
Exploring the Relationship between Novice

Programmer Confusion and Achievement

Diane Marie C. Lee1, Ma. Mercedes T. Rodrigo1, Ryan S.J.d. Baker2,
Jessica O. Sugay1, and Andrei Coronel1

1 Department of Information Systems and Computer Science,
Ateneo de Manila University,

Loyala Heights, Quezon City, Philippines
2 Department of Social Science and Policy Studies,

Worcester Polytechnic Institute,
Worcester MA, USA

dianemarielee@gmail.com,
{mrodrigo,jsugay,acoronel}@ateneo.edu, rsbaker@wpi.edu

Abstract. Using a discovery-with-models approach, we study the re-
lationships between novice Java programmers’ experiences of confusion
and their achievement, as measured through their midterm examination
scores. Two coders manually labeled samples of student compilation logs
with whether they represent a student who was confused. From the la-
beled data, we built a model that we used to label the entire data set.
We then analysed the relationship between patterns of confusion and
non-confusion over time, and students’ midterm scores. We found that,
in accordance with prior findings, prolonged confusion is associated with
poorer student achievement. However, confusion which is resolved is as-
sociated with statistically significantly better midterm performance than
never being confused at all.

Keywords: Confusion, novice programmers, student affect, affective se-
quences, student achievement, Java, BlueJ.

1 Introduction

Learning to program is an emotional experience. According to interview-based
reports in [13], when novice programmers begin reading problem specifications,
a lack of comprehension of the instructions can lead to a feeling of disorienta-
tion. When they start to understand the problem, they can continue to feel lost,
this time because they do not know how to begin the programming process.
The first error they encounter can trigger strong negative emotions. Subsequent
errors can lead to a sense of resignation and a reluctance to continue. Students
also report different emotions based on their use of feedback while programming
[13]. Students who effectively use feedback to guide their programming in some
cases feel a constructive form of confusion that motivates them to systematically
experiment with their code and converge to a solution. In contrast, students who

S. D́ Mello et al. (Eds.): ACII 2011, Part I, LNCS 6974, pp. 175–184, 2011.
c© Springer-Verlag Berlin Heidelberg 2011



176 D.M.C. Lee et al.

ignore or are unable to use feedback liken their experiences to running in a ham-
ster wheel: They repeatedly try bug fixes with no reflection or understanding,
eventually leading to a feeling of despair [13].

Recent studies illustrate the relationships between affective states and achieve-
ment in a variety of learning contexts. Craig et al. [6] found that, among stu-
dents using an AutoTutor, an intelligent tutor for computer literacy, the affective
states of confusion and flow [7] (called “engaged concentration” in [3]) were pos-
itively correlated with achievement. Boredom, regarded by Craig et al. [6] as
the antithesis of flow, was negatively correlated with learning gains. Lagud and
Rodrigo [15] found that high achieving students using Aplusix, an intelligent
tutor for algebra, experienced significantly more flow than students with low
achievement. Low-achieving students in the same study experienced the highest
levels of boredom and, in contrast to [6], confusion.

In the context of learning to program, Rodrigo et al [19] found that boredom
and confusion were again associated with lower achievement among students
taking their first college-level programming course. Khan et al. [12] found that
high levels of arousal regardless of valence – delight, rejoicing, even terror and
restlessness – can lead to better debugging performance among students.

One of the limitations of these studies is that they examined these affective states
in isolation, rather than as links in a cognitive-affective chain, cf. [10]. Researchers
have therefore grown increasingly interested in studying affective dynamics, de-
fined as the natural shifts in learners’ affective states over time [8]. Studies by [3],
[8], and [16], have found that certain affective states such as flow/engaged concen-
tation, confusion, boredom, and frustration tend to persist over time. Confused
students tend to stay confused; engaged students tend to stay engaged.

