C.R., Hernández, I., Ruiz, D., Corchuelo, R.: A reference architecture for
building semantic-web mediators. In: IWSSA (2011)

34. Rivero, C.R., Ruiz, D., Corchuelo, R.: On benchmarking data translation systems
for semantic-web ontologies (Tech. Report),
http://tdg-seville.info/Download.ashx?id=205

35. Shadbolt, N., Berners-Lee, T., Hall, W.: The semantic web revisited. IEEE Int.
Sys. 21(3), 96–101 (2006)

36. ten Cate, B., Chiticariu, L., Kolaitis, P.G., Tan, W.C.: Laconic schema mappings:
Computing the core with SQL queries. PVLDB 2(1), 1006–1017 (2009)

37. Yu, C., Popa, L.: Constraint-based XML query rewriting for data integration. In:
SIGMOD, pp. 371–382 (2004)

http://tdg-seville.info/Download.ashx?id=205

M. Jeusfeld, L. Delcambre, and T.W. Ling (Eds.): ER 2011, LNCS 6998, pp. 132–146, 2011.
© Springer-Verlag Berlin Heidelberg 2011

Enterprise Monitoring Ontology

Patrício de Alencar Silva and Hans Weigand

Department of Information Management
Tilburg University, P.O. Box 90153
5000LE Tilburg, The Netherlands

{p.silva,h.weigand}@uvt.nl

Abstract. A value constellation is an economic system of actors exchanging
objects of value to satisfy a consumer's need. Its operation is driven by strategic
goals, such as shared profit generation and strengthening of long-term business
relationships. Its stability, though, depends on how efficiently its actors perform
their operations and, consequently, on how value is produced. How to enforce
actual value delivery gives rise to several conceptual and practical issues on
service monitoring, being the former the subject of this paper. We hereby
propose a framework comprising an ontology and method for deriving
monitoring requirements from and to value constellations. The framework is
evaluated via case study in electricity markets, where a smart metering
constellation provides monitoring services to another constellation from the
electricity imbalance market. The feasibility analysis shows how to use the
ontology to derive multiple alternatives to monitor a value constellation, and
how to choose the (potentially) most value-adding one.

Keywords: Enterprise Ontology, Electricity Markets, Requirements Engineering,
Service Monitoring, Value Constellations.

1 Introduction

A value constellation is an economic system of actors collaborating via exchange of
objects of value, so as to fulfill a consumer’s need [1]. In such a system, actors share
common interests, such as to increase profit generation and preserve long-term
collaborations. The stability of a value constellation, though, is a product of individual
operational performances on value production and delivery, whereby collective value
generation emerges. Indispensably for medium and small-scale participant
enterprises, it is essential not only to engage but also remain on one or many
constellations, for the sake of individual business survival and resilience.

Enforcement of operational performance somewhat depends on the design and
application of monitoring mechanisms. The main research question here is how a
value constellation can be monitored. This question can be decomposed into many
conceptual and practical ones, which the former comprehends the subject of research
reported in this paper. Hence, taking the representation of a value constellation as a
starting point (i.e. the specification of its constituent actors, operations and exchanged
objects), the conceptual sub-questions of interest here are: (1) what the monitoring

 Enterprise Monitoring Ontology 133

requirements of a value constellation are and (2) how these requirements can be
derived and represented. To our best knowledge, there is no systematic approach
available to derive monitoring requirements for value constellations on the business
strategy level. There are sufficient motivations to treat such research questions,
though. Among them, we emphasize the possibility of furnishing business analysts
with a reasoning tool for designing monitoring requirements for an enterprise
operating in the context of a value constellation.

To cope with the before mentioned research questions, we propose a framework to
derive monitoring requirements from and to value constellations. The framework
comprises an ontology, named Enterprise Monitoring Ontology (EMO) and a
(business strategy) reasoning method. EMO can be used to re-produce a value
monitoring viewpoint from an individual actor/enterprise which has a monitoring
need that can be fulfilled by a (monitoring) value constellation. Taking this actor’s
perspective as predominant over the other ones’, EMO builds a value monitoring sub-
system, with a proper set of monitoring roles, operations and objects. That is, EMO is
a representation of a micro-level (individual) behavioral specification of operational
stereotypes for monitoring to be embodied within a value constellation. EMO
comprises three sub-ontologies, representing different but complementary views
relative to a value level monitoring viewpoint: (1) monitoring goal ontology, (2)
monitoring policy ontology, and (3) monitoring metric ontology. The reasoning
method can be used on the derivation of the views, which are further reified into
alternative value constellations that supply other constellations with monitoring
objects. Not only are monitoring constellations expected to be economically self-
sustainable, but also value-adding sub-systems. Ultimately, the reasoning method assists
on selecting the (potentially) best pay-off monitoring constellation.

The paper is organized as follows. Section 2 provides some of the main premises of
the theories adopted as references to describe the operation of value constellations, and
how they can be extended and used as meta-modeling constructs for building value
constellations. In Section 3, EMO is introduced, along with a detailed description of its
constituent sub-ontologies. In Section 4, the use of the reasoning method is
demonstrated on the feasibility analysis of monitoring constellations for a business case
in electricity markets. Discussion and future outlook are provided in Section 5.

2 Theoretical Background

A handful of theories have been proposed to explain how value constellations (a.k.a.
enterprise collaborations, value systems, service networks, etc.) form and operate, and
other ones continue to appear. Each of these theories focuses on a different business aspect
or phenomena. Some aspects conflict, some overlap. We cite here three of these theories,
along with their corresponding modeled aspects. The first one is the e3value, a framework
with ontology and method, proposed by Gordijn [1]. E3value models a value constellation
as a system of actors exchanging objects of economic value. It focuses primarily on the
profitability analysis and assessment of a value constellation as an economically
sustainable system. The second one is the Resource Event Agent Ontology (REA),
proposed by McCarthy [2]. REA models a value constellation as a system of agents
performing economic events that change the state of resources. REA focuses on

134 P. de Alencar Silva and H. Weigand

describing the enterprise accounting phenomena, by typifying business events and relating
them to their corresponding actors, via commitment relationships. The third one is the
Business Modeling Ontology (BMO), proposed by Osterwalder [3]. BMO can be used to
build a model of a firm for an individual enterprise, making use of four different views
that much resembles to the four perspectives of the Balance Scorecard, proposed by
Kaplan and Norton [4]. BMO focuses on the aspect of the relationship between the
enterprise and the environment characterized by customer’s demands.

A few contributions have been done on merging these and other satellite theories
in order to find a common denominator that could explain why and how modern
enterprises operate in business collaboration contexts. Andersson et al. [5] have
merged the before mentioned theories into a (Business) Reference Ontology. Among
many motivations of this work, the authors highlight the importance of identifying
intersections among the merged ontologies as a mean for individual ontology
evolution. The proposed ontology comprises approximately 17 basic concepts and 40
core relationships (incl. generalizations and aggregations). As alternative business
ontologies continue to be proposed, other reconciliations can succeed towards a core
understanding of the phenomena of business collaboration.

One of the most comprehensive theories on enterprise modeling proposed thus far is
the Enterprise Ontology, by Dietz [6]. Grounding on a Language Action Perspective
(LAP), the author defines and articulates three basic concepts and two relationships to
describe how modern enterprises operate. A brief description of the theory follows. An
enterprise system is composed by three power sets: actors, production operations and
coordination operations. An actor reifies the notion of authority to be able to perform both
types of operations. A production operation relates an actor to the object to be produced. A
coordination operation relates two actors by the object they communicate. Actors are
assigned to production operations via competence relationships, and to coordination via
responsibility relationships. Operations are still classified by its state: before being
performed, operations are acts, whereas after successful execution, they produce facts.
These basic concepts and relationships define the first of four axioms of the theory: the
operational axiom. The other ones comprise the transactional axiom (describing how
operations follow a transactional pattern), the composition axiom (describing how
transactions can be composed) and the distinction axiom (describing how human actors
within an enterprise perform ontological, infological and datalogical acts). The ontology
defines a closure organizational theorem, which assigns the realization of ontological,
infological and datalogical acts to distinct subsystems within the enterprise.

In order to answer the question of how a value constellation can be monitored, we
reconcile concepts from the Enterprise Ontology of Dietz, the Reference Ontology of
Andersson et al., and the e3value ontology of Gordijn. The output of this reconciliation
is the so-called Enterprise Monitoring Ontology (EMO). According to Dietz, the
elements of the Enterprise Ontology can be extended by stereotypes to model different
interfaces an enterprise operation can expose to the outside world. More precise
enterprise actor’s stereotypes can be described via assignments to these operations. We
therefore use the Enterprise Ontology as a reference meta-theory and extend it with
stereotypes for characterizing monitoring operations. Some of the stereotypes are reified
by concepts from the Reference Ontology of Andersson et al. and further realized by
e3value elements. Finally, the monitoring stereotypes are instantiated with some
parameters from a business case. EMO is described in details in the next section.

 Enterprise Monitoring Ontology 135

3 Enterprise Monitoring Ontology (EMO)

EMO defines the static abstract space of a value monitoring system. It comprises
three distinct but aligned sub-ontologies, each describing a different view on the
system: (1) the monitoring goal ontology, (2) the monitoring policy ontology, and (3)
the monitoring metric ontology. This section is dedicated to explain the formulation
and integration of these views into the value monitoring viewpoint.

3.1 Monitoring Goal Ontology

The monitoring goal ontology is the starting and ending point for deriving a value
monitoring viewpoint. Actually, it comprises a process ontology, whereby one can
navigate across the other sub-ontologies. It is described as follows and is depicted in
Fig. 1. The ontology grounds on three foundational concepts: actor, operation and object,
all stereotyped as «metaclass». The concept of object is equivalent to the concept of
resource from the Reference Ontology, which defines resources as “valuable objects to the
actors”. An actor aims to achieve a goal. Here, at least two types of goals can be
distinguished: a core business goal, to be accomplished via core business operations, and a
monitoring goal, derived from the core goal and providing means to achieve it. A metric
parameterizes a goal. As a mean to accomplish a goal, an actor may engage on performing
operations, which are classified into production and coordination [6].

A coordination operation relates two actors via «commitment» of responsibility. Dietz
identifies a basic set of coordination operations, such as request, promise, state and accept.

Fig. 1. Monitoring Goal Ontology

136 P. de Alencar Silva and H. Weigand

Coordination operations always have production ones as a subject (i.e. as a propositional
content). Actors get committed to production acts by competence. Anderson et al. have
identified two stereotypes of production acts: conversion and transfer. Examples of
conversion are to use, consume or produce an object, whereas examples of transfer are to
give or to take (the right on) some object. In the end, all of these operations somewhat
change some feature of the object in discourse.

At this point, at least two types of object must be identified: core business objects and
monitoring objects. A core business object represents a promise of value production, from
one actor to another, whereas a monitoring object regards the evidence of real value
delivery. Actors use metrics to parameterize both goals and objects. A core business object
fulfils a core business goal, whereas a monitoring business object fulfils a monitoring goal.
The parameterization provided by a metric allows for confrontation of a value promise
(i.e. the core object) with the real value delivery (i.e. the monitoring object). The internal
feedback loop closes when the actor tracks whether his monitoring goal was achieved or
not, and in turn, how it supported the achievement of a core business goal.

The instantiation of these relationships provides a characterization of a value
monitoring goal. The next step comprises the definition of monitoring policies restrictions
on the type of operations to be performed by each actor in a value monitoring system.

3.2 Monitoring Policy Ontology

The monitoring policy ontology describes a view that quantitatively restricts how monitoring
goals can be achieved. It grounds on the core elements of the Role Based Access Control
(RBAC) model [7]. RBAC provides a core set of policy concepts, whose precise semantics
definition depends on the system under design. The semantics of a value monitoring policy is
depicted in Fig. 2 and is described as follows. A policy is defined by two assignment
relationships: one for relating roles to performing actors, and one for relating actors to
permissions. A policy, therefore, defines who can do what and how. The stereotypes for
monitoring actors were identified from the literature in Contract Law [8], specifically on
what concerns contract enforcement parties. For a given monitoring policy, an actor can play
one of the four roles: (1) a monitor, an active actor that wants to monitor a monitoree; (2) a
monitoree, a passive actor committed to a monitor via promise to deliver a core business
object; (3) a third-party, a neutral party acting on behalf of the monitor to execute monitoring
operations; and (4) a regulator (e.g. certification authorities, regulation bodies, etc.), who is
in the exercise and possession of a monitoring system norm.

According to Coyne and Davis [9], good RBAC engineering practices include firstly
characterizing policy permissions and, further, assigning them to build stereotyped roles to
be played by actors. Permissions are logical containers relating operation types to object
types. They can provide access to operations and disclosure of objects. As mentioned before,
operations (coordination or production) are typified by the changes they cause on features of
objects. To provide a characterization of the production operations, we describe the
relationships between operations and objects, by using the conversion events from
Andersson et al. [5], stereotyped as «conversion». Two types of operations are identified:
monitored and monitoring operations. A monitoring operation produces «conversion» a
monitored object (i.e. the primary evidence). A monitoring operation in turn uses
«conversion» monitoring and regulatory objects to produce «conversion» a monitoring object.
Here, regulatory objects stand for all kinds of objects that unlock or disclosure private

 Enterprise Monitoring Ontology 137

Fig. 2. Monitoring Policy Ontology

verifiable information. Examples are: accreditations, certifications, public keys, property
rights, etc.). Another type of object comprises the counter objects. They are also part of a
policy, being provided in reciprocity to all other objects. The crucial importance of these
objects will become clear on the monitoring metric ontology. Yet from a production
perspective, it is important to define the monitoring operations performed by each role.
Firstly, regulators have authority to define public policies. Public policies are templates
subsuming the allowed alternatives whereby all the actors can perform operations. In theory,
all the private policies must be compliant (i.e. subsumed by) the public ones. All actors have
responsibility «commitment» on defining their own private monitoring policies. A monitoree
has the responsibility «commitment» on performing monitored operations, whereas monitors
and third-parties may have the competence «commitment» on performing monitoring ones.

From a coordination perspective, it is worth to define what objects are communicated
from and to whom. We use the transfer events from Andersson et al. [5], stereotyped as
«transfer». Thus, a monitoree gives «transfer» monitoring objects to other monitors and/or
third-parties (indirectly, from monitored operations). A regulator gives «transfer»
regulatory objects to monitors and/or third-parties. Yet, monitors and third-parties can
take «transfer» regulator objects from regulators. To close the monitoring policy loop with
the main production operation, monitors can consume «conversion» monitoring objects
(indirectly, via third-party monitoring operations, or directly, via his own monitoring
operations).

The subtlest conceptual distinction of this sub-ontology is the stereotyping of
monitoring operations. By means of that, any domain-specific monitoring operation (e.g.
collecting, filtering, processing, publishing, etc) could expose a monitoring or monitored

138 P. de Alencar Silva and H. Weigand

behavior. The difference relies on how an actor uses or exposes his operations via
monitoring interfaces (described in terms of monitoring objects converted or transferred).

3.3 Monitoring Metric Ontology

Complementary to the monitoring policy ontology, the monitoring metric ontology aims
to restrict qualitatively how monitoring goals can be fulfilled by monitoring objects.
Another important aspect is that it takes the perspective of the monitor role on typifying
and evaluating monitoring objects according to the (potential) value they return. The
ontology is depicted in Fig. 3 and is described as follows. An actor playing the role of a
monitor uses metrics to parameterize his goals and objects. In order to be consistently
traceable via objects, the semantics of goals and metrics must be equivalent. That is, as the
fulfillment of goals depends on the monitoring objects, the monitorability of a goal
becomes dependent on the monitorability these objects.

Fig. 3. Monitoring Metric Ontology

A metric is defined as a quaternary relationship with four dimensions, each of them
constituting a proper universe of discourse: physical quantity, physical quality, time and
space. According to Gruber and Olsen [10], physical quantities represent a whole universe
of ontological discourse. The authors propose a comprehensive ontology for classifying
physical quantities according to their mathematical dependencies. The ontology is aimed
to support diverse applications on mathematics, engineering and physics, where there is a
need for consensus on comparability and order. Examples of quantity classes are tensor
quantities, units of measure and magnitudes. Regarding physical qualities, these are
properties that distinguish a certain object in reality as unique. The value attributed to
these properties may depend on relative human interpretation, in opposition to the exact
nature of quantities. Specifically on the context of value modeling, Weigand et al. [11]
have defined qualities of value objects as second-order values. In practice, such properties
depend on the existence of the object they qualify. In the ontological discourse, they are
independent entities. Examples of second-order values are aesthetics, experience and
convenience. It is worth noting that such properties are much more comprehensive than
non-functional properties of services [12]. In the business context, McCannon discusses

 Enterprise Monitoring Ontology 139

on empirical evidences of trade-offs and correlations between quantity and quality of
provisioned economic objects [13]. For instance, considering the time of manufacturing an
economic object as constant, increasing demand for quantity may cause decreases on
quality. Finally, time and space dimensions close the description of a monitoring metric.
These dimensions can somehow change quality properties of a physical object. For
instance, the economic value of an apartment may vary according to the location and the
season of the year. When parameterizing an object of value, a metric can be used on the
design of (business) Key Performance Indicators, as referred by Parmenter [14]. Ram and
Liu [15] employ some of the mentioned metric dimensions to provide semantics for data
provenance in terms of characterization of events (and not objects, as here). Besides, time
and space can be used as consistency parameters for traceability of monitoring goals by
means of monitoring objects.

The ultimate purpose of the monitoring metric is the parameterization of all the objects
of value being exchanged in a value monitoring system. A monitoring object fulfills a
monitoring goal of the monitor role, as it attests on the delivery of the value promised in
terms of a core business object. The confrontation of these two objects is one of the most
important monitoring relationships to be traced. It is worth to highlight the importance of
the counter objects in this context. Among the Ten Principles of Economics discussed by
Mankiw [16], the second one states that the value of something is what you give up to get
it. Cost here is much more comprehensive than monetary value, and is equivalent to value.
Thus, as counter objects are offered in economic reciprocity in return of all the other types
of objects, they can be used to assess directly the value of the monitoring within a value
monitoring sub-system. As the regulatory and the monitored objects are also used and
transformed into a monitoring object, they can be used to assess indirectly the value of
monitoring in this case. The loop closes when a monitoring object fulfills a monitoring
goal, which is the purpose of the monitor role. Instances of value monitoring constellations
can be assessed and adapted via cyclic interactions from the goal, through the policy, to
the metric ontologies.

4 Case Study Evaluation

In this section we demonstrate how to derive a value monitoring viewpoint using
EMO in conjunction with a strategic reasoning method. The case is provided by the
Energy Research Center of the Netherlands (ECN) and is concerned with the need for
monitoring electricity production in the market of renewable energy sources.

4.1 Business Case Description

The case comes from the electricity markets, where the commodity is traded. A full
description of the roles played in this system is provided by the Directive 2004/54/EC [17].
The case is briefly described as follows. All the electricity suppliers accredited as Balance
Responsible Parties (BRP) have the obligation to provide estimates on the amount of
electricity to be produced to the Transmission System Operator (TSO). Such estimates,
called energy programs, must be provided each 15 minutes, so as the TSO can have a big
picture on the energy flow in the whole system. Yet, environmental drivers have pushed the
inclusion of renewable energy sources (e.g. biomass, solar and wind energy) in the electricity

140 P. de Alencar Silva and H. Weigand

market, which can also be accredited as BRPs. However, intermittent resources such as solar
panels and wind turbines often fail on delivering the expected amount of electricity, causing
extra imbalances to the system. When a wind turbine fails, it has to pay balancing costs to the
TSO. There are two ways the BRP can cope with the implied penalties: (1) to pay the
imbalance costs directly to the TSO, which can be high as the TSO offers transparent
balancing by using its own reserves; or (2) to use its own portfolio of small-scale Distributed
Energy Resources (DER) to cope (potentially) with the imbalance. The second option pushes
the BRP to freelance on the electricity wholesale market so as to discover a bundle of DERs
to cope with the imbalance. This last option has a high business value to the BRP, as it may
not only cope with the caused imbalance, but also generate profit.

A value constellation for this case is depicted in Fig. 4, using the e3value graphical
representation. A BRP has a need to balance its electricity production, which can be
fulfilled by exchanging electricity «core object» for money «counter object» in three ways: (1)
directly with DERs; (2) indirectly, via Aggregators; and (3) both. Aggregators bundle
electricity produced by small-scale DERs, and sell it to the BRPs. Aggregators have been
implemented in reality in the agriculture sector in the Netherlands (bundling large scale
DERs). Implementing aggregators for scalable management of small-scale DERs is still
subject of research. Any of the actors can fail on delivering the amount of electricity
promised, causing a chain of imbalances in the system. At this point, our research question
can be applied to this case: how a value constellation from the electricity imbalance
reduction market can be monitored?

Fig. 4. Electricity Imbalance Reduction Value Constellation

4.2 Reasoning on EMO: Strategic Value Monitoring Method

To provide alternative answers to the previous question, we develop on the use of EMO
and its reasoning method so as to produce a value monitoring viewpoint of an individual

 Enterprise Monitoring Ontology 141

actor willing to monitor value delivery from his business partners. The method comprises
five steps, which are explained as follows.

Step 1 – Monitoring Scenario and Private Goal Setting: a monitoring scenario identifies
who wants to monitor whom, i.e. monitor and monitoree. The monitor has a monitoring
goal, which is derived from his core business goals and can be fulfilled by monitoring
objects, as specified in the goal monitoring ontology (vide Fig. 1). This approach leads to
monitoring a value constellation by interactions involving pairs of actors. In this case,
the monitoring of the whole constellation is not centralized, but emerges from its
constituent monitoring interactions. This approach much conforms to the shareholder’s
perspective of the enterprise, discussed by Smith [18]. An actor operating within a
constellation as a shareholder has selfish interests on profitability as a priority over social
responsibility. The opposite approach represents the stakeholder’s perspective. Squazzoni
[19] also analyses this kind of phenomena on understanding global behavior of social
systems, starting from the analysis of individual behavior.

We select the monitoring scenario involving the aggregators (as monitors) and the DERs
(as monitorees). The monitor has core business and monitoring goals which can be
parameterized via metric ontology. For example, an aggregator may have a core business
goal represented by the tuple: <Unit of measure|Quality|CommodityTime|Location>. An instance of
this goal is <2.775 kW|Predictability 0.85|Electricity|15 min.|Noord-Brabant>, where: kW are used as
unit of measure for electricity; 0.85 is the predictability factor (i.e. a second order value) that
the amount of electricity will be produced; 15 minutes is the energy program time window;
and Noord-Brabant, a geographic region in the Netherlands. From this core business goal,
multiple monitoring goals can be derived and parameterized. As each instance of a metric
tuple produces a different goal characterization, individual metric dimensions can be taken as
consistency variables for metric derivation. For instance, if the physical quantity is the
consistency variable, the amount of electricity of individual DERs can be monitored and
confronted with the total amount to be produced. If the time dimension is the consistency
variable, it makes sense to check the production into time slots shorter than 15 minutes.
Complexity on metric decomposition increases as multiple dimensions are chosen as
consistency variables. An example of monitoring goal would be represented by the tuple
<XkW|0.85|Electricity|15min.|Tilburg>, which reads as “to verify whether an X amount of
electricity, with a predictability factor of 85% is produced by a DER from Tilburg, each 15
minutes”. As Tilburg is a sub-region of the Noord-Brabant Dutch province, the monitoring
goal decomposition would be derived taking the spatial dimension as a consistency variable.
Having derived the monitoring goal from a core business one, the next step comprises how
to get the monitoring objects that will fulfill this goal.

Step 2 – Public Monitoring Policy Design: after setting his monitoring goal, a monitor
must reason on the possible ways to fulfill it. In this case, monitoring becomes a “value
need”, and the problem is how to configure a value constellation to fulfill this need with
monitoring objects. According to the monitoring policy ontology, a monitoring policy
consists on what monitoring objects can be provided and communicated, from whom to
whom and via what kind of operation. A public monitoring policy (theoretically) includes
all the allowed alternatives to get monitoring objects. Regulators are responsible for
defining public policies governing the operation of business collaboration domains.

An example of a monitoring policy for our business case is depicted in Fig. 5. This
policy is a value representation of the original policy stated by the NMa/DTe Electricity

142 P. de Alencar Silva and H. Weigand

Fig. 5. Value Monitoring Public Policy

Metering Code, in the Netherlands [20]. Its description follows. An aggregator, assigned
with a monitor role, wants to monitor the production of electricity of the DERs, which
operate as monitorees. DERs are responsible for the production operation of “producing
electricity”, which in this case is stereotyped as a monitored operation, as it provides
monitored objects in exchange of counter objects (vide Fig. 2). All types of objects are
communicated via coordination operations which, in e3value, are instantiated by value
exchanges. Boundary elements graphically define where the monitored objects are
produced, whereas a consumer’s need element indicates where the monitoring objects are
consumed. An aggregator can get the monitoring objects (information) of interest via three
alternatives: (1) directly from the DERs; (2) indirectly, via Metering Responsible Parties
(MRPs), which are the third-parties that can perform metering operations; and (3) from
both ways, which would allow for evidence confrontation.

In the first alternative, the monitoring is self-enforced, as the monitor has to transform
the monitored object into a monitoring one, using his own internal production operations.
In this business market, aggregators can only become competent to perform metering
operations if accredited by the Distribution Network Operator (DNO), which has the
authority to provide the accreditation «regulatory object» for the exercise of the Metering
Responsibility. In this case, an accreditation does not require a monetary object in
reciprocity, but a special object, called virtual monitoring channel «counter object», whose
relative value to the DNO comprises the controllability over the monitoring objects
produced by the system. Thus, accreditations work as public keys to unlock the access to
the monitored objects and to transform them into monitoring ones.

 Enterprise Monitoring Ontology 143

In the second alternative, the monitoring is third-party enforced. The MRPs, acting on
behalf of the aggregators, get the data from the DERs and transform it into monitoring
objects (information), via metering operation (stereotyped as «monitoring operation»). In the
third alternative, double enforcement happens. This situation is more appropriate for cases
when the risk of fraud on value delivery is high. In short, a value monitoring policy
specifies monitoring stereotypes of objects, operations and actors. It works as a template to
define possible instances of value constellations allowed to fulfill a monitoring goal. Here,
all the stereotypes defined in the monitoring policy apply.

Step 3 – Private Monitoring Policy Discovery: still reasoning on the monitoring policy sub-
ontology, a monitor is responsible for elaborating his own private monitoring policies. These
in turn must be compliant with (i.e. subsumed by) public ones. Private monitoring policies
can also be discovered from public ones. From the policy depicted in Fig. 5, it is easy to
discover the only three alternatives which could constitute private monitoring policies
followed by the monitor. However, as the number of policy alternatives increases (specified
in terms of traces, via AND/OR connectors), it may become necessary to discover alternative
ways to satisfy a monitoring goal. Each alternative comprises a different value monitoring
constellation, with different object flows. That is, taking a simple pair of actors from a given
core business collaboration as a basic monitoring scenario (with a monitor and a monitoree
as respective starting and ending points), multiple value monitoring constellations can be
derived to support that collaboration with monitoring services.

Step 4 – Private Monitoring Policy Selection: as many monitoring constellations may be
derived to achieve the same monitoring goal, a monitor actor is probably interested on
selecting the constellation whereby he could get the monitoring objects with the best payoff.
It is critical for a monitoring constellation to be self-sustainable. It is desirable, though, that it
adds value to a core business constellation, i.e. generate profit. One way to select the best
payoff monitoring constellation is to parameterize all the stereotyped objects using the
monitoring metric sub-ontology.

Considering the practical definition of value stated by Mankiw [16], that the value of
something is what you give up to get it, one stereotyped object deserves special
consideration: the counter objects. According to the policy and metric sub-ontologies, these
objects are offered in reciprocity of all the other stereotyped objects. Considering yet that
regulatory and monitored objects are used to produce monitoring objects and that core
business objects do not belong to the monitoring subsystem, but to the core business one, the
definition of the value of monitoring can be simplified to the difference between the value of
counter objects provided and received by the monitor actor. Indeed, counter-objects
represent what the monitor relinquishes so as to ultimately get the monitoring objects. If the
difference is positive, the monitoring constellation is self-sustainable and value-adding for
the monitor. If the difference is null, the monitoring constellation is effective on mitigating
risks of value creation in the core business the monitor participates. If the difference is
negative, the monitoring payoff actually decreases the monitor’s value production on the
core business. Nevertheless, if monetary value cannot be assigned to counter objects, the
assessment of the value of monitoring becomes more difficult to be performed. In this case,
would be more relative than absolute, more qualitative than quantitative.

Step 5 – Private Monitoring Goal Tracing: the traceability of a monitoring goal depends
primarily on how the monitoring objects are parameterized, and how they are confronted
with core business objects. As the monitoring objects constitute evidence of real value

144 P. de Alencar Silva and H. Weigand

delivery, they must be confronted with their corresponding value promises, stated in terms of
core business objects, which flow in the core business constellation. As explained before,
quantities, time and space can be used for metric consistency and for goal decomposition and
tracing. Finally, goals are also related to each other. A monitoring goal has to be
accomplished as a mean to achieve higher-level business goals of the actor playing the role
of a monitor.

These five steps constitute a strategic method to be used with EMO to derive and reason
upon monitoring requirements of a value constellation. Its application on the mentioned
business case aims to show feasibility (rather than completeness) of the proposed approach.

5 Discussion

This paper has addressed some of the conceptual issues on how value constellations can be
monitored. Its main contribution comprised an ontology and method that can be used to
derive monitoring requirements of a value constellation. One of the most distinguishable
aspects of this approach is that it considers monitoring as a behavioral phenomena occurring
across the operations performed by an enterprise. A possible implication from adopting such
a point-of-view on engineering monitoring requirements whatsoever is that a monitoring
system does not necessarily need to be constructed from entirely new operations to fulfill a
certain monitoring demand. Instead, it can be built through stereotypes defining behavioral
specifications (contracts) to be fulfilled by actors, operations and objects that typically
compose a monitoring system. Within the enterprise modeling domain, it means that the
effort paid on designing new operations can be substantially reduced, as long as existing
operations expose monitoring interfaces to the outside world.

Concerning related approaches, the one that most closely relates to this research is the
e3control framework, proposed by Kartseva [21]. E3control aims to design enterprise level
controls against organizations behaving opportunistically within a value constellation. Our
approach differs from e3control in three main aspects. The first one is that monitoring
comprises one among many instruments of organizational control. Thus, we provide a
treatment for (value level) monitoring in a much deeper level of detail of what e3control
does (with the specification of only two patterns for monitoring). The second aspect is that,
e3control relies on patterns to describe recurrent controlling scenarios, whereas we use the
concept of operational stereotyping, which is more flexible on encompassing multiple
monitoring scenarios without confusing the designer with too many intermediate models.
Besides, patterns rarely fit smoothly on covering complex scenarios, often demanding
adjustment by the use of “glue patterns”. The third and most important differing aspect is
that, in e3control, controlling objects often interleave core business networks, being
exchanged for core business objects. Such an approach makes difficult to assess the
economic sustainability of controlling strategies, as they become dependent on the business
they control. In our approach, there is a clear separation of the type of objects flowing in a
core business constellation and the objects flowing within the monitoring constellation. The
distinction goes even further, via stereotyping of monitoring operations and roles.

Regarding the case study evaluation, the contribution is dual. This case has furnished
our framework with problems on the interleaving of imbalance reduction value
constellations with the smart metering ones. One of the main barriers on the adoption of
smart metering programs in many European countries is that the benefits of this

 Enterprise Monitoring Ontology 145

technology may accrue to other parties than the ones that bear the costs. Without a clear
definition of operational flows, value creation may outflow from one constellation to
another, leaving no room for traceability. In this sense, the Enterprise Monitoring
Ontology also represents a contribution for this business case, on assisting to separate
supporting constellations without disconnecting them, specifically for modeling
constellations that provide monitoring services to other ones.

As a future research direction, the next step comprises how to go from a value
viewpoint to a process viewpoint on service monitoring. In this case, value creation
becomes dependent on the execution of business activities. We are currently
investigating how the Language Action Perspective (LAP) can be primarily used to
formalize monitoring commitments on the process viewpoint.

References

1. Gordijn, J., Akkermans, H.: Value based Requirements Engineering: Exploring Innovative
e-commerce Idea. Requirements Eng. Journal 8(2), 114–134 (2003)

2. McCarthy, W.E.: The REA Accounting Model: A Generalized Framework for Accounting
Systems in a Shared Data Environment. Accounting Review 57, 554–578 (1982)

3. Osterwalder, A.: The Business Model Ontology: A Proposition in a Design Science
Approach. PhD Thesis. University of Lausanne (2004)

4. Kaplan, R.S., Norton, D.P.: The Balanced Scorecard: Translating Strategy into Action.
Harvard Business Press, Cambridge (1996)

5. Andersson, B., Bergholtz, M., Edirisuriya, A., Ilayperuma, T., Johannesson, P., Gordijn, J.,
Grégoire, B., Schmitt, M., Martinez, F.H., Abels, S., Hahn, A., Wangler, B., Weigand, H.:
Towards a Reference Ontology for Business Models. In: Embley, D.W., Olivé, A., Ram, S.
(eds.) ER 2006. LNCS, vol. 4215, pp. 482–496. Springer, Heidelberg (2006)

6. Dietz, J.: Enterprise Ontology: Theory and Methodology. Springer, Heidelberg (2006)
7. Sandhu, R., Ferraiolo, D.F., Kuhn, D.R.: The NIST Model for Role-Based Access Control:

Toward a Unified Standard. In: Proc. of the 5th ACM Workshop on Role-Based Access
Control, pp. 47–63 (2000)

8. Smith, S.A.: Contract Theory. Clarendon Law Series. Oxford University Press, USA
(2004)

9. Coyne, E.J., Davis, J.M.: Role Engineering for Enterprise Security Management. Artech
House, Inc., Norwood (2007)

10. Gruber, T.R., Olsen, G.R.: An Ontology for Engineering Mathematics. In: Doyle, J.,
Torasso, P., Sandewall, E. (eds.) 4th Int. Conf. on Principles of Knowledge Representation
and Reasoning, Gustav Stresemann Institut, Bonn, Germany. Morgan Kaufmann, San
Francisco (1994)

11. Weigand, H., Johannesson, P., Andersson, B., Bergholtz, M., Edirisuriya, A., Ilayperuma,
T.: Strategic Analysis Using Value Modeling–The c3-Value Approach. In: Proc. of the
40th HICSS, p. 175c. IEEE Computer Society, Washington, DC, USA (2007)

12. O’Sullivan, J., Edmond, D., ter Hofstede, H. M.: Formal Description of Non-Functional
Service Properties. Technical FIT-TR-2005-01, Queensland University of Technology,
Brisbane (2005), http://www.wsmo.org/papers/OSullivanTR2005.pdf

13. McCannon, B.C.: The Quality-Quantity Trade-off. Eastern Economic Journal 34(1) (2008)
14. Parmenter, D.: Key Performance Indicators: Developing, Implementing, and Using

Winning KPIs. Wiley, Chichester (2007)

146 P. de Alencar Silva and H. Weigand

15. Ram, S., Liu, J.: Understanding the semantics of data provenance to support active
conceptual modeling. In: Chen, P.P., Wong, L.Y. (eds.) ACM-L 2006. LNCS, vol. 4512,
pp. 17–29. Springer, Heidelberg (2007)

16. Mankiw, N.G.: Principles of Economics, 4th edn. South-Western College Pub.(2006)
17. European Parliament and Council. Common Rules for the Internal Market in Electricity.

EU Directive 2004/54/EC. Official Journal of the European Union (July 15, 2003)
18. Smith, H. J.: The Shareholders vs. Stakeholders Debate. MIT Sloan Management Review,

85–90 (2003)
19. Squazzoni, F.: The Micro-Macro Link in Social Simulation. Sociologica (January 2008),

http://www.sociologica.mulino.it/doi/10.2383/26578
20. NMa/DTe.: Electricity Metering Code: Conditions within the meaning of Section 31, sub-

section 1b of the Electricity Act 1998, Informal Translation. Office of Energy Regulation
(part of the Netherlands Competition Authority) (September 4, 2007)

21. Kartseva, V., Gordijn, J., Tan, Y.-H.: Designing Value-Based Inter-organizational Controls
Using Patterns. In: Lyytinen, K., Loucopoulos, P., Mylopoulos, J., Robinson, B. (eds.)
Design Requirements Engineering. LNBIP, vol. 14, pp. 276–301. Springer, Heidelberg
(2009)

Multilingual Ontologies for Cross-Language
Information Extraction and Semantic Search

David W. Embley1, Stephen W. Liddle2, Deryle W. Lonsdale3,
and Yuri Tijerino4

1 Department of Computer Science
2 Information Systems Department

3 Department of Linguistics and English Language,
Brigham Young University, Provo, Utah 84602, U.S.A.

4 Department of Applied Informatics,
Kwansei Gakuin University, Kobe-Sanda, Japan

Abstract. Valuable local information is often available on the web, but
encoded in a foreign language that non-local users do not understand.
Can we create a system to allow a user to query in language L1 for
facts in a web page written in language L2? We propose a suite of mul-
tilingual extraction ontologies as a solution to this problem. We ground
extraction ontologies in each language of interest, and we map both the
data and the metadata among the language-specific extraction ontolo-
gies. The mappings are through a central, language-agnostic ontology
that allows new languages to be added by only having to provide one
mapping rather than one for each language pair. Results from an im-
plemented early prototype demonstrate the feasibility of cross-language
information extraction and semantic search. Further, results from an ex-
perimental evaluation of ontology-based query translation and extraction
accuracy are remarkably good given the complexity of the problem and
the complications of its implementation.

1 Introduction

Many users, especially those traveling abroad or doing business in multiple coun-
tries and cultures, would like to be able to query foreign-language sites on the
web in their own language. An ideal app would allow users to pose queries in
their own language, run these queries against foreign-language sites, and return
results in their own language. A user U , for example, who speaks only English,
may wish to enquire about nearby restaurants while visiting Osaka, Japan. Us-
ing an iPhone, U may wish to pose a query to find a “BBQ restaurant near the
Umeda station, with typical prices less than $40.” The app should rewrite U ’s
inquiry in Japanese, access Japanese web pages to find restaurants that satisfy
the criteria, respond with answers in English, and allow U to tap on answers to
obtain more detail in English. Figure 1 gives actual answers retrieved from the
web for this sample query. Figure 2 shows an interface with the query in a type-
in text field, the English version of the answers retrieved, and a list of additional

M. Jeusfeld, L. Delcambre, and T.W. Ling (Eds.): ER 2011, LNCS 6998, pp. 147–160, 2011.
c© Springer-Verlag Berlin Heidelberg 2011

148 D.W. Embley et al.

店店店名名名 住住住所所所 ジジジャャャンンンルルル 予予予算算算

新焼肉屋 梅田1-10-19 焼肉 2000
肉屋 梅田1-11-29 焼肉 3000
美味焼肉 梅田2-30-22 焼肉 1500
焼肉屋 梅田3-19-28 焼肉 3000
焼き焼き 梅田2-18-26 焼肉 1000

Fig. 1. Results Extracted from Japanese Web Pages

Fig. 2. English Query over Japanese Data with Results Translated to English

available information about the restaurants. If U then checks the check-box for
one or more of these restaurants (e.g., the checked box for Shin-YakinikuYa) and
clicks on PaymentMethod, the additional information in Figure 3 appears.

Fig. 3. Payment Method Information

Although within-language information extraction and semantic search is a
common research topic (e.g., [1,2]), much less effort has been devoted to cross-
language information extraction and query processing, where the user’s query
and the information sources are not in the same language (e.g., [3]). The U.S.
government1, the European Union2, and Japan3 all have initiatives to help
1 See http://trec.nist.gov
2 See http://www.clef-campaign.org
3 See http://research/nii.ac.jp/ntcir

Payment Method
http://trec.nist.gov
http://www.clef-campaign.org
http://research/nii.ac.jp/ntcir

Multilingual Ontologies 149

further the development and evaluation of multilingual and crosslinguistic in-
formation retrieval and information extraction systems. Of course, companies
interested in web content and market share are also working on ways to provide
multilingual access to the Internet. Many of the existing crosslinguistic efforts
involve a scenario that includes a hybrid of variously configured extraction and
machine-translation technologies [4]. Such approaches are complicated by the
status of efficient, accurate machine-translation engines, as yet another ongoing
research effort. One group mitigates this problem by directly annotating web
pages with conceptual vectors in an interlingua representation [5] to assure di-
rect extraction against queries in any language. The use of an interlingua [6]
also represents the central paradigm for translating between languages in sev-
eral machine-translation systems [7]. The use of conceptual ontologies in this
type of work is fairly common (see, for example, [8]).

To address the multitude of problems in cross-language information extrac-
tion and semantic search, we propose here ML-OntoES (MultiLingual Ontology
Extraction System). ML-OntoES is a conceptual-modeling approach to crosslin-
guistic information processing based on extraction ontologies. An extraction on-
tology is a linguistically grounded conceptual model capable of populating its
schema with facts automatically extracted from web pages [9,10]. Extraction
ontologies also automatically extract information from free-form user queries,
match the information with ontological conceptualizations, and generate for-
mal queries over populated schemas [11]. The key idea that makes ML-OntoES
work is the mapping of each language-specific extraction ontology to and from a
central, language-agnostic ontological conceptualization of a narrow domain of
interest. The basic premise draws on machine translation through interlinguas,
but our application of this notion to extraction ontologies is new.

To illustrate our approach consider the user query in Figure 2. ML-OntoES
“translates,” “extracts,” and “translates again” as follows: we (1) apply an English
restaurant extraction ontology to match the query to a conceptual model, (2)
use pre-determined mappings through a central language-agnostic conceptual
model to a Japanese restaurant extraction ontology, (3) extract both requested
facts and ontologically related facts from Japanese web sites with the Japanese
restaurant extraction ontology, (4) map returned results (e.g., Figure 1) and
related results through the central language-agnostic conceptualization back to
the English restaurant extraction ontology, and (5) display results and links to
additional information (e.g., Figures 2 and 3).

The contributions of this work include: (1) development of an architecture
with a central language-agnostic ontological conceptualization for cross-language
information extraction and semantic search (Sections 2.1–2.2) (2) specification
of mapping types to and from the central conceptualization along with scal-
able, pay-as-you-go ways to establish both mappings and new language-specific
extraction ontologies (Section 2.3), and (3) implementation of prototypes demon-
strating proof-of-concept feasibility and providing encouraging results for cross-
language query translation and extraction accuracy (Sections 3.1–3.2).

150 D.W. Embley et al.

2 Architecture

In this section we propose an architecture for ML-OntoES and emphasize how
this proposal provides the feature set and scalability required to support rich mul-
tilingual interactions. We begin by describing extraction ontologies (Section 2.1)
and multilingual ontologies (Section 2.2). Then we discuss the multilingual map-
pings that connect different languages and locales in a meaningful way, thus
making a multilingual ontology useful for a variety of information processing
tasks, supporting users in their native locales (Section 2.3).

2.1 Extraction Ontologies

In general, ontology is the study of reality. More specifically, an ontology is an
expression of a particular model of reality, including a specification of concepts,
relationships among concepts, and constraints that exist in the model. An ex-
traction ontology is an ontology that has enough information in the model to
be able to drive the process of extracting concepts and relationships from some
source document such as an HTML page or a PDF document.

Figure 4 gives the conceptual-model component of an extraction ontology that
describes aspects of the Restaurant concept that an international traveler might
be interested in exploring, such as price range of meals, menu items available,
hours of operation, payment methods accepted, and tipping protocols.

The notation of Figure 4 conforms to OSM (Object-oriented Systems Mod-
eling) [12]. Names written in rectangles constitute concepts (object sets) of the
ontology. Solid borders denote nonlexical concepts (e.g., Restaurant and Rating
in Figure 4), while dashed borders indicate lexical concepts (e.g., Address and
Geo Location). Lines between concepts denote relationship sets, and arrow heads
mark functional associations. For example, in Figure 4 a Rating has at most one
Agency, one Value, and one Scale, but an Agency may give many Ratings to
multiple Restaurants. A triangle represents a generalization/specialization (ISA)
relationship between object sets. For example, Beverage is a generalization that
has two specializations: Alcoholic Beverage and Non-Alcoholic Beverage. The
half solid dot on Alcoholic Beverage is an object-set object that represents the
Alcoholic Beverage object set itself, so that by connecting Regulations to the
object-set object we mean that regulations apply to the whole set of Alcoholic
Beverages as a collection, not individually to each member of the collection.

The conceptual model in Figure 4 is only one part of the restaurant extrac-
tion ontology, namely the conceptual structure. The other part of the extraction
ontology is a collection of data frames that describe the individuals, contextual
clues, and keywords associated with—or signaling the presence of—concepts in
the ontology. We use a variety of techniques to encode data frames. For rela-
tively narrow domains, lexicons can simply list the corresponding terms (e.g.,
Payment Method ’s data frame could be a lexicon containing the names of credit
card companies and other terms such as “personal check” or “cash”). For richer
concepts we use regular expressions (e.g., Price would be difficult to enumerate,
but a simple regular expression such as \d+\.\d\d can represent a large set

Multilingual Ontologies 151

Address

Cuisine Type

Price Range

Payment MethodServing Style Tipping Protocol

Hours of Operation

Restaurant

Menu Item

Tax

Alcoholic
Beverage

Non-Alcoholic
Beverage

Regulations

Rating

Agency Value Scale
Reservation Protocol

Price

Beverage

Serving Size

Range Min

Range Max

Name

Fig. 4. Conceptual-Model Component of a Restaurant Extraction Ontology

of prices in a compact way). Contextual clues are also important for the data
extraction process, and we again use lexicons and regular expressions to spec-
ify contextual details. For example, “$” is a strong signal that a Price concept
follows, especially if it matches one of the regular expressions of Price.

It is common to use OWL, the Web Ontology Language, to describe the
details of an ontology. Numerous tools leverage the OWL standard for ontology
creation and use. We use OSM because we have built a data extraction system,
OntoES, around the OSM structure and the data-frame extensions that support
data extraction. OntoES automatically extracts data from ontologically narrow
application domains with relatively high precision and recall, using ontology
specifications that are robust with respect to different web sites or changes in
document structure within the target domains. In order to interoperate with
other tools and systems, OntoES is able to generate an OWL/RDF version of a
populated OSM conceptual-model instance queriable with SPARQL.

2.2 Multilingual Ontologies

In ML-OntoES, a multilingual ontology localized to n contexts {C1, ..., Cn} is an
n+1-tuple O = (A, L1, ..., Ln), where A is a language-agnostic ontology repre-
senting concepts and facts in the ontology from a language-agnostic perspective,
and each Li, 1 ≤ i ≤ n, is a localization4 of A to one of the n contexts. A is
an extraction ontology that consists of a set of structural concepts (e.g., object
sets, relationship sets, data frames) and facts (e.g., objects, relationships) that
describe a domain of interest in a language-agnostic way. Each localization is a
4-tuple Li = (Ci, Oi,MA�→Li ,MLi �→A), where Ci is a local context label, Oi is
an extraction ontology,MA�→Li is a set of mappings from A to Li, andMLi �→A
4 We use “localization” rather than “language” because even within the same language

there may be local variants we wish to capture (e.g., Australia uses both a differ-
ent measurement system and a different currency than the U.S. even though both
languages are English).

152 D.W. Embley et al.

is a set of mappings from Li to A. Each concept in Oi must map to a single
concept in A, but concepts in A may map only partially to concepts in Oi (i.e.,
MA�→Li is surjective, whileMLi �→A is injective).

The key idea of the ML-OntoES architecture is that each localized ontology
maps to a central language-agnostic representation and vice versa. This “star
architecture” avoids the n2 complexity of mapping each localized ontology to all
other localizations, and instead provides a nearly linear scaling. Adding another
localization involves constructing the localized extraction ontology (Oi) along
with mappings (MLi �→A and MA�→Li) to and from A. In the process, it may
be necessary to adjust A so that all concepts in Oi are represented directly
in A, and this may in turn require adjusting some of the mappings for other
localizations. But since most mappings are trivial, the expected case is a linear
effort required to add an additional localization to O—indeed, sublinear since
many language resources exist to aid in constructing the mappings.

It is customary to identify language and culture contexts by spoken language
and country name such as German/Switzerland (de-CH) or Spanish/Guatemala
(es-GT). But in general there could be many contexts associated with a given lan-
guage/country pair, such as Swiss German/Switzerland in contrast to High Ger-
man/Germany, or even tourist Spanish/Mexico versus business Spanish/Mexico.
The concepts chosen for a particular localization may vary for many reasons.
Ultimately, the precise meaning of “context” is defined by the author of the lo-
calization who expresses a selected set of ideas in a particular language. In our
definition, we only need to note that a context has a chosen label, Ci (though
conventional locale labels such as “en-US” or “de-CH” could easily be used where
appropriate). As a convention, we may replace i with Ci when referring to ele-
ments of O. For example, the English/U.S. localization Li could be designated
Len−US = (“en-US”, Oen−US , MA�→Len−US ,MLen−US �→A).

For our running example, Figure 4 shows the English/U.S. (en-US) localiza-
tion and Figure 5 shows the Japanese/Japan (ja-JP) localization. The language-
agnostic component A (not shown) is similar to these two. A includes Geo
Location (地理座標) from Figure 5 and Range Min/Range Max from Figure 4.
Concept labels in A can be written in any language or symbol system the on-
tology developer finds most useful. For example, the concept for Geo Location
could be written 地理座標, Geo Location, C1, or anything else the developer
chooses.

2.3 Multilingual Mappings

Because the ML-OntoES architecture (O = (A, L1, ..., Ln)) includes a cen-
tral language-agnostic component (A) together with multiple localizations, map-
pings between A and the various localizations are key to our approach. These
mappings fall into three categories: Structural Mappings that resolve differences
among conceptualizations with standard schema integration techniques, Data-
Instance Mappings that maintain correspondences among data instances, and
Commentary Mappings that require standard language-to-language translation.

Multilingual Ontologies 153

住所

ジャンル

予算

支払い方法サービス形式 チップの習慣

営業時間

地理座標

レストラン

メニュー項目

消費税

アルコール
飲料

ノンアルコール
飲料

年齢規制

口コミ評価

評価組織 値 スケール
予約形式

価格

飲み物

一食分

店名

Fig. 5. Japanese Localization of the Restaurant Ontology Figure 4

Structural Mappings

Structural (schema) mappings between A and Li are usually straightforward.
For the applications we target, we anticipate most of them to be direct from
Li to A and partial from A to Li. Fundamentally, this is because applications
such as restaurants, items for sale, hotel and airline reservations, and many more
all basically include the same concepts in the same relationship to one another.
However, as guided by our earlier extensive work on schema mapping [13], we
allow a full array of 1:1, 1:n, n:1, and n:m mappings along with operators such
as split, merge, select, union, Booleanization, deBooleanization, skolemization,
and lexicalization that carry data into structural variations.

Because it is so common to have identical structure, only with a little in-
genuity were we able to provide illustrations. To illustrate that a concept in A
sometimes does not appear in some localization, we assumed that Geo Location
does not appear in Len−US (as indicated by the gap below Address in Figure 4),
but does appear in A. And, to illustrate a non-1:1 mapping, we assumed that
Lja−JP has no Range Min and Range Max, but rather just the more typical
“budget” amount. Then, via a complex mapping, the system is able to convert
the 予算 values in Figure 1 to the Price Range values in Figure 2.

Data-Instance Mappings

Data-instance mappings encode lexical-level snippets of instance information
that are largely self-contained in nature and whose lexicalizations tend to be
fairly direct across various languages. Various types of language resources serve
to mediate these differences. Thus, given some existing language-specific extrac-
tion ontologies, L1, ..., Ln and their mappings to and from A, we can quickly
assemble a new language-specific extraction ontology Lnew for ML-OntoES and
mappings to and from it and A. We identify four types of data-instance map-
pings: Scalar Units Conversions, Lexicon Matching, Transliteration, and Cur-
rency Conversions.

154 D.W. Embley et al.

Scalar Units Conversions. One type of data-level correspondence assures con-
version between items that are expressed with respect to some scale, for example
measurements such as temperature, weight, length, volume, speed, and altitude.
Different fixed scales exist for measuring such items, and these scales may vary
by locale: much of the world uses the metric system, for example, whereas the
U.S. for the most part does not. Conversion routines between measurement units
and their associated values are straightforward to implement. A 5-3/8 oz. wine
carafe will always have that measurement, and the value of an ounce is constant
over time, as is its metric equivalent. We can thus store measurement values and
associated units in a language- and locale-agnostic resource and convert it to any
other format via simple arithmetic when developing and using a localized ontol-
ogy. A wide range of such measurements exists across cultures and languages,
of course. So the specification of conversion factors between such “exotic” mea-
sures (e.g. a stone for weight in English) may be necessary when localizing an
ontology, but ML-OntoES supports this functionality.

Lexicon Matching. Another level of data mapping, this one more directly tied
to language, has to do with the lexicon. Each language expresses concepts in its
own combination of words, phrases, and other expressions. Often these terms
correspond fairly closely, though this point has been debated among linguists.
In cases where the correspondence or mapping is fairly direct, we can simply
maintain a list of the crosslinguistic mappings. So, for example, the English
word “meal” is a fairly close translation equivalent to the French word “repas”.
Of course, there are word sense ambiguities: the English word “meal” in fact has
several other senses, including one that means finely ground grain. This may
complicate the storage of such correspondences, but for the types of data-rich
web application domains we envision, the problem is not nearly as intractable
as comprehensive modern dictionaries would suggest. In fact, several available
technologies, such as termbase systems, software localization, lexical databases,
and statistical machine translation assist in developing and maintaining crosslin-
guistic correspondences of this type, and the process scales well [14]. ML-OntoES
allows us to specify lexical information at this granularity in our ontologies and
use them for finding and extracting data.

Transliteration. An even lower level of data mappings is necessary when con-
sidering a crosslinguistic context—that of transliteration. Proper nouns such as
people’s names, place names, and company names generally do not vary much
across languages, though language differences in terms of phonetics (i.e. indi-
vidual sounds) and phonology (e.g. syllable structure and allowable phonetic
sequences) are observable. For example, the name of Muhammar Ghadaffi has
no less than 39 variant spellings in published English sources, and the surname
of President Bill Clinton has been rendered in more than 6 ways into Arabic in
newswire. Tracking and identifying all of the proper nouns in any language is an
important task, and various machine learning techniques and comprehensive lan-
guage resources exist for identifying and cataloging them for any one language.
Much more substantial, however, is the task of doing this across languages.
While maintaining a crosslinguistic lexicon of proper names is possible, we are

Multilingual Ontologies 155

also able to take advantage of character conversion and phonetic transcription
tools, perhaps with fuzzy matching, to compute these correspondences on-the-fly.
The restaurant names in Figure 1, for example, were converted for Figure 2 by
transliteration, and tools exist for automatic Kanji-to-English transliteration.5

Currency Conversions. Because of the evanescent nature of prices, referring
to a price with an ontology, particularly a language-agnostic one, is best ac-
complished by storing the raw extracted value from the web page in question,
rather than with respect to some idealized universal standard, which in this case
does not exist. We are then confronted with the issue of converting this amount
to other languages/locales when the user requires the price in another currency.
The task would appear to be difficult, given the temporal variance of the conver-
sion. Fortunately, because this need is so prevalent today, several web services are
available that given a date, an amount, and source and target currencies, provide
a conversion for the values in question. This precludes the need for developing
and maintaining a conversion protocol. Since ML-OntoES supports web services,
we are able to execute these conversions at query or retrieval time. When de-
veloping a language-specific ontology and retrieving associated information, we
can call a currency conversion web service to compute the appropriate value.

Commentary Mappings

Beyond these representational issues that impact how we specify and use cor-
respondences at a linguistic level, there are larger-scale mismatches across cul-
tures that must be addressed. For example, restaurants in different countries
may have widely divergent requirements that customers need to be aware of,
especially customers from outside the culture: tipping practices, how meals are
structured, and even dress codes and the allowableness of pets on the premises.
This type of information is best kept as short free-form notes or commentaries
that are stored in A and are available for scrutiny and elaboration by devel-
opers of language-specific ontologies. For example, the reservation protocol of a
typical U.S. fine-dining restaurant might be described as, “Reservations highly
recommended, especially on Friday, Saturday, and holiday evenings.”

When moving from one localization to another, translating commentary such
as this can be quite valuable. Since there are web services that provide auto-
matic natural-language translation (e.g. translate.google.com or babelfish.
yahoo.com), it is possible simply to submit the commentary to a web service and
request a particular language translation. Unfortunately, even though automatic
translation technology has improved considerably in recent years, the quality of
automatic translation still varies immensely, and human review with correction
generally gives the best results.

Since commentary is written with respect to a local culture and language,
there cannot be a language-agnostic version of commentary. Thus, the nature of
the problem dictates that commentary mappings (translations) must be provided
for each additional localization added to a multilingual ontology. For example, if

5 For example, see http://nihongo.j-talk.com/kanji and http://www.romaji.org

translate.google.com
babelfish.yahoo.com
babelfish.yahoo.com
http://nihongo.j-talk.com/kanji
http://www.romaji.org

156 D.W. Embley et al.

we start our restaurant ontology by creating a Japanese version and then adding
an American localization, the ontology author of the American localization must
translate commentary from the Japanese localization into English, and any new
commentary from the American version into Japanese. In the worst case, this
creates n2 mappings (where n is the number of localizations), but again since
we have automatic translation services readily available, we get a base-level
automatic translation essentially for free.

Nonetheless, high-quality mappings of natural-language commentary do re-
quire significant effort, often from a multidisciplinary, multilingual team. But
as many web sites demonstrate, when the community receives significant value
from a shared resource, it is possible to elicit from the community the team
needed to create, enhance, and maintain that resource. Prominent examples in-
clude Wikipedia articles, Amazon book reviews, and TripAdvisor travel recom-
mendations. We envision a “pay-as-you-go” approach where the system creates
initial translations automatically, and experts from the community incremen-
tally supply improved translations. Crucially, this does not adversely impact our
extraction because it is not directly used for extraction purposes.

3 Evaluation

To show the feasibility and practicality of cross-language query processing, we
describe an implemented early prototype of ML-OntoES and give some results
of testing the prototype on independent-user-provided queries in Japanese, Chi-
nese, and English (Section 3.1). To show the accuracy of cross-language infor-
mation extraction and query processing, we give results for an initial Japanese/-
English cross-language application we have implemented for the car-ad domain
(Section 3.2).

3.1 Results from an Early Prototype

Based on extraction ontologies, we have developed a preliminary system, called
Pijin [15]. Pijin accepts free-form, natural-language queries from mobile phone
users in English, Japanese, and Chinese; maps queries to a restaurant extraction
ontology; and reformulates them as form-based web queries to query four Japanese
restaurant recommendation web services: Hotpepper, LivedoorGourmet,Tabelog,
and Gournavi. These services return results in Japanese. Pijin also makes use of
GPS information, Google maps, and other web services to provide “mashed up”
recommendations to users.

For the experiment, we asked five subjects not involved with the project
to make 100 queries for each language (Chinese, English, and Japanese). The
subjects were asked to write free-form, natural-language queries that could be
used to inquire about restaurants where they might like to eat. Typical of many,

Multilingual Ontologies 157

one of the queries posed was: ク-ポンのあるヤキニク屋さん、東京駅の近く
に、予算は5000円 (loosely translated, “find me a BBQ restaurant that offers
coupons near Tokyo station and my budget is under 5000 yen). Pijin interprets
this query using the free-form query processor described in [11] and composes
the web service query: station=東京駅&coupon=0&food=焼肉&maxBudget=5000
which it then rewrites for each specific web-service API. This query produces a
list of restaurants near Tokyo Station that offer menus priced under 5000 yen.

The system was able to correctly interpret and translate to interface form
queries 79% of the Japanese queries, 72% of the English queries, and 69% of
the Chinese queries. Pijin, for example, was unable to recognize and reformulate
as a form query the Japanese query: アルコルの種類が多い居酒屋 (loosely
translated: find me a bar that provides a wide variety of alcoholic beverages).
Although Pijin recognizes居酒屋 (“bar”) and correctly maps it to the restaurant
genre, it can do nothing for アルコルの種類が多い (a “wide variety of alcoholic
beverages”) because none of the web services has a parameter to accept this kind
of search criterion.

3.2 Cross-Language Query Translation and Extraction Accuracy

To experimentally verify the feasibility of cross-language information extraction,
we began with OntoES (our current data-extraction system) and made modifi-
cations to allow it to behave in accord with ML-OntoES. We call the version we
implemented ML-OntoES′. For ML-OntoES′ we added UTF-8 encoding, which
immediately enabled us to build extraction ontologies in multiple languages and
to process free-form queries in multiple languages. We were then faced with
the task of constructing extraction ontologies for some domain in some natural
language other than English. We chose the car-ads domain and the Japanese
language—car ads because it is a challenging domain for information extraction
and free-form query processing, but also because we have been able to make On-
toES perform successfully in this domain, and Japanese because both the other
languages, French and Spanish, for which we have near-native language abilities
are too much like English for the testing we wished to do.

Having chosen a test domain and test language, we then took our existing
car-ads extraction ontology and replaced the English concept recognizers with
Japanese concept recognizers. To simplify crosslinguistic extraction, we limited
the extraction ontology to six basic lexical concepts: Make, Model, Price, Year,
and Transmission. To make ML-OntoES′ work multilingually, we used the En-
glish car-ads extraction ontology as our language-agnostic extraction ontology
(as well as its English localization) and we made the Japanese car-ads extrac-
tion ontology correspond 1-1 both structurally and for data instances. To make
it correspond structurally for data instances, we extracted Japanese instances
using Japanese regular-expression recognizers, but immediately converted the

158 D.W. Embley et al.

ExE ExJ QiE QiJ QrEE QrJJ QrEJ QrJE
Precision .95 .89 .97 .92 .96 .84 .75 .87
Recall .94 .91 .94 .82 .95 .84 .72 .85

Fig. 6. Experimental Results

resulting values to English (e.g., H12年 to the year 2000, 日産 to Nissan, and
with the exchange rate $1.00=JPY82.3). These conversions allowed us to further
process data, converting it to RDF, and enabling us to query it with SPARQL,
for queries generated by our already implemented free-form query engine [11].
Thus, we were able to interpret and process free-form queries such as H12年よ
り新しい、50万円未満の車を探してい and 全ての白い日産の車、価格、年式
及び走行距離を見せてください which fared comparably to the English parsed
queries to produced generic queries of the form: Year,>,2000;Price,<,6050
and Make,=,Nissan;Color,=,White.

With ML-OntoES′, implemented as explained, we conducted an experiment
and obtained the precision and recall results in Figure 6 for Extraction in En-
glish on English car ads (ExE), Extraction in Japanese on Japanese car ads
(ExJ), Query interpretation for free-form English queries (QiE), Query inter-
pretation for free-form Japanese queries (QiJ), Query results for English queries
on English car ads (QrEE), Query results for Japanese queries on Japanese car
ads (QrJJ), Query results for English queries on Japanese car ads (QrEJ), and
Query results for Japanese queries on English car ads (QrJE). For the experi-
ment, we used a collection of 100 English car ads taken from craigslist.com
and 30 Japanese car ads taken from Goo-Net.com. For queries, we used 200 En-
glish free-form car-ad queries, which we had previously gathered from students
in two senior-level database courses, and we manually translated 50 of them to
Japanese free-form queries (see examples in the previous paragraph). We com-
puted precision and recall for English and Japanese car ads by counting all the
matches and mismatches the ML-OntoES′ recognizers labeled for each of the six
car-ad attributes in the two collection of car ads and taking an average over the
individual attributes. For query interpretation, we counted the matches and mis-
matches for each ML-OntoES′-generated constraint (e.g., Year,>,2000). And,
for query results we counted the number of car ads ML-OntoES′ selected that
were relevant and irrelevant over the respective document collections.

One of the interesting characteristics of the application we encountered was
the problem of multiple years of interest in Japanese car ads. In addition to
using 年式 and 製造年, which both translate as “model year,” most Japanese
car ads on Goo-Net.com report 車検 (“shaken year”), which is a required and
expensive smog, safety, and registration certification that can be transferred to
new owners if it has not expired. As a further complication, what would be the
year 2008 in an English localization, would be written as 平成20/2008年式 or
H20/2008年 in the Japanese localization, where the first number preceded by
either 平成 or H represents the year 20 of Heisei, the current Japanese Impe-
rial period. The second number, 2008, followed by 年, the Kanji for “year,” is

craigslist.com
Goo-Net.com

Multilingual Ontologies 159

its Julian-year equivalent. We overcame this difficulty partially by tuning ML-
OntoES′ to recognize a single instance of year from both model year and shaken
year, and to some extent, for the shaken year by recognizing the specific keyword
for shaken. Application characteristics like these show some of the subtleties of
implementing multilingual extraction and semantic search systems.

4 Conclusions

Our proposed multilingual architecture (ML-OntoES), with its central language-
agnostic ontology and pay-as-you-go incremental design, along with our proof-of-
concept prototypes and our initial cross-language extraction and query results,
support the conclusion that cross-language information extraction and semantic
search can be successful. Our results (reported in harmonic-mean F-measures)
indicate the following: We can accurately extract in multiple languages: En-
glish (F = .94) and Japanese (F = .90). We can accurately interpret queries in
multiple languages: English (F = .95) and Japanese (F = .87). We can query
sites written in one language with queries written in another language: English
query against Japanese source (F = .73) and Japanese query against English
source (F = .86). The accuracy of these results is somewhat lower than we
would like. We expect, however, that with the addition of accurate schema and
data-instance mappings to and from localized extraction ontologies and a cen-
tral language-agnostic ontology we can increase the accuracy. Currently within-
language query accuracy indicates that this is achievable: English query against
English source (F = .95) and Japanese query against Japanese source (F = .84).

As for future work, we intend to complete the transformation of ML-OntoES′

to ML-OntoES, and we intend to experiment with many different domains and
several more languages. The results we have for car-ads English extraction re-
ported here are consistent with previous results for the car-ads domain [9]. And,
since we have applied English extraction ontologies to a few dozen other domains
with consistently good results (F-measures typically between .80 and .95), we
can be reasonably confident that similar results to those reported here are possi-
ble. We must, of course, add and make use of instance mappings as defined here,
so that we can boost the accuracy of cross-language information extraction and
semantic search.

References

1. Sarawagi, S.: Information extraction. Foundations and Trends in Databases 1(3),
261–377 (2008)

2. Turmo, J., Ageno, A., Català, N.: Adaptive information extraction. ACM Com-
puting Surveys 38(2) (July 2006)

3. Grefenstette, G. (ed.): Cross-Language Information Retrieval. Kluwer, Boston
(1998)

160 D.W. Embley et al.

4. Klavans, J., Hovy, E., Furh, C., Frederking, R.E., Oard, D., Okumura, A., Ishikawa,
K., Satoh, K.: Multilingual (or cross-lingual) information retrieval. In: Hovy, E.,
Ide, N., Frederking, R., Mariani, J., Zampolli, A. (eds.) Multilingual Information
Management: Current Levels and Future Abilities. Linguistica Computazionale,
vol. XIV–XV, Insituti Editoriali e Poligrafici Internazionali, Pisa (2001)

5. Falaise, A., Rouquet, D., Schwab, D., Blanchon, H., Boitet, C.: Ontology driven
content extraction using interlingual annotation of texts in the OMNIA project.
In: Proceedings of the 4th International Workshop on Cross Lingual Information
Access, Beijing, China (August 2010)

6. Lonsdale, D.W., Franz, A.M., Leavitt, J.R.R.: Large-scale machine translation:
An interlingua approach. In: Proceedings of the Seventh International Conference
on Industrial and Engineering Applications of Artificial Intelligence and Expert
Systems (IEA/AIE 1994), Austin, Texas, USA, pp. 525–530 (May/June 1994)

7. Dorr, B.J., Hovy, E.H., Levin, L.S.: Machine translation: Interlingual methods. In:
Natural Language Processing and Machine Translation, Encyclopedia of Language
and Linguistics, 2nd edn. Elsevier Ltd., Amsterdam (2004)

8. Murray, C., Dorr, B.J., Lin, J., Hajič, J., Pecina, P.: Leveraging reusability: Cost-
effective lexical acquisition for large-scale ontology translation. In: Proceedings of
the Association for Computational Linguistics (ACL 2006), Sydney, Australia, pp.
945–952 (July 2006)

9. Embley, D.W., Campbell, D.M., Jiang, Y.S., Liddle, S.W., Lonsdale, D.W., Ng,
Y.-K., Smith, R.D.: Conceptual-model-based data extraction from multiple-record
web pages. Data & Knowledge Engineering 31(3), 227–251 (1999)

10. Embley, D.W., Liddle, S.W., Lonsdale, D.W.: Conceptual modeling foundations
for a web of knowledge. In: Embley, D.W., Thalheim, B. (eds.) Handbook of Con-
ceptual Modeling: Theory, Practice, and Research Challenges, ch. 15, pp. 477–516.
Springer, Heidelberg (2011)

11. Al-Muhammed, M., Embley, D.W.: Ontology-based constraint recognition for free-
form service requests. In: Proceedings of the 23rd International Conference on Data
Engineering (ICDE 2007), Istanbul, Turkey, pp. 366–375 (April 2007)

12. Embley, D.W., Kurtz, B.D., Woodfield, S.N.: Object-oriented Systems Analysis: A
Model-Driven Approach. Prentice-Hall, Englewood Cliffs (1992)

13. Xu, L., Embley, D.W.: A composite approach to automating direct and indirect
schema mappings. Information Systems 31(8), 697–732 (2006)

14. Lonsdale, D., Mitamura, T., Nyberg, E.: Acquisition of large lexicons for practical
knowledge-based MT. Machine Translation 9, 251–283 (1995)

15. Geng, Z., Tijerino, Y.A.: Using cross-lingual data extraction ontology for web ser-
vice interaction – for a restaurant web service. In: 2010 Workshop on Cross-Cultural
and Cross-Lingual Aspects of the Semantic Web, Shanghai, China (November 2010)

Querying Conceptual Schemata
with Expressive Equality Constraints

Andrea Calı̀2,3, Georg Gottlob1,3, and Andreas Pieris1

1 Computing Laboratory, University of Oxford, UK
2 Dept. of Computer Science and Inf. Systems, Birkbeck University of London, UK

3 Oxford-Man Institute of Quantitative Finance, University of Oxford, UK
andrea@dcs.bbk.ac.uk,

{georg.gottlob,andreas.pieris}@comlab.ox.ac.uk

Abstract. When querying data through a conceptual schema or ontology, we
compute answers entailed by the logical theory constituted by the data plus the
conceptual schema. Traditional database constraints like tuple-generating depen-
dencies (TGDs) and equality-generating dependencies (EGDs) are a useful tool
for ontology specification. However, their interaction leads to undecidability of
query answering even in simple cases. In this paper we exhibit a novel and general
class of EGDs that, together with a relevant class of TGDs, ensures decidability
of query answering. Our results capture well-known ontology languages as spe-
cial cases; in particular, they allow us to deal with extended Entity-Relationship
schemata enriched with expressive equality constraints.

1 Introduction

Answering queries over ontologies has become an important problem in knowledge
representation and databases. In ontology-enhanced database systems, an extensional
relational database D is combined with an ontological theory Σ describing rules and
constraints1 which derive new intensional data from the extensional data. A query is
not just answered against the database D, but against the logical theory D ∪ Σ. The
Entity-Relationship (ER) [13] model has recently gained importance in ontology spec-
ification, due to the fact that it is natural, well-known to theorists and practitioners, and
with high expressive power. Several extensions of the original ER model, grouped in
a family of languages known as ER±, have been proposed in [2,5,7] in the context of
ontology-based query answering; in particular, the ER± language of [7] properly gen-
eralizes the fundamentals languages of the DL-lite family [11], a prominent family of
tractable languages designed for ontology-based data access. In ER± the complexity
of answering conjunctive queries (that is, select-project-join queries) is highly tractable
(in particular, in the complexity class AC0, which is the complexity class of recognizing
words in languages defined by constant-depth Boolean circuits with an unlimited fan-in
AND and OR gates) in data complexity (that is, considering everything as fixed except
the data). This is due to so-called first-order (FO) rewritability, that is, the possibility

1 In the following, we will use interchangeably the terms “dependency” and “constraint”, the
latter being the common term in database theory parlance.

M. Jeusfeld, L. Delcambre, and T.W. Ling (Eds.): ER 2011, LNCS 6998, pp. 161–174, 2011.
c© Springer-Verlag Berlin Heidelberg 2011

162 A. Calı̀, G. Gottlob, and A. Pieris

of answering a query Q against a database D and an ontology Σ by rewriting Q into a
first-order query QΣ , which somehow encodes Σ, and evaluating QΣ on D.

In [7] ER schemata are encoded into relational schemata with inclusion dependencies
(IDs) and key dependencies (KDs), so as to perform reasoning tasks on them. However,
in some cases, more expressive constraints are needed for ontology modeling. This need
has been recently addressed in a series of works on the Datalog± family, a family of
rule-based languages derived from Datalog [3,4,6,8]. In Datalog±, an ontological the-
ory is expressed by means of rules of three kinds: (i) tuple-generating dependencies
(TGDs), that is, (function-free) Horn rules enhanced with the possibility of having exis-
tentially quantified variables in the head; (ii) equality-generating dependencies (EGDs),
that is, (function-free) Horn rules with a single equality atom in the head; (iii) negative
constraints (NCs), a form of denial constraints expressed as (function-free) Horn rules
with the constant “false” in the head. Notice that IDs are a special case of TGDs, and
each KD can be expressed by means of a set of EGDs.

Example 1. The TGD ∀X employee(X), leads(X, Y) → ∃Z supervises(Z, X) ex-
presses that each employee who leads a group has a supervisor. The EGD leads(X, Z1),
leads(X, Z2), assigned to(Z1, P), assigned to(Z2, P) → Z1 = Z2 asserts that each
employee cannot lead two distinct groups assigned to the same project.

A central notion in ontological query answering is the chase [16,18], a procedure for
“repairing” a database instance D with respect to a set of constraints Σ (TGDs and
EGDs). Notice that the term “chase” is used interchangeably to denote both the chase
procedure and its result. In the chase, in the presence of a TGD (resp. EGD) violation
(and consequent repair), we say that the TGD (resp. EGD) is triggered.

The main notion regarding the interaction of TGDs and EGDs is separability. A set
ΣT of TGDs and a set ΣE of EGDs, expressed on the same relational schema, are
separable if, for every query Q and for every database instance D, assuming that the
theory D ∪ ΣT ∪ ΣE is satisfiable (that is, it admits at least one model), the answers
to Q on D ∪ ΣT ∪ ΣE coincide with the answers to Q on D ∪ ΣT . In other words,
separability holds if, when the theory is satisfiable, the presence of EGDs does not
change the results of query answering. Separability was first introduced in [10], and
then adopted in several works [4,5,6,7]. In most cases in the literature, separability is
enforced by a syntactic condition which prevents the EGDs to be applied in the chase,
that is, no repair of EGD violations is performed. Notable exceptions are the works
on ER± [5,7], where EGDs (which are, in fact, key dependencies) can be applied, but
without altering the result of query answering.

In this paper we follow the more general approach of [5,7] and propose a separa-
bility condition which does not prevent EGD applications in the chase. We focus on
general EGDs and their (non)-interaction with TGDs. Our research initiates from the
need of expressing more complex equality constraints on ER (or ER±) schemata, as in
the following simple example.

Example 2. Consider the ER± in Figure 1, where entity and relationship names are
self-explanatory – we have omitted attributes to avoid clutter, and numbered roles in
relationships. Using the usual (and natural) relational representation of [2], we can
express, for example, the following EGD.

Querying Conceptual Schemata with Expressive Equality Constraints 163

Course

1 2
Faculty

1
Student

2

Teaches

Attends

Tutors

(1, 1)
2

1 (1, 1)

Fig. 1. Figure for Example 2

student(S), attends(S, C1), attends(S, C2),
tutors(F, S), teaches(F, C1), teaches(F, C2) → C1 = C2

which asserts that each student can attend at most one course taught by his tutor. Obvi-
ously, such a constraint is not expressible with ER± constructs.

We tackle the more general problem of query answering in the presence of linear
TGDs [4], that is, TGDs with a single body-atom, and general EGDs. Notice that linear
TGDs, of which IDs are a special case, are able to capture (when enriched with KDs
and NCs) both the ER± family and the DL-lite family.

The contributions in this paper are the following.

(1) We first present a syntactic condition of non-triggerability between a set of EGDs
and a set of general TGDs. Such a condition ensures that EGDs are never triggered
during the chase construction, thus ensuring separability. Non-triggerable EGDs
properly extend several conditions for separability in the literature.

(2) Building upon the notion of non-triggerable EGDs, we propose a sufficient syn-
tactic condition for separability between a set of EGDs and a set of linear TGDs.
Our condition, called non-conflict condition, is very broad and properly generalizes
several known conditions in the literature. Non-conflicting sets of EGDs and linear
TGDs guarantee separability without preventing the triggering of EGDs.

(3) We prove that the complexity of the problem whether two sets of EGDs and linear
TGDs are non-conflicting is PSPACE-complete.

(4) We show that our results are applicable in several contexts. In particular, we show
how non-conflicting EGDs can be added to ER± schemata [7] without increasing
the complexity of query answering. Moreover, since DL-lite ontologies can be eas-
ily expressed by means of linear TGDs with minor additions (which do not affect
complexity of answering), we are able to add non-conflicting EGDs to DL-lite lan-
guages, thus significantly enhancing their expressive power.

2 Preliminaries

In this section we recall some basics on databases, queries, tuple-generating dependen-
cies, equality-generating dependencies, and the chase procedure.

General. We define the following pairwise disjoint (infinite) sets of symbols: (i) a set
Γ of constants (constitute the “normal” domain of a database), (ii) a set ΓN of labeled

164 A. Calı̀, G. Gottlob, and A. Pieris

nulls (used as placeholders for unknown values, and thus can be also seen as variables),
and (iii) a set ΓV of variables (used in queries and dependencies). Different constants
represent different values (unique name assumption), while different nulls may repre-
sent the same value. A lexicographic order is defined on Γ∪ΓN , such that every value in
ΓN follows all those in Γ . We denote by X sequences of variables X1, . . . , Xk, where
k � 0. Also, let [n] be the set {1, . . . , n}, for any integer n � 1.

A relational schema R (or simply schema) is a set of relational symbols (or predi-
cates), each with its associated arity. A position r[i] (in a schema R) is identified by a
predicate r ∈ R and its i-th argument (or attribute). A term t is a constant, null, or vari-
able. An atom has the form r(t1, . . . , tn), where r is an n-ary relation, and t1, . . . , tn
are terms. Conjunctions of atoms are often identified with the sets of their atoms. A
database (instance) D for a schema R is a (possibly infinite) set of atoms of the form
r(t) (a.k.a. facts), where r is an n-ary predicate of R, and t ∈ (Γ ∪ ΓN)n.

A substitution from one set of symbols S1 to another set of symbols S2 is a function
h : S1 → S2 defined as follows: (i) ∅ is a substitution (empty substitution), (ii) if h
is a substitution, then h ∪ {X → Y } is a substitution, where X ∈ S1 and Y ∈ S2,
and h does not already contain some X → Z with Y �= Z . If X → Y ∈ h we write
h(X) = Y . A homomorphism from a set of atoms A1 to a set of atoms A2, both over
the same schema R, is a substitution h : Γ ∪ ΓN ∪ ΓV → Γ ∪ ΓN ∪ ΓV such that:
(i) if t ∈ Γ , then h(t) = t, and (ii) if r(t1, . . . , tn) is in A1, then h(r(t1, . . . , tn)) =
r(h(t1), . . . , h(tn)) is in A2.

Conjunctive Queries. A conjunctive query (CQ) Q of arity n over a schema R has
the form q(X) ← ϕ(X,Y), where ϕ(X,Y) is a conjunction of atoms over R, X and
Y are sequences of variables or constants in Γ , and q is an n-ary predicate that does not
occur in R. ϕ(X,Y) is called the body of q, denoted as body(q). A Boolean CQ (BCQ)
is a CQ of zero arity. The answer to an n-ary CQ Q of the form q(X) ← ϕ(X,Y) over
a database D, denoted as Q(D), is the set of all n-tuples t ∈ Γ n for which there exists
a homomorphism h : X ∪ Y → Γ ∪ ΓN such that h(ϕ(X,Y)) ⊆ D and h(X) = t.
Formally, a BCQ Q has positive answer over D, denoted as D |= Q, iff 〈〉 ∈ Q(D),
where 〈〉 is the empty tuple.

Dependencies. Given a schema R, a tuple-generating dependency (TGD) σ over R
is a first-order formula ∀X∀Y ϕ(X,Y) → ∃Zψ(X,Z), where ϕ(X,Y) and ψ(X,Z)
are conjunctions of atoms overR, called the body and the head of σ, denoted as body(σ)
and head(σ), respectively. Henceforth, we will omit the universal quantifiers in TGDs.
Such σ is satisfied by a database D for R iff, whenever there exists a homomorphism
h such that h(ϕ(X,Y)) ⊆ D, there exists an extension h′ of h (i.e., h′ ⊇ h) where
h′(ψ(X,Z)) ⊆ D.

An equality-generating dependency (EGD) η over R is a first-order formula of the
form ∀Xϕ(X) → Xi = Xj , where ϕ(X) is a conjunction of atoms over R, called
the body and denoted as body(η), and Xi = Xj is an equality among variables of
X. Henceforth, for brevity, we will omit the universal quantifiers in EGDs. Such η is
satisfied by a database D for R iff, whenever there exists a homomorphism h such that
h(ϕ(X)) ⊆ D, then h(Xi) = h(Xj).

Note that functional dependencies (FDs) can be identified with sets of EGDs; we
assume that the reader is familiar with the notion of FD (see, e.g., [1]).

Querying Conceptual Schemata with Expressive Equality Constraints 165

Example 3. The FD φ of the form r : {1} → {2, 4}, defined on the
predicate r of arity four, can be identified with the set of EGDs ΣE =
{r(X, Y2, Y3, Y4), r(X, Z2, Z3, Z4) → Yi = Zi}i∈{2,4}. It is easy to verify that, for
every D, it holds that D satisfies φ iff D satisfies ΣE .

CQ Answering under Dependencies. We now define the notion of query answering
under TGDs and EGDs. Given a database D for R, and a set Σ of TGDs and EGDs
over R, the models of D w.r.t. Σ, denoted as mods(D, Σ), is the set of all databases
B such that B |= D ∪ Σ, i.e., B ⊇ D and B satisfies Σ. The answer to a CQ Q
w.r.t. D and Σ, denoted as ans(Q, D, Σ), is the set {t | t ∈ Q(B), for each B ∈
mods(D, Σ)}. The answer to a BCQ Q w.r.t. D and Σ is positive, denoted as D∪Σ |=
Q, iff 〈〉 ∈ ans(Q, D, Σ). Note that query answering under general TGDs and EGDs
is undecidable. In fact, this is true even in extremely simple cases such that of inclusion
dependencies and key dependencies [10].

We recall that the two problems of CQ and BCQ answering under TGDs and EGDs
are LOGSPACE-equivalent [3]. Moreover, it is easy to see that the query output tuple
problem (as a decision version of CQ answering) and BCQ evaluation are AC0-reducible
to each other. Henceforth, we thus focus only on the BCQ answering problem.

The Chase Procedure. The chase procedure (or simply chase) is a fundamental
algorithmic tool introduced for checking implication of dependencies [18], and later
for checking query containment [16]. Informally, the chase is a process of repairing a
database w.r.t. a set of dependencies so that the resulted database satisfies the dependen-
cies. We shall use the term chase interchangeably for both the procedure and its result.
The chase works on an instance through the so-called TGD and EGD chase rules. The
TGD chase rule comes in two different equivalent fashions: restricted and oblivious [3].
The restricted one, which is defined formally below, repairs TGDs only when they are
not satisfied, whereas the oblivious one repairs TGDs even if they are satisfied. Usually,
the oblivious chase is used for clarity (see, e.g., [3]). However, for technical reasons, in
this paper we employ the restricted chase.

TGD CHASE RULE. Consider a database D for a schema R, and a TGD σ of the
form ϕ(X,Y) → ∃Zψ(X,Z) over R. If σ is applicable to D, i.e., there exists a
homomorphism h such that h(ϕ(X,Y)) ⊆ D, but there is no extension h′ of h (i.e.,
h′ ⊇ h) that maps ψ(X,Z) to D, then: (i) define h′ ⊇ h such that h′(Zi) = zi,
for each Zi ∈ Z, where zi ∈ ΓN is a “fresh” labeled null not introduced before, and
following lexicographically all those introduced so far, and (ii) add to D the set of atoms
h′(ψ(X,Z)), if not already in D.

EGD CHASE RULE. Consider a database D for a schema R, and an EGD η of the
form ϕ(X) → Xi = Xj over R. If η is applicable to D, i.e., there exists a homomor-
phism h such that h(ϕ(X)) ⊆ D and h(Xi) �= h(Xj), then: (i) if h(Xi) and h(Xj)
are both constants of Γ , then there is a hard violation of η, and the chase fails, other-
wise (ii) replace each occurrence of h(Xj) with h(Xi), if h(Xi) precedes h(Xj) in the
lexicographic order, or vice-versa otherwise.

Given a database D and a set of dependencies Σ = ΣT ∪ ΣE , where ΣT are TGDs
and ΣE are EGDs, the chase algorithm for D and Σ consists of an exhaustive appli-
cation of the chase rules in a breadth-first fashion, which leads to a (possibly infinite)
database. Roughly, the chase of D w.r.t. Σ, denoted as chase(D, Σ), is the (possibly

166 A. Calı̀, G. Gottlob, and A. Pieris

infinite) instance constructed by iteratively applying (i) the TGD chase rule once, and
(ii) the EGD chase rule as long as it is applicable (i.e., until a fixed point is reached). A
formal definition of the chase algorithm is given, e.g., in [6].

Example 4. Let R = {r, s}. Consider the set Σ of TGDs and EGDs over R constituted
by the TGDs σ1 : r(X, Y) → ∃Z r(Z, X), s(Z) and σ2 : r(X, Y) → r(Y, X), and
the EGD η : r(X, Y), r(X ′, Y) → X = X ′. Let D be the database {r(a, b)} for
R. During the construction of chase(D, Σ) we first apply σ1, and we add the atoms
r(z1, a), s(z1), where z1 is a “fresh” null of ΓN . Moreover, σ2 is applicable and we add
the atom r(b, a). Now, the EGD η is applicable and we replace each occurrence of z1

with the constant b; thus, we get the atom s(b).

The chase of D w.r.t. Σ is a universal model of D w.r.t. Σ, i.e., for each B ∈
mods(D, Σ), there exists a homomorphism from chase(D, Σ) to B (see, e.g., [14,15]).
Using this fact it can be shown that the chase is a formal tool for query answering under
TGDs and EGDs. In particular, the answer to an n-ary CQ Q w.r.t D and Σ, in the case
where the chase does not fail, can be obtained by evaluating Q over chase(D, Σ), and
discarding tuples containing at least one null [15]. If the chase fails, then mods(D, Σ)
is empty, and thus ans(Q, D, Σ) contains all tuples in Γ n. Notice that the chase is (in
general) infinite, and thus not explicitly computable.

3 Separability

In this section we exhibit a sufficient syntactic condition for separability between a set
of linear TGDs (LTGDs), i.e., TGDs with just one atom in the body, and a set of EGDs.
Before we proceed further, let us first give the formal definition of separability [4,10].
In the rest of the paper, for notational convenience, given a set Σ of dependencies we
will denote as ΣT and ΣE the set of TGDs and EGDs in Σ, respectively. We start by
recalling the notion of separability.

Definition 1. Consider a set Σ of dependencies over a schema R. We say that Σ is
separable if, for every database D for R, either chase(D, Σ) fails, or chase(D, Σ) |=
Q iff chase(D, ΣT) |= Q, for every BCQ Q over R.

We now introduce non-triggerable EGDs; this syntactic notion ensures separability by
preventing the triggering of EGDs during the (restricted) chase. Later, in Subsection 3.2,
we will introduce EGDs that are non-conflicting with a set of LTGDs; non-conflicting
TGDs and EGDs are separable, but it is possible that EGDs are triggered during the
construction of the chase.

3.1 Non-triggerable EGDs

Intuitively, we say that a set of EGDs is non-triggerable w.r.t. to a set of TGDs, if it
is not possible to trigger any of them during the construction of the (restricted) chase,
providing that the given database satisfies the EGDs. Clearly, this implies separability
since, for query answering purposes, we can consider the TGDs only. Note that in this

Querying Conceptual Schemata with Expressive Equality Constraints 167

subsection we consider arbitrary TGDs (and not just LTGDs). Before defining formally
non-triggerable EGDs, let us give first some preliminary notions.

Recall that each FD φ can be identified with a set Σφ of EGDs (see Example 3); for
each η ∈ Σφ, we say that η is associated to φ. An EGD η is associated to a FD iff there
exists a FD φ and an EGD η′ ∈ Σφ, such that η is the same (up to bijective variable
renaming) with η′, or, equivalently, η is of the form r(X,Y), r(X,Z) → Y = Z ,
where each X ∈ X occurs in both atoms at the same position, Y ∈ Y, and Z ∈ Z.

Given an EGD η associated to a FD, we define the set Jη of joined positions of η as
the set of positions at which a variable that occurs in both atoms of body(η) appears.
Given a (general) EGD η (not associated to a FD), for each atom a ∈ body(η), we define
the set Ja,η of joined positions of a relative to η as the set of positions in a at which
a variable that occurs also in some other atom b ∈ body(η), but at a different position,
appears. Moreover, for each variable V that occurs in a, we define the set Pa,η(V) of
V-positions of a relative to η as the set of positions in a at which the variable V occurs.
Finally, for a TGD σ, we define the set Uσ of universal positions of σ as the set of
positions in head(σ) at which a ∀-variable occurs.

Example 5. Consider the EGDs η1 : r(V, W), s(W, X, Y, Z) → V = X , and η2 :
r(U, V), r(U, W) → V = W . Clearly, the sets of joined positions of a = r(V, W)
and b = s(W, X, Y, Z) relative to η1 are Ja,η1 = {r[2]} and Jb,η1 = {s[1]}, due to the
variable W . Finally, the set of joined positions of η2 is Jη2 = {r[1]}; η2 is associated
to the FD r : {1} → {2}.

Note that query answering under (general) TGDs is equivalent to query answering under
TGDs with just one head-atom [3]. This was established by providing a LOGSPACE

transformation from (general) TGDs into TGDs with singleton atoms in their heads.
Henceforth, we assume w.l.o.g. that every TGD has just one head-atom. Let us now
define when a set of EGDs, associated to FDs, is non-fd-triggerable w.r.t. a set of TGDs.
Note that the following definition coincides with the definition of non-conflicting TGDs
and FDs given in [6].

Definition 2. Consider a set ΣT of TGDs over a schema R, and a set ΣE of EGDs
over R associated to FDs. ΣE is non-fd-triggerable w.r.t. ΣT if, for each pair 〈σ, η〉 ∈
ΣT ×ΣE , the following conditions are satisfied: (i) Uσ �⊃ Jη, and (ii) if Uσ = Jη , then
each ∃-variable in σ occurs just once.

We now define when a set of arbitrary EGDs (not associated to FDs) is non-egd-
triggerable w.r.t. a set of TGDs

Definition 3. Consider a set ΣT of TGDs over a schema R, and a set ΣE of EGDs
over R (not associated to FDs). ΣE is non-egd-triggerable w.r.t. ΣT if, for each pair
〈σ, η〉 ∈ ΣT × ΣE , and for each atom a ∈ body(η), one of the following conditions is
satisfied: (i) Uσ �⊇ Ja,η, and each ∃-variable in σ occurs just once, or (ii) there exists
a variable V such that |Pa,η(V)| � 2, and there exist two positions π1, π2 ∈ Pa,η(V)
such that in head(σ) at π1 and π2 two distinct variables occur, where at least one of
them is an ∃-variable.

168 A. Calı̀, G. Gottlob, and A. Pieris

Clearly, a set ΣE of EGDs can always be partitioned into sets ΣF
E and ΣG

E , where ΣF
E

are EGDs associated to FDs, and ΣG
E = ΣE \ ΣF

E are general EGDs (not associated
to FDs). By exploiting Definitions 2 and 3, we define when a set of EGDs in non-
triggerable w.r.t. a set of TGDs.

Definition 4. Consider a set ΣT of TGDs over a schema R, and a set ΣE of EGDs
over R. We say that ΣE is non-triggerable w.r.t. ΣT if ΣF

E is non-fd-triggerable w.r.t.
ΣT , and ΣG

E is non-egd-triggerable w.r.t. ΣT .

Example 6. Consider the TGDs σ1 : p(W, X), t(X, Y) → ∃Z s(Z, W, Y, X) and σ2 :
s(V, W, X, Y) → ∃Z r(W, Z), and the EGDs η1 and η2 given in Example 5. Since
Uσ1 = {s[2], s[3], s[4]} �⊇ Jb,η1 , and Uσ2 = {r[1]} �⊇ Ja,η1 , then {η1} is non-egd-
triggerable w.r.t. {σ1, σ2}. Moreover, since Uσ2 �⊃ Jη2 , then {η2} is non-fd-triggerable
w.r.t. {σ1, σ2}; recall that η2 is associated to a FD. We conclude that {η1, η2} is non-
triggerable w.r.t. {σ1, σ2}.

It is straightforward to verify that, given a set ΣT of TGDs and a set ΣE of EGDs, to
decide whether ΣE is non-triggerable w.r.t. ΣT is feasible in PTIME. More precisely, we
need to perform at most |ΣT | · |ΣE | checks, where each one of them can be carried out
in PTIME. The main result of this subsection, namely, given a set Σ of TGDs and EGDs,
the property of EGDs being non-triggerable w.r.t. the TGDs is sufficient for separability
of Σ, follows.

Theorem 1. Consider a set Σ of dependencies. If ΣE is non-triggerable w.r.t. ΣT , then
Σ is separable.

3.2 Non-conflicting Sets of Linear TGDs and EGDs

In this subsection we focus on the class of LTGDs. We extend the non-triggerabiliy
condition by defining when a set of LTGDs and EGDs is non-conflicting, and then
establish that this condition is indeed sufficient for separability. Note that under non-
conflicting sets it is possible to trigger an EGD, during the construction of the chase,
unlike non-triggerable EGDs.

Before we proceed further, we need to give some preliminary definitions. First, we
recall the notion of affected positions of a relational schema w.r.t. a set of TGDs [3].
Given a schema R, and a set ΣT of TGDs over R, an affected position of R w.r.t. ΣT is
defined inductively as follows. Let πh be a position in the head of a TGD σ ∈ ΣT . If an
existentially quantified variable occurs at πh, then πh is affected w.r.t. ΣT . If the same
universally quantified variable X appears both in position πh, and in the body of σ at
affected positions only, then πh is affected w.r.t. ΣT . Intuitively speaking, the affected
positions of a schema w.r.t. a set ΣT of TGDs, are those positions at which a labeled
null may occur during the construction of the chase under ΣT .

A key notion is the well-known query containment under TGDs. In particular, given
a set ΣT of TGDs over a schema R, and two CQs Q1 and Q2 over R, we say that
Q1 is contained in Q2 w.r.t. ΣT , written Q1 ⊆ΣT Q2, if Q1(D) ⊆ Q2(D), for every
database D for R that satisfies ΣT . Notice that the problems of query containment and
of query answering (the latter in its decision version, a.k.a. query output tuple problem)
are mutually LOGSPACE-reducible [3], and thus they have the same complexity bounds.

Querying Conceptual Schemata with Expressive Equality Constraints 169

We now recall the notion of applicability of a TGD to an atom [9]. Consider a TGD σ
over a schema R, and a set A of atoms over R. We say that σ is A-applicable to an atom
a ∈ A if the following conditions are satisfied: (i) a and head(σ) unify (recall that we
consider w.l.o.g. TGDs with just one atom in the head), (ii) if the term at position π in a
is either a constant of Γ , or a variable that occurs in some atom of A other than a, then
the variable at position π in head(σ) occurs also in body(σ), and (iii) if a variable of A
occurs only in a at positions π1, . . . , πm, for m � 2, then either the variable at position
πi in head(σ), for each i ∈ [m], occurs also in body(σ), or at positions π1, . . . , πm in
head(σ) we have the same existentially quantified variable.

Consider now a set A of atoms over a schema R, a variable X which occurs in
A, called the watched variable of A, and a set ΣT of LTGDs over R. By applying
a procedure, called Expansion, which is actually a modified version of the rewrit-
ing algorithm given in [9], we construct the expanded set of A w.r.t. ΣT . Formally,
Expansion(A, X, ΣT) consists of the following steps:

1. Let S = {〈A, id〉}, where id is the identity substitution on the terms of A.
2. Let S′ = S.
3. For each pair 〈A, λ〉 ∈ S′ apply the following two steps:

(a) For each a, b ∈ A: if a and b unify, then add to S the pair 〈γ(A), γ ◦ λ〉, where
γ = MGU (a, b), only if there is no 〈A′, λ′〉 ∈ S, and a bijective (renaming)
substitution ρ that maps γ(λ(X)) to λ′(X), such that ρ(γ(A)) = A′.

(b) For each pair 〈a, σ〉 ∈ A × ΣT : if (i) σ is A-applicable to a; in the sequel
let γ = MGU (a, head(σ)), (ii) Â contains the variable γ(λ(X)), where Â =
γ(A′) and A′ is obtained from A by replacing the atom a with body(σ), and
(iii) all the occurrences of γ(λ(X)) in Â appear at affected positions of R w.r.t.
ΣT , then add to S the pair 〈Â, γ ◦ λ〉, only if there is no 〈A′, λ′〉 ∈ S′, and
a bijective (renaming) substitution ρ that maps γ(λ(X)) to λ′(X), such that
ρ(Â) = A′.

4. If S = S′, then return S; otherwise, goto 2.

Note that at step 3b we assume w.l.o.g. that the TGD σ and the set S′ have no vari-
ables in common; we can simply rename (or standardize apart, in Logic Programming
parlance) the variables of σ. This is needed to avoid clutter among variable names in-
troduced during different applications of step 3b. Let us clarify that steps 3a and 3b
correspond to minimization and rewriting steps, respectively, of the rewriting algorithm
presented in [9]. We now formally define non-conflicting sets of LTGDs and EGDs.

Definition 5. Consider a set Σ of LTGDs and EGDs over a schema R. We say that Σ
is non-conflicting if ΣE can be partitioned into two sets Σ′

E and Σ′′
E such that Σ′

E is
non-triggerable w.r.t. ΣT , and, for each η ∈ Σ′′

E of the form ϕ(X) → Xi = Xj , the
following condition holds: for each pair 〈A, λ〉 ∈ Expansion(μ(ϕ(X)), Xi, ΣT), for
μ = {Xj → Xi}, it holds that Q1 ⊆ΣT Q2, where Q1 and Q2 are the conjunctive
queries q(Y) ← λ(ϕ(X)) and q(Y) ← A, respectively, where Y are the variables
that appear both in λ(ϕ(X)) and A.

Example 7. Consider the set Σ consisting by σ1 : s(X1, Y1) → r(Y1, X1), σ2 :
p(X2) → ∃Y2 s(Y2, X2), σ3 : t(X3, Y3) → r(X3, Y3), σ4 : r(X4, Y4) → s(Y4, X4),

170 A. Calı̀, G. Gottlob, and A. Pieris

and η : r(X5, Y5), r(X5, Z5) → Y5 = Z5. It is easy to see that ΣE is not non-
triggerable w.r.t. ΣT . The expanded set S of μ(body(η)), where μ = {Z5 → Y5},
consists of the pairs 〈{r(X5, Y5)}, id〉 and 〈{s(Y5, X5)}, {Y1 → X5, X1 → Y5}〉. Note
that 〈{t(X5, Y5)}, {X3 → X5, Y3 → Y5}〉 is not added to S since the watched vari-
able Y5 occurs in t(X5, Y5) at a non-affected position, while the pair 〈{p(X5)}, {Y2 →
Y5, X2 → X5, Y1 → X5, X1 → Y5}〉 is not added since p(X5) does not contain the
watched variable Y5. It is not difficult to verify that Q1 ⊆ΣT Q2 and Q1 ⊆ΣT Q3,
where Q1 : q(X5, Y5) ← r(X5, Y5), r(X5, Z5), Q2 : q(X5, Y5) ← r(X5, Y5), and
Q3 : q(X5, Y5) ← s(Y5, X5). Consequently, Σ is non-conflicting.

Identifying Non-Conflicting Sets. It is easy to show that the expanded set of the
body-atoms of an EGD w.r.t. a set of LTGDs is always finite. Since conjunctive query
containment under LTGDs is decidable [4], we immediately get that the non-conflicting
condition as defined above is decidable. However, this tells nothing about the complex-
ity of identifying non-conflicting sets. It is possible to show that the decision problem
whether a set of LTGDs and EGDs is non-conflicting is PSPACE-complete. The desired
upper bound is obtained by exhibiting a simple non-deterministic polynomial space
algorithm.

Lemma 1. Consider a set Σ of LTGDs and EGDs over a schema R. The problem
whether Σ is non-conflicting is feasible in PSPACE.

Proof (sketch). Recall that the problem whether a set of EGDs is non-triggerable w.r.t.
a set of TGDs is feasible in PTIME. Therefore, we can identify in PTIME the maximal
subset Σ′

E ⊆ ΣE which is non-triggerable w.r.t. ΣT . Since each pair in the expanded
set of μ(ϕ(X)), for some EGD ϕ(X) → Xi = Xj ∈ Σ′′

E , where Σ′′
E = ΣE \ Σ′

E

and μ = {Xj → Xi}, w.r.t. ΣT can be represented using polynomial space, and
also since CQ containment under LTGDs is in PSPACE (implicit in [16]), we can de-
cide in non-deterministic PSPACE whether Σ′′

E violates the non-conflicting condition.
Since PSPACE coincides with NPSPACE we get that the problem whether Σ′′

E violates
the non-conflicting condition is feasible in PSPACE, and hence the problem whether Σ
is non-conflicting is in coPSPACE. It is well-known that coPSPACE and PSPACE coin-
cide. Hence, the problem whether Σ is non-conflicting is in PSPACE, as needed. �
The desired lower bound can be established by providing a reduction from the CQ con-
tainment problem under LTGDs which is PSPACE-hard [16].

Lemma 2. Consider a set Σ of LTGDs and EGDs over a schema R. The problem
whether Σ is non-conflicting is PSPACE-hard.

Proof (sketch). The proof is by reduction of the query containment problem under
LTGDs. Note that the problem is still PSPACE-hard even in the case of atomic
queries. Consider an instance of the CQ containement problem, i.e., two queries
Q1 : q(X) ← r(X,Y) and Q2 : q(X) ← s(X,Y), and a set Σ of LTGDs. We
are going to construct a set ΣT of LTGDs, and an EGD η as follows. ΣT is the
union of Σ with the set of linear TGDs consisting by: r(X,Y) → ∃Z r�(X, Z),
s(X,Y) → ∃Z s�(X, Z), and s�(X1, . . . , Xn) → r�(X1, . . . , Xn), where r(X,Y)
and s(X,Y) are the body-atoms of Q1 and Q2, respectively, and r�, s� are auxiliary

Querying Conceptual Schemata with Expressive Equality Constraints 171

predicates. Moreover, η is the EGD r�(X, Y), r�(X, Z) → Y = Z . Observe that
Expansion({r�(X, Y)}, Y, ΣT) contains 〈{r�(X, Y)}, id〉 and 〈{s�(X, Y)}, λ〉, where
λ maps 〈X1, . . . , Xn〉 to 〈X, Y 〉. Therefore, ΣT ∪ {η} is not non-conflicting iff the
CQ q(X, Y) ← r�(X, Y), r�(X, Z) is not contained in the CQ q(X, Y) ← s�(X, Y)
under ΣT . This implies that ΣT ∪ {η} is not non-conflicting iff Q1 �⊆Σ Q2. Since
coPSPACE coincides with PSPACE, we immediately get that the problem whether
ΣT ∪ {η} is non-conflicting is PSPACE-hard, and the claim follows. �

The following complexity characterization of the problem whether a set of LTGDs and
EGDs is non-conflicting follows from Lemma 1 and 2.

Theorem 2. Consider a set Σ of LTGDs and EGDs over a schema R. The problem
whether Σ is non-conflicting is PSPACE-complete.

Non-Conflicting Sets are Separable. Let us now establish that non-conflicting sets
of LTGDs and EGDs are indeed separable. Before we proceed further, let us establish
an auxiliary technical lemma.

Lemma 3. Consider a non-conflicting set Σ of LTGDs and EGDs over R. If
chase(D, Σ) does not fail, then there exists a homomorphism that maps chase(D, Σ)
into chase(D, ΣT), for every database D for R.

Proof (sketch). The proof is by induction on the number of applications of the (TGD or
EGD) chase rule. We can show that, for each k � 0, there exists a homomorphism hk

such that hk(chase [k](D, Σ)) ⊆ chase(D, ΣT), where chase [k](D, Σ) is the part of
the chase obtained by applying k times either the TGD or the EGD chase rule. �

Theorem 3. Consider a set Σ of LTGDs and EGDs over a schema R. If Σ is non-
conflicting, then it is also separable.

Proof. Let D be a database for R such that chase(D, Σ) does not fail. Clearly, by con-
struction, chase(D, Σ) satisfies all the dependencies in Σ. Therefore, chase(D, Σ) ∈
mods(D, Σ) ⊆ mods(D, ΣT). Since chase(D, ΣT) is a universal model of D
w.r.t. ΣT we immediately get that there exists a homomorphism h such that
h(chase(D, ΣT)) ⊆ chase(D, Σ). On the other hand, Lemma 3 implies that there
exists a homomorphism h′ such that h′(chase(D, Σ)) ⊆ chase(D, ΣT). Due to the
existence of h and h′ it holds that, for every BCQ Q over R, chase(D, Σ) |= Q iff
chase(D, ΣT) |= Q.

Query Answering under Non-Conflicting Sets. We conclude this subsection by in-
vestigating the data and combined complexity of BCQ answering under non-conflicting
sets of linear TGDs and EGDs. Recall that the data complexity is calculated by consid-
ering only the data as input, while the combined complexity is calculated by considering
also the query and the dependencies as part of the input.

Theorem 4. Consider a BCQ Q over a schema R, a database D for R, and a non-
conflicting set Σ of LTGDs and EGDs over R. The problem whether D ∪ Σ |= Q is in
AC0 in data complexity, and is PSPACE-complete in combined complexity.

172 A. Calı̀, G. Gottlob, and A. Pieris

Proof (sketch). Suppose that chase(D, Σ) does not fail. By Theorem 3, we get that
D ∪ Σ |= Q, or, equivalently, chase(D, Σ) |= Q iff chase(D, ΣT) |= Q. It is
well-known that BCQ answering under LTGDs is in AC0 in data complexity [4], and
PSPACE-complete in combined complexity (implicit in [16]). Since ΣT is a set of
LTGDs, providing that the chase does not fail, the desired complexity follows. Since
the problem whether chase(D, Σ) fails is tantamount to BCQ answering under LTGDs
(see, e.g., [7]), the claim follows. �

4 Applications

As mentioned in the introduction, the research presented in this paper originated from
our recent work on Entiry-Relationship schemata, and in particular on our ER± fam-
ily [5,7], a family of languages derived from the original ER model. More specifically,
ER± languages are variants of the ER formalism, enriched with is-a (inclusion) among
entities and relationships, plus functional and mandatory participation constraints. In-
terestingly, every ER± schema can be encoded in a relational schema by using IDs (a
special case of linear TGDs) and KDs. The results in this paper immediately imply
that we can add sets of general EGDs to ER± schemata, as in Example 2, as long as
the EGDs are non-conflicting with the linear TGDs (in fact, IDs) that encode the ER±

schema. Such an addition will not at all affect the query answering complexity, as EGDs
need to be considered only in a preliminary step (see, e.g., [7]), to check whether any
hard violation occurs in the chase, thus revealing whether the theory is inconsistent.
Query answering can then be done by rewriting queries into first-order queries, which
can be translated into SQL and executed by means of a relational DBMS.

As shown in [4], negative constraints (a form of denial constraints) can be added
to any set of linear TGDs without affecting the complexity of query answering. This
was used in [7] to show that negative constraints can be added to ER± schemata. The
addition of the non-conflicting EGDs presented in this paper turns out to be independent
of that of negative constraints, therefore we can express both kinds of constraints in
addition to sets of linear TGDs without increasing the complexity of query answering.
This leads us to another important application of our results, regarding the well-known
DL-lite family of description logics. DL-lite languages have been shown to be useful
in ontology-based query answering, especially because, as they are all FO-rewritable,
they offer the desirable feature of providing tractable query answering services. As
shown in [4], each DL-lite schema (ontology) is expressible with non-conflicting linear
TGDs and KDs. Therefore, as for ER± languages, we can add non-conflicting EGDs to
DL-lite schemas (once we represent them in relational form) and keep the same query
answering techniques and complexity.

Complexity. For the above consideration on the applications of our results, the same
tight complexity bounds of conjunctive query answering under non-conflicting TGDs
and EGDs (Theorem 4) hold for ER± schemata with non-conflicting EGDs, and for
DL-lite schemata with non-conflicting EGDs.

Extensions. By using a syntactic condition similar to that of Definition 5, we can
define sets of EGDs which are non-conflicting with sets of a larger class of TGDs called
sticky sets of TGDs [6]. Sticky sets of TGDs, while allowing for an arbitrary number of

Querying Conceptual Schemata with Expressive Equality Constraints 173

atoms in their bodies, are FO-rewritable; the complexity of CQ answering under sticky
sets of TGDs is therefore AC0 in data complexity, while it is EXPTIME-complete in
combined complexity. EGDs which are non-conflicting with sticky sets of TGDs are
separable, and thus can be added without affecting the complexity of query answering.

5 Discussion

In this paper we have addressed the problem of separability between TGDs and EGDs
in the context of ontological query answering. We have exhibited a sufficient, syntactic
condition for separability for the case of LTGDs and general EGDs. The non-conflicting
condition can be extended to EGDs in the presence of sticky sets of TGDs [6], a rel-
evant class of ontology constraints. We have shown that non-conflicting EGDs can be
added, without adding complexity to query answering, to several tractable ontology rep-
resentation languages, including the ER± family, and to most languages in the DL-lite
family of tractable description logics. Moreover, the complexity of checking whether a
set of LTGDs and EGDs is non-conflicting has the same complexity (that is, PSPACE-
complete) as the combined complexity of query answering under the same dependen-
cies. The same holds for the most relevant special case of our language, namely the
ER± family. While checking the non-conflict condition is hardly done by visual in-
spection, design tools for ontologies (e.g., for ER± schemata) could alert the designer
when the condition is not met. Notice that, since non-conflicting TGDs and EGDs are
FO-rewritable, query answering can be done by rewriting each query into a single SQL
one, and then having it efficiently executed by a DBMS on the initial data (see, e.g., [4]).
This opens the possibility of performing efficient query answering in real-world scenar-
ios, something we are currently experimenting with a prototype system. An important
research direction is to reduce the size of the rewriting, possibly in combination with a
suitable instance expansion, to further improve efficiency (see, e.g., [17]).

Related Work. Identification constraints, which are similar to EGDs, have been thor-
oughly studied in the context of Description Logics, Databases and Conceptual Mod-
eling (see for example [12] and references therein). The interaction of such constraints
with TGDs easily creates complexity or decidability problems, as shown, for example,
in [10] in the case of inclusion and key dependencies. An early separable class of IDs
and KDs, called key-based, was proposed in the seminal work of Johnson and Klug [16].
In [10], the key-based condition is relaxed and the more general non-key-conflicting
(NKC) IDs are presented. Notice that NKC IDs capture the well-known class of foreign
key dependencies. The class of NKC IDs was slightly generalized in [4] to the con-
text of arbitrary (single-head) TGDs by defining the class of non-key-conflicting TGDs,
which uses a very similar idea. In [6] it was shown that the class of non-key-conflicting
TGDs can be effortless extended to treat not just keys, but FDs. The main reason due to
which the above classes are separable is because, if the given database satisfies the set
of EGDs, we know that it is not possible to apply any EGD during the chase procedure.
In fact, all the above conditions are captured by our notion of non-triggerable EGDs.
The separable classes of IDs and KDs introduced in [5,7] in the context of Entity-
Relationship schemata, instead, are such that KDs can be applied during the chase. The
separable class of LTGDs and EGDs that we propose is a proper generalization of the

174 A. Calı̀, G. Gottlob, and A. Pieris

classes of IDs and KDs introduced in [5,7]. Moreover, it is built upon the notion of
non-triggerability, and also generalizes the conditions in [4,6].

Acknowledgements. The authors acknowledge support by the European Research
Council under the European Community’s Seventh Framework Programme (FP7/2007–
2013) / ERC grant agreement DIADEM no. 246858.

References

1. Abiteboul, S., Hull, R., Vianu, V.: Foundations of Databases. Addison-Wesley, Reading
(1995)

2. Calı̀, A., Calvanese, D., De Giacomo, G., Lenzerini, M.: Accessing data integration systems
through conceptual schemas. In: Kunii, H.S., Jajodia, S., Sølvberg, A. (eds.) ER 2001. LNCS,
vol. 2224, pp. 270–284. Springer, Heidelberg (2001)

3. Calı̀, A., Gottlob, G., Kifer, M.: Taming the infinite chase: Query answering under expressive
relational constraints. In: Proc. of KR, pp. 70–80 (2008)

4. Calı̀, A., Gottlob, G., Lukasiewicz, T.: A general datalog-based framework for tractable query
answering over ontologies. In: Proc. of PODS, pp. 77–86 (2009)

5. Calı̀, A., Gottlob, G., Pieris, A.: Tractable query answering over conceptual schemata. In:
Laender, A.H.F., Castano, S., Dayal, U., Casati, F., de Oliveira, J.P.M. (eds.) ER 2009. LNCS,
vol. 5829, pp. 175–190. Springer, Heidelberg (2009)

6. Calı̀, A., Gottlob, G., Pieris, A.: Advanced processing for ontological queries. PVLDB 3(1),
554–565 (2010)

7. Calı̀, A., Gottlob, G., Pieris, A.: Query answering under expressive entity-relationship
schemata. In: Parsons, J., Saeki, M., Shoval, P., Woo, C., Wand, Y. (eds.) ER 2010. LNCS,
vol. 6412, pp. 347–361. Springer, Heidelberg (2010)

8. Calı̀, A., Gottlob, G., Pieris, A.: Query answering under non-guarded rules in datalog+/-.
In: Hitzler, P., Lukasiewicz, T. (eds.) RR 2010. LNCS, vol. 6333, pp. 175–190. Springer,
Heidelberg (2010)

9. Calı̀, A., Gottlob, G., Pieris, A.: Query rewriting under non-guarded rules. In: Proc. AMW
(2010)

10. Calı̀, A., Lembo, D., Rosati, R.: On the decidability and complexity of query answering over
inconsistent and incomplete databases. In: Proc. of PODS, pp. 260–271 (2003)

11. Calvanese, D., De Giacomo, G., Lembo, D., Lenzerini, M., Rosati, R.: Tractable reasoning
and efficient query answering in description logics: The DL-lite family. J. Autom. Reason-
ing 39(3), 385–429 (2007)

12. Calvanese, D., Giacomo, G.D., Lembo, D., Lenzerini, M., Rosati, R.: Path-based identifica-
tion constraints in description logics. In: Proc. of KR, pp. 231–241 (2008)

13. Chen, P.P.: The entity-relationship model: towards a unified view of data. ACM Trans.
Database Syst. 1(1), 124–131 (1976)

14. Deutsch, A., Nash, A., Remmel, J.B.: The chase revisisted. In: Proc. of PODS, pp. 149–158
(2008)

15. Fagin, R., Kolaitis, P.G., Miller, R.J., Popa, L.: Data exchange: Semantics and query answer-
ing. Theor. Comput. Sci. 336(1), 89–124 (2005)

16. Johnson, D.S., Klug, A.C.: Testing containment of conjunctive queries under functional and
inclusion dependencies. J. Comput. Syst. Sci. 28(1), 167–189 (1984)

17. Kontchakov, R., Lutz, C., Toman, D., Wolter, F., Zakharyaschev, M.: The combined approach
to query answering in DL-lite. In: Proc. of KR (2010)

18. Maier, D., Mendelzon, A.O., Sagiv, Y.: Testing implications of data dependencies. ACM
Trans. Database Syst. 4(4), 455–469 (1979)

A Precious Class of Cardinality Constraints for

Flexible XML Data Processing

Flavio Ferrarotti1, Sven Hartmann2, and Sebastian Link1

1 Victoria University of Wellington, New Zealand
2 Clausthal University of Technology, Germany

Abstract. Modern Web developers must often process collections of
XML data that are aggregated from potentially thousands of hetero-
geneous sources. While the semi-structured nature of XML provides a
high degree of syntactic flexibility there are significant shortcomings to
specify the semantics of its data. For the advancement of XML applica-
tions it is therefore an important problem to identify natural classes of
constraints that can be utilized effectively by XML data engineers. The
problem is challenging given the range of intractability results in the
area. In this paper we propose a class of XML cardinality constraints
that is sufficiently flexible to process concisely XML data from various
sources. The flexibility is a result of the right balance between expres-
siveness and efficiency of maintenance. In particular, we characterize the
associated implication problem axiomatically, and algorithmically by a
low-degree polynomial time decision procedure. Our class is precious as
small extensions in expressiveness result in intractability.

1 Introduction

Context. The most common format for web accessible data is provided by
the eXtensible Markup Language (XML) [5]. It is used for hypertext document
collections like Wikipedia, and for data exchange and integration in web applica-
tions including web service messaging, blogs, news feeds, and podcasts. Modern
Web developers often process XML collections that are aggregated from poten-
tially thousands of heterogeneous sources. For this purpose the semi-structured
nature of XML provides a high degree of syntactic flexibility. Unfortunately,
XML presents significant shortcomings to specify the semantics of its data.
The Current Conundrum. For the advancement of XML applications it is
therefore an important problem to identify useful classes of integrity constraints.
XML engineers use these classes to constrain collections of XML data to those
considered meaningful for the application domain. This is particularly important
for data integration where not only the data but also its properties (e.g. con-
straints) are integrated to provide a concise customer service [9]. Many classes of
constraints can express desirable properties of XML data. However, the delicate
interactions between XML data items often mean that these constraint classes
cannot be maintained effectively, nevermind efficiently. A huge range of infeasi-
bility and intractability results exists, see [4,16]. For example, the satisfiability

M. Jeusfeld, L. Delcambre, and T.W. Ling (Eds.): ER 2011, LNCS 6998, pp. 175–188, 2011.
c© Springer-Verlag Berlin Heidelberg 2011

176 F. Ferrarotti, S. Hartmann, and S. Link

E

E

E

E

S

name

Canada
Air

E

E

S

E

S

E

E

S

E

E

S

E

S

3/11/2010
11:45

date
A

3/11/2010
11:45

date
A

E

E

E

S

E

E

S

E

S

E
db

A

E

E

E

E

E

S E

S

E

S

Canada

share

price

500

code

TSX:AC

company

TSX

company

name

Barrick
Gold

share

pricecode

TSX:ABX 530

MX

Barrick
Gold

entreprise

nom action

symbole

prix

MX:ABX 540

fecha

12:00
3/11/2010

Barrick
Gold

SSE

Chile

empresa

nombre

1200SSE:ABX

nemo

precio

papel

Fig. 1. Tree representation of XML data

problem of the keys and foreign keys in XML Schema is undecidable, and that
of XML Schema keys is NP -hard [3]. Thus, it is a conundrum to identify classes
that are precious, i.e. expressive and tractable.
Motivation. We study cardinality constraints for XML. As bounds occur nat-
urally in everyday life they can express many desirable properties. They have
also enjoyed a great deal of popularity in conceptual modeling [10,15,17,18]. Our
constraints are inherently different from the minOccurs and maxOccurs con-
straints in XML Schema [19]. The latter restrict the number of children element
nodes independently of any data values. We define cardinality constraints in the
XML tree model as proposed by DOM [2] and XPath [7], but independently
from schema specifications such as DTDs [5] or XSDs [19]. Figure 1 shows a tree
representation of an XML data fragment in which nodes are annotated by their
type: E for elements, A for attributes, and S for text (PCDATA) in XML data.

Cardinality constraints restrict the number of nodes in an XML tree that have
the same (complex) values on some selected descendant nodes. To address the
tree-like structure of XML data such restrictions can be specified for an entire
document or relatively to selected context nodes. As is common in XML data
processing, path expressions are used to select the nodes of interest.

For example, consider the XML tree T in Figure 1. The XML document is
the result of integrating XML data from different sources, i.e. stock markets
around the world. Each market provides, in the local official language, informa-
tion regarding shares. For instance, the Toronto Stock Exchange (TSX) shows
this information in English while the Montréal Exchange (MX) chooses French
and the Santiago Stock Exchange (SSE) chooses Spanish. It is assumed that the
markets provide the information as XML documents with the structure of the
subtrees rooted at the nodes at level three (the company-nodes, the entreprise-
node and the empresa-node in our example). Suppose Canada has a policy that
a company can list its shares in at most two of the stock markets that operate

A Precious Class of Cardinality Constraints 177

in the country. Further, each company can list its shares in up to four stock
markets globally.

