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Stress and Strain 

2.1 Introduction  

In applied mechanics and engineering, materials and structures are generally 
regarded as continua. This permits us to describe the behaviour and consequences 
of the use of materials and structures by means of continuous functions. A material 
is a point (element), and a structure is a body. The structure may be considered as a 
partly ordered set of material elements (points) filling a structure (body). The cube 
is often used as an element.  

An element that can fill a space without gaps and overlapping is called spatial 
equipartition. Various polyhedra used in continuum mechanics result in spatial 
equipartition such as cubic elements and regular hexagonal elements. The 
dodecahedron element, orthogonal octahedron element (twin-shear model) and 
pentahedron element will be described in this chapter.   

It is assumed that the reader is familiar with the basic concepts of the mechanics 
of materials and the theory of elasticity, including the definitions of stress and 
strain. We shall, however, briefly review some of these basic concepts. In addition, 
some new concepts are also described in this chapter. 

2.2 Stress at a Point, Stress Invariants  

A general state of stress at a point can be determined by a stress tensor �ij, which 
stands for nine components, as shown in Fig. 2.1, and can be expressed as  
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Fig. 2.1  Nine stresses on element 

 
Stress and strain are second-order tensors. The concepts of tensor and tensor 

notation are useful in derivations and in the proof of theorems.  
It can be seen in the course of elasticity, mechanics of solids or plasticity, using 

three-dimensional transformations, that there exists a coordinate system �1, �2, �3 
where the state of stress at the same point can be described by the following:   
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The stresses �1, �2, �3 are referred to as the principal stresses, as shown in 

Fig. 2.2. 

     
Fig. 2.2  Principal stress element 
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An element of material subjected to principal stresses �1, �2 and �3 acting in 
mutually perpendicular directions (Fig. 2.2) is said to be in a state of triaxial stress 
or three-dimensional stress. If one of the principal stresses equals zero, this is 
referred to as the plane stress state or biaxial stress state. The triaxial stress and 
biaxial stress are called the polyaxial stresses, multiaxial stresses or complex stress. 
The principal planes are the planes on which the principal stresses occur on 
mutually perpendicular planes. 

The principal stresses are the three roots of the equation: 
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which can be rewritten as 
 

3 2
1I� �� + 2I � 3 0I� �                                         (2.4) 

where I1, I2, I3 are  
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The quantities I1, I2 and I3 are independent of the direction of the axes chosen. 
They are called the first, second and third invariants of the stress at a point (or 
invariant quantities).  

If we choose the principal directions as the directions of the coordinate axes, 
then the three stress invariants take on the simple form   

 
1I = 1 2 3� � �� �  

2 1 2 2 3 3 1I � � � � � �� � �                                                     (2.6) 

3 1 2 3I � � ��  
 
The three invariants I1, I2 and I3 are three independent quantities which specify 

the state of stress just as well as the three principal stresses �1, �2 and �3. 

2.3 Deviatoric Stress Tensor and its Invariants 

It is convenient in the study of strength theory and plasticity to split the stress tensor 
into two parts, one called the deviatoric stress tensor Sij and the other the spherical 
stress tensor pij. The relation is  
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ij� = ijS + ijp = ijS + ijm��                                              (2.7) 
 
The spherical stress tensor is the tensor whose components are �m�ij, where �m 

is the mean stress, i.e., 
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where  
 

m� =( zyx ��� �� )/3 = ( 321 ��� �� )/3 = 1I /3                    (2.9) 
 
It is apparent that �m is the same for all possible orientations of the axes. Hence 

�m is named spherical stress. Also, since �m is the same in all directions, it can be 
considered to act as a hydrostatic stress or hydrostatic pressure, denoted by p. It is 
equal to one-third of the first invariant, p=�m =I1/3. 

The deviatoric stress tensor Sij can be determined as  
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The invariants of the deviatoric stress tensor are denoted by J1, J2, J3 and can be 

obtained as follows:  
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The invariants of the deviatoric stress tensor  J2, and J3 can be written in terms 

of the principal stresses 
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2.4 Stresses on the Oblique Plane 

If the three principal stresses �1, �2, �3 are acting on three principal planes, 
respectively, at a given point, we can determine the stresses acting on any plane 
through this point. This can be done by consideration of the static equilibrium of an 
infinitesimal tetrahedron formed by this plane and the principal planes, as shown in 
Fig. 2.3. In this figure, we have shown the principal stresses acting on the three 
principal planes. These stresses are assumed to be known. We wish to find the 
stresses �� and �� acting on the oblique plane whose normal direction cosines are l, 
m and n.  