Affect and affective dynamics have also been shown to influence student
achievement and key student behaviours that drive learning. Research by D’Mello
et al [10] has found that students who are bored tend to get trapped in a “vi-
cious cycle” of boredom, incorrect responses to problem solving questions, and
negative feedback. Boredom has also been found to be an antecedent of gaming
the system, a behaviour associated with significantly poorer learning, among stu-
dents using simulation problem games and intelligent tutors [3]. By contrast, [10]
found that the more positive affective state of curiosity leads to correct responses
to problem solving questions, positive feedback, happiness, and continued curios-
ity. Confusion was found to have a dual nature. If a student is unable to work
through confusion, the student is likely to give incorrect responses to questions,
receive negative feedback and eventually experience frustration. If, on the other
hand, confusion is resolved, the student’s responses to questions will tend to
be correct, the student will receive positive feedback and eventually transitions
into a neutral affective state [10]. Some of D’Mello et al.’s [10] findings were
corroborated by recent study by Rodrigo, Baker, and Nabos [20] that examined
students using an intelligent tutor for scatterplots. They found that boredom
was both persistent and detrimental to learning. Confusion could be positive if
punctuated with periods of engaged concentration. Prolonged confusion, on the
other hand, had a negative impact on student achievement.



Novice Programmer Confusion and Achievement 177

Within this paper, we present a study that uses a discovery-with-models ap-
proach [2] to investigate novice programmer confusion and its impact on student
overall achievement in a course. Two human coders manually labeled text re-
plays [4] of excerpts of student compilation behaviour (termed “clips”) as to
whether they represented student confusion. From the labeled data, we built a
machine-learned model of student confusion and used this model to label the
entire dataset. We then aggregated student affect over time into sequences of
confusion and non-confusion, and correlated each student’s frequency of demon-
strating these sequences with the student’s midterm exam score.

2 Data Collection

The population under study consisted of 149 freshman and sophomore college
students aged 15 to 17 from the Department of Information Systems and Com-
puter Science (DISCS) of the Ateneo de Manila University during the School
Year 2009-2010. These students are younger than the typical college freshman
in other countries because the Philippines only has 10 years of mandatory basic
education, two years less than basic education in other countries. These students
were enrolled in five sections of CS21 A-Introduction to Computing I and were
divided into five sections.

We collected the students’ compilation logs during four practical lab sessions
spread over two months. Laboratory sessions were held in two classrooms. Each
student was assigned to a computer installed with a specially instrumented ver-
sion of the BlueJ Interactive Development Environment (IDE) for Java (Figure
1) [11]. This version of BlueJ was connected to a SQLite database server. Upon
each compilation, BlueJ saved a copy of the students’ program and any compile-
time error messages, on the server.

There were some lab sessions during which the data collection server was not
running correctly. We were therefore only able to collect logs from 340 student-
lab sessions, giving a total of 13,528 compilations.

Fig. 1. Screenshot of the BlueJ IDE



178 D.M.C. Lee et al.

3 Data Labeling

The first step in the labeling process was deciding the level of granularity at
which the compilations were going to be examined. It was not possible, for ex-
ample, to tell whether a student was confused from a single compilation. Neither
did we want to judge student confusion based on an entire session’s worth of com-
pilations. If, later on, we were to design interventions for student confusion, we
would like these interventions to be sensitive enough to detect confusion while
the student is still writing the program and not after he or she has finished.
We needed a sequence of compilation events to conduct data labeling but had
to decide on the sequence length. We decided to group the compilations into
clips of 8 compilations each where the number of compilations, 8, was chosen
arbitrarily.

There were cases in which a Java program consisted of two or more Java
classes. When a student compiled, all Java classes within the program were
compiled and logged with the same time stamp. To generate the clips, we sorted
all compilations first by student identifier, then by Java class name, then by time
stamp. We then grouped the compilations with same student identifier and Java
class into sets of up to 8 compilations. This produced a total of 2,386 clips which
could be coded.

We attempted to sample 2 random clips per student-lab for labeling, which
would have given 680 clips. However, some students only had a single clip for a
specific lab (for example, due to requiring fewer than 16 compilations to complete
a lab). We therefore coded a total of 664 clips.

A small application was written to display the clips in the form of low-fidelity
text replays (Figure 2) [4],wherehuman judgment is applied topretty-prints of sub-
segments of log files. A previous study by Baker et al [4] showed that text replays
enable coders to label student disengagement with greater efficiency than higher
fidelity methods such as human observations and video replays, while maintain-
ing good inter-rater reliability. This method of data labeling has also been used to
study student meta-cognitive planning processes [17] and systematic experimen-
tation behaviour patterns [21], again achieving good inter-rater reliability.

Once the application was completed, the two co-authors met to decide on
criteria for labeling clips as “Confused”,“Not Confused” or “Bad Clip”. The
coders decided that the student’s behavior implied confusion when

1. The same error appeared in the same general vicinity within the code for
several consecutive compilations. The coders inferred that the student did
not know what was causing the error and how to fix it.

