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Preface 

Computational plasticity is a new and important branch of computational 
mechanics. Computational Plasticity: With Emphasis on the Application of the 
Unified Strength Theory and Associated Flow Rule is the third title in the series on 
plasticity published by Springer and by Springer or by the collabration of Springer 
and ZJU Press. The other two files are: Generalized Plasticity (Springer, Berlin, 
2006) and Structural Plasticity: Limit, Shakedown and Dynamic Plastic Analyses 
of Structures (Springer and ZJU Press, Hangzhou, 2009). The founding work in 
this series on plasticity is Unified Strength Theory and its Applications that was 
published by Springer in Berlin in 2004, in which the unified strength theory (UST) 
and its 30 years developments history are described in detail. 

Generalized Plasticity, the first monograph in this series on plasticity, is a 
combination of traditional plasticity for metallic materials (non-SD materials) and 
plasticity for geomaterials (SD materials, i.e. strength difference in tension and in 
compression, sometimes referred to as tension-compression asymmetry). It was 
published by Springer in 2006, in which the unified slip line theory for plane 
strain problems and unified characteristics theory for plane stress and spatial 
axisymmetric problems, as well as the unified fracture criterion for mixed mode 
cracks and plastic zones at the tip of a crack using the unified strength theory are 
described. Generalized Plasticity can be used for both non-SD materials and SD 
materials. The time effect, however, is not taken into account in Generalized 
Plasticity. The time independent UST can be extended to time dependent UST. 

The second title in this series on plasticity is Structural Plasticity: Limit, 
Shakedown and Dynamic Plastic Analyses of Structures, which was published by 
ZJU Press and Springer in 2009. Structural Plasticity deals with limit analysis, 
shakedown analysis and dynamic plastic analyses of structures using the analytical 
method. The straight line segments on the series yield surfaces of the unified 
strength theory make these surfaces convenient for analytical treatment of 
plasticity problems. A series of results of the unified solutions for elastic and 
plastic limit analysis, shakedown analysis and dynamic plastic analysis for 
structures are given by using the unified strength theory. These unified solutions 
can provide a very useful tool for the design of engineering structures. Most 
solutions in textbooks regarding the plastic analysis of structures are special cases 
of the unified solution, using the unified strength theory. 
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The third title in this series on plasticity is Computational Plasticity: With 
Emphasis on the Application of the Unified Strength Theory and Associated Flow 
Rule, in which numerical methods are applied. The unified strength theory and 
associated flow rule are implemented in several computational plasticity codes and 
applied to many engineering problems.  

A series of results can be obtained in Generalized Plasticity (slip line theory), 
Structural Plasticity (analytical analysis of structures) and Computational 
Plasticity (numerical analysis of structures). The unified solution gives a series of 
new results, which can be adapted for more materials and structures. It is possible 
for us to adopt different values of the unified strength theory parameter b to meet 
different materials and structures. The application of the unified solution is 
advantageous in material and energy saving and also advantageous in 
environmental protection.  

This monograph describes the unified strength theory and associated flow rule, 
the implementation of these basic theories, and shows how a series of results can 
be obtained by their use. A lot of numerical solutions for beams, plates, 
underground caves, excavations, strip foundations, circular foundations, slopes, 
underground structures of hydraulic power stations, pumped-storage power 
stations, underground mining, high-velocity penetration of concrete structures, 
ancient structures, rocket parts, as well as relevant computational results, are given. 
These theories and methods can be used for other computer codes. This will 
increase the function of codes. An example of numerical calculation for a slope by 
using the unified strength theory with the parameters b=0, b=1/4, b=0.5, b=3/4 and 
b=1 is shown in the figure below. Configurations of the plastic strain of the slope 
with different yield criteria are shown. The results using the Mohr-Coulomb 
theory and the Drucker-Prager criterion are also given for comparison. 
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The results obtained by using various yield criteria are very different. The 
shape and size of the plastic zone and bearing capacity of the structure are 
influenced strongly by the choice of the yield criterion. The unified strength theory 
and its implementation in the computer code provide us with a very effective 
approach for studying the effect of yield criterion in various engineering problems. 
A series of results was obtained, which can be used for most materials from 
metallic materials to geomaterials. The unified model, unified constitutive relation, 
unified process of the corner singularity, and the program paragraph of unified 
implementation can be used for other FE codes, including commercial computer 
codes. This will also increase the power of FEM and computational plasticity 
codes and the fields of application for various codes.  

Many new and interesting results can be obtained through the unified strength 
theory, such as the yield criterion effect on the bearing capacity of various 
structures, the effect of material strength parameters (friction angle) on plastic 
zones distribution (Chapter 9), the effect of tension and compression of SD 
materials, the relation between different yield criteria. This will bring the potential 
strength of the material into full play and show how we can benefit from material 
and energy saving, etc.  

The contents of this book can be divided into four parts:  
Part one: Basic theories of stress, strain, yield criterion and associated flow 

rule are described in Chapters 1 to 4. 
Part two: Implementation of the unified strength theory and associated flow rule, 

the process of the singularity of the corner and several basic applications, 
UEPP-Unified Elasto-Plastic Program, are described in Chapters 5 to 9.  

Part three: Chapters 10 to 18 are the implementation of the unified strength 
theory and associated flow rule in several commercial finite element codes and finite 
difference programs, including ABAQUS, ASYSN, AutDYN-2D, AutDYN-3D, 
AutDYN Hydrocode, DIANA, FLAC-2D, FLACK-3D, Non-Linear etc. The 
computational methods include the finite element method, finite difference method 
and smoothed particle hydrodynamics (SPH) method. More results can be obtained 
through combinations of the unified strength theory and associated flow rule and 
commercial finite element codes 

Part four: Chapter 19 is called Mesomechanics and Multiscale Modelling for 
the Yield Surface. Miscellaneous issues, including ancient structures, propellant 
grains of solid rockets, solid rocket motors, parts of a rocket and large generators 
are presented in Chapter 20. 

A series of research works of underground excavation were carried out for the 
Laxiwa Hydraulic Power Station by Northwest China Hydroelectric Power 
Investigation and Design Institute. 3D numerical modeling of the underground 
excavation of Tai’an Pumped Storage Hydraulic Power Station was done by 
Professors Sun, Shang, Zhang et al. of Zhejiang University, Hangzhou, China and 
the East China Investigation and Design Institute, State Power Corporation of 
China. Dynamic response and blast-resistance analysis of a tunnel subjected to 
blast loading was done by Professors at Zhejiang University, Hangzhou China, in 
respect of a railroad tunnel (Liu and Wang, 2004). The twin-shear unified strength 
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theory is also used for dynamic problems. The above projects are described in 
brief in Chapter 10.  

‘Implementation of the Unified Strength Theory into ABAQUS and its 
application in Tunnel Engineering’ was written by Professors Jun-Qi Wang and Lu 
(Chapter 11). 2D and 3D simulation of normal penetration and oblique penetration 
are presented by Prof. Xiao-Qing Zhou (Chapters 12 and 13); A 2D axi-symmetric 
numerical simulation for the projectile-target model is carried out using the SPH 
procedure and the unified strength theory by Hong-Fu Qiang and Sau-Cheong Fan 
at Nanyang Technological University, Singapore (Chapter 12). Underground 
mining excavation using the unified strength theory (Chapter 14) is a contribution 
by Professors Li Wang and Qing Gao, Key Laboratory of the Ministry of 
Education for Highly Effective Mining and Safety in Metal Mines, Beijing, China 
and the Beijing Science and Technical University, Beijing, China.  

The unified strength theory (UST) with tension cutoff is also adopted as the 
failure criterion for the analysis of punching shear failure of beams and 
slab-column connections by Xue-Song Zhang, Hong Guan and Yew-Chaye Loo at 
Griffith University, Australia (Chapter 15). The multi-parameter unified strength 
theory with b=0.6 is used for elasto-plastic analysis of reinforced concrete slabs 
and high-strength concrete slabs by Fang Wang, Susanto Teng and Sau-Cheong 
Fan in Singapore. The unified strength theory with b=0.6 is also employed to 
analyze the response of an RC box sectional beam under eccentric loading 
conditions by Prof. Xiao-Qing Zhou. These results are introduced briefly in 
Chapter 15. Stability analysis of underground caverns (Huanren pumped-storage 
powerhouse) based on the unified strength theory and non-associated flow rule is 
presented by Professor Lan Qiao and Yuan Li, Beijing Science and Technical 
University, Beijing, China (Chapter 16). 

The stability of a 170-meter high steep side slope sluice of the Three Gorges 
water conservation and energy project was carried out by the Yangtze River 
Academy of Science, in which the single-shear theory, the twin-shear theory and 
the Drucker-Prager criterion were used (Chapter 17). The 3D simulation of a 
landslip using the FLAC-3D and the unified strength theory is given by Dr. 
Zong-Yuan Ma and Prof. Hong-Jian Liao in Chapter 18.  

Chapters 19 and 20 are Mesomechanics and Multiscale Modelling for Yield 
Surface and Miscellaneous Issues. Finally, several comments, reviews and 
research on the UST, which are presented in published papers and books, are 
briefly introduced in Section 20.10. 

I would like to express my gratitude for the support of the Committee of the 
National Fund for Academic Publication in Science and Technology; National 
Natural Science Foundation of China; The Underground Technology and Rock 
Engineering Research Program, Singapore; The Key Research Project of the 
Ministry of Education of China; The China Academy of Launch Vehicle 
Technology; The Aircraft Strength Research Institute of China; The Bureau of 
Cultural Heritage, Xi’an Municipality, as well as the State Key Lab of Strength 
and Vibration of Mechanical Structures, China.  

I am deeply indebted to many authors and colleagues, and especially indebted 
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to Wen-Bing Zeng, Guo-Wei Ma, Song-Yan Yang, Ning Lu, Yuan Wang, Fang 
Wang and Li-Nan He for their work on the UEPP-Unified Elasto-Plastic Program 
during 1990-1995. UEPP includes UEPP-2D, UEPP-3D and User’s Manual for 
UEPP. The condition for computation was not so good at that time in xi’an, 
however, we worked hard and happy. I am also indebted to professor Jian-Chun Li 
for her help in the writing of this monograph. Thanks are also due to others for 
their support during the course of writing this book, including many professors 
from universities and research scientists and engineers from various institutions 
for their work on the research and application of the unified strength theory. The 
authors would also like to acknowledge support from other individuals and 
universities, research organizations, journals and publishers. 

Special acknowledgment is due to Professors Holm Altenbach (Martin-Luther 
Universitat�� Halle-Wittenberg, Germany), Ming An (Heriot-Watt University, UK), 
Zhu-Ping Chen (Shougang Institute of Technology, Beijing), David Durban (Faculty 
of Aerospace Engineering, Israel Institute of Technology, Israel), San-Cheong Fan  
(Nanyang Technological University, Singapore), Xia-Ting Feng (President of the 
International Society of Rock Mechanics and Engineering), Qing Gao (Beijing 
Science and Technical University), Yew-Chaye Loo and Hong Guan  (Griffith 
University, Australia), Vladimir Kolupaev A (German Institute for Polymers (DKI)), 
Yuan Li (Beijing Science and Technical University), Yue-Ming Li and Hong-Jian 
Liao (Xi’an Jiaotong University), Dong Liu (Sichuan University, China), Guo-Hua 
Liu (Zhejing University, China), Feng Lu (Institute of Water Resources and 
Hydropower Research, China), Xiao-Ming Pan et al. (Tongji University), Professor 
Qi-Hu Qian (the Chairman of the Chinese Society of Rock Mechanics and 
Engineering and Chairman of the Science and Technology Commission of the PLA 
General Staff Headquarters), Hong-Fu Qiang (Xi’an High Technology Institute), 
Lan Qiao (Beijing Science and Technical University), Yue-Quan Shang and 
Hong-Yue Sun (Zhejiang University, China), Jun-Qi Wang (North China Electric 
Power University), Li Wang (Henan Polytechnic University), Jun-Hai Zhao, Wen 
Fan and Xue-Ying Wei (Changan University, Xi’an, China), Lin-Qiang Yang (Jinan 
University, Jinan, China), Chuan-Qing Zhang (State Key Laboratory of 
Geomechanics and Geotechnical Engineering, Institute of Rock and Soil Mechanics, 
Chinese Academy of Science), Hong Hao, Xiao-Qing Zhou (The University of 
Western Australia), and Dr. Zhon-Yuan Ma (Xi’an Jiaotong University), Dr. Bill 
Zhang (Griffith University), senior engineers Shi-Huang Liu and Zhao-Ming Sun 
(Investigation and Design Institute of Northwest China Hydroelectric Power), senior 
engineers Wen-Bing Zeng et al.  

I would like to thank Professor Christopher A Schuh of Massachusetts Institute 
of Technology, USA, for the fine figures he sent to me. These research results 
relating to the yield surface of metallic glass based on atomic simulation have 
been written into Chapter 19 of this monograph. I would like also to thank 
Professor Holm Altenbach and Vladimir A. Kolupaev, Martin-Luther Universität 
Halle-Wittenberg, Germany and the German Institute for Polymers (DKI) for their 
research results on the UST, which have been written into Chapter 20. Thanks are 
also due to other researchers, whose various figures in published papers and books 
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are cited in this monograph. 
We would like also to express our sincere thanks to the International 

Engineering Department, Springer, Germany, and the International Rights 
Department, Zhejiang University Press, for their excellent editorial work on our 
manuscript. 

 
Mao-Hong Yu 
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Notations 

Stresses, Strains and Invariants 

�  normal stress 

ij�  stress tensor 

m�  hydrostatic stress or mean stress 

1� , 2� , 3�  major principal stress, intermediate principal stress and minor 
principal stress  

13� , 12� , 23�  normal stresses acting on the orthogonal octahedron 
element 

r�  radial stress in polar coordinates 

��  circumferential stress in polar coordinates 

z�  axial stress in polar coordinates 

13� , 12 23,� �  maximum principal shear stress, intermediate shear stress or 
minimum shear stress  

�	  Lode stress parameter 

�	 , �	 
 twin-shear parameter for stress state  

12 23/�	 � �� , �	 
 23 13/� ��   
�  stress angle corresponding to the twin-shear parameter   

8�  or oct�  octahedral shear stress 

8�  or oct�  octahedral normal stress 
�x, �y, �z strains in three dimension 

,r �� �  radial and circumferential strain 

z�  longitudinal strain 

1 2 3, ,I I I  invariants of the stress tensor ij�  

1 2 3, ,S S S   deviatoric stresses 
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1 2 3, ,J J J  invariants of the deviatoric stress tensor 

Material Parameters 

y�  yield stress  

t�  uniaxial tensile strength 

c�  uniaxial compressive strength 
�  ratio of tensile strength to compressive strength 

m  compressive-tensile strength ratio of materials  

0� or y�  pure shear strength or shear yield strength of materials 
b  failure criterion parameter in the unified strength theory  
�  coefficient in the unified strength theory that represents the 

effect of the normal stress on failure 
0C  cohesive strength 

�  friction angle 

uniC  unified cohesive strength 

uni�  unified friction angle 
E  Young’s modulus 
  Poisson’s ratio 
G modulus of rigidity 

Miscellaneous 

rM  radial bending moment per unit length  
M�  circumferential bending moment per unit length 
W�  rate of deflection 
�  density of the material 
u  displacement 

e�  limit rotating speed of disc 
[ ]�  allowable tensile stress, � � /t n� ��  
p  internal pressure subjected on the cylinder  

ep  elastic limit pressure 

pp  plastic limit pressure 

maxp  shakedown pressure of the cylinder 
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r  radial variable 
ir , er  the internal and external radii of the cylinder 

pr  plastic zone radius of the cylinder subjected to internal 
pressure p  
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Introduction 

1.1 Elasto-Plastic Finite Elements  

The finite element method (FEM) has now become recognized as a general method 
with wide applications in engineering and applied mechanics. FEM was originally 
developed in the field of structural analysis. All the problems were linear in the sense 
that they involve the solution of sets of linear algebraic equations. It is the linear 
elastic FEM. 

The elasto-plastic FEM, non-linear material problems or computational plas-
ticity, has also been widely accepted, and many excellent books on computational 
plasticity have been written. Overviews and analysis can be found in Zienkiewicz 
(1971; 1989), Cook et al. (1989), Reddy (1993), Bathe (1996), Han and Reddy 
(1999), Belytschko et al. (2000), Smith and Griffiths (2004), Reddy (2009), An-
andarajah (2010), etc. The theories and implementation of the plasticity FEM are 
described by Oden (1972), Hinton and Owen (1979), Owen and Hinton (1980), 
Miyoshi (1985), Kobayashi et al. (1989), Strin (1993), Pan (1995), Crisfield (1997), 
Bonet and Wood (1997), Simo and Hughes (1998), Belytschko et al. (2000), Smith 
and Griffiths (2004), Kojic and Bathe (2005) and Neto et al. (2009). Plasticity and 
Geotechnics was written by HS Yu (2006). Lecture Notes on Computational Ge-
omechanics: Inelastic Finite Elements for Pressure Sensitive Materials was pre-
sented by Jeremi�, et al. (2010). A detailed introduction to the plasticity FEM 
program (2D) can be found in Owen and Hinton (1980) and the proceedings of 
Owen et al. (1989), and in (Neto et al., 2009), in which a computer program of 
approximately 11,000 lines of FORTRAN codes is given. The 2D non-linear 
thermo-elastoplastic consolidation program PLASCON was given by Lewis and 
Schrefler (1987). The Mohr-Coulomb Theory and the Critical State Models (Ros-
coe et al., 1963, 1968; Schofield and Wroth, 1968) were used. The theory and 
implementation of nonlinear analysis in soil mechanics was described by Chen and 
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Mizuno (1990). The Drucker-Prager criterion and cap models were implemented 
for studying soil mechanics problems. 

Advances in computational nonlinear mechanics before 1999 were described and 
edited by Wunderlich et al. (1981), Doltsinis (1989), Smith (1990) and Inoue et al. 
(1990), Desai and Gioda (1990), Ehlers (1999). Computational plasticity applied to 
metal forming can be found in Kobayashi et al. (1989), Khoei (2005), Dixit and Dixit 
(2008). Concrete plasticity and finite element analysis for limit-state design of concrete 
structures can be found in Chen (1982), Nielsen (1991), Kotsovos and Pavlovic (1995). 
A textbook on the combination of plasticity and geomechanics was written by Davis 
and Selvadural (2002). Materials including metals, soils and others are idealized as a 
continuum. Most engineering theories of metals and soil behavior of practical interest 
have depended on the continuum assumption, as indicated by Davis and Selvadural 
(2002). Ten serial International Conferences on Computational Plasticity (COMPLAS) 
have been successfully held in Barcelona, Spain since 1987. Computational Plasticity 
was published (Oñate and Owen, 2007), which contains 14 invited contributions 
written by distinguished authors who participated in the VIII International Conference 
on Computational Plasticity. 

Nonlinearities can be introduced by either geometric or material property ef-
fects. Geometric nonlinearities often arise in problems involving solid media in 
which the strains are sufficiently large to significantly affect the shape of the solu-
tion domain. Material nonlinearities include elasto-plastic deformation character-
ized by an irreversible straining which can only be sustained once a certain level of 
stress, known as the yield limit, yield function, strength theory or material model, 
has been reached. Material nonlinearities also include nonlinearly elastic solids, 
whose properties are functions of the local state of deformation. Elasto-plastic 
nonlinearities are studied and applied widely in mechanics and engineering. The 
nonlinear elasto-plastic material model is of great importance for computational 
plasticity. 

Elasto-plastic programs have been used for many years in the world. Material 
models are usually implemented in terms of the Tresca criterion and Huber-von 
Mises yield criterion for metallic materials and the Mohr-Coulomb criterion or the 
Drucker-Prager criterion for geomaterials. These material models (the single model) 
are suited to one kind of material. A new material model, the unified strength theory 
(UST), is implemented in computer codes and used for computational plasticity in 
this book. 

The material parameters of the unified strength theory (UST) are the same as the 
material parameters of the Mohr-Coulomb theory and the Drucker-Prager criterion. 
Most parts of the computer codes are also the same as the other elasto-plastic 
computer codes, only the yield criteria and its associated flow rule are different. the 
result obtained by using the Mohr-Coulomb theory is a special case of the result  
using UST. The two results are identical. More results, however, can be obtained by 
using UST.  

Unified strength theory has been applied in many research and engineering 
fields. UST and its implementation can be reliably employed therefore in engi-
neering and R & D applications. UST can be adapted for more materials and 
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structures. It has provided more choices for researchers and engineers. 

1.2 Bounds and Region of the Convex Yield Surface 

As a matter of primary importance, the bounds and the region of the failure criteria 
have to be determined before research is started on the effect of failure criteria. There 
are hundreds of yield and failure criteria that can be seen (Yu, 2002, 2004). Various 
yield criteria and failure criteria have been proposed in the past; however, all of them 
must be situated between the bounds if the convexity-is considered. The lower bound is 
the single-shear strength theory (the Mohr-Coulomb strength theory) and the sin-
gle-shear yield criterion (the Tresca yield criterion or the maximum shear stress crite-
rion), as shown in Figs. 1.1 and 1.2. The upper bound is the twin-shear strength theory 
(Yu et al., 1985) for SD materials (strength difference of material in tension and in 
compression), as shown in Fig. 1.1, and the twin-shear yield criterion (Yu, 1961a; 
1961b; 1983) or the maximum deviatoric stress criterion (Haythornthwaite, 1961) for 
non-SD materials, respectively (Fig. 1.2). Other yield criteria are situated between 
these two bounds. 

 

              
Fig. 1.1  Bounds and region of yield loci            Fig. 1.2  Bounds and region of yield loci 

for SD materials                                                   for non-SD materials 
 

Most of the experimental results are situated between these two bounds. 
Figure 1.3(a) shows the experimental result for sand, given by Nakai and Matsuoka 
(1980). It is in good agreement with the Matsuoka-Nakai criterion, as shown in Fig. 
1.3(b). It is interesting that the piece-wise linear criterion is also in very good 
agreement with this experimental result, as shown in Fig. 1.3(c). The piece-wise 
linear loci in Fig. 1.3(c) is the unified strength theory with b=3/4. 
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       (a) Two bounds       (b) Matsuoka-Nakai criterion   (c) Unified strength theory with b=3/4 

Fig. 1.3  Comparisons of test results with curve criterion and piece-wise linear criterion 

1.3 Unified Strength Theory and its Implementation in       
Computer Codes  

A unified strength theory stating that the yield loci covered the entire region from 
the lower bound to upper bound was proposed by Yu (1991). The details of the 
unified strength theory can be seen in (Yu, 1992; 2004). It is the natural develop-
ment of the twin-shear idea and twin-shear yield criterion for non-SD materials (Yu, 
1961) and the twin-shear strength theory for SD materials (Yu, 1985). The serial 
limit surfaces and three special cases in stress space of the unified strength theory 
are shown in Fig. 1.4. 

             
(a) 0�b�1                                                    (b) b=0 material 

 

      
                   (c) b=1/2 material                                            (d) b=1 material 

Fig. 1.4  Serial limit surfaces of the unified strength theory in stress space
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The serial limit loci in the deviatoric plane of the unified strength theory are shown 
in Fig. 1.5. The yield criteria of the unified strength theory can be extended to the 
non-convex criteria, as shown in Fig. 1.5(a). Some well-known yield criteria and a lot 
of new criteria can be deduced from the unified strength theory, as shown in Fig. 1.5. 
The serial limit loci in the deviatoric plane of the unified strength theory can regenerate 
to serial yield loci for non-SD materials, as shown in Fig. 1.5(b). Limit loci for SD 
materials and yield loci for non-SD materials of the unified strength theory in plane 
stress state are shown in Fig. 1.6. 

 

   
(a) Limit loci for SD materials                   (b) Yield loci for non-SD materials 

Fig. 1.5  Serial limit loci of the unified strength theory in deviatoric plane 
 

    
(a) SD materials                                     (b) Non-SD materials 

Fig. 1.6  Serial limit loci of the unified strength theory in plane stress state 
 
A review of “Unified Strength Theory and its Applications. Springer, Berlin, 2004” 

was written by Teodorescu (2006) in Zentralblatt MATH. “Here, starting from the idea 
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of twin-shear and twin-shear yield criterion, the author sets up a twin-shear strength 
theory and then a unified strength theory, the limit loci of which cover all regions of the 
convex limit loci  and can be extended to the region of non-convex limit loci.” As 
pointed out by Teodorescu (2006), the serial yield criteria of the unified strength 
theory are piece-wise linear criteria that consist of two expressions, as follows 

 

1 2 3( ) ,
1 tF b

b
�� � � �� � � �
�

      when   1 3
2  
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         (1.1b)  

 
where �1, �2, �3 are three principal stresses; �t is tensile yield point of material; � is 
the ratio of tensile yield point to compressive yield point of material �=�t/�c. The 
relations of the serial loci are shown in Fig. 1.7. 

 

 
Fig. 1.7  Special cases of the unified strength theory  

 
UST (Unified Strength Theory) has been implemented in some elasto-plastic 

programs including some commercial FEM codes and applied to engineering 
problems (Yu, 1992;Yu and Li, 1991; Yu et al., 1992; Yu and Zeng, 1994; Yu  et al., 
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1993; 1998; Yu et al,. 1997; 1999; Fan and Qiang, 2001; Zhang and Loo, 2001; Sun 
et al., 2004; Li and Ishii, 1998; Zhang et al., 2008; Wang et al., 2008; Li , 2008). 
The singularities at the corners of single-shear theory, twin-shear theory and the 
unified strength theory have been overcome by using a unified numerical procedure. 
A unified elasto-plastic program (UEPP) has been established, which was applied 
to some engineering problems (Yu and Zeng, 1994; Yu et al., 1997; 1999; Yu, 
1998). UST has also been implemented in ABQUSE by Wang JQ in 2008. 

The twin-shear strength theory, unified strength theory and its unified elasto-plastic 
constitutive model are implemented in FLAC-3D by Zhang (2008), Li (2008), Qiao 
and Li (2010), and Ma (2010). Before unified strength theory, the twin-shear yield 
criterion (for non-SD materials) and the twin-shear strength theory (for SD materials) 
were implemented in some FEM codes by An et al. (1991), Yu and Li (1991), Quint 
(1993; 1994), Shen (1993). 

Therefore, unified strength theory that can be used in finite difference com-
putation, has also developed FLAC-3D mechanical analysis serviceability. The 
confirmation of  unified strength theory has been tested, finally demonstrating that 
this model is very good at  taking into account the effect of  intermediate principal 
stress. Based on unified strength theory and its constitutive relationship, as well as 
finite difference computation developed in FLAC-3D, the stability and protection 
of the underground caves at the Huanren power plant were calculated. The exca-
vation, the spread of the plastic region around the cave area and the distribution and 
change in displacement were obtained by Li and Qiao. The effects of the irregular 
surface, the in-situ stress field’s distribution and different constitutive relations 
concerning stability have been studied. 

1.4 The Effect of Yield Criteria on the Numerical Analysis Re-
sults 

The Tresca yield criterion and the Huber-von Mises criterion were described in 
most textbooks about metal plasticity and computational plasticity. A great deal of 
research has been dedicated to showing the effects of failure criteria on the nu-
merical results of load-carrying capacities of structures. A famous example was 
given by Humpheson and Naylor (1975), and was further studied by Zienkiewicz 
and Pande (1977). Shapes of loading surfaces of concrete models and their influ-
ence on the peak load and failure mode in structural analyses were given by 
Pivonka et al. (2003). Figure 1.8 shows some differences between the results ob-
tained for plane strain flexible footing on a weightless material (Humpheson and 
Naylor, 1975). The forms of different limit surfaces on the deviatoric plane are 
shown in Fig. 1.9. 

The influence of different forms of yield surfaces on load-bearing capacity is 
obvious. The Mohr-Coulomb strength theory, the Williams-Warnke criterion, the 
Gudehus-Argyris criterion and various circular cone approximations, i.e. extension 
cone, compromise cone, compression cone and the Drucker-Prager criterion (in-
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scribed cone of the Mohr-Coulomb semi-infinite hexagonal cone with unequal 
sides) have been used. They show a great difference between results obtained using 
various failure criteria. Obviously, the question arises as to which one of these 
results should be preferred, because there is only one reasonable result for a given 
material and structure. 

 

 
Fig. 1.8  Load-displacement curve 

In this example, most of the limit surfaces of different failure criteria are cones 
in the stress space. The limit loci in the meridian plane are linear. This means that 
the strength of materials is linearly dependent on the hydrostatic stress, as has been 
demonstrated in a number of tests. The differences between the limit loci of various 
failure criteria in the deviatoric plane are shown in Fig. 1.10. Some smooth limit 
loci of various approximations to the Mohr-Coulomb failure criteria can be pre-
sented.  

In Fig. 1.10, the limit locus 1 is the Mohr-Coulomb strength theory (1900), 
locus 2 is the twin-shear strength theory (Yu et al., 1985), locus 3 is the Wil-
liam-Warnke criterion (1975), locus 4 is the twin-shear smooth model (Yu and Liu, 
1990a; 1990b) and locus 5 is the Gudehus-Argyris criterion (1973; 1974). Other 
smooth models can be found in the literature. Most limit loci match the two basic 
experimental points a and b. The circular loci cannot be matched with these two 
basic experimental points, as shown in Fig. 1.9. 
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Fig. 1.9  Different limit loci on deviatoric plane 

 
In general, the five typical limit loci of the unified strength theory with b=0, 

b=0.25, b=0.5, b=0.75 and b=1, which cover all the region of the convex area of the 
limit loci, can be adapted for different materials. The five typical limit loci of the 
unified strength theory are shown in Fig. 1.10 (b). Sometimes, the three loci (lower 
bound, median loci and upper bound shown in Fig. 1.10 (b) are used for analysis of 
structures.  

     
(a)                                                                              (b) 

Fig. 1.10  The linear criteria and curve criteria     
 

Nayak, Zienkiewicz (1972), Zienkiewicz and Pande (1977) have pointed out 
that the choice of the best limit surface is still in the hands of the analyst who has 
modeled the strength behavior in the best possible manner. They also indicated that 
the Drucker-Prager criterion and the limit loci of extensive circular cones give a 
very poor approximation to the real failure conditions. 

The effect of the yield criterion was studied by Humpheson and Naylor (1975), 
Zienkiewicz and Pande (1977), Li et al. (1994; 1998), Moin and Pankaj (1998), 
Wang and Fan (1998), American Institute of Aeronautics and Astronautics (1999), 
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Yu (2004), Scheunemann (2004) and others. The choice of yield criteria has a 
marked effect on the analytical results of load-bearing capacities of structures, on 
the prediction of the forming limit diagram (FLD), on deformation, discontinuous 
bifurcation and localization behavior, and dynamic behavior of structures. This 
conclusion was also given by Chen and Baladi (1985), Wagoner and Knibloe 
(1989), Frieman and Pan (2000), Cao et al. (2000), Kuroda and Tvergaard (2000), 
Wang and Lee (2006), Huang and Cui (2006), Haderbache and Laouami (2010). 
Effects of the yield criterion on local deformations in numerical simulation were 
studied by Hopperstad (1998). The effect of failure criterion on slope stability 
analysis was studied by Haderbache and Laouami. The results show that the effect 
of failure criterion on slope stability analysis and the Mohr-Coulomb theory do not 
consider the intermediate principal stress, overshadowing the real behavior of soil. 
It is also shown that the results are correct because the intermediate principal stress 
exists really in the soil and may have a direct effect on the stability of a sliding slope 
under external actions. Wang and Lee (2006) pointed out that many factors can 
influence the final simulation result, the most important of which is a suitable yield 
criterion.  

The results obtained by using the unified slip-line field theory for plane strain 
problems, the unified characteristics line theory for plane stress problems and spa-
tial axisymmetric problems (Yu et al., 2006), as well as every example of unified 
solutions for limit, shakedown and dynamic plastic analyses of structures (Yu et al., 
2009) show the serial difference. Results indicate that predictions of the limit ca-
pacity of a structure are sensitive to the selection of yield criteria. The application 
and choice of strength theory has a significant influence on the results.  

A large number of materials models have been proposed throughout the years. 
So far, no general model can simulate the strength behavior of materials under 
complex stress. Therefore, several models are normally implemented in commercial 
programs to allow for simulations of different material types under various condi-
tions. It is obviously of great importance to choose a constitutive model suitable for 
the material and the problem under consideration, as well as to assign proper values 
to the parameters included in this model. Of course, there is still a need for new 
models. A general but simple model that is thereby suitable for more materials may 
be developed. 

The unified strength theory with b=0, b=0.25, b=0.5, b=0.75 and b=1, or the 
unified strength theory with b=0, b=0.5, and b=1 will be applied for plastic analyses 
of different structures in our monograph. The unified strength theory with b=0.6 for 
concrete material is used for static and dynamic analyses by Zhou at Nanyang 
Technological University, Singapore, and by Zhang et al. at Griffith University, 
Australia, which will be described in Chapters 13-15 and Chapter 22. 

A slope problem is shown in Fig. 1.11. The single-shear theory of 
Mohr-Coulomb or the three-shear theory of Drucker-Prager do not completely 
match experimental data for geomaterials. It has been shown that the yield criteria 
of geomaterials depend not only on the maximum shear stress, but also on the 
intermediate principal shear stress and also on the intermediate principal stress �2 
and the third invariant of the deviatoric stress tensor J3. The reason that 
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Mohr-Coulomb theory and the Drucker-Prager criterion are not in good agreement 
with the experimental data is that the effect of �2 and the effect of J3 are neglected. 
The unified strength theory with b=0, b=0.25, b=0.5, b=0.75 and b=1 is used. The 
plastic displacements of the slope with different yield criteria under the same con-
ditions are shown in Fig. 1.12. The 3D simulation of a landslip using unified 
strength theory will be described in Chapter 20. 

 

Fig. 1.11  A slope problem  

 

  

   

   

 
Fig. 1.12  Displacements of the slope with different yield criteria 
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It is seen that the difference in the results is obvious, however, the result 
obeying the unified strength theory with b=0 and the result obeying the 
Mohr-Coulomb theory are identical. That is due to the fact that the unified strength 
theory encompasses the Mohr-Coulomb theory as a special case. On the other hand, 
the Mohr-Coulomb theory can be deduced from the unified strength theory when 
b=0. 

1.5 Historical Review: with Emphasis on the Implementation 
and Application of Unified Strength Theory 

Finite element methods originated in the field of structural analysis and were widely 
developed and exploited in civil structures and aerospace industries during the 
1950s and 1960s. Such methods are firmly established in civil and aeronautical 
engineering.  

Strength theory (yield criterion and failure criterion, or the material model) as 
one of the most important constitutive relations has been implemented in various 
computational codes, especially  nonlinear computer codes based on the finite 
element method (FEM). Elasto-plastic programs have been used for many years 
around the world. In general, these material models are the Tresca-Mohr-Coulomb 
single-shear series and the Huber-von Mises-Drucker-Prager three-shear series of 
strength theories. A reference book on the topic is available (Brebbia, 1985). Sev-
eral excellent textbooks and monographs devoted to computational plasticity have 
been published. Related books and a brief history of nonlinear finite elements 
before 2000 were described by Belytschko, Liu and Moran (2000). 

The form of yield surfaces of the single-shear series of strength theories is 
angular in the �-plane. However, the flow vector of the plastic strain is not uniquely 
defined at the corners of the Tresca and Mohr-Coulomb criteria and the direction of 
the plastic strain there is indeterminate. Koiter (1953) has provided limits within 
which the incremental plastic strain vector must lie. These singularities give rise to 
constitutive models that are difficult to implement numerically. To avoid such 
singularity, Drucker and Prager (1952) introduced an indented Huber-von Mises 
criterion in which the ridge corners have been rounded. The Drucker-Prager crite-
rion has been widely implemented in nonlinear FEM codes and is widely used for 
geomechanics and in geotechnical engineering. Unfortunately, this gives a very 
poor approximation to the real failure conditions (Humpheson and Nayalor, 1975; 
Zienkiewicz and Pande, 1977; Chen, 1985, Chen and Baladi, 1985).  

Therefore, a lot of smooth ridge models were proposed. They include the 
Gudehus-Argyris criterion, William-Warnke criterion, Lade-Duncan criterion, 
Matsuoka-Nakai criterion, Dafalias criterion, Burd criterion, Menetrey-Willam 
criterion, Zhao-Song criterion, JJ Jiang criterion and others. Most of them are of the 
octahedral-shear type (J2 theory) function expressed by three shear stresses. 
Various forms of smooth models were summarized in Chapter 3 of this monograph  
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and Chapter 11 of another monograph (Yu, 2004). 
At the same time, the singularities of the Tresca and Mohr-Coulomb yield cri-

teria can also be overcome by rounding off the corners of the surface or by em-
ploying a simple mathematical artifice in the numerical procedure (Owen, 1980). 
The accurate treatments of corners in yield surfaces were studied by Marques 
(1984), Ortiz et al. (1985; 1987; 1994), Yin (1984), Yin and Zhou (1985), Sloan 
and Booker (1986), de Borst (1987; 1989), Simo et al. (1988), Runesson et al. 
(1988), Pramono and Willam (1989), Pankaj and Bicanic (1991), Khan and Huang 
(1995), Larsson and Runesson (1996), Jeremic and Sture (1997) and others. So 
single-shear-type yield criteria are easy to use and easily implemented in compu-
tational codes. The singularity of Tresca plasticity at finite strains was studied by 
Peric and de Neto (1999). 

A course on “Advanced Numerical Applications and Plasticity in Geome-
chanics” was held by the International Centre for Mechanical Sciences (Le Centre 
International des Sciences et Mecaniques (CISM) in Udine, Italy). Eight papers 
were edited by Griffiths and Gioda in 2000. The material spans a remarkable range 
of topics, from theoretical developments involving novel algorithms and constitu-
tive models to practical applications involving prediction of stresses and deforma-
tions in tunnel linings. 

A monograph on the “Introduction to Computational Plasticity” was given 
by Dunne and Petrinic (2005). A range of plasticity models including those for 
superplasticity, porous plasticity, creep, cyclic plasticity and thermo-mechanical 
fatigue are introduced.  Microplasticity and continuum plasticity, the implementa-
tion of  constitutive equations, and associated material Jacobian into finite element 
software are addressed. The Huber-von Mises yield criterion implemented in the 
commercial code ABAQUS is described. In the Proceedings of Computational 
Plasticity: Models, Software and Applications, which was edited by Owen et al. 
(1989), 101 papers were presented. 

The yield criteria have been implemented in the most current commercial FEM 
systems, such as ABAQUS, ADINA, ANSYS, ASKA, ELFEN (Univ. of Wales 
Swansea), MSC-NASTRAN, MARC, NonSAP and AutoDYN, DYNA and DY-
PLAS (Dynamic Plasticity). In some systems, only the Huber-von Mises criterion, 
Drucker-Prager criteria, Mohr-Coulomb criterion and some other single curve 
criteria were implemented. The functions and the applied fields of many powerful 
commercial FEM codes were limited to the choice of failure criteria. More effective 
and systematic models of materials under complex stress are needed. 

As pointed out by Humpheson and Naylor (1975), Zienkiewicz and Pande 
(1977), and Chen (1982, 1984), there is basically a shortcoming in the 
Drucker-Prager surface in connection with rock-soil strength modeling: the inde-
pendence of �8 on the angle of similarity �. It is known that the trace of the failure 
surface on the deviatoric planes is not circular (Chen, 1982; 1984; 1994). 

To facilitate the choice of a model and to determine in an organized way the 
parameter values based on all the performed tests in a constitutive driver (i.e., a 
computer program containing a library of models where the tests can be simulated 
on the constitutive level and where parameter optimization can be performed), four 
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soil plasticity models have been proposed by Mattsson et al. (1999). These models 
have, so far, been included in the constitutive driver. The main idea was that the 
concept could be used for constructing constitutive drivers as a supplement to 
commercial programs with their constitutive models, as well as for researchers 
verifying and developing such models. A practical finite element code for plane and 
axisymmetric modeling of soil and rock plasticity, called PLAXIS, was provided by 
Vermeer (1998). 

The twin-shear strength theory has been implemented in some special finite 
element programs.  such as An and Yu (1991) for solving the hydropower structure, 
Yu and Li (1991), Yu et al. (1992) for a mechanical structure, Shen (1993) for 
studying soil mechanics problems, Yu and Meng (1992; 1993) for studying the 
stability of the ancient city wall in Xi’an, China; Li, et al. (1994) for composite, Li 
and Ishii (1998) for the structural analysis of a dam, etc. The elasto-visco-plastic 
finite element analysis of a self-enhanced thick cylinder using the twin-shear 
strength theory was given by Liu et al. (1994). The twin-shear yield criterion and 
the twin-shear strength theory have been implemented in three commercial FEM 
codes by Quint Co. (1993; 1994). The twin-shear strength theory was implemented 
in an FEM code and applied to analyze the stability of the high slopes of the 
Three-Gorges Lock by the Yangzhi River Science Academy, China.  

3D finite element numerical modeling of large underground caves and the sta-
bility of the excavated rock mass of the Tai’an Pumped Storage Hydraulic Plant was 
done by Professors Sun, Shang, Zhang et al. at Zhejiang University, Hangzhou, 
China and East China Investigation and Design Institute, the State Power Corpo-
ration of China (Sun et al., 2004a; 2004b).  

Unified strength theory was also used for dynamic response and blast-resistance 
analysis of a tunnel subjected to blast loading by Zhejiang University (Liu and 
Wang, 2004). A new failure criterion introduced from unified strength theory when 
the strength parameter b=1/2, was used by professor Liu for a railroad tunnel. It was 
also used for the analysis of the stability of a slope (Bai, 2005), the failure analysis 
of a concrete road (Liang, 2004) and 3D failure process analysis of rock and asso-
ciated numerical tests by Liang (2005) at Northeastern University, China.  

Recently, analysis on textural stress and rock failure in diversion tunnels using 
the twin-shear strength theory was given by Yang and Zhang (2008; 2009). The 
twin-shear theory is also used for studying the sudden-crack phenomenon and 
simulation of the surrounding rock mass in a diversion tunnel (Yang et al., 2008). 
The adaptive arithmetic of arch dam cracking analysis using the twin-shear strength 
theory was given by Yang et al. (2009). The singularity has been overcome, and it is 
easy to use. The twin-shear yield criterion and the twin-shear strength theory have 
been implemented in three commercial FEM codes by Quint Co. (1993; 1994) in 
Tokyo, Japan  

The unified yield criterion and the unified strength theory have been imple-
mented and applied to some plasticity and engineering problems (Yu et al., 1992; 
Yu and Zeng, 1994; Yu et al., 1997; 1999). The singularities at the corners of the 
single-shear series of strength theory, twin-shear series of strength theory and 
unified strength theory have been overcome using a unified numerical procedure, 
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i.e., UEPP Code (Yu et al., 1993; Yu and Zeng, 1994; Yu et al., 1997; 1999; Yu, 
1998).  

Unified strength theory was used to study structural reliability analysis by 
Wang et al. (2008) at Sichuan University, Sichuan Province, China. It was also used 
for nonlinear finite element analysis of an RC plate and shell by Wang (1998) at 
Nanyang Technological University, Singapore.  

Unified strength theory is also implemented in the general commercial code, 
such as ABAQUS and AutDYN by Fan and Qiang (2001) and Zhang et al. (2001) at 
Griffith University, Australia, for research on the punch of concrete and dynamic 
problems. Normal high-velocity impact on concrete slabs was simulated using 
unified strength theory (Fan and Qiang, 2001). Unified strength theory was im-
plemented in non-linear FEM at Nanyang Technological University, Singapore, by 
Zhou (2002) for the numerical analysis of reinforced concrete subjected to dynamic 
load. Recently, the secondary development and application of unified strength 
theory and associated elastoplastic constitutive model to ABAQUS were presented 
by the North China Electric Power University, Beijing, China and the Institute of 
Water Resources and Hydropower Research of China (Wang and Lu, 2009) as well 
as by Tongji University (Pan et al., 2010). 

Based on the finite element theoretical scheme of a unified elastoplastic con-
stitutive model, and according to the UMAT interface requirement of ABAQUS, 
the corresponding UMAT codes are programmed, which will be called the main 
analytical module of ABAQUS. Adopting a degenerative model of the unified 
strength (b=0, Mohr-Coulomb model) and the built-in Mohr-Coulomb model of 
ABAQUS, the uniaxial tests and circular chamber are analyzed to verify the cor-
rectness and efficiency of the developed material subroutine. Finally, considering 
the general form of the unified elastoplastic constitutive model (b � 0) and the hard 
condition of yield surface, which are not available in ABAQUS software, a circular 
chamber is simulated and the variational discipline of the stress field is obtained. 
The basic procedures provided and the programming essentials of  UMAT rede-
fined in ABAQUS are universal and can offer a reference for other developers (Pan 
et al., 2010). 

Unified strength theory was used to study topology optimization of evolutionary 
structures by Li et al. (2008). The abstract of the paper shows that: “Based on the 
traditional evolutionary structural optimization method and considering wide ap-
plications of unified strength theory for all kinds of engineering structures, this 
paper presents a bi-directional evolutionary structural topology optimization 
method based on the unified strength criterion. It can be used not only for isotropic 
materials, but also for many kinds of anisotropic materials. Finally, some numerical 
examples are given and the results show that this method has wide use in topology 
optimization design for structures of fragile materials, anisotropic material proc-
essing and design fields”.  

Recently, two papers concerning the applications of the three-parameter unified 
strength theory to an FEM program, and the Monte-Carlo 3D nonlinear stochastic 
FEM model for structure reliability analysis were constructed by Wang, et al. 
(2008a; 2008b). The three-parameter and five parameter unified strength theory are 
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used for the load bearing capability of a concrete-filled steel tube component con-
sidering the effect of intermediate principal stress and plastic seismic damage of a 
concrete structure by Shao and Qian (2007) and Shao et al. (2007). 

UST (unified strength theory) and slip line field theory are also implemented in 
ANSYS by Li and Chen (2010). The results can be employed to analyze the dif-
ferences in safety factors and the positions of the critical slip surfaces for unified 
yield criteria. 

A new effective three-dimensional finite difference method (FDM) computer 
program, FLAC-3D (Fast Lagrangian Analysis of Continua in 3D) was presented 
(FLAC-3D, 1997). Stability analysis on the high slopes of the Three Gorges Lock 
using FLAC-3D was given (Kou et al., 2001). It is a pity, however, that only two 
failure criteria, the Mohr-Coulomb criterion and the Drucker-Prager criterion were 
implemented in FLAC-3D code.  

Unified strength theory is implemented in FLAC-3D by Zhang et al. (2008) for 
the analysis of structures at the National Key Laboratory of Geomechanics and 
Geotechnical Engineering, Institute of Rock and Soil Mechanics, Chinese Acad-
emy of Science. The abstract of the paper of Zhang, et al. (2008) shows that: 
“Unified strength theory is a new theory system which can almost describe the 
strength characteristics of most geomaterials and has been applied widely. And 
FLAC-3D is an excellent geotechnical program. If the former can be integrated into 
the later, many complex problems in engineering will be settled. So, according to 
this problem, the numerical scheme for an elastoplastic unified constitutive model 
in FLAC-3D was studied. And the numerical format of the elastoplastic constitutive 
model based on the unified strength theory was derived….The merits of unified 
strength theory and the FLAC-3D program will be utilized well in geo-engineering 
after their combination.” 

In-situ stress measurement and stability analysis based on unified strength 
theory in large scale underground caverns was presented at Beijing Scientific and 
Technical University (Li, 2008). Unified strength theory was also implemented in 
FLAC-3D for stability analysis in large scale underground caverns. Recently, 
unified strength theory was implemented in FLAC by Hohai University for the 
dynamic analysis of the 500 kV underground transformer substation for Shanghai 
World EXPO (Fen and Du, 2010). 

Table 1.1 gives some applications of yield criteria in FEM codes. 
These implementations and applications can be classified in three types, as 

follows: 
(1) A special elasto-plastic FE program referred as the UEPP�Unified 

Elasto-Plastic Program. The first version of UEPP was used by Yu’s research group 
at Xi’an Jiaotong University in 1990-1991. The third version of UEPP was used in 
1998. WB Zheng, GW Ma, SY Yang, Y Wang, LN He, and N Lu made their con-
tributions to UEPP. At the same time, the twin-shear failure criterion was imple-
mented in several FE codes by ZJ Shen (1989), Yu and Li (1991), An et al. (1991), 
Yu and Meng (1992), Quint Co. (1993; 1994), Liu et al. (1994), Li and Ishii (1998).

(2) Implementation in several nonlinear FE codes written by researchers at 
some universities. 
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(3) Implementation in several commercial nonlinear FE codes by researchers. 
 

Table 1.1  Some applications of yield criteria in FEM codes 

Notes: 
1—HAJIF (The Aircraft Strength Research Institute of China) 
2—COMPMAT and STAMPS (Quint Co., Japan) 
3—MARC (USA)  
4—NASTRAN (USA) 
5—ANSYS used in Xi’an Jiaotong University and Hohai University, Nanjing, China 
6—FLAC-3D used in Beijing Sci. Tech. University and Xi’an Jiaotong University, as well as 

Wuhan Rock-Soil Mechanics Institute of Chinese Academy 
7—UEPP(Xi’an Jiaotong U., Xi’an, China)  
8—UEPP (Nanyang Technological University, Singapore) 
9—Academy of Yangzhi River 
10—North-West Institute for Investigation and Research in Hydraulic-Power 
11—Zhejiang University and East China Investigation and Design Institute, State Power 

Corporation of China 
12—Griffith University, Australia; Sichuan University, China; North-East University, China  
13—Jinan University, Jinan, Shandong Province, China  
14—Zhejiang University and Railway Co. 
15—AutDYN at Nanyang Technological University, Singapore 

1.6 Brief Summary 

Most materials in structures are acted under the complex stress states, i.e., bi-
axial and multiaxial stresses. Strength theory provides a yield (or failure) criterion, 
a limiting stress state for elasticity, or an initial deformation for plasticity. Some-
times it is also used as an associated or non-associated flow rule for plastic con-
stitutive relations. 

FEM codes  
 

Yield criteria 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 

Tresca criterion � � � � � � � � � 

Mises  criterion � � � � � � � � � � 

Mohr-Coulomb � � � � � � � � � � � � 

Drucker-Prager � � � � � 
Twin-shear criterion for 

Non-SD materials � � � � � � � � � 

Twin-shear strength the-
ory for SD materials � � � � � � � � � � 

Unified yield criterion for 
Non-SD materials � � � � � � � � � 

Unified strength theory �  � � � � � � � 

Others � � � � � � � � � � � � � � � 
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A series of research works were carried out to show the effects of strength 
theory on the results of elastoplastic analysis, the load-carrying capacities of 
structures. The unified yield criterion and unified strength theory provide us with an 
effective approach to study these effects. Unified strength theory has been imple-
mented in several computational plasticity codes. It is possible for us to adopt a 
different value of the unified strength theory parameter b to meet the requirements 
of different materials and structures. 

The effects of failure criteria on the analytical results of the slip field for plane 
strain problems, the characteristic fields of plane stress problems and spatial axi-
symmetric problems using unified strength theory are researched by Yu et al. 
Systematic results can be seen in (Yu et al., 2006). The choice of strength theory has 
a significant influence on these results. Interested readers may refer to the book 
entitled Generalized Plasticity published by Springer in 2006. Comments on the 
model of Maohong Yu are given by Altenbach and Kolupaev (2008). 

Advances in strength theories are briefly summarized in Table 1.2. 
 

Table 1.2  Advance in strength theories 
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The twin-shear idea was proposed in 1961. Since then, the twin-shear yield 
criterion for non-SD materials, the generalized twin-shear strength theory for SD 
materials and the unified strength theory were successfully presented in 1961, 1985 
and 1991. It can be seen that the development was very slow, covering 30 years of 
the development of unified strength theory. 
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2 

Stress and Strain 

2.1 Introduction  

In applied mechanics and engineering, materials and structures are generally 
regarded as continua. This permits us to describe the behaviour and consequences 
of the use of materials and structures by means of continuous functions. A material 
is a point (element), and a structure is a body. The structure may be considered as a 
partly ordered set of material elements (points) filling a structure (body). The cube 
is often used as an element.  

An element that can fill a space without gaps and overlapping is called spatial 
equipartition. Various polyhedra used in continuum mechanics result in spatial 
equipartition such as cubic elements and regular hexagonal elements. The 
dodecahedron element, orthogonal octahedron element (twin-shear model) and 
pentahedron element will be described in this chapter.   

It is assumed that the reader is familiar with the basic concepts of the mechanics 
of materials and the theory of elasticity, including the definitions of stress and 
strain. We shall, however, briefly review some of these basic concepts. In addition, 
some new concepts are also described in this chapter. 

2.2 Stress at a Point, Stress Invariants  

A general state of stress at a point can be determined by a stress tensor �ij, which 
stands for nine components, as shown in Fig. 2.1, and can be expressed as  
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Fig. 2.1  Nine stresses on element 

 
Stress and strain are second-order tensors. The concepts of tensor and tensor 

notation are useful in derivations and in the proof of theorems.  
It can be seen in the course of elasticity, mechanics of solids or plasticity, using 

three-dimensional transformations, that there exists a coordinate system �1, �2, �3 
where the state of stress at the same point can be described by the following:   
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                                          (2.2) 

 
The stresses �1, �2, �3 are referred to as the principal stresses, as shown in 

Fig. 2.2. 

     
Fig. 2.2  Principal stress element 
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An element of material subjected to principal stresses �1, �2 and �3 acting in 
mutually perpendicular directions (Fig. 2.2) is said to be in a state of triaxial stress 
or three-dimensional stress. If one of the principal stresses equals zero, this is 
referred to as the plane stress state or biaxial stress state. The triaxial stress and 
biaxial stress are called the polyaxial stresses, multiaxial stresses or complex stress. 
The principal planes are the planes on which the principal stresses occur on 
mutually perpendicular planes. 

The principal stresses are the three roots of the equation: 
 

3 2 2 2 2

2 2 2

( ) ( )

( 2 ) 0
x y z x y y z z x xy yz zx

x y z xy yz zx x yz y zx z xy
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          (2.3) 

 
which can be rewritten as 
 

3 2
1I� �� + 2I � 3 0I� �                                         (2.4) 

where I1, I2, I3 are  
 

1I = x y z� � �� �  
2 2 2

2 x y y z z x xy yz zxI � � � � � � � � �� � � � � �                                      (2.5) 
2 2 2

3 2 ( )x y z xy yz zx x yz y zx z xyI � � � � � � � � � � � �� � � � �  
 

The quantities I1, I2 and I3 are independent of the direction of the axes chosen. 
They are called the first, second and third invariants of the stress at a point (or 
invariant quantities).  

If we choose the principal directions as the directions of the coordinate axes, 
then the three stress invariants take on the simple form   

 
1I = 1 2 3� � �� �  

2 1 2 2 3 3 1I � � � � � �� � �                                                     (2.6) 

3 1 2 3I � � ��  
 
The three invariants I1, I2 and I3 are three independent quantities which specify 

the state of stress just as well as the three principal stresses �1, �2 and �3. 

2.3 Deviatoric Stress Tensor and its Invariants 

It is convenient in the study of strength theory and plasticity to split the stress tensor 
into two parts, one called the deviatoric stress tensor Sij and the other the spherical 
stress tensor pij. The relation is  
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ij� = ijS + ijp = ijS + ijm��                                              (2.7) 
 
The spherical stress tensor is the tensor whose components are �m�ij, where �m 

is the mean stress, i.e., 
 

ijp =
0 01 0 0

0 1 0 0 0
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m

m ij m m

m
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�

� �� �
� �� �� � � �� �
� �� �� � � �

                                (2.8) 

 
where  
 

m� =( zyx ��� �� )/3 = ( 321 ��� �� )/3 = 1I /3                    (2.9) 
 
It is apparent that �m is the same for all possible orientations of the axes. Hence 

�m is named spherical stress. Also, since �m is the same in all directions, it can be 
considered to act as a hydrostatic stress or hydrostatic pressure, denoted by p. It is 
equal to one-third of the first invariant, p=�m =I1/3. 

The deviatoric stress tensor Sij can be determined as  
 

ijS = ij� ijp� = ij� m ij� ��
x m xy xz

yx y m yz

zx zy z m

� � � �

� � � �

� � � �

� ��
� �

� �� �
� ��� �

           (2.10) 

 
The invariants of the deviatoric stress tensor are denoted by J1, J2, J3 and can be 

obtained as follows:  
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              (2.11) 

 
The invariants of the deviatoric stress tensor  J2, and J3 can be written in terms 

of the principal stresses 
 

2 2 2
2 1 2 2 3 3 1
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2.4 Stresses on the Oblique Plane 

If the three principal stresses �1, �2, �3 are acting on three principal planes, 
respectively, at a given point, we can determine the stresses acting on any plane 
through this point. This can be done by consideration of the static equilibrium of an 
infinitesimal tetrahedron formed by this plane and the principal planes, as shown in 
Fig. 2.3. In this figure, we have shown the principal stresses acting on the three 
principal planes. These stresses are assumed to be known. We wish to find the 
stresses �� and �� acting on the oblique plane whose normal direction cosines are l, 
m and n.  

 
Fig. 2.3  Stress on an infinitesimal tetrahedron 

2.4.1 Stresses on the Oblique Plane 

The normal stress �� and shear stress �� acting on this plane can be determined as 
follows: 
 

2 2 2
1 2 3l m n�� � � �� � �  
2 2 2 2 2 2 2 2 2

1 2 3 1 2 3( )l m n l m n�� � � � � � �� � � � � �                    (2.13) 

� �p �� + ��  
 

2.4.2  Principal Shear Stresses  

The three principal shear stresses �13, �12 and �23 can be obtained as  
 

13 1 3
1 ( )
2

� � �� � 12 1 2
1 ( )
2

� � �� � )(
2
1

3223 ��� ��            (2.14) 

 
The maximum shear stress acts on the plane bisecting the angle between the 

largest and smallest principal stresses and is equal to half of the difference between 
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these principal stresses 
 

)(
2
1

3113max ���� ���                                            (2.15) 

 
The corresponding normal stresses �13, �12 and �23 acting on the sections where 

�13, �12 and �23  are acting, respectively, are 
 

13 1 3
1 ( )
2

� � �� � ,  12 1 2
1 ( )
2

� � �� � ,  23 2 3
1 ( )
2

� � �� �              (2.16) 

The three principal shear stresses �13, �12 and �23 and corresponding normal 
stresses �13, �12 and �23 acting on the principal shear stresses sections form a 
rhomboidal- dodecahedron (�13, �12, �23; �13, �12, �23), as shown in Fig. 2.4.  

 

   

Fig. 2.4  Dodecahedron multi-shear model (�13, �12, �23; �13, �12, �23)  
 

The three principal stresses, three principal shear stresses and the three normal 
stresses acting on the principal shear stresses sections can be illustrated by three 
stress circles. This is referred to as the Mohr circle, as shown in Fig. 2.5. 

 

Fig. 2.5  The principal stresses, principal shear stresses and stress circles 
 

The magnitude of the normal and shear stresses of any plane are equal to the 
distance of the corresponding stress point on the stress circle. The three principal 
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shear stresses are evidently equal to the radius of the three Mohr circles. A detailed 
description of the stress circle can be found in Johnson and Mellor (1962), 
Kussmaul (1981), Chakrabarty (1987), Davis and Selvadurai (2002) and others. 
Figure 2.6 shows the relations between the stress circles and different planes, where 
the stresses are acted on. 

 
Fig. 2.6  Relations between the stress circles and different planes 

2.4.3  Octahedral Shear Stress  

If the normal of the oblique plane makes equal angles with all the principal axes, 
and  
 

l=m=n=
3

1
�                                                         (2.17) 

 
then these planes are called the octahedral plane and the shear stresses acting on it 
are called the octahedral shear stresses. The normal stress, called the octahedral 
normal stress �8 (or �oct), acting on this plane equals the mean stress 
 

8� = 1
3

( 1 2 3� � �� � )= m�                                        (2.18) 

 
A tetrahedron similar to this one can be constructed in each of the four 

quadrants above the x–y plane and in each of the four quadrants below the x–y 
plane. On the oblique face of each of these eight tetrahedra the condition l2= 
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m2=n2=1/3 will apply. The difference between the tetrahedra will be in the signs 
attached to l, m and n. The eight tetrahedra together form an isoclinal octahedron 
element, as shown in Fig. 2.7, and each of the eight planes form the face of this 
octahedron.  

 

 
Fig. 2.7  Isoclinal octahedron element and dodecahedron element 

 
The octahedral normal stress is given by Eq. (2.18) and the octahedral shear 

stress �8 (sometimes denoted as �oct) acting on the octahedral plane is 
 

2 2 2 1 2
8 1 2 2 3 3 1

2 2 2 1/ 2
1 2 3

1[( ) ( ) ( ) ]
3
1 [( ) ( ) ( ) ]
3 m m m

� � � � � � �

� � � � � �

� � � � � �

� � � � � �
                       (2.19) 

 
The direction cosines l, m and n of principal planes, principal shear stress planes 

and the octahedral plane, as well as the normal stresses and shear stresses, are listed 
in Table 2.1. 

 
Table 2.1  Direction cosines of the principal planes, the principal shear stress planes and the 
octahedral planes 

 

 

 

 

 

 

 

 

 

 

 Principal plane Principal shear stress planes Octa. 
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1
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1
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2.5 From Single-Shear Element to Twin-Shear Element 

The cubic element (�1, �2, �3), i.e. the principal stress element, is commonly used. 
The three principal stresses �1, �2, �3 act on this element, as shown at the top of 
Fig. 2.8. According to the concept of stress state, various polyhedral elements can 
be drawn. 

 

 
Fig. 2.8  From single-shear element to twin-shear element 
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Three quadrangular prism elements can be obtained from the cubic element, as 
shown in Fig. 2.8. The single shear stresses, �13, �12, or �23, act respectively.This 
may be referred to as the single-shear element. The first single-shear element is the 
maximum shear stress element in which the maximum shear stress �13 and 
respective normal stress �13, as well as the intermediate principal stress �2, act on 
this element. Another single-shear element is the quadrangular prism element (�12, 
�12, �3 when �12��23). The intermediate principal shear stress element, the 
intermediate principal shear stress �12 and the respective normal stress �12, as well 
as the minimum principal stress �3 act on this element. Other one is the 
quadrangular prism element (�23, �23, �1, when �12��23). The minimum principal 
shear stress element, the minimum principal shear stress �23 and the respective 
normal stress �23, as well as the maximum principal stress �1 act on this element. 

Two orthogonal octahedron elements (�13, �12; �13, �12) and (�13, �23; �13, �23) 
can be obtained from the single-shear element, as shown in Fig. 2.8 This may be 
referred to as the twin-shear element. The principal shear stresses �13, �12 and the 
respective normal stresses �13, �12 act on the first twin-shear element. The principal 
shear stresses �13, �23 and the respective normal stresses �13, �23 act on the second 
twin-shear element. These two twin-shear elements form a spatial equipartition in 
continuum mechanics. 

2.6 Stress Space 

The stress point P(�1, �2, �3) in stress space can be expressed in other forms, such 
as P(x, y, z), P(r, �, �) or P(J2, �, �). The geometrical representation of these 
transfers can be seen in Fig. 2.9. 

For the straight line OZ passing through the origin and making the same angle 
with each of the coordinate axes, the equation is 

 
321 ��� ��                                                                (2.20) 

 
The equation for the �0-plane is 
 

0321 ��� ���                                                         (2.21) 
 

The stress tensor �ij can be divided into the spherical stress tensor and 
deviatoric stress tensor. The stress vector � can also be divided into two parts, the 
hydrostatic stress vector �m and the mean shear stress vector �m. 

 
m m� � �� �                                                             (2.22) 

 



2.6  Stress Space  

 

39 

     
Fig. 2.9  Cylindrical coordinates and stress state in the �-plane 

Their magnitudes are given by 
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The  -plane is parallel to the �0-plane and is given by 

 
C��� 321 ���                                                (2.26) 

 
where C is a constant. The spherical stress tensor �m is the same for all points in the 
 -plane of the stress space and  
 

3
C

m ��                                                     (2.27) 

 
The projections of the three principal stress axes �1, �2, �3 in the stress space are 

�1', �2', �3'. The relationship between them is  
 

1 1 1
2cos
3

'� � � �� � ,
2 2 2

2cos
3

'� � � �� � , 3 3 3
2cos
3

'� � � �� �     (2.28) 

 
where � is the angle between O'A, O'B, O'C and the three coordinates, as shown in 
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Fig. 2.10. 

 
Fig. 2.10  Deviatoric plane 

 
In the following, we will introduce Relationship between (�1, �2, �3) and (x, y, z) 

The relationship between the coordinates of the deviatoric plane and the principal 
stresses are  
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The relationship between the cylindrical coordinates  (�, r, �) and the principal 

stresses (�1,�2,�3) are 
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From Eq. (2.25) and Eq. (2.28) we can obtain 
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The second and third invariants of the deviatoric stress tensor are 
 

)( 1332212 SSSSSSJ ����                                     (2.35) 

3213 SSSJ �                                                              (2.36) 

 
Three principal deviatoric stresses can be deduced 
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These relationships are suitable for the conditions �1��2��3 and 0��� /3. The 

limit loci in the  -plane have threefold symmetry, so if the limit loci in the range of 
60° are given, the limit loci in the  -plane can be obtained. 

The three principal stresses can be expressed as 
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The principal stresses can also be expressed in terms of the first invariant I1 of 

the stress tensor and the second invariant of the deviatoric stress J2, as  
 

1
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The principal shear stresses can also be obtained 
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2.7 Stress State Parameters 

The stress state at a point (element) is determined by the combination of the three 
principal stresses (�1, �2, �3). Based on the characteristics of the stress state and by 
introducing a certain parameter, it can be divided into several types. Lode (1926) 
introduced a stress parameter μ� as  
 

�	 =(2 2� 1� 3� )/( 1� 3� )                                   (2.41) 
 
μ� is referred to as the Lode stress parameter. The Lode parameter can be expressed 
in terms of principal shear stress as  
 

2 1 3 23 12

1 3 13

2
�
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� � �
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� �
�

                                   (2.42) 

 
In fact, there are three principal shear stresses �13, �12 and �23 in the 

three-dimensional principal stress state. However, the three principal shear stresses 
�13, �12 and �23 are not independent and only two principal shear stresses are 
dependent variables, because the maximum principal shear stress �13 is equal to the 
sum of the other two shear stresses. This relationship is expressed as  

 
13 12 23� � �� �                                                       (2.43) 

 
Hence, the twin-shear idea was proposed by Yu (1961). The twin-shear 

function can be established as (Yu, 1983; Yu and He, 1983; 1985) 
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Subsequently, Yu (1991; 1992) introduced the “twin shear stress” concept into 

the analysis of  the stress state and offered two twin-shear stress parameters as 
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1, 0 1,  0 1' '� � � �	 	 	 	� � � � � �                              (2.46c) 
 
The twin-shear stress parameters are simpler and have an explicit physical 

meaning. They can reflect the state of the intermediate principal stress and can 
represent the status of the stress state.  

The twin-shear stress parameters have nothing to do with the hydrostatic stress. 
They instead represent the status of the deviatoric stress state and the stress angle on 
the deviatoric plane in the stress space, as shown in Fig. 2.12. Five different stress 
states are shown in Fig. 2.12. They are  

1) �=0° (μ�=1);  
2) �=13.9° (μ�=3/4, μ�'=3/);   
3) �=30° (μ�=μ�'=0.5);   
4) �=46.1° (μ�=1/4, μ�'=3/4) ;  
5) �=60° (μ�=0, μ�'=1).  
According to the meaning of the twin-shear stress parameters, we know that if 

μ�=1 (μ�'=0, stress angle equals �=0°), the stress states include the three following 
cases: 

1) �1>0, �2=�3=0, uniaxial tension stress state; 
2) �1=0, �2=�3<0, equal biaxial compression stress state; 
3) �1>0, �2=�3<0, uniaxial tension, equal biaxial compression stress state. 
If μ�=μ�'=0.5 (stress angle equals �=30°), the corresponding stress states are as 

follows: 
1) �2=(�1+�3)/2=0, pure shear stress state; 
2) �2=(�1+�3)/2>0, biaxial tension and uniaxial compression stress state; 
3) �2=(�1+�3)/2<0, uniaxial tension and biaxial compression stress state. 
If μ�=0 (μ�'=1, stress angle equals �=60°), then the corresponding stress states 

are as follows: 
1) �1=�2=0, �3<0, uniaxial compression stress state; 
2) �1=�2>0, �3=0, equal biaxial tension stress state; 
3) �1=�2>0, �3<0, equal biaxial tension and uniaxial compression stress state. 
According to the twin-shear stress parameters and the magnitude of the two 

smaller principal shear stresses, the stress state can be divided into three kinds of 
conditions as follows: 

1) Extended tension stress state, �12 )�23, 0�μ�'*0.5*	� �1. The stress state 
(uniaxial tension and biaxial compression) can be expressed by deviatoric stress, 
and the absolute magnitude of the tensile stress is a maximum, so it can be called the 
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extended tension stress state. When the intermediate principal stress �2 equals the 
minimum principal stress �3, then 	� =1 (μ�'=0). If �2 =�3 =0, the extended tension 
stress state becomes the uniaxial tension stress state. 

2) Extended shear stress state, �12 =�23, �2 =(�1+�3 )/2. The two smaller stress 
circulars are equal, the second deviatoric stress S2=0 and the magnitude of the other 
two deviatoric stresses are identical, but one is tensile and the other is compressive. 
The two twin-shear stress parameters are identical,  	�=μ�
=0.5. If �2 =(�1+�3)/2=0, 
the extended shear stress state becomes the pure shear stress state. 