Cardinality constraints have the power to unlock a vast amount of application
domains effectively. These include consistency management, query optimization,
and view maintenance. Moreover, they can help to predict the number of query
answers, updates or de/encryptions. For instance, we would like to provide a ser-
vice where clients receive up-to-date information regarding company shares that
are traded in different stock markets worldwide. Suppose a client is using a smart
phone to receive the current value for all shares of the multinational company
Barrick Gold. Clients will only use the service if the costs are reasonable, but
our service provider prefers to integrate data from different sources only when
the service has been paid for. If reasoning about cardinality constraints can be
automated, then it is likely that we can estimate the maximum number of an-
swers to a client’s query and hence the maximum cost for the service. Thus, the
client is able to make an informed choice and the service provider has minimized
its cost for unpaid services, without querying or integrating data.
Contributions. To unlock applications effectively it is crucial to identify pre-
cious classes of cardinality constraints. We will first introduce an expressive class
of cardinality constraints. The first source of expressiveness is the ability to spec-
ify lower and upper bounds on the number of nodes (called selector nodes) in
an XML tree that are value-equal on some of its subnodes (called field nodes).
The bounds can be specified with respect to a context node. The second source
results from the very general notion of value equality: isomorphic subtrees in
contrast to just value equality on leaf nodes for instance. The third source is a
result of the path language we use to select nodes. This includes the single label
wildcard, child navigation, and descendant navigation, as known from XPath.
For our general class of cardinality constraints we will single out three fragments
that are likely to be intractable as their associated implication problems are
all coNP -hard. The fragments direct our attention towards the class of max-
constraints which allow the specification of upper bounds, our general notion
of value-equality, context and target nodes can be selected by our general path
language, and field nodes by using single label wildcards and child navigation.
Thus, max-constraints can capture many desirable properties of XML data, e.g.
the business rules in our example. In contrast to other expressive classes of XML
constraints, max-constraints are also tractable. Indeed, we characterize their im-
plication problem axiomatically, and by a shortest path problem on a suitable
digraph. This enables us to design a compact low-degree polynomial time algo-
rithm to decide implication efficiently. Hence, we establish a precious class of
cardinality constraints that is effective for flexible XML data processing.
Organization. We fix basic notions in Section 2. Cardinality constraints and
their implication problem are studied in Section 3. In Section 4 we establish
a finite axiomatization for max-constraints, and characterize the implication
problem in terms of shortest paths. In Section 5 we design an efficient algorithm
for deciding implication. Section 6 concludes our work.

178 F. Ferrarotti, S. Hartmann, and S. Link

2 Preliminaries

The XML Tree Model. Let E denote a countably infinite set of element
tags, A a countably infinite set of attribute names, and {S} a singleton set
denoting text (PCDATA). These sets are pairwise disjoint. The elements of L =
E∪A∪{S} are called labels. An XML tree is a 6-tuple T = (V, lab, ele, att, val, r)
where V is a set of nodes, and lab is a mapping V → L assigning a label to every
node in V . A node v ∈ V is an element node if lab(v) ∈ E, an attribute node
if lab(v) ∈ A, and a text node if lab(v) = S. Moreover, ele and att are partial
mappings defining the edge relation of T : for any node v ∈ V , if v is an element
node, then ele(v) is a list of element and text nodes, and att(v) is a set of
attribute nodes in V . If v is an attribute or text node, then ele(v) and att(v) are
undefined. The partial mapping val assigns a string to each attribute and text
node: for each node v ∈ V , val(v) is a string if v is an attribute or text node,
while val(v) is undefined otherwise. Finally, r is the unique and distinguished
root node. A path p of T is a finite sequence of nodes v0, . . . , vm in V such
that (vi−1, vi) is an edge of T for i = 1, . . . , m. The path p determines a word
lab(v1). · · · .lab(vm) over the alphabet L, denoted by lab(p).
Value Equality of Nodes in XML Trees. Two nodes u, v ∈ V are value equal,
denoted by u =v v, iff the following conditions are satisfied: (a) lab(u) = lab(v),
(b) if u, v are attribute or text nodes, then val(u) = val(v), (c) if u, v are element
nodes, then (i) if att(u) = {a1, . . . , am}, then att(v) = {a′

1, . . . , a
′
m} and there is

a permutation π on {1, . . . , m} such that ai =v a′
π(i) for i = 1, . . . , m, and (ii) if

ele(u) = [u1, . . . , uk], then ele(v) = [v1, . . . , vk] and ui =v vi for i = 1, . . . , k.
Path Expressions for Node Selection in XML Trees. We use the path
language PL{., , ∗} consisting of expressions given by the following grammar:
Q → | ε | Q.Q | | ∗. Here ∈ L is any label, ε denotes the empty path
expression, “.” denotes the concatenation of two path expressions, “ ” denotes
the single-label wildcard, and “ ∗” denotes the variable length don’t care wild-
card. Let P, Q be words from PL{., , ∗}. P is a refinement of Q, denoted by
P � Q, if P is obtained from Q by replacing variable length wildcards in Q
by words from PL{., , ∗} and single-label wildcards in Q by labels from L. Let
Q be a word from PL{., , ∗}. A path p in the XML tree T is called a Q-path
if lab(p) is a refinement of Q. For nodes v, w ∈ V , we write T |= Q(v, w) if
w is reachable from v following a Q-path in T . For a node v ∈ V , let v[[Q]]
denote the set of nodes in T that are reachable from v following any Q-path,
that is, v[[Q]] = {w | T |= Q(v, w)}. We use [[Q]] as an abbreviation for r[[Q]]
where r is the root node of T . For S ⊆ {., , ∗}, PLS denotes the subset of
PL{., , ∗} expressions restricted to the constructs in S. Q ∈ PL{., , ∗} is valid if
it does not have labels ∈ A or = S in a position other than the last one.
Let P, Q be words from PL{., , ∗}. P is contained in Q, denoted by P ⊆ Q, if
for every XML tree T and every node v of T we have v[[P]] ⊆ v[[Q]]. It fol-
lows immediately from the definition that P � Q implies P ⊆ Q. For nodes v
and v′ of an XML tree T , the value intersection of v[[Q]] and v′[[Q]] is given by
v[[Q]] ∩v v′[[Q]] = {(w, w′) | w ∈ v[[Q]], w′ ∈ v′[[Q]], w =v w′}.

A Precious Class of Cardinality Constraints 179

3 From Expressive towards Precious Classes

Our expressive notion of cardinality constraints results from the ability to specify
both lower and upper bounds, the generality of value-equality and the path
language. For more expressive path languages the containment problem becomes
at least intractable [16]. Let N denote the positive integers, and let N̄ = N∪{∞}.
Definition 1. A cardinality constraint ϕ for XML is an expression of the form
card(Q, (Q′, {Q1, . . . , Qk})) = (min, max) where Q, Q′, Q1, . . . , Qk are PL{., , ∗}

expressions such that Q.Q′, Q.Q′.Q1, . . . , Q.Q′.Qk are valid, where k is a non-
negative integer, and where min ∈ N and max ∈ N̄ with min ≤ max. Herein, Q
is called the context path, Q′ is called the selector path, Q1, . . . , Qk are called
the field paths, min is called the lower bound, and max the upper bound of ϕ.
If Q = ε, we call ϕ absolute; otherwise ϕ is called relative. ��
For a cardinality constraint ϕ, let Qϕ denote its context path, Q′

ϕ its selector
path, Qϕ

1 , . . . , Qϕ
kϕ

its field paths, minϕ its lower and maxϕ its upper bound. Let
�S denote the cardinality of a finite set S, i.e., the number of its elements.

Definition 2. Let ϕ = card(Q, (Q′, {Q1, . . . , Qk})) = (min, max) be a cardinal-
ity constraint. An XML tree T satisfies ϕ, denoted by T |= ϕ, if and only if for
all q ∈ [[Q]], for all q′0 ∈ q[[Q′]] such that for all x1, . . . , xk with xi ∈ q′0[[Qi]] for
i = 1, . . . , k, it is true that

min ≤ �{q′ ∈ q[[Q′]] | ∃y1, . . . , yk.∀i = 1, . . . , k. yi ∈ q′[[Qi]] ∧ xi =v yi} ≤ max

holds. ��
Note that card(Q, (Q′, {Q1, . . . , Qk})) = (min, max) enforces the cardinalities
imposed by min and max only on those selector nodes q′0 ∈ q[[Q′]] in T for which
for all i = 1, . . . , k field nodes xi ∈ q′0[[Qi]] exist in T . Hence, with no such selector
node q′0, T automatically satisfies the constraint.
Examples. Let T be the XML tree in Figure 1. We formalize the constraints
from the introduction. The constraint card(∗.Canada, (. , { .S})) = (0, 2) says
that every company that is listed in a Canadian stock market is listed in at most
two of the stock markets that operate in the country. This constraint is satisfied
by T . Instead of making the constraint relative to the subtree rooted at Canada,
we can make it absolute: card(ε, (. . , { .S})) = (0, 2). This constraint is violated
by T since the company Barrick Gold has its shares listed in three stock markets.
The following constraint states that each company lists its shares in at least two
and at most four stock markets: card(ε, (. . ., { .S})) = (2, 4). This constraint is
also absolute and violated by T since the company Air Canada is only listed in
the Toronto Stock Exchange. The constraint card(, (, ∅)) = (2,∞) illustrates
the case in which the set of field paths is empty. It states that each country has
at least two stock markets or none at all. Again, this constraint is not satisfied
by T since Chile has only one stock market.
Subsumption of Keys. XML keys as studied in [6,8,11] are covered by cardinal-
ity constraints. In fact, a cardinality constraint ϕ is an XML key precisely when

180 F. Ferrarotti, S. Hartmann, and S. Link

minϕ = maxϕ = 1. An example of an XML key is card(. , (, { .S})) = (1, 1)
stating that a company cannot be listed more than once in the same stock mar-
ket. The key card(∗.TSX, (∗.share, {code)) = (1, 1) states that in the Toronto
Stock Exchange a share is identified by its code; and (card(ε, (. . . , { .S})) =
(1, 1) states that a share is identified by the text values of its code and price.
Note that the XML keys of [12] are not covered by cardinality constraints.
Implication Problems. In order to take advantage of XML applications ef-
fectively it becomes necessary to reason about constraints efficiently. Central to
this task is the implication problem. Let Σ ∪ {ϕ} be a finite set of constraints
in a class C. We say that Σ (finitely) implies ϕ, denoted by Σ |=(f) ϕ, if and
only if every (finite) XML tree T that satisfies all σ ∈ Σ also satisfies ϕ. The
(finite) implication problem for the class C is to decide, given any finite set of
constraints Σ ∪ {ϕ} in C, whether Σ |=(f) ϕ. If Σ is a finite set of constraints
in C let Σ∗

(f) denote its (finite) semantic closure, i.e., the set of all constraints
(finitely) implied by Σ. That is, Σ∗

(f) = {ϕ ∈ C | Σ |=(f) ϕ}.
Intractability Results. Unfortunately, the price for the general notion of car-
dinality constraints results in the intractability of the finite implication problem.
As the following result shows this is already true for restricted classes [13].

Theorem 1. The finite implication problem for the following three classes
C1 = {card(ε, (P ′, {P1, . . . , Pk})) = (min,max) | P ′, P1, . . . , Pk ∈ PL{.}, k ≥ 1, max ≤ 5},
C2 = {card(ε, (P ′, {P1, . . . , Pk})) = (1,max) | P ′, P1, . . . , Pk ∈ PL{.}, k ≥ 0, max ≤ 6},
C3 = {card(ε, (Q′, {Q1, . . . , Qk})) = (1,max) | Q′, Q1, . . . , Qk ∈ PL{., ∗}, k ≥ 1, max ≤ 4}
is coNP-hard. 	

Thus, there are at least three different sources of computational intractability: i)
the specification of both lower and upper bounds, ii) an empty set of field paths,
and iii) allowing arbitrary PL{., ∗} expressions in both target- and key paths.
Max-Constraints. The intractability results direct our attention to the follow-
ing subclass of cardinality constraints.

Definition 3. The class M of max-constraints for XML consists of cardinality
constraints of the form card(Q, (Q′, {P1, . . . , Pk})) = (1, max), where Q, Q′ are
PL{., , ∗} expressions, P1, . . . , Pk are PL{., } expressions and k is a positive inte-
ger. We use card(Q, (Q′, {P1, . . . , Pk})) ≤ max to denote these constraints. ��

The class M is still very expressive. In particular, it subsumes the class of
XML keys [8] for the special case where maxϕ = 1. We would like to em-
phasize the significance of including the single label wildcard into the path
language. In fact, this feature adds expressiveness to the language that has im-
portant applications in data integration. We will illustrate this point by the
example from the introduction. Let us consider, for instance, the constraints
ϕ1 = card(∗.Canada, (. , { .S})) ≤ 2 and ϕ2 = card(ε, (. . ., { .S})) ≤ 4. That
is, every company is listed in at most two of the stock markets that operate
in Canada, and every company lists its shares in at most four stock markets.
Clearly, these constraints cannot be expressed without the single label wildcard

A Precious Class of Cardinality Constraints 181

when we consider trees with the structure of T in Figure 1. We could repre-
sent the same information in a tree T ′ different from T . For example, replacing
the element nodes Canada and Chile by element nodes country with attribute
children name where val (name) = Canada and = Chile, respectively; replacing
the element nodes TSX, MX and SSE by element nodes market with attribute
children date and name where val (name) = TSX , = MX , and = SSE, re-
spectively; and replacing all non-English labels of the remaining element nodes
by their corresponding English translation, i.e., replacing empresa by company,
papel by share and so on. Over trees with the structure of T ′, the constraint
card(ε, (country.market.company, {name.S})) ≤ 4 (without single label wild-
cards) is equivalent to ϕ2. However, ϕ1 is not meaningful in T ′ and there is
no cardinality constraint ϕ′

1 such that for every tree Ti with the structure of T
and every corresponding equivalent tree T ′

i with the structure of T ′, Ti |= ϕ1 iff
T ′

i |= ϕ′
1. We can replace the country-nodes in T ′ with the labels they have in

T , but then no constraint without a single label wildcard is equivalent to ϕ2.
Towards a Precious Class. In conclusion, the class M of max-constraints pro-
vides XML engineers with an enhanced ability to capture significant properties
of XML data. For the remainder of the article we will address the challenging
task to show that M forms a precious class of cardinality constraints. That is,
despite its expressiveness the class M can be reasoned about efficiently.
Remaining Outline. To address this challenge, we will first characterize the
implication problem associated with M by a finite axiomatization. We can speak
of the implication problem as the finite and unrestricted implication problems
coincide for the class M. This is different for the general class of cardinality
constraints. Our axioms provide complete insight into the interaction of max-
constraints. This insight allows us to characterize the implication problem by
constructive graph properties. This characterization enables us to establish a
compact, low-degree polynomial-time algorithm for deciding implication.

4 Axiomatic and Graph-Theoretical Characterization

We devote this section to describe the semantic notion of implication for max-
constraints in completely syntactic terms. For this purpose we utilize the syntac-
tic notion of derivability. Indeed, derivability with respect to a set R of inference
rules, denoted by the binary relation �R between a set of max-constraints and a
single max-constraint, can be defined analogously to the notion in the relational
data model [1, pp. 164-168]. Our aim is to find a set S of inference rules which
is sound and complete for the implication of max-constraints. That is, a set S
of inference rules is sound (complete) for the implication of max-constraints, if
for all finite sets Σ of max-constraints we have Σ+

S ⊆ Σ∗ (Σ∗ ⊆ Σ+
S) where

Σ+
S = {ϕ | Σ �S ϕ} denotes the syntactic closure of Σ under derivations by S.

Sound Rules. Table 1 shows the set R of inference rules for the implication of
max-constraints. We omit the lengthy, but not very difficult proofs.
Completeness. We will now demonstrate that R is also complete for the im-
plication of max-constraints. Completeness means we need to show that for an

182 F. Ferrarotti, S. Hartmann, and S. Link

Table 1. An axiomatisation for max-constraints

card(Q, (Q′, S)) ≤ ∞ card(Q, (ε, S)) ≤ 1
(infinity) (epsilon)

card(Q, (Q′, S)) ≤ max

card(Q, (Q′, S)) ≤ max+1

card(Q, (Q′, S)) ≤ max

card(Q, (Q′, S ∪ {P})) ≤ max
(weakening) (superkey)

card(Q, (Q′.P, {P ′})) ≤ max

card(Q, (Q′, {P.P ′})) ≤ max

card(Q, (Q′.Q′′, S)) ≤ max

card(Q.Q′, (Q′′, S)) ≤ max
(subnodes) (target-to-context)

card(Q, (Q′, S)) ≤ max

card(Q′′, (Q′, S)) ≤ max
Q′′⊆Q

card(Q, (Q′, S)) ≤ max

card(Q, (Q′′, S)) ≤ max
Q′′⊆Q′

(context-path-containment) (target-path-containment)

card(Q, (Q′, S ∪ {P})) ≤ max

card(Q, (Q′, S ∪ {P ′})) ≤ max
P ′⊆P

card(Q, (Q′, S ∪ {ε, P})) ≤ max

card(Q, (Q′, S ∪ {ε, P.P ′})) ≤ max
(key-path-containment) (prefix-epsilon)

card(Q, (Q′.P, {ε, P ′})) ≤ max

card(Q, (Q′, {ε, P.P ′})) ≤ max

card(Q, (Q′, {P.P1, . . . , P.Pk})) ≤ max,
card(Q.Q′, (P, {P1, . . . , Pk})) ≤ max′

card(Q, (Q′.P, {P1, . . . , Pk})) ≤ max ·max′
(subnodes-epsilon) (multiplication)

arbitrary finite set Σ ∪ {ϕ} of max-constraints with ϕ /∈ Σ+
R there is some

XML tree T that satisfies all members of Σ but violates ϕ. That is, T is a
counter-example tree for the implication of ϕ by Σ. The general proof strategy
is as follows. For T to be a counter-example we i) require a context node qϕ

with more than maxϕ selector nodes q′ϕ that all have value-equal field nodes
pϕ
1 , . . . , pϕ

kϕ
, and ii) must for each context node qσ not have more than maxσ

selector nodes q′σ that all have value-equal field nodes pσ
1 , . . . , pσ

kσ
, for each mem-

ber σ of Σ. Basically, such a counter-example tree exists if and only if these
two conditions can be satisfied simultaneously. In a first step, we represent ϕ as
a finite node-labeled tree TΣ,ϕ, which we call the mini-tree. Then, we reverse
the edges of the mini-tree and add to the resulting tree downward edges for
certain members of Σ. Finally, each upward edge receives a label of 1 and each
downward edge resulting from σ ∈ Σ a label of maxσ. This final digraph GΣ,ϕ

is called the cardinality graph. A downward edge resulting from σ tells us that
under each source node there can be at most maxσ target nodes. Now, if we can
reach the selector node of ϕ from its context node along a dipath of weight (the
product of its labels) at most maxϕ, then there is no counter-example tree T . In
other words, if we satisfy condition ii) above, then we cannot satisfy condition
i). Otherwise, we can construct a counter-example tree T .

A Precious Class of Cardinality Constraints 183

Mini-Trees and Cardinality Graphs. Let Σ ∪ {ϕ} be a finite set of max-
constraints. Let LΣ,ϕ denote the set of all labels ∈ L that occur in path
expressions of members in Σ ∪ {ϕ}, and fix a label 0 ∈ E − LΣ,ϕ. Let Oϕ and
O′

ϕ be the PL{.} expressions obtained from the PL{., , ∗} expressions Qϕ and Q′
ϕ,

respectively, by replacing each single-label wildcard “ ” by 0 and each variable
length wildcard “ ∗” by a sequence of l + 1 labels 0, where l is the maximum
number of consecutive single label wildcards that occurs in any constraint in Σ.
In particular, if there are no occurrences of a single label wildcard, then it is
sufficient to replace each variable length wildcard “ ∗” by 0. Further, for each
i = 1, . . . , kϕ, let Oϕ

i be the PL{.} expression obtained from the PL{., } expression
Pϕ

i by replacing each single label wildcard “ ” by 0.
Let p be an Oϕ-path from a node rϕ to a node qϕ, let p′ be an O′

ϕ-path from a
node r′ϕ to a node q′ϕ and, for i = 1, . . . , kϕ, let pi be a Oϕ

i -path from a node rϕ
i

to a node xϕ
i , such that the paths p, p′, p1, . . . , pkϕ are mutually node-disjoint.

From the paths p, p′, p1, . . . , pkϕ we obtain the mini-tree TΣ,ϕ by identifying the
node r′ϕ with qϕ, and by identifying each of the nodes rϕ

i with q′ϕ.
The marking of the mini-tree TΣ,ϕ is a subset M of the node set of TΣ,ϕ: if

for all i = 1, . . . , kϕ we have Pϕ
i �= ε, then M consists of the leaves of TΣ,ϕ, and

otherwise M consists of all descendant nodes of q′ϕ in TΣ,ϕ.
We use mini-trees to calculate the impact of max-constraints in Σ on a pos-

sible counter-example tree for the implication of ϕ by Σ. To distinguish max-
constraints that have an impact from those that do not, we introduce the notion
of applicability. Intuitively, when a max-constraint is not applicable, then we do
not need to satisfy its upper bound in a counter-example tree as it does not
require all its field paths. Let TΣ,ϕ be the mini-tree of the max-constraint ϕ
with respect to Σ, and let M be its marking. A max-constraint σ is said to be
applicable to ϕ if there are nodes wσ ∈ [[Qσ]] and w′

σ ∈ wσ[[Q′
σ]] in TΣ,ϕ such

that w′
σ[[P σ

i]] ∩ M �= ∅ for all i = 1, . . . , kσ. We say that wσ and w′
σ witness the

applicability of σ to ϕ.

Example 1. Let us consider an XML database for projects of a company. A year
is divided into quarters and each quarter contains a sequence of projects. Each
project has a list of employees labeled by their role in the project (e.g. manager
or consultant). Employees are identified by their employee id. In this context,
the max-constraint ϕ = card(∗.year, (quarter.project, { .eid.S})) ≤ 5 indicates
that in a given year an employee cannot be involved in more than 5 projects.
Now, suppose that we have a set of max-constraints Σ = {σ1, σ2, σ3}, where

σ1 = card(∗.year, (quarter, {project. .eid.S})) ≤ 3, and

σ2 = card(∗.year.quarter, (project, { .eid.S})) ≤ 2, and

σ3 = card(∗.project, (, {eid.S})) ≤ 1.

The first constraint σ1 says that the same employee can be involved in projects
in up to three quarters of each year. The constraint σ2 says that the same
employee can work on at most two different projects per quarter, and σ3 says
that no employee can take on more than one role in each project. The left picture

184 F. Ferrarotti, S. Hartmann, and S. Link

E

E

E

E

E

E

E

E

S
1

db

label

label

year

quarter

project

1

1

1

1

1

eid
1

2

3

label

1

1
E

E

E

E

E

E

S
1

E

E

E

E

E

E

E

E

S

db

label

label

year

quarter

project

label

eid

x

E

E

E

E

E

E

E

E

E

E

E

E

S

E

E

E

S

E

E

E

E

E l1

E

db

label

label

year
l2

E

label

1

label

year

quarter

project

1

1

1

1

eid
1

2

3

db

first

p1 p2

l31 l32

l41 l42

100 100

E E

quarter quarter

projectproject

label

eid eid

label

2010

second

Fig. 2. A mini-tree, two cardinality graphs and a counter-example tree

of Figure 2 shows the mini-tree of ϕ and its marking (note that leaves are marked
by ×). All max-constraints σ1, σ2 and σ3 are applicable to ϕ. On the other hand,
σ4 = card(.year. , (project. , {eid.S})) ≤ 2 is not applicable to ϕ. ��

We define the cardinality graph GΣ,ϕ of ϕ and Σ as the node-labeled digraph
obtained from TΣ,ϕ as follows: the nodes and node-labels of GΣ,ϕ are exactly
the nodes and node-labels of TΣ,ϕ, respectively. The edges of GΣ,ϕ consist of
the reversed edges from TΣ,ϕ. Furthermore, for each max-constraint σ ∈ Σ that
is applicable to ϕ and for each pair of nodes wσ ∈ [[Qσ]] and w′

σ ∈ wσ[[Q′
σ]] that

witness the applicability of σ to ϕ we add a directed edge (wσ , w′
σ) to GΣ,ϕ.

We refer to these additional edges as witness edges while the reversed edges
from TΣ,ϕ are referred to as upward edges of GΣ,ϕ. This is the case since for
every witness wσ and w′

σ the node w′
σ is a descendant of the node wσ in TΣ,ϕ,

and thus the witness edge (wσ , w′
σ) is a downward edge or loop in GΣ,ϕ. We

now introduce weights as edge-labels: every upward edge e of GΣ,ϕ has weight
ω(e) = 1, and every witness edge (u, v) of GΣ,ϕ has weight ω(u, v) = min{maxσ |
(u, v) witnesses the applicability of some σ ∈ Σ to ϕ}.

We need to use some graph terminology, cf. [14]. Consider a digraph G. A path
t is a sequence v0, . . . , vm of nodes with an edge (vi−1, vi) for each i = 1, . . . , m.
We call t a path of length m from node v0 to node vm containing the edges
(vi−1, vi), i = 1, . . . , m. A simple path is just a path whose nodes are pairwise
distinct. Note that for every path from u to v there is also a simple path from
u to v in G containing only edges of the path. In the cardinality graph GΣ,ϕ

the weight of a path t is defined as the product of the weights of its edges, i.e.,

ω(t) =
n∏

i=1

ω(vi−1, vi), or ω(t) = 1 if t has no edges. The distance d(v, w) from a

node v to a node w is the minimum over the weights of all paths from v to w,
or ∞ if no such path exists.

A Precious Class of Cardinality Constraints 185

Example 2. Let Σ and ϕ be as in Example 1. The cardinality graph of Σ and
ϕ is illustrated in the second picture from the left in Figure 2. Let v denote the
unique year -node, w the unique project -node, and u the unique eid -node in the
second picture from the left in Figure 2. Then d(v, w) = 6 and d(v, u) = ∞. ��
The following result is crucial. If the distance d(qϕ, q′ϕ) from qϕ to q′ϕ in GΣ,ϕ is
at most maxϕ, then ϕ ∈ Σ+

R. In other words, if ϕ is not derivable from Σ, then
every path from qϕ to q′ϕ in GΣ,ϕ has distance at least maxϕ + 1.

Lemma 1. Let Σ ∪ {ϕ}, where ϕ = card(Qϕ, (Q′
ϕ, {Pϕ

1 , . . . , Pϕ
kϕ

})) ≤ maxϕ,
be a finite set of max-constraints. If d(qϕ, q′ϕ) ≤ maxϕ in the cardinality graph
GΣ,ϕ, then card(Qϕ, (Q′

ϕ, {Pϕ
1 , . . . , Pϕ

kϕ
})) ≤ maxϕ ∈ Σ+

R. ��
The strategy to prove this lemma is to encode an inference by R by witness
edges of the cardinality graph. We omit the technical details of this proof and
show an example instead.

Example 3. Let ϕ′ = card(∗.year, (quarter.project, { .eid.S})) ≤ 6 and Σ be as
in Example 1. The corresponding mini-tree and cardinality graph are shown as
first and second picture from the left in Figure 2, respectively. Since d(qϕ, q′ϕ) ≤
6, it follows by Lemma 1 that ϕ′ is derivable from Σ. In fact, ϕ′ is clearly
derivable by a single application of the multiplication rule to σ1 and σ2. ��
Next, we illustrate the completeness argument from which the following impor-
tant result follows.

Theorem 2. The inference rules in Table 1 are complete for the implication
of max-constraints. ��
Let Σ ∪ {ϕ} be a finite set of max-constraints such that ϕ /∈ Σ+

R. We construct
a finite XML tree T which satisfies all max-constraints in Σ but does not satisfy
ϕ. Since ϕ /∈ Σ+

R every existing path from qϕ to q′ϕ in GΣ,ϕ has weight at
least maxϕ + 1. For each node n in GΣ,ϕ let ω′(n) = ω(D) where D denotes the
shortest path from qϕ to n in GΣ,ϕ, or ω′(n) = maxϕ +1 if there is no such path.
In particular, we have ω′(qϕ) = 1 and ω′(q′ϕ) > maxϕ. Let T0 be a copy of the
path from the root node r to qϕ in TΣ,ϕ. We extend T0 as follows: for each node
n on the path from qϕ to q′ϕ in TΣ,ϕ we introduce ω′(n) copies n1, . . . , nω′(n)

into T0. Suppose T0 has been constructed down to the level of u1, . . . , uω′(u)

corresponding to node u in TΣ,ϕ, and let v be the unique successor of u in TΣ,ϕ.
Then ω′(u) ≤ ω′(v) due to the upward edges in GΣ,ϕ. For all i = 1, . . . , ω′(u)
and all j = 1, . . . , ω′(v) we introduce a new edge (ui, vj) in T if and only if j is
congruent to i modulo ω′(u). Eventually, T0 has ω′(q′ϕ) > maxϕ leaves.

For i = 1, . . . , ω′(q′ϕ) let Ti be a node-disjoint copy of the subtree of TΣ,ϕ

rooted at q′ϕ. We want that for any two distinct copies Ti and Tj a node of Ti

and a node of Tj become value equal precisely when they are copies of the same
marked node in TΣ,ϕ. For attribute and text nodes this is achieved by choosing
string values accordingly, while for element nodes we can adjoin a new child node
with a label from L − (LΣ,ϕ ∪ {0}) to achieve this. The counter-example tree

186 F. Ferrarotti, S. Hartmann, and S. Link

E

E

E

E

E l1

E

db

label

label

year
l2

E 2010

E
E

E
E

E
E

E

E
E

E

S

E
E

E

S

E
E

E

S

E
E

E

S

E
E

E

S

E
E

E

S

quarter
first

quarter quarter
second third

E

p1

l41

100

project

label

eid E

100

project

label

eid E

100

project

label

eid E

100

project

label

eid E

100

project

label

eid E

100

project

label

eid

p2 p3 p4 p5 p6

E E E E E

EEEEEE

l31 l32 l33 l34 l35 l36

l42 l43 l44 l45 l46

Fig. 3. Counter-example tree for the implication of ϕ by Σ from Example 4

T is obtained from T0, T1, . . . , Tω′(q′
ϕ) by identifying the leaf node q′i of T0 with

the root node of Ti for all i = 1, . . . , ω′(q′ϕ). We conclude that T violates ϕ since
ω′(q′) > maxϕ, and our construction guarantees that T satisfies Σ.

Example 4. Let Σ and ϕ be as in Example 1. The counter-example tree T for the
implication of ϕ by Σ is illustrated in Figure 3. In particular, ϕ is violated since
the unique year -node has six distinct project -descendants whose corresponding
eid -grandchildren nodes have the same text content. ��

5 Algorithmic Characterization

We will now design a low-degree polynomial time algorithm for deciding the
implication problem of max-constraints. It is based on the following characteri-
zation of the implication problem in terms of the shortest path problem between
two suitable nodes of the cardinality graph.

Theorem 3. Let Σ∪{ϕ} be a finite set of max-constraints. We have that Σ |= ϕ
if and only if d(qϕ, q′ϕ) ≤ maxϕ in the cardinality graph GΣ,ϕ. ��
Theorem 3 suggests to decide implication by constructing the cardinality graph
and applying well-known shortest paths techniques. This establishes a surpris-
ingly compact method.

Algorithm 4 (Max-constraint implication)

Input: a finite set Σ ∪ {ϕ} of max-constraints in M
Output: yes, if Σ |= ϕ; no, otherwise

A Precious Class of Cardinality Constraints 187

Method:
(1) Construct GΣ,ϕ for Σ and ϕ;
(2) Find the shortest path P from qϕ to q′ϕ in GΣ,ϕ;
(3) if ω(P) ≤ maxϕ then return(yes); else return(no).

The simplicity of Algorithm 4 enables us to conclude that the implication of
max-constraints can be decided in low-degree polynomial time in the worst case.

Theorem 5. If Σ ∪ {ϕ} is a finite set of max-constraints, then the implication
problem Σ |= ϕ can be decided in time O(|ϕ| × l × (||Σ||+ |ϕ| × l)), where |ϕ| is
the sum of the lengths of all path expressions in ϕ, ||Σ|| is the sum of all sizes
|σ| for σ ∈ Σ, and l is the maximum number of consecutive single label wildcards
that occur in Σ. ��
It is important to note the blow-up in the size of the counter-example with
respect to ϕ. This is due to the occurrence of consecutive single label wildcards.
If the number l is fixed in advance, then Algorithm 4 establishes a worst case
time complexity that is quadratic in the input. In particular, if the input consists
of XML keys as studied in [11], then the worst-case time complexity of Algorithm
4 is that of the algorithm dedicated to XML keys only [11].

Remark 1. If we simply replace each variable length wildcard “ ∗” by the single
label 0 and not by a sequence of l + 1 labels 0, then Theorem 3 does not
hold. To see this fact, consider ϕ = card(∗.year, (quarter.project, { .eid.S})) ≤ 1
and Σ = {σ1, σ2}, where σ1 = card(.year, (quarter, {project. .eid.S})) ≤ 3, and
σ2 = card(∗.year.quarter, (project, { .eid.S})) ≤ 2. A simple replacement of “ ∗”
by 0 results in the cardinality graph shown on the third picture in Figure 2.
But then by Lemma 1, Σ would imply ϕ, which is clearly incorrect as shown by
the counter-example tree on the fourth picture in Figure 2. ��

6 Conclusion

Cardinality constraints are naturally exhibited by XML data since they repre-
sent restrictions that occur in everyday life. They cover XML keys where the
upper bound is fixed to 1, and also generalized participation constraints from
conceptual databases. XML applications such as consistency management, data
integration, query optimization, view maintenance and cardinality estimation
can therefore benefit from the specification of cardinality constraints. We have
proposed the class of max-constraints that is sufficiently flexible to advance XML
data processing. The flexibility results from the right balance between expres-
siveness and efficiency of maintenance. While slight extensions result in the in-
tractability of the associated implication problem we have shown that our class
is finitely axiomatizable, robust and decidable in low-degree polynomial time.
Thus, our class forms a precious class of cardinality constraints that can be
utilized effectively by data engineers. Indeed, the complexity of its associated
implication problem indicates that it can be maintained efficiently by database
systems for XML applications.

188 F. Ferrarotti, S. Hartmann, and S. Link

Acknowledgement. This research is supported by the Marsden fund council
from Government funding, administered by the Royal Society of New Zealand.
The second author is supported by a research grant of the Alfried Krupp von
Bohlen and Halbach foundation, administered by the German Scholars
organization.

References

1. Abiteboul, S., Hull, R., Vianu, V.: Foundations of Databases. Addison-Wesley,
Reading (1995)

2. Apparao, V., et al.: Document Object Model (DOM) Level 1 Specification. W3C
Recommendation (October 1998),
http://www.w3.org/TR/REC-DOM-Level-1-19981001/

3. Arenas, M., Fan, W., Libkin, L.: What’s hard about XML schema constraints? In:
Hameurlain, A., Cicchetti, R., Traunmüller, R. (eds.) DEXA 2002. LNCS, vol. 2453,
pp. 269–278. Springer, Heidelberg (2002)

4. Arenas, M., Fan, W., Libkin, L.: On the complexity of verifying consistency of
XML specifications. SIAM J. Comput. 38(3), 841–880 (2008)

5. Bray, T., Paoli, J., Sperberg-McQueen, C.M., Maler, E., Yergeau, F.: Extensible
Markup Language (XML) 1.0 W3C Recommendation 3 edn. (February 2004),
http://www.w3.org/TR/2004/REC-xml-20040204/

6. Buneman, P., Davidson, S., Fan, W., Hara, C., Tan, W.: Keys for XML. Computer
Networks 39(5), 473–487 (2002)

7. Clark, J., DeRose, S.: XML path language (XPath) version 1.0, W3C Recommen-
dation (November1999), http://www.w3.org/TR/REC-xpath-19991116/

8. Ferrarotti, F., Hartmann, S., Link, S., Wang, J.: Promoting the semantic capability
of XML keys. In: Lee, M.L., Yu, J.X., Bellahsène, Z., Unland, R. (eds.) XSym 2010.
LNCS, vol. 6309, pp. 144–153. Springer, Heidelberg (2010)

9. Fuxman, A., Miller, R.: Towards inconsistency management in data integration
systems. In: IIWeb, pp. 143–148 (2003)

10. Hartmann, S.: On the implication problem for cardinality constraints and func-
tional dependencies. Ann. Math. Art. Intell. 33, 253–307 (2001)

11. Hartmann, S., Link, S.: Efficient reasoning about a robust XML key fragment.
ACM Trans. Database Syst. 34(2), Article 10 (2009)

12. Hartmann, S., Link, S.: Expressive, yet tractable XML keys. In: EDBT. ACM
Conference Proceedings Series, vol. 360, pp. 357–367. ACM, New York (2009)

13. Hartmann, S., Link, S.: Numerical constraints on XML data. Inf. Comput. 208(5),
521–544 (2010)

14. Jungnickel, D.: Graphs, Networks and Algorithms. Springer, Heidelberg (1999)
15. Liddle, S., Embley, D., Woodfield, S.: Cardinality constraints in semantic data

models. Data Knowl. Eng. 11(3), 235–270 (1993)
16. Miklau, G., Suciu, D.: Containment and equivalence for a fragment of XPath. J.

ACM 51(1), 2–45 (2004)
17. Thalheim, B.: Fundamentals of cardinality constraints. In: Pernul, G., Tjoa, A.M.

(eds.) ER 1992. LNCS, vol. 645, pp. 7–23. Springer, Heidelberg (1992)
18. Thalheim, B.: Foundations of Entity-Relationship Modeling. Springer, Heidelberg

(2000)
19. Thompson, H., Beech, D., Maloney, M., Mendelsohn, N.: XML Schema part 1:

Structures W3C Recommendation 2 edn.(October 2004),
http://www.w3.org/TR/REC-xmlschema-1-20041028/

http://www.w3.org/TR/REC-DOM-Level-1-19981001/
http://www.w3.org/TR/2004/REC-xml-20040204/
http://www.w3.org/TR/REC-xpath-19991116/
http://www.w3.org/TR/REC-xmlschema-1-20041028/

M. Jeusfeld, L. Delcambre, and T.W. Ling (Eds.): ER 2011, LNCS 6998, pp. 189–203, 2011.
© Springer-Verlag Berlin Heidelberg 2011

Formal Semantics and Ontological Analysis for
Understanding Subsetting, Specialization and

Redefinition of Associations in UML

Dolors Costal1, Cristina Gómez1, and Giancarlo Guizzardi2

1 Dept. d’Enginyeria de Serveis i Sistemes d’Informació, Universitat Politècnica de Catalunya
(UPC), Barcelona (Catalonia)

{dolors,cristina}@essi.upc.edu
2 Ontology and Conceptual Modeling Research Group (NEMO), Federal University of Espírito

Santo (UFES), Vitória-ES, Brazil
gguizzardi@inf.ufes.br

Abstract. The definition of the exact meaning of conceptual modeling
constructs is considered a relevant issue since it contributes to their effective
and appropriate use by conceptual modelers. This paper studies three related
constructs that enhance the expressiveness of the UML language about
associations and which still lack a complete and comprehensive study, namely,
association subsetting, specialization and redefinition. It formalizes their
semantics, analyses them from an ontological perspective and compares them.
The semantic formalization is based on mapping the studied constructs to a
basic UML layer which have a previous formal definition in the literature.
Furthermore, the ontological analysis developed here is based on a formal
theory of relations which is part of the Unified Foundational Ontology (UFO).

Keywords: conceptual modelling, ontological analysis, UML associations.

1 Introduction

During the last decade, UML has been widely adopted both in industry and academia,
thus contributing to the improvement of information systems engineering practices.
However, one drawback of UML that has been frequently pointed out is the lack of
clear meaning for some of its constructs. While the UML metamodel [1] gives
information about its abstract syntax, its meaning is described in natural language.
Thus, many concepts still lack definitions precise enough to be interpreted
unambiguously. The version 2.0 of UML has made a significant step towards precise
definitions of concepts. But its attempt to increase the expressiveness of the language
has introduced new ambiguities and there are still issues that remain open.

Associations (also termed relationship types or simply relations) are central
structural elements in conceptual modelling, in general, and in UML, in particular.
UML 2 has improved the expressiveness of the language with respect to associations
in several manners. A significant one has been the introduction of the association
redefinition concept. This concept allows enhancing the definition of an association
by means of another association that defines it more specifically in a particular

190 D. Costal, C. Gómez, and G. Guizzardi

context. Association subsetting and association specialization have been included in
UML since its earliest versions and share some relevant features with association
redefinition. These similarities among the three constructs make it frequently difficult,
especially to novice users, to: decide which one of these concepts is the best suited to
model a particular situation; systematically justify their modelling choices. This
situation is worsened by the fact that, despite its importance, the association construct
is often regarded as one of the most problematical in conceptual modelling [2].

It seems also to be generally accepted that redefinition, specialization and
subsetting of associations still need to be studied in more detail [3,4]. For instance, [3]
notices that “the distinction between subsetting and specializing an association is not
clearly described in the UML2 specification” and [4] mentions that “it is not
completely clear what else subtyping for associations should really mean”.

The contributions of this paper are two-fold. Firstly, we provide a precise and
complete description of the meaning of subsetting, specialization and redefinition of
binary associations in UML, making explicit the similarities and differences that exist
among these constructs. The semantic formalization is based on mapping them to a
basic UML layer which has a previous formal definition in the literature. The
proposed formalization provides an interpretation of the constructs under
consideration which is in accordance with the OMG document statements about them
[1]. Secondly, as we will demonstrate, the formal characterization of these constructs
by itself is insufficient to completely differentiate them. Thus, as a second
contribution, we develop here an ontological analysis of these constructs by
employing an ontologically well-founded formal theory of relations. By mapping
these concepts to this ontological theory we are able to: (i) provide unambiguous real-
world semantics to them; (ii) provide some methodological guidelines for helping
conceptual modelers to systematically choose how elements in the universe of
discourse should be modeled using these concepts; (iii) explain specific
characteristics of each of these concepts which are manifested in their syntactical
constraints and formal semantics.

The remainder of this paper is organized as follows. The next section gives a brief
introduction to these constructs in UML. Section 3 provides the formal semantics of
the three constructs. Section 4 conducts the ontological analysis. Section 5 reviews
related work and finally, Section 6 presents our final considerations.

2 Background

This section briefly describes the notion and syntax of subsetting, specialization and
redefinition of associations according to the UML standard document [1].

Subsetting is a construct specified for association ends. It defines that the instances
related by the subsetting end are a subset of the instances related by the subsetted end,
taking the same departing instance at the opposite ends. One or both ends of a binary
association can be subsetted.

An association specialization is a taxonomic relationship between a more specific
and a more general association. The specific association inherits the features of the
general one. In contrast to subsetting, specialization is a construct specified for
associations themselves and not for association ends.

 Formal Semantics and Ontological Analysis 191

The purpose of association redefinition is to define an association end more
specifically in a particular context. One or both ends of an association can be
redefined and redefinitions always involve two associations.

The syntax and the syntactic rules, according to UML, of the three constructs are
depicted in Figure 1. Note that, in case of redefinition, class A1 cannot be the same as
class A in contrast to the other constructs.

Fig. 1. a-b-c Association subsetting, specialization and redefinition syntax and syntactic rules

3 Formal Semantics

The semantics of a language defines the meaning of each construct of the language. A
semantic definition consists of two steps: first, a semantic domain must be defined
and then, the semantic definition of a construct is done by mapping the syntax of the
construct to concepts of the semantic domain. In general, several notations or
languages may be used as semantic domains. Formal languages like mathematical
terms (as done in [5]), mathematical structures (as done in [6]) or, even, a subset of
the UML itself (as done in [7]) may be used among others.

We use a basic UML layer as a semantic domain. It includes the following basic
elements: classes, binary associations, multiplicities, class specializations and general
OCL constraints [1,8]. Since its elements are generally well-understood, we think that
using this layer contributes to the goal of making the studied constructs
understandable for any UML user. The concrete and abstract syntaxes of these basic
elements are completely developed in [1,3,8] and their semantics is defined using set
theory as a basis [5,8,9]. The mapping of a construct to the UML layer is defined as a
translation between a generic schema with the specified construct and another generic
schema using only elements of the basic UML layer [7].

3.1 UML Association Subsetting Semantics

The translation of a subsetting into our basic UML layer consists in replacing it by an
inclusion constraint between the subsetting and the subsetted ends expressed in OCL.

Definition 1. Subsetting translation definition: Consider the schema of Figure 1.a.
The translated schema is obtained from the original one by: 1) eliminating from it the
adornment which denotes that the end b1 subsets the end b, and, 2) attaching to it the
OCL expression: context A1 inv: self.b ->includesAll(self.b1).

192 D. Costal, C. Gómez, and G. Guizzardi

Since the instances of an association can be understood as bidirectional links from
a conceptual modelling point of view, it is semantically identical to specify a subset
between two association ends or between their respective opposite ends [10-12]. This
indicates that, although subsetting is specified for association ends, it affects the
whole association. The semantics of a subsetting is to establish an inclusion constraint
between the subsetting association (that with the subsetting end) and the subsetted
association (that with the subsetted end). This constraint implies that each instance of
the subsetting association must be an instance of the subsetted one.

Consider the example of Figure 2.a. The end es subsets the end s. Part (b) gives its
translation. The OCL invariant guarantees that the set of instances of Enrols is a
subset of the set of instances of HasPreference.

Fig. 2. a-b Example of an association subsetting and its translation

3.2 UML Association Specialization Semantics

The semantics of an association specialization is to establish an inclusion constraint
between the specific and the general association. Thus, its semantics is identical to the
semantics of subsettings.

Definition 2. Specialization translation definition: Consider the schema of Figure 1.b.
The translated schema is obtained from the original one by: 1) eliminating from it the
specialization symbol that relates R and R1, and, 2) attaching to it the OCL expression:

context A1 inv: self.b ->includesAll(self.b1)

In Figure 3.a, PronouncesSentence, that relates a court and a defendant, is specialized
by Absolves. The pronouncements of sentences in which the defendant is found not
guilty by the court correspond to instances of Absolves. The translation (Figure 3.b)
ensures that, for all absolutions, there exists the corresponding sentence
pronouncement.

Fig. 3. a-b Example of an association specialization and its translation

UML Association Redefintion Semantics

The semantics of an association redefinition is to establish a constraint that guarantees
that the links involving instances of A1 (see Figure 1.c) coincide in both associations.

 Formal Semantics and Ontological Analysis 193

Those links are redefined since they have to encompass not only the specification of
the redefined association but also the specification of the redefining association.

Definition 3. Redefinition translation definition: Consider the schema of Figure 1.c.
The translated schema is obtained from the original one by: 1) eliminating from it the
adornment which denotes that the end b1 redefines the end b, and, 2) attaching to it the
OCL expression:

context A
1
 inv: self.b = self.b

1
in case b name ≠ b1 name

context A
1
 inv: self.oclAsType(A).b = self.b

1
in case b name = b1 name

Figure 4.a shows two examples of association redefinitions. The end participant is
redefined in the context of critical projects and the end proj is redefined in the context
of junior employees. Their translation is depicted in Figure 4.b. The second invariant
translates the senPart redefinition and guarantees that the instances that relate critical
projects to employees via Participates are the same as those that relate them to senior
employees through ParticipatesCritical.

Fig. 4. a-b Examples of association redefinitions and their translations

Although the semantics of a redefinition is different from that of specializations and
subsettings, an inclusion constraint is also induced. Indeed, from the translation we
can see that all the instances of the redefining association belong to the redefined one.
This can be easily proven from the definition 3. In Figure 4, for example, all instances
of the ParticipatesCritical association are also instances of Participates.

An association redefinition has implicit significant semantic effects on the
redefined association. These effects are circumscribed to the instances of the
redefined association that are also instances of the redefining association. We call
them affected instances of the redefinition. In Figure 4, the affected instances of the
senPart redefinition are the instances of Participates that involve critical projects. In
the following, we describe all kinds of constraints that may be induced on a redefined
association depending on the features of the redefinition.

Type is redefined when the redefining end is connected to a descendant of the class
at the redefined end. Considering the Figure 1.c syntax, this occurs when class B1 is
not the same as class B. The effect of a type redefinition is to establish an additional
participation constraint on the redefined association [13]. In Figure 4, the senPart
redefinition establishes that critical projects may only have senior employees as
participants and, consequently, not junior employees. This induced effect can be
proven from the translation of the association redefinition and the referential integrity
constraint that is implicit in the redefining association.

194 D. Costal, C. Gómez, and G. Guizzardi

Multiplicity is redefined when the redefining end has a multiplicity which is more
restrictive than that of the redefined end. The effect is to establish additional
minimum and/or maximum cardinality constraints that restrict the cardinality for the
affected instances of the redefinition [13]. In Figure 4, the senPart redefinition
establishes that critical projects must have at least two participants. This induced
effect can be proven from the translation of the association redefinition and the
cardinality constraints specified by the multiplicity at the redefining end.

On the other hand, association subsettings/specializations induce minimum
cardinality constraints over the subsetted/general associations when the lower bound of
a multiplicity specified for the subsetting/specific association is greater than the
corresponding lower bound at the subsetted/general association. The reason is the
existence of the inclusion constraint between both associations due to the subsetting/
specialization. However, it is never the case that maximum cardinality constraints or
participation constraints are induced by a subsetting or a specialization. In Figure 2,
although the offered subjects may have at most 50 enrolled students, they may have
more than 50 students with a preference for them.

3.4 Comparing Subsetting, Specialization and Redefinition of Associations

Table 1 summarizes the syntactic and semantic relevant features that we have
identified. We can observe that: 1) the three constructs have differing syntactic
features, 2) the three constructs imply the existence of an inclusion constraint between
the involved associations and 3) subsetting and specialization induce the same
constraints on the subsetted/specialized association (i.e. minimum cardinality) while
redefinition may induce participation and maximum cardinality constraints in
addition.

Therefore, subsettings and specializations cannot be distinguished from a formal
semantic point of view since they are semantically equivalent. Redefinitions can be
semantically distinguished from the other two constructs when they induce
participation and/or a maximum cardinality constraints but not when they only induce
minimum cardinality constraints.

Table 1. Syntactic and semantic features for assoc. subsetting, specialization and redefinition

 Subsetting Specialization Redefinition

Sy
nt

ac
ti

c
 Specified for Association end Association Association end

Rules for
association end
classes

Descendant or
same classes

Descendant or
same classes

End opp. redefining end:
desc. class

Redefining end: desc. or
same class

Se
m

. Inclusion constr. Yes Yes Yes

Induced constr. Min. card. Min. card.
Participation

Min. & max. card.

We must conclude that the formal semantics analysis contributes to capture
relevant aspects of the meaning of each construct but it is not sufficient to completely
characterize each one of them. To provide the conceptual modeller the criteria to
decide which construct is the most adequate to model a particular domain situation we
analyse, in the following section, the constructs from an ontological point of view.

 Formal Semantics and Ontological Analysis 195

4 An Ontological Analysis of Relations

In [14], we have presented an in depth analysis of domain relations from an ontological
point of view. In particular, we have employed the Unified Foundational Ontology
(UFO), a formal framework which has been constructed by considering a number of
theories from formal ontology in philosophy, but also cognitive science, linguistics and
philosophical logics. In a number of papers, UFO has been successfully employed to
analyze and provide real-world semantics for conceptual modeling grammars and
specifications. Here, we make a very brief presentation of this foundational ontology
and concentrate only on the categories which are germane to the purposes of this
article. For an in depth discussion on UFO, one should see [15].

A fundamental distinction in this ontology is between the categories of Objects and
Tropes. Objects are existentially independent entities. Examples include ordinary
objects of everyday experience such as an individual person, an organization, an
organ. The word Trope, in contrast, denotes, what is sometimes named an
individualized (objectified) property or property in particular. A trope is an individual
that can only exist in other individuals (in the way in which, for example, electrical
charge can exist only in some conductor, or that a covalent bond can only exist if
those connecting atoms exist). Typical examples of tropes are a colour, a connection,
an electric charge, a symptom, a covalent bond. As discussed in [15], there is solid
evidence for tropes in the literature. On one hand, in the analysis of the content of
perception, tropes are the immediate objects of everyday perception. On the other
hand, the idea of tropes as truthmakers underlies a standard event-based approach to
natural language semantics. Existential dependence can also be used to differentiate
intrinsic and relational tropes: intrinsic tropes or qualities are dependent on one single
individual (e.g., a symptom, a skill, a belief); relational tropes or relators depend on a
plurality of individuals. In this paper, we focus on relators.

Another important distinction in the UFO ontology is within the categories of
relations. Following the philosophical literature, it recognizes two broad categories of
relations, namely, material and formal relations. Formal relations hold between two
or more entities directly, without any further intervening individual. In principle, it
includes those relations that form the mathematical superstructure of our framework.
Examples include historical and existential dependence (ed), subtype-of, part-of,
subset-of, instantiation, among many others [15]. Domain relations such as working
at, being enrolled at, and being the husband of are of a completely different nature.
These relations, exemplifying the category of Material relations, have material
structure of their own. Whilst a formal relation such as the one between Paul and his
headache x holds directly and as soon as Paul and x exist, for a material relation of
being treated in between Paul and the medical unit MU1 to exist, another entity must
exist which mediates Paul and MU1. These entities are termed relators.

Relators are individuals with the power of connecting entities. For example, a
medical treatment connects a patient with a medical unit; an enrollment connects a
student with an educational institution; a covalent bond connects two atoms. The
notion of relator is supported by several works in the philosophical literature [16] and,
they play an important role in answering questions of the sort: what does it mean to
say that John is married to Mary? Why is it true to say that Bill works for Company X
but not for Company Y? Again, relators are special types of tropes which, therefore,

196 D. Costal, C. Gómez, and G. Guizzardi

are existential dependent entities. The relation of mediation (holding between a relator
r and the entities that r connects) is a sort of existential dependence relation [15].

An important notion for the characterization of relators (and, hence, for the
characterization of material relations) is the notion of foundation. Foundation can be
seen as a type of historical dependence [15], in the way that, for instance, an instance
of being kissed is founded on an individual kiss, or an instance of being connected to
between airports is founded on a particular flight connection. Suppose that John is
married to Mary. In this case, we can assume that there is an individual relator m1 of
type marriage that mediates John and Mary. The foundation of this relator can be, for
instance, a wedding event or the signing of a social contract between the involved
parties. In other words, for instance, a certain event e1 in which John and Mary
participate can create an individual marriage m1 which existentially depends on John
and Mary and which mediates them. The event e1 is the foundation of relator m1.

The relator m1 in this case is said to be the truthmaker of propositions such as
“John is the husband of Mary”, and “Mary is the wife of John”. In other words,
material relations such as being married to, being legally bound to, being the husband
of can be said to hold for the individuals John and Mary because and only because
there is an individual relator marriage m1 mediating the two. Thus, as demonstrated in
[14], material relations are purely linguistic/logical constructions which are founded
on and can be completely derived from the existence of relators. In fact, in [14], we
have defined a formal relation of derivation (symbolized as der) between a relator
type (e.g., Marriage) and each material relation which is derived from it.

«relator»
Marriage

Husband Wife

1..*

1

«mediation»
1..*

1

«mediation»

1..*

1..* 1..*

/married to

Person

Fig. 5. Model with an explicit representation of: a Relator Type and a Material Relation derived
from it.

Figure 5 above depicts a model expressed in the OntoUML language which
summarizes our discussion on relators and material relations. OntoUML is a well-
founded version of UML whose modelling primitives (stereotypes in this Figure) are
derived from the ontological categories underlying UFO [14]. This model captures
that the material relation married to is derived from the relator type Marriage (the
derivation relation der is symbolized as in the language). As a consequence,
we have that a tuple such as <John,Mary> is an instance of this relation iff there is an
instance of Marriage m1 that mediates the elements of the tuple.

The explicit representation of the relator type in OntoUML solves a number of
problems associated with the traditional representation of relations in Conceptual
Modelling, including the ambiguity of cardinality constraints of material relations
(and only material relations!) caused by the so-called problem of collapsing Single-
tuple and Multiple-tuple cardinality constraints [17]. The reader should notice that the

 Formal Semantics and Ontological Analysis 197

relator type is not a UML association class as it actually addresses an ontological
problem caused by the Association Class construct termed non-lucidity at the
language level [18]. These aspects are discussed in depth in [14]. Here we only make
use of this representation to make explicit the relevant relator types and the material
relations derived from them.

4.1 An Ontological Analysis of Subsetting

Let us start with the example depicted in Figure 2. The relation Enrolls is a
stereotypical example of a material relation derived from the relator Enrollment. So,
the truthmaker of the predicate Enrolls(x,y) is the existence of a particular enrollment
z connecting x and y. What about HasPreference? The relevant question again is to
inquiry about the truthmaker of HasPreference(x,y), i.e., when is it true to say that a
student x has preference for subject y in the conceptualization underlying this model?
In order for these preferences to become public (and then recorded in an information
system), we can imagine an explicit manifestation of interest of Student for a list of
Subjects. Notice that, the social object which records this list of interests is indeed a
relator (existentially dependent on both a student and on the list of subjects). This
situation is depicted in Figure 6.a below.

Subject

OfferedSubject

Student

* *

HasPreference

*

0..50
Enrolls

e {subsets s}

s

«relator»
Subject Preference

*

1

«mediation»
*

1..*

«mediation»

«relator»
Enrollment

1..*

0..50

«mediation»

*

1

«mediation

Agent Resource

* *

isAuthorizedToUse

* *

Uses

UsedResource {subsets
autResouce}

autResource

«relator»
Authorization

*

1

«mediation»*

1

«mediation»

«relator»
Use

1

*

«mediation»

*

1

«mediation»

autAgent
User

Fig. 6. a-b Explicit representations of the relator types from which the relations in Figure 2 and
[12] are derived, respectively

One should notice that the two relations of Figure 6.a are derived from relator types of
different kinds and are based on different foundational events (different social speech
acts). In other words, there is no necessary connection between the truthmakers of
these two relations. It is just a matter of accident that the extension of Enrolls is
included in the extension of HasPreference, and one can easily imagine an alternative
conceptualization in which this constraint is abandoned, i.e., in which students are
allowed to enroll in subjects regardless of their preferences. This accidental inclusion
of the extension of one relation in the extension of the other is intuitively captures in
the statement in the UML specification [1, pg.39]: “subsetting is a relationship in the
domain of extensional semantics”. In summary, we postulate that:

Postulate 1: a subsetting relation should be defined between two material relations
R2 and R1 (R2 subsets R1) iff these relations are derived from relators of disjoint kinds
and there is an inclusion constraint that includes the extension of R2 in the one of R1.

198 D. Costal, C. Gómez, and G. Guizzardi

In Figure 6.b, we present another example of the result of an ontological analysis of
subsetting extracted from [12]. Here again, our analysis is able to explain the
modelling choice adopted by the author. Once more both material relations are
founded on relators of disjoint kinds, and once more that it is merely accidental that
(in this conceptualization) resources must be authorized before used.

4.2 An Ontological Analysis of Specialization

Now, let us examine the example of Figure 3 with two material relations:
PronouncedSentence and Absolves. The former is derived from a social relator
Sentence which records the outcome of a given event (the sentence pronunciation).
However, a further analysis of this relator type reveals that this type is an abstract
one, i.e., there is no general instance of Sentence which is not one of its specific kinds
(e.g., Conviction, Absolution). Thus, we have that the relator type associated with the
Absolves relation, i.e., Absolution, is a specialization of the Sentence relator type
(Figure 7.a). In other words, to be absolved is a specific kind of being sentenced.

Court

Absolved

Defendent

1..* *

PronouncesSentence

«relator»
Sentence

1..*

1

«mediation»
*

1

«mediation»

«relator»
Absolution

1

*

«mediation»

1

1
«mediation»

1

*

Absolves

Group

Chairman

Employee

1..*

hasMembers

«relator»
Membership

1..*

1

«mediation»

1

«mediation»

«relator»
Chairmanship

1

*

«mediation»

1..*

1
«mediation»

*

0..10

hasChair

0..500

0..500

0..10

Fig. 7. a-b Explicit representations of the relator types from which the relations in Figure 3 and
[12] are derived, respectively

In contrast with subsetting, specialization has an intentional relation between types:
an absolution has all the properties of a general sentence (e.g., date of pronunciation)
and it is founded on the very same individual event (the sentence pronunciation). This
explains the intuition discussed in [12] that: (i) the specializing relation necessarily
shares properties with the general one and typically includes additional properties; (ii)
there is an analytical connection between these two relations. In fact, if Sentence is an
abstract type then Absolution not only inherits all its properties but should also have at
least of property to differentiate it from other (disjoint) kinds of sentences. Moreover,
if the definition of to be absolved is to receive a sentence z such that z is an
absolution, and the definition of to be sentence is to receive a sentence z (of any kind),
then indeed the definition of being sentenced is part of the very definition of being
absolved. Thus, one cannot be absolved without being sentenced in the same way that
one cannot be a bachelor without being unmarried. Thus, we postulate that:

 Formal Semantics and Ontological Analysis 199

Postulate 2: a specialization relation should be defined between two material
relations R2 and R1 (R1 R2) if these two relations are derived from relator types
RR1 and RR2 such that RR2 specializes RR1 (RR1 RR2).

Another example of specialization is depicted in Figure 7.b. It was taken from [12,
pg.242] without any change in the relations except a change in the constraints maxb
and maxb1, in order to illustrate the following point. Notice that in all these cases there
is always the (sometimes implicit) existence of at least one additional type RR3 (e.g.,
RegularMember, Conviction) such that RR3 is distinct from RR2 (e.g., Chairman,
Absolution) and RR3 specializes RR1. This means that the maximum cardinality
constraints of R1 (maxb) govern relations between individuals, which are mediated by
both types of relators (RR2 and RR3). For instance, suppose that a group is allowed to
have a maximum of 500 members. Thus, the maximum of Chairmen can, in principle,
be ≤ 500 in that period. However, if there is a limit of 10 chairmen for the Group,
there could still be up to 490 regular members. This feature explains why the
maximum cardinality constraints of R2 (maxb1) are not imposed on the maximum
cardinality constraints of R1 (maxb - see discussion in section 3.3).

4.3 An Ontological Analysis of Redefinition

We now turn to the example of Figure 4 with three material relations: (i) Participates
defined between the types Employee and Project; (ii) ParticipatesCritical defined
between the types Senior and Critical; and (iii) Participates defined between the
types Junior and Project. In this case, we have that all these relations are derived from
the same relator type and the same foundation, namely, an allocation event and the
resulting Allocation contract. In the situation represented by this model, the different
ways of participating in a project (which entail the different relations of participation)
are defined by the different types associated with the association end opposite to the
redefining end of these relations. In other words, the differences in the ways a junior
or senior employee participate in a project are motivated by difference in properties of
these different types of employees not by difference in different types of Allocation.

For instance, let us suppose the case that the property “having less than 10 years of
experience” differentiates junior from senior employees. Now, suppose an individual
John which by virtue of having this (intrinsic) quality instantiates Junior. It is because
of this quality that John is constrained to participate in at most 3 critical projects, not
because he is connected to these projects by a relator of specific kind of Allocation.
Moreover, notice that, in this case, John instantiates Junior (the specializing class)
prior to establishing any relation to a project, i.e., the nature of this relation is
constrained by the specific type John instantiates. In contrast, if one examines the
specializing type Absolved, one shall realize that an individual instantiates Absolved
because of the specific type of Sentence that mediates him. Thus, in the latter case, it
is the specific type this individual instantiates which is determined by the specific
nature of the relator that mediates him. In other words, in the case of redefinition, the
type the relata (instances connected to the association end) instantiate is defined a
priori and the participation constraints in the relation follows from that; in the case of
specialization, the type the relata instantiates in that relation is defined a posteriori
entailed by the type of relator binding them. The remodelling of this situation with an
explicit representation of the founding relator type is depicted in Figure 8.a. Another

200 D. Costal, C. Gómez, and G. Guizzardi

Employee

Senior

Junior

Project

* *

participates

«relator»
Allocation

*

1

«mediation»*

1

«mediation»

Critical

2..*

ParticipatesCritical

0..3
proj {redefines proj}

senPart {redefines participant}

participant proj

User

Person UserGroup

0..1

* grouping

members

owner

«relator»
Membership

1

0..1

«mediation»

*

1 «mediation»

0..5

members {redefines
members}

Administrator AdministratorGroup

Fig. 8. a-b Explicit representations of the relator types from which the relations in Figure 3 and
[19] are derived, respectively

example of association redefinition, taken from [19], is depicted in Figure 8.b where it
is also remodelled to represent the founding relator type.

Notice that the ontological differences between these concepts also explains the
difference discussed in section 3.3 on how these two relations influence the maximum
cardinality constraints of the original (redefined or specialized) relation. As discussed
there, only in the case of redefinition, multiplicity is redefined when the redefining
end has a multiplicity which is more restrictive than that of the redefined end. This
can be observed, for instance, in Figure 8.a when a junior employee can participate in
at most 3 critical projects. The reader can contrast it with Figure 7.b in which a Group
can have at most 10 chairs and still an upper bound of 500 employees. Again, in the
latter case, the way entities participate in these relations is defined by the relator type:
to be a Chairman is to have a relational bond to this group of a specific nature,
namely, a Chairman Membership (Chairmanship). However, employees can
participate in groups in different ways, for instance, as regular members. In the former
case, conversely, it is the specific type the employee instantiates which a priori
determinates her constraints in participating in the relation. For this reason, there is no
other manner a junior employee can participate in this relation with a critical project.
In other words, the specific (redefining) way of participating in this relation is the
only way of participating in the general (redefined) relation. As a consequence, the
multiplicity constraints of the former should be valid for the general case.

Finally, notice that this analysis also explains the syntactic constraint depicted in
Figure 4 which differentiates redefinition from subsetting and specialization, namely,
that in the case of redefinition the type A1 in the opposite end of the redefining
association end of association R1 must be a subclass of type A. This is due to the fact
that the difference in ways that instances of A participate in association R is
determined by differences in intrinsic properties of these instances. Thus, if we have
at least of property p that some instances of A must have in order to participate in R in
a specific way (e.g., R1) then we can define the type A1 such that A1(x) iff A(x) and (x
possesses p). Conversely, notice that without a single property that differentiates
particular subtypes of A then we cannot explain why they participate in association R
in different manners and subject to different constraints. After all, in that case, all
instance of A would have exactly the same properties including the specific relator
type that binds then to instances of B. As a result of this analysis, we postulate that:

 Formal Semantics and Ontological Analysis 201

Postulate 3: a redefinition relation should be defined between two material relations
R2 and R1 (R2 redefines R1) if: (i) these two relations are derived from the same relator
type RR; (ii) there is a type A1 connected to one of the association ends of R2 such that
A1 is a specialization of A (A A1) and A is connected to the association end of R1
equivalent to that of A1.

5 Related Work

Some studies attempt to clarify or formalize the meaning of one or more of the three
constructs under consideration. They can be classified in two groups: first, works that
provide informal definitions, explanations or examples and, second, works that
formalize the semantics of one or more of the constructs.

In the first group, we can mention [4] developed by Stevens, that deals with the
association specialization of UML 1.4. She points out the difficulty of distinguishing
it from subsettings and argues that specializations in UML 1.4 may be used to
represent inclusion constraints and participation constraints over associations. We
must note that this latter case is better represented in UML 2 as a redefinition.
Moreover, Milicev [19] defines the subsetting as an implicit constraint attached to
association ends. He also defines that end redefinitions may redefine the type and the
multiplicity of the redefined end. Costal and Gómez [20] describe how to use
redefinitions and analyze their interactions with taxonomic constraints. Olivé [12]
states that inclusion constraints between associations can be represented by means of
subsettings or specializations. He indicates that specializations must be used when the
specific association has the defining properties of the general one together with others
and subsettings in the rest of cases. Olivé indicates that redefinitions can be used to
represent participant refinements and to strength cardinality [21]. From this first set of
works, the only one that sketches a distinction between subsetting and specialization
is that of Olivé [12] by means of intuitive explanations and well-chosen examples.

In the second group, that presents semantic formalizations, [10] by Alanen and
Porres, deals with association subsetting. In addition, Kleppe and Rensink [6]
formalize subsetting and redefinition as formal extensions of a type graph (not for all
scenarios). Amelunxen and Schürr [11] present a set theoretic formalization of graph
transformations that is used to define the semantics of a set of UML features
including subsetting, specialization and redefinition. Bildhauer [22] describes the
semantics of subsetting, redefinition and specialization by providing formal
definitions for specific examples. All these works, give consistent interpretations of
the constructs, also consistent with our semantic formalization. However, ours is the
only one that explicitly characterizes the specific participation, minimum and
maximum cardinality constraints implied by the constructs. Moreover, none of these
works develops an ontological analysis and, thus, they are not able to distinguish
subsetting from specialization and from some cases of redefinition. There exist some
ontological analyses of relations, such as [23], but they do not cover subsetting,
specialization or redefinition. Hence, to our knowledge, ours is the first contribution
presenting a comprehensive view by specifying both the formal semantics and
ontology-based semantics and able to differentiate the three constructs.

202 D. Costal, C. Gómez, and G. Guizzardi

6 Final Considerations

The purpose of a conceptual model is to support users in tasks such as
communication, understanding and problem-solving about a certain universe of
discourse. For this reason, two fundamental quality attributes for a conceptual
modeling language are: (i) semantic discrimination, i.e., users of the language must
understand the semantic distinctions between language’s constructs and the semantic
consequences of applying these constructs; (ii) ontological clarity: the users of the
language must understand what these constructs represent in terms of phenomena in
reality. In this paper, we make a contribution in both these directions by specifying
the formal semantics and the (ontology-based) real-world semantics of three
important, yet poorly understood, UML association constructs, namely, subsetting,
specialization and redefinition.

As a future work, we intend to test the ontological analysis put forth here by
conducting empirical studies. In particular, we would like to further test the ability of
this theory to predict the outcome of modeling choices. However, we should point out
that one significant challenge of conducting such a study at this point, namely, that,
despite their importance, these constructs are still unknown to a large community of
modelers. This is specially the case of redefinition, which has only been introduced in
the newest version of UML.

Nonetheless, we have conducted a preliminary empirical investigation on this
theory using as a benchmark a catalog of models produced by different people using
these constructs. This catalog has been obtained from the papers reviewed in our
related work section, thus, comprising a set of ten examples produced by different
authors (which can be considered experts in the field). The result of this study can be
found in [24]. As demonstrated there, our theory was able to predict the modeling
choices made by the authors in 90% of the cases. We take this to be preliminary
evidence that the ontological theory developed here together with the modeling
postulates derived from it constitute a descriptive theory for explaining and
predicting, as well as a prescriptive theory for design and action.

Acknowledgements. This work has been partly supported by the Ministerio de
Ciencia y Tecnologia and FEDER under projects TIN2008-00444/TIN and TIN2010-
19130-C02-01, Grupo Consolidado, and by the funding agencies CNPq (Project
Grant #481906/2009-6 and Productivity Grant #309382/2008) and FAPES (Project
Grant #45444080/09).

References

1. Object Management Group: OMG Unified Modeling Language (OMG UML),
Superstructure, V2.3 (formal/May 5, 2010) (2010)

2. Batra, D., Hoffler, J.A., Bostrom, R.P.: Comparing representations with relational and
EER models. Communications of the ACM 33, 126–139 (1990)

3. Rumbaugh, J., Jacobson, I., Booch, G.: The unified modeling language reference manual,
2nd edn. Addison-Wesley, Reading (2005)

4. Stevens, P.: On the interpretation of binary associations in the Unified Modelling
Language. Software and Systems Modeling 1, 68–79 (2002)

 Formal Semantics and Ontological Analysis 203

5. Szlenk, M.: Formal Semantics and Reasoning about UML Class Diagram. In: DEPCOS-
RELCOMEX, pp. 51–59. IEEE Computer Society, Los Alamitos (2004)

6. Kleppe, A., Rensink, A.: On a Graph-Based Semantics for UML Class and Object
Diagrams. Electronic Communications of the EASST 10 (2008)

7. Gogolla, M., Richters, M.: Expressing UML Class Diagrams Properties with OCL. In:
Clark, A., Warmer, J. (eds.) Object Modeling with the OCL. LNCS, vol. 2263, pp. 85–114.
Springer, Heidelberg (2002)

8. Object Management Group: Object Constraint Language (OCL), Version 2.2. Available
Specification (formal/February 1, 2010) (2010)

9. Richters, M., Gogolla, M.: On Formalizing the UML Object Constraint Language OCL. In:
Ling, T.-W., Ram, S., Li Lee, M. (eds.) ER 1998. LNCS, vol. 1507, pp. 449–464.
Springer, Heidelberg (1998)

10. Alanen, M., Porres, I.: Basic Operations over Models Containing Subset and Union
Properties. In: Wang, J., Whittle, J., Harel, D., Reggio, G. (eds.) MoDELS 2006. LNCS,
vol. 4199, pp. 469–483. Springer, Heidelberg (2006)

11. Amelunxen, C., Schürr, A.: Formalising model transformation rules for UML/MOF 2. IET
Software 2, 204–222 (2008)

12. Olivé, A.: Conceptual modeling of information systems. Springer, Heidelberg (2007)
13. Nieto, P., Costal, D., Gómez, C.: Enhancing the semantics of UML association

redefinition. Data Knowl. Eng. 70, 182–207 (2011)
14. Guizzardi, G., Wagner, G.: What’s in a Relationship: An Ontological Analysis. In: Li, Q.,

Spaccapietra, S., Yu, E., Olivé, A. (eds.) ER 2008. LNCS, vol. 5231, pp. 83–97. Springer,
Heidelberg (2008)

15. Guizzardi, G.: Ontological Foundations for Structural Conceptual Models. Universal Press,
The Netherlands (2005); ISBN 90-75176-81-3

16. Heller, B., Herre, H.: Ontological Categories in GOL. Axiomathes 14, 71–90 (2004)
17. Bock, C., Odell, J.: A More Complete Model of Relations and Their Implementation:

Relations as Object Types. Journal of Object-Oriented Programming 10(3) (1997)
18. Gurr, C.A.: Effective Diagrammatic Communication: Syntatic, Semantic and Pragmatic

Issues. Journal of Visual Languages and Computing 10, 317–342 (1999)
19. Milicev, D.: Model-Driven Development with Executable UML. Wiley Pub. Inc.,

Chichester (2009)
20. Costal, D., Gómez, C.: On the Use of Association Redefinition in UML Class Diagrams.

In: Embley, D.W., Olivé, A., Ram, S. (eds.) ER 2006. LNCS, vol. 4215, pp. 513–527.
Springer, Heidelberg (2006)

21. Costal, D., Olivé, À., Teniente, E.: Relationship Type Refinement in Conceptual Models
with Multiple Classification. In: Kunii, H.S., Jajodia, S., Sølvberg, A. (eds.) ER 2001.
LNCS, vol. 2224, pp. 397–411. Springer, Heidelberg (2001)

22. Bildhauer, D.: On the Relationships Between Subsetting, Redefinition and Association
Sepecialization. In: DB&IS 2010 (2010)

23. Evermann, J.: The Association Construct in Conceptual Modelling – An Analysis Using
the Bunge Ontological Model. In: Pastor, Ó., Falcão e Cunha, J. (eds.) CAiSE 2005.
LNCS, vol. 3520, pp. 33–47. Springer, Heidelberg (2005)

24. Costal, D., Gómez, C., Guizzardi, G.: On the Meanings of Subsetting, Specialization and
Redefinition in UML, Technical Report (2011),
http://hdl.handle.net/2117/12827

Developing RFID Database Models for Analysing
Moving Tags in Supply Chain Management

Wilfred Ng

Department of Computer Science and Engineering,
The Hong Kong University of Science and Technology,

Hong Kong
wilfred@cse.ust.hk

Abstract. The applications of RFID (Radio Frequency Identification) have be-
come more important and diversified in recent years due to the lower cost of
RFID tags and smaller tag sizes. One promising area for applying the technology
is in Supply Chain Management (SCM) in which the manufacturers need to anal-
yse product and logistic information in order to get the right quantity of products
arriving at the right time to the right locations.

In this paper, we present a holistic framework that supports data querying and
analysis of raw datasets obtained from different RFID collection points managed
by supply chains. First, the framework provides repair mechanisms to preprocess
raw RFID data from readers. Second, we present a database model to capture
SCM information at various abstraction levels such as items, time and locations,
and then discuss the use of SQL query language to manipulate RFID databases.
Finally, we present a graph data model called a Tag Movement Graph (TMG) to
capture the moving information of tagged objects.

1 Introduction

RFID (Radio Frequency Identification) is a technology that allows a sensor (an RF
reader) to read, from a distance, and without line of sight, a unique EPC (Electronic
Product Code) associated with a tag [19,20,5,17]. The applications of RFID have be-
come more important and diversified in recent years due to the lower cost of RFID
tags and smaller tag sizes. One promising area for applying the technology is in Supply
Chain Management (SCM) [15] in which the manufacturers need to analyse product
and logistic information in order to get the right quantity of products arriving at the
right time to the right locations.

However, the amount of RFID data in SCM is noisy and massive (e.g. Walmart’s
warehouse data can be up to the size of petabytes in scale [17]). There still lacks
of a unifying model that is able to capture information arising from multi-level and
multi-dimensional RFID data. Importantly, we need to develop a framework that sup-
ports managing, querying and analysing the information obtained from different RFID
sources. All these new RFID features and requirements bring new challenges for provid-
ing seamless integration of techniques of data cleaning, data modeling and data mining.

In this paper, we present a holistic framework that enables the management of RFID
information and facilitates advanced analysis of the information. We establish data

M. Jeusfeld, L. Delcambre, and T.W. Ling (Eds.): ER 2011, LNCS 6998, pp. 204–218, 2011.
c© Springer-Verlag Berlin Heidelberg 2011

Developing RFID Database Models for Analysing Moving Tags in SCM 205

models for RFID data obtained from SCM in the framework which supports tackling
the following RFID data problems:

– How to clean massive RFID raw data and store the data in an effective database?
– How to support storing RFID information arising from SCM?
– How to support querying RFID information arising from SCM?
– How to discover useful tag movement trails and correlated patterns in different

levels and dimensions of logistic information?

Figure 1 shows the blueprint of the framework, which can pre-process, repair, and store
the data collected from multi-RFID data streams. Within the framework, we use a re-
lational DBMS to store RFID data and develop a query language which is translatable
into SQL expressions. This approach is practical to RFID industrials, since they usually
have a relational DBMS as one of the SCM infrastructures. The new query language
can also be employed to manipulate the scope of the derived RFID graph called Tag
Movement Graphs (TMGs). The framework supports discovering the tag movement
relationships from the TMG and RFID databases. Our proposed notions of Tag Move-
ment Trails (TMTs) and Logistic Correlated Patterns (LCPs) take data abstraction and
the SCM logistic information, such as location topology, object grouping and temporal
hierarchies, into consideration.

Fig. 1. A system view of our proposed framework to support analysing RFID data

The main contributions of this work are related to many interesting modeling and
algorithmic issues arising from our proposed framework.

In the modeling aspect, we design the database model as well as the TMG data model
to handle the RFID data obtained from multi-stream RFID readers. Figure 2(a) show the
setup of the α-gate portal that we used to detect RFID tags from three different readers,
thereby generating three RFID data streams that are collected in the detection system in
which the connection of the components are presented in Figure 2(b) [21].

In the algorithmic aspect, we develop the coding schemes that support the execution
of RFID queries. The algorithm for finding TMTs is an application of the the state-
of-the-art research work of graph mining. However, we enrich the techniques to cater

206 W. Ng

(a) (b)

Fig. 2. (a) RFID three-stream (x, y, and z axes) data collection by α-gate portal (b) The setup of
the detection system (More details can be consulted from [21])

for cases of different abstraction levels in TMG data model. The algorithms for finding
LCPs are the interesting application of the research discovering correlated patterns in
graph databases [14].

The rest of the paper is organised as follows. Section 2 presents our cleaning strate-
gies to pre-process RFID raw data obtained from our α-gate portal. Section 3 presents
the RFID database model and the coding scheme. We illustrate the application of SQL
to support various kinds of RFID queries in Section 4 and present the TMG data model
that supports mining of TMTs and LCPs in Section 5. We review the related work of
handling RFID data in Section 6. Finally, we give our concluding remarks in Section 7.

2 Preprocessing Multi-stream Raw RFID Data

In this section, we present the cleaning methods and illustrate the repairing mechanism
that preprocesses multi-stream raw RFID Data collected in the α-gate portal and the
detection system shown in Figures 2(a) and (b). The main problem in this task related
to the RFID raw data preprocessing module presented in Figure 1 is as follows. Given
an SCM environment with possibly RFID signal interferences or noises, we devise ef-
fective tactics of cleaning multi-RFID data streams obtained from the portal.

In contrast to most existing approaches that focus mainly on low level data [4,23],
we pre-process the data into two phases of physical cleaning and logical cleaning.

Physical cleaning is firstly imposed at the raw data level, in which a smoothing win-
dow is employed to remove noises such as tag jamming (tag failing to respond to two
different reader signals coming at similar time) or tag blocking (tag signal is blocked by
moisture or metal objects), and logical cleaning is then imposed at the record level to
remove multiple, missing or incorrect readings. The challenge is that there is a tension
in setting the window size for tracking tags. On the one hand, if we choose a smaller
window, we are able to capture the tag movement more accurately. However, it gives
rise to more false negatives and undercounting the tags. It is due to the fact that raw

Developing RFID Database Models for Analysing Moving Tags in SCM 207

data readings can only be picked up by the reader irregularly in the period of tag’s pres-
ence. On the other hand, if we choose a larger window, we are able to correct more
reader’s unreliability due to tag jamming or blocking. (c.f. The read rate reported in
[12] is roughly 70% of total tag readings in sensor network environments.) However, it
gives rise to more false positives and missed tag transitions.

To address the noise problem, we use the α-gate portal shown in Figure 2(a) to de-
velop tactics to clean and repair multi-stream RFID data. We adopt a different approach
of “smoothing filter” from SMURF [13], since it is not effective to determine a vari-
able window for all possible RFID data streams. The underlying idea is that we impose
a voting system for readings from different window sizes over RFID data streams in
order to compensate (i) undercounting tags (missing tag read) and overcounting tags
(repeated tag read) and (ii) removing false negatives and false positives.

Fig. 3. Using three different smoothing windows for tracking a tag: Stream SA from a small win-
dow avoids most false positives. Stream SB from a medium window avoids some false positives
and some false negatives. Stream SC from a large window avoids most false negatives. Finally, a
voting procedure that obtains “votes” from all streams can effectively remove errors

To illustrate the idea of the voting strategy on the data streams, we show a simplified
diagram in Figure 3 that SA (small window) has a bigger voting weight whenever the
conflict of false positives happens (e.g. points P2 and P3). However, SC (large window)
has a bigger voting weight whenever the conflict of false negatives happens (e.g. point
P1). SB (medium window) can be“neutral” such that it carries medium weight on vot-
ing. The idea of the voting algorithm is adapted from our earlier work of [16]. We find
that the voting strategy is very effective if using more windows of different size that
are set on the multi-streams obtained by different antennae configurations (e.g. varying
x, y, z and angle settings of the antennas of the α-gate portal in Figure 2).

Logical cleaning following physical cleaning is more interesting. The challenge is
how to continue the data cleaning by developing inference rules to repair data (e.g. the
EPC is missing in a reader). We classify the logical errors of RFID data into five differ-
ent classes of (i) missing time - no tracing time data are recorded, (ii) missing location
- no location information are recorded, (iii) conflicting path - multiple impossible loca-
tion location information are recorded, (iv) ambiguous path - multiple possible location
information are recorded, and (v) repeated reading - reading are repeatedly recorded.
Due to the space limit, we only highlight two interesting scenarios using three repairing
classes in Figure 4, where the pattern {T ime, Sec}[t1, t2]{Spot, A} denotes the fact
that a tag is detected within a time interval “[t1, t2]” measured in seconds at spot A.

208 W. Ng

Fig. 4. Logical Cleaning: Repair Schemes for (a) Missing location (b) Ambiguous Path

Missing location repair deals with the following scenario shown in Figure 4(a):
When a tag goes through a sequence of readers (or locations) A, B and C, B fails
to detect the tag. The error may be due to many reasons such as bad reading angles,
blocked signals or signal dead zones, which result in weak or no signal readings that
are eliminated by the physical cleaning [12,13]. To repair the error, one rule is to make
reference to other location information. For example, by checking the connectivity of
the readers, we can deduce that a tag going from A to C must pass B. Another rule is
to check the group information. For example, in most SCM settings, tags are moving
in groups (e.g. items are contained in boxes or pallets) and thus it is possible to repair
some missing tag readings in certain locations if other tags in the same group or a group
ID are recorded. Furthermore, missing time repair references other tags that go from A
to C and then estimates the relative staying time in the detecting region of a reader.

Ambiguous path repair deals with a usual scenario shown in Figure 4(b): A tag goes
from A to C passing through B but it is accidentally detected by an abutting reader D
placed in another possible path. In this case, we may not be able to decide if the tag
passed through B or D. In general, we accommodate the uncertainty in a probability
node which represents a possible set of location nodes, each of which is attached a
probability as shown in the figure. The assignment of the probability values in the prob-
ability nodes is deduced by the rules established by statistical methods that evaluate the
sample distribution of the responding tag signal in B and D. An example of such a rule
is “if Tag1 to Tag10 passed D, then the probability of Tag11 to Tag20 going to D is
0.7”.

3 RFID Database Model

In this section we develop an RFID database model that supports querying and mining
and discuss the implementation issues of database storage.

Developing RFID Database Models for Analysing Moving Tags in SCM 209

3.1 RFID Database Modeling

We design an RFID database model and implement a scalable storage system for RFID
data to support querying and mining. An RFID system consists of three main objects:
tags, antennas and readers. A tag T in a location reflects (if T is a passive tag) or emits
(if T is an active tag) RF signals within its detection region. When the antenna detects
the signal, the reader analyses the signal and stores the EPC and the current timestamp
into the database. We represent paths, tags, times and other information in the model
and develop path coding schemes for the movement of T in a stored data model. We
also incorporate logistic hierarchies and relevant product information into the product
data model and the logistic hierarchy data model respectively, which are depicted in
Figure 5. This serves as a foundation for the database implementation.

Fig. 5. RFID Database Model with Logistic Hierarchies and Relevant Production Information

To explain the database model in Figure 5, we start by assuming a simple model of
RFID raw data in SCM. An RFID reader detects a tag and generates Raw Data Record
having three attributes (EPC, LOC, TIME) where EPC is a unique ID of a tag and LOC
is the location of the (unique) RFID reader and TIME is the time instant of detecting
the tag. We then collapse the raw data into the Stay Record entity having four attributes
(tag id, loc code, time in, time out) where time in and time out are the time instants of
the first detection and the final detection of the tag. A stay record represents an RFID tag
moving through a location during a specific time interval. However, using a stay record
as a stored data model is too simplistic to support the evaluation of path queries that
track objects, particularly for those path queries involving many locations, which need
to perform self-joining of the table many times. Thus, we develop various sophisticated
coding techniques and include Path Record and Path Code entities into the model.

The basic idea of the coding scheme is that a tag movement path “L1 → L2 → · · · →
Ln” can be coded by assigning a unique prime number, Pl, to represent all locations (or
all readers) and another prime number, Po, to represent the location order. To generate

210 W. Ng

a unique integer pair (Pl, Po), we rely on the Unique Factorization Theorem for coding
locations and the Chinese Remainder Theorem for coding their order. However, due
to the scarcity of prime numbers, the state-of-the-art method in [15] which supports
neither long path coding (e.g. encode a long path of more than 8 locations) nor cyclic
path coding (e.g. encode a path in which a tag passed a location twice). The first problem
is due to the fact that most programming languages use unsigned integers (32 bits) that
only support 232 − 1, which is less than the product of the first nine prime numbers
2 × 3 × 5 × 7 × 11 × 13 × 17 × 19 × 23. Even for 64 bit unsigned integers (264-1),
it can only support the first 15 prime numbers. In addition, suppose a tag goes through
the path “L1→ L2→ L3 → L1 → L2 → L3”. In this case, the coding method in [15]
fails, since the system of simultaneous congruences of Chinese remainder theorem is
not applicable here and thus (Pl, Po) fails to code 2→3→5→2→3→5.

3.2 RFID Data Coding Schemes

To tackle the two problems illustrated in Section 3.1, we need to review some important
results from number theory, which is the necessary background for understanding our
proposed path coding schemes. Theorem 1 summaries all the relevant results.

Theorem 1. The following theorems are well-established mathematical results [10].

1. (The Fundamental Theorem of Arithmetic). Any natural number greater than 1 is
uniquely expressed by the product of prime numbers.

2. (The Chinese Remainder Theorem). Suppose that n1, n2, . . . , nk are pairwise rel-
atively prime numbers. Then, there exists x between 0 and (n1 · n2 · n3 · · ·nk − 1)
by solving the following system of simultaneous congruences

x mod ni ≡ ai for 1 ≤ i ≤ k.

3. (Euler Formula for Prime Generation). For every integer x between 0 and 40,
x2 − x + 41 is a prime number.

4. (Finite Continued Fraction). Given a finite sequence of positive integers 〈x1, x2, . . . ,
xn〉, there exists a rational number Y given by

Y =
1

x1 + 1
x2+... 1

xn

such that Y uniquely expresses 〈x1, x2, . . . , xn〉.
To solve the long path coding problem, we first partition the whole set of locations into
different clusters having roughly the same number of locations. Using finite continued
fraction in Theorem 1 we are able to represent a cluster code denoted as C (having a
unique positive integer as its id) together with its respective (Pl, Po). Notably, the clus-
tering can be straightforwardly extended into more than one level within each cluster,
which therefore removes the constraint of having no more than 8 prime numbers for
coding a path in a cluster.

Suppose there are two clusters coded by two positive integers C1 and C2. The sub-
path in cluster 1 can be computed as loc code 1 and order code 1 and similarly notations

Developing RFID Database Models for Analysing Moving Tags in SCM 211

for the subpath in cluster 2. If a path goes from cluster 1 to cluster 2, we generate the

fullpath code P as
1

C1 +
1

loc code1 +
1

order code1 +
1

C2 +
1

loc code2 +
1

order code2

.

When decoding P , we first check whether it is smaller than 1. If this is the case, then
the path covers more than one cluster. We then decompress P to extract loc code and
order code in each cluster.

To solve the cyclic path coding problem, we apply Euler’s prime number generation
formula in Theorem 1. For example, the cyclic path 2→3→5→2→3→5 is coded as “2
→ 3 → 5 → 43(x=2) → 47(x=3)→ 61(x = 5) which can be used to form the system
of congruences required by the Chinese remainder theorem of Theorem 1.

We are now ready to present our algorithms to handle long and cyclic paths. For
simplicity in presentation, we assume one reader for each location and one level of
clustering. We divide the whole set of locations into n clusters, each of which has less
than 8 locations. We then code each cluster by an integer and within each cluster a
location is coded by a unique prime number np. We now represent a path with three in-
tegers (loc code Pl, order code Po, cluster code Nc) only. Loc code can be computed
by using the Fundamental Theorem of Arithmetic in Theorem 1, which by definition
Pl is the product of all prime numbers associated with the path. Order code exists ac-
cording to the Chinese Remainder Theorem in Theorem 1 and Po can be computed
by Euclid’s algorithm [22]. For example, consider {n1 = 2, n2 = 3, n3 = 5} and
(Po mod 2) ≡ 1, (Po mod 3) ≡ 2, (Po mod 5) ≡ 3, then Po can be computed as
((1 × 3 × 5 + 2 × 5 × 2 + 2 × 3 × 3)mod(2 × 3 × 5)) ≡ 23.

As we are not able to make order code Po congruent to the same location twice in
the Chinese Remainder Theorem, we need to assign more than one prime number to
those repeatedly visiting locations. Here is our proposed solution to this problem. First,
we code each location with a prime number as said and this number is not an Euler
Formula Prime. We call this set of location prime numbers the Fundamental Location
Set and denote the set by F . Given that the Stay Records can be sorted by time in, if a
specific location occurs twice, the first occurrence will be the prime code n from F and
then the second occurrence can be coded by applying Euler Formula by putting x = n.
The new generated Euler prime numbers do not belong to F . We now ready to present
the ideas of path coding in Algorithm 1.

The underlying idea of the decoding process is as follows. First, we decompress the
fullpath code (if it is found to be larger than 1) to identify clusters and for each cluster
C decompose loc code into its corresponding list of all locations p. Second, we know
whether there is a cycle in an encoded path by comparing p with F . If there are cycles,
after sorting p, we decode those prime numbers that are not in F by reversing Euler
Theorem to get their original set of prime numbers. Finally, the path can be constructed
by sorting p by using order code. We now present the ideas in Algorithm 2.

212 W. Ng

Algorithm 1. Encoding
Input: A fullpath p, Fundamental Location Set Fi for each cluster ci

Output: Fullpath code P
Assign a positive integer ni to each cluster ci

for each cluster ci do
if there are repeated Stay Records in ci then

Encode these Repeated locations by Euler Theorem
Update Ei by including the Euler’s prime numbers

end if
loc code := Product of all prime number in Fi ∪ Ei

order code := Output by using Fi ∪ Ei in the Chinese remainder theorem
end for
fullpath code := Result of a finite continued fraction of {ni, loc code, order code } for all ci

Algorithm 2. Decoding
Input: A fullpath code P , Fundamental Location Set Fi for each cluster ci

Output: A full path defined by p :=
⋃

pi for all path segment pi in the clusters
Decompress P to identify the ordered set of loc code and order code in each cluster
for each cluster ci where i preserves the order of the decompressed integer sequence from P
do

for all prime numbers np ≤ loc code do
if loc code % np equals to 0 (i.e. the remainder for dividing loc code by np is 0) then

Add np into pi with an order
end if

end for
for all np in pi do

Remainder Set R := R ∪ {order code % np}
end for
Sort pi according to the order in R
if there are cycles (i.e. pi − Fi = ∅) then

Inverse Euler Theorem to all np in (pi − Fi)
end if

end for

Example 1. Suppose that a tagged object goes though locations C → B → A → B →
C in the same cluster. We have F = {1, 2, 3}. We use prime numbers to represent these
locations as follows: C is denoted as 2, B is denoted as 3, and A is denoted as 5. Then,
cluster code = 1, loc code = 2×3×5×Euler (3)×Euler (2) = 2×3×5×47×43 =
60630, and order code = 24773. To decode the path, we first decompose loc code into
P = {2, 3, 5, 47, 43}. Then we can get their order by dividing order code by all the
elements in P and the remainder set (in order) are {1, 2, 3, 4, 5}. We sort P by this
order and thus get 2 → 3 → 5 → 47 → 43. As the numbers 47 and 43 do not belong to
F , we decode them by reversing Euler Theorem to get original prime numbers 2 and 3.

Developing RFID Database Models for Analysing Moving Tags in SCM 213

4 RFID Manipulation Languages

In this section we present RFID Manipulation Languages and discuss their SQL pro-
cessing. The architecture shown in Figure 1 provides a platform to translate different
classes of RFID queries into their corresponding SQL statements.

The language for formulating RFID queries is defined by borrowing the notation of
XML path expressions. We consider queries and the results can be expressed by the
syntax elements such as parent axis (/), ancestor axis (//) and predicate ([]). Let us con-
sider the following RFID raw data and the corresponding stay records in Table 1.

Table 1. RFID Raw Data and Stay Record

Raw Data Records (Tag1,L1,1), (Tag1,L1,2), (Tag1,L2,3), (Tag1,L2,4),
(Tag1,L3,5), (Tag1,L3,6), (Tag2,L1,3), (Tag2,L1,6),
(Tag2,L2,7), (Tag2,L2,8), (Tag2,L3,9), (Tag2,L3,10)

Stay Records Tag1: L1[1, 2] → L2[3, 4] → L3[5, 6]
Tag2: L1[3, 6] → L2[7, 8] → L3[9, 10]

SQL is employed to support three types of queries of tracking queries, path-oriented
queries, containment queries.

– Tracking queries aim to obtain the path information for a given tag.
– Path-oriented queries aim to obtain information in a given path expression.
– Containment queries aim to obtain information from the relationships between tags,

boxes and pallets.

To support processing of above three classes of queries, we rely on the RFID database
model presented in Figure 5 for handling the path and tag information. We illustrate the
language by using the following RFID queries and their corresponding SQL translation.

We can formulate tracking queries that require tag locations or location history. The
query results are given according to Table 1.

Query Q1: Find the path for tag id = Tag1.
Results: L1/L2/L3 (decoded from the path code by Algorithm 2).
Tracking queries require tag locations or location history. Q1 traces Tag1 and the

query can be translated into an SQL statement by assuming the tables correspond-
ing to Figure 5: pathrecord(tag id, path id, move start, move end), pathcode(path id,
loc code, order code, cluster code) and stayrecord(tag id, loc code, time in, time out)
as the following SQL expression.

SELECT decode(loc code, order code, cluster code)
FROM pathrecord P, pathcode C
WHERE tag id = ’Tag1’ AND P.path id = C.path id

We are able to formulate path oriented queries to obtain information in a given path
expression. We assume ni = Prime(Li) and the MOD function provided by Oracle
DBMS in SQL translation.

214 W. Ng

Query Q2: Find the tag ids that go to L3 via L1.
Expression: Expressions (based on XPath convention) 〈//L1//L3〉
Results: Tag1, Tag2

SELECT tag id
FROM pathrecord P, pathcode C
WHERE MOD(C.loc code, n1 × n3) = 0 AND
MOD(C.order code, n1) < MOD(C.order code, n3) AND P.path id = C.path id

Query Q3: Find the tag ids going from L1 to L2 where the duration at L1 is less
than 2.
Expression: 〈//L1[(EndTime − StartTime) ≤ 2]/ L2〉
Results: Tag1

SELECT S.tag id
FROM pathrecord P, pathcode C, stayrecord S
WHERE MOD(C.loc code, n1 × n2) = 0 AND
MOD(C.order code, n1) + 1 = MOD(C.order code, n2) AND P.path id = C.path id
AND P.tag id = S.tag id AND S.loc code = n1 AND (S.Time in - S.Time out) < 2

For containment queries that involves product information and manufacturer details,
SQL expressions can be formulated in a similar way as usual data warehouse queries
[9], which are well-known SQL work and therefore are not detailed here.

5 Tag Movement Graph (TMG) Model

In this section, we present a graph-theoretic data model to capture RFID tag trail infor-
mation and discuss how to discover tag movement trails (TMTs) and logistic correlated
patterns (LCP) defined within the model.

5.1 Capture Frequent Tag Movement Trails in a TMG

We establish a graph-theoretic data model to capture RFID tag movement information.
This can be achieved by decomposing the RFID database into a TMG via adapting some
established “tables to graph” algorithms such as BANKS [1]. Based on the logistic hier-
archy model in Figure 5, a node in the TMG graph is annotated with SCM information
along three dimensions of the object tags (i.e. with an EPC hierarchy: object → box →
case → pallet), locations (i.e. with a location hierarchy: spot → site → store → region)
and time (i.e. with a temporal hierarchy: minute → hour → day → week).

For example, a node in a TMG at the lowest level of the mentioned three hierar-
chies is annotated as {(EPC,object), (Loc,Spot), (Time,Sec)} to store the object coded
as EPC. A higher level annotation on the node can be formulated as {(EPC,Box),
(Loc,Store), (Time,Day)} or a further higher level as {(EPC,Pallet), (Loc,Region),
(Time, Month)}. We implement data warehouse operators such as roll up and drill down
to control different levels of abstraction in each dimension. In contrast to the RFID
Cuboid [9], each node of TMG can be annotated with the data in all the dimensions and
each edge with the aggregated information of transitions such as the total number of tag

Developing RFID Database Models for Analysing Moving Tags in SCM 215

Fig. 6. A TMG Graph viewed at multi-levels of location: Spot → Site → Store → Region

read. We can restrict the TMG on a focused dataset obtained by formulating an RFID
manipulation language expression as discussed in Section 4.

We now show a simplified location view of a TMG in Figure 6. Within the TMG
graph model, we discover frequent Tag Movement Trails (TMTs) that meet some thresh-
old criteria in various abstraction levels. We can see that a simple form of a TMT trail
can be defined as (E, S2 → S1 → S4 → S3 → S9 → S10 → S11 → S12 →
S15, TSpot) which represents a trajectory of tag E running in different location spots at
different times specified by TSpot. The TMT trail can be rolled up to the site level as
(E, SiteA → SiteB → SiteA → SiteC → SiteD, TSite), or to the warehouse level
as (E, Store1 → Store2, TStore). The abstraction for tags E and time T (e.g. TSpot in
second, TSite in minute, and TStore in hour) can also be rolled up similarly.

The TMTs can be explored by performing a generalization of some standard graph
exploration methods such as DFS (depth-first search) or BFS (breadth-first search) [22].
The parameters that judge various approaches are defined in terms of memory consump-
tion and number of iterations. We define a stopping condition of the exploration as fol-
lows: using BFS-like algorithm we construct a tree-like structure with the start node
as its root wherein each branch of the tree is explored until its probability falls below
a cut-point. A branch of the tree having probability above the cut-point is a candidate
trail if it still has some expansions to be evaluated. The process continues until a longest
TMT can be found. There is also a trade-off between mining more trails by lowering
the cut-point and improving the efficiency by reducing the depth of exploration.

5.2 Logistic Correlated Patterns on TMG

A Logistic Correlated Pattern (or simply an LCP) is a nonempty set of correlated items
having distinct logistic attributes (time, trails and other product quality parameters),
which are both multi-level and quantitative in nature [14]. An example item is “(Time,
minute)[100, 200]” representing from 100 to 200 minutes and an example of 2-patterns
is “(Time, minute)[100, 200](Trail, spot)[S1, S5]” with the logistic attribute set {(Time,
minute), (Trail, spot)} and the interval set {[100, 200], [S1, S5]}.

LCPs reveal the fact that “The time (100 to 200 sec) spent in the trail SA → SB

(coded as 1→2) is too long and makes the milk spoil” or “The number of tags passing
through the trail SA → SB → SC (coded as 1→2→3) is between 1K and 2K in the
first day”. They can be expressed as LCPs “(Time, minute)[100, 200](Trail, Spot)[1,
2](quality)[spoil]” and “Sum(Object, tag)[1K, 2K](Trail, spot)[1, 3](Time, day)[0, 1]”.

216 W. Ng

Mining the RFID database and the TMG graph together give rise to the discovery of
rich hidden SCM information for further analysis.

6 Related Work

Initial studies of RFID technologies focused mainly on the issues arising from low
level abstraction such as signal filtering and resolution, RFID sensitivity tuning and
RFID benchmarking and standardization [8,2]. As the amount of RFID data becomes
extremely large (e.g. Walmart generates RFID data in the petabyte scale each day [17]),
the problem of applying database and data mining technologies to handle RFID data is
increasingly necessary and important. There are many interesting issues for handling
RFID data such as stream processing [24,5,13], managing RFID data [23,9], cleaning
raw RFID data and RFID data mining [18,7]. However, there still lacks of an integrated
framework to support more advanced data analysis.

The work related to event processing can be found in Wang et al. [24], which con-
siders temporal RFID events and formalizes the specification and semantics of RFID
events and rules. Also, they proposed a method to detect RFID complex events effi-
ciently. Bai et al. [4,5] explored the limitation of SQL in supporting the temporal event
detection and discussed an SQL-based stream query language to provide comprehen-
sive temporal RFID event detection. The system architecture for managing RFID data
is also discussed in [3,6,11].

An important issue for RFID applications is that the collected raw data has different
sorts of errors such as duplicate readings and missing readings. To clean the raw data,
SMURF [13] was proposed to control the window size of the smoothing filter adap-
tively using statistical sampling. [4] also proposed several methods to filter RFID data.
However, there is still a lack of work to address the errors in high level abstraction and
handling multi-streams of raw RFID data.

In the area of RFID data modeling, Wang et al. [23] proposed the Dynamic Rela-
tionship ER Model (DRER) which includes a new relationship (dynamic relationship).
They also proposed methods to express temporal queries based on DRER. Gonzalez et
al. [9] proposed a new data warehousing model for the object transition and a method
to process a path selection query. Lee and Chung [15] proposed a storage scheme to aid
processing a set of RFID queries such as tracking and path-oriented queries. The cod-
ing schemes apply some important results from the prime number theory. Unlike our
coding schemes presented in Algorithms 1 and 2, only very few location nodes can be
handled due to the scarcity nature of prime numbers and no cycle is allowed to happen
in their scheme. There are few works related to mining RFID [7] but still many issues
such as analysing patterns and trails that have not been adequately explored.

7 Concluding Remarks

We present a holistic framework that supports collecting and analysing RFID raw data
in a SCM setting. Within the framework, we illustrate the techniques of modeling and
storing RFID data and discuss how to make RFID queries translatable into SQL expres-
sions. This approach is practical to RFID industrials, since they usually have relational

Developing RFID Database Models for Analysing Moving Tags in SCM 217

DBMSs as one of the SCM infrastructures. To discover more interesting SCM infor-
mation, we also propose the notions of TMTs and LCPs, which take data abstraction
and the SCM logistic information, such as location topology, object grouping and lo-
gistic hierarchies, into consideration. The proposed framework provides much stronger
support to business activities that involve complex movements of goods in large quan-
tities. This work also demonstrates the application of many fundamental research areas
such as data warehouse operations and data mining on graphs. Throughout the paper,
we have discussed various issues from modeling and system view points. To further
demonstrate the feasibility of the framework, we are collaborating with our RFID lab
industrial partners (see [20], Partners) to gain user feedback as a future work.

Acknowledgements. This work is partially supported by Hong Kong RGC GRF under
project number 617610.

References

1. Aditya, B., et al.: Sudarshan: BANKS: Browsing and Keyword Searching in Relational
Databases. In: Proc. of VLDB, pp. 1083–1086 (2002)

2. Angeles, R.: RFID Technologies: Supply-chain Apps. and Implementation Issues (2005)
3. Bornhövd, C., et al.: Integrating Automatic Data Acquisition with Business Processes - Ex-

periences with SAP’s Auto-ID Infrastructure. In: Proc. of VLDB (2004)
4. Bai, Y., Wang, F., Liu, P.: Efficiently Filtering RFID Data Streams. In: Proc. of VLDB Work-

shop on Clean Databases (2006)
5. Bai, Y., Wang, F., Liu, P., Zaniolo, C., Liu, S.: RFID Data Processing With a Data Stream

Query Language. In: Proc. of ICDE (2007)
6. Chawathe, S.S., Krishnamurthy, V., Ramachandran, S., Sarma, S.: Managing RFID data. In:

Proc. of VLDB (2004)
7. Elio, M.: A Framework for Outlier Mining in RFID data. In: Proc. of IDEAS (2007)
8. EPCGlobal, Inc. http://www.epcglobalinc.org/home
9. Gonzalez, H., Han, J., Li, X., Klabjan, D.: Warehousing and Analysing Massive RFID Data

Sets. In: Proc. of ICDE (2006)
10. Hardy, G.H., Wright, E.M.: An Introduction to the Theory of Numbers (1979)
11. Hoag, J.E., Thompson, C.W.: Architecting rfid middleware. IEEE Internet Computing 10(5),

88–92 (2006)
12. Jeffery, S.R., et al.: A Pipelined Framework for Online Cleaning of Sensor Data Streams. In:

Proc. of ICDE (2006)
13. Jeffery, S.R., Garofalakis, M.N., Franklin, M.J.: Adaptive Cleaning for RFID Data Streams.

In: Proc. of VLDB, pp. 163–174 (2006)
14. Ke, Y., Cheng, J., Ng, W.: Correlated Pattern Mining in Quantitative Databases. ACM Trans-

actions on Database Systems 33(3) (2008)
15. Lee, C.-H., Chung, C.-W.: Efficient Storage Scheme and Query Processing for Supply Chain

Management using RFID. In: Proc. of SIGMOD (2008)
16. Ng, W., Deng, L., Lee, D.L.: Spying Out Real User Preferences in Web Searching. ACM

Transactions on Internet Technology (2007)
17. Palmer, M.: Principles of Effective RFID data management. Enterprise System (March 2004)
18. Rao, J., Doraiswamy, S., Thakkar, H., Colby, L.S.: A Deferred Cleansing Method for RFID

Data Analytics. In: Proc. of VLDB, pp. 175–186 (2006)
19. http://www.hk-rd.com/Hong Kong RFID

http://www.epcglobalinc.org/home
http://www.hk-rd.com/

218 W. Ng

20. http://www.rflab.orgHKUST RFID Lab
21. http://www.cse.ust.hk/News/RFIDAward2008α-Gate Portal Award News
22. Sedgewick, R., Flajolet, P.: An Introduction to the Analysis of Algorithms
23. Wang, F., Liu, P.: Temporal Management of RFID Data. In: Proc. of VLDB, pp. 1128–1139

(2005)
24. Wang, F., Liu, S., Liu, P., Bai, Y.: Bridging physical and virtual worlds: Complex event

processing for RFID data streams. In: Ioannidis, Y., Scholl, M.H., Schmidt, J.W., Matthes,
F., Hatzopoulos, M., Böhm, K., Kemper, A., Grust, T., Böhm, C. (eds.) EDBT 2006. LNCS,
vol. 3896, pp. 588–607. Springer, Heidelberg (2006)

http://www.rflab.org
http://www.cse.ust.hk/News/RFIDAward2008

M. Jeusfeld, L. Delcambre, and T.W. Ling (Eds.): ER 2011, LNCS 6998, pp. 219–232, 2011.
© Springer-Verlag Berlin Heidelberg 2011

Semi-automatic Conceptual Data Modeling Using
Entity and Relationship Instance Repositories

Ornsiri Thonggoom, Il-Yeol Song, and Yuan An

The iSchool at Drexel University, Philadelphia, PA USA
{Ot62,songiy,yuan.an}@drexel.edu

Abstract. Data modelers frequently lack experience and have incomplete
knowledge about the application being designed. To address this issue, we
propose new types of reusable artifacts called Entity Instance Repository (EIR)
and Relationship Instance Repository (RIR), which contain ER modeling patterns
from prior designs and serve as knowledge-based repositories for conceptual
modeling. We explore the development of automated data modeling tools with
EIR and RIR. We also select six data modeling rules used for identification of
entities in one of the tools. Two tools were developed in this study: Heuristic-
Based Technique (HBT) and Entity Instance Pattern WordNet (EIPW). The goals
of this study are (1) to find effective approaches that can improve the novice
modelers’ performance in developing conceptual models by integrating pattern-
based technique and various modeling techniques, (2) to evaluate whether those
selected six modeling rules are effective, and (3) to validate whether the proposed
tools are effective in creating quality data models. In order to evaluate the
effectiveness of the tools, empirical testing was conducted on tasks of different
sizes. The empirical results indicate that novice designers’ overall performance
increased 30.9~46.0% when using EIPW, and increased 33.5~34.9 % when using
HBT, compared with the cases with no tools.

Keywords: HBT, EIPW, entity instance repository, relationship instance
repository, conceptual data modeling, reuse pattern, ER model.

1 Introduction

Conceptual data modeling is challenging because it requires good understanding of an
application domain and an ability to translate requirements into a data model. Novice
modelers frequently lack experience and have incomplete knowledge about the
application domain being designed. Even expert designers could fail to obtain a
quality conceptual model when they lack domain knowledge. Hence, data modelers at
any level should benefit from reusing existing modeling knowledge during the
modeling process. In addition, concepts that are not explicitly expressed in a
requirement but are necessary for the domain are often very difficult to capture.
Expertise in domain knowledge to identify entities and relationships hidden in the
requirement is therefore also needed [1].

At present, a fully automated conceptual modeling approach seems impossible due
to the inherent ambiguities in natural language (NL), context-dependent nature of

220 O. Thonggoom, I.-Y. Song, and Y. An

modeling, and incompleteness of domain knowledge. When complete automation is
not possible, it is still desirable to develop a semi-automatic process than an entirely
manual modeling process. Therefore, many researchers have proposed knowledge-
based systems (KBSs) and tools to support the modelers in developing conceptual
models. One of the limitations of the proposed tools is that such tools do not solve the
problems that novice modelers are inexperienced and have incomplete knowledge. In
addition, they do not address the semantic mismatch issue [2], which represents the
inability of novice modelers for translating the requirements literally into conceptual
modeling structures.

Most conceptual designs are usually created from scratch, although a similar
design might have previously been created. Reuse of existing resources and solutions
has become a strategy for cost reduction and efficient improvement in the information
system development process. Currently, building a library of reusable artifacts
involves explication of human developer’s knowledge, which is a major obstacle in
facilitating reuse of knowledge [3]. One solution to reduce the efforts and time of
human experts comes from extracting artifacts from prior designs. If this could be
conducted for various application domains, then it would assist in creating the
practically reusable libraries.

In this research, we explore development of automated data modeling tools that
help novice modelers develop quality conceptual data models. We propose new types
of reusable artifacts that contain knowledge about an application domain, called the
entity instance repository (EIR) and the relationship instance repository (RIR), which
are repositories of entity instance patterns (EIPs) and relationship instance patterns
(RIPs), respectively. An EIP is a pattern of a single entity and its properties. An RIP is
a binary relationship with cardinality constraints between two entities. The EIP and
RIP can be automatically extracted from prior relational database schemas via reverse
engineering. The EIR and RIR are useful for conceptual designs in the following
aspects: (1) they contain knowledge about a domain; (2) automatic generation of EIR
and RIR overcomes a major problem of inefficient manual approaches; and (3) they
are domain-specific and therefore easy to understand and reuse.

Typically, a rule-based approach is a popular technique for conceptual modeling
because it could lead modelers to use known heuristics. However, this approach does
not provide an optimal solution to many complex requirements because most of the
proposed heuristics/rules were built based on syntax of some specific NLs. These
rules cannot overcome the inherent ambiguities of NLs. In this research, we test six
data modeling rules that have been used in an introductory data modeling class for
many years. We evaluate the usefulness of these rules by developing a tool named
heuristic-based technique (HBT) that applies these rules to the identification of
entities.

Two tools were developed in this study: HBT and EIPW (Entity Instance Pattern
WordNet). The tasks of our tools are divided into two subtasks: the entity
identification and the relationship identification. The entity identification processes of
our tools are different, but the relationship identification processes in them are the
same. The entity identification process of HBT incorporates the six domain
independent modeling rules and entity categories adopted from Taxonomic Class
Modeling (TCM) [1]. TCM identifies entities from three different sources: entities
from noun phrases, entities derived from verb phrases, and entities that were not

 Semi-automatic Conceptual Data Modeling 221

explicitly stated in the requirement (See Section 5 for more details). The entity
identification process of EIPW incorporates EIR, hypernym chains in WordNet, and
entity categories adopted from TCM. The relationship identification processes of both
tools incorporate RIR. WordNet is also used to ensure that the synonyms of EIR’s
entities and RIR’s entities are not missed out. The architectures of each tool are
discussed in later sections.

The goals of this study are as follows: (1) to find effective approaches that can
improve the novice modelers’ performance in developing conceptual models by
integrating pattern-based technique and various modeling techniques, (2) to evaluate
whether those selected six modeling rules are effective, and (3) to validate whether
the proposed tools are effective in creating quality data models.

The remainder of this paper is organized as follows. Section 2 reviews five
techniques for developing conceptual models. Section 3 provides a methodology to
create EIR and RIR. Section 4 presents our six selected modeling rules. Section 5
presents the architecture of HBT. Section 6 presents the architecture of EIPW. Section
7 discusses the results from empirical experiments. Finally, Section 8 concludes the
paper and gives directions for future work.

2 Related Techniques for Conceptual Modeling

There are at least five categories of techniques used for automatically generating
conceptual models from NL requirement specifications. They are rule-based, pattern-
based, case-based, ontology-based, and multi-techniques-based.

2.1 Rule-Based

Chen [4] proposed eleven rules for translating English sentence structures into ER
model’s structure. Since then, many studies have tried to refine and extend on this
approach. The trend in this technique orients towards the collaboration with huge
linguistic dictionaries and common sense ontologies. The domain independence is the
strength of this technique. However, the strength of this technique is also its weakness
because tools or systems proposed have no domain knowledge incorporated in them.
Most of tools proposed for developing conceptual models follow this technique [5].

2.2 Pattern-Based

Recently, analysis patterns [6] have been popular and used in conceptual designs. The
advantage of reusable patterns aims not only to reuse schema components, but also to
reuse relationships between objects, which is a difficult task for novice modelers.
However, building a repository of patterns involves explication of human developers’
knowledge, which is a major obstacle in facilitating reuse of knowledge [3]. Another
limitation of using this technique is that most of the available patterns in this field are
analysis patterns that require manually matching.

2.3 Case-Based

This technique involves storing the whole conceptual models of a large number of
applications and providing a keyword mechanism that enables users to search for a

222 O. Thonggoom, I.-Y. Song, and Y. An

conceptual model that is a candidate solution for a requirement [7]. It takes the
advantage of reusing previous designs. The limitation in this technique is that if any
adjustment is required in the conceptual model, it has to resort to the generic data
modeling approach. Another disadvantage is that developing the conceptual model
libraries and indexing mechanism are very expensive.

2.4 Ontology-Based

Ontologies have been considered as important components in many applications.
Some generic and large scale ontologies such as WordNet, SUMO, and Cyc are
available, but most applications require a specific domain ontology to describe
concepts and relations in the domain [8]. Some researchers proposed the approaches
with the development of conceptual models by refinement of large scale ontologies
[9] [10]. However, currently there are no supporting tools or effective APIs to
enhance the process. Most studies of ontology development and applications assume
manual processes.

2.5 Multi-techniques-Based

From our survey, most tools or systems for conceptual design require users’
involvement during the process. And no single technique work best all the times
because each technique has some limitations. Ideally, various techniques should be
integrated together for a design process. For example, Song et al. [1] proposed a TCM
(taxonomic class modeling) methodology used for object-oriented analysis in business
applications. This method integrated several class modeling techniques under one
framework. Their framework integrates the noun analysis method, class categories,
English structures, check lists, and rules for modeling. In our study, we adopted the
noun analysis method, class categories and modeling rules from the TCM work.

3 A Methodology for Creating EIR and RIR

This section presents our automatic methodology for creating the Entity Instance
Repository (EIR) and the Relationship Instance Repository (RIR), which are the
repositories of Entity Instance Patterns (EIPs) and Relationship Instance Patterns
(RIPs), respectively. EIR and RIR contain ER modeling patterns from prior designs
and serve as knowledge-based repositories for conceptual modeling. An EIP is a
pattern of a single entity and its properties. An RIP is a binary relationship with
cardinality constraints between two entities. An example of an EIP and an RIP is
shown in Figure 1. We propose a method based on database reverse engineering
concepts that are inspired by Chiang et al. [11] to automatically extract EIPs and RIPs
from relational schemas. In this paper, we use the UML class diagram notation for
representing ER models. This methodology employs three assumptions for the
characteristics of input schemas for database reverse engineering process:

1) Relational schemas: An input is a DDL (Data Definition Language) schema
of an application domain.

 Semi-automatic Conceptual Data Modeling 223

2) 3NF relations: There are no non-3NF relations in the input relational
schemas. It would simplify the extraction process.

3) Proper primary keys (PK) and foreign keys (FK): Proper PKs and FKs are
specified in input DDL schemas.

Fig. 1. An example of an EIP and an RIP, respectively

The method for creating EIR and RIR consists of the following three main steps:
INPUT: DDL schemas
OUTPUT: EIR and RIR

(1) Obtaining Information about the Executable Schemas (DDL Schemas)
In order to reverse engineer existing database schemas, the information about the
executable schemas must be available. In our study, we use the library of DDL
schemas created by Silverston [12] containing 464 relations and 1859 attributes as our
first input. Later the lists of EIR and RIR were extended by case studies.

(2) Extracting EIP’s Elements
We extracted the EIP’s elements from input DDL schemas by storing a relation name
as an entity_name and an attribute as an attribute_name in EIR. The metadata model
of EIP and RIP is shown in Figure 2.

Fig. 2. The metadata model of an EIP and an RIP

(3) Extracting RIP’s Elements
We extracted the RIP’s elements by identifying relationships between extracted
entities from Step (2) above. Most of the ER (Entity-Relationship) methods used in
textbooks or CASE tools can be classified as either binary models or n-ary models
[13]. In this research, we only specify the maximum cardinality constraints for binary
models. Because of the limited semantic expressiveness of DDL schemas, the

224 O. Thonggoom, I.-Y. Song, and Y. An

minimum cardinality cannot be automatically identified. Using a fully automated
process, we can identify five binary relationship types:

3.1 1:N for relationships identified by FK
3.2 1:N for relationships identified by partial keys
3.3 N:M for relationships identified by relationship relations
3.4 Is-a relationships
3.5 Recursive relationships

Subsequently, these binary relationships are stored in an RIR. The reverse engineering
rules used in this step are created by inverting the schema transformation rules based
on the EER (Extended Entity-Relationship) approach [14]. The definitions of these
transformation rules are described in [15].

4 The Six Domain Independent Modeling Rules

This section presents our selected six modeling rules termed as the six domain
independent modeling rules. Our survey shows that one of the difficulties in creating
conceptual models is the scattered modeling rules. There is no complete set of rules
that help developing conceptual models. In general, rules/heuristics are useful but
sometimes they may lead to cognitive errors called bias [2] [16]. Also, there is always
trade off in design so that not all rules can work together because some rules are
conflicting. We have selected the six domain independent modeling rules based on
teaching experiences of over 20 years by one of the authors of this paper. These six
rules are considered a minimal set of rules to teach novice designers in identifying
entities. These six rules are not based on the syntax of any NLs and thus are domain
independent. This means that these rules can be applied to a wide range of
applications and domains. In this research, we would like to experiment whether the
six rules are indeed useful. The six domain independent modeling rules are:

R1: The ID (Identifier) Rule
IF a concept (noun or verb) needs to have a unique identifier, THEN it is an entity.
R2: The MA (Multiple Attribute) Rule
IF a concept has multiple attributes, THEN it is an entity.
R3: The MVA (Multi-Valued Attribute) Rule
IF a concept has multi-values, THEN it is an entity.
R4: The TDA (Time-dependent attributes) Rule
IF a concept has time-dependent attributes or needs to keep track of history of values,
THEN it is an entity.
R5: The SC (Single Concept) Rule
A good entity should represent one and only one concept.
R6: The DI (Domain Importance) Rule
IF a concept is important in its own right within the problem domain whether it has
one or multiple attributes, THEN it is an entity.

5 Overview of HBT Architecture

The modules and data flow of HBT are shown in Figure 3. A prototype of HBT was
developed by using JAVA applet. First, the system takes a NL requirement

 Semi-automatic Conceptual Data Modeling 225

specification as an input to a preprocessing module. The main functionality of the
preprocessing module is to do the part of speech tagging (POS) in order to list all of
the possible candidate entities. We use a well-known open source called LingPipe
(http://alias-i.com/lingpipe) to perform POS. In HBT, the entity list can be identified
based on noun phrases, verb phrases, and hidden requirements. During the post-
parsing analysis, a noun phrase and verb phrase belonging to any of a discard noun
set and a discard verb set, respectively, will be excluded as a candidate entity. The
discard noun set and the discard verb set are created based on the history of words
discarded by designers and the class elimination rules [1] . The discard noun set and
the discard verb set are domain independent.

In the entity identification module, there are three activities performed:

(1) The first activity is to identify the entity list based on noun phrases by using
the six domain independent modeling rules, which are the ID, MA, MVA,
TDA, SC, and DI rules.

(2) The second activity is to identify the entity list based on verb phrases by using
two rules out of six domain independent modeling rules, which are the ID and
MA rules.