2. An assortment of errors appeared in consecutive compilations and remained
unresolved. The coders inferred that the student was experimenting with
solutions, changing the actual error message but not addressing the real
source of the error.

3. Code malformations that showed a poor understanding of Java constructs,
e.g. “return outside method”. The coders inferred that the student did not
grasp even the basics of program construction, despite the availability of
written aids such as Java code samples and explanatory slides.



Novice Programmer Confusion and Achievement 179

Fig. 2. Screen shot of the low-fidelity text replay playback program for a “confused”
student

When a clip showed a student successfully resolving an error or an assortment of
errors, it was labeled as “not confused.” If a clip had compilations of programs
other than the assigned laboratory exercise, e.g. instructor-supplied sample code
or tester programs, it was labeled “bad clip.”

Interrater reliability was acceptably high with Cohen’s [5] Kappa = .77.
Given these labels, our next step was to build a detector to label the rest of

the data. In order to do so, we filtered out all “bad clips” and all clips with less
than 8 compilations. It was also necessary to filter out data from one of the five
class sections due to a logging error. Finally, we removed all clips in which the
two raters disagreed, for the purposes of building a model. We were left with 418
clips with which to build the model.

4 Model Construction and Data Relabeling

RapidMiner version 5.1 [1] was used to build a decision tree, using the J48 imple-
mentation of the C4.5 algorithm [18] (Figure 3), using the following feature set:

1. Average time between compilations
2. Maximum time between compilations
3. Average time between compilations with errors
4. Maximum time between compilations with errors
5. Number of compilations with errors
6. Number of pairs of consecutive compilations with the same error



180 D.M.C. Lee et al.

Fig. 3. Decision tree depicting the criteria for labeling a clip as confused or not confused

Student-level 10-fold cross-validation of the model resulted in an excellent Kappa
of .86.

The model was implemented as a Java program. The program was then used
to label all of the clips in the data set. Removing all bad clips, we generated three
sets of confused-not confused sequences. The first set consisted of single states.
The second set consisted of sequences of two consecutive states (2-step). The
third and final set consisted of sequences of three consecutive states (3-step).

There were students who did not have any 2-step or 3-step sequences for
any specific lab. Hence, the number of students in each set varied. We had 113
students in the 1-step set, 95 students in the 2-step set and 71 students in the
3-step set.

We counted the number of occurrences of each state or sequence per student
within each set. The total number of sequences per student varied. We there-
fore normalized the data by dividing the number of occurrences of each state
or sequence per student by the total number of occurrences for that student.
We then correlated these percentages with the students’ midterm examination
scores. The midterm examination was composed of questions that tested stu-
dents’ programming comprehension. Students were given code fragments as well
as whole programs. They were then asked questions about the code, including
whether fragments would compile, what the output of a code fragment would
be, or which part of the code performed a given action.

5 Results and Discussion

In terms of 1-step sequences, there was a marginally significant negative corre-
lation between the incidence of confusion and student achievement (r= -.168;



Novice Programmer Confusion and Achievement 181

Table 1. r-values of the incidence of 2-step sequences with midterm scores. Numbers
in parenthesis are the p-values. Statistically significant correlations are in dark grey.

Not Confused - Not Confused - Confused - Confused -
Not Confused Confused Not Confused Confused

Relationship .064 .139 .144 -.229
with midterm (.539) (.180) (.163) (.026)

p=.075). This indicates, rather unsurprisingly, that students who are confused
in general tend to receive lower scores on the midterm exam.

The 2-step sequences (Table 1) show that confusion sustained over two clips
is also negatively correlated with midterm scores (r=- .229; p=.026). No other
2-step sequences were significantly different than chance, suggesting that only
sustained confusion impacts learning negatively to a significant degree.

Analysis of the 3-step sequences sheds further light on the relationship be-
tween confusion and learning. Confusion sustained over three consecutive clips,
is again negatively correlated with midterm scores (CCC: r=-.337; p=.004). On
the other hand, a student who over a 3-clip sequence starts out confused, resolves
their confusion, and continues to be non-confused, then achieves higher midterm
scores (CNN: r=.233, p=.05). This is consistent with D’Mello and Graesser’s [9]
cognitive disequilibrium model in which confusion has to be resolved through
thought, reflection, and deep thinking to return the learner into a flow state.
Unresolved confusion, on the other hand, leads to frustration and boredom.