3) Extended compression stress state, �12*�23, 0�	� *0.5*μ�'�1. If �1=�2=0, 
�3*�+, this stress state becomes the uniaxial compression stress state. 

The twin-shear parameters simplify the Lode parameter and have a clear 
physical meaning. Their relationships are 
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Some types of stress states and stress state parameters including the Lode 

parameter and the twin-shear stress parameters are summarized in Table 2.2. 

Table 2.2   Principal stresses, shear stresses and stress state parameters 

Parameter of 
stress state Stress state Principal 

stress 

Principal 
shear 
stress 

Deviatoric 
stress 

Stress 
angle

�	 �	'  �	  
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compression Pure 
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012 ��  
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213 SSS ��
60° 0 1 +1 

 
The relationships between various shear stresses are listed in Table 2.3. It is 

convenient to compare various textbooks on plasticity. Different symbols or 
expressions may be used on different courses. 
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Table 2.3  Relationships between various shear stresses and J2 

 q�  8�  s�  r� �  J2 Sij 
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2.8 Strain Components 

When a continuum is deformed, a generic point experiences a displacement {U} 
with components u, v, w, with respect to Cartesian orthogonal axes x, y, z, 
respectively. For very small strains, the axial strains �x, �y, �z and shear strains ,xy, ,yz, 
,zx can be expressed by the displacement differentiation as follows 
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The six strain components �x, �y, �z, ,xy, ,yz, ,zx can describe completely the state 

of strain at the considered point. Similar to the stress tensor, there also exist 
principal strains �1, �2, �3 with the companion shear strains equal to zero. For a plane 
strain state, the third principal strain �3 vanishes and the principal strains can be 
expressed as follows  
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The principal direction is given by 
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Equation (2.51) still holds when �z.�3/0, provided �z is a principal strain. 

2.9 Equations of Equilibrium 

The following three differential equations of equilibrium in the direction of the 
coordinate axes are 
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where X, Y, Z are the components of the body force per unit volume. For a body in 
an equilibrium state, the variation in stresses is governed by the above equations of 
equilibrium. 

2.10   Generalized Hooke’s Law 

Equations relating to stress, strain, stress-rate (increase in stress per unit time) 
and strain-rate are called  constitutive equations, which are determined by the 
material properties under consideration. In the case of elastic solids, the constitutive 
equations take the form of the generalized Hooke’s law, which involves stress and 
strain instead of the stress-rate and strain-rate. 

In a general three-dimensional stress state, the generalized Hooke’s law has the 
form of 

 
1 [ ( )]x x y zE

� �  � �� � �                                             (2.53a) 

1 [ ( )]y y x zE
� �  � �� � �                                              (2.53b) 

1 [ ( )]z z x yE
� �  � �� � �                                              (2.53c) 



2.10  Generalized Hooke’s Law  

 

47 

1 1 1, ,xy xy yz yz xz xzG G G
, � , � , �� � �                           (2.53d) 

 
where E and  are the modulus of elasticity and the Poisson’s ratio, respectively. G 
is the modulus of rigidity. Only two of them are independent and there is  
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Equations (2.53a)–(2.53d) may be rewritten conversely as 
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where the constants G and 0 are called Lame’s constants and 
 

)21)(1( 
0
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E                                                        (2.55) 

 
Another important elastic constant is called the bulk modulus of elasticity K, 

which defines the dilatation (volumetric strain) �v as the unit change in volume 
 

zyxv ���� ���                                                   (2.56) 

 
with the hydrostatic component of stress, or spherical component of stress �m,  

 
1 ( )
3m x y z� � � �� � �                                        (2.57) 

 
As such  

 
1

v mK
� ��                                                  (2.58) 

 
From the generalized Hooke’s law, K is derived as 
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                                                (2.59) 

2.11   Compatibility Equations 

Equations (2.48) and (2.49) implicitly show that the strain components are 
functions of the three displacement components. Differentiate the first equation 
within Eq. (2.48) twice with respect to y and the second equation within Eq. (2.48) 
with respect to x and add the results, 
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Differentiating the first equation within Eq. (2.20) with respect to x and y yields 
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And since the order of differentiation for single-value, continuous functions is 

immaterial  
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Similarly, we can derive the following additional equations 
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Equations (2.62a)–(2.62f) are called Saint-Venant compatibility equations, or 

compatibility equations in terms of strain.  
In total, there are fifteen governing equations, including three equilibrium 

equations (Eqs. (2.52)), six strain displacement relations (Eq. (2.48) and Eq. (2.49)), 
and six stress-strain relations (Eqs. (2.53)) for solving the fifteen variables (the six 
stress components �x, �y, �z, �xy, �yz and �xz, the six strain components �x, �y, �z, �xy, �yz 
and �xz, and the three displacements u, v, w). The compatibility equations are 
derived from the strain-displacement equations and, therefore, cannot be counted as 
governing equations. The compatibility equations will be satisfied automatically if 
the fifteen governing equations are satisfied. 

2.12   Governing Equations for Plane Stress Problems 

For plane stress problems, the stress components are simplified as 
 

),( yxxx �� � ,  ),( yxyy �� � ,  ),( yxxyxy �� �                     (2.63a) 

0��� zyzxz ���                                                   (2.63b) 

 
The equilibrium equations become 
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where the body forces X and Y are functions of x and y only, and Z equals zero. The 
strain-stress relations take the form of 
 

][1),( yxxx E
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The two shear strains ,xz and ,yz and the normal strain �z vanish. Finally, the 
strain-displacement relations are simplified as 
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There are eight equations in total to correlate the eight unknown quantities of �x, 
�y, �xy, �x, �y, ,xy, u and v. Again, the governing equations can only be solved with 
specific stress and displacement boundary conditions. 

2.13   Governing Equations in Polar Coordinates 

For analysis of a circular ring and plate, rotating disk, curved bars of a narrow 
rectangular cross section with a circular axis, etc., it is advantageous to use polar 
coordinates. If the external forces are also rotationally symmetric, the stress state 
can be assumed to be the plane stress independent of the z-axis which is 
perpendicular to the polar coordinates plane. The position of a point in the middle 
plane of a plate is then defined by the distance from the origin O and the angle �  
between r and a certain axis Ox fixed in the plane. Denoting �r and ��  as the normal 
stress components in the radial and circumferential directions, respectively, and �r� 
as the shear stress component, the equation of equilibrium takes the form of 
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where R and S are the components of body force per unit volume in the radial and 
tangential directions, respectively.  

The corresponding stress components are derived as 
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0��� r                                                                     (2.68c) 
 

A, B and C are constants that can be determined by boundary conditions. 
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Denoting the displacements in the radial and tangential directions as ur and u�, 
respectively, the strain components in the polar coordinates are derived as 
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The generalized Hooke’s law is then expressed by 

)(1
���� �� rr E

                                                   (2.70a) 
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Thus, based on the equilibrium equations, the strain-displacement relations, the 

compatibility equations and Hooke’s law plus relative boundary conditions, the 
stress and displacement fields of the rotational symmetrical body can be solved. 
Detailed derivations can be referred to in Theory of Elasticity by Timoshenko and 
Goodier (1970) and in Elasticity: Tensor, Dynamic and Engineering Approaches by 
Chou and Pagano (1967). 

2.14   Brief Summary 

This chapter presents the fundamentals of solid mechanics. Some basic concepts 
with respect to the stress tensors, stress tensor invariants, deviatoric stress tensors, 
deviatoric stress tensor invariants, octahedral shear and normal stresses, principal 
stresses and principal shear stresses, strain components, and some new concepts 
regarding twin-shear stresses, the twin-shear element and the twin-shear stress 
parameter are introduced. They are used in the following chapters.  

Stress states can be studied on many courses, such as elasticity, plasticity, 
mechanics of solids, rock mechanics and soil mechanics. The basic formulae are 
only given here. 

The relationships between various shear stresses and J2 are listed in Table 2.3. 
Different notations may be used in different textbooks. It is useful to refer to other 
textbooks.  

Governing equations for general stress state solids, plane stress solids and 
rotationally symmetrical solids are given.  

It should be mentioned that only the governing equations in the elastic range of 
solids are considered. Based on the elastic solutions, by adopting proper yield 
criterion, the elastic limit load of the solid body can be derived. For elasto-plastic 
analysis and plastic limit analysis, a yield criterion and a relevant flow law should 
be applied. The following two chapters will introduce conventional yield criteria 
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and a unified strength theory developed by Yu (1991; 1992; 2004).  
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Material Models in Computational Plasticity 

3.1 Introduction 

The material model in computational plasticity poses an important basic problem. 
Much research has been devoted to the study of this interesting topic (Zyczkowski, 
1981; Chen and Saleeb, 1994; Chen et al., 1994; Harris, 1992). A report on 
“Formulation and Computational Aspects of Plasticity and Damage Models with 
Application to Quasi-Brittle Materials” was submitted to the Sandia National 
Laboratories (Chen and Schreyer, 1995). Material models for non-SD materials and 
SD materials with the emphasis on the yield criteria of materials under complex 
stress states, multi-parameter criteria for geomaterials and two bounds of the 
convex yield criteria will be discussed in this chapter.  

The stress-strain curve of a mild steel under uniaxial stress (Fig. 3.1) shows that 
there exist a tensile yield point and a compressive yield point at which the material 
will begin to deform plastically. In this case the stress is uniaxial and the 
magnitudes of the tensile yield point �yt and the compressive yield point �yc are 
identical, �yt=�yc=�y. 

Material behaviour is elastic if stress � *�y. This yield stress can readily be 
determined. What if, however, there are several stresses acting on an element with 
biaxial stress or triaxial stress? What combination of these stresses will cause 
yielding? We will now extend the definition for yielding from the uniaxial concept 
of a yield stress  �y  to a general three-dimensional state of stress.  

The criteria for deciding what combination of multiaxial stresses will cause 
yielding are called the yield criteria. A yield criterion is a function of the stress state 
and the material parameters. Sometimes, it is a hypothesis concerning the limit of 
elasticity under any possible combination of stresses. The suitability of any 
proposed yield criterion must be checked by experiment. 
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Fig. 3.1  Stress-strain curve of  mild steel in uniaxial stress 

 
In the most general case, the yield criterion will depend on the complete state of 

stress at the point under consideration and will therefore be a function of the nine 
components of stress at the point (element). Since the stress tensor is symmetric, we 
can reduce this function to a function with six independent components of the stress 
tensor. This yield criterion for a material is then essentially extended from the single 
yield point of the uniaxial tensile test to the six-component stress tensor. The yield 
criterion can be expressed mathematically by a yield function  

 
                   f ( ij� , y� )=0     or      f ( ij� )=0                                       (3.1) 

 
Material behaviour will be elastic if the yield function  f (=�ij)<0. 
For isotropic materials, the orientation of the principal stresses is immaterial, and 

the values of the three principal stresses �1, �2 and �3 suffice to uniquely describe the 
state of stress. A yield criterion, therefore, can be expressed in the form of 

 
   f ( 1� , 2� , 3� )=0                                                  (3.2) 

or    
  f (I1, I2, I3)=0                                                      (3.3) 

 
where I1, I2 and I3 are the three invariants of the stress tensor �ij. The yield criterion 
can be also expressed by other forms. 

Another conclusion stemming from isotropy is that the yield function f should 
not change if the axes are interchanged, so that axis 2 becomes axis 1, and so on.  

This means that the yield function is a symmetric function of the principal 
stresses �i (i=1, 2, 3). The yield function is threefold symmetric. 
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3.2 Material Models for Non-SD Materials (Metallic Materials) 

The yield functions of non-SD materials have the following general behaviour 

3.2.1 Hydrostatic Stress Independence  

This behaviour shows that hydrostatic pressure does not affect the yield 
deformation behaviour of a wide range of metals. It implies that the yield function 
must satisfy the following condition: 

 
         f ( i� ) = f ( i� m� ) = f (Si) =f (S1, S2, S3 )                                       (3.4) 

or  

                 0�
-
-

i

f
�

                                                                (3.5) 

or    

      f ( 1� , 2� , 3� ) = f ( 1� � m� , 2� � m� , 3� � m� ) = f (S1, S2, S3)            (3.6) 

 
where �m is the hydrostatic stress or mean stress and S1, S2, S3  are the deviatoric 
stresses. On the purely mathematical level, that hydrostatic or volumetric stress 
does not affect yielding is equivalent to saying that the first invariant I1 of the stress 
tensor �ij is of no physical importance as regards yield. The yield function (3.3
 ) 
therefore can be expressed in the form of 

   
   f (I2 , I3 )=0                                                              (3.7) 

 
In the isotropic case we can use the deviatoric stress invariants instead of the 

principal deviatoric stresses above. Noting that by definition J1 . 0, the yield 
function (3.3) or (3.8) reduces to the form 
 

             f ( J2 , J3 ; �y)=0   or   f ( J2 , J3 )=0                                              (3.8) 
 
where J2 , J3  are the second and third invariants of the deviatoric stress tensor.  

     
J1 = Sii = S1+S2+S3 =0 

           J2  = 1
2

( 2
1S + 2

2S + 2
3S ) = 1
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 [ 2

31 )( �� � + 2
21 )( �� � + 2

32 )( �� � ]    (3.9) 

           J3  = S1S2S3 = S1+S2+S3=
3
1 ( 3

1S + 3
2S + 3

3S )                                        (3.10) 



3  Material Models in Computational Plasticity 56 

3.2.2 The Tensile Yield Stress Equals the Compressive Yield Stress 

It is shown in Fig. 3.1 that the yield stresses in tension and compression are 
identical. To ensure that the yield stress is the same both in tension and in 
compression, it is necessary to impose the further restriction that 
 

           f (– i� ) = f ( i� )                                                                 (3.11) 
or  

           f (– 1� ,– 2� ,– 3� )= f ( 1� , 2� , 3� )                                     (3.12) 
 

It requires the value of the yield function to remain unchanged when the signs of 
all stresses are changed.  

The second invariant of deviatoric stress J2  is always positive, and the third 
invariant of deviatoric stress J3  reverses in sign if the signs of all the stresses are  
changed. Condition (3.10) thus requires that in Eq. (3.9) this sign reversal be 
suppressed, by expressing Eq. (3.9) as an even function of J3 (e.g., in terms of the 
square of J3 ). The yield function can be written in the form of 
 

                        f ( J2 , J3 
2)=0                                                      (3.13) 

3.2.3 Sixfold Symmetry of the Yield Function  

For an isotropic material, the yield function f (�i , �y)=0 is a symmetric function of 
the principal stresses �i (i =1, 2, 3). So, the yield function is threefold symmetric for 
three axes �1, �2, �3. In addition, if the yield stresses in tension and compression are 
identical, the yield function must have sixfold symmetry to three axes �1, �2, �3  in 
the  �-plane (Fig. 3.2).  
 

 
Fig. 3.2  Yield surface in the principal stress space 
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3.2.4 Convexity of the Yield Function  

According to the Drucker postulate, the yield surface in the stress space must have a 
convex surface. For a smooth function, f(�) is convex if the following inequality 
holds  

    ( ) (1 ) ( ) [ ]ij ijij ijf f f0 � 0 � 0� 0 �� � * �                    (3.14) 
 

where f(�ij) and f(� ij) are two points in the stress space; � is real and 0<�<1. 
The geometric meaning of this definition is illustrated in Figs.3.3 and 3.4 for the 

one dimensional case. 
The definition of convexity: 
The origin of coordinates or the coordinate axis is taken as the reference. As can 

be seen, the definition of convexity and the understanding of the word 
‘non-concave’ are the same. 

But it must be specified that convex (or concave) have different frames of ref-
erence. For example, in Fig. 3.3 of the convex function, from the following axis 
looking up, it is convex; but from above looking down the curves, it is concave. For 
consistency, we use the coordinates of the origin or axis as a reference system, as 
shown in Fig. 3.4. 

 

 

Fig. 3.3  Convexity of yield surface 
 

 
Fig. 3.4  Convexity and coordinate axis 

 
A more general example of the convex yield surface is shown in Figs. 3.5 and 

3.6(b). In order to coordinate the origin as a reference, the figure of the yield surface 

(a) y"<0                                       (b) y">0 
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is convex everywhere. The yield surface at any stress point should meet the yield 
condition f(�ij)=0. Drawing a tangent for the yield surface at any stress point �ij, all 
possible stress points �ij

1 within or on the yield surface must be on the side of the 
tangent AA, namely the yield surface is convex. It can also be interpreted that a line 
linking any two points within the convex yield surface is still within this surface. 

 

  
Fig. 3.5  Convex smooth yield surface 

 
 

 
Fig. 3.6  Non-convex and convex yield surfaces 

 
The general behaviour of the yield function may be regarded as a restriction on 

the yield function. The yield criterion may be expressed in the form of principal 
shear stresses as  
 

                     f ( 13� , 12� , 23� ; y� )= 0                                      (3.15) 

3.2.5 Bounds of the Yield Function for Non-SD Materials 

According to convexity, the yield surface must be convex. Two bounds of the yield 
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criteria for isotropic materials with the same yield stresses in tension and com-
pression are shown in Fig. 3.7. The inner (lower) bound is the yield locus of the 
single-shear yield criterion (Tresca criterion, 1864). The outer (upper) bound is the 
yield locus of the twin-shear yield criterion (Yu, 1961a), or the maximum deviatoric 
stress criterion (Haythornthwaite, 1961). The circle of the Huber-von Mises crite-
rion circumscribes the inner bound and inscribes the outer bound. Most of the 
experimental results are situated between these two bounds. 
 

 
Fig. 3.7  Bounds and region of the convex yield loci for non-SD materials 

 
The intermediate principle stress �2 was not taken into account at the sin-

gle-shear yield criterion (Tresca criterion), only a single shear stress is taken into 
account. Many studies were devoted to the research of the effect of the intermediate 
principle stress for non-SD materials (Schmidt, 1932; Ishlinsky, 1940; Hill, 1950; 
Haythornthwaite, 1961: Yu, 1961;1983).  

A shape change yield criterion was proposed by Schmidt in 1932 and later, 
independently, by Ishlinsky in 1940 as follows (Pisarenko and Lebedev, 1976; 
Chinese edition, 1983; Zyczkowski, 1981). The shape change of the element is 
assumed as the yield criterion 

 
1 1, � �� �  

 
where � as the volume change of element 1 2 3 / 3,� � � �� � �  
 

1 1 1 1 2 3
1 1 1( ) (2 )

3mS C
E E E
  , � � � � �� � �

� � � � � � �          (3.16) 

 
The shape change yield criterion is then obtained as  
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1 2 32 ( ) 2 yf � � � �� � � �                                    (3.17) 

 
Hill also suggested a linear yield criterion to approximate the Huber-von Mises 

criterion in 1950 as  
 

        1 2 3
1 ( )
2 yf m� � � �� � � �                                             (3.18) 

 
The yield locus of Hill’s criterion intersects the yield locus of the Huber-von 

Mises criterion. It is equal to the maximum deviatoric yield criterion when  m=1. 
The maximum deviatoric stress criterion was given later, independently, by Hay-
thornthwaite in 1961 as  

 

max 1 1 2 3
1 ( )
3 yf S � � � � �� � � � � �                                 (3.19) 

 
Another new idea was proposed by Yu in 1961. The intermediate principle 

stress �2 was taken into account through the consideration of the intermediate 
principle shear stress �12 or �23 by Yu in 1961.  

There are three principal shear stresses �13, �12 and �23 in the three-dimensional 
principal stress state. Only two principal shear stresses, however, are independent 
variables among �13, �12 , �23, because the maximum principal shear stress equals the 
sum of the other two, that is �13=�12 +�23. According to this formula the twin-shear 
idea came into being in 1961 (Yu, 1961a; 1961b). The mathematical modeling of 
the twin-shear stress yield criterion is expressed as follows: 

 
13 12f C� �� � �          when             12 23� ��                           (3.20a) 

13 23f C� �
 � � �      when              12 23� ��                           (3.20b) 
 

where 1 3
13 2

� �
�

�
� , 1 2

12 2
� �

�
�

� , 2 3
23 2

� �
�

�
� , C is the material parameter.  

The twin-shear yield criterion was then obtained by Yu in 1961 as  
 

1 2 3
1 ( )
2 yf � � � �� � � �        when     2 1 3

1 ( )
2

� � �� �                 (3.21a) 

1 2 3
1 ( )
2 yf � � � �
 � � � �        when      2 1 3

1 ( )
2

� � �� �                (3.21b) 

 
The concept of the twin-shear theory is as clear as the single-shear theory. 

Moreover, the concept of the twin-shear can be generalized for SD materials by 
considering the effect of the normal stress acting on the same section in which the 
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shear stresses are considered. The mathematical modeling of the generalized 
twin-shear criterion was developed by Yu in 1985 as  

 
      13 12 13 12 12 12 23 23( ) , when F C� � � � � � �� � ��� � � � � � � �          (3.22a) 

13 23 13 23( ) ,F C� � � � �
 � � � � �     when    12 12 23 23� �� � ��� � �          (3.22b) 
 

The expressions of the generalized twin-shear theory for SD materials can be 
obtained as  

 
1 3

1 2 3 2( ) , when   
2 1tF

� ���� � � � �
�

�
� � � � �

�
,  /t c� � ��              (3.23a) 

         F 
 1 3
1 2 3 2

1 ( ) , when   
2 1t

� ��
� � �� � �

�
�

� � � � �
�

                        (3.23b) 

 
where �=�t/�c is a strength ratio of material in tension and compression. The 
generalized twin-shear criterion for SD materials will be described in the next 
section. 

The advances in yield loci in the �-plane of non-SD materials from the lower 
bound (1864) to the median (1904-1913), from the median to the upper bound 
(1961), and from a single criterion to a unified criterion (a series of criteria) are 
shown in Fig. 3.8. The unified yield criterion will be described in detail in the next 
chapter. 

Numerous experiments on metallic materials under complex stresses have been 
carried out. The experimental data are summarized in Table 3.1. Some data before 
1975 are taken from the historical survey article of Michino and Findley (1976). 
The ratio �y /�y  of the shear yield strength �y  with tensile yield strength �y  is also 
given. All the references regarding the yield criterion and experimental studies are 
available in Yu (2002; 2004a). 
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Fig. 3.8  Advances in yield criterion for non-SD materials 
 

Table 3.1  Summary and comparison of the yield criteria with experimental results 

Strength parameters Researcher Materials Specimen 
�y/�y b 

Researcher 

Guest, 1900 Steel, brass, 
etc. Tubes 0.474,0.727 20 

>1 Tresca, 

Hancock, 1906; 1908 Mild steel  0.50–0.82 0, >1  

Scoble, 1906 Mild steel Solid rods 0.45–0.57 20 
0.366 Tresca 

Smith, 1909 Mild steel Solid rods 0.55–0.56 0.36 > Tresca 
Turner, 1909; 1911 Annealed steel Tubes 0.460–0.572 0-  
Turner, 1909; 1911 Steels Review work 0.55–0.65 0.3-1  
Mason, 1909 Mild steel Tubes 0.64 0.9  
Scoble, 1910 Steel – 0.38–0.45 <0  

(to be continued) 
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 (Table 3.1) 
Strength parameters

Researcher Materials Specimen
�y/�y

 
b 

Researcher 

Becker, 1916 Mild steel Tubes –   
Seeley & Putnam, 1919 Steels Bars & tubes 0.6 0.5 ).Mises 
Seigle & Cretin,  1925 Mild steel Solid bars 0.45–0.49 20 Tresca 

Lode, 1926 Iron, mild steel, 
nickle, copper Tubes – 20.4

 Mises 

Ros & Eichinger, 1926 Mild steel Tubes – 20.4 Mises 
Taylor & Quinney, 1931 Aluminum, copper Tubes – 20.4 Mises 

Taylor & Quinney, 1931 Mild steel Tubes – 21.0 near Twin 
shear 

Marin, 1936 Mild steel Review work –   
Morrison,  1940; 1948 Mild steel Tubes –   
Davis et al., 1945 Copper, steel Tubes – 20.4 Mises 
Osgood, 1947 Aluminum alloy Tubes – 20.4  Mises 
Cunningham et al., 1947 Magnesium alloy Tubes – 20.4  Mises 
Bishop and Hill, 1951 Polycrystals Tubes 0.54 20.4 Mises 
Fikri and Johnson, 1955 Mild steel Tubes – 0.5 ) Mises 
Marin and Hu, 1956 Mild steel Tubes  20.4 Mises 
Naghdi et al., 1958 Aluminum alloy Tubes – 0.5 ) Mises 
Hu and Bratt, 1958 Aluminum alloy Tubes – 20.4 Mises 
Ivey, 1961 Aluminum alloy Tubes o.66 1.0 Twin shear 
Bertsch and Findley, 1962 Aluminum alloy Tubes – 20.4 Mises 

Mair and Pugh, 1964 Copper Tubes – 0.4-1.0 Mises 
Twin shear 

Miastkowski, 1965 Brass – – 20.4 Mises 
Rogan, 1969 Steel tubes 0.5 0 Tresca 

Pisarenko et al., 1969 Copper, Cr-steel Low tem-
perature – 20.4 Mises 

Dawson, 1970 Polycrystals – 0.64 0.9 near Twin 
shear 

Phillips et al., 
1970; 1972 

Aluminum Elevated 
temperature 0.53 20.2

between 
Tresca and 

Mises 

Deneshi et al., 1976 Aluminum, 
Copper 

Low tem-
perature 0.6 0.5 ) Mises 

Winstone, 1984 Nickel alloy 
Elevated 

temperature 0.7 >1 Twin shear 

Ellyin, 1989 Titanium Tubes 0.66 21.0 Twin shear 

Wu and Yeh, 1991 
Aluminum 

stainless steel Tubes 0.58 
0.66–0.7

0.366
1.0 
21.0

Mises 
Twin shear 

Ellyin, 1993 Titanium Tubes 0.62–0.7 0.6-1.0 – 

Ishikawa, 1997 Stainless steel Tubes 0.6–0.63
0.5–0.

55 ) Mises 
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It is very interesting that most experimental results are situated between the 

lower bound (single-shear criterion) and upper bound (twin-shear criterion). The 
ratio �y /�y  of the shear yield strength �y  with tensile yield strength �y  is situated 
between 0.5 �y /�y 0.667. 

Interesting experimental results were reported by Winstone in 1984. He pre-
sented new research results using the acoustic emission technique, which provides 
an accurate and sensitive method for determining yield surfaces. Combined tension 
and torsion tests were carried out on a servohydraulic testing machine capable of 
applying a maximum tensile load of 50 kN and a maximum torque of 200 Nm. The 
testing was undertaken using constant rates of tension and torsion. An acoustic 
emission transducer was used. All the yield surface tests used tubular test pieces. 

The sequence of a typical test to determine the initial yield surface of the cast 
nickel superalloy Mar-M002 at 750°C was given by Winstone in the UK, as shown 
in Fig. 3.9(a). This material is usually used for gas turbine blades. The yield surface 
was obtained by probing the plastic region under various combinations of tensile 
and torsional loads (Winstone, 1984). The yield loci of the Tresca yield criterion 
and the von Mises yield criterion are also shown. The dotted line shows the Tresca 
yield criterion and the broken line shows the Huber-von Mises yield criterion. The 
deviations of the experimental result from the Tresca yield criterion and the 
Huber-von Mises yield criterion are significant.  

Three other initial yield surfaces were obtained by Winstone in the research on 
the  yield surfaces, as shown in Figs. 3.9(b), (c) and (d).  

The following can be seen: 
1). All the initial yield surfaces are identical. The four initial yield surfaces for 

nickel alloy at a high temperature of 750 3C are plotted together in Fig. 3.10. They 
lie within a tight scatter band. The ratio of shear yield stress �y to the tensile yield 
stress �y is �y/�y = 0.7. Winstone pointed out that this value was surprisingly high 
when compared with the values of �y/�y=0.58 and �y/�y =0.5 expected from the 
Huber-von Mises yield criterion and the Tresca yield criterion respectively. Clearly, 
neither of these criteria can accurately model the yield behavior of this material. 

2). These results are close to the value of the twin-shear stress yield criterion. 
The ratio of shear yield stress �y to the tensile yield stress �y for the twin-shear yield 
criterion is �y /�y =0.667. 

The initial yield surfaces of  the  cast  nickel superalloy  Mar-M002  indicated  a 
ratio of shear  yield  stress to tensile yield stress of 0.7. The comparisons of  this 
experimental  result   with  the three yield criteria are as follows. The deviations are: 

Tresca  yield  criterion:     0.7 0.5 40%
0.5
�

� ; 

von Mises  yield  criterion:    0.7 0.577 21%
0.577
�

� ; 
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Twin-shear yield criterion:     0.7 0.667 4.9%
0.667
�

� . 

The twin-shear yield criterion is better for matching the experimental result of 
nickel superalloy Mar-M002. 

 

 
(a) (b) 

 

 
(c)                                                                      (d) 

 
Fig. 3.9  Initial yield surface of Mar-M002 alloy at 750�C (Winstone, 1984) 

 

 
Fig. 3.10  Initial yield surface of Mar-M002 alloy (Winstone, 1984) 
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3.3 Material Models for SD Materials 

3.3.1 General Behavior of Yield Function for SD Materials 

The yield functions of SD materials have the following general behaviors. 

3.3.1.1 Six Basic Experimental Points for SD Materials 

The yield locus for SD materials on the   plane has to meet simultaneously through 
the six basic experimental points in tension and in compression. The vector lengths 
of the tensile point and compressive point are  rt and rc, their ratio is K= rt/ rc. The 
relation between K, tensile yield stress �t, compressive yield stress �c and strength 
ratio �=�t/�c may be expressed as   
 

1 2
2

K �
�

�
�

�
                                                           (3.24) 

 
As the strength ratio � =�t/�c  ranges between  0<� 1 the vector ratio K should 
be 
 

     1 1
2

K* �                                                          (3.25) 

   
In general, rt� rc, the shape of the yield loci on the   plane should not be a cir-

cle,as shown in Fig. 3.11.  Only in a few conditions for non-SD material,  rt= rc, may 
the shape of yield loci on a plane be a circle. 

3.3.1.2 Threefold Symmetry of the Yield Function 

The yield loci of SD materials on the   plane should be threefold  symmetry, as 
shown in Fig. 3.12. A possible shape of the yield locus is plotted as shown on the 
dotted line in Fig. 3.12. It is an equilateral hexagon and consistent with the threefold 
symmetry. Although a circle shown in Fig. 3.12 also meets this condition, the circle 
cannot meet the requirement rt� rc, as shown in Fig. 3.11. 
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Fig. 3.11  Six basic experimental points    Fig. 3.12  Threefold  symmetry of yield loci on   plane 

 

3.3.1.3 Convexity of the Yield Function     

The convexity for SD materials is the same as for non-SD materials. The yield 
surface cannot be concave, but it can be sub-smooth yield function so as  to form a 
yield surface and allow the formation of corner points, as shown in Fig. 3.12.  

In addition, because of the change in the stress state within the yield surface, the 
material is elastic and, therefore, the yield locus is simply connected. It means that 
the stress vector from the starting coordinates at the origin cannot be intersected by 
the yield locus twice.  

3.3.2 Three Basic Models for SD Materials 

Three kinds of material models are presented. They are the single-shear series 
criteria, the three-shear series criteria and the twin-shear series criteria. 

The expressions of the single-shear theory are 
 

           F= 13 13� ��� � C ,   or  F= 1 3� ��� t�� ,   /t c� � ��                   (3.26) 
 

It is a two-parameter criterion, the famous Mohr-Coulomb theory. 
The expressions of the three-shear theory are 
 

F= 8 8� ��� =C                                          (3.27) 
 
The expressions of the generalized twin-shear criterion can be obtained by 
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considering the effect of the normal stress acting on the shear stress section as 
follows 

 
     13 12 13 12 12 12 23 23( ) , when F C� � � � � � �� � ��� � � � � � � �       (3.28a) 

13 23 13 23( ) ,F C� � � � �
 � � � � �      when    12 12 23 23� �� � ��� � �       (3.28b) 
     

The generalized twin-shear criterion assumes that the yielding of materials be-
gins when the sum of the two larger principal shear stresses and the corresponding 
normal stress function reach a magnitude C. Where � is the coefficient that repre-
sents the effect of the normal stress on the yield, C  is a strength parameter of the 
material, �13, �12  and �23 are the principal shear stresses and �13, �12 and �23 are the 
corresponding normal stresses acting on the sections where �13, �12  and �23  acted. 
They are defined as  
  

 13 1 3
1 ( )
2

� � �� � ,   12 1 2
1 ( )
2

� � �� � ,      23 2 3
1 ( )
2

� � �� �  

13 1 3
1 ( )
2

� � �� � ,    12 1 2
1 ( )
2

� � �� �  ,    23 2 3
1 ( )
2

� � �� �           (3.29) 

 
The magnitude of parameters � and C can be determined by experimental re-

sults of the uniaxial tension strength �t and uniaxial compression strength �c. The 
experimental conditions are 
 
                              1 2 3,   0t� � � �� � �  
                              1 2 30,   c� � � �� � � �                                                       (3.30) 
 
So the material constants � and C can be determined as 
 

21 2,   
1 1

c t c t
t

c t c t

C
� � � ��� �
� � � � � �

� �
� � � �

� � � �
; /t c� � ��               (3.31) 

 
Substituting  �  and C into the Eqs. (3.28a) and (3.28b), the generalized 

twin-shear criterion is now obtained. It can be expressed in terms of principal 
stresses as  

 
1 3

1 2 3 2( ) , when   
2 1tF

� ���� � � � �
�

�
� � � � �

�
,                           (3.32a) 

        F 
 1 3
1 2 3 2

1 ( ) , when   
2 1t

� ��
� � �� � �

�
�

� � � � �
�

,                      (3.32b)  

 
It is interesting that the expression of the generalized twin-shear criterion for 
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SD materials is very simple and similar to the expression of the twin-shear yield 
criterion for non-SD materials Eqs. 3.21(a) and 3.21(b). The twin-shear yield cri-
terion is a special case of the generalized twin-shear criterion when / 1t c� � �� � . 

The limit surface and limit loci in the deviatoric plane of the single-shear theory 
(Mohr-Coulomb strength theory), three-shear theory (octahedral shear stress theory) 
and the twin-shear theory were always consistent with a threefold-symmetry hex-
agonal pyramid failure surface, as shown in Figs. 3.13, 3.14 and 3.15. 

 

            
Fig. 3.13  Limit surface and limit loci on �-plane of the single-shear theory 

 

    
Fig. 3.14  Limit surface and limit loci on �-plane of the three-shear theory 

 

   

Fig. 3.15  Limit surface and limit loci on �-plane of the twin-shear theory  
 

Single-shear strength theory (Mohr-Coulomb, 1900) forms the lower (inner) 
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bound for all the possible convex failure surfaces coinciding with the Drucker 
postulation on the deviatoric plane in the stress space. The disadvantage of the 
Mohr-Coulomb theory is that the intermediate principal stress �2 is not taken into 
account. Substantial departures from the predictions of the Mohr-Coulomb theory 
were observed by many researchers. The failure locus of twin-shear theory on the 
�-plane (deviatoric plane) has  outer hexagonal threefold symmetry (upper bound). 

3.4 Multi-Parameter Criteria for Geomaterials 

Nonlinear Mohr-Coulomb criteria are used in rock mechanics and rock engineering. 
All the references regarding the multi-parameters are available in Yu (2002; 2004a).  

3.4.1 Multi-Parameter Single-Shear Failure Criterion 

Various forms of multi-parameter single-shear failure criteria are expressed as  
 

1 3� �� = c� + 3a� b                    (Hobbs criterion)                        (3.33) 
       F = 13 13

n� 0��  = 0               (Murrell  criterion)                        (3.34) 

F= 1 3 1 31
2 2

n

c t
� � � �� �# $ � �% &
' (

                (Ashton et al. criterion)               (3.35)  

       1 3� �� = a ( 1 3� �� )b                (Franklin criterion)                      (3.36)  
 

F = ( 1 3� �� )+ 1 0m c� � �  

or           0( )CA B� �� �         (Hoek-Brown criterion 1980)                            (3.37)
  

 

        F=
22

2 21 31 1
2(1 )

c cc

k k m k c� �� �
� ��

� ��
� � � �� �

� �
    (Pramono-Willam criterion)      (3.38) 

                                      
in which  k4 (0,1) is the normalized strength parameter and c and m are the cohesive 
and frictional parameters.    

A hydrostatic type single-shear failure criterion was proposed by Sandel in 
1919 in Stuttgart (Mohr, 1928). Sandle’s expression is 

 
 ( 1 3� ��  )+m ( 1 2 3� � �� � )= s�                                     (3.39) 

 
Sandel’s expression can be modified into 
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 ( 1 3� ��� )+ m ( 1 2 3� � �� � )+ n ( 1 2 3� � �� � )a= 0�                 (3.40) 
 

1 2 1 2 3( )( )K q �� � � � � �� � � �     (Yoshinaka and Yamabe, 1980)      (3.41) 
 
A modification of the Coulomb-Mohr theory with tension cut-off was sug-

gested by Paul (1961). Paul’s mode features a vertical branch for the tension cut-off. 
Chen and Drucker (1969) proposed a modified Mohr-Coulomb failure criterion 
with a small tension cut-off for the bearing capacity of concrete blocks or rock. The 
Chen-Drucker model features a circular cap for the tension cut-off. Page (1978) 
proposed a similar failure criterion surface for mortar joints in masonry panels. 
Page’s mode has an inclined branch for tension cut-off. 

A Mohr-Coulomb failure surface with spherical cap was proposed by Drucker 
et al. (1957). A multi-surface interface model combined with the Mohr-Coulomb 
surface with a compressive cap was proposed and used for masonry structures and 
reinforced soils by Lourenco and Rots (1997), Yu and Sloan (1997) and Sutcliffe et 
al. (2001). A piece-wise linear assemblage of the yield surfaces (a Mohr-Coulomb 
linear yield surface with a tension cut-off ) was presented by Paul (1968) and Maier 
(1970). 

3.4.2 Multi-Parameter Three-Shear Failure Criterion 

The first effective formulation of such a condition in a general form was given by 
Burzynski in 1928 (Zyczkowski, 1981). The general function of a three-parameter 
criterion is expressed as  
 

2
8 8 8 1 0A B C� � �� � � �   or 2 2

8 8 8 1 0A B C� � �� � � �           (3.42a) 
 
It is equivalent to 
 

1/2 2
2 1 1 1 0AJ BI CI� � � �                                     (3.42b) 

 
The general Eq. (3.42) and its variations or particular cases were later proposed 

more or less independently by many authors (Zyczkowski, 1981). For instance, the 
three parameter expression F=�8+b�8+a�82=C is the same as Eq. (3.42). All the 
failure criteria in terms of �8 can be expressed by three principal shear stresses �13, 
�12  and �23. So, these kinds of strength theories may also be referred to as the 
three-shear strength theory. 

A formulation of plasticity models for isotropic soils, granular materials and 
intact jointed rock was presented by Harris in the spirit of the theory of constitutive 
equations (Harris, 1992).   

The multi-parameter three-shear failure criterion contains many curvilinear 
models and three, four and five-parameter failure criteria used in concrete me-
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chanics. Many empirical formulae, typically fitted with different functions, were 
proposed around the 1980s to cater for various engineering materials. Among these 
are curvilinear models and many multi-parametric criteria as  
 

          1 3 3
bB� � �� �  or 2

2 nr K ��              (Beinlawski, 1974)                   (3.43) 

2
8 8

3 1
2 3

F A C� �� � �                    (Chen-Chen criterion)                     (3.44) 

         2 2
8 8 8

3 1 1
2 6 3

F A C� � �� � � �        (Chen-Chen concrete criterion)        (3.45) 

      2
8 8 1 8 1F a b c d� � � �� � � � �                        (Chen criterion )             (3.46) 

2
21 3

1 3 1 3

2 12( 1) 1
2

K mm K l
� �
� � � �

5 6� �� �7 7# $� � � � �� �8 9% &� � ' (� �7 7� �: ;
 

when 1 3(2 1) 0m m � �� � *          (Desai and Satami, 1987)          (3.47) 

2
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0
n m

rf I I S� , �
�

� � < �       (Desai and Satami, 1987)         (3.48) 

1 K� � ,  when 1 3(2 1) 0m m � �� � �  (Fairhurst, 1964)                        (3.49) 
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(1 ) (1 )sin 3
kg

K K
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�
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      (Gudehus-Argyris criterion)     (3.50) 

2 2
8 8 8 1F a b d C� � � �� � � � �              (Hsieh et al., criterion)               (3.51) 

 1 1( 1)B
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� �� �                 (Johnston, 1985)                        (3.52) 
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                             (Kim and Lade, 1984)               (3.53) 

8 8( )nF a b C� �� � � �               (Kotsovos criterion)                 (3.54) 
3

3 2 (1 ) 0F J cJ c=� � � � � ,          (Krenk criterion)                      (3.55) 
3
1

3

IF C
I

� �                           (Lade-Duncan criterion)          (3.56) 
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1 1

3

27
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            (Lade criterion)                        (3.57) 
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3 3

2 ( cos3 )
( )

( ) ( ) cos3c
k c cg r

c k c k
�

�
�

�
�
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     (Lin-Bazant criterion)              (3.58) 

         1 2

3

I IF C
I

� �                           (Matsuoka-Nakai criterion)          (3.59) 

� �2
8 8 8( ) ( , )F a m b p c C� � � 0 �� � � �   (Menetrey-Willam criterion)       (3.60) 
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2
2

1 22
00

ln( )q qa P a P
ff

� � 0 1 3
4 5

0 1 3

2 /( )
ln[ ] ln2 /( )

q pf a a
a aq pf a a

� �
� �� �  (Michelis, 1987)(3.61) 

2
8 8 8F a b C� � �� � � �                 (Ottosen criterion)               (3.62) 

2
8 1 8 2 8( )F c P c C� � � �� � � �                (Podgorski criterion)            (3.63) 

 
where � �cos 1/ 3arccos(cos3 )P � �� � . 

The elliptic function proposed by Willams and Warnke (1975) is  
 

2 2 2

2 2

(1 )( 3cos sin ) (2 1) (2 cos2 3sin2 )(1 ) 5 4
( )

(1 )(2 cos2 3sin2 ) (1 2 )
K K K K K

g
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� � � �
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� �
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� � � � �

 

(3.64) 

      g(� ) = (7 2 ) 2(1 )sin3
9

k k �� � �                   (Yang-Shi criterion)                 (3.65) 

        8
8

8

1( )( ) 0
3

F r C
�

� �
�

� � � �           (William-Warnke criterion)            (3.66) 

         2
8 1 8 2 8 1 ( 60 )tF a a C� � � �� � � � � 3  

         2
8 1 8 2 8 2 ( 0 )cF' b b C� � � �� � � � � 3    (Willam-Warnke criterion)      (3.67) 

     2 2
8( / ( )) 0m mF g�� �� , � �� � � � �    (Zienkiewicz-Pande criterion)     (3.68) 

 
where g(� ) is the shape function. Various functions were proposed as follows and 
some other failure criteria were proposed by Chinese scholars:  
 

8 8 8
3 (1 3 / ) (3 / ) 0
2 ttt cccF k� � � � � �� � � � �          (Yu BZ criterion)         (3.69) 

 
where �  and �  are the shape functions, 0 �� � 1 and 0 �� � 1. 
 

8 8
8

8 8

(1 )
2 3
b b

F a
a a

� �
� �

� � 0 0
� �
# $ # $� �

� � � �% & % &� �' ( ' (
              (Qu criterion)        (3.70) 
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         (Shen ZJ criterion)         (3.71) 

  1/ 3
2 1 3F J a bI J C� � � � ,                        (Yin criterion)                  (3.72) 
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  8
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# $�
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                          (Guo-Wang criterion)               (3.73) 

 
where 1.5 1.5(cos3 / 2) (sin 3 / 2)t cc c c� �� � . 
 

   1.5
8 8 8cosF a b a C� � � �� � � �        (Zhang-Huang criterion)                     (3.74) 

 2
8 8 8( cos )F a b c d C� � � �� � � � �             ( Jiang JJ criterion)                 (3.75)  
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8 2 8 2 8 2 , ( 60 )cF' a b C� � � �� � � � � 3  
(Song-Zhao criterion)    (3.76) 

 
where 2 2

8 8 8( ) cos (3 / 2) sin (3 / 2)� � � � � �� � . 
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   (Kuang-Jiang criterion)  (3.77) 

 

where 4 3( ) ( )sin .
2t c t
�� � � � �� � �  

3.4.3 Multi-Parameter Twin-Shear Failure Criterion 

The twin-shear strength theory has been extended into various multiple parameter 
criteria for more complex conditions (Yu and Liu, 1988; 1990; Yu, 2002; 2004). 
Several multi-parameter twin-shear failure criteria can be given by considering the 
effect of hydrostatic stress �m 

 
CBAF mm ������� 2

11121311213 )( �������                    (3.78a) 
 

     CBAF mm ������� 2
22231322313 )(' �������                 (3.78b) 

 
where , , ,A B C�  are material parameters. This is the nonlinear twin-shear criterion. 
A simple three parameter twin-shear criterion can be expressed as follows: 
 

                   CAF m ������ ������ )()( 121311213                                   (3.79a)  

                    CAF m ������ ������ )()(' 231322313                                 (3.79b) 
or 
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                    CAF m ������ ������ 2
12131

2
1213 )()(                                   (3.80a) 

                    CAF m ������ ������ 2
23132

2
2313 )()('                                   (3.80b) 

 
The hyperbolic function based on twin-shear modeling can be obtained (Yu and 

Liu, 1988; 1990a) as  
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 (3.81) 

 
The single-shear series of strength theories forms the lower bound of the 

strength theory. The twin-shear series of strength theories forms the upper bound of 
the strength theory. The three-shear series of strength theories lies between the two 
bounds of the strength theory. 

Interested readers are referred to the literature review by Chen (1994), 
Kolymbas (2000), Belytschko et al. (2000), and Yu (2002b; 2004a). The mu lti-par 
ameter criterion of three-shear theory takes the three principal stresses and the 
hydrostatic stress into account. It is very interesting that the failure surfaces of most 
multi-parameter criteria of three-shear theory are the curvilinear failure surfaces 
that are situated between the failure surface of the single-shear strength theory and 
the failure surface of the twin-shear strength theory. Twin-shear strength theory 
was proposed and developed by Yu from 1961 to 1990. Subsequently, the unified 
strength theory was established in 1991 based on the twin-shear mechanical model. 

3.5 Bounds and the Region of the Convex Yield Function  

There are hundreds of yield and failure criteria that can be seen. Various yield 
criteria and failure criteria have been proposed in the past; however, all of them 
must be situated between the two bounds if the convexity is considered, as shown in 
Fig. 3.16(a).  

The lower bound is a piece-wise linear yield loci of the single-shear strength 
theory (the Mohr-Coulomb strength theory) and the single-shear yield criterion (the 
Tresca yield criterion).  

The upper bound is another piece-wise linear yield loci of the twin-shear 
strength theory (Yu et al., 1985) and the twin-shear yield criterion (Yu, 1961a), or 
the maximum deviatoric stress criterion (Haythornthwaite, 1961). Other yield cri-
teria, including the curvilinear criteria and piece-wise linear criteria are situated 
between these two bounds. The three-shear theory (octahedral shear stress theory or 
OS theory) is always a median criterion between the two bounds, as shown in 
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Fig. 3.16(b). 
 

     
 

(a) Two bounds and region                          (b) Three kinds of yield criteria  

Fig. 3.16  Two piece-wise linear bounds and a curve criterion between two bounds 
 

The yield loci of SD materials in the   plane must have three-fold symmetry to 
the three axes �1, �2, �3 so the yield locus can be illustrated by a one-third locus, as 
shown in Fig.3.17. The advances in the failure criterion from single-shear theory to 
twin-shear theory and from single criterion to unified theory are expressed in Fig. 
3.18. The unified strength theory proposed by Yu in 1991 will be described in detail 
in the next chapter. 

 
 

 
Fig. 3.17  From single-shear theory to twin-shear theory to unified theory
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3.6 Brief Summary  

A considerable number of failure criteria were proposed in the past century. Over 
fifty yield criteria are summarized in this chapter. The single-shear theory 
(Tresca-Mohr-Coulomb strength theory), three-shear theory (octahedral shear 
stress theory, Huber-von Mises criterion and its extension) and the twin-shear 
theory (twin-shear yield criterion and generalized twin-shear criterion) are 
described. The literature can be seen in detail in Zyczkowski (1981), Michino and 
Findley (1976) and Yu (2002b; 2004a). 

The advances in yield loci in the �-plane of non-SD materials and SD materials 
from the lower bound to the median and from the median to the upper bound are 
shown in Fig. 3.18. The advance in yield criterion from a single criterion to a uni-
fied theory (a series of criteria) is also given in Fig. 3.18. The unified strength 
theory will be described in detail in the next chapter.  

 
Fig. 3.18  Advances in yield criterion 
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4 

Unified Strength Theory and its Material 
Parameters 

4.1  Introduction 

Great effort has been devoted to the formulation of strength theories, failure 
criteria and yield criteria. Many versions of these were presented during the past 
100 years. The single-shear criterion Maximum shear criterion (Tresca, 1864), the 
Huber-von Mises criterion (1904; 1913) and the twin-shear criterion (Yu 1961a; 
1983) can be suitable for those materials that have identical strength both in 
tension and compression. For these materials the shear yield stresses are �y=0.5�y, 
�y=0.577�y and �y=0.667�y, respectively, where �y is the shear yield strength and 
�y is the uniaxial yield strength of materials. The Drucker-Prager criterion 
contradicts the experimental results of geomaterials. The single-shear theory 
(Mohr-Coulomb strength theory, 1900) and the twin-shear strength theory (Yu, 
1985) are two bounds of the convex strength theory. Each one mentioned above is 
suitable for only a certain kind of material. 

What is the relationship between various strength theories? Can we propose a 
unified strength theory that is adapted to more kinds of materials?  

Before the study, we should discuss the general behavior of yield functions of 
materials under a complex stress state. 

For an isotropic material, the yield function can generally be expressed in 
terms of the three principal stresses or stress invariants as  
 

F ( 1� , 2� , 3� ) =0,        or      F (I1, J2 , J3 )=0                           (4.1) 
  

The general yield function can also be expressed in terms of cylindrical 
coordinates (Haigh-Westgaard coordinates) as 
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F (� , � ,� ) =0                                              (4.2) 
 

It is evident that all the effects of the three components �1, �2, �3 must be 
included in the general yield function. It means that the three stress invariants I1, 
J2 , J3 have to be incorporated into the expressions of the general yield function. In 
other words, the general mathematical expression of the yield function must 
include all three components both of �1, �2, �3 and I1, J2, J3. 

The basic characteristics of material under complex stress have been 
summarized in Chapter 3. The following general behaviors must be considered in 
the yield function:  

1) SD effect (Strength Difference of material in tension and in compression).  
2) Hydrostatic stress effect.  
3) Normal stress effect.  
4) Effect of the intermediate principal stress. 
5) Effect of intermediate principal shear stress or effect of the twin-shear 

stresses. 
6) Three-fold symmetry of the yield surface for SD materials and six-fold 

symmetry of yield surface for non-SD materials.   
The mathematical expression of a yield function for isotropic materials F(�1, 

�2, �3)=0 is a symmetric function of the principal stresses �i (i=1, 2, 3). So, the 
yield surface of the yield function is three-fold symmetry.  

    The yield function may be also expressed in the form of the principal shear 
stresses as follows: 
 

f ( ,13� ,12� 23� )= 0   or       f ( ,13� ,12� ;23� ,13� ,12� 23� )= 0            (4.3) 

4.2  Mechanical Model of Unified Strength Theory 

Mechanical model and mathematical modelling are powerful means for 
establishing and understanding the development of a new theory. Mechanical 
modelling is an abstraction, a formation of an idea or ideas that may involve the 
subject with special configurations. Mathematical modelling may involve 
relationships between continuous functions of space, time and other variations 
(Meyer, 1985; Tayler, 1986; Besseling and van der Liesen, 1994; Wu et al., 1999).  

To express the general nature of strength theory, the cubic element is often 
used. It is clear that there are three principal stresses �1, �2 and �3 acting on the 
cubic element. The proposition to introduce the regular octahedral element to the 
Huber-von Mises yield criterion was made by Ros-Richinger-Nadai (1926-1931, 
see: Zyczkowski, 1981). Other elements were studied by Yu in 1961-1985. 
Figures 4.1(a), 4.1(b), 4.1(c) show the single-shear element, twin-shear element 
and the three-shear element. The Tresca-Mohr-Coulomb strength theory can be 
introduced from the single-shear element. However, the effect of the intermediate 
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principal stress �2 and the effect of the intermediate principal shear stress (�12 or 
�23) are not taken into account in the single-shear theory (Tresca-Mohr-Coulomb 
strength theory). 

The twin-shear stress element and multi-shear element were proposed by Yu 
(1983; 1985; 1992). The principal stress state (�1, �2, �3) can be converted into the 
principal shear-stress state (�13, �12, �23) as shown in Fig. 4.1(c).  

 

     
(a)                                         (b)                                                    (c) 

Fig. 4.1  Single-shear element, Twin-shear element and Three-shear element (Yu, 1985) 
 

It is clear that there are three principal shear stresses �13, �12 and �23 in the 
three-dimensional principal stress state �1, �2 and �3. However, only two principal 
shear stresses are independent variables among �13, �12 , �23 because the maximum 
principal shear stress equals the sum of the other two. That is  

 

13 12 23� � �� �                                                     (4.4) 
 

Since there are only two independent principal shear stresses, the shear stress 
state can also be converted into the twin-shear stress state (�13, �12, �13, �12) or (�13, 
�23, �13, �23). This stress state corresponds to the model shown in Fig. 4.2(a). The 
eight sections that two groups of shear stress act on consist of the orthogonal 
octahedral elements, so the twin-shear mechanical model can be obtained as 
shown in Figs. 4.2(a) and 4.2(b).  

 

                
(a) Twin-shear stress state (�13, �12, �13, �12)     (b) Twin-shear stress state(�13, �23, �13, �23). 

Fig. 4.2  Twin-shear model of the unified strength theory (orthogonal octahedral element) 
 

By removing half of the orthogonal octahedral model, we can obtain a new 
pentahedron element, as shown in Figs. 4.3(a) and 4.3(b). The relationship 
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between the twin-shear stress and the principal stress �1 or �3 can be deduced 
from this element. Based on the orthogonal octahedral element and pentahedron 
element, a new unified strength theory (yield criterion) can be developed (Yu, 
1991; 2004). 

 

                     
(a) Twin-shear stress state (�13, �12, �13, �12)     (b) Twin-shear stress state(�13, �23, �13, �23). 

Fig. 4.3  Twin-shear model of the unified strength theory (pentahedron element) 
 

The twin-shear orthogonal octahedral model is different from the regular 
octahedral model. The orthogonal octahedral model consists of two groups of four 
sections that are perpendicular to each other and are acted on by the maximum 
shear stress �13  and the intermediate principal shear stress �12 or �23.  

It is worth noticing that the orthogonal octahedral model can be subjected to 
an affinity deformation but remains a parallehedron, which fills the space without 
gaps or overlapping. The orthogonal octahedral model, like the cubic element, is 
also a spatial equipartition, which consists of completely filling a volume with 
polyhedra of the same kind. The combination of many orthogonal octahedral 
models can be used as a continuous body (Fig. 4.4(a)). Obviously, the twin-shear 
pentahedron element is also a spatial equipartition as shown in Fig.4.4(b). The 
effect of intermediate principal shear-stress (�12 or �23) can be taken into account 
naturally in the mathematical modelling of strength theory. 

 

            
 (a) Orthogonal octahedral element           (b) Pentahedron element   

Fig. 4.4  Spatial equipartition of twin-shear model  
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4.3  Mathematical Modelling and the Determination of the 
Material Parameters of the Unified Strength Theory 

Considering all the stress components acting on the twin-shear element and the 
different effects of various stresses on the yield of materials, the mathematical 
modelling of the unified strength theory was proposed by Yu in 1991. It can be 
expressed as (Yu and He, 1991b; Yu, 1992a; 2004)  
 
    2323121212131213  when,)( ����������� �������� CbbF  

(Extended tension stress state)  (4.5a) 
 

,)( 23132313 CbbF �����
 �����   when    23231212 ������ ���   
 (Extended compression stress state)     (4.5b) 

 
1 ,tF'' � �� �                                   1 2 3when   0� � �) ) )                (4.5c) 

 
The unified strength theory assumes that the yielding of materials begins when 

the sum of the two larger principal shear stresses and the corresponding normal 
stress function reach a magnitude C. Where b is a parameter that reflects the 
influence of the intermediate principal shear stress �12  or �23 on the yield of 
material, � is the coefficient that represents the effect of the normal stress on the 
yield, C  is a strength parameter of the material, �13 , �12  and �23 are principal shear 
stresses and �13 , �12 and �23 are the corresponding normal stresses acting on the 
sections where �13 , �12  and �23  act. They are defined as  
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2
1

3113 ��� �� ,   )(
2
1

2112 ��� �� ,      )(
2
1

3223 ��� ��  

)(
2
1

3113 ��� �� ,    )(
2
1

2112 ��� ��  ,         )(
2
1

3223 ��� ��    (4.6) 

 
The magnitude of parameters � and C can be determined by experimental 

results of uniaxial tension strength �t and uniaxial compression strength�c. The 
experimental conditions are 

 
0  , 321 ��� ���� t ;   c���� ���� 321   ,0                 (4.7) 

 
So the material constants � and C can be determined from Eqs. (4.5a), (4.5b) 

and (4.7) as  
 

21 2,   
1 1

c t c t
t

c t c t

C
� � � ��� �
� � � � � �

� �
� � � �
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                           (4.8)
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4.4  Mathematical Expression of the Unified Strength Theory 

Substituting  �  and C into Eqs. (4.5a) and (4.5b), the unified strength theory is 
now obtained. It can be expressed in terms of the three principal stresses as  
 

1 3
1 2 3 2( ) , when   

1 1tF b
b

� ���� � � � �
�

�
� � � � �

� �
,            (4.9a) 
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 1 3
1 2 3 2
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1 1tb

b
� ��
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�
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� �
,             (4.9b)  

 
1 ,tF'' � �� �         1 2 3when   0� � �) ) )           (4.9c) 

 
Equation (4.9c) is used only in the three tensile stress state. It is similar to the 

Mohr-Coulomb theory with tension cutoff suggested by Paul in 1961. The unified 
strength theory with tension cutoff can be used for geomaterials. 

Equations (4.9a) and (4.9b) are the mathematical formulae of the unified 
strength theory. b is a choice parameter of the yield criteria. It may be referred to 
as the unified strength theory parameter. b is also a parameter reflecting the effect 
of the intermediate principal stress �2. The relationship between shear strength �0, 
the uniaxial tensile strength �t, uniaxial compressive strength �c and  unified 
strength theory parameter b can be determined as  
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For non-SD materials, Eq. (4.10) can be simplified to  
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The ratio of shear strength to tensile strength of materials can be introduced 

from the unified strength theory as  
 

��
�

�� ��
�

��
b

b

t 1
10                                      (4.11) 

 
It is shown that  
1) The ratio of shear strength to tensile strength ��=�0 /�t of brittle materials 

(��<1) is lower than that of ductile materials (��=1). This agrees with the 
experimental data. 
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2) The yield surface may be non-convex when the ratio of shear strength to 
tensile strength is �� * 1/(1+�) or �� )2/(2+�).  

3) The shear strength of the material is lower than the tensile strength of the 
material. This is true for non-SD materials. It needs, however, further study for SD 
materials.  

4.5  Special Cases of the Unified Strength Theory 

4.5.1 Special Cases of the Unified Strength Theory (Varying b) 

The unified strength theory contains a series of yield criteria for metal materials 
(�=1) and for other materials (� 1).  

It is worth pointing out that the parameter b is an important parameter in the 
unified strength theory.  

b is a parameter of intermediate principal shear stress �12  or �23 in Eq. (4.8). It 
reflects the influence of the intermediate principal shear stress on the failure of a 
material.  

b is also a parameter of intermediate principal stress �2 in Eq. (4.12). It also 
reflects the influence of the intermediate principal stress �2 on the failure of a 
material.  

We can see below that b is also the parameter that determines the formulation 
of a failure criterion. A series of convex failure criteria can be obtained when the 
parameter varies in the range of 0�b�1. The parameter b has a clear meaning and 
important significance. The unified strength theory gives us a possibility to choose 
a reasonable yield criterion for research and applications. 

The five typical failure criteria with the values of b=0, b=1/4, b=1/2, b=3/4 
and b=1 are introduced from the unified strength theory. In addition, the unified 
strength theory can also introduce a family of non-convex failure criteria when 
b<0 or b>1. 

	b=0 

The Mohr-Coulomb strength theory can be deduced from the unified strength 
theory with b=0 as  
 

F = F 
= 1 3 t� �� �� �                                          (4.12) 
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	b=1/4 

A new failure criterion is deduced from the unified strength theory with b=1/4 as  
1 3

1 2 3 2( 4 ) ,   
5 1tF

� ���� � � � �
�

�
� � � � �

�
   

(Extended tension stress state)                    (4.13a) 
1 3

1 2 3 2
1 (4 ) ,   
5 1tF

� ��
� � �� � �

�
�
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�

  

(Extended compression stress state)              (4.13b) 

	b=1/2 

A new failure criterion is deduced from the unified strength theory with b=1/2 as  
 

1 3
1 2 3 2( 2 ) ,   

3 1tF
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�
�

� � � � �
�

 

(Extended tension stress state)                        (4.14a) 
1 3

1 2 3 2
1 (2 ) ,   
3 1tF

� ��
� � �� � �

�
�
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�

 

(Extended compression stress state)                    (4.14b) 
 

Since the Drucker-Prager criterion cannot match the practice for geomaterials, 
this criterion is more reasonable and can be substituted for the Drucker-Prager 
criterion. 

	b=3/4 

A new failure criterion is deduced from the unified strength theory with b=3/4 as  
 

1 3
1 2 3 2(3 4 ) ,   

7 1tF
� ���� � � � �

�
�
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�

        

(Extended tension stress state)                              (4.15a) 
1 3

1 2 3 2
1 (4 3 ) ,   
7 1tF

� ��
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�
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(Extended compression stress state)                     (4.15b) 
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	b=1 

A new failure criterion is deduced from the unified strength theory with b=1. The 
mathematical expression is  
 

1 3
1 2 3 2( ) ,    when  

2 1tF
� ���� � � � �

�
�
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�

 

(Extended tension stress state)               (4.16a) 
 

1 3
1 2 3 2

1 ( ) ,   when   
2 1tF
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(Extended compression stress state)            (4.16b) 
 

This is the generalized twin-shear strength model proposed by Yu in 1983 (Yu, 
1983; Yu et al., 1985). 

4.5.2 Special Cases of the Unified Strength Theory (Varying �) 

	�=1, The Unified Yield Criterion for Non-SD Materials 

When the tensile strength and the compressive strength are identical, the tension–
compressive strength ratio �=�t/�c equals 1. A unified yield criterion can be 
deduced from the Yu unified strength theory. The mathematical expression of the 
unified yield criterion is expressed as follows. It also contains a series of yield 
criteria. 
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(Extended tension stress state)     (4.17a) 
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(Extended compression stress state)   (4.17b) 
 
in which b is a parameter that reflects the influence of the intermediate principal 
shear stress �12 or �23  on material strength. It can be determined from the shear 
yield strength  �y  and the tensile strength �y of the materials. 

In the general case, the unified yield criterion can be expressed by 12 
equations as follows: 
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The single-shear criterion (Tresca yield criterion) and the twin-shear yield 

criterion are special cases of the unified yield criterion when b=0 and b=1, 
respectively. The Huber-von Mises criterion can be approximated by the unified 
yield criterion by letting b=0.5. In fact, the unified yield criterion contains a series 
of yield criteria that  vary the parameter b. The unified yield criterion with b=0, 
b=1/4, b=1/2, b=3/4 and b=1 can be adapted to most kinds of metallic materials 
whose tensile strengths are the same as their compressive strength. 

The relations between the tensile yield stress �y, shear yield stress �y and the 
parameter b in the unified yield criterion (�=1) can be determined from the ratio 
of shear yield stress to tensile yield stress  
 

b= y y

y y
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� �
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,                                                         (4.19) 
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Inversely, the ratio of shear yield stress to tensile yield stress can be given as  
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b                                                        (4.20) 

 
Some conclusions for non-SD materials can be made from this condition: 
1) The shear yield stress is lower than tensile yield stress for metallic 

materials. 
2) Yield surfaces are convex when  0�b�1 or 1/2����2/3. 
3) Yield surfaces are nonconvex when b<0 and b>1, or the ratio of shear yield 

stress to tensile yield stress is ��=
y/�y<1/2 and �� =
y/�y>2/3. 
For example, if the ratio of the shear yield stress to the tensile yield stress of 

the material is �� =�y /�y=0.45, it can be determined from Eq. (4.19) that the 
parameter b=�1/6. This means that the yield criterion is nonconvex. 
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	�=1/2, New Series of Failure Criteria 

The main disadvantage of the unified yield criterion is that it is only suitable for 
metallic materials having the same strength both in tension and in compression. It 
cannot adapt to those materials that have a different strength in tension and 
compression, or in cases where the strength is pressure dependent, such as iron, 
high-strength steels, polymers and geomaterials. This can be solved by using the 
unified strength theory with 0<�<1. A series of failure criteria can be obtained 
from the unified strength theory with 0<�<1 (Fig. 4.5). For an example, we take 
� =1/2. A new series of failure criteria can be obtained as  
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(Extended tension stress state)            (4.21a) 
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(Extended compression stress state)     (4.21b) 
 

 
Fig. 4.5  Unified strength theory and its special cases 
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Figure 4.5 shows the relationship between the unified yield criterion, the 
unified strength theory, the single-shear yield criterion (the Tresca yield criterion), 
the single-shear strength theory (the Mohr-Coulomb strength theory), the twin-
shear yield criterion (Yu, 1961), the twin-shear strength theory (Yu, 1985) as well 
as some new failure criteria. A great number of new failure criteria can be 
introduced from the Yu unified strength theory.  Three new failure criteria are 
introduced from the Yu unified strength theory when b=1/4, b=1/2 and b=3/4, as 
shown in the third range in Fig. 4.5. 

4.6  Other Formulations of the UST and Material Parameters 

The use of a yield function is always connected to the material parameter. These 
parameters are required to be simple and easy to obtain. The uniaxial tensile 
strength �y is used for the material parameter in the Tresca yield criterion (1864), 
the Huber-von Mises yield criterion (1904; 1913) and the twin-shear yield 
criterion (Yu, 1961). It is the same for the unified strength theory in the case of 
�=1. The Tresca criterion, the Huber-von Mises criterion and the twin-shear stress 
criterion can be suitable for those materials that have identical strength both in 
tension and compression and have the ratio �� =�y /�y=0.5, �� =�y/�y=0.577 and �� 

=�y /�y=0.667. 
The uniaxial tensile strength �t and the ratio of tension strength and 

compression strength � are used for the Mohr-Coulomb strength theory, the 
Drucker-Prager criterion and the twin-shear strength theory. They are two-
parameter criteria. The two parameters in the unified strength theory are the same 
as these two material parameters. The other material parameters are also used in 
different applications. It needs some transfer of the mathematical expressions of 
the yield function. 

The unified strength theory expressed in terms of principal stresses has been 
described in Eq. (4.9). The materials parameters are uniaxial tensile strength �t 
and the ratio of tension strength and compression strength �. Other material 
parameters can also be used. 

4.6.1 UST with Principal Stress and Compressive Strength 
1 2 3( , , , , )cF � � � � �  

In soil and rock mechanics and engineering, the compressive strength �c is often 
adopted. Rewriting Eqs. (4.9a) and (4.9b) in terms of the principal stress and 
compressive strength �c  , we have 
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The unified strength theory can also be expressed in terms of another 

material parameter m as follows: 
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where m=�c/�t is the compressive-tensile strength ratio of the material. The 
ratio m is an index of the material strength difference effect and m 1 in 
general. The unified strength theory can also be expressed by other terms. 

4.6.2 UST with Stress Invariant and Tensile Strength F(I1,J2,�,�t,�) 

The principal stress state (�1, �2, �3) can be converted into the principal shear 
stress state (�13, �12, �23), invariates of stress tensor (I1, I2, I3) or invariates of stress 
tensor (I1, I2, I3). The principal shear stress state can be described in terms of the 
stress invariant. 