(3) The third activity is to identify the hidden entities that are not explicitly stated
in the requirements but are necessary for the conceptual modeling by applying
entity categories. Entity categories are domain knowledge and used as a tip for
identifying candidate entities. Our entity categories in business domain are
adopted from the class categories developed by Song et al. [1].

After, getting the entity list from Entity Identification Module, relationships between
entities are generated by considering the application domain semantics inherent in the
RIR. The relationship modeling rules [1] are used to ensure that all of the
relationships are identified. WordNet is also used to ensure that the synonyms of
RIR’s entities are not missed out while preparing a list of the relationships. The lists
of EIR and RIR are extended by case studies. Figure 4 shows one of the user
interfaces of HBT.

Fig. 3. The HBT Architecture

226 O. Thonggoom, I.-Y. Song, and Y. An

Fig. 4. An example of user interface in HBT

6 Overview of EIPW Architecture

The system modules and data flow of EIPW are shown in Figure 5. A prototype of
EIPW was developed by using JAVA Applet. Most of the modules’ functions in
EIPW are very similar to those in HBT. The only difference is in the entity
identification module. In this module, there are three activities performed:

(1) The first activity is to identify the entity list based on EIR. WordNet is also
used to ensure that the synonyms of EIR’s entities are not missed out while
preparing the lists of entities.

Fig. 5. The EIPW Architecture

 Semi-automatic Conceptual Data Modeling 227

(2) The second activity is to identify the entities that are not detected by EIR by
applying the top noun categories and hypernym chains in WordNet [5].

(3) The third activity is to identify the hidden entities by applying entity categories.

The user interfaces of EIPW are also similar to those in the HBT as shown in Figure
6. The more details of the EIPW’s workflow is presented in [15].

Fig. 6. An example of user interface in EIPW

7 Empirical Evaluation

In this section, we evaluated the quality of the output generated by our proposed tools
by using the ANOVA technique. Since the quality of the conceptual models is of
interest, the following hypotheses are tested:

H1: Novice Modelers using EIPW will create conceptual models with better quality
compared to the models generated by novice designers without using any tools.
H2: Novice Modelers using HBT will create conceptual models with better quality
compared to the models generated by novice designers without using any tools.
H3: There is no significant difference between the two tools regarding the quality of
the conceptual models.

7.1 Experimental Design

The experimental framework is shown in Figure 7. The two independent variables are
the systems and the task sizes. In conceptual modeling, a linear increase in the number
of entities can result in a combinatorial increase in the number of possible relationships
[2]. As the task size increases, so do the numbers of decisions required in the modeling

228 O. Thonggoom, I.-Y. Song, and Y. An

process. Therefore, our experimental design incorporates two levels of the task size to
provide some sensitivity for this factor. The medium task size has 9 entities and 9
relationships, while the moderate task size has 14 entities and 14 relationships. The
dependent variable is the quality scores of the ERD. The accuracy of an ER model is
evaluated by a scoring schema, which we adopted from Du [5]. It focuses on the correct
identification of appropriate entities and relationships based on the given problem
statements. The conceptual models created by the subjects are judged by third parties
(not the authors of this paper). To take into account differences in task size, the quality
scores obtained for each design are normalized in percentage [18].

Fig. 7. The framework of experiments

7.1.1 Subjects and Tasks
There were 41 subjects. All of the subjects were students in the iSchool at Drexel
University and did not work in conceptual modeling field before. Therefore, we
concluded that all of our subjects were novice modelers. Twenty-one were
undergraduates and twenty were graduate students. Forty-one subjects were divided
into four groups as shown in Table 1. Each subject worked on four problem
statements [17]: one medium size and one moderate size problem statements with the
aid of our tool, and one medium size and one moderate size problem statements with
no tool. The problem statements are in the e-commerce domain. The subjects could
take time as long as they wanted to create conceptual models based on the given
problem statements.

Table 1. The Experimental Design

Group Num of subject Problem1 Problem2 Problem3 Problem4
1 11 No tool No tool Using EIPW Using EIPW
2 10 Using EIPW Using EIPW No tool No tool
3 10 No tool No tool Using HBT Using HBT
4 10 Using HBT Using HBT No tool No tool

 Semi-automatic Conceptual Data Modeling 229

Test of Hypothesis 1: EIPW

A 2x2 within-subjects analysis of variance was performed on quality scores as a
function of EIPW (with, no tool) and task size (medium, moderate) as shown in Table 2.

Table 2. An ANOVA analysis of modeling quality

 QUALITY SCORE
System (EIPW, no tool) F(1,20) = 97.512, p < 0.000
Task Size (medium, moderate) F(1,20) = 2.776, p < 0.111
System x Task Size F(1,20) = 1.085, p < 0.310

Fig. 8. The plot of the mean quality scores (%)

From the calculated means shown in Figure 8, the conceptual models created by
EIPW are better than those created by no tool cases for both task sizes. In Table 2,
the results show that the main effect of system (with EIPW, no tool) is significant
(p < 0.00). Therefore, this result supports our hypothesis (H1) that the EIPW helps
novice designers create better conceptual models than they do without it. There is no
significant main effect for task size (p < 0.111). It shows that the effect of System x
Task Size is not significant (p < 0.310), which means there is no interaction between
the system and the task size. We conclude that EIPW improves the novices’
performance by 30.9% for the medium task size and 46.0% for the moderate task size.

Test of Hypothesis 2: HBT

A 2x2 within-subjects analysis of variance was performed on quality scores as a
function of HBT (with, no tool) and task size (medium, moderate) as shown in Table 3.

Table 3. An ANOVA analysis of modeling quality

 QUALITY SCORE
System (HBT, no tool) F(1,19) = 25.69, p < 0.000
Task Size (medium, moderate) F(1,19) = 6.925, p < 0.016
System x Task Size F(1,19) = 0.132, p < 0.720

230 O. Thonggoom, I.-Y. Song, and Y. An

Fig. 9. The plot of the mean quality scores (%)

From the calculated means shown in Figure 9, the conceptual models created by
the HBT are better than those created by no tool cases for both task sizes. In Table 3,
the results show that the main effect of system (with HBT, no tool) is significant (p <
0.00). Therefore, this results support our hypothesis (H2) that the HBT helps novice
modelers create better conceptual models than they do without it. There is significant
main effect for task size (p < 0.016). However, it shows that the effect of System x
Task Size is not significant (p < 0.720), which means there is no interaction between
the system and the task size. We conclude that HBT improves the novices’
performance by 34.9% for the medium task size and 33.5% for the moderate task size.

Test of Hypothesis 3: EIPW and HBT

A 2x2 mixed model design with system as between-subject and task size as within-
subject factors was used. The two independent variables are system (with EIPW, with
HBT) and the task size (medium, moderate). The dependent variable is the quality
score. Since the aspects of within-subject factor are not used for analyzing this
hypothesis, only the test of between-subject analysis is shown in Table 4.

Table 4. Tests of between-subjects effects with dependent variable QUALITY SCORE

 QUALITY SCORE
System (EIPW, HBT) F(1,39) = 0.004, p < 0.948

In Table 4, the main effect of system is not significant (p < 0.948). So, this result

supports our hypothesis (H3) that there is no significant difference between the two
tools regarding the quality of the conceptual models. However, the mean scores of
EIPW and HBT suggest that EIPW is better than HBT when the task size is moderate.
On the other hand, HBT is slightly better than EIPW when the task size is smaller.
This results show that the six domain independent modeling rules are effective in the
medium to moderate task sizes.

 Semi-automatic Conceptual Data Modeling 231

8 Conclusions and Future Research

In this paper, we have proposed methods for improving the process of automatically
developing conceptual data models. We have implemented two knowledge-based data
modeling tools: HBT and EIPW. They use different techniques for entity
identification, but use the same techniques for relationship identification. HBT uses
noun phrases, verb phrases, identification of entities from hidden requirements using
entity categories, and the six domain independent modeling rules. EIPW uses noun
phrases, an entity instance repository (EIR), entity categories, and WordNet.
Relationship identification uses a relationship instance repository (RIR), and
WordNet. This study is an initial step to show how domain knowledge stored in the
form of instance patterns can be used together with other modeling techniques.

The empirical results indicate that novice modelers’ performance increased by
30.9~46% when using EIPW, while the performance increased by 33.5~34.9 % when
using HBT, compared with the cases of no tools. The EIPW with EIR and RIR clearly
helps the novice modelers in creating better quality conceptual models. These results
also imply that the use of EIR and RIR in EIPW is effective by providing us with a
library of reusable patterns and by automating the process of finding the most
appropriate one for certain situation. In addition, the results of HBT experiments
show that the six domain independent rules in HBT are effective in identifying
entities. They also minimize the cognitive load on the novices. This study shows that
the six domain independent rules can be taught in a beginning database modeling
class, and HBT can serve as a learning tool. It provides a smooth head-start to
novices. In addition, RIR used in relationship identification process in both tools can
ease the identification of relationships.

The study has, so far, been carried out on one domain only, but it provides a
theoretical background for research on other domains as well. For future work, we
want to test the usability of the tools for different domains and subjects. We plan to
make our tools interface module to import the output schema into an ER diagram or a
class diagram in commercial graphical CASE tools.

References

1. Song, I.-Y., Yano, K., Trujillo, J., Lujan-Mora, S.: A Taxonomic Class Modeling
Methodology for Object-Oriented Analysis. In: Krostige, T.H.J., Siau, K. (eds.)
Information Modeling Methods and Methodologies. Advanced Topics in Databases Series,
pp. 216–240. Idea Group Publishing, USA (2004)

2. Batra, D.: Cognitive complexity in data modeling: causes and recommendations. Requir.
Eng. 12(4), 231–244 (2007)

3. Han, T., Purao, S., Storey, V.: Generating large-scale repositories of reusable artifacts for
conceptual design of information systems. Decision Support Systems 45, 665–680 (2008)

4. Chen, P.: English Sentence Structure and Entity-Relationship Diagram. Information
Sciences 1(1), 127–149 (1983)

5. Du, S.: On the Use of Natural Language Processing for Automated Conceptual Data
Modeling. Ph.D Dissertation, University of Pittsburgh (2008)

232 O. Thonggoom, I.-Y. Song, and Y. An

6. Purao, S., Storey, V., Han, T.: Improving Analysis Pattern Reuse in Conceptual Design:
Augmenting Automated Processes with Supervised Learning. Information Systems
Research 14(3), 269–290 (2003)

7. Choobineh, J., Lo, A.: CABSYDD: Case-Based System for Database Design. Journal of
Management Information Systems 21(3), 242–253 (2004)

8. Sugumaran, V., Storey, V.: The role of domain ontologies in database design: An ontology
management and conceptual modeling environment. ACM Trans. Database System 31(3),
1064–1094 (2006)

9. Conesa, J., Olivé, A.: A method for pruning ontologies in the development of conceptual
schemas of information systems. Journal of Data Semantics 5, 64–90 (2006)

10. Conesa, J., Storey, V., Sugumaran, V.: Usability of Upper level ontologies: The case of
ResearchSyc. Data & Knowledge Engineering 69(4) (2010)

11. Chiang, R., Barron, T., Storey, V.: Reverse engineering of relational databases: Extraction
of an EER model from a relational database. Data & Knowledge Engineering 12, 107–142
(1994)

12. Silverston, L.: The Data Model Resource Book, 1st edn., vol. 2. John Willey & Sons Inc.,
Chichester (2001)

13. Song, I.-Y., Evans, M., Park, E.: A Comparative Analysis of Entity-Relationship
Diagrams. Journal of Computer and Software Engineering 3(4), 427–459 (1995)

14. Elmasri, R., Nevathe, S.: Fundamentals of Database Systems. The Benjamin/Cummings
Publishing Co., Inc., Redwood City, CA (2004)

15. Thonggoom, O., Song, I.-Y., An, Y.: EIPW: A Knowledge-based Database Modeling
Tool. In: Advanced Information Systems Engineering Workshop on Conceptualization of
Modeling Methods (CMM 2011), London, UK, pp. 119–133 (2011)

16. Parson, J., Saunders, C.: Cognitive heuristics in software engineering: applying and
extending anchoring and adjustment to artifact reuse. IEEE Trans. Software
Engineering 30(12), 873–888 (2004)

17. Coronel, C., Morris, S., Rob, P.: Database Systems: Design, Implementation and
Management: Course Technology (2009)

18. Cohen, J., Cohen, P.: Applied Multiple Regression/Correlation Analysis for the Behavior
Science. Lawrence Erlbaum Associates, NJ (1983)

Impact of MDE Approaches on the

Maintainability of Web Applications: An
Experimental Evaluation�

Yulkeidi Mart́ınez1, Cristina Cachero2, Maristella Matera3, Silvia Abrahao4,
and Sergio Luján2

1 Universidad Máximo Gómez Báez de Ciego de Ávila, Cuba
2 Universidad de Alicante, Spain

3 Politecnico di Milano, Italy
4 Universidad Politécnica de Valencia, Spain

Abstract. Model-driven Engineering (MDE) approaches are often rec-
ognized as a solution to palliate the complexity of software maintainabil-
ity tasks. However, there is no empirical evidence of their benefits and
limitations with respect to code-based maintainability practices. To fill
this gap, this paper illustrates the results of an empirical study, involving
44 subjects, in which we compared an MDE methodology, WebML, and a
code-based methodology, based on PHP, with respect to the performance
and satisfaction of junior software developers while executing analysabil-
ity, corrective and perfective maintainability tasks on Web applications.
Results show that the involved subjects performed better with WebML
than with PHP, although they showed a slight preference towards tack-
ling maintainability tasks directly on the source code. Our study also
aims at providing a replicable laboratory package that can be used to
assess the maintainability of different development methods.

1 Introduction

It is well known that maintenance is the most expensive phase in the software
life cycle, absorbing between 45% and 60% [1] of total management costs. This
situation has led many researchers to focus on maintainability from different
perspectives. On the one hand, unstructured maintenance postulates wading
straight into the code of the target application in order to make the necessary
changes, normally with the aid of specialized tools. Sometimes this process relies
on -automatic- maintainability measures that operate over the code of the target
application [2]. On the other hand, structured maintenance examines and mod-
ifies the design, and then -either manually or automatically- reworks the code
to match it. Many authors claim that structured maintenance is a more reliable
and efficient process than unstructured maintenance [3].

� The authors wish to thank the students who kindly agreed to participate in this
empirical study.

M. Jeusfeld, L. Delcambre, and T.W. Ling (Eds.): ER 2011, LNCS 6998, pp. 233–246, 2011.
c© Springer-Verlag Berlin Heidelberg 2011

234 Y. Mart́ınez et al.

The Model Driven Engineering (MDE) paradigm goes one step further in the
lane of structured maintenance, and advocates the use of models and model
transformations to speed up and simplify the maintenance process. The MDE
community claims several advantages over code-based maintenance processes,
such as short and long term productivity gains, improved project communica-
tion and defect and rework reduction [4,5]. Unfortunately, despite all these claims
and the fact that MDE practices are maturing by the day, practitioners still lack
a body of practical evidence that soundly backs the purported maintainability
gains due to the use of this paradigm [5,6]. As Glass says, “We (practitioners)
need your help. We need some better advice on how and when to use method-
ologies” [7]. Such evidence can be provided in the shape of empirical studies -
such as surveys, experiments, case studies or postmortem analysis studies - that
directly measure the effect of the chosen paradigm on the developer performance
and satisfaction [8]. Many authors have written about the importance of provid-
ing empirical evidence in Software Engineering (SE) [9,10]. Unfortunately, the
percentage of empirical studies on maintainability in MDE approaches is still
very low, contrasting with other disciplines and even other areas of SE [11]. This
paper tries to fill this gap, and presents the results of a quasi-experiment in
which two groups of junior developers performed a set of maintainability tasks
on two Web applications.

The paper is structured as follows: Section 2 presents the rationale behind the
selection of WebML and PHP as typical examples of the two current paradigms
(model-driven and code-based) in Web applications development, as well as the
definition of maintainability that we are using all along the paper, and how it
has been assessed in the past in MDE methodologies. This background sets the
context for the definition of hypotheses and variables in Section 3, together with
the experimental design (subjects, instrumentation, operation and data collec-
tion mechanisms). Section 4 presents the data analysis and an interpretation of
results that takes into account the identified threats to validity. Last, Section 5
concludes the paper and presents some further lines of research.

2 Background

The last years have witnessed a continuous evolution in the scenario of Web ap-
plication development. A number of technologies have been proposed, fostering
the adoption of server-side and client-side languages for the Web. Within this
plethora of proposals, some technologies have been largely adopted by practition-
ers. Server-side scripting is one such technology, through which the generation of
HTML markup is achieved by means of languages like JSP, PHP, and ASP.NET.
Among them, numbers point at PHP as the most popular server-side scripting
language today [12]. Given such diffusion, in our experiment we have chosen it
as representative of the programming languages for the Web.

In parallel to the technology innovation line, the Web Engineering community
has devoted several efforts to the definition of MDE approaches [13], strongly
characterized by the adoption of conceptual models. Such approaches offer high-
level abstractions, capturing the most salient characteristics of Web applications,

Impact of MDE Approaches on the Maintainability of Web Applications 235

which can be used for the definition of application models abstracting from imple-
mentation details. MDE also stresses the importance of model transformations,
leading to the automatic generation of the application code starting from the
high-level conceptual models. One of the arguments most commonly brought for-
ward in favor of MDE approaches is the “ease of maintenance”. The commonly
accepted (but scarcely proved) claim is that the adoption of model-driven design
techniques in the development of a Web application implicitly enhances main-
tainability: requests for changes can be turned into changes at the conceptual
level and then propagated systematically down to the implementation code.

Among the MDE Web development methodologies so far proposed, WebML
(Web Modelling Language) [14] outstands, due to its broad adoption both in
academia and industry. WebML is a visual language and development method
for specifying the content structure of a Web application and the organization
and presentation of contents in the form of hypertext. The main contribution of
WebML is the proposal of a mix of concepts, notations, and techniques for the
construction of data-intensive Web applications, which blends traditional ingre-
dients well known to developers, such as conceptual data design with the Entity-
Relationship model, with new concepts and methods for the design of hypertext,
which are central to Web development. Therefore, the value of WebML lies not
in the individual ingredients, but in the definition of a systematic framework,
also equipped with a CASE tool1 offering support for all the design activities
and for the automatic code generation.

2.1 The Maintainability Concept

Although many definitions for maintainability exist, perhaps the most commonly
used is the one provided by the ISO [15], that is, “the capability of the software
product to be modified”. Maintainability can be assessed through measures as-
sociated to the following sub-characteristics:

– Analysability: Capability of the software product to be diagnosed for defi-
ciencies or causes of failure in the software, or for the parts to be modified
to be identified.

– Changeability: Capability of the software product to enable the application
of a specified modification.

– Stability: Capability of the software product to avoid unexpected effects from
modifications of the software.

– Testability: Capability of the software product to enable modified software
to be validated.

– Compliance: Capability of the software product to meet the standards or
conventions relating to maintainability.

In MDE environments not all these sub-characteristics are equally important,
though. Provided that the chosen MDE approach is mature enough (such as

1 WebRatio - http://www.webratio.com

http://www.webratio.com

236 Y. Mart́ınez et al.

is the case of WebML), we can safely assume testability and compliance: in
an automated code generation environment these issues are taken good care of
during the code generation process. Therefore, in this paper, we have centered
on the first three sub-characteristics: analysability, changeability and stability.

In relation to the changes that can take place during the life cycle of a system,
some authors also distinguish among four different modification types [16]:

– Corrections: Corrective maintainability refers to the capability to detect er-
rors, diagnose the problems and fix them.

– Improvements : Perfective maintainability refers to the capability to extend
the software according to new requirements or enhancements.

– Adaptations : Adaptive maintainability refers to the capability to modify the
software in order to cope with the effects of environmental changes.

– Preventions : Preventive maintainability refers to the software capability to
support internal reengineering processes without adverse impact.

Some authors use a more coarse classification, and merely distinguish between
corrective tasks (corrections) and evolution tasks (which encompass improve-
ments, adaptations and preventions).

Based on these two characterizations of maintainability, our experiment in-
cludes three types of tasks: analysability tasks, which cover the analysability
subcharacteristic, and corrective and perfective tasks, which cover the two most
common changeability types. These tasks have been assessed both objectively
and subjectively. The perceived stability of changes has also been measured.

2.2 Maintainability Assessment

The empirical assessment of maintainability activities in MDE methodologies
has been gaining momentum during the last years. This claim is supported by
a systematic mapping [17] that gathers the empirical evidence on software pro-
ductivity and quality gains due to the use of MDE approaches during the period
from 2001 to 2010 [18]. In this study, out of the 300 publications related to the
impact of the MDE paradigm on the product quality and process productivity,
only 9 (that is, barely a 3%) focused on maintainability. One of the conclusions of
this systematic mapping is that the bulk of the work on model-driven maintain-
ability lies in the definition of prediction models of the actual maintainability of
the applications that are derived from the conceptual artifacts. However, there is
little evidence on the impact of model-driven development methodologies on the
performance and satisfaction of maintainability tasks. According to our system-
atic mapping, out of the 9 maintainability papers, only [19] tackled this issue,
and concluded that the time to evaluate the impact of a change to the soft-
ware was significantly shorter (around 37% shorter) in MDE than in code-based
development environments2.

2 Due to space constraints, for a more detailed discussion about the results of the
systematic mapping, readers are referred to [18].

Impact of MDE Approaches on the Maintainability of Web Applications 237

3 Description of the Experiment

Following the GQM template [20], our empirical study is aimed at analyzing
WebML and PHP for the purpose of evaluating model-driven against code-based
maintenance practices with respect to their performance and satisfaction from
the point of view of young developers and prospective adopters. The context
of the study is two advanced SE courses at the University of Alicante and the
Politecnico di Milano, where both a code-based Web development process, based
on the PHP language, and a model-driven Web development process, based on
the WebML methodology, are taught.

The design of the experiment was based on the framework for experimentation
in SE suggested by [8]. The study was conducted as a laboratory blocked subject-
object quasi-experiment. The broad research questions addressed are:

– RQ1: Is the maintainability performance (actual efficiency and actual effec-
tiveness) of the WebML methodology higher than the actual maintainability
performance of a traditional, code-based, methodology using PHP?

– RQ2: Is the maintainability satisfaction (perceived ease of use and perceived
usefulness) of the WebML methodology higher than the maintainability sat-
isfaction of a traditional, code-based methodology using PHP?

These research questions are further explained and decomposed into research
hypotheses next.

3.1 Variables and Operational Hypotheses

The independent variable of our study is the methodology used to perform the
maintainability tasks: model-driven (WebML methodology) or code-based (tasks
performed directly over PHP code). Hence, the experiment defines two treat-
ments: maintainability tasks over WebML models and maintainability tasks over
PHP code. The collected experimental data allow comparing the effects of both
treatments.

The theoretical model underlying the definition of dependent variables and
the formulation of hypotheses of our experiment is presented in Fig. 1 [21]. Ac-
cording to this model, the actual performance of the developers influences their
satisfaction, and this in turn contributes to their intention to use the method
and, eventually, to its actual usage. The actual performance is made up of two
subcomponents: the actual effectiveness, which in our experiment is measured
through the precision and recall while performing tasks with the methodology,
and the actual efficiency, which is measured through the time that it takes to
fulfill the maintainability tasks. On the other hand, the satisfaction is also made
up of two subcomponents: the perceived ease of use, which in our experiment
is measured through a global satisfaction scale, and the perceived usefulness,
which is measured through the perceived subjective complexity, certainty and
stability experienced by subjects while using the methodology to perform the
maintainability tasks. All these measures are further explained below.

238 Y. Mart́ınez et al.

Actual
Efficiency

Perceived
Ease of Use

Perceived
Usefulness

Actual
Effectiveness

Precision Recall

Time Certainty

Satisfaction

make make

make

Complexity

make

make

Actual
Usage

some +

some +

some +

some +

some +

Stability

make make

PERFORMANCE SATISFACTION

Intention
to Use

Fig. 1. Theoretical model components and their associated experimental variables
(adapted from [21])

It results that in our experiment there are two types of dependent variables
for comparing the treatments: performance-based (precision, recall and time)
and satisfaction-related (complexity, certainty and, in the case of corrective and
perfective tasks, perceived stability).

Maintainability tasks involve a set of actions on models or code. Some of
these actions may be correct while others may be wrong, not contributing to
the maintenance problem at hand. Still, the subject may miss some actions that
would be needed to completely solve the task. For this reason, inside the group
of performance-based variables, we have distinguished between maintainability
precision (MP) and maintainability recall (MR). Precision is defined as the per-
centage of actions correctly identified by the subjects with respect to the total
number of actions reported, while recall refers to the ratio between the percent-
age of correct actions performed by the subject and the total number of actions
needed to completely solve the task. The third performance variable is main-
tainability time (MT), which is the time (in seconds) that it takes a subject to
complete each maintainability task.

As perception variables, we have used the maintainability perceived complexity
(MPCx), the maintainability perceived certainty (MPCt), the maintainability
perceived stability (MPSt) and a maintainability (global) satisfaction scale (MS).
Also, we have defined a global perceived learnability (PL).

The hypotheses tested in the experiment, which have been defined based on
the existing empirical evidence found during the systematic mapping presented
in Section 2, and which cover the performance and satisfaction components of
the theoretical model presented in Fig. 1, are:
– HAA (Actual Analysability): Analyzing maintainability issues over WebML

models allows for a better actual performance than analyzing them over PHP
code.

– HACC (Actual Corrective Changeability): Correcting errors over WebML
models allows for a better actual performance than correcting them over
PHP code.

– HAPC (Actual Perfective Changeability): Improving a Web application
over WebML models allows for a better actual performance than improv-
ing it over PHP code.

Impact of MDE Approaches on the Maintainability of Web Applications 239

– HPA (Perceived Analysability): Subjects feel that finding errors over WebML
models is less complex; they also feel more certain about the results.

– HPCC (Perceived Corrective Changeability): Subjects feel that correcting
errors over WebML models is less complex and more stable than doing so
over PHP code; they also feel more certain about the results.

– HPPC (Perceived Perfective Changeability): Subjects feel that introducing
improvements over WebML models is less complex and more stable than
doing so over PHP code; they also feel more certain about the results.

– HS (Satisfaction): Generally speaking, subjects feel more satisfied when per-
forming maintainability tasks with WebML than with PHP.

– HP (Learnability): Generally speaking, subjects believe that PHP is easier
to learn than WebML.

3.2 Subjects

The experimental subjects of our study were two groups of Computer Science
students. The first group included twelve students enrolled in the “Internet Pro-
gramming” course in Alicante. The second group included thirty-two students
enrolled in the “Web Technologies” course in Milano, Italy. All the students aged
between 22 and 24 years, and they all had a similar background. The subjects
were chosen for convenience, i.e., they were students enrolled in the correspond-
ing courses during the second term of the year 2009-2010. The necessary prepa-
ration for the experiment and the experimental tasks themselves fitted well into
the scope of the courses, as one of the course objectives was to teach students
how to maintain applications in PHP and WebML respectively.

3.3 Design and Instrumentation

The geographical dissemination of students made necessary to design the exper-
iment as a between-subject experiment. Subjects in Milano used the WebML
approach to perform the maintainability tasks and subjects in Alicante used
PHP to perform the same maintainability tasks over the same applications. For
both parts of the experiment we used two different sample applications to test
the hypotheses: (1) a Concert application (adaptation of an example used in [22])
and (2) a Bookstore application (used in [23]). Subjects inside each group were
randomly assigned to either of these applications. To make the results obtained
in Alicante (with PHP) and in Milano (with WebML) comparable, the PHP and
the WebML experiment instruments were designed to be as similar as possible in
terms of both the layout of the information and the information content. Also,
the applications were chosen to be of similar complexity, which was controlled
by assuring that both applications had a similar number of lines of code in PHP
and, at the same time, a similar number of conceptual constructs in WebML.

The instrumentation of the experiment consisted of:

– WebML Booklet (Instrument 1): for each application, a domain model (ER
diagram) and corresponding WebML hypertext schema, describing the Web
interface.

240 Y. Mart́ınez et al.

– PHP Booklet (Instrument 2): for each application, a domain model (Class
diagram), an application storyboard (to understand the file structure of the
application) and the PHP source files of the application.

These instruments are included in the replication package available at http://
www.dlsi.ua.es/~ccachero/labPackages/er2011/labPackage.rar. Prior to
the experiment, all the instruments were tested in two pilot studies, one in
Alicante and one in Milano, and the obtained feedback was used to improve the
understandability of the experimental materials. We also want to stress that the
PHP applications exactly corresponded with the applications generated from
the hypertext schemas in WebML. Therefore, the results obtained with both
procedures can be compared, as both groups received the same applications,
albeit in different formats.

The experiment had the following structure:

1. Subject instruction sheet.
2. Pre-experiment questionnaire: it included demographic questions as well as

questions about subjects’ previous experience with Web application devel-
opment, Web programming and application modelling.

3. Experimental tasks: For each treatment, two modalities (A and B), each one
featuring a different application. Each modality included an analysability,
a corrective changeability and a perfective changeability task. Each task
was accompanied by a post-task questionnaire which assessed the perceived
usefulness of the methodology (see Fig.1) while performing the task (user-
satisfaction with the results achieved) through three measures (complexity,
certainty and stability), each measured on a 5-point Likert scale. The tasks
were exactly the same across treatments (that is, Modality A of the WebML
treatment was exactly the same as Modality A of the PHP treatment, except
for the treatment).

4. Post-experiment questionnaire: it included a semantic-differential scale that
required developers to judge the application on 11 pairs of adjectives de-
scribing satisfaction with the development methodology. This scale assessed
the perceived ease of use of the methodology (see Fig.1), and showed a high
degree of reliability (α = .861). Based on this scale, the ease of use index
was computed averaging scorings for the items. The post-experiment ques-
tionnaire also included an item gathering the subjects’ impression on the
learnability of the treatment they had applied to perform the tasks.

3.4 Operation and Data Collection Procedures

In both groups, all the subjects performed the experiment during the last session
of the course. In this way we controlled that they had received the same amount
of training on the treatment they were going to apply. We are conscious that 30
hours of course (many of which are devoted to theoretical issues, not directly
related with the treatment) is not enough to master a development process,
although it was equal for both groups. Also, most of the students assigned to

http://www.dlsi.ua.es/~ccachero/labPackages/er2011/labPackage.rar
http://www.dlsi.ua.es/~ccachero/labPackages/er2011/labPackage.rar

Impact of MDE Approaches on the Maintainability of Web Applications 241

the PHP treatment in Alicante had worked with PHP before the training course,
which was not the case with WebML students in Milano. Therefore, our group
of Milano students approaches a sample of novice software modelers, while the
group of Alicante students approaches a sample of intermediate programmers.
This is an internal threat to the validity to the study that has conditioned our
interpretation of the results, as we will see in Section 4.

The operation phase for each group of the experiment was defined as follows.
First, the students filled in the pretest questionnaire. They chose a nickname
that was used for the remaining parts of the experiment, so that they were sure
that the results were not going to be used to grade them in any way. Then,
half of the students received the Modality A, where the presented application
was the concert application, and half of them received the Modality B, where
the presented application was the bookstore application. In both modalities the
user had to perform a set of analysability, corrective and perfective changeability
tasks. Also, they had to subjectively rate the complexity of each task, as well
as their perceived certainty and stability of their solution. Last, they received a
post-test questionnaire, where they expressed their satisfaction with the treat-
ment and their general perception of the methodology learnability (based on the
training sessions).

To maintain the comparability of the data collected during the experiment, no
feedback was given to the subjects on their performance with the tasks. We also
controlled that no interaction whatsoever between participants occurred. The
experiment had a time limit (2 hours). Although the time needed to complete
the experiment was checked with the pilot tests, we are conscious that this time
limitation may introduce a ceiling effect that we have also taken into account
when interpreting the results.

The performance-based variables were collected using data collection forms.
These forms recorded the errors found (for analysability tasks) and the correc-
tive and perfective actions needed (for corrective and perfective changeability).
Also, forms included the time spent on each task (controlled by the experiment
instructor) and the subjective opinion of the students, both regarding each task
and regarding the global methodology.

4 Data Analysis and Interpretation of Results

Due to space constraints, the tables containing the descriptive statistics for the
set of measures taken for the different maintainability task types (analysability,
corrective changeability and perfective changeability) are available at http://
www.dlsi.ua.es/~ccachero/labPackages/er2011/descrStats.pdf. In the re-
mainder of the paper particular values from these tables are commented when
necessary.

4.1 RQ1: Actual Efficacy of Treatments

For the sake of the reliability of the statistical analysis results, and due to the
relatively low number of subjects on the PHP group, we chose to apply the

http://www.dlsi.ua.es/~ccachero/labPackages/er2011/descrStats.pdf
http://www.dlsi.ua.es/~ccachero/labPackages/er2011/descrStats.pdf

242 Y. Mart́ınez et al.

Mann-Whitney U non parametric test, which makes no assumptions about nor-
mality of distributions. All the analyses were performed with the PASW Statis-
tics application, v183. It is important to note that not all the tasks were filled
in by all the subjects, which is the reason why the different hypotheses testing
procedures may present different degrees of freedom.

We first tested the HAA hypothesis, which is related to the precision, recall
and time of subjects while detecting errors in the systems using each of the two
treatments. The result of the test show that both groups differ significantly in
precision (U(41) = 80.5, Z = −3.011, p = 0.003) and time (U(41) = 345.5, Z =
4.609, p < 0.001), and that in both cases the WebML group showed a better
performance than the PHP group. However, the analysability recall (that is,
the number of actual errors found out of the total number of errors) was not
significantly different (U(41) = 170, Z = −0.286, p = 0.775). Otherwise stated,
performing analysability tasks on WebML seems to speed up the identification
of errors, and to avoid misclassifying a feature in the application as an error.
However, it does not seem to significantly help to detect the errors in the appli-
cation.

We then tested the hypothesis HACC, which is related to the precision, recall
and time of subjects while correcting actual errors in the systems using each
of the two treatments. The result of the test show that, again, both groups
differ significantly in precision (U(40) = 104, Z = −2.163, p = 0.031) and time
(U(39) = 252, Z = 2.484, p = 0.013). The WebML group shows again a better
performance than the PHP group. However, the corrective changeability recall
(that is, the number of actual errors corrected out of the total number of errors)
was not significantly different (U(40) = 132, Z = −1.31p = 0.19). Otherwise
stated, performing corrective changeability tasks on WebML seems to speed up
the correction of errors, and to avoid proposing corrections that do not actually
correct anything. However, it does not seem to significantly help to correct the
actual errors in the application.

The last hypothesis we tested was HAPC, which related to the precision, recall
and time that took subjects to introduce perfective modifications in the applica-
tions. There were not significant differences between the mean WebML change-
ability precision and the mean PHP changeability precision (U(40) = 137.5, Z =
−1.22, p = 0.222). Similarly, the perfective recall (percentage of actions that ac-
tually contributed to successfully implement the change) was not significantly
higher in WebML than in PHP (U(40) = 165, Z = −0.283, p = 0.777). How-
ever, subjects were again significantly quicker performing the improvements in
WebML than in PHP (U(40) = 336, Z = 4.647, p < 0.001).

Since, as we have aforementioned, WebML subjects were novice developers,
while PHP subjects had a higher level of experience, we can rely more heavily on
the found significant differences in performance (all pointing at WebML having a
higher performance than PHP for maintainability tasks): had WebML subjects
had more experience with the methodology, the only natural evolution of the
measures would have been towards making differences larger in favor of WebML.

3 PASW - http://www.spss.com/software/statistics/

http://www.spss.com/software/statistics/

Impact of MDE Approaches on the Maintainability of Web Applications 243

4.2 RQ2: Perceived Efficacy and Satisfaction of Treatments

For all the statistical analysis, we again performed a non-parametric Mann-
Whitney U test.

Regarding HPA, the result of the test shows that both groups differ signifi-
cantly in subjective complexity assessment (U(37) = 84, Z = −2.195, p = 0.028)
but not in subjective certainty assessment (U(37) = 92, Z = −1.871, p = 0, 061).
Otherwise stated, the subjects regard working on models as simpler than working
on code, but they feel equally (un)secure about the errors they identify.

Regarding HPCC, users felt that changes were slightly less complex when
using PHP (U(36) = 140, Z = −0.179, p = 0.858), although this difference
was not significant. Also, users felt slightly more certain about their changes
in WebML (U(36) = 125, Z = −0.355, p = 0.723). Last but not least, since in
this case users were actually changing the application, we could ask about their
feeling of stability. Users felt the stability of the system to be significantly better
preserved when using PHP (U(36) = 224, Z = 3.152, p = 0.002). Otherwise
stated, users seem to feel more sure about what needs to be done when using
WebML, but they seem to feel more ’in control’ of the changes when they directly
work on code.

Regarding HPPC, WebML was considered slightly simpler to introduce per-
fective changes than PHP, although the statistical test showed no significance
(U(37) = 105, Z = −1.55, p = 0.121). On the contrary, subjects using PHP
felt slightly more confident about the correctness of the changes introduced, al-
though, again, the difference was not significant with respect to WebML subjects
(U(37) = 187, 5Z = 1, 31p = 0, 19). Regarding stability, both groups showed very
similar levels of confidence on the stability of the solution (U(36) = 136.5, Z =
0.053, p = 0.958).

Regarding HS, as we have aforementioned, the post-tests questionnaire in-
cluded a scale of satisfaction with the technique. The satisfaction indexes with
both treatments were compared by a t-test. Results showed a non-significant
effect of the methodology (t(38) = −0.208, p = 0.836). On average, evaluations
were moderately positive for both methodologies, with a mean difference of .06
slightly favoring the PHP group.

Last but not least, we tested HP; the global satisfaction index (measured
through the satisfaction scale) is highly correlated to the measure (a direct item)
assessing learnability of the methodology (r = 0.663, p < 0.001). This suggests
that the easier the methodology was perceived to be, the better it was evaluated.

4.3 Threats to Validity

The analysis of the threats to validity evaluates under which conditions our
experiment is applicable and offers benefits, and under which circumstances it
might fail [24].

Threats to Conclusion Validity refer to the relationship between the treat-
ment and the outcome. In our experiment we have used the number of lines of
code to control the application size. This measure is generally preferred over

244 Y. Mart́ınez et al.

functional points due to its higher reliability [8]. Additionally, statistical tests
have been chosen conservatively, without making any kind of assumption on
variable distributions. However, given the limited amount of time that students
had to fulfil the experiment questionnaire, it is possible that the subjects have
felt a pressure that may have affected the data. This notwithstanding, since both
treatment groups suffered from the same time restrictions, we can assume that
such effect, if present, has affected all the levels of the treatment equally.

Threats to Internal Validity are concerned with the possibility of hid-
den factors that may compromise the conclusion that it is indeed the treatment
what causes the differences in outcome. In our case, the students belonged to
different countries, which may bias the results. We limited the effect of the lack
of randomization of subjects assigned to treatments by assuring that the mean
age for the WebML group of students (M=22,47) was not significantly different
from the mean age for the PHP group of students (M=23,17). Also, we assured
that they had been enrolled in a similar number of courses on related mod-
elling/programming topics, and had developed a similar number of WebApps
(M(WebML) = 3.93, M(PHP) = 4.25, t(27) = −0.183, p = 0.18). Only the
experience with code could not be controlled (M(WebML) = 7.27, M(PHP) =
69.27). This difference can be explained by the structure of the degrees in univer-
sities, which still today mainly focus on programming more than modelling skills.
We tried to diminish the effect of different facilitators running the experiment
in the two locations by compiling an instruction sheet that avoided unintended
differences in the conditions of the experiment. Another threat to the internal
validity of this study is related with the instrumentation. Since precision and
recall measures had to be manually computed by different evaluators (each one
an expert in WebML and PHP respectively), there is a risk of the criteria being
applied differently to each group. We have tried to avoid this risk by defining a
clear taxonomy of errors that were agreed upon before the evaluation.

Threats to Construct Validity refer to the relationship between theory
and observation. In this sense, both the treatments and the measures used to
assess the maintainability have been previously widely used in literature. This
notwithstanding, there are still some risks we need to be aware of. First, we
have used similar size applications, all belonging to the same domain (mono-
method bias). Therefore we cannot generalize the results to applications of dif-
ferent sizes or different domains. Second, we have observed a positive outcome
between maintainability and WebML, but we cannot assure that using WebML
does not hamper other quality characteristics (restricted generalizability across
constructs).

Last but not least, Threads to External Validity are concerned with gen-
eralization of the results. In our case, the fact that we have used undergrad-
uate students, that is, subjects without experience in business, as well as the
particular methodologies and languages we have used, constitute a limited en-
vironment. The latter is an unavoidable risk for this kind of experiments, in
which subjects need to use a predefined approach to perform the tasks. The eas-
iest way to minimize this threat is through replication of the experiment with

Impact of MDE Approaches on the Maintainability of Web Applications 245

different languages and MDE approaches. For this purpose, the replication pack-
age of this experiment can be found at http://www.dlsi.ua.es/~ccachero/
labPackages/er2011.rar.

5 Conclusions

Generally speaking, the use of MDE engineering approaches such as WebML
improves the precision and time it takes to perform analysability, corrective and
perfective maintainability tasks. Also, junior developers, with a stronger expe-
rience in coding rather than on modelling, perceive maintainability tasks over
models as simpler. This notwithstanding, subjects still rely more on their main-
tainability outcomes (certainty and perceived stability of the solution achieved)
when they perform the maintainability tasks directly over PHP code. One reason
for this result can be still the major confidence about code hold by the users in-
volved in our experiment. This certainty and perceived stability however slightly
tips the satisfaction balance in favor of code-based approaches.

Our results augment the repository of empirical data comparing maintain-
ability performance and satisfaction of MDE methodologies with respect to tra-
ditional code-based approaches. The laboratory package that accompanies our
research allows for replications with the same or different methodologies, lan-
guages, applications and subject profiles. Such replication is at the base of our
future research.

References

1. Ruiz, F., Polo, M.: Mantenimiento del Software. Grupo Alarcos, Departamento de
Informática de la Universidad de Castilla-La Mancha (2007)

2. Coleman, D., Ash, D., Lowther, B., Oman, P.: Using metrics to evaluate software
system maintainability. Computer 27(8), 44–49 (2002)

3. Ameller, D., Gutiérrez, F., Cabot, J.: Dealing with non-functional requirements in
model-driven development (2010)

4. López, E.D., González, M., López, M., Iduñate, E.L.: Proceso de Desarrollo de
Software Mediante Herramientas MDA. In: CISCI: Conferencia Iberoamericana en
Sistemas, Cibernética e Informática (2007)

5. Heijstek, W., Chaudron, M.R.V.: Empirical investigations of model size, complexity
and effort in a large scale, distributed model driven development process. In: 35th
Euromicro Conference on Software Engineering and Advanced Applications, pp.
113–120. IEEE, Los Alamitos (2009)

6. Mohagheghi, P.: An Approach for Empirical Evaluation of Model-Driven Engineer-
ing in Multiple Dimensions. In: From Code Centric to Model Centric: Evaluating
the Effectiveness of MDD (C2M:EEMDD), pp. 6–17. CEA LIST Publication (2010)

7. Glass, R.L.: Matching methodology to problem domain. Communications of the
ACM 47(5), 19–21 (2004)

8. Wohlin, C., Runeson, P., Host, M.: Experimentation in software engineering: an
introduction. Springer, Netherlands (2000)

9. Dyba, T., Kitchenham, B.A., Jorgensen, M.: Evidence-based software engineering
for practitioners. IEEE Software 22(1), 58–65 (2005)

http://www.dlsi.ua.es/~ccachero/labPackages/er2011.rar
http://www.dlsi.ua.es/~ccachero/labPackages/er2011.rar

246 Y. Mart́ınez et al.

10. Kitchenham, B., Budgen, D., Brereton, P., Turner, M., Charters, S., Linkman, S.:
Large-scale software engineering questions-expert opinion or empirical evidence?
IET Software 1(5), 161–171 (2007)

11. Zelkowitz, M.V.: An update to experimental models for validating computer tech-
nology. Journal of Systems and Software 82(3), 373–376 (2009)

12. Wikipedia, http://en.wikipedia.org/wiki/PHP
13. Vallecillo, A., Koch, N., Cachero, C., Comai, S., Fraternali, P., Garrigós, I., Gómez,

J., Kappel, G., Knapp, A., Matera, M., et al.: MDWEnet: A practical approach to
achieving interoperability of model-driven Web engineering methods. In: Workshop
Proc. of 7th Int. Conf. on Web Engineering (ICWE 2007). Citeseer, Italy (2007)

14. Ceri, S., Fraternali, P., Bongio, A., Brambilla, M., Comai, S., Matera, M.: Mor-
gan Kaufmann series in data management systems: Designing data-intensive Web
applications. Morgan Kaufmann Pub., San Francisco (2003)

15. ISO/IEC FCD 25010: Systems and software engineering - Software product. Re-
quirements and Evaluation(SQuaRE) - Quality models for software product quality
and system quality in use (2009)

16. Chapin, N., Hale, J.E., Khan, K.M., Ramil, J.F., Tan, W.G.: Types of software evo-
lution and software maintenance. Journal of Software Maintenance and Evolution:
Research and Practice 13(1), 3–30 (2001)

17. Kitchenham, B., Mendes, E., Travassos, G.H.: Cross versus Within-Company Cost
Estimation Studies: A Systematic Review. IEEE Transactions on Software Engi-
neering 33(5), 316–329 (2007)

18. Martinez, Y., Cachero, C., Melia, S.: Evidencia emṕırica sobre mejoras en produc-
tividad y calidad mediante el uso de aproximaciones MDD: un mapeo sistemático
de la literatura. REICIS (submitted) (2011)

19. Melleg̊ard, N., Staron, M.: Improving Efficiency of Change Impact Assessment
Using Graphical Requirement Specifications: An Experiment. In: Product-Focused
Software Process Improvement, pp. 336–350 (2010)

20. Perry, D.E., Porter, A.A., Votta, L.G.: Empirical studies of software engineering:
a roadmap. In: The Future of Software Engineering, pp. 345–355. ACM, New York
(2000)

21. Moody, D.L.: Dealing with Complexity: A Practical Method for Representing Large
Entity Relationship Models (PhD Thesis). Melbourne, Australia: Department of
Information Systems, University of Melbourne (2001)

22. Abrahão, S., Mendes, E., Gomez, J., Insfran, E.: A model-driven measurement pro-
cedure for sizing web applications: Design, automation and validation. In: Engels,
G., Opdyke, B., Schmidt, D.C., Weil, F. (eds.) MODELS 2007. LNCS, vol. 4735,
pp. 467–481. Springer, Heidelberg (2007)

23. Ceri, S., Fraternali, P., Bongio, A.: Web Modeling Language (WebML): a modeling
language for designing Web sites. Computer Networks 33(1-6), 137–157 (2000)

24. Cook, T.D., Campbell, D.T., Day, A.: Quasi-experimentation: Design & analysis
issues for field settings. Houghton Mifflin Boston (1979)

http://en.wikipedia.org/wiki/PHP

From Pattern-Based User Interfaces to

Conceptual Schemas and Back

Ravi Ramdoyal and Anthony Cleve

Laboratory of Database Application Engineering - PReCISE Research Centre
Faculty of Computer Science, University of Namur
Rue Grandgagnage 21 - B-5000 Namur, Belgium

{rra,acl}@info.fundp.ac.be

http://www.fundp.ac.be/precise

Abstract. Since the necessity to associate end-users of the future sys-
tem with its specification and development steps has proven indisputable,
it is crucial to define accessible means to express and communicate con-
ceptual requirements between end-users and analysts in the context of
Information Systems engineering. For this purpose, we present a simple
form-based interface model offering an understandable and expressive
graphical counterpart to a rich subset of the Generic Entity-Relationship
model (GER). We describe how the elements of the proposed interface
model can be translated into GER schema constructs, bearing the seman-
tic characterisation of inter-concept relationships. The exposed principles
support the automated translation of user-drawn form-based interfaces
into a conceptual schema. The same principles can also serve as a basis
to support the inverse translation process that aims at deriving a set of
form-based interfaces from a conceptual schema.

Keywords: Information Systems Engineering, Conceptual Modelling,
Forms-Based Human-Computer Interactions, Participatory Design.

1 Introduction

The necessity to associate end-users of the future system with its specification
and development steps has long been advocated in the realm of Information
Systems Engineering [12]. In the specific context of Database Engineering, in-
volving end-users is particularly critical during conceptual analysis, as this pro-
cess defines the semantic core of the future application. The Entity-Relationship
(ER) model has long been the most popular medium to express conceptual re-
quirements [13]. Its simplicity, its graphical representation, the availability of
numerous CASE tools that include an ER schema editor (should) make it the
ideal communication medium between designers and users. However, despite its
merits, the ER formalism often fails to meet its objectives as an effective end-
users communication medium [8]. On the other hand, most users are quite able
to deal with complex data structures, provided they are organised according to
familiar layouts. In particular, electronic forms have proved to be more natural

M. Jeusfeld, L. Delcambre, and T.W. Ling (Eds.): ER 2011, LNCS 6998, pp. 247–260, 2011.
© Springer-Verlag Berlin Heidelberg 2011

248 R. Ramdoyal and A. Cleve

and intuitive than usual conceptual formalisms to express data requirements [2],
while making the semantics of the underlying data understandable [15].

The RAINBOW approach is precisely a collaborative user-oriented approach
to design database conceptual schemas, using a simple form-based interfaces
model to transparently convey conceptual requirements in the context of In-
formation Systems engineering [8]. It exploits the expressiveness of user-drawn
form-based interfaces and prototypes, and specialises and integrates standard
techniques to help acquire and validate data specifications from existing arte-
facts in order to use such interfaces as a two-way channel to express, communicate
and validate static data requirements between end-users and analysts.

The first two steps of the approach focus on the elaboration of a set of form-
based interfaces and on their automatic translation into a first set of “raw” con-
ceptual schemas. More precisely, the end-users are first invited to draw and
specify a set of form-based interfaces to perform usual tasks of their application
domain, using a simple form model. Then, thanks to intuitive mapping rules,
the forms are “translated” into the raw conceptual schemas that will form the
basis of the conceptualisation process (see Figure 1). These raw schemas are
semantically and structurally poor, as they only use a minimal subset of the
Entity-Relationship model. The following steps of the approach help to acquire
additional specifications to analyse, enrich and integrate the schemas.

Fig. 1. Overview of the RAINBOW approach

Experimentation highlighted the effectiveness of the RAINBOW approach [7],
but user feedback suggested that the overall procedure could be tedious at times.
In this paper, we therefore investigate the feasibility of improving this process
by integrating the subsequent steps into the drawing process. This improvement
implies extending the informational content of the current form model and defin-
ing combinations of widgets to support this extension. To solve these issues, we
identify critical semantic patterns of conceptual schemas and propose to steer the
drawing process using corresponding interface widgets patterns and a dedicated

From Pattern-Based User Interfaces to Conceptual Schemas and Back 249

set of heuristics. The remainder of the paper is structured as follows. Section 2
delineates the research context and describes the related works. The problem
we are dealing with is formalised in Section 3. Section 4 discusses the mapping
from form-based interfaces to the GER model using our new form model, then
Section 5 addresses the converse process. Section 6 discusses this proposition and
Section 7 concludes this paper.

2 Research Context and State of the Art: Electronic
Forms to Convey Conceptual Requirements

Using form-based interfaces as a means to express and capture static database
requirements has a long tradition. In 1984, Batini et al. studied paper forms as a
means to collect and communicate data in the office environment [1]. Later on,
Choobineh et al. explored a form-based approach for database analysis and de-
sign, and developed an analyst-oriented Form Definition System and an Expert
Database Design System that incrementally produced an ER diagram based on
the analysis of a set of forms [2]. Kösters et al. introduced a requirements anal-
ysis method combining user interface and domain analysis [5], while Rollinson
and Roberts studied the problem of non-expert customisation of database user
interfaces and developed a set of graph-oriented transformations to extract an
Extended Entity-Relationship schema describing an interface’s informational
content [11]. More recently, Terwilliger et al. defined the formal GUAVA (GUi
As View) framework to use the user interface directly as a conceptual model,
by exploiting the hierarchical nature of forms-based user interfaces to provide
a simple representation of their informational content, including the relation-
ships between forms [15]. Rode et al. investigated the feasibility of end-user web
engineering for webmasters without programming experience and developed a

Fig. 2. Available graphical widgets with their mapping rules to data structures

250 R. Ramdoyal and A. Cleve

Fig. 3. User-drawn form-based interfaces for the management of a small company that
offers services and sales products

prototypical tool for the end-user development of web application involving non
professional programmers [10]. Yang et al. also inquired about the WYSIWYG
user-driven development of Data Driven Web Applications, while transparently
generating their underlying application model on the fly [16].

Two main limitations must be underlined in these approaches. On the one
hand, the underlying form models are problematic. Since they are intended to
express rich and complex interfaces, layouts and behaviours, their structure be-
comes complex and difficult to read, and furthermore, end-users tend to be over-
whelmed by their superabundance of available widgets and compositions. Para-
doxically, on the other hand, the schemas obtained using these approaches are
poor, as they notably ignore, among others, hierarchies, existence constraints and
functional dependencies. The RAINBOW approach successfully answered these
issues by defining a simple form-based model as starting input and a structured
procedure to gather and validate additional specifications using the user-drawn
form-based interfaces as a communication means.

In order to focus on simple interface widgets that can allow end-users to
simply express concepts, while casting away the technical aspects of layout, the

From Pattern-Based User Interfaces to Conceptual Schemas and Back 251

RAINBOW approach offers a simplified form model based on the most primitive
and usual form widgets. This model avoid the mentioned drawbacks of existing
(too) rich User Interface Description Languages (UIDL) enabling to model form-
based interfaces. In particular, in order to make the development of the interfaces
more accessible and focus the drawing on the content rather than the appearance,
the available graphical elements are restricted to the most commonly used ones
(forms, fieldsets and tables, inputs, selections and buttons) and limited the layout
of forms as a vertical sequence of elements, which also simplifies the transition
from the form model to the ER model (see Figure 2).

Intuitively, the “raw” transposition associates each form with an entity type,
each fieldset or table with a compound attribute, each input or selection with
a simple attribute, and buttons with procedural units. These data structures
are a subset of the Generic Entity-Relationship (GER) model, which is a wide-
spectrum model used to describe database schemas in various abstraction levels
and paradigms [4].

Let us consider the following example to illustrate the process. The context is
the development of a tailored IT solution to manage a small company that of-
fers Services and sales Products, including Special goods, through different
Shops. They wish to store information on their Providers and Customers, in-
cluding the Orders that the latter submitted. Figure 3 illustrates forms that the
end-users might draw for this purpose. For instance, for each customer, personal
information including his main and alternative addresses are stored, as well as
the list of orders that he issued. Each of these orders mention information on
the context of its creation, and list the associated list of products, and so on.
For the sake of further discussion, we consider that the forms do not initially
mention any unique, existence or prerequisite constraint.

The direct transposition of these forms are the “raw” entity types of Figure 4.
Given the mapping rules of Figure 2, the structure of these individual schemas

Fig. 4. The translation of the forms depicted in Figure 3 into“raw” conceptual schemas

252 R. Ramdoyal and A. Cleve

Fig. 5. The underlying data model of the forms depicted in Figure 3

is poor, as it consists in entity types, compound and simple attributes. To ob-
tain the rich integrated schema of Figure 5, it is necessary to proceed with an
interactive and therefore non deterministic analysis of the forms and their un-
derlying schema. Though the final schema originates from the original forms,
the latter are not representative of this schema any more. Besides, despite its
modularity, the RAINBOW process remains sequential: whereas the labels are
analysed on-the-fly to suggest alternative labels during the drawing step, the
structural similarities and possible constraints are analysed later on. Could these
subsequent steps be integrated in the drawing step so that the set forms can di-
rectly be mapped to a schema using rich structures of the ER model?

3 Formalising the Problem

3.1 Overview

Let MHCI be the current form-based interface model used in the RAINBOW
approach, and MER be the Entity Relationship model, as illustrated in Figure
6. The current RAINBOW process relies on the following sequence of mapping
and transformations:

From Pattern-Based User Interfaces to Conceptual Schemas and Back 253

Fig. 6. Instead of using (1) a surjective mapping followed by (2) a non-deterministic
interpretation to express the current form model MHCI using the ER model MER,
we propose to define MHCI∗ ⊇ MHCI so that we can directly define (3) a surjective
mapping to MER

– First a (1) surjective mapping: MHCI → MER− (with MER− ⊂ MER)
associates a set of forms to a set of “poor” conceptual schemas;

– Then a (2) non-deterministic interpretation: MER− → MER enables to
integrate these schemas into a “rich” integrated conceptual schema.

To simplify the process and make it systematic, we want to define:

– A new form model MHCI∗ ⊇ MHCI

– A new (3) surjective mapping: MHCI∗ → MER so that we can directly
associate a set of forms to a single “rich” conceptual schema

– A set of heuristics H to automatically process semantic and structural re-
dundancies in MHCI∗ in order to manage the integration on the fly.

3.2 Identifying Missing Constructs

In this paper, we focus on managing critical structures of the GER model that
are present in Fig. 5 but missing in Fig. 4, namely binary relationship types and
IS-A hierarchies. Note that we leave aside the issue of eliciting constraints and
dependencies, for which principles such as those presented in [9] are intended to
be integrated later on. The IS-A hierarchies actually emerge from the analysis
of redundancies that occur in raw schemas such as the ones of Fig. 4. Indeed,
entity types sharing a set of components can be handled according to the nature
of their relationship, as illustrated in Fig. 7: (a) difference, (b) equality, (c) union,
(d) specialisation or (e) reference, which means that a binary relationship type
exists between them. Binary relationship types can be classified into four classes:
1:N, N:1, N:N and 1:1, as illustrated in Fig. 8.

Beyond their mere structure, a semantic layer can be considered to charac-
terise the exact nature of the relationship types. As illustrated in Fig. 9, we
distinguish four typical patterns, based on the interpretation of the link that
holds between the entity types E1 (on the left) and E2 (on the right) involved
in the relationship type:

– complementary structures : E2 provides additional information about E1. For
example, a Criminal Record serves as an informational complement spe-
cific to a Person, while a Main Work Address can serve as an informational
complement to different Persons.

254 R. Ramdoyal and A. Cleve

Fig. 7. Most common cases of structural redundancy

Fig. 8. Binary relationship types of classes 1:N, N:1, N:N and 1:1

– compositions : E2 can be seen as a component of E1. A typical case is the
relationship between Book and Chapter. Another classic example is the cyclic
composition of Product.

– aggregations : any instance of E1 gathers a set of instances of E2. Such a
semantic pattern holds, among others, between Team and Person or between
School and Student.

– materialisations : an instance of E2 constitutes a concrete instance of an
abstract entity type E1. A famous example is a book Copy, that actually
materialises a Book.

Note that the very same relationship type may involve two semantic patterns,
depending on the entity type considered as E1. For instance, a Book complements
a book Copy, while a book Copy materialises a Book.

4 From Form-Based Interfaces to GER Schemas

4.1 A New Pattern-Based Form Model

As discussed above, the current form-based user interface model MHCI falls
short in supporting the representation (or the detection) of IS-A relationships
and relationship type patterns. A richer user interface model MHCI∗ is there-
fore required. This MHCI∗ model obviously includes the interface constructs of
MHCI :

– Form containers, for top level entity types;
– Inputs, for monovalued simple attributes;

From Pattern-Based User Interfaces to Conceptual Schemas and Back 255

Fig. 9. Examples of complementarity, composition, aggregation and materialisation of
concepts

– Selections, for mono/multivalued simple attributes;
– Buttons, for procedural units.

In addition to those basic constructs, MHCI∗ also recombines fieldsets and tables
to offer the following containers:

– Composed fields, to represent monovalued compound attributes;
– Category containers, to represent IS-A hierarchies;
– Pattern containers to handle multivalued compound attributes and relation-

ship types between entity types:
• Complementary containers, to manage occurrences of complementary

concepts relative to the current container;
• Component containers, to visualise compositions;
• Contributor containers, to support aggregations;
• Specimen containers, to depict materialisations.

Pattern containers typically hold a (set of) field(s) used as referential keys to
a counterpart concept that must be expressed by a form, as well as a set of
elements representing the attributes of the underlying relationship type, and
a navigational button to view and set associated instances of the counterpart
concept.

4.2 A Heuristic-Driven Drawing Process

In addition, a set of heuristics H is used to automatically detect and process
semantic and structural similarities between distinct user interface fragments.
In the RAINBOW approach [8], built on top of MHCI , similarity detection was
carried out offline, in support to view integration. In contrast, the use of MHCI∗

as user interface model allows detection of similarities on-the-fly, i.e., while the
forms are being drawn by the user. Whenever a new field or container is added
to a form, a similarity check is performed and, if relevant, a specific interaction
takes place between the drawing tool and the user:

256 R. Ramdoyal and A. Cleve

– if the new element is semantically equivalent to a previously used element,
the user is invited to arbitrate and uniform the terminology;

– if a container is identified as structurally equivalent to another previously
drawn container, the user is invited to characterise the equivalence and to
adapt the structure of the current forms (for instance, regrouping entity
types involved in the same IS-A hierarchy within a single form, replacing
referential elements with the adequate pattern container, or transforming a
composed field into a pattern container if the other container is a form);

– whenever a new container B is inserted into a container A in order to manage
a given pattern p between A and B:
1. the user is asked to define the converse semantic pattern p′ existing

between concepts B and A;
2. if there no form currently associated with B, such a form is created and

the user is asked to provide the elements to be used as referential keys;
3. the pattern p′ is inserted in B, and the user is asked if it should be set

visible or hidden.

Those heuristics notably ensures that the underlying relationship types between
two entity types is always available in the forms associated to these entity types,
and that it can be hidden or unhidden for navigational purposes.

Besides, the combination of the new form model and these heuristics allows
to obtain forms that are representative of their underlying conceptual schema,
as illustrated in Fig. 10. It also permits to accelerate both the drawing of the
interfaces and their automated translation into GER schemas. For instance, if
the drawing of the forms of Fig. 10 was done from scratch, a realistic scenario
would include phases such as the following:

– the user starts by drawing the Customer form, then adds fields Customer
Number, First Name, Last Name, Title. Next, the user inserts a composed
field Main Address, while specifying that the same value of Main Address
can be used by different Customers. When the next composed field Al-
ternative Address is inserted, the user is asked to arbitrate these similar
concepts, and she decides to merge their underlying data structure. This
implies that both composed fields will now contain the same elements, some
of which may be hidden for convenience.

– when the user draws the Order and adds fields First Name and Last Name
(which were defined in the form Customer), she is asked to arbitrate the rela-
tionship between Order and Customer. The user consequently specifies that
an Order can be described thanks to a Customer (complementarity), and
that conversely a Customer gathers Orders (aggregation). She also specifies
that the latter pattern should be visible in the form Customer, and that the
referential key is Order Number.

– the user then adds a complementary container Shop to Order. As there is no
form Shop yet, it is automatically created, and the user provides the Shop
Name as referential key. She also specifies that conversely, a Shop aggre-
gates Orders, but that this pattern should remain hidden. It can however be
unhidden later on if required.

From Pattern-Based User Interfaces to Conceptual Schemas and Back 257

Fig. 10. New representation of the forms of Fig. 3 in order to convey the specifications
of Fig. 5. One may for instance notice, among others, the IS-A hierarchy contained in
the form Solution and the aggregation/complementarity pattern which is visible for
Customer/Order

– after drawing the form Service, the user starts drawing the form Product
and adds fields Code and Description (which are already defined in the
form Service). The user is therefore asked to arbitrate these similar con-
cepts, and chooses to define a union. Consequently, the forms are merged
into a single form: the user provides the unifying term Solution for the new
form, which now includes the fields Code and Description and a category
container requiring to choose between Service and Product. The user then
proceeds by adding the subcategory Special Good to Product, before car-
rying on with the addition of the fields Brand and Price, followed by the
complementary containers Primary Provider and Secondary Provider.

5 From GER Schemas to Form-Based Interfaces

These principles also serve as a basis to support the reverse translation process
that consists in deriving a set of form-based interfaces from a conceptual schema.
On the one hand, transformational and generative techniques allow to automate
the production of logical and physical counterparts of the conceptual schema [4],

258 R. Ramdoyal and A. Cleve

as well as applicative artefacts [6] (such as interface forms, database code and
program fragments). On the other hand, constraining the regeneration of forms
from a conceptual schema obtained using the proposed approach is straightfor-
ward, as we already possess all the additional semantic specifications described
in Section 3.2. However, the converse process of generating forms from a concep-
tual schema developed independently from the proposed approach is less trivial.
Indeed, in order to ensure a bijective translation between the schema and its
form representation, it is necessary to analyse and semantically annotate the
schema, notably to:

– ensure that the inter-concept relationships are restricted to (or transformed
into) binary relationship types and IS-A hierarchies;

– specify which entity types should explicitly appear as forms (e.g. Customer)
or not (e.g. Address);

– identify semantic patterns and specify the nature of the roles played by
the involved entity types (e.g. a Product is complemented by a Primary
Provider, while a Primary Provider aggregates Products);

– specify which fields and patterns that should be hidden in the forms (e.g.
the “primary” Provider should be visible in a Product, but the “primary”
Products should be hidden in the Provider).

By annotating the schema accordingly, we can generate forms that respect the
form model described in Section 4, hence offering an alternative and bijective
representation of the original schema to ease further collaboration with end-users.

6 Discussion

The approach developed in this paper generalises the principles of the RAIN-
BOW approach, while offering an integrated and iterative process instead of
a sequential procedure. In addition to managing the direct coevolution of the
interfaces and their associated conceptual schema, the proposed approach also
reduces the articulatory distance of an already proven and tool-supported pro-
cess. Indeed, the RAINBOW approach was experimented and evaluated using
the RAINBOW Toolkit, which is developed on top of the DB-Main CASE Tool
[3], as well as a validation protocol based on Participant-Observer and Brain-
storming/Focus group principles, as defined in [14]. Experiments analysis notably
highlighted that the RAINBOW approach and tool support did help end-users
and analysts to communicate static data requirements to each other, inclusive of
inter-concept relationships, constraints and dependencies. Since the validation
aspect of the proposed approach cannot be addressed more extensively in this
paper, the interested reader may refer to [7] for further details on the validation
process and methodology.

7 Conclusion

In this paper, we presented a simple form-based interface model offering an
understandable and expressive graphical counterpart to conceptual schemas.

From Pattern-Based User Interfaces to Conceptual Schemas and Back 259

Considering this interface model as an alternative pattern-based representation
model for entity-relationship schemas, we show how the interface model con-
structs translate as conceptual schema constructs. The exposed principles allow
the automated, direct translation of a conceptual schema from user-drawn form-
based interfaces. This translation process involves, in particular, the on-the-fly
semantic characterisation of underlying relationships between schema concepts
using a specific set of heuristics. As a positive side effect, the same principles
can also serve as a basis to support the inverse translation process that aims at
deriving a set of form-based interfaces from a conceptual schema.

Building on these findings, our short-term research agenda will focus on four
main tasks. First of all, we intend to integrate the principles presented in [9]
in order to directly include the specification of constraints and dependencies in
the drawing process. Secondly, since the exposed principles are currently imple-
mented as a proof-of-concept on top of the DB-Main CASE Tool to support
the transition from forms to GER schemas, we plan to implement the converse
process to come full circle with the tool support. Thirdly, a special effort will
be devoted to study and enhance the usability and user-friendliness of the tool
support in order to improve the user experience of this participatory approach
to conceptual analysis. Finally, we expect to conduct comparative experiments
in real-life settings to study the qualitative and quantitative benefits of using
this approach, both from the analyst and the end-user perspective, notably in
comparison to the RAINBOW approach.

References

1. Batini, C., Demo, G.B., Leva, A.D.: A methodology for conceptual design of office
data bases. Information Systems 9(3/4), 251–263 (1984)

2. Choobineh, J., Mannino, M.V., Tseng, V.P.: A form-based approach for database
analysis and design. Communications of the ACM 35(2), 108–120 (1992)

3. DB-Main: The DB-Main CASE Tool (2010), http://www.db-main.be
4. Hainaut, J.-L.: The transformational approach to database engineering. In: Läm-

mel, R., Saraiva, J., Visser, J. (eds.) GTTSE 2005. LNCS, vol. 4143, pp. 95–143.
Springer, Heidelberg (2006)

5. Kösters, G., Six, H.W., Voss, J.: Combined analysis of user interface and domain
requirements. In: ICRE 1996: Proceedings of the 2nd International Conference on
Requirements Engineering (ICRE 1996), p. 199. IEEE Computer Society, Wash-
ington, DC, USA (1996)

6. Pizano, A., Shirota, Y., Iizawa, A.: Automatic generation of graphical user in-
terfaces for interactive database applications. In: CIKM 1993: Proceedings of the
Second International Conference on Information and Knowledge Management, pp.
344–355. ACM, New York (1993)

7. Ramdoyal, R.: Reverse Engineering User-Drawn Form-Based Interfaces for Inter-
active Database Conceptual Analysis. Ph.D. thesis, University of Namur, Namur,
Belgium (December 2010), electronic version,
http://www.info.fundp.ac.be/libd/rainbow

8. Ramdoyal, R., Cleve, A., Hainaut, J.L.: Reverse engineering user interfaces for
interactive database conceptual analysis. In: Pernici, B. (ed.) CAiSE 2010. LNCS,
vol. 6051, pp. 332–347. Springer, Heidelberg (2010)

http://www.db-main.be
http://www.info.fundp.ac.be/libd/rainbow

260 R. Ramdoyal and A. Cleve

9. Ramdoyal, R., Hainaut, J.L.: Interactively eliciting database constraints and de-
pendencies. In: Mouratidis, H., Rolland, C. (eds.) CAiSE 2011. LNCS, vol. 6741,
pp. 184–198. Springer, Heidelberg (2011)

10. Rode, J., Bhardwaj, Y., Pérez-Quiñones, M.A., Rosson, M.B., Howarth, J.: As easy
as “Click”: End-user web engineering. In: Lowe, D.G., Gaedke, M. (eds.) ICWE
2005. LNCS, vol. 3579, pp. 478–488. Springer, Heidelberg (2005)

11. Rollinson, S.R., Roberts, S.A.: Formalizing the informational content of database
user interfaces. In: Ling, T.-W., Ram, S., Li Lee, M. (eds.) ER 1998. LNCS,
vol. 1507, pp. 65–77. Springer, Heidelberg (1998)

12. Rosson, M.B., Carroll, J.M.: Usability Engineering: Scenario-Based Development
of Human-Computer Interaction (Interactive Technologies). Morgan Kaufmann,
San Diego (2001)

13. Shoval, P., Shiran, S.: Entity-relationship and object-oriented data modeling-an
experimental comparison of design quality. Data & Knowledge Engineering 21(3),
297–315 (1997)

14. Singer, J., Sim, S.E., Lethbridge, T.C.: Software engineering data collection for field
studies. In: Shull, F., Singer, J., Sjøberg, D.I. (eds.) Guide to Advanced Empirical
Software Engineering, pp. 9–34. Springer, Heidelberg (2008)

15. Terwilliger, J.F., Delcambre, L.M.L., Logan, J.: The user interface is the conceptual
model. In: Embley, D.W., Olivé, A., Ram, S. (eds.) ER 2006. LNCS, vol. 4215, pp.
424–436. Springer, Heidelberg (2006)

16. Yang, F., Gupta, N., Botev, C., Churchill, E.F., Levchenko, G., Shanmugasun-
daram, J.: WYSIWYG development of data driven web applications. Proceedings
of the VLDB Endowment 1(1), 163–175 (2008)

Automatically Mapping and Integrating Multiple Data
Entry Forms into a Database

Yuan An, Ritu Khare, Il-Yeol Song, and Xiaohua Hu

College of Information Science and Technology, Drexel University, USA
{yan,ritu,isong,thu}@ischool.drexel.edu

Abstract. Forms are a standard way of gathering data into a database. Many
applications need to support multiple users with evolving data gathering require-
ments. It is desirable to automatically link dynamic forms to the back-end database.
We have developed the FormMapper system, a fully automatic solution that ac-
cepts user-created data entry forms, and maps and integrates them into an existing
database in the same domain. The solution comprises of two components: tree
extraction and form integration. The tree extraction component leverages a prob-
abilistic process, Hidden Markov Model (HMM), for automatically extracting a
semantic tree structure of a form. In the form integration component, we develop
a merging procedure that maps and integrates a tree into an existing database and
extends the database with desired properties. We conducted experiments evalu-
ating the performance of the system on several large databases designed from a
number of complex forms. Our experimental results show that the FormMapper
system is promising: It generated databases that are highly similar (87% over-
lapped) to those generated by the human experts, given the same set of forms.

1 Introduction

Using forms as the front-end interface mapping to a back-end database is a standard
way for data collection. For building form-based applications, Do-It-Yourself (DIY)
[18] and What You See Is What You Get (WYSIWYG) [28] are popular paradigms in
the Cloud or in supporting non-technical users. Applications in these paradigms auto-
matically translate forms into underlying databases and shield users from the technical
details for database creation and code generation. There are a number of online systems
that provide commercial services for users to create custom forms on their own. Ex-
ample systems include Formassembly [1], Zoho [4], Jotform [2], and Wufoo [3]. In a
previous study [16], we also developed a system that allows non-technical clinicians to
create high-quality databases through forms. Despite the effort, we find that mapping
and integrating multiple forms into an existing structured database remains largely un-
explored. We call the problem form2db problem which is the focus of this paper. The
following example illustrates the problem.

Example 1. Figure 1 (a) shows an existing form and an associated back-end database.
The application maintains a mapping between the form and the back-end database.

Suppose that the form in Figure 1 (b) is a newly created one and will be used to
collect data into the same database. It may be required to link the elements on the

M. Jeusfeld, L. Delcambre, and T.W. Ling (Eds.): ER 2011, LNCS 6998, pp. 261–274, 2011.
c© Springer-Verlag Berlin Heidelberg 2011

262 Y. An et al.

Patient Information

Patient
Name:
Sex:

Date of Birth:

Marital Status:

F M

HPI:

Vital Sign

BP:

Height:

Weight:

BMI:

Married Single

Submit

pid name sex dob maritalStatus

hid HPI

vid height weight BP BMI

HPI: History of Present Illness
BP: Blood Pressure
BMI: Body Mass Index

Patient

HPI

VitalSign

sid option
001 F
002 M

sex

Date:

piid patient hpi vitalSign date
PatientInformation

Healthy Living Program

Patient

Sex:

Date of Birth:

Marital Status:

Social Activities

Hours Watching TV:

Smokes:

Alcolhol:

Hours Exercise: Submit

Date:

(a)

(b)

Fig. 1. Data Entry Forms and the Associated Database

form to elements in the database. For example, if the patient information is linked be-
tween the form and the database, then patient information could be filled up through
auto-completion and integrated automatically. To map and integrate the new form to
the existing database, a technical developer would first manually link the Name, Sex,
Date of Birth, and Marital Status items on the form to the existing Patient table in
the database. He/she would then extent the existing database appropriately to collect
the new data items under Social Activities on the form in Figure 1 (b).

In such a manual process, the technical developer needs to directly access the database
system and write the application code. However, some applications may not provide
such an environment to users, for example, creating databases in the Cloud or sup-
porting non-technical users to create forms on their own. In these applications, either
the database system is not directly exposed to the user or the user does not possess
the necessary technical skills for generating the code. It is desirable to develop an
automatic approach that could map and integrate forms into an existing database with-
out user intervention. Such an approach would greatly reduce human effort in system
building and would benefit to many applications. �
We have developed the FormMapper system, a fully automatic solution that accepts
user-created data entry forms, and maps and integrates them into an existing database.
The FormMapper system is built on our previous work [15,16] and extends it in many
aspects: First, the FormMapper integrates multiple forms into a single database instead
of creating individual database for each form. Second, we have attempted to implement
the following requirements in the FormMapper: (i) the system can accept sophisticated
forms as input, (ii) the system automatically captures the semantic relationships among
form elements, (iii) the system automatically links form elements to the elements in
the hidden database, (iv) the system automatically extends the hidden database for un-
matched form elements, and (v) the system automatically generates mapping expres-
sions between the form and the hidden database.

There are many challenges in developing such an automatic system. To address the
challenges, we first propose a formal hierarchical model that represents the semantic
relationships among elements of a form; then we develop a solution comprising of two
components: a tree extraction component and a form integration component. The tree
extraction component leverages a machine learning technique, Hidden Markov Model
(HMM) [25], for automatically extracting a tree structure from a data entry form. In a
previous study, we have applied the HMM model to the problem of segmenting search

Automatically Mapping and Integrating Multiple Data Entry Forms 263

interfaces [15]. To address the form2db problem, we extend the method to automati-
cally extract a complete tree structure from a form. In the form integration component,
we develop a merging procedure that maps and integrates a form tree into an existing
database and extends the database as needed. Specifically, the merging procedure in-
cludes a birthing algorithm that creates a relational database from a form tree and a
megring algorithm that integrates the form tree into an existing database.

In summary, we make the following contributions in this paper:

1. We identify the form2db problem and study related issues in developing a fully
automatic approach.

2. We develop an initial solution which leverages an advanced machine learning tech-
nique for form tree extraction and takes the classic database design principles into
consideration for database merging and extension.

3. We implemented the solution and conducted experimental studies. Empirically, the
results generated by the system are highly similar to expert designed databases
(87% overlapped). Overall, the automated system saves a great deal of human effort
(seconds vs. hours) while generating results that are comparable to what human
experts produced.

The remainder of this paper is organized as follows. Section 2 discusses related work.
Section 3 presents the formal models and the problem definition. Section 4 describes
the tree extraction component. Section 5 studies the merging process. Section 6 presents
the experiments. Finally, Section 7 concludes the paper.

2 Related Work

There is a broad array of related work including form-driven database generation [11],
DIY web services for form creation [1] schema mapping [20], view integration [7],
schema evolution [26], and automatic understanding of Deep Web search interfaces
[17]. However, the problem that we address here is a new and has not been addressed
before in totality. An automatic solution to the problem including its subproblems has
not been developed yet.

The earlier form-driven database creation techniques were designed for IT profes-
sionals to develop databases using “form structures;” users have to specify the exact
semantics of the underlying database schemas through “forms” [11,22,19]. Recent DIY
web services for form creation can hide the underlying data storage details from the
users. However, each form is stored individually without semantic integration [1,28].

Our problem is different from schema mapping and integration in several aspects.
Schema mapping aims to discover meaningful relationships between database schemas
[20,21,23,5], while view/schema integration builds a database schema by unifying a set
of views/schemas [7]. Both problems primarily focus on schema elements and do not
consider database extension. Also, solutions to schema mapping and view integration
are semi-automatic, requiring the user to examine the final results. Our problem is a
continuous and dynamic process which does not ask the user to examine the results.
Schema evolution focuses on maintaining the consistency of a database when its schema
is modified [26]. Our problem focuses on how to extend a database when new data needs
to be collected.

264 Y. An et al.

There are techniques proposed for modeling and understanding search interfaces
[17]. In particular, Wu et al. [27] and Dragut et al. [12] model a search interface as a
hierarchical structure call schema tree. To extract schema trees, Dragut et al. in [12]
develop a rule-based approach exploiting Web browser rendering. We develop a model-
based machine learning technique for extracting a tree structure from a data entry form.
Our approach does not reply on specific browser rendering and extracts information
from sophisticated form structures.

3 Formal Preliminaries and Problem Definition

A form consists of a collection of form elements laid out in a particular way.
Example form elements include text label, text box, radio buttons, select list, and
check boxes. The underlying relationships among the elements are naturally captured
by a tree structure [27,12]. Here, we formally define a form tree as follows.

Definition 1 (Form Tree). A form tree is defined as a labeled, directed and ordered
tree, FT = (N, E, <sib, root), where N = I ∪ E ∪ V is a finite set of nodes, E is a
finite set of edges, <sib is the next-sibling relation between children of a tree node, and
root ∈ N is the root of the tree. Moreover,

– I is a finite set of input elements (or inputs), where items of I are drawn from the
following set of input fields: {text box, text area, radio buttons, check boxes,
drop-down list, calendar} ;

– E is a finite set of logical elements. Each e ∈ E has a label l = λ(e), a data type
t = τ(e), and a constraint k = κ(e), where the function λ(e) returns the label l of
e, the function τ(n) returns the data type t of e, and the function κ(e) returns the
constraint k of e.

– V is a finite set of values;
– For an edge (ni −→ nj) ∈ E, ni, nj ∈ N , ni is called parent and nj is called

child.

Figure 2 shows the form tree model of the form in Figure 1 (a). Graphically, we use
different shapes to represent the different types of nodes. The data type of an element
can be extracted from the source code of a form, for example, Date for calendar input.
Furthermore, the source code of a form often provides constraint information about
whether an input is required or optional.

Database. A (relational) database D = (I, R, Σ) is a 3-tuple, where I is a set of re-
lational tables, R is the schemas of the tables, and Σ is a set of integrity constraints
imposed on the tables.

Definition 2 (The form2db Problem). Given a set of data entry forms {Fi, i = 1..n}
and a relational database D = (I, R, Σ), the form2db problem is to (1) discover the
semantic mappings between the elements in a from Fi, i = 1...n and the elements in the
database D and (2) extend the database to cover the unmapped elements in the form.
The following is a set of desired properties for a solution:

Automatically Mapping and Integrating Multiple Data Entry Forms 265

Patient Information

Patient
HPI Vital

Sign

tb_name

rb_sex

tb_dob

Name
Sex

Date of
Birth

Marital
Status

: element node : form input node

: value node

rb_sex

F M

rb_ms rb_ms

Married

Single

tb_hpi
Height

Weight
BP

BMI

tb_height

tb_weight

tb_bp

tb_bmi

tb: text box
rb: radio button

pid name sex dob maritalStatus

hid HPI

vid height weight BP BMI

Patient

HPI

VitalSign

sid option
001 F
002 M

sex

piid patient hpi vitalSign date
PatientInformationtb_date

Date

Fig. 2. The Form Tree for the Patient Information Form

– correctness: a mapping linking a form element to a data element indicates that
both elements represent the same concept in the application domain.

– completeness: every form element is mapped to a database element.
– compactness: every form element is mapped to at most one database element.
– normalization: the extended database should respect the normalization principles

with regard to the functional dependencies that can be identified on the forms.
– optimization: the extended database should be optimized in terms of query effi-

ciency (e.g., minimizing joins) and storage (e.g., minimizing NULL values.)

For multiple forms {Fi, i = 1..n}, we consider the problem of mapping and integrat-
ing them in a sequential order F1, F2,, Fn. An individual form Fi is mapped and
integrated to a database D that has already integrated the forms F1 to Fi−1. With this
consideration, in the rest of the paper, we focus on developing methods for mapping
and integrating a single form to an existing database. Our solution first extracts a form
tree from a form, and then maps and integrates the tree to an existing database.

4 Extracting Form Trees

Tree extraction is the process of clustering the elements on a form into semantically
related groups and organizing the groups into parent-child hierarchical relationships.
We have developed an effective and efficient method for segmenting form elements
into semantically related groups [15]. To address the form2db problem, we extend the
previous segmentation technique to a tree extraction method. The core of the method
is a probabilistic process, Hidden Markov Model (HMM), that simulates the process
of designing a data entry form. In general, an HMM [25] can model a probabilistic
process that generates a sequence of observations. Particularly, an HMM consists of
a set of states that satisfy the Markov assumption, i.e., the state of the process only
depends on the previous states of the process. In a first order Markov model, which we
assume for our problem, a current state only depends on the previous state and not on
any earlier states. At each state, e.g., corresponding to an object in a domain conceptual
model, the process generates an observable value, e.g., a form element, based on a fixed

266 Y. An et al.

Table 1. Observation Space T HMM

Code Description
σT

0 textbox/textarea
σT

1 select group
σT

2 radiobutton
σT

3 checkelement
σT

4 long text(more than 4 words)
σT

5 lower case non-colon-ending multi-character text
σT

6 colon ending text
σT

7 special character text
σT

8 uppercase text
σT

9 uppercase colon-ending text
σT

10 paranthesized text

probability distribution. In an HMM, an observer can observe a sequence of observable
values emitted by a (first order) Markov process, but cannot see which states emit which
values. An important inference problem is: given a sequence of observed values, to find
the sequence of states that is most likely to have generated those observations.

We model the process of designing forms as a Markov process where a designer cre-
ates form elements when moving from object to object in a conceptual model following
the relationship links. An object in a conceptual model could be an entity, attribute,
relationship, or value. At each object, the designer decides whether to create a logi-
cal element, an input field, a nested element, etc. We simulate this design process into
2-layered HMM. The first layer T HMM is aimed to tag the elements of the forms (ob-
servations) with their semantic roles (states), and the second layer S HMM is used to
segment the forms into groups (and sub-groups) of elements. Formally, an HMM is
specified as a 3-tuple (Π, A, B) over a set of states Q = {qi, i = 1..n} and a set of
observable values Σ = {σj , j = 1..m}, where Π = {πi}, πi = Pr(qi), is a vec-
tor of initial state probability, A = {aij}, aij = Pr(qj |qi), is a matrix of transition
probability among the states, and B = {bij}, bij = Pr(σi|qj), is a matrix of emission
probability between states and observations. Tables 1 presents the observable values of
the T HMM, while Table 2 and Table 3 describe the states of T HMM and S HMM.
In the 2-layered HMM, the states of T HMM also become the observable values of the
S HMM.

In the tagging phase, the T HMM automatically tag the elements of a form with
states qT

0 - qT
6 . These states indicate whether a form element is labeled as an Entity,

Attribute, or Value. In addition, a form may contain other types of elements such
as Value Separator, Value Data Type, Instructions, and Misc. Text. For example,
a Value Separator is a piece of text with special characters. A Value Separator sep-
arates two input fields which collect data for the same attribute. For instance, blood
pressure is often collected on a patient encounter form using BP: / , where
the text labels “BP” and “/” are followed by text boxes, respectively. The text “/” is
a Value Separator rather than an attribute. In the next grouping phase, the S HMM
accepts the output of the T HMM and assigns new states qS

0 - qS
3 . These states indicate

which set of elements should be grouped into a segment.

Automatically Mapping and Integrating Multiple Data Entry Forms 267

Table 2. State Space T HMM (Also Observation
Space S HMM)

Code Description
qT
0 Entity

qT
1 Attribute

qT
2 Value

qT
3 Value Separator

qT
4 Value Data Type

qT
5 Instructions

qT
6 Misc. Text

Table 3. State Space S HMM

Code Description
qS
0 Begins a segment

qS
1 Inside a segment

qS
2 Begins a subsegment

qS
3 Inside a subsegment

After a form is tagged and segmented, the tree is derived by the segmentation infor-
mation. The topology of nodes within a branched segment is determined based on the
semantic tags. The tree branching structure is determined in the following manner. Each
segment is represented by a tree node. The root is the container segment that represents
the entire form. A sub-segment within a segment becomes the child of the node repre-
sented by the segment. After the initial branching, each segment node is elaborated into
a segment tree based on the semantic tags associated with the segment elements using
the following rules.

– The entity becomes the root of the segment tree.
– A attribute node becomes the child of the segment root
– The value nodes associated with a given attribute node become the children of the

attribute node.
– Some value nodes (radio, check, select) may need to be extended to contain the

value text nodes as their children.
– A subsegment becomes the child of the root of the container segment.

The main tasks for the tree extraction include learning the parameters, Π , A, B, of
the model by acquiring training examples, and applying the model to new instances.
We train the HMMs by the Expectation Maximization algorithm [25] using a set of
manually labeled examples. We solve the inference problem of finding the most likely
explanation by the Viterbi algorithms [25]. In the Experiments section, we show that
the accuracy of extraction is 96% based on a number of example forms we collected
and manually labeled.

5 Mapping and Integrating Form Trees

Given a form tree FT and a database D, our solution to the form2db problem first
discovers initial element correspondences (or matchings) between the atomic elements
in the tree and the database. Then it integrates the form into the database by discovering
valid correspondences and extending the database. For element correspondences, we
employ an element matching function δ(FT ,D) (e.g., a schema matching program
[8]) which returns a set of correspondences M = {FT :P/e � D:d}, which relates an

268 Y. An et al.

Patient Information

Patient Referral

Name tb_ref PatientReferral

PatientInformation

tb_name

ProviderProvider

tb_prov

tb_prov

rid referral provider

piid pateint provider referral

pid name

Fig. 3. Ambiguous Correspondences

atomic element P/e reached by a simple path
P in the form tree with an atomic element d in
the database. The element matching function
δ(FT ,D) returns a similarity (≥ 0 and ≤ 1)
between every pair of elements in the tree and
the database. We set up a high threshold value
(e.g., 0.99) and take all pairs of elements that
have similarity above the threshold as an ini-
tial set of correspondences.

Having the initial set of element correspondences, the merging process needs to ad-
dress two challenges: First, there may be one-to-many or many-to-one initial correspon-
dences. For example, Figure 3 shows a case where the form element Provider is linked
to two different columns in the database. The merging process needs to resolve the am-
biguities by cleaning up the set of initial correspondences. Second, in general, there
could be several modeling alternatives for the same concept. For example, the rela-
tionship Patient ----- Provider could be modeled as Patient ----- Hospital

----- Provider in a database. Consequently, an automatic method would not be able
to resolve the heterogeneity without human expert’s intervention.

To develop a fully automatic approach, we take a syntactic and structural approach
by assuming there is a well-defined forward engineering method for creating databases
from form trees. Consequently, the mapping part in our solution is to discover “equiv-
alent” structures between two databases generated by the forward engineering method;
and the extension part is to merge two databases generated by the forward engineering
method. By “equivalent”, we mean the syntactically same. In the following sections, we
first present a forward engineering method – the birthing algorithm. Next, we describe
a merging algorithm that integrates a database generated by the birthing algorithm into
an existing database. Overall, we develop our merging process into the following steps:

1. Discover a set of initial element correspondences.
2. Derive a new database from the given form tree.
3. Clean up the initial correspondences.
4. Extend the existing database for the unmapped elements.

5.1 Birthing Algorithm

The birthing algorithm takes as input a form tree and creates new database tables.
Consider a form tree FT = (N, E, <sib, root) as a conceptual model. An internal
logical element e ∈ E corresponds to an entity and an edge between two logical ele-
ments (ni −→ nj) ∈ E, ni, nj ∈ E corresponds to a relationship in an ER model.
The birthing algorithm creates tables corresponding to logical elements and associated
edges. However, a form tree is different from a traditional ER model in many ways.
A form tree contains input fields and values which can be organized in complex and
messy ways. Figure 4 shows a complex data-entry form in which an input check box
with a value, e.g., Obesity, is extended by another input text box. Moreover, the hi-
erarchical relationships between form elements capture important semantics regarding

Automatically Mapping and Integrating Multiple Data Entry Forms 269

Health Information

Health Status
(Please enter accurate information)

Heart Rate*:

Blood Pressure before Exercise:
Systolic:

Diagnosed (Elaborate in the given space)

Diastolic:

Health Problems

Submit

Date:

Obesity

Depression

None

Yes No

If yes, how many
times a week?

bpm

Do you smoke?
Symptoms Concerned:

Fig. 4. A Complex Form

the information collected on the form. For example,
the hierarchy Health Problems – Diagnosed –
Depression indicates that the value Depression is
a diagnosed problem, rather than a concerned symp-
tom.

To achieve largely the desired properties spec-
ified in Definition 2, we consider the following re-
quirements when developing the birthing algorithm:
Requirement 1: All the user-specified elements and
values should be captured in the database.
Requirement 2: All the hierarchical relationships
among logical and value elements should be main-
tained in the database.
Requirement 3: Requirements 1 and 2 considered,
tables should be merged for query efficiency.

A form tree is pre-processed for extracting the data type τ(e) and identifying con-
straint κ(e) of an element e. For example, the element Heart Rate is a required field
(i.e., NOT NULL) and has a data type bpm in Figure 4. In addition, we also consider
extension of an input filed, e.g. the check box Obesity extended by a text box. The
birthing algorithm creates a relational database in a top-down fashion. In particular, the
procedure starts with the root of the original form tree and implements the key patterns
illustrated in Figure 5 (the full implementation catches all the rare exceptions.)
Pattern (a): The root of the form tree is mapped to a table representing an n-ary
relationship.

nj

n

ni

Tnj
id n nj

n

ni

Tnj
id

...

Tn
id n

nj

n

ni

Tnj
id n

...

Tn
id option
1 ...
2 nk

text box text box

radio
button

nk

nj

n

ni

Tnj
id

...

Tnjn
id idnj idn

check
box

nk

n Tn
id ni

(b) (c)

(d) (e)

(a)

ni

Tnjn

...

id idnj idn

Tn
id option
1 ...
2 nk

Tni
id

Fig. 5. Mapping Form Tree Patterns to
Database

Pattern (b): If n’s children are text boxes
and n has a parent, then n is mapped to
a column named after n in the parent ta-
ble. The text boxes are concatenated and
mapped to the values of the column.
Pattern (c): An edge between two logical
elements (except for Patterns (d) and (e))
is mapped to a many-to-many relationship
table connecting two tables corresponding
to the two elements.
Pattern (d): The values of a set of ra-
dio button are stored in the database as a
lookup table. The logical element covering
a set of radio buttons is linked by a functional relationship from the parent logical
element.
Pattern (e): The values of a set of check boxes are stored in the database as a lookup
table. The logical element covering a set of check boxes is linked by a many-to-many
relationship from the parent logical element.

An extension field is added as an extra column of the table referencing the extended
field. To meet the Requirements 1 and 3, the procedure works as follows: (1) It stores
values in individual lookup tables; (2) It merges root’s children to an n-ary relationship

270 Y. An et al.

table; and (3) It inlines an element with only text box children to the element’s parent.
To verify Requirement 2, we turn a relational database into a database graph where
the nodes are tables, columns, and values; and edges are table-column, column-value,
table-table (foreign key referencing) relationships. For a foreign key column, we replace
the table-column relationship with a referencing relationship between two tables. Let
FT ′ = (N ′, E′, <′

sib, root) be the tree that is obtained from the original form tree by
removing input nodes and reconnecting value nodes to logical nodes. Then, for an edge
(ni −→ nj) ∈ E′ in the tree FT ′, there are corresponding two nodes, vi and vj , in the
database graph, such that, either vi and vj are linked by an edge or they are linked by a
path passing through an intermediate node vk, where vk is a many-to-many relationship
table.

5.2 Merging Algorithm

The merging algorithm takes as input a new database D′, an existing database D, and
a set M of correspondences between D′ and D. It aims to merge the two databases.
Traditional schema integration [9,24] finds a unified representation from a set of source
schemas. However, existing approaches to schema integration require substantial amount
of human feedback during the integration process. It has been shown that there can be
multiple possible schemas that integrate data in different ways and each may be valu-
able in a given scenario [10]. In our case, we focus on developing a fully automatic
solution that only uses the structural information for merging. We assume that the ex-
isting database was also generated by the birthing algorithm. The method first cleans
up the correspondences by checking whether the linked two elements are compatible in
terms of types and constraints (e.g., NOT NULL). It then extends the existing database
by comparing two partially matched databases and adding the missing elements in the
existing one. The current method considers different structures as having different se-
mantics even though the structures may model the same concepts. (We will develop an
ontology-based approach for fully automatically resolving semantic heterogeneity in
the future work.)
Cleaning up Correspondences. Besides ambiguous correspondences, an invalid corre-
spondence may link two elements that are incompatible in terms of types or constraints.
We develop a procedure cleanup(D′, D, M) that removes invalid correspondences. For
each correspondence, the procedure first ensures that the pairs of elements linked by the
correspondence are compatible in terms of their types, i.e., tables are linked to tables,
columns are linked to columns, and values are linked to values. Second, for a correspon-
dence linking two columns, the procedure checks their data types if available. Third, for
two foreign keys linked by a correspondence, the procedure ensures the referenced ta-
bles are linked by a correspondence. Finally, the procedure removes correspondences
that cannot be used to insert data due to relevant NOT NULL constraints. For example,
if a correspondence FT :P/e � D:T.ci links the element P/e (P is a simple path in
the tree) to the column ci of the table T(c1,..., ci, ...cj ,..., cm). If the column cj has a
constraint NOT NULL and there are no other correspondence from the form tree to the
column cj , then the correspondence FT :P/e � D:T.ci is prevented by the NOT NULL
constraint of cj , because a tuple that only contains the data about P/e cannot be inserted
in the table T.

Automatically Mapping and Integrating Multiple Data Entry Forms 271

Extending Database. Let M′ be the set of correspondences returned by the proce-
dure cleanup(D′, D, M). If there is an element d ∈ D′ that is not covered by any
correspondences in M′, we need to extend D to accommodate d.

We develop a procedure extendDB(D′, D, M′) which returns an extended database
and new mappings. The issues we consider in extending database are optimizations
for data storage and query processing (as proposed in Definition 2.) It is desirable to
minimize the number of columns that have NULL values. However, adding a column
to an existing table may bring in a lot of NULL values to the table. Consider two tables
T ′(a1, a2, ..., an) ∈ D′ and T (b1, b2, ..., bm) ∈ D such that T ′�T and there are h
correspondences between the columns of T ′ and T , that is, ai1�bj1 , ai2�bj2 , ..., and
aih

�bjh
. If m > h or/and n > h, then there are dangling columns in the tables that are

not matched. If we add a new column to T , then all the existing tuples as well as all the
new tuples inserted by other forms will have NULL values under the column. However,
if we create a new table for new columns in order to reduce the number of NULL
values, the number of tables is increased. To balance the trade-off between reducing the
number of tables (joins) and reducing NULL values, two of the fundamental concerns in
database design, we employ a user-defined quality tuning factor(qf) (0 ≤ qf ≤ 1). qf
= 0 indicates a high preference to reducing NULL values, while qf = 1 indicates a high
preference to reducing the number of tables. When merging two tables, we compare
the tuning factor with a numeric metric null value ratio (nvr) to make decision. The
null value ratio (nvr = (m−h)+(n−h)

h) reflects the possibility of having NULL value
columns if the two tables are merged together. If the nvr is lower than qf , we merge
the two tables, otherwise, we create a new table.

6 Experiments

We conducted experiments on evaluating the performance of the FormMapper sys-
tem. The goal of the experiments is two-fold: (1) to evaluate the effectiveness of the
tree extraction component and (2) to evaluate whether the merging process can gener-
ate “good” results while dynamically and continuously mapping and integrating user-
created forms.

6.1 Testing the Tree Extraction Component

Testing tree extraction consists of two parts: (1) training the HMM models and (2)
applying the models to test data. We collected 52 data-entry forms in the healthcare
domain and manually labeled them with semantic tags as training examples. Because
the limited number of examples, we conducted a k-fold cross-validation for training and
testing. That is, we divided the entire set into k sets (folds). For each fold, we trained
the model on the other folds and test on the fold. The smallest form has 50 elements
and the largest form has 183 elements. The average size of form happens to be 100.
For measuring the effectiveness, we define the extraction accuracy as the percentage of
the correctly extracted patient-child relationships. Our experiments on the 52 examples
showed the average accuracy was 96%. The average time for generating a tree structure
was within one second.

272 Y. An et al.

6.2 Evaluating the Merging Process

We conducted comparative experiments on evaluating the performance of the merg-
ing process. We used sets of complex and overlapping forms to incrementally build
databases in the FormMapper system. We manually examined the resultant databases
and compared them with “gold standard” databases created by human experts. The ex-
perimentation was carried out as follows. For a set of forms, we put the forms in a
random order and applied the system to them one by one. We started with an empty
database. The system generated a new database from the first form and sequentially
integrated other forms. We were concerned with the following two questions: (i) did
the resultant database have the desired properties? and (ii) was the resultant database
comparable to the “gold standard” databases?
Datasets and Benchmarks. We selected 3 sets with total 16 forms (among the 52
forms) belonging to 3 different healthcare institutions. The average form size is 61.
We asked two human experts to manually generate databases from the 3 sets of forms.
These manually generated databases serve as “gold standard” for comparison. Both
experts have more than 10 years of experience in designing databases for various enter-
prises. We were informed that the experts required several hours to prepare the “gold
standard”.
Implementation and Experiment Setting. The system is implemented in a IBM x3400
server with 8 GB memory. In all the experiments, the quality tuning factor qf (defined
in Section 5.2) which is used in the database extension process is set to 0.5. For discov-
ering element correspondences, we developed our own solution by exploiting linguistic
and structural information.
Experimental Results. First of all, the system took on average 3 seconds to create a
new database or integrate a form to an existing database. On an average, the databases
contain 56 tables, 172 columns, 98 values, and 61 foreign key references. Next, we
manually examined the resultant databases and compared them with the “gold stan-
dard” databases for evaluating desired properties and quality. Our examination showed
that all the resultant databases are complete. In addition, the system built normalized
databases based on the functional dependences deduced from the many-to-one rela-
tionships. Figure 6 shows a summary of the comparison between the system generated
databases and the “gold standards” in terms of the total number of database elements.

0

30

60

90

120

150

180

Tables Columns Values Foreign
Keys

Algorithm
Gold 1
Gold 2

0

30

60

90

120

150

180

Tables Columns Values Foreign
Keys

0

30

60

90

120

150

180

Tables Columns Values Foreign
Keys

Exp.1 Exp.2 Exp.3

N
o

.
of

 E
le

m
e

n
ts

Fig. 6. Total Elements - Algorithm Vs Gold

Automatically Mapping and Integrating Multiple Data Entry Forms 273

On an average, 87% of system generated databases are considered to be “matched” to
the “gold standard” databases.

We are more interested in the discrepancies. A small portion of the discrepancies
is due to missing correspondences. For discrepancies under the same set of correspon-
dences, we analyzed the results and identified 7 form patterns where the result differed
between the algorithm and the gold standards. We found that the algorithm resulted in
a superior result in 3 out of the 7 cases, and also both the gold standards resulted in su-
perior results in 3 cases each. For the superior cases in the “gold standards”, we found
that they were mainly due to human judgement based on a personal understanding of
the domain semantics. For example, a human expert extracted many-to-one relation-
ships from the category-subcategory relationships on forms based on personal domain
knowledge. Considering the algorithms generate databases with “good” properties by
only taking as input the forms, we would conclude that the algorithms are promising
and have the potential to replace human developers.

7 Conclusions

Jagadish et al. recently illustrated 5 painful issues in database usability [13]. Among
them, the birthing pain is related to the difficulties of creating a database and putting
information into a database. We are motivated to study an easy and flexible way for
users to use a database for storing information. Forms are a user-friendly way for in-
teracting with databases. We develop a solution for automatically generating databases
from data-entry forms. In terms of form creation, our problem is an inverse process of
that studied in [14], where query forms are automatically generated from databases. For
our problem, we show that with the fully automatic solution, users do not need a clear
knowledge of the final structure of a database. As users create more forms for evolv-
ing needs, the structure of the database grows automatically, however, in a principled
way with predictive characteristics. The limitations of our approach include the miss-
ing correspondences and syntactic nature of the merging process. In future, we intend
to exploit more sophisticated schema matching techniques [6] and apply an ontology to
resolving semantic heterogeneity.

References

[1] Form Assembly, http://www.formassembly.com

[2] Jotform, http://www.jotform.com/
[3] Wufoo, http://wufoo.com/

[4] Zoho Creator, http://creator.zoho.com
[5] An, Y., Borgida, A., Miller, R.J., Mylopoulos, J.: A Semantic Approach to Discovering

Schema Mapping Expressions. In: ICDE 2007, pp. 206–215 (2007)
[6] Aumueller, D., Do, H.-H., Massmann, S., Rahm, E.: Schema and ontology matching with

coma++. In: SIGMOD (2005)
[7] Batini, C., Lenzerini, M., Navathe, S.B.: A comparative analysis of Methodologies for

database schema integration. ACM Computing Surveys 18(4), 323–364 (1986)

http://www.formassembly.com
http://www.jotform.com/
http://wufoo.com/
http://creator.zoho.com

274 Y. An et al.

[8] Bellahsene, Z., Bonifati, A., Rahm, E. (eds.): Schema Matching and Mapping (Data-Centric
Systems and Applications). Springer, Heidelberg (2011)

[9] Buneman, P., Davidson, S.B., Kosky, A.: Theoretical aspects of schema merging. In: Pirotte,
A., Delobel, C., Gottlob, G. (eds.) EDBT 1992. LNCS, vol. 580, pp. 152–167. Springer,
Heidelberg (1992)

[10] Chiticariu, L., Hernández, M.A., Kolaitis, P.G., Popa, L.: Semi-automatic schema integra-
tion in clio. In: VLDB, pp. 1326–1329 (2007)

[11] Choobineh, J., Mannino, M.V., Tseng, V.P.: A form-based approach for database analysis
and design. Commun. ACM 35(2), 108–120 (1992)

[12] Dragut, E.C., Kabisch, T., Yu, C.T., Leser, U.: A hierarchical approach to model web query
interfaces for web source integration. PVLDB 2(1), 325–336 (2009)

[13] Jagadish, H.V., Chapman, A., Elkiss, A., Jayapandian, M., Li, Y., Nandi, A., Yu, C.: Making
database systems usable. In: SIGMOD 2007, pp. 13–24. ACM, New York (2007)

[14] Jayapandian, M., Jagadish, H.V.: Automated creation of a forms-based database query in-
terface. Proc. VLDB Endow. 1(1), 695–709 (2008)

[15] Khare, R., An, Y.: An empirical study on using hidden markov model for search interface
segmentation. In: Proceedings of 18th ACM Conference on Information and Knowledge
Management (CIKM), pp. 17–26 (2009)

[16] Khare, R., An, Y., Hu, X., Song, I.-Y.: Can clinician create high-quality databases? a study
on a flexible electronic health record (fehr) system. In: The Proceedings of the 1st ACM
Health Informatics Symposium (IHI 2010), Washington, DC, USA (2010)

[17] Khare, R., An, Y., Song, I.-Y.: Understanding search interfaces: A survey. SIGMOD
Record 39(1), 33–40 (2010)

[18] Kowalczykowski, K., Ong, K.W., Zhao, K.K., Deutsch, A., Papakonstantinou, Y., Petropou-
los, M.: Do-it-yourself custom forms-driven workflow applications. In: CIDR 2009 (2009)

[19] Luković, I., Mogin, P., Pavićević, J., Ristić, S.: An approach to developing complex database
schemas using form types. Softw. Pract. Exper. 37(15), 1621–1656 (2007)

[20] Madhavan, J., Bernstein, P.A., Rahm, E.: Generic schema matching with cupid. In: VLDB
2001, pp. 49–58 (2001)

[21] Miller, R.J., Haas, L.M., Hernandez, M.A.: Schema Mapping as Query Discovery. In:
VLDB, pp. 77–88 (2000)

[22] Pavicevic, J., Lukovic, I., Mogin, P., Govedarica, M.: Information system design and proto-
typing using form types. In: ICSOFT (2), pp. 157–160 (2006)

[23] Popa, L., Velegrakis, Y., Miller, R.J., Hernández, M.A., Fagin, R.: Translating web data. In:
VLDB, pp. 598–609 (2002)

[24] Pottinger, R., Bernstein, P.A.: Merging models based on given correspondences. In: VLDB,
pp. 826–873 (2003)

[25] Rabiner, L.R.: A tutorial on hidden markov models and selected applications in speech
recognition. Proceedings of the IEEE, 257–286 (1989)

[26] Rahm, E., Bernstein, P.: An on-line bibliography on schema evolution. SIGMOD
Record 35(4), 30–31 (2006)

[27] Wu, W., Yu, C., Doan, A., Meng, W.: An interactive clustering-based approach to integrating
source query interfaces on the deep web. In: SIGMOD 2004, pp. 95–106. ACM, New York
(2004)

[28] Yang, F., Gupta, N., Botev, C., Churchill, E.F., Levchenko, G., Shanmugasundaram, J.:
Wysiwyg development of data driven web applications. Proc. VLDB Endow. 1(1), 163–
175 (2008)

M. Jeusfeld, L. Delcambre, and T.W. Ling (Eds.): ER 2011, LNCS 6998, pp. 275–289, 2011.
© Springer-Verlag Berlin Heidelberg 2011

External Variability of Software: Classification and
Ontological Foundations

Iris Reinhartz-Berger1, Arnon Sturm2, and Yair Wand3

1 Department of Information Systems, University of Haifa, Haifa 31905, Israel
iris@is.haifa.ac.il

2 Department of Information Systems Engineering,
Ben-Gurion University of the Negev, Beer Sheva 84105, Israel

sturm@bgu.ac.il
3 Sauder School of Business, University of British Columbia, Canada

yair.wand@ubc.ca

Abstract. Software variability management deals with the adaptation of
reusable artifacts, such as models, specifications, and code, for particular
requirements. External variability, which refers to software functionality as
visible to users, deserves a special attention as it is closely linked to
requirements and hence to early development stages. Errors or inaccuracies in
these stages are relatively inexpensive to detect and easy to correct, yet can lead
to expensive outcomes if not corrected. Nevertheless, the analysis of external
variability in the literature is done ad-hoc and requires improvement.

In this paper we introduce a framework for classifying external variability
types based on ontological principles. The framework defines the external view
of software in terms of the behavior of the application domain. Behavior is
formalized as state changes in response to external stimuli. Based on this view
we classify the possible similarities and differences among applications and
identify an integrated similarity measurement. We demonstrate the usage of this
classification framework for feasibility studies in system development.

Keywords: domain engineering, software product line engineering, domain
analysis, variability management.

1 Introduction

In the context of software engineering, variability is the ability of a core asset to be
efficiently extended, changed, customized, or configured for use in a particular
context [18]. Variability is of particular importance in different software engineering
fields, one of which is software product line engineering [8, 17]. In this context,
Weiss and Lai [21] define variability as an assumption about how members of a
family may differ from each other. Identifying the commonality of a family of
software products or applications is important as it describes the main concepts and
rules of the domain under consideration. However, Gomaa [11] states that
identification of the differences that can exist among artifacts is even more important,
as it relates to a variety of possible ways of reuse. In that respect, Kim et al. [15]

276 I. Reinhartz-Berger, A. Sturm, and Y. Wand

claim that "to carry out domain analysis effectively and design widely reusable
components, precise definitions of variability related terms and a classification of
variability types must be made. Without an appropriate level of formal view,
modeling and realizing variability are neither feasible nor practical."

Several studies have addressed classification of variability into types (e.g., [12] and
[17]). Pohl et al. [17] divide variability into external variability which is the
"variability of domain artifacts that is visible to customers", and internal variability
which is the "variability of domain artifacts that is hidden from customers." Both
external and internal variability are important to the success of developing software
artifacts. However, external variability deserves special attention as it is visible to
users and relates to requirements defined at early development stages where errors or
inaccuracies are relatively inexpensive and easy to detect and correct.

Variability in general and external variability in particular are mostly analyzed
either from practical points of view or in terms of taxonomies and metamodels (see,
for example, [1] and [16]). However, the usability of these works for analyzing the
similarity and differences between complete applications or software products is
limited, as they are primarily designed for specification purposes.

The aim of this work is to present a general classification framework for external
variability. Such classification can serve to better understand variability types and
analyze their implications in various contexts. The main premise that underlies our
approach is that from a user’s point of view, what mainly matters is the behavior of
the implemented system. In that respect, various artifacts produced during software
development serve to identify and specify this behavior. Therefore, our framework
takes a view which defines an application as a set of intended changes in a given
domain. We term such changes – application behaviors. Thus, we will focus on
application behaviors as specified in functional requirements. We will not refer to the
ways to realize and implement these behaviors, as these aspects are usually less
relevant to the customers (users) of the resulting software system. In particular, we
will not refer to the actual composition of the system (e.g., in terms of objects and
their interactions).

To formalize behaviors we use an ontological model. Specifically, we adapt
Bunge's work [6, 7] to define formally domains, applications, and behaviors. This
formalization enables us to define similarities and differences of behaviors and
operationalize the notion of user’s points of view. We chose Bunge’s ontology since it
places an emphasis on the notion of systems, defines the concepts of states and events
in an axiomatic, well-formalized way, and has been adapted to conceptual modeling
in the context of systems analysis and design [19, 20]. These aspects of Bunge’s
ontology made it appropriate for modeling external software behavior.

The rest of the paper is organized as follows. Section 2 reviews relevant concepts
of Bunge's ontology and their adaptation to information systems. Section 3 sets the
ground for comparing applications and defines similarities between states and events.
Section 4 identifies eight classes of external variability of behaviors, explains their
essence, and suggests measures for defining similarity between applications. Section
 5 elaborates on one possible use of the framework: supporting formal feasibility
studies during the requirements analysis stage of system development. Finally,
Section 6 summarizes the work and suggests future research directions.

 External Variability of Software: Classification and Ontological Foundations 277

2 Bunge's Systems Ontology

Bunge's ontology describes the world as made of things that possess properties. The
main Bunge's concepts that are relevant to our work are summarized in Table 1, along
with explanations and notations. The following uses these concepts for defining
additional ones required for analyzing external variability.

Table 1. Summary of relevant Bunge's concepts

Ontological
Construct

Explanation Notation

(substantial) Thing The elementary unit in Bunge's ontology.
Something that exists in time and space.

Property All things possess properties. Properties are
always attached to things. A property can be
intrinsic to a thing or mutual to several things.

Composite thing A thing comprised of other things (components).
A composite thing inherits properties from its
components, but must also possess emergent
properties not possessed by its components.

Attribute A characteristic assigned to things by humans.
Properties are only known via attributes.

State variable
(attribute function)

A function which assigns to an attribute of a thing
a value (out of a specific range) at a given time.

xk

Functional schema A set of attribute functions used for modeling
similar things.

X={xk}

State The vector of values of state variables of a thing
at a particular point in time.

s=<v1,…vn>,
s.xk=vk k=1..n

Event A change in the state of a thing (from s1 to s2) <s1, s2>
External event A change in the state of a thing as a result of an

action of another thing.

Internal event A change which arises due to an internal
transformation in the thing.

Transition laws The specification of what might and what might
not happen by transformations.

L:S→S, where
S is the possible
states of a thing

Stable state A state in which a thing remains unless forced to
change by an external event. A state of a
composite thing is stable if all its components are
stable.

L(s)=s

Unstable state A state that can be changed to another state by
internal events which are governed by transition
laws. A state of a composite thing is unstable if at
least one of its components is unstable.

L(s)≠s

Interaction Two things interact if at least one of them affects
the states the other progresses through. The
existence of interactions is manifested via mutual
properties (modeled as mutual attributes).

Environment of a
thing

All things that are not components of the thing
but may interact with its components.

278 I. Reinhartz-Berger, A. Sturm, and Y. Wand

We will assume that external events can affect a thing only when it or at least one
of its components is in a stable state. If all components are in unstable states, they all
undergo state transitions. Hence we term this the no interruption assumption as it
requires that state transitions will not be interrupted by external events.

Based on the no interruption assumption, we define input sensitive states:

Definition 1. An input sensitive state is a state that can change due to an occurrence
in the environment of the thing, i.e., due to an external event.

According to the no interruption assumption, an input sensitive state of a simple thing
must be stable. For a composite thing, in every input sensitive state at least one
component must be in a stable state (and can handle the external event).

We define a behavior of a thing as a sequence of external events which begins on
an input sensitive state and ends at a stable state of the thing.

Definition 2. Given an input sensitive state s1 and a sequence of external events <ei>,
a behavior is a triplet (s1, <ei>, s*), where s* is the first stable state the thing reaches
when it is in state s1 and the sequence of external events <ei> occurs. s1 is termed the
initial state of the behavior and s* – the final state of the behavior.

Note that for a given input sensitive state and a given sequence of external events, a
“swarm” of behaviors is possible as different combinations of events and interim
states are possible (leading to different interim transitions). However, we assume that
all simple things we deal with in practice will eventually reach some kind of stability
(stability assumption). In other words, we assume that a thing will always have a way
to complete processing a sequence of events, before starting processing the next
sequence of external events.

As an example, consider a warehouse, which is a (composite) thing that includes
workers, a manager, and inventory. External to the warehouse are clients who request
orders, and technicians, who may help fix different types of problems. Orders are
represented by mutual properties of the client and the warehouse employees (i.e., the
manager and/or the workers), as these are the two parties that exchange information
while ordering. The manager first decides on whether to approve orders or not. Orders
are then processed by workers. Orders can be canceled due to internal warehouse
problems or clients’ requests.

In the context of order processing, relevant state variables of the warehouse are
client input (indicating a new order, cancellation of order, or resumption of cancelled
order), description of the requested item, order size, inventory level, worker status
(processing an order or not), manager’s status (considering an order or not),
manager’s decision (approving or declining the order), and the outcome of worker
actions related to orders (e.g., successfully completed, canceled, and failed).

Each state in the warehouse is defined in terms of values of state variables. Two
examples of such definition are given in Table 2. The "Ready to Receive Orders"
state is stable: the warehouse will not change its state as long as no external event
occurs. When the external event "client order arrives" occurs, the warehouse will
change its state to "Request is being Created". This change will be followed by more
changes of states, depending on internal laws and occurrences of additional external
events.

Three possible behaviors of the warehouse are depicted in Figure 1. Two behaviors
differ due to internal laws: in the first behavior the client's request is fully satisfied,

 External Variability of Software: Classification and Ontological Foundations 279

while in the second behavior the warehouse fails to supply the requested item, due to
internal problems (e.g., lack of inventory). The third behavior differs from the first
two due to an additional external event that occurs before the whole warehouse
reaches a stable state. Note that the time when the second event, "client cancels",
occurs is important, as according to the no interruption assumption, at least one of the
warehouse’s components should be stable in that time. In other words, the client can
cancel an order only when a worker is available to receive this request. Handling this
sequence of the two events, the warehouse eventually reaches a stable state, following
the stability assumption.

Table 2. Definition of two states in the Warehouse example

State
Variable

manager
status

manager
decision

worker
status

worker
outcome

requested
item

order
size

inventory
level

client
input

State

Ready
to
Receive
Orders

'available' 'none' 'available' 'none' null null L 'none'

Request
is being
Created

'notified' 'none' 'available' 'none' item_id q>0 L 'ordering'

Fig. 1. Possible behaviors of order processing in a warehouse (text before and after arrows
represents states, arrows represent external events)

Note that the behaviors in Figure 1 may seem similar or different depending on the
point of view. The two first behaviors, a and b, for example, can be considered similar
if we are only interested in the ability to react to all ordering events generated by
clients, independent of the outcome (order is supplied or canceled).

We turn now to the definitions of application domains and applications.

Definition 3. An application domain (a domain for short) is a set of things where the
states or the behaviors of these things are of interest for some stakeholders.

Definition 4. Given a domain D, an application over the domain D is a sub-set of
behaviors of interest in the domain.

Consider the warehouse as a domain. Examples of applications are order processing,
billing, and order delivery. Examples of states, external events, and behaviors in an

280 I. Reinhartz-Berger, A. Sturm, and Y. Wand

order processing application are depicted in Figure 1. A billing application may be
interested in other behaviors, such as paying by cash and paying by credit card.

Applications over the same domain can be described at various levels of
abstraction. The right choice of abstraction can enable handling wide domains and
comparing different behaviors. In the warehouse example, we can define an
application that refers only to whether the order is handled or not, while another
application can refer to this aspect as well as to whether the order is successfully
processed or not (the second case will require more state variables than the first one).
We denote by XD the state variables of the domain and by XA – the sub-set of state
variables of the domain that affect or are affected by behaviors in application A.

3 Comparing Application Behaviors – The Similarity Anchor

In order to explore ways to compare applications, we first define similarity between
behaviors. Variability will be viewed as the opposite of similarity. We will
operationalize similarity by asking the question: can a given behavior be substituted
by another and to what extent. The rationale for this approach is that the purpose of
analyzing artifacts for their similarity is to examine whether one can be used instead
of the other, at least in some circumstances. In the same vein, variability will address
the limits of when one application behavior can be substituted by another.

While comparing applications (or particular behaviors), we will assume that they
are defined over the same domain (the union of the application domains). However, in
order to compare application behaviors, it is not enough that the applications are both
over the same domain. It should also be possible to compare their states.

Definition 5. We will say that A1 and A2, which are defined over the same domain D,
are state-comparable if and only if their sets of state variables are not disjoint, i.e.,
XA1∩XA2≠∅.

In the following, we will assume that A1 and A2 are state comparable. Furthermore,
A1 and A2 may be the same application and then we will compare different behaviors
of that application.

The comparison of behaviors will be in terms of states (initial and final ones) and
external events. Since external events are defined as occurrences in the domain and
the two state-comparable applications are defined over the same domain, we will
define similarity of external events in terms of equality. In other words, two external
events are similar if they appear to be the same in the application domain.

Similarity of states is defined in terms of equivalence with respect to a set of state
variables. The choice of state variables manifests the view of interest, as formalized in
the following definitions.

Definition 6. Let s and t be states in A1 and A2, respectively, and X be a set of state
variables common to the two applications (∅≠X⊆XA1∩XA2). We will say that s and t
are equivalent with respect to X, iff ∀x∈X s.x = t.x.
Notation: ~ . X will be termed the view of interest.

State equivalence is actually an equivalence relationship, i.e., it is (1) reflexive: ~ ,
(2) symmetric: ~ → ~ , and (3) transitive: ~ ∧ ~ → ~ .

 External Variability of Software: Classification and Ontological Foundations 281

As an example, consider the two following states of the warehouse (Figure 1):

From an inventory point of view, these states are equivalent: both do not change
the inventory level. However, from a client point of view, these states may be
different, since in the left case the client remains with the wish to receive the
requested item, while in the right case the client gave up this opportunity (by an
explicit cancellation request). Thus, in the client's view of interest these states cannot
be considered equivalent.

4 Classifying External Variability

We now turn to using the similarity of states and external events as defined above to
the identification of the types of differences between behaviors. In principle, for an
external observer of a system a behavior is defined in terms of three elements: an
initial state, a set of external events, and a final state. Hence, when comparing two
behaviors, there are eight possible cases, where for two given behaviors each of the
three elements can be the same or different. Table 3 summarizes these classes of
variability and exemplifies them. All these variability classes are identified with
respect to a specific view of interest, X, which reflects and specifies an external point
of view of some stakeholders. Examples of such views of interest are given in the
right column of each row. The differences between the examples in each row of the
table appear in bold. Note that for completeness we specify in this table all categories
of variability, even when the degree of similarity is very low (e.g., in row 7) or there
is no similarity (i.e., in row 8). Such cases can still be useful in indicating that two
applications behave completely differently with respect to some views of interest and
some behaviors.