 
Fig. 2.3  Stress on an infinitesimal tetrahedron 

2.4.1 Stresses on the Oblique Plane 

The normal stress �� and shear stress �� acting on this plane can be determined as 
follows: 
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2.4.2  Principal Shear Stresses  

The three principal shear stresses �13, �12 and �23 can be obtained as  
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The maximum shear stress acts on the plane bisecting the angle between the 

largest and smallest principal stresses and is equal to half of the difference between 
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these principal stresses 
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The corresponding normal stresses �13, �12 and �23 acting on the sections where 

�13, �12 and �23  are acting, respectively, are 
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The three principal shear stresses �13, �12 and �23 and corresponding normal 
stresses �13, �12 and �23 acting on the principal shear stresses sections form a 
rhomboidal- dodecahedron (�13, �12, �23; �13, �12, �23), as shown in Fig. 2.4.  

 

   

Fig. 2.4  Dodecahedron multi-shear model (�13, �12, �23; �13, �12, �23)  
 

The three principal stresses, three principal shear stresses and the three normal 
stresses acting on the principal shear stresses sections can be illustrated by three 
stress circles. This is referred to as the Mohr circle, as shown in Fig. 2.5. 

 

Fig. 2.5  The principal stresses, principal shear stresses and stress circles 
 

The magnitude of the normal and shear stresses of any plane are equal to the 
distance of the corresponding stress point on the stress circle. The three principal 
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shear stresses are evidently equal to the radius of the three Mohr circles. A detailed 
description of the stress circle can be found in Johnson and Mellor (1962), 
Kussmaul (1981), Chakrabarty (1987), Davis and Selvadurai (2002) and others. 
Figure 2.6 shows the relations between the stress circles and different planes, where 
the stresses are acted on. 

 
Fig. 2.6  Relations between the stress circles and different planes 

2.4.3  Octahedral Shear Stress  

If the normal of the oblique plane makes equal angles with all the principal axes, 
and  
 

l=m=n=
3

1
�                                                         (2.17) 

 
then these planes are called the octahedral plane and the shear stresses acting on it 
are called the octahedral shear stresses. The normal stress, called the octahedral 
normal stress �8 (or �oct), acting on this plane equals the mean stress 
 

8� = 1
3

( 1 2 3� � �� � )= m�                                        (2.18) 

 
A tetrahedron similar to this one can be constructed in each of the four 

quadrants above the x–y plane and in each of the four quadrants below the x–y 
plane. On the oblique face of each of these eight tetrahedra the condition l2= 
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m2=n2=1/3 will apply. The difference between the tetrahedra will be in the signs 
attached to l, m and n. The eight tetrahedra together form an isoclinal octahedron 
element, as shown in Fig. 2.7, and each of the eight planes form the face of this 
octahedron.  

 

 
Fig. 2.7  Isoclinal octahedron element and dodecahedron element 

 
The octahedral normal stress is given by Eq. (2.18) and the octahedral shear 

stress �8 (sometimes denoted as �oct) acting on the octahedral plane is 
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The direction cosines l, m and n of principal planes, principal shear stress planes 

and the octahedral plane, as well as the normal stresses and shear stresses, are listed 
in Table 2.1. 

 
Table 2.1  Direction cosines of the principal planes, the principal shear stress planes and the 
octahedral planes 
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2.5 From Single-Shear Element to Twin-Shear Element 

The cubic element (�1, �2, �3), i.e. the principal stress element, is commonly used. 
The three principal stresses �1, �2, �3 act on this element, as shown at the top of 
Fig. 2.8. According to the concept of stress state, various polyhedral elements can 
be drawn. 