The unified strength theory can also be expressed in terms of stress invariant 
F(I1, J2, �) and materials �t , � as  
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(4.26b) 

 
where I1 is the first stress invariant (hydrostatic pressure), J2  is the second 
deviatoric stress invariant and �  is the stress angle corresponding to the twin-
shear parameter  	� =�12/�23 or 	��=�23/�13. The stress angle at the corner �b can be 
determined by the condition F=F	. 
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4.6.3 UST with Stress Invariant and Compressive Strength F(I1, J2, 
�, �, �c) 

The unified strength theory can also be expressed in terms of stress invariant F(I1, 
J2, �) and materials �, �c as  
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4.6.4 UST with Principal Stress and Cohesive Parameter 
1 2 3 0( , , , , )F C� � � �  

In Eqs. (4.9a) and (4.9b), we adopt the material constants �t and the tension-
compression ratio �. In geotechnical engineering, the cohesion C0 and the friction 
angle coefficient � reflecting the material properties are used. The relationships 
between the tensile strength �t ,  the tension-compression ratio �, the material 
parameter C0  and �  can be obtained as  
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By substituting Eq. (4.29) into Eqs. (4.9a) and (4.9b), the Yu unified strength 

theory can be expressed in terms of  C0 and �  as  
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4.6.5 UST with Stress Invariant and Cohesive Parameter 
1 2 0( , , , , )F I J � C �  

The unified strength theory can be also expressed by the stress invariant, stress 
angle and material parameters cohesion C0 and friction angle � . 
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4.7 Other Material Parameters of the Unified Strength Theory 

The unified strength theory in terms of three principal stresses, Eq. (4.9), is 
introduced from the mathematical modeling equation, Eq. (4.5) as  
 

13 12 13 12 12 12 23 23( ) , when F b b C� � � � � � �� � ��� � � � � � � �  
(Extended tension stress state)            (4.5a) 

13 23 13 23( ) ,F b b C� � � � �
 � � � � �   when    12 12 23 23� �� � ��� � �   
(Extended compression stress state)                 (4.5b) 

 
The material parameters � and C are determined by experimental results of the 

uniaxial tension strength �t and uniaxial compression strength �c. The 
experimental conditions are 
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0  , 321 ��� ���� t   (uniaxial tension) 

c���� ���� 321   ,0  (uniaxial compression)                   (4.32) 
 
So the material constants � and C can be determined. 

The material parameters � and C can be determined also by other experimental 
results. A lot of experimental results may be used for the determination of the 
material parameter in the unified strength theory.  

4.7.1   Material Parameters � and C are Determined by 
Experimental Results of Uniaxial Tension Strength t�  and 
Shear Strength 0�  

The material parameters � and C of the unified strength theory can be determined 
by experimental results of uniaxial tension strength �t and pure shear strength 
0. 
The experimental conditions are 
 
                          0  , 321 ��� ���� t  (uniaxial tension) 

0231   ,0 ���� ����   (pure shear)                              (4.33) 

4.7.2   Material Parameters � and C are Determined by 
Experimental Results of Uniaxial Compressive Strength c�  
and Shear Strength 0�  

The material parameters � and C of the unified strength theory can be determined 
by experimental results of the uniaxial compressive strength �c and pure shear 
strength �0. The experimental conditions are 
 

c���� ���� 321   ,0   (uniaxial compression) 

0231   ,0 ���� ����   (pure shear)                                 (4.34) 
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4.7.3   Material Parameters � and C are Determined by 
Experimental Results of Uniaxial Compressive Strength c�  
and Biaxial Compressive Strength cc�  

The material parameters � and C of the unified strength theory can be determined 
by experimental results of the uniaxial tension strength �t and biaxial compressive 
strength �cc. The experimental conditions are 
 

c���� ���� 321   ,0   (uniaxial compression)   

cc���� ��� 321   ,0   (biaxial compression)                   (4.35) 

4.7.4   Material Parameters � and C are Determined by 
Experimental Results of Uniaxial Compressive Strength c�  
and Biaxial Compressive Strength cc�  

The material parameters � and C of the unified strength theory can be determined 
by experimental results of the uniaxial tension strength �t and biaxial compressive 
strength �cc. The experimental conditions are 
 

0  , 321 ��� ���� t  (uniaxial tension) 

cc���� ��� 321   ,0   (biaxial compression)                      (4.36) 

4.7.5   Material Parameters � and C are Determined by 
Experimental Results of Uniaxial Compressive Strength c�  
and Biaxial Compressive Strength cc�  

The material parameters � and C of the unified strength theory can be determined 
by experimental results of the pure shear strength �0 and biaxial compressive 
strength �cc. The experimental conditions are 
 

0231   ,0 ���� ����   (pure shear)                             (4.37) 

cc���� ��� 321   ,0   (biaxial compression)               (4.38) 
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4.8  Three-Parameter Unified Strength Theory  

The unified strength theory can be generalized as a three-parameter unified 
strength criterion. The mathematical modeling equation for the three-parameter 
unified strength criterion is  
 

13 12 13 12( ) ,mF b b A C� � � � � �� � � � � �  

12 12 23 23when � �� � ��� � �                                                                       (4.39a) 
 

13 23 13 23( ) ,mF b b A C� � � � � �
 � � � � � �  
when    12 12 23 23� �� � ��� � �                                                                   (4.39b) 

 
where b is a parameter that reflects the influence of the intermediate principal 
shear stress �12 or �23 on the failure of the material; � is the coefficient that 
represents the effect of the normal stress on failure; �m is average stress; A is the 
coefficient that represents the effect of the average stress on failure; C is a strength 
parameter of the material; �13, �12 and �23 are principal shear stresses and �13, �12 
and �23 are the corresponding normal stresses acting on the sections where �13, �12 

and �23 act.  
Another kind of three parameters criterion of the unified strength theory can be 

obtained by using the different parameters 
a and 
b. The mathematical modeling 
equation of this kind of three-parameter unified strength criterion is  
 

13 12 13 12( ) ,aF b b C� � � � �� � � � �    12 12 23 23when � �� � ��� � �           (4.40a) 
 

13 23 13 23( ) ,bF b b C� � � � �
 � � � � �       when    12 12 23 23� �� � ��� � �         (4.40b) 
 

The three material parameters �, C and A or 
a, 
b and C can be determined by 
three experimental conditions. Interested readers can refer to the recent book (Yu, 
2004). 

4.9  Stress Space and Yield Loci of the UST  

The yield criterion is a function of three principal stresses �1, �2, �3 as follows: 
 

1 2 3 1 2( , , , , ) 0F F K K� � �� �                                     (4.41) 
 

It can be interpreted for an isotropic material in terms of a geometrical 
representation of the stress state obtained by taking the principal stresses as 
coordinates, as shown in Fig. 4.6. The yield surface in a three-dimensional 
principal stress space was introduced by Haigh and Westergaard in 1920. 
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Sometimes it is called the Haigh-Westergaard space. The advantage of such a 
space lies in its simplicity and visual presentation.  

The three-dimensional principal stresses (�1, �2, �3) can be regarded as a 
three-dimensional space of principal stresses. If we take the tensile stress as 
positive while taking the compressive stress as negative, the stress state may 
combine the space stresses into various magnitudes and signs of stress 
combinations. The stress point P(�1, �2, �3) of different signs could combine up to 
eight quadrants of  (+ + +), (+ + –), (+ – +), (+ – –), (– + +), (– + –), (– – +) and  
(– – –). A stress point could be situated anywhere within the three-dimensional 
space of the principal stresses.  

In stress space the yield criterion defines a surface that is generally referred to 
as the yield surface. If a stress point is situated in the yield surface, it means the 
yield function  f < 0 and the material will be elastic; if a stress point reaches the 
yield surface, it means the yield function  f = 0 and  yield of the material will 
occur.  

The state of stress at any point in a body or a structure may be represented by a 
vector emanating from the origin O (Fig. 4.6). The isoclinic axis ON is equally 
inclined to the three axes and its direction cosines are (1 3 ,1 3 ,1 3 ). The 
stress vector Or, whose stress components are (�1, �2, �3), may be resolved into a 
vector OO� along isoclinic axis ON and a vector Or0 in a plane that is 
perpendicular to ON and passes through the origin. The vector OO� is of 
magnitude 3 m�  and represents the hydrostatic stress with components (�m, �m, 
�m). The vector Or0 represents the deviatoric stress with components f (S1, S2, S3) 
and magnitude 22J . For any given state of stress , the deviatoric stress vector 
will lie in the plane passing through O and perpendicular to ON. This plane is 
known as the deviatoric plane in stress space or the �0-plane. Its equation is �1+ 
�2+�3 = 0 in the principal stress space. The planes that are parallel to the  �0-plane 
are called the �-planes and are given by �1+�2+�3 = C, where C is a constant. 

If a hydrostatic stress has no effect on yielding, it follows that yielding can 
depend only on the magnitude and the direction of the deviatoric stress vector Or0 
in the �0-plane or the deviatoric stress vector O�r  in the �-plane. The yield 
surfaces are therefore regarded as a prismatic surface whose generators are 
perpendicular to the deviatoric plane. Any stress state in which the stress point lies 
on the prismatic surface corresponds to a state of yielding. Any point inside the 
prismatic surface represents an elastic state of stress. 

The general shape of a yield surface in a three-dimensional stress space for 
metallic materials with the same strength both in tension and in compression can 
best be determined by its cross-sectional shapes in the deviatoric planes, because  
the shapes on any �-plane are identical. The cross sections of the yield surface are 
the intersection of the yield surface with the deviatoric plane, called the yield 
locus. 
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Fig. 4.6  Cylindrical coordinates and a yield surface for metal in principal stress space 

 
Considering the yield locus together with the orthogonal projections of the 

stress axes on the deviatoric plane, the yield locus is symmetrical with respect to 
the projections of the �1, �2, �3  axes. The yield locus, therefore, is threefold 
symmetric. The yield loci on the deviatoric plane, the axes x, y and projections of 
the stress axes �1', �2', �3' are taken in the plane of the paper (Fig. 4.6).  

The relationship between the coordinates of the deviatoric plane and 
hydrostatic stress axis z with the principal stresses are 
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The ratio between the tensile radius and the compressive radius in   plane is 
given by 
 

1 2 3 sin
2 3 sin
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                                   (4.44) 

 
By substituting Eq. (4.49) into the unified strength theory Eq. (4.25a) and 

(4.25b), the equations of the unified strength theory in the deviatoric plane can be 
obtained. 
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A great number of new failure criteria can be generated from the unified 

strength theory by changing �  and b. The shape and size of yield loci of the 
unified strength theory are changed with � ,b and hydrostatic stress axis z. The 
shape of yield loci is similar for certain values of �  and b, but the size of the yield 
loci is changed with hydrostatic stress �m. 

The variation in the unified strength theory with b is shown in Fig. 4.7. Ten 
special cases with values of b=0, b=0.1, b=0.2, b=0.3, b=0.4, b=0.5, b=0.6, b=0.7, 
b=0.8, b=0.9 and b=1 are given. 

The two bounds of convex yield loci are the Mohr-Coulomb theory and the 
twin-shear strength theory proposed by Yu in 1985. The yield locus of the twin-
shear strength theory is the upper bound of the convex yield loci, as shown in Fig. 
4.7(a).  

 

  
(a) SD materials (�<1)                             (b) Non-SD materials (�=1) 

Fig. 4.7  A serial yield loci of the unified strength theory (Yu, 1992)
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The single-shear strength theory, the twin-shear strength theory and a series of 
new failure criteria can be obtained from the unified strength theory in the range 
of 0�b�1, 0���1. The smooth-ridge models can also be approximated by the 
unified strength theory when b=1/2 or b=3/4.  

The convex failure criteria can be obtained by varying the value of � (�<1) 
and b (0�b�1). 

If � =�t /� c =1, that is the tensile strength equals the compression strength, then 
the radii r of the yield locus of the unified strength theory on the axes �1, �2, �3 
and –�1, –�2, –�3 are identical. The ratio between the tensile radius and the 
compressive radius is given by 
 

1
sin3
sin3

2
21

�
�
�

�
�
�

�
?
?

�
�K  

 
which means that the irregular dodecahedron is converted to a regular 
dodecahedron, and the yield surfaces of the unified yield criterion for � =�t /�c =1 
materials change to a series of infinite prisms.  

A new unified yield criterion can be deduced from Eqs. (4.45a) and (4.45b). 
The equations of the unified yield criterion for � =�t /�c =1 materials on the 
deviatoric plane can be obtained as follows.  
 

2(1 ) 6
2(1 ) 2 t

bF x y
b

��
� � � �

�
                                   (4.46a) 

2(1 2 ) 6
2(1 ) 2(1 ) t

bF x y
b b

��
 � � � �
� �

                          (4.46b) 

 
A series of yield loci for � =�t /�c =1 materials with b=0, b=0.1, b=0.2, b=0.3, 

b=0.4, b=0.5, b=0.6, b=0.7, b=0.8, b=0.9 and b=1 on the deviatoric plane can be 
obtained as shown in Fig. 4.7(b).  

4.10 Yield Surfaces of the UST in Principal Stress Space 

The yield surfaces in the stress space of the unified strength theory are usually a 
semi-infinite hexagonal cone with unequal sides and a dodecahedron cone with 
unequal sides, as shown in Fig. 4.8. The shape and size of the yield hexagonal 
cone depends on the parameter b and on the tension-compression strength ratio �. 
The 3D computer images of the yield surface for the unified strength theory in the 
stress space were provided by Zhang (2005), as shown in Fig. 4.8 and Fig. 4.9. 
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Fig. 4.8  Yield surfaces of the unified strength theory in stress space 

 
In engineering practice, the compressive strength of materials �c is often much 

greater than the tensile strength �t, since a region in tension becomes smaller, 
while it becomes larger in compression. Assuming the compressive strength is 
positive, the yield surfaces of the UST (unified strength theory) with different 
values of b are shown in Fig. 4.8. Figure 4.9 shows the three typical yield surfaces 
of the unified strength theory with b=0, b=1/2, and b=1, respectively. The latter is 
the yield surface of the twin-shear strength theory (Yu, 1985). 

 

 
(a) b=0 (lower bound)  

 

 
(b ) b=1/2 (median)       (c) b=1 (upper bound) 

Fig. 4.9  Three typical yield surfaces of the unified strength theory 
 

A unified yield criteria can be deduced from the unified strength theory when 
�=1 as follows.  
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�                 (4.47a) 

1 2 3
1 ( )

1 yf b
b
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�
,       when   1 3

2 2
� �

�
�

�             (4.47b) 

 
Their yield loci of the unified yield criterion for � =�t /� c =1 materials in the �-

plane have been shown in Fig. 4.8.  
Five typical yield surfaces and yield loci in the �-plane for metallic materials 

can be obtained from the unified yield criterion Eqs. (4.17a) and (4.17b) when � 
=1 and b=0, b=1/4, b =1/2, b =3/4 and b =1 as shown in Figs. 4.10(a), 4.10(b), 
4.11(a), 4.12(a), 4.12(b). The yield surfaces and yield loci in the �-plane of the 
Huber-von Mises criterion are also given in Fig. 4.11(b).  

 

 
(a) Unified yield criterion with b=0 

 

 
(b) Unified yield criterion with b=1/4 

Fig. 4.10  Yield surfaces and yield loci of two cases of UYC with b=0 and b=1/4  
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(a) Unified yield criterion with b=1/2 

 

 
(b) Mises criterion 

Fig. 4.11  Yield surfaces and yield loci of UYC with b=1/2 and the Mises criterion 
 

Obviously, the middle yield surface and yield locus in the �-plane of the 
unified yield criterion with b=1/2 approximates to the yield surface and yield 
locus in the �-plane of the Huber-von Mises yield criterion. These two criteria are 
equivalent in engineering applications. 

The middle yield surface and yield locus (b=1/2) are the new yield surface and 
locus, which intersect the yield surface and locus of the Huber-von Mises yield 
criterion. It may be referred to as the linear Huber-von Mises yield. The 
comparison of the linear von Mises yield loci (b=1/2) with the Huber-von Mises 
yield criterion in the �-plane is shown in Fig. 4.13. 
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(a) Unified yield criterion with b=3/4 

 

 
(b) Unified yield criterion with b=1 

Fig. 4.12  Yield surfaces and yield loci of UYC with b=3/4 and b=1 
 

 

 
Fig. 4.13  Linear approximation to the Huber-von Mises yield criterion with the unified yield 
criterion when b=1/2 
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The variation of yield surfaces of the unified strength theory (UST) in the 

deviatoric plane with � and 13
1

bk
b �
�

�
� �

 is given by Kolupaev and Altenbach 

(2009), as shown in Fig. 4.14. 
 

 
Fig. 4.14  Variation of the shape of yield loci of the unified strength theory with 

parameters b and � 
 

The lower bound is provided by the single-shear strength theory (the Mohr-
Coulomb strength theory, or the unified strength theory with b=0). The upper 
bound is given by the generalized twin-shear strength theory (Yu et al., 1985), or 
the unified strength theory with b=1. The median is a new series of yield criteria 
deduced from UST with b=1/2. Other series of new yield criteria can also be 
deduced from UST with b=1/4 or b=3/4, as shown in Fig. 4.7. All the convex yield 
surfaces are situated between two bounds of the twin-shear theory and the single-
shear theory, as shown in Fig. 4.14 (Kolupaev and Altenbach, 2009; Yu et al., 
2009). 

4.11 Extend of UST from Convex to Non-Convex 

The unified strength theory can be extended from convex loci to non-convex loci. 
The yield loci of UST are convex when the yield criterion parameter b (0�b�1) 
and the yield loci of UST are non-convex, when the yield criterion parameter b<0 
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or b>1, as shown in Fig. 4.15. This behavior, however, has not been studied so far. 
It may be of mathematical significance. 
 

 
Fig. 4.15  Convex and non-convex yield loci of UST 

4.12 Yield Loci of the UST in Plane Stress State 

The yield loci of the unified strength theory in the plane stress state form the 
intersection line of the yield surface in the principal stress space and the �1-�2 
plane. The shape and size depend on the values of b and �. This will be 
transformed into a hexagon when b =0 or b=1, and into a dodecagon when 0*b*1. 

The equations of the 12 yield loci of the unified strength theory in the plane 
stress state can be given as follows. A series of new failure criteria and new yield 
loci in the plane stress state can be obtained from the unified strength theory. 

The yield loci of the unified strength theory (UST) in the plane stress state 
with different values of b are shown in Fig. 4.16(a) (for �=1/2 material) and Fig. 
4.16(b) (for �=1 materials). 
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(a) �=1/2 material  

 

(b) �=1 material  

Fig. 4.16  Yield loci of the UST in the plane stress state  
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Various yield loci of the unified strength theory in the plane stress state are 
shown in Fig. 4.17. The unified yield criterion, the Mohr-Coulomb strength theory, 
the twin-shear strength theory and a series of new failure criteria, as well as the 
non-convex failure loci, can be obtained from the unified strength theory. 

If the tensile strength is identical to the compressive strength, the unified 
strength theory will be transformed into the unified yield criterion. Its yield 
surfaces are described in Figs. 4.10, 4.11 and 4.12. 

In the general case, the unified yield criterion for � =�t /� c =1 materials in the 
plane stress state (�1, �2) can be expressed by 12 equations as follows: 

 

 
Fig. 4.17  Variation of the UST in the plane stress state 
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The yield loci of the unified yield criterion (�=1) in the plane stress state with 

different values of b are shown in Fig. 4.18. A series of the yield loci of the 
unified yield criterion when � =�t /� c =1 in the plane stress state can be given, 
respectively. These yield loci cover all the regions of the convex yield criteria and 
also include the nonconvex yield criteria, which have never been formulated 
before. Varieties of the yield loci of the unified yield criterion in the plane stress 
states can be seen in Fig. 4.18. 

 

 

Fig. 4.18  Varieties of the UST for � =�t /� c =1 materials in plane stress
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4.13 Unified Strength Theory in Meridian Plane 

The unified strength theory can also be expressed in other terms, such as by the 
octahedral normal stress �8 and octahedral shear stress �8 in plasticity, or by the 
generalized normal stress �g and the generalized shear stress �g (or q) in soil 
mechanics and geomechanics. 

The relationships between the three principal stresses �1, �2, �3 and the 
cylindrical polar coordinates �, r, �  in the principal stress space are 

 
1

2

3

cos
1 2 cos( 2� / 3)

33 cos( 2� / 3)
r

� �
� � �

��

5 6 5 6
7 7 7 7� � �8 9 8 9
7 7 7 7�: ;: ;

                           (4.50) 

 
in which � is the major coordinate axis in the stress space and r is the length of the 
stress vector in the �-plane. They are shown as  
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The relationship among the various variables is  
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The principal stress can be expressed as 
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or 
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                                       (4.53)  

 
Substituting the above equations into the expression of the unified strength 

theory, the unified strength theory can then be expressed in other terms. 
Figure 4.19 shows the yield loci of the unified strength theory in the meridian 
plane with � =03 and � =603 

The yield meridian loci with � =03 and � =603 are also called the tension yield 
meridian locus and the compression yield meridian locus, respectively. It is useful 
to understand the relationship for various kinds of equations, figures and tables. 

 

 
(a) 21 JI �  plane             (b)  p-q plane   

 

 
(c) r�� plane                (d) 88 �� � plane 

Fig. 4.19  Yield loci of the UST in the meridian plane 
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In some books on soil mechanics and geomechanics, (�1��3) is often used as 
coordinate. Then the figure  (�1��3)@p can be drawn. In the case of triaxial 
confined pressure experiments, the stress state is axisymmetric, i.e., �2=�3. The 
generalized shear stress q  is  

 

2 2 2
1 2 2 3 3 1 1 3

1 [( ) ( ) ( ) ]
2

q � � � � � � � �� � � � � � � �                (4.54) 

 
The q@p coordinate and the !�1��3)�@ p coordinate are identical in the case of 

triaxial confined pressure. It is worth noting, however, that they are not identical 
in other cases. 

4.14 Extend of UST from Linear to Non-Linear UST 

The unified strength theory can also be extended into various multiple–parameter 
criteria for more complex conditions. The expressions are  
 

2
13 12 1 13 12 1 1( ) m mF b b A B C� � � � � � �� � � � � � �                  (4.55a) 

2
13 23 2 13 23 2 2( ) m mF b b A B C� � � � � � �
 � � � � � � �                            (4.55b) 

or 
F =( 13 13� ��� )2 +b ( 12 12� ��� )2 + A1

2
m� = C                          (4.56a) 

F�=( 13 13� ��� )2 + b ( 23 23� ��� )2 + A2
2

m�  =C                          (4.56b) 
 

Equations (4.55a) and (4.55b) can be simplified to the unified strength theory 
when A1=A2=0, B1=B2=0 and �1=�2. In this case, it becomes the single-shear 
strength theory (Mohr-Coulomb strength theory) when b=0, or the twin-shear 
strength theory when b=1.   

When A1=A2=0, B1=B2=0 and �1=�2=0, Eqs. (4.55a) and (4.55b) are simplified 
to the unified yield criterion. In this case, the single-shear yield criterion (the 
Tresca yield criterion) and the twin-shear yield criterion are introduced when b=0 
and b=1, respectively. 

Equations (4.55a), (4.55b) and (4.56a), (4.56b) are nonlinear equations. It is 
not convenient for analytical solution in plasticity and engineering applications. 

These formulations are the nonlinear unified strength theory. The non-linear 
yield surfaces of the three special cases (b=0, b=1/2, and b=1) of the unified 
strength theory can be drafted by computer. The 3D computer images of the yield 
surface for the unified strength theory in the stress space were given by Zhang 
(2005). These three special cases of the unified strength theory are the lower 
bound, the upper bound and the median criterion in entire convex criteria. They 
may be considered as the three basic criteria, as shown in Figs. 4.20, 4.21 and 4.22. 
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(a) Linear surface                                    (b) Non-linear surface 

Fig. 4.20  Twin-shear strength theory (unified strength theory with b=1) 
 
 

       
(a) Linear surface                              (b) Non-linear surface 

Fig. 4.21  Unified strength theory with b=1/2 

 

           
(a) Linear surface                                     (b) Non-linear surface  

Fig. 4.22  Single-shear strength theory (unified strength theory with b=0, Mohr-Coulomb theory)
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The comparison of the yield surfaces of the nonlinear unified strength theory 
with the linear unified strength theory are shown in Figs. 4.20, 4.21 and 4.22. The 
yield surface of the linear unified strength theory with b=1 (twin-shear strength 
theory, linear pressure sensitive) and the yield surface of the nonlinear twin-shear 
strength theory (nonlinear pressure sensitive) are shown in Fig. 4.20(a). It is a 
special case as shown in Fig. 4.20(b).  

The yield surface of the linear unified strength theory with b=1/2 (linear 
pressure sensitive) and yield surface of the non-linear unified strength theory 
(nonlinear pressure sensitive) are shown in Figs. 4.21(a) and 1.21(b). The yield 
surface of the linear unified strength theory with b=0 (linear pressure sensitive) 
and yield surface of the non-linear unified strength theory (nonlinear pressure 
sensitive) are shown in Figs. 4.22(a) and 4.22(b). 

4.15 Equivalent Stress of the Unified Strength Theory 

A quantity called the equivalent stress is commonly used in solid mechanics and 
engineering computational codes. The definition of equivalent stress is very 
important for the calculation of elasto-plastic theory because the mathematical 
expression of yield criterion is usually same as the equivalent stress. When the 
equivalent stress �eq is less than the yield strength of material under uniaxial stress 
�y, i.e. �eq <�y 

 the material is elastic; when the equivalent stress �eq  reaches or 
exceeds the yield strength of material under uniaxial stress, i.e. �eq �y the 
material yielding. 

The introduction of the equivalent stress gives the possibility to compare 
multi-axial stress states with a uni-axial one. Unlike stress components, however, 
the equivalent stress has no direction. It is fully defined by magnitude with stress 
units. It is always to calculate the elastic limit and the factors of safety at different 
points. It provides adequate information to assess the safety of the design for many 
materials and structures. It is also convenient to use the equivalent stress in FE 
codes and computational plasticity. Application of finite element equivalent stress 
method is always used to analyze the strength of various structures. 

The familiar equivalent stress is the von Mises equivalent stress �eq
Mises, it is 

also called the von Mises yield criterion, which states that a material starts to yield 
at a point when the equivalent stress of a three-shear stress function reaches the 
yield strength of the material, i.e. �eq

Mises=�y. However, the equivalent stress at a 
point does not uniquely define as the von Mises stress, a great of equivalent 
stresses for non-SD materials and SD materials have been proposed in the past. 
Several typed equivalent stresses are described below. 
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4.15.1 Equivalent Stresses for Non-SD Materials 

Three typed equivalent stresses for non-SD materials are expressed as follows. 
1) Single-shear equivalent stress (Tresca equivalent stress) 
 

eq
Tresca 1 3� � �� �                                                         (4.57) 

 
2) Three-shear equivalent stress (Mises equivalent stress) 
 

eq
Mises

1
2

� � [ 2
1 3( )� �� + 2

1 2( )� �� + 2
2 3( )� �� ]1/2                 (4.58) 

 
3) Twin-shear equivalent stress (twin-shear yield criterion) 
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                 (4.59) 

4.15.2 Equivalent Stresses for SD Materials 

Lower and upper bounds of equivalent stresses for SD materials are 
1) Lower bound: Single-shear equivalent stress (Mohr-Coulomb equivalent 

stress) 
eq

M C 1 3� � ��� � �                                                (4.60) 
 
2) Upper bound: Twin-shear equivalent stress (Twin-shear strength theory) 
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              (4.61) 

4.15.3 Equivalent Stresses of the Unified Yield Criterion 

Three typed equivalent stresses for non-SD materials expressed in Eqs. (4.57), 
(4.58), (4.59) can be unified in an equivalent stress of unified yield criterion as  
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          (4.62) 

 
The equivalent stress of unified yield criterion encompassed most well-known 

equivalent stresses as special cases or linear approximation. 
1) b=0, deduced to single-shear equivalent stress (Tresca equivalent stress)  
2) b=1, deduced to twin-shear equivalent stress (Twin-shear yield criterion) 
3) b=0.5, deduced to a new median equivalent stress (median yield criterion), 

it is a linear approximation for the three-shear equivalent stress (Mises yield 
criterion) 

4.15.4 Equivalent Stress of the Unified Strength Theory 

The general expression of the equivalent stress of the unified strength theory is  
 

1eq
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      (4.62) 

 
Equivalent stress of the unified strength theory is a serial formula of equivalent 

stress. It encompassed most well-known equivalent stresses as special cases. Most 
equivalent stresses can be deduced from the equivalent stress of the unified 
strength theory. 

4) �=1 and b=0, deduced to single-shear equivalent stress (Tresca equivalent 
stress); 

5) b=0, deduced to single-shear equivalent stress (Mohr-Coulomb equivalent 
stress); 

6) �=b=1, deduced to twin-shear equivalent stress (Twin-shear yield criterion); 
7) b=1, deduced to twin-shear equivalent stress (Twin-shear strength theory); 
8) �=1 and b=0.5, approximated to three-shear equivalent stress (Mises 

equivalent stress); 
9) b=0.5, deduced to a new median equivalent stress (median strength theory). 
The equivalent stress of the unified strength theory can be used for elastic 

analysis, elastic limit analysis, elasto-plastic analysis of structures in solid 
mechanics, FE method, computational plasticity and machine design. A simple 
example is illustrated as follows. 
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A part of rocket, tail hood, is analyzed. Three-dimension elastic analysis and 
the maximum equivalent stresses of UYC (equivalent stress of unified yield 
criterion) are shown in Table 4.1.  

 
Table 4.1  Maximum equivalent stresses of tail hood 

Equivalent stress of UYC (MPa) 
Load q 
(MPa) �eq

Tresca 
 

UYC with b=0 
�eq

Mises 
UYC with b=0.4 

�eq
Twin-shear 

UYC with b=1 
2.4 366.72 327.89 315.81 

3.3 427.21 385.05 373.75 

3.6 457.34 412.41 400.86 
 

It can be seen that the application of the equivalent stress of unified yield 
criterion or equivalent stress of unified strength theory is very simple, convenient 
and useful. 

4.16 Examples 

Example 4.1 

Consider a metallic material with the same yield stress both in tension and in 
compression. If its shear yield stress is �y = 0.63�y  and Poisson’s ratio is  =0.3, 
find an available yield criterion and draw its yield loci in the deviatoric plane, 
plane stress state and plane strain state. 

Solution  

The Tresca yield criterion (single-shear yield criterion) predicts the shear yield 
stress is �y = 0.5�y  and the Huber-von Mises yield criterion (octahetral shear 
stress yield criterion) predicts the shear yield stress is �y = 0.577�y. Obviously, 
these two yield criteria do not fit this kind of material with �y = 0.63�y. 

According to the unified yield criterion Eqs. (4.21a) and (4.21b), the parameter 
b in the unified yield criterion can be determined as  
 

b= y y

y y

2� �
� �

�

�
= 2 0.63 1

1 0.63
> �
�

=0.7 
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Substituting b=0.7 into Eqs. (4.17a) and (4.17b), a new available yield criterion is 
obtained as  
 

1 2 3 y
1 (0.7 ) ,

1.7
f � � � �� � � �     if  2 1 3

1 ( )
2

� � �� �  

1 2 3 y
1 ( 0.7 )

1.7
f � � � �
 � � � � ,     if  2 1 3

1 ( )
2

� � �� �  

 
The yield locus of this yield criterion (b=0.7) in the deviatoric plane and plane 

stress state are shown in Fig. 4.23. 
 

        
(a) Deviatoric plane                                          (b) Plane stress state   

Fig. 4.23  Yield locus of a new yield criterion (b=0.7) 
 

Example 4.2 

Introduce an available yield criterion and draw its yield loci in the deviatoric plane, 
plane stress state and plane strain state when the shear yield stress is �y =0.59�y 
and the Poisson�s ratio is  =0.2.  

Solution  

The parameter b in the unified yield criterion can be determined by using the 
relationship  
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                   b= y y

y y

2� �
� �

�

�
=

59.01
159.02

�
�> =0.44                                    (4.64)  

 
Substituting b=0.44 into Eqs. (4.17a) and (4.17b), an available yield criterion 

is obtained.  
 

            
1 2 3 y

1 (0.44 )
1.44

f � � � �� � � � ,     if  )(
2
1

312 ��� ��            (4.65a) 
 

            
1 2 3 y

1 ( 0.44 )
1.44

f � � � �
 � � � � ,     if  )(
2
1

312 ��� ��        (4.65b) 

 
The yield loci of this yield criterion in the deviatoric plane and plane stress 

state are illustrated in Figs. 4.25 and 4.26. 
 

     
(a) Deviatoric plane                                                         (b) Plane stress state   

Fig. 4.24  Yield locus of a new yield criterion (b=0.44) 
 

Example 4.3 

A yield surface of the unified strength theory with b=0.5 in stress space is 
illustrated by Zhang et al. (2008), as shown in Fig. 4.25. 
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Fig. 4.25  A yield surface of the unified strength theory with b=0.5 (Zhang et al., 2008) 

4.17 Summary 

Based on the the twin-shear model and multi-shear model, a new unified strength 
theory was proposed by Yu in 1991 (Yu and He, 1991; Yu, 1992). This unified 
strength theory (unified strength theory) is not a single yield criterion suitable only 
for one kind of material, but a completely new system. It embraces many well-
established criteria as its special or approximate cases, such as the Tresca yield 
criterion, the Huber-von Mises yield criterion and the Mohr-Coulomb strength 
theory, as well as the twin-shear yield criterion (Yu, 1961a), the generalized twin-
shear strength theory (for SD materials, Yu et al., 1985) and the unified yield 
criterion (for non-SD materials). The unified strength theory forms an entire 
spectrum of convex and nonconvex criteria, which can be used to describe many 
kinds of engineering materials. The unified strength theory has a unified 
mechanical model and a simple and unified mathematical expression, which can 
be adapted to the various experimental data. It is easy to use in both research and 
engineering.  

The advances in strength theories are briefly illustrated in Fig. 4.26. This 
shows the development from single-shear theory to three-shear theory, then from 
twin-shear theory to the unified strength theory (a set of the serial criteria). 
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Fig. 4.26  Advances in strength theories 

 
The unified strength theory establishes very clear and simple relations among 

the various yield criteria, as show in Fig. 4.27. It also provides a method for 
choosing the appropriate yield criterion. 
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Fig. 4.27  Variation of the unified strength theory and the relationships among the criteria 

 
The SD effect, hydrostatic stress effect, normal stress effect, effect of the 

intermediate principal stress, the effect of intermediate principal shear stress and 
the effect of the twin-shear stresses are all taken into account in the unified 
strength theory. 

The unified strength theory is a completely new theory system. The 
significance of the Yu unified strength theory is summarized as follows: 

1) It is suitable for more kinds of isotropic materials. 
2) It contains various spread strength theories and forms a new system of yield 
criteria and failure criteria. It provides a relationship between the single-shear 
criterion, the twin-shear criterion and a series of new criteria. 
3) It gives good agreement with experimental results for various materials. 
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4) A series of new results can be obtained by using the unified strength theory.  
5) The unified strength theory is easy to use for analytical solutions of plastic 

problems. The applications of the unified strength theory are described in the next 
chapters. It is suitable for plastic analysis of structures.  

The mathematical expression of the unified strength theory can be given in 
various forms. More than ten kinds of expressions are discussed in this chapter. 

The parameters of unified strength theory are the same as the parameters used 
in the Mohr-Coulomb strength theory (1900), Drucker-Prager criterion (1952), the 
twin-shear strength theory (Yu et al., 1985) and other two-parameters criteria. 
Tensile strength �t , compressive strength �c (or �t , �) or friction angle � and 
cohesion C0 are the most used material parameters in engineering. 

The yield function can be interpreted for an isotropic material in terms of a 
geometrical representation of the stress state obtained by taking the principal 
stresses as coordinates. The advantage of such a space lies in its simplicity and 
visual presentation.  

The yield surface of the unified strength theory in stress space and yield loci 
on plane stress, the deviatoric plane and meridian plane are illustrated in this 
chapter. Unified strength theory embraces many well-established yield surfaces 
and yield loci as its special or asymptotic cases, such as yield surfaces of the 
Tresca yield criterion, the Huber-von Mises yield criterion and the Mohr-Coulomb 
strength theory, as well as the twin-shear yield criterion (Yu, 1961a), the twin-
shear strength theory and the unified yield criterion. The unified strength theory 
forms an entire spectrum of convex and nonconvex criteria, which can be used to 
describe many kinds of engineering materials.  

The yield surfaces and yield loci of the unified yield criterion, the twin-shear 
strength criterion, the twin-shear yield criterion, the single-shear strength criterion 
(Mohr-Coulomb theory), the single-shear yield criterion (Tresca yield criterion) 
and many empirical failure criteria are special cases or linear approximations of 
the yield surface of the unified strength theory. A series of new yield surfaces and 
yield loci  can also be drawn based on the unified strength theory. 

A paper entitled “Remarks on Model of Mao-Hong Yu” was written by 
Altenbach and Kolupaev (2008). Reviews of “Unified Strength Theory and its 
Applications” were made by Shen (2004) and Teodorescu (2006). Comments on 
the unified strength theory were made by and Fan and Qiang (2001) and Zhang et 
al. (2001). 
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5 

Non-Smooth Multi-Surface Plasticity 

5.1 Introduction 

Most materials in structures are acted under the complex stress states, i.e., 
biaxial and multiaxial stresses. Strength theory provides a yield (or failure) criterion, 
a limiting stress state for elasticity, or an initial deformation for plasticity. 
Sometimes it is also used as an associated or non-associated flow rule for plastic 
constitutive relations.  

The previous chapters described the yield functions and the corresponding yield 
surfaces that characterize the initial yielding of materials. The post-yielding, 
loading and unloading behavior of the materials is related to the stress-strain 
relation for plastically deformed solids, namely the constitutive relations for plastic 
deformation of engineering materials. Classical plasticity theory discusses plastic 
flow rules such as Levy-Mises and Prandtl-Reuss equations, Drucker’s stability 
postulate, isotropic, kinematic and combined hardening rules, and derives general 
stress-strain relations for plastic deformation of different materials. The general 
description on plasticity can be seen in Hill (1950), Johnson and Mellor (1962), 
Mendelson (1968), Martin (1975), Owen and Hinton (1980), Chakrabarty (1981), 
Khan (1995), Belytschko et al. (2000), and Dunne and Petrinic (2005).  

Non-smooth multi-surface plasticity, where the yield surface consists of several 
smooth yield surfaces, is studied and described by Simo and Tarloy (1998). The 
non-smooth multi-surface is shown in Fig. 5.1(a). Non-smooth multi-surface 
plasticity, where the yield surface consists of several linear yield surfaces, is studied 
and described by Yu (1992; 1998; 2004), as shown in Fig. 5.1(b). It is the piece- 
wise linear yield surface, which was studied by Koiter (1953). Sometimes the 
non-smooth multi-surface is referred to as the singular yield surface. 

In this chapter, the non-smooth multi-surface yield criterion or piece-wise linear 
yield functions are developed and used to describe the fundamental problem of 
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plasticity. For solving the singularity of piece-wise linear yield functions, the 
associated flow rule and incremental constitutive relations for unified strength 
theory will be mainly developed. 

 

     
(a) Consisting of some smooth surfaces    (b) Consisting of some smooth linear surfaces 

Fig. 5.1  Non-smooth multi-surface yield criterion 

5.2 Plastic Deformation in Uniaxial Stress State 

For a stress-strain curve shown in Fig. 5.2 of an elasto-plastic material, the behavior 
can be characterized as an elastic region with an elastic modulus E until yielding 
commences at the axial yield stress �Y, and at a plastic region with a continually 
varying local tangent ET to the curve. ET is the elasto-plastic tangent modulus. The 
hardening law k = k(A) can be readily derived in terms of the plastic work achieved 
for the material. 

In the elastic region, the stress-strain relation has a linear form, 
 

�� E�                                                   (5.1) 
 
In the plastic region, the total strain increment in the uniaxial stress state is the 

sum of the elastic strain increment and the plastic strain increment, i.e. 
 

d d de p� � �� �                                              (5.2) 
 

Assuming that the plastic deformation is rate insensitive, the stress increment is 
linearly related to the elastic strain increment in the plastic region and can be 
expressed by 

 
d d (d d )e pE E� � � �� � �                                 (5.3) 
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Fig. 5.2  Uniaxial elasto-plastic stress strain curve 

 
The initial yield point �Y differentiates the elastic and plastic regions. The stress 

in the plastic region can be determined by a hardening rule, 
 

( )Y� � A�                                                        (5.4) 
 

where A is a hardening parameter. In the uniaxial stress state, the plastic strain �p is 
usually used for the hardening parameter, i.e. A=�p. The plastic strain �p is history or 
path dependent. It can be calculated by 

 
dp p� �� B                                             (5.5) 

 
Considering the strain decomposition Eq. (5.2), we can derive 
 

d d 1 1d d d dp e

T TE E E E
� �� � � �

# $
� � � � � �% &

' (
                    (5.6) 

 
The tangent modulus ET is considered to be a function of stress and plastic strain 

�p, 
 

( , )p
T TE E � ��                                                   (5.7) 

 
which should be determined experimentally from a simple uniaxial yield test. Based 
on Eqs. (5.6) and (5.7), an incremental constitutive relation of the material can thus 
be derived. 

The constitutive relation differs for plastic loading and elastic loading or 
unloading. It is necessary to identify the process as belonging to plastic loading or 
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elastic unloading. Loading and unloading represent a deformation process that 
starts from a plastic state, continues to deform plastically and then returns to the 
elastic region. A previous plastic state is always implied. The loading and unloading 
criterion in the uniaxial stress state can be represented as 

 

d 0� � �     for   loading                                          (5.8) 

d 0� � *     for   unloading                                      (5.9) 
 

It can be seen that the fundamental elements of the plastic deformation include 
initial yielding of the material, strain hardening and subsequent yielding, the 
incremental constitutive equation and loading and unloading criterion, etc. In the 
three-dimensional case, the constitutive equations can be represented in tensor 
notation, which will be discussed in the following sections. 

5.3 Three-Dimensional Elastic Stress-Strain Relation 

Plastic theory in the uniaxial stress can be extended to the three-dimensional case. 
The elastic stress-strain relationship in the three-dimensional case can be given by 
the generalized Hooke’s law in the Cartesian coordinate system for isotropic 
materials. In tensor notation, it has the form of 

 
3

2
ij

ij ijp
G E
� � �� �                                           (5.10) 

 
where �ij is the Kronecker delta and p=�kk/3 is the mean stress or hydrostatic 
pressure in the material. E, G and  are the elastic modulus, the shear modulus and  
the Poisson’s ratio, respectively. They have the following relationship, 

 

2(1 )
EG


�
�

                                                 (5.11) 

 
Equation (5.10) can be rewritten as 
 

1 (1 ) 3

1 (1 )

ij ij ij

ik jl ik kl kl

ijkl kl

p
E

E
M

�  �  �
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�

� �� � �� �

� �� � �� �

�

                               (5.12) 
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where 1 (1 )ijkl ik jl ik klM
E

 � � � �� �� � �� � . The elastic stress tensor can then be 

deduced from Eq. (5.12) as 
 

3
1 1 2

1 1 2

ij m ij ij

ik il ij kl kl

ijkl kl

E

E

C

� � � �
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�

� �� �� �� �� �
� �� �� �� �� �

�

                                    (5.13) 

 
in which Cijkl is the stiffness tensor of the fourth order, �m=�kk/3 is the mean strain 
and 

 

��
�

��
�

�
�

�
� klijilikijkl

EC ��


��
 211

                                 (5.14) 

 
The stiffness tensor Cijkl has 21 independent components for anisotropic 

materials. The components depend on two independent constants only for isotropic 
materials.  

The stress tensor can also be written using the Lame constantas 
 

2ij ij kk ijG� � 0� �� �                                              (5.15) 
 

where 0 is the Lame constant and can be expressed in terms of E and  as 
 

(1 )(1 2 )
E0

 
�

� �
                                                (5.16) 

 
The elastic stress strain relation can also be expressed in an incremental form, 

i.e. 
 

d dij ijkl ijM� ��                                               (5.17) 
or 

d dij ijkl ijC� ��                                                 (5.18) 

 

5.4 Plastic Work Hardening and Strain Hardening 

The total strain increments in the three-dimensional case can be generalized as  
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d d de p
ij ij ij� � �� �                                              (5.19) 

 
where d�ij

e is the elastic strain increment and d�ij
 p is the plastic strain increment. 

The decomposition is correct for cases of infinitesimal strain, only that in the case 
of finite strain there will be geometrical elasto-plastic coupling between the elastic 
and plastic strain measures so that Eq. (5.19) will lose its conventional physical 
meaning. 

After initial yielding, the stress level at which further plastic deformation occurs 
may be dependent on the current degree of plastic straining. Such a phenomenon is 
termed work hardening or strain hardening. Thus, the yield surface will vary at each 
stage of the plastic deformation, with the subsequent yield surfaces being 
dependent on the plastic strains in some way. Due to its dissipation feature the 
plastic deformation process is history or path dependent. In other words, there will 
not be a one-to-one correspondence between stress-strain during plastic 
deformation. Some alternative models which describe strain hardening in a material 
are illustrated in Fig. 5.3. A perfect plastic material means that the yield stress level 
does not depend in any way on the degree of plastic deformation. If the subsequent 
yield surfaces are a uniform expansion of the original yield curve, without 
translation, the strain hardening model is said to be isotropic. On the other hand, if 
the subsequent yield surfaces preserve their shape and orientation but translate in 
the stress space as a rigid body, kinematic hardening is said to take place. Such a 
hardening model gives rise to the experimentally observed Bauschinger effect on 
cyclic loading.  

 

 
 

Fig. 5.3  Representation of Strain Hardening Behavior 
 
The progressive development of the yield surface can be defined by relating the 

yield stress k to the plastic deformation by means of the hardening parameter �. This 
can be postulated to be a function of the total plastic work Wp only. Plastic 
deformation can also be associated with the dissipation of energy so that it is 



5.4  Plastic Work Hardening and Strain Hardening 135 

irreversible. Then  
 

pWA �                                                          (5.20) 
 
where  

 
(d )p

p ij ijW � �� B                                                  (5.21) 
 
in which d�ij

p are the plastic components of strain occurring during a strain 
increment. Alternatively, � can be related to a measure of the total plastic 
deformation termed the effective, generalized or equivalent plastic strain which is 
defined incrementally as  

 
1
22d (d )(d

3
p p

p ij ij� � �� �� � �                                    (5.22) 

 
A physical insight of this definition is proven where uniaxial yielding is 

considered. For situations where the assumption that yielding is independent of any 
hydrostatic stress is valid, d�ij

p =0 and hence d�ij
p = d�ij
p, where d�ij
p is the 

deviatoric plastic strain increment. Consequently, the above equation can be 
rewritten as 

 

1
22d (d )(d

3
p p

p ij ij' '� � �� �� � �                                             (5.23) 

 
Then the hardening parameter k is assumed to be defined as 
 

pA ��                                                               (5.24) 
 

where p�  is the result of integrating d p�  over the strain path. This behavior is 
termed strain hardening.  

Strain states for which f=k represent plastic states, while elastic behavior is 
characterized by f<k. In a plastic state, f=k, the incremental change in the yield 
function due to an incremental stress change is 

 

d d ij
ij

ff �
�
-

�
-

                                          (5.25)

Then, if 
df<0 elastic unloading occurs and the stress point returns inside the yield 

surface. 
df=0 neutral loading and the stress point remains on the yield surface. 
df>0 plastic loading for a strain hardening material. 
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5.5 Plastic Flow Rule 

The general mathematical treatment of the constitutive equation for plastic 
deformation or flow was proposed by von Mises in 1928. In elastic theory the strain 
tensor was related to the stress tensor through an elastic potential function, the 
complementary strain energy U such that 

 

ij
ij

U
�

�
-
-

�                                                  (5.26) 

 
By extending this idea to plasticity theory, Mises proposed that there existed a 

plastic potential function Q(�ij), and the plastic strain increments d�ij
p can be 

derived similar to Eq. (5.26), 
 

d dp
ij

ij

Q� 0
�
-

�
-

                                                   (5.27) 

 
where d0 is a proportional positive scalar factor. To determine d0, the yield 
function should be used. The plastic flow rule shown in Eq. (5.27) is called plastic 
potential theory. The plastic potential Q(�ij)=C, or a constant, represents a surface 
in the six-dimensional stress space, and the plastic strain d�ij

p can be represented by 
a vector which is perpendicular to the surface Q(�ij)=C.  

A common approach in plasticity theory is to assume that the plastic potential 
function Q(�ij) is the same as the yield function F(�ij), 

 
)()( ijij FQ �� �                                                    (5.28) 

 
Equation (5.23) can then be rewritten as 
 

d dp
ij

ij

F� 0
�
-

�
-

                                             (5.29) 

 
and the plastic flow vector is normal to the yield surface. This is called the 
associated flow rule. On the other hand, if Q/F, the flow rule is called 
non-associated. 

The association of Q with F is based on an assumption whose validity can be 
verified empirically. Experimental observations show that the plastic deformation 
of metals can be characterized quite well by the associated flow rule, but for some 
porous materials such as rocks, concrete and soils, the non-associated flow rule may 
provide a better representation of their plastic deformation. Mathematically it can 
be proved by using Drucker’s stability postulate that if the material is stable in 
Drucker’s sense, the flow vector must be associated. 
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The Prandtl-Reuss equation is a special case of the associated flow rule. Indeed, 
applying the Huber-von Mises yield criterion gives 

ij
ij

S
J

�
-
-
�

2                                                           (5.30) 

 
where Sij is the deviatoric stress tensor. Eq. (5.29) then gives 

 

d d dp
ij ij

ij

F S� 0 0
�
-

� �
-

                                            (5.31) 

 
which is the Prandtl-Reuss equation, or the Levy-Mises equation if the elastic strain 
rate is ignored. Thus, within the general framework of the plastic potential theory, 
the Prandtl-Reuss or the Levy-Mises equation implies the Huber-von Mises yield 
function and the associated flow rule. 

The complete incremental relationship between stress and strain for 
elasto-plastic deformation is found to be 
 

1d (1 ) d dij ik jl ik kl kl
ij

Q
E

�  � � � � � 0
�
-� �� � � �� � -

                      (5.32) 

5.6 Drucker’s Postulate – Convexity of the Loading Surface 

Drucker (1951) proposed a unified approach based on his stability postulate to 
establish the general plastic stress-strain relations. One major consequence of 
Drucker’s posulate is that the flow rule for stable materials is associated (i.e., Q=F). 
For a stable material, it can be proved that the yield surface must be convex 
(Drucker, 1952; Mendelson, 1968). The proof of convexity of the yield surface by 
Mendelson is described as follows. 

Considering a material element in equilibrium with a given state of stress �ij
0 

inside the loading surface, as shown in Fig. 5.4, first it is necessary to define a stress 
cycle or a closed loading-unloading path in stress space. Let some external agency 
add stresses along some arbitrary path inside the surface. Only elastic changes have 
taken place so far. Now suppose the external agency to add a very small outward 
pointing stress increment d�ij, which produces small plastic strain increments d�ij

 p 
as well as elastic increments. The external agency then releases the d�ij

 p and the 
state of stress is returned to �ij

0 along an elastic path. 
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Fig. 5.4  A closed loading-unloading path 

 
The work done by the external agency over the cycle is 
 

0( )d d dp p
ij ij ij ij ijW � � � � �� � � �                                   (5.33) 

 
If the plastic strain coordinates are superimposed on the stress coordinates as in 

Fig. 5.5, �W may be interpreted as the scalar product of the vector (�ij �ij
0) and the 

vector d�ij
p plus the scalar product of d�ij and d�ij

p. Now, from the strain-hardening 
definition, we have 

 
d d 0p

ij ij� � �                                                     (5.34) 
or 

d d cos 0p
ij ij� � � �                                      (5.35) 

 
and  � /2��� /2.  
 

   
Fig. 5.5  Stress and plastic strain increment vectors 

 
 
It means that the vector d�ij and d�ij

p form an acute angle with each other. Since 
the magnitude of (�ij �ij

0) can always be made larger than the magnitude of d�ij, it 
follows that 

 
0( )d 0p

ij ij ij� � �� �                                               (5.36) 
or 
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0 d cos 0p
ij ij ij� � � �� �                                       (5.37) 

Hence 

� /2�� � /2 
 

Thus the vector (�ij �ij
0) forms an acute angle with the vector d�ij

p for all 
choices of �ij

0. Therefore, all points �ij
0 must lie on one side of a plane 

perpendicular to d�ij
p and, since d�ij

p is normal to the yield surface, this plane will be 
tangent to the yield surface. This must be true for all points �ij on the yield surface, 
so that no vector (�ij �ij

0) can pass outside the surface intersecting the surface 
twice or more, as shown in Fig. 5.6. The yield surface must therefore be convex. 
The yield surface shown in Fig. 5.6 is non-convex (from the view of the yield 
surface interior it is concave). On the non-convex yield surface several vectors (�ij

�ij
0) can make�ij -�ij

0 d�ij
p<0 and the inequality (5.36) is violated. The vector (�ij

�ij
0) can pass outside the surface that intersects the surface thirdly, as shown in 

Fig. 5.7. 
 

 
Fig. 5.6  Convex yield surface and Non-convex yield surface 

 

 
Fig. 5.7  Illustration of the geometry at a singular point (Simo and Hughes, 1991; 1998) 

The convex yield surface may be a single function, or piece-wise functions 
consisting of some smooth functions, in which two convex functions f1(�ij) and 



5  Non-Smooth Multi-Surface Plasticity 140 

f2(�ij) or f1(�ij) and f3(�ij) intersect non-smoothly as shown in Figs. 5.7 and 5.8. 
Fig. 5.7 is an illustration of the geometry at a singular point, the intersection of two 
yield surfaces (Simo and Hughes, 1991; 2000). 

Figure 5.9 is a family of piece-wise linear functions. It is interesting that the two 
bounds of the convex yield surface are piece-wise linear. It is the same as the yield 
surface of the unified strength theory illustrated in Figs. 4.16 and 4.17 in Chapter 4. 
The inner bound (dotted line) and the outer bound are consisted of six linear 
functions.  

 

    
Fig. 5.8  Piece-wise yield function          Fig. 5.9  Piece-wise-linear yield functions  

 
The associate plastic flow rule implies that the yield surface has a unique 

gradient. It may happen, however, that the yield surface has vertices or corners 
where the gradient is not defined. For example, the Tresca hexagon has no unique 
normal at the corners, where two of the stresses are equal. Such points are called 
singular points or singular yield conditions, as shown in Fig. 5.10. Figure 5.11 
shows the singularity of the single-shear theory and the twin-shear theory. The 
process of the singularity of the yield functions will be discussed in Sections 5.10

5.13. 
The yield loci (elastic boundaries) of the single-shear theory (Tresca criterion 

and the Mohr-Coulomb criterion) are composed of several linear yield loci. 
Sometimes the yield loci may be composed of several smooth loci. They are the 
non-smooth yield surface. The singularity at the corners or singular points and 
non-smooth multi-surface plasticity were investigated by many researchers. The 
details can be seen in the books of Owen and Hinton (1980), and the book of Simo 
and Hughes (1998). The process of corners were also described in the books of 
Owen et al. (1989) and Smith and Griffiths (2004). Removal of singularities in the 
Tresca and Mohr-Coulomb yield function was studied by Sloan and Booker (1986). 
The corners on the Tresca surface and on the Mohr-Coulomb surface were 
processed by rounding off the yield surface corners. The method used in the 
programs to overcome this singularity is to replace the hexagonal surface by a 
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smooth conical surface at the local corner. The detailed research of non-smooth 
multi-surface plasticity can be seen in Simo et al. (1988) and in Chapter 7 of Owen 
and Hinton (1980), chapter 5 of Simo and Hughes (1998) and Chapter 6 of Smith 
and Griffiths (2004). 

 

     
Fig. 5.10  Tresca yield function and its singularity at corners 

 

     
Fig. 5.11  Singularity at corners of the single-shear and twin-shear theories 

5.7 Incremental Constitutive Equations in Matrix Formulation 

For various engineering materials, a yield criterion indicating the stress level at 
which plastic flow commences must be postulated. A relationship between stress 
and strain must be developed for post-yield behavior, i.e. when the deformation is 
made up of both elastic and plastic components. The yield surface separates the 
plastic region from the elastic region. The change in the stress state from the yield 
surface toward its interior will cause elastic unloading. Plastic loading will occur 
only if the increment of the stress is directed toward the outside of the yield surface.  

The yield function can be represented by  
 

0),( �kF ij�   or  kf ij �)(�                                       (5.38) 

 
where k is a material parameter. It can be determined experimentally. It can be a 
function of a few material strength coefficients or a constant for elastic- 
perfect-plastic material. The term k can be defined a function of a hardening 
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parameter A . Thus the yield function can be extended to describe the post-yield of 
the material, or k =k(A). 

For simplicity, the yield function in Eq. (5.38) can be rewritten in terms of the 
three principal stressesas. 

 
0),,,( 321 �kF ���                                                      (5.39) 

 
For isotropic material, the yield function is independent of the orientation of the 

coordinate system employed. Therefore, it is usually presented by a function of the 
three invariants, i.e., 
 

0),,,( 321 �kJJIF                                                       (5.40) 
 
where I1 is the first invariant of the stress tensor, J2 and J3 are respectively the 
second and the third invariants of the deviatoric stress tensor. Alternatively, the 
above yield function is represented as 
 

0),,,( 21 �kJIF �                                                        (5.41) 
 
in which � is a Haigh-Westergaard coordinate or Lode angle, as used in  
geotechnical engineering.  

For elasto-perfect-plastic material, the parameter k in the yield functions is a 
constant. It means that the yield surface is independent of the plastic strain, thus the 
geometry and the size of the yield surface will not change with the successive 
deformation of the material. The post-yielding surface is exactly the initial one. 
When the stress point is retained at the yield surface, this means under loading 
conditions, and when the stress point moves into the inside of the yield surface, this 
implies unloading. For plastic hardening material, k can be defined by a 
work-hardening or strain-hardening parameter �. The post-yielding surface is thus 
different from the initial yielding surface. 

The equation is termed the normality condition since 
ij

F
�
-
-

 is a vector directed 

normal to the yield surface at the stress point under consideration. 
Differentiating a hardening yield function, it has 
 

1 2 3
1 2 3

d d d d d d d 0ij
ij

F F F F F FF k
k k

� � � � A
� � � �
- - - - - -

� � � � � � �
- - - - - -

    (5.42) 

 

Introducing a parameter A, where 1 d
d

FA k
k0

-
� �

-
, the above equation can be 

rewritten in a matrix form as 
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d d 0ij
ij

F A� 0
�
-

� �
-

                                        (5.43) 

Converting Eq. (5.43) to a vector form by denoting  
 

T{ } { , , , , , }x y z xy yz zx� � � � � � �� , it has 
 

T{ } , , , , ,
{ } x y z xy yz zx

F F F F F F Fa
� � � � � � �

5 6- - - - - - -7 7� � 8 9
- - - - - - -7 7: ;

                  (5.44) 

 
where {a} is termed the flow vector. Thus, 
 

C DT d{ } d 0a A� 0� �                                              (5.45) 
 
The strain increments can then be derived as  
 

C D1d{ } [ ] d{ } dD a� � 0�� �                                             (5.46) 
 

where [D] is the usual matrix of elastic constants. Pre-multiplying both sides of 
Eq. (5.46) by {a}T[D]. 

 
C D C D C D C D C D C DT T T T[ ]d{ } d{ } d [ ] d d [ ]a D a a D a A a D a� � 0 0 0� � � �        (5.47) 

 
The plastic multiplier is then obtained as 
 

C D
C D C D

T

T

[ ]d{ }
d

[ ]

a D

A a D a

�
0 �

�
                                           (5.48) 

 
Substituting d0 into Eq. (5.46), the complete elasto-plastic incremental 

stress-strain relation can be derived to be 
 

d{ } [ ] d{ }epD� ��                                              (5.49) 
 
in which the elasto-plastic stiffness matrix [D]ep is 

 
C DC D
C D C D

T T

ep T

[ ] [ ]
[ ] [ ]

[ ]

D a a D
D D

A a D a
� �

�
                                    (5.50) 

 
It now remains to determine the explicit form of the scalar term A. A is a 
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function of the hardening parameter A. Employing the work hardening hypothesis 
and the normality condition, 

 
C D C DTT Td { } d{ } { } d d { }p a aA � � � 0 0 �� � �                           (5.51) 

For the uniaxial case, Y��� �� , d dp p� �� , �  and p�  are respectively the 

effective stress and plastic strain. 
 

C DTd d d { }Y p aA � � 0 �� �                                        (5.52) 
 
The effective stress �  is a function of p� , i.e. )( pH �� � . Differentiating it, 

we obtain 
 

dd
d d

Y

p p

H'��
� �

� �                                                 (5.53) 

 
Using Euler’s theorem applicable to all homogeneous functions of order one, 

we have 
 

C DT { } Ya � ��                                                      (5.54) 
 
Substituting Eqs. (5.53) and (5.54) into Eq. (5.52), we obtain 
 

d d p0 ��   and  A H'�                                             (5.55) 
 
The parameter A is determined by the local slope of the uniaxial stress strain 

curve as 

1 /
T

T

EH'
E E

�
�

                                        (5.56) 

 

5.8 Determination of Flow Vector for Different Yield Functions 

For the convenience of numerical simulation implementation, the yield functions in 
Eqs. (5.39)~(5.41) are often used (Nayak and Zienkiewicz, 1972; Owen and Hinton, 
1980). The principal stresses can be calculated by 
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1
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�
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7 75 6 5 6
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                                       (5.57) 

 
with �1��2��3 and 0��� /3. 

The flow vector can thus be expressed as 
 

2T 1

1 2

1 1 2 2 3 3

{ }
{ } { } { } { }

{ } { } { }

JIF F F Fa
I J

C a C a C a

�
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--- - - - -
� � � �
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                     (5.58) 

where  

1
1
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I
-
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                                                                    (5.59a) 

2
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                                        (5.59b) 

3 3
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    (5.60c) 

 
And 
 

23 3
22

23

33 1
{ } 2sin 3 { } { }

JJ J
JJ

�
� � � �

� �--- � �� �
- - -� �� �

                (5.61) 
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For different yield functions, the vectors {a1}, {a2}, and {a3} are consistent and 
only the constants C1, C2 and C3 need to be determined. In Table 5.1, the constants 
for six different yield functions are given. 

 
Table 5.1  Parameters C1, C2 and C3 for 6 different yield functions 

 
 

5.9 Singularity of Piecewise-Linear Yield Functions 

The plastic flow vector has singular points for piecewise-linear yield functions, 
such as the single-shear theory (the Tresca yield function and the Mohr-Coulomb 
yield function), twin-shear theory and the unified strength theory. The flow vector 
at the corners is not unique when the normality condition is applied. Some smooth 
corner models have been proposed to eliminate the singularity of plastic flow for 
piecewise-linear yield functions. These smooth corner models can be divided into 
two categories (Koiter, 1953; Nayak and Zienkiewicz, 1972; Zienkiewicz and 
Pande, 1977; Owen and Hinton, 1980).  

One category is that the projection on the deviatoric plane of the yield surface is 
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simply approximated by a circle (the Huber-von Mises and Drucker-Prager criteria 
fall into this category). It assumes the same tensile and compressive meridians, thus 
cannot agree the experimental results for geomaterials which always give different 
vector lengths for different meridians with a different angle on the deviatoric plane 
(rc�rt), as shown in Fig. 5.12. 

The other category is a kind of smoothening model, which smoothens the 
corners using very complex mathematical models. It lacks a physical concept and is 
not convenient for use in analytical and numerical derivations. The following will 
introduce some convenient ways to solve the corner singularity problem for 
piecewise-linear yield functions, which can be readily implemented into 
elasto-plastic finite element analysis. 

Considering the associated flow rule, the flow vector is normal to the yield 
surface. At the corners of the piecewise-linear yield functions, the flow vectors 
from different sides are thus not consistent. For unified strength theory, there are 
three corners on the deviatoric plane as shown in Fig. 5.13, i.e. �=0º (point A), �=�b 
(point C) and � = 60º (point B). At the corners, the derivative of the yield function 
does not exist, the value and the direction of the plastic strain increment vector of 
the corner cannot be determined directly from the plastic flow rule. 

 
Fig. 5.12  Different vector lengths of yield loci 

 
Fig. 5.13  Singular points of linear piece-wise yield surface 
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The process of the singularity includes 
1) Vector summation method (Koiter, 1953). Its mathematical expression is  

 
1 2

1 2d d dp
ij

ij ij

F F
� 0 0

� �
- -

� �
- -

                                      (5.62) 

 
2) Partially smoothening method (Nayak and Zienkiewicz, 1972). When 

dealing with the singularity of the Tresca and the Mohr-Coulomb functions, Nayak 
and Zienkiewicz (1972) expressed the yield function as F = F(I1, J2, �, k ), where I1 
is the first stress invariant, J2 is the second partial stress invariant, � is the angle of 
the deviatoric plane. The plastic strain increment of the corner (�=�0) can be 
expressed as 
 

0 0 021

1 2

d dp
ij

ij ij ij

F F FJI
I J
� � � � � � �� 0

� � � �
� � �# $- - --- -

� � �% &% &- - - - --' (
                (5.63) 

 
The third item of Eq. (5.63) is simply set to 0. 
3) Linear combination method, i.e.  

 
1 2

1 2 1 2d d( ) (1 )d( ) d (1  )dp p p
ij ij ij

ij ij

f f
� 	 � 	 � 	 0 	 0

� �
- -
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- -

       (5.64) 

 
where 0 � 	 � 1, the direction of d�ij

p is between d(�ij
p) 1 and d(�ij

p) 2. 
These three methods can eliminate the singularity of the yield surface in some 

cases; however, each of them has some drawbacks and sometimes may introduce 
additional errors. For method (1), when the piecewise-linear function is the special 
case F1=F2, the plastic strain increment is two times the real value, which is not 
unreasonable. An average of the vector summation is suggested to solve the 

problem by Yu et al. (1994; 2004). Method (2) eliminates the singularity of 
ij

�
�
-
-

, 

but it made the assumption that 
0

0F

� �� �

-
�

-
. Thus its application is limited. Method 

(3) introduced an uncertain parameter 	 and from a practical analysis this method 
cannot eliminate the singularity in some cases. Besides, Zienkiewicz (1972) and 
Zienkiewicz and Pande (1977) proposed a smooth corner model to replace the 
piecewise-linear yield function.  

Invariant expressions of the unified yield theory have the following form  
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1/ 2 1/ 2 1
2 2

2 1 cos sin (1 )
1 1 33 t

Ib bF' J J
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(5.65b) 

 
The projection curve on the deviatoric plane of Eqs. (5.62a) and (5.62b) is 

shown in Fig. 5.11. From F=F', it gives  
 

3arctan
2 1b� �

�
�

.                                          (5.66) 

 
According to the symmetrical condition, only the singularity of the three points 

A, B, and C should be discussed. For the Tresca criterion and the Mohr-Coulomb 
criterion, there are two singular points A, B only.  

Using the plastic flow vector defined in Eq. (5.58), when F�F', or 0����0, it 
gives  
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               (5.67c) 

 
When F<F
, or �0<�� /3, it gives 
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           (5.68c) 

 
On the two lines AC and BC except for the corners, C1, C2, C3 or C1', C2', C3' 

have a unique value, and the plastic strain increment is unique. The singularity at 
the three corner points A, B, C is discussed separately below.  
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Point A   The corresponding stress state is �1��2=�3, and  �=0. 
When 1/b  
 

sin 0,cos 1,cot 3� � �� � EF                           (5.69) 
 

So, C2EF, C3EF, the plastic vector is a singular function. 
When  b=1 
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then 
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(5.71) 

 
So, when b=1, there is no singularity for point A. 
Point B  The stress state is �1��2=�3, and �= /3. 

When b /1, 
 

� �sin 0,cos 1,cot 3
3 3
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' ( ' (                    (5.72) 

 
So with C
2 E F, C
3 E F, there is singularity for the plastic flow. 
When b=1, 
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so that 
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               (5.74) 

 
So, when b =1, there is no singularity for point B. 

Point C  F = F
,
12

3arctan0 �
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�
��  

When b / 0, 
 

1 1 2 2 3 3, ,C C ' C C ' C C '� / /                                         (5.75) 
 
There is singularity for the plastic flow. 
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When b = 0, F = F
, it is the Mohr-Coulomb criterion, 

1 1 2 2 3 3, ,C C ' C C ' C C '� � �                                      (5.76) 
 

and there is no singularity for the plastic flow. 
So, for the three singular points A, B, C, when b=1 there is no singularity for 

points A, B; when b = 0, there is no singularity for point C. 

5.10 Process of Singularity of the Plastic Flow Vector 

The three different methods discussed in Section 5.9 are first adopted to solve the 
singularity at the three points A, B, C.  

Point A If method (1) is used, 
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When b=1, there is no singularity for point A. When bE1, I
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If method (2) is used it gives 
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unreasonable.  
If method (3) is used it gives 
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point A is eliminated. When 	/1/2, III
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3C EF , the singularity of point 
A cannot be eliminated. So method (3) is not suitable in some instances.  

Point B After some derivation, the following can be obtained: 
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It can achieve similar conclusions to point A. 
Point C If method (1) is used it gives 
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However, when b=0, there is no singularity for point C, so method (1) is 
unreasonable.   

If method (2) is used  
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For II II
2 2C C '/  (b/0), so method (2) cannot eliminate the singularity at Point C. 

If method (3) is used it gives 
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This method can eliminate the singularity of point C and III
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5.11 Suggested Methods 

From the above discussion, methods (1) and (2) are unreasonable, method (3) 
cannot eliminate the singularity in some cases. Two simple methods are suggested 
to eliminate the singularity for the piecewise-linear yield functions (Yu, 1994; 1998; 
2004). 

Method (4)  uses the average method of flow vectors, i.e. assuming 	 =1/2 in 
method (3).  
At point A  it gives 
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At point B  the constants are 
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They are equal to the corresponding parameters when b =1.  
At point C  the constants become 
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constants based on method (4) are reasonable because they can be degraded to that 
of the special cases when b = 1 at corners A and B, and when b=0 at corner C. 
Method (5) simply uses the constants of the case where 1�b  for points A and B 
and the constants of 0�b  for point C. 
For point A  it gives 
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For point B  the constants are 
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For point C  they are 
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These two methods are shown in Figs. 5.14 and 5.15. The average method of 

flow vectors for the piecewise-linear yield function is used for method (4), as 
shown in Fig. 5.14; the corner of the yield function is ‘cut’ by using method (5), as 
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shown in Fig. 5.15.  
 