The aforementioned analysis addressed the comparison of two specific behaviors.
We now turn to comparing applications. This requires taking into account many
possible behaviors. We therefore need to define similarity measurements that take
into consideration all the behaviors of interest. Such measurements can be used to
indicate the degree to which one application can be used instead of the other.

Different approaches have been suggested for evaluation of reusability of artifacts,
especially in the area of software product line engineering (e.g., [13]), and for
estimating the effort required for developing particular systems from reusable artifacts
(e.g., [4]). The development of reusable artifacts might be a very demanding task that
requires wide knowledge in the application domain and analysis at high abstraction
levels. Here we suggest an approach based on measuring the similarity of two
particular (state comparable) applications. Performing such measurements on
different applications in the domain, can be the first step in identifying commonality
and variability of the domain and defining its scope.

282 I. Reinhartz-Berger, A. Sturm, and Y. Wand

Definition 7. Let A1 and A2 be two applications and b a particular behavior in A1. We
define the similarity of the application A1 and A2 with respect to the behavior b, a
view of interest X, and a variability class c, as sim(A1, A2| b, X, c) = 1 if there exists a
behavior of A2, b', such that b and b' are in the same variability class c with respect to
the view of interest X. sim(A1, A2| b, X, c) = 0 otherwise.

Table 3. External variability classes in application behaviors

s1 <ei> s* Class Name Examples Explanation of the Examples
1. ~ = ~ Completely

similar
behaviors

View: orders are handled*.
Result: The behaviors are
completely similar.

2. ~ ≠ ~ Similar
cases and
responses,
different
interactions

View: orders are successfully
processed.
Result: The order is processed
even though the events are
different.

3. ~ = Similar
triggers,
different
responses

View: the warehouse is ready to
receive orders.
Result: Although having the
same start and interactions, the
behaviors end differently.

4. ~ ≠ Similar
cases,
different
behaviors

View: the warehouse is ready to
receive orders.
Result: Behaviors start similarly,
but different sets of events yield
different responses.

5. = ~ Different
cases,
similar
behaviors

View: orders are handled.
Result: Behaviors end similarly
with the same set of events
occurring at different initial
states

6. ≠ ~ Different
triggers,
similar
responses

View: orders are handled.
Result: Behaviors end similarly
with different sets of events
occurring at different initial
states.

7. = Different
cases and
responses,
similar
interactions

View: the warehouse receives
client orders.
Result: Behaviors react to the
same set of events that arrives at
different initial states and yields
different responses.

8. ≠ Completely
different
behaviors

View: the warehouse handles
ordering processes.
Result: The behaviors react to
different sets of events that
arrive at different initial states
and yield different responses.

* Here and in the following – “handled” mean that the request has been processed, whether ending
successfully or not.

 External Variability of Software: Classification and Ontological Foundations 283

Since the different behaviors and different variability classes may have different
importance to some stakeholders, we enable the association of weights to behaviors
(bwi) and to the variability classes (vcwk, k=1,...,8) to reflect their importance; ∑| | =1 and 0≤vcwk≤1. The different weights can be assigned in discussion
between the analyst and the stakeholders to mirror the customer preferences.

Definition 8. The similarity between application A1 and application A2 with respect to
the view of interest X takes into consideration the highest similarity of the different
behaviors in the various variability classes. Formally, this is defined as:

sim(A1, A2| X) = ∑ , | , , | |

Note that similarity as defined above is not a symmetric relationship, meaning that the
similarity between A1 and A2 may be different than the similarity in the other
direction (for example, when the functionality of one application completely includes
the functionality of the other). In the next section, we demonstrate the application of
the proposed framework in general and the use of the similarity metric between
applications in particular in the context of feasibility studies in system development.

5 Framework Usage: Conducting Feasibility Studies

The purpose of the feasibility study in system development is to analyze the strengths
and weaknesses of possible solutions to given problems [22]. In its simplest form, the
two criteria to judge feasibility are cost required and value to be attained. Operational
feasibility is a measure of how well a given system satisfies the requirements
identified in the requirements analysis phase [3]. Existing operational feasibility
techniques are limited in explaining to customers the preferred or recommended
solutions and lack the ability to examine the behaviors of these solutions at different
points of view (manifested at different level of granularity of analysis).

To overcome the above limitations, we suggest using our external variability
classification framework to conduct a formal operational feasibility analysis in a 5-
stage process, depicted in Figure 2.

As a first stage, the analyst has to define, together with the customer who requests
the system, the view of interest. This can be done by choosing a sub-set of the already
revealed state variables of the domain, to reflect the requirements and preferences of
the customer. As the domain may be specified by a large set of state variables, some
of which have not been explored while developing previous applications in the
domain, the view of interest (X) may refer to new state variables relevant to the
domain and, thus, both X and XD may be modified while defining the exact
requirements for the requested system (stage 2).

After defining the view of interest, the requirements for the system to be developed
need to be elicited and collected, taking into consideration the view of interest. As
these requirements are usually not described using the concepts of states, events, and
behaviors, the application of our approach would require that the information about
the applications will be translated to these concepts. We do not deal with this issue
here, but we demonstrate how such translation can be done for one common method
used in requirements modeling – use case modeling. The translation from other
requirements engineering approaches is a subject for future research.

284 I. Reinhartz-Berger, A. Sturm, and Y. Wand

Fig. 2. Using the suggested classification framework for conducting operational feasibility
analysis

In use case modeling, different templates exist for documenting required scenarios
or desired behaviors of an application. We exemplify our approach using a simplified
template with three fields: pre-conditions that specify the initial state of the scenario,
interactions that correspond to the sequences of external events, and post-conditions
that describe the final state when the scenario completes.

As an example, consider requirements for a warehouse application that includes
ordering and inventory management. The system is required to enable receiving
orders and cancellations only through phone or fax. The warehouse worker enters
incoming orders and cancellations into the system. The warehouse cannot process in
parallel more than 10 orders. Inventory can be updated only if no orders are being
processed. The state variables of the domain include the warehouse status, the way
orders are requested (by phone, by fax, or via the internet), the way order cancellation
is requested, description of the requested item, order size, inventory level, processed
orders, opened orders, required payment, payment type, and requested delivery
details. However, according to requirements of the system customer1, the relevant
functionality is ordering items, canceling orders, and inventory update. Consequently,
the relevant state variables selected in the first stage – define the view of interest – are:

X={warehouse status (open/closed), inventory level, opened orders, order status, order request
type (phone/fax/internet), cancellation request type (phone/fax/internet)}

In the second stage – define requirements – a use case model, such as the one
depicted in Figure 3, is created. This model, denoted “Requirements Model”, reflects

1 The word "customer" is used in this section to depict the orderer of the requested system,

while the word "client" is used for describing a type of a user in the warehouse example.

 External Variability of Software: Classification and Ontological Foundations 285

the requirements from the proposed system. Additional relevant state variables may
be extracted from the use case templates (e.g., notification in our example).

In the third stage – define external capabilities – which can also be performed via
use case modeling, the analyst is required to model the external behaviors of systems
that (partially) satisfy the requirements. This can be done by focusing on the view of
interest (X) only, thus minimizing effort in conducting the feasibility study.
Alternatively, the analysis can be conducted with respect to the full set of state
variables of the domain (XD), in order to provide a more in-depth analysis. Such
analysis can support the selection of appropriate view of interest. The second
possibility also supports selecting between applications that similarly satisfy the
requirements, but are different in aspects that were not included in the more limited
chosen view of interest, which reflects the customer’s minimal requirements.

Fig. 3. The requirements model of an ordering and inventory update application in the
warehouse domain

As an example for this stage, consider adapting an existing OrdSys, with the
following capabilities. OrdSys handles orders received directly from the client via the
internet. Orders can be received at any time, even when the warehouse is closed. This
will enable the warehouse to begin preparing the order (e.g., replenishing inventory).
However, the orders will be processed for fulfillment only if a signed confirmation
with the same order details arrives by fax within three days of the original order. If the
inventory is not sufficient for fulfilling the order, the order details are stored for future
fulfillment. No cancellation by the client is allowed, but the warehouse worker can
cancel orders, even if they have been already initially processed (and the client will be
reimbursed if payment has been already made). The system does not have the
functionality to update the inventory status. The model of OrdSys is depicted in
Figure 4. Note that the scenarios refer to the included or extending use cases.

286 I. Reinhartz-Berger, A. Sturm, and Y. Wand

Scenarios b1' and b2', for example, refer to the included use cases through the
additional “received fax” event in the interactions section.

In the fourth stage – analyze capabilities of the proposed solution – the solution as
specified in stage 3 is examined with respect to the view of interest (X) and the
(functional) requirements that were specified in stage 2 (via use cases). The analysis
is done in terms of the predefined variability classes with respect to the specified view
of interest.

Fig. 4. The use case model of OrdSys

An example of an outcome of this stage for OrdSys is given in Figure 4. We
weighted the different behaviors to reflect the customer’s opinion that ordering is the
most important functionality (received 0.5 for all its scenarios), then canceling
(receiving the overall weight of 0.3), and finally the inventory update (receiving the
overall weight of 0.2). Perceiving the variability classes as providing some kind of
estimate for the effort required for changing the system in order to satisfy the given
requirements model with a certain solution, we assigned relative weights to the
variability classes as follows. The completely similar behaviors class (c1) – 1,
behaviors which differ only in their (external) interactions (c2) – 0.75, behaviors
which differ only in some aspects that refer to cases or responses (c3, c5, and c7) –
0.25, and behaviors which differ in both external interactions and cases or response
(c4, c6, and c8) – 0 (as they require too much effort to be considered similar for
feasibility study). Table 4 presents all the relevant similarity calculations. Note that
we compared only behaviors that are comparable according to a specific view of
interest, namely behaviors that refer to the same functionality.

The resultant overall similarity measurement, which range between 0 and 1, may
indicate on the effort required in order to modify a system to fulfill the given
requirements. Thus, the fifth stage of the suggested process – compare possible
solutions – enables examining other options and comparing them with respect to their

 External Variability of Software: Classification and Ontological Foundations 287

similarity measurements to the requirements model. Based on the outcome of this
stage, the preferable solution is selected and further adapted and modified to fulfill all
the given requirements.

Table 4. Evaluating OrdSys with respect to the given Requirements model

Behavior in
Req.

Behavior
Weight

Behavior
in OrdSys

Similarity Concerns Sim

b1 –
successful
ordering

0.25 b'1 Different triggers (both initial state and external
events), similar responses – belong to c6

0.25

b'2 Completely different behaviors (although dealing
with receiving orders and thus may seem similar
from some points of view) – belong to c8

b'3 Different cases and responses, but similar
interactions, assuming that the source of the
events is of no importance – belong to c7

b2 –
unsuccessful
ordering

0.25 b'1, b'2 Completely different behaviors (although dealing
with receiving orders and thus may seem similar
from some points of view) – belong to c8

0.25

b'3 Different cases and responses, although similar
interactions – belong to c5

b3 –
successful
cancellation

0.15 b'4 Completely similar behaviors – belong to c1 1
b'5 Different cases and responses, but similar

interactions – belong to c7
b4 –
cancellation
of completed
orders

0.15 b'4 Different cases and responses, but similar
interactions – belong to c7

0.25

b'5 Similar triggers, but different responses belong to
c3

b5 –
successful
inv. update

0.1 --- 0

b6–
unsuccessful
inv. update

0.1 --- 0

Overall 0.3125

6 Summary and Future Work

The prevalence of variability in various engineering fields indicates that it is
important to further understand and formalize it for software-based systems.
Presently, in software engineering, formalization of variability in general and external
variability in particular usually reflects technical or ad-hoc considerations. To
formally define and analyze external variability which is tied to functional
requirements, we suggest a framework based on an ontological model of application
domain in terms of states and events. The approach enables us to operationalize the
notion of a stakeholder view and to reflect the degree of similarity among
applications. Based on the assumption that if fewer differences exist, less effort is
needed to adjust a system to the requirements, we suggested how this framework can
be applied during an operational feasibility study.

We consider this work the first step towards a more complete approach and plan to
extend the work in several ways. First, to test usability, we will conduct practical case

288 I. Reinhartz-Berger, A. Sturm, and Y. Wand

studies. Second, testing usefulness would require empirical work, such as
experimenting with the guidance provided by the framework to identify similarities
and differences between applications; comparing the measures of similarity calculated
analytically to answers provided by domain experts as to how willing they would be
to substitute one application for the other; and comparing the average similarity value
to application adaptation effort as assessed by experts. Third, uses of the approach
need to be developed, such as the evaluation of variability modeling methods. Fourth,
the framework can be extended to include additional behavioral considerations such
as the times and order of external events. Finally, it might be possible to extend the
approach to include (some) aspects of internal variability, reflecting structural and
non-behavioral characteristics (e.g., variability related to quality [12]).

References

1. Asikainen, T., Männistöa, T., Soininena, T.: Kumbang: A domain ontology for modelling
variability in software product families. Advanced Engineering Informatics 21(1), 23–40
(2007)

2. Becker, J., Delfmann, P., Knackstedt, R.: Adaptive Reference Modeling: Integrating
Configurative and Generic Adaptation Techniques for Information Models. In: Becker, J.,
Delfmann, P. (eds.) Reference Modeling – Efficient Information Systems Design through
Reuse of Information Models, pp. 27–58. Physica-Verlag HD, Heidelberg (2006)

3. Bentley, L., Whitten, J.: System Analysis and Design for the Global Enterprise, 7th edn.
(2007)

4. Böckle, G., Clements, P., McGregor, J.D., Muthig, D., Schmid, K.: A Cost Model for
Software Product Lines. In: van der Linden, F.J. (ed.) PFE 2003. LNCS, vol. 3014, pp.
310–316. Springer, Heidelberg (2004)

5. Brocke, J.: Design Principles for Reference Modelling - Reusing Information Models by
Means of Aggregation, Specialisation, Instantiation, and Analogy. In: Fettke, P., Loos, P.
(eds.) Reference Modeling for Business Systems Analysis, pp. 47–75 (2007)

6. Bunge, M.: Treatise on Basic Philosophy, Ontology I: The Furniture of the World, vol. 3.
Reidel, Boston (1977)

7. Bunge, M.: Treatise on Basic Philosophy, Ontology II: A World of Systems, vol. 4. Reidel,
Boston (1979)

8. Clements, P., Northrop, L.: Software Product Lines: Practices and Patterns. Addison-
Wesley, Reading (2007)

9. Coplien, J., Hoffman, D., Weiss, D.: Commonality and Variability in Software
Engineering. IEEE Software 15(6), 37–45 (1998)

10. Czarnecki, K., Eisenecker, U.W.: Generative Programming - Methods, Tools, and
Applications. Addison-Wesley, Reading (2000)

11. Gomaa, H.: Designing Software Product Lines with UML: From Use Cases to Pattern-
Based Software Architectures. Addison-Wesley Professional, Reading (2004)

12. Halmans, G., Pohl, K.: Communicating the Variability of a Software-Product Family to
Customers. Software and Systems Modeling 2(1), 15–36 (2003)

13. Her, J.S., Oh, S.H., Rhew, S.Y., Kim, S.D.: A framework for evaluating reusability of core
asset in product line engineering. Information and Software Technology 49(7), 740–760
(2007)

14. Jacobson, I., Griss, M., Jonsson, P.: Software Reuse-Architecture. Process and
Organization for Business Success. ACM Press, New York (1997)

 External Variability of Software: Classification and Ontological Foundations 289

15. Kim, S.D., Her, J.S., Chang, S.H.: A Theoretical Foundation of Variability in Component-
Based Development. Information and Software Technology 47, 663–673 (2005)

16. Moon, M., Yeom, K., Chae, H.S.: An Approach to Developing Domain Requirements as a
Core Asset Based on Commonality and Variability Analysis. IEEE Transactions on
Software Engineering 31(7), 551–569 (2005)

17. Pohl, K., Böckle, G., van der Linden, F.: Software Product Line Engineering: Foundations,
Principles, and Techniques. Springer, Heidelberg (2005)

18. Svahnberg, M., van Gurp, J., Bosch, J.: A taxonomy of variability realization techniques.
Software – Practice and Experience 35(8), 705–754 (2006)

19. Wand, Y., Weber, R.: On the deep structure of information systems. Journal of
Information Systems 5(3), 203–223 (1995)

20. Wand, Y., Weber, R.: An Ontological Model of an Information System. IEEE Transactions
on Software Engineering 16, 1282–1292 (1990)

21. Weiss, D., Lai, R.: Software Product-Line Engineering: A Family-Based Software
Development Process. Addison-Wesley, Reading (1999)

22. Young, G.I.M.: Feasibility studies. Appraisal Journal 38(3), 376–383 (1970)

Context Schema Evolution

in Context-Aware Data Management�

Elisa Quintarelli, Emanuele Rabosio, and Letizia Tanca

Politecnico di Milano, Dipartimento di Elettronica e Informazione
{quintare,rabosio,tanca}@elet.polimi.it

Abstract. Pervasive access – often by means of mobile devices – to the
massive amount of available (Web) data suggests to deliver, anywhere
at any time, exactly the data that are needed in the current specific
situation. The literature has introduced the possibility to describe the
context in which the user is involved, and to tailor the available data on
its basis. In this paper, after having formally defined the context schema
– a representation for the contexts which are to be expected in a given
application scenario – a strategy to manage context schema evolution is
developed, by introducing a sound and complete set of operators.

1 Introduction

The current technological scenario is characterized by an extremely large variety
of information sources, which constitutes an unprecedented opportunity for the
users but at the same time risks to overwhelm them, especially when portable
devices with limited memory are used. One viable solution is to tailor the data
on the basis of the user context, that is, a set of properties characterizing the
user, the system and the environment the user is interacting with. This set of
characterizing parameters is modeled by means of context models (see [1,5,14]
for surveys), allowing the reduction of large datasets on the basis of some per-
spectives (dimensions) that describe the situation (i.e., the context) in which
the user is involved. We call the activity of selecting the relevant information for
a target application, in a specific context, data tailoring [6], where the system
allows a user to access only the view (over a global database schema) that is
relevant for his/her context.

We use the expression context model to indicate the set of constructs and
constraints to represent the useful dimensions of context and their values. A
context schema exploits the constructs provided by a context model to describe
the set of dimensions and values relevant for a certain application. Finally, a
context instance, or simply a context, represents a particular situation, described
according to a context schema.

Running Example: we consider a company offering services of video on
demand and reservation of cinema tickets, relying on a global database schema.
� This research is partially supported by the European Commission, Programme

IDEAS-ERC, Project 227977-SMScom.

M. Jeusfeld, L. Delcambre, and T.W. Ling (Eds.): ER 2011, LNCS 6998, pp. 290–303, 2011.
c© Springer-Verlag Berlin Heidelberg 2011

Context Schema Evolution in Context-Aware Data Management 291

Useful context dimensions are: the kind of user (e.g., adult, teenager or family
with children), the interest topic (e.g., cinemas or movies), the situation (e.g.,
alone or with friends), the time (e.g., daytime or night) and the location. Figure
1(a) shows the context schema of this example, formally described in Section 3.

The dimensions for data tailoring depend on the application requirements,
that are intrinsically dynamic and thus can evolve; the evolution of requirements
can be due to various reasons, including changing business needs or market and
technology developments [16], therefore the context schema used to perform the
tailoring process should be adapted in a way as seamless as possible to this
evolution. Consider the movie example above. The company might change its
business policy, deciding to remove the distinction between the daytime and
evening schedules: this would lead to deleting the time dimension in the context
schema. Again, at a certain point marketing researches could reveal that adult
customers and teenagers show the same behavior, thus making the distinction
between them useless: the designer may simplify the representation of the user
type, merging the two categories adult and teenager together. The above changes
may become out-of-synch w.r.t. the previously envisaged contexts, known by the
users or by the context-aware applications at a given moment; thus the system
must be able to respond to the applications in a seamless way, that is, a way as
similar as possible to the context-aware behavior the applications expect. This
problem is very similar to a problem of database schema evolution, where the
queries designed to run on old schema versions should be maintained to be valid
“through” the database schema changes. However, we will show in this paper
that specific problems encountered in the scenario of context schema evolution
cannot be solved within that of classical schema evolution.

Context schema evolution is relevant when an update of the available context-
aware data is necessary, as well as when the user (or application) context changes
and the system must provide the new context-aware portion of data. If the con-
text schema has evolved, in both situations it may happen that the context
detected by the user’s device conforms to an obsolete context schema; in or-
der to deliver the appropriate data, the system has to determine the context
which (i) conforms to the new schema and (ii) is the closest to the one detected
by the user’s device. Studying context schema evolution is also preliminary to
understanding context sharing, a need that may arise in P2P scenarios.

This work proposes strategies to support the evolution of context schemas in
a semi-automatic way. The hierarchical context model of [6] is re-formulated in
terms suitable to deal with context schema evolution; then, a set of operators to
evolve context schemas is introduced along with the necessary modifications to
make the instances compliant with the new schemas. Soundness and complete-
ness properties are studied. The paper is organized as follows. Section 2 describes
the related work, while Section 3 introduces the employed context model. Sec-
tion 4 outlines a framework for managing context schema evolution and Section
5 formalizes the evolution operators. Finally, Section 6 concludes the paper.

292 E. Quintarelli, E. Rabosio, and L. Tanca

2 Related Work

The problem of context schema evolution has not been much explored in the
literature yet. An exception is [11], which defines a general framework supporting
the representation and management of context information based on the notions
of profile schema and profile instance, and sketches a method to manage profile
schema and instance evolution which however is very onerous for the designer.

Schema evolution has been studied in various fields: for example, in the web
domain [21,7] propose two frameworks to manage the evolution of conceptual
schemas. However, such an issue is typical of the database research area: in
object-oriented [3,12] and relational [10,9] databases, ontologies [17,18] and XML
[19,13], the focus is on the introduction of operators able to modify the entities
that, in the specific scenarios, are the objects of the evolution and on the reac-
tions the various systems have to enact to comply with the performed changes.
Here we discuss the proposals on XML evolution since they are the most rel-
evant for our work, based on a hierarchical context model that can be simply
implemented in XML. Paper [20] defines some evolution primitives, without
tackling schema update problems, while [2,4,8] introduce updating primitives
for XML documents in order for efficient incremental validation with respect
to a fixed schema. These approaches consider changing instances w.r.t. to fixed
schemas, whereas our problem requires to study instance evolution when the
schema changes. The evolution of XML DTDs is considered by Su et al. [19],
who define a set of modification primitives; for each of them preconditions and
results of the application are described. Moreover, the DTD modification primi-
tives are also associated with the changes necessary to guarantee that the XML
documents remain valid w.r.t. the modified DTD. Also Klettke [15] introduces
evolution operations to evolve schemas, this time represented through a concep-
tual model; changes are then propagated to the XML documents. While these
proposals provided us with interesting intuitions, they do not supply a formal
framework, which is one of our objectives in this paper.

A formal characterization of operators is introduced by Guerrini et al. in [13].
They propose modification primitives for XSD describing their preconditions
and semantics; algorithms for partial revalidation and adaptation of documents
dependent on the applied primitives are also defined. We were inspired by this
approach, however it is, on the one hand, too general to take into account the
specific semantics of context schemas and instances, and on the other hand, the
proposed preconditions and semantics — as well as the related document adap-
tation algorithms — should be heavily revised to comply with the requirements
of context schema evolution.

3 Context Model

We formalize the context model of [6], called Context Dimension Tree (CDT),
for the purpose of context schema evolution. The CDT model represents con-
text schemas as trees with nodes of two kinds: dimensions (black nodes) and their

Context Schema Evolution in Context-Aware Data Management 293

values, or concepts (white nodes). A visual representation of a CDT for the movie
scenario is shown in Figure 1(a). Dimensions and concepts can have attributes
(square nodes), that are parameters whose values are provided by the users at
execution time. A dimension can be connected to at most one attribute (e.g.
the zone id), and in this case it does not have any concept child; the attribute
is used when it is impractical to enumerate all the dimension children. Concept
attributes are used to further specify a concept, for instance, to indicate the age
of a teenager.

The set N of node identifiers is thus partitioned into two subsets: concept node
identifiers (N ◦) and dimension node identifiers (N •). A is the set of attribute
identifiers and L a set of strings. All these sets are pairwise disjoint. We start
by defining the context semischema:

Definition 1 (Context semischema). A context semischema is a tuple S =
(N, E, r, Att, α, λ) such that:

(i) N ⊆ N , with N = N◦ ∪N•, N◦ ⊆ N ◦ and N• ⊆ N •. E ⊆ N ×N is a set
of directed edges, r ∈ N is a node identifier such that (N, E) is a tree with
root r and Att ⊆ A.

(ii) Every generation contains node identifiers of the same type and differ-
ent from the immediately previous and following generations, i.e., for each
(n1, n2) ∈ E, n1 ∈ N◦ ⇒ n2 ∈ N• and n1 ∈ N• ⇒ n2 ∈ N◦.

(iii) α : Att → N is a function assigning a node identifier to each attribute. For
n ∈ N•, if n is a leaf then |α−1(n)| = 1, otherwise α−1(n) = ∅.

(iv) λ : N ∪Att → L is a function assigning a unique label to node and attribute
identifiers. Two distinct siblings cannot have the same label, i.e for all
(n1, n2) ∈ E and (n1, n3) ∈ E such that n2 �= n3 it holds that λ(n2) �=
λ(n3). Two distinct attributes associated with the same node cannot have
the same label, i.e. if a1 ∈ α−1(n), a2 ∈ α−1(n) and a1 �= a2 then λ(a1) �=
λ(a2).

The set E of edges constitutes a binary relation on the set of node identifiers;
its transitive closure is indicated by E+.

Definition 2 (Context schema). A context schema is a context semischema
(N, E, r, Att, α, λ) in which r is a concept node and λ(r) = context.

In an instance, i.e., a context, the value of at least one dimension must be speci-
fied, possibly along with a value for its attributes (if any). A context instance too
can be represented as a tree, for example the instance (of the schema in Figure
1(a)) depicted in Figure 1(b) describes an adult aged 35, who is currently with
friends, interested in romantic comedies, at night time, located in a zone whose
ZIP code is 20133.

Let V = L ∪ {ALL}, where ALL is a special string indicating that no values
have been provided. Formal definitions about instances are:

Definition 3 (Context semi-instance). A context semi-instance is a pair
I = (S, ρ) where: (i) S = (N, E, r, Att, α, λ) is a context semischema such that

294 E. Quintarelli, E. Rabosio, and L. Tanca

context

user situation
zone

teenagerfamily
With

Children

alone withFriends

movie

interest_topic

cinema
zone_id

language

t_age

adult

a_age

comedy
horror

movie_genre

thriller

comedy_type

romantic_comedy
dramatic_comedy

time

daytime night

(a) Context schema

context

user situation zone

withFriends

interest_topic

movie

comedy

movie_genre

zone_id [20133]adult

a_age [35]

language [Italian]

romantic_comedy

comedy_type

time

night

(b) Context instance

Fig. 1. Context schema and an instance related to the movie running example

every dimension node identifier with no attributes has exactly one child, i.e.,
for each n ∈ N• such that |α−1(n)| = 0, there is exactly one n′ ∈ N such that
(n, n′) ∈ E. (ii) ρ : Att → V is a function assigning a value to the attribute
identifiers of S.

Definition 4 (Context instance). A context instance is a context semi-
instance I = (S, ρ) such that S is a context schema.

Definition 5 (Schema-instance relationship). Let I = (SI , ρI) be a context
instance, where SI = (NI , EI , rI , AttI , αI , λI), and let S = (NS , ES , rS , AttS , αS ,
λS) be a context schema. I is said to be an instance of S iff there exist an in-
jective function hN : NI → NS, and an injective function hA : AttI → AttS
satisfying the following conditions:

(i) hN (rI) = rS

(ii) for all (n1, n2) ∈ EI , (hN (n1), hN (n2)) ∈ ES

(iii) for all n ∈ NI , a ∈ AttS if αS(a) = hN(n) then there exists a1 ∈ α−1
I (n)

such that a = hA(a1)
(iv) for all n ∈ NI it holds that λI(n) = λS(hN (n)), and for all a ∈ AttI it

holds that λI(a) = λS(hA(a))

Note that both context schemas and their instances can be represented as XML
documents, the latter containing a subset of the elements of the former.

In the rest of the paper, we indicate by S the set of all possible context
schemas, SS the set of all possible semischemas, I the set of all possible context
instances and SI the set of all possible semi-instances. The components of a
context semischema SX are denoted by (NX , EX , rX , AttX , αX , λX), while those
of a semi-instance IX by (SIX , ρIX). Given a context semischema S = (N, E,
r, Att, α, λ) and a node identifier n ∈ N , father(S, n) indicates a node n′ ∈ N
such that (n′, n) ∈ E. In addition, the following shorthands denote useful sets:
children(S, n) = {n′ ∈ N : (n, n′) ∈ E}, siblings(S, n) = {n′ ∈ N : n′ �=
n ∧ father(S, n) = father(S, n′)}, desc(S, n) = {n′ ∈ N : (n, n′) ∈ E+} and
d̃esc(S, n) = desc(S, n) ∪ {n}.

Context Schema Evolution in Context-Aware Data Management 295

4 Framework for Context Evolution

We describe a reference architecture for context schema evolution for the pur-
pose of data tailoring, relying on a global database1 managed by a server. There
are three actors: the user device, the server and the designer. The device pro-
vides the server with the current context instance and requests the related data,
while the server manages the context schema and global data schema, and per-
forms all the activities needed to administer the context, including data tailoring
and evolution management. Data tailoring consists in associating every context
instance with the view representing the relevant data for that context; this is
realized by assigning a view to each concept node and to each dimension node
with attribute, and then appropriately combining these views [6]. During system
life-time, the designer may modify the context schema, but only by using certain
evolution operators defined below; the sequence of the modifications is logged.
The application of the operators modifies the context schema, obliging the de-
signer to redefine the views related to some nodes. When the context schema
changes, or when the associations between context instances and views, or the
global database schema, vary over time, it is reasonable to suppose that the con-
text/view associations be kept updated only for the instances of the most recent
schema. Thus, it is not possible to deal with obsolete instances: if the device
communicates an outdated context instance, the server must convert it into an
instance of the current schema relying on the information contained in the log.
The evolution strategy proposed in the next sections is thought to enable the
designer to use the appropriate schema update operators, according to the effect
he/she desires on the instances: in this way, he/she will also be aware of the
nodes affected by an update. After an evolution from a context schema to a new
one the designer has only to revise or add the (few) views related to the nodes
that are involved in that operation, yielding a high degree of flexibility.

5 Evolution Operators

We now describe the evolution operators that the designer uses to update the
context schema, along with the transformations that the instances undergo af-
ter the application of each operator. We first introduce the update operations :
each operation op is implemented by a schema evolution operator SUop and an
instance evolution operator IUop. The schema evolution operator describes the
features of the resulting schema in terms of the source one and of some other
parameters. The instance evolution operator adapts the instances to the new
schema, trying to preserve as much information as possible. The schema oper-
ators are characterized by a set of preconditions expressed through first-order
formulae.

Given a context schema SS and a context instance IS legal for SS , the exe-
cution of an update operation with input parameters p1, . . . , pn produces — if
1 Note that the fact that the database itself be centralized or not is irrelevant w.r.t.

this discussion.

296 E. Quintarelli, E. Rabosio, and L. Tanca

Table 1. Preconditions and semantics of Delete

Delete
SUDelete : S ×N → S
SUDelete(SS, n) = ST

– NT = NS \ d̃esc(SS, n)
– ET = ES \ {(n1, n2) ∈ ES : n2 ∈

d̃esc(SS , n)}
– rT = rS

– AttT = AttS \ {a1 ∈ AttS :

αS(a1) ∈ d̃esc(SS, n)}
– αT (a1) = αS(a1) if a1 ∈ AttT

– λT (n1) = λS(n1) if n1 ∈ NT ∪
AttT

IUDelete : S × S × I ×N → I
IUDelete(SS, ST , IS, n) = IT

– NIT = {n1 ∈ NIS : hN (n1) ∈
NT ∧ (n1 ∈ N•

IS ⇒ (�n2 ∈
children(SIS , n1))(hN (n2) = n))

– EIT = {(n1, n2) ∈ EIS :
(hN (n1), hN (n2)) ∈ ET ∧ (n2 ∈ N•

IS ⇒
(�n3 ∈ children(SIS , n2))(hN(n3) = n))}

– rIT = rIS

– AttIT = {a1 ∈ AttIS : hA(a1) ∈ AttT }
– αIT (a1) = αIS(a1) if n1 ∈ AttIT

– λIT (n1) = λIS(n1) if n1 ∈ NIT ∪ AttIT

– ρIT (a1) = ρIS(a1) if a1 ∈ AttIT

Preconditions
1) n ∈ NS , 2) n ∈ N◦

S ⇒ siblings(SS, n) = ∅, 3) n = rS

the preconditions are fulfilled — a new schema ST = SUop(SS , p1, . . . , pn) and a
new instance IT = IUop (SS , ST , IS , p1, . . . , pn).

In this paper we define atomic evolution operators, which have the following
features: i) soundness: every operator guarantees to produce a well-formed
context schema and instance and to maintain the consistency between context
instances and context schemas; ii) completeness: evolution operators allow to
evolve to any valid target context schema; iii) minimality: each atomic operator
cannot be obtained as combination of other atomic operators either on schemas
or on instances. The set of schema atomic operators is denoted by SOP, and the
set of associated instance operators by IOP. Moreover, our atomic operators can
be used as building blocks to obtain composed, high-level ones. In the following,
hN and hA denote the injective functions connecting the SIS component of the
source instance IS with the source schema SS .

5.1 Basic Atomic Evolution Operators

In the following we describe the first atomic operations, Delete and Insert. Due
to space reasons, Table 1 reports preconditions and semantics only of the Delete.

Delete: The operator SUDelete eliminates the subtree rooted in a node n
from the source schema SS . Since a dimension must have either an attribute
(when it is a leaf) or at least a concept child, SUDelete can be applied to remove
either a dimension node and its sub-tree, or a concept node — if it has at
least another sibling — and its sub-tree. The effect of SUDelete on an instance
is IUDelete, which eliminates from the instance the subtree rooted in the node
whose identifier corresponds to n in the function hN , if such a node is present;
moreover, if n is a concept, in order to not have a leaf dimension, in the instance
also the node corresponding to the father of n must be eliminated, together with
the edge connecting it with the node corresponding to n.

Context Schema Evolution in Context-Aware Data Management 297

Table 2. Application of Delete and Insert

1) Delete the subtree rooted in n = context/time
2) Insert, as a child of context/interest topic/movie, the semischema:

time

daytime night

context

user situation
zone

teenager
family
With

Children

alone

withFriends

movie

interest_topic

cinema
zone_id

language

t_age

adult

a_age

comedy
horror

movie_genre

thriller
comedy_type

romantic_comedy
dramatic_comedy

time

daytime

night

time
daytime

night

1

2

context

user situation zone

withFriends

interest_topic

movie

comedy

movie_genre

zone_id [20133]adult

a_age [35]

language [Italian]

romantic_comedy

comedy_type

time

night

1

Insert: Given a source schema SS , the operator SUInsert inserts a semischema
R as a child of a specified node identified by n. The identifiers contained in
the semischema must be different from the ones in SS , and the correct type
alternation among the generations must be preserved; moreover, the root of the
semischema must have a label different from the ones of the children of n, in
order to not introduce label conflicts. Since SUInsert does not alter the existing
nodes and attributes, the instances are not affected at all.

Example 1 (Atomic operations). Table 2 shows the application of the atomic
schema operators to the context schema of Figure 1(a) (left-hand side), and the
resulting modifications of the instance depicted in Figure 1(b) (right-hand side).
For readability reasons, in the figures we denote each node by means of its path
from the root, like in XPath.

Completeness of the Basic Atomic Operators. The set of basic atomic operators
is enough to express all the possible schema modifications, i.e., it is complete.
Our notion of completeness is similar to that in [3,19,13]. This notion is applied
only to schemas because the evolution of an instance is a possible consequence
of that of the schema and in general we do not apply the operators to change an
arbitrary context instance into another, arbitrary one; rather, instances must be
automatically updated when the schema changes, according to the meaning at-
tached by the designer to that change. For example, when the schema operations
on the left hand side of Table 2 are applied, the context instance representing
an adult interested in cinema is not influenced, and thus remains unchanged.

Theorem 1 (Completeness). Given two arbitrary context schemas S1 and S2,
it is possible to find a finite sequence of operators belonging to {SUInsert, SUDelete}
that transforms S1 into S2.

5.2 Methodological Considerations and Further Atomic Operators

Consider the schema and the instance obtained after the operations described
in Example 1. Suppose first that the designer deletes from the schema the nodes
adult and teenager — children of user —, triggering the removal of the user

298 E. Quintarelli, E. Rabosio, and L. Tanca

dimension from the associated instance; then, he/she inserts a new node person
under the same dimension user. According to the IUInsert semantics, the in-
stance remains unaltered, because the instance where IUInsert is applied now
does not carry any information about the new node. Nevertheless, such a se-
quence of changes might intuitively represent a “replace” operation, that is, in
the designer’s aims, the added node is intended as a substitute for both adult
and teenager; the sequence of deletions and insertions, though able to modify
the schema according to the designer’s intentions, did not modify the instance
as intended. Therefore it turns out that, even if {SUInsert, SUDelete} is enough
to achieve completeness, this set needs to be extended if the designer needs up-
dating operations inducing useful behaviors on the instances and not obtainable
as combinations of insertion and deletion. To cope with this problem and sim-
ilar ones, we add other atomic operators to SOP, and the corresponding ones
to IOP. The set of operators we are presenting has been determined according
to our intuition about the changes that may take place as consequences of the
dynamism of the requirements; therefore, it may be further widened.

Replace: The operator SUReplace substitutes a set of concept siblings {m1, . . . ,
mp} with a unique node labeled ; the new node carries all the attributes previ-
ously connected to the replaced nodes. The root cannot be replaced. The label
must not be in conflict with the labels of other possible siblings of {m1, . . . , mp},
and label conflicts must not arise neither among the children of the replaced
nodes (now all children of the new node) nor among the attributes of the re-
placed nodes (now all assigned to the new node). If an instance contains a node
corresponding to one of the replaced ones, IUReplace substitutes it with a new
node labeled . Note that this operator is atomic (and thus minimal), because
on instances IUReplace cannot be obtained by combining IUDelete and IUInsert.

ReplaceSubtreesWithAttribute: SURepSubWithAttr replaces all the sub-
trees rooted in the (concept) children of a dimension node identified by n with
an attribute labeled ; the application of SURepSubWithAttr indicates that the de-
signer deems the hierarchy underlying the dimension node no more interesting.
The operator IURepSubWithAttr updates an instance if it contains a node identifier
k corresponding to one of the children of n; in such a situation the subtree rooted
in k is replaced by the new attribute, whose value will be the label of k. This
operator is atomic for the same reason of the previous one. Table 3 shows the
application of these additional atomic schema operators to the context schema
obtained after the operations described in Example 1.

Let us now analyze Example 1 in more detail: at step 1, the subtree rooted
in the dimension named time is eliminated from the schema, thus causing the
same deletion on the instance. At step 2 a subtree identical — syntactically and
semantically — to the one that had been deleted is inserted under the concept
node movie; however, according to the IUInsert semantics, the instance remains
unaltered, because the instance where IUInsert is applied now does not carry any
information about the new subtree. Nevertheless, such a sequence of changes
might intuitively represent a “move” operation, that is, in the designer’s inten-
tion, the time information has probably become relevant only for those users

Context Schema Evolution in Context-Aware Data Management 299

Table 3. Application of Replace and ReplaceSubtreesWithAttribute

3) Replace the nodes {m1 = context/user/adult, m2 = context/user/teenager}
with a new node labeled
 = person
4) Replace the subtree rooted in n = context/interest topic/movie/movie genre

with an attribute labeled
 = genre

t_age

person
a_age

context

user situation
zone

family
With

Children

alonewithFriends

movie

interest_topic

cinema
zone_idlanguage

time

daytime
night

movie_genre

genre

3

4

a_age [35]

t_age [ALL]

context

user
situation zone

withFriends

interest_topic

movie zone_id
[20133]person

language [Italian]

movie_genre

genre[comedy]

3

4

Table 4. Schema and instance cache operators

Delete: cache operators
SCDelete : S ×S ×N → SS
SCDelete(SS, ST , n) = STM

– NTM = NS \ NT

– ETM = ES \ ET

– rTM = n
– AttTM = AttS \ AttT

– αTM (a1) = αS(a1) if
n1 ∈ AttTM

– λTM (n1) = λS(n1) if
n1 ∈ NTM ∪ AttTM

ICDelete : S × S × SS × I × I ×N → SI
ICDelete(SS , ST , STM , IS, IT , n) = ITM

– NITM = NIS \ NIT

– EITM = EIS \ EIT

– rITM =

⎧⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎩

n1 ∈ NIS : (∃n2 ∈ NIS)
(n1 = father(SIS, n2)
∧n2 = hN (n))

⎫⎬⎭ if (∃n1 ∈ N◦
IS)

(hN (n1) = n)

n1 ∈ NIS :
hN (n1) = n

}
if (∃n1 ∈ N•

IS)
(hN (n1) = n)

undefined otherwise
– AttITM = AttIS \ AttIT

– αITM (a1) = αIS(a1) if a1 ∈ AttITM

– λITM (n1) = λIS(n1) if n1 ∈ NITM ∪ AttITM

– ρITM (a1) = ρIS(a1) if a1 ∈ AttITM

who are interested in movies. The initial instance indicates both the interest
in movies and the time but, when the time information is deleted, this aspect
is completely lost in the context instance and does not influence the successive
insertion. Therefore the application of the operators at the instance level results
in the loss of the information related to time, due to the fact that the evolu-
tion process “forgets” the deleted subtree, taking care only of the information
contained in the most recent schema and instances.

To solve the problem we store the eliminated subtrees in order to facilitate, if
necessary, a later reintegration. In more detail, we redefine the Delete operation in-
corporating two additional operators: the schema cache SCDelete and the instance
cache ICDelete (Table 4). The former describes the cached content after the schema
deletion, while the latter does the same after the instance deletion. Now, Delete
entails the caching of the semischema STM = SCDelete(SS , ST , p1, . . . , pn) and
of the semi-instance ITM = ICDelete(SS , ST , STM , IS , IT , p1, . . . , pn). We remark
that SCDelete and ICDelete do not realize any schema or instance modification: they
only define the information to be cached after that schema and instances have been

300 E. Quintarelli, E. Rabosio, and L. Tanca

Table 5. Preconditions and semantics of InsertFromMemory

InsertFromMemory Given R = (N, E, r,Att, α, λ)
SUInsertF M : S × SS × SS ×N → S
SUInsertF M (SS , SSM , R, n) = ST

– NT = NS ∪ N
– ET = ES ∪ E ∪ {(n, r)}
– rT = rS

– AttT = AttS ∪ Att

– αT (a1) =

{
αS(a1) if a1 ∈ AttS

α(a1) otherwise

– λT (n1) =

{
λS(n1) if n1 ∈ NS ∪ AttS

λ(n1) otherwise

IUInsertF M : S × S × SS × I × SI × SS ×N → I
IUInsertF M (SS, ST , SSM , IS, ISM , R, n) = IT

Let hNM , hAM be the injective functions relating nodes and attributes of SISM

with the nodes and the attributes of the schema associated with the instance from
which the semischema SISM has been eliminated.
Let e1, . . . , ek be the system-assigned identifiers for the attributes f1, . . . , fk of
the inserted semischema defined as follows: fi ∈ Att : (∃n1 ∈ NISM)(αTM (fi) =
hNM (n1) ∧ (�a1 ∈ AttISM)(fi = hAM (a1)))

– NIT =

⎧⎨⎩ NIS ∪ NISM

}
if NISM = ∅ ∧ ((n ∈ N◦

T

∧(∃n1 ∈ NIS)(hN (n1) = n)) ∨ hN (rISM) = n)
NIS otherwise

– EIT =

⎧⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎩

EIS ∪ EISM∪
{(n1, rISM) : hN (n1) = n}

}
if NISM = ∅
∧n ∈ N◦

T ∧ (∃n1 ∈ NIS)(hN (n1) = n)
EIS ∪ EISM∪
{(n1, n2) : hNM (n2) = n∧
hN (n1) = father(SS, n)}

⎫⎬⎭ if NISM = ∅ ∧ hNM (rISM) = n

EIS otherwise
– rIT = rIS

– AttIT =

⎧⎪⎪⎪⎪⎨⎪⎪⎪⎪⎩
AttIS ∪ {a1 ∈ AttISM :
(∃n1 ∈ N, a2 ∈ Att)
(a2 = hAM (a1) ∧ αSM (a1) =
α(a1) = n1)} ∪ {e1, . . . , ek}

⎫⎪⎪⎬⎪⎪⎭
if NISM = ∅ ∧ ((n ∈ N◦

T∧
(∃n1 ∈ NIS)(hN(n1) = n))
∨hNM (rISM) = n)

AttIS otherwise

– αIT (a1) =

⎧⎨⎩
αISM (a1) if a1 ∈ AttISM

{n1 ∈ NIS : αTM (fi) = hNM (n1)} if a1 = ei, ei ∈ {e1, . . . , ek}
αIS(a1) otherwise

– λIT (n1) =

⎧⎨⎩
λISM (n1) if n1 ∈ NISM ∪ AttISM

λ(fi) if n1 = ei, ei ∈ {e1, . . . , ek}
λIS(n1) otherwise

– ρIT (a1) =

⎧⎨⎩
ρISM (a1) if a1 ∈ AttISM

ALL if a1 ∈ {e1, . . . , ek}
ρIS(a1) otherwise

Preconditions
1) n ∈ NS, 2) N = NSM , 3) E = ESM , 4) Att ∩ AttS = ∅, 5) (∀n1 ∈
children(SS, n))(λS(n1) = λ(r)), 6) n ∈ N◦

S ⇒ r ∈ N•, 7) n ∈ N•
S ⇒ r ∈ N◦

updated with SUDelete and IUDelete. For the sake of simplicity the stored content
is available only if an insertion is executed immediately after the deletion, then it
is purged.

Context Schema Evolution in Context-Aware Data Management 301

Table 6. Application of the Delete operation and of InsertFromMemory

1’) Delete the subtree rooted in n = context/time

Memory

context

user situation
zone

teenagerfamily
With

Children

alone withFriends

movie

interest_topic

cinema
zone_id

language

t_age

adult

a_age

comedy
horror

movie_genre

thriller

comedy_type

romantic_comedy
dramatic_comedy

time

daytime night

daytime night

time

context

user situation zone

withFriends

interest_topic

movie

comedy

movie_genre

zone_id
[20133]

adult

a_age [35]

language [Italian]

romantic_comedy

comedy_type

time

night

Memory

night

time

2’) Insert, as a child of n = context/interest topic/movie, the memory content:
context

user situation
zone

teenagerfamily
With

Children

alonewithFriends
movie

interest_topic

cinema
zone_id

language

t_age

adult

a_age

comedy
horror

thriller

comedy_type

romantic_comedy
dramatic_comedy

time

daytime

night

movie_genre

context

user
situation zone

withFriends

interest_topic

movie

comedy

movie_genre

zone_id
[20133]

adult

a_age [35]

language[Italian]

romantic_comedy

comedy_type

time

night

In order to exploit the content stored during the deletion, also the insert oper-
ation has to be memory-aware; therefore, the set of atomic operations is enriched
with InsertFromMemory (Table 5). The related operators take as additional in-
put the cached semischema SSM and semi-instance ISM : ST = SUInsertFM (SS ,
SSM , p1, . . . , pn), IT = IUInsertFM (SS , ST , SSM , IS , ISM , p1, . . . , pn). The opera-
tor SUInsertFM behaves exactly as SUInsert does, but the semischema R inserted
under the node n is retrieved from the cache; it is allowed to modify attributes
and labels, while nodes and edges have to remain the same of the semischema
stored in the memory. If n is a concept node, the memory contains a semi-
instance, and the source instance contains the node corresponding to n, then
IUInsertFM reinserts the stored semi-instance. On the contrary, if n is a dimen-
sion node, the semi-instance is reintegrated only if the semischema has been
reinserted exactly in the same position, thus simply rolling back the previous
deletion; in fact, if the stored semischema were moved, the reinsertion would
cause the presence of concept siblings in the instance.

Table 6 revises steps 1 and 2 of Example 1 taking into account the memory
functionality: step 1’ considers the new formulation of the Delete operation,
extended with the cache operators. Step 2’ mimics step 2 of Example 1, but
applying InsertFromMemory instead of Insert.

Complexity Considerations. The computational complexity of schema and in-
stance update is not an issue in our framework. In fact, all the operations can be
implemented exploiting well-known tree search algorithms to locate the nodes in-
volved in the transformations. Moreover, the size of context schemas is supposed
to be of few tens of nodes, and the instances are even smaller.

302 E. Quintarelli, E. Rabosio, and L. Tanca

Soundness of the Atomic Operators. A fundamental property of the evolution
process is soundness. If a schema evolution operator is applied to a legal context
schema fulfilling the preconditions, it should produce a legal context schema
according to Definition 2. Moreover, the corresponding instance evolution oper-
ator must be such that its outcome is: 1) a legal context instance according to
Definition 4 and 2) an instance of the schema produced by the related schema
evolution operator, according to Definition 5 [12].

Theorem 2 (Soundness of schema evolution). Let SS be a context schema,
SUop ∈ SOP and p1, . . . , pn the additional parameters required by SUop, then
SUop(SS , p1, . . . , pn) gives as result a context schema ST .

Theorem 3 (Soundness of instance evolution). Let SS be a context schema,
IS an instance of SS, IUop ∈ IOP, SUop ∈ SOP, p1, . . . , pn the additional pa-
rameters required by SUop, q1, . . . , qm the additional parameters required by IUop,
ST the context schema result of SUop(SS , p1, . . . , pn). The result IT of IUop(SS ,
ST , IS , q1, . . . , qm) is an instance of ST .

6 Conclusions and Future Work

In this paper we have investigated the problem of context schema evolution. A set
of atomic schema evolution operators has been introduced; we have also shown the
soundness and the completeness of the evolution process. Our atomic operators
are suitable to be composed for obtaining high-level ones, expressing common evo-
lution needs; e.g, to move subtrees, rename nodes and attributes, insert and delete
attributes. We plan to refine our proposal exploring techniques to optimize the se-
quence of operators applied to migrate from the initial instance to the instance of
the target schema. Another, orthogonal interesting problem we will tackle is the
one of instance update: it arises because, after a context switch from I1 to I2 (de-
rived from a change in the environment), knowing the sequence of operators that
leads from I1 to I2 allows graceful and automatic derivation of the I2-aware views
to be provided to the user. Thus, given two instances of the same schema, we want
to study minimal and complete sets of operators that lead from I1 to I2. Finally,
we are implementing a tool realizing the context schema evolution process.

Acknowledgments. The authors wish to thank Jan Hidders for the helpful
discussions on the formalization of the context model.

References

1. Baldauf, M., Dustdar, S., Rosenberg, F.: A survey on context-aware systems. Int.
Journal of Ad Hoc and Ubiquitous Computing 2(4), 263–277 (2007)

2. Balmin, A., Papakonstantinou, Y., Vianu, V.: Incremental validation of XML doc-
uments. ACM Transactions on Database Systems 29(4), 710–751 (2004)

3. Banerjee, J., Kim, W., Kim, H.-J., Korth, H.F.: Semantics and implementation of
schema evolution in object-oriented databases. In: Proc. of SIGMOD, pp. 311–322.
ACM Press, New York (1987)

Context Schema Evolution in Context-Aware Data Management 303

4. Barbosa, D., Mendelzon, A.O., Libkin, L., Mignet, L., Arenas, M.: Efficient incre-
mental validation of XML documents. In: Proc. of ICDE, pp. 671–682. IEEE Com-
puter Society, Los Alamitos (2004)

5. Bolchini, C., Curino, C., Quintarelli, E., Schreiber, F.A., Tanca, L.: A data-oriented
survey of context models. SIGMOD Record 36(4), 19–26 (2007)

6. Bolchini, C., Quintarelli, E., Rossato, R.: Relational data tailoring through view
composition. In: Parent, C., Schewe, K.-D., Storey, V.C., Thalheim, B. (eds.) ER
2007. LNCS, vol. 4801, pp. 149–164. Springer, Heidelberg (2007)

7. Bossung, S., Sehring, H.-W., Hupe, P., Schmidt, J.W.: Open and dynamic schema
evolution in content-intensive web applications. In: Proc. of WEBIST, pp. 109–116.
INSTICC Press (2006)

8. Bouchou, B., Halfeld Ferrari Alves, M.: Updates and Incremental Validation of
XML Documents. In: Lausen, G., Suciu, D. (eds.) DBPL 2003. LNCS, vol. 2921,
pp. 216–232. Springer, Heidelberg (2004)

9. Curino, C., Moon, H.J., Zaniolo, C.: Graceful database schema evolution: the
PRISM workbench. PVLDB 1(1), 761–772 (2008)

10. De Castro, C., Grandi, F., Scalas, M.R.: Schema versioning for multitemporal re-
lational databases. Inf. Syst. 22(5), 249–290 (1997)

11. De Virgilio, R., Torlone, R.: A framework for the management of context data in
adaptive web information systems. In: Proc. ICWE, pp. 261–272. IEEE, Los Alami-
tos (2008)

12. Grandi, F., Mandreoli, F.: A formal model for temporal schema versioning in object-
oriented databases. Data and Knowledge Engineering 46(2), 123–167 (2003)

13. Guerrini, G., Mesiti, M., Sorrenti, M.A.: XML schema evolution: Incremental vali-
dation and efficient document adaptation. In: Barbosa, D., Bonifati, A., Bellahsène,
Z., Hunt, E., Unland, R. (eds.) XSym 2007. LNCS, vol. 4704, pp. 92–106. Springer,
Heidelberg (2007)

14. Hong, J., Suh, E., Kim, S.: Context-aware systems: A literature review and classi-
fication. Expert Syst. Appl. 36(4), 8509–8522 (2009)

15. Klettke, M.: Conceptual XML schema evolution - the CoDEX approach for design
and redesign. In: Proc. of BTW Workshops, pp. 53–63. Verlagshaus Mainz (2007)

16. Lehman, M.M.: Software’s future: Managing evolution. IEEE Software 15(1), 40–44
(1998)

17. Papavassiliou, V., Flouris, G., Fundulaki, I., Kotzinos, D., Christophides, V.: On
detecting high-level changes in RDF/S kBs. In: Bernstein, A., Karger, D.R., Heath,
T., Feigenbaum, L., Maynard, D., Motta, E., Thirunarayan, K. (eds.) ISWC 2009.
LNCS, vol. 5823, pp. 473–488. Springer, Heidelberg (2009)

18. Plessers, P., De Troyer, O.: Ontology change detection using a version log. In: Gil,
Y., Motta, E., Benjamins, V.R., Musen, M.A. (eds.) ISWC 2005. LNCS, vol. 3729,
pp. 578–592. Springer, Heidelberg (2005)

19. Su, H., Kramer, D., Chen, L., Claypool, K.T., Rundensteiner, E.A.: XEM: Manag-
ing the evolution of XML documents. In: Proc. of RIDE-DM, pp. 103–110. IEEE
Computer Society, Los Alamitos (2001)

20. Tatarinov, I., Ives, Z.G., Halevy, A.Y., Weld, D.S.: Updating XML. In: Proc. of
SIGMOD, pp. 413–424 (2001)

21. Wienberg, A., Ernst, M., Gawecki, A., Kummer, O., Wienberg, F., Schmidt, J.W.:
Content schema evolution in the coreMedia� content application platform CAP. In:
Jensen, C.S., Jeffery, K.G., Pokorný, J., Saltenis, S., Bertino, E., Böhm, K., Jarke,
M. (eds.) EDBT 2002. LNCS, vol. 2287, pp. 712–721. Springer, Heidelberg (2002)

Modeling the Propagation of User Preferences

Paolo Ciaccia1 and Riccardo Torlone2

1 Dip. di Elettronica, Informatica e Sistemistica, Università di Bologna, Italy
paolo.ciaccia@unibo.it

2 Dip. di Informatica e Automazione, Università Roma Tre, Italy
torlone@dia.uniroma3.it

Abstract. User preferences are a fundamental ingredient of personal-
ized database applications, in particular those in which the user context
plays a key role. Given a set of preferences defined in different contexts,
in this paper we study the problem of deriving the preferences that hold
in one of them, that is, how preferences propagate through contexts. For
the sake of generality, we work with an abstract context model, which
only requires that the contexts form a poset. We first formalize the basic
properties of the propagation process: specificity, stating that more spe-
cific contexts prevail on less specific ones, and fairness, stating that this
behavior does not hold for incomparable contexts. We then introduce an
algebraic model for preference propagation that relies on two well-known
operators for combining preferences: Pareto and Prioritized composition.
We study three alternative propagation methods and precisely charac-
terize them in terms of the fairness and specificity properties.

1 Introduction

The information available in digital form is growing so fast that today the avail-
ability of methods for automatically filtering the accessible data according to the
real needs of the users has become a compelling need. In this framework, context
awareness [5] and user preferences [6] have emerged as viable solutions to this
problem. The former refers to the ability of selecting data according to features
of the environment in which the application is used, such as the location, the
time, and the device. The latter refers to the ability of evaluating the relevance
of data for a given user on the basis of a set of preferences settled on such data.

In this paper we consider both aspects together and study the problem of
selecting the most relevant data in a situation in which preferences are defined
in different contexts and queries are posed in one of them. The scenario we refer
to is illustrated in the following example.

Example 1. Assume that we have fixed some contextual preferences for food such
as “In Italy, a dish of pasta is preferable to one of beef, but if you are in Naples
you should taste the world-famous pizza instead of pasta. In summer, however, a
fresh salad is preferable to a hot dish of pasta”. Assume now that it is summer,
we are in Naples and we would like to have some suggestion for food. All of such
preferences should be taken into account since they refer to contexts that are

M. Jeusfeld, L. Delcambre, and T.W. Ling (Eds.): ER 2011, LNCS 6998, pp. 304–317, 2011.
c© Springer-Verlag Berlin Heidelberg 2011

Modeling the Propagation of User Preferences 305

more general than the current one. However, it is evident that the preferences
defined in “Naples” and “Italy in summer” should take precedence on those in the
more generic context “Italy”. Moreover, the preference in “Naples” should not
take precedence on the preference in “Italy in summer”, and vice versa, since,
in general, one does not apply to the other. It turns out that, in the current
context, pizza and salad are both the best alternatives among the mentioned
foods and should be returned first by a data filtering system since, on the basis
of the given preferences, no other food is preferable to them.

As shown in the example, a generalization hierarchy can be usually defined
over contexts and preferences defined in different contexts propagate along this
hierarchy. Thus the problem can be rephrased as the investigation of preference
propagation in a hierarchy of contexts and its impact on database querying.
Recently, this issue has been studied extensively [1,11,14,15,16,18] but always
resorting to pragmatic, operational approaches. Conversely, we intend to tackle
the problem in a principled way with the goal of providing a solid basis to the
issue of context-aware preferences in database applications.

With this goal in mind, we consider a very general framework in which the only
requirement is that the contexts form a poset, that is, a set with a partial order
relationship on its elements. Actually, in order to provide concrete examples we
introduce a formalism (the CT model) for the representation of contexts, but our
results apply to the general notion of context poset. Moreover, we express user
preferences in terms of a partial order relation over the tuples of interest [6,8],
a general approach that includes the case in which preferences are expressed by
associating a numerical score with tuples [2,10].

We then start by formalizing the basic properties of the propagation pro-
cess, which are also implicitly at the basis of earlier approaches to the prob-
lem [14,15,16] and correspond to the observations made in Example 1: (i) pref-
erences over a pair of incomparable contexts c1 and c2 do not take precedence on
each other (fairness), and (ii) preferences over a context c1 take precedence on
the preferences over a context c2 when c1 is more specific than c2 (specificity).

Building on these notions, we introduce an algebraic model for expressing
preference propagation based on two binary operators: (i) ⊕, which combines
preferences defined in two unordered contexts, and (ii) �, which combines pref-
erences in two ordered contexts. Interestingly, it turns out that these operators
can be captured by two popular methods for combining preferences: Pareto and
Prioritized composition [6,8]. We then adopt their semantics for ⊕ and � and
call a composition thereof a PC (Preference Composition) expression.

Example 2. An example of PC-expression computing the propagation of prefer-
ences to the context “Naples in summer” discussed in Example 1 is the following:

�Naples,summer �((�Naples ⊕ �Italy,summer)� �Italy)

where �c denotes a set of preferences defined in the context c and, e.g., �Italy=
{pasta � beef}. In this expression the preferences in “Naples” and those in
“Italy in summer” are combined with ⊕, since the corresponding contexts are

306 P. Ciaccia and R. Torlone

incomparable. The result is combined with the preferences in “Italy” using �,
since this context is more general than both “Naples” and “Italy in summer”.
Finally, the result is combined with the preferences for “Naples in summer” using
�, since it is the most specific context.

We identify a “natural” form of PC-expression and prove that it is unable to
enforce specificity. This leads us to introduce two alternative approaches to pref-
erence propagation. It turns out that the latter is indeed well-behaved since it
satisfies all the desirable properties for preference propagation.

In sum, our main contributions are: (i) the identification and formalization of
the desirable properties of preference propagation in a poset of contexts; (ii) the
definition of an algebra for preference propagation based on Prioritized and
Pareto composition; and (iii) the formal analysis of three propagation meth-
ods. To our knowledge, these are the first results that can provide a theoretical
foundation to the management of contextual preferences in database systems.

The rest of the paper is organized as follows. In Section 2, we introduce
the notion of context poset and present a specific context model that is used
in the examples. In Section 3 we introduce the algebraic model for combining
preferences and, in Section 4, we investigate different methods for computing
preference propagation. In Section 5 we compare our work with the related
literature and finally, in Section 6, we draw some conclusions.

2 Contexts in Databases

2.1 A General Notion of Context

Our aim is to investigate the problem of contextual preference queries indepen-
dently of the specific formalism used to represent contexts (and preferences as
well). We only focus on a fundamental characteristic of context models: the abil-
ity to represent contexts at different levels of detail [4]. We will therefore rely on
the general notion of context that follows.

We recall that a partial order ≤V on a domain of values V is a binary relation
on V that is reflexive (v ≤V v for all v ∈ V), antisymmetric (if v1 ≤V v2 and
v2 ≤V v1 then v1 = v2), and transitive (if v1 ≤V v2 and v2 ≤V v3 then v1 ≤V v3).
A partially ordered set, or poset, is a set S on which a partial order ≤S is defined.

Definition 1 (Context). A context c is an element of a poset C, called context
poset. If c1 ≤C c2 and c1 �= c2, written c1 <C c2, we say that c1 is more specific
than c2 and that c2 is more generic than c1.

2.2 The CT Model

The CT (ConTextual) model is a possible refinement of the deliberately general
notion of context poset introduced above. In CT a context is represented by
means of a finite set of contextual dimensions, which represent aspects that may
influence the relevance of data, such as time and location. Each dimension is
described by means of a set of levels representing the dimension at different
degrees of granularity.

Modeling the Propagation of User Preferences 307

Definition 2 (Contextual dimension). A (CT) contextual dimension d is
composed of: (i) a finite poset L of levels; each level l in L is associated with
a set of values M(l), called the members of level l; and (ii) a family CM of
containment mappings cmapl2

l1
: M(l1) → M(l2) for each l1 ≤L l2.

For instance, day, week, month, and year are possible levels for the time dimen-
sion. A possible member of the day level is 23/07/2011, which is mapped by the
containment mappings to the member 07/2011 of the level month.

A partial order ≤M can also be defined on the members M of a dimension
d: given a pair of members m1 and m2 of levels l1 and l2 of d, respectively, we
have that m1 ≤M m2 if cmapl2

l1
(m1) = m2. We are now ready to introduce the

notion of context poset in the CT model.

Definition 3 (Context poset in the CT model). Let D be a finite set of
dimensions. A (CT) context c over D is a tuple over l1, . . . , ln, where each li is
a level of a dimension in D. A CT context poset C over D is a set of contexts
cj over some Dj ⊆ D, such that c1 ≤C c2 if, for each dimension d ∈ D2: (i) c1

is defined on d, and (ii) c1[d] ≤M c2[d], where c[d] denotes the member of d
occurring in a context c.

c1 = (Italy)

c2 = (Naples) c3 = (summer; Italy)

c4 = (summer; Naples)

Fig. 1. A context poset in the CT model

Example 3. A simple example of CT context poset, which refers to the scenario
discussed in Example 1, is shown in Figure 1.1 In this example, c1 is a context
over the dimension Location at the level Country, whereas c2 is a context over the
same dimension at level City. Similarly, c3 and c4 are contexts over dimensions
Time and Location at the levels {Season, Country} and {Season, City}, respec-
tively. Then, we have for instance that c4 ≤C c3 since summer ≤M summer and
Naples ≤M Italy.

3 Preferences in Contexts

3.1 Qualitative Preferences

According to a general and widely accepted approach [6,8], preferences over
tuples of a relation scheme R(A1, . . . , Ak) are expressed by a binary relation
1 We represent the poset with its Hasse diagram, in which the edges represent the

partial order (transitively reduced), and x is drawn lower than y if x ≤ y.

308 P. Ciaccia and R. Torlone

over the tuple domain of R, that is, over the set
∏k

i=1 Di, where Di is the value
domain of attribute Ai. We recall that a strict partial order on a set S is an
asymmetric (we never have both s1 <S s2 and s2 <S s1) and transitive binary
relation on S.

Definition 4 (Preference relation). A preference relation � over a scheme
R(X) is a strict partial order on the tuple domain of R. Given a pair of tuples t1
and t2 in the tuple domain of R, if t1 � t2 then t1 is preferable to t2. If neither
t1 � t2 nor t2 � t1, then t1 and t2 are indifferent, denoted by t1 ∼ t2.

A refinement of the indifference relation ∼ associated to a preference relation �
allows some indifferent tuples to be also equivalent, which, as we will see, is a
key property for the composition of preference relations [9].

Definition 5 (Equivalent tuples). Given a preference relation �, t1 and t2
are equivalent under �, written t1 ≈ t2, if t1 ∼ t2 and, for all t in the tuple
domain such that t1 � t (t � t1), it is t2 � t (t � t2), and vice versa. If t1 ∼ t2,
but t1 �≈ t2, we say that t1 and t2 are incomparable.

Example 4. Let us consider the relation over the scheme R(Food, Calories, Fat)
made of the following tuples:

t1 = (pasta,221,1.3) t2 = (beef, 63, 2.5) t3 = (salad, 15, 0.1) t4 = (pizza, 160, 3.2)

A possible set of preferences over this scheme is t1 � t2 and t3 � t2. In words,
pasta and salad are both preferable to beef. It follows that pasta and salad are
equivalent, whereas pizza is incomparable with all other foods.

The best tuples in a relation r over the scheme R(X) according to the preferences
� can be selected by the Best operator [17]: β�(r) = {t ∈ r | �t′ ∈ r, t′ � t}.2
The restriction of Definition 4 to strict partial orders guarantees that, for any
r �= ∅, β�(r) is never empty [6]. A preference query is any expression of the
relational algebra augmented with the Best operator.

3.2 Contextual Preferences and Their Propagation

Throughout the paper we consider a context poset C and a relation scheme
R(X), and denote by BP a function that associates with each context c ∈ C a
preference relation BP(c) = �c over R(X).3 If no preferences have been defined
for a context c in C, then BP(c) = ∅. We call �c the base preferences in c and BP
a preference configuration over C. Since, as we have seen, preferences propagate
along the poset C, we call complete preferences in c, denoted by �+

c , the result of
combining �c with the base preferences defined in the other contexts in C, and
denote by CP the function that associates with each context c ∈ C the complete
preferences CP(c) = �+

c over R(X). We call CP the propagation (function) of a
preference configuration BP over a context C.
2 This operator is also called winnow [6] and preference selection [8].
3 We assume that BP is given by the user or somehow derived from the application.

Modeling the Propagation of User Preferences 309

Let us now try to capture the basic ideas underlying earlier, practical ap-
proaches on preference propagation [14,15,16]. The first issue is the scope of
propagation. It is apparent that, for each context c, all and only the base pref-
erences in the contexts c′ such that c ≤C c′ (denoted by C�c) are needed to
determine �+

c . This is made precise by the following definition.

Definition 6 (Propagation scope). The propagation scope of a context c ∈ C
is C�c . For each c′ in the scope of c, if t1 �c′ t2 and t1 ≈c′′ t2 for each c′′ ∈ C�c
different from c′, then t1 �+

c t2.

The second part of the definition specifies that a preference between two tuples
in a context c′, belonging to the scope of c, has to be propagated in c if such
tuples are equivalent in all the other contexts in the scope of c.

As discussed in Example 1, two further basic properties should be satisfied
by preference propagation. Specifically, given a context c: (1) for each pair of
unordered contexts c1 and c2 in the scope of c, the base preferences in c1 and c2

should not take precedence on each other in determining �+
c ; in this case we say

that the propagation is fair ; (2) for each pair of ordered contexts c1 <C c2 in
the scope of c, the base preferences in c1 should take precedence on those in c2

in determining �+
c ; in this case we say that the propagation is specific. A precise

characterization of the above principles can be given as follows.

Definition 7 (Fairness). A propagation CP is fair if, for each context c in C,
each pair of unordered contexts c1 and c2 in C�c , and each preference configu-
ration BP over C such that: (i) t1 �c1 t2, (ii) t2 �c2 t1, (iii) t1 ≈ci t2 for each
c ≤C ci <C c1, and (iv) t1 ≈cj t2 for each c ≤C cj <C c2, it is: t1 � �+

c t2 and
t2 ��+

c t1.

Definition 8 (Specificity). A propagation CP is specific if, for each context c
in C, each pair of ordered contexts c1 <C c2 in C�c , and at least one preference
configuration BP over C such that: (i) t1 �c1 t2, (ii) t2 �c2 t1, (iii) t1 ≈ci t2 for
each c ≤C ci <C c1, it is: t1 �+

c t2.

Basically, Definition 7 asserts that if c1 and c2 disagree on how to order t1 and
t2 while such tuples are equivalent in all more specific contexts, then t1 and t2
are not ordered in �+

c . Conversely, Definition 8 says that if t1 is preferred to
t2 in c1 and such tuples are equivalent in all more specific contexts, then this
preference might propagate to context c (and it actually propagates if no conflict
arises with other contexts in BP incomparable with c1).

3.3 PC-Expressions

The properties of specificity and fairness suggest that the complete preferences
can be computed by means of an expression involving two basic binary operators
that, given two base preference relations �c1 and �c2, return a new preference
relation: one applies when c1 and c2 are unordered, the other one when c1 <C c2.
Clearly, the former is commutative whereas this is not the case for the latter.
Both operators are associative, since their composition should not depend on

310 P. Ciaccia and R. Torlone

the order in which preferences are considered. Also, they are both idempotent
since the combination of the same preferences should not have any effect. Finally,
they both have the empty set of preferences, ∅, as identity element since contexts
without base preferences should not influence the result.

Incidentally, there are two popular ways to combine preference relations that
meet all the requirements above: Pareto and Prioritized composition [6,8].

Definition 9 (Pareto and Prioritized composition). Let �1 and �2 be two
preference relations over a scheme R(X). The Prioritized composition of �1 and
�2, written �1 � �2, is defined as:

t1 �1 � �2 t2 ⇔ (t1 �1 t2) ∨ (t1 �2 t2 ∧ t1 ≈1 t2)

and their Pareto composition, written �1 ⊕ �2, is:

t1 �1 ⊕ �2 t2 ⇔ (t1 �1 t2∧t1 �2 t2)∨(t1 �1 t2∧t1 ≈2 t2)∨(t1 ≈1 t2∧t1 �2 t2)

Intuitively, Prioritized composition gives precedence to preferences in �1, while
preferences in �2 are used only if two tuples are equivalent according to �1.
Conversely, Pareto considers the two preference relations equally important.

Example 5. Given the two preference relations

�1= {t1 �1 t2, t1 �1 t3} �2= {t2 �2 t1, t2 �2 t3}
it is t2 ≈1 t3 and t1 ≈2 t3. Then, the Prioritized composition �1 � �2 yields
the preferences t1 � t2, t1 � t3, and t2 � t3, whereas the Pareto composition
�1 ⊕ �2 leads to have t1 � t3 and t2 � t3.

Actually, both Prioritized and Pareto composition preserve strict partial or-
ders [9], whereas this is not guaranteed by replacing in their definition ≈ with
∼ [6]. It is known that ⊕ is commutative and associative and that � is associa-
tive [9] (but obviously not commutative). It is also evident that both operators
are idempotent (that is, � ⊕ �= � and � � �= �) and have ∅ as the identity.

We are now ready to introduce the main tool for expressing preference prop-
agation in our framework.

Definition 10 (PC-expression). A preference composition expression, or
PC-expression, is any expression E of the form: E ::= �c| E ⊕E | E � E | (E).

Because of Definition 6, any PC-expression computing the complete preferences
in a context c must include all and only the base preferences in contexts in C�c .

Example 6. Consider the context poset in Figure 1. The complete preferences
for context c4 could be expressed by the following PC-expression:

�c4 �((�c2 � �c1) ⊕ (�c3 � �c1))

Both �c2 and �c3 are first combined with �c1 using the � operator, since the
corresponding contexts are ordered. These sub-expressions are then combined
with the ⊕ operator, since c2 and c3 are unordered. Finally, �c4 is added using
the � operator, since c4 is the most specific context.

Modeling the Propagation of User Preferences 311

4 Computing the Propagation of Preferences

4.1 The Complete-Cover Propagation

The first way of using a PC-expression for computing preference propagation,
which we call CC (Complete Cover), is based on an intuitive argument: the
complete preferences in a context c can be obtained recursively by composing
the base preferences in c, �c, with the complete preferences that hold in the
contexts that, in the context poset C, cover c. We remind that ci covers c if
c <C ci and there is no other context cj such that c <C cj <C ci. The covering
of c in the poset C, denoted covC(c), is the set of contexts in C that cover c.

Definition 11. Let c be a context in C with covering covC(c) = {c1, . . . , ck}.
The complete preferences in c under the CC propagation are computed as:

�+CC
c =

{
�c � (�+CC

c1
⊕ �+CC

c2
⊕ . . .⊕ �+CC

ck
) if covC(c) �= ∅

�c if covC(c) = ∅ (1)

From Equation 1 we can derive a “canonical” PC-expression. For this, the fol-
lowing preliminary result is fundamental.

Lemma 1. Prioritized composition left-distributes (but not right-distributes)
over Pareto composition, that is, for any preference relations �1,�2,�3 it is:

�1 � (�2 ⊕ �3) = (�1 � �2) ⊕ (�1 � �3)

For the following result we remind that a chain H = 〈c1, . . . , ck〉 of poset C is a
sequence of contexts such that c1 <C c2 <C . . . <C ck, and that H is maximal
if it is not included into another chain.

Corollary 1. Let c be a context in C and covC(c) = {c1, . . . , ck} be the covering
of c in C. The complete preferences in c under the CC propagation can also be
computed by the canonical PC-expression:

�+CC
c = �(H1) ⊕ �(H2) ⊕ . . . ⊕ �(Hl) (2)

where {H1, H2, . . . , Hl} are all the maximal chains in C�c (the set of contexts
c′ such that c ≤C c′), and, for Hi = 〈c1, c2, . . . , ch〉, �(Hi) is shorthand for the
expression (�c1 � �c2 � . . .� �ch

).

The result easily follows by unfolding Equation 1 and then applying the left-
distributive property.

Example 7. For the context poset in Figure 1 consider the preferences in Table 1,
which mimic those in Example 1.4 In context c1 = (Italy), pasta is preferred
to beef and beef to salad. On the other hand, in context c2 = (Naples), pizza is
preferred to both pasta and beef. It follows that in c2 it is pasta ≈c2 beef,
thus such foods can be ordered using the preferences valid in c1, as shown
4 For simplicity in the table we just show the key of each tuple.

312 P. Ciaccia and R. Torlone

Table 1. Base and complete preferences under the CC propagation for the context
poset in Figure 1

c �c �+CC
c

c1 {pasta � beef, beef � salad, pasta � salad} {pasta � beef, beef � salad, pasta � salad}
c2 {pizza � pasta, pizza � beef} {pizza � pasta, pizza � beef, pasta � beef}
c3 {salad � pasta, salad � beef} {salad � pasta, salad � beef, pasta � beef}
c4 ∅ {pasta � beef}

in the right-most column of the table. Conversely, a salad is preferred to
both pasta and beef in c3 = (summer;Italy). In the most specific context
c4 = (summer; Naples), for which no base preferences are given, Pareto com-
position is applied to �+CC

c2
and �+CC

c3
. These both agree on preferring pasta to

beef, whereas other foods stay unordered due to the semantics of Pareto com-
position. Thus, the best alternatives in c4 are pizza, pasta, and salad. This can
be expressed by the PC-expression �c4 �((�c2 � �c1) ⊕ (�c3 � �c1)), which
is the unfolding of Equation 1, or equivalently by the canonical PC-expression
(�c4 � �c2 � �c1) ⊕ (�c4 � �c3 � �c1).

In spite of the intuitive form of Eq. 1, we have the following negative result:

Theorem 1. The CC propagation is fair but not specific.

Proof. To prove fairness, let c1 and c2 be two unordered contexts in C�c , with
t1 �c1 t2 and t2 �c2 t1, and let t1 ≈ci t2 ∀ci : (c ≤C ci <C c1)∨ (c ≤C ci <C c2).
Let ck,1 (ck,2) be a context in covC(c) such that c <C ck,1 ≤C c1 (c <C ck,2 ≤C

c2, respectively). Due to the semantics of Pareto operator, either t1 is still better
than t2 in the complete preferences in ck,1, or the two tuples are incomparable in
this context. Similar arguments hold for ck,2, from which it is derived that t1 and
t2 are incomparable in c. To see why CC violates specificity, consider the poset
in Figure 1 and any preference configuration BP such that: t1 �c3 t2, t2 �c1 t1,
t1 ≈c2 t2, and t1 ≈c4 t2. To show that for no such BP it is t1 �+CC

c4
t2, thus

violating specificity, it is enough to observe that t1�+
c3

t2 and t2�+
c2

t1, which,
according to Pareto composition, leads to have t1 and t2 incomparable in c4.

Example 8. Let us slightly revise the base preferences in Table 1 assuming now
that there are no base preferences in c2. By proceeding as in Example 7 it
is still derived that �+CC

c4
= {pasta � beef}, since the complete preferences in

c2 coincide with those of c1 while stay unchanged in c3. This contradicts the
specificity principle, for which the complete preferences in c4 should coincide
with those in c3, thus making pizza and salad the only best alternatives.

4.2 The Active-Cover Propagation

Since Example 8 shows that contexts with no base preferences, such as c2, might
invalidate the specificity property of the whole propagation process, it is inter-
esting to study the effect of not considering at all such contexts. For this, given
a preference configuration BP, let us say that a context c is active if BP(c) �= ∅.

Modeling the Propagation of User Preferences 313

Table 2. Base and complete preferences under the AC propagation for the context
poset in Figure 1

c �c �+AC
c

c1 {pasta � beef, beef � salad, pasta � salad} {pasta � beef, beef � salad, pasta � salad}
c2 ∅ {pasta � beef, beef � salad, pasta � salad}
c3 {salad � pasta, salad � beef} {salad � pasta, salad � beef, pasta � beef}
c4 ∅ {salad � pasta, salad � beef, pasta � beef}

The Active Cover (AC) propagation just considers the covering of c with respect
to the poset A ⊆ C of all active contexts, rather than C. More precisely, let
covA(c) = {c1, . . . , cl}. Under the AC propagation the complete preferences in
context c, CPAC(c) = �+AC

c , are now computed as:

�+AC
c = �c �(�+AC

c1
⊕ �+AC

c2
⊕ . . .⊕ �+AC

cl
) (3)

Note that if c itself is inactive, above Equation still correctly applies by consid-
ering the poset A ∪ {c}.

Table 2 shows how Example 8 change under the AC propagation, with the
complete preferences in c4 now consistent with what observed in the Example.
However, in spite of being insensitive to the side-effects of contexts with no base
preferences, even AC cannot always guarantee specificity.

Theorem 2. The AC propagation is fair but not specific.

Proof. Fairness follows from the same arguments used in the proof of Theorem
1. The same counterexample used in the proof of Theorem 1 applies here to show
that AC violates specificity, with the only additional hypothesis that t1 ≈c2 t2,
yet BP(c2) �= ∅ (i.e., c2 is active).

4.3 The Tuple-Specific Cover Propagation

The rationale under the third propagation we introduce, called Tuple-specific
Cover (T C), is that the arguments used for discarding inactive contexts can be
refined so as to drop, when comparing tuples t1 and t2, also those contexts for
which there is no specific preference relating t1 and t2 (thus, for each pair of
tuples t1 and t2, a specific subset of the active context poset A is considered).

Given a preference configuration BP, we say that a context c is (t1, t2)-
active if t1 �≈c t2. Let At1,t2 be the poset of (t1, t2)-active contexts and
covAt1,t2

(c) = {c1, . . . , cm} be the covering of context c in the At1,t2 poset.
In the T C propagation, tuples t1 and t2 are compared using the following equa-
tion, in which the observation that t1 and t2 are either ordered or incomparable
in all contexts in covAt1,t2

(c) is exploited to avoid recursion:

t1 �+T C
c t2 ⇐⇒ t1[�c �(�c1 ⊕ �c2 ⊕ . . .⊕ �cm)]t2 (4)

Example 9. Consider the poset in Figure 1 and the BP configuration:

�c1= {t2 � t1, t2 � t3} �c2= {t1 � t3, t2 � t3} �c3= {t1 � t2, t1 � t3} �c4= ∅

314 P. Ciaccia and R. Torlone

It is At1,t2 = {c1, c3}, At2,t3 = {c1, c2}, and At1,t3 = {c2, c3}. Thus,
covAt1,t2

(c4) = {c3}, covAt2,t3
(c4) = {c2}, and covAt1,t3

(c4) = {c2, c3}. Ac-
cording to both AC and CC propagation, tuples t1 and t2 are incomparable in
context c4, since �+CC

c2
= �+AC

c2
includes the preference t2 � t1, as inherited from

c1, whereas t1 � t2 is an element of �+CC
c3

= �+AC
c3

. Instead, the T C propagation
does not consider context c2 for ordering t1 and t2, since c2 is not (t1, t2)-active
(t1 ≈c2 t2), thus t1 �+T C

c4
t2. The complete preferences for all the three propa-

gations in context c4 are as follows (preferences coincides in the other contexts):

– �+CC
c4

= �+AC
c4

= {t1 � t3, t2 � t3}
– �+T C

c4
= {t1 � t2, t2 � t3, t1 � t3}

The following result shows that T C can be indeed considered the “ultimate”
semantics for preference propagation.

Theorem 3. The T C propagation is both fair and specific.

Proof. Fairness stems directly from the definition of covAt1,t2
(c). Specificity is

also guaranteed, since when the three conditions of Definition 8 hold for any
c1 <C c2, c1, c2 ∈ A�c , namely: t1 �c1 t2, t2 �c2 t1, and t1 ≈ci t2 ∀ci :
c ≤C ci <C c1), the definition of covAt1,t2

(c) guarantees that c2 �∈ covAt1,t2
(c).

Thus, there exists a preference configuration BP for which it is t1 �cj t2 ∀cj ∈
covAt1,t2

(c), which implies t1 �+T C
c t2.

Apparently, the T C propagation requires a distinct covering for each pair of
tuples. However this is not true, since there exists a PC-expression, the same
for all pairs of tuples, that implements T C propagation. The intuition behind
this result is that specificity needs to avoid that a preference t1 � t2, for which
a conflicting preference exists in a more specific context, propagates along a
chain that does not order t1 and t2 (which is the reason why both CC and AC
violate specificity). Algebraically, this requires a PC-expression, which we denote
ET C

A (c), that is maximally “grouped on the right”, so that this pass-through
phenomenon is inhibited. The following provides a formal definition of ET C

A (c).

Definition 12 (PC-expression for T C propagation). Let c′ be a context
in A�c and let {c1, . . . , ck} be the contexts in A�c that are covered by c′. The
“right-grouped” expression ERG

A (c, c′) is recursively defined as follows:{
ERG

A (c, c′) = (ERG
A (c, c1) ⊕ . . . ⊕ ERG

A (c, ck))� �c′

ERG
A (c, c) = �c

Let {ĉ1, . . . , ĉn} be the set of maximal elements in A�c (i.e., the contexts ĉi in
A�c such that there is no context c′ ∈ A�c for which ĉi <C c′). Then:

ET C
A (c) = ERG

A (c, ĉ1) ⊕ . . . ⊕ ERG
A (c, ĉn) (5)

Example 10. Consider the poset in Figure 1, and assume that all contexts are
active. The PC-expression ET C

A (c4) is ((�c4 � �c2) ⊕ (�c4 � �c3))� �c1 .
For convenience, this can also be more compactly rewritten, by applying the
left-distributive property of �, as �c4 �(�c2 ⊕ �c3)� �c1 .

Modeling the Propagation of User Preferences 315

Intuitively, ET C
A (c) can be obtained from the canonical expression by first group-

ing chains on maximal elements and factoring them out, then recursively apply-
ing this process to the so-reduced chains until no more factors can be extracted.

Theorem 4. The PC-expression ET C
A (c) correctly computes the T C propaga-

tion, i.e., t1 �+T C
c t2 iff t1 ET C

A (c) t2.

Proof. If t1 �≈c t2 the result is obvious, since in both cases only �c is considered.
Then, assume t1 ≈c t2. We show that ET C

A (c) propagates downward to context
c all and only the preferences concerning tuples t1 and t2 for those contexts
cj ∈ covAt1,t2

(c), from which the result follows. If cj ∈ covAt1,t2
(c), it is t1 �≈cj

t2 and t1 ≈ci t2 holds for any context ci such that c ≤C ci <C cj . From the
definition of ERG

A (c, cj) it is immediate to derive that ET C
A (c) propagates the

preference of cj to c. By contradiction, assume now that ck �∈ covAt1,t2
(c),

t1 �≈ck
t2, yet this preference is propagated by ET C

A (c) to context c. From the
hypothesis, there exists a context cj ∈ covAt1,t2

(c) such that cj <C ck. From
the definitions of ET C

A (c) and ERG
A (c, ck), it turns out that ET C

A (c) includes the
sub-expression (. . . �cj . . .)� �ck

, and this is the case for every occurrence of
�ck

. Since the left operand includes �cj , for which t1 and t2 are not equivalent,
the preference of ck on these tuples does not propagate to c, proving the assert.

We conclude with a major result establishing a precise relationship among the
three propagations we have analyzed so far.

Theorem 5. Let c be a context in the context poset C. Then, the complete pref-
erences in c under the three propagations, CC, AC and T C, satisfy the following
relationships: �+CC

c ⊆ �+AC
c ⊆ �+T C

c and ≈CC
c = ≈AC

c = ≈T C
c .

Proof (sketch). (≈CC
c = ≈AC

c = ≈T C
c): Due to the semantics of Pareto and Pri-

oritized composition, two tuples t1 and t2 are equivalent according to �+
c iff

this holds in all contexts whose base preferences appear in the PC-expression
computing �+

c . These are clearly the same for AC and T C. Since the additional
contexts used by CC are all inactive, all tuples are equivalent in such contexts,
from which the result follows.

(�+CC
c ⊆ �+AC

c): Both propagations compute �+
c using a PC-expression that

is equivalent to the canonical form, i.e., Pareto composition of all the “products”
�(Hi), where Hi is a maximal chain (of the context poset C in the case of CC,
and of the active poset A in the case of AC). If H1 and H2 are two chains,
with H2 ⊆ H1, it is simple to see that �(H1) ⊕ �(H2) ⊆ �(H1). A repeated
application of this yields the result, after observing that each �(Hi) in Equation 2
is equivalent to an expression �(H−

i), H−
i ⊆ Hi, obtained by discarding inactive

contexts from Hi (since such contexts are uninfluential to the result of �(Hi)).
(�+AC

c ⊆ �+T C
c): The proof follows similar arguments.

Example 11. The preferences in Table 2 lead to have only one maximal chain
in A�c4 , i.e., 〈c3, c1〉. Thus, �+AC

c4
= �c3 � �c1. On the other hand, since the

maximal chains in C�c4 are 〈c4, c3, c1〉 and 〈c4, c2, c1〉, yet c2 and c4 are inac-
tive, we can equivalently consider the chains 〈c3, c1〉 and 〈c1〉. It follows that
�+CC

c4
= �c1 ⊕ (�c3 � �c1) ⊆ �c3 � �c1=�+AC

c4
.

316 P. Ciaccia and R. Torlone

5 Related Works

Preferences in databases have been extensively investigated in recent years fol-
lowing two main approaches: in the quantitative approach a numerical score is
associated with tuples [2,10], while in the qualitative one a (strict) partial order
relation is defined on tuples [6,8]. We have adopted the latter, which is more
general from an order-theoretic point of view. Moreover, our approach is para-
metric with respect to the context model used since we only exploit the ability
to relate different contexts according to a partial order between them, a feature
common to the majority of the models proposed [4].

Recently, a number of papers have focused on the management of contextual
preferences [1,14,15,16,18]. The main difference with the present paper is that all
of them follow a pragmatic approach based on specific heuristics and then focus
on implementation issues. More in detail, the works by van Bunningen et al. [18]
and Agrawal et al. [1] do not address the issue of combining preferences defined
in different contexts. Agrawal et al. [1] introduce a technique for the manage-
ment of contextual preferences, based on the qualitative approach, but they do
not consider any generalization relationship between contexts. Stefanidis and
Pitoura [16] consider quantitative preferences in a hierarchical context model.
Preferences in a context c are computed from preferences defined in context c′

that generalizes c and is at “minimal distance” from c in the hierarchy. With
respect to the propagation properties introduced in Section 3, this approach is
specific, but it is not fair and does not respect the propagation scope. Miele et
al. [14] also consider numerical preferences and distances between contexts, but
preferences defined on contexts at a distance from c that is not minimal are also
considered, provided they are not overwritten by some other preference. Since
a smaller context distance does not imply c1 ≤C c2, this approach respects the
propagation scope, it is specific, but it is not fair.

Mindolin and Chomicki [13] have recently introduced p-skylines, a particular
case of PC-expressions in which each preference relation (i) is used only once,
and (ii) is a total order over an attribute of interest. Taken together, these two
restrictions simplify the problem of determining equivalence and containment
of expressions, but this comes at the price of a reduced expressive power. In
particular, p-skyline expressions (i) cannot be used for arbitrary context posets,
and (ii) limits the kind of preferences we can define.

Contextual preferences could be considered as a particular case of conditional
preference networks (CP-nets), a tool largely investigated in the AI field [3]
and used for database querying [7,12]. Behind the surface, there are important
differences between our work and that on CP-nets. With CP-nets one defines, for
each attribute of interest, a set of total orders that are conditionally dependent
on some other attribute(s). The resulting preferences are then defined as the
transitive closure of the union of such orders [12] (this might not be an order
since cycles might arise). Conversely, we start with a set of arbitrary strict partial
orders and study how to compose them in a context poset, ensuring that the
result is always a strict partial order.

Modeling the Propagation of User Preferences 317

6 Conclusions

In this paper we have considered the problem of how database preferences prop-
agate when they depend on the context of the user. Unlike previous approaches,
which are based on heuristic arguments, we have tackled the problem in a prin-
cipled way and have proposed an algebraic model for expressing preference prop-
agation, based on the well-known Pareto and Prioritized composition rules. We
have then analyzed with this model three alternative propagation methods and
shown that one of them satisfies all the desirable propagation properties.

As future work we plan to investigate specialized optimization techniques for
contextual preference queries on large databases and to study how our results
apply to numerical preference models.

References

1. Agrawal, R., Rantzau, R., Terzi, E.: Context-Sensitive Ranking. In: SIGMOD, pp.
383–394 (2006)

2. Agrawal, R., Wimmers, E.L.: A Framework for Expressing and Combining Prefer-
ences. In: SIGMOD, pp. 297–306 (2000)

3. Boutilier, C., Brafman, R.I., Domshlak, C., Hoos, H.H., Poole, D.: CP-nets: A Tool
for Representing and Reasoning with Conditional Ceteris Paribus Preference State-
ments. Journal of Art. Intell. Research 21, 135–191 (2004)

4. Bolchini, C., Curino, C., Quintarelli, E., Schreiber, F.A., Tanca, L.: A Data-
Oriented Survey of Context Models. SIGMOD Record 36(4), 19–26 (2007)

5. Bolchini,C.,Curino,C.,Orsi,G.,Quintarelli, E., Rossato,R., Schreiber, F.A., Tanca,
L.: And what Can Context Do for Data? Com. of ACM 52(11), 136–140 (2009)

6. Chomicki, J.: Preference Formulas in Relational Queries. ACM Trans. on Database
Systems 28(4), 427–466 (2003)

7. Ciaccia, P.: Querying Databases with Incomplete CP-nets. In: M-PREF (2007)
8. Kießling, W.: Foundations of Preference in Database Systems. In: VLDB, pp. 311–

322 (2005)
9. Kießling, W.: Preference Queries with SV-Semantics. In: COMAD, pp. 15–26 (2005)

10. Koutrika, G., Ioannidis, Y.E.: Personalization of Queries in Database Systems. In:
ICDE, pp. 597–608 (2004)

11. Li, X., Feng, L., Zhou, L.: Contextual Ranking of Database Querying Results: A
Statistical Approach. In: Roggen, D., Lombriser, C., Tröster, G., Kortuem, G.,
Havinga, P. (eds.) EuroSSC 2008. LNCS, vol. 5279, pp. 126–139. Springer, Heidel-
berg (2008)

12. Mindolin, D., Chomicki, J.: Hierarchical CP-nets. In: M-PREF (2007)
13. Mindolin, D., Chomicki, J.: Discovering Relative Importance of Skyline Attributes.

In: VLDB (2009)
14. Miele, A., Quintarelli, E., Tanca, L.: A Methodology for Preference-Based Person-

alization of Contextual Data. In: EDBT, pp. 287–298 (2009)
15. Stefanidis, K., Pitoura, E., Vassiliadis, P.: Adding Context to Preferences. In:

ICDE, pp. 846–855 (2007)
16. Stefanidis, K., Pitoura, E.: Fast contextual preference scoring of database tuples.

In: EDBT, pp. 344–355 (2008)
17. Torlone, R., Ciaccia, P.: Which Are My Preferred Items? In: RPEC, pp. 217–225

(2002)
18. van Bunningen, A.H., Fokkinga, M.M., Apers, P.M.G., Feng, L.: Ranking Query

Results Using Context-Aware Preferences. In: DBRank, pp. 269–276 (2007)

Towards a Theory of Refinement for

Data Migration

Bernhard Thalheim1 and Qing Wang2

1 Department of Computer Science, Christian-Albrechts-University Kiel, Germany
thalheim@is.informatik.uni-kiel.de

2 Department of Information Science, University of Otago, Dunedin, New Zealand
qing.wang@otago.ac.nz

Abstract. We develop a theoretical framework for refining transforma-
tions occurring in the process of data migration. A legacy kernel can be
discovered at a high-level abstraction which consolidates heterogeneous
data sources in a legacy system. We then show that migration trans-
formations are specified via the composition of two subclasses of trans-
formations: property-preserving transformations and property-enhancing
transformations at flexible levels of abstraction. By defining a refinement
scheme with the notions of correct refinements for property-preserving
and property-enhancing transformations, we are able to stepwise refine
migration transformations and to prove the correctness of refinements.
The result of this paper lays down a formal foundation for investigating
data migration.

1 Introduction

Modernising legacy systems is one of the most challenging problems we often face
when engineering information systems [2,3,10,12]. With new technologies emerg-
ing and application domains evolving, legacy systems need to be migrated into
new systems at some point, to support enhanced functionality and re-engineered
business models. Data migration, as a fundamental aspect of projects on mod-
ernising legacy systems, has been recognised to be a difficult task that may
result in failed projects as a whole [8,19]. Industry survey results [8] reveal that
the data migration market is rapidly growing and business companies annually
invest billions of dollars in data migration tasks (e.g., over 5bn from the top
2000 global companies in 2007); nevertheless, only 16% projects have their data
migration tasks be successfully accomplished (i.e. being delivered on time and
on budget). One of main reasons for time and budget overrun is the lack of a
well-defined methodology that can help handle the complexity of data migration
tasks.

Data migration moves data sources from legacy systems into new systems in
which data sources have different structures. There are several issues that can
considerably complicate this process. First, legacy systems may have a number
of heterogeneous data sources that are interconnected but designed by using
different data modelling tools or interpreted under different semantics. Second,

M. Jeusfeld, L. Delcambre, and T.W. Ling (Eds.): ER 2011, LNCS 6998, pp. 318–331, 2011.
c© Springer-Verlag Berlin Heidelberg 2011

Towards a Theory of Refinement for Data Migration 319

legacy systems may have inaccurate, incomplete, duplicate or inconsistent data,
and new systems may also require additional semantic constraints on data af-
ter being migrated. Thus, bringing the quality of data up to standard of new
systems can be costly and time-consuming. Third, many data migration tasks
such as data profiling, discovery, validating, cleansing, etc. need to be iteratively
executed in a project and specification changes frequently happen in order to
repair detected problems. It is estimated [1] that 90% of the initial specifications
change and over 25% of the specifications change more than once during the life
of a data migration project. These issues highlight the importance of methodol-
ogy for data migration, in particular, the need of a refinement theory for data
migration that can link conceptual modelling of specifications to executable code
in a way practitioners can verify properties of data migration.

This paper aims at establishing a theoretical framework of refinement for
data migration that allows us to refine a high-level specification of migration
transformations into ones at an implementation level. This framework provides
answers to the following questions arising from data migration in practice.

– How can we react to specification changes in a way of keeping track of all
relevant aspects the changes may impact on such as inconsistencies between
specifications, interrelated data and correctness of implementation?

– How can we compare legacy data sources with the migrated data in new sys-
tems to ensure data was migrated properly in terms of desired data semantics
and integrity?

From a traditional perspective, the process of data migration involves three
stages: Extract, Transform, and Load (ETL). However, different from conven-
tional ETL used for data warehousing that deals with analytic data, ETL in
data migration is more complicated in which operational data has to be han-
dled. Our first contribution is the formal development of the ETL processes for
data migration as described below.

– A legacy kernel is first “extracted” at a high-level of abstraction, which con-
solidates heterogeneous data sources in a legacy system. The links between
abstract and more concrete models can be further exploited by using Galois
connections in abstract interpretation [7,16].

– We then “transform” the legacy kernel into a new kernel by specifying mi-
gration transformations in which data cleansing methods are described for
“dirty” data, and “clean” data is mapped into an abstract model. A specific
migration strategy [2,3,10] can be chosen and applied at this stage.

– As “loading” an abstract model (i.e., the new kernel) into a more concrete
model has been well studied (e.g., [13,17,20]), we will omit the discussion of
this stage in this paper.

Our second contribution is a refinement scheme specifying the refinement of mi-
gration transformations in terms of two types of refinement correctness. Using
our refinement scheme, the above ETL processes can be stepwise refined into a

320 B. Thalheim and Q. Wang

Fig. 1. ETL in data migrations

real-life implementation. As illustrated in Fig.1, the models in an abstract com-
putation (e.g.,Mlegacykernel and Mnewkernel) can be refined into more concrete
models (e.g., M∗

legacykernel and M∗
newkernel) of the corresponding computation at

a concrete level, and similarly, computation segments of interest (e.g., extract,
tranform and load) at an abstract level refined into the corresponding compu-
tation segments (e.g., extract∗, tranform∗ and load∗) at a concrete level. With
our notions of refinement correctness, the generic proof method proposed by
Schellhorn [14] can be used to verify the correctness of these refinements.

We present basic definitions for schema and model in Section 2. In Section
3 we discuss an approach of discovering a legacy kernel. Section 4 gives the
formal definitions for migration transformations and two important subclasses
in data migration. We further exploit the refinement correctness of migration
transformations and their subclasses in Section 5, along with a general discussion
on how to verify the correctness of refinements for migration transformations.
In Section 6 we briefly conclude the paper.

2 Schemata, Models and Level of Abstraction

For simplicity, we take an object-based view on models in this paper. In data
migration, data sources of legacy and new systems may be designed by using dif-
ferent data modelling approaches. Nevertheless, components supported by many
data modelling approaches can be viewed as objects, for example, entities and re-
lationships in the entity-relationship model, tuples in the relational data model,
elements in XML, etc. This simplified but generic view gives us the flexibility to
relate models residing at different levels of abstraction to each other.

Let us fix a family D of basic data types and a set C of constructors (e.g.,
record, list, set, multiset, array, etc). Then a set of object types over (D, C) can
be inductively defined by applying constructors in D over basic data types in C.
Similarly, given an object type τ , the set of objects of type τ can be inductively
defined according to the types and constructors that constitute τ . In order to
capture additional semantic restrictions on object types, we also need a suitable

Towards a Theory of Refinement for Data Migration 321

Fig. 2. An ER schema of legacy data source rdmA

Fig. 3. An ER schema of legacy data source ooB

Fig. 4. An ER schema of legacy kernel

Fig. 5. An ER schema of new kernel

logic1 L for expressing constraints. As a convention, the notations F(T) (omit
L for simplicity) refer to the set of formulae of L defined over a set T of object
types, and fr(ϕ) refer to the set of free variables in formula ϕ . A formula ϕ
with fr(ϕ) = ∅ is called Boolean formula.

1 The suitable logic is determined by what kinds of constraints we want to capture. For
example, first-order logic can express many integrity constraints but not cardinality
constraints. However, cardinality constraints can be captured by a more expressive
logic such as fixed point logic with counting quantifiers or counting terms [9,11].
We may also use Monadic second-order logic [6] to define constraints of XML tree
structures.

322 B. Thalheim and Q. Wang

A constraint ϕ ∈ F(T) defined on T is a Boolean formula. A schema S = (T, Σ)
consists of a finite, non-empty set T of object types and a finite (possibly empty)
set Σ of constraints such that Σ ⊆ F(T). A model over a set T of object types
consists of objects of types in T . We use [[ϕ]]M referring to the interpretation of
formula ϕ over the objects in a model M . A Boolean formula ϕ ∈ F(T) is said to
be satisfied by the objects of a model M over schema (T, Σ), denoted as M |= ϕ,
iff [[ϕ]]M is true. A model over schema (T, Σ) is a model over T in which objects
satisfy every constraint in Σ. For convenience, we use the notations M(S) to
denote the set of all models over schema S and M(T) to denote the set of all
models over object types T . Clearly, M(S) ⊆ M(T) for S = (T, Σ).

A model represents the structure of a data source at a certain level of abstrac-
tion. Since a legacy system is often associated with a number of heterogeneous
data sources, and in real-life situations, it commonly happens that the design
information of a legacy system (including its data sources) is unavailable, out-
of-date, etc. due to historic reasons, the initial stage of data migration involves
the process of reverse engineering to recover the original design information of
legacy data sources and then present them as approximate abstract models at
a high level abstraction. In doing so, we are able to utilise these abstract mod-
els as a bridge to analyse various representations of heterogeneous legacy data
sources in a unified environment. The notions of abstract and concrete are rel-
ative, depending on chosen levels of abstraction. The linkages between abstract
and concrete models can be described by an abstraction map α : MC → MA

and a concretization map γ : MA → MC as defined in abstract interpretation
[7,16], where MA (resp. MC) is a set of abstract (resp. concrete) models, α
maps a concrete model in MC to its most precise approximation in MA and γ
maps an abstract model in MA to its most general refinement in MC .

Example 1. Consider a shipping company that migrates two legacy transport
applications into a new transport application, in which their data sources are
referred as M∗

(legacy,1) = rdmA with a relational schema and M∗
(legacy,2) = ooB

with an object-oriented schema. As insurance information in legacy transport
applications is neither complete nor accurate, there are also three legacy data
sources M∗

(legacy,3), M∗
(legacy,4) and M∗

(legacy,5) (different data formats) provided
by external insurance companies and used for data cleansing. Assume that we
choose the ER modelling to build abstract models. Then rdmA is reversely
engineered to M(legacy,1) = erA with the ER schema in Fig.2 and ooB to
M(legacy,2) = erB with the ER schema in Fig.3. Fig.4 and Fig.5 present the
ER schemata of the legacy kernel Mlegacykernel from the legacy data sources
and the new kernel Mnewkernel for the new transport application, respectively.

The schema of erA has the object types Shipment,Truck, Insurance and
Transport, and the constraints such as

– the unique constraint ϕ1 on RegNo of Truck:

∀x1, x2, x3, y1, y2, y3.((Truck(x1, x2, x3) ∧ Truck(y1, y2, y3)
∧x1 �= y1) ⇒ x3 �= y3),

Towards a Theory of Refinement for Data Migration 323

– the foreign key constraint ϕ2 on Insurance:

∀x1, x2, x3, x4, x5.(Insurance(x1, x2, x3, x4, x5) ⇒ Transport(x4, x5)).
��

3 Legacy Kernel

In this section we discuss how to discover a legacy kernel that consolidates legacy
data sources while preserving constraints of interest. For a number of abstract
models built at the same level of abstraction, the problem left is how to com-
pare them to ensure that the re-structuring of data into different models is what
we expect. In general, these models can be defined over different schemata, and
thus have different structures. We approach this problem by a) first identify-
ing constraints that need to be preserved between models, then b) basing the
comparison of models on these constraints of interest.

Definition 1. Let M1 and M2 be two models over the schemata S1 = (T1, Σ1)
and S2 = (T2, Σ2), respectively, and Φ ⊆ F(T2) be a set of constraints of interest.
Then M1 is said to reflect M2 with respect to Φ (denoted as M2 $Φ M1) iff,
for any formula ϕ2 ∈ Φ with fr(ϕ2) = {x1, ..., xn}, if M2 |= ∃x1, ..., xn.ϕ2,
then there exists a formula ϕ1 ∈ F(T1) with fr(ϕ1) = {x′

1, ..., x
′
n} such that

[[ϕ1]]M1 = [[ϕ2]]M2 holds.

In this approach, the first step has significant impacts on finding an appropriate
legacy kernel. Identifying constraints of interest in a model require a thorough
understanding of data from various aspects such as relationships across object
types, data quality (for determining data that needs to be selected for migration,
especially when data can be found from multiple sources) and application domain
knowledge. According to the statistics [8], only 1 in 10 data migration projects
used data profiling tools to understand their data, and it may explain why the
success rate of data migration projects is currently so low (i.e., 16%).

In terms of a reflecting relation $Φ, a set of abstract models can be regarded to
be partially ordered, i.e., M2 precedes M1 if M2 $Φ M1; otherwise incomparable.
A legacy kernel can thus be defined as the least upper bound of a set of abstract
models in terms of the reflecting relation, i.e, an abstract model that can reflects
the abstract model of every legacy data source.

Definition 2. Let M = {M1, . . . , Mn} be a set of abstract models reversely
engineered from legacy data sources and W = {Φ1, . . . , Φn} be a set of sets of
constraints Φi corresponding to the models Mi(i = 1, . . . , n). Then the legacy
kernel ML of M with respect to W is the least upper bound of models in M′

,
where M′

= {M ′
1, . . . , M

′
n}, in terms of the reflecting relation Mi $Φi M

′
i for

each Φi ∈ W and Mi ∈ M.

Example 2. The ER schema shown in Fig. 4 could be the schema of a legacy
kernel for the two ER models erA and erB. The attribute DataSource appearing
in Carrier, Insurance and Shipment is used to record from which legacy data
source each object is extracted. ��

324 B. Thalheim and Q. Wang

Remark 1. Data semantics reconciliation is a key task in the process of data
cleansing and will be handled at the “transform” stage. Thus, when “extract-
ing” a legacy kernel from legacy data sources, any conflicting constraints across
different models should be automatically eliminated from the constraints used
for defining reflecting relations.

4 Migration Transformations

We consider a migration transformation as a deterministic computation executed
at a flexible but fixed level of abstraction, in the same spirit of Abstract State
Machine and its variants [5,18,15].

Definition 3. A transformation (M, M0, Mn, δ) consists of a non-empty set M
of models together with an initial model M0 ∈ M and a final model Mn ∈ M,
and a one-step transition function δ over M, i.e., δ : M %→ M.

The one-step transition function δ is determined by a transition rule that is
inductively defined by

– update rule: the object τ(t1, . . . , tn) is updated to t0,
τ(t1, . . . , tn) := t0

– conditional rule: if ϕ is true, then execute the rule r; otherwise do nothing,
if ϕ then r endif

– block rule: the rules r1,...,rn are executed in parallel,
par r1 . . . rn endpar

– sequential rule: the rules r1,...,rn are executed sequentially,
seq r1 . . . rn endseq

– forall rule: the rule r is executed in parallel for each x satisfying ϕ.
forall x with ϕ do r enddo

Applying a transition rule r over a model M yields a set Δ(r, M) of updates
on objects. If Δ(r, M) is consistent, i.e., it does not contain conflicting updates,
then updates in Δ(r, M) lead a transformation from the current model M to
its successor model δ(M). A run is a finite sequence M0, . . . , Mn of models with
Mi �= Mn for 0 < i < n, and δ(Mi) = Mi+1 for all i = 0, . . . , n − 1.

In the following, we will discuss two subclasses of transformations that con-
stitute the building blocks of transformations in data migrations.

4.1 Property-Preserving Transformations

The first subclass of transformations is property-preserving transformations that
transform data and their description from one model (i.e., the initial model) to
another model (i.e., the final model), in which the schema of the final model is
different from the schema of the initial model, however, data properties specified
over the schema of the initial model must be preserved in the final model. Two
typical examples of property preserving transformations are the transformations
used for “extracting” a legacy kernel and for “loading” a new kernel. In both
cases a set of properties of interest needs to be preserved in transformations.

Towards a Theory of Refinement for Data Migration 325

Definition 4. A property-preserving transformation (PPT) is a transformation
Π = (M, M0, Mn, δ), where M0 ∈ M(S0) for S0 = (T0, Σ0) and Mn ∈ M(Sn)
for Sn = (Tn, Σn), satisfying the conditions:

– for each τi ∈ T0(i = 1, . . . , k), there exists a formula ϕi ∈ F(Tn) such that
[[τi]]M0 = [[ϕi]]Mn , and

– for the set Φ ⊆ F(Tn) of constraints that is equivalent to Σ0, i.e., Φ =
Σ0[τ1 ← ϕ1, . . . , τk ← ϕk], Σn ⇒ ∧

φ∈Φ

φ holds.

If Ψ is a set of formulae, then Ψ [τ1 ← ϕ1, . . . , τk ← ϕk] is also a set of formulae
in which each k-ary object type τi(x1, . . . , xk) is substituted by a formula ϕi

with fr(ϕi) = {x1, . . . , xk}.
Example 3. A high-level PPT with an initial model over the schema in Fig. 2
and a final model over the schema in Fig. 4 may have a transition rule as follows,
where objects are mapped between the models based on their object types.

par forall x with x ∈ Truck do
MappedToCarrier

enddo
forall x with x ∈ Shipment do

MappedToShipment
enddo
forall x with x ∈ Transport do

MappedToTransport
enddo
forall x with x ∈ Insurance do

MappedToInsuranceCompanyAndInsurance
enddo endpar ��

4.2 Property-Enhancing Transformations

The second subclass of transformations we capture is property-enhancing trans-
formations that transform models violating a certain set of properties into mod-
els satisfying these properties. Thus, a set of targeted properties first needs to
be determined. When imposing a property ϕ on a model M , we can obtain a
number {M1, . . . , Mk} of greatest valid submodels of M . Each Mi (i = 1, . . . , k)
satisfies the following conditions: 1) Mi consists of a subset of objects in M , 2)
Mi |= ϕ, and 3) M

′
i �|= ϕ if M

′
i is obtained by combining Mi with any objects

that are in M but not in Mi. We define the valid part of M against ϕ, denoted
as Mϕ, to contain objects that appear in every greatest valid submodel of M
and thus do not violate ϕ in any case. Given a set Φ of properties, we use the
notation MΦ to represent

⋂
ϕi∈Φ

Mϕi .

Definition 5. Let Ψ be a set of constraints. Then a property-enhancing trans-
formation (PET) over Ψ is a transformation Λ = (M, M0, Mn, δ), where M ⊆
M(T), M0 ∈ M(S0) for S0 = (T, Σ) and Mn ∈ M(Sn) for Sn = (T, Σ ∪ Ψ),
satisfying the conditions:

326 B. Thalheim and Q. Wang

– for each τi ∈ T (i = 1, . . . , k), we have [[τi]]M
Ψ
0 ⊆ [[τi]]M

Ψ
n , and

– Σ0 ⇒ ¬(
∨

ψ∈Ψ

ψ) and Σn ⇒ ∧
ψ∈Ψ

ψ hold.

In data migration, PETs are widely used to specify transformations that execute
data cleansing tasks in terms of business rules (i.e., expressed as constraints). For
each business rule ϕ, a specific data cleansing strategy needs to be chosen so as
to eliminate “dirty” data (i.e. the invalid part of a model against ϕ) in a transfor-
mation. The following example illustrates such a data cleansing transformation
at a high-level abstraction.

Example 4. Consider the following PET that cleanses insurance data when mi-
grating from the schema in Fig. 2 to the schema in Fig. 4.

seq forall x with x ∈ Insurance ∧ Invalid(x) do
DeleteInsurance

enddo
forall x with x ∈ Transport ∧ MissedInsurance(x) do

seq
SearchRecord
if FoundRecord then

AddIntoInsuranceCompanyAndInsurance
endif

endseq
enddo endseq

Invalid(x) and MissedInsurance(x) indicate whether an insurance is invalid
or a transport has missed the insurance information, respectively, by comparing
the model with three data sources from insurance companies. Search- Record
searches for an insurance in external insurance data sources. ��
4.3 Migration Strategies

Since data migration includes both the cleansing and the mapping of data to
ensure that the data being migrated is correct and in the proper format for use
by the new system, a migration transformation is the composition of a finite
sequence of PPTs and PETs. For two transformations P1 = (M1, M0, Mm, δ1)
and P2 = (M2, Mm, Mn, δ2), the composition of P1 and P2 is a transformation
P1 ◦ P2 = (M1 ∪ M2, M0, Mn, δ) where δ : M1 ∪ M2 → M1 ∪ M2 such that,
if M ∈ M1, then δ(M) = δ1(M); if M ∈ M2, then δ(M) = δ2(M). Both PPTs
and PETs are closed under composition, which means that a combination of
several PPTs (resp. PETs) is another PPT (resp. PET). In the following we
discuss transformations under different migration strategies [3,10].
Big Bang. The strategy of big bang transforms all data from the legacy system
into a new data source and takes over all operational data at one time. There
are many approaches to implement this strategy in data migration projects. Fig.
6.a illustrates one of approaches in which a migration transformation Λ1 ◦ Π1

starts with Λ1 to cleanse data in the legacy system and then continue with Π1 to
map data into the new data source. Alternatively, a transformation Π2 ◦Λ2 can
achieve the same effect by swapping the order of data cleansing and mapping.

Towards a Theory of Refinement for Data Migration 327

1

2

(1,1)

(2,2)

11

2

'
(1,1)

'
(2,2)

(1,1)

(1,2)

(1,3)

Fig. 6. Refinement of transformations under different migration strategies

Chicken Little. The strategy of chicken little divides a legacy system (including
its legacy data) into modules. As few as possible dependencies between modules
are remained, and migration takes place by migrating modules step by step.
Fig. 6.b shows a two-step data migration process consisting of a transformation
P1 = Λ(1,1) ◦ Π

′
(1,1) and a transformation P2 = Π

′
(2,2) ◦ Λ(2,2). The whole data

migration process is the composition of P1 and P2. Fig. 6.c shows a three-step
data migration in which each step is a transformation that first cleanses the data
in a legacy data source and then maps the data into a targeted data source.

Butterfly. The strategy of butterfly uses a crystalliser to transform data from
the legacy system to the new system in steps: first transforming data of the
read-only legacy data source and then successively temporary data stores. Thus,
transformations of data migration in butterfly are similar to ones in chicken
little, with the only difference in separating data sources involved in each step of
data migration processes. Fig. 6.d describes a transformation P of butterfly that
transforms the read-only legacy data source by Λ1 ◦ Π(1,1), and two temporary
data stores by Π(1,2) and Π(1,3) during the data migration process, i.e., P =
(Λ1 ◦ Π(1,1)) ◦ Π(1,2) ◦ Π(1,3). For simplicity, the two temporary data stores are
assumed to be clean without violating any constraints in the new system.

5 Refinement

In general a refining process is to refine an abstract transformation over abstract
models into a concrete transformation over concrete models. In this section, we
define the notions of refinement correctness for PPTs and PETs, and discuss the
approach of proving properties of a transformation via verifying the correctness
of refinements.

5.1 Refinement of PPTs

We use the notion of path to describe a sequence of states of interest in a run of
transformations. Let (M, M0, Mn, δ) be a transformation and δk be the k-fold
composition of δ for k ≥ 1. Then a path of the run M0, M1, ..., Mn is a sequence
〈Mk1 , ..., Mkm〉 of states satisfying the conditions: Mk1 = M0, Mkm = Mn and
δk(Mki) = Mki+1 for ki+1 = ki + k. The length of a path 〈Mk1 , ..., Mkm〉 is the

328 B. Thalheim and Q. Wang

number (i.e. m) of states in the path. The shortest path of a run is the pair
〈M0, Mn〉 of initial and final states with the length 2.

Let us discuss a translation from abstract objects and their properties to
more concrete representations. Let SA and SC be two sets of schemata defined
over two different model kinds, and relatively, we consider SC as “concrete”
schemata and SA as “abstract” schemata. Then a concretization translation ς :
SA → SC translate an abstract schema to a concrete schema such that ς(SA) =
(ς(TA), ς(ΣA)) = (TC , ΣC) = SC for SA = (TA, ΣA). This translation can be
further extended to models, i.e., ς : M(SA) → M(SC) in a canonical way. Note
that, between two fixed levels of abstractions, we may have several different
concretization translations but only one concretization map that is the upper
bound of all concretization translations.

Let M and M∗ be two models respectively defined over the schemata SA ∈ SA

and SC ∈ SC . A location invariant between M and M∗, denoted as M ≈(ς) M∗,
describes that the model M is similar to M∗ because objects in M are translated
into M∗, i.e.,

M ≈(ς) M∗ ≡ M ∈ M(S) ∧ M∗ ∈ M(ς(S))
∧M∗ = ς(M).

Definition 6. Let Π be a PPT. Then Π∗ is a correct refinement of Π, denoted
as Π ↪→ Π∗, iff Π∗ is a PPT and for any run of Π∗ with a path 〈M∗

i1
, ..., M∗

im
〉

of interest, there exists a run of Π with a path 〈Mj1 , ..., Mjn〉 of the same length
n such that, for k = 1, . . . , n,

– Mjk
≈(ς) M∗

ik
.

Definition 6 states that for any model of interest in the run of a refined PPT
Π∗ there is a corresponding model in the run of the abstract PPT Π . Each pair
of the corresponding states is considered to be equivalent in terms of a loca-
tion invariant ≈(ς) defined on a concretization translation ς between abstract
and concrete models. A general description of the refinement of PPTs is illus-
trated in Fig. 7(a). Π transforms a model over schema (T0, Σ0) to another model
over schema (Tn, Σn), and correspondingly, Π∗ transforms a model over schema
(T ∗

0 , Σ∗
0) to another model over schema (T ∗

n , Σ∗
n). If we describe the mapping

from (T0, Σ0) to (Tn, Σn) as f and the mapping from (T ∗
0 , Σ∗

0) to (T ∗
n , Σ∗

n) as
f∗, then we have ς(f(T0)) = f∗(ς(T0)) and ς(f(Σ0)) ⇔ f∗(ς(Σ0)).

5.2 Refinement of PETs

For the refinement of PETs we need the notion of constraint invariant to capture
the invariant of constraints between two models. Given a schema S and a set
Ψ of constraints defined over S. A coupling constraint invariant between two
models M and M∗ with respect to Ψ (denoted as M ≈(ς,Ψ) M∗) describes that
models M and M∗ are semantically similar in the sense that both models satisfy
constraints in Ψ . Formally, it is defined as

Towards a Theory of Refinement for Data Migration 329

* **

(ς) 1(ς,ψ) n-1(ς,ψ)

**
n

0 n

*
0

*

(ς,ψ)(ς)(ς) (ς) (ς)

Fig. 7. (a) Refinement of PPTs and (b) Refinement of PETs

M ≈(ς,Ψ) M∗ ≡ M ∈ M(S) ∧ M∗ ∈ M(ς(S))
∧M∗ = ς(M)
∧M |= ∧

ϕ∈Ψ

ϕ ∧ M∗ |= ∧
ϕ∈ς(Ψ)

ϕ.

Definition 7. Let Ψ be a set of constraints and Λ be a PET over Ψ . Then Λ∗ is
a correct refinement of Λ, denoted as Λ ↪→ Λ∗, iff Λ∗ is a PET and for any run
of Λ∗ with a path 〈M∗

i0
, ..., M∗

im
〉 of interest, there exists a run of Λ with a path

〈Mj0 , ..., Mjn〉 of the same length n such that, for k = 1, . . . , n,
∧

0≤p<q≤n

Ψp ⊆ Ψq,

Ψ0 = ∅ and Ψn = Ψ ,

– M∗
ik

≈(Ψk,ς) Mjk
,

– (M∗
ik−1

)ς(Ψk) ⊆ (M∗
ik

)ς(Ψk) and (Mjk−1)
Ψk ⊆ (Mjk

)Ψk .

Definition 7 also states that for any model of interest in the run of a refined
PET Λ∗ there is a corresponding model in the run of the abstract PET Λ. Each
pair of corresponding models is equivalent with respect to a subset Ψk ⊆ Ψ of
constraints and a concretization translation ς. The subset of constraints satisfied
by a pair of models of interest should also be satisfied by the pair of successor
models of interest. Eventually, the final models of both transformations satisfy
all the constraints in Ψ . The valid part of each model in terms of the subset of
constraints specified for its successor model must be remained in the successor
model in both Λ∗ and Λ. Fig. 7(b) illustrates this refinement process in which Λ
transforms a model over schema (T, Σ) to another model over schema (T, Σ∪Ψ),
and correspondingly, Λ∗ transforms a model over schema (T ∗, Σ∗) to another
model over schema (T ∗, Σ∗ ∪ Ψ∗) for ς(T) = T ∗, ς(Σ) = Σ∗ and ς(Ψ) = Ψ∗.

For data cleansing, the refinement of PETs can be considered as modular
refinement on each data cleansing strategy. The obligations of data cleansing
strategies are first described at a high-level abstraction, and then are realised
through stepwise refinements into more detailed specification.

