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Examples of the Application of Unified Elasto- 
Plastic Constitutive Relations  

7.1 Introduction 

The unified strength theory, its singularity and the process of the piece-wise linear 
yield criterion, the implementation of the unified strength theory, and the 
subroutine of yield criteria (subroutine “INVAR” to calculate equivalent stresses), 
the subroutine of flow vector and the subroutine of the corner (subroutine 
“YIELD” and “FOLWPL” to calculate flow vector) have been introduced in 
previous chapters. Some simple examples including the plane stress, plane strain 
and spatial axial-symmetry problems will be described in this chapter. It is easy 
for the reader to find out about the possibility of adding new functions to the 
procedure (Yu, 1992; Yu et al., 1992; 1994; UEPP User’s Manual, 1998).  
 

  
(a) Plane stress problem     (b) Plane strain problem   (c) Spatial axisymmetric problem 

Fig. 7.1 Three kinds of engineering structures  
 

Plane stress, plane strain and spatial axisymmetric problems are three 
important problems in plasticity and engineering. Figure 7.1 shows an example of 
these three kinds of structures. Figure 7.1(a) is a plane stress structure with a 
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uniform thickness of thin lamina, deformed under the action of the force which 
lies in its median plane. Figure 7.1(b) is a plane strain problem with zero strain in 
the z direction (length) in a structure of very great thickness. Figure 7.1(c) is a 
spatial axisymmetrical problem which is symmetrical in terms of geometry, 
boundary conditions and external loading about an axis.  

These three kinds of structure shown in Fig. 7.1 have an identical section, a 
trapezoid, but different stress states. The stresses normal to the solution domain �z 
in the plane stress state are zero principal stress and nonzero principal stress in the 
plane strain; the hoop stress ��  in special axisymmetrical problems is also a 
principal stress.  

Several examples are calculated using the UEPP (Yu et al., 1992; Yu et al., 
1993; Yu and Zeng, 1994; UEPP User’s Manual, 1998) based on the unified 
strength theory (for SD materials) or the unified yield criterion (for non-SD 
materials) with b=0, b=1/2 and b=1 in this chapter. Some examples are the same 
as the previous examples presented in the literature, for comparison. These three 
special cases of the unified strength theory are three basic criteria, which are the 
lower criterion, the upper criterion and the median criterion for all the convex 
criteria. So, three basic results can be obtained.  

Sometimes, five types of criteria of the unified strength theory with b=0, 
b=1/4, b=1/2, b=3/4 and b=1 are used. Eleven results can be obtained using the 
unified strength theory with b=0, b=0.1, b=0.2, b=0.3, b=0.4, b=0.5, b=0.6, b=0.7, 
b=0.8, b=0.9 and b=1, if needed.  

7.2 Plane Stress Problems 

7.2.1 Elasto-Plastic Analysis of a Cantilever Beam 

A plastic analysis of a simple, plane stress, cantilever beam can be seen in the 
book by Zienkiewicz in 1971. Ideal plasticity behaviour of a Huber von Mises 
material model was assumed. The spread of plastic zones for different ratios of 
q/qp when qp is calculated as from plastic beam theory (qp = collapse load) is 
shown in Fig. 7.2. The loads are given in terms of the collapse load estimated on 
the basis of elementary plastic hinge theory. 
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Fig. 7.2 The spread of plastic zones for cantilever beam (Zienkiewicz, 1971) 

 
Figure 7.3 shows the increase in displacements with load. As the collapse load 

is approached progressively, larger numbers of iterations are required and indeed at 
P/Pp=1 no convergence was achieved (Zienkiewicz, 1971). Thus, although the 
non-linear solution allows a lower bound in collapse load to be found (by satisfying 
equilibrium and yield conditions) the actual collapse load cannot be found by 
incrementing the loads. To obtain a better picture of collapse behavior it is simpler to 
apply specified displacements at the load point and to increment these until no 
further increase in the reaction at that point is achieved. 