                
Fig. 5.14  Process of singular points (method 4)   Fig. 5.15  Process of singular points (method 5) 

 
Table 5.2 shows the values of the parameters C1, C2, C3 for different methods. 

From the table, we can be find the parameters C1, C2, C3 of points A, B for method (4) 
and method (5). These two methods are more reasonable than method (1) and 
method (2) and more applicable than method (3). It is very simple. The physical 
concept of the average method of flow vectors is clear. 

Table 5.3 shows the parameters of methods (4) and (5) when �, b are given 
different values. From this table, it can be found that method (5) is independent of 
the parameter b, and is close to method (4) when b is near 0.  

 
 

Table 5.2  Values of the parameters 
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Table 5.3  Comparison of the parameters 

 

5.12 Unified Process of the Corner Singularity  

From the above analysis, the following can be found: 
The expression of the piece-linear yield function is simple and easy to use. It 

can be adopted for various close-form analyses of various classical elasto-plastic 
problems. However, the singularity of plastic flow for the piecewise-linear yield 
function may cause some troubles in elasto-plastic flow vector calculation. Process 
of singular points for the piece-wise functions is necessary. 

1) Traditional methods used to eliminate singularity are unreasonable or cannot 
be used in all cases. There exist obvious errors and drawbacks. 

2) The two suggested methods are easy for handling the singularity problem 
and can be used conveniently to eliminate the singularity of the present 
piecewise-linear yield function plastic flow. 

3) Using the unified strength theory as the yield potential function and adopting 
the suggested unified process of the flow vector singularity can solve the singularity 
of all kinds of corners, which improves the calculation efficiency. The processing 
method of the singularity problem can be implemented into a computer program 
conveniently and in a unified form.  

Different results for the single yield function can be obtained as follows: 

5.12.1 Tresca Yield Criterion  

When � = 03, � = 603, it gives 
 

23 0sf J �� � �                                          (5.90) 
 
With the derivation in Eqs. (5.69)~(5.71), it gives 
 

C1=0, 2 3,C �  C3=0                                (5.91) 
 

Compared with Table 5.1, it can be found that in the corner of Tresca criterion, 
this result is the same as the one of Huber-von Mises. 
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5.12.2 Mohr-Coulomb Yield Criterion 
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With the derivation in Eqs. (5.69)~(5.71), it gives 
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5.12.3 Twin-Shear Yield Criterion 

At the corner 
 

3 �arctan
3 6b� � �

                                       
(5.94) 

2 3
3 0
2

f f' J �� � � �
                                 

(5.95) 

 
Then  
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5.12.4 Generalized Twin-Shear Yield Criterion 

The corner is not at � = /6 for the generalized twin-shear stress yield criterion. 
From F=F
, the angle can be obtained as in Figs. 5.10 and 5.11. 
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At the corner 
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Using Eqs. (5.69)~(5.71), it gives 
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After the handling of the generalized twin-shear yield criterion, the direction 

and relative value of the plastic flow vector on the deviatoric plane are shown in Fig. 
5.16.  

From the above singularity process, we can obtain a certain value of the flow 
vector for any single criterion. For the unified strength theory, the constants can be 
derived with a unified solution. The constant Ci of the unified strength theory is 
shown in Table 5.4. 
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Fig. 5.16  Plastic flow of the unified strength theory

Table 5.4  Parameters for the unified strength theory 
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The direction and the relative value of the plastic flow vector for the unified 
strength theory are shown in the solid lines of Fig. 5.17. It can be seen that the 
singularity processing method can lead to a reasonable, uniformly and continually 
variable flow vector on the yield surface. 

 

Fig. 5.17  Plastic strain increments of the unified strength theory with b=1/2 

5.13 Brief Summary 

The plastic stress-strain relationship as an important part of plasticity is described in 
this chapter. The plastic flow vector has singular points for the piecewise yield 
functions and the piecewise-linear yield functions. The Tresca yield function, the 
Mohr-Coulomb yield function, the twin-shear yield function and the unified 
strength theory are all piecewise-linear yield functions. The flow vector at the 
corners is not unique when the normality condition is applied. A simple and unified 
method is suggested for solving the singularity. 

The associated flow rule and the incremental constitutive relations for the 
unified strength theory are given. Some methods have been proposed to eliminate 
the singularity of plastic flow for piecewise-linear yield functions. The plastic strain 
increments of the unified strength theory in the whole region are shown in Fig. 5.16 
and Fig. 5.17. The suggested method can also be applied to nonsmooth multisurface 
plasticity and viscoplasticity. 

Now the singularity of the plastic flow of piecewise-linear yield functions is not 
a problem for computational plasticity, but a characteristic of piecewise-linear yield 
functions. The Tresca criterion, the Mohr-Coulomb criterion, the twin-shear yield 
criterion, the generalized twin-shear criterion and unified strength theory are 
successfully applied in elasto-plasticity analysis of structures, computational 
mechanics and numerical analysis in mechanical engineering, geotechnical 
engineering and other fields. 
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6  

Implementation of the Unified Strength Theory 
into FEM Codes 

6.1 Introduction 

The yield criteria and various material models have been implemented into 
elasto-plastic programs and most current commercial FEM systems. In some 
systems, only the Huber-von Mises criterion, Drucker-Prager criterion and the 
Mohr-Coulomb criterion were implemented. Sometimes, the multi-parameters 
criteria for geomaterials and concrete structures are also used. The twin-shear 
strength theory has been implemented into special finite element programs since 
1990 (Yu and Meng, 1990; Yu and Li, 1991; Yu, 1992; Yu et al., 1992). Only some 
single models, however, are used in several programs, and only one result can be 
obtained by using the single material model, which can be adopted only for one 
kind of material. Such models as the Tresca model can be used only for non-SD 
materials (those materials with the same strength both in tension and in 
compression), and the shear strength equals half of the tensile strength �y =0.5�y. 
The Huber-von Mises model can be used for non-SD materials with the shear 
strength �y=0.577�y. The twin-shear yield criterion (Yu, 1961) or the maximum 
deviatoric stress criterion (Haythornthwaite, 1961), the shape distortion criterion 
(Schmidt-Ishilinsky, 1932-1940), or the matched circular criterion (Hill, 1950) can 
be used only for non-SD materials, and with the shear strength �y =0.667�y. There 
is no relationship between these material models. 

The unified yield criterion and the unified strength theory have been 
implemented and applied to several  plasticity and engineering problems (Yu et 
al., 1992; Yu et al., 1993; Yu and Zeng, 1994; Yu et al., 1997; 1999). The 
singularities at the corners of the single-shear series of strength theory, twin-shear 
series of strength theory and the singularity of the unified strength theory have 
been overcome by using a unified numerical procedure.  
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Yu and his research group wrote a special elasto-plastic FEM program. It is 
called the UEPP-Unified Elasto-Plastic Program (Yu et al., 1993; Yu et al., 1992; 
Yu and Zeng, 1994; Yu and Lu, 1994; Yu and Yang, 1997; Yu et al., 1999). The 
feature of the UEPP is that the unified strength theory was implemented into the 
finite element method code. UEPP includes two codes, i.e. UEPP-2D for plane 
stress, plane strain and axial-symmetric problems and UEPP-3D for 
three-dimensional problems. The material models are increasing and forming a 
series of systematical and effective constitutive relations for practical use. A 
detailed description of the unified strength theory and UEPP can be seen in the 
books “New System of Strength Theory” (Yu, 1992, in Chinese) and “Twin-Shear 
Theory and its Applications” (Yu, 1998, in Chinese).  Some examples can be 
found in the papers in English (Yu et al., 1992; Yu and Zeng, 1993; Yu et al., 1994, 
Yu et al., 1999; Yu, 2001; Yu et al., 2001) and Chinese papers (Yu and Zeng, 1994; 
Yu and Lu, 1994; Yu et al., 1997). 

Recently, the unified strength theory was also implemented into the general 
FEM code, such as ABAQUS, AutDYN and FLAC-3D at Nangyang 
Technological University, Singapore; Griffith University in Australia, the National 
Key Laboratory of Geomechanics and Geotechnical Engineering, Institute of Rock 
and Soil Mechanics, Chinese Academy of Science; Beijing Sci. and Tech. 
University, Sichuan University, Jinan University in China. The work was 
conducted by Shen (1993), Quint Co. (1993; 1994), Li and Ishii (1994; 1998), Liu 
et al. (1994), Wang (1998), Fan and Qiang (2001), Zhang et al. (2001), Zhou 
(2002), Zhang CQ (2005), Shao and Qian (2007), Shao et al. (2007), Yang (2008), 
Li et al. (2008), Li (2008), Wang et al. (2008), Zhang et al. (2008). The details can 
be seen in chapter 1. Table 1.1 gives some cases of yield criteria in FEM codes 

The unified strength theory can be applied and implemented into various 
elasto-plastic programs. It is worth showing that most parts of the elasto-plastic 
program are the same as the conventional program, only the subroutine of yield 
criteria (subroutine “INVAR” to calculate equivalent stresses), the subroutine of 
flow vector and the subroutine of the corner (subroutine “YIELD” and 
“FOLWPL” to calculate flow vector) are different. The details of the finite 
element method in plasticity can be seen in Hinton and Owen (1977), Owen and 
Hinton (1980), Lewis and Schrefler (1987), Owen et al., (1989), Smith and 
Griffiths (2004). An elasto-plastic program in 2D and an elasto-viscoplastic 
program in 2D are presented in chapter 7 and chapter 8 of the book by Owen and 
Hinton (1980). A 2D non-linear thermo-elastoplastic consolidation program, 
PLASCON, is described in detail in chapter 9 by Majorana in the book of Lewis 
and Schrefler (1987). The unified strength theory is easy to implement in these 
programs.    

A series of results can be obtained by using the unified strength theory for 
various problems. It can be applied in various materials such as metal, plastic,rock, 
soil and concrete. Therefore, it can not only be employed in strength calculation of 
metal structures and machine parts in mechanical engineering, electrical 
engineering, chemical engineering, aeronautical engineering and railway 
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engineering, but can also be used in elastic and plastic analysis of geological and 
concrete structures in civil engineering, geological engineering and hydraulic 
engineering. In the meantime, it can be applied in the computer-aided teaching of 
courses such as mechanics of materials, plasticity, plastic ultimate analysis of 
structures, finite element methods and geomechanics.  

It contains: 
1) Elastic limit analysis; 
2) Elasto-plastic analysis of structures; 
3) Plastic limit analysis of structures  
4) Elasto-visco-plastic analysis  
5) Eigenvalue analysis  
6) Elasto-plastic transient analysis  
7) Earthquake response analysis. 

6.2 Bounds of the Single Criteria for Non-SD Materials 

The stress state of an arbitrary infinitesimal element can be described in three 
principal stresses. We call the two or three principle stresses state the complex 
stress state. The strength of material under the complex stress state is an important 
and complicated problem. A large amount of research was conducted by 
researchers all over the world, and various yield or failure criteria were proposed. 
The three main yield criteria for metal materials with the same tensile and 
compressive strength are: 

1). Single-shear yield criterion (Tresca, 1864) used for those materials: �y 
=0.5�y;  

2). Three-shear yield criterion (Huber-von Mises, 1904-1913), used for those 
materials: �y=0.577�y; 

3). Twin-shear yield criterion (Yu, 1961) or maximum deviatoric stress 
criterion (Haythornthwaite, 1961) used for those materials: �y=0.667�y  

These three yield loci in  -plane are shown in Fig. 6.1. 
The intermediate principle stress �2 was not taken into account in the Tresca 

yield criterion. Many studies were devoted to the research of the effect of the 
intermediate principle stress. The intermediate principle stress �2 was taken into 
account through the consideration of the intermediate principle shear stress by Yu 
Maohong in 1961. The mathematical modeling of the twin-shear stress yield 
criterion is as follows: 

 
Cf ��� 1213 ��         when  2312 �� �               (6.1a) 
Cf ���
 2313 ��          when 12 23� ��                 (6.1b) 
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Fig. 6.1  Three yield loci in   plane (for non-SD materials) 

 
 

where 1 3
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�

�
� , C is material parameter. 

The twin shear yield criteria can be represented in principal stresses �1,�2,�3: 
 

! "1 2 3 y
1
2

f � � � �� � � �      when ! "312 2
1 ��� ��      (6.2a) 

! "1 2 3 y
1
2

f � � � �
 � � � �      when ! "312 2
1 ��� ��      (6.2b) 

 

Here �y is the yield stress under tension and compression. Single-shear yield 
criterion, three-shear yield criterion and the twin-shear yield criterion are suitable 
for materials with the same strength both in tension and in compression. Only one 
parameter is needed for such materials. 

6.3 Bounds of the Failure Criteria for SD Materials 

There are four kinds of failure criteria for SD materials. They are suitable for 
materials with different strengths in tension and in compression such as rocks and 
concrete. i.e. 

(1) Single-shear failure criterion (Mohr, 1900; Coulomb, 1773) is the lower 
bound of the convex criteria. 

(2) Twin-shear failure criterion (Yu, 1983) is the upper bound of the convex 
criteria. 

(3) Drucker-Prager criterion (1952) is a circle.  
(4) Curved criteria.  
Actually, Mohr-Coulomb’s single-shear criterion and the Drucker-Prager 
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criterion are the generalizations of the Tresca criterion and Huber-von Mises 
criterion. It is shown that the Mohr-Coulomb single-shear criterion only considers 
two principle stresses �1 and �3, the intermediate principle stress �2 is not taken 
into account. In the meantime, the Drucker-Prager criterion is not in good 
agreement with experiments for geomaterials. Yu (1983) generalized Eq. (6.1a) 
and (6.1b) and applied them to SD materials. The mathematical modeling of the 
generalized twin-shear criterion is 

 
! "13 12 13 12 ,F C� � � � �� � � � �  when 12 12 23 23� �� � ��� � �     (6.3a) 

13 23 13 23( ) ,F C� � � � �
 � � � � �  when 23 23 23 23� �� � ��� � �    (6.3b) 
 
The mathematical formulae in terms of the three principal stresses are 
 

! "1 2 3 ,
2 tF �� � � �� � � � when 

�
���

�
�
�

�
1

31
2         (6.4a) 

! "1 2 3
1 ,
2 tF � � �� �
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�
���

�
�
�

�
1

31
2       (6.4b) 

 

where 1 3
13 ,

2
� �

�
�

� 1 2
12 ,

2
� �

�
�

� 2 3
23 ,

2
� �

�
�

� �  and C are material 

constants. The comparison of failure loci in the   plane of twin-shear strength 
theory (TS theory) and Mohr-Coulomb criterion (Single-shear strength theory, SS 
theory), three-shear theory (Octahedral-shear theory, OS theory) is shown in 
Fig. 6.2.  
 

 
Fig. 6.2  Yield loci of three main theories in   plane (SD materials) 

 
It can be seen that two parameters are needed for the SD material. It is noted 

that only some materials can be applied for each of the yield criteria. 
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6.4 Unification of the Yield Criteria for Non-SD Materials and 
SD Materials 

The mathematical modeling of the unified strength theory can be expressed as 
follows: 
 

! "13 12 13 12 ,F b b C� � � � �� � � � �  when 23231212 ������ ���    (6.5a) 

! "13 23 13 23 ,F b b C� � � � �
 � � � � �  when 12 12 23 23� �� � ��� � �     (6.5b) 
 

The mathematical expression of the unified strength theory in terms of 
principal stresses �1, �2 and �3 is: 

 

! "1 2 3 ,
1 tF b

b
�� � � �� � � �
�
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���
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�
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�
1

31
2           (6.6a) 
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�
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2           (6.6b) 

 

where b is the unified strength theory parameter, the limit loci of the unified 
strength theory in the   plane is shown in Fig. 6.3. The figure of the yield loci 
shows the eleven special cases of the unified yield criterion. 

There are some special cases of Eqs. (8.5) and (8.5') as follows: 
(a) 1, 0 ( 1)b � �� / / , Yu twin-shear strength theory (1983); 
(b) 0, 0 ( 1),b � �� / /  Mohr-Coulomb single-shear strength theory (1900); 
(c) 1, 0 ( 1)b � �� � � , Twin-shear yield criterion (Yu, 1961), or the 

maximum deviatoric stress criterion (Haythornthwaite, 1961), or the sharp 
distortion criterion (Schmidt, 1932; Ishilinski, 1940); 

(d) 0, 0 ( 1)b � �� � � , Tresca single-shear yield criterion (1864); 

(e) 3 1 / 2, 0 ( 1)b � �� � � � , Approximated Huber-von Mises criterion 
(1913). 

It can be seen that all the commonly used strength criteria are special cases of 
the unified strength theory. There is a series of yield criteria suitable for non-SD 
materials when b varies from 0 to 1. These criteria lie between the Mohr-Coulomb 
single-shear theory and Yu Mao-hong (1985) twin-shear strength theory.  
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(a) �/1 (�t / �c)                         (b) �=1 (�t=�c)  

Fig. 6.3  Limit loci of unified strength theory in  -plane 
 

Yield loci of the unified strength theory in the plane stress state (�1-�2 plane) 
are shown in Fig. 6.4. 

 

 
(a) �/1 (�t /�c)               (b) �=1 (�t=�c) 

Fig. 6.4  Limiting loci of the unified strength theory in plane stress state (�1-�2 plane) 
 

It is shown that the unified strength theory has a relatively clear physical 
meaning and simple mathematical formulae. The frequently used criteria are its 
special cases or approximation forms. The theory is suitable for most material and 
is readily used in engineering. The material models of unified strength 
elasto-plastic programs are based on the unified strength theory.
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6.5 Material Models  

The material models can be implemented and used as follows. 
1) Tresca yield criterion (single-shear criterion) is equal to the unified yield 

criterion with b=0.  
2) Huber-von Mises yield criterion (three-shear criterion) is equivalent to the 

unified yield criterion with �=1 and b=0.366. 
3) Twin-shear yield criterion (twin-shear criterion) is equal to the unified yield 

criterion with b=1. 
4) Mohr-Coulomb failure criterion (single-shear theory) is equal to the unified 

strength theory with b=0. 
5) Drucker-Prager failure criterion (three-shear theory) 
6) Twin-shear failure criterion (twin-shear theory) is equal to the unified 

strength theory with b=1. 
7) UST (unified strength theory) with any �, b, 0 � 1, 0 b 1. 
8) UST with �=1, b=0 is equal to the Tresca criterion. 
9) UST with �=1, b=0.25 is a new one. 
10) UST with 1, ( 3 1) / 2b� � � � is equal to the Huber-von Mises criterion. 
11) UST with �=1, b=0.5 is equivalent to the Huber-von Mises criterion. 
12) UST with �=1, b=0.75 is a new one.  
13) UST with �=1, b=1 is equal to the twin-shear yield criterion, or maximum 

deviatoric stress yield criterion. 
14) UST with any � and b=0 is equal to the single-shear theory (the 

Mohr-Coulomb theory). 
15) UST with any � and b=1/4 is a new one.  
16) UST with any � and b=1/2 is a new one. 
17) UST with any � and b=3/4 is a new one.  
18) UST with any � and b=1 is equal to the twin-shear strength theory. 
19) Twin-shear three parameter criterion. 
20) Three parameter unified strength theory. 
21) Others. 
The yield loci of the five typical criteria of the unified yield criterion with �=1 

and b=0, b=1/4, b=1/2, b=3/4 and b=1 for non-SD materials (material models 8, 9, 
11, 12 and 13) are illustrated in Fig. 6.5. The yield loci of the five typical criteria 
of the unified strength theory with b=0, b=1/4, b=1/2, b=3/4 and b=1 for SD 
materials (material models 14 to 18) are illustrated in Fig. 6.6. 
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Fig. 6.5  Yield loci of the five typical criteria of the unified yield criterion for non-SD materials 

    
Fig. 6.6  Yield loci of five typical criteria of the unified strength theory for SD materials 

 

 

      
Fig. 6.7  Convex yield loci extend to non-convex yield loci of the unified strength theory
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6.6  Program Structure and its Subroutines Relating to the 
Unified Strength Theory: INVARY, YIELDY, FLOWVP 

The flow chart for calculating the elasto-plastic problems is shown in Fig. 6.8. 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
     
 
 
 
 
 
 
 
 

Fig. 6.8  The flow chart for calculating the elasto-plastic problems 
 

Several subroutines about the unified strength theory and its flow vector will 
be introduced in this section, including INVAR, INVARY, YIELDY and CRITEN. 
When these subroutines are implemented in any elasto-plastic programs, the 
unified strength elasto-plastic analysis can be conducted. Therefore, a series of 
ordered results can be obtained. 

6.6.1 Subroutine “Invar” 

The purpose of this subroutine is to calculate the stress functions which indicate 
whether it is the initial or succeeding plastic deformation when considering 

Start 

INPUT input the given physical dimension, external condition and material perform data 

LOAD calculate the equivalent nodal force caused by external load and gravity load

ZERO set the accumulated digit group to be zero

INCREM add load according to the given load factor increment

ALGOR set indicating variable to identify the type of solution, 
such as initial stiffness method, tangent stiffness method 

STIEEP calculate the element stiffness of elastic and elasto-plastic material 

FRONT solve the simultaneous equations by using the wave front method 

INVAR calculate the dimensions of equivalent stress 

YIELD and FOLWPL calculate the flow vector 

 
RESIDU calculate residual
force vector 

OUTPUT print the result of this load increment 

CONVER check the solve course is convergent or not
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various yield criteria. The yield criteria include various criteria such as Huber-von 
Mises, Drucker-Prager, Tresca, Mohr-Coulomb and a series of the yield criteria 
introduced from the unified strength theory. 

 
SUBROUTINE  “INVAR” (LPROP,NCRIT,PROPS,STEFF,SMEAN,NPROP,THETA, 
VARJ2,VARJ3,YIELD,IND,IELEM,GASH,MATNO) 
C*************************************************************** 
C***  EVALUATES THE STRESS INVARIANTS AND THE CURRENT VALUE 
C*************************************************************** 
IMPLICIT REAL*8(A-H,O-Z) 
COMMON/CMN01/NELEM,NPOIN,NVFIX,NMATS,NDOFN, 
.               NGAUS, NGAS2,NALGO,NINCS,NTOTV, 
.               NTOTG,NSTRE, NSTR1,NTYPE,NREST 
COMMON/CMN06/FACTDP 
DIMENSION NCRIT(NMATS),PROPS(NMATS,NPROP),MATNO(NELEM,3) 
PI=3.1415926535 
ROOT3=1.73205080757 
STEFF=DSQRT(VARJ2) 
IF(STEFF.EQ.0.0) GO TO 31 
COST3=3.0*ROOT3*VARJ3/(2.0*VARJ2*STEFF) 
GO TO 20 
31     COST3=0.0 
20     CONTINUE 
IF(COST3.LT.-1.0) COST3=-1.0 
IF(COST3.GT.1.0) COST3=1.0 
THETA=DACOS(COST3)/3.0 
NCRT1=NCRIT(LPROP) 
NTMP=MATNO(IELEM,2)/10 
IF((NTMP.EQ.3).OR.(NTMP.EQ.4)) GO TO 1 
YIELD=DSQRT(GASH) 
RETURN 
C 
C*** VON MISES 
C 
1      IF(NCRT1.EQ.2) THEN 
YIELD=ROOT3*STEFF 
RETURN 
ENDIF 
C 
C*** DRUCKER-PRAGER 
C 
IF(NCRT1.EQ.5) THEN 
PHIRA=PROPS(LPROP,7)*0.017453292 
SNPHI=DSIN(PHIRA) 
C*** COMPRESSIVE CONE 
C         YIELD=6.0*SMEAN*SNPHI/(ROOT3*(3.0-SNPHI))+STEFF 
C*** TENSILE CONE 
YIELD=6.0*SMEAN*SNPHI/(ROOT3*(3.0+FACTDP*SNPHI))+STEFF 
RETURN 
ENDIF 



6  Implementation of the Unified Strength Theory into FEM Codes 

 

174 

C 
C*** CALL UNIFIED TWINSHEAR STRESS CRITERION 
C 
IF(NCRT1.LE.18) THEN 
BTWIN=PROPS(LPROP,8) 
ARLFA=PROPS(LPROP,7)/PROPS(LPROP,5) 
SMEAM=SMEAN*(1.0-ARLFA) 
CALL INVARY(SMEAM,ARLFA,STEFF,THETA,BTWIN,IND,YIELD) 
RETURN 
ENDIF 
IF(NCRT1.EQ.19) THEN 
BTWIN=PROPS(LPROP,8) 
CTWIN=(1.0+BTWIN)*PROPS(LPROP,5)*PROPS(LPROP,7)/ 
.    (PROPS(LPROP,5)+PROPS(LPROP,7)) 
ATWIN=CTWIN*(PROPS(LPROP,9)-PROPS(LPROP,5))/(PROPS(LPROP,5)* 
.    PROPS(LPROP,9)) 
BEITA=2.0*(CTWIN/PROPS(LPROP,7)-ATWIN)/(1.0+BTWIN)-1.0 
ARLFA=(1.0-BEITA)/(1.0+BEITA) 
SMEAM=((1.0-ARLFA)+3.0*(1.0+ARLFA)*ATWIN/(1.0+BTWIN))*SMEAN 
CALL INVARY(SMEAM,ARLFA,STEFF,THETA,BTWIN,IND,YIELD) 
RETURN 
ENDIF 
IF(NCRT1.GE.20) CALL USERINVR(LPROP,NCRIT,PROPS,SMEAN, 
.                  NPROP,NMATS,THETA,VARJ2,VARJ3,YIELD,IND) 
END 

6.6.2 Subroutine “Invary” 

The aim of this subroutine is to calculate the invariants of the unified strength 
theory. 
 
SUBROUTINE INVARY(SMEAM,ARLFA,STEFF,THETA,BTWIN,IND,YIELD) 
C*************************************************************** 
C 
C***  EVALUATES THE STRESS INVARIANTS AND THE CURRENT VALUE OF 
C***  THE UNIFIED STRENGTH THEORY 
C 
C*************************************************************** 
IMPLICIT REAL*8(A-H,O-Z) 
PI=3.1415926535 
ROOT3=1.73205080757 
TWINB=1.0/(1.0+BTWIN) 
VARJA=2.0*STEFF/ROOT3 
F1=SMEAM+VARJA*(DCOS(THETA)-ARLFA*TWINB*BTWIN*DCOS(THETA-2.0*P
I/3.0)-ARLFA*TWINB*DCOS(THETA+2.0*PI/3.0)) 
F2=SMEAM+VARJA*(TWINB*DCOS(THETA)+TWINB*BTWIN*DCOS(THETA-2.0*
PI/3.0)-ARLFA*DCOS(THETA+2.0*PI/3.0)) 
YIELD=F1 
IND=1 
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IF(F1.LT.F2) YIELD=F2 
IF(F1.LT.F2) IND=2 
IF(DABS(F1-F2).LE.1.0E-6) IND=3 
RETURN 
END 

6.6.3 Subroutine “Yieldy” 

The aim of this subroutine is to conduct the corner point process for the Tresca 
criterion, the Mohr-Coulomb criterion and the unified strength theory. 

 
SUBROUTINE YIELDY(THETA,IND,ARLFA,VARJ2,LPROP,PROPS,CONS2,CONS3) 
C*************************************************************** 
C 
C***  EVALUATES CONSTANTS OF FLOW VECTORS OF UNIFIED STRENGTH 
THEORY 
C 
C*************************************************************** 
IMPLICIT REAL*8(A-H,O-Z) 
COMMON/CMN01/NELEM,NPOIN,NVFIX,NMATS,NDOFN, 
.               NGAUS, NGAS2,NALGO,NINCS,NTOTV, 
.               NTOTG,NSTRE, NSTR1,NTYPE,NREST 
COMMON/CMN02/MBUFA,MFRON,MSTIF,NPROP 
DIMENSION PROPS(NMATS,NPROP) 
ROOT3=1.73205080757 
PI=3.1415926535 
BTWIN=PROPS(LPROP,8) 
TWINB=1.0/(1.0+BTWIN) 
ATATH=1.0/DTAN(THETA) 
SINTH=DSIN(THETA) 
COSTH=DCOS(THETA) 
SINT3=DSIN(3.0*THETA) 
IF(IND.EQ.1.OR.IND.EQ.3) THEN 
ABTHE=THETA*57.29577951308 
IF(ABTHE.LT.0.1) THEN 
CONA3=(1.0+0.5*ARLFA)/VARJ2 
CONA2=4.0*(1.0+0.5*ARLFA)/3.0/ROOT3 
ELSE 
ATAT3=1.0/DTAN(3.0*THETA) 
C1=2.0*(1.0+0.5*ARLFA)/ROOT3 
C2=ARLFA*(1-BTWIN)/(1.0+BTWIN) 
CONA2=C1*COSTH+C2*SINTH+ATAT3*(-C1*SINTH+C2*COSTH) 
CONA3=-0.5*ROOT3*(-C1*SINTH+C2*COSTH)/(VARJ2*SINT3) 
ENDIF 
ENDIF 
IF(IND.EQ.2.OR.IND.EQ.3) THEN 
ABTHE=THETA*57.29577951308 
IF(ABTHE.GT.59.9) THEN 
CONA3=(0.5+ARLFA)/VARJ2 
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CONA2=4.0*(0.5+ARLFA)/3.0/ROOT3 
ELSE 
ATAT3=1.0/DTAN(3.0*THETA) 
C1=(ARLFA+(2.0-BTWIN)/(1.0+BTWIN))/ROOT3 
C2=(ARLFA+BTWIN/(1.0+BTWIN)) 
CONB2=C1*COSTH+C2*SINTH+ATAT3*(-C1*SINTH+C2*COSTH) 
CONB3=-0.5*ROOT3*(-C1*SINTH+C2*COSTH)/(SINT3*VARJ2) 
ENDIF 
ENDIF 
IF(IND.EQ.1) THEN 
CONS2=CONA2 
CONS3=CONA3 
ELSE IF(IND.EQ.2) THEN 
CONS2=CONB2 
CONS3=CONB3 
ELSE 
CONS2=(CONA2+CONB2)/2.0 
CONS3=(CONA3+CONB3)/2.0 
ENDIF 
RETURN 
END 

6.6.4 Subroutine “Criten” 

The aim of this subroutine is to calculate the flow vectors for various yield criteria. 
For Tresca, Mohr-Coulomb and unified strength theories, invoke YIELDY to 
conduct the corner point process. 
 
SUBROUTINE CRITEN(LPROP,NCRIT,PROPS,THETA,SMEAN,VARJ2, 
.                    VARJ3,CONS1,CONS2,CONS3,IND) 
C*************************************************************** 
C 
C**** THIS SUBROUTINE EVALUATES THE FLOW VECTOR 
C 
C*************************************************************** 
IMPLICIT REAL*8(A-H,O-Z) 
COMMON/CMN01/NELEM,NPOIN,NVFIX,NMATS,NDOFN, 
.               NGAUS, NGAS2,NALGO,NINCS,NTOTV, 
.               NTOTG,NSTRE, NSTR1,NTYPE,NREST 
COMMON/CMN02/MBUFA,MFRON,MSTIF,NPROP 
COMMON/CMN06/FACTDP 
DIMENSION PROPS(NMATS,NPROP),NCRIT(NMATS) 
ROOT3=1.73205080757 
NCRT1=NCRIT(LPROP) 
FRICT=PROPS(LPROP,7) 
C 
C*** VON MISES 
C 
IF(NCRT1.EQ.2) THEN 
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CONS1=0.0 
CONS2=ROOT3 
CONS3=0.0 
GO TO 40 
ENDIF  
C 
C*** DRUCKER-PRAGER 
C 
IF(NCRT1.EQ.5) THEN 
SNPHI=DSIN(FRICT*0.017453292) 
C*** COMPRESSIVE CONE 
C         CONS1=2.0*SNPHI/(ROOT3*(3.0-SNPHI)) 
C*** TENSILE CONE 
CONS1=2.0*SNPHI/(ROOT3*(3.0+FACTDP*SNPHI)) 
CONS2=1.0 
CONS3=0.0 
GO TO 40 
ENDIF 
C 
C*** TWIN SHEAR STRESS ALSO TRESCA MOHR-COULOMB 
C 
IF(NCRT1.LE.18) THEN ARLFA=PROPS(LPROP,7)/PROPS(LPROP,5) 
CONS1=(1.0-ARLFA)/3.0 
CALL YIELDY(THETA,IND,ARLFA,VARJ2,LPROP,PROPS,CONS2,CONS3) 
GO TO 40 
ENDIF 
C 
C***  TWIN SHEAR 
C 
IF(NCRT1.EQ.19) THEN 
BTWIN=PROPS(LPROP,8) 
CTWIN=(1.0+BTWIN)*PROPS(LPROP,5)*PROPS(LPROP,7)/ 
.          (PROPS(LPROP,5)+PROPS(LPROP,7)) 
ATWIN=CTWIN*(PROPS(LPROP,9)-PROPS(LPROP,5))/(PROPS(LPROP,5)* 
.          PROPS(LPROP,9)) 
BEITA=2.0*(CTWIN/PROPS(LPROP,7)-ATWIN)/(1.0+BTWIN)-1.0 
ARLFA=(1.0-BEITA)/(1.0+BEITA) 
CONS1=(1.0+ARLFA)*ATWIN/(1.0+BTWIN)+(1.0-ARLFA)/3.0 
CALL YIELDY(THETA,IND,ARLFA,VARJ2,LPROP,PROPS,CONS2,CONS3) 
GO TO 40 
ENDIF 
IF(NCRT1.GE.20) CALL USERCRIT(LPROP,NCRT1,PROPS,THETA,SMEAN, 
VARJ2,VARJ3,NPROP,NMATS,CONS1,CONS2,CONS3,IND) 
40     CONTINUE 
RETURN 
END 



6  Implementation of the Unified Strength Theory into FEM Codes 

 

 

178 

6.7 Brief Summary 

The unified strength theory and its associated flow rule are implemented in finite 
element codes UEPP, which are described in this chapter. Most parts of the 
elasto-plastic program are the same as the conventional elasto-plastic program, 
only the subroutine of yield criteria (subroutine “INVAR” to calculate equivalent 
stresses), subroutine flow vector and the subroutine of the corner (subroutine 
“YIELD” and “FOLWPL” to calculate flow vector) are different. Several 
subroutines for the unified strength theory and its flow vector are given, including 
INVAR, INVARY, YIELDY and CRITEN. When these subroutines are 
implemented in any elasto-plastic programs, the unified strength elasto-plastic 
analysis can be conducted. Therefore, a series of ordered results for elasto-plastic 
analysis of structures can be obtained.  

The unified strength theory is also implemented into several commercial FEM 
codes, and used for engineering problems (Shen, 1993; Quint Co., 1993; 1994; Li 
and Ishii, 1994; 1998; Liu et al., 1994; Wang, 1998; Fan and Qiang, 2001; Zhang 
et al., 2001; Zhou, 2002; Sun et al., 2004a; 2004b; Liu and Wang, 2004; Zhang et 
al., 2005; Shao and Qian, 2007; Shao et al., 2007; Yang, 2008; Li et al., 2008; Li, 
2008; Wang et al., 2008; Zhang et al., 2008; Yang and Zhang, 2008; 2009; Wang 
and Lu, 2009; Fen and Du, 2010; Li and Chen, 2010; Li and Qiao, 2010; Ma and 
Liao, 2010; Pan et al., 2010). Serial results are obtained that can be adapted for 
more materials and structures. 
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7  

Examples of the Application of Unified Elasto- 
Plastic Constitutive Relations  

7.1 Introduction 

The unified strength theory, its singularity and the process of the piece-wise linear 
yield criterion, the implementation of the unified strength theory, and the 
subroutine of yield criteria (subroutine “INVAR” to calculate equivalent stresses), 
the subroutine of flow vector and the subroutine of the corner (subroutine 
“YIELD” and “FOLWPL” to calculate flow vector) have been introduced in 
previous chapters. Some simple examples including the plane stress, plane strain 
and spatial axial-symmetry problems will be described in this chapter. It is easy 
for the reader to find out about the possibility of adding new functions to the 
procedure (Yu, 1992; Yu et al., 1992; 1994; UEPP User’s Manual, 1998).  
 

  
(a) Plane stress problem     (b) Plane strain problem   (c) Spatial axisymmetric problem 

Fig. 7.1 Three kinds of engineering structures  
 

Plane stress, plane strain and spatial axisymmetric problems are three 
important problems in plasticity and engineering. Figure 7.1 shows an example of 
these three kinds of structures. Figure 7.1(a) is a plane stress structure with a 
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uniform thickness of thin lamina, deformed under the action of the force which 
lies in its median plane. Figure 7.1(b) is a plane strain problem with zero strain in 
the z direction (length) in a structure of very great thickness. Figure 7.1(c) is a 
spatial axisymmetrical problem which is symmetrical in terms of geometry, 
boundary conditions and external loading about an axis.  

These three kinds of structure shown in Fig. 7.1 have an identical section, a 
trapezoid, but different stress states. The stresses normal to the solution domain �z 
in the plane stress state are zero principal stress and nonzero principal stress in the 
plane strain; the hoop stress ��  in special axisymmetrical problems is also a 
principal stress.  

Several examples are calculated using the UEPP (Yu et al., 1992; Yu et al., 
1993; Yu and Zeng, 1994; UEPP User’s Manual, 1998) based on the unified 
strength theory (for SD materials) or the unified yield criterion (for non-SD 
materials) with b=0, b=1/2 and b=1 in this chapter. Some examples are the same 
as the previous examples presented in the literature, for comparison. These three 
special cases of the unified strength theory are three basic criteria, which are the 
lower criterion, the upper criterion and the median criterion for all the convex 
criteria. So, three basic results can be obtained.  

Sometimes, five types of criteria of the unified strength theory with b=0, 
b=1/4, b=1/2, b=3/4 and b=1 are used. Eleven results can be obtained using the 
unified strength theory with b=0, b=0.1, b=0.2, b=0.3, b=0.4, b=0.5, b=0.6, b=0.7, 
b=0.8, b=0.9 and b=1, if needed.  

7.2 Plane Stress Problems 

7.2.1 Elasto-Plastic Analysis of a Cantilever Beam 

A plastic analysis of a simple, plane stress, cantilever beam can be seen in the 
book by Zienkiewicz in 1971. Ideal plasticity behaviour of a Huber von Mises 
material model was assumed. The spread of plastic zones for different ratios of 
q/qp when qp is calculated as from plastic beam theory (qp = collapse load) is 
shown in Fig. 7.2. The loads are given in terms of the collapse load estimated on 
the basis of elementary plastic hinge theory. 
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Fig. 7.2 The spread of plastic zones for cantilever beam (Zienkiewicz, 1971) 

 
Figure 7.3 shows the increase in displacements with load. As the collapse load 

is approached progressively, larger numbers of iterations are required and indeed at 
P/Pp=1 no convergence was achieved (Zienkiewicz, 1971). Thus, although the 
non-linear solution allows a lower bound in collapse load to be found (by satisfying 
equilibrium and yield conditions) the actual collapse load cannot be found by 
incrementing the loads. To obtain a better picture of collapse behavior it is simpler to 
apply specified displacements at the load point and to increment these until no 
further increase in the reaction at that point is achieved. 

 

 
Fig. 7.3 Displacements versus load P/Pp 

 

 
Fig. 7.4 A similar cantilever beam (Zienkiewicz, 1971) 
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A similar cantilever beam under the act of a uniform load shown in Fig. 7.4 is 
studied again in terms of the unified strength theory and UEPP (Yu, 1993). In Fig. 
7.4 the mechanical behaviour of material is E=2.1×105  MPa, =0.3, ideal 
plasticity, yield stress �y=240 MPa. Calculate the elastic limit of the beam, the 
plastic region and the load-displacement relationship using the unified yield 
criterion with different parameter b. 

The beam is considered as a plane stress problem. The configuration and the 
division into 40 isoparametric elements are shown in Fig. 7.5. An 8-nodes 
isoparametric element is used. The number of the nodes is 147. After the first 
iteration the elastic limits of the cantilever beam in terms of the unified yield 
criterion with different value of b (b=0, b=1/2, b=1) are obtained respectively, as 
follows. 

 

Fig. 7.5 Plastic zones of cantilever beam under the same load we=15 N/mm2 
1) qe=9.03 N/mm2 (unified yield criterion with b=0, single-shear criterion, i.e. 

the single-shear yield criterion or the Tresca criterion); 
2) qe=9.36 N/mm2 (unified yield criterion with b=1/2, linear Mises criterion); 
3) qe=9.54 N/mm2 (unified yield criterion with b=1, twin-shear criterion).  
 
The plastic zones for different values of the unified yield criterion parameter b 

under the same load we=15 N/mm2 are different, as shown in Fig. 7.5. Figure 7.5(a) 
is the plastic zone of the unified yield criterion with b=0. It is also the plastic zone 
of the single-shear criterion or the Tresca yield criterion. Figure 7.5(b) is the 
plastic zone of the unified yield criterion with b=1/2 It approximates to the plastic 
zone of the Huber-von Mises yield criterion. Figure 7.5(c) is the plastic zone of 
the unified yield criterion with b=1. It is the plastic zone of the twin-shear yield 
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criterion. 
The increase in displacements with load in terms of different values of the 

unified strength theory parameter b is displayed in Fig. 7.6. It requires a large 
number of iterations of non-linear computation, until no further increase in the 
reaction at that point is achieved (furthermore, the numerical solution process will 
be divergent). The plastic limit load is approached progressively to the point 
where no convergence is achieved, as shown in Fig. 7.3 and Fig. 7.6. The 
convergent results using the three basic criteria can be obtained respectively, as 
shown in Fig. 7.6. 

 

Fig. 7.6 Increase of displacements with load for different yield criteria

The numerical results achieved by using the unified strength theory with b=0 
are very close to the results of Zienkiewicz (1971). Some new results, moreover, 
are obtained by using the unified strength theory. 

7.2.2 Elasto-Plastic Analysis of a Trapezoid Structure under 
Uniform Load 

The trapezoid structure is an important structure in engineering. It can be 
processed as a unified problem in FEM-2D codes. 

On a symmetrical trapezoidal plate, the vertex angle formed by the extension line 
of its two bevels is 2� (�=453), the upper side of the trapezoidal plate (Fig. 7.7) exerts a 
uniform pressure q. The parameters of the material are elastic modulus, E=2.06 104 
MPa, Poisson’s ratio 	=0.167. The uniaxial tensile strength of the material is �t=2.4 
MPa, the uniaxial compressive stress is �c=24 MPa, i.e. the strength ratio of extension 
to compression is �=0.1. Then calculate the elastic limit load and plastic limit load by 
using the unified yield criterion with different parameter b. 

This problem can be considered as a plane stress problem. We analyze a half 
of the trapezoidal structure because of the symmetry. The isoparametric elements 
can be chosen as eight nodes and a quadrilateral, as shown in Fig. 7.8. And there 
are 128 element and 433 nodes in total. The elastic limit can be calculated under 
different yield criteria. 
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The elastic limit of a trapezoidal plate in terms of the unified yield criterion 
with a different value of b (b=0, b=0.5, b=1, i.e. different yield criteria) under 
plane stress state can be obtained as follows. 

1) qe=23.9 MPa (unified strength theory with b=0, single-shear theory, i.e. the 
Mohr-Coulomb theory); 

2) qe=25.2 MPa (unified strength theory with b=1/2, a new criterion); 
3) qe=28.1 MPa (unified strength theory with b=1, i.e. Twin-shear theory). 
 

 
Fig. 7.7 Mesh of a half-trapezoidal structure   Fig. 7.8  load-displacement relations 

 
As shown in Fig. 7.8, the load-displacement curve of node 2 in the middle of 

the plate can be obtained by increasing the uniform load step-by-step. The solution 
is obtained until the limit load is reached. The limit load is approached 
progressively. A larger number of iterations are required until no convergence is 
achieved. 

The solution is convergent when q=70 MPa (for single-shear theory or the 
unified strength theory with b=0), q=92 MPa (for the unified strength theory with 
b=1/2), q=104 MPa (for the unified strength theory with b=1). Increase the load 
again and the solution process will be divergent; therefore three kinds of limit load 
can be obtained, respectively. 

The plastic limit of a trapezoidal structure in terms of the unified yield criterion 
with different values of b (b=0, b=0.5, b=1) under plane stress state are 

1) qp=70 MPa (unified strength theory with b=0, single-shear theory, i.e. the 
Mohr-Coulomb theory); 

2) qp=92 MPa (unified strength theory with b=1/2, a new criterion); 
3) qp=104 MPa (unified strength theory with b=1, twin-shear theory). 

7.3 Plane Strain Problems 

Figure 7.9 shows a typical structure in railway and high road engineering and the 
city wall in Xi’an, China. It can be simplified to a plane strain problem. The 
uniform distributed load is applied on the top. A symmetrical trapezoidal structure 



7.3  Plane Strain Problems 189 

with a top angle 2� and the slip line field of the trapezoid structure are also shown 
in Fig. 7.9. The slip line field was constructed as shown in Fig. 7.9 (Yu et al.). The 
stability of the city wall in Xi’an, China, can be seen in Chapter 18. 
 

  

  
Fig. 7.9 Base of a railroad and the plane strain problem 

 
The mesh of a trapezoidal structure under plane strain is identical to the mesh 

of a plane stress problem shown in Fig. 7.8. The isoparametric elements with eight 
nodes and a quadrilateral are used. 

The elastic limit of a symmetrical trapezoidal structure in terms of the unified 
yield criterion with different values of b (b=0, b=0.5, b=1) under plane strain state 
can be obtained as follows. 

1) qe=28.8 MPa unified strength theory with b=0, single-shear theory, i.e. the 
Mohr-Coulomb theory); 
2) qe=33.1 MPa (unified strength theory with b=1/2, a new criterion); 
3) qe=35.8 MPa (unified strength theory with b=1, twin-shear theory). 
The load-displacement relation of node 2 in the middle of the trapezoidal 

structure under plane strain condition using the three yield criteria can be obtained, 
as shown in Fig. 7.10. 
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Fig. 7.10 Load-displacement relation of a trapezoidal structure under plane strain condition 

 
The convergent result can be obtained when q=81.8 MPa (unified strength 

theory with b=0, i.e. the Mohr-Coulomb single-shear theory), q=109 MPa (unified 
strength theory, b=0.5), q=125.8 MPa (unified strength theory, b=1). Increasing 
the loads further, the numeric solution process will be divergent. Then the limit 
load can be obtained by using the three yield criteria respectively. 

The plastic limit of a trapezoidal structure in terms of the unified yield 
criterion with different values of b (b=0, b=0.5, b=1) under the plane strain state 
can be obtained as follows. 

1) qp=81.8 MPa (unified strength theory with b=0, single-shear theory, i.e. the  
Mohr-Coulomb theory); 

2) qp=109 MPa (unified strength theory with b=1/2, a new criterion); 
3) qp=125.8 MPa (unified strength theory with b=1, twin-shear theory). 

7.4 Spatial Axisymmetric Problems 

7.4.1 Analysis of Plastic Zone for Thick-Walled Cylinder 

Another example of using the unified strength theory is a thick-walled cylinder 
shown in Fig. 7.11 and Fig. 7.12. When the internal pressure exceeds pe, a plastic 
zone will begin at the inner surface and spread outwards toward the outer surface. 
The elastic–plastic boundary at any stage has a radius rc. In the elastic region, 
(rc�r�rb), the radial and circumferential stresses are obtained from Lame’s 
equations using the boundary condition �r=0 at r=rb and the fact that the material 
at r=rc is stressed to the yield point. The pressure reaches its maximum value 
when the plastic zone reaches the outer surface of the thick-walled tube. 

The elastic part of the elastic-plastic thick-walled tube may be considered as a 
new tube with inner radius rc and outer radius rb, with an internal pressure pe. The 
stress distribution in the elastic region for an incompressible material is easily 
obtained.
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Fig. 7.11  Thick-walled cylinder 

 
Due to symmetry, only a quarter of the thick-walled cylinder is shown. The 

cylinder has an inner radius ra =100 mm, and an outer radius rb =200 mm. The 
elastic modulus is E =2.1×105 MPa, Poisson ratio 	=0.3, tensile yield stress  

y� =240 MPa. This example is the same as the example in Chapter 7 of the book 
(Owen and Hinton, 1980) for comparison. 

 

 
Fig. 7.12 Thick-walled cylinder and finite element mesh  

 
Four elastic limit pressures using different yield criteria are obtained as follows. 

1) pe =97.9 MPa (unified yield criterion with b=0, single-shear criterion or the 
Tresca criterion);   

2) pe =111.0 MPa (unified yield criterion with b =1/(1+ 3 ), a new criterion);  
3) pe =111.6 MPa (Huber-von Mises yield criterion);  
4) pe =125.8 MPa (unified yield criterion with b=1, twin-shear yield criterion). 
Figure 7.13 shows the distribution of the circumferential stress in a 

thick-walled cylinder with the twin-shear yield criterion (b=1), the Huber-Mises 
criterion (b =1/(1+ 3 )) and the Tresca criterion (b=0) respectively. The curves 
are the analytical solution and the dots are the numerical solution. The third curve 
in Fig. 7.13 agrees with the previous result (Johnson and Mellor, 1962; Mendelson, 
1968; Chakrabarty, 1987). 
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Fig. 7.13 Distribution of circumferential stress in cylinder with different yield criteria 

 
The distributions of circumferential stresses with different yield criteria in the 

elasto-plastic thick-walled cylinder subjected to internal pressure p=160 MPa are 
shown in Fig. 7.13. Three curves are drawn according to the analytical solutions in 
terms of the unified strength theory (Yu, 2004). The points are obtained from the 
numerical calculations of the thick-walled cylinder that obey the unified yield 
criterion with b=0, 1/(1 3)b � �  and b =1, respectively.  

The plastic zones in a thick-walled cylinder with different yield criteria under 
the same load are shown in Fig. 7.14. The radius of the plastic zone with the 
unified yield criterion when b=0 (Tresca yield criterion) is larger than that 
obtained from 1/(1 3)b � �  and b=1. As a comparison, the distribution of 
circumferential stress ��  in the elasto-plastic thick-walled cylinder obeying the 
Huber-von Mises yield criterion is also shown in Fig. 7.14(c). 

It is seen that the results obeying the Huber-von Mises yield criterion and the 
unified yield criterion with 1/(1 3)b � �  are identical both in analytical 
solution and numerical calculation. 
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(a) UST with b=0 (Single-shear criterion,)       (b) UST with 1/(1 3)b � �  
 

 
(c)  Huber-von Mises criterion    (d) UST with b=1 (Twin-shear criterion) 

Fig. 7.14 Distribution of plastic zone in thick-walled cylinder with different parameter b 

7.4.2 Analysis for Limit-Bearing Capacity of a Circular Plate 

The numerical result of a simply supported circular plate can be seen in the book 
of Owen and Hinton (1980) in terms of the Huber-von Mises criterion. A 
uniformly loaded simply supported circular plate and finite element (FE) mesh are 
shown in Fig. 7.15. Only one-half of the plate is analyzed due to the symmetry. 
The plate is modeled by five axisymmetric elements and loading takes the form of 
a progressively increasing uniformly distributed load. The isoparametric element 
with eight nodes in the element family of UEPP is chosen for analysis. It is the 
same as in Owen and Hinton (1980). 
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Fig. 7.15 Simply supported plate and finite element mesh of plate 

 
The elastic limit of the simply supported circular plate in terms of different 

values of b of the unified yield criterion (i.e. different yield criteria) are obtained 
by using the unified strength theory as follows. 

1) b=0 (Tresca criterion), qe=2.2707 N/mm2; 
2) b=1/2 (linear Mises criterion), qe=2.2733 N/mm2; 
3) b=1 (twin-shear criterion), qe=2.2747 N/mm2. 
It is worth noting that the three elastic limits of a simply supported circular plate 

for different yield criteria are identical. This is because the maximum stress point is 
situated at the centre point of the plate, which has a special stress state, i.e. �r=��. All 
the three yield loci of the Tresca criterion, Huber-von Mises criterion and the 
twin-shear criterion cross at the same point A, as shown in Fig. 7.16. 

 

 
Fig. 7.16 Yield loci of the unified yield criterion in plane stress state 

 
The plastic zone spreads from the centre point to the neighboring area around 

the centre point of the simply supported circular plate after a further increase in 
the load, in which the two stresses are not equal, i.e. � /� . The yield point at the 
yield loci spreads from A to other points, where the yield states of the three yield 
criteria are not identical.  

The elasto-plastic load-displacement curves at the center of the plate with 
different yield criteria are shown in Fig. 7.17. Ideal plastic behaviour with a 
different parameter b of the unified yield criterion is assumed. The median 
elasto-plastic load-deflection curve of the plate is the same as that of Owen and 



7.4  Spatial Axisymmetric Problems 195 

Hinton (1980).  
The plastic limit of a uniform loading simply supported circular plate using the 

three basic criteria, i.e., the unified yield criterion with b=0, b=1/2 and b=1, can be 
obtained as follows. 

1) b=0 (Tresca criterion), qp=2.7 N/mm2; 
2) b=1/2 (a new criterion), qp=3.0 N/mm2; 
3) b=1 (twin-shear criterion), qp=3.18 N/mm2. 
 

 
Fig. 7.17 Load-deflection curve of plate with the unified yield criterion 

 
The differences between the three curves show the effect of the yield criterion 

on the plastic limit bearing capacity of circular plates. The limit-bearing capacity 
of a plate with the twin-shear criterion (unified yield criterion when b=1) is the 
maximum, and the limit-bearing capacity with the single-shear criterion (Tresca 
criterion or the unified yield criterion when b=0) is the minimum. The 
limit-bearing capacity with the Huber-von Mises criterion is median. The median 
result is equivalent to the result obeying the unified yield criterion with b=1/2 or 

1/(1 3)b � � . The numerical results  using the UEPP are very close to the 
analytical results described in (Yu, Ma and Li JC, 2009) 

7.4.3 Truncated Cone under the Uniform Load on the Top  

A truncated cone under the uniform load on the top is shown in Fig. 7.18(a). 
Similar to the plane stress problem and plane strain problem, this spatial 
symmetric structure has the identical section with the plane problem as shown in 
Fig. 7.18(b). 
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(a) Spatial symmetric problem             (b) FEM mesh 

Fig. 7.18 Truncated cone and its FEM mesh 
 

The elastic limit of the truncated cone in terms of the unified yield criterion 
with three basic values of b ( b =0, b =0.5, b =1)in a spatial axisymmetric stress 
state can be obtained as follows. 

1) qe = 33.6 MPa (unified strength theory with b=0, single-shear theory, i.e. the 
Mohr-Coulomb theory); 

2) qe = 40.6 MPa (unified strength theory with b=1/2, a new criterion); 
3) qe = 43.0 MPa (unified strength theory with b=1, the twin-shear theory). 
The load-displacement relationship of node 2 in the middle of the truncated 

cone structure under uniform load on the top, using the unified strength theory 
with three parameters b (b=0, b =0.5, b =1), is obtained as shown in Fig. 7.19. 

 

 
Fig. 7.19 Load-displacement relation of a truncated cone 

 
The convergent result can be obtained when q=105 MPa  (unified strength 

theory with b=0, i.e., the Mohr-Coulomb single-shear theory), q=136 MPa 
(unified strength theory, b=0.5), q=158.1 MPa (unified strength theory, b=1). 
Increasing the loads further, the numeric solution process will be divergent. Then 
the limit load can be obtained by using the unified strength theory with three 
parameters respectively. 

The plastic limit of a cone in terms of the unified yield criterion with three 
basic values of b (b=0, b =0.5, b =1) under the plane strain state can be obtained as 
follows. 
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1) qp=105 MPa (unified strength theory with b=0, the single-shear theory, i.e. 
the Mohr-Coulomb theory); 

2) qp=136 MPa (unified strength theory with b=1/2, a new criterion); 
3) qp=158.1 MPa (unified strength theory with b=1, the twin-shear theory). 

7.5 Brief Summary 

The unified strength theory has been implemented in a non-linear FE program. 
Several examples are calculated by using  the unified strength theory and 
associated flow rule. A series of results can be obtained for every example, which 
may be adapted for most materials and structures.   

Plane stress, plane strain and spatial axisymmetric problems are three 
important problems in plasticity and engineering. Some typical examples, 
described in textbooks and monographs relating to computational plasticity are 
calculated again for comparison.  The results show that the result of the unified 
strength theory with b=0 is in good agreement with the result using the 
Mohr-Coulomb theory. The result of the unified strength theory with �=1 and b=0 
is in good agreement with the result using the Tresca criterion. The result of the 
unified strength theory with �=1 and b=1/2 is equivalent to the result using the 
Huber-von Mises criterion. The result of the unified strength theory with b=1 is in 
good agreement with the result using the twin-shear theory and the result of the 
unified strength theory with �=1 and b=0 is in good agreement with the result 
using the twin-shear yield criterion, or the maximum deviatoric stress criterion. A 
series of new results can be also obtained by using the unified strength theory. The 
Tresca-Mohr–Coulomb single-shear strength theory, the twin-shear strength 
theory and a new median criterion can be deduced from the unified strength theory 
when b=0, b=1 and b=1/2. They are all piecewise linear yield criteria. The lower 
bound, upper bound and the median criterion situated between these two bounds 
may be considered as three basic criteria for SD materials (�/1) and non-SD 
materials (�=1). The yield loci of the three criteria are shown in Fig. 7.20. 

 

 
         (a) SD materials  (�/1)          (b)  Non-SD materials (�=1) 
Fig. 7.20  Yield loci of several typical criteria of the unified strength theory 
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The numerical results obtained by using the unified strength theory are in good 
agreement with the results of the unified solution described in (Yu et al., 2009). 

The unified strength theory and associated flow rule have also been 
implemented in several commercial non-linear FE codes and applied to 
engineering problems, which will be described in the next chapters. 
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8 

Strip with a Circular Hole under Tension and 
Compression 

8.1 Introduction 

Elasto-plastic analysis of a strip with a hole under tension is a classical problem in 
computational plasticity. It was studied experimentally by Theocaris and Marketos 
(1964) and was first analyzed using finite element methods by Marcal and King 
(1967) and Zienkiewicz, Valliappan and King (1969). This problem was also 
studied by Narisawa (1991) and Yu and Zeng (Yu, 1998). The results were 
described by many authors, such as Zienkiewicz (1971), Zienkiewicz and Taylor 
(2000; 2009) and Yu (1998; 2004). The Huber-von Mises criterion for non-SD 
materials was used before 1994. The results can be adopted only for those 
materials which have identical strength both in tension and compression and the 
shear strength equals �y = 0.577�y. It cannot be used for most materials, especially 
geomaterials. The twin-shear strength theory was used for elasto-plastic analysis 
of a strip with a hole under tension and compression for non-SD materials and SD 
materials by Yu and Zeng (Yu, 1998). The unified yield criterion was studied for 
elasto-plastic analysis of a strip with a hole under tension for non-SD materials by 
Yu (Yu, 2004). The analytical results obtained using various yield criteria are very 
different. The shape and size of the plastic zone as well as the slip angle are 
influenced strongly by the choice of the yield criterion. It is necessary to use a new 
efficient criterion. The effect of the yield criterion on analytical results in 
plasticity were observed by Humpheson and Naylor (1975), Zienkiewicz and 
Pande (1977), Mean and Hutchinson (1985), Tvergaard (1987), Narisawa (1991), 
Lee and Ghosh (1996), Hopperstad et al. (1998), Moin and Pankaj (1998), Wang 
and Fan (1998), Frieman and Pan (2000), Kuroda and Tvergaard (2000). 

The unified strength theory and its implementation in a computer code 
provides us with a very effective approach for studying the effect of yield criterion 
for various engineering problems. A series of new computational results can be 
obtained by using the unified strength theory (see Chapter 5). These serial results 
can be adapted for more materials and structures. 
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Elasto-plastic analysis of a strip with a circular hole for non-SD materials 
(having identical strength both in tension and compression), SD materials 
(strength difference in tension and compression) and concrete plates are described 
in this chapter. A simple experimental method is used for comparison. The 
analytical and experimental results clearly show the difference in plastic regions 
of a strip with a circular hole between tension and compression when SD materials 
are involved. 

8.2 Plastic Analysis of a Strip with a Circular Hole for Non-SD 
Material 

The finite element mesh and spread of the plastic zone using the Huber-von Mises 
criterion was given by Zienkiewicz (1971), as shown in Fig. 8.1. 
  

  

 
Fig. 8.1 FEM mesh and plastic zone of a strip with a hole (Zienkiewicz, 1971) 

 
The growth in yielding around a circular hole of polymer alloys material was 

studied by Narisawa (1991). The spread of the plastic zone using FEM plasticity is 
shown in Fig. 8.2. It is obtained also by using the Huber-von Mises criterion. The 
shear yielding grows toward a region near �=45º, as shown in Fig. 8.2. The 
extension of the plastic zone is the same as in Fig. 8.1. 
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Fig. 8.2  The onset and growth of yielding around the circular hole (Narisawa, 1991) 

 
A similar problem was also analyzed by Yu and Zheng based on the unified 

strength theory for comparison, as shown in Fig. 8.3. The material behaviour is 
E=7×104  MPa, 	=0.2, yield stress �s=243 MPa. The strip is considered as a plane 
stress problem.  

 

 
Fig. 8.3 A strip with a circular hole under tension 

 
The configuration and the division into 96 isoparametric elements are shown 

in Fig. 8.4, in which the 4-nodes isoparametric element is used. The number of the 
nodes is 119. The elastic limit of a strip with a circular hole in terms of the unified yield 
criterion can be obtained after the first iteration. It requires a large number of 
iterations of non-linear computation for the plastic limit, until no further increase 
in the reaction at that point is achieved (furthermore, the numerical solution 
process will be divergent). The plastic limit load is approached progressively until 
that limit point where no convergence is achieved. The strip with a circular hole 
reaches the plastic limit in terms of the unified yield criterion with b=0 (i.e. the 
Tresca criterion) when p=140 MPa. 

The size and shape of the plastic zone is of importance to the understanding of 
the failure of structures. The spread figures of plastic zones with a different 
parameter b of the unified yield criterion (i.e. different criteria) at a same load 
p=140MPa for a strip with a circular hole are shown in Figs. 8.4(a)~8.4(e). 

Figure 8.4(a) shows the spread of the plastic zone obeying the unified yield 
criterion when b=0 and �=�t/�c=1, i.e. the single-shear yield criterion or the Tresca 
yield criterion. Fig. 8.4(b) shows the spread of the plastic zone obeying the unified 
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yield criterion when b=1/4 and � = �t/�c=1; this is a new yield criterion introduced 
from the unified yield criterion. Figure 8.4(c) shows the spread of the plastic zone 
obeying the unified yield criterion when b=1/2 and � = �t/�c=1; this is a new yield 
criterion introduced from the unified yield criterion. Figure 8.4(d) shows the 
spread of the plastic zone obeying the unified yield criterion when b=3/4 and � = 
�t/�c=1; this is a new yield criterion introduced from the unified yield criterion. 
Figure 8.4(e) shows the spread of the plastic zone obeying the unified yield 
criterion when b=1 and �=�t/�c=1, i.e. the twin-shear yield criterion (Yu, 1961; 
1983). 

 

   
 
 
  

  
 
 
 
 

 
(e) UST with b=1 and � =1 (Twin-shear criterion) 

Fig. 8.4  Distribution of plastic zone around a circular hole with different yield criteria  

(a) UST with b=0 and � =1(Single-shear; 
criterion, Tresca criterion) 

(b) UST with b=1/4 and � =1 (New criterion 
introduced from the unified yield criterion) 

(c) UST with b=1/2 and � =1 (New criterion 
introduced from the unified yield criterion)

(d) UST with b=3/4 and � =1 (New criterion 
introduced from the unified yield criterion) 
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It is of interest to note that the spread of the plastic region is different under 
the same load for different yield criteria. It means the effect of the yield criterion 
on the spread of the plastic zone is evident. The plastic zone of twin-shear material 
(the unified yield criterion with b=1) is smallest. The plastic zone of single-shear 
material (the unified yield criterion with b=0), i.e. the Tresca yield criterion, is 
largest, as shown in Fig. 8.4. Obviously, the plastic zone of the unified yield 
criterion with b=1/4 is the median between the plastic zone of the unified yield 
criterion with b=0 and b=1/2. The plastic zone of the unified yield criterion with 
b=3/4 is the median between the plastic zone of the unified yield criterion with 
b=1/2 and b=1. 

The unified yield criterion with b=1/2 and �=�t/�c=1 may be regarding as a 
linear approximation to the Huber-von Mises yield criterion. The result of the 
unified yield criterion with b=1/2 and �=�t/�c=1 is equivalent to the result of the 
Huber-von Mises criterion.  

8.3 Elasto-Plastic Analysis of a Strip with a Circular Hole for 
SD Material under Tension 

A similar example is examined by using the unified strength theory (Yu, 1991) 
and associated flow rule for a pressure sensitive material (SD material, �t �c). 
Material parameters are chosen for the comparison with experimental materials. 
The experimental material is a hard blue polymer, the color of which can change 
to white when it reaches the plastic state. Material parameters are as follows: 
tensile yield stress �t=5.89 kN/cm2, compressive yield stress �c=7.58 kN/cm2, the 
ratio of tensile strength to compressive strength is � =�t/�c=0.777. 

The plastic zones of a strip with a circular hole for SD material under tension 
were also tested and calculated using the unified strength theory and unified 
elasto-plastic constitutive rule (Yu, 1998). The plastic zone based on the unified 
strength theory with b=0 (single-shear theory, i.e. the Mohr-Coulomb theory) is 
shown in Fig. 8.5. The plastic zone based on the unified strength theory with b=1 
(twin-shear theory) is illustrated in Fig. 8.6. The plastic zones are different for 
single-shear material and twin-shear material.  

 

 
Fig. 8.5 Plastic zone based on the unified strength theory with b=0 (Single-shear theory) 

 

UST with b=1.0 
(Single-shear theory)
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Fig. 8.6  Comparison of plastic zones of strip in tension with b=1 (Twin-shear theory) 

 
The test results of two specimens are shown in Fig. 8.7. It can also be seen that 

the point of the plastic zone in the test result is close to the result of twin-shear 
theory. 

 

  
(a) Smaller circular hole  

 
(b) Bigger circular hole 

Fig. 8.7  Test result of plastic zones of strip with two different circular holes under tension 
 

The experimental results also present the difference in plastic zones under 
tension and under compression. 

8.4 Plastic Zone of a Strip with a Circular Hole for SD Material 
under Compression 

The plastic zones of a strip with a circular hole for SD material under compression 
were calculated by using the unified strength theory and the unified elasto-plastic 
constitutive rule. The plastic zone based on the unified strength theory with b=0 
(single-shear theory, i.e. the Mohr-Coulomb theory, 1900) and b=1 (twin-shear 
strength theory (Yu, 1985)) are illustrated in Fig. 8.8. It can be seen that the plastic 
zones of a strip with a circular hole under compression are different for 
single-shear material and twin-shear material.

UST with b=1.0 
(Twin-shear theory)
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Fig. 8.8  Comparison of plastic zones of strip under compression using two theories 

8.5 Comparison of Numerical Analysis with Experiments 

As can be seen, the plastic zones under tension and compression are different for 
SD (strength difference in tension and in compression) materials. Figure 8.9 
shows the computational results of the spread of the plastic zone of a strip using 
the twin-shear strength theory under tension. Figure 8.10 shows the computational 
results of the spread of the plastic zone of a strip using the twin-shear strength 
theory under compression. 

An experimental study using polymer and computer image techniques was 
carried out by Yu et al. (1992). A strip with a circular hole subjects a tensile load, 
as show in Fig. 8.9 and Fig. 8.10. Sometimes deformation is accompanied by a 
change in color; the material deforms and changes color when it reaches a plastic 
state. The different colors and patterns of a strip in different regions show up 
clearly, which can be seen in Fig. 8.8. The plastic zone begins at the edge of the 
hole and spreads in four directions, as show in Fig. 8.9 and Fig. 8.10. The plastic 
zones are similar to the calculated results using the unified strength theory with 
b=1 (Twin-shear strength theory). In general, the slip angle is a compromise 
between the two angles of  single-shear theory and twin-shear theory. Obviously, 
the slip angle is close to that of twin-shear theory, as shown in Fig. 8.6. 

UST with b=1.0 
(Single-shear theory)

UST with b=1.0 
(Twin-shear theory)
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Fig. 8.9  Comparison of the computational results with experiments on plastic  

Zones under tension 
 

A strip with a circular hole subjecting a load to compression is shown in Fig. 
8.12. The plastic zone begins at the edge of circular hole and spreads in four 
directions, as shown in Fig. 8.12. The plastic zones are similar to the calculated 
results of a strip under compression using the unified strength theory with b=1 
(Twin-shear strength theory). 

 

 

  
  

Fig. 8.10 Comparison of computational results with experiments on plastic zones 
under compression 

 
The analytical result can be obtained by unified slip line field theory (Yu et 

al., 1997; Yu et al., 2006). The computational results are very close to those 
results obtained from the experiments and from slip line theory. 
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8.6 Elasto-Plastic Analysis of a Strip with a Circular Hole for a 
Special SD Material: Concrete 

Concrete is an SD material. The compressive strength is much larger than the 
tensile strength. A concrete plate with a circular hole under pressure q is shown in 
Fig. 8.11. The thickness of the plate is 6cm, so it is considered to be a plane stress 
problem. The material parameters are: �t=2.7 MPa, �c=27 MPa, E=2.65×104 MPa, 
 =0.19.  