5.3 Discussion

Given two refinements P1 ↪→ P ∗
1 and P2 ↪→ P ∗

2 . If P1 and P2 can be composed
and respectively P ∗

1 and P ∗
2 can be composed, then P ∗

2 ◦ P ∗
1 is a refinement of

330 B. Thalheim and Q. Wang

1

2

1

2

*
11

*
2

*
2

Fig. 8. A refinement scheme for migration transformations

P2◦P1. Fig.8 presents a general refinement scheme for migration transformations.
The transformation Λ1 ◦ Π1 (resp. Π2 ◦ Λ2) can be refined to Λ∗

1 ◦ Π∗
1 (resp.

Π∗
2 ◦ Λ∗

2), where Λ1 ↪→ Λ∗
1 and Π1 ↪→ Π∗

1 (resp. Λ2 ↪→ Λ∗
2 and Π2 ↪→ Π∗

2).
In [14] Schellhorn presented a generic proof method for the correctness of

refinements of ASMs, in which invariants are established based on the notion of
commuting diagrams. This approach can be adopted to verify the correctness of
refinements defined for transformations in data migration. As it has been well
studied [4,5] that the ASM refinement is a practically useful method for proving
properties in system design, the theory we developed here also provides a general
scheme for proving the properties of a migration transformation from a legacy
system that may have a number of heterogeneous data sources to a unified new
system. To prove that a migration transformation P ∗ at the implementation
level has certain property, we take the following steps:

– specify the abstract transformation P that migrates data from the legacy
system to an abstract model of the new system, which is the composition of
a number of PPTs and PETs;

– prove that an appropriate abstract form of the property in question holds
on the abstract transformation P ;

– prove the transformation P ∗ in question to be a correct refinement of P
that preserves correctness, i.e., each PPT Π∗ or PET Λ∗ included in P ∗ is
a correct refinement of the corresponding PPT Π or PET Λ included in P .

6 Conclusion

In this paper, we developed a refinement theory for data migration. This theory
can be further extended to database or application migrations in a broader sense,
in which functionality transformation, wrapping of old applications, etc. will
bring in additional complexity into the refinement scheme. We will investigate
these problems in the future.

Towards a Theory of Refinement for Data Migration 331

References

1. Rapid application development (RAD) for data migration – white paper solutions
by Premier International (2004),
http://www.premier-international.com/pdf/Applaud_White_Paper.pdf

2. Bisbal, J., Lawless, D., Wu, B., Grimson, J.: Legacy information systems: Issues
and directions. IEEE Software 16(5), 103–111 (1999)

3. Bisbal, J., Lawless, D., Wu, B., Grimson, J., Wade, V., Richardson, R., O’ Sullivan,
D.: A survey of research into legacy system migration (1997)

4. Börger, E.: The ASM refinement method. In: FAC, vol. 15(2), pp. 237–257 (Novem-
ber 2003)

5. Börger, E., Stärk, R.F.: Abstract State Machines: A Method for High-Level System
Design and Analysis. Springer, Heidelberg (2003)

6. Comon, H., Dauchet, M., Gilleron, R., Löding, C., Jacquemard, F., Lugiez, D., Ti-
son, S., Tommasi, M.: Tree automata techniques and applications (2007), http://
www.grappa.univ-lille3.fr/tata

7. Cousot, P., Cousot, R.: Abstract interpretation: a unified attice model for static
analysis of programs by construction or approximation of fixpoints. In: Principles
of Programming Languages, pp. 238–252. ACM, New York (1977)

8. Howard, P., Potter, C.: Data migration in Global 2000, research, forecasts
and survey results – a survey paper by Bloor Research (2007), http://www.

bloorresearch.com/research/survey/876/data_migrtaion_survey.html
9. Immerman, N.: Expressibility as a complexity measure: results and directions. In:

Second Structure in Complexity Conference, pp. 194–202 (1987)
10. Klettke, M., Thalheim, B.: Evolution and migration of information systems. In:

The Handbook of Conceptual Modeling: Its Usage and Its Challenges, ch. 12, pp.
381–420. Springer, Berlin (2011)

11. Otto, M.: The expressive power of fixed-point logic with counting. Journal of Sym-
bolic Logic 61(1), 147–176 (1996)

12. Parnas, D.: Software aging. In: Proceedings of the 16th International Conference on
Software Engineering, pp. 279–287. IEEE Computer Society Press, Los Alamitos
(1994)

13. Rahm, E., Bernstein, P.: A survey of approaches to automatic schema matching.
The VLDB Journal 10(4), 334–350 (2001)

14. Schellhorn, G.: Verification of ASM refinements using generalized forward simula-
tion. Journal of Universal Computer Science 7(11), 952–979 (2001)

15. Schewe, K.-D., Wang, Q.: A customised ASM thesis for database transformations.
Acta Cybernetica 19(4), 765–805 (2010)

16. Schmidt, D.A.: Binary relations for abstraction and refinement. In: Workshop on
Refinement and Abstraction. Elsevier Electronic (1999)

17. Thalheim, B.: Entity-Relationship Modeling: Foundations of Database Technology.
Springer, Heidelberg (2000)

18. Wang, Q.: Logical Foundations of Database Transformations for Complex-Value
Databases. Logos Verlag, Berlin (2010)

19. Wu, B., Lawless, D., Bisbal, J., Grimson, J., Wade, V., O’Sullivan, D., Richardson,
R.: Legacy system migration: A legacy data migration engine. In: DATASEM 1997,
pp. 129–138 (1997)

20. Xiao, R., Dillon, T., Chang, E., Feng, L.: Modeling and transformation of object-
oriented conceptual models into XML schema. In: Mayr, H.C., Lazanský, J.,
Quirchmayr, G., Vogel, P. (eds.) DEXA 2001. LNCS, vol. 2113, pp. 795–804.
Springer, Heidelberg (2001)

http://www.premier-international.com/pdf/Applaud_White_Paper.pdf
http://www.grappa.univ-lille3.fr/tata
http://www.grappa.univ-lille3.fr/tata
 http://www.bloorresearch.com/research/survey/876/data_migrtaion_survey.html
 http://www.bloorresearch.com/research/survey/876/data_migrtaion_survey.html

Design by Selection: A Reuse-Based Approach for
Business Process Modeling

Ahmed Awad1, Sherif Sakr2, Matthias Kunze1, and Mathias Weske1

1 Hasso Plattner Institute
University of Potsdam, Germany

{ahmed.awad,matthias.kunze,mathias.weske}@hpi.uni-potsdam.de
2 National ICT Australia (NICTA)

University of New South Wales, Australia
ssakr@cse.unsw.edu.au

Abstract. During business process design, working procedures in organizations
are represented by process models. It is an important task in any process improve-
ment project, yet time consuming and error prone. While many organizations
maintain large process model repositories, we observe that the information these
repositories carry is not fully exploited during process modeling. In this paper, we
present a novel approach to business process design called Design by Selection,
which takes advantage of process repositories during design and facilitates reuse
of process model components. These components can be static or flexible. Static
ones represent the specific aspects of the process model, while flexible compo-
nents realize re-use: They are defined by visual queries, which return matching
process model components to be embedded in the overall process. Thus, process
models can be designed in a more efficient, higher quality, and less error-prone
way.

1 Introduction

Designing a new business process model is a tedious and error-prone task. The design
requires determining the activities that need to be performed, ordering of their execu-
tion, handling exceptional cases that can occur, etc. In any organization, business pro-
cess models represent a main source of business knowledge which is scattered among
several IT systems, business documents and the minds of involved people. This knowl-
edge is reused each time a process model is created or updated, however, in an ad-hoc
and generally uncontrolled fashion. Moreover, process design usually involves different
perspectives, e.g., from business experts, top managers, compliance officers, etc. This
makes the integration of these different views a time consuming and a tedious task.
Nevertheless, it can be the case that a similar situation has been addressed before in the
design of business processes. Thus, it would be of great value to have a systematic way
to access and reuse existing process models in order to cut down the design cost of a
new process model.

Imagine a financial institution that aims at extending its services through the offering
of checking accounts in combination with a credit card. The institution is likely to
already have several processes in place, which 1) validate the trust in the customer to
balance its account after withdrawal through the credit card, e.g., the approval of loans

M. Jeusfeld, L. Delcambre, and T.W. Ling (Eds.): ER 2011, LNCS 6998, pp. 332–345, 2011.
© Springer-Verlag Berlin Heidelberg 2011

Design by Selection: A Reuse-Based Approach for Business Process Modeling 333

or overdraft limits, and 2) obtain all required information to open a bank account, e.g.,
setting up a savings account. Reusing existing processes reduces the risk of neglecting
steps required by the institution’s policies and leverages existing resources and skills.
Instead of designing a process model from scratch and validating it against existing
guidelines, a process designer expresses new process fragments in a detailed way and
highlights those parts of the process that shall stem from reuse in a declarative way. This
intentional process description will then be used to query existing process definitions,
e.g., from a process repository, for a set of adequate process fragments and to propose
them to the designer who completes the process design by selection from this set.

Business process repositories have been developed along with techniques to access
models, and associate them with metadata [6,13,21]. While search and retrieval of pro-
cess models are largely based on keyword and full text search, certain approaches to
effectively query process models according to their contents have been proposed re-
cently [2,4,14]. Amongst the use cases motivating the development of query languages
was the support for process model reuse. However, corresponding work mainly dis-
cussed the languages and the technical details on matching queries to processes without
providing a vision on how reuse could be supported.

In this paper, we present a novel approach that supports convenient reuse of process
model fragments during modeling. Our approach is built on top of existing components,
namely the open modeling platform Oryx [6], an open process modeling platform and
repository, and the BPMN-Q query language [2,19], as a means to access and retrieve
process components from the repository. We call this approach Design by Selection,
by which users design so called partial process models that comprise both, a process
modeling language and a process model query language, in an embedded fashion. The
process model query language is similar to the process modeling language with regards
to its notation, and thus, although being declarative, eases expressing a certain intention
in the partial process model. To come up with suggestions, embedded queries will be
matched against models stored in a repository to extract matching components. These
components will be composed along with process model parts in the original partial
model to provide complete process models and to present them to the process designer
as a ranked list, of which the designer can accept one as is or modify it arbitrarily. In
particular, we summarize the main strengths of our approach as follows:

– It effectively reduces the time and effort of the process modeling task.
– It enables reuse on a process fragment level and precomposes a potential comple-

tion.
– A partial process model may contain several embedded queries; each could rep-

resent a view on the developed process model, which relaxes the learning curve,
particularly for novices in a business domain.

– It improves the quality and maturity of the newly developed process models.
– Redundancy between several process models can be reduced, especially in case of

process variants [16].

The remainder of this paper is structured as follows: preliminaries are introduced in
Sect. 2. Sect. 3 presents our proposed concept of partial process models. Sect. 4 de-
scribes our mechanism for composing and ranking the results of completions found in
process model repositories. Prototypical implementation of our approach is presented

334 A. Awad et al.

Fig. 1. Process Models and Potential Process Model Components

in Sect. 5. Experimental evaluation is presented in Sect. 6. We discuss related work in
Sect. 7, before concluding the paper with a prospect on future work in Sect. 8.

2 Preliminaries

This section formally introduces process modeling and querying, which forms the
groundwork for partial process models, which are described later.

2.1 Business Process Modeling

Currently, there is a number of graph-based business process modeling languages (e.g.
BPMN, EPC, YAWL, and UML Activity Diagram). Despite their variance in expres-
siveness and modeling notation, they all share the common concepts of tasks, events,
gateways (or routing nodes), artifacts, and resources, as well as relations between them,
such as control flow [18]. Without loss of generality, we can abstract from particular
node types as their execution semantics are not vital to structural query matching, which
is rather based on the concept of a process graph.

Definition 1 (Process Model). A process model P is a connected graph (N, E), where
N = NC∪NA∪NE is a set of nodes with disjoint sets NC (a set of control flow routing
nodes), NA (a nonempty set of activities), and NE (a nonempty set of events), and a
set of edges E ⊆ (N × N) a nonempty set of directed control flow edges) where •n
(n•) stands for the set of immediate predecessor (successor) nodes of n ∈ N .

A process model has at least one start event nstart ∈ NE with no incoming and
at least one outgoing control flow edge, i.e., | • nstart| = 0 ∧ |nstart • | ≥ 1, and
at least one end event nend ∈ NE with at least one incoming and no outgoing con-
trol flow edge, i.e., | • nend| ≥ 1 ∧ |nend • | = 0. Each other control flow node n ∈
(N \ {nstart : | • (nstart)| = 0}) \ {nend : |(• nend)| = 0} is on a path from some
nstart to some nend.

Definition 2 (Process Model Component). A connected subgraph (N ′, E′) of a
process model (N, E), where N ′ ⊆ N, E′ ⊆ E, is a process model component PC.

Fig. 1 illustrates two process models found in a business process model repository. The
notation used is BPMN [1]: Rounded rectangles describe an activity, or a unit of work,

Design by Selection: A Reuse-Based Approach for Business Process Modeling 335

and arcs between them define sequence flow and thus causal relationships among the ac-
tivities. Diamond shapes express gateways, where + denotes that all outgoing branches
need to be activated, x denotes that one path must exclusively be chosen, and ◦ denotes
that a subset of the outgoing branches needs to be followed according to the specified
conditions. Empty circles represent start and end event of a process, respectively. Arti-
facts are illustrated with dog-eared paper sheets.

2.2 Business Process Model Querying

Based on the definition of process models and process model components, we introduce
the concept of process model queries, as a means to obtain business process components
from a collection of business processes by structurally matching a query to each of them.
BPMN-Q is a visual process model query language designed to help business process
designers access repositories of business process models [2]. The language supports
querying the control flow aspects of business process models. Moreover, it introduces a
set of new abstraction concepts that are useful for different querying scenarios.

Definition 3 (BPMN-Q Query). A BPMN-Q query is a tuple
Q = (QC, QCF, QP, isAnonymous) where:

– QC is a finite set of control flow nodes in a query,
– QCF ⊆ QC × QC is the control flow relation between control nodes in a query,
– QP ⊆ QC × QC is the path relation between control nodes in a query,
– isAnonymous : QC ∪ QD → {true, false} is a functions that determines

whether control flow nodes of a query are anonymous.

BPMN-Q Constructs. A BPMN-Q model is called a query. A query declaratively
describes a structural connectivity that must be satisfied by a matching process model.
In addition to the core business process modeling concepts, BPMN-Q introduces new
concepts which serve its querying purpose.

– Path edges connecting two control flow nodes represent an abstraction over an
arbitrary set of control flow nodes that could be in between the matching process
model.

– Anonymous activities can be used if no restriction should be put on the labels of
matched process model activities. In such cases elements of a query become labeled
with the character @ to declare it as an anonymous activity.

Matching Queries to Processes. A BPMN-Q query is matched to a candidate process
model via a set of refinements to the query. With each refinement, nodes (edges) in a
query are replaced with the corresponding nodes (edges) of the matching process model.
If one node can have more than one possible replacement within the process model, a
new refined copy of the query is created for each possible replacement. We call the
replacement a resolution of an element of the query.

Since BPMN-Q is designed to match queries to process models in a repository, it
is necessary to identify a candidate set of process models that can have the chance to
provide a match to the query, rather than scanning the whole repository. To evaluate path
edges, we rely on the transitive closure of nodes regarding the control flow relation. A
path (source, target) evaluates, if any, to a subgraph (N ′, E′) in which every node
n ∈ N ′ is on a path from source to target. Fig. 2 shows a sample BPMN-Q query
along with a match to a process model, highlighted in grey.

336 A. Awad et al.

Fig. 2. An example BPMN-Q query with a match to a process model

Fig. 3. An example query
and its semantic expansions

Basically, the BPMN-Q query processor looks for ex-
act matches to labels of activities in a query with those in
the candidate process model. However, in practice, process
modelers do not follow a strict naming scheme for activity
labels. Thus, the query would find a small set of matching
processes. To tackle this problem, we employed informa-
tion retrieval techniques to automate the discovery of se-
mantically similar activities [3]. The BPMN-Q query gets
modified by substituting each of its activities with similar
ones. With such a substitution step, new BPMN-Q query
graphs are generated to constitute the expanded BPMN-Q
query set. Fig. 3 illustrates an example of a BPMN-Q query
and its possible semantic expansions.

Process components matching a query model will have
a similarity score assigned ranging from 0 to 1. A similarity
score of 1 indicates an exact match between the query and
the process. Similarity scores between 1 and 0 indicate that a match was found between
a semantically similar query and the process model. Users are given the opportunity to
attribute their search with a threshold, ranging from 0 to 1, that controls the minimum
similarity accepted in queries. For more details about the BPMN-Q query language and
its similarity matching mechanism, we refer the reader to [2,3].

3 Partial Process Models

The approach presented in this paper—Design by Selection—is based on the notion of
partial process models that describe a desired process model through a combination of
process model fragments and process model queries.

Definition 4 (Partial Process Model). A partial process model P = (F, Q, E) is a
connected graph that consists of disjoint sets of process model fragments F and process
model queries Q connected through directed edges E ⊆ F × Q ∪ Q × F, where each
outgoing boundary control flow node nout ∈ N of a process model fragment F ∈ F is
connected to exactly one incoming boundary control flow node nin ∈ QC of a process
model query Q ∈ Q and vice versa.

Fig. 4 shows a partial process model corresponding to the use case illustrated in Sect. 1.
The first intention, to validate trust in the customer, is represented by BPMN-Q query

Design by Selection: A Reuse-Based Approach for Business Process Modeling 337

Fig. 4. Partial Process Example, consisting of process model fragments and process model queries

Q1, i.e., a set of actions that take the income statement of a client into account and an
anonymous activity that produces a context artifact risk in the state assessed. The query
in the lower part addresses the second intention, i.e., the creation of a customer record,
and matches process components that contain activities labeled similar to check legal
documents and store customer record, yielding a complete customer record, cf., Q2. The
right part of the process model illustrates how artifacts from the queries are incorporated
into the remaining process model, e.g., the assessed risk will have an influence on the
decision, whether the customer will be granted a credit card. Such relationships make
up the context of queries in a partial process model. Fig. 5 shows an example of a
composed process model based on the defined partial process model in Fig. 4. In this
composed model, the process model components P2 and P3 are extracted from the
process models of Fig. 1 where P2 represents the matching element of Q1 and P3
represents the matching element of Q2.

Evaluation of a process model query Q ∈ Q returns zero or more process model
components. Obviously, each process model query in the partial process model PM
can be replaced by one of its matching process components which results in a complete
business process model. In addition, we ensure that there is no overlap between the
resulting process fragments of different embedded queries if they are originating from
the same process model in order to avoid meaningless compositions. In practice, each
business process query can return a potentially large number of matched business pro-
cess components, from which one needs to be chosen. This issue is addressed by the
term “selection”, i.e., the users who developed the partial process model are supposed
to choose from a ranked list of alternatives that comply with the given business process
queries. To achieve this, the results of the single business process queries need to be
combined into a complete process model, as discussed previously, and a meaningful
ranking must be established to support the user in selecting a process model proposal.

4 Ranking of Model Compositions

The main task of a query processor is to evaluate the BPMN-Q queries of the defined
partial process model against the process model repository. For each BPMN-Q query,
a result set is returned comprising matched process model components. These matched

338 A. Awad et al.

Fig. 5. Complete Process Example, composed of proposals P2 and P3, cf., Fig. 1

components could represent exact or similar matches for the query models (Sect. 2.2).
In case of similar matches, each matched process model component is then attached
with its similarity score (SS) which is computed during the query evaluation process.
In case of an exact match, the value of this similarity score is equal to 1 for each matched
component of the result set.

In principle, having different matched components for each query model, which usu-
ally belong to different process models, yields that we can have several possible compo-
sitions that originate from distinct process models. Each possible composition needs to
include exactly one component from the answer set of each query in the partial process
model. Hence, the number of the possible compositions is equal to the product of the
number of returned results for each query. Clearly, it is inconvenient for process design-
ers to go through this potentially very large list of compositions to select from. There-
fore, the set of possible compositions is ranked according to various criteria, applying a
ranking process that starts by initially ranking the matched process model components
inside the answer set of each query based on their similarity scores. Then, it computes
a ranking score for each possible composition model. This ranking score is obtained
by fusing the intermediately computed scores of different scoring elements, which are
described as follows.

– Combined Similarity Matching Score (CS): Computing this scoring element for
a candidate composition model ccp is achieved by multiplying the similarity scores
of its individual components.

CS(ccp) =
∏n

i=1 SS(mci)

where n represents the number of the model components and SS(mci) refers to
the similarity score of the individual model components, cf., Sect. 2.2.

– Homogeneity Score (HS): The process model components of each candidate com-
position model can belong to the same or to distinct original process models. Hav-
ing different model components of the candidate composition belonging to the same
original process model increases its homogeneity, which leads to an increase in its
chances of being more meaningful and highly appealing so as to be accepted by the
process designer. For example, the combination between the process model com-
ponents P1 and P2 (Fig. 1) will be more homogeneous than the combination be-
tween the process model components P2 and P3. Thus, we start by computing the
homogeneity between each unique different pair (PHS) of the model components
as follows

Design by Selection: A Reuse-Based Approach for Business Process Modeling 339

PHS(mci, mcj) =
{

0 if the original models of the pair are different
1 if the original models of the pair are the same

}
where mci and mcj represent a unique different pair of model components. In gen-

eral, the number of unique different pairs n is equal to c(c−1)
2 where c is the number

of process model components. The homogeneity score of a candidate model com-
position ccp is then computed as follows.

HS(ccp) =
∑ n

i=1 PHS(udpi)

n

where udp represents a unique pair of model components (mci, mcj) and n repre-
sent the total number of unique different pairs.

– Metadata Matching Score (MS): As mentioned above, process model repositories
store metadata (descriptive attributes about process models). Clearly, the homo-
geneity between model components which originate from different process models
increases if there is an overlap in their metadata. For example, model components
that have been developed by the same user or in the same department have a higher
chance of being more similar or meaningful. Therefore, the metadata matching
score (MS) is considered to be complementary to the general homogeneity score
(HS). Here, we also start by computing the metadata homogeneity score (MHS)
for each unique different pair of model components as follows.

MHS(mci, mcj) = T (mci)∩T (mcj)
c

where mci and mcj represent a unique different pair of model components, T rep-
resents the set of values for the metadata attributes of a model component and c
represents the total number of the metadata attributes. The metadata matching score
of a candidate model composition ccp is then computed as follows.

MS(ccp) =
∑ n

i=1 MHS(udpi)

n

where udp represents a unique pair of model components (mci, mcj) and n rep-
resents the total number of unique different pairs. It should be noted that for this
scoring element we consider only those pairs of model components which origi-
nate from different process models. The key reason behind this is that those pairs of
components, which originate from the same process model, have already had their
score increased on the homogeneity scoring element (HS).

– Reusing Popularity Score (RS): For different reasons, e.g., clarity, simplicity,
completeness, reputation of the designer, one process model can be more reusable
than another. To make use of this fact, for each process model in a repository, we
keep track of its reuse ranking (RR). This ranking gets automatically increased
when any of its components is reused in a newly composed model. Thus, this scor-
ing element can make effective use of the “wisdom of the crowd” in the context of
social systems. Based on the reuse ranking of the stored process models, we then
compute the reusing popularity score for each candidate composed model ccp as
follows.

RS(ccp) =
∑n

i=1 RR(mci.originalModel)

340 A. Awad et al.

where mc refers to a model component, originalModel refers to the original process
model from which the process model component originated and n represents the
total number of model components.

The final ranking score of a candidate composed model (ccp) is computed by fusing the
values of its scoring elements using the following weighted function.

FinalScore(ccp) = w1 ∗ CS(ccp) + w2 ∗ HS(ccp) + w3 ∗ MS(ccp) + w4 ∗ RS(ccp)

where wi represents a weighting factor for a scoring element which can be configured
and adjusted by the end-user, while ∀wi ∈ R : wi ≥ 0 and

∑4
i=1 wi = 1. Initially, pro-

cess designers can rely on a uniform regression parameter where all weighting factors
have the same value, i.e., wi = 1/4. With the continuous usage of the system, workload
data can be gathered to generate significant training datasets that can be used as an input
for a regression analysis process to deduce optimized weighting factors [11].

In practice, the set of the possible compositions generated by the combination of the
matched process model components for the BPMN-Q queries can be large. Therefore,
filtering mechanisms are needed in order to avoid overwhelming the process designer
with less valuable possible compositions such as: 1) The model composer needs to
ignore the matched process model components for the BPMN-Q queries with a simi-
larity score (SS) that is less than a user-defined threshold t1. Similarly, the possible
compositions with combined similarity matching scores (CS) that are less than another
a user-defined threshold t2 can be ignored. Moreover, the composer may return only
the top K possible compositions based on their final ranking score (FinalScore), where
the value of K is user-defined. 2) The composition environment needs to allow the
process designer to specify some constraints on the composition scheme. For example,
the process designer can describe that matched process model component of Q1 and Q2

must belong to the same original process model or must have an overlap in a particular
subset of their metadata.

5 Implementation

In this section, we describe the architecture of our implementation for the Design By
Selection framework for business process modeling, illustrated in Fig. 6, which consists
of the following main components.

– Process Modeling, Querying, and Composition Environment provides the pro-
cess designer with a graphical modeling interface [6]. Users express their intention
by means of a partial process model. The query interface extracts the set of process
model queries from the partial process model, and passes them on to the query pro-
cessor. The returned set of queries will then be composed with the model fragments
from the partial model and ranked through the model composer, cf., Sect. 4.

– Process Model Repository. Instead of building the Design by Selection frame-
work on top of a proprietary repository, it shall be connected to several, potentially
disparate repositories, obtain and maintain process models stored remotely. Repos-
itories do not only store models [5], but also a set of metadata, which is used to
control the composition and ranking process.

Design by Selection: A Reuse-Based Approach for Business Process Modeling 341

Server

Internal Storage

H
TT

P
H

TT
P

Repository1 Repository2 Repositoryn

Uniform Language Interface

Process
Model

Indexer

Process Model
Index

Query
Processor

Client

Model DesignerQuery Interface

R

R R

RR R

R

current model

qu
er

y
re

su
lts

qu
er

y
re

su
lts Model Composer

R

R

Fig. 6. Framework Architecture

– Uniform Language Interface translates process models of specific languages, cf.,
Sect. 2.1, to a common representation suitable to process model querying, i.e., com-
plying with Definition 1. This allows querying a larger set of process models and
can further be used to unify the query interface and processor toward different pro-
cess definition languages [18].

– Query Processor & Process Model Indexes. The query processor evaluates the
queries received from the query interface [19]. It provides support for relaxation and
refinement of user queries. In case the queries do not return sufficient results, the
query processor is able to relax the query according to some similarity notions [3,8].
Similarly, if a query returns too many results, the user needs to be provided with a
possibility of refining and improving their request. In order to further improve the
searching, process models could be indexed upfront to expedite query evaluations.

The model designer component of our framework is the Oryx editor1, an extensible
process modeling platform for research, designed to model and manage process mod-
els online [6]. The query interface and query processor for BPMN-Q [2] components
have been implemented as plugins to the Oryx editor and are able to run process model
queries against the Oryx process model repository. We have implemented a uniform
language interface based on the work done by La Rosa et al. [18], who propose a
generic process model representation for an advanced process model repository. The
model composer component is implemented as another plugin to the Oryx editor that
uses the BPMN-Q query processor to evaluate the results of each query in the partial
process model and then returns the ranked compositions to the end-user. Our architec-
ture acknowledges the existence of a multitude of different process model repositories,
which is the rationale behind decoupling process modeling, querying, and composition
system from any particular process model repository.

1 http:/oryx-project.org/research

http:/oryx-project.org/research

342 A. Awad et al.

6 Experimental Evaluation

Our framework is mainly designed and built to help business process designer accelerate
and improve the quality of their process models. To evaluate the impact of our frame-
work, we conducted an experiment where we recruited 10 volunteers who have good
knowledge of the modeling constructs of BPMN [1] and little background in database
query languages. A brief tutorial about the query language (BPMN-Q) was given to the
volunteers and a discussion of 5 prepared business process models using the BPMN
notations was undertaken. A set of 6 business process models has been designed as
user-test process models for our experiment. These process models vary in their do-
main and their complexity2. For each experimental process model, we had at least one
model in the Oryx online repository3 that is similar to the target process model and
can be reused to reduce the modeling time (most similar process model needed at least
adding/removing three nodes/edges to fit with the scenario of the target model).

We compared the speed and the correctness of the volunteers in designing each pro-
cess model using the standard Oryx editor environment (design from scratch) and using
the components of our Design by Selection framework. Table 1 summarizes the results
of our experiment. For each user, we gave time to understand the model scenario before
we started to measure the process design time, when the user decided that the process
model was fully understood and they were ready to start their design. For the experi-
ment results, if users were not able to design the process model on the allocated time
(the maximum modeling time for each process model was set to 10 minutes) or they
finished the design with a wrong result, we considered their result as unsuccessful. The
results of our experiment show that our Design by Selection framework has accelerated
the process models’ design times with an average percentage of 33% while the correct-
ness of the designed process models has been improved with an average percentage of
16%. We computed the percentage of speedup improvement of the design time for each
process model using the following formula:

DFSDT−DBSDT
DFSDT

where DFSDT represents the average design time of the design from scratch run and
DBSDT represents the average design time of the Design by Selection run.

We computed the percentage of improvement of the design correctness for each pro-
cess model using the following formula:

DFSCD−DBSCD
10

Where DFSCD represents the number of correct designs for each process model in
the design from scratch run, DBSCD represents the number of correct designs in the
Design by Selection run and 10 represents the total number of user designs.

In general, the time improvement varied for each user based on the time to design the
process model from scratch in the first run and their ability to formulate the right query
for retrieving the nearest process model quickly in the second run. We noticed that the

2 Due to the space limitation, we could not include our experimental queries in the paper. How-
ever, they are available on http://bpmnq.sourceforge.net/EXPQueries.html

3 http://oryx-project.org/try

http://bpmnq.sourceforge.net/EXPQueries.html
http://oryx-project.org/try

Design by Selection: A Reuse-Based Approach for Business Process Modeling 343

Table 1. Experimental Evaluation of Design by Selection Framework

Process Model M1 M2 M3 M4 M5 M6 Average
Design From Scratch - Average Design Time (in Seconds) 338 291 261 492 283 342 334.5
Design by Selection - Average Design Time (in Seconds) 216 203 173 320 161 268 223.5
Percentage of Average Speed Improvement (%) 36% 30% 34% 35% 43% 22% 33%

Design From Scratch - Number of Correct Designs (Out of 10) 7 9 8 6 8 8 7.6
Design by Selection - Number of Correct Designs (Out of 10) 9 10 8 9 10 10 9.3
Percentage of Correctness Improvement (%) 20% 10% 0% 30% 20% 20% 16.5%

generic BPMN-Q query constructs, e.g., variable activities, generic split, path edge, be-
side the semantic query expander component of BPMN-Q, have played an important
role to help the user retrieve their target models. In addition, the speed improvement
for the design of each process model is affected by the level of the similarity of the re-
trieved models for reuse. In our framework, the precision of the retrieved semantically-
similar process models for each query is controlled by a distance threshold parameter.
The higher the value of the threshold, the more result models are returned with less
precision quality. It could be expected that receiving many process model with less pre-
cision quality for individual queries may affect the precision of the composed models.
However, our threshold control parameter for the Combined Similarity scoring element
(CS) has played a significant role in getting rid of most false positive compositions.
The results of our experiment show an average 82% user satisfaction with the first five
models proposed by our model composer. However, we acknowledge that the improve-
ment percentages of speed, correctness, or composed models could be further improved
by incorporating label suggestion mechanisms for the label of query activities during
the BPMN-Q query design time, cf. [20], which we will address in future work.

7 Related Work

The issue of accelerating business process design has attracted many researchers. In [15]
Mendling and Simon propose to use schema integration approaches from database re-
search to come up with a unified process model that satisfies the different perspectives
of the stakeholders, obtained by interviews. Later on, these perspectives are merged
and some restructuring rules are applied to refine the final model. Compared to our ap-
proach, a view could even be declaratively represented as a query. Moreover, we can
contribute to the creation of the view by letting the designer query the repository for
similar situations and then discuss the result with the respective stakeholders. Unlike
the approach by Mendling and Simon, it is not necessary to state semantic relations
between the different views. This can be achieved by the composition and ranking com-
ponents.

Several approaches have been proposed to measure the similarity between business
process models. Ehrig et al. [9] have presented an approach for measuring the simi-
larity between business process models semantically modeled with the Web Ontology
Language (OWL). The approach relies on detecting synonyms and homonyms of pro-
cess element names, where the degree of similarity between process models correlates
positively with the number of used synonyms and negatively with the number of used
homonyms. Dijkman et al. [8,17] have described another lexical technique called N-to-
M label matching which matches any node in one model with any node in the other

344 A. Awad et al.

model as long as the string edit distance between their labels is above a given threshold
value. The authors have also described two structural matching techniques named as
greedy graph matching and A-star graph matching. These algorithms are considered to
be variants of the graph edit distance similarity measure. In principle, our framework is
fully agnostic with respect to integrating and reusing any similarity matching technique
for process models into the query processor component.

Pascalau et al. [16] have presented an approach for dealing with redundancy in pro-
cess model repositories. In particular, they described an automated mechanism for main-
taining the consistency between process model variants. In this approach, they main-
tain the link between the variant process models by means of defining process model
views using the BPMN-Q query language [2]. Hence, dynamic evaluation for the de-
fined queries of the process views guarantees that the process modeler is able to get
up-to-date and a consistent state of the process model in case of changes in the related
process model by other modelers.

Our approach further covers the topic of assisted completion of process models, in
that it takes one or several fragments of a model and proposes a set of completions that
satisfy the modeler’s intention, which they describe via queries. A similar problem has
been addressed by Koschmider et al. [10,12], who propose a semi-automatic completion
framework for a special type of petri nets. A collection of petri nets, a query petri net and
a set of textually defined rules that characterize the desired completion are transposed
into an ontology. Automatic inference techniques are used to match the query model and
rules structurally against the existing model collection. The result is ordered solely by
the degree of similarity of a matched model to the query. Our approach is significantly
different, in that 1) BPMN-Q proposes a graphical query language that is very similar
to the process definition language in notation and semantics, 2) allows several points
of inserting queries in a partial process model, and 3) offers a comprehensive ranking
model that does not only take the syntax of a process model into account, but also
relations between matches found and metadata stored along with models in a repository.

8 Conclusion and Outlook

In this paper, we introduced a new approach to accelerate business process design by
querying repositories of business process models. By means of a partial process model,
the user can define certain process logic imperatively and specify fragments to be looked
up declaratively with process model queries. With this, the designer can focus on new
process logic—the innovative part of the process—and just retrieve the common parts
from other models in the repository. The results of each embedded query are composed
and ranked in order to provide the user with the closest result. This approach provides
several benefits by reusing business knowledge materialized in existing process mod-
els. The reuse is not only on the level of a whole process model, but rather on a finer
grain level which is in the form of process model components. Moreover, the approach
collects components from different process models. Another benefit is that each query
could represent a view on the process design. Thus, we also address the issue of collab-
orative process design in a simple way.

For future work, we shall extend the implementation of our query matching process
to include different similarity metrics [8,7,17]. We are planning to investigate the effect

Design by Selection: A Reuse-Based Approach for Business Process Modeling 345

of applying these different similarity metrics on the quality of the returned ranked list
of process model compositions to the end user. Also, we intend to conduct comparative
experiments between our approach and design approaches depending on other process
retrieval techniques.

References

1. Business Process Model and Notation 2.0 (BPMN 2.0) Specification, Final Adopted Specifi-
cation, technical report, OMG (2011)

2. Awad, A.: BPMN-Q: A Language to Query Business Processes. In: EMISA (2007)
3. Awad, A., Polyvyanyy, A., Weske, M.: Semantic Querying of Business Process Models. In:

EDOC, pp. 85–94 (2008)
4. Beeri, C., Eyal, A., Kamenkovich, S., Milo, T.: Querying business processes. In: VLDB

(2006)
5. Bernstein, P., Dayal, U.: An overview of repository technology. In: VLDB (1994)
6. Decker, G., Overdick, H., Weske, M.: Oryx – sharing conceptual models on the web. In:

Li, Q., Spaccapietra, S., Yu, E., Olivé, A. (eds.) ER 2008. LNCS, vol. 5231, pp. 536–537.
Springer, Heidelberg (2008)

7. Dijkman, R., Dumas, M., van Dongen, B., Käärik, R., Mendling, J.: Similarity of business
process models: Metrics and evaluation. Inf. Syst. 36(2) (2011)

8. Dijkman, R., Dumas, M., Garcı́a-Bañuelos, L.: Graph Matching Algorithms for Business
Process Model Similarity Search. In: Dayal, U., Eder, J., Koehler, J., Reijers, H.A. (eds.)
BPM 2009. LNCS, vol. 5701, pp. 48–63. Springer, Heidelberg (2009)

9. Ehrig, M., Koschmider, A., Oberweis, A.: Measuring Similarity between Semantic Business
Process Models. In: APCCM (2007)

10. Hornung, T., Koschmider, A., Oberweis, A.: Rule-based autocompletion of business process
models. In: CAiSE Forum (2007)

11. Hwang, C., Hong, D.H., Seok, K.: Support vector interval regression machine for crisp input
and output data. Fuzzy Sets and Systems 157(8) (2006)

12. Koschmider, A., Blanchard, E.: Automatic user assistance for business process modeling. In:
RCIS (2007)

13. Ma, Z., Wetzstein, B., Anicic, D., Heymans, S.: Semantic business process repository. In:
SBPM (2007)

14. Markovic, I.: Advanced querying and reasoning on business process models. In: BIS (2008)
15. Mendling, J., Simon, C.: Business process design by view integration. In: Eder, J., Dustdar,

S. (eds.) BPM Workshops 2006. LNCS, vol. 4103, pp. 55–64. Springer, Heidelberg (2006)
16. Pascalau, E., Awad, A., Sakr, S., Weske, M.: On maintaining consistency of process model

variants. In: Muehlen, M.z., Su, J. (eds.) J.1, H.4, D.2. Lecture Notes in Business Information
Processing, vol. 66, pp. 289–300. Springer, Heidelberg (2011)

17. Dijkman, R., Dumas, M., Garcı́a Bañuelos, L., Krik, R.: Aligning Business Process Models.
In: EDOC (2009)

18. Rosa, M.L., Reijers, H., Aalst, W., Dijkman, R., Mendling, J., Dumas, M., Garcia-Banuelos,
L.: Apromore : An advanced process model repository (2009),
http://eprints.qut.edu.au/27448/

19. Sakr, S., Awad, A.: A Framework for Querying Graph-Based Business Process Models. In:
WWW (2010)

20. Smirnov, S., Weidlich, M., Mendling, J., Weske, M.: Action Patterns in Business Process
Models. In: ICSOC/ServiceWave (2009)

21. Vanhatalo, J., Koehler, J., Leymann, F.: Repository for business processes and arbitrary asso-
ciated metadata. In: BPM Demo (2006)

http://eprints.qut.edu.au/27448/

System Identification for Adaptive Software
Systems: A Requirements Engineering

Perspective

Vítor E. Silva Souza1, Alexei Lapouchnian2, and John Mylopoulos1

1 Dep. of Information Eng. and Computer Science, University of Trento, Italy
{vitorsouza,jm}@disi.unitn.it

2 Department of Computer Science, University of Toronto, Canada
alexei@cs.toronto.edu

Abstract. Control Theory and feedback control in particular have been
steadily gaining momentum in software engineering for adaptive systems.
Feedback controllers work by continuously measuring system outputs,
comparing them with reference targets and adjusting control inputs if
there is a mismatch. In Control Theory, quantifying the effects of control
input on measured output is a process known as system identification.
This process usually relies either on detailed and complex system models
or on system observation. In this paper, we adopt a Requirements En-
gineering perspective and ideas from Qualitative Reasoning to propose
a language and a systematic system identification method for adaptive
software systems that can be applied at the requirements level, with the
system not yet developed and its behavior not completely known.

1 Introduction

In Control Theory (e.g., [8]), system identification is the process of determining
the equations that govern the dynamic behavior of a system. White box models
describe a system from first principles, e.g., a model for a physical process that
consists of Newton equations. In most cases, such models are overly complicated
or even impossible to obtain due to the complex nature of many systems and
processes (natural or artificial).

A much more common approach is therefore to start from partial knowledge
of the behavior of the system and its external influences (inputs), and try to
determine a mathematical relation between inputs and outputs without going
into the details of what is actually happening inside the system. Two types of
models are built using this approach:

1. Gray box models: although the peculiarities of system internals are not en-
tirely known, a certain model based on both insight into the system and ex-
perimental data is constructed. This model, however, comes with a number
of free parameters (control variables) which can be estimated using system
identification. Thus, parameter estimation is an important activity here;

M. Jeusfeld, L. Delcambre, and T.W. Ling (Eds.): ER 2011, LNCS 6998, pp. 346–361, 2011.
c© Springer-Verlag Berlin Heidelberg 2011

System Identification for Adaptive Software Systems 347

2. Black box models: no prior model is available here, so everything has to be
constructed from scratch, through observation and experimentation. Most
system identification algorithms are of this type.

We are interested in employing this control-theoretic framework for the design of
adaptive software systems. In this paper, we adopt a Requirements Engineering
(RE) perspective and assume that a goal-based requirements model is available
for the system. At the requirements level, the system is not yet implemented
and its behavior is not completely known. With this incomplete information, we
are unable to fully identify how system configuration parameters affect outputs.
Thus, quantitative approaches cannot be applied. Therefore, we base our ap-
proach on ideas from Qualitative Reasoning [10] and propose a systematic way
of identifying target outputs and system configuration parameters as well as
qualitative relations between these parameters and measured outputs, all using
models. Our proposed technique is both qualitative and flexible in the sense that
it can accommodate multiple levels of precision in specifications depending on
available information.

According to our proposal, the output of system identification for a software
system is an extended and parametrized requirements model. Each assignment
of parameter values represents a different behavior (configuration) that the sys-
tem might adapt to fulfill its requirements. Some of the parameters (“variation
points”) come directly from the model. For instance, for a meeting scheduling
system that needs to collect timetables from all participants when a meeting is
scheduled, there is a choice of collecting these directly from meeting participants
(e.g., through email) or from a central repository of timetables. The behaviors
are also determined by a set of control variables that influence system execu-
tion, its success rate, performance, or quality of service. For instance, the “Collect
timetables” goal is influenced by a parameter “From how Many” (FhM) that de-
termines from what percentage of the participants we need to collect timetables
before the goal is deemed to have been fulfilled. If we need to collect from all,
i.e., FhM = 100, then the success rate for the goal may be low and its completion
time may be high, compared to the FhM = 80 setting.

The main objective of this paper is to propose a systematic process for con-
ducting system identification. This process requires some new concepts, notably
the notion of differential relations between control variables and indicators (mon-
itored variables). We illustrate the proposed process with an example and vali-
date the proposal with experiments on it.

The rest of the paper is structured as follows: section 2 summarizes research
results used as the baseline in our proposal; section 3 presents a language for the
modeling of qualitative information on the relation between system parameters
and output; section 4 describes a systematic process for system identification
using that language; section 5 discusses the validation of the proposal; section 6
compares it to related work; section 7 describes future research directions; and,
finally, section 8 concludes the paper.

348 V.E. Silva Souza, A. Lapouchnian, and J. Mylopoulos

2 Research Baseline

The following sub-sections briefly present research results on top of which we
build our proposal: Goal-Oriented RE (§2.1) and Qualitative Reasoning (§2.2).

2.1 Goal-Oriented Requirements Engineering (GORE)

Goal-oriented approaches to RE model requirements in terms of goals, softgoals,
quality constraints (QCs) and domain assumptions (DAs) [9]. As running exam-
ple for this paper, figure 1 shows a goal model for a Meeting Scheduler system.

Fig. 1. Goal model for a Meeting Scheduler system

In our example, the main goal of the system is to Schedule meeting. Goals can
be decomposed using Boolean decompositions with obvious semantics. For in-
stance, to Schedule meeting, one has to Characterize meeting, Collect timetables,
Find available rooms and Choose schedule. On the other hand, to Collect timeta-
bles, it is enough either to Email participants, Call participants or to Collect from
system calendar. Goals are decomposed until they reach a level of granularity
where there are tasks an actor (human or system) can perform to fulfill them.

Softgoals are special types of goals that represent non-functional requirements
(qualities) that do not have clear-cut satisfaction criteria. Goals and tasks con-
tribute to the satisfaction of softgoals through positive or negative contribution
links. Softgoals need to be refined into quality constraints (QCs) which offer
concrete metrics for measuring how well the system is fulfilling a softgoal [9]. For

System Identification for Adaptive Software Systems 349

example, Good participation is a desired quality for our system, receiving positive
contribution from Schedule manually and negative from Let system schedule. A
clear-cut satisfaction criteria for this softgoal is specified by the QC At least 90%
of participants attend.

Goal models may also contain domain assumptions (DAs), which are state-
ments that we assume to be true in order for the system to work. In the example,
we assume there are Local rooms available in order to Find local rooms. If the
assumption turns out to be false, its parent goal will not be satisfied.

Finally, figure 1 also illustrates system parameters that were identified for
the meeting scheduler example. Monitored and controlled parameters have long
been proposed as a way to implement reconciliation for adaptive systems at
runtime [5]. However, in our proposal these are intentional parameters which are
introduced much earlier in the development process, at the level of requirements.
The example shows five control variables as black diamonds connected to other
elements of the model.

OR-decompositions in goal models also represent intentional variability in the
system. Choosing a different path at such variation points has been proposed as
a way to configure systems [13] or to reconcile the behavior of adaptive systems
at runtime in previous works such as [19]. In figure 1 we label the three existing
OR-decompositions as VP1, VP2 and VP3 in order to be able to reference them
in our language.

In section 3.1 we discuss in more depth the role of such parameters in our
proposal.

2.2 Qualitative Reasoning

The key feature of qualitative reasoning (QR) methods (e.g., [10]) is that while
frequently there is not enough information to construct quantitative models,
qualitative models can cope with uncertain and incomplete knowledge about
systems. They do not require assumptions beyond what is known. Most QR
approaches can be seen as having two types of abstraction.

Domain abstraction abstracts the real domain values of variables into a finite
number of ordered symbols that describe qualitative values, landmarks, that are
behaviorally significant. Landmarks can be numeric or symbolic and can include
the values such as 0 and ±∞. A qualitative variable value is either a landmark
or an interval between adjacent landmarks. The finite, totally ordered set of all
the possible qualitative values of a variable is called its quantity space.

Qualitative functional abstraction, which gives the ability to represent incom-
pletely known functional relationships between quantities, complements domain
abstraction in QR. E.g., signs (+,−,0) can be used to describe and reason about
the direction of change in variables — one can state that there exists some mono-
tonically increasing function relating two quantities, without elaborating further.
Merging qualitative information frequently results in ambiguity, such as when
combining positive and negative influences without knowing their magnitudes.
Ranges of techniques and notations are available within QR, their applicability

350 V.E. Silva Souza, A. Lapouchnian, and J. Mylopoulos

depending on the precision of the available information. E.g., one can reason
about orders of magnitude, if they are known, possibly resolving said ambiguity.

3 Parameters and Qualitative Differential Relations

In this section, we further discuss system parameters and indicators of system
output, as well as propose a language based on qualitative modeling [10] to
augment our (goal-oriented) requirements model with information that captures
the relationships among the these parameters in a qualitative way.

3.1 System Parameters and Indicators

As previously discussed, our proposal consists of a language and a systematic
process to identify and model qualitative relations between configuration param-
eters and measured outputs of the system. Given our Requirements Engineering
perspective, we propose to augment goal models of system requirements by rec-
ognizing variation points and control variables (collectively called parameters)
and identifying indicators (of system output).

Variation points (VPs) are the OR-decompositions already present in the
goal model. As we have mentioned in §2.1, selecting a different path at a VP at
runtime is one way of reconfiguring the system in order to adapt to failures. Our
proposal adds labels to VPs in the goal model (e.g., VP1, VP2 and VP3 in figure
1) in order to refer to them when modeling qualitative relations (see §3.3).

In this paper we introduce control variables (CVs), which represent another
powerful mechanism for system (re)configuration. CVs are part of the system in-
put. They can be applied to goals, tasks, and domain assumptions (DAs) and are
used as abstractions over goal/domain model fragments. In particular, CVs are
derived from families of related, but slightly different goal/task or DA alterna-
tives, as in figure 2, where the goals Collect timetables from 10% of participants,
Collect timetables from 20% of participants, etc. are shown as alternative ways
to achieve the parent Collect timetables goal.

Here, we identify variations that differ in some value (usually, but not nec-
essarily numeric) and abstract that value as a parameter to be attached to the
appropriate goal model element as a CV (e.g., the FhM, From how Many variable
in figure 2). Figure 1 shows more examples of CVs, such as: RF (required fields

Fig. 2. Using a CV as an abstraction over families of subtrees

System Identification for Adaptive Software Systems 351

when characterizing a meeting), RfM (number of rooms for meeting available —
note that this CV applies to a DA), etc.

The benefits of having CVs include the ability to represent large number of
model variations in a compact way as well as the ability to concisely analyze how
changes in CV values affect the system’s success rate and/or quality of service
when, e.g., scheduling meetings. As any parameter in software design, a CV needs
to be taken into consideration (i.e., propagated) when refining the goal model
element that it applies to and later when designing and implementing the system.
In this proposal, we are interested in analyzing the effect of values of CVs on
system output and thus omit the details of CV refinement and implementation.

Finally, indicators are essential to control systems as these are monitored
system output values that feedback loops need to compare to the output targets
in order to calculate the control error and to determine how the system’s control
input needs to be adjusted. Indicators are similar to gauge variables, proposed
by van Lamsweerde in [11].

Indicators need to be measurable quantities. In goal models, quality con-
straints (QCs) as well as the success rates for hard goals and tasks can be used
as indicators. Since the number of potential indicators is large, we need to se-
lect as indicators the important values that the adaptive system should strive
to achieve. Awareness Requirements (AwReqs) [18] are requirements that talk
about the success or failure of other requirements, e.g., “Find available rooms
should never fail” or “Schedules produced in less than a day should succeed 75%
of the time”. AwReqs are formalized and come with a monitoring infrastructure.
They can be attached to QCs, hard goals, etc. (i.e., potential indicators) and
capture the reference input of the system as well as specify the target success
rates or other requirements about them. In our system identification approach
(§4), we use AwReqs as the indicators in goal models. In the next sub-sections,
however, we use cost and speed to refer to the QCs attached to softgoals Low
cost and Fast scheduling, respectively.

Given the above definitions for system parameters and indicators and taking
the Find local room goal of figure 1 as an example, we would like to model in-
formation such as: “upon increasing the value of RfM, the success rate of Find
local room also increases” and “at VP2, when choosing Call hotels and convention
centers over Call partner institutions, your cost will increase”. This kind of in-
formation is very important for a feedback controller in its task of deciding how
to adapt the system to fulfill its requirements.

In the remainder of the section we describe the qualitative approach for cap-
turing and analyzing this information. Our approach does not differentiate be-
tween control variables and variation points and, thus, we hereafter refer to them
generally as system parameters or simply parameters.

3.2 Numeric Parameters

Numeric parameters, such as Rooms for Meetings (RfM), From how Many (FhM)
and Maximum Conflicts Allowed (MCA) (see figure 1), can assume any integer or
real value at runtime. There could be, however, some domain-related constraints,

352 V.E. Silva Souza, A. Lapouchnian, and J. Mylopoulos

e.g., RfM can obviously assume only positive integer values, FhM ranges between
0% and 100%, etc.

Changing the value of a numeric parameter affects many aspects of system per-
formance, which, as explained in the previous sub-section, are measured through
indicators. Taking the parameter RfM as an example, and assuming the success
rate of Find local room is affected by changes in RfM, we could define this indi-
cator as a function of the parameter (clearly a simplification):

success rate of F ind local room = f(RfM) (1)

We could then say how changes in RfM affect the success rate of the goal by
declaring if the derivative of f is positive or negative. Using Leibniz’s notation:

Δ〈success rate of F ind local room〉
ΔRfM

> 0 (2)

Relation 2 tells us that if we increase the value of RfM, the success rate of Find
local room also increases. Of course, the analogous decrease-decrease relation
is also inferred. The Δy/Δx notation is used instead of dy/dx because RfM, as
previously mentioned, assumes only discrete values. Furthermore, in practice we
use a simplified linearized notation to improve writability:

Δ (〈success rate of F ind local room〉/RfM) > 0 (3)

Suppose there is a limit to which this relation holds: after a given number,
adding more rooms will not help with the success rate of Find local room. For
this case, we use the concept of landmark values (see §2.2) and specify an inter-
val in which the relation between the parameter and the indicator holds. Since
we are dealing with qualitative information, we might not know exactly how
many rooms are enough, so we define a landmark value called enoughRooms:
Δ (〈success rate of F ind local room〉/RfM) [0, enoughRooms] > 0. Although
specifying this interval intuitively tells us that adding extra rooms after there are
already enough of them available does not change the success rate of the goal, one
could formalize this information, making it explicit: Δ (〈success rate of F ind
local room〉/RfM) [enoughRooms,∞] = 0.

This gives us the general form for differential relations in our proposal, shown
in (4), where Δ can be replaced with d in case of a continuous parameter, the
interval [a, b] is optional, with default value [−∞,∞], 〈op〉 should be substituted
by a comparison operator (>, ≥, <, ≤, = or �=) and C is any constant, not just
zero as in previous examples.

Δ (indicator/parameter) [a, b] 〈op〉 C (4)

Non-zero values for C are useful for expressing different rates of change. When
facing a decision on how to improve an indicator I, given the information
Δ (I/P1) > 0 and Δ (I/P2) > 0 the controller will arbitrarily choose to ei-
ther increase P1 or P2; on the other hand, Δ (I/P1) > 2 and Δ (I/P2) > 7 could
help it choose P2 in case I needs to be increased by a larger factor.

System Identification for Adaptive Software Systems 353

If we replace the constant C by a function g(parameter), we will be able to
represent nonlinear relations between indicators and parameters, for instance,
Δ (cost/RfM) = 2×RfM (cost increases by the square of the increase of RfM).
However, linear approximations greatly simplify the kind of modeling we are
proposing and are enough for our objectives. Moreover, it is very hard to obtain
such precise qualitative values before the system is in operation.

3.3 Enumerated Parameters

In addition to numeric parameters, parameters that constrain their possible val-
ues to specific enumerated sets are also possible. Variation points are clear ex-
amples of this type of parameter, as their possible values are constrained to the
set of paths in the OR-decomposition. Control variables, however, can also be
of enumerated type (in effect, as discussed in section 3.1, control variables are
abstractions over families of goal models in an OR-decomposition).

Figure 1 shows five enumerated parameters elicited for the meeting scheduler,
two enumerated control variables and three variation points :

– Required fields (RF) in the task Characterize meeting can assume the values:
participants list only, short description required or full description required ;

– View private appointments (VPA) in the task Collect from system calendar
can be either yes or no.

– At Collect timetables, VP1 can assume values Email participants, Call par-
ticipants or Collect automatically;

– At Find available rooms, VP2 can assume values Find local rooms, Call part-
ner institution or Call hotels and convention centers ;

– At Choose schedule, VP3 can assume values Schedule manually or Let system
schedule.

Unlike numeric parameters, the meaning of “increase” and “decrease” is not de-
fined for enumerated types. However, we use a similar syntax to specify how
changing from one value (α) to another (β) affects a system indicator:

Δ (indicator/parameter) {α1 → β1, α2 → β2, . . . , αn → βn} 〈op〉 C (5)

By performing pair-wise comparisons of enumerated values, stakeholders can
specify how changes in an enumerated parameter affect the system. For example,
the relations below show how changes in VP2 affect, respectively, the indicators
cost and speed (both increase if you do the changes listed between curly brackets).

Δ (cost/V P2) {local → partner, local → hotel, partner → hotel} > 0 (6)
Δ (speed/V P2) {partner → local, hotel → local, partner → hotel} > 0 (7)

Often, however, an order among enumerated values w.r.t. different indicators
can be established. For instance, analyzing the pair-wise comparisons shown in
relations 6 and 7, we conclude that w.r.t. cost, local $ partner $ hotel, while
for speed, partner $ hotel $ local. Depending on the size of the set of values

354 V.E. Silva Souza, A. Lapouchnian, and J. Mylopoulos

for an enumerated parameter, listing all pair-wise comparisons using the syntax
specified in (5) may be tedious and verbose. If it is possible to specify a total
order for the set, doing so and using the general syntax presented for numeric
parameters in equation (4) can simplify elicitation and modeling.

3.4 Extrapolations

Differential relations always involve one indicator, but may involve more than
one parameter. For example, “increasing” VP1 and VP3 (considering the order of
the alternatives in variation points to be based on their position in the model,
ascending left-to-right) contributes positively to indicator IFS = Fast schedul-
ing both separately — Δ (IFS/V P1) > 0 and Δ (IFS/V P3) > 0 — and in
combination — Δ (IFS/ {V P1, V P3}) > 0.

When we are not given any relation that differentially relate two parame-
ters P1 and P2 to a single indicator I, we may still be able to extrapolate such
a relation on the basis of simple linearity assumptions. E.g., if we know that
Δ(I/P1) > 0 and Δ(I/P2) > 0, it would be reasonable to extrapolate the re-
lation Δ(I/ {P1, P2}) > 0. More generally, our extrapolation rule assumes that
homogeneous impact is additive (figure 3). Note that in cases where P1 and P2

have opposite effects on I, nothing can be extrapolated because of the qualitative
nature of our relations.

Fig. 3. Combining the effects of different CVs on the same indicator

Generalizing, given a set of parameters {P1, P2, . . . , Pn}, if ∀i ∈ {1, . . . , n} ,
Δ (I/Pi) [ai, bi] 〈op〉 Ci, our extrapolation rule has as follows:

Δ (I/ {P1, P2, . . . , Pn})
n⋂

i=0

[ai, bi] 〈op〉
n∑

i=0

Ci (8)

If it is known that two parameters cannot be assumed to have such a combined
effect, this should be explicitly stated, e.g., Δ (I/ {P1, P2}) < 0.

From differential calculus we extrapolate on the concept of the second deriva-
tive. If y = f(x), we can say that y grows linearly if f ′(x) > 0 and f ′′(x) = 0 (it
“has constant speed”). However, if we have f ′′(x) > 0, then y’s rate of growth
also increases with the value of x (it “accelerates”). Qualitative information on
second derivatives can be modeled in our language using the following notation:

System Identification for Adaptive Software Systems 355

Δ2 (I/P) [a, b] 〈op〉 C. Thus, if we say that Δ2 (I/P1) > 0 and Δ2 (I/P2) = 0,
the controller may conclude that P1 is probably a better choice than P2 for large
values. Other concepts, such as inflection and saddle points, maxima and min-
ima, etc. could also be borrowed, although we believe that knowing information
on such points in a I = f(P) relation without knowing the exact function f(P)
is very unlikely.

4 System Identification Process

In this section, we describe a systematic process for system identification. Pro-
cess Input: a requirements model G (such as the one in figure 1). Process Out-
put: a parametrized specification of the system behavior S = {G, I, P, R (I, P)},
where G is the goal model, I is the set of indicators identified by AwReqs in the
model, P is the set of parameters, and R (I, P) is the set of relations between
indicators and parameters. At runtime, a feedback-loop controller receives S as
input in order to adapt the system pro-actively or in case of failures.

The following are the steps of the process. They can be applied iteratively,
gradually enriching the model with each iteration.

Step 1. Identify indicators: Introduce AwReqs into the goal model G spec-
ifying target success rates for QCs, hard goals or tasks. Output: the set of
indicators I.

Step 2. Identify parameters: Identify possible variations in the goal model
affecting the indicators, which, therefore, can be manipulated to adjust the per-
formance of the system. These are captured by control variables and variation
points (see §3.1). Output: the set of parameters P .

Step 3. Identify differential relations: For each indicator from the set
I the requirements engineer asks: which parameters from P does this indicator
depend on? Alternatively, iterate through set P and ask, for each parameter,
which indicator in I is affected by it. Either way, one should end up with a
many-to-many association between the sets. There are heuristics that help in
answering these questions:

Heuristic 1 : if provided, softgoal contribution links capture these dependencies
for variation points. E.g., in figure 1, the choices in VP1 contribute to the softgoal
Fast scheduling and thus VP1 affects the success rate of Schedules produced in
less than a day, a QC derived from that softgoal. Any AwReq-derived indicator
involving that QC is therefore also affected.

Heuristic 2: another heuristic for deriving potential parameter-indicator re-
lations is to link indicators to parameters that appear in the subtrees of the
nodes the indicators are associated with. The rationale for this is the fact that
parameters in a subtree rooted at some goal G, which models how G is achieved,
change the subtree, thus potentially affecting the indicators associated with the
goal. E.g., the parameter RfM is below the goal Find available rooms in the tree
and thus can be (and actually is) affecting its success rate, an indicator.

356 V.E. Silva Souza, A. Lapouchnian, and J. Mylopoulos

Heuristic 3 : yet another way to identify potential parameter-indicator rela-
tions is to look at the non-functional concerns that these parameters/indicators
address and to match the ones with the same concern. [18] describes how NFRs
such as robustness, criticality, etc. lead to the introduction of AwReqs into goal
models. The already-mentioned softgoal contributions explicitly link variation
points with NFRs. Similar analysis should be done for control variables.

The modeling of the parameter-indicator relations is done using the language
of section 3. Output: R (I, P), the initial set of relations between indicators and
parameters.

Step 4. Refine relations: The initial set of parameter-indicator relations
produced in Step 3 should be refined by comparing and combining those that
refer to the same indicator. When comparing two relations, say Δ (I1/RfM) > 0
and Δ (I1/V P2) > 0 (where I1 might represent 〈success rate of F ind local
room〉), the modeler can investigate whether either of these adaptation strategies
is better than the other and by how much. This may result in the model being
refined into, e.g., Δ (I1/RfM) > Δ (I1/V P2), which would help the controller
facing the choice between these alternatives. The analysis of whether selecting
an alternative makes the value of an indicator match its reference input is to be
addressed in future work.

Combining relations also refers to what has been discussed in section 3.4: if a
positive change in both parameters results in a positive change in the indicator,
should we expect the default behavior in which Δ (I1/ {RfM, V P2}) > 0 or
should we explicitly specify that this is not the case? Such questions should be
asked for any set of relations that refer to the same indicator.

Note that when combining relations to analyze alternatives, care must be
taken to only look at the parameters/indicators relevant in the current system
configuration. E.g., in figure 1, the parameter View Private Appointments (VPA)
cannot affect any indicator if the value of VP1 is not Collect automatically. Out-
put: R (I, P), the updated set of relations between indicators and parameters.

5 Validation

To validate our proposal, we applied the system identification process described
in section 4 to the meeting scheduler example presented throughout this paper,
identifying 9 indicators (in the form of AwReqs), 8 system parameters (5 control
variables and 3 variation points as shown in figure 1) and a total of 24 differential
relations among the identified indicators and parameters.

For instance, one of the identified indicators refers to the goal Find avail-
able rooms as a critical requirement that should never fail, which is modeled
in AwReq AR5: NeverFail(G-FindAvailRooms). During parameter identifica-
tion, Rooms for Meeting (RfM) and VP2 were identified, along with other pa-
rameters that are not relevant to AR5. In the next phase, two relations were
identified: Δ (AR5/RfM) > 0 (increasing the number of local rooms helps),
Δ (AR5/V P2) > 0 (changing from local → partner → hotel helps). During re-
finement, analyzing RfM and VP2 in combination provided Δ (AR5/ {RfM, V P2})

System Identification for Adaptive Software Systems 357

= Δ (AR5/V P2) (increasing the number of local rooms and then not using them
does not make sense) and Δ (AR5/RfM) = Δ (AR5/V P2) (changing RfM or VP2
is equally effective).

Then, we developed a simulation that reads the above system information
as well as events reporting AwReq failures (which could be provided by the
framework we have presented in [18]) in order to identify possible adaptivity
actions that could be taken by the controller during reconciliation. For example,
when an event representing the failure of AR5 is received during the simulation,
the program replies with the choices of parameter changes that have positive
effect on AR5 based on the above qualitative relations:

* AwReq AR5 has failed! To reconcile, the controller could:
- Current value of VP2 = local. Change it to one of: [partner, hotel]
- Current value of RfM = 3. Increase it.
- Note: VP2 and RfM should not be changed in combination.

With the information given by the differential relations, the program was able
to identify available alternatives to adapt the system in case of failure. More so-
phisticated algorithms to analyze all the possibilities and select the best course
of action (considering also the effect on NFRs, for example) are in our future
plans for developing a complete framework for system adaptivity based on feed-
back loops. We are also currently working on a larger controlled experiment,
conducting system identification on the London Ambulance System [6].

6 Related Work

There is growing interest in Control Theory-based approaches for adaptive sys-
tems and many of the proposed approaches include some form of system identi-
fication stage, in which the adaptive capabilities of the system are elicited and
modeled. In [7], modeling is done by representing system and environment ac-
tions as well as fluents that express properties of the environment. In GAAM
[17], measurable/quantifiable properties of the system are modeled as attributes,
a preference matrix specifies the order of preference of adaptation actions to-
wards goals (similarly to what we proposed in section 3.3) and an aspiration
level matrix determines the desired levels of attributes of each goal. Our work
differs from these by providing qualitative information on the relation between
system parameters and run-time indicators.

In [14], Letier & van Lamsweerde augment KAOS with a probabilistic layer
in order to allow for the specification of partial degrees of goal satisfaction,
thus quantifying the impact of alternative designs in high-level system goals.
In the approach, domain-specific quality variables (QVs) associated with goals
are modeled and objective functions (OFs) define domain-specific, goal-related
quantities to be maximized or minimized. Proposed heuristics for identifying QVs
and OFs could be useful in the elicitation of control variables in our approach.
However, unlike our work, their models do not contain a clear relation between
these variables and indicators measured in the target system.

358 V.E. Silva Souza, A. Lapouchnian, and J. Mylopoulos

Approaches such as i* [16], the work by Elahi & Yu [4] and other propos-
als on design-time trade-off analysis can be adapted to provide information for
run-time adaptivity (i.e., removing the need for stakeholder intervention in the
analysis). For instance, contribution links in i* can provide qualitative relations
between variation points and indicators, although they lack the means of dif-
ferentiating between links with the same label (e.g., see Call participants and
Email participants in figure 1). GRL [1] could be used for this purpose, if car-
dinal contribution values (1, 2, ...) were changed to ordinal ones (1st, 2nd, ...),
thus providing a graphical representation of enumerated value orders (§3.3). Our
proposal provides such run-time trade-off information with a syntax that is more
concise (control parameters abstract what would have to be represented as large
goal sub-trees), uniform (can relate any system parameter to indicators) and
flexible (the precision of the specification depends on the available information).

The proposal by Brake et al. [2] automates the discovery of software tuning
parameters at the code level using reverse engineering techniques. A taxonomy
of parameters and patterns to aid in their automatic identification provides some
sort of qualitative relation among parameters, which may be “tunable” or just
observed. While their work targets existing and legacy software, our proposal
takes a Requirements Engineering perspective and, thus, can refer to higher
level parameters, such as the success rate of a functional requirement or a quality
constraint imposed over a non-functional one.

Finally, our proposal clearly differs from quantitative approaches
(e.g., [1,3,11,15]) in that we are using qualitative information, based on the
premise that quantitative estimates at requirements time are usually unreliable
[4] (assuming a domain with high uncertainty or incomplete knowledge of the
behavior of the system-to-be). Our approach allows the modeler to start with
minimum information available and add more as further details about the sys-
tem become available (either by elicitation or through run-time analysis once
the system is executing).

7 Discussion and Future Work

In this paper so far, we have overlooked an important modeling dimension, con-
textual variability. In this section, we sketch how it can be taken into consid-
eration in the system identification process of section 4. We then discuss other
research directions that we plan to pursue in the future.

Properties of the environment can affect the requirements for and the opera-
tion of a system, but, unlike the parameters we have discussed previously (CVs
and VPs), context parameters cannot be directly manipulated, only monitored.
Contexts are abstractions of such properties [12]. For instance, the type of a
meeting can be viewed as a context for the meeting scheduling system, as can
be the importance of a meeting organizer within the company. From the point
of view of Control Theory, context most closely corresponds to a disturbance
input that cannot be manipulated, but influences the output and thus must be
accounted for. Contexts are organized using (possibly many) inheritance hierar-
chies that refine general contexts (e.g., Regular meeting) into more specific ones

System Identification for Adaptive Software Systems 359

(Mandatory meeting or Information session) with descendants inheriting the
properties of their ancestors. Each hierarchy structures contexts along a context
dimension — some variable aspect of the domain (e.g., meeting importance) —
with leaf-level elements directly monitorable. Multiple inheritance is supported.

In [12], (soft)goals and contribution links are identified as context-dependent
goal model elements. Contextual annotations capture the effects of contexts on
these elements and thus on software requirements by stating in which contexts
the elements are visible. Unless explicitly overridden, the effects of ancestor con-
texts are inherited by their descendants. So, by default, the requirements for
Regular meeting are inherited by Mandatory meeting.

As discussed in [12], varying properties of the environment can have significant
effect on goal models — namely, goal/task/softgoal addition/removal, changes
in VP choices and different evaluations of these choices w.r.t. softgoals. Given
a context-parametrized (i.e., with contextual annotations) goal model, the al-
gorithm for producing context-specific versions of it for particular sets of active
contexts is also described. It removes model elements invisible in the current
context. The goal modeling notation presented here is more complex compared
to the notation of [12], thus requiring a modified algorithm. The additional el-
ements — DAs, QCs, AwReqs, and CVs — are all context-dependent, i.e., can
change from context to context. E.g., the success rate for the goal Find available
rooms can be set to 95% in a Regular meeting context and to 70% in a less
important Information session context by using the appropriate AwReqs. Each
AwReq will be visible in its respective context. Similarly, variations in possible
values for VPs/CVs can be represented by different VP/CV variants, each visible
in their appropriate context(s).

Clearly, these goal model variations need to be reflected in the system identifi-
cation process. When we do it in the particular context c, we produce the model
Sc = {Gc, Ic, Pc, Rc (Ic, Pc)}, where Gc is context-specific goal model (a subset
of the context-parametrized goal model G) generated by the modified algorithm
from [12]. Then, Ic ⊆ I and Pc ⊆ P since some of the indicators and parameters
may not be visible in c. Moreover, Rc — the set of relations between the relevant
parameters and indicators in C — should be restricted to the elements of Ic and
Pc (i.e., r (i, p) ∈ Rc ⇒ i ∈ Ic ∧ p ∈ Pc). While being a necessary condition, this
expression does not define the relations in Rc. It is up to the modeler to identify
which relations exist in the particular contexts and how they are defined using
the language of section 3. Once a relationship r (i, p) ∈ Rc is defined for the
context c, it also applies for all the descendant contexts of c unless overridden
and provided that both i and p exist in the descendant contexts.

A complete analysis of the role of contextual information on the system iden-
tification process as well as validating the ideas briefly discussed above is subject
of future work. Other possible future work also include investigating: means of es-
timating during RE whether a particular behavior change will match the desired
targets for the system’s output; the effect indicators can have on one another
and how to model such a qualitative relation during system identification; what
other methods and concepts from the Control Theory body of knowledge could be

360 V.E. Silva Souza, A. Lapouchnian, and J. Mylopoulos

applied in our approach; how does this approach affect traditional Requirements
Engineering activities (e.g., stakeholder negotiation during requirements elicita-
tion); how can our proposal contribute to requirements evolution (i.e., changing
the goal model because it does not properly represent current stakeholder re-
quirements, despite the system’s adaptive capabilities); etc.

Finally, the full potential of the proposal presented in this paper will be re-
alized in the next steps of our research, which includes the development of a
framework that implements adaptivity in a target system using feedback loops.
With AwReqs [18] and qualitative relations in the requirement model, it is now
possible to develop such a framework that will provide reconciliation (attempt to
satisfy the requirements after failures) and compensation (resolve any inconsis-
tencies that failures might produce) at runtime. Once we have developed such a
framework, more experiments are needed to assess to what extent this approach
helps in designing adaptive systems as opposed to traditional GORE methods.

In particular, we are currently working on different strategies for reconcilia-
tion. With the information that is added to the models by using the approach
proposed in this paper, two basic strategies to be executed when a failure is
detected are: parameter tuning — if there are any parameters that could be
modified in order to reconcile, analyze the qualitative information available and
select the best course of action w.r.t. other indicators — and abort — if there
are no parameters or the ones that exist have already been tried, tell the target
system to gracefully fail or degrade performance. Other reconciliation strategies
can be devised by analyzing existing proposals in the area of adaptive systems
and other fields of computer science, such as fault-tolerant computing, artificial
intelligence, distributed systems, etc.

8 Conclusion

In this paper, we argue that current requirements models lack an essential in-
formation needed by feedback loop controllers in order to adapt their target
systems: how changes in parameters affect relevant monitored indicators. We
propose a systematic approach for System Identification and, by taking a RE
perspective, we use ideas from Qualitative Reasoning to cope with uncertain
and incomplete knowledge about systems. Our language allows modeling of
parameter-indicator relations varying precision, based on available information.
We also briefly discuss the role of contextual information on this process and
conduct experiments to validate our ideas.

References

1. Grl website, http://www.cs.toronto.edu/km/grl/
2. Brake, N., Cordy, J.R., Dancy, E., Litoiu, M., Popescu, V.: Automating discovery

of software tuning parameters. In: SEAMS 2008: Proceedings of the 2008 Interna-
tional Workshop on Software Engineering for Adaptive and Self-managing Systems.
ACM Press, New York (2008)

http://www.cs.toronto.edu/km/grl/

System Identification for Adaptive Software Systems 361

3. Cornford, S.L., Feather, M.S., Hicks, K.A.: DDP: a tool for life-cycle risk manage-
ment. IEEE Aerospace and Electronic Systems Magazine 21(6), 13–22 (2006)

4. Elahi, G., Yu, E.: Requirements Trade-offs Analysis in the Absence of Quantita-
tive Measures: A Heuristic Method. In: SAC 2011: 26th Symposium On Applied
Computing. ACM, New York (2011)

5. Feather, M.S., Fickas, S., Van Lamsweerde, A., Ponsard, C.: Reconciling System
Requirements and Runtime Behavior. In: IWSSD 1998: 9th International Workshop
on Software Specification and Design, Washington, DC, USA, p. 50 (1998)

6. Finkelstein, A., Dowell, J.: A comedy of errors: the london ambulance service case
study. In: IWSSD 1996: 8th International Workshop on Software Specification and
Design, pp. 2–4 (March 1996)

7. Heaven, W., Sykes, D., Magee, J., Kramer, J.: A Case Study in Goal-Driven Ar-
chitectural Adaptation. In: SEAMS 2009: 2009 ICSE Workshop on Software En-
gineering for Adaptive and Self-Managing Systems, vol. 2, pp. 109–127. Springer,
Vancouver (2009)

8. Hellerstein, J.L., Diao, Y., Parekh, S., Tilbury, D.M.: Feedback Control of Com-
puting Systems. John Wiley & Sons, Chichester (2004)

9. Jureta, I.J., Mylopoulos, J., Faulkner, S.: Revisiting the Core Ontology and Prob-
lem in Requirements Engineering. In: RE 2008: 16th IEEE International Require-
ments Engineering Conference, Barcelona, Spain, pp. 71–80. IEEE, Los Alamitos
(2008)

10. Kuipers, B.: Qualitative reasoning: Modeling and simulation with incomplete
knowledge. Automatica 25(4), 571–585 (1989)

11. Lamsweerde, A.V.: Reasoning About Alternative Requirements Options, ch. 20,
pp. 380–397. Springer, Heidelberg (2009)

12. Lapouchnian, A., Mylopoulos, J.: Modeling domain variability in requirements en-
gineering with contexts. In: Laender, A.H.F., Castano, S., Dayal, U., Casati, F.,
de Oliveira, J.P.M. (eds.) ER 2009. LNCS, vol. 5829, pp. 115–130. Springer, Hei-
delberg (2009)

13. Lapouchnian, A., Yu, Y., Mylopoulos, J.: Requirements-Driven Design and Config-
uration Management of Business Processes. In: Alonso, G., Dadam, P., Rosemann,
M. (eds.) BPM 2007. LNCS, vol. 4714, pp. 246–261. Springer, Heidelberg (2007)

14. Letier, E., van Lamsweerde, A.: Reasoning about partial goal satisfaction for re-
quirements and design engineering. In: FSE 2004: 12th ACM SIGSOFT Interna-
tional Symposium on Foundations of Software Engineering, pp. 53–62 (2004)

15. Ma, W., Liu, L., Xie, H., Zhang, H., Yin, J.: Preference Model Driven Services
Selection. In: van Eck, P., Gordijn, J., Wieringa, R. (eds.) CAiSE 2009. LNCS,
vol. 5565, pp. 216–230. Springer, Heidelberg (2009)

16. Mylopoulos, J., Chung, L., Yu, E.S.K.: From object-oriented to goal-oriented re-
quirements analysis. Communications of the ACM 42(1), 31–37 (1999)

17. Salehie, M., Tahvildari, L.: Towards a Goal-Driven Approach to Action Selection
in Self-Adaptive Software. Software Practice and Experience (2011)

18. Souza, V.E.S., Lapouchnian, A., Robinson, W.N., Mylopoulos, J.: Awareness Re-
quirements for Adaptive Systems. In: SEAMS 2011: 6th International Symposium
on Software Engineering for Adaptive and Self-Managing Systems, Honolulu, USA.
ACM, New York (2011)

19. Wang, Y., Mylopoulos, J.: Self-repair Through Reconfiguration: A Requirements
Engineering Approach. In: ASE 2009: 24th IEEE/ACM International Conference
on Automated Software Engineering, Auckland, New Zealand (2009)

Using UML Profiles for Sector-Specific Tailoring

of Safety Evidence Information

Rajwinder Kaur Panesar-Walawege1,2, Mehrdad Sabetzadeh1,2,
and Lionel Briand1,2

1 Simula Research Laboratory, Lysaker, Norway
2 University of Oslo, Oslo, Norway

{rpanesar,mehrdad,briand}@simula.no

Abstract. Safety-critical systems are often subject to certification as a
way to ensure that the safety risks associated with their use are suffi-
ciently mitigated. A key requirement of certification is the provision of
evidence that a system complies with the applicable standards. The way
this is typically organized is to have a generic standard that sets forth the
general evidence requirements across different industry sectors, and then
to have a derived standard that specializes the generic standard accord-
ing to the needs of a specific industry sector. To demonstrate standards
compliance, one therefore needs to precisely specify how the evidence
requirements of a sector-specific standard map onto those of the generic
parent standard. Unfortunately, little research has been done to date on
capturing the relationship between generic and sector-specific standards
and a large fraction of the issues arising during certification can be traced
to poorly-stated or implicit relationships between a generic standard and
its sector-specific interpretation. In this paper, we propose an approach
based on UML profiles to systematically capture how the evidence re-
quirements of a generic standard are specialized in a particular domain.
To demonstrate our approach, we apply it for tailoring IEC61508 – one of
the most established standards for functional safety – to the Petroleum
industry.

Keywords: Safety Certification, UML Profiles, Evidence Information
Models, IEC61508.

1 Introduction

Safety-critical systems are typically subject to safety certification, whose aim
is to ensure that the safety risks associated with the use of such systems are
sufficiently mitigated and that the systems are deemed safe by a certification
body. A key requirement in safety certification is the provision of evidence that
a system complies with one or more applicable safety standards. A common
practice in defining standards for certification is to have a generic standard
and then derive from it sector-specific standards for every industry sector that
the generic standard applies to. The idea behind such a tiered approach is to
unify the commonalities across different sectors into the generic standard, and

M. Jeusfeld, L. Delcambre, and T.W. Ling (Eds.): ER 2011, LNCS 6998, pp. 362–378, 2011.
c© Springer-Verlag Berlin Heidelberg 2011

Using UML Profiles for Sector-Specific Tailoring 363

then specialize the generic standard according to contextual needs. The generic
standard is sometimes referred to as a metastandard [19].

A notable example in safety certification is the specialization of IEC61508
[10] – a generic standard that deals with the functional safety of electrical /
electronic / programmable electronic safety-critical systems. In the process in-
dustry, this standard is adapted as IEC61511 [9], in railways as EN 50129 [8],
in the petroleum industry as OLF070 [5], and in the automotive industry as the
forthcoming ISO 26262 [4].

For specialization to be effective, it is important to be able to precisely specify
how the evidence requirements stated in a generic standard map onto those
stated in a derived standard. Unfortunately, there has been little work to date
on systematizing the specification of the relationship between generic and sector-
specific standards. This has led to a number of problems. In particular, Feldt et.
al. [11] cite the lack of agreed-upon relationships between generic and derived
standards as one of the main reasons behind certification delays, caused by
ambiguities in the relationships and the need for subjective interpretations by
the certification body and system supplier. Furthermore, Nordland [12] notes
the lack of a well-formulated process for showing that a derived standard is
consistent with a generic standard. This too is directly attributable to the lack
of precise and explicitly-defined relationships between the standards.

In this paper, we propose a novel approach based on UML profiles [3] to
capture the relationship between the evidence requirements of a generic standard
and those of a sector-specific derivation. Briefly, our approach works by (1)
building conceptual models for the evidence requirements of both the generic
and sector-specific standards, (2) turning the conceptual model of the generic
standard into a profile, and (3) using the profile for stereotyping the elements
in the conceptual model of the sector-specific standard. Our approach offers
two main advantages: First, it provides a systematic and explicit way to keep
track of the relationships between a generic and a derived standard in terms of
their evidence requirements. And second, it enables the definition of consistency
constraints to ensure that evidence requirements are being specialized properly
in the derived standard.

While the overall ideas behind our approach are general, we ground our dis-
cussions on a particular safety standard, IEC61508, and a particular derivation,
OLF070 (used in the petroleum industry). On the one hand, this addresses a
specific observed need in safety certification of maritime and energy systems;
and on the other hand, it provides us with a concrete context for describing the
different steps of our approach and how these steps fit together. The conceptual
model characterizing the IEC61508 evidence requirements has been described in
our earlier work [18]. The one for OLF070 has been developed as part this cur-
rent work. Excerpts from both conceptual models will be used for exemplification
throughout the paper.

The remainder of this paper is structured as follows: In Section 2, we review
background information for the paper. In Section 3, we describe our UML profile
for IEC61508 and in Section 4 we discuss how the profile can be used for

364 R.K. Panesar-Walawege, M. Sabetzadeh, and L. Briand

specialization of safety evidence. Section 5 compares our work with related work.
Section 6 concludes the paper with a summary and suggestions for future work.

2 Background

In this section, we provide a brief introduction to safety certification (based on
IEC61508), how safety evidence requirements can be structured through concep-
tual modeling, and UML profiles.

2.1 IEC61508-Based Certification

Safety-critical systems in many domains, e.g., the avionics, railways, and mar-
itime and energy, are subject to certification. One of the most prominent stan-
dards used for this purpose is IEC61508. The standard sets forth the require-
ments for the development of electrical, electronic or programmable electronic
systems containing safety critical components. This standard is concerned with
a particular aspect of overall system safety, called functional safety, aimed at
ensuring that a system or piece of equipment functions correctly in response to
its inputs [10]. The standard defines requirements for hardware development,
software development, and the development process that needs to be followed.
The standard applies to systems with different required safety margins. This is
encoded in the standard in the form of Safety Integrity Levels (SILs). The levels
range from SIL 1 to SIL 4 and indicate the level of risk reduction measures that
need to be in place based on the failure rate of the implementation and the ac-
ceptability of the risks involved. A number of sector-specific standards specialize
IEC61508. These include IEC61511 in the process industry [9], EN 50129 [8] for
railways, OLF070 [5] for the petroleum industry, and the upcoming ISO26262
[4] for the automotive industry.

2.2 Conceptual Modeling of Compliance Evidence Information

In general, standards, irrespective of the domains they are targeted at, tend to
be expressed as textual requirements. Since the requirements are expressed in
natural language, they are subject to interpretation by the users of the standards.
To make the interpretation explicit and develop a common understanding, we
develop a conceptual model that formalizes the evidence requirements of a given
standard. Such a model can be conveniently expressed in the UML class diagram
notation [3].

For illustration, we show in Fig. 1 a small fragment of the conceptual model
that we have built in our previous work on IEC61508 [18]. Concepts are rep-
resented as classes and concept attributes – as class attributes. Relationships
are represented by associations. Generalization associations are used to derive
more specific concepts from abstract ones. When an attribute assumes a value
from a predefined set of possible values, we use enumerations. Finally, we use
the package notation to make groupings of concepts and thus better manage the
complexity.

Using UML Profiles for Sector-Specific Tailoring 365

The diagram in Fig. 1 presents the concepts for describing the development
process, packaged as Process Concepts, and how these relate to concepts in the
Issue Concepts, Artifact Concepts and Requirements Concepts packages. From
these other packages, we show only the concepts that related to those in Process

Concepts. The central concept in the diagram of Fig. 1 is the notion of Activity,
representing a unit of behavior with specific input and output. An activity can
be further decomposed into sub-activities. A (life-cycle) phase is made up of a
set of activities that are carried out during the lifetime of a system. Each activity
utilizes certain techniques to arrive at its desired output, given its input. The
selection of techniques is related to the safety integrity level that needs to be
achieved. For example, if the activity in question concerns software verification,
constructing formal proofs of correctness is usually unnecessary for low integrity
levels, whereas, formal proofs are highly recommended for the highest integrity
level. Each activity requires certain kind of competence by the agents performing
it. The agent itself can be either an individual person or an organization. In either
case, the agent is identified by the type of role it plays, for example the agent
may be the supplier of a system or the operator. Agents can be made responsible
for certain development artifacts. Further detail about the other packages shown
can be found in [18].

Fig. 1. IEC61508 Process Concepts and Their Links

2.3 UML Profiles

UML profiles [3] aim at providing a lightweight solution for tailoring the UML
metamodel for a specific domain. The same mechanisms used by UML profiles for
tailoring the UML metamodel can also be effectively used for tailoring standards
compliance evidence according to domain-specific needs.

Briefly, UML profiles enable the expression of new terminology, notation and
constraints by the introduction of context-specific stereotypes, attributes and
constraints. Stereotypes are a means of extending a base metaclass. We extend
the Class, Property and Association metaclasses, creating stereotypes for the
concepts, their attributes and their relationships respectively. Moreover, con-
straints can be defined in a profile by using the Object Constraint Language

366 R.K. Panesar-Walawege, M. Sabetzadeh, and L. Briand

(OCL) [13] to ensure that certain semantics are maintained in the new models
to which the profile is applied. By using profiles the new models that employ the
profile are still consistent with the UML metamodel.

As we describe in the subsequent sections, we use this mechanism to create a
profile of the IEC61508 conceptual model (Section 3) and then use it to specialize
the IEC61508 standard for the petroleum industry (Section 4).

3 UML Profile of the IEC61508 Standard

Our approach for specializing a generic standard is through the use of a UML
profile. In Fig. 2, we show the methodology we propose for this purpose. The
methodology consists of four main steps: (1) creating a conceptual model of the
generic standard, we do this using a UML class diagram; (2) creating a UML
profile based on the generic conceptual model; (3) creating a conceptual model of
the sector-specific standard and applying the stereotypes from the UML profile
of the generic standard; and (4) validating the OCL constraints of the profile
over the sector-specific conceptual model to ensure that it is consistent with
the generic standard. We apply this methodology for specializing the generic
IEC61508 standard to the OLF070 standard for the petroleum industry.

Fig. 2. The Methodology for Specialization of a Generic Standard

Using profiles for specialization offers the following key advantages:

– We can incorporate the specific terminology used by a generic standard and
still allow the use of context-specific terminology. For example, in IEC61508,
we have the general concept of ProgrammableElectronicSystem (PES). OLF070
instead refers to very specific types of PESs in the petroleum industry, e.g.,
Fire and Gas system (F&G), Process Shut-Down system (PSD), Emergency
Shut-Down system (ESD). These sector-specific concepts can all be stereo-
typed as ProgrammableElectronicSystem to capture the correspondence. It is

Using UML Profiles for Sector-Specific Tailoring 367

of course possible to directly extend the conceptual model of a generic stan-
dard for a specific domain by adding new elements to it. However, this makes
it hard to keep track of which concepts are from the generic standard and
which are from the sector-specific one. When a profile is used, all the stereo-
types are known to be from the generic standard, hence a clear distinction
is made between the terminologies.

– Stereotypes establish an explicit and rigorous mapping between the generic
and sector-specific standards. This mapping can be used to ensure that, for a
specific project, all the necessary evidence for demonstrating compliance has
been collected. Further, the existence of such an explicit mapping makes it
possible to define pairwise consistency rules between the generic and derived
standards (using UML’s rich constraint language, OCL), and to provide
guidance to the users about how to resolve any inconsistencies detected.

As shown in Fig. 2, the basis of our profile of IEC61508 is the conceptual model
of the IEC61508 standard. The process of creating a conceptual model of the
evidence requirements of a given standard involves a careful analysis of the text of
the standard. It requires skills in modelling, systems development and knowledge
of the process of certification beyond merely reading the standard. To some
extent, this can be viewed as a process of qualitative data analysis, where the
data is the text of the standard and it is being analysed to identify from it, all
the salient concepts and their relationships. This retrieved information from the
text is used to create a common understanding of the standard and as a means
of explicitly showing the relationships that exist between the salient concepts.

We exemplify the process of creating the conceptual model of IEC61508 by
showing an excerpt of the standard, and the concepts and relationships that have
been gleaned from the excerpt. Fig. 3 shows a section of the IEC61508 standard
that is dedicated to requirements applicable to the software of a safety-related
system. In Fig. 3, we can see the salient concepts and relationships identified in
the text - these have been highlighted by enclosing the relevant text in a box
and numbering the identified section. Box 1 shows that the concepts Phase and
Activity are of importance during the software development lifecycle (in Fig. 3
we have used the concept names shown earlier in Fig. 1). Box 2 identifies some
key relationships between phases and activities. An activity is performed during
a phase and has specified inputs and outputs. Box 3 indicates that a generic life
cycle is prescribed by the standard while not precluding deviations in terms of
phases and activities. Box 4 presents the concepts: technique, safety integrity
level and techniques recommendation - indicating that activities utilize certain
techniques based on the safety integrity level. The same concepts and relation-
ships may be found in several places in the standard. Once the text has been
marked up in this manner, a glossary is created to ensure that consistent terms
are used to refer to the same concepts and relationships. A part of this glossary,
describing the most important concepts is shown in Table 1. The conceptual
model is created from this set of concepts and their relationship and serves as
the metamodel of the profile.

368 R.K. Panesar-Walawege, M. Sabetzadeh, and L. Briand

Concepts: Phase, Activity.

Concept: Artifact.
Relationship: PerformedIn,
InputTo and OuputFrom

Concepts: Technique,
SafetyIntegrityLevel,
TechniqueRecommendation.
Relationship: Utilizes

Concepts: Artifact.
Relationship: OutputFrom

Use of general concepts for
organizing the life cycle.

1

2

3

4

5

Fig. 3. An Excerpt of IEC61508 showing the textual source of some of the Process
elements

Fig. 4 shows a bird-eye’s view of the different packages that make up the
metamodel for our IEC61508 UML profile. The packages contain abstractions for
modelling of the main concepts of IEC61508. We briefly explain each package. For
more details, see [18]. The System Concepts package describes the breakdown of
the system at a high level; the Hazard Concepts package contains the abstraction
for describing the hazards and risks for the system; the Requirements Concepts

package for the different types of requirements, including safety requirements; the
Process Concepts package for describing the development process (details given
in Section 2.2); the Artifact Concepts package for describing the different types
of artifacts created as supporting evidence; the Guidance package for describing
the other standards and recommended practices that will be used to develop the
system, the Issue Concepts package for describing the defects or enhancements
that may have given rise to changes; the Configuration Management Concepts

package for describing the unique versions for all the components that make
up the system, the Justification Concepts package to capture the assumptions
and rationale behind the various decisions that are made during development;
and the Domain-Specific Concepts package for capturing the enumerations for
concept attributes in other packages (e.g., requirement type, system operating
mode). The elements of the conceptual model are mapped almost directly into
the profile. The concepts become stereotypes that extend the metaclass Class,
the relationships become stereotypes that extend the metaclass Association and
the attributes of these two extend the metaclass Property.

Using UML Profiles for Sector-Specific Tailoring 369

Fig. 4. Packages of the IEC61508 Metamodel

Table 1. Description of Main Concepts from the IEC61508 Metamodel

Stereotype Description
Activity A unit of behaviour in a process.
Agent A person or organization that has the capability and responsibility for carrying

out an activity.
Artifact One of the many kinds of tangible by-products produced during the development

of a system.
Assumption A premise that is not under the control of the system of interest, and is accepted

as true without a thorough examination. Assumptions can, among other things,
be related to the environment of the system, the users, and external regulations.

Block Entity of hardware or software, or both, capable of accomplishing a specified
purpose.

Change A modification made to the PES, Block or Artifact.
Competence The ability to perform a specific task, action or function successfully.
ControlledItem A PES, Block or Artifact for which meaningful increments of change are docu-

mented and recorded.
Defect An error, failure, or fault in a system that produces an incorrect or unexpected

result, or causes it to behave in unintended ways.
Description A planned or actual function, design, performance or activity (e.g., function

description).
DesignatedState The state of the EUC related to safety, the EUC is either in a safe state or an

unsafe state.
Diagram Specification of a function by means of a diagram (symbols and lines).
Enhancement Provision of improved, advanced, or sophisticated features.
Error Discrepancy between a computed, observed or measured value or condition and

the true, specified or theoretically correct value or condition.
Event A single occurence in a series of occurences that cause a hazard to occur.
Failure Termination of the ability of a functional unit to perform a required function.
Fault Abnormal condition that may cause a reduction in, or loss of, the capability of

a functional unit to perform a required function.
GeneralStandard A standard that provides generic recommendations on a specific subject to a

number of related domains.
HardwareBlock Any entity of hardware – this may be mechanical, electrical or electronic that is

used in the composition of the system.
HazardousElement The basic hazardous resource creating the impetus for the hazard, such as a

hazardous energy source such as explosives being used in the system.
Hazard Any real or potential condition that can cause injury, illness, or death to per-

sonnel damage to or loss of a system, equipment or property or damage to the
environment.

Continued on next page ...

370 R.K. Panesar-Walawege, M. Sabetzadeh, and L. Briand

Continued from previous page ...
Stereotype Description
Individual Refers to a person.
Initiating-
Mechanism

The trigger or initiator event(s) causing the hazard to occur. The IM causes
actualization or transformation of the hazard from a dormant state to an active
mishap state.

Instruction Specifies in detail the instructions as to when and how to perform certain jobs
(for example operator instruction).

Interface An abstraction that a block provides of itself to the outside. This separates the
methods of external communication from internal operation.

Issue A unit of work to accomplish an improvement in a system.
List Information in a list form (e.g., code list, signal list).
Log Information on events in a chronological log form.
Mistake Human action or inaction that can produce an unintended result.
NonProgrammable-
HardwareBlock

Electro-mechanical devices (electrical) solid-state non-programmable electronic
devices (electronic).

OperatingMode The different modes that a system can be operating in, e.g. normal, maintenance,
test, emergency.

Organization A social arrangement which pursues collective goals, which controls its own per-
formance, and which has a boundary separating it from its environment.

Phase A set of activities with determined inputs and output that are carried out at a
specific time during the life of a system.

Plan Explanation of when, how and by whom specific activities shall be performed
(e.g., maintenance plan).

Programmable-
ElectronicSystem

System for control, protection or monitoring based on one or more programmable
electronic devices, including all elements of the system such as power supplies,
sensors and other input devices, data highways and other communication paths,
and actuators and other output devices.

Programmable-
HardwareBlock

Any physical entity based on computer technology which may be comprised of
hardware, software, and of input and/or output units.

Rationale The fundamental reason or reasons serving to account for something.
Recommended-
Practice

Sound practices and guidance for the achievement of a particular objective.

Report The results of activities such as investigations, assessments, tests etc. (e.g., test
report).

Request A description of requested actions that have to be approved and further specified
(e.g., maintenance request).

Requirement A necessary attribute in a system; a statement that identifies a capability, char-
acteristic, or quality factor of a system in order for it to have value and utility
to a user.

ResidualRisk Risk remaining after protective measures have been taken.
Risk Combination of the probability of occurrence of harm and the severity of that

harm.
SafeState The state of the EUC when safety is achieved.
SafetyIntegrity-
Level

The probability of a safety-related system satisfactorily performing the required
safety functions under all the stated conditions within a stated period of time.

SafetyRequirement A prescriptive statement that ensures that the system carries out its functions
in an acceptably safe manner.

SectorSpecific-
Standard

A standard that provides recommendations for a specific industrial sector (e.g.,
the energy sector).

SoftwareBlock Any entity of software that may be used for controlling the system – this may
be embedded or application software or even different levels of software such as
module, component, subsystem, system.

SoftwareLevel The different levels into which a software system can be decomposed, e.g. System,
subsystem, component and module.

Source An abstract concept that can represent a person, organization or standard that
can be a source of requirements to a system.

Specification Description of a required function, performance or activity (e.g., requirements
specification).

Standard An established norm or requirement, typically provided as a formal document
that establishes uniform engineering or technical criteria, methods, processes
and practices.

Continued on next page ...

Using UML Profiles for Sector-Specific Tailoring 371

Continued from previous page ...
Stereotype Description
Technique-
Recommendation

A particular technique recommended based on the safety integrity level of the
requirements that have been allocated to the block in question.

Technique A procedure used to accomplish a specific activity or task.
UnsafeState The state of the EUC when safety is compromised.
UserRole An aspect of the interaction between a PES and the human elements.

Fig. 5. IEC61508 Profile Fragment for the System Development Process

Our IEC61508 profile consists of:
– 57 stereotypes that extend the metaclass Class, used to characterize the

evidence elements
– 53 stereotypes that extend the metaclass Association, used to characterize

the traceability links amongst the various evidence elements.
– 6 stereotypes extend the metaclass Property, used on the role names of the

corresponding associations.

Besides these stereotypes, stereotypes extending the Class and Association meta-
classes have OCL constraints to ensure they are used consistently. We will discuss
these constraints and provide examples later in this section.

Since the profile is quite large and cannot be fully explained in this paper, as an
example, in Fig. 5, we show the stereotypes created to manage the development
process. These are the stereotypes derived from the partial conceptual model
shown in Fig. 1. The IEC61508 standard does not mandate a specific develop-
ment life-cycle such as the waterfall or iterative lifecycle; it does however state
that a number of specific activities should be carried out. We have the stereo-
type Activity to model this. An Activity can itself include other sub activities

372 R.K. Panesar-Walawege, M. Sabetzadeh, and L. Briand

and this is modelled by the association stereotype ActivityIncludes. Certain
activities may precede or succeed others and this is modelled via the association
stereotype ActivityLink along with its properties Precedes and Succeeds.

In safety-critical systems, it is very important to ensure that all work is carried
out by personnel with the required knowledge and skills. IEC61508 mandates
that this information be part of the compliance evidence. Hence, for each activ-
ity, we model both the required competence and that of the agent performing
the activity via the stereotypes Agent and Competence along with CarriesOut,
Requires and Possesses. An activity may have certain artifacts that are needed
in order to carry it out and it will produce certain artifacts upon its com-
pletion. These concepts are modelled using the stereotypes Artifact, InputTo,
OutputFrom, Requires, Produces, Input and Output. Finally, each activity will use
certain techniques to create its output. These techniques are chosen based on
the level of safety required and hence we have the stereotypes Technique and
TechniqueRecommendation.

As stated earlier, there are OCL constraints for the class and association
stereotypes. These constraint enforce the structural consistency of the evidence
information in the sector-specific derivations. Specifically, for any association
stereotyped with X , we must check that the endpoints of the association are
stereotyped correctly according to the endpoints of X in the profile metamodel.
For example, consider the CarriesOut stereotype. We need a constraint to ensure
that any association with this stereotype connects two elements stereotyped
Agent and Activity, respectively. This constraint is shown in Table 2. A similar
constraint is shown for OutputFrom, to ensure that any association having this
stereotype has endpoints that are stereotyped Artifact and Activity.

For stereotypes extending the Class metaclass, we need to verify that any
stereotyped element respects the multiplicity constraints of the profile meta-
model. We show an example in Table 2: we have constraints to ensure that an
element with the Activity stereotype is linked to at least one element with the
Artifact stereotype and at least one element with the Agent stereotype.

The profile only needs to be created once per standard, and then can be reused
for specializing the generic standard to any number of domains. Once the profile
is created, the stereotypes of the profile are applied to the conceptual model of the
domain-specific standard, also expressed as a UML class diagram. For the derived
standard there are three things to bear in mind to ensure its consistency with
the generic standard: (1) which concepts will be used directly from the generic
standard (possibly with different terminology), (2) which concepts are specific
to the domain and thus new, and (3) which concepts, from the generic standard,
have been deliberately left out as they may not be applicable to the domain, in
which case this omission is clearly noted and explained. The conceptual model
of the derived standard is created in a manner similar to the generic standard,
except that, the profile stereotypes are applied and the OCL constraints are
checked to enforce the semantics of the specialization and guide the user in
creating a structurally sound information model for a derived standard.

Using UML Profiles for Sector-Specific Tailoring 373

Table 2. OCL Constraints on Stereotypes

Stereotype Constraint

CarriesOut self.base_Association.memberEnd->
select(p:Property | not (p.class.getAppliedStereotype(
’IEC61508Profile::Activity’).oclIsUndefined()))->size()=1

and
self.base_Association.memberEnd->

select(p:Property | not (p.class.getAppliedStereotype(
’IEC61508Profile::Agent’).oclIsUndefined()))->size()=1

OutputFrom self.base_Association.memberEnd->
select(p:Property| not (p.class.getAppliedStereotype(
’IEC61508Profile::Activity’).oclIsUndefined()))->size()=1

and
self.base_Association.memberEnd->

select(p:Property| not (p.class.getAppliedStereotype(
’IEC61508Profile::Artifact’).oclIsUndefined()))->size()=1

Activity
1: self.base_Class.ownedAttribute->collect(

c:Property | c.association)->select(
a:Association | not a.getAppliedStereotype(
’IEC61508Profile::OutputFrom’).oclIsUndefined())->size()>0

2: self.base_Class.ownedAttribute->collect(
c:Property|c.association)->select(
a:Association | not a.getAppliedStereotype(
’IEC61508Profile::CarriesOut’).oclIsUndefined())->size()>0

4 Specializing IEC61508 for the Petroleum Industry

OLF070 is a derivation of IEC61508, elaborating the safety concerns that are
specific to control systems in the petroleum industry. We discuss at a high level
how OLF070 refines IEC61508. Recall the packages shown in Fig. 4: the Artifact

Concepts, the Configuration Management Concepts, the Issue Concepts, the
Guidance, and the Justification Concepts are the same in OLF070 as in
IEC61508. The Hazard Concepts are the same, apart from the fact that in OLF070,
the most common hazards have been defined in the standard already. The change
in the System Concepts is that in addition to specifying the breakdown of the
system, a particular component can be specified as either being part of a lo-
cal safety function (e.g., process shutdown) or a global safety function (e.g.,
emergency shutdown). The Requirements Concepts specify that the SIL level of
most common components can be obtained from a table provided in the stan-
dard unless there is a deviation in the component from what is described in the
standard, in which case the SIL level is calculated using the procedures speci-
fied by IEC61508. The Process Concepts and the Domain-Specific Concepts are
different in that there are specific processes and specific terminology used in
the petroleum industry for developing the systems. In this section, we illustrate
the specialization process by showing how the profile described in the previous
section can be used for tailoring the evidence required by the OLF070
standard [5].

To preserve the continuity of our examples from the previous section, we focus
on the development process aspects of OLF070, and more precisely on one of the
phases envisaged in the standard, called the Pre-Execution Phase. This phase is

374 R.K. Panesar-Walawege, M. Sabetzadeh, and L. Briand

concerned with developing a Plan for Development and Operation (PDO) of an
oilfield. The PDO contains the details of all the systems that need to be created
to make the oilfield functional. The phase ends with the creation of the PDO
document that is then sent to the authorities to get permission for the project
and used to select the main engineering contractor. In this phase, a number of
activities are carried out: (1) all the equipment to be installed at the field and
all the safety instruments systems (SIS) are defined; (2) hazards are identified;
(3) a risk analysis is performed to gauge the extent of the risks that need to
be mitigated; (4) safety functions (such as fire detection, gas detection, process
shut-down) and the safety integrity levels are specified based on the results of
the risk analysis.

In Fig. 6, we present a small excerpt of the OLF070 conceptual model and
show the concepts we have just described as the different activities that take
place during the Pre-Execution Phase. The stereotypes from our IEC61508 pro-
file have already been applied. The phase is documented in the artifact called
PlanForDevelopmentAndOperation. This is in compliance with IEC61508, whereby
each phase should have a plan documenting it. For some of the activities, we show
the relevant inputs and outputs and the agents that need to perform them. We
use the stereotypes from our IEC61508 profile to show how this OLF070 model
excerpt relates to IEC61508. Some of the stereotype we have already explained
in Section 3. The four new ones here are DocumentedIn for the result of a phase,
BasedOn to show whether an artifact is based on a standard, Standard to indicate
a type of material used to create an artifact and PerformedIn for indicating which
phase an activity is performed in. Note that stereotypes can have attributes, e.g
the attribute type for the stereotype Agent, shown in Fig. 6, has the value Owner

to indicate that the Safety Engineer is employed or commissioned by the owner
of the system to be developed. For linking to artifacts and facilitating navigation
to them, we can include URLs and file references in the conceptual model. An
example is shown in the figure, where we link the OLF070 element to the actual
document for the standard.

As discussed in Section 3, we use OCL constraints for enforcing consistent
use of the profile. Once the stereotypes have been applied to the modelled el-
ements, we can validate the model using an OCL checker, e.g. the Rational
Software Architect OCL tool [1] that we use here. In Fig. 6, we can see that
five of the elements have a red cross in their upper right-hand corner. These
element have failed the OCL validation. The errors generated are shown in
Fig. 7. The first five errors concern the constraint that an activity should have
an agent performing it. The model elements EquipmentUnderControlDefinition,
SafetyInstrumentedSystemDefinition, RiskAnalysis, SafetyFunctionsDefinition,
and SILRequirementsDevelopment do not have a corresponding agent element. For
EquipmentUnderControlDefinition, a further constraint has been violated: there
is no output specified from that activity, indicated by the last error in the snap-
shot of Fig. 7. Thus, in addition to providing a means to explicitly show the re-
lationships between the generic and sector-specific standard, the profile enables
users to check whether the requirements of the generic standard are maintained
in the sector-specific one.

Using UML Profiles for Sector-Specific Tailoring 375

Fig. 6. An example phase from OLF070

Fig. 7. Error Report showing violated OCL Constraints

5 Related Work

Using UML profiles to adapt UML to a specific context is very common. The
Object Management Group have so far standardized three profiles: the UML Pro-
file for Modeling and Analysis of Real-time and Embedded Systems (MARTE)
[16], the UML Profile for Modeling QoS and Fault Tolerance Characteristics and
Mechanisms (QFTP) [15], and the UML Profile for Schedulability, Performance
and Time (SPT) [14]. All three include safety-relevant concepts. However, in con-
trast to our work, none of these were designed for characterizing the evidence
required for compliance to safety standards.

376 R.K. Panesar-Walawege, M. Sabetzadeh, and L. Briand

Zoughbi et. al. [20] propose a UML profile for the RTCA DO-178B standard[2]
used in commercial and military aerospace software. This profile enables soft-
ware engineers to directly add certification information to software models. The
concepts modeled are targeted at addressing a major requirement of RTCA DO-
178B having to do with traceability between requirements and design and even-
tually code. This information together with evidence of other quality assurance
activities would form the basis of full compliance to the standard. The approach
we propose in this paper differs from [20] in the following ways: Firstly, we focus
on a different and broader standard; secondly, our profile includes a wide range of
concepts related to the management of the development process in safety-critical
systems, whereas [20] deals primarily with requirements and design; and thirdly
and most importantly, we use profiles as a basis for sector-specific specialization
– specialization is not tackled in [20].

The Software Assurance Evidence Metamodel (SAEM) [17] is a proposal from
the OMG, concerned with managing assurance evidence information. A main
distinction between our work and SAEM is that we aim at characterizing the
evidence that needs to be collected for certification based on a standard. Instead,
SAEM is standard-independent and mainly directed towards linking the evidence
to claims and the evaluation of the claims in light of the evidence. An abstract
specification of evidence such as the one given by SAEM will therefore need to be
complemented with an evidence conceptual model for a specific standard, e.g.,
our IEC61508 conceptual model. Indeed, just as we use profiles for specializing
IEC61508 for a specific sector, one can use profiles to incorporate SAEM into the
conceptual model of a given standard and create a metamodel that captures both
the evidence requirements for compliance, and also the evaluation of whether the
evidence is sufficient to substantiate the claims.

Chung et. al. [7] study the problem of compliance of a user-defined workflow
with the activities envisaged in IEC61508. Their approach is to check (process)
compliance by comparing user-defined activities in an organization against mod-
els of the activities in the standard. Our work is close to [7] in its goal to model
compliance information; however, we go beyond the process aspects of IEC61508
and provide an evidence information model for the entire IEC61508, which can
in turn be specialized to sector-specific needs through the use of profiles.

6 Conclusion and Future Work

In this paper we presented a methodology for ensuring that a generic standard
can be specialized in a systematic manner for a particular domain. We do this
by capturing the generic standard as a conceptual model using a UML class
diagram and use this as a basis for creating a UML profile. The profile is then
applied to the conceptual model of a sector-specific standard and used as an ex-
plicit means of keeping track of the relationships between the two. We exemplify
our methodology by showing excerpts of the IEC61508 conceptual model that
we have created, the UML profile based on this model and how we apply this
profile to a conceptual model of the OLF070 standard which is a sector-specific
derivation of IEC61508 for the petroleum industry.

Using UML Profiles for Sector-Specific Tailoring 377

Our approach offers two key benefits: (1) It incorporates the specific concepts
used by a generic standard into the sector-specific standard whilst making a
clear distinction between the two; and (2) It explicitly captures the mapping
between two standards and defines consistency rules between them, which can
be automatically verified and used for providing guidance to the users about
how to resolve any inconsistencies.

Having established a means to capture the evidence required for a specific
standard, we are now working on a means to create instantiations of these
conceptual models such that we can create repositories of evidence for safety
certification. Subsequently, we plan to carry out case studies to assess the cost-
effectiveness of our methodology in the context of certification. Another prime
concern is the ability to certify a system to multiple and often overlapping stan-
dards. For example, in the petroleum industry, it is quite common to certify
a system to both OLF070 and to one of the NORSOK standards such as the
NORSOK I-002 for Safety Automation Systems [6]. In future work, we plan to
extend our methodology so that we can express how a repository of evidence
information addresses each standard in a collection of inter-related standards.
Finally, to aid the certification process from the perspective of a certification
body, we would like to extend our work to the evaluation of evidence as pro-
posed by the SAEM. This would lay the groundwork for a complete certification
infrastructure based on industry standards.

References

1. IBM Rational Software Architect, http://www.ibm.com/developerworks/

rational/products/rsa/

2. DO-178B: Software considerations in airborne systems and equipment certification
(1982)

3. UML 2.0 Superstructure Specification (August 2005)
4. Road vehicles – functional safety. ISO draft standard (2009)
5. The Norwegian Oil Industry Association. Application of IEC61508 and IEC61511

in the Norwegian Petroleum Industry (2004)
6. Norwegian Technology Centre. Safety and automation system (SAS) (2001)
7. Chung, P., Cheung, L., Machin, C.: Compliance flow - managing the compliance of

dynamic and complex processes. Knowledge-Based Systems 21(4), 332–354 (2008)
8. International Electrotechnical Commission. Railway Applications Safety-related

electronic railway control and protection systems(1999)
9. International Electrotechnical Commission. Functional safety - safety instrumented

systems for the process industry sector(IEC 61511) (2003)
10. International Electrotechnical Commission. Functional safety of electrical / elec-

tronic / programmable electronic safety-related systems (IEC 61508) (2005)
11. Feldt, R., Torkar, R., Ahmad, E., Raza, B.: Challenges with software verification

and validation activities in the space industry. In: ICST 2010, pp. 225–234 (2010)
12. Nordland, O.: A critical look at the cenelec railway application standards (2003),

http://home.c2i.net/odd_nordland~SINTEF/tekster/Acriticallookatrail_

standards.htm

13. Object Management Group (OMG). OMG Object Constraint Language (2006),
http://www.omg.org/spec/OCL/2.0/

http://www.ibm.com/developerworks/rational/products/rsa/
http://www.ibm.com/developerworks/rational/products/rsa/
http://home.c2i.net/odd_nordland~SINTEF/tekster/Acriticallookatrail_standards.htm
http://home.c2i.net/odd_nordland~SINTEF/tekster/Acriticallookatrail_standards.htm
http://www.omg.org/spec/OCL/2.0/

378 R.K. Panesar-Walawege, M. Sabetzadeh, and L. Briand

14. Object Management Group (OMG). UML profile for schedulability, performance
and time (2006), http://www.omg.org/spec/SPTP/

15. Object Management Group (OMG). UML profile for modeling quality of service
and fault tolerance characteristics and mechanisms specification (2008), http://
www.omg.org/spec/QFTP/1.1/

16. Object Management Group (OMG). UML profile for modeling and analysis of real-
time and embedded systems (MARTE) (2009), http://www.omg.org/spec/MARTE/
1.0/

17. Object Management Group (OMG). Software Assurance Evidence Metamodel
(SAEM) (2010), http://www.omg.org/spec/SAEM/

18. Panesar-Walawege, R.K., Sabetzadeh, M., Briand, L., Coq, T.: Characterizing the
chain of evidence for software safety cases: A conceptual model based on the IEC
61508 standard. In: ICST 2010, pp. 335–344 (2010)

19. Uzumeri, M.: Iso 9000 and other metastandards: Principles for management prac-
tice? Academy of Management Executive 11 (1997)

20. Zoughbi, G., Briand, L., Labiche, Y.: Modeling safety and airworthiness (RTCA
DO-178B) information: conceptual model and uml profile. Software and Systems
Modeling, 1–31 (2010)

http://www.omg.org/spec/SPTP/
http://www.omg.org/spec/QFTP/1.1/
http://www.omg.org/spec/QFTP/1.1/
http://www.omg.org/spec/MARTE/1.0/
http://www.omg.org/spec/MARTE/1.0/
http://www.omg.org/spec/SAEM/

Merging Relational Views: A Minimization Approach

Xiang Li and Christoph Quix

Informatik 5 (Information Systems), RWTH Aachen University, 52056 Aachen, Germany
{lixiang,quix}@dbis.rwth-aachen.de

Abstract. Schema integration is the procedure to integrate several inter-related
schemas to produce a unified schema, called the mediated schema. There are two
major flavors of schema integration: data integration and view integration. The
former deals with integrating multiple data sources to create a mediated query
interface, while the latter aims at constructing a base schema, capable of sup-
porting the source schemas as views. Our work builds upon previous approaches
that address relational view integration using logical mapping constraints. Given
a set of data dependencies over the source schemas as input, our approach pro-
duces a minimal information-preserving mediated schema with constraints, and
it generates output mappings defining the source schemas as views. We extend
previous approaches in several aspects. First, schema minimization is performed
within a scope of Project-Join views that are information preserving and pro-
duce a smaller mediated schema than in existing work. Second, the input schema
mapping language is expressive enough for not only query containment but also
query equivalence. Third, source integrity constraints can be seamlessly incorpo-
rated into reasoning. Last but not least, we have evaluated our implementation
over both real world data sets and a schema mapping benchmark.

1 Introduction

Integration multiple schemas can be valuable in many contexts. Building a data integra-
tion system requires integrating the local schemas to create a global schema for queries.
In database design, a database schema can be obtained by integrating a set of desired
user views [6,21]. Bernstein and Melnik describe in [5] a scenario of schema evolution,
in which an existing view is merged with another view representing newly incorporated
information to construct an augmented view over an evolved database. In data ware-
housing, multiple data marts can be merged into a single materialized view to reduce
maintenance costs.

Schema integration is the process of consolidating multiple related heterogeneous
input schemas to produce a mediated schema. A typical schema integration procedure
consists of three phases: schema matching, schema merging, and post-integration. The
first phase identifies interschema relationships in the form of schema mappings. The
second phase performs schema restructuring and transformation to construct a mediated
schema and output mappings. The last phase performs cleaning up and etc. This paper
focus on the schema merging phase.

As clarified in [16], there are two semantically distinct flavors of schema merging,
view integration [7,6,22,14,15,3] and data integration [17,8,19,20,12]. From a model
theoretic perspective, a main distinction is that the former flavor assumes the input

M. Jeusfeld, L. Delcambre, and T.W. Ling (Eds.): ER 2011, LNCS 6998, pp. 379–392, 2011.
c© Springer-Verlag Berlin Heidelberg 2011

380 X. Li and C. Quix

⊆
Keys are underlined and ⊆ indicates foreign key
constraints, while value correspondences across
schemas are illustrated via solid lines. A mapping
constraint between the two schemas can be ex-
pressed as πnum,date,time,price(Ok-flight) = πnum,

date,time,price(Go-flight �� Go-price).

Fig. 1. Running Example

schemas are views of a base schema and hence satisfy constraints on the instance level,
while the latter need to integrate autonomous input schemas which do not necessarily
conform to any instance level constraints. [16] also analyzed the different operational
goals of the two types of schema merging. We study in this paper view integration,
while our previous work[12] deals with data integration.

A possible result of a schema mapping discovery process, i.e., the first phase of
schema integration, is described in Example 1 (adapted from [17]). Several challenges
can be observed there. First, interschema relationships are captured by complex ex-
pressions involving multiple relations, and they are in the form of query equivalence
instead of query containment. This requires a mapping language more expressive than
that in data exchange [10]. Second, integrity constraints encoded in the source schemas
provide significant information about the inner structure and hence they should not be
ignored. Third, as the input has a non-ambiguous model theoretic semantics, the view
integration process also needs to be backed by a rigorous instance level interpretation.
Last but not least, in order to be executable, the output should include not only a me-
diated schema but also mappings defining input schemas as views and constraints over
the mediated schema to restrict the instance scope of the mediated schema.

Example 1. Two travel agents Go-flight and Ok-flight have different schemas of flight
information, as illustrated in Figure 1. The attribute num denotes flight numbers; time
and date describe the departure time and date of a flight; price stands for the price of
an air ticket; meal and nonstop are two boolean attributes indicating whether meals are
offered on the flight and whether the flight is non-stop.

To address such challenges, we propose in this paper a novel approach to relational
view integration. Our contributions include:

Formulation of Minimal Merge: The formal definition of a valid Merge as in [15,3] re-
quires the mediated schema to retain all and only the information of the source schemas.
They do not consider minimizing schema size, and produce a mediated schema of the
same size of the input. The formalism is extended in this paper to incorporate consid-
erations on the size of the mediated schema, resulting in a characterization of Minimal
Merge. We presented in [12] a merging algorithm that removed redundant columns
from the source schemas in a data integration context. The approach described here
considers, in addition, collapsing of relations, which leads to an even smaller schema.

Expressive Logical Mapping Language: Most of the early approaches (as surveyed
in surveyed in [4]) to view integration focused more on the conceptual design of the

Merging Relational Views: A Minimization Approach 381

mediated schema and used conceptual alignment of entities as input mappings. Logical
constraints were first used in [6,7], but the joins are not allowed. However, schema map-
pings resulting from an automatic process, either mapping discovery or other mapping
manipulation operations, are complex expressions such as in Fig. 1. Therefore, an ex-
pressive mapping language is crucial for a merging approach to be applicable in a model
management workflow. In view of this, the input mapping language in our approach are
specified in tuple-generating dependencies (tgds) and equality generating dependencies
(egds), with the only restriction that the input mapping constraints admit a terminating
chase [1]. Chase termination is in general undecidable, but there are sound syntactic
conditions ensuring it (e.g., see [10]). With such an expressive language, we are able
to make use of not only query containment constraints, but also query equivalence con-
straints and integrity constraints (ICs) shipped with the input schemas.

Algorithms for Constructing Minimal Merge: We present algorithms for merging rela-
tional schemas, including schema minimization under dependencies, mediated schema
construction, output view definition mapping generation, and rewriting input constraints
to the mediated schema.

Evaluation on Real World Data Sets: Last but not least, we have implemented and
tested our framework on real world data sets and a workload generated from a schema
mapping benchmark which summarizes several most common mapping scenarios in
practice.

The rest of the paper is organized as follows: section 2 presents a formal definition
of Minimal Merge; section 3 describes schema minimization under dependencies; sec-
tion 4 details how to generate the mediated schema and the output mappings from a
minimized Project-Join view; the evaluation is presented in section 5; related work is
discussed in section 6, and conclusion and outlook are in section 7.

2 The View Integration Problem

2.1 Modeling View Integration

A relational schema is a set of relation symbols, each of which has a fixed arity. Let
S be a relational schema, Inst(S) be the set of all instances, a schema mapping M
between two schemas S and T can be syntactically represented by a triple (S,T, Σ),
with Σ being a set of data dependencies over S ∪ T. The instances of the mapping
Inst(M) is a subset of the cartesian product Inst(S) × Inst(T). We also denote by
dom(M) and range(M) the domain and range of a mapping M.

In order to define the semantics of view integration, we introduce first the notion
of confluence of two mappings, which is also adopted in [3,15]. Let S, S1 and S2 be
schemas where S1 and S2 share no common relation symbol. M1 (M2) is a mapping
from S to S1 (S2 respectively). Then the confluence of M1 and M2, denoted by M1⊕
M2 is {(I, J ∪ K)|(I, J) ∈ M1, (I, K) ∈ M2}. Intuitively, the confluence of two
mappings maps each source instance to a concatenation of the two target instances
under the original mappings. We now define the merge operator.

382 X. Li and C. Quix

Definition 1. Let M be a schema mapping between S1 and S2. (S,M1,M2) is a
merge of M if: 1) dom(M1) = dom(M2); 2) M1 ⊕M2 is an injective function; and
3) range(M1 ⊕M2) = {J ∪ K|(J, K) ∈ Inst(M)}.