 

 
Fig. 7.3 Displacements versus load P/Pp 

 

 
Fig. 7.4 A similar cantilever beam (Zienkiewicz, 1971) 
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A similar cantilever beam under the act of a uniform load shown in Fig. 7.4 is 
studied again in terms of the unified strength theory and UEPP (Yu, 1993). In Fig. 
7.4 the mechanical behaviour of material is E=2.1×105  MPa, 
=0.3, ideal 
plasticity, yield stress �y=240 MPa. Calculate the elastic limit of the beam, the 
plastic region and the load-displacement relationship using the unified yield 
criterion with different parameter b. 

The beam is considered as a plane stress problem. The configuration and the 
division into 40 isoparametric elements are shown in Fig. 7.5. An 8-nodes 
isoparametric element is used. The number of the nodes is 147. After the first 
iteration the elastic limits of the cantilever beam in terms of the unified yield 
criterion with different value of b (b=0, b=1/2, b=1) are obtained respectively, as 
follows. 

 

Fig. 7.5 Plastic zones of cantilever beam under the same load we=15 N/mm2 
1) qe=9.03 N/mm2 (unified yield criterion with b=0, single-shear criterion, i.e. 

the single-shear yield criterion or the Tresca criterion); 
2) qe=9.36 N/mm2 (unified yield criterion with b=1/2, linear Mises criterion); 
3) qe=9.54 N/mm2 (unified yield criterion with b=1, twin-shear criterion).  
 
The plastic zones for different values of the unified yield criterion parameter b 

under the same load we=15 N/mm2 are different, as shown in Fig. 7.5. Figure 7.5(a) 
is the plastic zone of the unified yield criterion with b=0. It is also the plastic zone 
of the single-shear criterion or the Tresca yield criterion. Figure 7.5(b) is the 
plastic zone of the unified yield criterion with b=1/2 It approximates to the plastic 
zone of the Huber-von Mises yield criterion. Figure 7.5(c) is the plastic zone of 
the unified yield criterion with b=1. It is the plastic zone of the twin-shear yield 
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criterion. 
The increase in displacements with load in terms of different values of the 

unified strength theory parameter b is displayed in Fig. 7.6. It requires a large 
number of iterations of non-linear computation, until no further increase in the 
reaction at that point is achieved (furthermore, the numerical solution process will 
be divergent). The plastic limit load is approached progressively to the point 
where no convergence is achieved, as shown in Fig. 7.3 and Fig. 7.6. The 
convergent results using the three basic criteria can be obtained respectively, as 
shown in Fig. 7.6. 

 

Fig. 7.6 Increase of displacements with load for different yield criteria

The numerical results achieved by using the unified strength theory with b=0 
are very close to the results of Zienkiewicz (1971). Some new results, moreover, 
are obtained by using the unified strength theory. 

7.2.2 Elasto-Plastic Analysis of a Trapezoid Structure under 
Uniform Load 

The trapezoid structure is an important structure in engineering. It can be 
processed as a unified problem in FEM-2D codes. 

On a symmetrical trapezoidal plate, the vertex angle formed by the extension line 
of its two bevels is 2� (�=453), the upper side of the trapezoidal plate (Fig. 7.7) exerts a 
uniform pressure q. The parameters of the material are elastic modulus, E=2.06 104 
MPa, Poisson’s ratio 	=0.167. The uniaxial tensile strength of the material is �t=2.4 
MPa, the uniaxial compressive stress is �c=24 MPa, i.e. the strength ratio of extension 
to compression is �=0.1. Then calculate the elastic limit load and plastic limit load by 
using the unified yield criterion with different parameter b. 