 

 
Fig. 2.8  From single-shear element to twin-shear element 
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Three quadrangular prism elements can be obtained from the cubic element, as 
shown in Fig. 2.8. The single shear stresses, �13, �12, or �23, act respectively.This 
may be referred to as the single-shear element. The first single-shear element is the 
maximum shear stress element in which the maximum shear stress �13 and 
respective normal stress �13, as well as the intermediate principal stress �2, act on 
this element. Another single-shear element is the quadrangular prism element (�12, 
�12, �3 when �12��23). The intermediate principal shear stress element, the 
intermediate principal shear stress �12 and the respective normal stress �12, as well 
as the minimum principal stress �3 act on this element. Other one is the 
quadrangular prism element (�23, �23, �1, when �12��23). The minimum principal 
shear stress element, the minimum principal shear stress �23 and the respective 
normal stress �23, as well as the maximum principal stress �1 act on this element. 

Two orthogonal octahedron elements (�13, �12; �13, �12) and (�13, �23; �13, �23) 
can be obtained from the single-shear element, as shown in Fig. 2.8 This may be 
referred to as the twin-shear element. The principal shear stresses �13, �12 and the 
respective normal stresses �13, �12 act on the first twin-shear element. The principal 
shear stresses �13, �23 and the respective normal stresses �13, �23 act on the second 
twin-shear element. These two twin-shear elements form a spatial equipartition in 
continuum mechanics. 

2.6 Stress Space 

The stress point P(�1, �2, �3) in stress space can be expressed in other forms, such 
as P(x, y, z), P(r, �, �) or P(J2, �, �). The geometrical representation of these 
transfers can be seen in Fig. 2.9. 

For the straight line OZ passing through the origin and making the same angle 
with each of the coordinate axes, the equation is 

 
321 ��� ��                                                                (2.20) 

 
The equation for the �0-plane is 
 

0321 ��� ���                                                         (2.21) 
 

The stress tensor �ij can be divided into the spherical stress tensor and 
deviatoric stress tensor. The stress vector � can also be divided into two parts, the 
hydrostatic stress vector �m and the mean shear stress vector �m. 

 
m m� � �� �                                                             (2.22) 
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Fig. 2.9  Cylindrical coordinates and stress state in the �-plane 

Their magnitudes are given by 
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The  -plane is parallel to the �0-plane and is given by 

 
C��� 321 ���                                                (2.26) 

 
where C is a constant. The spherical stress tensor �m is the same for all points in the 
 -plane of the stress space and  
 

3
C
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The projections of the three principal stress axes �1, �2, �3 in the stress space are 

�1', �2', �3'. The relationship between them is  
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where � is the angle between O'A, O'B, O'C and the three coordinates, as shown in 
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Fig. 2.10. 

 
Fig. 2.10  Deviatoric plane 

 
In the following, we will introduce Relationship between (�1, �2, �3) and (x, y, z) 

The relationship between the coordinates of the deviatoric plane and the principal 
stresses are  
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The relationship between the cylindrical coordinates  (�, r, �) and the principal 

stresses (�1,�2,�3) are 
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From Eq. (2.25) and Eq. (2.28) we can obtain 
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The second and third invariants of the deviatoric stress tensor are 
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Three principal deviatoric stresses can be deduced 
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These relationships are suitable for the conditions �1��2��3 and 0��� /3. The 

limit loci in the  -plane have threefold symmetry, so if the limit loci in the range of 
60° are given, the limit loci in the  -plane can be obtained. 

The three principal stresses can be expressed as 
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The principal stresses can also be expressed in terms of the first invariant I1 of 

the stress tensor and the second invariant of the deviatoric stress J2, as  
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The principal shear stresses can also be obtained 
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2.7 Stress State Parameters 

The stress state at a point (element) is determined by the combination of the three 
principal stresses (�1, �2, �3). Based on the characteristics of the stress state and by 
introducing a certain parameter, it can be divided into several types. Lode (1926) 
introduced a stress parameter μ� as  
 

�	 =(2 2� 1� 3� )/( 1� 3� )                                   (2.41) 
 
μ� is referred to as the Lode stress parameter. The Lode parameter can be expressed 
in terms of principal shear stress as  
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In fact, there are three principal shear stresses �13, �12 and �23 in the 

three-dimensional principal stress state. However, the three principal shear stresses 
�13, �12 and �23 are not independent and only two principal shear stresses are 
dependent variables, because the maximum principal shear stress �13 is equal to the 
sum of the other two shear stresses. This relationship is expressed as  

 
13 12 23� � �� �                                                       (2.43) 

 
Hence, the twin-shear idea was proposed by Yu (1961). The twin-shear 

function can be established as (Yu, 1983; Yu and He, 1983; 1985) 
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Subsequently, Yu (1991; 1992) introduced the “twin shear stress” concept into 

the analysis of  the stress state and offered two twin-shear stress parameters as 
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1, 0 1,  0 1' '� � � �	 	 	 	� � � � � �                              (2.46c) 
 
The twin-shear stress parameters are simpler and have an explicit physical 

meaning. They can reflect the state of the intermediate principal stress and can 
represent the status of the stress state.  