The first condition requires that the two output mappings are views over the same scope
of databases. Condition 2) states the output mappings are view definitions and injec-
tiveness guarantees the mediated schema does not carry any extra information not con-
tained in the sources. Condition 3) ensures that every unified instance in the range of
the confluence respect the input mapping constraints, that is, a mutually consistent pair
of views can be retrieved.

The definition of merge does not concern the mapping language. We introduce now
tgds and egds. A tuple generating dependency (tgd) [1], is a constraint in the form of:
∀X[∃Y φ(X , Y) → ∃Zψ(X, Z)], where φ and ψ are conjunctions of atoms and X ,
Y and Z are mutually disjoint sets of variables. It is full, if there are no existential vari-
ables on the right hand side, otherwise it is an embedded tgd. An equality-generating
dependency (egd) [1] has the form ∀X[φ(X) → (Xi = Xj)], where φ(X) is a con-
junction of atoms, and Xi, Xj are variables in X . When emphasizing the direction of
a schema mapping between a designated pair of source and target schemas, we use the
term source-to-target tgds (s-t tgds). A closure of a set of full s-t tgsd Σ, denoted by
Σ∗, is the set of dependencies replacing each containment constraint in Σ by an equiv-
alence constraint. Intuitively, closure closes the scope of target instances to be exactly
the unique view instance computed from a given source instance.

For a schema S, we denote by Ŝ a replica schema with each relation renamed. We
also denote by R̂ the replica relational symbol of R, and by Γ̂ the dependencies obtained
through renaming relational symbols in Γ to their replicas. An identity mapping Id is
the mapping {(I, J)|I ⊆ J ∧ I ∈ Inst(S) ∧ J ∈ Inst(Ŝ)}. In the theorem below, we
denote by Id1 (resp. Id2) the mapping copying Ŝ1 to S1 (resp. Ŝ2 to S2). The theorem
states that a union of the replicas of the input schemas together with an identity mapping
is a valid merge.

Theorem 1 ([14]). Let M be a mapping specified by data dependencies Γ in first order
logic over S1 and S2, then (Ŝ1 ∪ Ŝ2, Γ̂ ∪ Id∗1, Γ̂ ∪ Id∗2) is a merge of M.

Example 2 (Example 1 cont.). Following Theorem 1, a valid merge could be (Ŝ1 ∪
Ŝ2, Γ̂ ∪ Id1, Γ̂ ∪ Id2). Γ̂ contains two parts: the integrity constraints including all key
constraints and inclusion dependencies over Ŝ1 and Ŝ2, and the rewritten mapping con-
straints πnum,date,time,price(ˆOk-flight) = πnum,date,time,price(ˆGo-flight �� ˆGo-price).
The identity mapping Id2 can be expressed by full s-t tgds ˆOk-flight(n, d, t, p, s) →
Ok-flight(n, d, t, p, s). Mapping Id1 is similar.

The result in example 2 is not minimal as time, date, price are stored more than once.
Arenas et al. [3] propose a merging algorithm taking full s-t tgds as input and admit-

ting denial constraints over the mediated schema.We show their merge algorithm1 on
an adapted version of Example 2 that confines the input mapping to full s-t tgds.

1 Example 3 slightly extends the original algorithm in [3] , as source integrity constraints are not
treated there.

Merging Relational Views: A Minimization Approach 383

Example 3 (Example 2 cont.). The input is adapted by stating num is a key of Go-price,
and replacing the interschema constraint by Ok-flight(n, d, t, p, s) → Go-price(n, d, p).
A valid merge can be (Ŝ1∪Ŝ2, Γ̂ ′∪Σ∗

1 , Γ̂ ′∪Id∗2), in which Id2 is the same as in Exam-
ple 2, and Σ1 and Γ̂ ′ are specified below. Σ1 contains the full s-t tgds ˆGo-flight(n, t, m)
→ Go-flight(n, t, m), ˆGo-price(n, d, p) → Go-price(n, d, p), and ˆOk-flight(n, d, t, p, s)
→ Go-price(n, d, p). Γ̂ ′ is a union of rewritten source ICs as in Example 2 and a denial
constraint ¬(ˆOk-flight(n, d, t, p, s)∧ ˆGo-price(n, d, p)), which ensures that the relation

ˆGo-price does not store tuples which are already in ˆOk-flight.

Example 3 is also not minimal, as storing date and price in ˆOk-flight is unnecessary.

2.2 Minimality of Mediated Schema

The merge definition ensures that the mediated schema incorporates all and only the
information in the input mapping system, but it does not restrict how the information
is organized in the mediated schema. In this section, we present a merge requirement
that aims at reducing redundant representations of the same piece of information on the
mediated schema.

Given a schema with dependencies, we consider a set of schemas resulting from
two types of transformations: 1) collapsing fragmented relations representing the same
entity, and 2) projecting out unnecessary columns of a schema.

Definition 2. A bidirectional inclusion dependency (BIND) is a mapping constraint
πA1(R1) = πA2(R2), where R1 and R2 are two relations, and A1 (A2 resp.) is a list
of non-repeating attributes in R1 (R2 resp.).

In Example 1, a BIND implied by the input mapping constraint and the integrity con-
straints is πnum,date,price(Go-price) = πnum,date,price(Ok-flight).

Existence of a BIND is a hint of fragmented entities. Joining the fragments over
shared attributes in the BIND will be information preserving, if the join is lossless.
However, a lossless join on a Key-ForeignKey relationship may lead to denormaliza-
tion. In order not to degrade the quality of the mediated schema as a base schema, we
confine the minimization scope to fragmented entities implied by BINDs via a key, i.e.,
the shared attributes are a super key for both relations.

A column in a schema is redundant, if removing it does not lose information. More
formally, the mapping removing it (expressed in full s-t tgds) is tgd invertible [9]. That
is, there exists a backward mapping in full tgds recovering the unprojected database.
We refer interested readers to [12] for more details.

Definition 3. A merge is minimial if there is neither a BIND via key nor a redundant
column in the mediated schema.

3 Schema Minimization under Data Dependencies

Assuming the input source schemas share no relation symbol, we refer to the union of
them as the source schema (denoted by S), and the union of interschema constraints and

384 X. Li and C. Quix

innerschema ICs as input constraints (denoted by Γ). Γ is assumed to admit a termi-
nating chase. A collapse-configuration is a partial function mapping pairs of relations
to a BIND via key that is implied by Γ . A project-configuration is a set of columns that
are redundant under Γ . A merge-configuration is then a collapse-configuration plus
a project-configuration. In this section we describe the schema minimization proce-
dure, taking S and Γ as input and producing merge-configurations representing minimal
Project-Join views.

3.1 Collapse-Minimization Using Maximal BINDs

A BIND is maximal, if there is no other BIND with the same relations and a superset
of attribute pairs. We present in Algorithm 1 a procedure to find all maximal BINDs
implied by Γ using the chase procedure [1] for reasoning over data dependencies. The
algorithm starts by finding all inclusion dependencies (INDs) implied by Γ . For each
relation R in the schema, a singleton tableau containing a single R-tuple with distinct
variables is taken as a starting database. The singleton tableau is then chased against Γ .
For each T-tuple in the chase result with a set of variables overlapping with the original
R-tuple, an IND is recorded. In a second phase, all INDs are “joined” to produce BINDs.
Finally, we prune those BINDs that are not maximal.

Input : A source schema S, a set of dependencies Γ over S with terminating chase.
Output: A set of all maximal BINDs.

1 Initialize IND← ∅
2 for each relation R ∈ S do
3 Let IR be a singleton R-tuple with all different variables
4 Let IΓR be the chase of IR against Γ
5 for each relation T ∈ S/{R} do
6 if there is a T -tuple t ∈ IΓR containing variables in IR then
7 L← ∅
8 for each variable x ∈ dom(IR) do
9 If x appears in position j in t and position i in the R-tuple of IR, add

(i, j) to L
10 end
11 add (R, T, L) to IND
12 end
13 end
14 end
15 BIND← ∅
16 for each pair of relations R and T do
17 for each (R, T, Lrt) ∈ IND do
18 for each (T,R,Ltr) ∈ IND do
19 L← ∅
20 For each (i, j) ∈ Lrt and (j, i) ∈ Ltr , add (i, j) to L.
21 If L is not empty, add (R, T, L) to BIND
22 end
23 end
24 end
25 Remove from BIND those that are non-maximal
26 Return BIND

Algorithm 1. DiscoverMaximalBINDs(S, Γ): find max-BINDs implied by Γ

Merging Relational Views: A Minimization Approach 385

To simplify the discovery process, we assume that there are no redundant columns
within one relation, that is, there are no two distinct attributes A and B of a relation R
such that Γ |= πA(R) = πB(R). A simple preprocessing phase can easily remove re-
dundant columns within one relation. Even without preprocessing, they will be removed
anyway in the later project-minimization phase (section 3.2).

Theorem 2. If there are no redundant columns within a relation, the algorithm Dis-
coverMaximalBINDs finds all and only the maximal BINDs implied by Γ .2

Having discovered all maximal BINDs, we can easily prune those that are not via keys.
Testing key dependencies can be also performed using chase [1]. If we denote the max-
imal BINDs via key of each pair of source relations as a set, then enumeration of max-
imal collapse-configurations can be done via enumerating elements of the cartesian
product of these (non-empty) sets.

Example 4. Consider the input mapping system in Example 1. Chasing with a single-
ton Go-flight tuple does not produce any other fact, which means there is no IND
originating from Go-flight. Chasing with Go-price(n, d, p) produces two other tuples
Go-flight(n,⊥1,⊥2) and Ok-flight(n, d,⊥1, p,⊥3), which correspond to the INDs Go-
price[num] ⊆ Go-flight[num] and Go-price[num, date, price]⊆Ok-flight[num, date,
price]. In our data structure, we record (Go-price, Go-flight, {(1, 1)}) and (Go-price,
Ok-flight, {(1,1), (2,2), (3,4)}). Similarly, chasing with a singleton Ok-flight tuple re-
veals INDs Ok-flight[num, time] ⊆ Go-flight[num, time] and Ok-flight[num, date,
price] ⊆ Go-price[num, date, price], corresponding to (Ok-flight, Go-flight, {(1,1),
(3,2)}) and (Ok-flight, Go-price, {(1, 1), (2, 2), (4, 3)}). A join on the INDs outputs
only one BIND (Ok-flight, Go-price, {(1, 1), (2, 2), (4, 3)}). The only maximal collapse-
configuration contains this BIND.

3.2 Project-Minimization over Collapsed Schemas

We have described in [12] a procedure to test redundancy of a set of columns on the
source schema with constraints, which is based on testing query rewritability of identity
queries of source relations over the projected schema. The procedure can be extended
to test redundancy of columns in a collapsed schema. We first define the lineage of a
column in a collapsed schema: the lineage of column c is the set of source columns that
are collapsed into c. Suppose we collapse Go-price and Ok-flight on num, date, price
into Ok-flight′, the lineage of price in Ok-flight′ is {Go-price.price, Ok-flight.price},
while the lineage of Ok-flight′.nonstop is {Ok-flight.nonstop}.

Proposition 1. A column on a collapsed schema is redundant if and only if all columns
in its lineage are redundant.

With the above result, we can extend the project-minimization algorithm in [12] to be
over collapsed schemas, through replacing the redundancy test by testing redundancy
of the lineage over the source schemas. The procedure is presented in Algoirthm 2.

2 Proofs of this theorem and the following are in the appendix, accessible at
http://dbis.rwth-aachen.de/cms/staff/li/er11

http://dbis.rwth-aachen.de/cms/staff/li/er11

386 X. Li and C. Quix

Input : A source schema S, a set of dependencies Γ over S with terminating chase, a
target schema T that is a collapsing result, a set of s-t tgds Σst between S and T
representing the collapsing, and a set of columns in T

Output: A list of maximal sets of redundant columns.
Initialize isMaximal to TRUE1

for each extension of the redundant columns P ′ ∈ Enum(P,T) do2

if IsRedundant(S, Γ, Σst, P
′) then3

isMaximal ← FALSE4

ProjectMinimize(S,Γ, T,Σst, P
′)5

end6

end7

if isMaximal then8

Add P to result9

end10

Algorithm 2. ProjectMinimize(S, Γ,T, Σst, P): p-min over collapsed schema

Two sub-procedures are used in the algorithm: IsRedudant and Enum. The former
is the column redundancy test, while the latter is a depth-first procedure enumerating
all possible sets of columns over the collapsed schema T with a-priori pruning. For
brevity, we refer interested readers to [12] for more details on the two sub-procedures.

Example 5 (Example 4 cont.). After collapsing, there are two relations Go-flight(num,
time, meal) and Ok-flight′(num, date, time, price, nonstop). Only the column time
in Ok-flight’ is redundant, since the data dependencies imply πnum,date,price,nonstop

(Ok-flight′)�� πnum,time(Go-flight) ≡ Ok-flight′.

4 Generating Minimal Merge

A merge-configuration describes how a minimal mediated schema can be constructed
as a view over the source schema. We address now how to generate a minimal merge,
including constraints over the mediated schema and output mappings.

4.1 Constructing Mediated Schema

Given a merge-configuration, constructing a mediated schema is straightforward. We
show that via the running example. The minimization algorithm will produce a collapse-
configuration consisting of the BIND (Ok-flight, Go-price, {(1, 1), (2, 2), (4, 3)}) as
computed in Example 4, and the set of redundant columns {Go-flight.time}. Follow-
ing the collapse-configuration, we can join together Ok-flight and Go-price on num,
date, price and removing the time column, while the relation Go-flight is copied. The
mediated schema consists of two relations Ok-flight′ and Go-flight′, which is a result
of transformations defined by a set of full s-t tgds: Go-flight(num, time, meal) →
Go-flight′(num, time, meal) and Ok-flight(n, d, t, p, s), Go-price(n, d, p) → Ok-flight′

(n, d, p, s). We denote the transformation mapping by Σ.

Merging Relational Views: A Minimization Approach 387

4.2 Constructing Output Mappings

We can show that the transformation mapping Σ in the previous section is tgd invertible.

Proposition 2. Let Σ be the transformation mapping corresponding to a merge con-
figuration, Γs be the input mapping constraints over the source schema S, T be the
mediated schema, then the mapping (S,T, Γs ∪ Σ) is tgd invertible.

The output mapping supporting source schemas as views can be computed as a tgd-
inverse of Σ. It is shown in [9] that a tgd-inverse of s-t tgds can be expressed in full
tgds. Here we describe the procedure following [9]. Let S be a source schema, Γs a set
of finitely chaseable tgds and egds over S, Σ a set of tgd invertible full s-t tgds. We
can create a tgd inverse Σ−1 in full s-t tgds as follows. For each source relation R, we
denote by IR the singleton instance of all distinct variables for each column of R, IΓs

R

the result of chasing IR against Γs, JR the result of chasing IΓs

R against Σ, add to Σ−1:
JR → IΓs

R .
Let’s consider the running example. The procedure above creates a tgd inverse con-

sisting of the following tgds : Go-flight′(n, t, m) → Go-flight(n, t, m), Ok-flight′(n, d,
p, s), Go-flight′(n, t, m) → Go-price(n, d, p), and Ok-flight′(n, d, p, s), Go-flight′(n, t,
m) → Ok-flight(n, d, t, p, s).

4.3 Rewriting Input Constraints to the Mediated Schema

In order to maintain one-to-one instance level mapping between the mediated schema
and the source schema, the input constraints have to be rewritten over the mediated
schema. It is easy to see that a conjunctive query (CQ) over the source schema can
always be rewritten as a CQ over the mediated schema under the tgd-inverse. Let
rewrite(.) be the procedure rewriting each CQ over the source schema S to a CQ
over the mediated schema T, while leaving the CQ over T and equalities intact. For
each tgd φ(x) → ψ(x) in Σ∗ ∪Γs, add to Γt: rewrite(φ(x)) → rewrite(ψ(x)). Egds
are handled similarly. Rewriting of Γs ensures that the view instances computed from
the mediated schema always respect the input constraints, while rewriting Σ∗ ensures
the mediated schema can be computed as a view from the consistent view instances.

Taking the running example as an input, constraint rewriting produces Γt as a set of
tgds and egds, which can be simplified to: Go-flight′(n, t1, m1), Go-flight′(n, t2, m2) →
t1 = t2, m1 = m2, Ok-flight′(n, d1, p1, s1), Ok-flight′(n, d2, p2, s2) → d1 = d2, t1 =
t2, p1 = p2, s1 = s2, and Ok-flight′(n, d, p, s) → Go-flight′(n, t, m). We can show
that the rewriting procedure is information preserving.

Proposition 3. The constraint rewriting procedure satisfies Γt ∪ (Σ−1)∗ ≡ Σ∗ ∪ Γs.

Now we can conclude on the correctness of our merging algorithm. Let Γs be the input
mapping constraints, c be a merge configuration resulting from the schema minimiza-
tion procedure. Let T, Γt and Σ−1 be respectively, the mediated schema, rewritten
constraints, and generated output mapping according to c. As Σ−1 is in full tgds, it can
be split to full tgds with only a single predicate in the head. We denote by Σ−1

1 (resp.
Σ−1

2) the subset of Σ−1 with head predicates only from S1 (resp. S2).

Theorem 3. (T, Γt ∪ (Σ−1
1)∗, Γt ∪ (Σ−1

2)∗) is a minimal merge.

388 X. Li and C. Quix

5 Evaluation

The system is developed using Java SE 6 and SWI-Prolog 5.8.0. A chase procedure
is implemented in Prolog for reasoning over data dependencies. The experiments have
been carried out on a 2.5GHz dual core computer, with a maximal heap size of 512M.
Disk I/O costs are excluded from profiling, while communication costs between Java
and Prolog are included. Two collections of data sets are used in our experiments: data
sets from the Illinois Semantic Integration Archive3, which include five real world data
sets (Courses, Real Estate II, Inventory, Faculty and Real Estate I), and a workload
generated by a schema mapping benchmark STBenchmark [2]. The schemas are defined
as XML schemas, which are flattened to relational schemas beforehand.

5.1 Expressiveness over Real World Mapping Scenarios

All five data sets in the Illinois archive are able to be represented by tgds and egds. Com-
plex relationships involving joins of relations arise frequently in the data sets, which
confirms the necessity of an expressive language such as tgds. Furthermore, we see
it is crucial to be able to specify integrity constraints of source schemas. Without the
presence of keys in the source no attribute is redundant, even if many attributes are as-
serted to be equivalent. This is in line with information preservation: when there is no
functional dependency, a tuple is only retrievable when all components are kept.

Eight out of ten basic mapping scenarios of STBenchmark are expressible in our
mapping language: Copy, Flattening, Nesting, Denormalization, SelfJoin, SurrogateKey,
AtomicValueManagement and VerticalPartitioning. The scenario Fusion is not able to
be expressed because it requires a language of disjunctive tgds, which is beyond the
scope of our current implementation. The scenario HorizontalPartitioning cannot be
expressed perfectly as it requires expressing selection in the head of a tgd. This requires
a representation system like conditional tables [11], while the database with labelled
nulls used in our approach is in essence v-tables [11].

Value conversion functions arising in the data sets (e.g., in Real Estate II and Atom-
icValueManagement) are handled by skolem functions and invertible functions are han-
dled with helper predicates and rules as explained in [12].

5.2 Scalability of Schema Minimization

Though there are multiple possible minimal mediated schemas, enumerating all is very
costly. There are cases, e.g., project-minimization in the Copy scenario, that have an
exponential number of possibilities. We focus on the scalability of finding one mini-
mal mediated schema. For each scenario of STBenchmark, we generate 10 input map-
pings of various sizes. Three strategies of minimizations, project-minimization (p-min),
collapse-minimization (c-min) and collapse-project-minimization (c-p-min), are tested
over the generated workload. Fig. 2 depicts the running time. The x-axis is the size of
the schema (i.e., the sum of the arities of all relations in the schema), while the y-axis

3 http://pages.cs.wisc.edu/˜anhai/wisc-si-archive/

http://pages.cs.wisc.edu/~anhai/wisc-si-archive/

Merging Relational Views: A Minimization Approach 389

300

400

500

600

700

collapse minimize

0

100

200

300

400

500

600

700

0 50 100 150 200 250

collapse minimize

150000

200000

250000

project minimize

0

50000

100000

150000

200000

250000

0 50 100 150 200 250

project minimize

30000

40000

50000

60000

collapse project minimize

COPY

SELFJOIN

SURROGATEKEY

VALUEMANAGEMENT

VERTPARTITION

0

10000

20000

30000

40000

50000

60000

0 50 100 150 200 250

collapse project minimize

COPY

SELFJOIN

SURROGATEKEY

VALUEMANAGEMENT

VERTPARTITION

DENORMALIZATION

NESTING

FLATTENING

Fig. 2. Running Time (ms) vs Schema Size Categorized by Scenarios of STBenchmark

is the time in milliseconds. A cross comparison among the three minimization strate-
gies reveals that c-min is the fastest, while c-p-min is faster than p-min. C-min is fastest
as it requires only invoking reasoning procedures in so many times as the number of
relations in the input. P-min is the most expensive, as it invokes reasoning procedures
in proportional to the number of columns in the input. C-p-min is faster than p-min
because the collapsing phase merges columns and hence decreases the input size for
p-min. C-min scales quite well regarding schema size, less than 1 second even for the
largest input. Copy and SelfJoin require a longer time than the other scenarios. This
is due to two factors: 1) the portion of attributes identified as overlapping via BINDs
in these two scenarios is high; and 2) they have the longest dependency length under
a given size of schema. AtomicValueManagement also has a long dependency length,
but there is no BIND in this scenario since values undergo conversions in the form of a
function. Therefore, c-min for this scenario is faster. Nesting is slightly more costly than
the rest as, for the same schema size, the number of relations is larger in this scenario
with many leaf relations from normalizing a tree. In p-min the reasoning procedure in-
vocations are proportional to the schema size, and the complexity of dependencies is
a dominating factor. This explains why the three scenarios Copy, SelfJoin and Atomic-
ValueManagement with the longest dependency take more time than others. C-p-min is
more scalable than p-min because the collapsing minimization phase greatly reduce the
input size of the project-minimization phase. Interestingly, now AtomicValueManage-
ment is the most expensive scenario. This is because no reduction of schema is achieved
during c-min for the scenario and hence the cost is almost the same as direct p-min.

5.3 Effectiveness of Minimization

We evaluated the effectiveness of our approach using the real world data sets from
Illinois archive. We perform three strategies of minimization and present in Fig. 3 the
effects of minimization. We measure the ratio of reduced columns to the input schema
size, i.e., 1 − |T|

|S| , which indicates how much redundancy has been removed through
minimization. As a comparison, [14] and [3] do not head for reducing schema size and
have a constantly 0% reduction ratio. [17] considers retaining incompleteness in data
integration and may result in a negative reduction ratio, i.e., a schema larger than the
input. The reduction ratio is the highest for Faculty, in which 80% of the input schema

390 X. Li and C. Quix

11856

36289

16336

23776

7158
10445

10000

15000

20000

25000

30000

35000

40000
ti

m
e

(in
m

s)

c-min

p-min

c-p-min

19 128 35 96 17

11856

36289

16336

23776

45734316
7158

1181

10445

2708

0

5000

10000

15000

20000

25000

30000

35000

40000

Inventory Courses Faculty RE I RE II

ti
m

e
(in

m
s)

c-min

p-min

c-p-min 30
40
50
60
70
80
90

du
ct

io
n

Ra
ti

o
(%

)

0
10
20
30
40
50
60
70
80
90

Inventory Courses Faculty RE I RE II

Re
du

ct
io

n
Ra

ti
o

(%
)

Fig. 3. Schema Reduction Ratio and Running Time of Illinois Data Sets

is redundant. A close look into the data set reveals that this input consists of five replicas
of the same schema. C-p-min gives the highest reduction ratio, while whether c-min or
p-min achieves a higher reduction ratio depends on the input scenario.

6 Related Work

Batini et al. [4] provide an early survey covering classical view/data integration ap-
proaches, in which schemas are usually modeled in a variant of the ER model. Inter-
schema assertions [22,18] are a popular language specifying set-based relationships
(e.g., inclusion, disjoint, and equal) between extensions of concepts across schemas.
The approaches usually undergo a collapse-resolve procedure: first, collapse equivalent
concepts and then resolve the conflicts arising in collapsing. This line of work does not
focus on creating output mappings, but on designing the mediated schema.

Logical constraints are first used for view integration in [6] and [7] targeting at a
minimal mediated schema. Their interschema assertions are one-to-one relation-wise
constraints; key constraints have also to be present. Except for the disjoint constraints
stating two relations are disjoint on the instance level, the mapping language is strictly
less expressive than the language considered in this paper.

Melnik (Theorem 4.2.4 in [14]) proposes a straightforward algorithm for view inte-
gration. The mediated schema is taken to be a disjoint union of the source schemas, with
source integrity constraints (ICs) and input mappings encoded as constraints over the
mediated schema. Output mappings are identity mappings copying part of the mediated
schema to the source schemas. Arenas et al. [3] extend the work to achieve a smaller
instance for the mediated schema by adding denial constraints to the mediated schema,
while confining input mappings to full source-to-target tgds (full s-t tgds). Similar to the
previous approaches, we also require a one-to-one mapping between input schemas and
mediated schema on the instance level; output view definition mappings are also in full
tgds; and constraints are constructed over the mediated schema. However, we go one
step further on schema minimization. We find minimal mediated schemas within a class
of Project-Join views of the source schemas, resulting in smaller mediated schemas than
those created in [3] and [14]. Our input mapping language is (finitely chaseable) tgds
and egds, which is neither restricted to be source-to-target, nor restricted to deny exis-
tential variables. Constraints over the mediated schema are expressed in tgds and egds,
which are more common than the denial constraints used in [3].

Merging Relational Views: A Minimization Approach 391

Merging schemas in the data integration context differs from view integration, as
instances of the source schemas do not necessarily satisfy any mapping constraints.
Pottinger and Bernstein [17] use pairs of conjunctive queries (CQs) to specify overlap-
ping information between two schemas. Source integrity constraints are not used in their
approach. Chiticariu et al. [8] propose an interactive schema merging approach taking
attribute correspondences as input. Logical entities (chases of singleton relations) are
extracted from the source schemas as concepts. The space of plausible collapsing of
concepts is navigated by the user in an interactive manner. Since each extracted concept
has a particular join path in the source schemas, two concepts and value correspon-
dences between them comprise an implicit Global-Local-As-View mapping. However,
when deemed as such, the mapping is still more restricted than tgds in the sense that all
joins are performed only along referential constraints, e.g., Key-ForeignKey constraints.
The work is extended in [19] to generate top-k mediated schemas, with a ranking of
candidate mediated schemas, which is a topic not explored in this paper.

In previous work [12,13], we presented a merging algorithm for data integration,
which takes finitely chaseable tgds and egds as input mapping language. The constraints
are not regarded as hard constraints over the stored extensions of the data sources
(extensional database, EDB), but as intended relationships over an integrated global
database (intensional database, IDB). Instead of requiring the mediated schema to pre-
serve the EDB, we require preserving the IDB. We ensure that every source CQ has a
rewritten CQ over the mediated schema so that the certain answer of the query in the
IDB is the same as the certain answer of the rewriting under the output mapping. We
consider removing redundant columns from the source schema. The output mapping
created is a mapping representing computing the IDB from EDB composed with the
mapping removing redundant columns. The output mapping language needed is sec-
ond order data dependencies. In this paper, we extend the schema minimization raised
there to allow both collapsing and projection. Due to the difference in merge require-
ments, our formulation of minimal merge for view integration is also different from the
requirements of a minimal query interface described there.

7 Conclusion and Outlook

We presented a novel view integration approach which aims at minimizing the mediated
schema while still maintaining information preservation. We extend existing work by
admitting a more expressive input mapping language consisting of finitely chaseable
tgds and egds, and produce output view definition mappings in full s-t tgds. Source
integrity constraints are seamlessly incorporated as part of the input constraints. Schema
minimization is performed within a class of information preserving Project-Join views,
to achieve smaller mediated schemas than in existing solutions. Input constraints are
rewritten as tgds and egds over the mediated schema.

We see several possibilities of future work. First, we studied merging relational views
and it would be interesting to see how the approach extends to nested structures like
XML. Second, we focussed on collapsing relations, but the approach can be extended
to collapsing logical entities, i.e., chases of singleton relations. Third, recent results on
disjunctive chase suggest that the input mapping language can be extended to disjunc-
tive tgds.

392 X. Li and C. Quix

Acknowledgements. This work is supported by the DFG Research Cluster on Ultra
High-Speed Mobile Information and Communication (UMIC, http://www.umic.rwth-
aachen.de).

References

1. Abiteboul, S., Hull, R., Vianu, V.: Foundations of Databases. Addison-Wesley, Reading
(1995)

2. Alexe, B., Tan, W.C., Velegrakis, Y.: STBenchmark: towards a benchmark for mapping sys-
tems. PVLDB 1(1), 230–244 (2008)

3. Arenas, M., Pérez, J., Reutter, J.L., Riveros, C.: Foundations of schema mapping manage-
ment. In: Proc. PODS, pp. 227–238 (2010)

4. Batini, C., Lenzerini, M., Navathe, S.B.: A comparative analysis of methodologies for
database schema integration. ACM Computing Surveys 18(4), 323–364 (1986)

5. Bernstein, P.A., Melnik, S.: Model management 2.0: Manipulating richer mappings. In: Proc.
SIGMOD, Beijing, China, pp. 1–12 (2007)

6. Biskup, J., Convent, B.: A formal view integration method. In: Proc. SIGMOD, Washington,
D.C, pp. 398–407 (1986)

7. Casanova, M.A., Vidal, V.M.P.: Towards a sound view integration methodology. In: Proc.
PODS, Atlanta, GA, pp. 36–47. ACM, New York (1983)

8. Chiticariu, L., Kolaitis, P.G., Popa, L.: Interactive generation of integrated schemas. In: Proc.
SIGMOD, pp. 833–846 (2008)

9. Fagin, R.: Inverting schema mappings. ACM Transactions on Database Systems 32(4) (2007)
10. Fagin, R., Kolaitis, P., Miller, R.J., Popa, L.: Data exchange: Semantics and query answering.

Theoretical Computer Science 336, 89–124 (2005)
11. Imielinski, T., Lipski Jr., W.: Incomplete information in relational databases. J. ACM 31(4),

761–791 (1984)
12. Li, X., Quix, C., Kensche, D., Geisler, S.: Automatic schema merging using mapping con-

straints among incomplete sources. In: Proc. CIKM, pp. 299–308. ACM, New York (2010)
13. Li, X., Quix, C., Kensche, D., Geisler, S., Guo, L.: Automatic mediated schema generation

through reasoning over data dependencies. In: Proc. ICDE (2011)
14. Melnik, S.: Generic Model Management: Concepts and Algorithms. PhD thesis, Universität

Leipzig (2004)
15. Melnik, S., Bernstein, P.A., Halevy, A.Y., Rahm, E.: Supporting executable mappings in

model management. In: Proc. SIGMOD, pp. 167–178. ACM Press, New York (2005)
16. Miller, R.J., Ioannidis, Y.E., Ramakrishnan, R.: The use of information capacity in schema

integration and translation. In: Proc. VLDB, pp. 120–133 (1993)
17. Pottinger, R., Bernstein, P.A.: Schema merging and mapping creation for relational sources.

In: Proc. EDBT (2008)
18. Quix, C., Kensche, D., Li, X.: Generic schema merging. In: Krogstie, J., Opdahl, A.L., Sin-

dre, G. (eds.) CAiSE 2007 and WES 2007. LNCS, vol. 4495, pp. 127–141. Springer, Heidel-
berg (2007)

19. Radwan, A., Popa, L., Stanoi, I.R., Younis, A.A.: Top-k generation of integrated schemas
based on directed and weighted correspondences. In: Proc. SIGMOD, pp. 641–654 (2009)

20. Sarma, A.D., Dong, X., Halevy, A.Y.: Bootstrapping pay-as-you-go data integration systems.
In: Proc. SIGMOD, pp. 861–874 (2008)

21. Spaccapietra, S., Parent, C.: View integration: A step forward in solving structural conflicts.
IEEE Transactions on Knowledge and Data Engineering 6(2), 258–274 (1994)

22. Spaccapietra, S., Parent, C., Dupont, Y.: Model independent assertions for integration of
heterogeneous schemas. VLDB Journal 1(1), 81–126 (1992)

M. Jeusfeld, L. Delcambre, and T.W. Ling (Eds.): ER 2011, LNCS 6998, pp. 393–401, 2011.
© Springer-Verlag Berlin Heidelberg 2011

Ontology Evolution in Data Integration:
Query Rewriting to the Rescue

Haridimos Kondylakis and Dimitris Plexousakis

Information Systems Laboratory, FORTH-ICS
{kondylak,dp}@ics.forth.gr

Abstract. The evolution of ontologies is an undisputed necessity in ontology-
based data integration. In such systems ontologies are used as global schema in
order to formulate queries that are answered by the data integration systems. Yet,
few research efforts have focused on addressing the need to reflect ontology
evolution onto the underlying data integration systems. In most of these systems,
when ontologies change their relations with the data sources, i.e., the mappings,
are recreated manually, a process which is known to be error-prone and time-
consuming. In this paper, we provide a solution that allows query answering
under evolving ontologies without mapping redefinition. To achieve that, query
rewriting techniques are exploited in order to produce equivalent rewritings
among ontology versions. Whenever equivalent rewritings cannot be produced we
a) guide query redefinition or b) provide the best “over-approximations”. We
show that our approach can greatly reduce human effort spent since continuous
mapping redefinition on evolving ontologies is no longer necessary.

1 Introduction

The development of new scientific techniques and the emergence of high throughput
tools have led to an information revolution. The amount, diversity, and heterogeneity
of the information now available have led to the adoption of data integration systems
in order to manage it and further process it. However, the integration of several data
sources raises many semantic heterogeneity problems.

By accepting an ontology as a point of common reference, naming conflicts are
eliminated and semantic conflicts are reduced. Ontologies are used to identify and
resolve heterogeneity problems, usually at schema level, as a means for establishing
an explicit formal vocabulary to share. During the last years, ontologies have been
successfully used in database integration [1, 2].When using ontologies to integrate
data, one is required to produce mappings [3], to link similar concepts or relationships
from the ontology/ies to the sources by way of an equivalence. In practice, this
process is done manually with the help of graphical user interfaces and it is a time-
consuming, labour-intensive and error-prone activity [4].

Despite the great amount of work done in ontology-based data integration, an
important problem that most of the systems tend to ignore is that ontologies are living
artifacts and subject to change [3]. Due to the rapid development of research,
ontologies are frequently changed to depict the new knowledge that is acquired. The

394 H. Kondylakis and D. Plexousakis

problem that occurs is the following: when ontologies change, the mappings may
become invalid and should somehow be updated or adapted.

However, as this evolution might happen too often, the overhead of redefining the
mappings each time is significant. The approach, to recreate mappings from scratch
each time the ontology evolves, is widely recognized to be problematic [4, 5], and
instead, previously captured information should be reused. A nice overview of
approaches trying to tackle similar problems can be found on [6] and [7]. The most
relevant approaches that could be employed for resolving the problem of data
integration with evolving ontologies is mapping adaptation [4] and mapping
composition and inversion [8, 9] where mappings are changed automatically each
time the ontology evolves. However, in mapping adaptation there is no guarantee that
after repeatedly applying the algorithm, the semantics of the resulting mappings will
be the desired ones and in mapping composition and inversion complex language of
mappings should be employed (second-order dependencies) where the inversion is not
guaranteed [8].

The lack of an ideal approach leads us to propose a new mechanism that builds on
the current theoretical advances on the areas of ontology change [10] and query
rewriting [2, 11] and incorporates and handles ontology evolution efficiently and
effectively. More specifically:

• We present a data integration system, named Evolving Data Integration (EDI)
system [12] that allows the evolution of the ontology used as global schema. Query
answering in our system proceeds in two phases: a) query rewriting from the latest
to the earlier ontology versions and b) query rewriting from one ontology version
to the local schemata. Since query rewriting to the local schemata has been
extensively studied [2, 11, 13], we focus on a layer above and we present only the
query rewriting between ontology versions. The query processing in the first step
consists of: i) query expansion that considers constraints coming from the
ontology, and ii) valid query rewriting that uses the changes between two ontology
versions to produce rewritings among them.

• In order to identify the changes between the ontology versions we adopt a high-
level language of changes. The sequence of changes between the latest and the
other ontology versions is produced automatically at setup time and then those
changes are translated into logical GAV mappings. This translation enables valid
query rewriting by unfolding.

• Despite the fact that query rewriting always terminates, the rewritten queries issued
to other ontology versions might fail. This is because non-information preserving
changes may have occurred (such as the deletion of a queried class). To tackle this
problem, we propose two solutions: a) either to provide best “over-
approximations” by means of minimally-containing and minimally-generalized
queries, or b) to provide insights for the failure by means of affecting change
operation, thus driving query redefinition.

The rest of the paper is organized as follows: Section 2 introduces the problem by an
example and presents related work. Section 3 presents our system and elaborates on
the aforementioned query rewriting among ontology versions. Finally, Section 4
provides a summary and an outlook for further research.

 Ontology Evolution in Data Integration: Query Rewriting to the Rescue 395

2 Evolving Data Integration

Consider the example RDF/S ontology shown on the left of Fig. 1. This ontology is
used as a point of common reference, describing persons and their contact points
(“Cont.Point”). We also have two relational databases DB1 and DB2 mapped to that
version of the ontology. Assume now that the ontology designer decides to move the
domain of the “has_cont_point” property from the class “Actor” to the class
“Person”, and to delete the literal “gender”. Moreover, the “street” and the “city”
properties are merged to the “address” property, and the literal “name” is renamed to
the “fullname”. Then, one new database DB3 is mapped to the new version of the
ontology leading to two data integration systems that work independently. In such a
setting we would like to issue queries formulated using any ontology version
available. Moreover, we would like to retrieve answers from all underlying databases.

Person
Literal

Actor

Literal

Cont.
Point

Literal

Literal

name

ssn

gender has_cont_point

street

city

: subClass of : property domain/range

Person
Literal

Actor

Literal

Cont.
Point

Literal
fullname

ssn
has_cont_point

address

Ontology Version 1 Ontology Version 2

DB1 DB2 DB3

Literal

Fig. 1. The motivating example of an evolving ontology

We conceive an Evolving Data Integration (EDI) system as a collection of data
integration systems, each one of them using a different ontology version as global
schema. Therefore, we extend the traditional formalism [13] and define an EDI as:

Definition 2.1 (Evolving Data Integration System): An EDI system I is a tuple of the
form ((O1, S1, M1), ..., (Om, Sm, Mm)) where Oi is a version of the ontology, Si is a set
of local sources and Mi is the mapping between Si and Oi (1≤ i ≤ m)

Next we discuss how the specific components are specialized in the context of an
EDI. Considering Oi we restrict ourselves to valid RDF/S knowledge bases. The
validity constraints [10] that we consider in this work concern mostly the type
uniqueness, i.e., that each resource has a unique type, the acyclicity of the subClassOf
and subPropertyOf relations and that the subject and object of the instance of some
property should be correctly classified under the domain and range of the property,
respectively. Those constraints are enforced in order to enable unique and non-
ambiguous detection of the changes among the ontology versions.

Moreover, we consider as underlying data integration systems, those that integrate
relational databases using an ontology as global schema. We choose such systems as
the majority of information currently available is still stored on relational DBs[1].

Sequence of Changes
u1:Generalize_Domain(has_con
t_point, Actor, Person)

u2:Delete_Property(gender, ø, ø
,ø ,ø, Person, xsd:String, ø, ø)

u3:Merge_Properties({street,
city},address)

u4:Rename_Property(name,
fullname)

396 H. Kondylakis and D. Plexousakis

For modeling ontology evolution we use a high-level language of changes that
describes how an ontology version was derived from another ontology version. A
high-level language is preferable than a low-level one [10], as it is more intuitive,
concise, closer to the intentions of the ontology editors and captures more accurately
the semantics of change. As we shall see later on, a high-level language is beneficial
for our problem for two reasons: First, because the produced change log has a smaller
size and most important because such a language yields logs that contain a smaller
number of individual low-level deletions (which are non-information preserving) and
this affects the effectiveness of our rewriting. In our work, a change operation is
defined as follows:

Definition 2.2 (Change Operation): A change operation u over O, is any tuple (δα, δd)
where δa ⋂ O = ø and δd ⊆ O. A change operation u from O1 to O2 is a change
operation over O1 such that δa ⊆ O2\O1 and δd ⊆ O1\O2.

Fig. 2. The definition of three change operations of our high-level language of changes

Obviously, δα and δd are sets of triples. For simplicity we will denote δa(u) the added
and δd(u) the deleted triples of a change u. Several languages with high level change
operations exists [10]. However, in order to be able to use such a language for query
rewriting as we shall see in the sequel it is necessary the sequence of changes among
two ontology versions to be unique. Composition and inversion are desirable but not
obligatory properties that enhance the quality of the solution proposed. Such a high-
level language of changes and the corresponding detection algorithm is presented in
[10]. It contains over 70 types of change operations and the complete list can be found
there. Hereafter, whenever we refer to a change operation, we mean a change
operation from those proposed in [10]. The definition for some of the change
operation under consideration, used also in Fig. 1, is presented in Fig. 2.

2.1 Query Processing

Queries to I are posed in terms of the global schema Om. For querying, we adopt the
SPARQL query language [14]. We chose SPARQL since it is currently the standard
query language for the semantic web and has become an official W3C
recommendation. In this paper, we do not consider OPT and FILTER operators since
we leave it for future work. The remaining SPARQL fragment we consider here
corresponds to union of conjunctive queries [14]. Continuing our example, assume
that we would like to know the “ssn” and the “fullname” of all persons stored on our
DBs and their corresponding address. The SPARQL query, formulated using the latter
version of our example ontology is:

Change Rename_Property(a,b) Split_Property(a,B) Generalize_Domain(a,b,c)
δa [(b, type, property)] ∀bi ∈ B : [(bi, type, property)] (1≤ i

≤ n)
[(a, domain, c)]

δd [(a, type, property)] [(a, type, property)] [(a, domain, b)]
Inverse Rename_Property(b,a) Merge_Properties(B, a) Specialize_Domain(a, c, b)
GAV
Mapping

∀x, y, a(x, y)b(x, y) ∀x, y, a(x, y)∃y1,…, yn, b1(x, y1)⋀
…⋀ bn(x, yn)⋀ concat(y, y1,…,yn})

∀x, a(b, x) a(c, x)

 Ontology Evolution in Data Integration: Query Rewriting to the Rescue 397

q1: select ?SSN ?NAME ?ADDRESS where {?X type Person. ?X ssn ?SSN. ?X fullname ?NAME.
?X has_cont_point ?Y. ?Y type Cont.Point. ?Y address ?ADDRESS}

Using the semantics from [14] the algebraic representation of q1 is equivalent to:

q1: π?SSN,?NAME,?ADDRESS((?X, type, Person) ⋀ (?X, ssn, ?SSN) ⋀ (?X, fullname, ?NAME) ⋀ (?X,
has_cont_point, ?Y) ⋀ (?Y, type, Cont.Point) ⋀ (?Y, address, ?ADDRESS))

The query is submitted to the “Evolution Module” and query rewriting techniques
are employed in order to rewrite queries among ontology versions. For more
information on the used techniques, formal proofs, and more examples please refer to
[7]. So, query rewriting is performed in two steps, namely: a) query expansion and b)
valid rewriting.

In the first step, the query is expanded to take into account the constraints coming
from the ontology. Query expansion amounts to rewriting the query q posed to the
ontology version Om into a new query expOm(q), so that all the knowledge about the
constraints in ontology has been “compiled” into expOm(q). This is performed by
constructing the perfect rewriting of q. Algorithms for computing the perfect
rewriting of a query q w.r.t to a schema, have been presented in [2, 11]. In our work,
we use the QuOnto system [2] in order to produce the perfect rewriting of our initial
query. The time complexity of the algorithm is O(S*(M+1)2)M [2], where S is the
number of classes and properties in Om and M is the number of triple patterns in q.
For example, expanding q1 by considering the transitive constraint of the subClass
relation among the classes “Person” and “Actor” we get:

q2: π?SSN,?NAME,?ADDRESS ((?X, type, Person) ⋀ (?X,
ssn, ?SSN) ⋀ (?X, fullname, ?NAME) ⋀
(?X, has_cont_point, Y) ⋀ (?Y, type,
Cont.Point) ⋀(?Y, address, ?ADDRESS))

 U

π?SSN,?NAME,?ADDRESS ((? (X, type, Actor) ⋀ (?X,
ssn, ?SSN) ⋀ (?X, fullname, ?NAME) ⋀
(?X, has_cont_point, ?Y) ⋀ (?Y, type,
Cont.Point) ⋀ (?Y, address, ?ADDRESS))

After query expansion, the query is transformed again to a new query called valid
rewriting, i.e., valid(expOm(q)). To do that a) we first have to automatically construct
the sequence of changes EO2, O1 from O2 to O1 and then b) to interpret those changes as
sound GAV mappings. To automatically get EO2, O1 we can either use the algorithm
from [10], or invert the EO2, O1 since our language of changes possesses the property of
inversion. Each one of those changes is then interpreted as sound GAV mappings.
The EO2, O1 of our example and the corresponding mappings are shown in Fig. 3.

EO2, O1 Corresponding GAV Mappings

inv(u4):Rename_Property(fullname, name)
inv(u3):Split_Property(address, {street, city})
inv(u2):Add_Property(gender, ø, ø ,ø ,ø,
Person, xsd:String, ø, ø)
inv(u1):Specialize_Domain(has_cont_point,
Person, Actor)

inv(u4):∀x, y, fullname(x, y) name(x, y)
inv(u3):∀x, y, address(x, y)
 ∃y1, y2, street(x, y1) ⋀ city(x, y2) ⋀ concat(y, {y1, y2}
inv(u2): ø
inv(u1):∀x,has_cont_point(Person,x)
 has_cont_point(Actor, x)

Fig. 3. The sequence of changes from O2 to O1 and the corresponding GAV mappings

Note, that for the inv(u2) there is no GAV mapping constructed since we do not
know where to map the deleted element. It becomes obvious that the lower the level
of the language of changes used the more change operations won’t have
corresponding GAV mappings (since more low-level individual additions and
deletions will appear).

398 H. Kondylakis and D. Plexousakis

When GAV mappings are used, as in our case, query rewriting is simply performed
using unfolding [2]. This is a standard step in data integration [13] which trivially
terminates and it is proved that it preserves soundness and completeness 11.

Moreover, due to the disjointness of the input and the output alphabet in a change
operation, each GAV mapping acts in isolation on its input to produce its output. So
we only need to scan the GAV mappings once in order to unfold the query and the
time complexity of this step O(N*M) where N is the number of change operations in
the evolution log and M is the number of triple patterns in the query. Continuing our
example, unfolding the query q2 using the mappings from Fig. 3 will result to the
following query:

q3: π?SSN,?NAME,?ADDRESS ((?X, type, Actor) ⋀ (?X, ssn, ?SSN) ⋀ (?X, name, ?NAME) ⋀ (?X,
has_contact_point, ?Y) ⋀ (?Y, type, Cont.Point) ⋀ (?Y, street, ?ADDRESS) ⋀ (?Y, city, ?ADDRESS))

Finally, our initial query will be rewritten to the union of q3 (issued to the data
integration system that uses O1) and q2 (issued to the data integration system that uses
O2). The queries will be issued to the underlying data integration systems and answers
will be collected and returned to the user.

2.1.1 Non-Information Preserving Changes
Despite the fact that both query expansion and unfolding always terminate in our
setting, problems may occur. Consider as an example the query q4 that asks for the
“gender” and the “name” of an “Actor”, formulated using the ontology version O1.

 q4: π?NAME,?GENDER ((?X, type, Actor) ⋀ (?X, name, ?NAME) ⋀ (?X, gender, ?GENDER))

Trying to rewrite the query q4 to the ontology version O2 our system will first
expand it. Then it will consider the GAV mappings produced from the sequence of
changes as they have been presented in Fig. 1. So, the query q5 will be produced by
unfolding using the mapping: ∀x, y, name(x, y) fullname(x, y).

 q5: π?AME,?GENDER ((?X, type, Actor) ⋀ (?X, fullname, ?NAME) ⋀ (?X, gender, ?GENDER))

However, it is obvious that the query produced will not provide any answers when
issued to the data integration system that uses O2 since the “gender” literal no longer
exists in O2. This happens because the u2 change operation is not information
preserving change among the ontology versions. It deletes information from O1

without providing the knowledge that this information is transferred on another part
of the ontology. This is also the reason that low-level change operations (simple triple
addition or deletion) are not enough to dictate query rewriting.

Although, this might be considered as a problem, actually it is not, since if we miss
the literal “gender” in version O2 this would mean that we have no data in the
underlying local databases for that literal. But even then, we provide two solutions to
the users.

The first option is to notify the user that some underlying data integration systems
were not possible to answer their queries and present the reasons for that. For our
example query q5, our system will report that the data integration system that uses O2

will fail to produce an answer because the literal “gender” does not exist in that
ontology version. To identify the change operations that lead to such a result we
define the notion of affecting change operations.

 Ontology Evolution in Data Integration: Query Rewriting to the Rescue 399

Definition 2.3 (Affecting change operation): A change operation u ∈ EO1,O2 affects
the query q, denoted by u ◊ q, iff: 1)δa(u)=ø and 2) there exists triple pattern t ∈ q
that can be unified with a triple of δd(u).

The first condition ensures that the operation deletes information from the ontology
without replacing it with other information, thus the specific change operation is not
information preserving. However, we are not interested in general for the change
operations that are not information preserving. We specifically target those change
operations that change the ontology part which corresponds to our query (condition
2). In order to identify those change operations that affect user query, we have to scan
the evolution log once for each query triple pattern. Users can use that information in
order to re-specify the input query if desired. Besides providing an explanation for the
failure, we can also provide the best “over-approximations”. The first solution here is
the minimally-containing rewriting.

Definition 2.4 (Minimally-Containing Rewriting): A query q’ is a minimally-
containing rewriting of a conjunctive query q using a set of mappings E if and only if
(1) q’ is a containing rewriting of q (q ⊆ q’) and (2) there exists no containing
rewriting q’’ of q using E, such that the expansion of q’’ contains the expansion of q’.

It is thus the best “over-approximation” of q and it is dual to the “maximally-
contained rewriting” [15] which is the best “under-approximation” of q. The
algorithm for identifying the minimally-containing rewriting for a conjunctive query q
and it is an extension of the simplified version of Chase/Backchase [15]. It runs by
deleting the conjuncts that do not belong to the current vocabulary of the ontology
and its correctness is proved in [7].In our example the algorithm for producing the
minimally-containing query would produce query q6 by deleting the triple pattern (?X,
gender, ?GENDER) which in not included in the vocabulary of O2.

 q6: π?NAME,?GENDER ((?X, type, Actor) ⋀ (?X, fullname, ?NAME))

However, the resulted query is not safe, since the variable ?GENDER does not
exist in the query body, thus a minimally-containing rewriting cannot be produced in
this case. Cases like the previous one, led us to search for another aspect of over-
approximation. Our solution here is that when a change operation affects a query
rewriting, we can check if there is a parent triple t� in the current ontology version
which is not deleted in the next ontology version. If such a triple exists, we can ask
for that triple instead, thus providing a generalized query.

Definition 2.5 (Generalized query): Let q a conjunctive query expressed using O1. We
call qGEN a generalized query of q over EO1,O2 iff: 1) q is contained in qGEN (q ⊆ qGEN)
and 2)it does not exist u ∈ EO1,O2 such that u ◊ qGEN..

Definition 2.6 (Minimally-Generalized query): A generalized query qGEN of q over
EO1,O2 is called minimal if there is not qGEN’ such that q ⊆ qGEN’ and qGEN’ ⊆ qGEN.

The idea of minimally-generalized query is that it is a query that can be answered on
the evolved ontology version after applying the minimum number of “repairs” on the
query in order to achieve that. However, in this case the repairs are applied using only
the knowledge of the current ontology version and the change log. We have to note,
that minimally-generalized queries may not be unique since a deleted property might

400 H. Kondylakis and D. Plexousakis

have several superProperties. Assuming a ordering between them (lexicographical for
example) identifying a minimally-generalized rewriting requires a slight extension of
the algorithm for retrieving the affecting change operations and is not presented due
to space limitations. Consider for example, an alternative ontology version O1, where
the “personal_info” is a superProperty of the “gender” property. Assume also the
same sequence of changes EO1,O2 as shown in Fig. 3. Then, if q8 previously described
is issued, we are able to identify that the triple “Actor, gender, xsd:String” has been
deleted and look for a minimally qGEN that is:

 q11: π?NAME,?GENDER ((?X, type, Actor) ⋀ (?X, fullname, ?NAME) ⋀ (?X, personal_info, ?GENDER)

3 Conclusion

In this paper, we argue that ontology evolution is a reality and data integration
systems should be aware and ready to deal with that. To that direction, we presented a
novel approach that allows query answering under evolving ontologies without
mapping redefinition. Our architecture is based on a module that can be placed on top
of any traditional ontology-based data integration system, enabling ontology
evolution. The great benefit of our approach is the simplicity, modularity and the short
deployment time it requires. It is only a matter of providing a new ontology version to
our system to be able to use it to formulate queries that will be answered by data
integration systems independent of the ontology version used.

As future work, several challenging issues need to be further investigated. For
example, local schemata may evolve as well, and the ontologies used as global
schema may contain inconsistencies. An interesting topic would be to extend our
approach for OWL ontologies or to handle the full expressiveness of the SPARQL
language. It becomes obvious that ontology evolution in data integration is an
important topic and several challenging issues remain to be investigated in the future.

References

1. Calvanese, D., De Giacomo, G., Lembo, D., Lenzerini, M., Poggi, A., Rodriguez-Muro,
M., Rosati, R.: Ontologies and databases: The DL-lite approach. In: Tessaris, S., Franconi,
E., Eiter, T., Gutierrez, C., Handschuh, S., Rousset, M.-C., Schmidt, R.A. (eds.) Reasoning
Web. LNCS, vol. 5689, pp. 255–356. Springer, Heidelberg (2009)

2. Poggi, A., Lembo, D., Calvanese, D., Giacomo, G.D., Lenzerini, M., Rosati, R.: Linking
data to ontologies. Journal on data semantics X, 133-173 (2008)

3. Flouris, G., Manakanatas, D., Kondylakis, H., Plexousakis, D., Antoniou, G.: Ontology
change: Classification and survey. Knowl. Eng. Rev. 23, 117–152 (2008)

4. Velegrakis, Y., Miller, J., Popa, L.: Preserving mapping consistency under schema
changes. The VLDB Journal 13, 274–293 (2004)

5. Curino, C.A., Moon, H.J., Ham, M., Zaniolo, C.: The PRISM Workwench: Database
Schema Evolution without Tears. In: ICDE, pp. 1523–1526 (2009)

6. Kondylakis, H., Flouris, G., Plexousakis, D.: Ontology and schema evolution in data
integration: Review and assessment. In: Meersman, R., Dillon, T., Herrero, P. (eds.) OTM
2009. LNCS, vol. 5871, pp. 932–947. Springer, Heidelberg (2009)

 Ontology Evolution in Data Integration: Query Rewriting to the Rescue 401

7. Kondylakis, H.: Ontology Evolution in Data Integration. PhD Thesis, Computer Science
Department. University of Crete, Heraklion (2010)

8. Fagin, R., Kolaitis, P.G., Popa, L., Tan, W.-C.: Schema Mapping Evolution through
Composition and Inversion. Schema Matching and Mapping. Springer, Heidelberg (2011)

9. Curino, C.A., Moon, H.J., Zaniolo, C.: Graceful database schema evolution: the PRISM
workbench. PVLDB 1, 761–772 (2008)

10. Papavassiliou, V., Flouris, G., Fundulaki, I., Kotzinos, D., Christophides, V.: On detecting
high-level changes in RDF/S kBs. In: Bernstein, A., Karger, D.R., Heath, T., Feigenbaum,
L., Maynard, D., Motta, E., Thirunarayan, K. (eds.) ISWC 2009. LNCS, vol. 5823, pp.
473–488. Springer, Heidelberg (2009)

11. Cali, A., Gottlob, G., Lukasiewicz, T.: Datalog+-: a unified approach to ontologies and
integrity constraints. In: ICDT, pp. 14–30. ACM, St. Petersburg (2009)

12. Kondylakis, H., Dimitris, P.: Exelixis: Evolving Ontology-Based Data Integration System.
In: SIGMOD, pp. 1283-1286 (2011)

13. Lenzerini, M.: Data integration: a theoretical perspective. In: PODS (2002)
14. Perez, J., Arenas, M., Gutierrez, C.: Semantics and complexity of SPARQL. ACM Trans.

Database Syst. 34, 1–45 (2009)
15. Deutsch, A., Popa, L., Tannen, V.: Query reformulation with constraints. SIGMOD

Rec 35, 65–73 (2006)

Object-Oriented XML Keyword Search

Huayu Wu and Zhifeng Bao

School of Computing, National University of Singapore
{wuhuayu,baozhife}@comp.nus.edu.sg

Abstract. Existing LCA-based XML keyword search approaches are
not aware of the significance of using semantics of object to improve
search efficiency and quality during LCA-based computation. In this
paper, we propose a novel object-oriented approach for XML keyword
search. In each step of our approach, i.e., labeling an XML document,
constructing related indexes and searching for relevant LCA nodes, we
use the semantics of object. We theoretically and experimentally show
the superiority our semantic approach over existing approaches.

1 Introduction

XML keyword search is a user-friendly way to query XML database. The most
common way to process XML keyword queries is adopting inverted lists to index
data nodes in an XML document and perform lowest common ancestor (LCA) [4]
based computation with the inverted lists. There are many subsequent works to
either improve the search efficiency of LCA-based approach (e.g., [6]), or improve
the search quality (e.g., [5]). However, all the LCA-based search algorithms only
focus on checking the structural relationship between query keywords, but do
not consider the semantic relationship between them, i.e., the relationship among
object, property and value. Without noticing such information, the LCA-based
computation may perform redundant searches and return less meaningful result,
as discussed in Section 2.2.

In this paper, we propose an Object-Oriented Keyword Search approach,
named OOKS, to process XML keyword queries in data-centric XML data. The
core idea of our approach is to incorporate semantic information, i.e., object,
property and value, into LCA-based keyword search. In particular, we construct
indexes, i.e., inverted lists and relational tables, in an object-oriented manner,
and process XML keyword queries with those indexes in an OO manner as well.

2 Background and Motivation

2.1 Background

The Lowest Common Ancestor (LCA) of a set of nodes S is the common ancestor
of the nodes in S, and does not have a descendant node to also be a common
ancestor of these nodes. In an XML tree, normally we assign a Dewey ID [1]

M. Jeusfeld, L. Delcambre, and T.W. Ling (Eds.): ER 2011, LNCS 6998, pp. 402–410, 2011.
c© Springer-Verlag Berlin Heidelberg 2011

Object-Oriented XML Keyword Search 403

to each node and the LCA of a set of nodes has the Dewey ID of the longest
common prefix of the Dewey IDs for these nodes.

For each keyword k, the Dewey IDs of the nodes matching k are stored in an
inverted list. XML keyword search focuses on finding the relevant LCAs of the
inverted lists of all query keywords. A node is an LCA of a set of inverted lists
{I1,..., Im} if this node is the LCA of {u1,...,um} where ui∈Ii for 1≤i≤m.

Example 1. The inverted lists for the keywords in the query {book, XML, au-
thor} are shown in Fig. 3(a). The LCAs of the three lists include 1, 1.1.2, and
1.1.2.19 etc. In particular, node 1 is the LCA of book 1.1.2.1, XML 1.1.2.19.1.1
and author 1.2.2.1.2. ��
Intuitively the correct answer to the query in Example 1 is book 1.1.2.19, but
LCA returns a lot of false answers. To achieve a good search quality, many
improved semantics based on LCA are proposed (e.g., [3][10]). In our approach we
propose a new semantics SLCOA (discussed later) by incorporating object into
SLCA [10]. The SLCA of a set of inverted lists is the LCA node of these inverted
lists which has no descendant to also be an LCA of these lists. In Example 1,
the SLCA of the inverted lists only returns the correct answer 1.1.2.19.

bookstore
(1)

subject
(1.1)

subject
(1.2)

name
(1.1.1)

“computer”
(1.1.1.1)

book
(1.1.2.1)

title
(1.1.2.1.1)

author
(1.1.2.1.2)

about
(1.1.2.1.3)

price
(1.1.2.1.4)

“Computers”
(1.1.2.1.1.1)

“Green”
(1.1.2.1.2.1) “…

hard disk ...”
(1.1.2.1.3.1)

32
(1.1.2.1.4.1)

book
(1.1.2.19)

title
(1.1.2.19.1)

author
(1.1.2.19.2)

price
(1.1.2.19.4)

quantity
(1.1.2.19.5)

“XML”
(1.1.2.19.1.1)

“Brown”
(1.1.2.19.2.1) 38

(1.1.2.19.4.1)

15
(1.1.2.19.5.1)

book
(1.2.2.1)

title
(1.2.2.1.1)

author
(1.2.2.1.2)

price
(1.2.2.1.3)

quantity
(1.2.2.1.4)

“Physics”
(1.2.2.1.1.1)

“Smith”
(1.2.2.1.2.1)

56
(1.2.2.1.3.1) 10

(1.2.2.1.4.1)

author
(1.1.2.19.3)

“Cole”
(1.1.2.19.3.1)

…...

quantity
(1.1.2.1.5)

20
(1.1.2.1.5.1)

name
(1.2.1)

“physics”
(1.2.1.1)

…... …...

books
(1.1.2)

books
(1.2.2)

Fig. 1. An example XML document with Dewey IDs for all nodes

2.2 Motivation

We discuss the problems in existing LCA-based XML keyword search approaches
which motivate our research.

Efficiency Problems
The LCA-based approach may involve redundant inverted list search. For the
example document in Fig. 1, every “book” node corresponds to an object that
contains a property “title”. To process the query {book, title} which finds all
book titles, we actually do not need to scan the inverted list for “title” during
LCA-based computation. For another example, consider a query {book, title,
XML} to find the books with title of “XML”. Suppose there are 100 title ele-
ments, then we have to consider all 100 Dewey IDs in the inverted list of title
during LCA searching, though only one of them matches the value of “XML”.

404 H. Wu and Z. Bao

Search Quality Problems
Many keyword queries have different interpretations, or say search intentions. A
query {physics} may search for a book with title of “Physics”, or a subject with
name of “physics”. Most existing XML keyword search approaches mix different
interpretations during query processing, and a user may have difficulty in filtering
the mixed results based on his/her search intention. Also using inverted lists,
the existing XML keyword search algorithms cannot perform advanced search
efficiently, such as range search and phrase search.

3 Object-Oriented Indexes

In this section, we present the OO-based indexes used in our approach. The
discussion of object semantics can be found in our technical report [8].

3.1 OO-Dewey ID and Object Tables

Different from existing LCA-based approaches that assign Dewey ID to every
document node, OOKS assigns Dewey ID to object nodes (as well as the root)
only, thus we also call it OO-Dewey ID1. All non-object internal nodes inherit
the Dewey ID of the its lowest ancestor object node. Fig. 2 is the OO-Dewey ID
assignment for the document in Fig. 1, which contains only two object classes,
subject and book. Using OO-Dewey ID labeling, we can significantly reduce the
number of labeled nodes, as shown by comparing Fig. 1 and Fig. 2.

bookstore
(1)

subject
(1.1)

subject
(1.2)

name

“computer” book
(1.1.1)

title author about price

“Computers” “Green” “…
hard disk ...”

32

book
(1.1.19)

title author price quantity

“XML” “Brown” 38 15

book
(1.2.1)

title author price quantity

“Physics” “Smith” 56 10

author

“Cole”

…...

quantity

20

name

“physics”…... …...

books books

Fig. 2. Document with OO-Dewey ID assignment (only object nodes are labeled)

We only put the Dewey IDs for non-value document nodes into inverted lists,
and all the inverted lists are built in object-oriented fashion. The object-oriented
inverted lists for “book”, “author” and “about” are shown in Fig. 3(b), where
the traditional inverted lists are shown in Fig. 3(a). Since we only use object
labels, many properties with cardinality of 1 or + to its object, e.g. “author”,
have the same inverted list as the object.

1 For convenience, we still use Dewey ID for OO-Dewey ID in later explanations.

Object-Oriented XML Keyword Search 405

book 1.1.2.1, …, 1.1.2.19, 1.2.2.1, ...

XML 1.1.2.19.1.1

author 1.1.2.1.2, …, 1.1.2.19.2, 1.1.2.19.3, 1.2.2.1.2, ...

(a) Normal inverted list

book
1.1.1, …, 1.1.19, 1.2.1, ...

book/author

1.1.1, …book/about

(b) OO inverted list

Fig. 3. Inverted lists in normal LCA-based approaches and in our OO approach

Values are put into relational tables. The relational tables are also object-
oriented. For each object class we maintain a table with columns of Dewey ID
and its single-valued properties. We call it object table. For multi-valued property,
e.g., “author”, we maintain an object/property table. The example tables for
“book” in the document in Fig. 2 are shown in Fig. 4(a). The details of object
table construction and problem handling are discussed in [9].

3.2 Other Object-Based Indexes

We assign each type of object and property a numeric ID. We have a hash
table to check whether a keyword refers to an object or a property, and return
the numeric ID correspondingly. We also maintain Object Attachment Bitmap
(OAB) to quickly find by which object classes a given property type is contained,
and Containment Index (CI) to match each value to the objects and properties
containing it. The details of OAB and CI can be found in [8].

R

OO-Dewey Title About Price Quantity

1.1.1 Computers … hard disk … 32 20

Rbook
OO-Dewey Value

1.1.1 Green

… …

Rbook/author

… … … … …

1.1.19 XML null 38 15

… … … … …

1.2.1 Physics null 56 10

1.1.19 Brown

1.1.19 Cole

… …

1 2 1 S i h
… … … … …

1.2.1 Smith

… …

(a) Tables for book

R b

OO-Dewey Name

1.1 computer

… …

Rsubject

(b) Tables for subject

Fig. 4. Object tables for book and subject

4 OO Keyword Query Processing

The object-oriented keyword query processing in our approach has four steps:

1. Partition the keywords in the query based on different objects. Ambiguous
queries with different keyword attaching ways are handled.

2. In each partition, filter the Dewey IDs in the corresponding inverted list using
object tables, based on property and value constraints in the partition.

406 H. Wu and Z. Bao

3. Find the smallest lowest common object ancestor (SLCOA) of the inverted
lists for different partitions.

4. Identify output information and return result using object tables.

4.1 Step 1: Keyword Partitioning

Definition 1. (Keyword Partition) A partition is a group of keywords in a
keyword query that contains one object2, together with a set of properties or prop-
erty/value pairs that belong to the object. We use (object, [property1[/value1],
property2[/value2]...]) to represent each partition.

In a keyword query, we create a partition for each object involved. E.g., there are
two partitions for the query {subject, XML}, as there are two objects, subject
and book, involved. Then we put the query keywords into the corresponding
partitions. This process is called keyword partitioning. The partitioned query in
this example becomes {(subject), (book, title/XML)}. We design a model-driven
mechanism (shown in our technical report [8]) to partition query keywords.

Generally, there are two phases when we partition the keywords in a query:
attaching each value keyword to properties and objects, and attaching each
unattached property keyword to objects. The keyword attaching is performed
with the CI and OAB. The details of keyword partitioning can be found in
our technical report [8]. It is possible that a query is ambiguous with different
attaching ways for a value keyword or a property keyword. We discuss such
ambiguous cases in our technical report as well.

Example 2. The query {subject, physics} to the document in Fig. 2 is unam-
biguous. We attach the value keyword physics to the object subject with the
implicit property name. The final partition is {(subject, name/physics)}. ��
A special case is that multiple value keywords correspond to the same property
type of the same object class. Then we consider both cases of using one partition
and using multiple partitions for multiple property/value pairs.

Example 3. In the query {Brown, Cole}, both value keywords belong to book/au-
thor. The query is partitioned as {(book, author/Brown, author/Cole)} and
{(book, author/Brown), (book, author/Cole)}. The first interpretation finds the
book co-authored by the two people, while the second interpretation finds the
common information (i.e., subject) of the books written by the two authors. ��
For ambiguous queries, we design an algorithm to rank different interpretations
in [8].

4.2 Step 2: Inverted List Filtering

For a query with keywords partitioned based on objects, we filter the Dewey IDs
in the inverted list for each partition. We consider the three cases regarding the
occurrences of properties and values in each partition separately.
2 We simply refer to object (or property) keyword as object (or property), for short.

Object-Oriented XML Keyword Search 407

– Case (1): The partition contains only the object. We use the inverted list of
that object.

– Case (2): The partition contains both the object and properties, but no
value. If there is only one property, we use the inverted list for that property.
Otherwise, we take the intersection of the inverted lists for the properties.

– Case (3): Both properties and values appear with the object in the partition.
For the object obj in this partition, we get the Dewey IDs from the object
table Robj based on the constraints on the properties and values.

Inverted list filtering can reduce the size of relevant inverted lists, which makes
later operations on inverted lists more efficient. When there are value keywords
in a query, which frequently happens in practice, the inverted list reduction for
relevant objects is more significant, due to the high selectivity of value keywords
on specific properties.

Example 4. The query {book, XML, subject, name} contains two partitions after
keyword partitioning: {(book, title/XML), (subject, name)}. The first partition
has both property title and value XML with the object book, so by Case (3)
we select the Dewey IDs from Rbook based on title=“XML”. For the second
partition, we just use the inverted list for subject/name. Now we only use two
inverted lists to process this query, while other approaches use five inverted lists
for the five keywords. Furthermore, the inverted list for book contains only a few
Dewey IDs due to the high selectivity on the property title. ��

4.3 Step 3: SLCOA Processing

When a keyword query involves two or more objects, after simplifying the query
with only objects left, we still need to perform an LCA-based computation among
the query objects in the document. We propose a Smallest Lowest Common
Object Ancestor (SLCOA) semantics based on our OO document labeling. The
rationale of finding SLCOA is that we ensure all the relevant LCA nodes found
are object nodes, which are more meaningful as return nodes.

Definition 2. (LCOA of nodes) Given m nodes u1, u2,..., um, node v is
called a Lowest Common Object Ancestor (LCOA) of these m nodes, iff (1) v is
a common ancestor of all these nodes, (2) v is an object node, and (3) v does
not have any descendant object node w which is also a common ancestor of all
these nodes. We denote v as LCOA(u1, u2,..., um).

Proposition 1. The LCA of a set of nodes has the same Dewey ID as the
LCOA of these nodes.

Based on our labeling scheme, each non-object node inherits the Dewey ID of
its lowest ancestor object node. Thus the Proposition 1 holds (detailed proof
is omitted). In the document in Fig. 2, the LCA of two book nodes 1.1.1 and
1.1.19 is the node books 1.1, while the LCOA of the two book nodes is subject
1.1. Obviously the LCOA is more meaningful than the LCA as a result node.

408 H. Wu and Z. Bao

Definition 3. (LCOA of sets of nodes) Given m keywords k1, k2,..., km,
and m sets of nodes I1, I2,..., Im such that ∀1≤i≤m, Ii stores a list of nodes
matching ki. Node v belongs to the LCOA of the m sets iff ∃u1∈I1, u2∈I2,...,
um∈Im, such that v=LCOA(u1, u2,..., um). We denote v∈LCOA(I1, I2,..., Im).

Definition 4. (SLCOA of sets of nodes) A Smallest Lowest Common Object
Ancestor (SLCOA) v of m sets of nodes I1,..., Im is defined as (1) v∈LCOA(I1,...,
Im), and (2) v does not have any descendant w∈LCOA(I1,..., Im).

In this step, we find the SLCOA of the reduced inverted lists for the partitions
in a query. We can use all the existing efficient SLCA computation algorithms
to compute SLCOA, because of Proposition 1.

4.4 Step 4: Result Return

Output Information Identification. Normally a query aims to find the in-
formation of a certain object(s), so we infer the meaningful output information
based on object. We propose rules in [8] to determine what information should
be returned for a keyword query. Generally, we reuse the concept of SLCOA for
output information inference. We check the SLCOA of query objects in the struc-
tural summary of the XML document. If the SLCOA belongs to a new object
class from the objects involved in the query, we will return that SLCOA object.
Otherwise, we will return the object in the query partition without property or
value, or return the object property containing no value in its partition.

Value Extraction. When the output is an object, we access the object table
for that object, and select all the properties and corresponding values based on
the Dewey IDs. If the output is a property, we access the corresponding object
table and get the property value based on both the Dewey ID and the property
name.

4.5 Advanced Search

Inefficient support to range search is a shortcoming for most inverted list based
algorithms. For example, to process a query to find the book with price less than
50, one possible way for existing works is to find all the numeric keywords with
values less than 50 and combine their inverted lists. Obviously it is inefficient.
To perform Phrase search in XML data, existing works have to adopt a similar
technique as in IR [7] to index all phrases, which is very space costly.

OOKS stores values in relational tables. Then the range queries and the phrase
queries can be easily performed by SQL selection.

5 Experiments

5.1 Experimental Settings

All algorithms were performed on a dual-core 2.33GHz processor with 3.5G
RAM. We use three data sets: DBLP (91MB), XMark (6MB), and a real-life

Object-Oriented XML Keyword Search 409

course data set (2MB)3. We compare OOKS to several existing algorithms, as
mentioned later. We use eight unambiguous meaningful queries for each data set
to evaluate efficiency and search quality. We also test the ability of OOKS to re-
turn results based on different search intentions for ambiguous queries (including
our ranking method). In this paper, we only show the experimental result for un-
ambiguous queries in this paper. The query details and the result for ambiguous
query test and index analysis can be found in our technical report [8].

100

1000

10000

on
Ti

m
e

(m
s)

1

10

100

1000

10000

DQ1 DQ2 DQ3 DQ4 DQ5 DQ6 DQ7 DQ8

Ex
cu

ti
on

Ti
m

e
(m

s)

BLP

Q IMS

1

10

100

1000

10000

DQ1 DQ2 DQ3 DQ4 DQ5 DQ6 DQ7 DQ8

Ex
cu

ti
on

Ti
m

e
(m

s)

IMS ILE XReal OOKS

1

10

100

1000

10000

DQ1 DQ2 DQ3 DQ4 DQ5 DQ6 DQ7 DQ8

Ex
cu

ti
on

Ti
m

e
(m

s)

IMS ILE XReal OOKS

1

10

100

1000

10000

DQ1 DQ2 DQ3 DQ4 DQ5 DQ6 DQ7 DQ8

Ex
cu

ti
on

Ti
m

e
(m

s)

IMS ILE XReal OOKS

1

10

100

1000

10000

DQ1 DQ2 DQ3 DQ4 DQ5 DQ6 DQ7 DQ8

Ex
cu

ti
on

Ti
m

e
(m

s)

IMS ILE XReal OOKS

1

10

100

1000

10000

DQ1 DQ2 DQ3 DQ4 DQ5 DQ6 DQ7 DQ8

Ex
cu

ti
on

Ti
m

e
(m

s)

IMS ILE XReal OOKS

(a) DBLP data

100

1000

10000

on
Ti

m
e

(m
s)

1

10

100

1000

10000

XQ1 XQ2 XQ3 XQ4 XQ5 XQ6 XQ7 XQ8
Ex

cu
ti

on
Ti

m
e

(m
s)

BLP

Q IMS

1

10

100

1000

10000

XQ1 XQ2 XQ3 XQ4 XQ5 XQ6 XQ7 XQ8
Ex

cu
ti

on
Ti

m
e

(m
s)

IMS ILE XReal OOKS

1

10

100

1000

10000

XQ1 XQ2 XQ3 XQ4 XQ5 XQ6 XQ7 XQ8
Ex

cu
ti

on
Ti

m
e

(m
s)

IMS ILE XReal OOKS

1

10

100

1000

10000

XQ1 XQ2 XQ3 XQ4 XQ5 XQ6 XQ7 XQ8
Ex

cu
ti

on
Ti

m
e

(m
s)

IMS ILE XReal OOKS

1

10

100

1000

10000

XQ1 XQ2 XQ3 XQ4 XQ5 XQ6 XQ7 XQ8
Ex

cu
ti

on
Ti

m
e

(m
s)

IMS ILE XReal OOKS

1

10

100

1000

10000

XQ1 XQ2 XQ3 XQ4 XQ5 XQ6 XQ7 XQ8
Ex

cu
ti

on
Ti

m
e

(m
s)

IMS ILE XReal OOKS

1

10

100

1000

10000

XQ1 XQ2 XQ3 XQ4 XQ5 XQ6 XQ7 XQ8
Ex

cu
ti

on
Ti

m
e

(m
s)

IMS ILE XReal OOKS

(b) XMark data

Fig. 5. Query processing efficiency comparison

5.2 Efficiency

We compare OOKS with two LCA-based algorithms: Incremental Multiway-
SLCA (IMS) [6] and Indexed Lookup Eager (ILE) [10] for efficiency test. IMS
introduces anchor node semantics to skip redundant node search, while ILE
introduces index to accelerate inverted list scans. They are two representative
approaches to improve SLCA search. We also compare to an IR-style algorithm
XReal [2]. We choose a larger data set (DBLP) and a smaller data set (XMark)
for evaluation. The result is shown in Fig. 5(a) and 5(b). In OOKS, we use ILE
to compute SLCOA.

100

40

60

80

Pr
ec

is
io

n
(%

)

BLP

0

20

DQ1 DQ2 DQ3 DQ4 DQ5 DQ6 DQ7 DQ8

SLCA XSearch XReal OOKS
Q IMS

(a) DBLP data

100

40

60

80

Pr
ec

is
io

n
(%

)

BLP

0

20

XQ1 XQ2 XQ3 XQ4 XQ5 XQ6 XQ7 XQ8

SLCA XSearch XReal OOKS
Q IMS

SLCA XSearch XReal OOKS

(b) XMark data

60

80

100

ci
si

on
(%

)

0

20

40

60

80

100

CQ1 CQ2 CQ3 CQ4 CQ5 CQ6 CQ7 CQ8

Pr
ec

is
io

n
(%

)

BLP

Q IMS

0

20

40

60

80

100

CQ1 CQ2 CQ3 CQ4 CQ5 CQ6 CQ7 CQ8

Pr
ec

is
io

n
(%

)

SLCA XSearch XReal OOKS

0

20

40

60

80

100

CQ1 CQ2 CQ3 CQ4 CQ5 CQ6 CQ7 CQ8

Pr
ec

is
io

n
(%

)

SLCA XSearch XReal OOKS

0

20

40

60

80

100

CQ1 CQ2 CQ3 CQ4 CQ5 CQ6 CQ7 CQ8

Pr
ec

is
io

n
(%

)

SLCA XSearch XReal OOKS

0

20

40

60

80

100

CQ1 CQ2 CQ3 CQ4 CQ5 CQ6 CQ7 CQ8

Pr
ec

is
io

n
(%

)

SLCA XSearch XReal OOKS

0

20

40

60

80

100

CQ1 CQ2 CQ3 CQ4 CQ5 CQ6 CQ7 CQ8

Pr
ec

is
io

n
(%

)

SLCA XSearch XReal OOKS

(c) Course data

Fig. 6. Search precision comparison

3 http://www.cs.washington.edu/research/xmldatasets/data/courses/uwm.xml

http://www.cs.washington.edu/research/xmldatasets/data/courses/uwm.xml

410 H. Wu and Z. Bao

5.3 Search Quality

We evaluate the search quality of OOKS in comparison with other approaches:
SLCA, XSEarch [3] and XReal. Especial to be mentioned is XReal, which is
a ranking based keyword search algorithm. We take top k results from XReal,
where k is the number of expected answers. If there is only 1 expected answer
and the first returned result from XReal is not that answer, we use top 5 results
from XReal to compute precision, instead of returning 0. The recall value is very
high for all approaches, or say all approaches can find the correct answers, but
may introduce false positives as noises. Then we only compare the precision, as
shown in Fig. 6. More explanations of the result are presented in [8].

6 Conclusion

We propose OOKS, a novel object-oriented approach for XML keyword search. In
our approach, we label an XML document, construct related indexes and process
XML keyword queries in an object-oriented way. Compared to some existing
approaches, both query processing efficiency and search quality are improved
in OOKS, as shown in our experiments. Furthermore, by introducing relational
table for values, our approach can perform advanced search more efficiently.

Acknowledgement. The work of Zhifeng Bao was in part supported by the
Singapore Ministry of Education Grant No. R252-000-394-112 under the project
name of UTab.

References

1. http://www.mtsu.edu/~vvesper/dewey2.htm
2. Bao, Z., Ling, T.W., Chen, B., Lu, J.: Efficient XML keyword search with relevance

oriented ranking. In: ICDE, pp. 517–528 (2009)
3. Cohen, S., Mamou, J., Kanza, Y., Sagiv, Y.: XSEarch: A semantic search engine

for XML. In: VLDB, pp. 45–56 (2003)
4. Guo, L., Shao, F., Botev, C., Shanmugasundaram, J.: XRANK: Ranked keyword

search over XML documents. In: SIGMOD Conference, pp. 16–27 (2003)
5. Li, Y., Yu, C., Jagadish, H.V.: Schema-free XQuery. In: VLDB, pp. 72–83 (2004)
6. Sun, C., et al.: Multiway SLCA-based keyword search in XML data. In: WWW,

pp. 1043–1052 (2007)
7. Williams, H.E., et al.: Fast phrase querying with combined indexes. ACM Trans.

Inf. Syst. 22(4), 573–594 (2004)
8. Wu, H., Ling, T.W., Bao, Z., Xu, L.: Object-oriented XML keyword search.

TRA7/10, Technical Report, School of Computing, National University of Sin-
gapore (July 2010)

9. Wu, H., Ling, T.-W., Chen, B.: VERT: A semantic approach for content search
and content extraction in XML query processing. In: Parent, C., Schewe, K.-D.,
Storey, V.C., Thalheim, B. (eds.) ER 2007. LNCS, vol. 4801, pp. 534–549. Springer,
Heidelberg (2007)

10. Xu, Y., Papakonstantinou, Y.: Efficient keyword search for smallest LCAs in XML
databases. In: SIGMOD Conference, pp. 537–538 (2005)

http://www.mtsu.edu/~vvesper/dewey2.htm

A Hidden Markov Model Approach to Keyword-Based
Search over Relational Databases�

Sonia Bergamaschi1, Francesco Guerra1, Silvia Rota1, and Yannis Velegrakis2

1 Università di Modena e Reggio Emilia
firstname.lastname@unimore.it

2 University of Trento
velgias@disi.unitn.eu

Abstract. We present a novel method for translating keyword queries over rela-
tional databases into SQL queries with the same intended semantic meaning. In
contrast to the majority of the existing keyword-based techniques, our approach
does not require any a-priori knowledge of the data instance. It follows a proba-
bilistic approach based on a Hidden Markov Model for computing the top-K best
mappings of the query keywords into the database terms, i.e., tables, attributes
and values. The mappings are then used to generate the SQL queries that are
executed to produce the answer to the keyword query. The method has been im-
plemented into a system called KEYRY (from KEYword to queRY).

1 Introduction

Keyword searching is becoming the de-facto standard for information searching, mainly
due to its simplicity. For textual information, keyword query answering has been ex-
tensively studied, especially in the area of information retrieval [14]. However, for
structured data, it has only recently received considerable attention [5,12]. The existing
techniques for keyword searching over structured sources heavily rely on an a-priori
instance-analysis that scans the whole data instance and constructs some index, a sym-
bol table or some structure of that kind which is later used during run time to identify
the parts of the database in which each keyword appears. This limits the application of
these approaches to only cases where direct a-priori access to the data is possible.

There is a great deal of structured data sources that do not allow any direct access
to their own contents. Mediator-based systems, for example, typically build a virtual
integrated view of a set of data sources. The mediator only exposes the integrated
schema and accesses the contents of the data sources at query execution time. Deep
web databases are another example of sources that do not generally expose their full
content, but offer only a predefined set of queries that can be answered, i.e., through
web forms, or expose only their schema information. Even when the access to the data
instance is allowed, it is not practically feasible in a web-scale environment to retrieve
all the contents of the sources in order to build an index. The scenario gets even worst

� This work was partially supported by project “Searching for a needle in mountains of data”
http://www.dbgroup.unimo.it/keymantic

M. Jeusfeld, L. Delcambre, and T.W. Ling (Eds.): ER 2011, LNCS 6998, pp. 411–420, 2011.
c© Springer-Verlag Berlin Heidelberg 2011

412 S. Bergamaschi et al.

Fig. 1. A fragment of the DBLP schema

when the data source contents are subject to frequent updates, as it happens, for in-
stance, in e-commerce sites, forums/blogs, social networks, etc.

In this paper we present an approach, implemented in the KEYRY (from KEYword
to queRY) prototype system, for keyword searching that does not assume any knowl-
edge about the data source contents. The only requirement is for the source to provide
a schema, even a loosely described, for its data. Semantics, extracted directly from the
data source schema, are used to discover the intended meaning of the keywords in a
query and to express it in terms of the underlying source structures. The result of the
process is an interpretation of the user query in the form of a SQL query that will be
executed by the DBMS managing the source. Notice that there are many interpreta-
tions of a keyword query in terms of the underlying data source schemas, some more
likely and other less likely to capture the semantics that the user had in mind when
she was formulating the keyword query. As usual in keyword based searching systems,
assigning a ranking is a critical task since it avoids the users to deal with uninteresting
results. One of the innovative aspects of our approach is that we adopt a probabilistic
approach based on a Hidden Markov Model (HMM) for mapping user keywords into
database terms (names of tables and attributes, domains of attributes). Using a HMM
allows us to model two important aspects of the searching process: the order of the key-
words in a query (this is represented by means of the HMM transition probabilities)
and the probabilities of associating a keyword to different database terms (by means of
the HMM emission probabilities). A HMM typically has to be trained in order to op-
timize its parameters. We propose a method providing a parameter setting not relying
on any training data. In particular, we developed some heuristic rules that applied to the
database schema provide the transition probabilities. Moreover, we approximated the
emission probability by means of similarity measures (we use string similarity for mea-
suring the distance between keywords and schema elements and regular expressions
for evaluating the domain compatibilities, but our approach is independent of the mea-
sure adopted). Finally, we developed a variation of the HITS algorithm [9], typically
exploited for ranking web pages on the basis of the links among them, for computing

A Hidden Markov Model Approach to Keyword-Based Search 413

an authority score for each database term. We consider these scores as the initial state
probabilities required by the HMM.

More specifically, our key contributions are the following: (i) we propose a new
probabilistic approach based on a HMM for keyword based searching over databases
that does not require to build indexes over the data instance; (ii) we develop a method
for providing a parameter setting allowing keyword searching without any training data
and (iii) we exploit the List Viterbi algorithm that decodes the HMM in order to obtain
the top-K results.

The remainder of the paper is as follows. Section 2 is an overview of our approach
for keyword-based searching over databases. The problem is formalized in Section 3
and our proposal is described in Section 4. Section 5 describes related work and we
conclude in Section 6 with a brief wrap up and some suggestions for future work.

2 KEYRY at a Glance

A keyword in a keyword query may in principle be found in any database term (i.e.,
as the name of some schema term (table or attribute) or as a value in its respective
domain). This gives rise to a large number of possible mappings of each query keyword
into database term. These mappings are referred to as configurations. Since no access
to the data source instance is assumed, selecting the top-K configurations that better
represents the intended semantics of the keyword query is a challenging task.

Figure 1 illustrates a fragment of a relational version of the DBLP database1. The
keywords in a query may be associated to different database terms, representing dif-
ferent semantics of the keyword query. For instance, a user may be interested in the
papers written by Garcia-Molina published in a journal on 2011 and poses the query
consisting of the three keywords Garcia-Molina, journal and 2011. The key-
word journal should be mapped into the table Journal, 2011 into the domain of the
attribute Year in the Journal table, and Garcia-Molina should be an element of the
domain of the attribute Name in the table Person. If we do not know the intended mean-
ing of the user query, we may attribute different semantics to the keywords, e.g. 2011
might be the number of a page or part of the ISSN journal number. Not all the keywords
may be mapped into all the database terms: certain mappings are actually more likely
than other. Since KEYRY does not have any access to the data instance, we exploit the
HMM emission probabilities to rank the likelihood of each possible mapping between
a keyword and a database term. In our approach, we approximate the emission proba-
bilities by means of similarity measures based on semantics extracted from the source
schema (e.g. names of attributes and tables, attribute domains, regular expressions).

Moreover, based on known patterns of human behavior [8], we know that keywords
related to the same topic are typically close to each other in a query. Consequently,
adjacent keywords are typically associated to close database terms, i.e. terms that are
part of the same table or belong to tables connected through foreign keys. For example,
in the previous query the mapping of the keyword journal into the table Journal
increases the likelihood that 2011 is mapped into the domain of an attribute of the table
Journal. The HMM transition probabilities, that we estimate on the basis of heuristic

1 http://www.informatik.uni-trier.de/˜ley/db/

http://www.informatik.uni-trier.de/~ley/db/

414 S. Bergamaschi et al.

rules applied to the database schema, allows KEYRY to model this aspect. Section 4
describes how KEYRY computes the top-K configurations that better approximate the
intended meaning of a user query.

Then, the possible paths joining the database terms in a configuration have to be
computed. Different paths correspond to different interpretations. For example, let us
consider the query “Garcia-Molina proceedings 2011” and the configura-
tion that maps proceeding into the table Proceeding, 2011 into the domain of the
attribute Year in the same table, and Garcia-Molina into the domain of the attribute
Name in the table Person. Two possible paths may be computed for this configuration,
one involving the tables InProceeding and Author P, with the meaning of retrieving
all the proceedings where Garcia-Molina appears as an author, and the second involv-
ing the table Editor and returning the proceedings where Garcia-Molina was an editor.
Different strategies have been used in the literature to rank the interpretations. One
popular option is the length of the join path, but other heuristics [12] can also be used.
In KEYRY we compute all the possible paths and we rank them on the basis of their
length. However, this is not the main focus of the current work and we will not elaborate
further on it.

3 Problem Statement

Definition 1. A database D is a collection Vt of relational tables R1, R2, . . . , Rn. Each
table R is a collection of attributes A1, A2, . . . , AmR , and each attribute A has a do-
main, denoted as dom(A). Let Va={A | A∈R ∧ R∈Vt} represent the set of all the
attributes of all the tables in the database and Vd={d | d=dom(A) ∧ A∈Va} repre-
sents the set of all their respective domains. The database vocabulary of D, denoted as
VD , is the set VD=Vt∪Va∪Vd. Each element of the set VD is referred to as a database
term.

We distinguish two subsets of the database vocabulary: the schema vocabulary VSC =
Vt ∪ Va and the domain vocabulary VDO = Vd that concerns the instance information.
We also assume that a keyword query KQ is an ordered l-tuple of keywords (k1, k2,
. . . , kl).

Definition 2. A configuration fc(KQ) of a keyword query KQ on a database D is an
injective function from the keywords in KQ to database terms in VD . In other words, a
configuration is a mapping that describes each keyword in the original query in terms
of database terms.

The reason we consider a configuration to be an injective function is because we assume
that: (i) each keyword cannot have more than one meaning in the same configuration,
i.e., it is mapped into only one database term; (ii) two keywords cannot be mapped to
the same database term in a configuration since overspecified queries are only a small
fraction of the queries that are typically met in practice [8]; and (iii) every keyword is
relevant to the database content, i.e., keywords always have a correspondent database
term. Furthermore, while modelling the keyword-to-database term mappings, we also
assume that every keyword denotes an element of interest to the user, i.e., there are no

A Hidden Markov Model Approach to Keyword-Based Search 415

stop-words or unjustified keywords in a query. In this paper we do not address query
cleaning issues. We assume that the keyword queries have already been pre-processed
using well-known cleansing techniques.

Answering a keyword query over a database D means finding the SQL queries that
describe its possible semantics in terms of the database vocabulary. Each such SQL
query is referred to as an interpretation of the keyword query in database terms. An
interpretation is based on a configuration and includes in its clauses all the database
terms that are part of the image2 of the query keywords through the configuration. In
the current work, we consider only select-project-join (SPJ) interpretations that are typ-
ically the queries of interest in similar works [2,7], but interpretations involving aggre-
gations [11] are part of our future work.

Definition 3. An interpretation of a keyword query KQ = (k1, k2, . . . , kl) on a
database D using a configuration f∗

c (KQ) is an SQL query in the form
select A1, A2, . . ., Ao from R1 JOIN R2 JOIN . . . JOIN Rp where A′

1=v1 AND
A′

2=v2 AND . . . AND A′
q=vq

such that the following holds:

– ∀A∈{A1, A2, . . . , Ao}: ∃k∈KQ such that f∗
c (k)=A

– ∀R∈{R1, R2, . . . , Rp}: (i) ∃k∈KQ: f∗
c (k)=R or (ii) ∃ki, kj∈KQ: f∗

c (ki)=Ri ∧
f∗

c (kj)=Rj ∧ exists a join path from Ri to Rj that involves R

– ∀ “A′=v”∈{A′
1=v1, A

′
2=v2, . . . , A

′
o=vo}: ∃k∈KQ such that f∗

c (k)=dom(A′) ∧
k = v

– ∀k∈KQ: f∗
c (k)∈{A1, A2, . . . , Ao, R1, R2, . . . , Rp, dom(A′

1), . . . , dom(A′
q)}

The existence of a database term in an interpretation is justified either by belonging to
the image of the respective configuration, or by participating in a join path connecting
two database terms that belong to the image of the configuration. Note that even with
this restriction, due to the multiple join paths in a database D, it is still possible to have
multiple interpretations of a keyword query KQ given a certain configuration f∗

c (KQ).
We use the notation I(KQ, f∗

c (KQ), D) to refer to the set of these interpretations, and
I(KQ, D) for the union of all these sets for a query KQ.

Since each keyword in a query can be mapped into a table name, an attribute name or
an attribute domain, there are 2Σn

i=1|Ri| + n different mappings for each keyword, with
|Ri| denoting the arity of the relation Ri and n the number of tables in the database.
Based on this, and on the fact that no two keywords can be mapped to the same database
term, for a query containing l keywords, there are |VD|!

(|VD |−l)! possible configurations. Of
course, not all the interpretations generated by these configurations are equally mean-
ingful. Some are more likely to represent the intended keyword query semantics. In
the following sections we will show how different kinds of meta-information and inter-
dependencies between the mappings of keywords into database terms can be exploited
in order to effectively and efficiently identify these meaningful interpretations and rank
them higher.

2 Since a configuration is a function, we use the term image to refer to its output.

416 S. Bergamaschi et al.

4 Computing Configurations Using a HMM

In a first, intuitive attempt to define the configuration function we can divide the prob-
lem of matching a whole query to database terms into smaller sub-tasks. In each sub-
task the best match between a single keyword and a database term is found. Then the
final solution to the global problem is the union of the matches found in the sub-
tasks. This approach works well when the keywords in a query are independent of
each other, meaning that they do not influence the match of the other keywords to
database terms. Unfortunately, this assumption does not hold in real cases. On the con-
trary, inter-dependencies among keywords meanings are of fundamental importance in
disambiguating the keyword semantics.

In order to take into account these inter-dependencies, we model the matching func-
tion as a sequential process where the order is determined by the keyword ordering in
the query. In each step of the process a single keyword is matched against a database
term, taking into account the result of the previous keyword match in the sequence. This
process has a finite number of steps, equal to the query length, and is stochastic since the
matching between a keyword and a database term is not deterministic: the same key-
word can have different meanings in different queries and hence being matched with
different database terms; vice-versa, different database terms may match the same key-
word in different queries. This type of process can be modeled, effectively, by using a
Hidden Markov Model (HMM, for short), that is a stochastic finite state machine where
the states are hidden variables.

A HMM models a stochastic process that is not observable directly (it is hidden),
but it can be observed indirectly through the observable symbols produced by another
stochastic process. The model is composed of a finite number N of states. Assuming
a time-discrete model, at each time step a new state is entered based on a transition
probability distribution, and an observation is produced according to an emission prob-
ability distribution that depends on the current state, where both these distributions are
time-independent. Moreover, the process starts from an initial state based on an initial
state probability distribution. We will consider first order HMMs with discrete observa-
tions. In these models the Markov property is respected, i.e., the transition probability
distribution of the states at time t + 1 depends only on the current state at time t and
it does not depend on the past states at time 1, 2, . . . , t − 1. Moreover, the observa-
tions are discrete: there exists a finite number, M, of observable symbols, hence the
emission probability distributions can be effectively represented using multinomial dis-
tributions dependent on the states. More formally, the model consists of: (i) a set os
states S = {si}, 1 ≤ i ≤ N ; (ii) a set of observation symbols V = {vj}, 1 ≤ j ≤ M ;
(iii) a transition probability distribution A = {aij}, 1 ≤ i ≤ N , 1 ≤ j ≤ N where

aij = P (qt+1 = sj |qt = si) and
∑

0<j<N

aij = 1

(iv) an emission probability distribution B = {bi(m)}, 1 ≤ i ≤ N , 1 ≤ m ≤ M where

bi(m) = P (ot = vm|qt = si) and
∑

0<m<M

bi(m) = 1

A Hidden Markov Model Approach to Keyword-Based Search 417

and (v) an initial state probability distribution Π = {πi}, 1 ≤ i ≤ N where

πi = P (q1 = si) and
∑

0<i<N

πi = 1

Based on the above, the notation λ = (A, B, Π) will be used to indicate a HMM. In our
context, the keywords inserted by the user are the observable part of the process, while
the correspondent database terms are the unknown variables that have to be inferred.
For this reason, we model the keywords as observations and each term in the database
vocabulary as a state.

4.1 Setting HMM Parameters

In order to define a HMM, its parameters have to be identified. This is usually done
using a training algorithm that, after many iterations, converges to a good solution for
the parameter values. In our approach we introduce some heuristic rules that allow the
definition of the parameter values even when no training data is available. The HMM
parameter values are set by exploiting the semantics collected from the data source
metadata. In particular:

The transition probabilities are computed using heuristic rules that take into account
the semantic relationships that exist between the database terms (aggregation, gener-
alization and inclusion relationships). The goal of the rules is to foster the transition
between database terms belonging to the same table and belonging to tables connected
through foreign keys. The transition probability values decrease with the distance of the
states, e.g. transitions between terms in the same table have higher probability than tran-
sitions between terms in tables directly connected through foreign keys, that, in turn,
have higher probability than transitions between terms in tables connected through a
third table.

The emission probabilities are computed on the basis of similarity measures. In par-
ticular two different techniques are adopted for the database terms in VSC and VDO .
We use the well known edit distance for computing the lexical similarity between the
keywords and each term (and its synonyms extracted from Wordnet3) in the schema
vocabulary VSC . On the other side, the similarity between keywords and the terms in
the domain vocabulary VDO is based on domain compatibilities and regular expres-
sions. We use the calculated similarity as an estimate for the conditional probabil-
ity P (qt = si|ot = vm) then, using the Bayes theorem, we calculate the emission
probability P (ot = vm|qt = si). Note that the model is independent of the similarity
measure adopted. Other more complex measures that take into account external knowl-
edge sources (i.e., public ontologies and thesauri) can be applied without modifying the
model.

The initial state probabilities are estimated by means of the scores provided by the
HITS algorithm [9]. The HITS algorithm is a link analysis algorithm that calculates
two different scores for each page: authority and hub. A high authority score indicates

3 http://wordnet.princeton.edu

http://wordnet.princeton.edu

418 S. Bergamaschi et al.

that the page contains valuable information with respect to the user query, while a high
hub score suggests that the page contains useful links toward authoritative pages. This
algorithm has been adapted to our context in order to rank the tables in a database based
on their authority scores. The higher the rank, the more valuable is the information
stored in the tables. For this reason, the authority score is used as an estimate of the
initial state probabilities.

Adapted HITS Algorithm. In order to employ the HITS algorithm, we build the
database graph GD = (Vt, Efk) which is a directed graph where the nodes are the
database tables in Vt and the edges are connections between tables through foreign
keys, i.e., given two tables Ri, Rj there exists an edge in Efk from Ri to Rj , denoted
as Ri → Rj , if an attribe in Rj is referred by a foreign key defined in Ri. Let A be the
n x n adjacency matrix of the graph GD

A = [aij], aij = 1 iff eij ∈ Efk, aij = 0 iff eij /∈ Efk

In our approach we use the modified matrix B that takes into account the number of
attributes minus the number of foreign keys in a table (foreign keys are considered as
links).

B = [bij], bij = aij · (|Ri| − ||{Ri → Rj , 1 ≤ j ≤ n}||)
Let us define the authority weight vector auth and the hub weight vector hub

authT = [u1, u2, . . . , un] and hubT = [v1, v2, . . . , vn]

The algorithm initializes these vectors with uniform values, e.g., 1
n , then the vectors are

updated in successive iterations as follows{
auth = BT · hub
hub = B · auth

At each iteration a normalization step is performed to obtain authority and hub scores
in the range [0, 1]. After few iterations the algorithm converges and the authority scores
are used as estimate for the initial state probabilities.

Example 1. Let us consider the database in Figure 1. This database generates 53 states4,
one for each database term. Concerning the transition probability distribution, the
heuristic rules foster transitions between database terms of the same table or in ta-
bles connect via foreign key. According to this, the most probable states subsequent to
the state associated to the table Journal are the states associated to the names and the
domains of the attributes Title, Volume, Number, etc., then, the state associated to the
table Author J, subsequently, the states associated to the table Person and so on. We
use different similarity measures for computing the emission probability distribution.
Domain compatibility and regular expressions are used for measuring the probabilities
of the values associated to states of terms in the VDO , e.g., the possible values associ-
ated to the state representing the Year of the table Journal are numeric values between

4 Since in this schema the primary key values are not meaningful for the user, we removed the
states associated to these database terms.

A Hidden Markov Model Approach to Keyword-Based Search 419

1900 and 2100. The probabilities of values associated to states if terms in the VSC is
computed on the basis of lexical similarity computed on the term and on its synonyms,
hypernyms and hyponyms. For example, we consider “article” as synonym of journal.
In our experiments we noticed that, by applying the adaptation of the HITS algorithm,
the states corresponding to the database terms in the tables Journal and Inproceeding
obtain the highest authority scores.

4.2 Decoding the HMM

Once the parameters A, B, and Π have been defined, the resulting HMM is used to
compute the top-K configurations by applying the List Viterbi algorithm [10], which
is a generalization of the well known Viterbi algorithm [6]. The algorithm has also
been applied, using a different formulation, to HMMs in order to solve the following
problem:

Given a HMM λ and an observation sequence Ol = (o1, o2, . . . , oT) find the ordered
list of the K state sequences Q̂k

l = (qk
1 , qk

2 , . . . , qk
T), 1 ≤ k ≤ K which have the highest

probability of generating Ol

In other words, the algorithm generalizes the well-known Viterbi algorithm finding
the top-K maximum likelihood state sequences (MLSSs) instead of the single MLSS
found by the original algorithm.

Example 2. The top-2 results of the keyword query “proceeding ER 2011” are
the ones mapping the keyword proceeding into the table proceeding, ER into the
domain of the attribute Title of the table proceeding, and 2011 into the domains of
the attributes Year and ISBN, respectively. Both the solutions have the same transition
probabilities but different emission probabilities since the likelihood of the mapping
of 2011 into the attribute Year is higher than the one into ISBN. Other mappings are
possibles: for example the configuration that maps the keyword proceeding into the
table proceeding, ER into the domain of the attribute Title of the table proceeding, and
2011 into the domain of the attribute Year of the table Journal has rank 9.

5 Related Work

There has been already a number of different systems that consider keyword searching
over structured or semi-structured data. Specifically, well-known systems of the former
include BANKS [1], DISCOVER [7], DBXplorer [2], QUICK [13], SQAK [11] and
many others presented in various surveys [5,12]. Their typical approach is to perform
an off-line pre-prosessing step that scans the whole data instance and constructs an
index, a symbol table or some structure of that kind which is later used at run time
to identify the parts of the database in which each keyword appears. After that, they
perform a path discovery algorithm to find the different ways in which these tables are
connected. The algorithms range from finding minimal joining networks [7] to Steiner
trees [1]. In contrast to all these approaches, KEYRY is able to achieve similar results
without the need of accessing and scanning the data. QUICK guides the users into a
series of query refinements to find the one that describes their intended semantics, but

420 S. Bergamaschi et al.

it assumes that there is only one such semantics, while practice has shown that there
may be different alternatives. Keymantic [3,4] has goals similar to ours but it follows
a fundamentally different approach. It handles the keyword search as a bipartite graph
assignment problem and finds the solutions using an extended version of the Hungarian
algorithm.

6 Conclusion and Future Work

We described KEYRY, a probabilistic keyword-based searching system for relational
databases that is based on a HMM for computing the top-K best mappings of the query
keywords into the database terms. The use of HMM allows the efficient modeling of the
order of the keywords in a query and the probabilities of associating them to different
database terms. Although a HMM typically has to be trained to optimize its parameters,
we propose a method that does not rely on any particular training.

References

1. Aditya, B., Bhalotia, G., Chakrabarti, S., Hulgeri, A., Nakhe, C., Parag, Sudarshan, S.:
Banks: Browsing and keyword searching in relational databases. In: VLDB, pp. 1083–1086
(2002)

2. Agrawal, S., Chaudhuri, S., Das, G.: Dbxplorer: A system for keyword-based search over
relational databases. In: ICDE, pp. 5–16. IEEE Computer Society, Los Alamitos (2002)

3. Bergamaschi, S., Domnori, E., Guerra, F., Lado, R.T., Velegrakis, Y.: Keyword search over
relational databases: a metadata approach. In: SIGMOD. ACM, New York (2011)

4. Bergamaschi, S., Domnori, E., Guerra, F., Orsini, M., Lado, R.T., Velegrakis, Y.: Keymantic:
Semantic keyword-based searching in data integration systems. PVLDB 3(2), 1637–1640
(2010)

5. Chakrabarti, S., Sarawagi, S., Sudarshan, S.: Enhancing search with structure. IEEE Data
Eng. Bull. 33(1), 3–24 (2010)

6. Forney Jr., G.D.: The Viterbi algorithm. Proceedings of the IEEE 61(3), 268 (1973)
7. Hristidis, V., Papakonstantinou, Y.: Discover: Keyword search in relational databases. In:

VLDB, pp. 670–681 (2002)
8. Kumar, R., Tomkins, A.: A Characterization of Online Search Behavior. IEEE Data Engi-

neering Bulletin 32(2), 3–11 (2009)
9. Li, L., Shang, Y., Shi, H., Zhang, W.: Performance evaluation of hits-based algorithms. In:

Hamza, M.H. (ed.) Communications, Internet, and Information Technology, pp. 171–176.
IASTED/ACTA Press (2002)

10. Seshadri, N., Sundberg, C.-E.W.: List viterbi decoding algorithms with applications. IEEE
Transactions on Communications 42(234) (1994)

11. Tata, S., Lohman, G.M.: SQAK: doing more with keywords. In: SIGMOD, pp. 889–902.
ACM, New York (2008)

12. Yu, J.X., Qin, L., Chang, L.: Keyword Search in Databases. Synthesis Lectures on Data
Management. Morgan & Claypool Publishers, San Francisco (2010)

13. Zenz, G., Zhou, X., Minack, E., Siberski, W., Nejdl, W.: From keywords to semantic queries-
incremental query construction on the semantic web. Journal of Web Semantics 7(3), 166–
176 (2009)

14. Zobel, J., Moffat, A.: Inverted files for text search engines. ACM Computing Surveys 38(2)
(2006)

A Modularization Proposal for Goal-Oriented

Analysis of Data Warehouses Using I-Star

Alejandro Maté1, Juan Trujillo1, and Xavier Franch2

1 Lucentia Research Group
Department of Software and Computing Systems

University of Alicante
{amate,jtrujillo}@dlsi.ua.es

2 Universitat Politécnica de Catalunya (UPC)
franch@essi.upc.edu

Abstract. The success rate of Data Warehouse (DW) development is
improved by performing a requirements elicitation stage in which the
users’ needs to be fulfilled by the DW are modeled. Currently, among
the different proposals for modeling requirements, there is a special fo-
cus on Goal-Oriented models, and in particular on the i* framework. In
order to adapt this framework for DW development, a UML profile for
DWs was proposed. However, as the general i* framework, the proposal
lacks modularity. This has a specially negative impact for DW develop-
ment, since the business strategy plans tend to include a huge number
of elements with many crossed relationships between them. In turn, the
readability of the models is decreased, harming their utility and increas-
ing the error rates and development time. In this paper, we propose an
extension of the i* profile for DWs considering the modularization of
goals. We also provide a set of guidelines in order to correctly apply our
proposal. Furthermore, we have performed an experiment in order to
validate our proposal. The great benefits of our proposal are an increase
in the modularity and scalability of the models which, in turn, increases
the error correction capability, and makes complex models easier to un-
derstand by both DW developers and non expert users.

Keywords: Data Warehouses, modules, user requirements, i-star.

1 Introduction

Nowadays, there is an increasing importance of the Business Intelligence (BI) in
the enterprise environment. Organizations manage huge amounts of information,
and wish to take informed decisions by using that information. In fact, the
Gartner Group showed that, during the recent recession period, the BI market
not only did not decrease, but instead it grew a 4% [3].

At the core of the BI, among other technologies, is the Data Warehouse (DW).
DWs integrate several heterogeneous data sources in multidimensional structures
in support of the decision-making process [4]. Therefore, the modeling of user
needs is a very important aspect of DWs, which can be accomplished by means

M. Jeusfeld, L. Delcambre, and T.W. Ling (Eds.): ER 2011, LNCS 6998, pp. 421–428, 2011.
c© Springer-Verlag Berlin Heidelberg 2011

422 A. Maté, J. Trujillo, and X. Franch

of goal-oriented models. Among the goal-oriented approaches, the i* framework
[9], is currently one of the most widespread goal modeling frameworks and has
been applied for modeling organizations, and business processes, as well as for
modeling DW requirements [6].

Nevertheless, as pointed in [2], the i* framework lacks scalability due to the
absence of modularity. As DW requirements models may become very complex,
they become difficult to correct and update as requirements change. We have
experienced this drawback ourselves, as some of our real projects had over 16
goals, 15 tasks and 53 resources for a single actor. These models became huge for
correction, validation, and communication with the users, presenting elements
repeated in the same model with different structures, since designers forgot which
elements were already defined.

In this work, we propose an extension of our i* profile [6], in order to improve
its modularity. We include Decision, Information, and Hierarchy modules, thus
increasing the scalability of the models. With these modifications, the commu-
nication between users and developers is improved, leading to higher success
rates. Furthermore, we provide a set of guidelines to correctly apply the proposal.
Moreover, we have performed an experiment in order to validate our proposal.

The rest of the paper is structured as follows. Section 2 presents the related
work in this area. Section 3 proposes the different types of modules for our i* pro-
file. Section 4 presents an example of application and the experiment performed.
Finally, Section 5 summarizes the conclusions and future work.

2 Related Work and Background

When dealing with scalability issues, other works have focused on i* modularity
in general [2]. However, these modules do not have meaningfull semantics for a
specific domain, which could favor the understandability of the modularization
process. Therefore, before performing any kind of adaptation, a study of the
target domain must be performed. The study, and the ontology mapping between
i* and DWs, is provided in [1]. After this ontology mapping is performed, the
necessary modules should be defined accordingly to how the target domain is
structured.

In our previous work, we developed a UML profile for modeling DWs at con-
ceptual level [5], where the importance of packages was shown. These packages
allow the developer to analyze the model at different levels of detail, hiding those
elements on which the developer has no interest, lowering the complexity of the
model and increasing its readability. In turn, this aspect makes designing the
schemata less error prone.

However, since the conceptual level is closer to developers than to users, we
included a RE phase in our methodology [6,7]. Now, in this work, we complement
our approach, by improving the modularity and scalability of our i* profile. We
include modules for the decision and information goals, as well as for hierarchies
of contexts. By improving the modularity, the models are easier to read and less
error prone, thus increasing user satisfaction.

A Modularization Proposal for Goal-Oriented Analysis 423

3 Definition of Modules and Guidelines

In this section, we will present the extension to our i* profile for DWs, defin-
ing the proposing modules and the extended metaclasses, and presenting some
guidelines for the application of modules.

3.1 Definition of Modules

First, we will define our proposed modules, in order to decrease the complexity
of the goal models. The modules which we will define (see figure 1) are strongly
related with the identified concepts in the DW domain. Therefore, each module
has a specific semantic associated adapted for the DW domain. We have not
included a module for strategic goals since typically there is only a few of them.

– Decision modules include the elements related to a given decision goal.
They can include decision goals, information goals, requirements, contexts,
measures, other decision modules, information modules, and hierarchy mod-
ules. They contain all the necessary information to take a given decision,
which helps achieving a strategic goal.

– Information modules include the elements related to a given information
goal. They can include information goals, requirements, contexts, measures,
other information modules, and hierarchy modules. They aggregate all the
information which is necessary to satisfy a given information goal.

– Hierarchy modules include the elements which constitute a hierarchy.
They are formed by the different contexts which represent the different levels
of aggregation of a dimension. They can only include contexts. These modules
help with the reusability of the dimensions at the requirements level, and
hide the complexity of hierarchies when it is unnecessary.

These modules are loosely coupled with the core i* elements and extend from
the Package element, as shown in figure 1, and include an intermediate element

Fig. 1. Modules extension for DW

424 A. Maté, J. Trujillo, and X. Franch

iModule in order to help with the definition of OCL constraints. After having
defined the modules, we will present a set of guidelines to apply them while
minimizing the drawbacks.

3.2 Guidelines

In this section, we will give some guidelines to use the provided modules, in
order to maximize their benefits. It is not mandatory to package every element,
although it is recommended for the sake of uniformity and to provide different
abstraction levels, which is a more intuitive approach (G1). However, if some
parts of the goal tree have a low complexity, it might not be necessary to group
them in a separate package (G2). For each package created, there should be a
single root element, corresponding to the type of package, which acts as a con-
nection for higher level elements. This element should have no dependencies to
other elements inside the same package (G3). The name of the package should
be the same as the root element, in order to help with the identification of the
corresponding packaged subtree (G4). This helps keeping in mind which lower
level elements support each higher level goals. For each decision goal a Deci-
sion module should be created (G5). Inside a decision module there should be
an Information module for each information goal which supports the decision
goal (G6). If included in a CASE tool, elements should not be repeated, but
instead imported from packages where they were first defined (G7). Information
modules should include all the elements related to the information goal, import-
ing elements where necessary, and always including a Hierarchy module for each
different hierarchy of contexts present (G8). These Hierarchy modules represent
the lowest level of abstraction in the strategic rationale, and should be always
separated from the goal tree, in order to hide the details of the hierarchies of
contexts unless they are necessary (G9).

4 Example of Application and Experimental Results

In this section we will present the application of our proposal to an example,
as well as the results of an experiment performed in order to analyze how users
and developers perceive the modularized models.

4.1 Example of Application

The following example presents a simple goal tree, while contexts and hierarchies
are better defined, and the scope of each element may be hard to identify. In this
case, the contexts can be aggregated at different levels of detail, presenting mar-
ket and electronic product contexts as the lowest level, which can be aggregated
up to state and section levels.

This example can be modularized using the proposed packages, decreasing its
complexity and providing different levels of detail. In this sense, now there is
a first level providing an overview of the strategies related to the business pro-
cess and their corresponding decisions. In this case, the goal tree presents the

A Modularization Proposal for Goal-Oriented Analysis 425

Fig. 2. Part of the requirements model for Sales analysis with the scope of the decision
goal Some promotion offered marked in red, and the scope of Stock of products in blue

Fig. 3. Strategy level for Sales analysis

different decision packages as its leaves, which are further detailed in their cor-
responding models. The following model presents the previous business process
with 3 related strategies and the corresponding 3 decision packages.

For each decision, we have a different package which includes their related
information goals and presents the intermediate level of detail. The elements
corresponding to each information goal are also modularized in their own pack-
ages, which are the leaves of the decision models. Finally, for each information
goal, we have a package which includes their related information requirements,
presenting the corresponding hierarchy packages and measures.

4.2 Experimental Results

In order to evaluate the impact of our proposal, we have performed an exper-
iment, with participants ranging from non-expert people to DW designers and

426 A. Maté, J. Trujillo, and X. Franch

experts on i* modeling. This experiment is part of a family of experiments for
validating the proposal, following the same methodology as in [8]. There were
two rounds of questionnaires presenting two examples, one small (omitted due
to space constraints, Example 1), and one bigger (see figure 2, Example 2). Both
examples were presented in generic i* notation. Monolitic models were presented
in a single sheet, whereas modularized models were presented in multiple sheets.
These examples were presented in four combinations, in order to prevent the
order of the questions from altering the results.

A total of 28 participants filled the questionnaire. Each participant was given
one type of questionnaire. The tasks were to identify and mark a series of el-
ements on each model, and the answer could not be modified. After the iden-
tification tasks, participants had to assign scores (from 0 to 3) for a series of
characteristics. The hypothesis for our experiment are:

Null hypothesis, H01: There is no statistically significant correlation between
the modularization of models and the time required for different tasks and the
characteristics perceived.

Hypothesis H11: ¬H01

The results are shown in table 1 for the first round, and in table 2 for the
second round. As the experiment results results proved H01, we did not calcu-
late further values like efficiency and effectiveness. Therefore, the results will be
discussed in terms of trends. Time is measured in seconds.

In order to obtain the results, first, outliers were identified and filtered. Then,
the second step was to perform a variance analysis of the data, in order to identify
significant differences between the models. The significance analysis (ρ < 0.05)
revealed that the reading time for the modularized Sales model was significantly
inferior than when built in a monolitic way, while the scalability of both examples
was notably increased.

Table 1. Tasks performed (left) and independent (top) variables for experiment 1

Monolitic Modularized

Avg. reading time Sales 299.31 210.31

Identif. task 1 Sales 190.08 278.62

Identif. task 2 Sales 190.94 165.08

Avg. reading time Contracts 162.73 181.33

Identif. task 1 Contracts 150.07 211.5

Identif. task 2 Contracts 124.33 161.00

Avg. errors per questionnaire Sales 0.82 0.47

Avg. errors per questionnaire Contracts 0.33 0.36

Readability score Sales 2 1,93

Scalability score Sales 1,41 2,26

Comprehension score Sales 1,5 1,87

Modificability score Sales 1,5 2,06

Readability score Contracts 2,27 2,33

Scalability score Contracts 1,67 2,41

Comprehension score Contracts 2,13 2,05

Modificability score Contracts 1,73 2,17

A Modularization Proposal for Goal-Oriented Analysis 427

Table 2. Tasks performed (left) and independent (top) variables for experiment 2

Monolitic Modularized

Modif. task 1 Sales 202 154,27

Modif. task 2 Sales 223,6 290

Modif. task Contracts 128,73 197,6

Avg. Time drawing 1306,67 1891,44

Avg. Time/element 50,10 44,34

Avg. number of elements 25,67 42,89

Avg. unique non package elements 25,67 27,67

In terms of trends, we perceive an increase in time spent in order to identify
modularized elements, which can be consequence of marking a higher number of
elements. On the other hand, the number of wrong answered questions notably
diminished in the Sales example when modularized. This is specially relevant,
since identifying elements in the modularized example required to correctly iden-
tify the detail level of a package in the next sheet. Finally, most participants
chose a modularized approach to organize new elements. Out of 27 participants
17 chose to package the decision goals and their related elements, 16 packaged
the information goals, and 19 chose to package hierarchies.

After the first round, a second round was performed with 21 participants,
including modification tasks over existing models, as well as the creation of a
new model. The examples were the same as in the previous round. The results
of this round are shown in table 2.

As previously, in terms of trends, we perceive a decrease in time spent when
the model is big and modifications are made on a single module (task 1), whereas
there is an increase when modifications affect multiple modules (task 2). Finally,
the creation of a new model from the scratch had a sample of 15 questionnaires,
with a significant correlation between the structure of the model created and
the measured variables. Time spent was notably superior for models created
with a modularized approach, while time spent per element drawn was inferior
when the model was modularized. Most importantly, the average number of
elements identified from the description was superior when modules were applied.
Additionally, some monolitic models (filtered in the outliers analysis), presented
repeated elements, which should not be created, and tend to increase in number
as the model gets bigger.

5 Conclusions and Future Work

Traditionally, i* models lack any modularity, suffering from scalability and read-
ability issues. Therefore, although the profile presented in [6] is adapted for the
semantics present in DWs, it suffers from the same issues, since it provides no
additional modularity. In turn, when real project models become huge, they turn

428 A. Maté, J. Trujillo, and X. Franch

from a useful tool for communicating with the user into a burden which requires
effort to correct, use and modify. Therefore, an improve in modularity is required
in order to maintain the quality of the requirement analysis for DWs.

In this work, we have presented a proposal for applying modules, specially
designed for DWs. We have provided some guildelines on how to correctly apply
the proposal and we also have shown an example of application. The experimen-
tal results show an increase in the scalability of the models, and a reduced error
rate when identifying the scope of an element. Furthermore, modules help to
create richer goal models. Since we could not establish a significant correlation
between the modularization and some of the variables, we pretend to perform
further experiments.

Acknowledgments. This work has been partially supported by the ProS-
Req (TIN2010-19130-C02-01), MESOLAP (TIN2010-14860) and SERENIDAD
(PEII-11-0327-7035) projects from the Spanish Ministry and the Junta de Co-
munidades de Castilla La Mancha respectively. Alejandro Maté is funded by the
Generalitat Valenciana under an ACIF grant (ACIF/2010/298).