This problem can be considered as a plane stress problem. We analyze a half 
of the trapezoidal structure because of the symmetry. The isoparametric elements 
can be chosen as eight nodes and a quadrilateral, as shown in Fig. 7.8. And there 
are 128 element and 433 nodes in total. The elastic limit can be calculated under 
different yield criteria. 
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The elastic limit of a trapezoidal plate in terms of the unified yield criterion 
with a different value of b (b=0, b=0.5, b=1, i.e. different yield criteria) under 
plane stress state can be obtained as follows. 

1) qe=23.9 MPa (unified strength theory with b=0, single-shear theory, i.e. the 
Mohr-Coulomb theory); 

2) qe=25.2 MPa (unified strength theory with b=1/2, a new criterion); 
3) qe=28.1 MPa (unified strength theory with b=1, i.e. Twin-shear theory). 
 

 
Fig. 7.7 Mesh of a half-trapezoidal structure   Fig. 7.8  load-displacement relations 

 
As shown in Fig. 7.8, the load-displacement curve of node 2 in the middle of 

the plate can be obtained by increasing the uniform load step-by-step. The solution 
is obtained until the limit load is reached. The limit load is approached 
progressively. A larger number of iterations are required until no convergence is 
achieved. 

The solution is convergent when q=70 MPa (for single-shear theory or the 
unified strength theory with b=0), q=92 MPa (for the unified strength theory with 
b=1/2), q=104 MPa (for the unified strength theory with b=1). Increase the load 
again and the solution process will be divergent; therefore three kinds of limit load 
can be obtained, respectively. 

The plastic limit of a trapezoidal structure in terms of the unified yield criterion 
with different values of b (b=0, b=0.5, b=1) under plane stress state are 

1) qp=70 MPa (unified strength theory with b=0, single-shear theory, i.e. the 
Mohr-Coulomb theory); 

2) qp=92 MPa (unified strength theory with b=1/2, a new criterion); 
3) qp=104 MPa (unified strength theory with b=1, twin-shear theory). 

7.3 Plane Strain Problems 

Figure 7.9 shows a typical structure in railway and high road engineering and the 
city wall in Xi’an, China. It can be simplified to a plane strain problem. The 
uniform distributed load is applied on the top. A symmetrical trapezoidal structure 
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with a top angle 2� and the slip line field of the trapezoid structure are also shown 
in Fig. 7.9. The slip line field was constructed as shown in Fig. 7.9 (Yu et al.). The 
stability of the city wall in Xi’an, China, can be seen in Chapter 18. 
 

  

  
Fig. 7.9 Base of a railroad and the plane strain problem 

 
The mesh of a trapezoidal structure under plane strain is identical to the mesh 

of a plane stress problem shown in Fig. 7.8. The isoparametric elements with eight 
nodes and a quadrilateral are used. 

The elastic limit of a symmetrical trapezoidal structure in terms of the unified 
yield criterion with different values of b (b=0, b=0.5, b=1) under plane strain state 
can be obtained as follows. 

1) qe=28.8 MPa unified strength theory with b=0, single-shear theory, i.e. the 
Mohr-Coulomb theory); 
2) qe=33.1 MPa (unified strength theory with b=1/2, a new criterion); 
3) qe=35.8 MPa (unified strength theory with b=1, twin-shear theory). 
The load-displacement relation of node 2 in the middle of the trapezoidal 

structure under plane strain condition using the three yield criteria can be obtained, 
as shown in Fig. 7.10. 
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Fig. 7.10 Load-displacement relation of a trapezoidal structure under plane strain condition 

 
The convergent result can be obtained when q=81.8 MPa (unified strength 

theory with b=0, i.e. the Mohr-Coulomb single-shear theory), q=109 MPa (unified 
strength theory, b=0.5), q=125.8 MPa (unified strength theory, b=1). Increasing 
the loads further, the numeric solution process will be divergent. Then the limit 
load can be obtained by using the three yield criteria respectively. 

The plastic limit of a trapezoidal structure in terms of the unified yield 
criterion with different values of b (b=0, b=0.5, b=1) under the plane strain state 
can be obtained as follows. 