The single-shear theory (Mohr-Coulomb strength theory) and the twin-shear 
strength theory are used as the yield criteria for concrete (This analysis was done by 
Zheng in 1990). Due to symmetry, only a quarter of the plate is considered. The 
beginning and the spread of the plastic zone for single-shear material under q=228.6 
kg/cm and q=400 kg/cm are shown in Fig. 8.11.  

 

  
(a) q=228.6 kg/cm                           (b) q=400 kg/cm 

Fig. 8.11  Spread of plastic zones for Mohr-Coulomb material 
 

According to the twin-shear theory, no plastic zone occurs when q=228.6 
kg/cm. The spread of the plastic zone for twin-shear material under q=400 kg/cm 
and q=571.4 kg/cm is shown in Fig. 8.12. 

 

  
 (a) q=400 kg/cm                        (b) q=571.4 kg/cm 

Fig. 8.12  Spread of plastic zones for twin-shear material  
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Figure 8.13 shows the comparison between the two computational results for 
single-shear material and twin-shear material under the same load. It is shown that 
the plastic zone of the twin-shear material is smaller than that of single-shear 
material under the same load. The bearing capacity of twin-shear material is 
higher than that for single-shear material. 

 

  
(a) Single-shear material                 (b) Twin-shear material 

Fig. 8.13  Comparison of the spread of plastic zones for a concrete plate with a circular hole 
using the single-shear criterion and the twin-shear criterion under the same load 

8.7 Brief Summary 

The shape and size of the plastic zone, as well as the slip angle, are influenced 
strongly by the choice of the yield criterion. This can be seen from the tension and 
compression of a strip with a circular hole, as shown in Fig. 8.14 and Fig. 8.15. 
These results are also different for SD materials for the same strip under tension 
and under compression. The single-parameter criterion can only be used for 
non-SD materials. SD materials, however, have to use the two-parameters 
criterion. 

The computational results for a strip under compression and the experimental 
results are summarized in Fig. 8.14. The comparisons show that the results for 
twin-shear theory are closer to the experimental results than the results for 
single-shear theory. 

The computational results for a strip under tension and the experimental 
results are summarized in Fig. 8.15. The comparisons show that the results for 
twin-shear theory are closer to the experimental results than the results for 
single-shear theory. 

It is very important how we choose a reasonable strength theory (yield criteria 
or material model in FEM code) in research and design. We have to determine the 
bounds and region of the failure criteria before the research. The two bounds are 
important. The two bounds and region of the yield loci for non-SD materials and 
SD materials are shown in Fig. 8.16. The lower bound (inner bound) is the yield 
locus of the single-shear theory, and the upper bound (outside bound) is the 
twin-shear theory. 
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Fig. 8.14  Plastic zones of a strip with a circular hole under compression based on single-shear 
theory and twin-shear theory  

 
The results of research and design depend strongly on the choice of strength 

theory in most cases. The selection of the correct strength theory becomes even 
more important than the calculations, as indicated by Sturmer, Schulz and Wittig 
(1991) and others. The bearing capacity of structures, the forming limit of FEM 
simulations, the size of plastic zones, the orientation of the shear band and plastic 
flow localization etc. will be much affected by the application of strength theory. 
More experimental results regarding the strength of materials in a complex stress 
state and a more precise choice of the strength theory applied are necessary in 
research and engineering applications. 

As use of FEM and other numerical analysis expands in engineering design 
with increased access to computers, it becomes important that strength theory 
(yield criterion, failure criterion) related stress be carefully chosen. In adopting a 
criterion for use it is important that at least as much concern be directed to the 
physics of the problem and to the limitation of the criteria. When it becomes 
necessary to adopt a criterion for use, it is important to experimentally check the 
criterion, or to investigate the experimental data in the literature. If this is not done, 
then very exact numerical procedures or commercial codes can lead to completely 
worthless results (Hopperstad et al., 1998). 

UST with b=1.0 
(Twin-shear theory)

UST with b=1.0 
(Single-shear theory)
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The unified yield criterion and the unified strength theory provide us with 
systematic yield criteria, an effective approach and a powerful tool for studying 
these effects. More results can be obtained using strength theory and the 
associated flow rule, which can be adapted for different materials and structures. 

 

   
 

 
 

  
Fig. 8.15  Plastic zones of a strip with a circular hole under tension based on single-shear theory 
and twin-shear theory  

 

    
(a) For non-SD materials               (b) For SD materials 

Fig. 8.16  Bounds and region of yield loci

UST with b=1.0 
(Twin-shear theory)

UST with b=1.0 
(Single-shear theory)
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9  

Plastic Analysis of Footing Foundation Based on 
the Unified Strength Theory 

9.1 Introduction 

Bearing capacity of soils and settlement of strip foundations and circular 
foundation are an important and classical problem. Loads from a structure are 
transferred to the underlying soil through a foundation such as a footing. The 
foundation and soils must not collapse or become unstable under any conceivable 
loading. 

Prandtl indicated that the metallic material will be deformed below a rigid 
plate, as shown in Fig. 9.1(a). Terzaghi applied Prandtl’s theory to a strip footing 
with the assumption that the soil is a semi-infinite, homogeneous, isotropic, 
weightless rigid-plastic material, as shown in Fig. 9.1(b). The systematic 
description of bearing capacity of shallow foundations can be seen in Chen and 
McCarron (1991). 

The solutions of footing foundation were generalized to a unified solution 
introduced from the unified slip field theory (Yu et al., 1997; 2006). A series of 
solutions can be obtained by using the unified slip field theory. The unified 
solutions for plane strain, plane stress and spatial axial-symmetric problems have 
been summarized in (Yu, 2006). 

 
(a) Non-SD materials                      (b) SD materials 

Fig. 9.1 Slip field of footing foundation 
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Numerical method is also applied to geomechanics and geotechnological 
engineering (Chen, 1975; de Borst and Vermeer, 1984; Chen and Mizuno, 1990; 
Verruijt, 1995; 2009; Potts and Zdravkovic, 1999; 2001; Contractor and Desai, 
2001; Griffiths and Gioda, 2001; Davis and Selvadurai, 2002; Kolymbas, 2003; 
Bull, 2003; Pastor and Tamagnini, 2004; Yu, 2006; Chan and Shiomi, 2006; 
Pietruszczak, 2010). Recently, special Lecture Notes on Computational 
Geomechanics: Inelastic Finite Elements for Pressure Sensitive Materials are 
presented by Jeremi� et al. (2010).  

A series of international conference of IACMAG are organized by the 
International Association for Computer Methods and Advances in Geomechanics 
about every three years. Serial proceedings on Computer Methods and Advances 
in Geomechanics are published. Another series of International Symposium on 
Numerical Models in Geomechanics are held since 1982. Relating Proceedings of 
International Symposium on Numerical Models in Geomechanics (NUMOG) were 
published (Pande and van Impe, 1986; Pietruszczak and Pande, 1989; Pande and 
Pietruszczak, 1992; 1995; 1997; 1999; 2002; 2004; 2007). The serial conferences 
on Numerical Methods in Geotechnical Engineering were organized by the 
European Regional Technical Committee ERTC7 (Numerical Methods in 
Geotechnical Eng.) under the auspices of the International Society for Soil 
Mechanics and Geotechnical Engineering (ISSMGE). One of the first conferences 
of this series was held in 1986 in Stuttgart, Germany and continued every four 
years (Santander, Spain, 1990; Manchester, United Kingdom, 1994; Udine, Italy, 
1998; Paris, France, 2002; Graz, Austria, 2006). The Seventh European 
Conference on Numerical Methods in Geotechnical ngineering has been held in 
Trondheim, Norway 2010. 

Numerical method is used for studying of footing foundation. Various finite 
element analyses for elastoplastic deformation and bearing capacity of strip 
footing and circular foundation have been reported in the literature. The 
development of plastic zone in soil under a strip footing foundation was studied by 
Nayak and Zienkiewicz (1972), Humpheson and Naylor (1975), Zienkiewicz and 
Pande (1977), de Borst and Vermeer (1984), Chen and Mizuno (1990), Moore and 
Rowe (1991), Ehlers (1995), Wunderlich et al. (2001), Otani et al. (2001) and 
others. The results show the spread of plastic zone at various footing penetrations, 
the final slip surface, and soil materials collapses with a mechanism are similar to 
that of Prandtl for perfectly plastic materials. Many researchers have investigated 
numerically the bearing capacity of shallow foundations on cohesionless soil that 
obeys the Mohr-Coulomb failure criterion. Two velocity fields for strip footing 
foundation are shown in Figs. 9.2(a) and 9.2(b). The mesh effect and failure 
mechanism of footing by using the Drucker-Prager criterion with size-adjustment 
on Mohr-Coulomb theory was given by Zimmermann and Commend (2001), as 
shown in Fig. 9.2(b).   

The Mohr-Coulomb model or the Drucker-Prager criterion is always used for 
numerical simulation of strip footing and circular foundation. Only one result is 
given by using of the Mohr-Coulomb model or the Drucker-Prager criterion, 
which is adapted only for one kind of material. 
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(a) Moore and Rowe(1991)           (b) Zimmermann and Commend (2001)  

Fig. 9.2 Simulations for velocity fields 
 

The similar results were also obtained by other researchers. A real-life problem 
in geomechanics were investigated by Wunderlich et al. (2001) using a six 
parameters criterion. The plastic strains of strip foundation by using the Ehlers 
single-surface yield criterion was giver by Ehlers (1995), as shown in Fig. 9.3.  

 

 
Fig. 9.3 Numerical Simulations of plastic strains for strip foundation (Ehlers, 1995) 

 
Bearing capacity of strip and circular footings in sand following the 

Mohr-Coulomb failure criterion are given by Loukidis and Salgado (2009). 
Collapse mechanisms as depicted by contours of the plastic maximum shear strain 
increment compared against the mechanism yielded by Martin’s ABC program 
(Martin, 2003; 2005) for strip footings on weightless soil with surcharge are 
presented (Loukidis and Salgado, 2009). 

Two- and three-dimensional bearing capacity of footings in sand are studied 
by Lyamin et al. (2007). A 3D rigid plastic finite element analysis for strip footing 
was solved by using of the Drucker-Prager criterion (Otani et al., 2001). Finite 
element mesh and 3D velocity field for strip footing are shown in Fig. 9.4. 

 

 
      Fig. 9.4 Simulation of velocity field for strip footing (Otani et al., 2001) 
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The shape of velocity field roughly resembles the Prandtl mechanism for 
perfectly plastic materials, although only part of the solid material in motion is 
responding plastically, with both the block of material directly under the rigid 
footing and much of the solid within the “passive motion” behaving elastically. 
The shape is also similar the results obtained by the unified slip field theory for 
plane strain problem and unified characteristics line field of spatial axisymmetry 
problems (Yu and Li, 2001; Yu et al., 2006).  

9.2 Effect of Yield Criterion on the Limit Analysis of Footing 

The limit analysis of strip footing foundation was studied by Nayak and 
Zienkiewicz (1972), Humpheson and Naylor (1975), Zienkiewicz and Pande 
(1977). Great difference among the different solutions using different yield criteria 
is obvious. It has been shown in Fig. 1.8 in Chapter 1. Similar result is also given 
by Chen and Mizuno (1990). The load-displacement curves by the Drucker-Prager 
models with different radius of yield circles (different material constants) are 
different  

As indicated by Chen and Mizuno, the analysis using material constants 
matched with the compressive meridian of the Mohr-Coulomb criterion in 
three-dimensional space results in a collapse load (365 psi or 2520 kPa) which is 
almost twice that of the other analyses (158, 190 psi or l090, 1310 kPa). This 
load-displacement curve is characterized by linear elastic response to 
approximately l50 psi and nonlinear elastic-plastic response to the collapse load. 
On the other hand, the Drucker-Prager criterion with material constants matched 
with the tensile meridian of the Mohr-Coulomb criterion predicts a collapse load 
(190 psi) which is somewhat higher than that of l75 psi given by Tetzaghi. Further, 
the collapse load (158 psi) predicted by the Drucker-Prager criterion matched with 
the Mohr-Coulomb criterion in the plane strain condition is, as expected., almost 
the same as that of l52 psi predicted by the Mohr-Coulomb criterion (Zienkiewicz 
et al., 1975; 1999). This load is close to the loads (l75 psi and 143 psi) given by 
the Terzaghi and Prandtl solutions.

As a result the analysts with the material constants of compressive meridian of 
the Mohr-Coulomb criterion for the Drucker-Prager criterion does not agree with 
the well-known Terzaghi and Prandtl solutions. The important point to be noted 
here in using the Drucker-Prager model is the careful selection of material 
constants. In order for this criterion to represent a proper generalization of the 
Mohr-Coulomb or modified Mohr-Coulomb criteria under multi-dimensional 
stress states. Its material constants must be properly defined. These constants 
should not be treated as fixed expressions for all types of applications. Rather, 
their choice depends on the particular problems to be solved (Chen and Mizuno, 
1990). The limit loci of extension circular cones give a very poor approximation to 
the real failure conditions. 

The influence of different forms of yield surfaces on load-bearing capacity is 
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obvious. Most of the limit surfaces of different failure criteria are cones in stress 
space. The limit loci in the meridian plane are linear. This means that the strength 
of materials is linearly dependent on the hydrostatic stress, as has been 
demonstrated in a number of tests, in which the hydrostatic stress is not high. The 
differences between the limit loci of various failure criteria in the deviatoric plane 
have been shown in Fig. 1.8 in Chapter 1.  

Obviously, various circular cones of Drucker-Prager criterion, i.e. extension 
cone, compromise cone, compression cone and the Drucker-Prager criterion 
(inscribed cone of the Mohr-Coulomb semi-infinite hexagonal cone with unequal 
sides) cannot match with the six experimental points, as shown in Fig. 9.5(a). The 
Tresca regular hexagon cannot also match the six points as shown in Fig. 9.5(b). 
According to the convexity, all the yield loci must be situated between the two 
bounds, as shown in Fig. 9.6. Three basic criteria of the unified strength theory 
with b=0, b=1/2 and b=1 for SD materials shown in Fig. 9.6(b) are recommended.  

 

  
 (a) Circle match                     (b) Regular hexagon match  

Fig. 9.5 Circles loci and regular hexagon loci 
 

           
(a) Two bounds and region of yield loci    (b) Three or five basic criteria for SD materials  

Fig. 9.6 Two bounds and three basic criteria for SD materials 
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The lower bound and upper bound solutions of plastic limit load for various 
structure can be given when b=0 and b=1 respectively. The limit loci on the 
deviatoric section of experimental results published in the literature are convex 
and lie in these two bounds. It means that the unified strength theory parameter b 
will be ranged at 0 � b � 1. 

9.3 Elasto-Plastic Analysis of Foundation Using UST 

Elasto-plastic analysis of strip footing for weightless soil under a plane strain strip 
load is studied again by Yu et al. (2001). The unified strength theory and 
associated flow rule (Yu et al., 1993; UEPP User’s Manual, 1993; 1998) are used. 
The velocity field and displacement field are similar to the previous results in 
literatures, as shown in Fig. 9.7.  
 

Fig. 9.7 Velocity and displacement field
 

 
The unified strength theory and associated flow rule are implemented in a 

special FE program: UEPP (Unified Elasto-Plastic Program). It is used for the 
studying of the effect of the yield criteria on limit capacity of strip footing. Three 
basic criteria of the unified strength theory with b=0, b=1/2 and b=1 are applied to 
elasto-plastic analysis of strip footing. The complete load-displacement curves 
obtained by using the unified strength theory with three parameters b (b=0, b=0 5 
and b=1) are shown in Fig. 9.8 where the applied load is plotted versus the 
centerline displacement directly beneath the footing for each case. 

A series of results using the unified strength theory with parameter 0 � b � 1 
can be obtained. However, only three results with b=0, b=1/2 and b=1 are given 
here. It is similar to such which we hoped for, the unified strength theory with b=0 
gives the minimum result, the unified strength theory with b=1 gives the 
maximum result and the unified strength theory with b=1/2 gives the median 
result, as shown in Fig. 9.8 (Yu et al., 2001). 

Velocity fields respective to the three basic yield criteria (b=0, b=0.5 and b=1) 
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under a same load are shown in Fig. 9.9. 
 

 
Fig. 9.8 Bearing capacity of strip footing with the three basic criteria 

 

     (a)UST with b=0          (b) UST with b=0.5           (c) UST with b=1 

Fig. 9.9 Velocity fields respective to three basic yield criteria under the same load 
 
Another example of foundation was studied by Wang. The color figures of 

effective stress also demonstrate the differences between the results obtained by 
using of the three basic yield criteria, as shown in Fig. 9.10. They give us the 
lower bound, upper bound and a median result. More results can be given when 
unified strength theory parameter b equals to 0 � b � 1. 
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(a) UST with b=0           (b) UST with b=0.5              (c) UST with b=1.0 

Fig. 9.10 Configuration of effective stress of the three basic yield criteria under the same load 

9.4 Plastic Analysis of Strip Foundation Using UST 

The bearing capacity of strip foundation is a basic and important problem in solid 
mechanics and soil mechanics. The analysis solution can be found in the textbook 
of plasticity or soil mechanics. It is always a single solution adapted for only one 
kind of material. The unified analysis solution has been presented in the 
monograph “Generalized Plasticity” that is the first monograph of serial plasticity 
published by Springer in 2004 and 2006 (Yu, 2004; 2006) and Springer and ZJU 
Press in 2009 (Yu et al., 2009). The slip-line field is shown in Fig. 9.11. 
 

 
Fig. 9.11 Slip-line field of footing foundation

 
The unified solution of limit bearing capacity for footing foundation can be 

expressed as  
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where �0 is friction angle of material; �unified  and Cunified  are unified material 
parameters obtained from the unified slip line field theory proposed by Yu in 1997 
(Yu et al., 1997; 2006). The two unified material parameters can be expressed as  

 



9.4  Plastic Analysis of Strip Foundation Using UST 221 

0
unified

0

2( 1)sin
sin

2 (1 sin )
b
b

�
�

�
�

�
� �

                        (9.2) 

 
0 0

unified
0 unified

2( 1)cos
2 (1 sin ) cos

b C
C

b
�
� �

�
� <

� �
                     (9.3) 

 
The numerical simulation of strip footing by using of the unified strength 

theory is calculated by Dr. Ma ZY. Material parameters are: cohesion C0= 1.0 kPa, 
friction angle �0=20°, E=10.0 MPa, =0.32. The mesh of trip foundation is shown 
in Fig. 9.12. Only the half of mesh is shown in Fig. 9.12 owing to the symmetry 
(Liao et al., 2010; Ma and Liao, 2010). 

 

 
Fig. 9.12 Model and meshing of strip footing 

 
The generalized shear strain contours obeying three yield criteria are shown in 

Fig. 9.13. The displacement vector fields obeying three yield criteria are shown in 
Fig. 9.14. 
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(a) UST with b=0.0 (Single-shear theory) 

 

 
(b) UST with b=0.5 (New criterion) 

 

 
(c) UST with b=1.0 (Twin-shear theory) 

 
Fig. 9.13 Generalized shear strain contour of foundation under limit state 
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(a) UST with b=0.0 (Single-shear theory) 

 
(b) UST with b=0.5 (New criterion) 

 

 
(c) UST with b=1.0 (Twin-shear theory) 

Fig. 9.14 Displacement vector fields obeying three yield criteria  
 

The limit loads obeying different yield criteria are obtained. The relations 
between length of plastic zones and the UST (unified strength theory) parameter b 
and relations between limit load and the UST parameter b are shown in Fig. 9.15 
and Fig. 9.16. The solution of slip-line theory for different UST parameter b are 
also given for comparison, as shown in Fig. 9.16 (Liao et al., 2010; Ma and Liao, 
2010). 
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Fig. 9.15 Relations between length of plastic zones and the UST parameter b  

 

 
Fig. 9.16 Relations between limit load and the UST parameter b  

 
It can be seen that 
1) A number of results can be obtained by using of the unified strength theory 

and associated flow rule. It can be adapted for more materials and structures. 
2) Three basic results are given by using of the unified strength theory with 

three basic yield criteria (b=0, b=0.5 and b=1). They are the lower, median and 
upper results, if necessary; five results (b=0, b=0.25, b=0.5, b=0.75 and b=1) can 
also be given as shown in Fig. 9.15 and Fig. 9.16.  

3) The generalized shear strain contour and displacement vector fields for 
different yield criteria are similar; however, the limit loads and the size of plastic 
zones are different.  

4) The unified strength theory with b=0 (single-shear theory) gives the lower 
limit load and smaller plastic zone at limit state, as shown in Fig. 9.15 and 9.16 
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(Attention: The unified strength theory with b=0 gives the larger plastic zone, and 
the unified strength theory with b=1 gives the smaller plastic zone under the same 
load).  

5) The unified strength theory with b=1 (twin-shear theory) gives the upper 
limit load and larger plastic zone at limit state, as shown in Fig. 9.13 and 9.16. The 
unified strength theory with b=1 (twin-shear theory) also gives the lenient length 
of plastic zones at limit state, as shown in Fig. 9.13 and Fig. 9.16. It means that 
more materials in structure are contributed for the bearing capacity of structure 
when the unified strength theory parameter b>0, and the highest limit load can be 
obtained when the UST parameter b=1 is used. It is why the higher limit load can 
be obtained with the use of the unified strength theory. It is advantageous in the 
material and energy saving, and also advantageous in the environment protection. 

The difference of the generalized shear strain for these three yield criteria in 
the unified strength theory can be seen clearly in the color figures as shown in 
Fig. 9.17 (Calculated by Dr. Ma ZY in 2010). 
 

 
(a) UST with b=0.0 (Single-shear theory) 

 

 
(b) UST with b=0.5 (New criterion) 

 

 
(c) UST with b=1.0 (Twin-shear theory) 

 
Fig. 9.17 Spread of the generalized shear strain for three yield criteria at limit states 
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9.5 Plastic Analysis of Circular Foundation Using UST 

9.5.1 Unified Characteristics Line Field of Spatial Axisymmetric 
Problem 

A semi-infinite body under the circular foundation pressure q on the free surface is 
a spatial axisymmetric problem (Shield, 1955; Cox, 1961; Tani and Craig, 1995). 
The Mohr-Coulomb model was used.  

An example with radium of the foundation pressure region is 2 m is shown in 
Fig. 9.18. The soil parameters are that c0=0.3 MPa and �0=153.  

Fig. 9.18 Semi-infinite body under the circular foundation compression and the characteristics 
line field 
 

 

Fig. 9.19 The relation between the limit loading q and the UST parameter b
 

The right part of the characteristics line field is shown in Fig. 9.18 when b � 1 
(the twin-shear strength theory (Yu, 1985)). The relations between q /c0 and b has 
been obtained (Yu and Li, 2001), as shown in Fig. 12.19. It is obtained by using of 
the unified characteristics line field theory (Yu et al., 2006). The solution at b=0 
(q/c0=13.9) in Fig. 9.19 is the complete solution of Cox (Chen, 1975), which is 
based on the Haar von-Karman condition and the Mohr-Coulomb strength theory. 
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A series of results can be introduced for the SD materials with the different 
tensile-compression strength (�0/0) and the non-SD materials with same 
tensile-compression strength (�0/0) by the unified characteristics line field theory. 
The solutions of the Mohr-Coulomb material and Tresca material are special cases 
of the solutions of the unified characteristics line theory (Yu and Li, 2001; Yu, 
2006). 

9.5.2 Numerical Simulation of Spatial Axisymmetric Problem 

Numerical analysis of bearing capacity of circular footings has been studied 
widely, such as Potts and Zdravkovic (1999; 2001), Erickson and Drescher (2002), 
Loukidis and Salgado (2009) Collapse mechanisms as depicted by contours of the 
plastic maximum shear strain increment compared against the mechanism yielded 
by Martin’s ABC program for circular footings on weightless soil with surcharge 
are presented by Erickson and Drescher (2002). 

The Mohr-Coulomb model is always used for numerical simulation of strip 
footing and circular foundation. Only one result is given by using of the 
Mohr-Coulomb model, which is adapted only for one kind of material. The 
numerical simulation of circular foundation by using of the unified strength theory 
is calculated by Dr. Ma ZY. Material parameters are: cohesion C0=1.0 kPa, friction 
angle �0=20°, E=10.0 MPa, =0.32. The mesh of trip foundation is shown in Fig. 
9.20. Only the half of mesh is shown in Fig. 9.20 owing to the symmetry. 
Displacement vector fields obeying the UST with b=0, b=1/2 and b=1 are shown 
in Fig. 9.21. 
 

 
 

Fig. 9.20 Model and meshing of circular foundation 
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(a) UST with b=0.0 (Single-shear theory)  

 
(b) UST with b=0.5 (New criterion) 

 
(c) UST with b=1.0 (Twin-shear theory) 

Fig. 9.21 Displacement vector fields obeying the UST 
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UST with b=0.0 (Single-shear theory)  

 
(b) UST with b=0.5 (New criterion) 

 
(c) UST with b=1.0 (Twin-shear theory) 

Fig. 9.22 Plastic zones of circular foundation  
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The plastic zones of a circular foundation under uniform load are shown in 
Fig. 9.20, in which three different shapes and sizes of plastic zones are displayed. 
It is seen that the depth of the plastic zone of the single-shear theory (UST with 
b=0) is deepest, the depth of the plastic zone of the twin-shear theory (UST with 
b=1) is shallowest. 

9.5.3 Effect of UST Parameter � on the Spread of Shear Strain  

More results can be obtained by using of the unified strength theory. The effect of 
UST parameter b (effect of yield criterion) on the calculated result has been 
studied above. The effect of UST parameter � (friction angle of materials) on 
calculated results can be also given by using of the unified strength theory. A 
series of new interesting results are obtained by using of the unified strength 
theory with different parameters b and �. 

Generalized shear strain of circular foundation for different material strength 
parameter � are shown in Fig. 9.23. The results are obtained using the different 
cohesive strength of materials with �=03, �=103, �=303, �=603 and the same 
shear strength c=1.0 kPa and b=1. The cohesive strength of material �=03 means 
this material is non-SD material; the others are SD materials (�>03). 

It is interesting that the shape and the direction of the spread of generalized 
shear strain are strongly depended on the variation of material strength parameters 
�. The larger parameter � means the smaller ratio of material strength in tension 
and in compression �=�t /�c. These figures are also depended on the UST 
parameter b.  
 
 

 
(a) UST with b=1 and �=0° 

Fig. 9.23 Generalized shear strain of circular foundation for different strength parameter � 
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(b) UST with �=10° 

 

 
(c) UST with b=1 and �=30° 

 

 
(d) UST with b=1 and �=60° 

Fig. 9.23 Continued 
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9.6 Effect of UST Parameter b and � on the Spread of Shear 
Strain 

The generalized shear strain of strip foundation using UST with different 
parameter b and � are shown in Figs. 9.24, 9.25 and 9.26. Only half figures are 
displayed owing to the symmetry (calculated by Dr. Ma ZY). 
 

 
b=0.0                 b=0.5                b=1.0 

Fig. 9.24 Generalized shear strain of strip foundation at limit state for strength parameter �=303 
 

 
b=0.0                b=0.5                   b=1.0 

Fig. 9.25 Generalized shear strain of strip foundation at limit state for strength parameter �=403 
 

   
b=0.0             b=0.5                  b=1.0 

Fig. 9.26 Generalized shear strain of strip foundation at limit state for strength parameter �=503 
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b=0.0           b=0.5                  b=1.0 

Fig. 9.27 Generalized shear strain of strip foundation at limit state for strength parameter �=703 
 
It is interesting that the shape and size of plastic zone and the spread direction 

of generalized shear stain are strongly depended on the UST parameters b and �.  

9.7 Brief Summary 

The prediction of bearing capacity of structural, shape and size of plastic zones, 
the spread direction of generalized shear stain is influenced strongly by the 
choosing of the yield criterion and strength parameter of materials. It is very 
important that how to known the lower value and the upper value of limit load, 
and how to choose the reasonable strength theory (yield criteria, failure criterion, 
or material model in FEM code) in the research and design.  

The change in shape and size of the limit surface of various failure criteria is 
great. We have to determine the bounds and region of failure criteria before the 
discussion. Two bounds and three basic criteria or five basic criteria introduced 
from the unified strength theory of convex failure criteria are studied and used for 
the plastic analysis of strip footing and circular foundation in this chapter. 

The results of researches and designs are depended strongly on the choice of 
strength theory in most cases. The shape of the yield surface is found to have 
significant effect on the plastic deformations and bearing capacity predicted in the 
simulations. 

The unified strength theory and associated flow rule provide us with 
systematic yield criteria, an effective approach and a powerful tool to study these 
effects. Considerable numbers of new and interesting results are obtained by using 
of the unified strength theory and associated flow rule, which can be adapted for 
more different materials and structures. Moreover, the application of the unified 
strength theory is advantageous in the material and energy saving, and also 
advantageous in the environment protection. 
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10  

Underground Caves, Tunnels and Excavation of 
Hydraulic Power Station  

10.1 Introduction 

Underground caves, excavations or underground openings pose fundamental 
problems in rock mechanics and geotechnical engineering (Brady and Brown, 
1985; Goodman, 1989; Wittke, 1990; Hudson and Harrison, 1997; Sun, 1999; 
Harrison and Hudson, 2000; Zhou and Yang, 2005). Underground opening 
includes mines, shafts, tunnels (drifts), hydraulic power plants and chambers for 
the military, for storage of foods, chemical products, oil and natural gas and for 
other civil, industrial and war applications. Underground excavation breaks the 
equilibrium of the original stresses in the rock or soil and causes a redistribution of 
stress in the surrounding rock or soil. The stress state of an underground circular 
cave or tunnel is shown in Fig. 10.1. The surrounding rock (or soil) is acted upon 
under the vertical stress �y and the horizontal stress �x. 

According to the Kirsch formula in rock mechanics, the stresses at the element 
(point M in Fig. 10.1) within the surrounding rock could be calculated from  
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where ,r �� �  and ( )r r r� � �� � �� are radial, tangential and shear stresses at the 
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element, respectively  

 
Fig. 10.1  Stress state of an underground circular tunnel 

 
If r is infinite, or R0=0, the expressions of situ stresses in the polar coordinates 

system are obtained as follows: 
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The finite element method has now become recognized as a general method of 

wide applicability to geomechanics and rock engineering. The elasto-plastic FEM 
or non-linear material problem has also been widely accepted. Descriptions and 
examples of analysis can be seen in the book of Zienkiewicz (1971). The 
Mohr-Coulomb criterion, the Drucker-Prager criterion and the no-tension material 
model were usually used. 

Some examples are given to show the effect of the failure criteria on the results. 
The unified strength theory provides us with a very effective approach for 
studying the effect of failure criterion on various problems. The plastic analysis of
an underground circular excavation (cave or tunnel etc.) is described in this 
chapter. 

Many large hydraulic power plants have been constructed on the Yellow River, 
Yangtze River and in other regions in China. The stability of the underground cave 
of a large hydraulic power station has been studied by many researchers. The 
failure of the surrounding rock mass may be caused by the lower strength of the 
rock mass somewhere. Also, it may be caused by the accumulation of stress at the 
underground excavation. The local failure of the rock mass caused by stress 
accumulation during excavation can be forecast by numerical modeling analysis. 
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The distribution of the weak positions has a certain regularity, but also has some 
differences due to the difference in the virginal geo-stress field, the form of 
excavation, the direction of the excavation’s axis, the method of excavating and 
the choice of yield criterion.  

Plastic zones analysis for the stability of the underground cave of a large 
hydraulic power station based on the twin-shear unified strength theory was 
carried out during excavation engineering by the Investigation and Design 
Institute of Northwest China Hydroelectric Power (Liu, 1994; 1995; Liu and Wu, 
1995; Sun, 1998). The twin-shear unified strength theory and associated flow rule 
were implemented in FEM codes and used for several large hydraulic engineering 
and pumped storage hydraulic power station projects (Sun et al., 2004a; 2004b). 
The twin-shear unified strength theory is also used for dynamic problems. 
Dynamic response and blast-resistance analysis of a tunnel subjected to blast 
loading was conducted successfully by professors Liu and Wang (2004) at 
Zhejiang University, Hangzhou, China, for a railroad tunnel.  

10.2 Effect of Yield Criterion on the Plastic Zone for a Circular 
Cave  

Plastic analysis was calculated for a circular cave under the action of a uniform 
vertical pressure. The spread of plastic zones in terms of the single-shear theory or 
the Mohr-Coulomb strength theory and the twin-shear strength theory with 
material parameter C0=3 MPa were obtained and shown in Fig. 10.2. The 
difference between the single-shear theory and the twin-shear theory is obvious. 

The plastic zones in terms of the single-shear theory or the Mohr-Coulomb 
strength theory and the twin-shear strength theory with material parameter C0=2.6 
MPa are given as shown in Fig. 10.3. The difference is also displayed. 
 

       
�y                                                       �y �

(a) UST with b=0 (Single-shear theory)         (b) UST with b=1 (Twin-shear theory) 
Fig. 10.2 Distribution of plastic zone around circular cave (C0= 3.0 MPa)  
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        ��
�y                                                       �y �

(a) UST with b=0 (Single-shear theory)        (b) UST with b=1 (Twin-shear theory) 

Fig. 10.3  Distribution of plastic zone around circular cave (C0= 2.6 MPa)  

10.3 Plastic Zone for Underground Circular Cave under Two 
Direction Compressions 

An underground circular cave is under vertical stress and horizontal stress, as 
shown in Fig. 10.4. The structure is considered a plane strain problem. A series of 
computational results can be obtained by using the unified strength theory. The 
ratio of load 0=�x/�y is referred to as the lateral stress coefficient.  
 

  
Fig. 10.4 Underground circular cave under vertical stress and horizontal stress

 

r=400 cm 
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10.3.1 Material Model 

Three basic yield criteria of the unified strength theory are chosen for use in 
geomaterials and geotechnical engineering. They are:  

(1) b=0, the single-shear theory, or the Mohr-Coulomb strength theory  
 

F = 'F = 1 3 t� �� �� �                      (10.3) 
 

(2) b=1, the twin-shear strength model (Yu, 1985)  
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(3) b=1/2, a new yield criterion deduced from the unified strength theory  
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Fig. 10.5 Three fundamental criteria for geomaterials (two bounds and the median) 
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(a) 

    
(b)                             (c) 

Fig. 10.6 Circle and regular hexagonal cannot match six test points 
 

The Mohr-Coulomb single-shear strength theory, the twin-shear strength 
theory and this new criterion can be deduced from the unified strength theory 
when b=0, b=1 and b=1/2, as shown in Fig. 10.5. They are all the piecewise linear 
yield criteria. The lower bound, upper bound and the median locus situated 
between these two bounds may be considered as three basic criteria for SD 
materials. 

The circles of the Drucker-Prager criterion cannot match the six experimental 
points, as shown in Figs. 10.6(a) and 10.6(b). The regular hexagonal also cannot 
match the six test points, as shown in Fig. 10.6(c). 

The new yield criteria given by the unified strength theory with b=1/2 is a 
median yield criterion between two bounds. It maybe becomes a new reasonable 
yield criterion instead of the circular cone criteria. The stress angle effect on 
material strength is not taken into account in various circular cone criteria.  

Of course, there is still a need for new models. A general, but simple and 
thereby well suited model for many potential users may be developed.  

10.3.2 Elastic Bearing Capacity 

The elastic limits of a structure under six cases of load with 0=�x/�y=1.0, 0=0.75, 
0=0.5, 0=0.3, 0=0.2, 0=0 can be obtained by using the unified strength theory. 
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The elastic limit in terms of the Drucker-Prager criterion is also given for 
comparison. The results are listed in Table. 10.1. 

Table 10.1 Elastic limit of caves under deferent load obtained from deferent criteria 

Elastic limit (MPa) 
Yield criterion 

0=1 0=0.75 0=0.5 0=0.3 0=0.2 0=0.0 
UST with b=0 

(Single-shear theory) 16.31 14.63 13.21 12.25 11.82 11.05 

UST with b=0.5 17.5l 15,72 14.19 13.16 12.70 11.87 
UST with b=1 

(Twin-shear theory) 18.19 16.32 14.73 13.67 13.19 12.23 

Drucker-Prager criterion 17.42 15.63 14.11 13.09 12.63 11.81 

 
It is shown that the elastic limit of the cave under vertical compression in 

terms of the unified strength theory with b=1 (i.e. twin-shear theory) is the 
maximum, and the elastic limit of the unified strength theory with b=0 (i.e. 
single-shear theory, Mohr-Coulomb strength theory) is the minimum. The results 
of using unified strength theory with b=1/2 lie between these two limits. It is 
interesting that the elastic limit of the Drucker-Prager criterion is similar to the 
elastic limit of the unified strength theory with b=1/2. 

10.3.3 Lasto-Plastic Analysis  

Choose an 8-node quadrilateral element, mesh the structure into 48 elements with a 
total of 173 nodes, as shown in Fig. 10.7. A series of computational results using the 
unified strength theory and unified elasto-plastic constitutive relationship can be 
obtained. When the load coefficient is 0=�x/�y=0.2, �y=20 MPa, by increasing 
gradually to 30 MPa, then to 34 MPa, the spreads of the plastic zone using the 
unified strength theory with b=0, b=1/2, and b=1 are shown in Figs. 10.7, 10.8 and 
10.9. 
 

     
        (a) �y=20 MPa            (b) �y=30 MPa             (c) �y=34 MPa 

Fig. 10.7 Spread of plastic zone of a cave using UST with b=0 (Single-shear theory) 
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(a) �y=20 MPa           (b) �y=30 MPa             (c) �y=34 MPa 

Fig. 10.8 Spread of plastic zone of a cave using UST with b=1/2 (A new criterion) 
 

     

(a) �y=20 MPa           (b) �y=30 MPa            (c) �y=34 MPa 

Fig. 10.9 Spread of plastic zone of a cave using UST with b=1 (Twin-shear theory) 

10.3.4 Comparison of Different Criteria 

For comparison, three cases of load 0=�x/�y=0, 0=0.2 and 0=0.5 are analyzed. 
The spreads of the plastic zone when �y increases gradually from 20 MPa can be 
obtained. The unified strength theory with b=0, b=1/2 and b=1 and the 
Drucker-Prager criterion are calculated respectively. The Drucker-Prager criterion 
is used for comparison 

Figures 10.10 and 10.11 are the comparison of the spreads of plastic zones 
with four criteria when 0=�x/�y=0, i.e. the vertical load only, as �y  increases 
from 20 MPa to 24 MPa and 28 MPa.  
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(a) UST with b=0 (Single-shear theory)       (b) UST with b=1/2 (New criterion) 

Fig. 10.10 Spread of plastic zone of a cave under vertical load (0=0) 
 

        
(a) UST with b=1 (Twin-shear theory)      (b) Drucker-Prager criterion 

Fig. 10.11 Spread of plastic zone of a cave under vertical stress (0=0) 
 

Figures 10.12 and 10.13 are the comparison of the plastic zones with four 
criteria when 0=0.2 and �y increases from 20MPa to 30 MPa and 34 MPa.
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(a) UST with b=0 (Single-shear theory)        (b) UST with b=1/2 (New criterion) 

Fig. 10.12 Spread of plastic zone of a cave under load 0=0.2 
 

(a) UST with b=1 (Twin-shear theory)            (b) Drucker-Prager criterion 

Fig. 10.13 Spread of plastic zone of a cave under load 0=0.2 

Figures 10.14 and 10.15 are the comparison of the plastic zones with four 
criteria when 0=�x/�y=0.5 and �y increases from 20 MPa to 36 MPa and 44 MPa. 

It is seen from the results above that, under the same load, the spread of the 
plastic zone of an underground cave strongly depends on the choice of the yield 
criteria, when the unified strength theory parameter b=0, namely single-shear 
theory (Mohr-Coulomb strength theory), gives the largest plastic zone which has 
already gone through the periphery of the computational result under �y=34 MPa. 
The unified strength theory with b=1, i.e. the twin-shear strength theory, gives the 
smallest plastic zone. The unified strength theory with b=0.5 is a new criterion, 
which gives the median result. These three typical criteria, i.e. two bounds and the 
median criterion can be adapted for different materials and structures, respectively. 
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(a) UST with b=0 (Single-shear theory)         (b) UST with b=1/2 (New criterion) 

Fig. 10.14 Spread of plastic zone of a cave under load 0=0.5 
 

(a) UST with b=1 (Twin-shear theory)         (b) Drucker-Prager criterion 

Fig. 10.15 Spread of plastic zone of a cave under load 0=0.5 

10.4 Laxiwa Hydraulic Power Plant on the Yellow River 

The Laxiwa Hydraulic Power Station is the largest power station on the Yellow 
River. The total installed capacity is 4200 MW, the unit capacity 700 MW, the 
annual power output 10.223 billion kWh. The power crest elevation is 2460 m, the 
maximum height 250 m and the total reservoir storage capacity is 1.079 billion 
cubic meters. Figures 10.16 and 10.17 show pictures of the Laxiwa Hydraulic 
Power Station and the underground powerhouse cavern. A series of research works 
were done for the Laxiwa Hydraulic Power Station by Northwest China 
Hydroelectric Power Investigation and Design Institute. A cross section of the 
caverns containing the hydroturbine-electric generator and transformer is shown in 
Fig. 10.18. 
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Fig. 10.16 Laxiwa Hydraulic Power Station on the Yellow River, China 

 

  
Fig. 10.17 Large cave of Laxiwa Hydraulic Power Station 

 

 
Fig. 10.18 Caverns of hydroturbine electric generator and transformer 

 
Three underground excavations were carried out under the high mountain. 
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This is a high ground stress area in Laxiwa. The stability of the underground caves 
is important. So the plastic analysis of the underground excavations were made by 
An and Hu (1991), Liu and Sun at the Investigation and Design Institute of 
Northwest China Hydroelectric Power (Liu, 1994; 1995; Liu and Wu, 1995; Sun, 
1998; Zhang, 1996). Various yield criteria were used for comparison. The results 
are given to show the effect of the yield criteria on the analysis. The unified 
strength theory provides us with a very effective theory and approach for studying 
the effect of failure criterion on various problems.  

The numerical simulation of underground excavation with high ground stress 
in the area of the Laxiwa Hydraulic Power Plant on the Yellow River, China, was 
carried out by the Northwest China Hydroelectric Power Investigation and Design 
Institute (An, 1990; Liu, 1994; 1995; Liu and Hu, 1996; Sun 1998). The 
dimensions of three underground excavations are shown in Table 10.1. 

 
Table 10.1 Dimensions of three underground excavations 

Underground 
excavation Maximum (m) Maximum 

 Height (m)
Height  

of wall (m)
Total length 

(m) 
1 29 67 50 250 

2 23 46 40 224 

3 20 57 53 157 

 
The ground stresses can be regarded as a combined stress (�x, �y, �xy ) acting 

on the rock around the underground excavation where �x=15.3 MPa, �y=13.1 MPa, 
�xy=0.595 MPa. Figure 10.19 shows the finite element mesh. The plane strain 
condition is assumed in the FEM analysis. Figures 10.20 and 10.21 show the 
principal stress trajectory and the maximum principal stress �1 and principal stress 
�2 around the caves of the underground excavation under the ground stresses. 
Displacement of rock around the caves is shown in Fig. 10.22. 

 

  
Fig. 10.19 Finite element mesh and principal stress trace around underground excavation 
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Fig. 10.20 The maximum principal stress �1 around the curves 
 

  

Fig. 10.21 The principal stress �2 around the curves 
 

 
Fig. 10.22 Displacement of rock around the caves 

10.5 Plastic Analysis for Underground Excavation at Laxiwa 
Hydraulic Power Station 

10.5.1 Strength of the Laxiwa Granite 

The true tri-axial experimental for the Laxiwa granite was made by the 
Investigation and Design Institute of Northwest China Hydroelectric Power and 
Wuhan Institute of Rock and Soil Mechanics of the Chinese Academy of Science 
(Li XC and Xu, 1994). Five groups of experiments on stress angles (� =03, 13.93, 
303, 46.13, 603) were carried out under a hydrostatic pressure of p=130 MPa. The 
test results and limit locus in the �-plane for granite under hydrostatic pressure 
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p=130 MPa are shown in Fig. 10.23 (Li XC and Xu, 1990). 
 

 
Fig. 10.23 Limit locus in the �-plane for granite (Li and Xu, 1990) 

 
The following can be seen. 
1) The length of vector q differs corresponding to different stress angles of � in 

the �-plane when the hydraulic pressure p is constant. Granite shows an obvious 
stress angle effect. There is an obvious distinction between the circular limit loci 
of the Drucker-Prager criterion and the experimental results. 

2) All the experimental points are located outside the limit loci of the 
Mohr-Coulomb strength theory and they are closer to that of the twin-shear 
strength theory. 

3) In the process of varying the stress angle from � =03 to �=603, the value of 
q increases and reaches q=262.2 MPa. It then decreases to q=255 MPa. This result 
agrees with the twin-shear strength theory. 

So the twin-shear strength theory was used for the plastic analysis of 
underground excavation at Laxiwa Hydraulic Power Station. Other criteria are 
also used for comparison. The results are given to show how they are influenced  
by the yield criteria. The twin-shear unified strength theory was also used by Sun 
et al. (2004) at Zhejiang University and the East China Investigation and Design 
Institute, State Power Corporation of China for the Tai’an Pumped Storage 
Hydraulic Power Station in Shandong Province, China. 
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10.5.2 Plastic Zones Around the Underground Excavation Using the 
Single-Shear and Twin-Shear Theories 

The spreads of the plastic zones under the ground stresses were obtained by using 
the Mohr-Coulomb strength theory (unified strength theory with b=0) and the 
twin-shear strength theory (unified strength theory with b=1) as shown in Fig. 
10.24. It is seen that the area of the plastic zone of the twin-shear strength theory 
is less than the plastic zone of the Mohr-Coulomb strength theory (single-shear 
theory or the unified strength theory with b=0). According to the calculation made 
by the Northwest China Hydroelectric Power Investigation and Design Institute, if 
the area of the plastic zone around the underground excavation obeys the 
single-shear theory, it is 100% of the total area. Then the area of the plastic zone 
around the underground excavation that obeys the twin-shear theory is 44% of the 
total area. 
 

 
(a) UST with b=0 (Single-shear theory) 

 
(b) UST with b=1 (Twin-shear theory) 

Fig. 10.24 lastic zone around underground excavation 
 

According to the convexity of the yield surface, some smooth models and two 
bounds are shown in Fig. 18.25, in which the limit locus 1 is the Mohr-Coulomb 
strength theory (1900), locus 2 is the twin-shear strength theory (Yu et al., 1985), 
locus 3 is the William and Warnke criterion (1975), locus 4 is the twin-shear 
smooth model (Yu and Liu, 1990a; 1990b) and locus 5 is the Gudehus-Argyris 
criterion. 
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Fig. 10.25 Some smooth yield loci and two bounds of the convex yield loci 

 
The distribution of the plastic zone around the underground excavation with 

the Gudehus-Argyris yield criterion is shown in Fig. 10.26. 
 

 
Fig. 10.26 Plastic zone around underground excavation (Gudehus-Argyris criterion) 

10.5.3 Plastic Zones Around the Underground Excavation with 
Four Yield Cone Criteria 

The yield loci of four yield cone criteria are shown in Fig. 10.27. They are (a) 
extended cone; (b) inscribed cone (Drucker-Prager criterion); (c) compromise 
cone; (d) compressive cone. The plastic zone around the underground excavation 
with four yield cones is shown in Fig. 10.28.
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Fig. 10.27  Limit loci of various failure criteria on the deviatoric plane 

  

   
            (a) Extended cone            (b) Inscribed cone (Drucker-Prager criterion) 

 

  
(c) Compromise cone                  (d) Compressive cone  

Fig. 10.28 Plastic zone around underground excavation with four yield cones 

10.6 The Effect of Failure Criterion on the Plastic Zone of the 
Underground Excavation 

A great deal of research has been dedicated to showing the effects of failure 
criteria on the analytical results of load-carrying capacities of structures. A famous 
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example was given by Humpheson and Naylor (1975), and was further studied by 
Zienkiewicz and Pande (1977). They show a great difference between results 
obtained by using various failure criteria. Obviously, the question arises as to 
which one of these results should be preferred, because there is only one 
reasonable result for a given material and structure. 

As pointed out by Zienkiewicz and Pande (1977), the choice of the best limit 
surface is still in the hands of the analyst who has modeled the strength behaviour 
in the best possible manner. They also indicated that the Drucker-Prager criterion 
and the limit loci of circular cones give a very poor approximation to the real 
failure conditions (Humpheson and Naylor, 1975; Zienkiewicz and Pande, 1977).  

Most of the limit surfaces of different failure criteria are cones in the stress 
space. The limit loci in the meridian plane are linear. This means that the strength 
of materials is linearly dependent on the hydrostatic stress in the range of lower 
and median hydrostatic stresses, as has been demonstrated in a number of tests. 
The differences between the limit loci of various failure criteria in the deviatoric 
plane are shown in Fig. 10.25 and Fig. 10.27. 

The experimental data of true triaxial tests done by the Investigation and 
Design Institute of Northwest China Hydroelectric Power, Ministry of the Power 
Industry, Ministry of Water Resources, the China Institute of Rock and Soil 
Mechanics, are higher than the Mohr-Coulomb single-shear theory and close to 
the twin-shear theory.  

In this example, the twin-shear theory is applied to the plastic analysis of 
underground excavation at Laxiwa Hydraulic Power Station, because the 
experimental results for underground rock (granite) at the Laxiwa area obtained by 
the Investigation and Design Institute of Northwest China Hydroelectric Power 
and Wuhan Institute of Rock and Soil Mechanics of Chinese Academy of Science 
agree well with the twin-shear strength theory, as shown in Fig. 10.23 (Liu, 1994; 
1995; Liu and Wu, 1995; Sun, 1998). The plastic zone around the underground 
excavation is shown in Fig. 10.24(b). A conclusion was made therefore by the 
Investigation and Design Institute of Northwest China Hydroelectric Power that 
“The area of the plastic zone obeying the twin-shear theory is only 0.44 times the 
area of the plastic zone obeying the single-shear theory. Using the twin-shear 
unified strength theory can reduce considerably the amount of support work and 
save a lot of investment. It will be a significant economic benefit. Preliminary 
estimates show that up to 15 million RMB Yuan can be saved.”  

10.7 Three Dimension Numerical Modeling of Underground 
Excavation for a Pumped-Storage Power Station 

A pumped-storage scheme is a type of power station for storing and producing 
electricity to supply high peak demands by moving water between reservoirs at 
different elevations. In general, water is channeled from a high-level reservoir to a 
low-level reservoir, through turbine generators that generate electricity. This is 
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done when the station is required to generate power. During low-demand periods, 
such as overnight, the generators are reversed to become pumps that move the 
water back up to the top reservoir. 

The Tai’an Pumped Storage Hydraulic Power Station has been constructed in 
Shandong Province, China. The upper water reservoir of the storage power station 
on the top of the mountain is shown in Fig. 10.29. It has a total capacity of 1000 
MkW.  

 

 

Fig. 10.29 Top water reservoir of the Tai’an Pumped Storage Hydraulic Plant  
 

3D finite element numerical modeling of the excavation rock mass of Tai’an 
Pumped Storage Hydraulic Power Station was done by Professors Sun, Shang, 
Zhang et al. of Zhejiang University, Hangzhou, China and East China 
Investigation and Design Institute, State Power Corporation of China (Sun et al., 
2004a; 2004b). 

he rock mass failure of an underground excavation often begins with local 
instability (failure of rock). 

The initial failure position is the weak part of the surrounding rock mass. It 
would not take too much money to reinforce the rock mass if the weak position of 
the rock mass can be found and reinforced reasonably. The failure of the 
surrounding rock mass may be caused by the lower strength of the rock mass 
somewhere. Also, it may be caused by the accumulation of stress on the 
underground excavation. The local failure of the rock mass caused by stress 
accumulation during excavation can be forecast by numerical modeling analysis. 

The weak position may not be located in the middle part of the excavation, but 
may be located at a certain distance from the end of the excavation. This has been 
proven by the outcome of the 3D finite element numerical modeling study of the 
excavated rock mass at the Tai’an Pumped Storage Hydraulic Power Station. 
Therefore, based on 2D numerical simulation results of the middle part of the 
excavation, the reinforced design may be unsafe. In order to make a reasonable 
evaluation of the excavation area, the weak position in the surrounding rock mass 
should be determined by 3D numerical modeling. In this analysis, the twin-shear 
unified strength theory proposed by Yu is used (Sun et al., 2004a; 2004b).

The isograms of the major principal stress and minor stress in the middle of 
the excavation and their variety at elastic range are shown in Figs. 10.30 to 10.32. 
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Fig. 10.30  Isograms of major principal stress 

 

  
Fig. 10.31  Isograms of minor principal stress 

 
A map of the excavation and analysed section locations is shown in Fig. 10.33. 

The plastic zones of the underground excavation are calculated in terms of the 
twin-shear unified strength theory. Three calculated results of the plastic zone of 
the underground excavation are obtained. The plastic zones of the underground 
excavation of section A-A and section B-B are shown in Figs. 10.34 and 10.35, 
respectively. The failure zone of surrounding rock of C-C section is rather small. 
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(a) At the top of cave 

 

 
(b) At the wall of cave 

Fig. 10.32 Principal stress variation along the excavation axis 
 
 

 
Fig. 10.33  Map of the excavation locations 
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Fig. 10.34  Failure zone of surrounding rock (A-A section) 

 

 
Fig. 10.35 Failure zone of surrounding rock (B-B section) 

 
According to the feature of the failure zone of the surrounding rock between 

the caves, the failure zone of surrounding rock at section C-C is very small. The 
surrounding rock is stable. However, the section to the side of the middle position 
of the surrounding rock still contains several destructive areas, as shown in Fig. 
10.35. Therefore, we should increase the anchor intensity and anchor rod length in 
these sections to guarantee the stability of the surrounding rock. Several design 
proposals were presented by Sun et al. (2004). 

The research of Professers Sun and Shang was adopted for application at the 
Tai’an Pumped Storage Hydraulic Power Station. The excavation of underground 
caves was carried out in six parts, as shown in Fig. 10.36. Distributions of the 
surrounding rock rupture zone of a typical section after the fifth excavation and 
sixth excavation are shown in Figs. 10.36 and 10.37 (Sun et al., 2004).
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Fig. 10.36 Distribution of surrounding rock rupture zone of typical section after fifth 
excavation  
 

 
Fig. 10.37 Distribution of surrounding rock rupture zone of typical section after sixth excavation  

10.8 Dynamic Response and Blast-Resistance Analysis of a 
Tunnel Subjected to Blast Loading 

This work was done by professors Liu GH and Wang ZY at Zhejiang University, 
Hangzhou, China, for a railroad tunnel (Liu and Wang, 2004). The twin-shear 
unified strength theory is also used for dynamic problems. 

In recent years, research on the structural characteristics of demolition under 
the load function has invited widespread interest. Ultra short distance demolition 
appraisal is one of the research topics in this domain. 

The blast with a short distance is harmful to an existing tunnel, which is the 
key problem in the practical engineering. Dynamic analysis and unified strength 
theory were applied to develop appropriate methods for evaluating the tunnel's 
safety and to devise an optimal blasting scheme for nearby blasting by Prof. Liu at 
Zhejiang University. Blasting dynamic analysis results are used to plot the 
time-course curves and the frequency spectrum of the structural response. A case 
study is presented to illustrate the rational benefits of the above theory and 
method. 

Displacement vector fields for a railroad tunnel, when the source of the 
explosion is 15 m away and explosive charges Q=32.4 kg are used, are shown in 
Fig. 10.38. 
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(a) Q=32.4 kg, t=5.6 ms       (b) Q=32.4 kg, t=8.2 ms 

Fig. 10.38 Displacement vector fields of railroad tunnel under all blasting (Q=32.4 kg) 
 

Attenuation of vibration velocity, with the distance between explosion source and 
the tunnel for an existing tunnel, are shown in Fig. 10.39. If the simulated result of the 
explosion has a total explosive charge of Q=32.4 kg, the response is great.  

 

 
Fig. 10.39 Attenuation of vibration velocity with distance between explosion source and tunnel 

 
When the whole explosion causes adverse vibration effects on the tunnel, the 

use of a step-blasting technique can effectively reduce the vibration response. 
Displacement vector fields for a railroad tunnel, when the explosion source is 15m 
away and step explosive charges of Q=6 kg are used, are shown in Fig. 10.40. The 
displacement vector fields for a railroad tunnel are shown in Fig. 10.41. Obviously, 
the dynamic response has decreased significantly. When the whole explosion (32.4 
kg) is divided into 7 steps, the dynamic response of step blasting explosives (the 
largest step explosive amount is 6 kg) in the numerical simulation results is shown 
in Fig. 10.41. 
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(a) Q=6 kg, t=5.6 ms       (b) Q=6 kg, t=8.2 ms 

Fig. 10.40 Displacement vector fields of railroad tunnel under step blasting (Q=6 kg) 
 

 
Fig. 10.41 Attenuation of vibration velocity with distance between explosion source and tunnel 

 
Some key dynamic problems of the underground blasting structure were 

studied by Liu GH and Wang ZY for a railroad tunnel. The blasting safety 
assessment and optimal selection of construction methods are discussed in detail, 
in which the twin-shear strength criterion is adopted as the basic theory. The 
dynamic analysis method with twin-shear strength theory can not only be used for 
the spectrum characteristics of the dynamic response, but also for the stress 
analysis and security assessment of tunnel engineering. 

We can study the dynamic response and blast-resistance analysis of a tunnel 
subjected to blast loading based on the stress state of the rock mass and failure 
criteria, in which the twin-shear strength theory is adopted as a failure criterion. 
The blasting construction plane, according to this theory and method, are adopted 
for use in practical railroad engineering.  

10.9 Brief Summary 

The numerical simulations of the effect of yield criterion on the plastic zone for an 
underground circular cave under vertical compression and two direction 
compressions, the stability of surrounding rock of the underground excavation 
of the Laxiwa Hydraulic Power Station on the Yellow River, 3D numerical 
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modeling of the underground excavation for a pumped-storage power station, and 
the dynamic response and blast-resistance analysis of a tunnel subjected to blast 
loading are described above. 

The numerical results show that the prediction of the numerical simulation of 
structural strength is influenced strongly by the choice of the yield criterion. The 
effect of the yield criterion on the bearing capacity and the plastic zone of 
underground caves in the tunneling and excavation of a hydraulic power station is 
obvious. It is very important to choose a reasonable strength theory (yield criteria 
or material model in FEM code) in the research and design.  

The change in shape and size of the yield surface of various yield criteria is 
great. The two bounds and region of yield criteria for materials are important. The 
lower bound, the upper bound and the median yield loci are the three basic yield 
criteria for convex yield criteria. 

The results of research and design are strongly dependent on the choice of 
strength theory in most cases. The selection of the correct strength theory becomes 
even more important than anything else. A better choice of strength theory will be 
demanded in research and engineering applications in future. When it becomes 
necessary to adopt a criterion for use, it is important to experimentally check the 
criterion, or to investigate the experimental data in the literature. If this is not done, 
then very exact numerical procedures or commercial codes may lead to 
completely worthless results. It is important therefore to facilitate the choice of a 
model (Zienkiewicz and Taylor, l989). 

A large number of material models have been proposed throughout the years. 
So far, no general model that can simulate all these variations has been presented. 
Therefore, several models are normally implemented in commercial programs to 
allow for simulations of different materials under various conditions. It is 
obviously of great importance to choose a constitutive model suitable for the 
material and the problem under consideration, as well as to assign proper values to 
the parameters included in this model.  

The unified strength theory and associated flow rule provide us with 
systematic yield criteria from the lower bound to upper bound, an effective 
approach and a powerful tool for computational plasticity. This takes into account 
the effect of the intermediate principal stress and the effect of the stress angle on 
the strength of geomaterials. The unified strength theory has a simple 
mathematical formula; it can not only make better use of the strength of materials 
than the single-shear strength theory, but is also in wide agreement with the 
experimental results for different materials. The material parameters of the unified 
strength theory are the same as the material parameters used in the Mohr-Coulomb 
criterion. 

According to the research results provided by the Investigation and Design 
Institute of Northwest China Hydroelectric Power, the spreads of the plastic zones 
under the ground stresses were obtained using the Mohr-Coulomb strength theory 
(unified strength theory with b=0) and the twin-shear strength theory (unified 
strength theory with b=1). It is seen that the area of the plastic zone obeying the 
twin-shear strength theory is less than the plastic zone of the Mohr-Coulomb 
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strength theory (single-shear theory or the unified strength theory with b=0). If the 
area of the plastic zone around the underground excavation that obeys the 
single-shear theory is 100% of the total area, then the area of the plastic zone 
around the underground excavation that obeys the twin-shear theory is 44% of the 
total. Underground excavation engineering involves a large amount of work and 
has a long construction period. Owing to the experimental results of the true 
triaxial tests for the surrounding rock (Laxiwa granite) close to the twin-shear 
theory, The Investigation and Design Institute of Northwest China Hydroelectric 
Power came to the conclusion that, according to the twin-shear theory, the design 
will be a significant economic benefit. 
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11  

Implementation of the Unified Strength Theory 
into ABAQUS and its Application  

11.1 Introduction 

The software ABAQUS, which is developed and supported by HKS Inc. is 
currently one of the most powerful nonlinear finite element codes. The ABAQUS 
Unified FEA product suite offers powerful and complete solutions for both routine 
and sophisticated engineering problems covering a vast spectrum of industrial 
applications, which specialize in geometry and material nonlinear problems. 
Best-in-class companies are taking advantage of ABAQUS Unified FEA to 
consolidate their processes and tools, reduce costs and inefficiencies, and gain a 
competitive advantage. ABAQUS includes many different kinds of material 
models such as the Drucker-Prager criterion, Mohr-Coulomb criterion and 
Cambridge constitutive models for use in geotechnical problems (Hibbitte et al., 
2002; Zhuang, 1988). 

The Mohr-Coulomb strength theory is used in geotechnical engineering 
extensively and many empirical criteria all predict that the intermediate principal 
stress �2 has no effect on the strength of material. The previous experimental 
results indicated that the intermediate principal stress has remarkable effects on 
the material. The value of the strength of rock under various increases in �2 is 
greater than that from confined triaxial tests, and the strength of rock is increased 
by 20%-30% when the effect of the intermediate principal stress is taken into 
account. 

Though some non-linear elastic models are implemented into ABAQUS by 
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using a User Subroutine, the non-linear elastic procedure, however, is easy to use 
though this model cannot consider the effect of the intermediate principal stress. 
This fact limits the scope of the software to some extent. It is important 
to develop some constitutive model to consider the intermediate principal stress in 
ABAQUS so as to execute more powerful numerical analysis. 

In this chapter, the unified strength theory and associated constitutive model is 
implemented in the nonlinear finite element software ABAQUS using the User 
Subroutine second development function. The numerical test of a thick wall 
cylinder is completed to verify this implementation, and three dimensional 
analysis of tunnel excavation is done for practical engineering purposes. All 
numerical results show that the process of adding this model to ABAQUS enriches 
the material and heightens the computational efficiency and precision. The present 
study using the unified strength theory with b=0 and the result using the original 
Mohr-Coulomb criterion in ABAQUS are identical. It is also a verification of the 
implementation. Meanwhile, the example and the tunnel excavation simulation 
demonstrate that to consider the influence of the intermediate principal stress in 
geotechnical engineering can guide engineering practice and reduce investment 
outlay. 

This research was carried out for the Jinping diversion tunnel, a large 
hydraulic engineering project. 

11.2 Basic Theory 

11.2.1 Expression of the Unified Strength Theory  

The unified strength theory (UST) was proposed by Yu in 1991, and further 
presented by Yu in 1992 and 1994. It was based on the concept of a multiple slip 
mechanism and the multi-shear element model. It reflects the fundamental 
characteristics of materials in a complex stress state. The Mohr-Coulomb strength 
theory, the twin-shear stress theory, and many other new criteria can also be 
degenerated from the unified strength theory. The unified strength theory can also 
be generalized to cover non-convex failure criteria. The SD effect (strength 
difference in tension and compression) and the effect of the intermediate principal 
stress can also be presented (Yu, 1991; 1992; 2004). 

In terms of the stress invariant, the united strength theory has the mathematical 
expression 
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where b is a coefficient reflecting the effect of the intermediate principal shear 
stresses on material strength, I1 is the first stress invariant (hydrostatic pressure), 
J2 is the second deviatoric stress invariant and � is the stress angle. The 
Mohr-Coulomb yield criteria can be obtained from the unified strength theory with 
b=0. The stress angle � corresponding to the twin-shear stress state parameter is  
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The twin-shear stress state parameter is the simplification of the Lode stress 

parameter  
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                       (11.3) 

 
However, twin-shear stress state parameters 	� and 	�' have a simple equation and 
simple signification, as described inChapter 2 of this monograph.  

The SD effect is considered by the coefficient �=(1�sin�)/(1+sin�). The stress 
angle at the corner �b can be determined by using the condition F=F'. 

 
3car tan

1 2b� �
�

�
                             (11.4) 

11.2.2 The General Expression of Elastic-Plastic Increment Theory 

The loading surface can be considered as a small yield surface F developing to be 
a bigger yield surface G. The first basic assumption in the incremental theory of 
plasticity is that a loading function exists which depends upon the state of stress
and strain and the history of loading. In other words, at each stage of a plastic 
deformation of unloading, there is some function of stress F({�}) such that no 
additional plastic deformation takes place when F is smaller than some numberA , 
which also may depend on plastic strain and loading history. Plastic flow of a 
work-hardening material occurs when F exceedsA . The loading function is the 
yield function for the deformed material. At any stage of plastic deformation, the 
loading function can be represented, geometrically, like the yield function in 
perfect plasticity, by a surface in a stress space. This surface is called a subsequent 
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yield surface or a loading surface G. It changes its configuration with the plastic 
flow according to intrinsic, so-called hidden variables, which are expressed in 
terms of the plastic strain and a hardening parameter A . 
 

C D C D( , , ) 0pG � � A �                         (11.5) 

 
A general derivation of the stress-strain relation is given for an elastic 

work-hardening-plastic material based on the flow rule 
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where the elastic-plastic-stiffness tensor has the form 
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it represents the degradation of the material constitution due to plastic flow. 

Part of the programming is to calculate F
�
-5 6

8 9-: ;
 and G

�
-5 6

8 9-: ;
, and to treat the 

discontinuities of the singularity corner of the yield surface in the � plane. 

11.3 ABAQUS UMAT (User Material) 

11.3.1 General Introduction of UMAT 

The commercial finite element software ABAQUS offers a powerful solution for 
non-linear engineering problems. ABAQUS provides an interface from which 
users can implement their own constitutive models in user subroutine, UMAT. 
Through UMAT, the user-defined constitutive model can be used with any 
ABAQUS structural element type. 

Several utility routines may help in coding the user subroutine UMAT. Their 
functions include determining stress invariants for a stress tensor and calculating 
principal values and directions for stress or strain tensors. 

The main objectives of UMAT are as follows: 
(1) update the stress state;  
(2) obtain Jacobian matrix 
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A general process for an incremental FEM solution, as in ABAQUS, is given as 
follows. For a series of given variables (�, �, ��) at the start of the nth step, 
UMAT is expected to calculate the �, � and other state dependent variables, and 
provide the Jacobian matrix for a global iterative Newson-Raphson solution by 
using ABAQUS. 

11.3.2 Interface and Algorithm of UMAT 

User-defined mechanical material behavior, which is called UMAT, communicates 
with ABAQUS data by its main program interface. In the input file, the keyword 
“user material” describes user-defined mechanical material behavior. 

The user subroutine UMAT is called for each material point at each iteration of 
every increment. It is provided with the material state at the start of the increment 
(stress, solution-dependent state variables, temperature and any predefined field 
variables) and with the increments in temperature, predefined state variables, 
strain and time. 

In addition to updating the stresses and the solution-dependent state variables 
to their values at the end of the increment, subroutine UMAT must also provide 

the material Jacobian matrix, �
�

-H
-H

, for the mechanical constitutive model. This 

matrix will also depend on the integration scheme used if the constitutive model is 
in rate form and is integrated numerically in the subroutine. For any nontrivial 
constitutive model these will be challenging tasks. For example, the accuracy with 
which the Jacobian matrix is defined will usually be a major determinant of the 
convergence rate of the solution and, therefore, will have a strong influence on 
computational efficiency. 

It should be noted that the Jacobian matrix only influences the rate of iteration 
convergence, but not the accuracy of the results. The following describes some 
issues concerning the elastic-plastic incremental relationship, divided into three 
sections.  

11.3.3 Elastic and Plastic State 

The general steps elastic-plastic state is determined as follows (only the isotropic 
hardening situation is discussed here): 

(1) With displacements known at all points within the element, the 
increment-of-strain vector at any point can be obtained by taking suitable 
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derivatives of Eq. (11.9). The incremental-strain-displacement relationship can be 
established as 

 
B u�H � H                               (11.9) 

 
with the matrix generally being composed of derivatives of the shape functions. 

(2) A set of incremental elastic stresses �H �  and elastic trial stresses t t��H �  
is computed by Eq. (11.10) and Eq. (11.11), as 
 

eD� �H � H�                             (11.10) 
t t t� � ��H � � H� �                           (11.11) 

 
where t�  is the stress at the end of the last step. 

(3) Then calculate the state variables t t��H , t t
p�

�H  at this incremental step 
according to every integration point in the element. 