References

1. Franch, X., Maté, A., Trujillo, J.: On the joint use of i* with other Modelling Frame-
works: a Vision Paper. In: Proceedings of the 19th International Conference on
Requirements Engineering. IEEE, Los Alamitos (in Press)

2. Franch, X.: Incorporating Modules into the i* Framework. In: Pernici, B. (ed.)
CAiSE 2010. LNCS, vol. 6051, pp. 439–454. Springer, Heidelberg (2010)

3. Group, G.: Gartner Group BI Revenue Analysis (2009),
http://www.gartner.com/it/page.jsp?id=1357514

4. Kimball, R.: The data warehouse toolkit. Wiley-India (2009)
5. Luján-Mora, S., Trujillo, J., Song, I.-Y.: A UML profile for multidimensional mod-

eling in data warehouses. DKE 59(3), 725–769 (2006)
6. Mazón, J.-N., Trujillo, J.: A model driven modernization approach for automatically

deriving multidimensional models in data warehouses. In: Parent, C., Schewe, K.-D.,
Storey, V.C., Thalheim, B. (eds.) ER 2007. LNCS, vol. 4801, pp. 255–264. Springer,
Heidelberg (2007)

7. Mazón, J.-N., Trujillo, J.: A hybrid model driven development framework for the
multidimensional modeling of data warehouses. SIGMOD Record 38(2), 12–17
(2009)

8. Serrano, M., Trujillo, J., Calero, C., Piattini, M.: Metrics for data warehouse concep-
tual models understandability. Information and Software Technology 49(8), 851–870
(2007)

9. Yu, E.S.K.: Modelling strategic relationships for process reengineering. Ph.D. thesis,
Toronto, Ont., Canada, Canada (1995)

http://www.gartner.com/it/page.jsp?id=1357514

M. Jeusfeld, L. Delcambre, and T.W. Ling (Eds.): ER 2011, LNCS 6998, pp. 429–439, 2011.
© Springer-Verlag Berlin Heidelberg 2011

Strategic Models for Business Intelligence

Lei Jiang1, Daniele Barone1, Daniel Amyot2, and John Mylopoulos1,3

1 Department of Computer Science, University of Toronto, Canada
2 EECS, University of Ottawa, Canada

3 DISI, University of Trento, Italy
{leijiang,barone}@cs.toronto.edu, damyot@eecs.uottawa.ca,

jm@cs.toronto.edu

Abstract. Business Intelligence (BI) promises a range of technologies for using
information to ensure compliance to strategic and tactical objectives, as well as
government laws and regulations. These technologies can be used in
conjunction with conceptual models of business objectives, processes and
situations (aka business schemas) to drive strategic decision-making about
opportunities and threats. This paper focuses on three key concepts for strategic
business models – situation, influence and indicator – and how they are used, in
the context of goal modeling, to build and analyze business schemas based on
goal and probabilistic reasoning techniques.

Keywords: Business Intelligence, Goal, Situation, Indicator, Influence Diagram.

1 Introduction

Business Intelligence (BI) promises a range of technologies for using information
within organizations to ensure compliance to strategic and tactical objectives, as well
as government laws and regulations. As a research field, BI encompasses data
and knowledge management, modeling of processes and policies, data quality, data
privacy and security, data integration, data exchange, data cleaning, inconsistency
management, information retrieval, data mining, analytics, and decision support.

The past decade has seen unprecedented interest in BI technologies and services, and
a corresponding growth of the BI market. By now, most competitive organizations have
a significant investment in BI, much of it technology-related, based on software
tools and artifacts. But business people – be they executives, consultants, or analysts –
are in general agreement that what helps them the most is not new gadgets producing a
dizzying array of statistics. Instead, they are interested in having their business data
analyzed in their terms, which are strategic objectives, business models and strategies,
business processes, markets, trends and risks. This gap between the worlds of business
and data remains today the greatest barrier to the adoption of BI technologies, as well as
the greatest cost factor in their application to specific projects.

We propose to bridge this gap by extending the notion of conceptual schema to
include concepts beyond entities and relationships. In particular, we are working on
the design of a business modeling language (the Business Intelligence Model, or
simply BIM) [25] as a business-level counterpart to the Entity-Relationship Model, so

430 L. Jiang et al.

that strategic objectives, business processes, risks and trends can all be represented
in a business schema, for purposes of analysis and monitoring. Users can query a
business schema, much like conventional database schemas, but in terms of business
terms. Such queries are to be translated through schema mappings into queries
defined over databases and data warehouses, and the answers are to be translated back
into business-level concepts [26].

This paper focuses on three key concepts in BIM, those of situation, influence and
indicator, and how they are used, in the context of goal modeling, to build and
analyze business schemas based on goal and probabilistic reasoning techniques. The
rest of the paper is organized as follows. Section 2 introduces BIM concepts and our
view on instantiating a business schema. Sections 3 present various ways to analyze a
business schema, using a running example built from real-world analysis reports. We
discuss related work in Section 4, and conclude and point out to future work in
Section 5.

2 Strategic Business Models

This section introduces the three key concepts (situation, influence and indicator) for
building business schemas. In this paper, we present these concepts informally with
intuitive examples. These concepts have been formalized using the DOLCE+ [1]
upper ontology. We refer interested readers to [25] for a detailed discussion on this
formalization.

The concepts to be introduced in this section are intended to be used in the context
of goal modeling. Given its wide popularity in Requirements Engineering, we only
give a brief introduction to the notion of goal here. A goal represents an objective of a
business, defined during strategic planning, and pursued during subsequent business
operation. The basic characteristics of a goal include: (i) it may be (AND/OR) refined
into subgoals so that its satisfaction depends on that of its subgoals; (ii) a goal may be
satisfied in more than one way if it or its subgoals are OR-refined, in which case a
choice needs to be made among alternatives; and (iii) a goal’s satisfaction may be
affected by that of goals other than its subgoals. Goal analysis produces a goal model
consisting of an AND/OR refinement tree with additional positive/negative
contributions. The satisfaction of a goal can be inferred from that of others in the
same goal model using a label propagation algorithm [7-8].

In addition to goals, we also model domain assumptions that assume properties of
the domain in pursuing satisfaction of a goal. For example, the goal “to schedule
meeting” may be AND-refined into subgoals “to collect timetables” and “to choose
timeslots” assuming “there are meeting rooms available”. A domain assumption may,
in fact, be false (broken), in which case goal fulfillment is not possible.

2.1 Situation

During strategic planning, SWOT (Strengths (internal, favorable), Weaknesses
(internal, unfavorable), Opportunities (external, favorable), and Threats (external,
unfavorable)) analysis [2] is often used to identify internal and external factors that
may influence the fulfillment, favorable or unfavorable, of strategic goals. We

 Strategic Models for Business Intelligence 431

propose to model these in terms of the notion of situation. Intuitively, a situation
defines a partial state of the world in terms of things that exist in that state, their
properties, and interrelations among them [22]. For example, the partnership between
a company and a research network would be an external, unfavorable situation for the
company’s competitor with respect to maintaining its technological superiority.

Since we are interested in strategic business models, we focus on organizational
situations. The organization in question is the viewpoint of the situation. Note that the
same situation may be favorable from one viewpoint, but unfavorable from others. In
particular, we say an organizational situation is internal (analogously external) to its
viewpoint if all (analogously none of) its components are related to the viewpoint
through parthood relations.

2.2 Influence

To reason about goal fulfillment under the influence of situations, we extend the
contribution relation from goals to situations. Traditionally in goal modeling, one goal
is said to contribute to the other one if its satisfaction/denial implies (partial)
satisfaction/denial of the other. Such relations also hold between situations and goals.
We call this type logical influence.

To support probabilistic reasoning, we also support probabilistic influences among
situations, goals and domain assumptions. In this case, situations and domain
assumptions are represented by random variables whose values are their possible
states; each state is assigned a probability of that situation or domain assumption
being. In Section 3.4, we show how this type of influence is used to support decision-
theoretic analysis.

Following [20], a logical influence is characterized along the following
dimensions: (i) direction: a positive (resp. negative) influence exists from a situation
to a goal if it (when being true) increases (resp. decreases) the chance of the goal
being satisfied; and (ii) degree: an influence is full if it is a casual relation (i.e., 100%
chance); otherwise, it is partial. We say an organizational situation is favorable for an
organization for achieving a goal if has a positive logical influence on that goal; It is
unfavorable if it has a negative one.

2.3 Indicator

A successful business depends both on its initial strategic planning and subsequent
business operations. Performance measures play an important role in helping
businesses align their daily activities with the strategic objectives. Generally
speaking, performance measures quantify various aspects of business activities,
including their input, execution and output, for monitoring, control and improvement
purposes [21]. We model performance measures in terms of indicators.

Performance measures employed in a business environment often form an
aggregation hierarchy -- a higher-level measure is defined in terms of lower-level
ones. Top level measures (e.g., satisfaction of service, quality of care) usually give a
clear picture whether a business is moving towards fulfilling its strategic objectives,
while leaf level measures (e.g., patient length of stay, emergency room wait time) are
usually tied to specific actions and responsibilities.

432 L. Jiang et al.

More specifically, we say an indicator is composite if it refers to other indicators in
its definition; otherwise, it is an atomic indicator. An atomic indicator that inheres
directly to a single individual. For example, “admission wait time” is a temporal
indicator inheres to the “admission service” whose participants include a particular
person and a hospital. A composite indicator may inhere indirectly to (possibly more
than) one individual through its parts. For example, “wait time” is a composite
indicator that defined in terms of “admission wait time”, “test wait time”, “procedure
wait time”, etc., which inhere to different hospital services.

2.4 Instantiation of Business Schemas

As with any other modeling framework, it is necessary to distinguish between
instances (particulars) of a concept (goal, situation, etc.) in the application domain and
the concept itself (universal). For example, “to reduce wait time” is a goal class
(universal) that describes many instances to reduce wait time pursued by particular
hospitals at specific times. Our models consist of concepts and we call such models
business schemas. A long term objective of our work is to connect a business schema
to data sources that store (partial) information about its instances, and use it as an
interface to query the underlying data.

A business schema is instantiated by instantiating its elements. A goal instance is
created whenever an organization decides to pursue it (i.e., to make it at least partially
satisfied). Of course, an organization may pursue a goal many times (e.g., “to sell a
type of a product”). A goal instance is initiated upon creation, and maybe be satisfied,
denied or abandoned. It may also be inactive (suspended) if it is not being pursued
currently. Finally, an indicator instance is created whenever a value is obtained
(measured / calculated) for that indicator at a particular time point. Thus, indicator
instances represent concrete measurements. Notice that by definition, an indicator
instance must inhere to some other entity (e.g., a goal instance). The inherence link
therefore represents a measurement relation.

3 Reasoning with Business Schemas

A business schema, once constructed, can be analyzed in various ways. Strategic
planning [6] usually starts with the definition of an organization's mission, followed
by the specification of the goals toward the mission and the strategies to achieve these
goals. For a given goal, it is not uncommon that alternative strategies exist. Therefore,
analyzing those alternative strategies is an important element in any strategic planning
process. In this section, we discuss a number of ways to analyze alternative strategies,
using goal reasoning techniques [5]. In addition, during strategic planning, a strategy
is normally produced by making decisions at a number of decision points. At each
point, one decision option is chosen from a pool of available ones. We show how this
decision-making process can be supported using probabilistic decision analysis.

3.1 Running Example

We use a running example (see Figure 1) to help elaborate different reasoning
techniques. This example is built from real-world analysis reports, published by

 Strategic Models for Business Intelligence 433

DataMonitor 1 , a company that specializes in industry analysis for a number of
industry sectors.

When building strategic business models, all modeling concepts are relative to
(business) goals. Accordingly, we build a business schema by starting with a goal
modeling phase, based on the Tropos methodology [20]. In our example, we have two
root goals: “to main revenue growth” and “to reduce risks”. To achieve the first one,
we need achieve both “to increase sales” and “to maintain competitive advantage”.
Lateral influences are also identified among sub-goals. For example, one alternative
way to maintain competitive advantage is to “acquire technology through
partnership”. This alternative helps to reduce financial risk, but increases the
dependence on external partners. A goal can be decomposed into both sub-goals and
domain assumptions. For example, in addition to achieving the goals “to increase
sales volume” and “to main gross margin”, the domain assumption “high demand”
(for our products/services) need to be true, in order fulfill the goal “to increase sales”
(in dollar amount).

After goal modeling, we identify the internal and external factors that may
influence fulfillment of the goals identified previously. Specifically, we start with
domain assumptions in the schema, and ask the question: what observable evidence
could potentially support or challenge these assumptions. In our example, “high R&D
expenditure” (strength) positively contributes to the domain assumption “strong R&D
capability”, while “healthy balance sheet” (strength) suggests high degree of certainty
that there are “sufficient funds” available to make strategic investment. Situations may
also influence goals directly. For example, the fact “increased competition” (threat)
may hinder the fulfillment of the goal “to open new sales channels”. Influences may
also occur among situations. For example, “low cost financing” (opportunity), caused
by “economic slowdown”, positively contributes to “high R&D expenditure” and
“healthy balance sheet”.

Modeling indicator (especially composite ones) is a highly domain-specific
process, and is dealt with in a companion paper [23]. In our example, we assume that
a set of indicators is already in place (which is true in practice in many organizations);
so the task of the modeler is to associate them with the elements in the schema. In our
example, some indicators are associated with the goals under “to increase sales”.
Note that these indicators are composite indicators, and may be further decomposed in
practice. For example, “sales volume” may be broken by the types of
products/services, fiscal periods, or geographical locations. Also notice that although
not shown, “total sales” (in dollar amount) can be mathematically determined by
“sales volume” and “gross margin”, entailing a hierarchical relation among these
indicators.

3.2 Exploration of Possible Strategies

Goal-Oriented Requirements Engineering [19] has long studied the problem of
systematic exploration of alternative plans for achieving specified goals. Given a goal
model and an assignment of desired satisfaction values (either qualitative or
quantitative) to its root goals, a top-down/backward reasoning algorithm [7] find all

1 http://www.datamonitor.com/

434 L. Jiang et al.

possible assignments (or strategies) to others goals that leads to the assigned
satisfaction values of those root goals.

In our example, two root goals are “to maintain revenue growth” and “to reduce
risks”. Let us assume the input assignment is fully satisfied (FS) for the first goal and
partially satisfied (PS) for the second one. A top-down goal reasoning (supported by
tools such as the Goal Reasoning Tool2) generates all possible strategies that make
the input assignment true, including the one depicted in Figure 1. The root goals with
input assignment are shaded; other goals in the model are annotated with fully
satisfied (FS), partially satisfied (PS), partially denied (PD) or fully denied (FD). In
this strategy, for example, goal “to establish strategic partnership” is preferred to “to
invest in new technologies”, while the goal “to offer promotion” is preferred to “to
open new sales channels”. Also note that, although not shown in Figure 1, a goal
being satisfied means that its processes are carried out successfully and its domain
assumptions are true.

Fig. 1. Top-down reasoning

3.3 Evaluation of Specific Strategies

In some cases, a manager is not interested in all possible strategies for fulfilling given
goals. Rather, she has specific strategies and she wants to compare them relative to
given root goals (in order to eventually select one). A bottom-up/forward reasoning

2 http://www.troposproject.org/tools/grtool/

 Strategic Models for Business Intelligence 435

algorithm [8] starts with an assignment of satisfaction values to some goals in a goal
model. Such an assignment corresponds to a particular strategy to fulfill root goals. It
then forward propagates these input values to the root goals, according to a set of pre-
defined propagation rules.

In our example, evaluation of a specific strategy amounts to answering the
question: if we pursue it, will the two root goals “to maintain revenue growth” and “to
reduce risks” be satisfied at desire levels? Consider the input assignment depicted in
Figure 2, where we choose “to maintain competitive advantage” by partially fulfilling
the goal “to develop new technology in-house”; we also assume that we fully satisfy
the goal “to increase sales”. As before, goals with input assignment are shaded. A
bottom-up reasoning (supported by tools such as jUCMNav tool3) propagates these
input labels up the goal hierarchy all the way to the two root goals. As we can observe
from the result (also shown in Figure 2), this strategy leads to “to maintain revenue
growth” being partially satisfied, while “to reduce risks” being partially denied.

To open new
sales channels

To increase
sales

Increased
competition

[T]

To acquire
technology through

acquisition

To develop new
technology in-house

To reduce
risks

To reduce
patent

infringement
lawsuit risk

To reduce
external

dependence

To establish
strategic

partnership

-

To reduce
financial risk

+
+

To invest in new
technologies

-

To maintain
competitive
advantage

+

+

Acquire a
competitor

Develop a
technology

+

++

Sufficient
funds

Strong R & D
capability

High
demand

To maintain
revenue growth

To increase
sales volume

To maintain
gross margin

-

To offer
promotions

-

+

To reduce
costs

-

-

-

Total sales

Sales
volume

Gross
margin

-

Economic
Slowdown

[T]

Healthy
balance sheet

[S]

High R&D
expenditure

[S]
d Low cost

financing
[O]

++

+

+

+

-

++

Average
Unit
price

Fig. 2. Bottom-up goal reasoning

3.4 Probabilistic Evaluation of Strategies

Decision analysis techniques rest on an empirically verified assumption that humans
are capable of framing a decision problem, listing possible decision options, and
quantifying uncertainty, but are rather weak in combining information into a rational

3 http://jucmnav.softwareengineering.ca/jucmnav/

436 L. Jiang et al.

decision. An influence diagram [4] is decision model that supports decision-making
by computing the expected utility value of each decision option; the option with the
highest utility value is optimal and should be chosen by the decision maker.

To carry out decision analysis, a goal model needs to be projected into an influence
diagram. Such projections are automated using a set of translation rules. We omit
their details in this paper.

In our example, we focus on a subset of the goal model, namely the one rooted at
the goal “to increase sales”, as shown in Figure 3. The nodes directly involved in the
decision analysis (supported by tools such as GeNIe4) is shaded. In particular, to
pursue the goal “to increase sales volume”, two decision options are available
(according to the OR decomposition in the original goal model): either by pursuing
the goal “to open new sales channels” or “to offer promotions”. Notice that the goal
“to maintain gross margin” and the domain assumption “high demand” are also
involved here through influence links. A decision analysis amounts to answer the
question: which of these two sub-goals should be pursued in order to maximize
expected gain for the indicators “sales volume” and “gross margin” (which could then
be combined into “total sales”).

CPT High Demand
Economic
slowdown

True Partially
True

False

High 0.2 0.3 0.4
Median 0.2 0.3 0.4
Low 0.6 0.4 0.2

Utility Function for “Sales Volume”

Decision Option Utility
to open new sales 11100
to offer promotion 3700

Fig. 3. Decision analysis

To reason with an influence diagram, we need to estimate conditional probabilities
of various events, such as high demand for a certain product given economic
slowdown, or high sales volume given we open new sales channel vs. we offer
promotion; these events directly or directly affect the outcome of a decision. These

4 http://genie.sis.pitt.edu/

 Strategic Models for Business Intelligence 437

probabilities are represented by a conditional probability tables (CPTs) for each event;
the one for the event “high demand” given its parent event “economic slowdown” is
shown the Figure 3. The resulting utility function for “sales volume” is also shown
here. As we can see, the option “to open new sales channels” is preferable over “to
offer promotions” as far as “sales volume” is concerned.

4 Related Work

The use of business-level concepts, such as business objects, rules and processes, has
been researched extensively for more than a decade [9-11]. These efforts have more
recently resulted in standards, such as the Business Process Modeling Notation
(BPMN) [12]. These proposals focus on modeling business objects and processes,
with little attention paid to business objectives. One exception is the Business
Motivation Model (BMM) [8], which proposes an extensive vocabulary for modeling
business objectives (among other things). What differentiate our work from BMM is
that we give formal semantics to our modeling concepts by aligning them to the upper
ontology DOLCE+, while concepts in BMM are only defined informally. For
example, BMM includes several intentional concepts, such as vision, goal and
objective; in our case, all these are modeled as goals.

Modeling of goals has a long tradition within Requirements Engineering [14, 16-
18]. However, these models lack primitive constructs for situation, influence and
indicator which are important to Business Intelligence applications. A recent proposal
has extended URN [18] to include indicators [15], but our concept of indicator is
more general than that defined in URN: it covers both atomic and composite
indicators, and pays special attention to the definition of composite indicators and the
construction of indicator hierarchies.

Modeling of situations, especially unfavorable ones (e.g., weaknesses or threats),
has received much attention in Security Engineering under the topic of vulnerability.
For example, [24] proposed a vulnerability-centric modeling ontology. More
specifically, it identified the basic concepts for modeling and analyzing
vulnerabilities, and proposed criteria to compare and evaluate security frameworks
based on vulnerabilities. Inspired by SWOT analysis, our proposal supports a more
comprehensive classification of situations, covering both favorable and unfavorable
ones, also internal or external to an organization.

5 Conclusion

As a first step towards bridging the gap between the worlds of business and data in
the adoption of BI technologies, we are working on the design of a business modeling
language as a business-level counterpart to the Entity-Relationship Model. In this
paper, we have introduced three key concepts for building business schemas, which
are intended to capture the internal and external factors that affect the strategic goals
of an organization, as well as the performance measures on their fulfillment. We have
shown how they are used, in the context of goal modeling, to build and analyze
business schemas based using existing formal analysis techniques supported by off-
the-shelf tools.

438 L. Jiang et al.

As for our future work, on one direction, we are planning to carry out a real-world
case study to evaluate the proposed concepts. The plan is to use our concepts during
the requirements elicitation and analysis phase in a Business Intelligence project of a
local Toronto hospital, in parallel to its actual development effort. Our objective is to
evaluate our proposal by modeling and analyzing the project requirements in terms of
the concepts and tools we have presented here. On another direction, we intend to
develop tools to connect business schema to underlying data sources. Part of this
work is being carried within the context of the Strategic Network for Business
Intelligence5.

References

1. Masolo, C., Borgo, S., Gangemi, A., Guarino, N., Oltramari, A.: Ontology Library (ver.
1.0, 31-12-2003). WonderWeb Deliverable D18. Laboratory for Applied Ontology (2003)

2. Dealtry, T.R.: Dynamic SWOT Analysis: Developer’s Guide. Intellectual Partner (1992)
3. Hellerstein, J.L., Diao, Y., Parekh, S., Tilbury, D.M.: Feedback Control of Computing

Systems. John Wiley & Sons, Chichester (2004)
4. Howard, R.A., Matheson, J.E.: Influence diagrams. Strategic Decision Group, Menlo Park

(1984)
5. Giorgini, P., Mylopoulos, J., Sebastiani, R.: Goal-Oriented Requirements Analysis and

Reasoning in the TROPOS Methodology. Engineering Application of Artificial
Intelligence 18(2) (2005)

6. Uchil, A.: Goals-Based Strategic Planning: A No-Nonsense Practical Guide to Strategy.
Outskirts Press (2009)

7. Sebastiani, R., Giorgini, P., Mylopoulos, J.: Simple and Minimum-Cost Satisfiability for
Goal Models. In: Persson, A., Stirna, J. (eds.) CAiSE 2004. LNCS, vol. 3084, pp. 20–35.
Springer, Heidelberg (2004)

8. Giorgini, P., Nicchiarelli, E., Mylopoulos, J., Sebastiani, R.: Formal Reasoning Techniques
for Goal Models. Journal of Data Semantics (October 1, 2003)

9. Sutherland, J.: Business Objects in Corporate Information Systems. ACM Comput.
Surv. 27(2), 274–276 (1995)

10. Loucopoulos, P., Katsouli, E.: Modelling Business Rules in an Office Environment.
SIGOIS Bull. 13(2), 28–37 (1992)

11. Jablonski, S.: On the Complementarily of Workflow Management and Business Process
Modeling. SIGOIS Bull. 16(1), 33–38 (1995)

12. Object Management Group: Business Process Modeling Notation (BPMN). (January 2009)
version 1.2., http://www.omg.org/spec/BPMN/1.2/

13. Gangemi, A., Mika, P.: Understanding the Semantic Web through Descriptions and
Situations. In: Chung, S., Schmidt, D.C. (eds.) CoopIS 2003, DOA 2003, and ODBASE
2003. LNCS, vol. 2888, pp. 689–706. Springer, Heidelberg (2003)

14. van Lamsweerde, A.: Requirements Engineering: From System Goals to UML Models to
Software Specifications. John Wiley & Sons, Chichester (2009)

15. Pourshahid, A., Amyot, D., Peyton, L., Ghanavati, S., Chen, P., Weiss, M., Forster, A.J.:
Business Process Management with the User Requirements Notation. Electronic
Commerce Research 9(4), 269–316 (2009)

5 http://bin.cs.toronto.edu/home/index.php

 Strategic Models for Business Intelligence 439

16. Dardenne, A., van Lamsweerde, A., Fickas, S.: Goal-directed requirements acquisition.
Sci. Comput. Program. 20(1-2), 3–50 (1993)

17. Yu, E.: Towards Modelling and Reasoning Support For Early-phase Requirements
Engineering. In: Proc. 3rd IEEE Int. Symp. on Requirements Engineering (1997)

18. International Telecommunication Union. Recommendation Z.151: User Requirements
Notation (URN) - Language definition, http://www.itu.int/rec/TREC-
Z.151/en

19. Giorgini, P., Mylopoulos, J., Sebastiani, R.: Goal-oriented requirements analysis and
reasoning in the TROPOS methodology. Eng. Apps. of Artificial Intelligence 18(2) (2005)

20. Bresciani, P., Perini, A., Giorgini, P., Giunchiglia, F., Mylopoulos, J.: TROPOS: An agent-
oriented software development methodology. Autonomous Agents and Multi-Agent
Systems 8(3), 203–236 (2004)

21. Parmenter, D.: Key Performance Indicators: Developing, Implementing, and Using
Winning KPIs, 2nd edn. John Wiley and Sons, Chichester (2009)

22. Wetzel, T.: States of Affairs. The Stanford Encyclopedia of Philosophy (Fall 2008
Edition), http://plato.stanford.edu/archives/fall2008/entries/
states-of-affairs/

23. Barone, D., Jiang, L., Amyot, D., Mylopoulos, J.: Composite Indicators for Business
Intelligence. In: 30th Int. Conf. on Conceptual Modeling (ER), Springer, Heidelberg (to
appear)

24. Elahi, G., Yu, E., Zannone, N.: A Vulnerability-Centric Requirements Engineering
Framework. Requirements Engineering Journal (2009)

25. Barone, D., Mylopoulos, J., Jiang, L., Amyot, D.: Business Intelligence Model, version
2.0. Technical Report CSRG-607. University of Toronto (March 2010),
ftp://ftp.cs.toronto.edu/csri-technicalreports/INDEX.html

26. Barone, D., Peyton, L., Rizzolo, F., Amyot, D., Mylopoulos, J.: Towards Model-Based
Support for Managing Organizational Transformation. In: Babin, G., Stanoevska-Slabeva,
K., Kropf, P. (eds.) MCETECH 2011. Lecture Notes in Business Information Processing,
vol. 78, pp. 17–31. Springer, Heidelberg (2011)

Evolving Requirements in Socio-Technical Systems:
Concepts and Practice

Anna Perini, Nauman Qureshi, Luca Sabatucci�, Alberto Siena, and Angelo Susi

Fondazione Bruno Kessler - IRST, Center for Information Technology (CIT)
Via Sommarive, 18, 38050 Trento, Italy

{perini,qureshi,sabatucci,siena,susi}@fbk.eu

Abstract. Changes in requirements are inevitable in the context of socio-
technical systems (STS) that involve human organizations with their rules, as well
as individuals and software systems. In these complex systems need for changes
may emerge once software components come into operation, due to undesirable
behavior of the STS, or due to variations in organization rules, laws, resources
and STS’s components themselves. This leads to a problem of continuous analy-
sis of evolving requirements in a traceable way. Our work is motivated by expe-
rience in a real project in the health-care domain, and in analysis practices based
on participatory design methods (scenarios and personas) and on techniques for
law-compliant requirements analysis. We revisit this experience and generalize it
into a novel framework that provides concepts and practices to support an evolu-
tionary and “participatory” process for requirements evolution in STS.

Keywords: Evolving Requirements, Participatory Design, Law Compliance.

1 Introduction

The increasing use of software systems in our daily life results into stronger and stronger
integration of human and systems tasks, leading to form the so called socio-technical
systems (hereafter, STS). Such systems incorporate different components, such as ap-
plication domain’s stakeholders (humans and organization), software system and re-
sources, each playing its own roles to achieve common objectives. For instance, in the
health-care domain, a Social Residence STS is defined by the patients and their relatives,
doctors, nurses and software systems, each playing pre-defined roles and collaborating
to support patients lives.

In STS, requirements do change overtime. Such changes may be caused by a variety
of factors, which may be broadly classified as changes in: the operational environment
(e.g. new or alternative technology or new usage conditions); in the organization within
which the system is used (e.g. new organizational structure and procedures, new reg-
ulations); and in user’s needs (e.g. new functional feature, new class of users as well
as new users’ preferences or way to do things). This leads to the problem of manag-
ing changes in requirements that emerge once the STS is in operation, and to the more
general problem of software evolution.

� L. Sabatucci has been partially supported by the ACube project founded by the Autonomous
Province of Trento, Italy.

M. Jeusfeld, L. Delcambre, and T.W. Ling (Eds.): ER 2011, LNCS 6998, pp. 440–447, 2011.
c© Springer-Verlag Berlin Heidelberg 2011

Evolving Requirements in Socio-Technical Systems: Concepts and Practice 441

A rich research agenda for requirements evolution has been recently proposed [2]. It
includes the need of (i) defining infrastructures for requirements evolution that accom-
modate other kinds of artifacts beside code; (ii) revising taxonomies for root causes for
change, taking into account new challenges posed by today socio-technical systems;
(iii) defining evolution mechanisms, both manual and automated; (iv) defining new vi-
able frameworks at support of design for evolution and (v) evolutionary design.

Our work builds around the points (i), (iii) — (v), and is motivated by experience
in a real project in the health-care domain, called Ambient Aware Assistance - ACube1

and by experience in analysis practice based on participatory design methods for the
active involvement of stakeholders in design decisions [1,6] and on techniques for the
analysis of law-compliant requirements [10]. Needs for requirements change and sys-
tem evolution in ACube emerged when focusing on the trade-off between having the
STS behaving in a law-compliant way and satisfying the ultimate goal of the Social
Residence STS itself, that is to create an environment which is more responsive and
appropriate to their inhabitants’ and users’ cultural, emotional, spiritual and practical
needs. We investigate methods that can be used to support the analysis of these types of
requirements changes and ultimately on system evolution, with the involvement of key
stakeholders.

In this paper, we revisit this experience and generalize it into a novel framework, we
call it CAFfE (Concepts and Analysis Framework for Evolving requirements), which
provides concepts and analysis techniques to support an evolutionary and “participa-
tory” process for requirements evolution in STS. Novelty in our framework stems from
the fact that: (i) we adopt a participatory design approach as process backbone, to enable
the participation of stakeholders in design activities [1,6,5], including the software sys-
tems (within the STS). Participatory design provides peculiar techniques for engaging
participants, such as scenarios and of “persona” (sort of fictional user) or ethnographic
study techniques; (ii) we allow for the integration of specialized techniques, which are
suitable for the analysis of particular concerns, as for instance law-compliance; and (iii)
we aim at ensuring traceability across heterogeneous artifacts.

The rest of the paper is organized as follows: in Section 2, we present the context
of our work. In section 3, we detail our conceptual analysis framework for evolving
requirements. In section 4, we instantiate this framework using participatory design
methods (e.g. focus group workshops) and the law-compliant requirements modeling
framework Nomos [10]. Related work is discussed in section 5. Conclusion and future
work are outlined in section 6.

2 Context

Ambient Aware Assistance: ACube is an ambient aware middleware, which is
integrated into a Social Residence STS. It provides monitoring and event detection capa-
bilities, which support the caregivers activities in the physical environment of
the social residence, where patients with cognitive problems (some more severe than
others, namely Alzheimer) live, assisted by caregivers.

1 See http://acube.fbk.eu/fordetailsabouttheproject.

http://acube.fbk.eu/ for details about the project.

442 A. Perini et al.

The Social Residence STS is characterized by the strong integration of social and
technological dimensions. The social dimensions encompass the organizational setting
with rules and humans, each one playing a role (patients, caregivers, nurses, doctors
and managers). The technological dimension concerns software and hardware systems
of the ACube middleware, e.g. sensors, video cameras, automatic doors. A first version
of ACube system (ACube1 hereafter) is currently in operation.

Emerging Requirements: there are particular situations where, in spite of ACube1,
human efforts to perform activities and relative time consumption are still relevant. For
example, in case of emergencies, where a patient requires an immediate medication
and caregivers or nurses are not authorized unless the doctor is present, or, in cases
of monitoring, when crucial issues related to law compliance (e.g. privacy) can arise.
More generally, undesirable behaviors of the Social Residence STS may occur, leading
to the emergence of new requirements that call for an evolution of the technological
components (ACube1), or of the whole STS.

3 Towards a Conceptual and Analysis Framework for Evolving
Requirements (CAFfE)

Elaborating our experience in the ACube project, we identified a set of concepts, anal-
ysis methods and process steps that all together define a general framework for require-
ments evolution in STS, called CAFfE. CAFfE aims at supporting the analysis of the
problem and of the solution space for the purpose of enabling requirements evolution.
When need for requirements change emerges, the system analysts are involved for un-
derstanding causes of changes (by analyzing the problem space) and to identify possible
evolutions of system requirements and associated solutions (within the solution space),
through a “participatory” process that involves all the STS elements and the engineers
who developed the technological elements.

Fig. 1. Process for Evolution and Wheel of Evolution

Evolving Requirements in Socio-Technical Systems: Concepts and Practice 443

Being a fragment of a real world, STS are characterized by many dimensions which
need to be abstracted into a lower number along with analysis may be feasible. For
instance in the case of our Social Residence STS, we consider three dimensions (or
perspectives), namely end-users perspective, which includes goals and preferences; the
technological (hardware/software) perspective, which can be characterized along the
objectives i.e. the reason they have been designed for or the features these devices can
control, and the legal perspective that governs the overall STS e.g. norms, policies
or regulations that determines the roles and procedures in an STS. This abstraction
provides the reference dimensions with respect to the problem space and the solution
spaces can be defined. The solution space will include instances of artifacts produced
exploiting specific analysis techniques, such as requirements models and scenarios.

As depicted in Fig. 1, this process is shaped in consecutive iterations in which ex-
ploring and filtering phases alternate until converging towards an ultimate solution
spaces analysis. The process is composed as a sequence of iterations in which we dis-
tinguish two different phases: exploration and filtering. During the exploration the ana-
lysts study the “problem space” opening the analysis to all details including significant
and less significant features of the domain. During the filtering phase, the analysis is
restricted by selecting only the significant aspects for leading the following design ses-
sions, by returning a restricted space as output in which some research directions are
drafted. The “wheel of evolution” (right part of Fig. 1) guides the analysis of the prob-
lem and solution spaces. It is composed of “why” and “how” questions whose answers
address real domain instances, in the case of problem space analysis, and respectively
instances of the solution space.

Main concepts of the CAFfE framework are grounded on questions (why, when,
who, what, how, where) from the “wheel of evolution”. Those concepts are used to
define a set of guidelines, recommendations and activities for generating the evolution
process. The participatory design techniques have a relevant role in the process: domain
experts own the (often implicit) knowledge to be considered in the study. Their involve-
ment is fundamental in the exploration phase for defining boundaries of the space under
analysis. The identification of relevant elements, during the “filtering”, involves the par-
ticipation of domain experts, who validate the value of the selected elements e.g. new
scenarios. The following iteration starts on a smaller problem space, with respect to the
previous one, thus ensuring a convergence driven by the validation of the participat-
ing stakeholders. Below we summarize activities that are typically performed in these
phases:

Exploration. Observing: aims at identifying the need for the evolution. Changes are
detected as chain of events that the STS monitors during its execution at runtime by
logging the information. This provides a proof of external changes that helps the an-
alyst in exploring the context, in which the evolution is necessary by addressing the
(WHEN) question along the (WHO) question.
Analysis and Envisioning: relates the reasoning over the monitored data i.e. reading
through the logs maintained by the STS. Decision criteria help in addressing the (WHAT)
and (WHY) questions. Addressing such questions provides rationale to evolve the ex-
isting requirements. The activities related to the decision are supported by taxonomy of

444 A. Perini et al.

changes, such as those described in [4],which proposes four main contexts of changes,
namely environment, requirements, viewpoints and design.
Filtering. Assessing: is a direct consequence of the decision analysis conducted in pre-
vious activity. It contains a set of activities and guidelines, from which it is possible to
restrict and select the candidate solution by addressing the (HOW) question. Activities
may regard different threads of specific analysis to evolve the overall STS.
Participatory Filtering and Validation: leads to decisions for selecting candidate arti-
facts to be changed/evolved. The target artifacts that are required to be evolved in order
to satisfy the required external changes enable to answer (WHERE) questions. The sit-
uational context for the changes are closely linked with the artifacts to be affected.
During this activity, the main concern is to keep the traceability among the key artifacts
that were produced before the system was introduced in an operational environment.
Revising/Adapting: leads to mechanisms that enable the STS to alter its behavior during
its execution.

4 Instantiating the Framework

The evolving requirements of ACube1 system to ACube2 were discussed with project
managers, requirement engineers, directors of social residences, lawyers and develop-
ers. Three workshops took place for envisioning, assessing, filtering and validating the
results. In Table 2, we summarize the application of the CAFfE framework along four
aspects: Process phases, Process activity, Who is involved and Process artifacts.

Observing. The need for evolution arises from real situations in the environment. These
were partly observed by the stakeholders and analysts and by the running system that
monitors deviations between expected behavior and concrete flows of events, e.g., in-
terventions made by nurses out of the control of the system, thus dis-aligned with the
designed course of actions.

Analysis and Envisioning. Episodic knowledge (collected as logs) about the critical
situations mentioned in section 2 was collected and organized before the meetings. To
motivate the discussion during the workshop this knowledge was presented as scenar-
ios/personas and models depicting the system as it is. The scenario/persona technique
is used in interaction design to engage domain stakeholders during analysis [1]. Per-
sonas are concrete representations of fictional users, with their names, characteristics,
aptitudes, and motivations. A scenario with personas may be easily presented to non
technical people. Nomos [10] is a goal-oriented approach that provides the capability
to model law prescriptions and the link between intentional elements and legal ele-
ments models to analyze their impact with respect to law compliance (e.g. regulations
and norms). During the first exploratory workshop, contributors discussed shortcom-
ing of the existing system. Scenarios highlights situation in which the system could be
evolved. Participation of personnel of social residence was critical, such as the director,
who prospected legal issues of evolution. For instance, the authorization management
for health care interventions (what, who, why) were identified as cause of change. In
this situation, the patient depends on the nurse to receive life-critical assistance. The
nurse is able to provide the assistance, but she has to comply with the law, which pro-
tects the rights of the patient: the nurse has to be legally entitled to decide about the right

Evolving Requirements in Socio-Technical Systems: Concepts and Practice 445

Phases Process Activity Who is Involved Process Artifact Used
E

x
p

lo
ra

ti
o

n

Observing

(when)

The system monitors changes with respect to designed

courses of actions (as shown in initial Nomos Models [7])

For instance, real situation in the environment i.e.

interventions made by nurses out of the control of the

system, so, out of the designed course of actions (when)

ACube1 Tracking

Subsystem

System Log reports

Nomos Models

Analysis &

Envisioning

(what, who,

why)

Early analysis of changes in the domain envisioning of

the causes of change are detected by the system. Later

during the exploratory workshop individual analysis

sessions (user, technology and legal analysis); for

instance the authorization management for health care

interventions (what, who, why) were identified as cause of

change. New envisioned personas were identified.

Stakeholders (Director of

the Social Residence,

Lawyer)

Designers (Project

Manager, Requirements

engineer, Software

architect)

Personas & Scenarios

(describing the functionalities

of ACube1)

Nomos Models - to analyze

the impact of the changes on

the ACube1 models

F
il

te
ri

n
g

Assessing

(how, where)

In response to the changes, among several candidate

alternatives for ACube1 evolution. Scenarios related to

authorization management were assessed during

second workshop [7] (How and where)

Stakeholders (Director of

the Social Residence,

Lawyer)

Designers (Project

Manager, Requirements

engineer, Software

architect)

Personas & Scenarios

(describing the functionalities

of ACube2)

Nomos Models - to analyze

the impact of the changes on

the ACube2 models

Participatory

Filtering and

Validation

(how)

Possible alternatives were discussed to understand the

impact on the current system of the chosen solutions via

Nomos models informal analysis techniques; Personas

and Scenarios related to authorization management

were filtered. Solutions for authorization management

during the third workshop. Early validation was obtained

during this session.

Stakeholders (Director of

the Social Residence,

Lawyer)

Designers (Project

Manager, Requirements

engineer, Software

architect)

Personas & Scenarios

(describing the functionalities

of ACube2)

Nomos Models - to analyze

the impact of the changes on

the ACube2models

Revising/

Adapting

(how)

Iterative revision of the requirements models via Nomos

modeling. By incorporating new persona and scenarios.

Designers (Project

Manager, Requirements

engineer, Software

architect)

Evovled Nomos Models

Acube 2 Tracking Subsystem

(Role management sub-

system)

Fig. 2. Activity, artifacts and responsible stakeholder, in the process of requirements evolution
between two system versions: from ACube1 to ACube2. They are detailed in [7].

assistance, or she must receive a proper authorization from a doctor. This is represented
in the Nomos model by a “realization relationship” between the law Authorization to in-
tervene and the goal Have Authorization . Consequently, the nurse depends on the doctor
to have the authorization, although she has the experience to provide the assistance au-
tonomously. This solution can fail if the stakeholders do not own the necessary rights.
For example, if the nurse is not able to obtain the authorization (the doctor could be not
reachable or is not possible for a doctor to give the authorization remotely), she fails in
providing assistance to the patient, and the patient could die.

As post-analysis of the meeting, new envisioned personas were identified and conse-
quently scenarios were evolved. For example, the manager Carla is one of the personas
identified when analyzing possible evolutions of the system. The identified scenarios
and personas describe hypothesis for evolving the existing ACube1 system and its short
comings.

Assessing. New personas/scenarios (i.e. those related to authorization management)
were assessed during second workshop (How and where). We discussed several candi-
date alternatives for ACube1 evolution, analyzing the legal impact, which can support
identifying possible cause of change in the environment and ultimately help in identi-
fying causes for system requirements evolution (we follow here the change taxonomy
proposed in [4]). This leads to produce a set of revised models, on which selection upon
critical review, will be operated during the “Filtering” phase. For example, a possible
change in the requirements set is identified, to incorporate an answer to the above men-
tioned law-compliance problem. In the revised Nomos model (see [7]), since the nurse’s
goal Have authorization can not be removed (since a law prescribes it). It is further

446 A. Perini et al.

refined into the sub-goal Have direct authorization , which enables nurse the responsi-
bility to obtain the authorization by the doctor, if present. Alternatively, if this goal fails,
the nurse can ask for authorization remotely by using the multimedia services. This way,
the achievement of the main goal is not inhibited, and assistance can be given.

Participatory Filtering and Validation. After the selected solutions are exploited via
Nomos models informal analysis techniques, a third workshop was organized. The se-
lected solution were presented via personas/scenarios and discussed to understand the
impact on the current domain, including a risk and cost/benefit analysis. The goal of
the workshop was to validate the analysts’ work. For instance some scenarios were fil-
tered during the meeting, whereas the Authorization management scenarios obtained a
general consensus.

Revising/Adapting. During this activity, Nomos models and the requirements were up-
dated to include new scenarios; new personas are transformed into new roles in the
system e.g. Manager.

5 Related Work

The importance of requirements evolution is investigated, both theoretically and em-
pirically, and a state-of-the art is provided in [3]. Evolution is considered inherent to
software production but it is recognized that requirements engineering methodologies
provide limited support to capture it. As a result, the need for Requirements Evolution
Engineering is outlined, which involves analysis, modeling and practice of requirements
evolution. Among the theoretical works, Zowghi and Offen [12] propose a model of re-
quirements evolution based on a combination of monotonic and nonmonotonic reason-
ing. Requirements evolve through a systematic process that starts from an incomplete
set of sentences and ends with a complete requirements model, validated through the
intervention of stakeholders.

Considering approaches that aim at defining practices for evolution, in [4] it is illus-
trated the EVE (EVolution Engineering) project that proposes a framework for evolution
based on a meta-model and an associated process model. The EVE meta-model includes
the concepts of change (4 types: environment, requirements, design, viewpoint), impact,
risk, violation, etc. The process aims at supporting the analysis of changes in either
user’s needs (requirements changes or R-Changes) or the environment (E-Changes).
In [11] two quantitative techniques are presented, for dealing with requirements change
in a maintenance environment based on data collected from one organization on several
product releases. Several types of analysis are described.

6 Conclusion and Future Work

We proposed the CAFfE framework that aims at facilitating the evolution of require-
ments, with the involvement of key stakeholders, including the software system itself.
Key elements of our framework are the adoption of participatory design techniques (e.g.
workshop, ’persona’), which can be integrated with specialized analysis techniques (e.g.
law-compliant requirements modeling). Another peculiarity of CAFfE is the evolution

Evolving Requirements in Socio-Technical Systems: Concepts and Practice 447

process that mixes exploratory phases, in which all possible alternatives are identified
and analyzed, with filtering phases in which a subset of the alternatives are selected.
This form of process helps managing evolving requirements and satisfying changing
needs in a continuous way by revising and adapting the designed solutions.

We illustrated the framework on a real case study in the health-care domain, i.e. a
Social Residence STS, in which the main problem consisted in managing the evolution
of the software system artifacts (requirements and law models, personas, scenarios)
corresponding to the current version of the system, into new artifacts describing the
requirements of an new version of the system, in a continuous manner. Further instan-
tiation of CAFfE on other scenarios of requirements evolution, which concern other
specific aspects, will be necessary to consolidate and validate the framework. A formal-
ization of the framework is ongoing, as well as the investigation of its integration with
the recently proposed approach for supporting requirements engineering at run-time for
self-adaptive systems [9,8].

References

1. Cooper, A., Reimann, R., Cronin, D.: About Face 3. Wiley, Chichester (2007)
2. Ernst, N., Mylopoulos, J., Wang, Y.: Requirements Evolution and What (Research) to Do

about It. In: Design Requirements Engineering: A Ten-Year Perspective. Design Require-
ments Workshop, Cleveland, OH, USA, June 3-6, vol. 14, pp. 186–214 (2009); Revised and
Invited Papers

3. Felici, M.: Observational Models of Requirements Evolution. Ph.D. thesis, University of
Edinburgh (2004)

4. Lam, W., Loomes, M.: Requirements Evolution in the Midst of Environmental Change: A
Managed Approach. In: CSMR 1998. IEEE Computer Society, Los Alamitos (1998)

5. Leonardi, C., Sabatucci, L., Susi, A., Zancanaro, M.: Design as intercultural dialogue: cou-
pling human-centered design with requirement engineering methods. In: Proceedings of IN-
TERACT 2011(to appear, 2011)

6. Nielsen, L.: Engaging personas and narrative scenarios. A study how a user-centered ap-
proach influenced the perception of the design process in the e-business group at As-
traZeneca. Copenhagen Business School Editor, Fredriksberg, Denmark (2004)

7. Perini, A., Qureshi, N.A., Sabatucci, L., Siena, A., Susi, A.: On evolving requirements in
socio-technical systems: Concepts and practice, SE Research Group Technical Report (TR-
FBK-SE-2011-6), FBK, Trento, Italy (2011),
http://se.fbk.eu/files/TR-FBK-SE-2011-6.pdf

8. Qureshi, N.A., Jureta, I.J., Perini, A.: Requirements engineering for self-adaptive systems:
Core ontology and problem statement. In: Mouratidis, H., Rolland, C. (eds.) CAiSE 2011.
LNCS, vol. 6741, pp. 33–47. Springer, Heidelberg (2011)

9. Qureshi, N.A., Perini, A.: Requirements engineering for adaptive service based applications.
In: 18th IEEE Int. Requirements Eng., Sydney, Australia, pp. 108–111 (2010)

10. Siena, A., Mylopoulos, J., Perini, A., Susi, A.: Designing law-compliant software require-
ments. In: Laender, A.H.F., Castano, S., Dayal, U., Casati, F., de Oliveira, J.P.M. (eds.) ER
2009. LNCS, vol. 5829, pp. 472–486. Springer, Heidelberg (2009)

11. Stark, G.E., Oman, P., Skillicorn, A., Ameele, A.: Journal of Software Maintenance: Re-
search and Practice 11(5), 293–309 (1999)

12. Zowghi, D., Offen, R.: A Logical Framework for Modeling and Reasoning About the Evo-
lution of Requirements. In: RE, pp. 247–257. IEEE Computer Society, Los Alamitos (1997)

http://se.fbk.eu/files/TR-FBK-SE-2011-6.pdf

Composite Indicators for Business Intelligence

Daniele Barone1, Lei Jiang1, Daniel Amyot2, and John Mylopoulos1

1 Department of Computer Science, University of Toronto, Toronto, ON, Canada
{barone,leijiang,jm}@cs.toronto.edu

2 EECS, University of Ottawa, Ottawa, ON, Canada
damyot@eecs.uottawa.ca

Abstract. Business organizations continuously monitor their environ-
ments, looking out for opportunities and threats that may help/hinter
the fulfilment of their objectives. We are interested in strategic business
models that support such governance activities. In this paper, we focus
on the concept of composite indicator and show how it can be used as ba-
sic building block for strategic business models that support evaluation
and decision-making. The main results of this paper include techniques
and algorithms for deriving values for composite indicators, when the
relationship between a composite indicator and its component indicators
cannot be fully described using well-defined mathematical functions.

Keywords: Business intelligence, Business model, Conceptual modeling
languages, Key performance indicators, Strategic planning.

1 Introduction

A Key Performance Indicator (KPI), or simply indicator in this paper, is an
industry term for a measure or metric that evaluates performance with respect
to some objective. Indicators are used routinely by organizations to measure both
success and quality in fulfilling strategic goals, enacting processes, or delivering
products/services. For example, the indicator “Percentage increase of customer-
base” may be appropriate for the goal “Increase market share”, while “Average
number of defects” may be a suitable indicator for software product quality.

Indicators constitute an important element of business modelling as they of-
fer criteria for determining whether an organization is fulfilling its objectives, be
they strategic goals, quality requirements, or production targets. They increas-
ingly see applications in other areas. For example, in Requirements Engineering
(RE), indicators have been used to evaluate the degree of fulfillment of goals [8],
and in self-adaptive software systems they serve as monitored variables that de-
termine whether a system is doing well relative to its mandate, or whether it
should adapt its behaviour [13].

To choose the right indicators for a given object (goal/process/product), one
must have a good understanding of what is important to the organization. More-
over, this importance is generally contextual, e.g., indicators useful to a finance
team may be inappropriate for a sales force. Because of the need to develop

M. Jeusfeld, L. Delcambre, and T.W. Ling (Eds.): ER 2011, LNCS 6998, pp. 448–458, 2011.
c© Springer-Verlag Berlin Heidelberg 2011

Composite Indicators for Business Intelligence 449

a good understanding of what is important, performance indicators are closely
associated with techniques for assessing the present state of the business.

A very common method for choosing indicators is to apply a management
framework such as the Balanced Scorecard [6], whereby indicators measure a
range of factors in a business, rather than a single one (e.g., profits).

The objects that indicators assess – be they goals, processes or products – are
generally composite, consisting of hierarchies of elements. For instance, goals are
usually modelled as AND/OR tree hierarchies of sub-goals to reflect a reduction-
ist view of problem solving. Likewise, processes are usually defined in terms of
sub-processes ultimately reduced to atomic actions that an agent can perform,
and products are modelled as aggregates of simpler parts that are themselves
composite objects amenable to further decomposition. Alternatively – and or-
thogonally to the examples above – a process/product may be a root node of a
taxonomy tree that defines specializations (e.g., the process “Loan application”
might be specialized to “Small loan application” and “Large loan application”).
Of course, the value of an indicator for a composite object should depend on
the values of indicators for objects one level lower in the hierarchy. Unfortu-
nately, there are no guidelines on what this dependency is and how to define it
consistently for a given business model.

In this paper, we focus on composite indicators, which are indicators whose
values are obtained from those of their components. These components them-
selves may also be composite indicators, leading to a hierarchy of indicators.
We are interested in the problem of propagating values of indicators from lower
to higher levels, much like label propagation in goal reasoning [1,4]. This type
of analysis is essential for calculating / deriving values for composite indicators.
This is a non-trivial problem since, in many cases, there is no well-defined mathe-
matical function that relates a composite indicator to its components. This might
be simply due to lack of knowledge about the indicators, or the intrinsic nature
of the indicators at hand. Our main contribution consists in proposing different
techniques and algorithms for deriving values of composite indicators, when the
relationship between a composite indicator and its component indicators cannot
be fully described using well-defined mathematical functions.

This research is conducted in the context of the Business Intelligence Network,
a Canada-wide strategic research network. Our long-term objective within the
network is to develop a conceptual modelling language, called Business Intelli-
gence Model (BIM)[2], for modelling business objectives, processes and objects
in order to support business intelligence activities.

The rest of the paper is structured as follows. Sections 2 presents key concepts
for strategic business models. Section 3 introduces the concept of indicator and
how it can be used to evaluate goals and situations. Section 4 presents in detail
three techniques to derive values of composite indicators using different estima-
tion / approximation approaches. Finally, Sections 5 and 6 discuss related work
and conclusions, respectively.

450 D. Barone et al.

AND

Strategy A

Strategy B

Strategy C

LEGEND

refinement

Shareholder value
increased (g1)

F

Cost
decreased

(g2)

F
Revenue

increased (g3)

F

Best customers
attracted and
retained (g5)

C

Sell process
improved (g7)

P
Focused on

career and skills
development (g6)

L

More products
sold (g4)

P

Refinement node
(AND, XOR, OR)

P
CF
L

Goal

Kaplan and Norton
perspectives

Sales training
program (p2)

Marketing
initiative (p1)

Package quality
control (p3)

Staff need
training (s2)

Christmas
season (s1)

Sell
process (p4)

opportunity

weakness

High customers
complaints (s3)

weakness

Situation Process

achieves

influences

OR

Fig. 1. Examples of goals, situations and influences

2 Strategic Business Models

In this section, we review some of the key concepts used in BIM [2] to support
strategic business modelling and reasoning about strengths, weaknesses, oppor-
tunities and threats (popularly known as SWOT). Technical details about these
concepts are presented in a companion paper [5].

A goal (also intention, objective, vision, mission) represents a desired state-
of-affairs, defined during strategic planning and pursued (hopefully successfully)
during business operation. The most basic characteristics of goals include: i) a
goal may be AND/OR-refined into subgoals so that its satisfaction level depends
on that of its subgoals; ii) a goal may be satisfied in more than one way if it or
any of its refinements are OR-refined, in which case a choice needs to be made
among alternative subgoals in deciding how to fulfill the root-level goal; and iii)
a goal’s satisfaction may be affected by that of goals other than its subgoals.
Goal analysis produces a goal model consisting of an AND/OR refinement tree
with additional positive/negative contributions. The satisfaction level of a goal
can be inferred from that of others in the same goal model using a label propa-
gation algorithm [4,1]. Examples of goals are shown in Figure 1. Notice how the
“Shareholder value increased” goal is AND-decomposed into the sub-goals “Cost
decreased” and “Revenue increased”; similarly, the “More Products sold” goal
is OR-decomposed in three different alternative sub-goals (strategies), namely
“Best customers attracted and retained”, “Focused on career and skills devel-
opment”, and “Sell process improved”. An example of influence among goals is
represented by the one existing from the “Sell process improved” goal towards
the “Cost decreased” goal.

Composite Indicators for Business Intelligence 451

In addition to goals, we model partial states of the world as situations. For
strategic business models, we need the notion of organizational situation, such
as “Christmas season”, an opportunity for a sales organization, or “Competi-
tor buys key technology”, a potential threat. Analogously to satisfaction levels
for goals, we have occurence levels for situations, which define the degree to
which a situation occurs in the current state-of-affairs. The situations “Christ-
mas season”, “Staff need training”, and “High customers complaints”, described
in Figure 1, are some examples of partial states of the world that can occur
within a business context.

To reason about goal satisfaction under the influence of situations, we ex-
tend the contribution relation so that it can be used to relate any combina-
tion of goals and situations. Hereafter, we refer to this concept using the term
influence. For example, the situation “Christmas season” positively influences
the goal “Increase sales”, while the situation “Booming economy” positively
influences the situation “Growing inflation”. We call such influence relations
logica,’ to distinguish them from probabilistic ones. Figure 1 shows some exam-
ples of such influences. For instance, the “Staff need training” situation, repre-
senting an internal weakness for the company, influences negatively the “More
products sold” goal. We characterize influences along two dimensions: i) direc-
tion: a positive (resp. negative) influence exists from a situation/goal to another
if the occurence/satisfaction of the source increases (resp. decreases) the oc-
curence/satisfaction of the target; and, ii) degree or strength: an influence is full
if it is a causal relation (i.e., 100% effect on the target), otherwise it is partial.

3 Indicators

An indicator is a measure, quantitative or qualitative, on the progress or degree
of fulfillment of organization goals. The subject of an indicator is a particular
feature or quality of an element in the business environment, e.g., the workload
of an employee, or the compliance of an internal process with respect to external
regulations.

To express why an indicator is needed and what it is measuring, we rely on
two relations, evaluates and measures, as illustrated in Figure 2. In this figure,
the indicator “Number of products sold” is needed (why) to evaluate the goal
“More products sold” by measuring the task “Sell products”.

Each indicator, being composite or component, has a current value which
is evaluated against a set of parameters: target (value), threshold (value) and
worst (value) [9]. The result of such evaluation is a normalized value (ranging
in [−1, 1] ∈ R), which is often referred to as the performance level. Note that
a current value can be assigned by: i) extracting it at run-time from back-end
data sources1, ii) supplying it interactively to explore “what-if” scenarios, or iii)
calculating it with a metric expression (see Section 4.1).

1 Dimensions and levels [9] can be used to filter data from datawarehouses.

452 D. Barone et al.

More
products sold Sell products

Number of
products

sold

measuresevaluates

Process

Goal

Indicator

LEGEND

target
value

threshold
value

worst
value

current
value

satisfaction level = 0.5
state = "partially satisfied"

WHY WHAT

performance level = 0.5
state = "partially

performant"

performance
region

Fig. 2. An example of an indicator to
evaluate a goal

target
value

threshold
value

worst
value

1

0

-1

>1

<1

Performance
scale

10 40 60 80
worst

value

threshold
value

target
value

1

-1

0.8

0.6

0.4

0.2

0.8

0.6

0.4

0.2

current
value

Perform
ance

level

0.5

Fig. 3. Example of interpolation [11] to
calculate performance levels

The above parameters can be combined in different ways to define performance
regions. Figure 2 shows an example of a lower region, but upper and merged
regions can be defined in a similar way.

The relative position of indicator current values within such regions leads to
indicator performance levels, as shown by Figure 3. Notice how the worst and
target values are mapped respectively to -1 and +1 on the performance scale,
while the threshold value is mapped to 0. A linear interpolation2 is used to
approximate performance levels, as also described by System equation 1 [11].
For instance, the performance level (pl) for Figure 3 is pl(60) = |60−40|

|80−40| = 0.5.

pl(current v.) =

⎧⎪⎨⎪⎩
|current v.−threshold v.|
|target v.−threshold v.| , if current v. ≥ threshold v.

− |current v.−threshold v.|
|threshold v.−worst v.| , if current v.< threshold v.

(1)

Performance levels are, in turn, propagated to the corresponding goals to eval-
uate satisfaction levels. For example, in Figure 2, the performance level 0.5 is
propagated to the satisfaction level of the corresponding goal which, in turn, is
mapped to a “partial satisfied” state (orange colour3).

As shown in the following section, indicators can be used to evaluate situa-
tions in a similar way we do for goals, by propagating a performance level to
the occurence level of the situation under evaluation. For example, the indica-
tor “Number of products returned” can evaluate the situation “Low number of
returned products”.

4 Reasoning with Indicators

In a business strategy model, indicators are associated with various business
elements. These elements in general are composite, consisting of hierarchies of
2 Other forms of interpolation can be used, e.g., polynomial, spline, etc.
3 BIM provides mapping tables to map satisfaction, occurence and performance levels

to corresponding states of business elements.

Composite Indicators for Business Intelligence 453

sub-elements. Such structure implies hierarchies for indicators. For example in
Figure 6, the goal hierarchy results in a hierarchy for associated indicators. More
specifically, “Number of special package” is a component indicator of “Number
of products sold”, since it evaluates the goal “Sell process improved’,’ which is
a sub-goal of “More products sold”.

We are interested in algorithms that propagate values of indicators at a lower
level in a hierarchy to the ones at a higher level, much like the label propagation
in goal reasoning [1,4]. To accomplish this, we classify such propagation into four
categories, as described in Figure 4, based on what is known about the relation
between a composite indicator and its components.

In the simplest case, a rela-
A
ccurate

K
no
w
le
dg
e

More

Less Less

More

Knowledge Outcome

Quantitative
(accurate)

component current values,
component strength influences,

composite (well-defined)
mathematical function.

composite
current value,

composite
performance level.

Quantitative
(heuristic)

component current values,
component strength influences,
component conversion factors,

composite (approx.) metric.

composite (approx.)
current value,

composite (approx.)
performance level.

Quantitative
(normalized)

component current values,
component performance levels,

normalizing function,
composite (approx.) metric.

composite (approx.)
performance level

Qualitative
component current values
and/or label state values,

propagation rules.

composite label
state value,

composite conflict.

Fig. 4. Techniques classification

tion is fully described using a
mathematical function. In this
case, there is no problem in
computing values for the com-
posite indicator. For example,
profits can be calculated di-
rectly from revenues and costs.
In other cases, when such a
mathematical relation does not
exist, indicator values have to
be derived using estimation or
approximation techniques. In
what follows, we present three
techniques to derive values of

composite indicators using conversion factors, range normalization, and qualita-
tive reasoning.

4.1 Quantitative Reasoning

When a composite indicator does not share that same unit of measure as its
components’ units, a necessary condition for finding a metric that computes its
values is that there is a suitable conversion factor for each component indicator
that has a different unit of measure.

For example, consider the two indicators “Employee cost” and “Working
time”. In particular, Employee cost can be defined as a composite indicator
whose value relies on the component indicator Working time. According to our
requirement, we need to convert the current value of Working time values mea-
sured in hours into Employee cost units. One possible conversion factor is to
take the average of the wage per hour for all employees4. Assuming that such an
average is 20 and that the current value for Working time is 160 hours, we can
calculate an approximated current value for Employee cost as:

1. 20 dollars = 1 hours → 20 dollars
hours = 1, where 20 is the conversion factor;

4 This value can be also defined as an “Average hourly wage” indicator and, in turn,
as a related indicator for the Employee cost.

454 D. Barone et al.

Fig. 5. Examples of reasoning with conver-
sion factors

Best customers
attracted and
retained (g5)

Sell process
improved (g7)

Focused on
career and skills

development (g6)

More products
sold (g4)

Christmas
season (s1)

Number of
products sold

(xg4)

Number of special
packages (xg7)

Number of new
"gold" customers

(xg5)

Number of
training hours (xg6)

0.75

Increment
in sales (xs1)

OR

Composite
Indicator

pl = 1

pl = -1

pl = 0.3

pl = 0.25

pl = -1

Fig. 6. Examples of reasoning with perfor-
mance levels of indicators

2. 160 hours · 20 dollars
hours = 3, 200 dollars.

Notice that in many cases a conversion factor is an estimate based on previous
experience / statistics. For example, the average wage per hour could be 30
instead of 20 for a different company. When conversions are impossible, e.g.,
it is not possible to convert gallons to square feet, we have to fallback to a
“normalized” approach, described further in this section, or to a “qualitative”
one, presented in Section 4.2.

Now supposing that suitable conversion factors are available, we are able to
define valid metric expressions which contain: i) current values for component
indicators, ii) influence strengths, and iii) conversion factors. With this aim, we
adopt and use off-the-shelf the grammar of the Jep Java Library5, which allows
us to express rich and flexible expressions to meet user requirements. An example
of such an expression is xg4 = xe

g4
+ ws1 · cs1 · xs1 +

∑j=7
j=5 wgj · cgj · xgj

6, which
is used in Figure 5 to calculate the current value of the “Number of products
sold” indicator.

Another form of quantitative conversion is needed when we do not have a
conversion factor to relate component indicators to a composite one. This con-
version is based on “range normalization’,’ which takes values spanning a spe-
cific range and represents them in another range. Indeed, when we calculate the
performance level of an indicator (by using its current value and parameters as
described in Section 3), we are producing a “normalized value” in a range within
[−1, +1] ∈ R. As show in Figure 6, this technique calculates the performance
level for each component indicator and combines them to calculate the perfor-
mance level of the composite one. We have defined a BNF grammar to build the
qualitative metrics used to combine performance levels. Due to space limitations,
we omit its description, but the interested reader can find further details in [2].

5 http://www.singularsys.com/jep/
6 xe

g4 is the expected value of products sold while the different wm and cn are, respec-
tively, influence strengths and conversion factors of the component indicators.

http://www.singularsys.com/jep/

Composite Indicators for Business Intelligence 455

4.2 Qualitative Reasoning

Inspired by [4], we augment the techniques of the previous section with a qual-
itative reasoning technique. In this case, instead of propagating indicator per-
formance levels, we propagate the category label assigned to indicators. This
technique has long been used for qualitative goal reasoning in RE.

A major difference between this technique and ones presented in the previ-
ous sections is that conflicts are allowed, i.e., an indicator can be at the same
time “fully performant” and “fully non-performant” (see Figures 7 and 8). This
is analogously to [4], where goals have satisfiability values but also deniabil-
ity ones: during label propagation, a goal can be both “partially satisfied” and
“partially denied”. In this case, we associate each indicator Ii with two vari-
ables, namely, positive performance (per+) and negative performance (per−).
Ranging in {F,P,N} (“full”, “partial”, “none”), such that F > P > N . These
variables represent the current evidence of performance or non-performance of
an indicator Ii. For instance, per+(Ii) ≥ P states that there is at least partial
evidence that Ii is performant. To assign “evidence” and, therefore, values to
the variables per+ and per−, we use the mapping rules described in Figure 7.
When the current value of an indicator Ii lies among its target value and the
middle point M (a value that is equally distant from the target t and from the
threshold th), we conclude that per+ = “partial′′ and per− = “none′′.

+ -

+ -

+ -

+ -

Indicator
(per+,

rs colour
per−)

Evidence Mapping
rule

Variables
(per+, per−)

fully
performant

(green)
cv≥t

per+ = “full”
per− = “none”

partially
performant

(green-orange)
M≤ cv < t

per+ = “partial”
per− = “none”

partially
non-performant

(red-orange)
th≤ cv < M

per+ = “none”
per− = “partial”

fully
non-performant

(red)
w≤ cv < th

per+ = “none”
per− = “full”

Fig. 7. Mapping rules, where: cv = cur-
rent value, th = threshold value, w =
worst value, and M = middle value among
the target t and threshold th

Best customers
attracted and
retained (g5)

Sell process
improved (g7)

Focused on
career and skills

development (g6)

More products
sold (g4)

Christmas
season (s1)

Number of
products sold

(xg4)

Number of special
packages (xg7)

Number of new
"gold" customers

(xg5)

Number of
training hours (xg6)

+

Increment
in sales (xs1)

OR

-+ + -

+ -

+

+

-

-

Composite
Indicator

conflit

Fig. 8. Examples of qualitative reason-
ing

Propagation of the values from component indicators to a composite indica-
tor relies on the axioms and (adapted) propagation rules from [4], which are
summarized in Table 1. For example, the rule (Ir

2 , Ir
3) and%−→ Ic

1 states how labels
are propagated when there is an AND-decomposition relation between goal G1

and sub-goals G2 and G3 (here we refer to goal nodes, but they can also be
situation nodes, or a mix of both), with associated indicators Ic

1 , Ir
2 and Ir

3 .
Analogously, Ir

2
−S%−→ Ic

1 states how labels are propagated when there exists an
influence relation between goals G2 and G1, with associated indicators Ir

2 and
Ic
1 . The strength of this influence is equal to −S, which means that if G2 is

456 D. Barone et al.

Table 1. Propagation rules in the qualitative framework. The (or), (+D), (-D), (++D),
(--D) cases are dual w.r.t. (and), (+S), (-S), (++S), (--S) respectively. See [4], for
details.

(Ir
2 , Ir

3)
and�−→ Ic

1 Ir
2

+S�−→ Ic
1 Ir

2
−S�−→ Ic

1 Ir
2

++S�−→ Ic
1 Ir

2
−−S�−→ Ic

1

per+(Ic
1) min

{
per+(Ir

3)

per+(Ir
2)

min

{
per+(Ir

2)

P
N per+(Ir

2) N

per−(Ic
1) max

{
per−(Ir

3)

per−(Ir
2)

N min

{
per+(Ir

2)

P
N per+(Ir

2)

satisfied, then there is some evidence that G1 is denied, but if G2 is denied, then
nothing is said about the satisfaction of G1, see [4] for further details.

Figure 8 provides an example of our qualitative approach. For each indicator,
the per+ variable is represented by a traffic light with a plus symbol on the top,
while the per− variable by the one with a minus symbol on the top. The colours
for the traffic lights are those described in Figure 7. Propagating the values of the
component indicators by using Table 1, we obtain a conflict for the composite
indicator “Number of products sold”. When such conflicts appear in a schema,
although undesirable, they do help to highlight particular aspects of a business
that need user attention because of possible inconsistencies.

5 Related Work

The use of business-level concepts—such as goals, processes and resources—
has been researched widely for at least 15 years and is already practiced to
some extent in both Data Engineering and Software Engineering. In the liter-
ature, different modeling proposals exist that are related to our work, such as
i* [14], URN/GRL [1] and KAOS [3,8], all from the general area of Goal-Oriented
Requirements Engineering. From these we have adopted intentional and social
concepts. However, these models lack primitive constructs for influence relation-
ships, (composite) indicators, and various types of situations integrated in the
BIM modeling framework. Recent proposals have extended URN to include in-
dicators [12]. We share ideas with this work; however: i) our indicators are more
general and they can be used to measure any model object, including other in-
dicators; ii) we provide more guidelines to distinguish “what” is measured and
“why” it is measured; and iii) our indicators can be used to evaluate situations
which, from our perspective, are fundamental for strategic reasoning.

In [10], the authors propose a formal framework for modelling goals (and for
evaluating their satisfaction) based on performance indicators. Our work shares
similar intentions but focuses more on the concept of composite indicator and a
way to define metric expressions to calculate their values.

From a business perspective, our business schemas can capture what is com-
monly found in Strategic Maps [7] and Balanced Scorecards [6], but we also

Composite Indicators for Business Intelligence 457

support reasoning and we include the concept of situation which is a fundamen-
tal concept for supporting SWOT analysis. In fact, as we show in [5], we can map
our approach to SWOT analysis and other languages that enable goal analysis
techniques [4,1], including probabilistic ones.

6 Conclusions

In this paper, we presented a model-based approach to design and reason about
an organization’s business environment and strategies. Specifically, we provided
qualitative and quantitative techniques to analyze the impact of strategies on
organization goals, by relying on different types of knowledge.

To validate our proposal, we are currently involved in a Business Intelligence
project at a Toronto-area hospital, where we are building a global picture of
patient flow in order to identify sources of bottlenecks within and beyond the
hospital. We are also evolving a tool prototype to support the modeling and
analysis techniques described in this paper.

Acknowledgments. This work was supported by BIN and NSERC. We are
grateful to E. Yu, L. Peyton and many others for useful discussions.

References

1. Amyot, D., Ghanavati, S., Horkoff, J., Mussbacher, G., Peyton, L., Yu, E.S.K.:
Evaluating goal models within the goal-oriented requirement language. Int. J. In-
tell. Syst. 25(8) (2010)

2. Barone, D., Mylopoulos, J., Jiang, L., Amyot, D.: Business Intelligence
Model, ver. 1.0. Tech. Rep. CSRG-607. University of Toronto (March 2010),
ftp://ftp.cs.toronto.edu/csri-technical-reports/INDEX.html

3. Dardenne, A., van Lamsweerde, A., Fickas, S.: Goal-directed requirements acqui-
sition. Sci. Comput. Program. 20(1-2), 3–50 (1993)

4. Giorgini, P., Mylopoulos, J., Nicchiarelli, E., Sebastiani, R.: Reasoning with goal
models. In: Proc. of the 21st Intern. Conf. on Conceptual Modeling (2002)

5. Jiang, L., Barone, D., Amyot, D., Mylopoulos, J.: Strategic models for business in-
telligence: Reasoning about opportunities and threats. In: Jeusfeld, M., Delcambre,
L., Ling, T.W. (eds.) ER 2011. LNCS, vol. 6998, pp. 448–458. Springer, Heidelberg
(2011)

6. Kaplan, R.S., Norton, D.P.: Balanced Scorecard: Translating Strategy into Action.
Harvard Business School Press, Boston (1996)

7. Kaplan, R.S., Norton, D.P.: Strategy maps: Converting intangible assets into tan-
gible outcomes. Harvard Business School Press, Boston (2004)

8. van Lamsweerde, A.: Reasoning About Alternative Requirements Options. In:
Borgida, A.T., Chaudhri, V.K., Giorgini, P., Yu, E.S. (eds.) Conceptual Modeling:
Foundations and Applications. LNCS, vol. 5600, pp. 380–397. Springer, Heidelberg
(2009)

9. Parmenter, D.: Key Performance Indicators. John Wiley & Sons, Chichester (2007)
10. Popova, V., Sharpanskykh, A.: Formal modelling of organisational goals based on

performance indicators. Data & Knowledge Engineering (2011)

ftp://ftp.cs.toronto.edu/csri-technical-reports/INDEX.html

458 D. Barone et al.

11. Pourshahid, A., Amyot, D., Peyton, L., Ghanavati, S., Chen, P., Weiss, M., Forster,
A.J.: Business Process Management with the User Requirements Notation. Elec-
tronic Commerce Research 9(4), 269–316 (2009)

12. Pourshahid, A., Richards, G., Amyot, D.: Toward a goal-oriented, business intelli-
gence decision-making framework. In: Babin, G., Stanoevska-Slabeva, K., Kropf, P.
(eds.) MCETECH 2011. LNBIP, vol. 78, pp. 100–115. Springer, Heidelberg (2011)

13. Souza, V., Lapouchnian, A., Mylopoulos, J.: System identication for adaptive soft-
ware systems: a requirements-engineering perspective. In: Jeusfeld, M., Delcambre,
L., Ling, T.W. (eds.) ER 2011. LNCS, vol. 6998, pp. 448–458. Springer, Heidelberg
(2011)

14. Yu, E.: Towards modelling and reasoning support for early-phase requirements
engineering. In: RE 1997, Washington, USA (1997)

Incorporating Traceability in Conceptual Models

for Data Warehouses by Using MDA

Alejandro Maté and Juan Trujillo

Lucentia Research Group
Department of Software and Computing Systems

University of Alicante
{amate,jtrujillo}@dlsi.ua.es

Abstract. The complexity of the Data Warehouse (DW) development
process requires to follow a methodological approach in order to be suc-
cessful. A widely accepted approach for this development is the hybrid
one, in which requirements and data sources must be accommodated
to a new DW model. The main problem is that the relationships be-
tween conceptual elements coming from requirements and those coming
from data sources are lost in the process, since no traceability is ex-
plicitly specified, consuming additional time and resources. Previously,
we have defined a trace metamodel in order to trace user requirements
to DW conceptual models. In this paper, we complement our approach
by including traceability along the successive refinements performed at
the conceptual level. Therefore, we preserve the existing relationships
between elements, eliminating additional costs derived from performing
the matching process multiple times. We provide an example of how
Query/View/Transformation rules can automate trace generation, and
we also provide a set of guidelines for connecting conceptual elements
coming from requirements with those coming from the data sources.

Keywords: Data warehouses, traceability, conceptual models, user
requirements, data sources, MDA.

1 Introduction

Data Warehouses (DW) integrate several heterogeneous data sources in multi-
dimensional structures (i.e. facts and dimensions) in support of the decision-
making process [5]. Therefore, the development of the DW is a complex process
which must be carefully planned in order to meet user needs. In order to develop
the DW, three different approaches, similar to the existing ones in Software
Engineering were proposed: bottom-up, top-down, and hybrid [3].

The first two approaches ignore at least one source of information for the DW,
leading to failure in DW projects [3]. On the other hand, the third approach (hy-
brid) makes use of both data sources and user requirements [9], solving the in-
compatibilities by acommodating both requirements and data sources in a single
conceptual model. Nevertheless, the acommodation process introduces modifi-
cations, causing the existing traceability by name matching to be lost. Once

M. Jeusfeld, L. Delcambre, and T.W. Ling (Eds.): ER 2011, LNCS 6998, pp. 459–466, 2011.
c© Springer-Verlag Berlin Heidelberg 2011

460 A. Maté and J. Trujillo

traceability is lost, the effort required for validating requirements or performing
changes is increased, and the quality of the result is decreased [12]. The rea-
son is that the developer must repeteadly track down each element through the
different layers involved in the development process, which is time consuming
and error prone. Despite this drawback, aside from our previous contribution in
[7], where we defined a trace metamodel to trace DW requirements to their cor-
responding conceptual elements, the traceability aspect has been overlooked in
DW development. By incorporating traceability, these time consuming and er-
ror prone tasks are minimized, allowing the developer to focus on the conceptual
design of the DW, and improving the quality of the final product.

In this paper, we complement our previous works by including support for the
traceability of conceptual elements through the different Platform Independent
Models (PIM) up to the final conceptual model. We also provide an example of
how trace generation can be automated where possible.

The remainder of the paper is structured as follows. Section 2 presents related
work about traceability and DWs. Section 3 introduces the necessary trace se-
mantics in order to include traceability at the conceptual level in DWs. Section
4 presents the QVT rules for automatic derivation of traces. Section 5 presents
an example of application, in order to show the benefits of our proposal. Finally,
Section 6 outlines the conclusions and further work to be done.

2 Related Work

In this section, we will briefly discuss the existing traceability research, its bene-
fits and problems, and its current status in the DW field. Due to space constraints
we will only describe the most important aspects.

Traditionally, traceability is focused on requirements. Either coming from the
traditional RE [4,10] or following a MDD approach [1,2], requirements are traced
to their lower abstraction level counterparts. Therefore, traceability helps ass-
esing the impact of changes in requirements and rationale comprehension, by
identifying which parts of the implementation belong to each requirement [2].
However, the effort required to manually record the traces, and the lack of stan-
darization, make it difficult to apply traceability to projects. Therefore, there is
a special interest on automating traces.

Our approach, presented in [9], applies MDD, and is sensitive to generate
traces by exploiting transformation logic, thus being less error prone than manual
recording. Therefore, by generating traces simultaneously as conceptual models
are transformed, we provide support for requirements validation, impact change
and automated analysis, while minimizing the drawbacks. While our approach
applies MDA for DW development, other development proposals [3,11] make use
of similar layers, so they could benefit from this approach.

In order to maintain all this information, elements coming from both require-
ments and data sources must be traced while maintaining the semantics of their
relationships, allowing us to support automatic operations over the models.

Incorporating Traceability in Conceptual Models for DWs by Using MDA 461

3 Traceability from PIM to PIM DW Models

As previously stated, we require to trace information from both user require-
ments and data sources up to the final conceptual implementation. First, we will
introduce the trace metamodel and the concepts used for tracing elements along
the PIM models. Then we will describe how these elements will be traced.

In order to trace conceptual elements, up to the final PIM, we require to
include different semantics, in order to differentiate the relationships between el-
ements and support further automatic operations. These semantics are included
in the trace metamodel (we refer the reader to [7] for more information) depicted
in figure 1. The semantic types on which we will focus are:

– Evolution links are included to handle horizontal traceability which takes
care of element changes at the same layer. In our case these links will track
the different versions of each element at each PIM model.

– Overlap and Conflict are used for relating elements coming from both re-
quirements and data sources in different shape. In this case, the developer
will decide which is the correct solution to the conflict. These links are cru-
cial for enabling traceability support, as they record the semantics between
elements coming from data sources and those coming from requirements.

– Rationalization links are included as means of enabling the user to record
his own annotations in the trace model about changes or decisions taken and
provide reconciliated solutions for existing conflicts.

These trace types will be recorded in the different trace models included in our
proposal, as shown in figure 2. In our proposal, first we derive an initial PIM

Fig. 1. Trace metamodel with semantic links for DWs

462 A. Maté and J. Trujillo

Fig. 2. Trace models linking the different PIM models in our DW approach

model from the user requirements represented in the requirements model. This
PIM is refined with the necessary additions, not present at requirements level,
and then it is derived into a mixed, hybrid PIM. The first trace model, labeled as
“a” in figure 2, connects the initial PIM to the hybrid PIM in a pretty straight-
forward manner by means of Evolution traces. This trace model “a” is included
in order to support automatic operations which require to track information
related to requirements.

After we have derived the initial PIM, we first obtain a Platform Specific
Model (PSM) from the data sources, which serves as basis to create a hybrid
PIM model [8]. The hybrid PIM includes conceptual elements from both require-
ments and data sources and is characterized by representing the same concepts
in different versions. In order to relate the different versions, their relationships
are recorded by means of traces in trace model “b”. These traces must be manu-
ally added because typically there is no knowledge about which element coming
from the data sources is the counterpart to an element coming from user re-
quirements. Therefore, we provide a set of guidelines in order to correctly relate
elements in the hybrid PIM: whenever an element coming from requirements is
complementary with its representation coming from data sources, they are re-
lated by means of Overlap links (G1). On the other hand, whenever an element
coming from requirements is contrary to its representation coming from data
sources, they are related by means of Conflict links (G2). In order to solve this
situation, either one of the elements in conflict can be marked as solution, if
it fits the user needs (G3) or, alternatively, the developer can provide a new,
reconciliating element (G4), by means of Rationalization links.

Once the hybrid model has been refined, the desired elements which will be
part of the final implementation are marked, as proposed in [9], and derived
into the final PIM. Evolution traces, recorded in trace model “c” as part of the
derivation into the final PIM, show which elements from the hybrid PIM were
chosen to define the final conceptual model. This way, we can trace which parts
of the final model come from either requirements or data sources, allowing us to
perform impact change analysis as well as other automatic analysis tasks.

Incorporating Traceability in Conceptual Models for DWs by Using MDA 463

After having defined which trace models record the evolution of conceptual
elements at PIM level, we will provide an example of how trace generation can
be automated by means of transformations.

4 Automatic Derivation of Traceability Models in Data
Warehouses

In this section, we will provide an example of how the necessary transformations
can be formally defined to automatically generate the necessary traces. Due to
paper constraints, we will only show one transformation rule as example.

According to our proposal for developing DWs [9], we use a hybrid approach,
transforming models up to the final implementation by means of QVT rules.
QVT rules specify a transformation by checking for a defined pattern in the
source model. Once the pattern is found, a QVT rule transforms elements from
the source metamodel into the target metamodel. In our case, a QVT which
creates the Evolution link, from the hybrid to the final PIM, between overlapping
bases in the hybrid PIM, is shown in figure 3.

In this QVT, two overlapping bases from the hybrid conceptual model, “b1”
and “b2”, are derived into a base “b3” in the final conceptual model.

On the left hand of the transformation rule, are the source metamodels. In
our case, the sources are the multidimensional profile and the trace metamodel
for DWs. On the upper left hand, we have a dimension “d1” and a base “b1”,
as well as the base level counterpart coming from the data sources, “b2”. On
the lower left hand, we have the traces which record the relationship between

Fig. 3. QVT rule for deriving overlapping bases and creating their Evolution trace link

464 A. Maté and J. Trujillo

multidimensional elements coming from requirements, and those coming from the
data sources. In this case, there is an overlap link between the two previously
mentioned bases, which represents that both bases are complementary.

On the right hand of the transformation rule, are the target metamodels. On
the upper right hand, we have our multidimensional profile, composed by the
resulting dimension and base level. Since the relationship between the bases was
defined as overlap, “b3” will present a combination of attributes from both “b1”
and “b2”. This merge will be performed by the OverlapAttributeMatch rule,
called from the “Where” clause. On the lower right hand, we also have the trace
metamodel, composed by the trace link which tracks the different elements used
for composing the solution. In this case, as the original relationship between
bases was an overlap, both bases are linked as sources of the new base level in
the final PIM and its corresponding attributes.

The “C” at the center of the figure means that the source model is only
checked, whereas the “E” means that the target models are enforced (gener-
ated). With QVT transformations, we can generate the associated traces simul-
taneously as the models are derived, avoiding the introduction of errors due to
manual recording.

Once we have presented how to automate trace generation, we will present a
case study for our proposal.

5 Case Study

In this section, we will present a case study for our proposal, showing how the
traces can be used to relate the different elements in the hybrid PIM. This case
study is inspired from a real world project with another university, and describes
the basic process of our proposal, while making it easier to read the data source
model. Note that the diagrams are presented with our iconography for DWs [6].

A university wishes to improve its educative process. In order to do so, a DW
is designed to store the necessary information for the decision making process.
The initial PIM, part of which can be seen at the left hand in figure 4, is derived
from the users’ requirements and refined with the expected attributes. This
PIM includes 4 dimensions and a single measure. On the one hand, we have the
Subject dimension. A subject is expected to include its code, a name, the credits
and a description of the subject. Furthermore, subjects can be aggregated by
their Type. On the other hand, is the Teacher dimension. A teacher includes a
code, a name and the years of experience he has. Furthermore, teachers can be
aggregated according to their Department, their Faculty or their job Type. The
omitted dimensions in the figure, due to space constraints, are the Student and
the AcademicPeriod dimensions.

As opposed to this initial PIM, the model created from the data sources
(restricted to the most relevant tables) presents a higher number of attributes
and lower readability. Part of this PIM can be seen at the right hand in figure
4. The first dimension is TH SUBJ, which would correspond to the previous
Subject dimension. This dimension includes a code for the subject, as expected,

Incorporating Traceability in Conceptual Models for DWs by Using MDA 465

Fig. 4. Intra-model PIM traces relating conceptual elements from requirements (left)
with elements from data sources (right)

the number of hours of the subject, a starting date, an ending date, a value
which could correspond to the number of credits, and a code for the file of the
subject. Subjects may also be grouped by type, as expected. The next dimension
is TT TEA, corresponding to information about the teachers. The information
recorded for a teacher includes his name and surname, a mark for indicating if
he is active or not, his bank information, address, unit code and a code related
to the accounting. According to the data sources, teachers can be grouped either
by department or by faculty. In this case, if we wished to group them by their
job position, additional elements would be required.

Once we have both models in the hybrid PIM diagram, we can manually record
the traces relating their elements, as sketched in figure 4. By recording only once
these relationships, we do not require to repeteadly match each element coming
from the requirements with those in the data sources, avoiding the introduction
of errors in the process.

6 Conclusions and Future Work

In this paper, we have proposed a traceability approach in order to explicitly
specify the relationships between elements at the conceptual level in DWs. We
have shown the necessary trace semantics to record these relationships and have
proposed a set of guidelines, in order to aid with the identification of these
relationships. Furthermore, we have shown how trace derivation and recording

466 A. Maté and J. Trujillo

would be automated and have exemplified the application of the proposal by
means of the case study. The great benefit of our proposal is that the recon-
ciliation task is only performed once per element and is preserved for further
derivations. Therefore, we avoid repeteadly inspecting the data sources in order
to match conceptual elements coming from requirements with those coming from
data sources, diminishing time and resources spent.

Our plans for the immediate future are defining the complete set of QVT
transformations to derive alternative final PIM models and to explore the rela-
tionships between the PSM and PIM levels.

Acknowledgments. This work has been partially supported by the MESO-
LAP (TIN2010-14860) and SERENIDAD (PEII-11-0327-7035) projects from the
Spanish Ministry of Education and the Junta de Comunidades de Castilla La
Mancha respectively. Alejandro Maté is funded by the Generalitat Valenciana
under an ACIF grant (ACIF/2010/298).

References

1. Aizenbud-Reshef, N., Nolan, B., Rubin, J., Shaham-Gafni, Y.: Model traceability.
IBM Systems Journal 45(3), 515–526 (2006)

2. Antoniol, G., Canfora, G., Casazza, G., De Lucia, A., Merlo, E.: Recovering trace-
ability links between code and documentation. IEEE Transactions on Software
Engineering 28(10), 970–983 (2002)

3. Giorgini, P., Rizzi, S., Garzetti, M.: GRAnD: A goal-oriented approach to require-
ment analysis in data warehouses. DSS 45(1), 4–21 (2008)

4. Gotel, O.C.Z., Morris, S.J.: Macro-level Traceability Via Media Transformations.
In: Rolland, C. (ed.) REFSQ 2008. LNCS, vol. 5025, pp. 129–134. Springer,
Heidelberg (2008)

5. Kimball, R.: The data warehouse toolkit. Wiley-India (2009)
6. Luján-Mora, S., Trujillo, J., Song, I.Y.: A UML profile for multidimensional mod-

eling in data warehouses. DKE 59(3), 725–769 (2006)
7. Maté, A., Trujillo, J.: A Trace Metamodel Proposal Based on the Model Driven

Architecture Framework for the Traceability of User Requirements in Data Ware-
houses. In: Mouratidis, H., Rolland, C. (eds.) CAiSE 2011. LNCS, vol. 6741, pp.
123–137. Springer, Heidelberg (2011)

8. Mazón, J., Trujillo, J.: A model driven modernization approach for automatically
deriving multidimensional models in data warehouses. In: Parent, C., Schewe,
K.-D., Storey, V.C., Thalheim, B. (eds.) ER 2007. LNCS, vol. 4801, pp. 56–71.
Springer, Heidelberg (2007)

9. Mazón, J.N., Trujillo, J.: An MDA approach for the development of data ware-
houses. DSS 45(1), 41–58 (2008)

10. Ramesh, B., Jarke, M.: Toward reference models for requirements traceability.
IEEE Transactions on Software Engineering 27(1), 58–93 (2001)

11. Vassiliadis, P.: Data Warehouse Modeling and Quality Issues. Ph.D. thesis, Athens
(2000)

12. Winkler, S., von Pilgrim, J.: A survey of traceability in requirements engineering
and model-driven development. Software and Systems Modeling 9, 529–565 (2010)

Lightweight Verification of Executable Models

Elena Planas1, Jordi Cabot2, and Cristina Gómez3

1 Universitat Oberta de Catalunya (Spain)
eplanash@uoc.edu

2 École des Mines de Nantes - INRIA (France)
jordi.cabot@inria.fr

3 Universitat Politècnica de Catalunya (Spain)
cristina@essi.upc.edu

Abstract. Executable models play a key role in many development
methods by facilitating the immediate simulation/implementation of the
software system under development. This is possible because executable
models include a fine-grained specification of the system behaviour.

Unfortunately, a quick and easy way to check the correctness of be-
havioural specifications is still missing, which compromises their quality
(and in turn the quality of the system generated from them). In this pa-
per, a lightweight verification method to assess the strong executability of
fine-grained behavioural specifications (i.e. operations) at design-time is
provided. This method suffices to check that the execution of the opera-
tions is consistent with the integrity constraints defined in the structural
model and returns a meaningful feedback that helps correcting them oth-
erwise.

1 Introduction

Executable models play a cornerstone role in the Model-Driven Development
(MDD) approach, in which models must be fine-grained specified in order to be
used to (semi)automatically implement the software system. Executable models
are now increasing its popularity. As a relevant example, the OMG has recently
published the first version of the fUML [15] standard, an executable subset of
the UML [13] that can be used to define, in an operational style, the structural
and behavioural semantics of systems.

In MDD the quality of the final system implementation depends on the quality
of the initial specification, so the existence of methods to verify the correctness
of executable models is becoming crucial. In this sense, the goal of this paper is
to propose a lightweight verification method for executable models. Our method
focuses on the verification of the strong executability correctness property of
action-based operations. An operation is Strongly Executable (SE) if it is guar-
anteed that every time the operation is invoked, the set of modifications the
operation performs on the system´s data evolves the system to a new state fully
consistent with all integrity constraints. This is one of the most fundamental
correctness properties for behavioural specifications. When we know that all op-
erations are SE, we can avoid checking at the end of each operation execution if
all constraints are satisfied which improves the efficiency of the system.

M. Jeusfeld, L. Delcambre, and T.W. Ling (Eds.): ER 2011, LNCS 6998, pp. 467–475, 2011.
c© Springer-Verlag Berlin Heidelberg 2011

468 E. Planas, J. Cabot, and C. Gómez

In this paper we assume structural models are written in UML/OCL and
operations are specified in Alf Action Language [14], although our method could
be used with models written in other languages.

Paper Organization. The rest of the paper is structured as follows. Section
2 presents the state of the art. Section 3 introduces several preliminary concepts.
Section 4 presents our method and describes the feedback it provides. Finally,
Section 5 presents our conclusions and further work.

2 State of the Art

There is a broad set of research proposals devoted to the verification of (UML)
behavioural models, focusing on state machines [11] [12], sequence diagrams [3]
[9], activity diagrams [1] [6], operations [4] [18] [16], or the consistent interrela-
tionship between them and/or the class diagram [8], among others.

Table 1 classifies the most representative works and positions our method wrt
them. For each approach we indicate the kind of behavioural model targeted, the
integrity constraints that are considered when evaluating the models, whether
actions can be added to specify the model, the main correctness properties ad-
dressed by the method, the basic technique employed during the verification and
if the approach returns some kind of feedback beyond a simple yes/no answer.

Only few works [8] [1] (and also our previous work [16]) allow inclusion of
actions in their diagrams, which is precisely the focus of our method, but they
do not check their strong executatibility. Works dealing with the executability
of operations [4] [18] depart from declarative operations specified by means of
pre and postconditions contracts, instead of using imperative specifications.

The above works simulate the behavioural models by translating them into
Model Checking [2], Constraint Programming [10] or Query Containment [7],
and thus, do not scale properly and compromise the efficiency of the method.

Table 1. Related methods comparison. Abbreviations: AD(Activity Diagram),
SqD(Sequence Diagram), StD(Statechart Diagram), decl-OP(Declarative Operation),
imp-OP (Imperative Operation), MC(Model Checking), CP(Constraint Programming),
QC (Query Containment)

.

Refs Behavioural Supported Include Main Technique Repairing
Model Constraints Actions? Properties Feedback?

[8] AD,SqD,StD None Yes Consistency MC No

[1] AD None Yes Deadlocks MC No

[11] StD None No Safety MC No
Liveness

[12] StD Associated No Deadlocks MC No
to states Livelocks

[4] decl-OP All No SE et al. CP No

[18] decl-OP Subset No Weak Execu- QC No
tability et al.

our imp-OP Subset Yes SE Static Yes
work Analysis

Lightweight Verification of Executable Models 469

Instead, our method performs an static analysis, thus, it does not require to
simulate the behaviour in order to determine their executability.

On the other hand, most of the above methods do not provide a valuable
feedback but just provide a binary response and, at most some provide example
execution traces that do (not) satisfy the property. None clearly identify the
source of the problems nor assist the designer to repair them.

As a trade-off, our method supports a restricted set of integrity constraints.
Once the model passes our first analysis, designers may choose to use more
expressive (but more time expensive) methods.

3 Preliminary Concepts

This section introduces some preliminary concepts to facilitate the comprehen-
sion of our method and presents a running example to illustrate these concepts.

3.1 Structural Model
Class Diagram. A UML Class Diagram (CD) consists of a set of classes (i.e.
entity types), attributes, associations (i.e. relationship types) among classes,
generalizations among classes and integrity constraints.

Integrity Constraints. When verifying executability of operations, our method
covers the constraints that most frequently appear in the structural models (a
detailed list of the addressed constraints is provided in [17]).

Example. Figure 1 shows an excerpt of the class diagram and integrity con-
straints in an e-commerce system. It includes information about its customers,
which can acquire orders. An order is composed of one or more order lines, each
of them related to exactly one product. A product may be in offer as denoted by
the value of the special price attribute. A product may have several substituted
products, which are suggested to the customer when the desired product is sold
out. Additional identifier, value comparison and symmetric constraints are ex-
pressed in OCL. The derivation rule for totalPrice attribute is not showed here
since it has no relevance in our analysis.

Fig. 1. Excerpt of a e-commerce system class diagram

470 E. Planas, J. Cabot, and C. Gómez

3.2 Behavioural Model

In UML there are several alternatives to represent the behaviour of a system
but the basic way is using operations (attached into classes) that the user may
execute to query and/or modify the information modeled in the structural model.

Our method is focused on operations specified by means of “Action Language
for fUML” (Alf) [14], a beta standard published recently by the OMG. Alf
provides a concrete syntax conforming to the fUML abstract syntax, defining
the basic actions to specify the fine-grained behaviour of systems and a set of
statements to coordinate these actions in action sequences, conditional blocks
or loops. As any action language, the expressiveness of Alf is comparable to
that of the instructions in traditional programming languages but at a higher
abstraction (and platform-independent) level.

Example. We show an operation1 of the e-commerce system defined using Alf
language: “newProduct”, which creates a new product in the system.

activity newProduct(in code:String, in price:Real, in specialPrice:Real, in description:String,
in substitutedProducts:Product[0..*]){

p = new Product();
p.code = code;
p.price = price;
p.specialPrice = specialPrice;
p.description = description;
for (i in 1.. substitutedProducts→size()) {
CanBeSubstitutedBy.createLink(p1=>self,p2=> substitutedProducts[i]);
}

}

4 Our Method

Our method aims to verify at design-time if an action-based operation is Strongly
Executable (SE). We consider that an operation is SE if it is always successfully
executed, i.e. if every time we execute the operation (whatever values are given as
arguments for its parameters), the effect of the actions included in the operation
evolves the initial state of the system to a new system state that satisfies all
integrity constraints of the structural model.

Given an input structural and behavioural models, our method (see Figure 2)
returns either a positive answer (meaning that the operation is SE) or a corrective
feedback. This corrective feedback consists in a set of actions and conditions
that should be added to the operation in order to make it SE. Extending the
operation with this feedback is a necessary condition but not a sufficient one
to immediately guarantee the SE of the operation since the added actions may
in its turn induce other constraint violations. Therefore, the extended operation
must be recursively reanalyzed with our method until we reach a SE status.

When analyzing the SE of the operation, we must take into account all possible
execution paths (an operation is SE iff all its paths are SE). Therefore, the first
step of the method is to compute such paths (Section 4.1). Once the paths have

1 Operation methods are specified as UML activities in Alf.

Lightweight Verification of Executable Models 471

been computed, the rest of the method is applied on each path. Step 2 (Section
4.2) analyzes individually each action in the path p to see if it may violate
some integrity constraint of the structural model. Finally, Step 3 (Section 4.3)
performs a contextual analysis of each potentially violating action to see if other
actions or conditions in p compensate or complement its effect to ensure that
we always reach a consistent state at the end of the operation. If all potential
violation actions can be discarded we can conclude that p is SE.

Our method performs an over-approximation analysis. This implies that it
may return false positives, that is, it may return as a non-SE an operation which
is actually SE. The designer intervention is necessary to confirm non-SE in those
cases. On the other hand, the method does not return false negatives (in our
opinion, more critical than the above), that is, when it states that an operation
is SE, this statement is always true. Over-approximation is due to the lack of
exhaustiveness in the comparison of conditions in the operation to favour the
efficiency of the process. We believe this is a reasonable trade-off for the method.

Fig. 2. Method overview

4.1 Step 1: Computing the Execution Paths of the Operation

An execution path of an operation op is a consecutive sequence of actions that
may be followed during the execution of op in a given execution scenario. For
trivial operations (e.g. with neither conditional or loop structures) there is a
single execution path but, in general, several ones will exist.

We propose to represent each operation as a directed graph. Then, execution
paths are all paths in the graph that start at the initial vertex, end at the final
vertex and does not include repeated arcs.

472 E. Planas, J. Cabot, and C. Gómez

Example. Figure 3 shows the directed graph of operation “newProduct”. Two
execution paths may be derived: the first one, executed when the new product
has no substituted products (the loop is not executed); and the second one,
executed otherwise.

Fig. 3. Execution paths of “newProduct”

4.2 Step 2: Analyzing the Existence of Potentially Violating Actions

This step analyzes each action in the path to see if its effect can change the
system state in a way that some integrity constraint becomes violated. If so, this
action is declared as a Potentially Violating Action (PVA) and we refer to the
constraints the PVA can violate as Susceptible Violated Constraints (SVC). If
the path has no PVAs, is SE. Otherwise, we need to continue the analysis with
the next step.

To detect PVAs we rely on the method published in [5] that receives as input
a CD and a set of constraints and automatically determines the actions that may
violate each constraint of the model. Thus, we may determine if a path contains
PVAs by comparing the list of actions in the path with the list of actions returned
by this method. All actions in the intersection of both sets are PVAs.

Example. Second path of “newProduct” (first path is not explicitly shown
since it is a subset of this one) contains four PVAs: PV A1, which may vio-
late four mandatory constraints (when the attributes code, price, specialPrice
and description are not initialized); PV A2, which may violate the productPri-
maryKey constraint (when the system contains another product with the same
code); PV A3, which may violate the specialPrice constraint (when specialPrice
≥self .price); and PV A4 which may violate the symmetricAssociation constraint
(when the opposite link is not created).

Potentially Violating Actions of “newProduct” (second path):
• PV A1: p = new Product()

SV C1.1: The attribute “code” of class “Product” must have at least one value
SV C1.2: The attribute “price” of class “Product” must have at least one value
SV C1.3: The attribute “specialPrice” of class “Product” must have at least one value
SV C1.4: The attribute “description” of class “Product” must have at least one value

• PV A2: p.code = code
SV C2.1: productPrimaryKey constraint

• PV A3: p.specialPrice = specialPrice;
SV C3.1: specialPrice constraint

• PV A4: CanBeSubstitutedBy.createLink(p1=>self,p2=> substitutedProducts[i])
SV C4.1: symmetricAssociation constraint

Since all paths of “newProduct” are susceptible to be non-SE (given that all
of them contain some PVAs) we must proceed with the last step of our method.

Lightweight Verification of Executable Models 473

4.3 Step 3: Discarding Potentially Violating Actions

It may happen that the context in which a PVA is executed within the path
guarantees that the effect of the PVA is never going to actually violate any of
its SVCs. Roughly, there are two ways to discard a PVA: (1) when the path
contains a guard (i.e. a conditional structure) that ensures the PVA will only
be executed in a safe context; and (2) when the path contains another action
which counters or complements the effect of the PVA in order to maintain the
integrity of the system. In this last step, we analyze the set of PVAs returned
by the previous step and try to discard them by analyzing the two possibilities
commented above. If all PVAs can be discarded, the path is classified as SE.
If not, the path (and consequently the operation) is marked as non-SE and the
corresponding corrective feedback is provided.

We have determined a set of discarding conditions, that is, the conditions
that a path must satisfy in order to discard a specific PVA. Due to space
limitations, we do not show here these conditions (the interested reader may
found it in [17]), but we illustrate a subset of these conditions using our running
operation.

Example. In the following we try to discard the PVAs of our running path
according to our discarding conditions. For each PVA and SVC, we show the
conditions that the path should satisfy to discard that PVA. Then, {sat} states
that the condition is satisfied by the path, while {not sat} states the
opposite.

Conditions to discard the PVAs of “newProduct” (second path):
• PV A1,SV C1.1: The attribute “code” of object “p” must be initialized {sat}
• PV A1,SV C1.2: The attribute “price” of object “p” must be initialized {sat}
• PV A1,SV C1.3: The attribute “specialPrice” of object “p” must be initialized {sat}
• PV A1,SV C1.4: The attribute “description” of object “p” must be initialized {sat}
• PV A2,SV C2.1:

option 1: Must exist a guard which ensures the PVA will only be executed when there is not
another product with the same “code” {not sat}

option 2: Must exist a product with the same “code” and its value is modified {not sat}
option 3: Must exist a product with the same “code” and this product is destroyed {not sat}

• PV A3,SV C3.1: Must exist a guard which ensures the PVA will only be executed when
“ specialPrice< price” {not sat}

• PV A4,SV C4.1: Must exist a creation of the symmetric link of type “CanBeSubstitutedBy”
between objects “ substitutedProducts[i]” and “self” {not sat}

Second path of “newProduct” does not satisfy all discarding conditions, hence,
our method concludes it is not SE (and the same for the first path).

In the following we show the repaired operation newProduct once the feedback
provided by our method has been integrated. The added sentences are preceded
by a right arrow (→). Each of them fixes one of the problems detected above.
For the sake of simplicity, we only show one possible reparation.

474 E. Planas, J. Cabot, and C. Gómez

activity newProduct(in code:String, in price:Real, in specialPrice:Real, in description:String,
in substitutedProducts:Product[0..*] sequence){
→ if (not Product::allInstances()→exists(p|p.code= code)) {
→ if (specialPrice< price) {

p = new Product();
p.code = code;
p.price = price;
p.specialPrice = specialPrice;
p.description = description;
for (i in 1.. substitutedProducts→size()) {

CanBeSubstitutedBy.createLink(p1=>self,p2=> substitutedProducts[i]);
→ CanBeSubstitutedBy.createLink(p1=> substitutedProducts[i],p2=>self);
}

→ }
→ }
}

5 Conclusions and Further Work

We have proposed a lightweight method for assisting the designer during the
specification of executable behavioural models. In particular, our method ver-
ifies the Strong Executability (SE) of action-based UML operations (although
our method could be used with models written in other languages) wrt the in-
tegrity constraints imposed by the structural model at design-time. The main
characteristics of our method are its efficiency (since no simulation/animation
of the behaviour is required) and feedback (for non-executable operations, it is
able to identify the source of the inconsistency and suggest possible corrections).
For these reasons, our method is easy to integrate in existing CASE tools.

As a further work, we plan to study the executability of operations when they
are combined with other UML behavioural diagrams and explore the integration
of our verification method in a more complete verification framework that could
help designers choose the most appropriate verification technique for the model
they have defined, depending on the target property and the verification trade-
offs (completeness, efficiency,...) they are ready to accept.

Acknowledgements. This work has been partly supported by the Ministerio
de Ciencia y Tecnoloǵıa under TIN2008-00444 project, Grupo Consolidado.

References

1. Abdelhalim, I., Sharp, J., Schneider, S., Treharne, H.: Formal verification of to-
keneer behaviours modelled in fUML using CSP. In: Dong, J.S., Zhu, H. (eds.)
ICFEM 2010. LNCS, vol. 6447, pp. 371–387. Springer, Heidelberg (2010)

2. Alur, R.: Model Checking: From Tools to Theory. In: 25 Years of Model Checking,
pp. 89–106 (2008)

3. Baker, P., Bristow, P., Jervis, C., King, D.J., Thomson, R., Mitchell, B., Burton,
S.: Detecting and Resolving Semantic Pathologies in UML Sequence Diagrams. In:
ESEC/SIGSOFT FSE, pp. 50–59 (2005)

4. Cabot, J., Clarisó, R., Riera, D.: Verifying UML/OCL Operation Contracts. In:
Leuschel, M., Wehrheim, H. (eds.) IFM 2009. LNCS, vol. 5423, pp. 40–55. Springer,
Heidelberg (2009)

Lightweight Verification of Executable Models 475

5. Cabot, J., Teniente, E.: Determining the Structural Events That May Violate an
Integrity Constraint. In: Baar, T., Strohmeier, A., Moreira, A., Mellor, S.J. (eds.)
UML 2004. LNCS, vol. 3273, pp. 320–334. Springer, Heidelberg (2004)

6. Eshuis, R.: Symbolic Model Checking of UML Activity Diagrams. ACM Transac-
tions on Software Engineering and Methodology 15(1), 1–38 (2006)

7. Farré, C., Teniente, E., Urṕı, T.: Checking query containment with the CQC
method. Data Knowledge Engineering 53(2), 163–223 (2005)

8. Graw, G., Herrmann, P.: Transformation and Verification of Executable UML Mod-
els. Electr. Notes Theor. Comput. Sci. 101, 3–24 (2004)

9. Grosu, R., Smolka, S.A.: Safety-Liveness Semantics for UML 2.0 Sequence Dia-
grams. In: ACSD, pp. 6–14. IEEE Press, Los Alamitos (2005)

10. Hanus, M.: Programming with Constraints: An Introduction by Kim Marriott and
Peter J. Stuckey. MIT Press, Cambridge (1998); J. Funct. Program, 11(2):253–262,
2001.

11. Latella, D., Majzik, I., Massink, M.: Automatic Verification of a Behavioural Sub-
set of UML Statechart Diagrams Using the SPIN Model-checker. Formal Asp.
Comput. 11(6), 637–664 (1999)

12. Lilius, J., Paltor, I.: vUML: A Tool for Verifying UML Models. In: ASE, pp. 255–
258 (1999)

13. OMG. UML 2.0 Superstructure Specification (ptc/07-11-02) (2007)
14. OMG. Concrete Syntax for UML Action Language (Action Language for Founda-

tional UML), version Beta 1, (2010), www.omg.org/spec/ALF
15. OMG. Semantics Of A Foundational Subset For Executable UML Models (fUML),

version 1.0 (2011), www.omg.org/spec/FUML
16. Planas, E., Cabot, J., Gómez, C.: Verifying Action Semantics Specifications in

UML Behavioral Models. In: van Eck, P., Gordijn, J., Wieringa, R. (eds.) CAiSE
2009. LNCS, vol. 5565, pp. 125–140. Springer, Heidelberg (2009)

17. Planas, E., Cabot, J., Gómez, C.: Lightweight Verification of Executable Models
(Extended Version) (2011),
http://gres.uoc.edu/pubs/VerifyingExecModels.pdf

18. Queralt, A., Teniente, E.: Reasoning on UML conceptual schemas with operations.
In: van Eck, P., Gordijn, J., Wieringa, R. (eds.) CAiSE 2009. LNCS, vol. 5565, pp.
47–62. Springer, Heidelberg (2009)

www.omg.org/spec/ALF
www.omg.org/spec/FUML
http://gres.uoc.edu/pubs/VerifyingExecModels.pdf

M. Jeusfeld, L. Delcambre, and T.W. Ling (Eds.): ER 2011, LNCS 6998, pp. 476–485, 2011.
© Springer-Verlag Berlin Heidelberg 2011

Towards a Model of Services Based on Co-creation,
Abstraction and Restriction

Maria Bergholtz , Paul Johannesson, and Birger Andersson

Department of Computer and Systems Sciences, Stockholm University,
Isafjordsgatan 39. SE 164 40 Kista, Sweden

{maria,pajo,ba}@dsv.su.se

Abstract. The term service is today defined and used in a multitude of ways,
and there is no usage characteristic that is common for all of these ways. As a
consequence natural language terms used for describing services are ambiguous
and often confusing. The lack of a common agreed upon definition of the term
makes it difficult to understand and classify services as well as distinguish them
from non-service concepts. In this paper, we do not propose a new definition of
service but a model of services that helps in analysing the concept. The model is
based on three perspectives: service as a means for co-creation of value, service
as a means for abstraction, and service as a means for providing restricted
access to resources.

Keywords: service, service model, service definition, service resource, service
process, service delivery, Resource-Event-Agent ontology, Hohfeld’s classification
of Rights, conceptual modeling.

1 Introduction

The increasing interest in services has created a multitude of alternative views and
definitions, often conflicting, of the service concept. The lack of a common view of
the service concept makes it difficult to reason about, describe and classify services in
a uniform way.

One attempt to defining services has focused on identifying properties (such as
intangibility, inseparability, heterogeneity, and perishability [20]) that distinguish
them from other kinds of recourses. However, [3, 4, 16, 5] and others have argued
that the suggested properties are neither necessary nor sufficient for something to be a
service. For example, not only services are intangible but also other kinds of
resources, such as information and IPRs. Heterogeneity can be observed also in the
production of certain goods and information, such as handicraft objects and
newspaper articles.

An alternative way of identifying services is to view them as perspectives on the
use and offering of resources [3]. This view is shared by the Unified Services Theory
[16], which also bases its definition of services on the use and exchange of resources;
here service processes are processes where customers always provide significant input
resources, as opposed to non-service processes where customers only select what
output resources to buy and pay for.

 Towards a Model of Services Based on co-creation, Abstraction and Restriction 477

Services may also be understood as a means for abstraction. A common view
found in [18, 13, 14, 10, 17] is services as an abstraction of activities that once started
will achieve some user goal, usually defined as a change of state in (user) resources.

An often mentioned advantage of services is that the management (infrastructure,
maintenance, technology, etc.) of resources are moved from customer to provider
[12]. This is a consequence of the principle that service provision does not entail
ownership transfer [12], [20]. The concept of service can be used as a means for
providing restricted resource access without ownership transfer [2].

The diversity of service views and definitions, and the fact that these views are
often conflicting, suggest that a multi perspective approach is required. We will
introduce a number of service perspectives rather than propose a single service
definition. We identify three main service perspectives from the literature introduced
in the previous paragraphs: service as a means for co-creation of value [16, 10],
service as a means for abstraction [18, 13, 14, 10, 17], and service as a means for
providing resource access without ownership transfer [20, 2]. The purpose of the
paper is to propose a conceptual model of services based on these three perspectives.
The model has its theoretical foundation in the REA ontology [11] and Hohfeld’s
classification of rights, [8]. REA is used because it is a well established ontology of
business collaboration with the basic view that resources are exchanged between
agents according to agreements. Hohfeld’s classification of rights is used as means for
analysing what kinds of rights are transferred in exchanges of services and other kinds
of resources. The work reported here builds on the work of [2], which is also based on
a multi perspective view of analysing services. The main differences are (i): a new
foundation for the model based on distinguishing between service as a resource and
service as a process, (ii) the alignment of the model concepts with the core REA
ontology.

The remainder of this paper is structured as follows. In Section 2, we briefly
outline the REA ontology and Hohfeld’s classification of rights. In Section 3, we
introduce the three perspectives of services and elaborate them together with their
corresponding conceptual models in Sections 4 - 6. Section 7 concludes the paper.

2 The REA Ontology and Hohfeld’s Classification of Rights

The REA (Resource-Event-Agent) ontology was originally formulated in [11] and
developed further in a series of papers, e.g. [7, 9]. The ontology is based on the core
concepts of resources, events, and agents, which are described in the following
subsections.

2.1 Resources

A resource is something that is of value for at least one agent, e.g., a car or Internet
access. Based on the degree to which a resource is tied to an agent, resources can be
classified into three categories: internal resources that are existent dependent on one
agent, for example skills, knowledge and experiences, shared resources that are
existence dependent on two or more agents, for example relationships and rights, and
independent resources that can exist independently of any agent, for example land
and information.

478 M. Bergholtz , P. Johannesson, and B. Andersson

2.2 Conversion Processes

Resources are not unchanging but can be transformed, i.e. they can be produced,
modified, used, or consumed. Resources are transformed in so called conversion
processes consisting of conversion events. A conversion event represents a
transformation of a single resource. A conversion event that creates a new resource or
increases the value of an existing resource is called a production event. A conversion
event that consumes a resource or decreases the value of a resource without
consuming it, is called a consumption event or a usage event, respectively. Usage
events are using resources that may be reused in several conversion events, (similar to
the concept of ‘assets’ [6]), while consumption events use up resources (similar to the
concept of ‘consumables’ [6]). Examples of conversion events are the production of
bread, the repair of a car, and the consumption of a liter of fuel.

A conversion process is a set of conversion events including at least one
production event and at least one consumption or usage event. The latter requirement
expresses a duality relationship between production and consumption/usage events,
stating that in order to produce or improve some resource, other resources have to be
used or consumed in the process. For example, in order to produce a car, a number of
other resources have to be used, such as steel, knowledge, and labour.

2.3 Exchange Processes

Resources can also be exchanged between agents, which occur in exchange processes
consisting of exchange events. An exchange event is the transfer of rights on some
resource to or from an agent. If the exchange event means that the agent receives
rights on a resource, we call the event a take event. If the exchange event means that
the agent gives up rights on a resource, we call the event a give event.

An exchange process is a set of exchange events including at least one give event
and one take event. Similarly to conversion processes, this requirement expresses a
duality relationship between take and give events - in order to receive a resource, an
agent has to give up some other resource. For example, in a purchase (an exchange
process) a buying agent has to provide money to receive some goods. Two exchange
events take place in this process: one where the amount of money is decreased (a give
event) and another where the amount of goods is increased (a take event).

2.4 Hohfeld’s Classification of Rights

In the sections above, we have used the notion of rights in an informal way. As a
more precise understanding of rights will be required for characterizing different
kinds of resources and exchanges, we here introduce a rights classification based on
the work of W. N. Hohfeld, [8], who identified four broad categories of rights: claims,
privileges, powers, and immunities (not used in this paper).

• One agent has a claim on another agent if the second agent is required to act in a
certain way for the benefit of the first agent, typically by carrying out some action.
Conversely, the second agent is said to have a duty, or an obligation, to the first
agent. An example is a person who has a claim on another person to pay an amount
of money, implying that the other person has a duty to pay the amount.

 Towards a Model of Services Based on co-creation, Abstraction and Restriction 479

• An agent has a privilege on an action if she is free to carry out that action without
any interference from the environment in which the action is to be carried out. By
environments is here meant social structures such as states, organizations or even
families. Some examples of privileges are free speech and the fact that a person
owning some property has privileges to use it in various ways.

• A power is the ability of an agent to create or modify a relationship. An example is
that a person owning a piece of land has the power to sell it to someone else,
thereby creating a new ownership relationship for that piece of land.

Most relationships are governed by a combination of several of these rights. For
example, owning a car means to have privileges on using it and also the power to lend
or sell it, i.e. creating new ownerships involving other agents.

2.5 Offerings, Commitments, and Contracts

Exchange processes can be governed by agreements that specify when and how
resources are to be exchanged. The two most important types of agreements are
offerings and contracts consisting of commitments. A commitment on a resource type
is a duty for an agent to carry out a conversion or exchange event for an instance of
that resource type. For example, an agent may have a duty towards another agent to
transfer the ownership (an exchange event) of a car (instance of a car type) to that
agent. A contract is a collection of commitments and possibly additional rules
governing their interrelationships.

An offering for a resource type is a conditional obligation for one agent to some
community of agents to enter into a commitment for that resource type. For example,
an agent may provide a sales-offering for a certain car model, meaning that she is
prepared to sell cars of that model, i.e. enter into commitments for the car model. An
offering is similar to a commitment but differs from it by not being binding until
another agent has accepted it. Thus, when an offering is accepted, it will result in a
commitment. A set of offerings can be collected into a bundled offering, analogously
to a contract.

Fig. 1 summarises the notions introduced so far in the form of a UML class
diagram. In the following sections, we will suggest further analysis and
specialisations of these notions in order to clarify the different perspectives on
services. Almost all of the concepts in the conceptual model presented here may exist
on both a knowledge level and an operational level. According to [6], the operational
level models concrete, tangible individuals in a domain, while the knowledge level
models information structures that characterize categories of individuals on the
operational level. The diagrams of figure 1 through 5 hence distinguish between
knowledge level concepts such as Resource Types (categories of Resources such as
Car model, Agent type, Real Estate) and operational level concepts such as Resources
(specific and often tangible concepts like a specific car or a concrete piece of land),
Event Types and Events, and so forth for every concept in the model. Due to space
limitations, we include both knowledge and operational level concepts in the
diagrams only when both concepts are required to illustrate a focal point in the model.

480 M. Bergholtz , P. Johannesson, and B. Andersson

Fig. 1. REA ontology (adopted and extended from [15])

3 Service Perspectives

In the following sections, we will introduce a conceptual model for services. The model
does not propose a single service definition but instead suggests a number of service
perspectives based on the ways resources can be used and exchanged. This approach is
reflected in the model, which does not include the term “service” but instead a family of
related terms, including “service resource”, “service offering”, and “service process”. We
have identified three main perspectives on services: service as a means for co-creation of
value [16, 10], service as means for abstraction [18, 13, 14, 10, 17], and service as a
means for providing resource access without ownership transfer [20, 2]:

• Service as a means for co-creation of value. For most kinds of production of goods,
customers are not involved. Instead, goods are produced internally at a supplier
who later on sells the goods to a customer who uses them without the involvement
of the supplier. In contrast, services are created and used in an interaction between
supplier and customer.

• Service as a means for abstraction. Services can provide an abstraction
mechanism, where resources are specified through their function and not their
construction. In other words, a resource is defined in terms of the effects it has in a
process, not in terms of its properties or constituents. For example, a hair dressing
service can be defined in terms of the effects it has on someone’s hair, not in terms
of the resources being used in the execution of the service, such as scissors or
electric machines.

• Service as a means for providing restricted resource access. An agent can provide
access to some of her resources to another agent by transferring the ownership of
them. However, such an ownership transfer may in some situations be undesirable
or even legally impossible. Thus, there is a need for a way of offering access to
resources without transferring ownership, and services provide a mechanism for
this purpose. For example, instead of selling transportation vehicles, transportation
services are provided.

 Towards a Model of Services Based on co-creation, Abstraction and Restriction 481

The model, based on these three perspectives, will be presented in a series of UML-
diagrams, all of which have the REA ontology as their point of departure. Fig. 2 and 3
show services as co-creation of value, while Fig. 4 and Fig. 5 show services as
abstraction mechanisms and providers of resource access without ownership transfer.

4 Service as a Means for Co-creation

For a typical goods producing company, its interactions with customers can be quite
limited. Without any involvement of the customers, the company procures raw
materials and other assets from suppliers and uses these resources to produce goods to
be sold. The only role of the customer is to select which goods to purchase and pay
for them. Thus, the company carries out a conversion process in isolation
transforming input resources to output resources, see Fig. 2a.

Fig. 2. Single agent process versus service-process

In contrast, a service can never be carried out by a provider in isolation, as it
always requires a customer to take part in the process. In such a service process, the
provider and the customer together co-create value, as both of them provide resources
to be used or consumed in the process. For example, in a photo sharing service, the
service provider will supply hardware and software, while the customer will provide
photos and labour. Together, they engage in a process that results in value for the
customer, shareable photo albums. Pictorially, a service process can be viewed as in
Fig. 2b, which shows how both a service provider and a customer jointly contribute to
the service process that produces an output for the benefit of the customer.

In order to make the concept of service as co-creation more precise, it is useful to
distinguish between service as a process and service as a resource. The word
“service” is sometimes used to denote a process, e.g., in the phrase “Today, our
company carried out 25 car repair services”. In other cases, “service” is used to
denote a resource, e.g., “Our company offers car repair services for the fixed price of
200 euros”.

A service process, see Fig. 3, is a conversion process that uses or consumes
resources from two agents, called provider and customer, and produces resources that
are under the control of the customer. The provider in the service process has to
actively participate in the process, while the customer may be passive. For example, a
customer driving a borrowed car is not a service process, while a customer being
driven by (a representative of) the provider is. Thus, a service process differs from

482 M. Bergholtz , P. Johannesson, and B. Andersson

other processes in three ways: First, some of the input resources are under the control
of one agent, the provider, while the output resources are under the control of another
agent, the customer. This means that the provider uses or consumes her resources in
the service process for the benefit of another agent. Secondly, not only the provider
but also the customer provides resources as input to the service process. Thirdly, the
provider actively takes part in the service process.