1) qp=81.8 MPa (unified strength theory with b=0, single-shear theory, i.e. the  
Mohr-Coulomb theory); 

2) qp=109 MPa (unified strength theory with b=1/2, a new criterion); 
3) qp=125.8 MPa (unified strength theory with b=1, twin-shear theory). 

7.4 Spatial Axisymmetric Problems 

7.4.1 Analysis of Plastic Zone for Thick-Walled Cylinder 

Another example of using the unified strength theory is a thick-walled cylinder 
shown in Fig. 7.11 and Fig. 7.12. When the internal pressure exceeds pe, a plastic 
zone will begin at the inner surface and spread outwards toward the outer surface. 
The elastic–plastic boundary at any stage has a radius rc. In the elastic region, 
(rc�r�rb), the radial and circumferential stresses are obtained from Lame’s 
equations using the boundary condition �r=0 at r=rb and the fact that the material 
at r=rc is stressed to the yield point. The pressure reaches its maximum value 
when the plastic zone reaches the outer surface of the thick-walled tube. 

The elastic part of the elastic-plastic thick-walled tube may be considered as a 
new tube with inner radius rc and outer radius rb, with an internal pressure pe. The 
stress distribution in the elastic region for an incompressible material is easily 
obtained.
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Fig. 7.11  Thick-walled cylinder 

 
Due to symmetry, only a quarter of the thick-walled cylinder is shown. The 

cylinder has an inner radius ra =100 mm, and an outer radius rb =200 mm. The 
elastic modulus is E =2.1×105 MPa, Poisson ratio 	=0.3, tensile yield stress  

y� =240 MPa. This example is the same as the example in Chapter 7 of the book 
(Owen and Hinton, 1980) for comparison. 

 

 
Fig. 7.12 Thick-walled cylinder and finite element mesh  

 
Four elastic limit pressures using different yield criteria are obtained as follows. 

1) pe =97.9 MPa (unified yield criterion with b=0, single-shear criterion or the 
Tresca criterion);   

2) pe =111.0 MPa (unified yield criterion with b =1/(1+ 3 ), a new criterion);  
3) pe =111.6 MPa (Huber-von Mises yield criterion);  
4) pe =125.8 MPa (unified yield criterion with b=1, twin-shear yield criterion). 
Figure 7.13 shows the distribution of the circumferential stress in a 

thick-walled cylinder with the twin-shear yield criterion (b=1), the Huber-Mises 
criterion (b =1/(1+ 3 )) and the Tresca criterion (b=0) respectively. The curves 
are the analytical solution and the dots are the numerical solution. The third curve 
in Fig. 7.13 agrees with the previous result (Johnson and Mellor, 1962; Mendelson, 
1968; Chakrabarty, 1987). 
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Fig. 7.13 Distribution of circumferential stress in cylinder with different yield criteria 

 
The distributions of circumferential stresses with different yield criteria in the 

elasto-plastic thick-walled cylinder subjected to internal pressure p=160 MPa are 
shown in Fig. 7.13. Three curves are drawn according to the analytical solutions in 
terms of the unified strength theory (Yu, 2004). The points are obtained from the 
numerical calculations of the thick-walled cylinder that obey the unified yield 
criterion with b=0, 1/(1 3)b � �  and b =1, respectively.  

The plastic zones in a thick-walled cylinder with different yield criteria under 
the same load are shown in Fig. 7.14. The radius of the plastic zone with the 
unified yield criterion when b=0 (Tresca yield criterion) is larger than that 
obtained from 1/(1 3)b � �  and b=1. As a comparison, the distribution of 
circumferential stress ��  in the elasto-plastic thick-walled cylinder obeying the 
Huber-von Mises yield criterion is also shown in Fig. 7.14(c). 