There are three types of conditions after calculating the yield function 
( , )t t t

pF � ��H � . They are: 

(a) If the trial stresses do not violate the loading condition, ( , ) 0t t t
pF � ��H �� , 

the behavior of the material is elastic. This is the point of elastic loading or 
unloading from the plastic state, the hardening parameters remain unchanged and 
the final stresses at the end of the loading increment are 
 

� �H � H �                          (11.12) 
 

(b) If the loading surface is violated by the elastic trial stresses, the element is 
under plastic loading. At the outset the stress state satisfies  
 

( , ) 0t t
pF � � *�  

 
which indicates an elastic state. Because of the finite load increment, a fully 
elastic stress path would penetrate the yield surface. The condition violates the 
yield condition and indicates that a transition from elastic to plastic state occurs 
during this load increment. 
 

( , ) 0t t t
pF � ��H )�  

 
In this case, the load increment is subdivided into two parts, an elastic portion 

for the path AC and a plastic portion governing the behavior after the yield surface 
has been reached at C. This requires determination of the penetration point C, 
which is a geometric problem of intersecting a surface with a line. If we denote 
t r� �� H� � , which is the portion of the stress increment where the plastic behavior 
is first encountered, i.e. when  
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( , ) 0t t

pF r� � �� H �� �                   (11.13) 
 

in principle, at least, the scaling factor m can be determined from Eq. (11.13). 
In actual applications, explicit expressions for r can be derived only for simple 

types of loading functions. The simplest approximate value of m from Eq. (11.11) 
is determined by a linear interpolation in f, and a better estimate is obtained by the 
Taylor exploration of the yield surface. The bisection method can be used to 
achieve r. 

(c) The conditions ( , ) 0t t t
pF � ��H )�  and ( , ) 0t t

pF � � �� show that the stress 
state is loading, r=0. 

Under the two conditions of (b) and (c), the plastic portion of the strain 
increment can be determined as follows 

 

(1 )' r� �H � � H                            (11.14) 
 

The initial-stress or plastic-stress increment can be calculated as 
 

0
( , )d

'

ep p' D
�
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H
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The computation of the stress trajectory of Eq. (11.15) requires a numerical 
integration. 

The final stresses at the end of this loading increment are approximate,  
 

t t t r '� � � ��H � � H � H�                      (11.16) 
 

t t t
p p p� � ��H � H � H                          (11.17) 

11.3.4 Constitutive Relationship Integration (Stress Update Method) 

The integration of a constitutive function is called a stress update algorithm. At the 
elastic forecasting stage, the plastic strain and the inner variable remain unchanged 
and, at the plastic revised stage, the total strains remain unchanged. The 
integration method is a sub-incremental method based on explicit integration and 
tangent forecasting. 
(1) Tangent prediction and backward-radial 
(2) Tangent prediction is to use the linear relation—Euler method in Eq. (11.15) 

to gain the stress increment prediction value. 
 

( , )t t
ep pD� � � �H � H�                     (11.18) 
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Then the total stress prediction value is  
 

t t t� � ��H � � H� �                          (11.19) 
 

The t
p�H  will be obtained simultaneously. 

Because Eq. (11.18) shows that the algorithm is the explicit Euler method, 
( , )t t t

ep pD � ��H  is the original tangent stiffness, so �H �  is in the tangent 
direction. The initial yield surface and all subsequent loading surfaces must be 
convex, so t t��H �  is out of the loading surface. But the yield criterion requires 
any state of stress lying on or inside the loading surface, so the radial backward 
method is used to get t t��H  satisfy the yield criterion. If we denote 

 
t t t tr� ��H �H� �                       (11.20) 

 
where r is the scaling factor, which can be determined from Eq. (11.21) 

 
( , ) 0t t t t

pF � ��H �H �                     (11.21) 
 

Though the corrected t t��H  is lying on the yield surface, the strain increment 
�H  and the equivalent plastic strain t t

p�
�H  remain unchanged; the elastic-plastic 

state is not fully consistent. The inconsistency increases with the incremental step 
increases. To decrease the error caused by the inconsistency, the above-mentioned 
method and subdivided increment method could be incorporated to achieve the 
stress increment. 
(3) Subdivided increment method 
The subdivided increment method is an approximate method splitting the given 
strain increment into equal increments and using tangent prediction and the 
backward-radial method for each of these smaller intervals to gain stress 
increment. The elastic-plastic state at the end of every sub-increment is the 
beginning of the sequence increment. The sub-increment method is useful for 
achieving a more accurate stress increment and for speeding up the iteration 
convergence velocity. 

The sub-increment number N is given by the nearest integer which is less than 
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where y y'� ��  gives a measure of the excess stress and 0

y�  is the initial 

uni-axial yield, y�  is the trial equivalent stress and y'�  is the equivalent stress 

for t t t r� � ��H � � H � . 
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11.3.5 Tangent Stiffness Method 

The implicit backward Euler integration method often uses a consistent tangent 
stiffness matrix. We use the explicit forward Euler integration method here.  

11.3.6 Treatment of the Singular Points on the Yield Surface 

There are intersect lines for the yield surface of the united strength theory, so the 
flow vector is not uniquely defined and the direction of plastic straining is 
indeterminate because there are singular points on the   plane. There are two 
methods for solving the numerical difficulties including the smoothness and 
non-smoothness methods, in which the non-smoothness disposal methods have 
been widely applied on account of their simple implementation. The plastic strain 
increment sum method, provided by Koiter, and returning the similarity angle � to 
the original yield expression and derivation method are the two general methods.  

(1) The vector sum method is used to correspond to �=�b. 
(2) The returning and derivation method is adopted for �=0° and �=60°. 

11.4 Typical Numerical Example 

11.4.1 Model Conditions 

The numerical example is illustrated in Fig. 11.1. The problem studied is that of a 
thick cylinder subjected to internal pressure p=160 MPa, inner radius a=0.1 m and 
outer radius b=0.2 m, the elastic modulus E=2.1×105 MPa, Poisson’s ratio =0.3, 
uniaxial yield stress �s=240 MPa. 

The theoretical results in terms of the Tresca yield criterion can be found in 
any textbook on plasticity. A series of results using the unified strength theory 
have been given in Chapter 10 of Yu’s monograph “Unified Strength Theory and 
its Applications” published by Springer in Berlin in 2004 (Yu, 2004). The elastic 
ultimate pressure and plastic ultimate pressure that obey the Tresca criterion are 
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These two results are special cases of the unified solution for the elastic limit 
with b=0 and the plastic limit with b=0. Other serial results can be also obtained 
from the unified solution with 0<b�1 (Yu, 2004) 
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The solution with pe=90 MPa and ps=166.35 MPa is achieved corresponding to 
the above condition. The subjected pressure is between pe and ps, the cylinder is in 
the elastic-plastic state. The process of illustrating the correctness of the numerical 
solution obtained by comparing it with the theoretical results is as follows. 

11.4.2 Comparison of 2D and 3D Solution from ABAQUS  

The 2D and 3D numerical calculations are executed by ABAQUS, which uses the 
Mohr-Coulomb criterion. There are 12 equal-parameter elements and 51 nodes for 
the plane strain problem. Four layers are split along the thickness direction and 
there are 12 block elements and 122 nodes for the 3D model. The FEM meshes are 
shown in Fig. 11.1. 
 

    
(a) 2D                      (b) 3D 

Fig. 11.1  FEM Meshes 
 

The Mohr-Coulomb criterion will degenerate into the Tresca criterion for inner 
friction angle � =0°. It is necessary to simulate the Tresca criterion by the 
Mohr-Coulomb criterion with � =0.3° and the shearing angle I =0° because the 
friction angle �  cannot be set to 0° in ABAQUS. The results of the 2D and 3D 
calculations fit totally, which is shown in Table 1 of the radial displacement and 
stress. 

11.4.3 Results from UMAT of the United Strength Theory 

(1) Stress and displacement 
The united theory strength theory criterion will degenerate into the Tresca 
criterion for �=1 and b=0. Table 11.1 also shows the circumferential (hoop) stress 
and radial stress and the displacement distributions for specified points calculated 
by the UMAT program with UST (Unified Strength Theory). A good agreement 
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between the ABAQUS and UMAT solutions is evident, which shows the UMAT 
program is correct and reliable. 

 
Table 11.1 Displacements and stresses of 3-D model along horizontal radial direction 

Mohr-Coulomb (ABAQUS) UST with b=0 (UMAT) X (mm) U1 (mm) �11 (MPa) �22 (MPa) U1 (mm) �11 (MPa) �22 (MPa) 
100. 255.813 -169.279 91.0233 255.141 -154.393 86.4583 
109.515 232.138 -148.441 111.706 231.628 -142.354 98.5036 
119.03 213.253 -127.631 132.38 212.799 -112.096 128.754 
129.03 197.367 -109.026 150.709 196.834 -101.376 139.48 
139.03 184.798 -90.2334 169.284 184.16 -76.3354 164.514 
154.03 170.565 -66.7303 192.545 169.839 -59.2163 181.645 
169.03 160.855 -42.9037 214.366 160.148 -30.3002 208.942 
184.515 153.591 -24.0713 194.812 152.936 -16.464 184.794 
200. 147.99 -5.72096 176.462 147.378 2.64825 171.731 

 
The united strength theory with b=0 or 1/(1 3) 0.366b � � 2  is the linear 

approximation of the Huber-von Mises criterion, the stress and the displacement 
distributions achieved by 3D UMAT along the horizontal radial direction are 
shown in Table 11.2, and the 2D analyzed displacements quoted in (Yu, 1998) are 
shown simultaneously, which show the agreement is evident. The results of the 
united strength theory with b=1, that consider the material strength increases, are 
presented in Table 11.2. 

 
Table 11.2 Displacements and stresses of 3-D model along horizontal radial direction 

UST with b=0.366 (UMAT) UST with b=1 (UMAT) 
X (mm) 

U1 (mm) U1 (mm)
Yu 1998 

�11 
(MPa) 

�22 
(MPa)

U1 
(mm)

�11 
(MPa) 

�22 
(MPa) 

100. 185.1 182.21 -157.16 117.94 159.51 -152.03 168.157 
109.515 168.347 165.243 -137.915 139.58 146.15 -137.16 183.912 
119.03 155.711 152.535 -107.186 168.66 136.49 -97.305 216.819 
129.03 145.684 142.982 -92.4888 183.14 128.60 -82.906 194.998 
139.03 138.034 135.676 -65.4417 202.45 122.12 -58.098 177.842 
154.03 129.166 127.057 -46.7706 173.93 114.27 -41.362 154.03 
169.03 122.336 120.419 -23.4533 157.42 108.23 -20.726 139.318 
184.515 116.827 115.203 -12.5755 141.18 103.35 -11.113 124.912 
200. 112.58 111.148 2.04003 131.26 99.597 1.8121 116.103 

 
The distribution of the circumferential stress, radial stress and radial 

displacement that are obtained by ABAQUS and UMAT with b=0, b=0.366 and 
b=1 are shown in Fig. 11.2. Stresses and displacements of the cylinder obtained by 
the Mohr-Coulomb criterion in ABAQUS and b=0, b=0.366 and b=1 in the UMAT 
program, respectively, are compared in Fig. 11.2. 
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(a) Tangential stress �11   

 
(b) Radial stress �22              (c) Radial displacement U1 

Fig. 11.2 Stresses and displacements of the cylinder obtained by the ABAQUS and UMAT 
programs 

 
It is found in Fig. 11.2 that the tangential stresses obtained from ABAQUS 

with Mohr-Coulomb criterion agree well with those gained by UMAT with b=0, 
and the radial displacements coincide. A series of results can be given by UMAT. 
The maximum value of the circumferential stress is when approaching the inner 
wall with b increasing, while the radial stresses decrease and the radial 
displacement decreases also. 
(2) Plastic zone 
The spread of the plastic zone (an equivalent plastic strain larger than 0.0001) in 
thick-walled cylinders with different yield criteria is shown in Fig. 11.3. The 
radius of the plastic zone with the unified yield criterion when b=0 (Tresca yield 
criterion) is larger than that obtained from b=0.366 (with two layers of yield 
elements) and b=1 (with one layer of yield elements).  
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(a) UST with b=0 

       

 

       

 

 

 

                      
         (b) UST with b=0.366               (c) UST with b=1 

Fig. 11.3 Distribution of the plastic cylinder zone with the equivalent plastic strain being more 
than 0.0001 
 
(3) Analysis of results 
The unified strength theory and associated constitutive model is implemented into 
the nonlinear finite element software ABAQUS using the User Subroutine second 
development function. The numerical test of a thick-walled cylinder is completed 
and it is shown that UMAT is successful. 

11.5 Engineering Applications 

11.5.1 Project Background and Material Parameters 

The engineering of an underground opening is analyzed. The cave has a diameter 
D=10.2 m, depth H=620 m, where it is intended to use the TBM construction 
method, assisted by the drilling and blasting method. The rock in the relevant section 
is grade II, the rock mass parameters are shown in Table 11.3. 
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Table 11.3 Values of material parameters 

Grade of 
rock mass 

density,�
(kg/m3)

E 
(Pa)

Poisson’s 
ratio, 

Cohesion 
c (Pa) 

 Friction angle
 � (º) 

Dilation angle � 
(º) 

II 2450 3e9 0.25 2e6 40 20 

11.5.2 FEM Mesh and Boundary Condition 

The 3D finite element mesh is shown in Fig. 11.4; a half of the tunnel is 
considered due to symmetry. To simplify the analysis, the part below ground level 
(570 m) is substituted by the equivalent surface pressure. Nodes along the vertical 
boundaries may translate freely along the boundaries but are fixed against 
displacements normal to these boundaries. The nodes at the base are fixed against 
displacements in all directions. The tunnel is a one-stage excavation without 
consideration of the step-by-step incremental excavation and support scheme. 
 

    

Fig. 11.4 FEM meshes 

11.5.3 Results of Analysis  

(1) Displacements 
The united strength theory can consider the effects of the intermediate principal 
stress by changing the parameter b, such that it can degenerate to the 
Mohr-Coulomb criterion when b=0. The effects of the intermediate principal stress 
on the excavation stability are considered with value b changing. The horizontal 
and vertical displacements are shown in Fig. 11.5 and Fig. 11.6.  
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(a) UST with b=0  

 
 

 
(b) UST with b=0.366 

 
 

 
(c) UST with b=0.8 

Fig. 11.5 Displacement fields in the horizontal direction 
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(a) UST with b=0  

 
(b) UST with b=0.366 

 
(c) b=0.8 

Fig. 11.6 Displacement fields in the vertical direction 
 

The variation in radial displacements on the left side of the tunnel, the crown 
and bottom and the distance from the inner boundary are all shown in Fig. 11.7, 11.8 
and 11.9. It is found that the displacements decrease corresponding to increase in the 
value b, and the maximum is about 95% on the lateral wall. 



11.5  Engineering Applications 285 

 
Fig. 11.7 Lateral displacements 

 
Fig. 11.8 Top displacements  

 
Fig. 11. 9 Comparison of bottom displacements 

 
(2) Plastic zone  
Plastic zone distribution is equivalent to the tunnel damage area to a certain extent, 
which shows the stability conditions of the excavation tunnel. The distribution of 
the plastic zone (the equivalent plastic strain larger than 0.0001) with different 
values of b are shown in Fig. 11.10. The plastic zone of the surrounding area

z (m)

z (m)

x (m)
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consists of three layers of yield elements with b=0 (that means the Mohr-Coulomb 
criterion is used), the outer layer elements decrease with b=0.366, and those 
become two layers. That is to say, the plastic distribution shrinks as the value b 
increases. 
 

         
(a) UST with b=0         (b) UST with b=0.366        (c) UST with b=0.8 

Fig. 11.10 Comparison of plastic zones of the cylinder  
 
(3) Analysis of results  
This has been the tunnel excavation example shown in the references, but it is 
limited in 2D analysis, where the parameter b has a different influence. The 
engineering example shows that the displacements and the plastic zone shrink as 
the value b increases. This shows that the actual determination of the value b is 
important when guiding the support scheme in tunnel construction. 

11.6 Conclusions 

The implementation of the united strength theory to ABAQUS software is feasible. 
It is based on the second developing platform of the advanced nonlinear FEM 
program ABAQUS. The numerical results of a typical example with a closed-form 
solution show that the precision is perfect. This can expand the practical scope of 
ABAQUS so as to provide a way to consider the intermediate principal stress in 
the field of geotechnical engineering. The final numerical verification confirms 
that the second development of the model is valid. It can be used in real life 
situations. 

All the numerical results of the tunnel excavation example show that the 
displacements and the plastic zone shrink as the value b increases. These show 
that the actual determination of the value b is important in guiding the support 
scheme in tunnel construction. Meanwhile, there are some advantages of faster 
convergence, higher efficiency, higher precision and more convenient 
preprocessing and postprocessing. The difficulties in programming the 
development of soil engineering and maintenance workloads are also greatly 
decreased  
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12  

2D Simulation of Normal Penetration Using the 
Unified Strength Theory 

12.1 Introduction 

A great deal of researches have been conducted on impact and penetration 
problems. The penetration studies include various experimental, analytical and 
computational simulations. “Projectile penetration into a semi-infinite target” by 
an analytical method using the unified strength theory has been described in (Yu et 
al., 2009). These studies were done by Li JC (2002), Wei XY (2003) and Wang 
YB (2004) at Xi’an Jiaotong University, Xi’an China. Systematical results can be 
obtained by using the unified strength theory. The computational simulation of 
penetration with Yu’s UST (Unified Strength Theory) and AutoDYN for 2D 
normal penetration, penetration of concrete slabs using UST and SPH (Smoothed 
Particle Hydrodynamics) methods will be discussed in this chapter. The 3D 
penetration and perforation will be studied in the next chapter.  

In a purpose-built protective building structure, a concrete slab and wall may 
be required to withstand the effects of missile impact. The impact may be due to a 
variety of missiles that differ in shape, size and cruising velocity, such as bullets, 
fragments, tornado-generated missiles, accident generated missiles, etc. Based on 
the relative deformability between a missile and a target, a missile may be 
regarded as either a “hard” or “soft” one. For a hard missile, its deformation is 
considerably smaller than the deformation of the target. Very often, it is regarded 
as a rigid and non-deformable body. To predict the extent of penetration and/or 
perforation, there is a wealth of empirical and semi-empirical formulae available. 
On the other hand, a soft missile deforms considerably compared to the 

������ 
This chapter was contributed by Professors Zhou XQ, Qiang HF, Xi’an High Technological
Institute, Xi’an, China and Professor Fan SC, Nanyang Technological University, Singapore 
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deformation of the target. The responses of the missile and target are coupled. This 
renders the prediction more difficult. However, some approximate decoupling 
methods are available. These methods express the influence of the projectile’s 
deformation as a reduction factor. Most of the empirical methods used in 
penetration and perforation prediction are solely based on a statistical fit of 
experimental data. 

Nowadays, the investigation of highly dynamic events such as missile impacts 
and loading by blast waves is supported by numerical calculation. Wave 
propagation codes or “hydrocodes” have become a valuable tool for analyzing the 
propagation of stress waves in fluids and solids (Riedel et al., 1999). In general, 
these hydrocodes are based on well established continuum mechanics principles. 
The principal advantages of hydrocodes are that they can tackle a wide variety of 
impact problems, provide detailed information and cope with large displacement. 
A discrete element model is also used to predict the penetration depth and the 
perforation caused by a non-deformable missile against a thin reinforced concrete 
slab (Shui et al., 2009).  

In the simulation, the material model plays a vital role. To achieve the 
accuracy it should be able to capture all major characteristics. On the other hand, a 
robust numerical procedure should be in place to guarantee the validity and the 
numerical stability. The Unified Strength Theory (UST) is adopted in defining the 
material strength effects and constructs dynamic multifold limit/failure surfaces 
including an elastic limit surface, failure surface and residual failure surface. The 
proposed model is incorporated into the AutoDYN hydrocode via the user defined 
subroutine function. The Smooth Particle Hydrodynamics (SPH) procedure seems 
to offer great promise in making such simulations more practical.  

In this chapter, the numerical simulation of concrete against penetration will 
be described. The UST is implemented into AutoDYN and numerical examples of 
the penetration of concrete slabs are given. This work was conducted by Dr. Zhou 
Qiaoqing and Dr. Qiang HF under the supervision of Professor Fan SC at Nanyang 
Technological University, Singapore. The unified strength theory with parameter 
b=0.6 is used for simulation of penetration. 

A two-dimensional axisymmetric numerical simulation for the projectile- 
and-target model under high speed impact is also carried out using the Smooth 
Particle Hydrodynamics (SPH) procedure in this chapter. In the simulation, the 
available hydrocode AutoDYN is employed with two key enhancements for 
material modeling. Firstly, an empirical nonlinear equation of state is employed 
for concrete material. Secondly, the unified strength theory (UST, Yu, 1991; 1992) 
is adopted in defining the material strength effects, and dynamic multifold limit/
failure surfaces including elastic limit surface, failure surface and residual failure 
surface are constructed. These two enhancements are incorporated into the 
AutoDYN hydrocode via the user defined subroutine function by Professors Fan 
and Qiang at Nanyang Technological University, Singapore (Fan and Qiang, 2001; 
Qiang and Fan, 2002). The results obtained from the numerical simulation are 
compared with available experimental data. Good agreement is observed. It 
demonstrates that the proposed model can be used to predict not only the damaged 
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areas and reduction in velocity of the projectile during the perforation process, but 
also the debris clouds from the spalling process. 

The objectives of this study are: 
(1) To develop a new static multi-surface strength material model for static 

modeling of concrete based on Yu’s unified strength theory (Yu’s UST). 
(2) To calculate some numerical examples on static analysis of a concrete 

member, and compare the numerical results with the test results. 
(3) To develop a dynamic material model for concrete penetration analysis 

based on Yu’s UST and incorporate the developed model into the AutoDYN (2000) 
through its user’s subroutine function. 

(4) To simulate the 2D and 3D perforation process of a reinforced concrete 
slab impacted by a steel projectile. 

(5) The 3D simulation of the perforation process and oblique penetration will 
be described in the next chapter. 

12.2 Penetration and Perforation 

The physical phenomena associated with a projectile penetrating/perforating a 
concrete target are very complicated. The nature of the deformations taking place 
in both the projectile and the target during the penetration process need to be 
understood. This involves the material properties of both the projectile and the 
target. It also depends on the impact velocities and the nose shape of the projectile. 
In the penetration process, the stress waves initiated by the impact play an 
important role. The subsequent propagation of the stress waves creates a series of 
events including spalling, scabbing and fracture of the target. 

When a projectile hits a target, three types of response can occur. Firstly, the 
projectile can ricochet, i.e. the projectile rebounds from the impacted surface or it 
skims the impacted surface with a reduced velocity. Secondly, the projectile can 
penetrate into the target without completing its passage through the body. Thirdly, 
perforation can occur when the projectile has sufficient energy to penetrate 
through the target. Very often, perforation of the target (especially for relatively 
thin targets) can occur even at an impact velocity well below that required to 
achieve complete penetration. It is probably due to the scabbing effect, which 
reduces the effective thickness of the target. 

The processes of penetration and perforation of concrete are summarized in 
Fig. 12.1. Once the initial projectile velocity is large enough to damage the 
concrete, pieces of its spall from the impact face of the target form a crater, which 
extends over a considerably greater area than the impact area. As the impact 
velocity increases, the projectile penetrates deeper and it produces a hole in the 
concrete with a diameter only slightly greater than that of the projectile diameter. 
A further increase in the initial projectile velocity results in cracking and then 
scabbing (ejection) of concrete from the rear surface. The zone of scabbing is 
generally more extensive but less deep than that of the front spall crater. Since the 
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ejected concrete pieces (from the rear surface) could themselves constitute a 
hazard, it is often necessary to define two thicknesses when designing a protective 
shield: the minimum thickness to prevent perforation and the minimum thickness 
to prevent scabbing. The Sandia crash test for penetration and perforation of a 
concrete slab (Zhou, 2002; 2007) is shown in Fig. 12.2. 

 

        
(a) Missile penetration and spalling (b) Target scabbing  (c) Penetration  (d) Overall target response 

Fig. 12.1 Penetration and perforation of concrete slabs by non-deforming projectiles (Kennedy, 
1976) 
 
 

 

 
Fig. 12.2 A test for penetration and perforation of concrete slab (Sandia crash test) 

 
Plain concrete is generally strong in compression and relatively weak in 

tension. Therefore, the compressive wave generated in the target does not cause 
much damage to the target. The failure due to impact is governed by the dynamic 
tensile strength of the concrete. Spalling occurs at the periphery of the impact area 
where maximum tensile stress exits (due to the surface stress wave). On the other 
hand, scabbing is caused by the tensile waves, resulting from the reflection of 
compressive waves at the free surface. When the compression pulse reaches the 
rear face of the target, it is reflected as a tensile wave. (This is necessary because 
the sum of the stresses due to the incident and the reflected waves must vanish at 
the free surface.) The tensile wave travels back into the target and away from the 



12.3  Constitutive Model of Concrete 293 

rear face. Since the concrete material cannot withstand such large tension, 
scabbing occurs close to the rear free boundary (Laible, 1980). 

The dynamic failure mechanism of concrete is intricate since discontinuities 
such as cleavage cracks and defects with different shapes and orientations are 
commonly encountered in concrete and they have significant influence on the 
deformation and failure characteristics of concrete (Herrmarm, 1969). The initially 
existing cracks and defects will be nucleated, and will evolve until the material 
loses strength, when subjected to dynamic loading. The damaged theory has been 
considered to be more suitable for the cleavage analysis of the concrete material.  

How to define the failure criterion of the targets is critical for better analyzing 
penetration problems (Jonas and Zukas, 1978). The failure criteria such as the 
Mohr-Coulomb strength theory, the Huber-von Mises criterion and the Tresca 
yield criterion were often applied to penetration problems, as can be seen from the 
literature. These criteria do not completely consider all of the stress components in 
the stress space. The effect of intermediate principal stress is not taken into 
account in the Tresca criterion and the Mohr-Coulomb strength theory, which are 
not consistent with the test results of many materials. A unified strength theory, 
which was suggested by Yu (1991; 1992), considers all of the components in the 
stress space. It covers a series of strength theories, such as the Mohr-Coulomb’s 
single-shear strength theory and the twin-shear strength theory (Yu, 1985) when 
the tension and compression strengths of materials are different, as well as the 
Tresca criterion, the Huber-von Mises criterion and the twin-shear criterion when 
the tension and compression strengths of materials are identical. 

In this research, the unified strength theory is applied to modeling penetration 
and a unified plasticity-damage penetration model related to the crack density is 
proposed by Zhou (2002) and Fan-Qiang (2001). The relationship between radial 
traction and velocity at the cavity-surface can be obtained by analyzing the 
distributions of stress and velocity of the target material. Based on the cylindrical 
cavity expansion theory and spatial axisymmetrical unified characteristics line 
theory (Yu et al., 2001), the attacking capability of a long-rod can be assessed 
from the derived relation as the rod impacts and penetrates the target with initial 
velocities of 300~1100 m/s. The results are compared with those of the 
experiments available in the open literature.  

12.3 Constitutive Model of Concrete 

The rapid development of computer technology and numerical techniques has 
provided a powerful tool in the numerical analysis of concrete structures. The 
material behavior is often expressed by a constitutive law, which should be 
invoked (Alves, 2000). Once the numerical method is determined, the loading 
condition and material model are two of the most important points in the 
numerical simulation. The loading condition subjected to these reinforced concrete 
(RC) structures can be broadly categorized as two types, static loading and 
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dynamic loading. According to different loading cases, different numerical 
simulation methods and different material constitutive models for concrete are 
required. 

In the numerical simulation, putting in place a realistic constitutive model for 
concrete turns out to be the remaining major obstacle in obtaining a reliable 
prediction. A lack of adequate models for concrete is one of the major factors 
hindering the extensive use of numerical methods for reinforced concrete 
structures. Against this background, the main objective of the present research is 
to develop a realistic constitutive model for concrete and then implement it in the 
numerical analysis. 

In order to successfully analyze the response of concrete members, the 
constitutive model for concrete used in the simulation should be appropriate for 
the characteristics of concrete material under different loading cases. Concrete is a 
very complex material, consisting of mineral aggregate bound by cement paste 
containing a large amount of water and voids, which makes the behavior of 
reinforced concrete material rather complicated. The most important property of 
concrete material is that it is much weaker in tension compared with its 
compression strength and thus concrete material easily cracks. Then, cracked 
concrete shows strong nonlinear behavior. This nonlinear stress, strain behavior in 
a multiaxial stress state and the post-failure strain-softening behavior are the two 
most important complexities in modeling concrete material behavior. Because of 
these complexities, the development of a proper constitutive model describing 
concrete behavior under all conditions is still a very challenging task facing 
researchers. 

In the constitutive model of concrete material, strength criterion is one of the 
key points. Although some empirical criteria for concrete such as the 
Willam-Warnke criterion, Ottosen criterion and Kotsovos-Palovic criterion have 
proposed practical solutions, a reliable material strength model with sound 
theoretical background is necessary. The recently developed Yu’s unified strength 
theory (Yu’s UST) theory, or twin-shear unified strength theory (TS-UST) (Yu, 
1991; 1992; 2004) appeared to be promising. By varying the value of a controlling 
parameter b, Yu’s UST theory encompasses many prevailing classic strength 
criteria as special cases. Though it has a strong mechanics concept, the meridian 
curve in UST theory is linear, which over-estimates the strength of concrete when 
it is under high pressure. Against this background, a modified UST theory is 
developed in the current study. The linear meridians in Yu’s UST theory are 
replaced by empirical curves, meaning Kotsovos’ compressive and tensile 
meridian curves (Kotsovos and Pavlovic, 1995). This logical step leads to a robust 
semi-empirical, semi·theoretical strength model. 

Based on the failure criteria, the concept of a Multi-Surface Strength (MSS) 
model is developed by Zhou (2002). According to this MSS model, the stress state 
in concrete can be divided into different stress regions. Inside those regions, 
different stress-strain relations are constructed accordingly. Based on the concept 
of the MSS model, both static and dynamic material models for concrete have 
been developed in the present study. 
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The mathematical equations of the unified strength theory are 
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The three principal stresses can be written in terms of the stress tensor invariant as  
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with 1 2 3� � �� � <  

Therefore, the unified strength theory Eqs. (12.1a) and (12.1b) can be 
re-written in terms of the invariant notations as 
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where Il is the first stress invariant, J2 is the second deviatoric stress invariant and 
�b is the angle of an angular point of trajectory in the deviatoric plane, which can 
be calculated from F1=F2  

 

3arctan 2 1b� �� �                   (12.4) 

 
The first stress invariant I1 can be calculated by I1=�ii, where �ii is the stress tensor. 
The second deviatoric stress invariant J2=sijsij/2.  

The serial yield loci of the unified strength theory and its special case with 
b=0.6 are shown in Fig. 12.3. 

The yield surface is defined exactly in the same way as the failure surface 
except that the ultimate tensile strength ft (in Eqs. (12.3a) and (12.3b)) is replaced 
by a smaller strength, which defines the elastic limit, namely “yield” strength. 
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Fig. 12.3 Yield loci of the unified strength theory and its special case with b=0.6 

 
Loading Surface and Work Hardening 
 
Prior to yielding, concrete materials are generally assumed to be in the linear 
elastic state. Beyond initial yielding, the stress level at which further plastic 
deformation occurs may be dependent on the current degree of plastic strain. Such 
a phenomenon is termed ‘work hardening’ or ‘strain hardening’. Therefore, the 
yield surface will vary at each stage of the plastic deformation and all these 
subsequent yield surfaces are called “loading surfaces”. The progressive 
development of the loading surfaces can be defined by relating the stresses to the 
plastic deformation by means of a hardening parameter 
 

( ) ( )ijf K k� �                            (12.5) 
 

where f is a stress function which represents a specific stress level, K is a function of 
the hardening parameter k and �ij (i, j=1,2,3) are the components of the stress tensor. 
Equation (12.5) generates a loading surface in a 3D stress state. 

The hardening parameter can be defined in two ways, namely ‘work 
hardening’ and ‘strain hardening’. In this chapter ‘work hardening’ is used. The 
degree of ‘work hardening’ can be postulated as a function of the total plastic 
work only. Then 

 
pk W�                               (12.6) 

where 

ij(d )p ij pW � �� B                  (12.7) 

 
in which (d�ij)p are the plastic components of strain occurring during a strain 
increment. The stress states, when f=k, represent plastic states, while elastic 
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behavior is characterized by f<k. In a plastic state, the incremental change in the 
yield function due to an incremental stress change is 
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ij

ff �
�
-

�
-

                        (12.8) 

 
Then, if  

f<0, elastic unloading occurs and the stress point returns inside the yield 
surface; 

f=0, means neutral loading and the stress point remains on the yield surface; 
f>0, means plastic loading and the stress point remains on the expanding yield 

surface.  
 

Elasto-Plastic Stress-Strain Relation 
 
Beyond initial yielding, the material behavior will be partly elastic and partly 
plastic. At an increment of stress, the changes in strain are assumed to be 
decomposed into two components: elastic and plastic components such that 
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The elastic strain increment is related to the stress increment. It is assumed 
that the plastic strain increment is proportional to the stress gradient of the plastic 
potential g, such that 
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where d0 is a proportional constant. According to the associated theory of 
plasticity, it becomes 
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where f is the yield function.  

Rearranging the yield function Eq. (12.5) leads to 
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Differentiating Eq. (12.12), we have 
 



12  2D Simulation of Normal Penetration Using the Unified Strength Theory 298 

d d d 0ij
ij

F FF � A
� A
- -

� � �
- -

                (12.13) 

or 
T{ } d d 0ija A� 0� �             (12.14) 

 
where T{ }a is the flow vector, defined as the partial derivative of F with respect to 
the stress tensor 
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Substituting Eq. (12.11) into Eq. (12.9) leads to 
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where [D] is the usual matrix of elastic constants. By pre-multiplying both sides of 
Eq.(12.17) by T{ } [ ]a D  and eliminating T{ } d ija � through Eq.(12.14), the plastic 
multiplier d0  can be obtained as (also Eq. (5.48) in Chapter 5) 
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Substituting Eq. (12.18) into Eq. (12.17) leads to the complete elasto-plastic 
incremental stress-strain relation such that 
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where the matrix of elasto-plastic constants is expressed as (also Eq. (5.50) in 
Chapter 5) 
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From a thermodynamic viewpoint, the work hardening hypothesis is more 

general than the strain hardening hypothesis. Therefore, the work hardening 
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hypothesis is used here, 
 

Td [ ] d{ }pA � ��              (12.21) 
 

With this hypothesis we can obtain 
 

A H'�                (12.22) 
 

where H' is the hardening parameter which can be determined experimentally 
from a simple uniaxial test.  

 
Flow Vector for Numerical Computation and Processing of Corner Singularity 

 
As an alternate form of Eq. (12.15), the flow vector can also be expressed as 
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where 

T
11 22 33 12 23 31{ } { }� � � � � � ��  

 
When UST theory is used to define the loading surfaces, the flow vector is not 
uniquely defined at the demarcation points. It occurs at �=0, �=60° and � �b. The 
corresponding points are A, B and C as shown in Fig. 12.4. 
 

 
Fig. 12.4 Singular points of UST with b=0.6 in the deviatoric plane 

 
It is worth noting that there are two exceptional cases (1) When b is equal to 1, 

points A and B are not angular points (see Fig. 12.2). Hence the flow vectors at A 
and B can be used without any processing. (2) When b is equal to 0, point C is not 
a singular point (Fig. 12.2) and, accordingly, the corresponding flow vector can be 
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used without any processing. However, in other cases (b�0, b�1), these comer 
singularities exist. To overcome these, one simple method is to approximate the 
flow vectors using those in the exceptional cases. That is, the flow vectors at A 
and B for all cases (0�b�1) are the same as those for b=1. Similarly, the flow 
vectors at C for all cases (0�b�1) are the same as those for b=0. The expressions 
for Cl, C2, and C3 for these comers are the same as the description in Chapter 5. 

The flow vectors for numerical computation and processing of corner 
singularity are the same as the processing described in Chapter 5 (Eqs. (5.45) to 
(5.99)). The corresponding flow vectors are shown in Fig. 12.3. 

The UST is generalized to the damage surface study (Zhou, 2002), as shown in 
Fig. 12.5. 

 

 
Fig. 12.5 Damage surface based on the UST with b=0.6  

 

The dynamic material model for concrete in the present study aims to simulate 
concrete behavior against penetration. The subject of penetration and perforation 
has long been of interest in the military field, but it still needs further study 
because of its complexity. It is a well-known fact that concrete exhibits a rate 
dependent behavior when subjected to high-speed dynamic loading. As compared 
with the measured parameters in static tests, it shows a significant increase in 
dynamic strength and a decrease in non-linearity of the stress-strain response 
curves. This peculiar behavior is very important under impulsive loading because 
it dominates the responses of the structure when subjected to impacts (with strain 
rates �� >10�2 s�1). Observations by others show that the rate-sensitivity is mainly 
due to the fact that the growth in internal microcracking (for a particular level of 
strain) is retarded at higher strain-rates. Knowing that the damage to concrete is 
essentially due to the nucleation and growth of micro voids and micro-cracks, one 
can deduce that diminishing micro-cracks due to an increasing strain rate will 
result in a reduction in macroscopic nonlinear behavior and also an increase in 
dynamic strength (Cervera et a1., 1996). Therefore, material models for concrete 
should be different between the static loading case and dynamic loading case. In 
other words, the strain rate effect needs to be considered in the dynamic material 
model for concrete. 

In the MSS models developed in the present study, the plastic model and 
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damage variable are combined to treat the response of concrete at different stress 
stages. The pre-failure behavior of concrete is modeled by elasto-plastic theory, 
while the damage model is introduced to treat the post-failure response in order to 
take account of the degradation of both strength and stiffness. The differences 
between the static and dynamic versions lie in the definition of the failure surface 
and the post-failure treatments. In the dynamic version, the strain-rate effect is 
included in defining the failure surface. In addition, the post-failure behavior 
follows a kind of isotropic damage model, in which the damage scale is a measure 
of the accumulated equivalent plain strain. Of course, in the static version no 
strain-rate effect is considered and the post-failure treatment adopts the Mazars 
damage model (Mazars, 1986), in which the damage parameter is a measure in the 
direction of principle stress.  

To test and verify Yu’s UST-based static models for concrete, some RC beams 
under static loading are calculated and compared with experimental results. Both 
two dimensional (2D) and three dimensional (3D) simulations of perforation 
through a concrete slab are presented to verify the dynamic material model for 
concrete. These numerical examples show that both the static and the dynamic 
material models for concrete can be used to simulate the response of a concrete 
member under different loading cases. 

12.4 Penetration and Perforation of Reinforced Concrete Slab 

To verify and calibrate the dynamic material model for concrete proposed by Zhou 
based on the UST and damage theory, numerical simulations were carried out 
(Zhou, 2002). The specific impact configuration in the experiments set up by 
Hanchak et al. (1992) was adopted. The target was a 610 mm×610 mm square 
panel of l78 mm thick reinforced concrete slab. The projectile was an ogival nose 
shaped 143.7 mm long steel rod having a diameter of 25.4 mm and a 3.0 
caliber-radius-head. Hanchack conducted his tests over a range of impact 
velocities between 300 and 1000 m/s. 

Figures 12.6 and 12.7 show the nominal geometric configurations of the steel 
projectile and the concrete target in Hanchack’s tests. An axisymmetric analysis 
was carried out in the numerical simulation, in which the target is a circular panel 
of 688.4 mm in diameter. Since the target panel was only lightly reinforced, the 
effect of the reinforcement would be negligible provided that the projectile 
impacted on the target somewhere near the center of a space in the reinforcement 
grid. For this reason, the steel reinforcement bars are not included in the numerical 
model. 
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Fig. 12.6 Geometry of the steel projectile 

 

 
Fig. 12.7 Configuration of concrete target (Zhou, 2002) 

 
The finite element mesh is shown in Fig. 12.8. The mesh for the target has 

8000 quadrilateral elements and 8181 nodes. The mesh for the projectile has 504 
elements and 559 nodes. Due to symmetry, only half of the target-and-projectile 
configuration is analyzed. 

Post-experimental observations showed little or no damage was inflicted on 
the projectile. Therefore, as the first-order approximation, the steel projectile was 
modeled as an elastic-perfectly-plastic material having the following properties 
(Hanchak et al., 1992): mass density 8020 kg/m3, bulk modulus 175 GPa, shear 
modulus 80.8 GPa and yield stress 1.72 GPa. The Huber-von Mises criterion is 
used as yield criterion for the steel projectile. 

Two grades of concrete target were used in the experiments by Hanchak et al. 
(1992). One set of targets has an unconfined compressive strength of 48.0 MPa while 
the other set is 140.0 MPa. Only the lower strength concrete target is analyzed here. 
The material parameters used in the present simulation are shown in Tables 12.1 and 
12.2. The piece-wise-linear plastic compaction path for the EOS is defined by five 
pairs of density to pressure values. Table 12.1 gives the values of these five pairs.  
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(a) Projectile                        (b) Target  

Fig. 12.8 The finite element mesh of the steel projectile and concrete target (Zhou, 2002) 
 

Figure 12.9 shows Hanchack’s experimental results of pressure versus 
volumetric strain and the approximated linearization adopted in Zhou’s study 
(Zhou, 2002). 

During the perforation process, some of the Lagrangian elements in the 
concrete target can become grossly distorted and, unless some remedial actions are 
taken, can seriously impair the progress of the calculation. To alleviate this 
problem, a numerical mechanism namely “erosion algorithm’’ is put in place in the 
hydrocode Auto-DYNA. A pre-defined strain value is set as the limit strain, 
beyond which the highly distorted elements will be removed as it progresses. In 
the present study, erosion is initiated by an incremental geometric strain limit, and 
a strain value of 300% is set as the limit.  

 
Table 12.1 General material parameters for the concrete target 

 

Parameter Value Parameter Value 
Reference density 2430 kg/cm3 Shear modulus 12.5 GPa 
Solid sound speed 2600 m/s Porous sound speed 2600 m/s 

Compressive strength 48 MPa H'c 18 GPa 
Tensile strength 4 MPa E 28 GPa 

Parameter b of UST 0.6 D1 0.03 
Kc0 0.5 D2 1 
Kt0 0.9 Pl0 40 MPa 
H't 18 GPa Pu0 55 MPa 
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Table 12.2 Piece-wise linear porous EOS (pressure versus density) 

Density (kg/m3) Pressure (MPa) 
2305 0 

2311.5 30 
2321.5 70 
2409.1 350 
2471.3 644 

Fig. 12.9 Pressure versus volumetric strain 
 

Hanchack reported his test results with four impact velocities, 1058 m/s, 750 
m/s, 434 m/s, 300 m/s. Simulations for these four cases were carried out using 
Zhou’s model i.e. the combination of the UST with b=0.6 and damage theory. 
Figure 12.10 shows the impact velocities versus the residual velocities and 
compared with Hanchack’s results too. Table 12.3 lists the corresponding 
numerical values. The velocity of the projectile decreases clearly along its path of 
penetration. The resisting forces arise from the inertia and strength of the target 
material. Upon perforation, the projectile decouples from the target and its 
velocity becomes constant. That constant velocity is defined as the residual (or 
exit) velocity of the projectile. If perforation does not occur, the projectile rests 
and embeds itself inside the target with zero residual velocity. 
 

Table 12.3 Comparison of exit velocities for perforation of normal RC slab 

Impact velocity 
(m/s) 

Exit velocity (m/s) 
(test result) 

Exit velocity 
(m/s) 

(numerical result) 

Error 
(%) 

300 
434 
750 

1058 

0 
214 
610 
947 

57 
219 
593 
920 

—— 
2.34 
2.79 
2.85 
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Fig. 12.10 Impact velocity versus residual velocity for test data and numerical results 

From Fig. 12.10 and Table 12.3, it can be seen that numerical simulations are 
in good accord with the experimental results. Apart from the impact velocity of 
300 m/s, the relative errors of the numerical results are less than 3%. It is worth 
noting other details. For illustrative purposes, further details for the case when the 
impact velocity is 750 m/s are discussed. The detailed procedure of the penetration 
is also obtained. The contour plots of damage in the concrete target at different 
time cycles are shown in Fig. 12.11 (Zhou, 2002). 

12.5 Perforation of Fibre Reinforced Concrete Slab 

Zhou’s material model combined with the UST and test data is employed to 
simulate a fiber-reinforced concrete target. Experiment results are reported by 
Hansson et al. (2000). The target is a 1.2 m>l.2 m square slab of 0.06 m thick 
fiber-reinforced concrete, having an unconfined compressive strength of 79.5 MPa 
and a splitting tensile strength of 7.4 MPa. The modulus of elasticity was taken to 
be 52.9 GPa and the density 2330 kg/m3. The projectile is a 43 mm long solid 
cylinder, having a diameter of 15 mm and a weight of 60 g. It was fabricated from 
steel SS l4 2541-03 having a 0.2% proof strength of 700 MPa and an ultimate 
strength between 900 and l l00 MPa. Experimental data are available for two shots 
fired against the slab at an impact velocity of l637 m/s and l505 m/s respectively. 

Since the penetration/perforation process is a highly localized event, it can be 
simply reduced to a 2D axisymmetrical analysis. As such, the square slab is 
replaced by a circular plate having a radius of 500 mm. By making use of 
symmetry, only half of the target-and-projectile section is analyzed. The domain of 
the target is discretized into 60×100 elements in the finite element model. The size 
of the element mesh increases gradually and radially away from the center. The 
projectile is discretized into 44>16 elements. In order to reduce the effect of stress 
wave reflections from the boundary, a transmissible boundary condition is applied 
along the peripheral boundaries of the slab. 
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Fig. 12.11 Contour plot of damage at different cycles (v=750 m/s) (Zhou, 2002) 
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The fiber reinforced concrete is treated as a homogeneous material having 
similar but slightly different properties, as shown in Table 12.4. The projectile is 
modeled according to the Johnson & Cook material model for steel. The 
mechanical properties are based on the typical data for 4340 steel. The material 
parameters for the steel projectile are shown in Table 12.5 In the simulation, an 
erosion strain of 500% is adopted. 

Table 12.4 General material parameters for the fiber RC target 

Parameter Value Parameter Value 

Reference density 2410 kg/cm3 Shear modulus 20.8 GPa 
Solid sound speed 2900 m/s Porous sound speed 2900 m/s 

Compressive strength 795 MPa H'c 32 GPa 
Tensile strength 7.4 MPa E 50 GPa 
UST parameter b 0.6 D1 0.03 

Kco 0.5 D2 1 
Kfo 0.9 Plo 80 MPa 
H't 32 GPa Puo 115 MPa 

Table 12.5 Piece-wise linear porous EOS (pressure versus density) 

Density(kg/m3) Pressure(MPa) 

2330 0 
2336 20 
2346 48 
2390 380 
2452 650 

Simulations are carried out for the two shots having an impact velocity of l503 
m/s and l637 m/s. The velocity-history plots for the projectile are shown in Fig. 
12.10 and Fig. 12.11, respectively. It can be observed that during the perforation 
process the velocity of the projectile decreases readily. Upon perforation, the 
velocity becomes constant. Table 12.6 shows the comparison of exit velocities 
between the numerical simulations and the test results. Good agreements are 
observed. Figure 12.12 shows the contour plots of damage at different time steps. 

 

Fig. 12.12 Velocity history of projectile (Fiber RC slab, v=1 5 05 m/s) 
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Fig. 12.13 Velocity history of projectile (Fiber RC slab, v=1 637 m/s) 
 
 

Fig. 12.14 Contour plot of damage at different cycles for fiber RC slab (v=1503 m/s) (Zhou, 2002) 
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Table 12.6 Material constants for the steel projectile according to Johnson-Coak model 

Material constant Value 
Reference density 7830 kg/m3 

Bulk modulus 1 59 GPa 
Reference temperature 300 K 

Specific heat 477 J/kg 
Shear modulus 81.8 GPa 

Yield stress 792 MPa 
Gardening constant 510 MPa 
Hardening exponent 0.26 
Strain rate constant 0.014 

Thermal softening exponent 1.03 
Melting temperature 1793 K 

 

Table 12.7 Comparison of exit velocities for perforation of fiber RC slab 

Exit velocity (m/s) Impact velocity 
v (m/s)   Experimental result   Present simulation 

    1505     1080     1036 
    1637     1120     1130 

12.6 High Velocity Impact on Concrete Slabs Using UST and 
SPH Method 

The Smoothed Particle Hydrodynamics (SPH) method was first applied by Lucy 
(1977) to astrophysical problems and was extended by Gingold and Monaghan 
(1982). Cloutman (1991) has shown that SPH could be used to model 
hypervelocity impacts. Libersky and Petschek (1991) have shown SPH can be 
used to model material with strength. Liu et al. (2003) have studied blasting 
simulation with explosives in fluid media and Liu (2002) has reviewed mesh free 
methods and introduced this method systematically. In fact, SPH is a gridless 
Lagrangian technique. The main advantage of the method is to bypass the 
requirement for a numerical grid to calculate spatial derivatives. This avoids the 
severe problems associated with mesh tangling and distortion which usually occur 
in Lagrangian analyses involving large deformation impact and explosive loading 
events. The grid based methods, such as Lagrange and Euler, assume a 
connectivity between nodes to construct spatial derivatives. SPH uses a kernel 
approximation, which is based on randomly distributed interpolation points with 
no assumptions about which points are neighbours, to calculate spatial derivatives. 
Here, a dynamic plastic damage model is proposed by Prof. Fan SC and Qiang 
using UST (Unified Strength theory) and on an RHT concrete model (Riedel et al., 
1999). The research was presented by Prof. Fan SC at Sydney, Australia in 2001 
(Fan and Qing, 2001) and described below. 
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12.6.1 Material Model for the Concrete Slab 

Dynamic multi-limit surface models based on the unified strength theory are 
employed here, i.e. the elastic limit surface, failure surface and residual strength 
surface. The failure surface is a bounding surface, no stress state is allowed to 
exist beyond it. The shapes of the failure surface could be changed in the stress 
space during the impact process. However, the loading surface changes its shape 
non-uniformly from the initial surface to the failure surface with the development 
of the effective plastic strain. Once the failure surface is reached, the residual 
strength surface is determined according to the scalar damage value. 

Based on this consideration, the dynamic material model is proposed. The 
main characteristics of this model are:  

1) Strain-rate dependent failure surface is considered.  
2) UST theory is employed in the failure surface. 
3) Linear strain hardening is used to impose the plastic flow consideration.  
4) Isotropic damage is used in this model due to increased strain after the 

stress in the reached failure surface.  

12.6.2 The Failure Surface 

Amongst the strength models available, UST theory has a clear mechanical 
concept and simple mathematical formula. The advantage of the UST theory is 
that it takes account of the second principal stress on the material strength. 
However, the Huber-von Mises criterion is based on the average principal stresses 
while the Mohr-Coulomb criterion neglects the intermediate principal stresses. 
The envelope is then completed by defining a piece-wise linear interpolation 
function in the deviatoric plane. The beauty of the twin-shear-unified strength 
theory is its feasibility in defining the convex shape of the surface. Setting the 
value of the controllable convex parameter b to 0 or 1 yields the lower and upper 
limit of the convex shape function. For any arbitrary value of b, the shape function 
can be written in the following form. 
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where J2 and J3 are the second and third stress invariants respectively, rt and rc 
are the tensile and compressive meridians respectively. 
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It is worth noting that the unified strength theory parameter b reflects the 

influence of the intermediate principal stress on the material strength. Besides, it 
encompasses all prevailing yield or failure criteria. When b=0 it can represent the 
Tresca criterion; when b=0.5 it is equivalent to the Huber-von Mises criterion. The 
shapes represented by different values of b in the deviatoric plane and multi-limit 
surface in the meridian plane are shown in Fig. 12.15 and Fig. 12.16. In the 
present investigation, the unified strength theory parameter b is set to b=0.6. 

 

  
Fig. 12.15 Multi-limit surface in meridian projection 

 

 
Fig. 12.16 Multi-limit surface in deviatoric projection 
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The failure surface is defined as a function of pressure P, the Lode stress angle 
� and strain rate �� . 

 
( ) ( )fail TXC P f RATEY Y R F �� < < �         (12.26) 
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in which D is the compressive strain rate factor exponent; a is the tensile strain 
factor exponent. 

12.6.3 The Elastic Limit Surface  

The elastic limit surface is scaled from the failure surface using 

 

( )elastic fail elastic CAP PY Y F F� < <              (12.27) 

 
where Felastic is the ratio of the elastic strength to failure surface strength. This is 
derived from two material parameters, tensile elastic strength ft and compressive 
elastic strength fc. FCAP(P) is a function that limits the elastic deviatoric stresses 
under hydrostatic compression via 
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12.6.4 Strain Hardening  

Linear hardening is used prior to the peak load. During hardening, the current 
yield surface ( *Y ) is scaled between the elastic limit surface and the failure 
surface via 
 

*
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is defined by the user. 

12.6.5 Residual Failure Surface 

A residual (frictional) failure surface is defined as 

 
* *M

residualY BP�                          (12.30) 
 

where B is the residual failure surface constant; M is the residual failure surface 
exponent.  

12.6.6 Damage Model 

Following on from the hardening phase, additional plastic straining of the material 
leads to damage and strength reduction, as shown in Fig. 12.5. The residual 
strength is described by a so-called “cumulative damage model” (Persson, 1990). 
Damage is accumulated via 
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where D1 and D2 are damage constants; min
f�  is the minimum strain to failure. 

The post-damaged failure surface is then interpolated via 
 

* * *
a (1 )fr ctured failure residualY D Y DY� � �               (12.33)  

and the post-damaged shear modulus is interpolated via

 
(1 )fractured residualG D G DG� � �                 (12.34) 

 
where Gresidual is the G*, the residual shear modulus fraction.   

12.7 Numerical Example 

To verify and calibrate the present model, a numerical simulation was carried out 
by Prof. Fan SC and Qiang (2001), which is to illustrate the results of the 
enhancements incorporated using the SPH method and UST model. It adopts the 
same configuration and materials used in the tests by Hanchak et al. (1992). The 
target is a 680 mm×680 mm square of a 178 mm thick reinforced concrete panel. 
The projectile is an ogival nose shaped 143.7mm long steel rod with a diameter of 
25.4 mm and a 3.0 caliber-radius-head. The impact velocities vary between 300 
and 1058 m/s. The experimental results are compared with simulation results in 
the present investigation, and the unconfined compressive strength of concrete is 
48 MPa. For other parameters for the material model refer to Riedel et al. (1999).  

In the simulation, both the projectile and the target regions are modeled using 
SPH. In order to simplify it to a 2D axisymmetric analysis, the square panel is 
approximated by a circular one of radius 303 mm. The target is discretized into 
13528 particles while the projectile is represented by 1678 particles. The panel is 
lightly reinforced. However, Hanchak’s results verify that the small amount of 
reinforcement does not have a major influence on the penetration resistance. 
Therefore, the steel bars are ignored in the modeling. An evenly spaced 
particle-model of SPH for concrete target and steel projectile is shown in Fig. 
12.17. 

The material model for the projectile adopts the linear EOS and the Johnson & 
Cook strength model. The mechanical properties are based on the AutoDYN’s 
material library for steel 4340: initial density �0=8.1 g/cm3, bulk modulus K=159 
GPa, shear modulus G=81.8 GPa, yield stress fy=792 MPa etc. 
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Fig. 12.17 Evenly spaced particle-model of SPH for concrete target and steel projectile 

 
 
The same EOS is adopted for the concrete slab, only the bulk modulus K is 

different. The exit velocities and corresponding penetration depths of the projectile 
are shown in Table 12.8. The decrease in the velocity of the projectile is due to 
resistance by the target. After perforation (the target is a 680 mm 680 mm square, 
178 mm thick), the velocity of the projectile remains constant because the target 
material can no longer offer any resistance (cases 1 and 2). This constant velocity 
is defined as the residual (or exit) velocity of the projectile. If perforation did not 
occur, the projectile would have come to rest and be embedded inside the target 
with zero residual velocity (case 4). Meanwhile, the reduction in the projectile 
velocity is recorded over the penetration depth and compared to the residual 
velocities measured in the normal strength concrete tests (fc=48 MPa). At high 
initial velocities, the results of the dynamic constitutive law match the 
experimental values very closely. A ballistic limit of about 301 m/s is also 
correctly predicted in the simulation (case 4).  

 
Table 12.8 Comparison of exit velocities and penetration depths 

Exit (residual) velocity 
(m/s) s/n 

Impact 
velocity 

(m/s) Test (Hanchak)  Simulation 

Simulation depths 
(mm) 

(1) 1058 947 950 178 
(2) 749 615 625 178 
(3) 360 67 71.5 174 
(4) 301 0 0 163 

 
The distribution of the compressive damage for the constitutive theory, with or 

without its dynamic part, emphasizes the importance of a realistic consideration of 
the strain-rate effect. In Fig. 12.18 the contour plots of the compressive damage 
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for time steps during a 750 m/s impact are shown. At the same time, the dynamic 
constitutive law exhibits a rather homogeneous damage distribution.  

 

  

 

  

  

 
Fig. 12.18 Contour plots at selected time steps (Fan SC and Qiang, 2001) 
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The SPH procedure is employed by Fan and Qiang (2001) to simulate the 
impact-penetration process of a hard steel projectile onto/through a concrete target. 
A nonlinear equation of state and an improved strength criterion for concrete 
material are incorporated. The strength criterion takes account of the influence of 
the intermediate principal stress. The SPH procedure does not experience any 
numerical instability problem. The numerical simulations with the two 
enhancements yield results in good agreement with the experimental ones. The 
contour plot at the final step is shown in Fig. 12.19. 

 

 
Fig. 12.19 Damaged contour plot at final step (Fan and Qiang, 2001) 

12.8 Brief Summary 

The UST (Unified Strength Theory) is implemented in AutoDYN and numerical 
examples of penetration of concrete slabs are given. The unified strength theory 
with parameter b=0.6 is used for simulation of penetration in three examples. 

The numerical simulation of the penetration/perforation process of a 
concrete slab by a cylindrical steel projectile using the FE method and 
smoothed particle hydrodynamics (SPH) method is studied in this chapter. In 
the simulation, the available hydrocode AutoDYN-2D is employed with an 
improved RHT concrete model, in which unified strength theory (UST) or 
Yu’s unified strength theory (Yu UST) is adopted in defining the material 
strength effects, and dynamic multifold limit/failure surfaces including elastic 
limit surface, failure surface and residual failure surface are constructed. The 
proposed model is incorporated into the AutoDYN hydrocode via the user 
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defined subroutine function. The results obtained from the numerical 
simulation are compared with available experimental ones. Good agreement is 
observed. It demonstrates that the proposed model can be used to predict not 
only the damaged areas and velocity reduction of the projectile during the 
perforation process, but also the debris clouds from the spalling process. 

A multi-limit surface dynamic plastic damage model is developed based on 
the RHT model using UST theory. The present material model was coded and 
incorporated into AutoDYN. The numerical simulation was carried out for a 
case of perforation through a concrete slab by a steel projectile. Numerical 
results were compared with experimental results by others. They agreed 
favourably. It demonstrates that the present model could be used to predict not 
only the damaged areas and the velocity-decrease of the projectile during the 
perforation process but also the debris clouds from the spalling process, with 
an acceptable degree of accuracy.  
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13  

3D Simulation of Normal and Oblique 
Penetration and Perforation 

13.1 Introduction 

The 2D simulation of normal penetration has been described in Chapter 12. The 
same problem is re-investigated through 3D simulation using the model proposed 
by Zhou at Nanyang Technological University (NTU), Singapore, which is the 
combination of the unified strength theory (Yu, 1998; 2004) and the experimental 
data.  

The 3D simulation of oblique penetration and the perforation process through 
a concrete slab was also simulated by Zhou XQ at NTU, Singapore in 2002. The 
unified strength theory with parameter b=0.6 (Fig. 12.3) is implemented in 
AutDYN (2000) and used again for simulation of the penetration problem. 

13.2 Simulation of Normal Impact Process 

In this section,the same problem in section 12.3 is investigated through 3D 
simulation using the present model. Figure 13.1 shows the 3D finite element mesh 
used in the numerical model. In Fig. 13.1, three front layers of concrete elements 
are removed to show the reinforcement grid. The structure is modeled by 
48×48×14 brick concrete elements and 3 layers of 8×8 beam reinforcement 
elements. 

������ 
This chapter is contributed by Prof. Zhou XQ 
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Fig. 13.1 The FE-mesh used in the 3D numerical simulation (Zhou, 2002) 

 
The results of simulation using the UST with b=0.6 are obtained. The material 

status at different time cycles is shown in Figs. 13.2 to 13.8 (Zhou, 2002).  
 

 

 
Fig. 13.2 Material status at cycle 10000 (Zhou, 2002) 
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Fig. 13.3 Material status at cycle 20000      Fig. 13.4 Material status at cycle 40000 

 

   
Fig. 13.5 Material status at cycle 60000       Fig. 13.6 Material status at cycle 80000 

 

   
Fig. 13.7 Material status at cycle             Fig. 13.8 Material status at cycle 

100000 (impact surface)                      100000 (exit surface) 
 

Figures 13.9 and 13.10 reproduce Hanchak’s post-test photographs revealing the 
damage to the front (impact) surface and the rear (exit) surface respectively. By 
comparing the size of the damaged areas shown in Figs. 13.9 and 13.10 with those in 
the post-test photographs in Figs. 13.9 and 13.10, the following can be seen. 

(1) On the impact surface, the size of the damaged crater obtained by 
numerical simulation agrees fairly well with that shown in the post-test 
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photograph (see Figs. 13.7 and 13.9a); 
(2) On the exit surface, the size of the damaged crater obtained from numerical 

simulation is slightly smaller than that shown in the post-test photograph (see 
Figs. 13.8 and 13.9b). 

 

        
(a) Impact surface                           (b) Rear surface 

Fig. 13.9 Post-test photograph  

The velocity history of the projectile is shown in Fig. 13.10. It can be observed 
that the exit velocity is about 575 m/s, which is about 5%-6% lower than the 
experimental result of 610 m/s. Against this background, an alternate 3D 
simulation with reinforcement omitted was carried out, and the exit velocity 
becomes 625 m/s (2%-3%higher than 610 m/s). It suggests that the strengthening 
effect derived from the steel reinforcement bars is over-estimated. This is due to 
the assumption of perfect bonding between the steel bars and their surrounding 
concrete (even though they are only pin-jointed at the nodes). However, it shows 
that the effect of reinforcement bars is minimal. 

 
Fig. 13.10 Velocity history of projectile 
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13.3 Simulation of Oblique Impact Process 

The oblique perforation process through a concrete slab has to be a 3D simulation. 
The impact configurations match those in the experimental tests carried out by 
Buzaud et al. (1999) in France. The concrete slab is 3000 mm square and has a 
thickness of 600 mm. The high-strength steel projectile hits the center of the slab at a 
velocity of 338 m/s with a 303 angle of incidence (measured in the horizontal plane) 
and a 03 angle of attack (measured in the vertical plane).  

Figure 13.11 shows the geometric configurations of the projectile. The 
projectile was machined out of a 35NCDl6 high strength steel rod with an 
elasticity limit of l300 MPa. Having a total length of 960 mm and a diameter of 
l60 mm, its nose is tangent ogive shape with a Caliber Radius Head (CRH) of 6. 
The thickness of the afterbody is between 17 and 20 mm. 

 

 
Fig. 13.11 Geometry of the steel projectile 

 
The geometric configuration of the reinforced concrete target is shown in Fig. 

13.12. The target is reinforced by a layer of ?16 mm high-adherence steel bars at a 
 

 

Fig. 13.12 Configuration of concrete target (Zhou, 2002) 
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distance of 50 mm from the front and another layer at the rear face. The spacing 
between the ?16 mm bars is l00 mm in both directions. The two meshes are bound 
together by ?10 mm high-adherence stirrups at each node. The steel-to-concrete 
area ratio is 0.67%, which is regarded as light reinforcement to the concrete slab. 
Against this background, as guided by the experience of previous simulations, the 
reinforcement bars are not included in the simulation.  

Tables 13.1 and 13.2 give the material constants for the concrete. The erosion 
limit for the incremental geometric strain is set at 150%. It is worth noting that a 
smaller erosion limit is necessary in 3D simulation. Otherwise, a numerical 
stability problem may occur and the computation process may stall due to 
excessive element distortion. 

 
Table 13.1 General material parameters for concrete target 

Parameter Value Parameter Value 

Reference density 2454.2 kg/m3 Shear modulus 8.4 GPa 

Solid sound speed 2693.17 m/s Porous sound speed 2693.17 m/s 

Compressive strength 43 MPa Ht' 15 GPa 

Tensile strength 4.0 MPa E 20 GPa 

Parameter of the UST,  b 0.6 D1 0.03 

Kco 0.5 D2 1.0 

Kt0 0.9 Plo 40 MPa 

Ht' 15 GPa Puo 55 MPa 
 

Table 13.2 Piece-wise linear porous EOS (pressure versus density) 

Density (kg/m3) Pressure (MPa) 

2368 0 

2378 44 

2411 180 

2446.5 333 

 
Figure 13.13 shows the finite element mesh for the projectile and the target. 

Figures 13.14–13.21 show the material status at different time cycles (Zhou, 
2002). 
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Fig. 13.13 The finite element mesh used in the numerical simulation (Zhou, 2002) 

 
 

 
Fig. 13.14 Material status at cycle 10000      Fig. 13.15 Material status at cycle 50000 

 
 

 
Fig. 13.16 Material status at cycle 100000   Fig. 13.17 Material status at cycle 20000  

(rear surface view) 
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Fig. 13.18 Material status at cycle 30000       Fig. 13.19 Material status at cycle 

                              300000 (rear surface view) 

 

 
Fig. 13.20 Material status at cycle 380000    Fig. 13.21 Material status at cycle  

                              380000 (rear surface view) 
 
Figures 13.22 and 13.23 show the experimental results of the residual 

damaged area appearing on the front and rear face respectively. With regard to the 
size of the damaged areas on the front (Fig. 13.20) and rear face (Fig. 13.21), 
comparisons show that the simulation results agree well with the experimental 
ones (Figs. 13.22 and 13.23). With regard to the initiation point of damage on the 
rear face and the exit point from the rear face, simulation results (Fig. 13.20 and 
13.21), comparisons also show a good accord between the numerical simulation 
and the experimental results (Fig. 13.23). 

The projectile’s exit-velocity history is shown in Fig. 13.24. It can be seen that 
the exit velocity is about 214 m/s, which is slightly higher (@l8%) than the 
experimental result of l80 m/s. It could be partly due to the omission of steel 
reinforcement bars in the numerical simulation. On the other hand, the pre-defined 
erosion limit is set lower than 2, which leads to a softer target material and results 
in a higher exit velocity. 
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Fig. 13.22 Target residual damage (front face) 

 

 
Fig. 13.23 Target residual damage (rear face) 

 

 
Fig. 13.24 Velocity history of the projectile 
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13.4 Conclusions 

The following conclusions were given by Zhou. 
1) Regarding the construction of the strength surface for the failure state of 

concrete  material under triaxial stress condition, most of the available models 
are empirical criteria based on limited experimental data, such as the 
Willam-Wamke criterion, Ottosen criterion and Kotsovos-Palovic model (see: 
Chapter 3). On the other hand, Yu’s Unified Twin Shear Stress (UTSS) theory 
offers a more thorough theoretical insight into the strength criteria. The UTSS 
clearly defined the role of the intermediate principle shear stress through a 
contribution factor ‘b’ (0�b�1). Though the UTSS does not provide a complete 
theoretical strength criterion in the tri-axial stress space ( -space), it is proven to 
be logical and accurate in the  -space. Against this background, the present study 
leads to a novel way of constructing the strength surface—a semi-theoretical 
semi-empirical envelope. Subsequently, it is further developed into a multi-surface 
strength model for concrete materials. It takes into account the pre-failure 
elasto-plastic behavior and the post failure damages. 

2) The development of the present model evolves from a static version SMl, 
which follows Yu’s UTSS conical failure envelope. An improved static version 
SMII incorporates Yu’s twin-shear criterion in the  -plane with Kotsovos’ 
meridians. The dynamic version is a further development of SMII including the 
dynamic effects. 

3) Construction of the failure envelope in the  -space is the key step. Rules 
governing the non-linear responses of concrete at different stress stages can be 
established. The rules for pre-failure behavior follow the elastic-plastic theory, 
while damage mechanics can be employed to govern the post-failure responses to 
account for the degradation of both strength and stiffness. The stress states at 
different stages of the stress path are described with respect to the failure surface. 
Other surfaces are thus derived to further partition the  -space into sub-zones. The 
partitioning surfaces demarcate the elastic zone, plastic zone and damage zone. 

4) Both static models (UTSS-based SMI and semi-UTSS SMII) can yield 
reasonably accurate predictions for the ultimate capacity and the overall 
load-deflection response of RC beams (see Chapter 11). Model SMI leads to 
results inferior to those from model SMII. In particular, model SMII shows its 
robustness in the benchmark test for a box beam (see Chapter 11). 

5) The dynamic version of the present MSS model, together with other 
available  numerical techniques, are capable of simulating the complicated 
penetration and perforation process. Not only the velocity history of the projectile, 
but also the damage zones and the overall performance can be obtained with an 
acceptable degree of accuracy.
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Underground Mining 

14.1 Introduction 

The mechanical problem in underground mining is that the stope and laneway are 
always in a state of dynamic evolution, induced by stress adjustment that is caused 
by excavation and shocks. The dynamic evolution induces a crack field in the wall 
rock expansion and in the end it caves in. So the mechanics problem in mining is 
different from other rock engineering problems, such as in powerhouse 
construction of a hydroelectric power station, traffic tunneling, national defense 
engineering of rock, etc., which will be firmly supported as soon as they are 
excavated. However, in mining, the evolution of the crack field and the caving in 
of the rock are fully used in ore extraction and ground pressure control, such as the 
mining methods of block caving and long wall mining. In the block caving method, 
the mining block is undercut near its bottom in order to expose a large free surface 
near which the ore is in a state of tension, so that cracks in the ore body expand, 
run through and induce ore caving, as shown in Fig. 14.1 and Fig. 14.2 (Brown, 
2003). 