Note that simply switching from confused to non-confused is not sufficient
for positive learning; as shown in Table 2, other patterns of transition between
confusion and non-confusion are not significantly associated with midterm per-
formance; the key pattern for learning appears to be confusion which is resolved,
and does not recur.

Also, in contrast to confusion which is resolved, never being confused at all is
not significantly associated with midterm performance, r= -0.015, p=0.901. This
finding is additional support for the hypothesis that some degree of confusion is
beneficial for learning. Deep processing of the subject matter appears to require
being confused, but resolving that confusion.

These findings shed additional light on the dual nature of confusion. Students
experience confusion when confronted with new material or new problems they
cannot immediately solve. At this point, confusion may spur students to work

Table 2. r-values of the incidence of 3-step sequences with midterm scores. Numbers
in parenthesis are the p-values. Statistically significant correlations are in dark grey. N
= Not Confused while C = Confused.

NNN NNC NCN NCC CNN CNC CCN CCC

Rel. -.015 .014 .062 -.046 .233 .163 .052 -.337
with midterm (.901) (.909) (.610) (.704) (.05) (.174) (.665) (.004)



182 D.M.C. Lee et al.

through the problems and resolve them, returning eventually to a hopeful and
enthusiastic state, as hypothesized in [14]. [9] consider this type of confusion
to be productive. On the other hand students can become stuck in a state of
hopeless – persistent – confusion, which does not lead to learning.

6 Conclusion

The purpose of this paper was to study the relationship between novice program-
mers’ experience of confusion and their achievement as measured through their
midterm examination scores. Using a discovery-with-models approach, we cre-
ated a model of confusion using manually-labeled samples of student compilation
logs. We then used this model to label the entire data set. From the labeled data
set, we distilled students’ patterns of transitions between being confused and not
confused, and correlated these sequences’ incidence with each student’s midterm
scores. We found that prolonged confusion has a negative impact on student
achievement. Confusion which is resolved, however, is positively associated with
midterm scores.

Overall, the findings of this study support D’Mello and Graesser’s [9] model of
cognitive disequilibrium, applicable to deep learning environments. The model
proposes that confusion can be a useful affective state when it spurs learners
to exert effort deliberately and purposefully to resolve cognitive conflict. If the
learners are successful, they return to a state of flow [7]. If they are unsuccessful,
though, they could become frustrated or bored, and may decide to disengage
from the learning task altogether [9]. The model and these findings challenge
educational designers to develop learning tasks that are complex enough to stim-
ulate a constructive level of learner confusion while making scaffolding available
to prevent hopelessness and disengagement.

As a response to these challenges, one important future use of this paper’s
model of confusion and the subsequent findings will be to support the incorpo-
ration of tools for automatically detecting novice programmer confusion, into
computer science education environments. As the detector is based solely upon
log files, it can be deployed at scale quite easily. These tools may enable edu-
cators to identify novices who are at academic risk and provide these students
with the support they need to learn the material and persist in their studies. In
addition, the detector could eventually be the basis of automated response to
student confusion.

Acknowledgements. The authors thank the Department of Science and Tech-
nology’s Philippine Council for Advanced Science and Technology Research and
Development for the grant entitled “Development and Deployment of an Intel-
ligent Affective Detector for the BlueJ Interactive Development Environment”,
and the Pittsburgh Science of Learning Center (National Science Foundation)
via grant “Toward a Decade of PSLC Research”, award number SBE-0836012.
We thank Jose Alfredo de Vera, Hubert Ursua, Matthew C. Jadud and the
Department of Information Systems and Computer Science of the Ateneo de



Novice Programmer Confusion and Achievement 183

Manila University for their support. We thank Wimbie Sy and Clarissa Ramos
for their contribution to the early part of this work. Finally, we thank the CS
21 A students of school year 2009-2010 for their participation in this study.