It is seen that the results obeying the Huber-von Mises yield criterion and the 
unified yield criterion with 1/(1 3)b � �  are identical both in analytical 
solution and numerical calculation. 
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(a) UST with b=0 (Single-shear criterion,)       (b) UST with 1/(1 3)b � �  
 

 
(c)  Huber-von Mises criterion    (d) UST with b=1 (Twin-shear criterion) 

Fig. 7.14 Distribution of plastic zone in thick-walled cylinder with different parameter b 

7.4.2 Analysis for Limit-Bearing Capacity of a Circular Plate 

The numerical result of a simply supported circular plate can be seen in the book 
of Owen and Hinton (1980) in terms of the Huber-von Mises criterion. A 
uniformly loaded simply supported circular plate and finite element (FE) mesh are 
shown in Fig. 7.15. Only one-half of the plate is analyzed due to the symmetry. 
The plate is modeled by five axisymmetric elements and loading takes the form of 
a progressively increasing uniformly distributed load. The isoparametric element 
with eight nodes in the element family of UEPP is chosen for analysis. It is the 
same as in Owen and Hinton (1980). 
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Fig. 7.15 Simply supported plate and finite element mesh of plate 

 
The elastic limit of the simply supported circular plate in terms of different 

values of b of the unified yield criterion (i.e. different yield criteria) are obtained 
by using the unified strength theory as follows. 

1) b=0 (Tresca criterion), qe=2.2707 N/mm2; 
2) b=1/2 (linear Mises criterion), qe=2.2733 N/mm2; 
3) b=1 (twin-shear criterion), qe=2.2747 N/mm2. 
It is worth noting that the three elastic limits of a simply supported circular plate 

for different yield criteria are identical. This is because the maximum stress point is 
situated at the centre point of the plate, which has a special stress state, i.e. �r=��. All 
the three yield loci of the Tresca criterion, Huber-von Mises criterion and the 
twin-shear criterion cross at the same point A, as shown in Fig. 7.16. 

 

 
Fig. 7.16 Yield loci of the unified yield criterion in plane stress state 

 
The plastic zone spreads from the centre point to the neighboring area around 

the centre point of the simply supported circular plate after a further increase in 
the load, in which the two stresses are not equal, i.e. � /� . The yield point at the 
yield loci spreads from A to other points, where the yield states of the three yield 
criteria are not identical.  

The elasto-plastic load-displacement curves at the center of the plate with 
different yield criteria are shown in Fig. 7.17. Ideal plastic behaviour with a 
different parameter b of the unified yield criterion is assumed. The median 
elasto-plastic load-deflection curve of the plate is the same as that of Owen and 
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Hinton (1980).  
The plastic limit of a uniform loading simply supported circular plate using the 

three basic criteria, i.e., the unified yield criterion with b=0, b=1/2 and b=1, can be 
obtained as follows. 

1) b=0 (Tresca criterion), qp=2.7 N/mm2; 
2) b=1/2 (a new criterion), qp=3.0 N/mm2; 
3) b=1 (twin-shear criterion), qp=3.18 N/mm2. 
 

 
Fig. 7.17 Load-deflection curve of plate with the unified yield criterion 

 
The differences between the three curves show the effect of the yield criterion 

on the plastic limit bearing capacity of circular plates. The limit-bearing capacity 
of a plate with the twin-shear criterion (unified yield criterion when b=1) is the 
maximum, and the limit-bearing capacity with the single-shear criterion (Tresca 
criterion or the unified yield criterion when b=0) is the minimum. The 
limit-bearing capacity with the Huber-von Mises criterion is median. The median 
result is equivalent to the result obeying the unified yield criterion with b=1/2 or 

1/(1 3)b � � . The numerical results  using the UEPP are very close to the 
analytical results described in (Yu, Ma and Li JC, 2009) 

7.4.3 Truncated Cone under the Uniform Load on the Top  

A truncated cone under the uniform load on the top is shown in Fig. 7.18(a). 
Similar to the plane stress problem and plane strain problem, this spatial 
symmetric structure has the identical section with the plane problem as shown in 
Fig. 7.18(b). 
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(a) Spatial symmetric problem             (b) FEM mesh 

Fig. 7.18 Truncated cone and its FEM mesh 
 

The elastic limit of the truncated cone in terms of the unified yield criterion 
with three basic values of b ( b =0, b =0.5, b =1)in a spatial axisymmetric stress 
state can be obtained as follows. 