The twin-shear stress parameters have nothing to do with the hydrostatic stress. 
They instead represent the status of the deviatoric stress state and the stress angle on 
the deviatoric plane in the stress space, as shown in Fig. 2.12. Five different stress 
states are shown in Fig. 2.12. They are  

1) �=0° (μ�=1);  
2) �=13.9° (μ�=3/4, μ�'=3/);   
3) �=30° (μ�=μ�'=0.5);   
4) �=46.1° (μ�=1/4, μ�'=3/4) ;  
5) �=60° (μ�=0, μ�'=1).  
According to the meaning of the twin-shear stress parameters, we know that if 

μ�=1 (μ�'=0, stress angle equals �=0°), the stress states include the three following 
cases: 

1) �1>0, �2=�3=0, uniaxial tension stress state; 
2) �1=0, �2=�3<0, equal biaxial compression stress state; 
3) �1>0, �2=�3<0, uniaxial tension, equal biaxial compression stress state. 
If μ�=μ�'=0.5 (stress angle equals �=30°), the corresponding stress states are as 

follows: 
1) �2=(�1+�3)/2=0, pure shear stress state; 
2) �2=(�1+�3)/2>0, biaxial tension and uniaxial compression stress state; 
3) �2=(�1+�3)/2<0, uniaxial tension and biaxial compression stress state. 
If μ�=0 (μ�'=1, stress angle equals �=60°), then the corresponding stress states 

are as follows: 
1) �1=�2=0, �3<0, uniaxial compression stress state; 
2) �1=�2>0, �3=0, equal biaxial tension stress state; 
3) �1=�2>0, �3<0, equal biaxial tension and uniaxial compression stress state. 
According to the twin-shear stress parameters and the magnitude of the two 

smaller principal shear stresses, the stress state can be divided into three kinds of 
conditions as follows: 

1) Extended tension stress state, �12 )�23, 0�μ�'*0.5*	� �1. The stress state 
(uniaxial tension and biaxial compression) can be expressed by deviatoric stress, 
and the absolute magnitude of the tensile stress is a maximum, so it can be called the 
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extended tension stress state. When the intermediate principal stress �2 equals the 
minimum principal stress �3, then 	� =1 (μ�'=0). If �2 =�3 =0, the extended tension 
stress state becomes the uniaxial tension stress state. 

2) Extended shear stress state, �12 =�23, �2 =(�1+�3 )/2. The two smaller stress 
circulars are equal, the second deviatoric stress S2=0 and the magnitude of the other 
two deviatoric stresses are identical, but one is tensile and the other is compressive. 
The two twin-shear stress parameters are identical,  	�=μ�
=0.5. If �2 =(�1+�3)/2=0, 
the extended shear stress state becomes the pure shear stress state. 

3) Extended compression stress state, �12*�23, 0�	� *0.5*μ�'�1. If �1=�2=0, 
�3*�+, this stress state becomes the uniaxial compression stress state. 

The twin-shear parameters simplify the Lode parameter and have a clear 
physical meaning. Their relationships are 
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Some types of stress states and stress state parameters including the Lode 

parameter and the twin-shear stress parameters are summarized in Table 2.2. 