In the long wall mining method, see Fig. 14.3 and Fig. 14.4, when the 
worked-out section is too large, the work face will bear too great a pressure and 
the sudden rupture of the roof will cause a great shock to the support system. So 
an ideal mode is that, as the work face advances, the roof caves in bit by bit, which 
will relief the stress on the work face and avoid the sudden rupture of the roof. It is 
very necessary in the two mining methods to predict the evolution of the crack 
field in the wall rock. That is the important mechanical problem in underground 
mining. 
������ 
This chapter is contributed by Professors Wang L, Henan Technical University, Jiaozuo, China 
and Gao Q, Key Laboratory of Ministry of Education for Highly Effective Mining and Safety in 
Metal Mines; Beijing; China and Beijing Science and Technical University, Beijing, China
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Fig. 14.1 Model of block caving (Brown, 2003) 

 
Fig. 14.2 Caving process zone expanding with advancing undercut 

 

 
Fig. 14.3 Model of long wall mining 



14.1  Introduction 

 

335 

 
Fig. 14.4 Crack field expanding with extraction advancing 

 
In the calculation of the fracture zone, it is an important problem to select the 

fracture rule for the rock, which involves choosing a reasonable strength theory. 
Though strength theory is one of the earliest classic problems in mechanics, it is 
still progressing. So far, there have been over a hundred mathematics models or 
criteria proposed. They are divided into single-shear strength theory, twin-shear 
strength theory and three-shear strength theory under the framework of the unified 
strength theory. The single strength theory does not consider the effect of 
intermediate principal stress �2, it expresses the stress function of materials with 
the shear stress and normal stress on the maximum shearing plane, e.g. the 
Mohr-Columb strength criterion and Tresca strength criterion. Three-shear 
strength theory is also called octahedral strength theory, e.g. Huber-von Mises 
criterion and Drucker Prager criterion. Twin-shear theory was proposed by Yu in 
1961, 1983 and 1985. 

In 1991, Yu presented the unified strength theory in Tokyo and then, in 1992 
and in 1994, he gave a further discourse of his theory. The unified strength theory 
has the advantage that it reflects not only the effects of the intermediate principal 
stress on material yielding but also the transition from the stress state of 
generalized tension to that of generalized compression with the intermediate 
principal stress increasing from �2=�3 to �2=�1 in its two expressions (Yu, 1998; 
2004). 

In this chapter, two examples of the application of the unified strength theory 
in underground mining are introduced. Block caving and long wall mining are 
described. In order to reflect the evolution of the crack field in the wall rock, an 
elastic-brittle damage model has to be established first.
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14.2 Elastic-Brittle Damage Model Based on Twin-Shear 
Theory 

14.2.1 Damage Model 

The damage variable is defined as  
 

n

s
D �

�
# $� % &
' (

                          (14.1) 

 
where �s represents the strain when the material is fully fractured, corresponding to 
D=1; � is the elastic strain and n is the brittle exponent. The meaning of the 
damage parameters is shown in Fig. 14.5. They have different values under 
uniaxial tension and compression.  
 

 
Fig. 14.5 Stress-strain curves of elasto-brittle rock at different n 

14.2.2 Three-Dimensional Damage Model 

According to twin-shear strength theory (Yu, 1985), the complex stress state can 
be divided into two kinds of equivalent uniaxial stress states, which are equivalent 
tension and equivalent compression. The twin-shear strength theory is generalized 
into a 3D damage model in this research. The twin-shear damage surface 
equations with principal strains are defined as 
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where t c

c c� � �� . 
c
c� , t

c� represent the critical value of materials yielding under 
uniaxial compression or uniaxial tension, they are always positive in the 
expressions.v is the Poisson rate; the expression to the right of Eqs. (14.2a) and 
(14.2b) can be simplified into a material parameter C. When the strain state is 
within the damage surface, that is when |F|<|C| or |F'|<|C|, there is no damage 
evolution. If not, damage evolves. With damage evolution, damage surfaces will 
shrink because of softened material, so the material parameter C will become 
small. The 3D damage model can be established by F or F' tracing the 1D damage 
evolution.   

In general compression, with Eqs. (14.1) and (14.2b), the damage variable is  
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In general tension, with Eqs. (14.1) and (14.2a), the damage variable is 
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in which s� 
 represents the strain when D=1 and here 
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The equation of the damage evolution is  
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The experimental results of uniaxial and triaxial compression for sand-rock at 
the Jinchuan mine are shown in Fig. 14.6. The comparison of the calculated results 
based on the twin-shear damage model with the experimental results shows good 
agreement.  

 

 

  
Fig. 14.6 Comparison of the twin-shear damage model with  

experimental results for sand-rock 
 

14.3 Non-Equilibrium Iteration for Dynamic Evolution 

At a certain loading step, damage and fracture of elements result in a decrease in 
the bearing capacity, which causes redistribution of stress in the structure. As a 
result, the stress around the damage zones increases. Furthermore, the elements 
around the damage zones will be damaged and fracture under the increased stress. 
This is the damage pattern and stress pattern coupling with each other; they are 
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alternatively expanding and stopping. In the numerical method, the stress 
redistribution is carried out by non-equilibrium iterations. 

At loading step k, the finite element equation is 
 

( ) ( ) ( )k k kK a P�                         (14.5) 
 
in which ( )ka  is the displacement array of step k; ( )kP  is node load array; ( )kK  
is the overall stiffness matrix. It is assembled by the element stiffness matrix 
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in which B is the strain matrix, ( ) ( )( )e kD is the element stiffness matrix of step k. 
It is expressed with the tensor as  
 

 ( ) ( )( ) (2 )e k
ijkl ik jl ij klD G� � 0� �� �             (14.7) 

 
in which G � are Lame constants. 

The non-equilibrium load result of element damage is 
 

( ) ( ) ( ) ( )( )k k k kK K a P� � H�                    (14.8) 
  
in which ( )kK�  is the overall stiffness matrix because of damage at step k.  
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in which ( ) ( )( )e k

ijklD� is the constitutive matrix of the damaged element. It is written 
as in tensors 
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Keep the load and boundary unchanged, approach equilibrium by iterative 
calculation and the stress is redistributed as 
 

( ) ( ) ( )k k kK a PH � H�                          (14.11) 
 

The displacements are resolved as ( )ka�  
 

( ) ( ) ( )k k ka a aL �H�                        (14.12) 
 
The accumulated displacement is ( )k��  
 



14  Underground Mining 

 

340 

  ( ) ( )k kBa� �� �                        (14.13) 
 

Use Eqs. (14.2a) or (14.2b) and (14.3a) or (14.3b) for each element and 
calculate the damage value, then enter Eqs.(14.11)–(14.13). Repeat this course 
until no damage is produced. Then the step k calculation ends and the program 
enters the next step calculation. 

14.4 Numerical Simulation of Caving Process Zone  

14.4.1 Introduction to Block Cave Mining 

Block cave mining is a mass mining method that allows for the bulk mining of 
large, relatively lower grade ore bodies. This method is increasingly being 
proposed for a number of deposits worldwide such as in Northparkes (Australia), 
Palabora (South Africa), Questa Mine (New Mexico), Henderson Mine (Colorado) 
and Freeport (Indonesia). In general terms block cave mining is characterized by 
caving and extraction of a massive volume of rock which potentially translates 
into the formation of a surface depression whose morphology depends on the 
characteristics of the mining, the rock mass and the topography of the ground 
surface (Fig. 14.1).  

A major challenge at the mine design stage is to predict how specific ore bodies 
will react to block caving depending on the various geometry of the undercut. The 
scheme of undercut is the most feasible and creative factor because it can directly or 
indirectly change the cavibility of the ore body and decrease the rate of massive 
fragments. The caving process zone is the perturbation zone of the ore body above 
the free surface exposed by the undercut and ore drawing. It includes the caved zone 
and damaged zone (Fig. 14.2). It represents the dynamic characteristics of rock 
cracking, fracture and caving. In the chapter, a numerical simulation scheme for 
block cave mining for the Jinchuan Corp. Mine III (China) is introduced to give an 
illustration of the application of twin-shear strength theory in underground mining. 

14.4.2 Geometry and Undercut Scheme  

The experimental block is located in the south of the ore field (Fig. 14.7) and the 
size of the block and base structure is shown in Fig. 14.8a.  
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Fig. 14.7 Location of the experimental block (South block) in the ore field 

 
The experimental block has a size of 180 m×140 m×188 m, with the highest 

level on the earth’s surface and with the numerical boundary being 50 m from it. 
Stability of the base structure is not the aim. The undercut is divided into 6 equal 
paces which advance in the direction of positive Y (Fig. 14.8(b)). The velocity of the 
advancing undercut is determined by the principle that only if the ore body obtains 
transient stability at the previous pace will the next pace start.  

 

 
 (a) Geometric model of the block mine                   (b) The scheme of undercut 

Fig. 14.8 The block and base structure and scheme of undercut 

14.4.3 Result of Numerical Simulation 

The finite element model is shown in Fig. 14.9, with its displacements set to zero 
except for the top surface. 
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Fig. 14.9 The mesh of the block and undercut 1-1, 1-2 
 

The elements attached to the middle plane of the model in the X direction 
are selected to show the evolution of the caving process zone, where the black 
elements represent the caved zone and the purple elements represent the 
damaged zone (Fig. 14.10). It shows that when the undercut 1 is finished, 
small caving occurs in the ore body. After the adjustment of stress, the damage 
zone expands but the caved zone does not, because the undercut pace is too 
slow. When the undercut 2 is finished, large scale caving occurs and the 
damage zone also expands much more, even if the undercut does not advance. 
So, from the undercut 3, the advance of the undercut goes fast and the next 
undercut should be carried out before the ore body stabilizes at the previous 
undercut, so that the subsequent undercut is carried out safely. At the end of 
the undercut, the process zone cannot retain a stable structure and continuous 
caving happens. Two large shear bands appear on the two sides above the 
caved zone.  
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Undercut 2-1              Undercut 2-2             Undercut 2-3 

 

 
Undercut 3-1          Undercut 3-2             Undercut 5-1 

 

         
Undercut 6-1         Undercut 6-1 (In Y-direction) 

Fig. 14.10 Process zone evolution 
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14.5 Numerical Simulation for Crack Field Evolution in Long 
Wall Mining  

14.5.1 Geometry and FEM Model  

In this section we introduce the application of twin-shear strength theory in 
numerical simulation for crack field evolution in long wall mining in the Xinyi 
Coal Mine of the Yi Ma Coal Group in Henan province, China. The aim is to get a 
foreknowledge of pressure distribution on the workface and crack field evolution 
in the roof. The mechanical model is a plane strain in which the calculated plane is 
cross section I-I, as shown in Fig. 14.11 and Fig. 14.12. The FEM model is a fine 
mesh and rock strata are marked with different colors, as shown in Fig. 14.13. 
 

  

Fig. 14.11 Location of the calculated plane I-I 
 

 

Fig. 14.12 Geometry of the cross section I-I 
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Fig. 14.13 Grid and distribution of rock strata in the calculated field 

14.5.2 Evolution of Crack Field in the Roof 

Part of the result is shown in Fig. 14.14. The orange color represents the 
worked-out section in the coal stratum and black represents the cracking zone. 

 

   
              N3                  N8                N18      

   
N25                  N30                N40 

   
N43                N47                 N77        

   
N85               N100               N111 

Fig. 14.14 Crack field evolution in roof  
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14.5.3 Results of Displacement and Stress  

Contours of vertical displacement and principal stress �3 in the colorful strata 
are shown in Fig. 14.15. As the mining advances, the roof and the bottom of 
the worked-out section move oppositely. The largest displacement initially 
occurs at the main key stratum (K1) before K1 firstly breaks at N47. Then it 
goes upward as the inferior key stratum (K2) breaks firstly at N69 and, while 
the two key strata (K1 and K2) break periodically with the advance in the 
mining, it goes forward. Meanwhile, the zone in a state of tensile stress in the 
roof initially enlarges and then  disappears. Instead, zero stress occurs and 
enlarges the roof with the breaking of the roof. The pressure on the two ends 
of the worked-out section will increase, as shown in Fig. 14.15 and Fig. 14.16.  
 

      
Disp. Contours at N8                         3�  Contours at N8 

    
Disp. Contours at N18                     3�  Contours at N18 

      
Disp. Contours at N47                   3�  Contours at N47 

   
Disp. Contours at N111                3�  Contours at N111 

Fig. 14.15 Contours of displacement and stress 
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Fig. 14.16 Pressure distribution on the two ends of the worked-out section when K1 is breaking 

 
In fact, with the strata in the roof breaking and caving, the opposite 

movement of roof and bottom will be prevented by the swelling rock and the 
zero stress zone will benefit from a supporting effect. 

 

 
Fig. 14.17 Pressure distribution on the two ends of the worked-out section when K2 is breaking
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15 

Reinforced Concrete Beam and Plate 

15.1 Introduction 

Concrete plasticity has been described by Chen (1982; 1998) and Nielsen (1984; 
1989). Several material models were discussed. Yu’s unified strength theory (Yu’s 
UST or UST) and the UEPP (Unified Elasto-Plastic Program) are successfully used 
for structural analysis, as has been described in Chapters 6, 7 and 8.  

The feature of the UEPP is that the unified strength theory was implemented 
into the finite element method code. UEPP includes two codes, i.e. UEPP-2D for 
plane stress, plane strain and axial-symmetric problem and UEPP-3D for 
three-dimensional problems. The material models are increasing and forming a 
series of systematic and effective constitutive relations for practical use. UEPP 
provides us with a very effective approach for studying the effect of failure 
criterion for various problems. 

The unified strength theory and unified elasto-plastic constitutive relations are 
also implemented in some commercial finite element codes and some special 
finite element codes in China, Japan, Singapore, Australia, Sweden etc. The 
multi-parameter unified yield criterion has been applied to analyze two groups of 
reinforced concrete slabs and a parabolic cylindrical shell, by Wang et al., in 
Singapore. The nonlinear finite-element analysis code for plates and shells written 
by Huang (1988) and his predecessors (Owen and Hilton, 1980) is modified to 
incorporate the unified material model for concrete. The unified strength theory 
with b=0.6 is used. Elasto-plastic analysis for reinforced concrete slabs and 
high-strength concrete slabs using the unified strength theory was also 
successfully studied by Wang, Teng and Fan (2001). Various applications of the 
UST were presented.

The unified strength theory (UST) with tension cutoff is also adopted as the 
failure criterion for the analysis of punching shear failure of beams and 
slab-column connections by Zhang et al. at Griffith University, Australia. The 
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results of applications of UST and UST with tension cutoff criterion and the 
comparisons with other yield criteria in the literature and experimental data are 
described in this chapter. These studies are focused on the implementation of the 
UST for the analysis of failure of reinforced concrete structures. Numerical studies 
are carried out in an attempt to verify the applicability of the UST. The numerical 
and published experimental results are compared for several RC (Reinforced 
Concrete) structures. 

The UST is also implemented into FLAC-2D, FLAC-3D, AutoDYNA, 
AutoDYNA2D, ABQUSE, etc. which has been described in the above chapters. 

15.2 Elasto-Plastic Analysis for Reinforced Concrete Beams 

At present, some failure criteria are already in use to analyze the punching shear 
strength of slab-column connections and its associated failure behaviour. 
Gonzalez-Vidosa et al. (1988) used a failure criterion based on the test data under 
axisymmetric stress conditions (i.e., two of the three principal stresses are equal) 
for the axisymmetrical punching shear analysis of reinforced concrete circular 
slabs. For a similar problem, Zhou and Jiang (1991) adopted Ottosen (1977) 
criterion in the punching shear failure analysis of reinforced concrete circular 
slabs under axisymmetrical loading. For a series of half-scale reinforced concrete 
flat plates with edge and comer column connections, Loo and Guan (1997) have 
analyzed their flexural failure and punching shear behaviour by means of the 
Ottosen criterion. The abovementioned failure criteria were developed on the basis 
of experimental results rather than theoretical derivations.  

In addition, such criteria involve a large number of parameters which are 
rather difficult to determine accurately. When dealing with such a complex stress 
problem, the appropriate constitutive model and failure criterion for concrete have 
to be utilized.  

15.2.1 Material Modelling 

For various materials, Yu (1991; 1992) has suggested a unified strength theory 
(UST) based on the assumption that the plastic flow is controlled by the 
combination of the two larger principal shear stresses and their corresponding 
normal stresses. The UST can be presented by two simple mathematical formulae 
and a set of piecewise linear yield surfaces. A class of convex criteria can be 
obtained by varying the coefficient b in the UST to suit different materials like 
metal, concrete, rock and soil, etc. 

Based on the orthogonal octahedron of the twin shear element model (Yu, 
l985), the unified strength theory specifies that material fails when a certain 
function of the two larger principal shear stresses and the corresponding normal 
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stresses on their surfaces reach the limiting value. The mathematical modelling of 
the UST is 

 
13 12 13 12 12 12 23 23( ) whenb b C� � � � � � �� � ��� � � � � � �    (15.1a) 

13 23 13 23 12 12 23 23( ) whenb b C� � � � � � �� � ��� � � � � � �    (15.1b) 
 

where 13 12 23, ,� � �  are the principal shear stresses defined as 13 1 3( ) / 2,� � �� �  

12 1 2 23 2 3( ) / 2, ( ) / 2� � � � � �� � � �  and 13 12 23, ,� � �  are the corresponding 
normal stresses defined as 13 1 3( ) / 2,� � �� � 12 1 2( ) / 2,� � �� � 23 2 3( ) / 2,� � �� �
which are in the stress planes of 1 3 1 2 2 3( , ), ( , ), ( , ),� � � � � � respectively; 1 2 3, ,� � �
are the principal stresses and 1 2 3� � �� � , C is a material strength parameter; b 
and � are the coefficients that reflect the influence of the intermediate principal 
shear stress 12 21(or )� � and the corresponding normal stresses on the strength of 
the material, respectively  

For concrete, Eqs. (15.1a) and (15.1b) can be rewritten in terms of three 
principal stresses as  
 

1 2 3( )
1 tb f

b
�� � �� � �
�

when 2 1 3
1 ( )
2

� � �� �           (15.2a) 

1 2 3
1 ( )

1 tb f
b
� � ��� � � �

�
, when 2 1 3

1 ( )
2

� � �� �          (15.2b) 

 
where ft is the tensile strength of concrete, � is the ratio of the tensile strength ft 

and the compressive strength fc of concrete; b=(�0(1+�)�ft)/(ft��0) in which �0 is 
the shear strength of concrete. 

Figure 15.1 depicts the limited loci of the UST which also indicates that the 
unified strength theory represents a group of hexagons on a deviatoric plane. A 
family of convex yield criteria related to a variety of materials is deduced 
when b varies from 0 to 1. For instance, UST becomes the Mohr-Coulomb 
criterion if b=0 and the twin-shear yield criterion (Yu, 1983) will be obtained 
when b=l.  

The eleven limit loci with parameter b=0, b=0.1, b=0.2, b=0.3, b=0.9 and 
b=1.0 cover the whole of the convex region, as shown in Fig. 15.1(a); the five 
typical limit loci with parameters b=0, b=0.1/4, b=1/2, b=3/4, and b=1.0 and 
three typical limit loci with parameters b=0, b=1/2 and b=1.0 are as shown in 
Fig. 15.1(b). 
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(a) Eleven limit loci cover the whole region     (b) Five and three typical limit loci 

Fig. 15.1 Limited loci of the unified strength theory  

15.2.2 Material Modeling of Concrete 

In the analysis, the failure of reinforced concrete is considered to be a result of 
either tension cracking in concrete or plastic yielding, which leads to the crushing 
of concrete (Loo and Guan, l997). Concrete is assumed to be linear elastic and its 
behaviour is characterised as isotropic until the specified fracture surface 
determined by the UST is reached. Numerical modelling of either cracking or 
crushing of concrete involves the modification of material stiffness and the release 
of the appropriate stresses partially or completely in the fractured elements  

The tensile type of fracture or cracking is governed by a maximum tensile 
stress criterion, referred to as the tension cut-off. Cracked concrete is treated as an 
orthotropic material using a smeared crack approach. After cracking has occurred, 
the tensile and shear stresses acting on the cracked plane are released and 
redistributed to the neighboring elements. Under subsequent loading, concrete 
loses its tensile strength normal to the crack direction, but retains the tensile 
strength in the directions parallel to the crack plane. 

The strain-hardening plasticity approach is used to model the concrete in 
compression. This approach involves loading surfaces, loading function, normality 
rule and unloading associated with the UST (Unified Strength Theory). After the 
compression type of fracture occurs, the concrete material is assumed to lose some, 
but not all, of its strength and rigidity. 
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15.2.3 Reinforcing Steel 

The reinforcing steel is assumed to be an elastic-plastic uniaxial material The 
reinforced bars at a given level in an element are modeled as a smeared steel layer 
of equivalent thickness. 

15.2.4 Structural Modeling 

The study of Zhang, Guan and Loo is focused on the implementation of the 
UST for the analysis of beams and punching shear failure of reinforced concrete 
slab-column connections, which will be described in the next section. Numerical 
studies are carried out in an attempt to verify the applicability of this criterion. The 
numerical and published experimental results are compared for two simply 
supposed beams and two slab-column connections (next section). 

In the study, the layered finite element method developed by Guan and Loo 
(1997a; 1997b) is adopted to model the structure. In the analysis, eight-node 
degenerate shell elements with bi-quadratic serendipity shape functions are 
adopted in conjunction with the layered approach. The model makes use of the 
transverse shear deformations associated with the Mindlin hypothesis. Five d.o.f  
are specified at each nodal point. They are the in-plane displacements, u and v, 
lateral bending displacement w and two independent bending rotations about the x 
and y axes, i. e.�y and�x respectively. 

In the layered approach, each element is subdivided into a chosen number of 
layers which are fully bonded together The concrete characteristics are specified 
individually for each layer over its thickness On the other hand, each layer of the 
reinforcing bars is represented by a smeared layer of equivalent thickness. In a 
nonlinear analysis, the material state at any Gauss point located at the mid-surface 
of a layer can be elastic, plastic or fractured, according to the loading history. To 
account for the mechanical change in the materials throughout the incremental 
loading process, cracking and nonlinear material response are traced layer by layer. 
By incorporating all the in-plane and out-of-plane stress components in the finite 
element formulation, inclined cracks can be simulated. 

15.2.5 Simply Supported Beams 

A series of 12 simply supported, reinforced concrete beams were specially 
designed and tested by Bresler and Scordelis (1963) to determine the crack loads 
and the ultimate strength characteristics. Each beam was subjected to a 
concentrated load applied at the mid-span, as illustrated in Fig. 15.2. The test 
beams were grouped into four series. The first group, the OA-series (without web 
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reinforcement), was analysed by Zhang et al. (2001; 2002) at Griffith University, 
Australia, with dimensional details shown in Fig. 15.2. Other relevant data can be 
found elsewhere (Bresler and Seordelis, 1963). 
 

 
Fig. 15.2 Simply supported beam under central concentrated load 

 
The parameters of the RC beam are: OA1: b=307.3 mm, h=556.3 mm, 

d=461.0 mm, L=3657.6 mm; OA2: b=304.8 mm, h=561.3 mm, d=466.1 mm, 
L=4572.0 mm. 

The experimental and numerical load-displacement curves are compared in 
Fig. 15.3. It may be seen that the use of UST is capable of simulating the overall 
shear failure behavior of the beams without web reinforcement.

Fig. 15.3  Load versus displacement of beams 
 

The experimental and numerical load-displacement curves are compared in 
Fig. 15.3. It may be seen that the use of UST (Unified Strength Theory) is capable 
of simulating the overall shear failure behavior of the beams without web 
reinforcement. 
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15.3 Punching Shear Failure Analysis of Flat Slabs by UST 

A new analysis of the reinforced concrete slab-column connection was also 
presented by Zhang, Guan and Loo at Griffith University, Australia, in 2001. The 
unified strength theory (UST) is adopted as the failure criterion for the analysis of 
the punching shear failure of slab-column connections. The results described here 
follow Zhang et al. (2001).  

Employing the layered finite element method, both material and geometrical 
nonlinearities are considered in the analysis. An investigation is carried out on 
reinforced concrete beams and slab-column connections. The numerical results 
indicate that the analysis based on UST is capable of simulating the overall failure 
behavior of slab-column connections. 

Punching shear failure is referred to as a local shear failure that could occur 
around concentrated loads or column heads. In the design of reinforced concrete flat 
plates, the regions around the columns always pose a critical analysis problem. This is 
because large bending moments and shear forces are concentrated at the slab-column 
connections. This in turn complicates the stress distribution at the connections. 

15.3.1 Slab-Column Connections 

To verify the appropriateness of the UST in predicting the punching shear strength 
analysis, two typical slab-interior column connections (Slabs A and B) tested by 
Regan (1986) are analyzed. The dimensions of both slabs were 2 m×2 m×l00 mm; 
they were simply supported on four sides with l.83m spans and with the comer 
free to lift up. For each slab, a load was applied through a 200 mm monolithically 
cast column stub which projected above and below the slab. These two slabs were 
designed mainly to investigate the effect of the arrangement of flexural 
reinforcement. Both slabs have the same reinforcement ratios. However, Slab B 
has a uniform arrangement of flexural reinforcement whereas the steel 
arrangement in Slab A does not. Figure 15.4 shows the reinforcement details of 
slab A. 
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Fig. 15.4 Reinforcement details of slab (Zhang et al., 2001) 

 

Fig. 15.5 Load versus displacement of slabs (Zhang et al., 2001) 
 

The load-displacement responses shown in Fig. 15.5 demonstrate that the 
numerical results correlate reasonably well with the experimental outcome except 
that the numerical analysis somewhat underestimated the punching shear strength 
of the slab-column connections. 

15.3.2 Conclusions 

The conclusions of Zhang, Guan and Loo are given as follows:  
“The adoption of the unified strength theory (UST) as the failure criterion for 

the layered finite element shear strength analysis is presented. The capabilities of
the UST criterion are checked in a numerical investigation which covers typical 
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reinforced concrete beams failing in shear, as well as slab-column connections 
failing in punching shear. Comparisons with published experimental data show 
that the analysis underestimated the failure loads of the slab-column connections”. 

“The UTS (Unified Strength Theory) is advantageous over other failure 
criteria because it encompasses all other established criteria as special cases. Or, 
such criteria are merely the linear approximations of the UST. Moreover, the 
parameters of the UST are easily obtained by experiments.”  

15.4 Elasto-Plastic Analysis for an Ordinary RC Beam  

Yu’s UST was implemented into commercial FEM software DIANA through the 
facility of a user-defined subroutine by Dr. Zhou at Nanyang Technological 
University in Singapore (Zhou, 2002). UST with parameter b=0.6 is the choice. 
The yield locus of the unified strength theory with b=0.6 is shown in 
Fig. 15.1(a).The descriptions of Zhou are as follows. 

DIANA is a commercial software, which is suitable for treating various kinds of 
problems in finite element analysis This program provides some kinds of elements 
for modeling concrete, steel and also the interfaces between different materials But 
there is no strong physical meaning in its material models for concrete, in particular 
the post-failure behavior. With a user-defined subroutine, any kind of material model 
is permitted to be added into DIANA. In the subroutine, the previous value of strain 
tensor r

ij� , the increment of strain tensor 1r
ij�
�H elasticity matrix D, the previous 

stress r
ij� , effective stress r

ij�� , equivalent plastic strain r
p� are the input parameters, 

which can be obtained from the major module. Users are allowed to defined their 
own constitutive relation and then feed back the current total r

ij� and the tangent 
stiffness [ ]epD  to the main module. The theoretical development outlined in the 
previous chapter was coded in two subroutines and incorporated into DIANA. In 
Zhou’s study, DIANA release 7.1 is used. 

This example shows the numerical simulation of an ordinary RC beam. The 
configurations and the loading on the beam are chosen to simulate the 
experimental tests by Kotsovos and Pavlovic (1995). The beam was subjected to 
two one- third-point loads and failed in a ductile, flexural manner. Figure 15.6 
shows the dimensions of the beam and the reinforcement details. 
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Fig. 15.6 Dimension and details of the RC beam  
 

The ratio of the shear span to the effective depth is equal to 0.33 and the 
percentage of the longitudinal tension steel is l.2%. Transverse reinforcement was 
provided within the shear span so as to prevent a shear failure. 

The material parameters used in the finite element model are shown in Table 
15.1. 

 
Table 15.1 Material parameters of the ordinary RC beam 

Parameters Values  

Ec 29100 MPa  

Es 200000 MPa  

fc  

ft 

fy 

v 

UST parameter b 

At 

Bt=0.6 

37.8 MPa 

3.38 MPa 

417 MPa 

0.2 

0.6 

1.0 

50000 

 

Figure 15.7 shows the mesh and loading condition of the beam. Three-node 
truss elements and twenty-node brick elements are used to model the reinforced 
bars and the concrete, respectively. The concrete cover to the tension steel is 
ignored. All the steel elements (truss elements) lie on edges of brick elements 
(concrete). A perfect bond is assumed throughout this analysis. 

With the plastic damage models proposed, the nonlinear response of the beam 
is calculated and the deflection at the mid-span of the beam is evaluated. 
Figure 15.8 shows the load-deflection curves obtained from Model I and Model II, 
which are the combination of UST and Kotsovos’s experimental data. 
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Fig. 15.7 Elements, supports and loading condition of the beam (Zhou, 2002) 
 

Fig. 15.8 Load-deflection curves of the RC beam (Zhou, 2002) 
 

It can be seen that Model II yields results in very good agreement with the 
experimental ones, while the results obtained from Model I are inferior to those of 
Model II. Regarding the ultimate capacity of the beam, the value obtained from 
the test is 13.6 kN and the analytical values are l4.5 kN for Model I and l3.7 kN 
for Model II, with an error of 6.6 % and 0.7%, respectively  

15.5 Elasto-Plastic Analysis of an RC Deep Beam 

This example shows the numerical simulation of an RC deep beam, which was 
reportedly tested in the School of Civil and Structural Engineering, Nanyang 
Technological University, Singapore (Poh and Susanto, 1996). The details of the 
experimental beam are shown in Fig. 15.9. 
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Fig. 15.9 Details of the deep beam (Zhou, 2002) 
 
There is no web reinforcement at all. Only longitudinal reinforcement T22 is 

provided, 2 numbers near the top surface and 4 numbers near the bottom surface, 
as can be seen from Fig. 15.7. The material parameters used in the finite element 
model are listed in Table 15.2.  
 

Table 15.2 Material parameters of the deep beam 

Parameters Values  
Ec 29240 MPa  
Es 200000 MPa  
fc  
ft 
fy 
v 

UST parameter b 
At 

Bt=0.6 

38.2 MPa 
3.40 MPa 

754.08 MPa 
0.2 
0.6 
1.0 

50000 

 

 
Figure 15.10 shows the finite element mesh and the loading condition. 

Two-node truss elements and eight-node brick elements are used to model the 
steel bars and concrete, respectively. With the two different models (Model I and 
Model II), the load-deflection curves are obtained and compared with the 
experimental one in Fig. 15.11.  

 

Fig. 15.10 Mesh of the deep beam (Zhou, 2002) 
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Fig. 15.11 Load-deflection curves of the deep beam (Zhou, 2002) 
 

From this figure, it can be seen clearly that both models give reasonably 
accurate predictions of the overall response of the beam. Again, the results 
obtained from Model II are better than those from Model l. In particular for the 
ultimate capacity of the beam, the experimental value is 375 kN and the analytical 
values are 399.58 kN for Model I and 384.72 kN for Model II, with an error of 
6.55% and 2.59%, respectively  

15.6 Elasto-Plastic Analysis of an RC Box Sectional Beam 

From the examples in the previous two sections, we can see that Model II can 
yield better prediction than Model I for the load-deflection responses. In this 
section, therefore, Model II is employed to analyze the response of an RC box 
sectional beam under eccentric loading conditions by Zhou. The box girders tested 
by Rasmussen and Baker (1999) are analyzed here The dimensions and the 
reinforcement layout are depicted in Fig. 15.12. 

Three different configurations of anti-symmetric loading are studied, as 
illustrated in Fig. 15.13. Only point loads were applied at the mid-span Load 
cases l and 2 invoke bending torsion and distortion while load case 3 invokes 
only torsion and distortion. It is worth noting that, in load case 2, the upward load 
is half of the downward load. In the test the specimens were simply supported but 
torsionally restrained at both ends. 
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(a) Section A-A 

(b) Elevation and reinforcements 

Fig. 15.12 Reinforcement layout (dimension in millimeters) 
 

 
(a) Case l           (b) Case 2               (c) Case 3 

Fig. 15.13 Loading cases in mid-span section (Zhou, 2002) 
 

Figure 15.14(a) shows the finite element mesh used in the calculation. 
Longitudinally it is divided into 60 segments with respect to the spacing of the 
stirrups. A two-node truss element and eight-node brick element are used to model 
the reinforced bars and the concrete, respectively. The concrete cover (5 mm) to 
the tension steel is ignored as in the previous analysis. All the steel elements 
(truss elements) lie on the edges of brick elements (concrete). A perfect bond is 
assumed in this analysis. The material parameters used in the calculation are 
shown in Table 15.3. 
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Table 15.3  Material parameters of the RC box sectional beam 
Parameters Values  

Ec 22000 MPa  
Es 200000 MPa  
fc  
ft 
fy 
v 

UST parameter b 
At 

Bt=0.6 

50.0 Mpa 
4.00 Mpa 
541 Mpa 

0.2 
0.6 
1.0 

50000 

 

 

      
   (a) Finite element mesh                   (b) Cross section 

Fig. 15.14 Finite element mesh used in the calculation 
 
Figure 15.15 compares the numerical and the experimental results in load case 

l. Figure 15.l5(a) plots the load versus the vertical deflection and Fig. 15.15(b) 
plots the load versus the diagonal distortion. From these figures, it can be seen 
clearly that the present model is able to yield good prediction of the overall 
response (vertical deflection and diagonal distortion) In particular for the ultimate 
capacity of the beam, the experimental value is about 83.0 kN and the analytical 
value is 82.37 kN with an error of only 0.8%. 

(a) Load versus vertical deflection   

(b) Load versus diagonal distortion 
Fig. 15.15 Comparison of numerical results and experimental results for load case 1  
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Similarly, Fig. 15.16 shows the analytical and experimental results of load 
versus vertical deflection and load versus diagonal distortion in load case 2. 

 
(a) Load versus vertical deflection  

 
(b) Load versus diagonal distortion 

Fig. 15.16 Comparison of numerical results and experimental results for load case 2 
 
Figure 15.17 shows those results in load case 3. From the figures, it can be 

found that the present model yields accurate predictions of the overall responses 
except for the near-failure regions, where deviation from experimental results is 
observed in all load cases, especially in the diagonal distortions. These 
discrepancies may arise from the differences in the restraint condition at the end 
supports because, in the test, torsion cannot be strictly restrained at both ends of 
the beam and end diaphragms were not cast. Nevertheless, the accuracy achieved 
with the present model can suffice in engineering applications.  

 

   
(a) Load versus total rotation                  (b) Load versus diagonal distortion 
Fig. 15.17 Comparison of numerical results and experimental results for load case 3 
 

On the other hand, the discrepancies may be due to the deviation of the 
material parameters, in particular the effect of Young’s modulus. A sensitivity 
analysis is performed. Without loss of generality, only load Case 2 is studied 
here Figure 15.18 shows the overall response obtained from different values of 
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Young’s modulus From the figures, it confirms that the variations in Young’s 
modulus can affect the results, to some extent. 

 
(a) Load versus vertical deflection 

 
(b) Load versus diagonal distortion 

Fig. 15.18 Sensitivity analysis of Young’s modulus for load case 2 (Zhou, 2002) 

15.7 Summary 

Unified strength theory (UST) is also successfully implemented in several 
commercial FEM codes and finite difference method codes. The unified strength 
theory (UST) with different parameter b is also adopted as the failure criterion for 
the analysis of punching shear failure of beams and slab-column connections by 
Zhang et al. at Griffith University, Australia. Elasto-plastic analysis for reinforced 
concrete slabs and high-strength concrete slabs using the unified strength theory 
has also been successfully studied by Zhou and Wang and Fan at Nangyang 
Technical University in Singapore. 

Through comparison of FE simulation results and the experimental data, 
conclusions can be drawn that the unified strength theory and its associated flow 
rule, and a new three-dimensional elasto-plastic-damage constitutive model for 
concrete, can be successfully implemented into non-linear FEM. The derived 
load-carrying capacities for all the beams and slabs are in good agreement with the 
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experimental data. Generally, the calculated deflections at different levels of load 
for all the slabs also reflect the real deformation procedure. The only exception is 
that the predicted deflections for the high-strength slabs are smaller than for the 
experimental counterparts, which implies that the high-strength slabs in the 
simulation are stiffer than the actual slabs. Damage distributions and the 
reinforcement stress distributions predict well the reinforcement anisotropy of the 
common concrete slabs and also the failure patterns for the high-strength concrete 
slabs. 

Serial results can be obtained by using the unified strength theory (UST), 
which can be adopted for more materials. The material models are increasing and 
forming a series of systematic and effective constitutive relations for practical use. 
UST and its implementation in computer codes provide us with a very effective 
base and approach for studying the effect of failure criterion for various problems. 
It can be used for more materials and more structures. The strength potential of 
materials may be utilized by using UST with b>0. 
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16  

Stability Analysis of Underground Caverns 
Based on the Unified Strength Theory 

16.1 Introduction 

In recent years, there has been an increasing interest internationally in the 
construction of large-scale underground powerhouses. The stability analysis of 
underground caverns in a hydropower station is often related to the safe operation of 
the whole station and provides enormous benefits. Due to their large scale, 
complicated space configurations and reactions between caverns, stability analysis 
of underground powerhouses is a very difficult and challenging task. Hence, the 
accurate description of the mechanical behavior of the rock mass and the selection of 
the rock properties is a very important research topic in underground construction.  

The stability of large caverns has been investigated widely. To explore some 
aspects of the complex geometrical shape, the stress boundary conditions obtained 
from in-situ stress measurement and constitutive models for the rock mass, large 
caverns have been studied by Professor Qiao and Li Y. Based on the engineering 
background of Huanren pumped-storage powerhouse, the unified strength theory 
as a failure criterion was used in their study to analyze the stability of the main 
powerhouse and transformer cave and to carry out an investigation of underground 
excavation and support. The effect of the intermediate principal stress on rock 
failure and the support design will be discussed in this chapter. 

 
 
 
 

������ 
This chapter is contributed by Professors Li Y and Qiao L, Beijing Science and Technical 
University, Beijing, China 
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16.2 Huanren Pumped-Storage Powerhouse and Geology 

Huanren underground pumped-storage powerhouse is located in Tongtiangou, 
which is 4 km away from Huanren County, Liaoning Province, China. The project 
plans to utilize Huanren reservoir as the lower storage reservoir and to construct a 
dam in Tongtiangou gulley as the upper reservoir. A diversion tunnel is to connect 
with the underground powerhouse. The pivotal engineering construction mainly 
consists of the main dam, auxiliary dam of the upper reservoir, diversion tunnel 
and underground powerhouse. The maximum height of the main dam is 106 m and 
the length of the dam top is 632 m. The height of the auxiliary dam is 15 m and 
the length is 403.33 m. The underground powerhouse is located in the middle of 
the diversion tunnel and is 22.3 m wide, 50 m high and 136.2 m long. 

The engineering region is covered with mountains and gullies. The mountain 
heights are all about 500~700 m and a few of them are over 1000 m high. The volcanic 
rocks formed in the Jurassic period of the Mesozoic era are widely distributed in the 
station area and are shaped into cuestas, mesas and all kinds of valleys. 

16.2.1 The Powerhouse Region 

The powerhouse zone is 136 m long, 22 m wide, 50 m high and 230 m deep. It is 
located in the interbeds of andesite-tuff and tuff-agglomerate with some 
tuff-agglomerate rocks near the top. And the direction angle of the axes is NE 15°. 
The RQD value of the zone is 95%, the acoustic velocity for andesite-tuff is 5.06 
km/s, the acoustic velocity for the interbeds is 3.41~5.05 km/s and the associated 
integrity coefficients are 0.95 and 0.43~0.99.  

The rock masses are almost intact, but the lithology of the 16th bed is 
complicated. In this bed, there are about ten strata of andesite-tuff which are 0.5~5 
m thick and show poor properties. The strata will crack and fail when losing water, 
and have bad stability as well. There is a band standing at a borehole depth of 263 
m (elevation of 267 m). The band with bad geological conditions is 15 cm thick, 
made up of green clay and rock fragments. The angle, measured in the axis of 
powerhouse tunnel from the band’s strike direction, is only 15°~25°, and inclines 
toward the tunnel. It is very unfavorable for the stabilization of downstream 
sidewalls. The 15th layer of the tuff rock which is 3 m away from the tunnel’s roof 
causes harm to the stability. In addition, a set of joints which strike NNE is 
dangerous for sidewall stability too.  
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16.2.2 In Situ Stress Measurement in Huanren Pumped Storage 
Powerhouse 

The in-situ stress measurement involved in this project includes seven 
measurement sites. The figures obtained during the tests showed the same results. 

According to the data obtained by the strain collector, stresses were calculated. 
An average was introduced when measurements were taken more than two times 
at one site. The gauge has 12 separate strain gauges, in rosettes of three, and there 
was some redundancy in the measurements. Thus statistical analysis of the least 
square method has been made.  

16.3 Comparison of Failure Criteria for Geomaterials 

Failure criteria can be used to understand the materials’ response to loads, to 
determine the failure conditions in different stress states. The selection of failure 
criteria has a great impact on calculating the results of geotechnical engineering. 
Because of the differences between geomaterials and general materials in 
constitutive behavior, it is necessary to choose a suitable yield or failure criterion 
in engineering applications for purposes of economy and safety.  

Various strength criteria have been developed in the past to describe the 
behavior of rock masses. Of these, the linear Mohr-Coulomb criterion and the 
nonlinear Hoek-Brown strength criterion are two of the most widely used strength 
criteria in geotechnical engineering. The Mohr-Coulomb failure criterion can be 
expressed as 

 
tanf c� � ?� � <                            (16.1) 

 
where �f is the shear strength, c is the cohesion, ?  is the friction angle and � is 
the normal stress at the shear plane. 

Currently, the Mohr-Coulomb strength theory is widely used. It explains that 
the tensile strength of rocks is much smaller than their shear strength. In addition, 
a specimen will yield under triaxial constant tension loading conditions and will 
not fail under triaxial constant compression loading conditions. The 
Mohr-Coulomb strength theory, however, only considers the effects of two 
principal stresses �1 and �3, but ignores the influence of �2. Mogi (1967; 1979) 
and Xu et al. (1985; 1986) and Li and Xu (1990) have proved the effects of �2 by 
using true tri-axial tests. Hence, the Mohr-Coulomb strength theory is an imperfect 
strength criterion.  

The Drucker-Prager criterion is an extension of the Huber von Mises criterion, 
and is a modification of the Huber-von Mises yield criterion by adding a 
hydrostatic stress term. Zhu-Jiang Shen calls it a three-shear yield criterion. The 
expression is 
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1 2 2 1( , )F F I J J I k�� � � �                  (16.2) 
or 

( , ) 3 3 3F F p q q p k�� � � �                 (16.3) 
 

where � and k are material parameters which can be deduced from the cohesion 
and the internal angle of friction. 

The intermediate principal stress and the hydrostatic stress are taken into 
account in the Drucker-Prager criterion. The criterion has been widely used and 
popularized after it was proposed. However, under some conditions, the criterion 
contradicts the experimental results. Hence, the criterion has seldom been used in 
recent years.  

The Hoek-Brown failure criterion is an empirical criterion which is derived 
from experimental data obtained from some triaxial compression tests performed 
on rocks. Since its first introduction, the criterion has been modified several times. 
For a jointed rock, the Hoek-Brown failure criterion has been found more suitable 
than the Mohr-Coulomb criterion. The Hoek-Brown strength parameters can be 
estimated based on the GSI system, which provides the guidance for the peak 
strength estimation of rock masses. The latest version of the generalized 
Hoek-Brown criterion for jointed rock masses is defined by  

 
3

1 3 ( )a
ci b

ci

m s
�
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�

� � �                       (16.4) 

 
where �3 and �ci are the minimum principal stress and the uniaxial compressive 
strength (UCS) of the intact rock, respectively, bm , s  and a  are rock mass 
strength parameters which depend upon the characteristics of the rock mass. The 
parameters can be determined by using the GSI index and mi value.  

The effect of intermediate principal stress, however, is not taken into account 
both in the Mohr-Coulomb and the Hoek-Brown strength criteria. Maohong Yu 
demonstrates that the maximum principal shear stress �13 is always equal to the 
sum of the other two principal shear stresses �12 and �23, i.e., �13=�12+�23, which 
means that there are only two independent components in three principal shear 
stresses. So failure criteria consider the effects of the two relatively larger 
principal shear stresses. According to the change in the intermediate principal 
stress, Yu proposed mathematical modeling in the form of twin formulas. Based 
on the twin-shear criterion (Yu, 1961a; 1985), a parameter related to the effect of 
intermediate principal stress is considered. The unified strength theory assumes 
that the materials start to yield when the sum of the two larger principal shear 
stresses and the corresponding normal stress function reaches a constant value. 
The mathematical modeling can be expressed as follows: 

 
13 13 12 12( )F b K� �� � ��� � � � �  12 12 23 23( )� �� � ��� � �     (16.5) 

13 13 23 23( )F' b K� �� � ��� � � � �  12 12 23 23( )� �� � ��� � �     (16.6) 



16.4  Determination of Rock Mass Strength Parameters 373 

where b is a parameter reflecting the influence of the intermediate principal shear 
stress on the yield of materials. In terms of the convex failure criteria, the value of 
b ranges from 0 to 1. � is the coefficient representing the effect of the normal 
stress on the yield and K is a strength parameter of the material. � and K can be 
expressed as 
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�                 (16.7) 

 
The shear stresses 13 12 23, ,� � �  and normal stresses 13 12 23, ,� � �  can be 

written by  
 

13 1 3
1 ( ),
2

� � �� � 12 1 2
1 ( ),
2

� � �� � 23 2 3
1 ( )
2

� � �� �       (16.8) 

 

13 1 3
1 ( ),
2

� � �� � 23 2 3
1 ( ),
2

� � �� � 12 1 2
1 ( )
2

� � �� �      (16.9) 

 
The unified strength theory can be used in yield analysis for a wide range of 

materials, and each proposed strength criterion is just a special type of the unified 
strength criterion. The unified strength theory consists of twin functions and 
corresponding limited conditions. The suitable formula should be chosen 
according to the stress state when the criterion is used. The same strength of 
materials can be obtained when the two limited conditions are both satisfied 
simultaneously.  

16.4 Determination of Rock Mass Strength Parameters 

The effect of intermediate principal stress is not considered in the Mohr-Coulomb 
and the Hoek-Brown strength criteria, which means that the two strength criteria 
cannot reasonably reflect the characteristics of variability in rock strength when 
the intermediate principal stress changes. The unified strength theory incorporates 
the intermediate principal stress and can choose different parameters according to 
the data resulting from true triaxial tests on rocks or rock masses. The unified 
strength theory cannot solve the problem of the yield angle, but this will not affect 
the deduction of the flow rule used for continuum modeling. The unified yield 
criterion does not contradict the other strength criteria, while the other criteria are 
the special cases of the unified strength criterion.   

In this study, the unified strength theory is chosen as the failure criterion for 
the stability analysis of Huanren pumped-storage powerhouse, and the 
Hoek-Brown criterion is chosen for the determination of parameters from the test 
data.  
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For good-quality andesite, Hoek-Brown strength parameters mb, s and � are 
estimated to be 1.7, 0.004 and 0.5, respectively, and the uniaxial compressive 
strength of the intact rock is 70 MPa. Considering the parameters, the criterion can 
be expressed as 

 
2

1 3 31.7 70 0.004 70 0F � � �� � � > � > �             (16.10) 
 
It is deduced from Eq. (16.10) that 1�  is equal to 68.9 MPa when the 

compressive strength of the rock mass is 4.43 MPa and 3� =20 MPa. After 
substituting the parameters mentioned above in Eq. (16.5), we obtain 

0.53� � , 1.034
1

K
b
�

�
. Thus 0.31� �  can be calculated from Eq. (16.7) 

and 1.36t c� � �� < � MPa from Eq. (16.7). The parameter b will be determined by 
the experimental results of true tri-axial tests.  

16.5 Constitutive Formulation of Unified Strength Theory Used 
for Fast Lagrangian Analysis 

Incremental formulations similar to those of the Mohr-Coulomb model in Flac-3D 
are used, i.e., only the elastic part of the strain increment will contribute to the 
stress increment and the elastic behavior is linear. The equations have the forms 
 

1 1 1 2 2 3( )e e e� � � � � �H � H � H � H                       (16.11) 

2 1 2 2 1 3( )e e e� � � � � �H � H � H � H                       (16.12) 

3 1 3 2 1 2( )e e e� � � � � �H � H � H � H                       (16.13) 
 
where 1�  and 2�  are material constants defined by the shear modulus G, and 
bulk modulus.  

1
4
3

K G� � �                             (16.14) 

2
2
3

K G� � �                             (16.15) 

The unified form from Eq. (16.11) to Eq. (16.13) can be expressed as  
 

( ),e
i i nS� �H � H   (i=1, n)                   (16.16) 

 
The failure criterion can be written as 
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! " 0nf � �                               (16.17) 
 

where f is the yield function based on the unified strength theory. The strain 
increment can be decomposed into elastic and plastic components from the 
following equation. 

 
e p

i i i� � �H � H �                           (16.18) 
 

The new stress-vector components must comply with the yield function, which 
can be expressed as 

 
( ) 0n nf � �� H �                          (16.19) 

 
A non-associated shear plastic flow rule and an associated tensile plastic flow 

rule are defined in the Flac-3D model. But the tensile failure is a special case of 
shear failure according to the unified strength theory, so only a non-associated 
shear plastic flow rule is used. The form is given by 

 
p

i
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g� 0
�
-

H �
-

                              (16.20) 

 
From the further expression of the plastic strain increment in the flow rule, the 

stress increment can be written as 
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                  (16.21) 

 
where ! "i nS �H  is linear. The strength criterion is a linear function of principal 
stresses, so Eq.(16.19) is expressed as 

 
! " ! "* 0n nf f� �� H �                        (16.22) 

 
where *f  represents the function f  minus its constant term. For a stress point 

n�  on the yield surface, there is ! "nf � =0. After considering Eq. (16.21) for the 
stress increment in Eq. (16.22), there is 
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The new total stress increment N

i�  and elastic guesses I
i�  can be expressed 
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as follows: 
 

N
i i i� � �� � H                              (16.24) 
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Using the same method as above, Eq. (16.25) can be written as 
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It can be derived from Eqs. (16.23) and (16.26) that 
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From Eqs. (16.21), (16.24), (16.25) and (16.27), we can obtain  
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Unlike metal materials, geomaterials comply with non-associated flow rules. 

But, so far, the non-associated flow rules have not been clearly proposed. Taking 
the definition of unified strength theory and the general principles of Flac-3D into 
consideration, a special non-associated flow rule is discussed in this case.  

First, if the associated flow rule is applied, just as for the arguments used in 
traditional plastic mechanics, the rule can be expressed as follows: 
(i) When 12 12 23 23� �� � �� � �   (Take tensile stress as positive)   
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(ii) When 12 12 23 23� �� � �� � �   (Take tensile stress as positive) 
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Then we can incorporate the flow rule into the modeling of Flac-3D. We find that 
the rock dilation is too large zones in the failure model. So a non-associated flow 
rule should be used here. 

The flow rules used in Flac-3D derive from the associated flow rules by 
modifying some parameters, e.g., the forms of the Mohr-Coulomb strength theory 
and Drucker-Prager criterion. And, traditionally, the dilation angle is used for the 
evaluation of the plastic expansion of rock. So the equations are modified 
corresponding to the non-associated law as follows: 
(i) When 12 12 23 23� �� � �� � �   (Take tensile stress as positive)   
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(ii) When 12 12 23 23� �� � �� � �   (Take tensile stress as positive) 
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where 1 sin( )
1 sin( )

' I�
I

�
�

�
, and I  is the dilation angle of the rock. 

Taking the compressive stress as positive, and changing the coefficient of the 
first principal stress to a constant, we obtain the following: 

(i) When 12 12 23 23� �� � �� � �  (Take compressive stress as positive) 
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(ii) When 12 12 23 23� �� � �� � �  (Take compressive stress as positive) 
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when b=0, the Mohr-Coulomb strength theory can be deduced from the unified 
strength theory and the expressions from Eq. (16.41) to Eq. (16.46) have the same 
forms of the Mohr-Coulomb flow rule used in Flac-3D. According to the 
equations from Eq. (16.41) to Eq. (16.46), we have
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The advantages of the flow rule used here are as follows: 
(a) In common with the Mohr-Coulomb theory, a dilation angle is incorporated 

into functions to account for rock dilation, which is caused by the creation and 
propagation of cracks during rock deformation. The value of the dilation angle can 
be zero when the dilation needs not to be considered. 

(b) Taking the effect of the intermediate principal stress into account, 
relationships have been perfectly established between the unified strength theory 
and the Flac-3D numerical modeling. (e.g. if some parameters are used in the 
unified strength theory for the deduction of the Mohr-Coulomb strength criterion, 
by choosing the same parameters in the unified strength model defined in Flac-3D, 
we will get the same equations for the flow rule as Mohr-Coulomb’s criterion used 
in Flac-3D.)  
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When strain-hardening or strain-softening does not take place, the 
relationships between stresses and the criterion can be expressed as 

 

! " 0, d d 0i i
i

FF F� �
�
-

� � *
-

     (Unloading conditions); 

! " 0, d d 0i i
i

FF F� �
�
-

� � �
-

  
   (Loading conditions); 

! " 0iF � *                      (Elastic state). 

16.6 Development of Unified Strength Theory Model in Flac-3D 

The methodology of writing new constitutive models in Flac-3D is called UDM 
(User-defined Model). The model must be developed in the C++ language and 
complied as a DLL file In order to create a new constitutive model, the following 
header files are necessary:  

(a) AXES.H — specifies a particular axes system; 
(b) CONMODEL.H — utility structure used to communicate with constitutive 

model; 
(c) CONTABLE.H — defines the TABLE interface for general constitutive 

models; 
(d) STENSOR.H— symmetric tensor storage. 
Users only need to program the personal header file and classes.  
(a) USERMODEL. H— user-defined head file; 
(b) USERMODEL. CPP— listing of member functions. 
After creating a workspace in VC++, we can create a user-defined DLL 

module, which contains the six files mentioned above. Before the UDM model is 
developed in Flac-3D, USERMODEL.DLL must be registered and loaded. 

In this case, the model’s name is “Double-Shear”(Twin-Shear), and the 
essentially parameters are bulk modulus (bulk), shear modulus (shear), dilation 
angle (dilation), the parameter b (bxi), the parameter � (afa) and uniaxial tensile 
strength (tension). In addition, the contours of the elastic modulus and Poisson’s 
ratio can be plotted out as zones. Hence, the user-defined model can be associated 
and implemented in the same ways as other basic constitutive models provided in 
Flac-3D. 

16.7 Test of User-Defined Unified Strength Theory Constitutive 
Model in Flac-3D 

As shown in Fig. 16.1, the model is 50 mm long, 50 mm wide and 100 mm 
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high. First, fixing z-velocities of the top and bottom surfaces and applying 100 
MPa confining pressure, we obtain a balance of the elastic model. The property 
parameters are listed in Table 16.1. Thereafter, the Mohr-Coulomb model is 
associated with the zones and the velocity is applied on the top surface in 
thenegative direction of the z-axis instead to the foregoing constraint of the surface. 
A history command is adopted to monitor the variations in the displacement and 
stresses. The stress-strain curves for different parameters are shown in Fig. 16.2 
for the rock compression process.  

 

 
Fig. 16.1 Model zones and boundary conditions. 

 
Table 16.1 Mohr-Coulomb strength parameters in the first simulation test 

Input parameters Values 
�2(�x) 
�3(�y) 

c 
� 

Bulk 
Shear 

100 (Mpa) 
100 (MPa) 

1 (MPa) 
10 (º) 

200 (MPa) 
200 (MPa) 

 
Table 16.2 Mohr-Coulomb strength parameters in the second simulation test 

Input parameters Values 
�2(�x) 
�3(�y) 

C 
� 

Bulk 
Shear 

110 (Mpa) 
100 (MPa) 

1 (MPa) 
10 (º) 

200 (MPa) 
200 (MPa) 

 

Fixed conditions  

Confining stresses 

Model 
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Fig. 16.2 Stress-strain curves of the two Mohr-Coulomb models with different parameters  

 
Under the same stresses and boundary conditions, the unified strength model is 

used for comparison. The input parameters are shown in Table 16.3. A series of b 
values with b=0, b=0.5, b=0.8, and b=1 are inputted into the model in sequence 
and the final results can be found, as shown in Fig. 16.3. 

 
 

 
Fig. 16.3 Stress-strain curves of unified strength model with different values of b 
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Table 16.3 Parameters of the model associated with the unified strength theory 

Input parameters Values 
�2(�x) 
�3(�y) 

Tensile stress 
� 

Bulk 
Shear 

110 (MPa) 
100 (MPa) 
1.68 (MPa) 

0.71 (º) 
200 (MPa) 
200 (MPa) 

 
It can be seen that the result is the same with the curve of the Mohr-Coulomb 

model, and the strength is about 144 MPa when b=0. Obviously, the intermediate 
principal stress makes the strength increase to 150 MPa when b=1. In addition, the 
strength is 149 MPa when b=0.8, and the strength is 147 MPa when b=0.5. Both 
the theoretical and test values are listed in Table 16.4. 

The comparisons between numerical modeling results based on the unified 
strength model and theoretically analytical results based on the unified strength 
theory are presented in Table 16.4. It can be found from Table 16.4 that the 
user-defined model, i.e., unified strength model for analysis in Flac-3D, reflects 
very well the characteristics of the unified strength theory. 

 
 

Table 16.4 Numerical simulation and theoretically analytical results based on UST 

Principal stresses �2(�x) (MPa) �3(�y)
 
(MPa) 1( )z� �  (MPa) 

Theoretically analytical result 110 100 143.6 
b=0 

Numerical modeling result 110 100 143.2 
Theoretically analytical result 110 100 150.0 

b=1 
Numerical modeling result 110 100 150.3 

Theoretically analytical result 110 100 149.0 
b=0.8 

Numerical modeling result 110 100 149.4 
Theoretical analytical result 110 100 147.2 

b=0.5 
Numerical modeling result 110 100 147.9 

 

16.8 Stability Analysis of Underground Powerhouse  

16.8.1 Generation of Numerical Model and Selection of Parameters 

The size of the numerical model is 240 m> 100 m> 260 m. The main power house 
is 22.3 m wide and 51.3 m high. The main transformer cave is 17.9 m wide and 
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32.2 m high. The outer boundaries have been modeled at a distance of around six 
tunnel widths from the tunnel in both directions to minimize the boundary effect 
on the analytical results. There are 44760 zones and 28017 grids in the model, 
which is shown in Fig. 16.4. 

The in-situ stresses are applied on the boundary surfaces. The properties for 
the intact rock based on the experimental data are applied to the rock mass using 
the Hoek-Brown criterion. The properties of some rocks and the stresses are listed 
in Table 16.5. 

Table 16.5 Property of some models 

 

 
Fig. 16.4 Modeling for numerical analysis 

16.8.2 Simulations for Different Excavation Schemes 

The excavation of a cavern is always carried out step by step. In order to allow a 
reasonable step height and excavation procedures, simulations with different 
construction schemes are carried out. The specifications of hydraulic projects 
show that the step height should be about 8 m, so heights of 9 m and 12 m are 

Rock type 
Unit 

weight
(kN/m3)

Bulk 
modulus

(GPa) 

Shear 
modulus

(GPa) 
b �

Dilation 
angle

(º) 

Rock 
classes
CSIR

Tensile 
strength 
(MPa) 

Tuff- 
agglomerate 27.6 21.74 17.69 0.15 0.23 0 Good 

rock 1.5 

Andesite-tuff 27.0 22.31 17.44 0.13 0.21 0 Good 
rock 0.9 

Interbeds of 
andesite-tuff and 
tuff-agglomerate 

27.3 21.68 17.64 0.21 0.31 0 Good 
rock 1.36 
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chosen in numerical modeling for the examples. There are two excavation 
sequences for each example with different step heights. Figures. 16.5 and 16.6 
illustrate the schemes. 
 

 
Fig. 16.6  Scheme with the step height is 12 m 

 

 
Fig. 16.5  Scheme with the step height is 9 m    

 
The excavations cause plastic failure in certain regions. In the unified strength 

model, the sign shear-n shows that the zone is now in a state of shear failure, and 
the sign shear-p shows that the zone was previously in a state of shear failure and 
is elastic now. Selected results are shown in Figs. 16.7~16.11. Some researchers 
prioritise against displacement and a failure region by using the analytic hierarchy 
process method. Considering that the failure around the power house is mainly 
affected by the scale of the excavation and the excavation sequence makes a minor 
contribution, we establish the criteria for analyzing the stability of the power 
house based on the principles of the New Austrian Tunneling Method. 

 
Table 16.6 Scheme of excavation procedure with 9 m height step 

First sequence with step height of 9 m Second sequence with step height of 9 m 
Excavation 
sequence 
number 

Main 
power 
house

Main 
transformer

Omnibus 
bar cave

Excavation 
sequence 
number 

Main 
power 
house

Main 
transformer

Omnibus 
bar cave 

1 A1 B1  1 A1   
2 A2 B2  2 A2   
3 A3 B3  3 A3 B1  
4 A4 B4 C 4 A4 B2 C 
5 A5   5 A5 B3  
6 A6   6 A6 B4  
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Table 16.7 Scheme of excavation procedure with 12 m height step 

First sequence with step height of 12 m Second sequence with step height of 12 m 
Excavation 
sequence 
number 

Main 
power 
house

Main 
transformer

Omnibus 
bar cave

Excavation 
sequence 
number 

Main 
power 
house

Main 
transformer

Omnibus 
bar cave 

1 A1 B1  1 A1   
2 A2 B2  2 A2 B1  
3 A3 B3 C 3 A3 B2 C 
4 A4   4 A4 B3  

 
 

 
Fig. 16.7  Distributions of failure zones at last step in the first excavation sequence of the scheme 
 

Distributions of failure zones in the first excavation sequence of the scheme 
are shown in Fig. 16.7 and Fig. 16.8. The step height is 9 m. Figure 16.7 shows the 
distributions of failure zones at the last step in the first excavation sequence of the 
scheme. Other failure zones at different steps are shown in Fig. 16.8. Distributions 
of failure zones in the second excavation sequence of the scheme are shown in 
Fig. 16.9. The step height is also 9 m. 
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     (a) First step                        (b) Second step 

   
    (c) Third step                     (d) Fourth step 

   
  (f) Fifth step                      (g) Sixth step 

Fig. 16.8 Distributions of failure zones in the first excavation sequence of the scheme  
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(a) First step                            (b) Second step 

   
  (c) Third step                            (d) Fourth step 

   
(e) Fifth step                         (f) Sixth step 

Fig. 16.9 Distributions of failure zones in the second excavation sequence of the scheme with 
the step height is 9 m 
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Distributions of failure zones in the first excavation sequence of the scheme 
are shown in Fig.16. 10. The step height is 12 m. Distributions of failure zones in 
the second excavation sequence of the scheme are shown in Fig. 16.11. The step 
height is also 12 m 
 

   
(a) First step                        (b) Second step 

 

   
(c) Third step                            (d) Fourth step 

Fig. 16.10 Distributions of failure zones in the first excavation sequence of the scheme with the 
step height 12 m. 
 

The New Austrian Tunneling Method (NATM) is very important for the design 
of tunnels. The method complies with the principles of measuring frequently, 
supporting in time, and closing the steel arch early. To choose a reasonable 
excavation procedure, which will have the minimum impact on the rock mass and 
where the reinforcement of the tunnel can be supported relatively earlier, a 
comparison of four excavation procedures is carried out. Each of the four schemes 
reveals the following features:  
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(a) First step                         (b) Second step 

 

   
                (c) Third step                       (d) Fourth step 

Fig. 16.11 Distributions of failure zones in the second excavation sequence of the scheme with 
the step height 12 m 
 

(a) The failure region on the top of the tunnel is small, but the larger the 
excavation scale, the larger is the extent of the failure region.  

(b) Plastic regions can be very close to each other because of the excavation of 
the main power house tunnel and the main transformer cave (i.e., cavern A and 
cavern B in Figs. 16.5 and 16.6) 

(c) Omnibus bar caves (i.e., cave C in Figs. 16.5 and 16.6) excavated in the 
rock masses within the plastic zones are very unstable. 

(d) Excavation of omnibus bar caves causes a secondary disturbance to the 
failure regions of the walls between the main power house tunnel and the main 
transformer cave. 

To minimize the impact of the excavation of omnibus bar caves (i.e., cave C in 
Figs. 16.5 and 16.6) on the failed rock mass, to finish the excavation and the 
support of omnibus bar caves earlier, and to decrease the extent of the 
plastic region caused by the excavation of the first step, the first excavation 
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sequence with a 9 m height step is selected as the excavation scheme, which is 
subsequently used for the following supporting analysis. 

16.9 Excavation and Support Modeling 

The first excavation sequence with a 9 m height step is chosen for the following 
supporting analysis. First, supports for the initial design are given. 

Supports for the main power tunnel and the main transformer caverns: 
Length of the fully grouted rebar bolt installed in top rock 5 m 
Length of the fully grouted rebar bolt installed in wall 4.5 m 
Rebar diameter 32 mm 
Rebar bolting pattern 1.5 m×1.5 m 
Length of the cable installed in wal 20 m 
Cable bolting pattern 4.5 m×6 m 
Tensile strength of cable 2×105 kg 

Supports of omnibus bar caves: 
Length of the fully grouted rebar bolt 4 m 
Rebar bolt diameter 28 mm 
Rebar bolting pattern 3 m×3 m 
Shotcrete type Chinese C20 
Liner thickness  15 cm 

The supports are illustrated in Fig. 16.12. 
 
 

 

 
Fig. 16.12 Supports of the caverns 
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After a balance is reached, selected results are shown in Figs. 16.11~6.14. 
Distribution of the failure regions on a vertical plane is shown in Fig. 16.13. The 
contour of vertical displacements along the z-axis is shown in Fig. 16.14 and the 
contour of the horizontal displacement is plotted in Fig. 16.15.  
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Fig. 16.13  Plastic region distribution with the support in initial design 
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Fig. 16.14  Contour of virtical displacement with the support in initial design. 

 
It is obvious that the tunnel is stable, the plastic zones can only be found in the 

wall and the extent is small. The maximum subsidence of the tunnel roof is 4 mm 
and the maximum vertical displacement of the main transformer cavern is located 
on the side and close to the main power-house. The maximum convergence in a 
horizontal direction is about 28 mm. 

Considering that the support stiffness is high in this case, we adjusted the 
parameters of the support as follows: 

(a) Took off the cables anchored at the top of the main power house in the 
initial design. 

(b) Transferred the pattern of rebar bolting to 2 m×2 m. 
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The modeling results are shown in Figs. 16.16~16.18. 
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Fig. 16.15  Contour of horizontal displacement in the second design 

 
When the stiffness of the support is degraded, the plastic region is beyond the 

range covered by the rebar bolts. The maximum subsidence of the tunnel roof is 
7.8 mm and the maximum convergence is 55 mm. It can be seen that the support 
stiffness of the side walls of the main power-house tunnel in the second design is 
not enough, so a rebar bolt pattern of 1.5 m×1.5 m should be selected for the 
support of the main power-house tunnel side walls. 

During the construction, the measurements based on the principles of 
reasonable engineering should be applied and the pattern should be tailored, on 
site, to the idiosyncrasy of the project. From the analysis above, the values of 
parameter b are both 0.33. 
 

 
Fig. 16.16  Plastic region distribution with the support 
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Fig. 16.17  Contour of virtical displacement with the support in second design 
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Fig. 16.18  Contour of horizontal displacement in the support second design. 