1) qe = 33.6 MPa (unified strength theory with b=0, single-shear theory, i.e. the 
Mohr-Coulomb theory); 

2) qe = 40.6 MPa (unified strength theory with b=1/2, a new criterion); 
3) qe = 43.0 MPa (unified strength theory with b=1, the twin-shear theory). 
The load-displacement relationship of node 2 in the middle of the truncated 

cone structure under uniform load on the top, using the unified strength theory 
with three parameters b (b=0, b =0.5, b =1), is obtained as shown in Fig. 7.19. 

 

 
Fig. 7.19 Load-displacement relation of a truncated cone 

 
The convergent result can be obtained when q=105 MPa  (unified strength 

theory with b=0, i.e., the Mohr-Coulomb single-shear theory), q=136 MPa 
(unified strength theory, b=0.5), q=158.1 MPa (unified strength theory, b=1). 
Increasing the loads further, the numeric solution process will be divergent. Then 
the limit load can be obtained by using the unified strength theory with three 
parameters respectively. 

The plastic limit of a cone in terms of the unified yield criterion with three 
basic values of b (b=0, b =0.5, b =1) under the plane strain state can be obtained as 
follows. 
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1) qp=105 MPa (unified strength theory with b=0, the single-shear theory, i.e. 
the Mohr-Coulomb theory); 

2) qp=136 MPa (unified strength theory with b=1/2, a new criterion); 
3) qp=158.1 MPa (unified strength theory with b=1, the twin-shear theory). 

7.5 Brief Summary 

The unified strength theory has been implemented in a non-linear FE program. 
Several examples are calculated by using  the unified strength theory and 
associated flow rule. A series of results can be obtained for every example, which 
may be adapted for most materials and structures.   

Plane stress, plane strain and spatial axisymmetric problems are three 
important problems in plasticity and engineering. Some typical examples, 
described in textbooks and monographs relating to computational plasticity are 
calculated again for comparison.  The results show that the result of the unified 
strength theory with b=0 is in good agreement with the result using the 
Mohr-Coulomb theory. The result of the unified strength theory with �=1 and b=0 
is in good agreement with the result using the Tresca criterion. The result of the 
unified strength theory with �=1 and b=1/2 is equivalent to the result using the 
Huber-von Mises criterion. The result of the unified strength theory with b=1 is in 
good agreement with the result using the twin-shear theory and the result of the 
unified strength theory with �=1 and b=0 is in good agreement with the result 
using the twin-shear yield criterion, or the maximum deviatoric stress criterion. A 
series of new results can be also obtained by using the unified strength theory. The 
Tresca-Mohr–Coulomb single-shear strength theory, the twin-shear strength 
theory and a new median criterion can be deduced from the unified strength theory 
when b=0, b=1 and b=1/2. They are all piecewise linear yield criteria. The lower 
bound, upper bound and the median criterion situated between these two bounds 
may be considered as three basic criteria for SD materials (�/1) and non-SD 
materials (�=1). The yield loci of the three criteria are shown in Fig. 7.20. 

 

 
         (a) SD materials  (�/1)          (b)  Non-SD materials (�=1) 
Fig. 7.20  Yield loci of several typical criteria of the unified strength theory 
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The numerical results obtained by using the unified strength theory are in good 
agreement with the results of the unified solution described in (Yu et al., 2009). 

The unified strength theory and associated flow rule have also been 
implemented in several commercial non-linear FE codes and applied to 
engineering problems, which will be described in the next chapters. 
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