Table 2.2   Principal stresses, shear stresses and stress state parameters 

Parameter of 
stress state Stress state Principal 

stress 

Principal 
shear 
stress 

Deviatoric 
stress 

Stress 
angle

�	 �	'  �	  

Pure tension,
Equal Biaxial 
compression

2 3� ��  12 13� ��

23 0� �  
2 3S S�  

1 2 3S S S� �
0° 1 0 –1 

Extended 
tension ,

3
12

23
�� �

2313 4�� �

1 3
2 2

� �
�

�
*

 
2312 �� ) 321 SSS �� 13.9°

4
3

4
1

2
1�  

Pure shear 1 3
2 2

� �
�

�
� 2312 �� � 31 SS �  

02 �S  
30° 0.5 0.5 0 

,
3
23

12
�� �

1213 4�� �

1 3
2 2

� �
�

�
) 2312 �� * 213 SSS �� 46.1°

1
4 4

3
2
1  

Extended 
compression Pure 

compression
equal biaxial 
compression

12 �� �
012 ��  

1323 �� �
21 SS �  

213 SSS ��
60° 0 1 +1 

 
The relationships between various shear stresses are listed in Table 2.3. It is 

convenient to compare various textbooks on plasticity. Different symbols or 
expressions may be used on different courses. 
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Table 2.3  Relationships between various shear stresses and J2 

 q�  8�  s�  r� �  J2 Sij 
Generalized 
shear stress q�  q�  3

2 8� 3 s�  
3
2
�  23J 3

2 ij ijS S  

 
Octrahedral 
shear stress �8 

2
3

q� 8�  2
3 s�  

1
3
�  2

2
3

J
1
3 ij ijS S  

Pure shear stress 
�s 

1
3

q� 8
3
2
�  s�  

1
2
�  2J  1

2 ij ijS S  

Shear stress on 
deviatoric plane 
��=r 

2
3
q�  

83�  2 s�  �  22J ij ijS S  

Second 
invariant J2 of 
deviatoric stress 

21
3

q�  2
8

3
2
�  2

s�  21
2
�  2J  1

2 ij ijS S  

2.8 Strain Components 

When a continuum is deformed, a generic point experiences a displacement {U} 
with components u, v, w, with respect to Cartesian orthogonal axes x, y, z, 
respectively. For very small strains, the axial strains �x, �y, �z and shear strains ,xy, ,yz, 
,zx can be expressed by the displacement differentiation as follows 
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The six strain components �x, �y, �z, ,xy, ,yz, ,zx can describe completely the state 

of strain at the considered point. Similar to the stress tensor, there also exist 
principal strains �1, �2, �3 with the companion shear strains equal to zero. For a plane 
strain state, the third principal strain �3 vanishes and the principal strains can be 
expressed as follows  
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The principal direction is given by 
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yx
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,
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Equation (2.51) still holds when �z.�3/0, provided �z is a principal strain. 

2.9 Equations of Equilibrium 

The following three differential equations of equilibrium in the direction of the 
coordinate axes are 
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where X, Y, Z are the components of the body force per unit volume. For a body in 
an equilibrium state, the variation in stresses is governed by the above equations of 
equilibrium. 

2.10   Generalized Hooke’s Law 

Equations relating to stress, strain, stress-rate (increase in stress per unit time) 
and strain-rate are called  constitutive equations, which are determined by the 
material properties under consideration. In the case of elastic solids, the constitutive 
equations take the form of the generalized Hooke’s law, which involves stress and 
strain instead of the stress-rate and strain-rate. 

In a general three-dimensional stress state, the generalized Hooke’s law has the 
form of 
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1 1 1, ,xy xy yz yz xz xzG G G
, � , � , �� � �                           (2.53d) 

 
where E and 
 are the modulus of elasticity and the Poisson’s ratio, respectively. G 
is the modulus of rigidity. Only two of them are independent and there is  
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Equations (2.53a)–(2.53d) may be rewritten conversely as 
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where the constants G and 0 are called Lame’s constants and 
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Another important elastic constant is called the bulk modulus of elasticity K, 

which defines the dilatation (volumetric strain) �v as the unit change in volume 
 

zyxv ���� ���                                                   (2.56) 

 
with the hydrostatic component of stress, or spherical component of stress �m,  

 
1 ( )
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As such  
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From the generalized Hooke’s law, K is derived as 
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2.11   Compatibility Equations 