Fig. 3. REA-ontology from Fig. 1 expanded with Service Process to highlight co-creation of
value between provider and customer

5 Service as a Means for Abstraction

To be able to specify resources in an abstract way provides several advantages. It
becomes easier for a provider to describe the benefits of an offering when she can
focus on the effects of the resource offered and abstract away from its accidental
features. The provider can address the needs and wants of the customer and clarify
how these are fulfilled by her offering without going into detail about its composition.
Furthermore, the provider does not have to commit to any specific way of delivering
her offering; instead, she can choose to allocate the resources needed in a flexible and
dynamic way.

Fig. 4. Service as an abstraction mechanism

A service resource is an abstract resource that is defined only through its use and
effects in a service process, i.e. what changes it can bring to other resources when
consumed in such a process. For example, a hair cut service is defined through the
effects it has on the hair style of a person. It is not defined by means of the concrete
resources used when cutting the hair, such as labour and scissors. Rather, the concrete
resources to be used are left unspecified and can change over time. On one day the

 Towards a Model of Services Based on co-creation, Abstraction and Restriction 483

hair dresser may use scissors and on another day an electric machine, but in both
cases he provides a hair cut service. Thus, the same service resource can be based on
different sets of other resources, as shown in Fig. 4, and when it is consumed exactly
one of these resource sets will be used.

6 Service as a Means for Providing Restricted Resource Access

When satisfying a need, an agent can often choose between using a service or some
other kind of resource, like goods or information. Using a service instead of another
kind of resource provides several benefits, as the service consumer does not own the
service. This means that she does not need to take on typical ownership
responsibilities, like infrastructure management, integration, and maintenance. For
example, a person can satisfy her transportation needs either by buying and driving a
car or by using a taxi service. In the former case, she will own the car required for the
transportation, i.e. she will be responsible for cleaning it, repairing it, getting the right
insurances, and many other infrastructure and maintenance tasks. When using a taxi
service, on the other hand, she does not have to care about any of these
responsibilities but can focus solely on how to use the taxi to best satisfy her
transportation needs. Thus, services provide a convenient way of offering and
accessing resources by allowing agents to use them without owning them.

Fig. 5 depicts three different ways for an Agent to make its resources available to
other agents through offerings:
• an agent may offer to sell a resource to another agent, i.e. to transfer the ownership

of the resource to the other agent, as modelled by Ownership Offering. A transfer
of ownership means that a number of rights are transferred from seller to buyer, in
Fig. 5 modelled by class Right. The rights transferred include powers and
privileges according to Hohfelds's classification of rights in section 2.4. For
example, an agent offering to sell a book to a customer means that the agent is
offering the customer privileges to use the book as well as the power to transfer the
ownership of the book to yet another agent if she so wishes.

• an agent may offer to lend a resource or provide access to it in a Lending Offering.
This means to offer an agent to get certain privileges on the resource for a period of
time but without getting any ownership, i.e. the borrower is not granted the power
to change the ownership of the resource. Optionally, the borrower may get some
other powers, such as lending the resource to a third agent.

Fig. 5. Service as a means for restricted access provisioning

484 M. Bergholtz , P. Johannesson, and B. Andersson

• an agent may make a Service Offering to a potential customer, which is the most
abstract way of providing access to an agent’s resources. A service offering means
that the provider offers to use some of her service resources in a service process
that will benefit the customer. Effectively, the provider restricts access to these
resources. In particular, the customer is not offered any powers or privileges on
any concrete resources. Instead, she is offered a claim on the provider to contribute
to a certain service process.

7 Concluding Remarks

In this paper, we have proposed a conceptual model of the notion of service. A main
characteristic of the model is that it describes services from three perspectives -
service as a means for co-creation of value, for abstraction, and for access restriction.

The work presented here was partly motivated by a language problem identified by
Wittgenstein [19]. He contends that a word is defined by its use, that it can be used in
different ways, and that there is no usage characteristic that is common for all these
ways. In the context of services, this is particularly problematic since no common
agreed upon definition of the term exists and the natural language terms used are
often confusing. Analysing services along the dimensions co-creation, abstraction and
restriction mechanisms makes it possible to distinguish between similarly labeled but
different concepts. For instance, a ‘health care insurance service’ is different from a
‘burglar insurance service’ (there is little to no customer participation in the latter and
hence it is not a service process).

Our three perspectives can be compared to those introduced in [1]. There the
chosen perspectives are called ‘service value’, ‘service offering’, and ‘service
process’. The service value perspective is analogous to our abstraction perspective,
where a service is described by the effects it produces, but it also contains elements
from our co-production perspective. The service offering perspective is related to our
view of services as a means for restricted access to resources. The service process
perspective describes how a service offering is put into operation, but in contrast to
our proposal the authors do not investigate realization issues in detail.

In addition to their theoretical contributions, we believe that the results of the paper
will find applications in structuring service descriptions and developing service
classifications. Further research will investigate these issues as well as consolidate the
proposed model.

References

1. Akkermans, et al.: Value Webs: Ontology-Based Bundling of Real-World Services. IEEE
Intelligent Systems 19(4) (July/August 2004)

2. Bergholtz, M., Andersson, B., Johannesson, P.: Abstraction, restriction, and co-creation:
Three perspectives on services. In: Trujillo, J., Dobbie, G., Kangassalo, H., Hartmann, S.,
Kirchberg, M., Rossi, M., Reinhartz-Berger, I., Zimányi, E., Frasincar, F. (eds.) ER 2010.
LNCS, vol. 6413, pp. 107–116. Springer, Heidelberg (2010)

3. Edvardsson, B., Gustafsson, A., Roos, I.: Service portraits in service research: a critical
review. Int. Jour. of Service Industry Management 16(1), 107–121 (2005)

 Towards a Model of Services Based on co-creation, Abstraction and Restriction 485

4. Goldkuhl, G., Röstlinger, A.: Beyond goods and services - an elaborate product
classification on pragmatic grounds. In: Proc. of Quality in Services (QUIS 7), Karlstad
university (2000)

5. Ferrario, R., Guarino, N., Fernandez Barrera, M.: Towards an Ontological Foundations for
Services Science: the Legal Perspective. In: Sartor, G., Casanovas, P., Biasiotti, M.,
Fernandez Barrera, M. (eds.) Approaches to Legal Ontologies. Springer, Heidelberg
(2009)

6. Fowler, M.: Analysis Patterns. Reusable Object Models. Addison-Wesley, Reading (1997)
7. Geerts, G., McCarthy, W. E.: An Accounting Object Infrastructure For Knowledge-Based

Enterprise Models. IEEE Int. Systems & Their Applications, pp. 89-94 (1999)
8. Hohfeld, W.N.: Fundamental Legal Conceptions. Greenwood Press, Westport (1978)
9. Hruby, P.: Model-Driven Design of Software Applications with Business Patterns.

Springer, Heidelberg (2006); ISBN: 3540301542
10. Lusch, R.F., Vargo, S.L., Wessels, G.: Towards a conceptual foundation for service

science: Contributions from service-dominant logic. IBM Systems Journal 47(1) (2008)
11. McCarthy, W. E.: The REA Accounting Model: A Generalized Framework for Accounting

Systems in a Shared Data Environment. The Accounting Review (1982)
12. NESSI, http://www.nessi-europe.com
13. OASIS. Reference Model for Service Oriented Architecture 1.0, http://www.oasis-

open.org/committees/download.php/19679/soa-rm-cs.pdf
14. Preist, C.: A Conceptual Architecture for Semantic Web Services. In: McIlraith, S.A.,

Plexousakis, D., van Harmelen, F. (eds.) ISWC 2004. LNCS, vol. 3298, pp. 395–409.
Springer, Heidelberg (2004)

15. REA-ontology, http://reatechnology.com/what-is-rea.html
16. Scott, E., Sampson, C., Froehle, M.: Foundation and Implications of a Proposed Unified

Services Theory. Production and Operations Management 15(2), 329–343 (2006)
17. United Nations, Dept. of Economic and Social Affairs. Common DataBase (CDB) Data

Dictionary (February 19, 2008),
http://unstats.un.org/unsd/cdbmeta/gesform.asp?getitem=398

18. Web Services Architecture W3C Working Group (2004),
http://www.w3.org/TR/2004/NOTE-ws-arch-20040211/

19. Wittgenstein, L.: The Blue and Brown Book, pp.1-74. New York: Harper&Row (1980),
http://www.geocities.jp/mickindex/wittgenstein/witt_blue_en.
html

20. Zeithaml, V.A., Parasuraman, A., Berry, L.L.: Problems and Strategies in Services
Marketing. Journal of Marketing 49, 33–46 (1985)

M. Jeusfeld, L. Delcambre, and T.W. Ling (Eds.): ER 2011, LNCS 6998, pp. 486–494, 2011.
© Springer-Verlag Berlin Heidelberg 2011

A Semantic Oriented Method for Conceptual Data
Modeling in OntoUML Based on Linguistic Concepts*

Lucia Castro1, Fernanda Baião1, and Giancarlo Guizzardi2

1 NP2Tec – Research and Practice Group in Information Technology,
Federal University of the State of Rio de Janeiro (UNIRIO), Rio de Janeiro, Brazil

2 Ontology and Conceptual Modeling Research Group (NEMO), Computer Science
Department, Federal University of Espírito Santo (UFES), Espírito Santo, Brazil

{lucia.castro,fernanda.baiao}@uniriotec.br,
gguizzardi@inf.ufes.br

Abstract. Conceptual data models, as means of communication, must have
semantic quality. Such quality relies on the model’s completeness and validity
in relation to the concepts it is supposed to represent. Since the modeler
acquires such concepts mostly from texts created in a natural language, a
semantic-oriented linguistic approach should be adopted for building
unambiguous conceptualizations. Also, the chosen modeling language must
offer enough constructs for the creation of a faithful representation, like
OntoUML. Such languages, however, may require a learning period that
modelers hardly can afford. This paper proposes a modeling method that
consists of systematic steps to promote the understanding of the concepts
inherent to the domain to be modeled. The method application is illustrated in
an example. Additional evaluations of the proposed method included a case
study, which results indicated that it makes modeling less complex by allowing
for modeling choices to be dealt with within the realm of the natural language.

Keywords: Conceptual modeling, linguistics, OntoUML, semantics.

1 Introduction

Conceptual data modeling “is by far the most critical phase of database design and
further development of database technology is not likely to change this situation” [1],
and the model is a tool for intentional communication and reasoning, i.e., human
activities. This paper addresses the conceptual data modeling process, which
comprises two main activities: the acquisition of concepts used in the domain being
modeled, and the representation of the acquired concepts in a modeling language
(ML). The modeler obtains such concepts from texts produced in a natural language
(NL); here, the term text is used in the same sense as in [2] and [3] and does not
imply written material, but any product of the discourse of a community.

Discourse is described in [4] as the speech activity of an individual according to
determined circumstances, and Bunge [5] defines universe of discourse as “The

* This research is funded by FAPES (45444080/09) and CNPq (481906/2009-6).

 A Semantic Oriented Method for Conceptual Data Modeling in OntoUML 487

collection of the possible referents of a discourse”. In other words, the universe of
discourse comprises the real-world things about which the discourse of an individual
is generated through the texts he/she produces. Individual, in this case, is a
community that deals with such universe in its professional activities, the members of
which are said to be the domain specialists. The conceptual data model must express
the domain interpretations of such specialists; the modeler must conceal personal
experiences and interpretations from both the modeling process and the model itself.

The conceptual data modeling process is, then, similar to a translation activity, in
terms that it consists of understanding concepts represented in a (natural) language
and then representing those same concepts in a different (modeling) language. Thus, it
was only natural that researchers resorted to linguistics for support in the development
of methods and solutions for the modeling process, as presented in [6] and its
references. However, such projects view modeling activities from the perspective of
the (meta)model adopted, and linguistic concepts are used as means to support
modeling decisions. Also, their work focuses on the syntactic analysis of texts, barely
mentioning semantics at all; yet, translating, as well as modeling, is an activity based
on “meaning”, therefore handling semantics in its essence.

As with a NL to NL translation, the model is ideally expected to have the same
meaning as the texts in the NL; this means to say that a conceptual model must have
semantic quality. Lindlam et al [7] state that for a model to have semantic quality it
has to be valid and complete in relation to the universe of discourse it represents.
However, the modeler does not have access to such universe and his/her work has to
be based on the interpretation of the domain specialists of that domain. This article
presents a semantic-oriented method for conceptual data modeling that makes use of
the theories of semantic types proposed by Dixon [8], as well as linguistic concepts,
so as to systematically address this interpretation; this method is the result of the
research presented in [9]. The ML adopted is OntoUML [10], [11], [12], [13], a well
founded conceptual ML that comprises a semantically rich set of constructs. It is
divided into six sections, as follows: section 2 discusses languages, both natural and
modeling ones; section 3 describes the proposed conceptual data modeling method;
section 4 presents a theoretical example for the application of the proposed method,
section 5 discusses the method evaluation and section 6 concludes the article.

2 Languages

Bunge [5] describes language as basically a “System of signs serving to communicate
and think.” Natural language is the designation given to languages natively spoken
by humans for communication. All facts and phenomena related to NLs are studied in
Linguistics, which comprises semantics (study of the relations between the signs and
their referents), syntax (study of the relations among signs) and pragmatics (the study
of the relations between signs and the one who uses them); from these, semantics
stands out since “Understanding how we mean and how we think is a vital issue for
our intuitive sense of ourselves as human beings.” [14].

The lexicon of a NL (its words) is divided into word classes or parts of speech [15]
[16], that can be either closed (have fewer members and cannot normally be
extended) or open (can be indefinitely extended). Open class items (nouns, adjectives,
verbs and adverbs) are the ones that carry the semantic load. Dixon [5] states that the

488 L. Castro, F. Baião, and G. Guizzardi

open class items of any (natural) language can be grouped into classes he names
semantic types. All the words of a semantic type share a common meaning component
and a typical set of grammatical properties, as, for instance, its association with a part
of speech. The most important semantic types for conceptual modeling purposes, at
least in English and other structurally similar languages, are the ones related to
concrete-referenced nouns, since this is the class of words that name types of things.
Dixon [5] groups such nouns as follows: Animate (in this case, animals), Human and
its subclasses (Kin, Rank and Social Groups), Parts (body and others) and Inanimate
and its subclasses (Artefacts, Celestial and Weather, Environment and Flora). Verbs
are important for establishing relations between concepts. Semantic types associated
with verbs are classified as Primary (“refer to some activity or state; verbs that can
make up sentences by themselves”) and Secondary (“those providing semantic
modification of some other verb”). Semantic Types associated with Adjectives, on the
other hand, are divided in 11 subclasses: Dimension, Physical Property, Speed, Age,
Colour, Value, Difficulty, Volition, Qualification, Human Propensity and Similarity.

Apart from using their NLs for communication, men have been creating
abstractions (i.e., building models) of real-world things in a way to understand and
cope with reality [17]. For models to be understandable and useful to a community,
they must be created from a system of symbols and connecting rules (grammar)
known to all members of that community. Such systems are MLs, which are artificial
languages also used for communication and to help reasoning, through the creation of
models instead of texts. This work adopts OntoUML as ML, that, due to its
underlying foundational ontology (UFO) [10] [13], provides constructs enough to
allow for the creation of semantically accurate models. However, using such a
language can present a problem since it requires a deeper knowledge of the
philosophical concepts that are the bases for its constructs meanings, and a training
period that most modelers cannot afford.

Different from NLs, MLs do not provide a lexicon; consequently, the translation
between a NL and a ML must be done through the comparison between NL constructs
(here, semantic types) and the constructs of the ML (the NL sign representing the
concept being modeled appears in the model as the label of a construct). Bunge [5]
defines construct as “a concept, proposition, or set of propositions, such as a
classification, a theory, or a moral or legal code”; both natural and modeling
languages have meaningful constructs. For instance, each of Dixon’s semantic types
[8] can be considered a construct, as well as each category described in the ML.
Constructs are defined in terms of meta-properties, which must be compared during
the modeling process so that the meaning restrictions imposed by the NL constructs
are present in the model, reflected in the ML construct used in each representation.

3 The Method

This paper proposes a method for the creation of conceptual data models in
OntoUML. The main goals are: to provide means for modelers to understand the
concepts presented in the texts produced by domain specialists; to prevent modelers’
from representing their own interpretation of the domain, instead of the specialists’; to
allow for modeling decisions to be made within the realm of the NL, so that even

 A Semantic Oriented Method for Conceptual Data Modeling in OntoUML 489

modelers with little experience in OntoUML are able to create accurate models; to
help creating models that have semantic quality, by ascertaining that the
representations are valid and complete; and to provide means for this semantic quality
to be maintained through time. The proposed method consists of six steps:

Step 1 – Breaking the text into kernel sentences - The modeler decomposes the NL
texts produced by domain specialists into kernel sentences. Kernel sentences are
affirmative, active sentences that do not have co-ordinate or subordinate clauses [18]
[19]. They form the deep structure (meaning) of a text, whereas the surface structure
(form) of the text is the result of transformations applied to the deep structure (e.g.,
identical subject suppression and passivization [19]). To extract the kernel sentences
from a text, one should reverse such transformations. A simple example could be the
sentence John went to the beach and was taken home afterwards. The sentence
includes two clauses co-ordinated by the conjunction and. John is suppressed in the
second clause, since it is the subject in both. Also, we know that someone took John
home after he left the beach. The technique, thus, for “breaking” complex sentences is
looking for co-ordinate and subordinate conjunctions and understanding how they
relate clauses, identifying suppressed subjects, and converting sentences from passive
to active voice, whenever applicable. When a resulting active voice sentence does not
have an explicit subject, the word “someone” should be used as substitute (this
specifies points to be clarified with the user in Step 2). So, for the example above, we
could have two kernel sentences: John went to the beach and Someone took John
home afterwards. Kernel sentences must be arranged in a numbered list in the order
they appear in the text, so that reading the list is like reading the text itself.

As the modeler decomposes the text into simple sentences, he/she may find that
pieces of information are missing or find ambiguities that will have to be explained by
the domain specialists. One way of spotting missing information is to identify the
verb semantic types and their related semantic roles and make up questions according
to those roles. For instance, the verb give imply that something (gift) that belonged to
someone (donor) will now belong to someone else (recipient). Table 1 presents some

Table 1. Questions for spotting semantic roles

Semantic Type Semantic Role Questions
Affect Agent Who <verb> <Target> with <Manip>?

Target <Agent> <verb> whom/what <Manip>?
Manip <Agent> <verb> <Target> with what?

Giving Donor Who <verb> <Gift>to <Recipient>?
Gift <Donor> <verb> what to <Recipient>?
Recipient <Donor> <verb> <Gift> to whom/what?

Corporeal Human Who <verb> <Substance>?
Substance <Human> <verb> what?

Competition Competitor Who <verb>?
Activity Competitor <verb> <Activity>?

Social Contract None Who <verb> who?
Using None Who <verb> what?

490 L. Castro, F. Baião, and G. Guizzardi

of the semantic types for verbs [5], their related semantic roles and the questions that
might be asked in order to discover missing information. The modeler should write a
list with all questions and doubts, in the same order as they appear in the text; this list,
as well as the list of simple sentences, is the output for Step 1.

Step 2 – Clearing doubts - The modeler must then meet with domain specialist(s)
and clear all doubts. According to the answers provided by the domain specialists, the
modeler updates the list of simple sentences, explicating previously unknown
subjects, and eliminating synonyms and ambiguities.

Step 3 – Identifying signs - The modeler must identify the conceptually
significant NL signs present in the sentence list. In English, as well as in other
similarly structured languages, such symbols will be nouns, verbs and adjectives.
Such signs must be organized in a table with columns for the subject, the verb and
the objects of each simple sentence – each row of the table will represent a simple
sentence.

Step 4 – Linking signs to Semantic Types - The modeler must associate each of the
identified signs with one of the semantic types. As semantic types are not mutually
exclusive, the modeler must be careful so as to make the association that is applicable
in that specific context or domain. The output for this phase is the table of signs; each
row presents the sign and the semantic type to which it was associated.

Step 5 – Mapping Semantic Types to OntoUML constructs – In this step, the
modeler systematically identifies a preliminary set of OntoUML constructs that will
be needed to model the concept each sign previously identified represents. This is
conducted by applying the mappings defined in [9]; some mapping examples are
illustrated in Table 2. This mapping tends to be fairly stable and, as such, it can be
organized in a table that can be accurately used in most situations.

Step 6 – Creating the model - Once the semantic types have been mapped to the ML
constructs, the model can be created and taken to the domain specialist for validation,
before the final model is produced.

Table 2. Semantic Types to OntoUML constructs Mapping

Semantic
Type

OntoUML Construct Semantic
Type

OntoUML Construct

Animate Kind Social Group Kind
Human Kind Part When the part is a component, kind

When the part is an ingredient, quantity
When the part is a member, kind
When the part is a sub-collection, collective

Kin Role Inanimate Kind
Rank Role Artefact Kind

 A Semantic Oriented Method for Conceptual Data Modeling in OntoUML 491

4 Example

In their seminal conceptual modeling book [1], Battini et al provide exercise case
studies for students. We have selected a small excerpt of the text for one of such
exercises (pp 268--269) for our example modeling.

 “In the library of a computer science department, books can be purchased both by
researchers and by students. Researchers must indicate the grant used to pay for the book;
each student has a limited budget, which is fixed each year by the dean of the college.”

The list of simple sentences produced in step 1 is:

0. In the library of a computer science department
1. Researchers can purchase books
2. Students can purchase books
3. Researchers pay for books with grants
4. Researchers must indicate the grant used to pay for the book
5. Each student has a limited budget
6. Each student pays for books from their budget
7. The Dean of the college fixes students’ budgets every year

The question produced in Step 1 is answered in Step 2 as follows:

Q: When you say “grant”, do you refer to the amount of money or to a
document, like a grant report, or a grant certificate?

A: It refers to the amount of money (library budget).

Table 3 presents the signs identified in each sentence.

Table 3. List of signs

Sentence Signs
0 Library Comp. Sci. Dept.
1 Researcher Purchase Book
2 Student Purchase Book
3 Researcher Pay Book Grant
4 Researcher Indicate Grant Book
5 Student Have Limited Budget
6 Student Pay Book Budget
7 Dean Fix Student [yearly] Budget

The next step is the association of identified signs with semantic types. Table 4

presents the list of signs and the rationale behind their associations.
The modeler then must map semantic types to OntoUML constructs, following

table 2. For example, a Social Group is mapped to Kind, Rank to Role, Giving to
Relator and Artefact to Kind (detailed rationale beyond this mapping is explained in
[9] and [20]). Finally, the modeler creates an OntoUML model and validates it with
domain specialists. Figure 1 presents the produced version of our example model.

492 L. Castro, F. Baião, and G. Guizzardi

Table 4. List of signs and their associations with semantic types

Sign Semantic Type
Computer
Science Dpt.

Noun phrase that refers to a division of an institution, i.e., it has a concrete reference,
is related to humans and is a Social Group.

Library Noun that also refers to a division of an institution; also has a concrete reference, is
related to humans and is a Social Group.

Researcher Sign refers to a human but qualifying the person according to a position and/or
responsibility; the semantic type should be Rank.

Purchase Purchase is a Primary A verb, of the type Giving, i.e., one that always involves 3
semantic roles: a donor, a donated thing and a recipient.

Book An object (concrete and inanimate) produced by men, thus, an Artefact.
Student Sign refers to a human but qualifying the person according to a position and/or

responsibility; the semantic type should be Rank.
Grant Sign refers to an amount of money given by an organization for a particular purpose; a

nominalization of the verb to grant, it’s meaning relates a Primary A verb of the
type Giving.

Budget Sign refers to an amount of money set aside for a particular purpose; a nominalization
of the verb to budget, it’s meaning relates to a Primary A verb of the type Giving,
since the Dean fixes the amount of money a Student has at his/her discretion, and this
procedure is repeated every year.

Dean Sign refers to a human but qualifying the person according to a position and/or
responsibility; the semantic type should be Rank.

Fig. 1. OntoUML example model

5 Method Evaluation

The method presented in this paper was evaluated through a case study and an
experiment. Due to space restrictions, details about this evaluation are presented in
[20]. The results of the experiment showed that modelers found it easier to discuss
concepts in terms of NL constructs, and that the model produced according to the
proposed method was complete and valid, i.e., the model had semantic quality.

6 Conclusion

This work proposed a method for conceptual data modeling in OntoUML that is based
on linguistic analysis and on the semantic types theory proposed by Dixon [5]. We
developed the mapping of each of those semantic types to the constructs of a well-
founded ontological ML, OntoUML. MLs differ from NLs in that the meaning of

 A Semantic Oriented Method for Conceptual Data Modeling in OntoUML 493

representations do not come from signs but from constructs; thus, the modeler must
compare NL constructs (semantic types) to the ML ones, from the meta-properties
inherent to each of them. One quality trait of the produced model relies on its
semantic equivalence to the descriptions provided in the NL. The use of ontological
languages to achieve semantic quality is not a novelty and the semantic gain of an
OntoUML model over a correspondent ER one is evidenced in [12]. However, the
semantics of such language constructs is much less intuitive for the modeler than the
semantics of the constructs of his NL; thus, discussing concepts and understanding the
metaproperties that apply to them is much easier if done in the NL. The method
proposed in [20] uses linguistics to achieving semantic quality in conceptual models,
not only by the application of semantic principles but also by providing a
systematized list of activities to achieve this goal.

The outputs of each step of the method form a record of the modeler’s rationale
throughout the modeling process; this is important for keeping the semantic quality of
the created method. NLs are essentially ambiguous, and provide several ways of
saying the same thing; also, NLs are in constant evolution and semantics are affected
by it, i.e., the meaning of signs may change with time. MLs, on the contrary, need to
provide for unambiguous representations of concepts; and models are static
representations that may provide erroneous information as time passes. Consequently,
recording the reasons why constructs and signs were chosen to represent a concept is
a way of maintaining the semantic quality: people who read the model in the future
can use the documentation created during the modeling process to understand such
choices and the semantics behind them.

References

1. Batini, C., Ceri, S., Navathe, S.: Conceptual Database Design. Benjamin/Cummings
(1992)

2. Eco, U.: Semiotics and the Philosophy of Language. Indiana Univ. Press (1984)
3. Koch, I.: Introdução à Linguística Textual. WMF Martins Fontes (2009) (in Portuguese)
4. Bechara, E.: Moderna Gramática Portuguesa. Nova Fronteira (2009) (in Portuguese)
5. Bunge, M.: Philosophical Dictionary. Prometheus Books, Amherst (2003)
6. Castro, L., Baiao, F., Guizzardi, G.: A Survey on Conceptual Modeling from a Linguistic

Point of View. Technical Report, Rela Te-DIA (2009)
7. Lindlam, O., Sindre, G., Sølvberg, A.: Understandig Quality in Conceptual Modeling.

IEEE Software 11(2), 42–49 (1994)
8. Dixon, R.M.W.: A Semantic Approach to English Grammar. Oxford University Press,

Oxford (2005)
9. Castro, L., Baião, F., Guizzardi, G.: A Linguistic Approach to Conceptual Modeling with

Semantic Types and OntoUML. In: EDOC 2010, Intl. Workshop on Vocabularies,
Ontologies and Rules for the Enterprise (VORTE 2010), Vitoria (2010)

10. Guizzardi, G.: Ontological Foundations for Structural Conceptual Models. CTIT (2005)
11. Benevides, A.B., Guizzardi, G.: A Model-Based Tool for Conceptual Modeling and

Domain Ontology Engineering in OntoUML. In: Filipe, J., Cordeiro, J. (eds.) Enterprise
Information Systems. Lecture Notes in Business Information Processing, vol. 24, pp. 528–
538. Springer, Heidelberg (2009)

494 L. Castro, F. Baião, and G. Guizzardi

12. Guizzardi, G., Lopes, M., Baião, F., Falbo, R.: On the Importance of Truly Ontological
Distinctions for Ontology Representation Languages: An Industrial Case Study in the
Domain of Oil and Gas. In: Halpin, T., Krogstie, J., Nurcan, S., Proper, E., Schmidt, R.,
Soffer, P., Ukor, R. (eds.) Enterprise, Business-Process and Information Systems
Modeling. Lecture Notes in Business Information Processing, vol. 29, pp. 224–236.
Springer, Heidelberg (2009)

13. Benevides, A.B., Guizzardi, G., Braga, B.F.B., Almeida, J.P.A.: Assessing Modal Aspects
of OntoUML Conceptual Models in Alloy. In: Heuser, C.A., Pernul, G. (eds.) ER 2009.
LNCS, vol. 5833, pp. 55–64. Springer, Heidelberg (2009)

14. Jackendoff, R.: Foundations of Language. Oxford University Press, Oxford (2002)
15. Greenbaum, S.: The Oxford English Grammar. Oxford University Press, Oxford (1996)
16. Quirk, R., Greenbaum, S.: A University Grammar of English. Longman, London (1973)
17. Schichl, H.: Models and History of Modeling. In: Kallrath, J. (ed.) Modeling Language in

Mathematical Optimization, pp. 25–36. Kluwer Academic Publishers, Norwell (2004)
18. Chomsky, N.: Aspects of the Theory of Syntax. MIT Press, Cambridge (1965)
19. Chomsky, N.: Syntactic Structures. Mouton de Gruyter, New York (2002)
20. Castro, L.: Abordagem Linguística para a Modelagem Conceitual de Dados com Foco

Semântico, MSc Dissertation, Unirio, Rio de Janeiro (2010) (in Portuguese)

Content-Based Validation of Business Process

Modifications

Maya Lincoln and Avigdor Gal

Abstract. Researchers become increasingly interested in developing
tools for evaluating the correctness of business process models. We present
a methodology for content-based validation of changes to business pro-
cesses, relying on an automatic extraction of business logic from real-life
business process repositories. Each process step in a repository is au-
tomatically transformed to a descriptor - containing objects, actions,
and related qualifiers. From the collection of descriptors we induce tax-
onomies of action sequence, object lifecycle, and object and action hi-
erarchies that form the logical foundation of the presented validation
process. The method utilizes these taxonomies to identify process defi-
ciencies that may occur due to process model modification, and suggests
alternatives in order to correct and validate the models.

Keywords: Business process modeling, Content-based validation, Busi-
ness process compliance.

1 Introduction

In recent years, researchers have become increasingly interested in developing
tools for evaluating the correctness of business process models, using verifica-
tion [21,14,13], validation [24,9,3,5], and compliance [1,4,19,2,15] methods. We
observe that the validation process cannot be done globally but is rather specific
to an organization or a specialized domain for which the processes are designed.
To illustrate, consider Example 1.

Example 1. Fig. 1 illustrates two processes, one that deploys a Make to Stock
(MtS) production policy and the other uses a Make to Order (MtO) production
policy. The execution pattern of the MtS process includes six sub-processes (Fig.
1a). The MtO process, on the other hand, would start with a different flow of

a.
 T

he
 M

tS

pr
oc

es
s

b.
 T

he
 M

tO

pr
oc

es
s

Forecasting
and planning

Sourcing and
procurement

Manufacturing
Inventory and

warehouse
management

Sales order
processing

Shipping and
transportation

Sales order
processing Planning

Sourcing and
procurement

Fig. 1. An example of the MtS and MtO high-level processes

M. Jeusfeld, L. Delcambre, and T.W. Ling (Eds.): ER 2011, LNCS 6998, pp. 495–503, 2011.
c© Springer-Verlag Berlin Heidelberg 2011

496 M. Lincoln and A. Gal

sub-process, although some of them are also included in the MtS flow, e.g., the
“Sales order processing” sub-process (Fig. 1b). From a validation perspective,
any inclusion of forecasting related activities in the MtO process would be re-
dundant if not erroneous. Furthermore, aiming to process sales orders in the
context of MtS prior to completing a forecasting activity would be lacking if
not impossible. Such validation cases, that we refer to as “content-based valida-
tion” propagate into lower level process models and will neither be identified by
structural verification methods, nor by semantic/data based validation methods.
Hence, the need for content-based validation becomes apparent.

Our work presents a content-based validation framework that uses organizational
standards to evaluate the correctness of both newly designed and modified pro-
cesses. A unique feature of the proposed framework, in the context of process
validation, is the creation of a repository that captures organizational standards
by using natural language processing analysis to capture simultaneously action
and object patterns. Our contribution to the compliance domain is in the dy-
namic construction and adjustment of patterns - avoiding the need to design
and maintain external, static rules.

We propose to automatically extract business logic from process repositories
using the PDC model [7,8]. Each process step is encoded automatically as a
descriptor that represents objects, actions, and qualifiers. The collection of all
process descriptors formulates taxonomy models of action sequence, object life-
cycle, and object and action hierarchies that support the validation process. The
proposed method identifies content-based validation deficiencies, from which re-
quired corrections can be deduced.

The proposed method can support business analysts in validating new process
models or in changing existing models, by marking contextually non-valid pro-
cess segments and suggesting possible corrections. Our contribution includes: (1)
proposing a content-based validation of business process models that require no
additional semantics or pre-defined patterns. The validation process is agnostic
to the process model type (e.g., BPMN, Petri net, YAWL, etc.); (2) identifying
conflicts that may occur in business process models by adding new knowledge;
and (3) being able to examine new knowledge that has no prior reference or
representation in the existing repository.

The paper is organized as follows: we provide a classification of the related
work in Section 2, positioning our work with respect to previous research. In
Section 3 we present the descriptor model. Then, we describe the content-based
validation method in Section 4. We conclude in Section 5.

2 Related Work

To position our work within the vast research on business process validation, we
group current related works into three major research fields: business process
verification, validation and compliance (see illustration in Fig. 2). Business pro-
cess verification (left-hand side of Fig. 2) addresses the question of “does this
process model work?.” This research stream largely focuses on avoiding errors

Content-Based Validation of Business Process Modifications 497

Business Process Verification Business Process Validation

Semantics
correctness

Object and action
based validation

[10] [11] [14]

[21] [12] [13] [20]

[18]
[23]

[3] [24]

[17]

[9]
[4]

[19] C o m p l i a n c e

[1]

[5]

[2] [16]

Fig. 2. Related work segmentation

at the structural level of the process model, e.g., deadlocks or incorrect data
links. Business process validation (right-hand side of Fig. 2) addresses the ques-
tion “does this process model work well?.” To answer this question it is required
to examine the content, data and context layers of process models, aiming to
validate the process logic. For example, a process model that contains the step
“Pay for received goods” before the step “Receive goods” can be verified but
may not be valid. Business process compliance addresses both verification and
validation issues (see shaded area in Fig. 2), answering the question “does this
process comply with a reference model/pattern?.”

Business Process Verification. Works such as [21,13] focus on avoiding er-
rors at the structural level. Special emphasis was put on correctness of change
operations [12], mainly the insertion and moving of activities [14], as well as on
defining the soundness criterion and related derivatives, e.g., [10,11,20], aiming
to check whether proper execution completion is possible or guaranteed.

Business Process Validation. Semantics correctness was defined using anno-
tations, e.g., [9], ontologies, e.g., [18], and combinations of the two, e.g., [23,24,3].
This domain also includes data flow analysis, e.g., [16]. Within this stream, [5],
for example, deals with compliance of business process models to a set of given
reference object lifecycles, and the work in [17] defines a concept of action pat-
terns, which are closely related to semantic content of a process model. We
position our work in this area of process validation, but unlike other works in
this field, our approach: (1) does not require any predefined pattern or rule to
determine validation, and (2) deals simultaneously with action sequences and
object lifecycles.

Business Process Compliance. Compliance works mainly focus on validat-
ing a combination of process data and structure [1,23,4,19,2]. The frameworks
in [9,2], for example, provide general criteria for assessing the compliance of
processes with semantic constraints. More specifically, certain compliance works
were aimed at supporting specific tasks, e.g., identifying violations of execution
order compliance rules [1].

Our proposed framework does not rely on predefined patterns, but it rather
suggests a content-aware validation method that dynamically extracts business
logic from real-life business process repositories. The automatic extraction of
organizational content from process model repositories distinguishes our work
from previous contributions, and creates a platform for developing enabling
applications for content-based validation.

498 M. Lincoln and A. Gal

3 The Descriptor Model

In this section we provide a formal descriptor space model. Section 3.1 describes
the descriptor model and Section 3.2 describes descriptor-based taxonomies.

3.1 The Process Descriptor Repository

In this section we describe a descriptor model, based on [8,7]. Fig. 3 provides
an illustrating example (using YAWL [22]) of a business process model of the
process “Evaluate Supplier Performance,” describing a flow of activities aimed
at fulfilling the process goal.

Initiate a
supplier

performance
evaluation

request

Determine the
supplier 's current

status with the
Company

Decide if this is
an internal

request

Determine whether an
authorized supplier should

be used instead of the
requested supplier

Notify the
evaluated supplier
of the evaluation

status

Fig. 3. The “Evaluate Supplier Performance” process model

In the Process Descriptor Catalog model (“PDC”) [8,7] each activity is com-
posed of one action, one object that the action acts upon, and possibly one or
more action and object qualifiers. Qualifiers extend the description of actions
and objects. In particular, a qualifier of an object is roughly related to an object
state. State-of-the-art Natural Language Processing (NLP) systems, e.g., the
Stanford Parser,1 also used in [6], can serve to automatically decompose process
and activity names into process/activity descriptors. For example, in Fig. 3, the
activity “Notify the evaluated supplier of the evaluation status” generates an
activity descriptor containing the object “supplier,” the object qualifier “evalu-
ated,” the action “notify,” and the action qualifier “of the evaluation status.”

In general, given an object, o, an object qualifier, qo, an action, a, and an
action qualifier, qa, we denote a descriptor, d, as follows: d = (o, qo, a, qa). A
complete action is an action with its qualifier, and similarly, a complete object
is an object with its qualifier. We denote by o(d) the complete object part of the
descriptor, e.g., “evaluated supplier” in the example.

A process repository is a collection of interconnected process models, where
the execution of an activity in one process model may invoke the execution of
another activity in another process model.

3.2 Descriptor-Based Taxonomies

From the descriptor model’s two atomic elements, objects and actions, we con-
struct four taxonomies, namely an action hierarchy model, an object hierarchy
model, an action sequence model, and an object lifecycle model. The action and
object taxonomy models organize a set of activity descriptors according to the re-
lationships among business actions and objects both hierarchically and in terms
of execution order, as detailed next.

1 http://nlp.stanford.edu:8080/parser/index.jsp

http://nlp.stanford.edu:8080/parser/index.jsp

Content-Based Validation of Business Process Modifications 499

Send

Send by
fax

Send by
e-mail

Do

EvaluateSearchCheck

Search in
database

Manual
check

Information

Information on
suppliers

Information on
purchase

items

Object

payment

Nonstandard
payment

a. A segment of the action hierarchy model b. A segment of the object hierarchy model

Category codeCorrect Inventory
type

Fig. 4. Segments of action and object hierarchy models

Initiate a
supplier

performance
evaluation

request

Determine the
supplier 's current

status with the
Company

Decide if this is
an internal

request

Determine whether an
authorized supplier should

be used instead of the
requested supplier

Notify the
evaluated supplier
of the evaluation

status

Fig. 5. Segments of the action sequence model and the object lifecycle model

The hierarchical dimension of actions and objects is determined by their qual-
ifiers. We define an Action Hierarchy Model (AHM) to be a tree T = (A,E),
where A represents actions and an edge (ai, aj) in E exists if aj is more specific
than ai. An Object Hierarchy Model (OHM) is defined similarly. To illustrate,
segments of an action hierarchy model and an object hierarchy model are pre-
sented in Fig. 4. For example, the action “Manual check” is a subclass (a more
specific form) of “Check” in the action hierarchy model, since the qualifier “Man-
ual” limits the action of “Check” to a reduced action range.

The descriptor model induces two object-based models. The Action Sequence
Model (ASM) is a graph of ordered complete actions (an “action sequence”)
that are applied to a complete object (see illustration in Fig. 5a). For example,
the ASM of the object “New supplier details” contains the following action
sequence: “Receive,” followed by “Examine,” “Approve,” and “Document.”

The Object Lifecycle Model (OLM), is a graph of ordered complete objects
that expresses the possible ordering of the object’s states (see illustration in Fig.
5b). This sequence is built by locating the same object with different qualifiers
along the process diagram. For example, the object “New supplier” is part of
the object lifecycle of “Supplier” in Fig. 5b.

Note that ASM and OLM are defined as sets of sequences and not as a single
sequence, since different unconnected processes in the repository may involve the
same object, and therefore contribute a different sequence to these models.

Based on the activity decomposition model, the operational range of a busi-
ness process repository is compiled into a descriptor space (DS), in which each
activity is represented by a coordinate of its four descriptor components. The
generated descriptor space is a quad-dimensional space, in which the coordinates
represent the object dimension, the action dimension, and their qualifiers.

500 M. Lincoln and A. Gal

4 The Content-Based Validation Method

We now present a method for validating changes in process repositories using the
descriptor model. Business logic and business rules, as reflected in an existing
process repository, are valuable assets of an enterprise. Therefore, the suggested
validation method aims at seeking consistency of new knowledge, as reflected in
model changes, with existing knowledge, and alert if inconsistencies are revealed.
In doing so, the method is conservative with respect to existing knowledge and in-
different to new knowledge that has no representation in the existing repository.
Note that some inconsistencies may reflect new valid knowledge in an enterprise
modus-operandi (e.g., changes in the execution order of activities). Nevertheless,
the suggested method will also alert such inconsistencies, not because they are
necessarily wrong, but in order to enable the designer to correct either the new
knowledge or the existing repository if required.

The validation of changes in existing process repositories is based on the com-
pliance of a change with the business logic and business rules as automatically
extracted from these repositories (before changes were applied). We define two
atomic change types, namely Add and Delete. We consider a modification of the
position of an existing activity and a modification of an existing descriptor (e.g.,
a change of its object or its action) as a combination of a Delete change followed
by an Add change. Also, more complex changes, such as the change of a chain of
activities, is broken into atomic changes and analyzed accordingly. Finally, we
note that newly designed processes are validated by examining the addition of
each new activity.

The method examines the validity of an atomic change based on the busi-
ness logic as expressed in an underlying process repository (see Section 3). The
suggested framework provides process designers with information regarding the
validity of a change, which guides them regarding possible corrections that may
be applied.

The validation method is initiated when a process designer makes an atomic
change to an existing process model, denoted by vch. When the designer adds a
new activity or deletes an existing one, the activity’s name is decomposed auto-
matically into a process descriptor format, dch, as detailed in Section 3.1. Then,
the new ASM and OLM for o(dch), denoted ASMch and OLMch respectively,
are created.

The validation method examines the atomic change based on the content
rules that are explicitly given in a repository and exposed by the four object
and action taxonomies (Section 3.2). As a result, it produces a list of validation
deficiencies (detailed in Section 4).

Validation Deficiencies. Using the four taxonomies, it is possible to define
three error types, as follows:

1. An Invalid Action Sequence error (Err-IAS) occurs whenever an atomic
change in a process repository causes a violation of the action sequence
model of an object in the existing process repository. For example, the actions
“Create,” “Submit,” and “Review” are all applied sequentially to the object

Content-Based Validation of Business Process Modifications 501

“Requisition” in the same process model within a given process repository.
When deleting the activity “Submit requisition” from this process model -
a new action sequence is created containing the action “Create” followed
by “Review.” Since no such sequence of actions is applied to the object
“Requisition” in the original process repository (see Fig. 5a), it is considered
a violation of this object’s action sequence. Similarly, this error type can
also occur when adding a new activity “Approve requisition” before “Review
requisition.”

2. An Invalid Object Lifecycle error (Err-IOL) similarly occurs whenever an
atomic change in a process model violates an object lifecycle as represented
in the existing process repository.

3. An Unknown Descriptor Combination error (Err-UDC) occurs when a newly
added descriptor is not represented in the original process repository.

The condition for the occurrence of an error of type Err-IAS is as follows: Err-
IAS=true if ASMch(o(dch)) � ASMorig(o(dch)). Given a changed descriptor,
dch, ASMorig(o(dch)) is the original ASM of o(dch) before applying that change.
Similarly, the condition for Err-IOL is:
Err-IOL=true if OLMch(o(dch)) � OLMorig(o(dch)) and the condition for Err-
UDC is: Err-UDC=true if dch �∈ DSorig.

For example, let us examine a case of a new activity “Verify inventory type”
that is added between the activities “Search for inventory type” and “Insert in-
ventory type” in a given process repository. In this example: o(dch)=“inventory
type” and therefore ASMorig(o(dch)) ={(Define, Verify, Correct), (Search, In-
sert, Define, Correct)} (see Fig. 5a). After adding the new activity, the following
new action sequence model is created: ASMch(o(dch)) ={(Define, Verify, Cor-
rect), (Search, Verify, Insert)}. Since the sequence (Search, Verify, Insert) is not
a subset of any of the paths in ASMorig, Err-IAS is invoked.

5 Conclusions

We proposed a methodology for content-based validation of business process
models that focuses on deficiency identification. The suggested methodology can
save process modification time and support non-expert designers in validating
business process models.

This work can be applied in real-life scenarios, yet we suggest to: (1) extend
the empirical study, and (2) introduce a transactional concept that will allow
analyzing several atomic changes together.

References

1. Awad, A., Smirnov, S., Weske, M.: Towards Resolving Compliance Violations in
Business Process Models. In: GRCIS. CEUR-WS. org (2009)

2. El Kharbili, M., Stein, S., Markovic, I., Pulverm, E.: Towards a framework for
semantic business process compliance management. In: Proc. of the Workshop on
Governance, Risk and Compliance for Information Systems, pp. 1–15. Citeseer
(2008)

502 M. Lincoln and A. Gal

3. Farahbod, R., Glässer, U., Vajihollahi, M.: Specification and validation of the busi-
ness process execution language for web services. In: Zimmermann, W., Thalheim,
B. (eds.) ASM 2004. LNCS, vol. 3052, pp. 78–94. Springer, Heidelberg (2004)

4. Governatori, G., Milosevic, Z., Sadiq, S.: Compliance checking between business
processes and business contracts. In: 10th IEEE International Enterprise Dis-
tributed Object Computing Conference, EDOC 2006, pp. 221–232. IEEE, Los
Alamitos (2006)

5. Kuster, J., Ryndina, K., Gall, H.: Generation of business process models for object
life cycle compliance. In: Alonso, G., Dadam, P., Rosemann, M. (eds.) BPM 2007.
LNCS, vol. 4714, pp. 165–181. Springer, Heidelberg (2007)

6. Leopold, H., Smirnov, S., Mendling, J.: Refactoring of process model activity labels.
In: Hopfe, C.J., Rezgui, Y., Métais, E., Preece, A., Li, H. (eds.) NLDB 2010. LNCS,
vol. 6177, pp. 268–276. Springer, Heidelberg (2010)

7. Lincoln, M., Golani, M., Gal, A.: Machine-assisted design of business process
models using descriptor space analysis. In: Hull, R., Mendling, J., Tai, S. (eds.)
BPM 2010. LNCS, vol. 6336, pp. 128–144. Springer, Heidelberg (2010)

8. Lincoln, M., Karni, R., Wasser, A.: A Framework for Ontological Standardization
of Business Process Content. In: Int. Conf. on Enterprise Information Systems, pp.
257–263 (2007)

9. Ly, L.T., Rinderle-Ma, S., Goser, K., Dadam, P.: On enabling integrated process
compliance with semantic constraints in process management systems. Information
Systems Frontiers, 1–25 (2009)

10. Mendling, J., van der Aalst, W.M.P.: Formalization and verification of ePCs with
OR-joins based on state and context. In: Krogstie, J., Opdahl, A.L., Sindre,
G. (eds.) CAiSE 2007 and WES 2007. LNCS, vol. 4495, pp. 439–453. Springer,
Heidelberg (2007)

11. Puhlmann, F., Weske, M.: Investigations on soundness regarding lazy activities.
In: Dustdar, S., Fiadeiro, J.L., Sheth, A.P. (eds.) BPM 2006. LNCS, vol. 4102, pp.
145–160. Springer, Heidelberg (2006)

12. Reichert, M., Dadam, P.: ADEPT flex-supporting dynamic changes of workflows
without losing control. J. of Intelligent Information Systems 10(2), 93–129 (1998)

13. Reichert, M., Dadam, P., Bauer, T.: Dealing with forward and backward jumps in
workflow management systems. Software and Systems Modeling 2(1), 37–58 (2003)

14. Rinderle, S., Reichert, M., Dadam, P.: Correctness criteria for dynamic changes in
workflow systems–a survey. Data & Knowledge Engineering 50(1), 9–34 (2004)

15. Russell, N., ter Hofstede, A.H.M., Edmond, D., van der Aalst, W.M.P.: Work-
flow data patterns: Identification, representation and tool support. In: Delcambre,
L.M.L., Kop, C., Mayr, H.C., Mylopoulos, J., Pastor, Ó. (eds.) ER 2005. LNCS,
vol. 3716, pp. 353–368. Springer, Heidelberg (2005)

16. Sadiq, S., Orlowska, M., Sadiq, W., Foulger, C.: Data flow and validation in work-
flow modelling. In: Proc. 15th Australasian database conference, vol. 27, pp. 207–
214. Australian Computer Society, Inc. (2004)

17. Smirnov, S., Weidlich, M., Mendling, J., Weske, M.: Action patterns in business
process models. Service-Oriented Computing, 115–129 (2009)

18. Soffer, P., Kaner, M., Wand, Y.: Assigning ontology-based semantics to process
models: The case of petri nets. In: Bellahsène, Z., Léonard, M. (eds.) CAiSE 2008.
LNCS, vol. 5074, pp. 16–31. Springer, Heidelberg (2008)

19. Thom, L.H., Reichert, M., Chiao, C.M., Iochpe, C., Hess, G.N.: Inventing
Less, Reusing More, and Adding Intelligence to Business Process Modeling. In:
Bhowmick, S.S., Küng, J., Wagner, R. (eds.) DEXA 2008. LNCS, vol. 5181, pp.
837–850. Springer, Heidelberg (2008)

Content-Based Validation of Business Process Modifications 503

20. van der Aalst, W.M.P.: Verification of workflow nets. In: Azéma, P., Balbo, G.
(eds.) ICATPN 1997. LNCS, vol. 1248, pp. 407–426. Springer, Heidelberg (1997)

21. van der Aalst, W.M.P.: Workflow verification: Finding control-flow errors using
petri-net-based techniques. In: van der Aalst, W.M.P., Desel, J., Oberweis, A. (eds.)
Business Process Management. LNCS, vol. 1806, pp. 19–128. Springer, Heidelberg
(2000)

22. van der Aalst, W.M.P., Ter Hofstede, A.: YAWL: yet another workflow language.
Information Systems 30(4), 245–275 (2005)

23. Weber, I., Hoffmann, J., Mendling, J.: Semantic business process validation. In:
Proc. of Int. Workshop on Semantic Business Process Management (2008)

24. Weber, I., Hoffmann, J., Mendling, J.: Beyond soundness: on the verification
of semantic business process models. Distributed and Parallel Databases 27(3),
271–343 (2010)

Visual Change Tracking for Business Process

Models

Sonja Kabicher, Simone Kriglstein, and Stefanie Rinderle-Ma

University of Vienna, Faculty of Computer Science
Rathausstrasse 19/9, 1010 Vienna, Austria

{sonja.kabicher,simone.kriglstein,stefanie.rinderle-ma}@univie.ac.at

Abstract. Basically there are two options to display process change: (a)
showing the corresponding process model before and after the change, or
(b) including change tracking options within the process model. In this
paper we want to find out how to support users best in grasping pro-
cess changes. For this, first of all, a conceptualization of Change Track-
ing Graphs (CTG) is provided that is independent of any process meta
model. The CTGs are then visualized in different ways following aes-
thetic criteria on the one side and mental map aspects on the other side.
Further, different visual properties are applied. All different combina-
tions of change representation for process models are evaluated based
on an empirical study with 117 participants. This study provides a first
stepstone towards a more user-centric application of process change.

Keywords: Business Process Modeling, Information Visualization,
Conceptual Model Evolution.

1 Introduction

In this work we present an visual framework for change tracking in business
process models. Following a human-centric view, we argue that the inclusion
of change information in a graph supports traceability and transparency of the
changes, and allows the user to achieve change awareness by providing a picture
of the whole process and its elements affected by the change. The following
challenges of considering change tracking in graphs are focused in this work: (a)
How to consider change as content in graphs?, (b) How to layout change tracking
graphs?, and (c) How to visualize change in the change tracking graph? To
tackle these questions, our approach includes: (1) the description of the change
tracking graph and the change tracking states of graph elements by means of a
general series-parallel digraph, (2) the description of change as it is considered
in tracking graphs, namely by means of change patterns and the assignment
of visual properties to changed elements in the change tracking graph, (3) the
description of two intuitive options of change tracking graph layouting (future
perspective, and past perspective), and (4) a survey to elicit users’ preferences
concerning change tracking graph layouting and the visualization of changes in
the change tracking graph. Our hypotheses are the following:

M. Jeusfeld, L. Delcambre, and T.W. Ling (Eds.): ER 2011, LNCS 6998, pp. 504–513, 2011.
c© Springer-Verlag Berlin Heidelberg 2011

Visual Change Tracking for Business Process Models 505

Hypothesis 1: Change tracking in the business process model supports the
process user in getting a holistic view of the changes implemented.

Hypothesis 2: There is a varying preference of the process users concerning the
layout of the change tracking model that is either grounded in the layout
of the initial model (focusing on the mental map) or in the layout of the
adjusted model (considering particular aesthetic criteria).

Hypothesis 3: Particular visual properties (like color(hue) and brightness) help
the process user to better understand the change performed on the business
process model.

In this work we focused on the control flow of business process models, par-
ticularly considering activities, execution constraints, and their ordering. Other
components of business process modeling, like information modeling (data rep-
resentation) are not further considered in this work.

2 Main Issues of Visual Change Tracking

In this section we discuss the corestones of our visual framework for change
tracking: aesthetic criteria, mental map, and visual properties.

2.1 Aesthetic Criteria

Aesthetic criteria are particularly important when layouts are produced for hu-
man consumption and should optimize the graph drawing to increase the read-
ability [12] [14]. There are various aesthetic criteria discussed in the visualization
research community, some of the commonly used ones are, for example, edge
crossing minimization, bend minimization, layout size/area minimization, angle
maximization, length minimization of edges, reflection of symmetries, cluster-
ing of nodes to reveal the structure of the graph, and layered drawings [14][8]
[20][28][23]. Often the aesthetic criteria are only presented for drawing static
graphs without changes. Therefore, it is recommended to preserve the mental
map of a graph after each update [9][7][3]. However, the aesthetic criteria often
compete against each other and depending on the priorities set for particular aes-
thetic criteria the graphs vary in their layout [20]. Already existing experimental
results show that there is a trade-off between aesthetic criteria for ’drawing a
graph nicely’ and efforts to preserve the mental map [20]. Therefore, we analyze
the mental map separately from the common aesthetic criteria to find out which
approach is better suited for the visualization of changes in business processes.

2.2 Mental Map

Graphs which represent business processes are usually dynamic graphs, because
business processes can change over time. The changes can spoil the layout of the
graph (e.g., an added node may overlap an existing node) and therefore layout
algorithms were developed which rearrange nodes and edges in consideration of
aesthetic criteria [10]. However, layout algorithm which completely rearrange the

506 S. Kabicher, S. Kriglstein, and S. Rinderle-Ma

nodes and edges are not helpful, because they destroy the abstract structural
information which users form about a graph (or called users’mental map about a
graph) [10][3]. Therefore, other aspects gained importance especially for dynamic
graphs which concentrate on the preservation of user’s mental map. In other
words, these aspects take the initial model’s layout into account when changes
are implemented. It is argued that similarity of the graph’s layout (or layout
stability [22]) before and after change helps the user to keep their orientation
in the graph [22]. This saves much time otherwise users have to relearn the
structure of the graph after each update [6]. Keeping the mental map means
that the layout of a graph is preserved as much as possible after a change. This
can be supported, e.g., by the following requirements [10][22][21][7]: (a) move
as few nodes as possible (only the part of the graph should be affected by the
change where the change occurs), (b) move nodes as little as possible and (c)
keep uniform scaling.

2.3 Visual Properties

Visualizations encode the components of data by means of visual properties
[2]. According to [5], there exist planar (e.g. spatial position) and retinal vari-
ables (e.g. color(hue), size, brightness, shape, texture, and orientation). In case
of business process models, the spatial positions defines the flow of the process
and retinal variables can be used to make changes in processes transparent. It is
important that the visual properties support users to interpret the data quickly
and therefore it has to be avoided that visual properties are used as decorative
elements, or as unnecessary graphical effects. The choice of the visual properties
depends strongly on their purpose and therefore not all visual properties work
well for each visualization. For example, orientation of elements plays a role
according to aesthetic criteria for graph drawing which can be a contradiction
with the recommendation to maximize consistent flow direction for the visualiza-
tion of business processes [4]. Or, the usage of the visual properties shapes and
textures is restricted because shapes or textures often strongly depend on the
used business process modeling notations. To make change information between
processes transparent in our approach, we concentrate on the visual properties
color(hue), brightness, and size which allow us to be independent of the used
business process modeling notations and aesthetic criteria.

3 Visual Framework for Change Tracking in Graphs

In this section we introduce our approach of including change tracking informa-
tion in graphs. In the following, we use the term graph to refer to series-parallel
digraphs. In a first step we describe our approach by means of a series-parallel
digraph, as such a graph serves as an illustrative general graph for business
process models. In a second step we show the application of our approach to
particular workflow modeling notations.

Visual Change Tracking for Business Process Models 507

For our approach we assume that change is to be conducted to an already
existing graph by following a predefined set of change patterns [29] at a specific
date. To perform change on a graph, some pre- and postconditions need to be
met, as listed in the following. Precondition 2 and Postcondition 3 refer to quality
metrics of graphs (e.g., correctness). As we use change patterns for performing
the change on existing graphs, the quality metrics are assumed to be maintained
when graphs are changed. Therefore, we do not further discuss quality metrics
in this work.

Precondition 1: There already exists an initial graph A.
Precondition 2: The initial graph A corresponds to certain quality metrics.
Precondition 3: Change is predefined by means of change patterns.

Postcondition 1: Three graphs are available: initial graph A, change tracking
graph A∗, and adjusted graph A’.

Postcondition 2: The graph A∗ is designed according to two layouts. A∗MM

considers the layout of the initial graph A. A∗AC considers the layout of the
adjusted graph A’.

Postcondition 3: The graph A’ correspond to certain quality metrics.

Change Tracking Graph. The change is conducted by transforming the initial
graph A to the adjusted graph A’. Thus, A’ is the resulting process schema from
the application of the change to A. In our approach we introduce the change
tracking graph A* which contains the graph elements of the initial graph A
that are not affected by the change, the graph elements of A that are deleted,
and the graph elements that are added during change. Further, we introduce
three possible change tracking states of graph elements. Graph elements that
are inserted are signed as activated elements, deleted elements are denoted as
deactivated elements, and graph elements that are not affected by the change
are marked as initial elements.

Change Primitives. We could compute A, A’, A* based on the set-based def-
inition as presented above. However, as change is typically applied in an incre-
mental manner, and we do actually know the change, we opt for determining the
change tracking graphs by exploiting the changes. The basis for this is that we
can express all kinds of change patterns by means of the following change prim-
itives [25]: ’delete node’, ’delete edge’, ’insert node’, and ’insert edge’. Using the
two change primitives insert and delete also allows us to easily mark the change
conducted with particular visual properties without challenging the graph user
with an exaggerated number of new visual appearances of the graph elements.
All presented change patterns in [29] can be separated into these four change
primitives. In Figure 1, the sequence of the change primitives is presented for the
change patterns serialInsert, Delete, serialMove, Replace, Swap, and Parallelize
process fragment(s). The selected change patterns serve as illustrative examples
of change and provide an insight into our approach.

508 S. Kabicher, S. Kriglstein, and S. Rinderle-Ma

Fig. 1. Change tracking in series-parallel digraphs

Visual Change Tracking for Business Process Models 509

Visual Properties. Based on the change tracking state the graph elements are
marked by means of selected visual properties. As mentioned in Section 2 we
propose to use the visual properties color(hue), brightness, or size to visualize
change in the change tracking graph A*, as they do not change the shape of the
elements used in a particular process modeling notation (e.g., changing a square
into a circle). We further propose that graph elements that are not effected by
the change remain in their original notation.

Layout. There are two options of layouting the change tracking graph A*. One
layout option is to consider the layout of the initial graph A in A∗, called A∗MM

that intends to maintain the current mental map of the process captured in the
initial graph A, and thus reflects the past layout in A∗. Preserving the mental
map of the initial graph A means to keep the graph as much as possible un-
changed after change by moving as few nodes as possible and by moving the
nodes as little as possible. Deleted elements remain on their initial positions in
order to reflect the layout of A, and then the inserted elements are considered
in the layout. The alternative option refers to the future layout in A∗ by tak-
ing the layout of the adjusted graph A’ into consideration that is characterized
by prioritized aesthetic criteria applied to the remaining initial and inserted
(activated) graph elements. The resulting change tracking graph is called A∗AC .
We suggest the following aesthetic criteria mentioned backward-sorted accord-
ing to their priorities: focus on the control flow, minimization of edge crossing
and number of overlapping elements, maximization of connecting node and edge
orthogonality, and minimization of the number of bends. The inserted and initial
graph elements are placed according to the aesthetic criteria first, and then the
deleted elements are considered in the layout.

4 Survey

The goal of the survey was to evaluate, if visualization of changes can support
users, and which visual properties they prefer for making changes in graphs
visible. Further, we wanted to find out, if users prefer to see changes in the ini-
tial graph, or if they prefer to trace the changes in the layout of the adjusted
graph. For this survey, we primarily concentrated on the extremes of both layout
approaches, as according to Purchase and Samra [24] extremes of layout adjust-
ment (low and high mental map preservation in dynamic graphs) produce better
performance than a layout approach that makes a compromise.

4.1 Methodology

The user survey included questions and tasks to analyze our hypotheses and
contained closed, open-ended and rank-ordered questions. In addition to an in-
troduction, a description about the purpose of the survey, and demographic and
introductory questions, the questionnaire was structured into two parts: visual
properties and layout. The part visual properties included questions and tasks to

510 S. Kabicher, S. Kriglstein, and S. Rinderle-Ma

analyze Hypothesis 1 and Hypothesis 3. We wanted to find out (a) if the partic-
ipants perceive it is absolutely necessary to visualize changes in graphs and (b)
if the different visualization properties help them to trace changes. To answer
these questions the initial graph along with the adjusted graph was presented
to the participants who were then asked to identify the changes that occurred.
In a next step, three further graphs were shown and each graph visualized the
change information with the help of another visual property. For the visual prop-
erty color(hue) the color orange was used to visualize deleted elements, and the
color green was used for added elements. In contrast to color(hue), light gray (for
deleted elements) and dark gray (for new elements) were used representing the
visual property brightness. To evaluate the visual property size, deleted elements
were shown smaller, and new elements were visualized larger than the already
existing elements. After each graph version, participants were asked if they had
the feeling to see all changes in comparison with the version which shows no
change information. The part layout concentrated on Hypothesis 2, and to an-
alyze, if the participants prefer to track changes in the initial graph (with focus
on the mental map) or to see the changes already in the adjusted graph which
considers the aesthetic criteria. To answer this question, the participants saw
both layout versions in regard to their visual properties and they were asked
which of these layout versions they prefer. We undertook a pre-test involving
three persons to be sure that the questions and tasks were clear and consistent
with the survey goals. Based on their feedback the questionnaire was modified.

4.2 Results

We primarily concentrated on persons who had at least basic knowledge about
business processes and experiences with graph visualizations. The findings of
our empirical study were based on 117 interviewees, mainly computer science
students, but also business process specialists from industry and science. For
the evaluation, we used generalized examples to be independent from a specific
domain which allows us to get a large number of participants.

The gathered data was analyzed in a descriptive way. For the responses from
the open-ended questions, we applied the qualitative content analysis to evaluate
participants’ reflections. The findings of our empirical study are listed according
to our hypotheses.

Hypothesis 1: When no change information was visualized in the graph, the
most of the participants (51.3%) were unsure or had not the feeling (27%) to
identify all changes between the initial and adjusted graph. Only 1.7% of the
particpants preferred the version without change visualization. The results about
the rating how well the different versions supported the participants to detect
changes underpinned our observation that change visualizations are helpful for
users to trace changes in business processes.

Hypothesis 2: The results of the comparison showed that there exists no clear
favorite. Half of the respondents stated that they preferred to see changes in the
adjusted graph, and the other half of the participants found it more helpful to
see the changes in the initial graph to have a better orientation.

Visual Change Tracking for Business Process Models 511

Hypothesis 3: Most participants (70%) preferred the visual property color
(hue) followed by the visual property brightness (40% of the the participants)
and more than half of the respondents stated that they were completely sure
to see all changes with the help of the visual property color(hue) or brightness.
The participants noted that colors (52 nominations) and brightness (37 state-
ments) helped them to get a good overview about the changes which occured in
the graph. However, it was also mentioned that the colors were too dominant
and grabbed the viewer’s attention too much (stated by 3 participants). Fur-
thermore, it was mentioned that the usage of color is often insufficient for users
who were color blind (mentioned by 3 participants). To avoid this problem, it
would be a good alternative to combine color with brightness. Only 5% of the
particpants preferred the visual property size. The most named reasons were
that the representation was unclear and the nodes and edges were difficult to
read when the size was perceived too small (8 statements). The users’ prefer-
ences in regard to the different visual properites were also recognizable in the
rating results concerning how well the different versions support the participants
to detect changes.

5 Related Work

In respect to graph layout, there exist many layout approaches (e.g., [27] [19] [11]
[15]) and aesthetic criteria (e.g., [14] [28] [23]) for general graph classes. Further-
more, several layout approaches targeted specifically toward business process
graphs were published (e.g., [12] [1] [26]). While most of the works on graph
drawing concentrate on single static graphs, visual representation of graphs
which can change over time (e.g, by adding or deleting nodes or edges) have
received little attention [9] [3]. Especially in business process, changes can occur
over time and therefore it is necessary that users are notified about the relevant
changes. Several works exist which discuss approaches to support user to trace
changes, for example, [18] present an traceability-based change notification ap-
proach. Furthermore, in the field of UML there exist several approaches to make
changes transparent, e.g., for detecting differences between class diagrams [16].
Although there exist several approaches to make changes in software transparent
(e.g., [17,13]), change visualization for business processes has received little at-
tention in the last years. In our work, we present a conceptualization for change
tracking in series-parallel digraphs in general which is independent of any process
meta model.

6 Conclusion

In this work, we presented a visual framework for change tracking in series-
parallel digraphs in general by introducing the change tracking graph. Two dif-
ferent layouts of the change tracking graphs were presented, in which the tracked
change was embedded. We conduced an analysis of user preferences with 117 par-
ticipants, mainly computer science students, which helped us to find out that

512 S. Kabicher, S. Kriglstein, and S. Rinderle-Ma

change tracking was helpful for the users to identify the conducted changes on the
process model, and most of the users preferred the visual property color(hue) to
visualize change in the change tracking model. About half of the survey partici-
pants preferred to see the past layout designed according to mental map aspects
whereas the others preferred to see the future layout designed according to aes-
thetic criteria. We derive from this result, that probably both layouts should be
offered to the process users when change is performed on process models so that
each process user can choose his or her preferred layout.

In future work, we will concentrate on large collections of business processes
and process model sets that, e.g. contain a vast number of subprocesses, in
order to analyze how change can be represented throughout various modeling
levels, e.g. in the reference model, in subprocess and process families. Moreover,
we will investigate how our approach can help to make changes transparent
between similar processes or between different versions of a process. Further,
we will work on an adequate implementation focusing on usability aspects and
continue to refine the visualizations of change.

References

1. Albrecht, B., Effinger, P., Held, M., Kaufmann, M.: An automatic layout algorithm
for bpel processes. In: Proc. of the 5th International Symposium on Software Vi-
sualization, pp. 173–182. ACM, New York (2010)

2. Andrienko, N., Andrienko, G.: Exploratory Analysis of Spatial and Temporal Data:
A Systematic Approach. Springer, Heidelberg (2005)

3. Beck, F., Burch, M., Diehl, S.: Towards an aesthetic dimensions framework for
dynamic graph visualisations. In: Proc. of the 2009 13th International Conference
Information Visualisation, pp. 592–597. IEEE Computer Society, Los Alamitos
(2009)

4. Bennett, C., Ryall, J., Spalteholz, L., Gooch, A.: The Aesthetics of Graph Visual-
ization. In: Cunningham, D.W., Meyer, G.W., Neumann, L., Dunning, A., Paricio,
R. (eds.) Computational Aesthetics 2007: Eurographics Workshop on Computa-
tional Aesthetics in Graphics, Visualization and Imaging, pp. 57–64 (2007)

5. Bertin, J.: Semiology of graphics: diagrams, networks, maps / Jacques Bertin;
translated by William J. Berg. University of Wisconsin Press (1983)

6. Bridgeman, S., Tamassia, R.: A user study in similarity measures for graph draw-
ing. In: Mutzel, P., Jünger, M., Leipert, S. (eds.) GD 2001. LNCS, vol. 2265, pp.
231–235. Springer, Heidelberg (2002)

7. Coleman, M.K., Parker, D.S.: Aesthetics-based graph layout for human consump-
tion. Softw. Pract. Exper. 26, 1415–1438 (1996)

8. Davidson, R., Harel, D.: Drawing graphs nicely using simulated annealing. ACM
Trans. Graph 15, 301–331 (1996)

9. Diehl, S., Goerg, C., Kerren, A.: Preserving the mental map using foresighted
layout. In: Proc. of Joint Eurographics IEEE TCVG Symposium on Visualization,
pp. 175–184. Springer, Heidelberg (2001)

10. Eades, P., Lai, W., Misue, K., Sugiyama, K.: Preserving the mental map of a
diagram. In: Proc. of COMPUGRAPHICS, vol. 91, pp. 24–33 (1991)

11. Eades, P., Lin, T., Lin, X.: Two tree drawing conventions. Int. J. Comput.
Geometry Appl. 3(2), 133–153 (1993)

Visual Change Tracking for Business Process Models 513

12. Effinger, P., Siebenhaller, M., Kaufmann, M.: An interactive layout tool for bpmn.
In: Proc. of IEEE International Conference on Commerce and Enterprise Comput-
ing, pp. 399–406. IEEE Computer Society, Los Alamitos (2009)

13. Eick, S.G., Graves, T.L., Karr, A.F., Mockus, A., Schuster, P.: Visualizing software
changes. IEEE Trans. Softw. Eng. 28, 396–412 (2002)

14. Fleischer, R., Hirsh, C.: Graph drawing and its applications. In: GD 2001, pp. 1–22.
Springer, Heidelberg (2001)

15. de Fraysseix, H., Pach, J., Pollack, R.: Small sets supporting fary embeddings of
planar graphs. In: Proc. of the Twentieth Annual ACM Symposium on Theory of
Computing, pp. 426–433. ACM, New York (1988)

16. Girschick, M.: Difference detection and visualization in uml class diagrams. Tech.
rep. (2006)

17. Gracanin, D., Matkovic, K., Eltoweissy, M.: Software visualization. ISSE 1(2), 221–
230 (2005)

18. Helming, J., Koegel, M., Naughton, H., David, J., Shterev, A.: Traceability-based
change awareness. In: Schürr, A., Selic, B. (eds.) MODELS 2009. LNCS, vol. 5795,
pp. 372–376. Springer, Heidelberg (2009)

19. Hong, S.-H., Eades, P., Quigley, A., Lee, S.-H.: Drawing algorithms for series-
parallel digraphs in two and three dimensions. In: Whitesides, S.H. (ed.) GD 1998.
LNCS, vol. 1547, pp. 198–209. Springer, Heidelberg (1999)

20. Lee, Y.-Y., Lin, C.-C., Yen, H.-C.: Mental map preserving graph drawing using
simulated annealing. In: Proc. of the 2006 Asia-Pacific Symposium on Information
Visualisation, vol. 60, pp. 179–188. Australian Computer Society, Inc. (2006)

21. Misue, K., Eades, P., Lai, W., Sugiyama, K.: Layout adjustment and the mental
map. Journal of Visual Languages and Computing 6(2), 183–210 (1995)

22. Paulisch, F.N., Tichy, W.F.: Edge: An extendible graph editor. Software: Practice
and Experience 20(S1), S63–S88 (1990)

23. Purchase, H.C.: Metrics for graph drawing aesthetics. Journal of Visual Languages
& Computing 13(5), 501–516 (2002)

24. Purchase, H.C., Samra, A.: Extremes are better: Investigating mental map preser-
vation in dynamic graphs. In: Stapleton, G., Howse, J., Lee, J. (eds.) Diagrams
2008. LNCS (LNAI), vol. 5223, pp. 60–73. Springer, Heidelberg (2008)

25. Rinderle, S., Reichert, M., Jurisch, M., Kreher, U.: On representing, purging, and
utilizing change logs in process management systems. In: Dustdar, S., Fiadeiro,
J.L., Sheth, A.P. (eds.) BPM 2006. LNCS, vol. 4102, pp. 241–256. Springer, Hei-
delberg (2006)

26. Six, J.M., Tollis, I.G.: Automated visualization of process diagrams. In: Goodrich,
M.T., Kobourov, S.G. (eds.) GD 2002. LNCS, vol. 2528, pp. 45–59. Springer,
Heidelberg (2002)

27. Sugiyama, K.: Graph drawing and applications for software and knowledge engi-
neers. Series on software engineering and knowledge engineering, vol. 11. World
Scientific, Singapore (2002)

28. Taylor, M., Rodgers, P.: Applying graphical design techniques to graph visualisa-
tion. In: Proc. of the Ninth International Conference on Information Visualisation,
pp. 651–656. IEEE Computer Society, Los Alamitos (2005)

29. Weber, B., Reichert, M., Rinderle-Ma, S.: Change patterns and change support
features - enhancing flexibility in process-aware information systems. Data Knowl.
Eng. 66, 438–466 (2008)

M. Jeusfeld, L. Delcambre, and T.W. Ling (Eds.): ER 2011, LNCS 6998, pp. 514–523, 2011.
© Springer-Verlag Berlin Heidelberg 2011

An Empirical Analysis of Human Performance and Error
in Process Model Development

Alexander Nielen1, Denise Költer2, Susanne Mütze-Niewöhner1,
Jürgen Karla2, and Christopher M. Schlick1

1 Institute of Industrial Engineering and Ergonomics at RWTH Aachen University,
Bergdriesch 27, 52062 Aachen, Germany

{a.nielen,s.muetze,c.schlick}@iaw.rwth-aachen.de
2 Institute of Business Information Systems at RWTH Aachen University,

Templergraben 64/V, 52062 Aachen, Germany
{koelter,karla}@winfor.rwth-aachen.de

Abstract. Process models capture important corporate know-how for an
effective Business Process Management. Inconsistencies between process
models and corporate reality are a common phenomenon in corporate practice.
Human performance in process model development is a major source for these
inconsistencies. In this contribution, a human performance analysis of process
model development paying special attention to the concept of human error was
conducted. It was found that the frequencies of the omissions and erroneous
executions of notation elements are significantly higher for novices than for
experienced modelers. Moreover, experienced modelers inherently adhere to a
verb-object activity labeling style. The overall empirical results indicate that
experienced modelers achieve higher process model quality with less
expenditure of time than novices.

Keywords: Process Modeling, Model Quality, Human Error, Human
Reliability Analysis.

1 Introduction

Process models are of utmost importance to Business Process Management [1]. They
capture important corporate know-how, facilitate continuous improvement efforts,
and provide a basis for the certification according to a commonly-accepted quality
standard. Further benefits of process modeling refer to information systems
specification [2], knowledge management implementation and maintenance [3],
process reengineering [4], organizational transparency [5], and workflow design
assistance [6].

Several frameworks and guidelines have been developed to ensure high process
model quality, including the Guidelines of Modeling (GoM) [7] the SEQUAL
framework [8], or the seven Process Modeling Guidelines (7PMG) [9]. These
frameworks provide validated sets of rules and put an emphasis on essential quality
parameters for process models.

The main information sources for process model development are interviews of
speech, observation of actions, and documentary analyzes. Alongside with a chain of

An Empirical Analysis of Human Performance and Error in Process Model Development 515

multiple personal interactions, various error-prone transformation processes take
place. These cognitive processes are accompanied by communication interferences,
misconceptions and information losses. Their occurrence has a negative impact on the
information content and therefore on the quality of the process model [10].
Consequently, many process models do not match with corporate reality and a major
effort has to be made in order to iteratively eliminate inconsistencies between the
process model and the real workflow. Thus, there is the evident need to further
increase the effectiveness and efficiency of process model development through a
human performance and error analysis under laboratory conditions.

2 Background

Experienced process modelers and managers with an academic background are
typically entrusted with process model development [11]. In corporate practice one
often encounters employees that are not familiar with formal modeling languages [12]
and often lack a methodological background [13]. A participatory approach [14]
relying on an active involvement of non-academic employees in process development,
maintenance, and improvement requires that this target group achieves a similar level
of process model quality in order to be a true alternative to the traditional approach.

An empirical analysis with a focus on human performance and error can provide a
scientific basis for quantifying differences, to identify procedural weaknesses and to
reach conclusions about the reliability of process model development. To the best of
the authors’ knowledge there is no empirical research with regard to human
performance and error in process model development so far.

2.1 Human Performance in Process Model Development

For the investigation of human performance and error in process model development,
Rasmussen’s differentiation of skill-based, rule-based and knowledge-based behavior
can be taken as a basis [15]. Following these three levels of human performance,
process model development can be reviewed as rule-based behavior from an
experienced modeler´s point of view. In case predefined procedures and patterns
cannot be applied, process model development relates to knowledge-based behavior.
This behavior is typical for novices who have no prior experience in process model
development. Compared to rule-based behavior, knowledge-based behavior usually
requires a higher mental effort for problem solving, a greater duration of time and is
more prone to erroneous actions.

2.2 Human Error in Process Model Development

The concept of human error cannot be separated from levels of human performance in
process modeling. Following Reason’s [16] definition for the concept of human error,
two major aspects are essential for the remainder of the paper: the representation or
non-representation of an action, i.e., an error of omission, and the erroneous execution
of an action.

516 A. Nielen et al.

The in-depth analysis of human error is an important part of a Human Reliability
Analysis (HRA). By using HRA in the context of process model development,
cause-effect relationships of incorrectly performed actions are put into focus. In order
to successfully apply HRA, it is important to identify all actions that will be subject to
examination in the course of the HRA. To allow for a HRA to identify errors in
process model development and to subsequently derive the most efficient
countermeasures, the authors followed the VDI 4006 standard [17].

In preparation of the laboratory study, particular emphasis was put on the
development of an error classification scheme. It is based on Reason’s [16] generic
error types of omission and erroneous execution (see Fig. 1). With regard to the
element “activity”, the error classification accounts for activity omissions and
parameterization. An activity is declared as wrongly parameterized if it does not relate
to the required information, tools or shortcomings. Erroneous execution is impaired
when wrong assignment to an organizational unit or wrong mode occurs. Wrong
activity mode is noticed when an inadequate choice of either a serial, parallel,
conditional, synchronous or iterative activity was made.

A
ct

iv
ity

re
pr

es
en

ta
tio

n

A
ct

iv
ity

pa
ra

m
et

er
iz

at
io

n

Event type Outcome

A
ct

iv
ity

as
si

gn
m

en
t

an
d

m
od

e

A
ct

iv
ity

la
be

lin
g

Activity omission

Activity
modeling

Wrong
parameterization

Wrong
assignment

Wrong mode

Imprecise
formulation

Correctly
performed

Information
content

Erroneous
execution

Omission

v

Fig. 1. Event tree for activity-level error classification

Activity labeling was also assigned to the category of erroneous execution as it is
an important quality aspect of process models [18]. Following the division according
to [18], verb-object is considered as the best-case labeling style. An action-noun
labeling also provides adequate comprehension from the part of the model user. The
adherence to neither of these styles is classified as an imprecise formulation.

3 Laboratory Study

With regard to the absence of empirical research on human performance and error in
process modeling, this paper addresses the following research question: How do
performance and error of novices differ from those of experienced modelers? And
what practical implications can be drawn for the participatory approach?

An Empirical Analysis of Human Performance and Error in Process Model Development 517

3.1 Methods

Modeling Tasks. Three text-based modeling tasks were created, namely (1) coffee
trade, (2) diamond commodity chain, and (3) simulation project. During task creation,
particular attention was paid to a comparable task size, an easy to understand
language and that no specialized knowledge is required. Sample solutions for each
modeling task served as a reference baseline against which the elaborated tasks of the
subjects were measured. As it is not possible to anticipate or identify all erroneous
actions in process model development, we referred to the actions with the greatest
potential for decreasing the information content of the process model.

Experimental Design. The task sequence of the above mentioned modeling tasks was
varied in the laboratory study in order to exclude position effects. The allotted time
for each modeling task was not limited and the entire experiment was videotaped
from a vertical angle.

For task solving, the process modeling language C3—an acronym for coordination,
cooperation, and communication—was chosen [19]. Its graphical elements primarily
descended from the UML notation in 1999 and were complemented with graphical
elements for cooperative process modeling. C3 is capable of representing
manufacturing and development processes as well as inter-departmental relations and
decision processes [14]. The C3 graphical elements are similar to UML and match
other modeling languages such as the EPC and BPMN. The elements applied in the
laboratory study comprise C3 objects and connectors (see Fig. 2).

Apparatus. The working area was a whiteboard mounted on a height-adjustable
table. Thus, the subjects could take an ergonomic position to solve the tasks. This
setup was preferred to a computer-based design because it allowed to exclude the
influence of prior experience with modeling tools, e.g., Microsoft Visio or SemTalk.

The subjects used plastic shapes for representing the C3 objects. The C3
connectors had to be drawn on the whiteboard. Labeling the C3 shapes as well as
writing on the whiteboard had to be carried out with a board marker.

Activity Information Tool Shortcoming

!

Start point End point Decision
point

Control flow

Information
flow

Split and join Decision and merge Iteration

Synchronous collaboration

Objects

Connectors

Fig. 2. Graphical elements of C3 applied in the laboratory study

518 A. Nielen et al.

Subjects. A total of 39 subjects—21 men and 18 women aged between 21 and 36
years (26.4 years, SD = 4.25)—participated in the laboratory study. The sample was
divided into experienced modelers and novices. The group of experienced modelers
consisted of 12 men and 7 women. They had prior work experience in process
modeling. This sample consisted of research assistants from industrial engineering,
business information systems, and operations research. Each subject of this group had
at least one year professional experience.

The novices had no prior experience in process modeling. This sample consisted of
9 men and 11 women who were students from psychology, sociology, and medicine.
All subjects were either employees or students of RWTH Aachen University in
Germany. All subjects had the German A-Level, i.e., the German university entrance
qualification. The research assistants held an academic degree in their scientific
discipline, three held a doctorate degree.

Procedure. Prior to the main experiment, the personal data were collected, i.e., age,
profession, and prior experience in process modeling. An introduction phase of
approximately 10 minutes followed. Each subject was introduced into C3 by means of
a design template. The template showed a sample process model with brief
explanations of the C3 graphical elements. The subjects had to read up the
explanations and could ask questions on C3 in order to resolve possible uncertainties.

The main experiment comprised the three modeling tasks in sequential order.
Except the design template there were no auxiliary means allowed. A five minute
break was granted after the completion of each modeling task. Communication with
the investigator was not allowed during the development of each process model.

Dependent and Independent Variables. In accordance with the experimental
design, the independent variable was the level of expertise of the subjects
(experienced modeler versus novice). Prior experience in process modeling
determined whether the subjects were assigned to the group of experienced modelers
or the group of novices. The following three dependent variables were considered:

• Model development time
• Types and frequency of errors (see Fig. 1)
• Types and frequency of task labeling style in terms of

o frequency with which the subject adhered to an verb-object style
such as sign contract for task labeling,

o frequency with which the subject adhered to an action-noun style
such as task assignment for task labeling, and

o frequency with which the subject adhered to neither of these styles
for task labeling.

Hypotheses and Statistical Analysis. The following hypotheses were formulated:

• Model development time for novices is significantly higher than for
experienced modelers (H1).

• Frequency of errors is significantly higher for novices than for experienced
modelers (H2).

An Empirical Analysis of Human Performance and Error in Process Model Development 519

• The task labeling style of experienced modelers does significantly differ
from those of novices (H3). It is expected that experienced modelers
inherently adhere to a verb-object activity labeling style.

The statistical analysis was conducted with the statistical software package SPSS
Version 18.0. A two-way analysis of variance (ANOVA) with repeated measures was
calculated to test hypothesis H1. For multi-level comparison of means the Bonferroni
post-hoc test was calculated. For significant results the effect size ω² was calculated
according to [20]. Chi-square tests were calculated to test the hypotheses H2 and H3.
The significance level for each analysis was set at α=0.05.

3.2 Results

Model Development Time. The results of the ANOVA show a significant main
effect of prior experience in process modeling on model development time
(F(1,38) = 5.787, p = 0.021) with a small effect size of ω²=0.1. The first hypothesis
can therefore be accepted. The mean model development time for each modeling task
including the 95% confidence intervals is shown in Fig. 3.

With regard to the coffee task, the model development time for experienced
modelers is 11.47% shorter than for novices. This difference is, however, not
statistically significant (F(1,38) = 1.992, p = 0.166). Regarding the diamond task, the
model development time for experienced modelers is 24.56% shorter than for novices.
This difference is statistically significant (F(1,38) = 5.135, p = 0.029). Concerning the
simulation task, model development time for experienced modelers is 10.44% shorter
than for novices. This difference is not statistically significant
(F(1) = 1.376, p = 0.248).

0

500

1000

1500

2000

95
%

C
I

M
od

el
 d

ev
el

op
m

en
t t

im
es

[s
]

Coffee task Diamond task Simulation task

Experienced
modelers

Novices

Fig. 3. Model development times [s] for the modeling tasks

520 A. Nielen et al.

Frequency of Errors. According to the defined event tree for activity-level error
classification (see Fig. 1), activity omissions for experienced modelers and novices
were captured. The associated statistic (χ²(2) = 7.080, p=0.008) proves that there are
significant differences between experienced modelers and novices with regard to
activity omissions.

The contingency table of error frequencies and the total number of actually
identified activities is shown in Table 1. The associated statistic
(χ²(1) = 7.080, p = 0.008) shows that there are significant differences between the two
levels of expertise with regard to activity parameterization.

Table 1. Contingency table of activity-level error frequencies

Activity

parameterization
Activity assignment
and activity mode

Total
number of
modeled
activities

Correct

execution
Wrong

execution
Correct

execution
Wrong

execution
Experienced
modelers

563
(88.1%)

76
(11.9%)

548
(85.8%)

91
(14.2%)

639

Novices
511

(82.8%)
106

(17.2%)
477

(77.3%)
140

(22.7%)
617

Regarding activity assignment and activity mode, the associated statistic

(χ²(1) = 14.931, p = 0.000) shows a statistically significant difference. Hypothesis H2
can be accepted as error frequencies for both errors of omission and commission
differ significantly for experienced modelers and novices.

Activity Labeling Style. Three activity labeling styles were distinguished as shown
in Table 2. The associated statistic (χ²(2) = 195.285, p = 0.000) shows a statistically
significant difference between the two levels of expertise. H3 can be accepted as the
labeling style of experienced modelers does significantly differ from those of novices.

Table 2. Contingency table of labeling style frequencies

 Activity labeling style Total
number of
modeled
activities

Verb-
object

Action-
noun

Neither

Experienced
modelers

376
(58.8%)

120
(18.8%)

143
(22.4%)

639

Novices
130

(21.1%)
281

(45.5%)
206

(33.4%)
617

3.3 Discussion

With regard to model development time, experienced modelers developed the process
models on average faster than novices. A statistically significant difference was found
for the diamond task. The observed time differences might have been influenced by

An Empirical Analysis of Human Performance and Error in Process Model Development 521

individual differences in terms of text comprehension and motivational aspects. Some
experienced modelers did not know the C3 notation and probably needed some extra
time to get used to its syntax and semantics. More complex workflows and a larger
sample size might lead to more pronounced results.

Concerning error frequencies, activity omissions were considerably higher for
novices than for experienced modelers. With regard to activity parameterization as
well as activity assignment and mode, the differences between experienced modelers
and novices proved to be significant. Experienced modelers seemed to have a better
understanding of what is relevant for the information content of a process model and
incorporate this information more conscientious into the process model. Experienced
process modelers achieved higher consistency with the predefined sample solutions
whereas novices left out more information and developed process models with less
information content. Higher omission rates can be expected for more complex real
world scenarios.

Regarding activity labeling style, experienced modelers seemed to have an inherent
preference for verb-object activity labeling (58.8%). Novices preferred the action-
noun labeling in most of the cases (45.5%) and had generally more variety in their
labeling style. In approximately one third of the cases (33.4%), the novices followed
neither a verb-object nor an action-noun labeling style. The corresponding activities
may be misinterpreted by a model user and might lead to inadequate working
procedures. These results empirically support the findings from Mendling et al. [18]
who supposed that experienced process modelers tend to use a verb-object activity
labeling style.

The authors affirm that there are some limitations. First, sample size is
considerably small and the sample only consists of research assistants and students
from a technical university. Future research should collect data from practitioners
who might face different cognitive bottlenecks in process model development. The
factors that contribute to the occurrence of errors might also be highly context-
dependent. Human aspects mainly include motivation and vigilance; system
limitations include the limited working area. A major difference to process model
development in corporate practice might be that the information for process model
development could be recalled by a subject at any time during the main experiment by
simply reading up the text. In a real world scenario, the transformation processes are
more prone to interferences and, therefore, process models might have a greater
variety and frequency of errors.

4 Conclusion and Outlook

Methods of industrial engineering bear the potential to improve the efficiency of
process model development. A promising approach is to conduct an empirical
analysis of human performance and error in process model development. The
presented experimental study on process model development represents the
preparatory work for a participatory approach in process model development and
accounted for a defined scope of errors of omission and execution. The overall results
indicate that experienced modelers achieve better model quality than novices through
higher consistency with the corresponding reality segment.

522 A. Nielen et al.

With regard to future research activities, a detailed video analysis might provide
new insights on successful strategies in process model development. To this purpose,
the depth of the empirical analysis will be revised and updated. Expected results
might have the potential to further enhance human performance in process model
development and improve training concepts on process modeling for novices. In order
to facilitate the computer-aided development of complex process models, it might be
valuable to apply a second-generation HRA method such as CREAM [21] to process
model development.

Acknowledgments. The research was supported by the Interdisciplinary Management
Practice of RWTH Aachen University and funded by the Excellence Initiative of the
German federal and state governments.

References

1. Becker, J., Kahn, D.: Der Prozess im Fokus. In: Becker, J., Kugeler, M., Rosemann, M.
(eds.) Prozessmanagement. Springer, Berlin (2008)

2. Mendling, J., Recker, J.: Extending the Discussion of Model Quality: Why Clarity and
Completeness may not be enough. In: Pernici, B., Gulla, J.A. (eds.): CAiSE 2007
Workshop Proceedings Vol. I - Eleventh International Workshop on Exploring Modeling
Methods in Systems Analysis and Design (EMMSAD 2007), Trondheim, pp 109–121
(2007)

3. Wong, K.Y.: Critical success factors for implementing knowledge management in small
and medium enterprises. Industrial Management & Data Systems 105(3), 261–279 (2005)

4. Schuh, G., Friedli, T., Kurr, M.A.: Prozessorientierte Reorganisation. Reeingineering-
Projekte professionell gestalten und umsetzen. Carl Hanser Verlag, München (2007)

5. Indulska, M., Green, P., Recker, J., Rosemann, M.: Business Process Modeling: Perceived
Benefits. In: Laender, A.H.F., Castano, S., Dayal, U., Casati, F., de Oliveira, J.P.M. (eds.)
ER 2009. LNCS, vol. 5829, pp. 458–471. Springer, Heidelberg (2009)

6. van der Aalst, W.M.P., ter Hofstede, A.H.M., Weske, M.: Business Process Management:
A Survey. In: van der Aalst, W.M.P., ter Hofstede, A.H.M., Weske, M. (eds.) BPM 2003.
LNCS, vol. 2678, pp. 1–12. Springer, Heidelberg (2003)

7. Schuette, R., Rotthowe, T.: The Guidelines of Modeling - An Approach to Enhance the
Quality in Information Models. In: Ling, T.-W., Ram, S., Li Lee, M. (eds.) ER 1998.
LNCS, vol. 1507, pp. 240–254. Springer, Heidelberg (1998)

8. Krogstie, J., Sindre, G., Jorgensen, H.: Process models representing knowledge for action:
a revised quality framework. European Journal of Information Systems 15, 91–102 (2006)

9. Mendling, J., Reijers, H.A., van der Aalst, W.M.P.: Seven Process Modeling Guidelines
(7PMG). In: Information and Software Technology (IST), vol. 52(2), pp. 127–136.
Elsevier B.V, Amsterdam (2010)

10. Jakobs, E.M., Spanke, J.: Sprache als Erfolgsfaktor industrieller Prozessmodellierung. In:
Steinmann, C. (eds.) Evolution der Informationsgesellschaft. Markenkommunikation im
Spannungsfeld der neuen Medien. VS, Wiesbaden (2011)

11. Weske, M.: Business Process Management – Concepts, Languages, Architectures.
Springer, Berlin (2007)

12. Luo, W., Tung, Y.A.: A Framework for Selecting Business Process Modeling Methods.
Industrial Management & Data Systems 99(7), 312–319 (1999)

An Empirical Analysis of Human Performance and Error in Process Model Development 523

13. Kalpic, B., Bernus, P.: Business Process Modeling in Industry – The Powerful Tool in
Enterprise Management. Computers in Industry 47, 299–318 (2002)

14. Nielen, A., Jeske, T., Schlick, C., Arning, K., Ziefle, M.: Interdisciplinary Assessment of
Process Modeling Languages Applicable for Small to Medium-sized Enterprises. In:
Callaos, N., Chu, H.-W., Krittaphol, W., Lesso, W., Savoie, M. (eds.) The 8th International
Conference on Computing, Communications and Control Technologies: CCCT 2010,
IMCIC, Copyright Manager, Winter Garden, Florida, vol. II, pp. 47–52 (2010)

15. Rasmussen, J.: Skills, Rules, and Knowledge; Signals, Signs, and Symbols, and Other Dis-
tinctions in Human Performance Models. IEEE Transactions on Systems, Man, and
Cybernetics 15(2), 234–243 (1983)

16. Reason, J.: Human Error. Cambridge University Press, Cambridge (1990)
17. VDI 4006: Human Reliability Methods for Quantitative Assessment of Human Reliability.

VDI-Gesellschaft (2003)
18. Mendling, J., Reijers, H.A., Recker, J.: Activity Labeling in Process Modeling: Empirical

Insights and Recommendations. In: Information Systems (IS). Special Issue on
Vocabularies, Ontologies and Rules for Enterprise and Business Process Modeling and
Management, vol. 35(4), pp. 467–482. Elsevier B.V, Amsterdam (2010)

19. Killich, S., Luczak, H., Schlick, C., Weissenbach, M., Wiedenmaier, S., Ziegler, J.: Task
Modelling for Cooperative Work. Behaviour & Information Technology 18(5), 325–338
(1999)

20. Field, A.: Discovering Statistics Using SPSS, 2nd edn. Sage Publications, London (2005)
21. Hollnagel, E.: Cognitive Reliability and Error Analysis Method: CREAM. Elsevier,

Amsterdam (1998)

M. Jeusfeld, L. Delcambre, and T.W. Ling (Eds.): ER 2011, LNCS 6998, pp. 524–525, 2011.
© Springer-Verlag Berlin Heidelberg 2011

Panel: New Directions for Conceptual Modeling

Jeffrey Parsons1, Antoni Olivé2, Sudha Ram3,
Gerd Wagner4, Yair Wand5, and Eric Yu6

1 Memorial University of Newfoundland
St. John’s, NL, Canada
jeffreyp@mun.ca

2 Universitat Politècnica de Catalunya
Barcelona, Catalonia, Spain
antoni.olive@upc.edu

3 University of Arizona
Tucson, AZ, USA

ram@eller.arizona.edu
4 Brandenburg University of Technology

Cottbus, Germany
wagnerg@tu-cottbus.de

5 University of British Columbia
Vancouver, BC, Canada

yair.wand@sauder.ubc.ca
6 University of Toronto

Toronto, ON, Canada
eric.yu@utoronto.edu

Abstract. This panel examines potential opportunities for conceptual modeling
research in new domains.

1 Panel Objective

This year marks the 30th ER conference. During this time, research in conceptual
modeling has made significant progress. Advances in conceptual modeling have
made important contributions to requirements analysis, database design, and in-
formation systems development. In view of the changing landscape in which in-
formation technology applications are developed and used, this is an appropriate
time to consider where we are in conceptual modeling research and what the fu-
ture might hold. In particular, this panel will focus on emerging and understudied
domains for the application of conceptual modeling research. Panelists will con-
sider what conceptual modeling research brings to understanding phenomena in
new or non-traditional domains. Equally importantly, they will reflect on new
conceptual modeling research issues arising from the demands and requirements
of these domains. The objective of the panel is to spark increased interest in con-
ceptual modeling and the ER conference by encouraging audience members to
consider new opportunities for applying conceptual modeling.

 Panel: New Directions for Conceptual Modeling 525

2 Position Statements

2.1 Antoni Olivé

One of the most important changes in economic and social activities is that of globali-
zation. This has an impact on the information systems used by organizations and
people, in the conceptual schemas of those systems, and in the way those schemas are
developed. Until now, the main focus in conceptual modeling has been on "local"
worlds. Globalization demands conceptual modeling in a global world.

2.2 Sudha Ram

Conceptual modeling has a role in many new and emerging areas, such as biological
data integration and web analytics. Techniques are needed to explicitly model the
semantics of biological sequence data to allow easy processing of ad hoc queries.
Conceptual modeling can also be extended to the area of web analytics to distinguish
between classes of data and instances incorporating temporal and spatial information.

2.3 Gerd Wagner

Despite their long histories and their common focus on modeling, the Conceptual
Modeling (CM) and Discrete Event Simulation (DES) communities have not paid
much attention to each other. I will argue that DES can benefit a lot from adopting
and adapting results of CM research, and that the recent trend in CM towards ontolog-
ical foundations is also highly relevant for DES.

2.4 Yair Wand

Conceptual modeling emerged as a way to understand application requirements for in-
formation systems, but has extended beyond this original purpose. Theoretical and
empirical findings are applied in other domains and conceptual models can be used
for other than their original purposes. In particular, I will show how conceptual mod-
eling research has generated results that can be applied also in the natural sciences.

2.5 Eric Yu

There are tremendous opportunities as well as challenges for extracting meaning and
significance from the vast petabytes of data being generated every day from diverse
sources. What conceptual modeling techniques are needed to make sense of these da-
ta? How do we abstract from diverse sources to create coherent understanding? How
can we go from raw data to insightful interpretation to enable decision making?

M. Jeusfeld, L. Delcambre, and T.W. Ling (Eds.): ER 2011, LNCS 6998, pp. 526–527, 2011.
© Springer-Verlag Berlin Heidelberg 2011

Panel: Modeling for the Future Internet

Arne Berre1 and Michele Missikoff2 (Moderators)

1 SINTEF, Oslo, Norway
2 CNR-IASI, Rome, Italy

The Internet is a paradigmatic example of a successful system that has not been
designed by using any of the available modelling methods. The components have
been realised and deployed, then the Internet (seen as a socio-technical system) has
evolved (and is still evolving) in a spontaneous, bottom-up fashion. What can we
learn from this that we can apply to other complex socio-technical systems?

We need to explore if there are new design and engineering paradigms that will
emerge for complex systems. From ‘story telling’ to user-generated mashups, to
crowdsourcing: are there new paradigm that are challenging our ‘traditional’ way of
addressing modeling and, in general, software engineering? At the same time,
emerging technologies such as Internet of Things with smart objects, autonomic
computing, self-configuring/healing systems indicate that there are large areas where
the need of human intervention is simply superfluous. Are we at a turning point in the
development of the Future Internet Application Systems? And therefore do we need
to deeply rethinking our ideas, methods, tools, aimed at modelling for developing
complex socio-technical systems? How we will use the Future Internet infrastructure,
with Internet of People, Internet of Content and Knowledge, Internet of Services to
invent, model, create, deploy, and manage the future interoperable ‘cloudy’ software
applications?

Questions and issues that will be discussed include: What is being done today,
what are the challenges – and where the conceptual modelling research community
should direct its efforts. Is there a limit (in terms of complexity) to what an
engineering discipline of modelling can do? Is it true that without a systematic
application of the human intelligence complex ICT systems cannot exist? Or should
we start to embrace new (complementary?) paradigms that accept a limitation in
human planning/driving in the development of systems, beyond a certain complexity
threshold? Autonomic systems are able to self evolve, self adjust, self healing without
human intervention. Complexity theory teaches us that it is impossible to keep under
control the behaviour of reality in all possible cases. On another plan, user-centred
analysis shows that, for instance, storytelling (i.e., people reporting on their concrete
experiences) is more reliable than the abstract modelling of a fragment of the reality.

The Panel intends to address these themes with an open innovation approach, with
the help of distinguished panellists, and in particular: Robert Meersman, Klaus
Fischer, Sergio Gusmeroli, Elio Salvadori, Bernhard Thalheim, and the moderators:
Arne Berre and Michele Missikoff. Below, a few position statements of Klaus,
Sergio, and Robert are roported.

Klaus Fischer – The term modelling is unfortunately used in many different areas.
Geometrical 3D modelling in CAD system is a well-know example. Purely

 Panel: Modeling for the Future Internet 527

mathematical models are used in statistics and a set of linear equations can be
understood as a model by linear programmers. With the advent of the Unified
Modeling Language (UML) proposed by the Object Management Group (OMG) the
term modeling got widely adapted for software design.

Recently OMG introduced the Model Driven Architecture (MDA) that
distinguishes three different abstraction levels: the metamodel, the set of model
instances that comply with the metamodel, and the program code that is generated
from the model instance and give them its semantic interpretation, at least in an
operational sense. However, it is desirable to express as much of this semantics as
possible in the model instances or even at the level of the metamodel.

Important aspects for model instances are their consistency and the completeness.
Theorem provers might be used to check for these properties on concrete model
instances. Today such tools only exist in specialized areas.

Sergio Gusmeroli – Modelling the FI is a precondition for implementing the three
main aspects of a FI-based architecture: virtualisation (or abstraction), self-
management, and orchestration (or mashup).

While FI Network and Software modelling (aimed at IaaS, SaaS) have already
started decisively in the FI Assembly movement and its associated projects, not
enough has been done so far regarding the Platform level (i.e., PaaS). The notion of
Development and Delivery platforms is pervading every FI aspect from the obvious
IoS (GSDP: Global Service Delivery Platform with search, discovery, orchestration,
execution functions, and service development platforms with facilities for user
innovation, business-IT integration, application mashup, collective intelligence and
crowdsourcing), to the IoT (event driven architectures and platforms, real-digital
world interconnection, distributed decision making), to the IoC&K (3D and video
delivery platforms and marketplaces, user generated videos and contents).

What is it common between IoS, IoT, IoC&K delivery platforms? Could we model
common features and services? What's the difference between one GSDP and
another? What synergy may exist between user-generated services and user-generated
content?

Robert Meersman – The Ultimate Modeling Challenge is posed by the inherently
hybrid nature of systems interoperating within the social fabric created by the Future
Internet.

Ontology construction must become viewed as a complex, social, and distinctly
methodological modeling activity. It must lead to formalized semantic agreement
involving its stakeholder communities and the various social processes within those
communities. Few of such social processes are as yet formally modeled; in fact
requirements are often relatively poorly understood by system modelers, nor by and
large mapped onto the desired enterprise workflows.

I shall claim that modeling of such systems will therefore likely explicitly involve
hybrid aspects of information (i.e. the co-existence of formal reasoning and
"informal” human interactions). Correspondingly, "hybrid ontologies" will need to be
modeled and deployed within their supporting social implementation environments.

Author Index

Abrahao, Silvia 233
Amyot, Daniel 429, 448
An, Yuan 219, 261
Andersson, Birger 476
Awad, Ahmed 332

Baião, Fernanda 486
Bao, Zhifeng 402
Barone, Daniele 429, 448
Bergamaschi, Sonia 411
Bergholtz, Maria 476
Berre, Arne 526
Briand, Lionel 362

Cabot, Jordi 467
Cachero, Cristina 233
Cal̀ı, Andrea 161
Castro, Lucia 486
Chopra, Amit K. 104
Ciaccia, Paolo 304
Cleve, Anthony 247
Corchuelo, Rafael 118
Costal, Dolors 189

de Alencar Silva, Patŕıcio 132
Derntl, Michael 78

Embley, David W. 147

Ferrarotti, Flavio 175
Figl, Kathrin 78
Franch, Xavier 62, 421

Gal, Avigdor 495
Giorgini, Paolo 104
Gómez, Cristina 189, 467
González, Pascual 33
Gottlob, Georg 161
Guerra, Francesco 411
Guizzardi, Giancarlo 189, 486

Halevy, Alon 32
Hartmann, Sven 175
Hernández, Inma 118
Hu, Xiaohua 261

Ingolfo, Silvia 47

Jiang, Lei 429, 448
Johannesson, Paul 476

Kabicher, Sonja 504
Karla, Jürgen 514
Khare, Ritu 261
Költer, Denise 514
Kondylakis, Haridimos 393
Kowatsch, Tobias 92
Kriglstein, Simone 504
Kunze, Matthias 332

Lapouchnian, Alexei 346
Li, Xiang 379
Liddle, Stephen W. 147
Lincoln, Maya 495
Link, Sebastian 175
Lonsdale, Deryle W. 147
López, Lidia 62
López-Jaquero, Vı́ctor 33
Luján, Sergio 233

Maass, Wolfgang 92
Marco, Jordi 62
Mart́ınez, Yulkeidi 233
Maté, Alejandro 421, 459
Matera, Maristella 233
Missikoff, Michele 526
Montero, Francisco 33
Mütze-Niewöhner, Susanne 514
Mylopoulos, John 47, 346, 429, 448

Navarro, Elena 33
Ng, Wilfred 204
Nielen, Alexander 514

Olivé, Antoni 524

Paja, Elda 104
Panesar-Walawege, Rajwinder Kaur

362
Parent, Christine 13
Parsons, Jeffrey 524
Perini, Anna 440
Pieris, Andreas 161

530 Author Index

Planas, Elena 467
Plexousakis, Dimitris 393

Quintarelli, Elisa 290
Quix, Christoph 379
Qureshi, Nauman 440

Rabosio, Emanuele 290
Ram, Sudha 524
Ramdoyal, Ravi 247
Reinhartz-Berger, Iris 275
Rinderle-Ma, Stefanie 504
Rivero, Carlos R. 118
Rota, Silvia 411
Ruiz, David 118

Sabatucci, Luca 440
Sabetzadeh, Mehrdad 362
Sakr, Sherif 332
Schlick, Christopher M. 514
Siena, Alberto 47, 440
Silva Souza, Vı́tor E. 346
Song, Il-Yeol 219, 261
Spaccapietra, Stefano 13

Storey, Veda C. 92
Sturm, Arnon 275
Susi, Angelo 440

Tanca, Letizia 290
Teruel, Miguel A. 33
Thalheim, Bernhard 318
Thonggoom, Ornsiri 219
Tijerino, Yuri 147
Torlone, Riccardo 304
Trujillo, Juan 421, 459

Velegrakis, Yannis 411

Wagner, Gerd 524
Wand, Yair 275, 524
Wang, Qing 318
Weigand, Hans 132
Weske, Mathias 332
Woo, Carson 1
Wu, Huayu 402

Yu, Eric 524

	Title
	Foreword
	Preface
	Organization
	Table of Contents
	Keynotes
	The Role of Conceptual Modeling in Managing and Changing the Business
	Introduction
	Limitations of Existing Work and Possible Extensions
	The Strategic Dependency Model in the i* Framework
	The Different Facets of Goals in Business and IT

	Providing Values for Organizational Workers
	Conceptual Models for Business-IT Alignment
	Conceptual Models for Thought Process

	Conclusion
	References

	Adding Meaning to Your Steps
	Introduction
	Raw Movement Tracks
	From Raw Trajectories to Semantic Trajectories
	Basic Concepts for Describing Trajectory Behaviors
	Introducing Trajectory Behaviors and Their Identification
	Individual Trajectory Behavior versus Collective Behavior
	More on Collective Behaviors
	Spatial / Temporal / Spatio-Temporal / Semantic Behaviors
	Global versus Local Behaviors
	Simple versus Complex Behaviors
	Checking If Trajectories Comply with a Behavior
	Looking for Behaviors a Posteriori versus Using Predefined Behaviors
	Conclusion

	References

	Best-Effort Modeling of Structured Data on the Web
	References

	Modeling Goals and Compliance
	CSRML: A Goal-Oriented Approach to Model Requirements for Collaborative Systems
	Introduction
	Goal-Oriented Techniques and the i* Approach
	Goal-Oriented Requirements Engineering
	i* Framework

	CSRML: A Requirement Language for Collaborative Systems
	Case Study: Jigsaw Activity
	The Jigsaw Activity with CSRML
	Conclusions and Further Works
	References

	Establishing Regulatory Compliance for Software Requirements
	Introduction
	Research Baseline
	Proposed Framework
	Compliance Process
	Step 1. Embodiment
	Step 2. Find Irregularities
	Step 3. Compliance Check
	Step 4. Solve Irregularities
	Step 5. Find Realizations

	Preliminary Evaluation: A Case Study
	Related Work
	Conclusions
	References

	Making Explicit Some Implicit i* Language Decisions
	Introduction
	Background: Analysis of the i* Framework
	Sources of Our Work
	Observations

	Systematic Management of Ambiguities and Silences
	Actors and Actor Links
	Internal Elements and Internal Element Links
	Dependencies
	Some Addition of Information into i* Models
	The i* Language Core: Final Representation
	Conclusions
	References

	Human and Socio-Technical Factors
	The Impact of Perceived Cognitive Effectiveness on Perceived Usefulness of Visual Conceptual Modeling Languages
	Introduction
	Theoretical Background
	Visual Modeling Languages
	Quality of Conceptual Models and Modeling Languages

	Research Questions
	Method
	Design
	Materials
	Instrument
	Sample

	Results
	Discussion
	Limitations
	Implications

	Conclusion
	References

	Effects of External Conceptual Models and Verbal Explanations on Shared Understanding in Small Groups
	Introduction
	Theoretical Background
	Conceptual Models
	Design and Mental Models
	Shared Understanding

	Research Model and Hypotheses
	Research Method
	Study Design
	Results and Discussion

	Summary
	References

	Sociotechnical Trust: An Architectural Approach
	Introduction
	A Conceptual Model of Sociotechnical Trust
	Computational Grounding
	Trust Supporting Mechanisms

	Kinds of Trust in Sociotechnical Systems
	Technical Trust
	Cognitive Trust
	Orthogonality

	The Food Law Case Study
	Discussion
	References

	Ontologies
	Generating SPARQL Executable Mappings to Integrate Ontologies
	Introduction
	Related Work
	Mapping Generation
	Restrictions and Correspondences
	Kernel Generation
	SPARQL Transformation

	Implementation and Evaluation
	Conclusions
	References

	Enterprise Monitoring Ontology
	Introduction
	Theoretical Background
	Enterprise Monitoring Ontology (EMO)
	Monitoring Goal Ontology
	Monitoring Policy Ontology
	Monitoring Metric Ontology

	Case Study Evaluation
	Business Case Description
	Reasoning on EMO: Strategic Value Monitoring Method

	Discussion
	References

	Multilingual Ontologies for Cross-Language Information Extraction and Semantic Search
	Introduction
	Architecture
	Extraction Ontologies
	Multilingual Ontologies
	Multilingual Mappings

	Evaluation
	Results from an Early Prototype
	Cross-Language Query Translation and Extraction Accuracy

	Conclusions
	References

	Data Model Theory
	Querying Conceptual Schemata with Expressive Equality Constraints
	Introduction
	Preliminaries
	Separability
	Non-triggerable EGDs
	Non-conflicting Sets of Linear TGDs and EGDs

	Applications
	Discussion
	References

	A Precious Class of Cardinality Constraints for Flexible XML Data Processing
	Introduction
	Preliminaries
	From Expressive towards Precious Classes
	Axiomatic and Graph-Theoretical Characterization
	Algorithmic Characterization
	Conclusion
	References

	Formal Semantics and Ontological Analysis for Understanding Subsetting, Specialization and Redefinition of Associations in UML
	Introduction
	Background
	Formal Semantics
	UML Association Subsetting Semantics
	UML Association Specialization Semantics
	Comparing Subsetting, Specialization and Redefinition of Associations

	An Ontological Analysis of Relations
	An Ontological Analysis of Subsetting
	An Ontological Analysis of Specialization
	An Ontological Analysis of Redefinition

	Related Work
	Final Considerations
	References

	Model Development and Maintainability
	Developing RFID Database Models for Analysing Moving Tags in Supply Chain Management
	Introduction
	Preprocessing Multi-stream Raw RFID Data
	RFID Database Model
	RFID Database Modeling
	RFID Data Coding Schemes

	RFID Manipulation Languages
	Tag Movement Graph (TMG) Model
	Capture Frequent Tag Movement Trails in a TMG
	Logistic Correlated Patterns on TMG

	Related Work
	Concluding Remarks
	References

	Semi-automatic Conceptual Data Modeling Using Entity and Relationship Instance Repositories
	Introduction
	Related Techniques for Conceptual Modeling
	Rule-Based
	Pattern-Based
	Case-Based
	Ontology-Based
	Multi-techniques-Based

	A Methodology for Creating EIR and RIR
	The Six Domain Independent Modeling Rules
	Overview of HBT Architecture
	Overview of EIPW Architecture
	Empirical Evaluation
	Experimental Design

	Conclusions and Future Research
	References

	Impact of MDE Approaches on the Maintainability of Web Applications: An Experimental Evaluation
	Introduction
	Background
	The Maintainability Concept
	Maintainability Assessment

	Description of the Experiment
	Variables and Operational Hypotheses
	Subjects
	Design and Instrumentation
	Operation and Data Collection Procedures

	Data Analysis and Interpretation of Results
	RQ1: Actual Efficacy of Treatments
	RQ2: Perceived Efficacy and Satisfaction of Treatments
	Threats to Validity

	Conclusions
	References

	User Interfaces and Software Classification
	From Pattern-Based User Interfaces to Conceptual Schemas and Back
	Introduction
	Research Context and State of the Art: Electronic Forms to Convey Conceptual Requirements
	Formalising the Problem
	Overview
	Identifying Missing Constructs

	From Form-Based Interfaces to GER Schemas
	A New Pattern-Based Form Model
	A Heuristic-Driven Drawing Process

	From GER Schemas to Form-Based Interfaces
	Discussion
	Conclusion
	References

	Automatically Mapping and Integrating Multiple Data Entry Forms into a Database
	Introduction
	Related Work
	Formal Preliminaries and Problem Definition
	Extracting Form Trees
	Mapping and Integrating Form Trees
	Birthing Algorithm
	Merging Algorithm

	Experiments
	Testing the Tree Extraction Component
	Evaluating the Merging Process

	Conclusions
	References

	External Variability of Software: Classification and Ontological Foundations
	Introduction
	Bunge's Systems Ontology
	Comparing Application Behaviors – The Similarity Anchor
	Classifying External Variability
	Framework Usage: Conducting Feasibility Studies
	Summary and Future Work
	References

	Evolution, Propagation and Refinement
	Context Schema Evolution in Context-Aware Data Management
	Introduction
	Related Work
	Context Model
	Framework for Context Evolution
	Evolution Operators
	Basic Atomic Evolution Operators
	Methodological Considerations and Further Atomic Operators

	Conclusions and Future Work
	References

	Modeling the Propagation of User Preferences
	Introduction
	Contexts in Databases
	A General Notion of Context
	The CT Model

	Preferences in Contexts
	Qualitative Preferences
	Contextual Preferences and Their Propagation
	PC-Expressions

	Computing the Propagation of Preferences
	The Complete-Cover Propagation
	The Active-Cover Propagation
	The Tuple-Specific Cover Propagation

	Related Works
	Conclusions
	References

	Towards a Theory of Refinement for Data Migration
	Introduction
	Schemata, Models and Level of Abstraction
	Legacy Kernel
	Migration Transformations
	Property-Preserving Transformations
	Property-Enhancing Transformations
	Migration Strategies

	Refinement
	Refinement of PPTs
	Refinement of PETs
	Discussion

	Conclusion
	References

	UML and Requirements Modeling
	Design by Selection: A Reuse-Based Approach for Business Process Modeling
	Introduction
	Preliminaries
	Business Process Modeling
	Business Process Model Querying

	Partial Process Models
	Ranking of Model Compositions
	Implementation
	Experimental Evaluation
	Related Work
	Conclusion and Outlook
	References

	System Identification for Adaptive Software Systems: A Requirements Engineering Perspective
	Introduction
	Research Baseline
	Goal-Oriented Requirements Engineering (GORE)
	Qualitative Reasoning

	Parameters and Qualitative Differential Relations
	System Parameters and Indicators
	Numeric Parameters
	Enumerated Parameters
	Extrapolations

	System Identification Process
	Validation
	Related Work
	Discussion and Future Work
	Conclusion
	References

	Using UML Profiles for Sector-Specific Tailoring of Safety Evidence Information
	Introduction
	Background
	IEC61508-Based Certification
	Conceptual Modeling of Compliance Evidence Information
	UML Profiles

	UML Profile of the IEC61508 Standard
	Specializing IEC61508 for the Petroleum Industry
	Related Work
	Conclusion and Future Work
	References

	Views, Queries and Search
	Merging Relational Views: A Minimization Approach
	Introduction
	The View Integration Problem
	Modeling View Integration
	Minimality of Mediated Schema

	Schema Minimization under Data Dependencies
	Collapse-Minimization Using Maximal BINDs
	Project-Minimization over Collapsed Schemas

	Generating Minimal Merge
	Constructing Mediated Schema
	Constructing Output Mappings
	Rewriting Input Constraints to the Mediated Schema

	Evaluation
	Expressiveness over Real World Mapping Scenarios
	Scalability of Schema Minimization
	Effectiveness of Minimization

	Related Work
	Conclusion and Outlook
	References

	Ontology Evolution in Data Integration: Query Rewriting to the Rescue
	Introduction
	Evolving Data Integration
	Query Processing

	Conclusion
	References

	Object-Oriented XML Keyword Search
	Introduction
	Background and Motivation
	Background
	Motivation

	Object-Oriented Indexes
	OO-Dewey ID and Object Tables
	Other Object-Based Indexes

	OO Keyword Query Processing
	Step 1: Keyword Partitioning
	Step 2: Inverted List Filtering
	Step 3: SLCOA Processing
	Step 4: Result Return
	Advanced Search

	Experiments
	Experimental Settings
	Efficiency
	Search Quality

	Conclusion
	References

	A Hidden Markov Model Approach to Keyword-Based Search over Relational Databases
	Introduction
	KEYRY at a Glance
	Problem Statement
	Computing Configurations Using a HMM
	Setting HMM Parameters
	Decoding the HMM

	Related Work
	Conclusion and Future Work
	References

	Requirements and Business Intelligence
	A Modularization Proposal for Goal-Oriented Analysis of Data Warehouses Using I-Star
	Introduction
	Related Work and Background
	Definition of Modules and Guidelines
	Definition of Modules
	Guidelines

	Example of Application and Experimental Results
	Example of Application
	Experimental Results

	Conclusions and Future Work
	References

	Strategic Models for Business Intelligence
	Introduction
	Strategic Business Models
	Situation
	Influence
	Indicator
	Instantiation of Business Schemas

	Reasoning with Business Schemas
	Running Example
	Exploration of Possible Strategies
	Evaluation of Specific Strategies
	Probabilistic Evaluation of Strategies

	Related Work
	Conclusion
	References

	Evolving Requirements in Socio-Technical Systems: Concepts and Practice
	Introduction
	Context
	Towards a Conceptual and Analysis Framework for Evolving Requirements (CAFfE)
	Instantiating the Framework
	Related Work
	Conclusion and Future Work
	References

	Composite Indicators for Business Intelligence
	Introduction
	Strategic Business Models
	Indicators
	Reasoning with Indicators
	Quantitative Reasoning
	Qualitative Reasoning

	Related Work
	Conclusions
	References

	MDA and Ontology-Based Modeling
	Incorporating Traceability in Conceptual Models for Data Warehouses by Using MDA
	Introduction
	Related Work
	Traceability from PIM to PIM DW Models
	Automatic Derivation of Traceability Models in Data Warehouses
	Case Study
	Conclusions and Future Work
	References

	Lightweight Verification of Executable Models
	Introduction
	State of the Art
	Preliminary Concepts
	Structural Model
	Behavioural Model

	Our Method
	Step 1: Computing the Execution Paths of the Operation
	Step 2: Analyzing the Existence of Potentially Violating Actions
	Step 3: Discarding Potentially Violating Actions

	Conclusions and Further Work
	References

	Towards a Model of Services Based on Co-creation, Abstraction and Restriction
	Introduction
	The REA Ontology and Hohfeld’s Classification of Rights
	Resources
	Conversion Processes
	Exchange Processes
	Hohfeld’s Classification of Rights
	Offerings, Commitments, and Contracts

	Service Perspectives
	Service as a Means for Co-creation
	Service as a Means for Abstraction
	Service as a Means for Providing Restricted Resource Access
	Concluding Remarks
	References

	A Semantic Oriented Method for Conceptual Data Modeling in OntoUML Based on Linguistic Concepts
	Introduction
	Languages
	The Method
	Example
	Method Evaluation
	Conclusion
	References

	Process Modeling
	Content-Based Validation of Business Process Modifications
	Introduction
	Related Work
	The Descriptor Model
	The Process Descriptor Repository
	Descriptor-Based Taxonomies

	The Content-Based Validation Method
	Conclusions
	References

	Visual Change Tracking for Business Process Models
	Introduction
	Main Issues of Visual Change Tracking
	Aesthetic Criteria
	Mental Map
	Visual Properties

	Visual Framework for Change Tracking in Graphs
	Survey
	Methodology
	Results

	Related Work
	Conclusion
	References

	An Empirical Analysis of Human Performance and Error in Process Model Development
	Introduction
	Background
	Human Performance in Process Model Development
	Human Error in Process Model Development

	Laboratory Study
	Methods
	Results
	Discussion

	Conclusion and Outlook
	References

	Panel: New Directions for Conceptual Modeling
	Panel Objective
	Position Statements
	Antoni Olivé
	Sudha Ram
	Gerd Wagner
	Yair Wand
	Eric Yu

	Panel: Modeling for the Future Internet

	Author Index