References

1. http://www.rapid-i.com

2. Baker, R.: Data mining for education. In: International Encyclopedia of Education,
3rd edn. Elsevier, Oxford (2010)

3. Baker, R., D’Mello, S., Rodrigo, M., Graesser, A.: Better to be frustrated than
bored: The incidence and persistence of affect during interactions with three dif-
ferent computer-based learning environments. International Journal of Human-
Computer Studies 68(4), 223–241 (2010)

4. Baker, R., Corbett, A., Wagner, A.: Human classification of low-fidelity replays of
student actions. In: Proceedings of the Educational Data Mining Workshop at the
8th International Conference on Intelligent Tutoring Systems, pp. 29–36. Citeseer
(2006)

5. Cohen, J.: A coefficient of agreement for nominal scales. Educational and Psycho-
logical Measurement (1960)

6. Craig, S., Graesser, A., Sullins, J., Gholson, B.: Affect and learning: an exploratory
look into the role of affect in learning with AutoTutor. Journal of Educational
Media 29, 241–250 (2004)

7. Csikszentmihalyi, M.: Flow: The psychology of optimal experience: Steps toward
enhancing the quality of life. Harper Collins Publishers, New York (1991)

8. DMello, S., Taylor, R., Graesser, A.: Monitoring affective trajectories during com-
plex learning. In: Proceedings of the 29th Annual Meeting of the Cognitive Science
Society, pp. 203–208 (2007)

9. DMello, S., Graesser, A.: Dynamics of Cognitive-Affective States During Deep
Learning. Paper under review

10. DMello, S., Person, N., Lehman, B.: Antecedent-consequent relationships and cycli-
cal patterns between affective states and problem solving outcomes. In: Proceedings
of AIED (2009)

11. Jadud, M., Henriksen, P.: Flexible, reusable tools for studying novice programmers.
In: Proceedings of the Fifth International Workshop on Computing Education Re-
search Workshop, pp. 37–42. ACM, New York (2009)

12. Khan, I., Brinkman, W., Hierons, R.: Do moods affect programmers debug perfor-
mance? In: Cognition, Technology & Work, pp. 1–14

13. Kinnunen, P., Simon, B.: Experiencing programming assignments in CS1: the emo-
tional toll. In: Proceedings of the Sixth International Workshop on Computing
Education Research, pp. 77–86. ACM, New York (2010)

14. Kort, B., Reilly, R., Picard, R.: An affective model of interplay between emo-
tions and learning. In: Proceedings of IEEE International Conference on Advanced
Learning Technologies, pp. 6–8 (2001)

15. Lagud, M., Rodrigo, M.: The Affective and Learning Profiles of Students Using an
Intelligent Tutoring System for Algebra. In: Aleven, V., Kay, J., Mostow, J. (eds.)
ITS 2010, Part I. LNCS, vol. 6094, pp. 255–263. Springer, Heidelberg (2010)

16. McQuiggan, S., Robison, J., Lester, J.: Affective Transitions in Narrative-Centered
Learning Environments. Subscription Prices and Ordering Information 13(1), 40–
53 (2010)

http://www.rapid-i.com


184 D.M.C. Lee et al.

17. Montalvo, O., Baker, R., Sao Pedro, M., Nakama, A., Gobert, J.: Identifying Stu-
dents Inquiry Planning Using Machine Learning. In: Proceedings of the 3rd Inter-
national Conference on Educational Data Mining, pp. 141–150 (2010)

18. Quinlan, J.: C4. 5: programs for machine learning. Morgan Kaufmann, San Fran-
cisco (1993)

19. Rodrigo, M., Mercedes, T., Baker, R., Jadud, M., Amarra, A., Dy, T.,
Espejo-Lahoz, M., Lim, S., Pascua, S., Sugay, J., et al.: Affective and behavioral
predictors of novice programmer achievement. ACM SIGCSE Bulletin 41(3), 156–
160 (2009)

20. Rodrigo, M., Baker, R., Nabos, J.: The Relationships Between Sequences of Af-
fective States and Learner Achievement. In: Proceedings of the 18th International
Conference on Computers in Education, pp. 56–60 (2010)

21. Sao Pedro, M., Baker, R., Montalvo, O., Nakama, A., Gobert, J.: Using Text Replay
Tagging to Produce Detectors of Systematic Experimentation Behavior Patterns.
In: Proceedings of the 3rd International Conference on Educational Data Mining,
pp. 181–190 (2010)


	Exploring the Relationship between Novice Programmer Confusion and Achievement
	Introduction
	Data Collection
	Data Labeling
	Model Construction and Data Relabeling
	Results and Discussion
	Conclusion
	References