Equations (2.48) and (2.49) implicitly show that the strain components are 
functions of the three displacement components. Differentiate the first equation 
within Eq. (2.48) twice with respect to y and the second equation within Eq. (2.48) 
with respect to x and add the results, 
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Differentiating the first equation within Eq. (2.20) with respect to x and y yields 
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And since the order of differentiation for single-value, continuous functions is 

immaterial  
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Similarly, we can derive the following additional equations 
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Equations (2.62a)–(2.62f) are called Saint-Venant compatibility equations, or 

compatibility equations in terms of strain.  
In total, there are fifteen governing equations, including three equilibrium 

equations (Eqs. (2.52)), six strain displacement relations (Eq. (2.48) and Eq. (2.49)), 
and six stress-strain relations (Eqs. (2.53)) for solving the fifteen variables (the six 
stress components �x, �y, �z, �xy, �yz and �xz, the six strain components �x, �y, �z, �xy, �yz 
and �xz, and the three displacements u, v, w). The compatibility equations are 
derived from the strain-displacement equations and, therefore, cannot be counted as 
governing equations. The compatibility equations will be satisfied automatically if 
the fifteen governing equations are satisfied. 

2.12   Governing Equations for Plane Stress Problems 

For plane stress problems, the stress components are simplified as 
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The equilibrium equations become 
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where the body forces X and Y are functions of x and y only, and Z equals zero. The 
strain-stress relations take the form of 
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xyxyxy G
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The two shear strains ,xz and ,yz and the normal strain �z vanish. Finally, the 
strain-displacement relations are simplified as 
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There are eight equations in total to correlate the eight unknown quantities of �x, 
�y, �xy, �x, �y, ,xy, u and v. Again, the governing equations can only be solved with 
specific stress and displacement boundary conditions. 

2.13   Governing Equations in Polar Coordinates 

For analysis of a circular ring and plate, rotating disk, curved bars of a narrow 
rectangular cross section with a circular axis, etc., it is advantageous to use polar 
coordinates. If the external forces are also rotationally symmetric, the stress state 
can be assumed to be the plane stress independent of the z-axis which is 
perpendicular to the polar coordinates plane. The position of a point in the middle 
plane of a plate is then defined by the distance from the origin O and the angle �  
between r and a certain axis Ox fixed in the plane. Denoting �r and ��  as the normal 
stress components in the radial and circumferential directions, respectively, and �r� 
as the shear stress component, the equation of equilibrium takes the form of 

 

01
��

�
�

-
-

�
-
- R

rrr
rrr �� ��

�
��                               (2.67a) 

0
21

���
-
-

�
-
- S

rrr
rr ��� ��

�
�

                                  (2.67b) 

 
where R and S are the components of body force per unit volume in the radial and 
tangential directions, respectively.  

The corresponding stress components are derived as 
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A, B and C are constants that can be determined by boundary conditions. 
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Denoting the displacements in the radial and tangential directions as ur and u�, 
respectively, the strain components in the polar coordinates are derived as 
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The generalized Hooke’s law is then expressed by 
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Thus, based on the equilibrium equations, the strain-displacement relations, the 

compatibility equations and Hooke’s law plus relative boundary conditions, the 
stress and displacement fields of the rotational symmetrical body can be solved. 
Detailed derivations can be referred to in Theory of Elasticity by Timoshenko and 
Goodier (1970) and in Elasticity: Tensor, Dynamic and Engineering Approaches by 
Chou and Pagano (1967). 

2.14   Brief Summary 

This chapter presents the fundamentals of solid mechanics. Some basic concepts 
with respect to the stress tensors, stress tensor invariants, deviatoric stress tensors, 
deviatoric stress tensor invariants, octahedral shear and normal stresses, principal 
stresses and principal shear stresses, strain components, and some new concepts 
regarding twin-shear stresses, the twin-shear element and the twin-shear stress 
parameter are introduced. They are used in the following chapters.  

Stress states can be studied on many courses, such as elasticity, plasticity, 
mechanics of solids, rock mechanics and soil mechanics. The basic formulae are 
only given here. 

The relationships between various shear stresses and J2 are listed in Table 2.3. 
Different notations may be used in different textbooks. It is useful to refer to other 
textbooks.  

Governing equations for general stress state solids, plane stress solids and 
rotationally symmetrical solids are given.  

It should be mentioned that only the governing equations in the elastic range of 
solids are considered. Based on the elastic solutions, by adopting proper yield 
criterion, the elastic limit load of the solid body can be derived. For elasto-plastic 
analysis and plastic limit analysis, a yield criterion and a relevant flow law should 
be applied. The following two chapters will introduce conventional yield criteria 
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and a unified strength theory developed by Yu (1991; 1992; 2004).  
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