16.10 Comparison of the Stabilities in these Models with 
Different b Values  

The selection of different values of parameter b in the unified strength theory can 
provide a series of failure criteria, such as the single-shear (Mohr-Coulomb) yield 
criterion (when b=0) and twin-shear yield criterion (when b=1). Because of the 
variety of strength envelopes of unified strength theory on the  ��plane, different 
strength values can be obtained in the same stress state. An engineer should make 
a reasonable design to find which one is appropriate for the engineering objective, 
and which strength criterion of rock masses is the most contributing factor 
affecting our designs. None of the failure criteria can universally be utilized in 
overall rock masses, so we can compare the results obtained from different 
constitutive models with the same geometry, the same properties but with different 
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values of parameter b. The support in the second design is installed, and the results 
are illustrated in Figs. 16.19, 16.20 and 16.21, which show the variety of plastic 
region, vertical displacement and horizontal displacement of the models with 
different values of parameter b in the second support design 
 

 
(a) UST with b=0.3 

 
(b) UST with b=0.5 

 
(c) UST with b=0.8 

Fig. 16.19 Variety of plastic region of the models with different values of parameter b  
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(a) UST with b=0.3 

�

 
(b) UST with b=0.5 

 

 
(c) UST with b=0.8 

 
Fig. 16.20  Variety of vertical displacement of models with different parameter b  
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(a) UST with b=0.3 

 
(b) UST with b=0.5 

 

 
(c) UST with b=0.8 

Fig. 16.21  Variety of horizontal displacement of models with different parameter b 
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It can be seen that the effect of the intermediate principal stress is incorporated 
in numerical modeling by the parameter b in unified strength theory, which affects 
the distribution of failure zones and the contour of displacements. The spread of 
the plastic region of the main transformer cavern and the main power-house 
becomes smaller when the value of parameter b increases from 0.3 to 0.5. The 
maximum roof subsidence is 5.6 mm when b=0.8. The parameters of support and 
the mechanical properties of the rock mass are the same but the range of the 
plastic region and the displacements of grids are all similar to those with the same 
support as in the initial design. In the construction of a hydraulic project, high 
values of stiffness and strength are usually accepted, so the stabilization results 
from numerical modeling with different strength criteria may be similar. But 
enormous economic benefits might be obtained in the construction of projects if a 
large plastic region is allowed. 

16.11 Conclusions  

Compared to the popular strength criteria used for geomaterials, the unified 
strength theory is selected for the stability analysis of the power station. 
Considering the absence of the unified strength model in Flac-3D constitutive 
models, a unified strength model with a non-associated flow rule is developed 
using the C++ language. True triaxial simulation tests are implemented, and the 
stress-strain curves based on the Mohr-Coulomb model and the unified strength 
model are obtained, respectively. According to the comparison with the simulation 
results, the unified strength model can reasonably represent the effect of the 
intermediate principal stress. 

Through the numerical stability analysis of Huanren pumped storage power 
station using the unified strength theory, the following conclusions are made: 

(a) Because of the large scale of excavation, the rock mass between the main 
power-house tunnel and the main transformer tunnel will fail seriously if a support 
system is not installed. In this case, the maximum horizontal principal stress 
normal to the tunnel axis is harmful to the stability of the caverns. So the 
principles of the New Austria Tunneling Method should be followed and the 
excavation of the rock mass in the tunnel roof should be carried out in small steps 
in order to reduce the range of failure. According to the analysis of results from 
the numerical modeling of unsupported tunnels, a first excavation sequence is 
proposed.  

(b) It can be obtained from the calculated results using the unified strength 
model inserted in Flac-3D that the support stiffness in the initial design is high. 
Hence, some substitutions of the support parameters are used for further analysis. 
The results from the second support design show that the range of the plastic 
region in the tunnel side walls becomes larger, the maximum subsidence of the 
tunnel roof goes from from 4 mm to 7.8 mm, and the maximum convergence goes 
from 28 mm to 55 mm. 
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(c) The different values of parameter b make failure conditions of the caverns 
vary within a certain range. In this case, the stable state obtained from b=0.3 in the 
initial design is similar to that obtained from b=0.8 in the second design. It is 
shown that estimation and determination of the intermediate principal stress is 
important for the stability analysis and can have an important effect on the 
financial benefit. 
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17   

Stability of Slope 

17.1 Introduction 

There are more and more side slope problems and slope engineering problems 
every day along with the increase in human activity. These will be the most 
common geotechnical engineering problems needing to be addressed in the natural 
geological environment. The side slope in civil engineering, water conservation 
engineering as well as traffic engineering is extremely common. Many excellent 
monographs are devoted to this field (Baker and Gather, 1978; Bishop, 1955; 
Brand, 1989; Chen, 2003; Chen et al., 2005; Cividin, 2001; Dong et al., 2004; 
Duncan, 1996; Fredinnd, 1984; Hudson and Harrison, 1997; Janbu, 1973; 
Leshchinsky, 1990, 1992; Morgenstem, 1992; Morgenstem and Price, 1965; Pan, 
1980; Zhang and Zhou, 1997; Zhou and Yang, 2005).  

The high slope of the ship-lock of the Three Gorges Project is an example of 
one of the key technologies used in this great project. Figure 17.1 is a bird’s-eye 
view of the ship-lock of the Three Gorges Project (Encyclopedia of Water 
Resources in China, Second Edition, 2006). The numerical simulation of 
deformation for the high slope is shown in Fig. 17.2.  

The unified strength theory has been used in slip line field and characteristics  
analysis (Yu et al., 2006). The slip line fields of two examples are illustrated in 
Figs. 17.3 and 17.4. A series of results of the bearing capacity for a trapezoid 
structure can be obtained by using the unified slip field theory, as shown in Fig. 
17.5.  
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Fig. 17.1 Superb view over ship-lock of the Three Gorges Project 
 

 
Fig. 17.2 Numerical simulation of deformation for the high slope 

 
Fig. 17.3 Slip field of a trapezoid structure 

 

 
Fig. 17.4 Slip field of obtuse wedge
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Fig. 17.5  Bearing capacity of a trapezoid structure 

 
The UST (unified strength theory) and the slip line field theory are also 

implemented into ANSYS by Li and Chen (2010). According to the stress fields 
derived by finite element calculations, the slip line fields with UST material 
parameters in elastic and plastic zones were simulated. The critical slip surface on 
slopes was searched for through the slip line fields and the safety factor was 
derived so as to solve problems of slope stability. The results can be employed to 
analyze differences in safety factors and positions of the critical slip surfaces for 
various unified yield criteria, as shown in Fig. 17.6 (Li K and Chen ER, 2010). It 
is seen that the slip surface is dependent on the unified strength theory parameter b. 
The critical safety factor is also dependent on the unified strength theory 
parameter b. 
 

 
Fig. 17.6 Critical slip surfaces for various unified strength theory parameters b 

 
Stability of a slope has been studied widely. It still remains open to debate, 

however, including the choice of yield criterion. The effect of yield criteria is 
rarely studied in this regard in the context of  the safety factor, stability and 
excavation of vertical faces etc. The single-shear theory (Mohr-Coulomb strength 
theory) does not consider the effect of intermediate principal stress. A more 
comprehensive strength theory is also very significant.  

The effect of yield criteria on the analysis of a slope, the excavation analysis of 
the Three Gorges ship lock (carried out by the Yangtze River Academy of 
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Sciences), the excavation simulation of a vertical surface face, and the numerical 
simulation of the slope of a highway in Guangxi Province, China (Bai, 2007) are 
described in this chapter. Using the unified strength theory in the computer 
analysis can also be a good application. A series of results are obtained by using 
the unified strength theory, which encompasses the Mohr-Coulomb criterion as a 
special case. Using the unified strength theory (Yu, 1992; 2004) it is possible for 
us to adopt different results of the numerical analysis to handle the effects of 
different materials and different structures. 

17.2 Effect of Yield Criterion on the Analysis of a Slope 

Stability of a slope is analysed by Dr. Ma ZY with respect to the unified strength 
theory, as shown in Fig. 17.7. 

 

 
Fig. 17.7 A slope problem in Shaanxi province, China 

 
The reason for using the unified strength theory is explained by the fact that 

the single-shear theory of Mohr-Coulomb or the three-shear theory of the 
Drucker-Prager criterion do not completely match with experimental data. It has 
been shown that the yield criteria of geomaterials depend not only on the 
maximum shear stress, but also on the intermediate principal shear stress (also on 
the intermediate principal stress �2) and the third invariant of the deviatoric stress 
tensor J3. The reason that the Mohr-Coulomb theory and the Drucker-Prager 
criterion are not in good agreement with the experimental data is that the effect of 
J3 and the effect of �2 are neglected.  

The unified strength theory with b=0, b=0.25, b=0.5, b=0.75 and b=1 are used. 
The plastic displacements of the slope with different yield criteria under the same 
condition are shown in Fig. 17.8. The plastic strain based on the unified strength 
theory with b=0, b=0.25, b=0.5, b=0.75 and b=1 are given in Fig. 17.9. The 
difference is obvious.  

The configurations of displacement vectors of a slope using different yield 
criteria are shown in Fig. 17.10. The configurations of deformations of finite 
elements of a slope are shown in Fig. 17.11. Five results using the unified strength 
theory with b=0, b=0.25, b=0.5, b=0.75 and b=1 are presented. Another three 
results using the Mohr-Coulomb criterion and the Drucker-Prager criterion are 
also presented, which are obtained by using the original material model in 
FLAC-2D. The differences are obvious.  
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Fig. 17.8 Displacements of the slope with different yield criteria 
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Fig. 17.9 Configuration of plastic strain of the slope with different yield criteria 
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Fig. 17.10 Configuration of displacement vectors of slope using different yield criteria 
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Fig. 17.11 Configuration of deformation of finite elements mesh of slope 

 
We can see the following: 
1) A series of new results are obtained using the unified strength theory 

with b=0, b=0.25, b=0.5, b=0.75 and b=1. 
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2) The result obtained by using the unified strength theory with b=0 
implemented in FLAC-2D is the same as the result that is obtained from the 
oriented material model of the Mohr-Coulomb criterion (Single-shear theory) in 
FLAC-2D. 

3) The outer cone of the Drucker-Prager criterion gives the minimum 
deformation and displacement; the inner cone of the Drucker-Prager criterion 
gives the maximum deformation and displacement; however, these two results are 
not in agreement with the real condition. 

17.3 Stability of Three Gorges High Slope 

The Three Gorges Project is the biggest water conservation and energy project in 
the world. Its five levels of continual sluices are open to navigation. After 
excavation,  the construction will reach as high as 170 meters on the steep side 
slope. It is an important waterway for the future. Extremely high stability is 
required (Sheng et al., 1997; Zhang and Zhou, 1997; Dong et al., 1999; Kou et al., 
2001). To guarantee the stability of the Three Gorges  high side slope sluice is 
one of the project’s important research topics. Therefore the Yangtze River 
Academy of Science, the Wuhan Rock and Soil Institute of Chinese Academia, 
Qinghua University, HeHai University, Hong Kong University, Wuhan University 
etc. carried out stability research of the side slope (Research Report of the Yangtze 
River Academy of Science, 1997-260). The excavation of the Three Gorges sluice 
is shown in Fig. 17.12.  
 

  
Fig. 17.12 Excavation of the Three Gorges sluice 

    
Fig. 17.13 Displacement vector field     Fig. 17.14 Principal stress vector fields 
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The stress analysis of the ship sluice was carried out by the Yangtze River 
Academy of Science. The displacement vector field and principal stress fields are 
shown in Figs. 17.13 and 17.14 (Sheng et al., 1997; Dong et al., 1999). 

The stability of the high slope of the ship lock of the Three Gorges Project has 
been studied (Sheng et al., 1997; Dong et al., 1999; Zhou and Yang, 2005). The 
plastic zone and limit equilibrium analysis for the stability of the high slope of the 
ship lock were presented (Sheng et al., 1997). Figure 17.15 is the plastic zone of 
the high slope of the ship lock using the single-shear theory (Mohr-Coulomb 
Theory). Figure 17.16 is the plastic zone of the high slope of the ship lock using 
the twin-shear theory (Yu, 1985). Figure 17.17 is the plastic zone of the high slope 
of the ship lock using the Drucker-Prager criterion. 

 

 
Fig. 17.15 Plastic zone for single-shear theory (Sheng et al., 1997) 

 

 
Fig. 17.16 Plastic zone for the twin-shear theory (Sheng et al., 1997) 

 

 
Fig. 17.17 Drucker-Prager yield criterion (Sheng et al., 1997) 

 
The results indicated that the deformation shape and stress field obtained from 

the three yield criteria show no significant difference. However, the differences in 
the plastic zones are larger (Sheng et al., 1997). It is seen that the spread of plastic 
zones using the single-shear yield criteria and the twin-shear yield criterion is 
similar. However, the size of the plastic zones varied widely. The difference can be 
illustrated from the yield surface on the deviatoric plane, as shown in Fig. 17.18. 
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Fig. 17.18  Limit loci of various failure criteria on the deviatoric plane  

 
As pointed out by Zienkiewicz and Pande (1977), the choice of the best limit 

surface is still in the hands of the analyst who has modeled the strength behavior 
in the best possible manner. They also indicated that the Drucker-Prager criterion 
and the limit loci of extension circular cones give a very poor approximation of, 
the real failure conditions (Humpheson and Naylor, 1975; Zienkiewicz and Pande. 
1977). The choice of yield criteria has a marked effect on the prediction of the 
load-bearing capacities of structures. It is obvious that the Drucker-Prager 
criterion or other circular criterion cannot match the two experimental points a and 
b, as shown in Fig. 17.18.  

The comparison of the single-shear theory (Mohr-Coulomb criterion) and the 
twin-shear theory is shown in Fig. 17.19. In fact, various yield criteria must be situated 
between the bounds if the convexity is considered. The lower bound is the single-shear 
strength theory (the Mohr-Coulomb strength theory 1900) and the upper bound is the 
twin-shear strength theory (Yu et al., 1985). Other failure criteria are situated between 
these two bounds. The limit loci of the unified strength theory cover all the regions of 
the convex limit loci, as shown in Fig. 17.19. 

 
Fig. 17.19 Bounds and region of limit loci 
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17.4 Stability of a Vertical Cut 

In the natural state, the loess soil is so resistant to erosion and so stable as to 
maintain indefinitely almost vertical faces in cuts, as shown in Fig. 17.20 
(Hogentogler, 1937). Figure 17.21 shows an artificial vertical cut at the Green 
Dragon Temple near Xi’an Jiaotong University in Xi’an, China (Yoshimine, 2001). 
The stability of loess soil becomes troublesome when the height of the vertical cut 
increases. The critical height of the vertical cut was studied in the literature by 
using the Mohr-Coulomb theory. The computational result using the 
Drucker-Prager criterion with size-adjustment using the Mohr-Coulomb criterion 
was given by Zimmermann and Commend (2001). New bounds for the height 
limit of a vertical slope are given by Pastor et al. (2000). As pointed out by Pastor 
et al., when addressing  the classic problem of the height limit of a Tresca or 
Mises criterion vertical slope subjected to the action of gravity, the exact solution 
to this problem remains unknown. 
 

Fig. 17.20 Vertical faces of loess soil in cut   Fig. 17.21 Vertical faces of loess in Xi’an  
 

We use a vertical cut where the material parameters are �=1.6×104 N/m3, C=18 
kPa, �=303. The stress field of the vertical cut is shown in Fig. 17.22. The critical 
cut heights using the three basic criteria of the unified strength theory with b=0, 
b=1/2 and b=1 are calculated and shown in Fig. 17.23. The calculated critical 
heights are: Hp=6.4 m (b=0), Hp=7.9 m (b=1/2) and Hp=9.2 m (b=1). The last one 
is close to the height of the vertical cut of the loess as shown in Fig. 17.21.  

 

 
Fig. 17.22 Stress field of a vertical cut slope
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(a) UST with b=0, Hp=6.4 m 

 
(b) UST with b=1/2, Hp=7.9 m 

 
(c) UST with b=1, Hp=9.2 m 

Fig. 17.23 Three critical heights obtained using the three basic criteria 

17.5 Stability for a Slope of a Highway 

The stability of the slope for the Baise-Luo highway in Guangxi province, China, 
was studied by Bai in 2005, in which the unified strength theory was used. The 
slope is considered as a plane strain problem. A special section of the slope and its 
mesh for numerical analysis is shown in Fig. 17.24. The parameters of the soil and 
the rock on the slope for various values of b in UST are listed in Table 17.1 (Bai, 
2005; Fan W et al., 2007). 
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Fig. 17.24 Mesh of slope at Baise-Luo highway 

 
Table 17.1 Parameters for various values of b in UST 

Unified strength theory parameter b 
Materials Unified slip

field b=0 b=1/4 b=1/2 b=3/4 b=10 

Cuni (kPa) 19.37 20.84 21.94 22.8 23.49 The clay loam mixes 
with the gravel (above 
water level) 
 

�uni (°) 30.57 33.05 34.97 36.49 37.73 

Cuni (kPa) 14.67 15.87 16.8 17.53 18.13 The clay loam mixes 
with the gravel (under 
water level) 
 

�uni (°) 24.1 26.14 27.76 29.05 30.10 

Cuni (kPa) 30 32.07 33.64 34.88 35.88 
Rock base 

�uni (°) 35 36.84 38.16 39.17 39.97 
 

The contours of the security rate for different yield criteria are shown in Figs. 
17.25 to 17.29. It can be seen from Figs. 17.25 to 17.29 that the contours of the 
safety rate at the same stress level are different at different values of b. 

 
 

Fig. 17.25 Contours of security rate (UST with b=0)  
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Fig. 17.26 Contours of security rate (UST with b=0.25)  
 

Fig. 17.27 Contours of security rate (UST with b=0.5)  

Fig. 17.28 Contours of security rate (UST with b=0.75)  
 

 
Fig. 17.29 Contours of security rate (UST with b=1.0)  

 
The charts of the shear strain of the slope based on UST with different values 

of b are shown in Fig. 17.30 (Bai, 2005; Fan et al., 2007).  
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Fig. 17.30 Charts of shear strain based on UST with different values of b

 
Overall, along with the increase in the value of the UST parameter b, in the 

region of the side slope, safety coefficient changes are obviously small, the shear 
strain changes are obviously small and the strength of the side slope increases 
gradually. Therefore, the effect of the intermediate principal stress is obvious in 
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side slope stability analysis. The potential of the strength of materials can be 
played with  using the unified strength theory in which the intermediate principal 
stress is taken into account. 
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Unified Strength Theory and FLAC 

18.1 Introduction 

The unified strength theory and associated flow rule have been implemented into 
several finite element programs. Series numerical results can be obtained. 
Moreover, the equations of the unified strength theory are similar to those of the 
Mohr-Coulomb criterion. In fact, the Mohr-Coulomb criterion is a special case of 
the unified strength theory and thus it will have important significance in 
numerical simulation.  

The equation for unified strength theory can be expressed by the strength 
parameters c and �. They are transferred into the format of Lagrangian finite 
difference. The strain-hardening/softening model is added to the unified 
elasto-plastic model and the applicability of unified strength theory is enlarged. 
The constitutive model of unified elasto-plastic and strain-hardening /softening is 
implemented into the software of FLAC/FLAC3D using a dynamic-link library file 
developed by VC++. Moreover, the unified elasto-plastic constitutive model can 
also be used in UDEC/3DEC. Based on the unified elasto-plastic model and 
unified strain-hardening/softening model, the conventional and true triaxial tests 
can be simulated by FLAC3D respectively, and the measured data can be  
compared to the result of simulation. The analysis of the result suggests that 
unified strength theory not only describes the state of conventional triaxial stress, 
but also describes the mechanical behavior of materials under complex stress 
conditions. A fitted result is achieved between the simulation and the test data as 
regards different confining pressure and a different stress ratio; it shows that the 
influence of the intermediate principal stress �2 on soil strength is interesting. 

 
������ 
This chapter is contributed by Dr. Ma ZY, Xi’an University of Technology, and Professor Liao 
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Regarding the material non-linear problem for geomaterials, the smooth yield 
surface (for example the Huber-von Mises criterion and the Drucker-Prager 
criterion) was used in the majority of finite element software, but these two 
commonly used criteria do not conform to the experimental result and the reality 
to the geomaterials, as pointed out by. Zienkiewicz and others. Therefore, using 
another material model is also an important consideration. At present, the 
Mohr-Coulomb strength theory is the most widespread material strength theory 
used. However, the true tri-axial experiment proved that the intermediate principal 
stress �2 has to be accounted for in rock and soil mechanics and engineering.  

Based on the twin-shear octahedron mechanical model, considering the effect 
of intermediate principal stress, Yu’s unified strength theory was proposed in 1991. 
It has a simple mathematical expression and indicates the intensive property of the 
material. The application of the unified strength theory in the numerical 
computation enables the computation to reflect the mechanical behavior of the 
material under complex stress conditions. Moreover, it can further confirm the 
unified strength theory through numerical computation and a comparison of the 
measured data. Thus this has practical significance. 

In choosing a non-smooth yield surface we have to process the singularity at 
the corner for a non-smooth yield surface, as described in Chapter 6. The FLAC2D 
is a two-dimensional finite-difference code and an explicit Lagrangian 
computation scheme is used in this code. FLAC3D is an extended 
three-dimensional edition for the two-dimensional code. The computation step 
using the time increment of the difference method does not need to solve the 
overall stiffness matrix. The calculation of the explicit expression in 
FLAC/FLAC3D is calculated by  advancing to the next step through the increase 
in time. There is no need to carry on the iterative calculations for the non-linear 
material problem. 

Zhang et al., (2008) use the Lagrange finite difference scheme for 
elasto-plasticity of the unified strength theory in the form of principal stress, and 
implement it in FLAC-3D. Ma ZY uses the Lagrange finite difference scheme for 
elasto-plasticity of unified strength theory in terms of the expression of invariants of 
the stress tensor and geomaterial parameters c and �, and implements it in 
FLAC/FLAC3D. He uses the C++ language compilation dynamic link storehouse 
document to write the unified elasto-plasticity model in FLAC/FLAC3D. The C++ 
language has many advantages in engineering calculation. Zhang et al. indicated that 
“The unified strength theory is a new theory system which can almost describe the 
strength characteristics of most geomaterials and has been applied widely. And 
FLAC3D is an excellent geotechnical program. If the former can be integrated in the 
latter, many complex problems in engineering will be well settled. So according to 
this problem, the numerical scheme of the elasto-plastic unified constitutive model 
in FLAC3D was studied. And the numerical format of the elasto-plastic constitutive 
model based on the unified strength theory was derived.” 

“The format based on the unified strength theory in terms of the form of 
principal stress was derived. The implementation of the unified strength theory in 
FLAC-3D, unifying the unified strength theory and the finite difference method 
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numerical code will have a positive significance theoretically and in project 
application.” 

The idea behind the unified strength theory is the twin shear model of the 
orthogonal octahedron proposed by Yu. It incorporates the intermediate principal 
shear stress into the yield function. Thus it has vital significance in the numerical 
computation of computational plasticity. Here, we first introduce the unified 
elasto-plasticity model with parameters c and � in the Lagrange finite difference 
scheme, then increase the strain hardening/softening model in the unified 
elasto-plasticity model. Thirdly, we compile the dynamic link storehouse 
document in VC++ and implement the unified elasto-plasticity and the 
strain-hardening /softening model in FLAC/FLAC3D.  

18.2 Unified Strength Theory Constitutive Model 

The principal stress form of the unified strength theory can be expressed in terms 
of the principal stresses and material parameters c and � (Yu, 1992; 2004), as 
follows. 

 

2 3 1
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b
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� �
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� � � �
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2 1 3
1 sin 1 sinwhen

2 2
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� � �
   

2 1 3
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2 2
� �� � �� �
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where �1, �2 and �3 are the three principal stresses, �1 �2 �3. Also, the tensile 
stress is positive and compressive stress is negative, f 0 or f' 0 materials occurs 
yield. b is a parameter reflecting the effects of the intermediate shearing stress and 
the corresponding normal stress. 

The yield loci on the �-plane of the yield surface of Yu’s unified strength 
theory are shown in Fig. 18.1. This becomes the single-shear theory or 
Mohr-Coulomb criterion when the parameter b degenerates to b=0. It may be seen 
that the yield surface of the unified strength theory exists corners at A, B and C in 

Figs. 18.1 and 18.2. The plastic flow vector 
ij

f
�
-
-

 at the corner is not uniquely 

defined for piecewise linear yield criterion, the direction of plastic straining is 
indeterminate.  The processing method for corner singularity is to introduce a 
mean vector for point B, namely at the stress state �2= (1+sin�)�1/2+(1�sin�)�3/2. 
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The flow vectors at points A and C take the flow vectors of points A and C when 
b=1, which was described in Yu (1998; 2004), as shown in Fig. 18.2. 

 
�1

�2�3

Mohr-Coulomb

b=0.75
b=0.5

b=0.25

UST with b=1.0

 
Fig. 18.1  Yield loci of the unified strength theory on �-plane 

 

 
Fig. 18.2  Process of singular points 

18.3 Governing Equation 

18.3.1 Balance Equation  

The continuous medium balance equation may be written as  
 

,
d

( ) 0
d

i
ij j i

v
b

t
� �� � �                       (18.2)

 
where bi is the volume force per unit mass for the element, � is the material density, 
d
d

iv
t  is the acceleration. According to the virtual work principle, the power of 
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internal forces is 
 

di ijV
I V�� �� B �                        (18.3) 

 
The power rate of the external force is 
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where l

if  is the external force acting on the tetrahedron unit node; i���  and 

iv� are the rate of strain and speed caused by virtual displacement. Equation (18.3) 
can be rewritter as  
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According to the symmetry of the stress tensor we have 
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The difference format for the speed field of the tetrahedron element is 
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Equation (18.4) may be rewritten as  
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Equation (18.8) can also be expressed as 
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When the virtual work of the internal force equals the virtual work of the external 
force, the actual solution can be obtained. Equation (18.6) equals Eq. (18.9), 
resulting in 
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Equation (18.10) is the balance equation in the difference form. The term �V/4 in 
Eq. (18.10) is replaced by node quality ml for explicit computational stability. 
 

( ) ( ) ( ) d1 ( )
3 4 d

l l l l li i
i ij j

bV v
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t
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�� � � �               (18.11) 

 
The unbalanced force of all nodes in the entire object is  
 

1
3 4

i
ij j i

bV
F n S P

�
�� � �                   (18.12) 

 
where Pi is the resultant force of the external force and the inertia force at nodes. 
The object reaches a state of equilibrium when the balance force F is lower than a 
certain value. 

18.3.2 Explicit Numerical Procedure 

In explicit computation, the increase in step time is determined by the computation 
period and supposition of the node quality. Bathe and Wilson proposed a computing 
system for period of time of explicit computation in 1976, 
 

2� mT
k

�                        (18.13) 

 
The increase in step time can be determined as 
 

2
�
T mt

k
H � �                       (18.14) 

 
The mass of the node is calculated as  
 

( ) ( ) 23 4 max([ ] ),
27

l l l
i

K Gm n S
V
�

�  1,3i �             (18.15) 

 
The stable solution for numerical calculation can be obtained through the 

computation of the node quality. 

18.3.3 Constitutive Equation 

According to elasto-plasticity and generalized Hooke law, the total strain is  
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e p
i i i� � �H � H � H                    (18.16) 

 
where e

i�H  is the elastic component and p
i�H  is the plastic component. The 

generalized elastic Hooke law can be written as 
 

1 1 1 2 2 3

2 1 2 2 1 3

3 1 3 2 1 2

( )

( )

( )

e e e

e e e

e e e

� � � � � �

� � � � � �

� � � � � �

5H � H � H � H
7
H � H � H �H8
7H � H � H �H:

             (18.17) 

 
where 341 GK ��� , 322 GK ��� , K and G are elastic bulk and shear modules.  

Equation (18.17) is expressed in terms of the tensor form: 
 

1 2 3( , , ) ( ),e e e e
i i i nS S� � � � �H � H H H � H  i=1, 2, 3       (18.18) 

 
The plastic strain can be expressed as  
 

p
i

i

g� 0
�
-

H �
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                     (18.19) 

 
where g is the plastic potential function. 

According to Eqs. (18.16) and (18.17), stress increase H�i is 
 

( )p
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Substituting Eq. (18.19) into Eq. (18.20), we have 
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where �·Si(
n

g
�
-
-

) is stress at the plastic stage. f (�n+H�n) can be expressed as 

 
( ) ( ) ( ) (0)n n n nf f f f� � � �� H � � H �             (18.22) 

 
in which f (H�n)�f (0) can be expressed by f *(H�n), and f (�n)=0. Substituting Eq. 
(18.21) into Eq. (18.22), we have  
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The two expressions of stress tensors N
i�  and I

i�  are definite as  
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where ��n is total strain at the elastic stage, I

i�  is the elastic stress tensor. N
i�  

is the stress tensor at the plastic stage, therefore 
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Substituting Eq. (18.26) into Eq. (18.23), the expression of � can be obtained 
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Combining Eqs. (18.19), (18.24) and (18.25), the expression of N

i�  is given as 
follows: 
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Equation (18.28) is the finite-difference elasto-plastic constitutive equation of the 
material. The material non-linear relation is realized through the two stress tensors 

N
i�  and I

i� , as shown in Fig. 18.3.  
 

 
Fig. 18.3  Material nonlinearity processing of FLAC 
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18.4 Unified Elasto-Plastic Constitutive Model 

18.4.1 Unified Elasto-Plastic Constitutive Model 

The expression of the UST (Eq. (18.1)) can be transformed to another expression 
as follows: 
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where N�=(1+sin�)/(1�sin�). The non-associated flow rule is used. The friction 
angle � in the yield function is used instead of the dilatancy angle �. The plastic 
potential function can be expressed as  
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where N�=(1+sin�)/(1�sin�), �·Si(
n
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So we have 
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where the expressions for � are 
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For the strain hardening material, the development of the subsequent yield 

surface is determined by the variance in the plastic work or plastic strain. The 
hardening condition for isotropic hardening materials may be written as  
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where f(�n) is yield function, q is the hardening parameter and the accumulative 
plastic strain q is 
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where (d�p)I is the equivalent plastic strain. 

The hardening condition for linear isotropic hardening materials is 
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where H is plastic modulus. 
The three plastic principal strains for unified elasto-plastic model are  
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18.4.2 The Key to Implementation of the Constitutive Model  

In FLAC3D, this constitutive model uses C++ language compilation, the output 
document format for the dynamic connection storehouse document. 
FLAC/FLAC3D writes down the dynamic connection storehouse document, the 
procedure to carry out the computation. Dr. Ma ZY uses the Microsoft Visual C++ 
6.0 to program the platform to carry out the translation. The unified strength 
theory is implemented in FLAC3D. 

The FLAC/FLAC3D constitutive development platform is the VC++ 
workspace format file (udm.dsw file), including the header file (.H), source file 
(.cpp) and the library file (.lib) in three parts. The header file defines the 
constitutive model of the class, member functions and objects; the source files 
cites and describe the file class and its member functions and objects as defined in 
the header file; library files can be guided to create FLAC3D supported by the 
dynamic link library files (contains all function information). The constitutive 
model class is defined in the constitutive model of the class functions, the yield 
criteria and flow rule are implemented in the source file. User-Model calling the 
Run () function is defined as plastic indicator function.  

18.5 Calculation and Analysis 

18.5.1 Slope Stability Analysis 

The unified elastic-perfectly plastic model (UST model) has been implemented in 
FLAC, and a two-dimensional (plane-strain) soil slope is studied and 
analyzed with unified strength theory. The meshes and boundary condition is 
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shown in Fig. 18.4. Zienkiewicz (1975), Potts (1999) and Griffiths (1999) use the 
strength reduction method (SRF) to analysis the problem of slope stability with 
associated and non-associated flow rule. The mechanical parameters of the soil are 
as follows: cohesive force c=16.0 kPa, internal friction angle �=20.0°, elasticity 
coefficient E=5.0 MPa, Poisson ratio V=0.3, density �=1600 kg/m3. The mesh and 
dimension of the model for analysis is shown in Fig. 18.4 and the initial gravity 
field is established before the elastoplastic analysis. 

 

 
Fig. 18.4  Finite-difference meshes with the boundary condition and dimension for analysis 

18.5.1.1 Associated Flow Rule 

The friction angle � in the yield function is equal to the dilatancy angle � when 
the associated flow rule is used and correspondence between the fields of stress 
and velocity is yielded. Figure 18.5 shows the deformed mesh plots with different 
strength criterion and associated flow rule. Figure 18.6 shows the factor of safety 
of the soil slope with different strength criteria. The failure surface occurs when 
the criterion of the tension cone of Drucker-Prager, Mohr-Coulomb, UST b=0.0 
and UST b=0.25 are used respectively. The displacement of the slope decreases as 
the value of parameter b increases. The factor of safety using SRF with different 
criteria indicated that the results from UST use the criterion of the Drucker-Prager 
(compression cone) and Mohr-Coulomb, and the result using the tension cone of 
Drucker-Prager is slightly lower than UST b=0.25. 
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(a) Drucker-Prager compression cone        (b) Drucker-Prager tension cone 

 
(c) Mohr-Coulomb                        (d) UST b =0.0, 

  
(e) UST b =0.25                         (f) UST b =0.5 

  
(g) UST b =0.75                        (h) UST b =1.0 

Fig. 18.5  The deformed mesh plots with different strength criteria and associated flow rule  
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Fig. 18.6  The factor of safety of soil slope with different strength criteria 
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18.5.1.2 Non-associated Flow Rule 

The plastic volume strain is much higher than the actual situation when the 
associative flow rule is used, and the non-associative flow rule could be used to 
reduce the plastic volume strain. For non-associative flow rule ���, disaccord 
between the fields of stress and velocity could be yielded, and the failure 
mechanisms with the non-associative flow rule are different from those with the 
associative flow rule. Figure 18.7 shows the deformed mesh with different criteria 
and the non-associated flow rule. 

 

 
  (a) Drucker-Prager compression cone          (b) Drucker-Prager tension cone 

 
(c) Mohr-Coulomb                        (d) UST b =0.0 

  
(e) UST b=0.25                       (f) UST b =0.5 

 
(g) UST b =0.75                       (h) UST b =1.0 

Fig. 18.7  The deformed mesh plots with different strength criteria and non-associated flow rule 
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18.5.2 Thick-Walled Cylinder under Internal Pressure 

A plane-strain problem of a thick-walled cylinder under internal pressure is 
analyzed as shown in Fig. 18.4. The parameters for analysis follow: E=240.0 MPa, 
�=0.2, cohesion=1.0 kPa, friction �=20°, dilation �=20°. The mesh and dimension 
of the model for analysis is shown in Fig. 18.7. Figure 18.9 shows the plastic zone 
under an internal pressure equal to 1.1645 kPa. Figure 18.10 shows the 
distribution of the circumferential stress in thick-walled cylinders. Figure 18.11 
shows the relationship betwen the elastic and plastic limit pressure and the ratio of 
the outer and inner radius. 
 

 

Fig. 18.8  Finite-difference meshes with the boundary condition and dimension for analysis 

 
 

 
(a) UST b=0.0               (b) UST b=0.5           (c) UST b=1.0 

Fig. 18.9  Plastic zone under the internal pressure P=1.1645 kPa 
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Fig. 18.10  Distribution of circumferential stress in thick-walled cylinders with UST 

 

 
(a) Relationship between elastic limit pressure and ratio of outer and inner radius 

 
(b) Relationship between plastic limit pressure and ratio of outer and inner radius  

 
Fig. 18.11  Relationship between limit pressure and ratio of outer and inner radius 
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18.5.3 Bearing Capacity of Strip Footings 

Prandtl (1920) suggested the bearing capacity equation for a weightless and 
semi-infinite space under a vertical strip load using a characteristic method. The 
formula is expressed as 
 

u c qq c N q N� < � <                            (18.38) 
 

where q is the equivalent surcharge of the footing embedment, Nc and Nq are 
bearing capacity coefficients of cohesion and surcharge. The expression for Nc, Nq 
can be written as  
 

1 sincot exp(� tan ) 1
1 sincN �� �

�
� ��

� < < �� ��� �
                (18.39) 

1 sin exp(� tan )
1 sinqN � �

�
�

� <
�

                    (18.40) 

 
Vesi� (1973) proposed the following equation: 

 

2u c q
wq c N q N N,

, <
� < � < �                   (18.41) 

 
where � is the unit weight, w is the footing width, Nc and Nq are the same as the 
formula of Prandtl, N� is the bearing capacity coefficient of soil self-weight and 
the expression for N� is expressed as 
 

2( 1) tanqN N, �� �                       (18.42) 

 
Terzaghi (1943) also proposed the formulas of bearing capacity coefficients Nc, 

Nq and N� based on rigid and rough strip footing. 
In the current study, the foundation soil is considered to be a linearly 

elastic-perfectly plastic and homogeneous material. Since the problem is 
symmetric, only half of the problem domain is considered and the footing width w 
is held constant at 0.5 m. Griffiths (1982), Frydman (1997), Yin (2001), Erickson 
(2002), Mabrouki (2010) and Loukidis (2009) use the finite element or finite 
difference method to evaluate the bearing capacity for strip or circular footings. 
The mesh and dimension of the model for analysis is shown in Fig. 18.12 and the 
other details of numerical analysis are shown in Table 18.1. The analysis was 
performed by applying a vertical velocity (rigid) or uniformed pressure (flexible) 
to simulate the load from the base of the footing. Set the horizontal displacement 
or force at the surface nodes below the footing to zero to simulate the rough or 
smooth interface between footing and soil respectively. 
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h

L C 
w/2

 
Fig. 18.12  Finite-difference meshes with the boundary condition and dimension for analysis 

 
Table 18.1 Parameters and boundary condition for numerical analysis 

Factors h 
(m) 

Velocity 
(m/step) 

Elastic 
modulus 
(MPa) 

Poisson’s 
ratio 

c 
(kPa)

q 
(kPa) � (kN/m3) 

Nc 5 1e-7 240 0.2 10 0 0 
Nq 6 5e-8 240 0.2 0 15 0 
N� 2 1e-8 240 0.2 0 0 18 

 
The values of Nc from the FLAC and the characteristic method using the 

Uni�ed Strength Theory for smooth footing are shown in Fig. 18.13. The values of 
Nc from the two methods are more closed when the friction angle is less than 30°, 
but the results of FLAC analyses become much larger than the characteristic 
method when the friction angle is larger than 30°. The results of bearing capacity 
evaluation are shown in Fig. 18.14 to Fig. 18.16. 

 

 
Fig. 18.13 Comparison of the values of Nc from the FLAC and characteristic method based on 
Uni�ed Strength Theory for smooth footing 
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(a)                                   (b) 

Fig. 18.14  (a) Nc versus vertical displacement for rough footing and �=�=40° with UST 
parameter b=0.0, 0.25, 0.5, 0.75 and 1.0. (b) Varation of Nc with friction angle for rigid and 
rough footing and �=� with UST 
 

 
(a)                          (b) 

Fig. 18.15 (a) Nq versus vertical displacement for rough footing and �=�=40° with UST 
parameter b=0.0, 0.25, 0.5, 0.75 and 1.0. (b) Varation of Nq with friction angle for rigid and 
rough footing and �=� with UST. 
 

Contours of the maximum shear strain for rigid and rough footing and 
�=�=40° in Nc calculation are shown in Fig. 18.17. Plastic zones (vertical 
displacement equals 4×10-4 m) for rigid and rough footing and �=�=40° in Nc 
calculation with UST_b=0.0, b=0.5 and b=1.0 are shown in Fig. 18.18. Contours 
of maximum shear strain for rigid and rough footing and �=�=40° in N� 
calculation with UST b=0.0, b=0.5 and b=1.0 are shown in Fig. 18.19. The effect 
of parameter b is evident. 
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      (a)                                     (b) 

Fig. 18.16 (a) N� versus vertical displacement for rough footing and �=�=40° with UST 
parameter b=0.0, 0.25, 0.5, 0.75 and 1.0. (b) Varation of N� with friction angle for rigid and rough 
footing and �=� with UST 
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(b) UST b=0.5 
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(c) UST b=1.0 
Fig. 18.17 Contours of maximum shear strain for rigid and rough footing and �=�=40° in Nc 
calculation 
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Fig. 18.18  Plastic zones (vertical displacement equals to 4×10-4 m) for rigid and rough footing 
and �=�=40° in Nc calculation: (a) UST b=0.0; (b) b=0.5; (c) b=1.0 
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(c) UST b=1.0  

Fig. 18.19  Contours of maximum shear strain for rigid and rough footing and �=�=40° in N 
calculation 
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18.6 Three Dimensional Simulation of a Large Landslide 

The loess plateau is widely distributed in northwestern China and high slopes are 
usually formed along the boundary of the plateau. The large height difference, 
steep slope and complex geological origin are common features of these high 
slopes. The urban city area has approached the loess plateau during the 
acceleration of the urbanization process in northwestern China. The arid climate of 
the loess area often causes a significant rise in the groundwater level due to large 
scale irrigation and seasonal rains. In recent years, the stability of the loess plateau 
boundary has been influenced significantly by climatic and anthropogenic factors. 
Moreover, the danger of landslides on the loess plateau caused by the variation in 
groundwater level has become more serious.  

Figures 18.20 and 18.21 show a large landslide in Jingyang County, Shanxi 
Province, China. Estimation of the size and material mass of the landslide is 
shown in Fig. 18.21. The numerical simulation of this landslide was carried out by 
Ma ZY and Liao HJ using the unified strength theory in 2009. Based on the 
unified strength theory (Yu, 1991; 1994; 1998; 2004), elasto-plasticity theory and 
the non-associated flow rule are used to analyse this slope satiability problem. The 
elastic modulus of soil is 5.0 MPa, Poisson’s ratio 0.33, the cohesion and internal 
friction angle of the soil is 3.56 kPa and 17.9° respectively.  
 

 
(a) 

 
(b) 

Fig. 18.20  Field photo of landslide (2003). (a) Photo from the top; (b) Photo from the bottom 
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Fig. 18.21  (a) General view of landslide; (b) Cross sections of the body of landslide; 
(c) Estimation of the size and material mass of landslide 

 
The boundary condition and mesh for numerical analysis is shown in 

Fig. 18.22. Figure 18.23 shows a horizontal displacement and maximum shear 
strain contours from FLAC at a depth of groundwater level h=80 m with unified 
strength theory (b=0.15). Figures 18.24 and 18.25 show the contours of the 
horizontal displacement and maximum shear strain from FLAC3D analysis at a 
depth of groundwater level h=80m with unified strength theory (b=0.25). The 
slope failure occurs if the values of parameter b are lower than 0.15 and 0.25 in 
FLAC and FLAC3D analyses respectively. 

 

 
Fig. 18.22  Mesh model of slope before landslide event 
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Fig. 18.23  Horizontal displacement and maximum shear strain contours from FLAC with 
b=0.15 

 

 
Fig. 18.24  Horizontal displacement contour from FLAC3D with b=0.25 

 

 
Fig. 18.25  Maximum shear strain contour from FLAC3D with b=0.25 

 
According to the loess landslide survey at the South-Jingyang plateau in 

Shanxi Province, a test specimen using the material has analyzed the scale of the 
landslide and the characteristics of the terrain. In order to analyze the mechanism 
which caused this landslide to occur, by returning the contours to their original 
state a three dimensional high loess slope computer model has been created.  
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Finally, utilizing the three dimensional Lagrange finite difference method, an 
analysis of the effect of intermediate principal stress on the stability of the high 
loess slope has been carried out, and a further study of the stability of the slope 
depending on different depths of the groundwater. 

According to two examples with a water level of h=80 m and, in 1992, with a  
depth of h=37 m, the slope safety was calculated by using the strength reduction 
method in three-dimensions. The principle of strength reduction calculation is that 
the internal friction angle and cohesion are at the same time multiplied by a 
coefficient so that when the slope reaches a critical state of failure, this factor shall 
be the slope safety factor.  

Because the high loess slope was stable before 1976, the stability analysis 
taking the influence of the intermediate principal stress into account can reflect the 
actual situation more accurately. The factor of safety for the high loess slope is 
calculated using the strength reduction method. The strength parameter of the soil 
mass is decreased gradually until the slope becomes unstable. The relationship 
between the factor of safety for the slope and the magnitude of b at two different 
groundwater levels in 1976 and 1992 is shown in Fig. 18.26. The same results as 
in the above analysis can be observed from Fig. 18.26, a decrease in the 
magnitude of b led to a decrease in the factor of safety for the slope and the factor 
of safety also decreases with a rise in the groundwater level. When the factor of 
safety equals 1, the magnitude of b at the groundwater level in 1976 and 1992 
equals 0.3 and 0.5, respectively. Figure 18.27 shows the pore-water pressure and 
displacement vector of the slope at h=37 m and b=0.5. The high loess slope 
becomes unstable when h=37 m and b=0.5. 

In order to analyze the stability of the high loess slope during the process of a 
rise in the groundwater level caused by rain and irrigation, an analysis was 
performed with a different depth (h=35~50 m) of groundwater under the loess 
plateau, and the groundwater level under the loess plateau is shown in Fig. 18.28. 
Because the velocity of the rise in the groundwater level is very low, the seepage 

 
Fig. 18.26  Relations between the factor of safety and b at two groundwater levels 
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Fig. 18.27  Pore-water pressure contour and displacement vector of slope at h=37 m and b=0.5 

of groundwater is neglected and the soil under the groundwater level is saturated. 
Figure 18.29 shows the relationship between x-direction displacement at historical 
point No. 1 and timesteps at different depths in the groundwater level when b=0.5. 
The results suggest that the x-direction displacement at historical point No. 1 
increases significantly as the groundwater rises gradually, and the slope became 
unstable at a groundwater level of h=35 m. 

 

 
Fig. 18.28  Sketch of different depth of groundwater level 

 

 
Fig. 18.29  Relationship between x-direction displacement at historical point No. 1 and 
timesteps 

The loess plateau landslide at South Jingyang, Shaanxi Province, China, is a 

b=0.5
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useful reference for studying the mechanism of a large landslip. The result 
indicated that the intermediate principal stress, when considered in slope stability 
analysis, conforms to the actual situation. The unified strength theory provides a 
wide choice for slope engineering.  

18.7 Conclusions 

The unified strength theory is implemented into the FLAC/FLAC3D code using a 
dynamic-link library file developed by VC++. A series of numerical analyses are 
carried out by FLAC with UST and the results are compared with the solution of 
the analytical method. The elastoplastic model of UST can be coupled with 
groundwater flow, dynamic and thermal analysis in FLAC/FLAC3D.  

(1) Unified strength theory is applied to the numerical calculation of 
geotechnical engineering; it has an important significance in the study of the 
mechanical behavior of geomaterials and structures.  

(2) A series of numerical solutions can be obtained from unified strength 
theory using numerical methods such as FLAC/ FLAC3D. Those solutions may be 
suitable for various materials and may be more relevant to engineering 
applications. 

(3) The vertex singularity of unified strength theory can be processed easily in 
constitutive model development of FLAC/ FLAC3D. The linearized criteria such as 
Tresca, Mohr-Coulomb and the Unified strength theory can be used in FLAC/ 
FLAC3D directly. The Mohr-Coulomb theory is equivalent to the unified strength 
theory with b=0. The Tresca criterion is equivalent to the unified strength theory 
with �=1 and b=0. The Huber von Mises criterion is equivalent to the unified 
strength theory with �=1 and b=1/2. 

(4) The unified strength theory considers the effect of the intermediate 
principal stress �2 and has simple mathematical formulae; it can not only make 
better use of the strength of materials than single shear strength theory, but  is  
also widely in agreement with experimental results using various materials. The 
unified strength theory with b=1/2 is a new criterion for SD materials. It may be 
used as a new reasonable failure criterion for geomaterials instead of the 
Drucker-Prager criterion.

(5) The results of three dimensional simulation of the Jingyang landslide show 
that the slope gradually stabilized when it reached a certain deformation. When 
considering seepage, seepage on the slope occurred during the continued 
deformation, when the height of the water level caused a certain degree of damage 
after the sudden instability. There is more danger due to the action of the seepage. 
Due to dry weather in loess areas, much farmland irrigation and seasonal rain 
causes the water level to rise significantly within a short time. Inorder to improve 
the stability of the high loess slope there should less reclamation of farmland and 
less irrigation on the edge of the loess plateau, to reduce the adverse effects of 
groundwater seepage on slope stability.  
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19  

Mesomechanics and Multiscale Modelling for 
Yield Surface 

19.1 Introduction 

Mechanical modelling is an abstraction, a formation of an idea or ideas that may 
involve the physics of solids with specific geometric configurations. Mathematical 
models may involve relationship between continuous functions of space and time 
for describing the homogeneity and/or isotropy of a material or the formation of 
conservation laws (Meyer, 1985; Tayler, 1986; Besseling and Liessen, 1994). The 
results based on these models for describing a phenomenon should agree with 
existing measurements within a specified accuracy and can be used with 
confidence to predict future observations and events.  

Useful models provide valuable analogies for new situations. The challenge 
lies in finding a model that is simple and yields useful information, but it 
sufficiently diversified to give all the information required with sufficient 
accuracy (Meyer, 1985; Tayler, 1986; Besseling and Liessen, 1994). 

Models can be built with varying degree of details at the different scale levels. 
A super-macro model for universe is similar a high-power telescope. A macro-model 
for material and structure is similar to naked eye; it takes global picture of the object 
at large fine details. A meso-model is similar to a low-power microscope. A 
micro-model is equivalent to a high-power microscope where the view of vision is 
narrow down to a local region giving the fine details (Meyer, 1985; Tayler, 1986). 
The multi-scale analysis of materials and structures on various scales are presented 
(Ortiz, 2008; Sadowski, 2005; Ottosen and Ristinmaa, 2005; Ma et al., 2004; 2008; 
Li et al., 2010; Schrefler, 2009; Zohdi and Wridggers, 2001; Ladevdz and Fish, 
2003). It can be illustrated by a picture as shown in Fig. 19.1 (Li et al., 2007). 

Multiscale modeling applied to meso and macro scale continuum calculations 
is a broad field with a long history. It encompasses hardening relations based on 
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dislocation density, porosity related ductile failure models, crystal plasticity, 
composite media and numerous other general topics dating back more than half a 
century. There are also a myriad of more recent activities that can be grouped 
under this subject heading (Becker, 2007; McDowell, 2010).  

Emphasis will be placed on the research of yield criterion of element or unit 
cell under complex stress state in this chapter. 
 

 
Fig. 19.1 The multiscale analysis of material and structure (Li et al., 2007) 

 
Plastic yield criterion of metallic glass based on atomistic basis was studied by 

Schuh and Lund (2003). Atomic-scale study of plastic-yield criterion in 
nanocrystalline CU is given by Dongare et al. (2010). 

The theory of the plastic distortion of a polycrystalline aggregate under 
combined stresses were studied by Bishop and Hill (1951), Kröner (1961) as well 
as Lin and Ito (1965; 1966) and others. The yield loci of polycrystalline 
aggregates under the combined stress (�~�) were studied by Lin and Ito (1965; 
1966). The calculate models of Lin and Ito for polycrystalline aggregates are 
shown in Fig. 19.2. Three yield loci (dotted line) corresponding to the three plastic 
strain increment H�=0, H�=0.01>10-6 and H�=2>10-6 were given, as shown in the 
three dotted lines in Fig. 19.3 (Lin and Ito, 1965; 1966). 

 

Fig. 19.2 Simulate model of polycrystalline aggregates (Lin and Ito, 1965; 1966)
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The three solid lines in Fig. 19.3, top to bottom respectiuely correspond to the 

twin shear yield criterion (Yu, 1961) or the maximum deviatoric stress criterion 
(Haythornthwaite, 1961), three-shear yield criterion (Huber-von Mises criterion) 
and the single-shear yield criterion (Tresca criterion), in which the two yield loci 
of the Huber-von Mises criterion and the Tresca criterion were given by Lin and 
Ito (1965; 1966), and the third yield locus of the twin-shear yield criterion was 
added by Yu and Zeng in 1993 in the Collection of Papers Dedicated to Professor 
Tung-Hua Lin in Celebration of His 80th Birthday (Yu and Zeng, 1993). 

The multi-scale analysis of materials and structures crosses wide fields of 
research (Becker, 2007; Ghosh et al., 1995; 1996; Ghosh et al., 2001; Tomasz 
Sadowski, 2005; Ottosen and Ristinmaa, 2005; Kröner, 1977; Fish and Yu, 2001; 
Jasiuk and Strarzewski, 1994; 1998; Li et al., 2010; Liu et al., 2004, McDowell et 
al., 1985 to 2010; Picu, 2003; Raabe, 1998; Schrefler, 2009; Faria et al., 2010). A 
serial symposium and proceedings on meso-mechanics are organized and edited 
by Sih GC, such as the proceedings of an Int. Conf. of Role of Mechanics for 
Development of Science and Technology, held at Xi’an Jiaotong University, Xi’an, 
China, June 13-16, 2000 (Sih, 2000). A plenary lecture on material model in 
mesomechanics and macromechanics was presented by Yu at this Conference (Yu, 
2000).  

Many models have been proposed in 
applied mechanics. In what follows, the 
discussion will be confined to the strength 
models of materials under the complex stress 
state within the framework of continuum 
mesomechanics and macromechanics. The 
multi-scale analysis with emphasis on the yield 
surface of element (unit cell) under complex 
stress will be described in this chapter. The 
interaction yield surface of structures under 
combined loading is also discussed briefly. The 
multi-scale analysis of strength of material 
under various scale complex stress is illustrated 
as shown in Fig. 19.4. 

Fig. 19.4 The multi-scale analysis 
of strength of material under various 
scales of complex stress 

Fig. 19.3 Three yield loci of polycrystalline aggregates
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19.2 Interaction Yield Surface of Structures 

The cross-section of an element of structure, in the general case, is loaded by a 
combination of a normal force, bending moments at different directions, shear 
force, a torsion moment etc. All these quantities can be referred as the generalized 
force, denoted by the symbol Q 1=Q(Nz, Qx, Qy, Mx, My, Tz). Nz, Qx, Qy, Mx, My, Tz , 
which are the plastic limit force of tension/compression, shear force, bending 
moment and torque moment, respectively. Interaction yield surface for generalized 
force for different structures are discussed by Hodge (1959), Save and Massonet 
(1972), Zyczkowski (1981), Sawczuk (1989), Stronge and Yu (1993). Detail 
description of interaction yield surfaces can be seen in Zyczkowski (1981)  

Figure 19.5 shows the elastic-plastic state for a simply supported circular plate. 
The generalized yield surface, or interaction yield surface for circular plate obeying 
the unified yield criterion is shown in Fig. 19.6 (Liu and Jiang, 2008). Similar results 
can be found in structural plasticity (Yu et al., 2009) and plastic analysis of 
structures (Hodge, 1959; Zyczkowski, 1981, Stronge and Yu, 1993). 

 

 
Fig. 19.5 Elastic-plastic state for a simply supported circular plate 

 

 
Fig. 19.6 The generalized yield surface for a circular plate obeying the unified yield criterion 
(Liu and Jiang, 2008)

Plastic zone 

Elastic zone 
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19.3 Models in Mesomechanics and Macromechanics 

A host of material models have been proposed in meso-mechanics. They include 
those for dislocation (Bomert et al., 1994), shear stress slip model, polycrystalline 
aggregate model (Lin and Ito, 1965; Dvorak and Bahei-E1-Din, 1997; Gologanu 
et al., 1993), equivalent inclusion (Hashin, 1962; 1983; Hashin and Shtrikman, 
1964), Dugdale crack and Dugdale damage (Christeensen and Lo, 1979; Gologanu 
et al., 1997), continuum damage (Gurson, 1977), damage of domain of microcrack 
growth (Dvorak, 1999) , and the differential self-consistent model etc. Continuum 
micro-mechanics of elastoplastic polycrystals was presented by Hill (1965). 

19.3.1 RVE and HEM Model  

Representative volume element (RVE) model (Hashin, 1962; 1983; Sun and 
Vaidya, 1996) and homogeneous equivalent medium (HEM) model are defined 
such that there prevails a sufficient number of volumes or subvolumes, subjected 
to macroscopically uniform stress, strain, or temperature change. The bulk 
properties are not dependent on its size (de Buhan and de Pelice, 1997). RVE 
model and HEM model have been used widely in mesomechanics. 

19.3.2 Equivalent Inclusion Model 

The elastic field for an ellipsoidal inclusion has been determined in Hashin (1962). 
The important result is that the strain field in the inclusion is uniform. 

19.3.3 CSA and CCA Models 

A direct and simple way to represent the matrix connectedness of a composite 
material was proposed. The composite spheres assemblage (CSA) model applies 
to an isotropic particulate while the composite cylinders assemblage (CCA) model 
introduced later has been used for fiber-reinforced transversely isotropic materials. 
The latter pertains to unbounded set of contiguous similar composite spheres of all 
sizes, including those that tends to zero such that the voids between the sphere 
could be filled. 
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19.3.4 Gurson Homogenized Model 

The Gurson homogenized model (Gurson, 1977) for porous ductile metals is based 
on an approximate limit-analysis for hollow spheres made of rigid ideal-plastic 
material using the von Mises yield criterion. Some Gurson models consider the 
influence of void shape. The effect of strong gradients of macroscopic fields were 
proposed.  

19.3.5 Periodic Distribution Model 

Figure 19.12 shows some isotropic distributed patterns of periodic distribution 
model (PDM) (Christeensen and Lo, 1979).  

19.3.6 PHA Model and 3-Fold Axissymmetrical Model  

The periodic hexagonal array (PHA) model deals with a microstructure that 
consists of hexagonal and dodecahedral cylindrical fibers (Gologanu et al., 1993). 
A 3-fold axis of rotational symmetry model has been proposed (Dvorak and 
Bahei-E1-Din, 1997).  

19.3.7 A Unit Cell of Masonry 

A continuum model for assessing the ultimate failure of masonry as a 
homogenized material can be found in the literature. The unit cell is a rhombic 
model. Several other models have been used in the analyses of reinforced concrete 
and reinforced plastic. 

19.3.8 Topological Disorder Models  

Disorder models dispersion patterns of fibres were proposed (Pyrz and Bochenek, 
1998).
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19.3.9 Random Field Models of Heterogeneous Materials 

The random field models of heterogeneous materials were presented by 
Ostoja-Strarzewski (1993; 1994; 1998).  

The idea of a unit cell and other models were used. Several models of 
composite and heterogeneous materials were presented (Hashin, 1962; l Gurson, 
1977; Christeensen and Lo, 1979; Ostoja-Strarzewski, 1993; 1994; 1998; Dvorak 
and Bahei-E1-Din, 1997; Pyrz and Bochenek, 1998; Dvorak, 1999 ), which are 
shown in Fig. 19.7. 

 

 

      

Fig. 19.7 Several models of composite and heterogeneous materials  

19.4 Failure Surface for Cellular Materials under Multiaxial 
Loads and Damage Surfaces of a Spheroidized Graphite 
Cast Iron 

In many applications, foams, including rigid polymer foam, lightweight cellular 
concrete, metallic foams and ceramic foam are subjected to multiaxial stresses. 
Systematic investigations regarding the multiaxial failure of foams were done at 
MIT (Massachu-setts Institute of Technology), Cambridge University and Harvard 
University. Failure surfaces for cellular materials under multiaxial loads are 
presented by by Gibson and Ashby (1987; 1997), Gibson et al. (1989), 
Triantafillou and Zhang (1989), Triantafillou and Gibson (1990). Theocaris (1991), 
Ashby et al. (2000), Deshpande and Fleck (2000), Gibson (2000), Gioux et al. 
(2000), Sridhar and Fleck (2000). A yield surface is developed using an analysis of 
an idealised foam. It may be referred to as the GAZT (Gibson et al., 1989) yield 
surface. The failure criterion for tensile rupture of foams is written as follows: 
 

F 1 2( , )I J = 2 10.2 crJ aI �� � �                (19.1) 
 

This equation is similar to the Drucker–Prager criterion for soils. The limit 
surfaces in stress space consist of two intersecting surfaces of conical shape 
associated with the tensile and compressive limit (Triantafillou and Gibson, 1990). 
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The yield surfaces of aluminum alloy foams for a range of axisymmetric 
compressive stress states have been investigated by Deshpande and Fleck (2000). 
The yield surfaces of compacted composite powders under triaxial testing were 
measured and studied by Sridhar and Fleck (2000). A design guide for metal 
foams was given by Ashby et al. (2000). A review for mechanical behavior of 
metallic foams was given by Gibson (2000). 

Aluminum foams are currently being considered for use in lightweight 
structural sandwich panels and in energy-absorption devices. In both applications, 
they may be subjected to multiaxial loads. Designers require a criterion to evaluate 
the combination of multiaxial loads that cause failure. The Drucker-Prager 
criterion and a yield surface for compaction of powders are used. Both 
phenomenological yield surfaces give a description of the multiaxial failure of the 
aluminum foams tested by Gioux et al. (2000). 

Multi-axial yield behaviour of polymer foams is found to be described 
adequately by the inner envelope of a quadratic function of mean stress and 
octahetral-shear stress and a maximun compressive principal stress criterion 
(Deshpande and Fleck, 2000). 

The global extremal yield surfaces of a unit cell are constructed with the 
numerical experiments by Schrefler (2009). 

The Huber-von Mises type functions are always used in damage mechanics 
(Kachanov, 1986; Lou, 1991; Lemaitre, 1992; Yu and Feng, 1997; Voyiadjis et al., 
1998). A theoretical and experimental study of damage surfaces for spheroidized 
graphite cast iron was presented by Hayakawa and Murakami (1998) and Murakami 
et al. (1998). Damage evolution and fundamental aspects of damage surface of a 
spheroidized graphite cast iron were observed. The existence and the development 
of the damage surface, together with the condition of loading, unloading and neutral 
loading, are elucidated. The initial, subsequent and final damage surfaces were 
obtained by Hayakawa and Murakami (1998), as shown in Fig. 19.8. 

 
Fig. 19.8 Damage surfaces under combined stress space (Hayakawa and Murakami, 1998)

 
The damage surfaces can be described by a first quadrant of an ellipse in the 

space of axial tensile and shear stress The ellipse of the initial damage surface has 
the aspect ratio of �/�=1.46, the ellipse of the subsequent damage surface is 
�/�=1.62, which are in contrast to the ellipse (�/�=1.733) of the initial yield 
surface of von Mises type yield criterion. A theoretical damage surface under 
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combined stress was proposed by Murakami et al. (1998), it is closed to the 
experimental results as shown in Fig. 19.8.  

It is interesting that the ellipse of the initial damage surface has the aspect ratio 
of �/�=1.46, which is closed well to the twin-shear yield criterion with the ratio of 
�/�=1.5. A twin-shear damage surface, a generalized twin-shear damage surface or 
the unified typed damage surface may be available. The generalized twin-shear 
strength criterion (Yu, 1985) and the unified strength theory (Yu, 1991) can be 
matched to the pressure sensitively materials.  

19.5 Mesomechanics Analysis of Composite Using UST  

The strength prediction for composite materials is very important in engineering. 
The homogenization method by using a unit cell is an effective method to evaluate 
the elastic stiffness property for the composite materials by many researchers. 
Micromechanical analysis of composite by the method of unit cell was 
summarized and reviewed by Aboudi (1989), Pindera and Aboudi (1989), Ju and 
Tseng (1996), Zhu et al. (1998). The analysis leads to the prediction of the overall 
behavior of various types of composites from the known material properties of 
fiber and matrix. The capability of the theory in providing the response of elastic, 
thermoelastic, viscoelastic, and viscoplastic composites, as well as their initial 
yield surfaces, strength envelopes, and fatigue failure curves, is demonstrated by 
Aboudi (1989).  

The evaluations of strength of composites under the biaxial stresses by using 
the unified yield criteria were given by Li YM and Ishii (1998a; 1998b). A series 
of biaxial loads were applied to the laminate sample of boron fiber unidirectional 
reinforced aluminum in material principal directions, and through a meso-unit-cell 
to get the corresponding macroscopic elasto-plastic behavior. The unified yield 
criterion was used as an elasto-plastic flow potential function to evaluate strength 
of composite. This approach ensures the uniformity of the stress field and has no 
any so called slip generally in the grips during the experiment. It means that one 
can get a preliminary understanding of the macroscopic nonlinear elasto-plastic 
properties easily by numerical analysis. The corresponding FEM analysis system 
were developed by Quint Co. in Japan (1993; 1994).  

For the flow potential function at the mesoscopic level, the unified yield 
criterion was used (Li and Ishii, 1998). The coefficient b  in the unified yield 
criterion could be determined by pure shear test. Since the pure shear test is 
usually difficult to be carried out, the b can be taken in a range of 0 1�� b for 
various materials. Equation (10.2) should be turned to be the Tresca yield criterion 
when � =1 and b=0, or the Twin Shear Stress (TSS) criterion (Yu, 1961) when � 
=1 and b=1, or it is closes to the Huber von Mises yield criterion with linearity 
when � =1 and b=0.5. It is easy to find that the coefficient b is obviously a 
parameter reflecting the strength property on � -plane when stress state is close to 
the pure shear stress state. In fact, include all possible existing criteria which 
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satisfy the convex postulate on � -plane by 0 �� b 1. So, one can select a different 
value of b for using different yield function by installing the unified yield criterion 
only into FE-code.  

The unified yield criterion was used in meso-unit-cell for getting macroscopic 
elasto-plastic responses. This model can be considered as an experimental sample of 
the unidirectional reinforced laminate, and the biaxial uniform loading is applied to 
the two directions X1 and X2 as shown in Fig. 19.9. 

 

 
Fig. 19.9 The sample model: macro and meso 

 
The meso-scopic properties for fiber and matrix are:  
Boron: 413.7fE � GPa, f =0.21, 0

f� =3200 MPa;  

Aluminum: 9.68�mE GPa, f =0.33, 0
m� =262 MPa.  

Here, it is assumed that the boron fiber and aluminum matrix are of ideal 
elasto-plastic properties. 

Figure 19.10(a) is the stress-strain properties for the tension loading in fiber 
direction only, and it is found that there is almost no difference among the 
macroscopic stress-strain curves with three yield criteria. For the tension loading 
in transverse direction only, however, the nonlinear stress-strain curves appear 
very different as shown in Fig. 19.10(b). 

 

 
(a) Fiber direction loading only             (b) Transverse loading only 

 
Fig. 19.10 Stress-strain curves for composite (Li and Ishii) 
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Obviously, the difference of nonlinear stress-strain properties is depended on 
the load condition by using various yield criteria at meso-scopic level. The plastic 
zones with different yield criteria are shown in Fig. 19.11. Figure 19.11 shows that 
the twin-shear yield criterion (Yu, 1961) gives a smaller plastic zone, and the 
single-shear yield criterion (Tresca, 1864) gives a bigger plastic zone in the 
unit-cell under same load.  

 

 
   (a) Tresca material       (b) von Mises material      (c)Twin-shear material 

Fig. 19.11 Plastic zones in meso-unit-cell under same load (Li and Ishii) 
 

The conclusion obtained by Li and Ishii is that the installation of the unified 
yield criterion makes it easy to use various yield criteria to evaluate the strength 
property of composite. 

The unified yield criterion and the approach Li and Ishii used may be extended 
for more complex meso-construction composite materials, such waved fiber, 
honeycomb, of which the strength relation evaluation between macro and micro is 
not very clear until now. 

The unified strength theory give us with a effect and powerful theoretical basic 
to study the effect of failure criterion on the evaluation of elasto-plastic behaviour 
of composite and other materials at macro and meso levels. Multiscale modelling 
of damage and fracture processes in composite materials was summarized by 
Sadowski (2005). 

19.6 Multiscale Analysis of Yield Criterion of Metallic Glass 
Based on Atomistic Basis (Schuh and Lund, 2003) 

Plastic yield criterion of metallic glass based on atomistic basis was studied by 
Schuh and Lund in 2003. The simulation model on atomistic basis is shown in 
Fig. 19.12 (Schuh and Lund 2003; Lund and Schuh, 2005). 
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Fig. 19.12 Simulation model on atomistic basis (Schuh and Lund, 2003) 

 
The two simulation results of metallic glass under plane stress on atomic basis 

given by Schuh and Lund are shown in Fig. 19.13 and Fig. 19.14. It indicted that 
metallic glass is tension-compression asymmetry; the Huber von Mises criterion 
and the Tresca criterion cannot be adapted for metallic glass. The comparison of 
the simulation results of yield locus with the Mohr-Coulomb yield locus (solid line) 
is shown in Fig. 19.14. 

 
Fig. 19.13 Simulation results (Schuh and Lund, 2003)

 
Fig. 19.14 Simulation results (Schuh and Lund, 2003) 
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19.7 Multiscale Analysis of Yield Criterion of Molybdenum and 
Tungsten Based on Atomistic Basis (Groger et al., 2008) 

Multiscale modeling of plastic deformation of molybdenum and tungsten is 
studied by Groger et al. (2008). Yield surface for single crystals based on atomistic 
studies is obtained by Groger et al. as shown in Fig. 19.15. 
 

Fig. 19.15 Yield and flow surfaces predicted from a Taylor model for bcc Mo (Groger et al., 
2008) 

 
Simple isotropic functions that accurately describe computed yield and flow 

surfaces for random bcc poly-crystals obtained from calculations, such as those 
shown in Fig. 19.15, are given by Groger (2008). They constructed the analytical 
yield criteria as  

 
3/ 2 1/ 3

2 33[( ) ]F J bJ� � ; 23G J�                   (19.2) 
 
where 2 / 2kl klJ s s�  and 3 / 3ij jk kiJ s s s�  are the second and third invariants of 
the deviatoric stress tensor. 

19.8 Phase Transformation Yield Criterion of Shape-Memory 
Alloys  

Mechanical behavior and yield surface of shape memory alloy (SMA) under 
multiaxial stress has been studied widely. It has been found that the “yield” 
(transformation start stress in stress induced phase transformation) surface does 
neither really match the Huber-von Mises yield criterion nor the Tresca yield 
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criterion. The possibility of using such a “yield” surface to predict the behavior of 
a SMA under other stress conditions. “Yield” surfaces of shape memory alloys and 
their applications were studied by Huang (1999), Lim and McDowell (1999), Gall 
et al. (1998), Novák and Šittner (2004) The “yield” surfaces of four 
polycrystalline SMAs (NiTi, NiAl, CuZnGa, and CuAlNi) are investigated by 
Lexcellent et al. (2002; 2004; 2007; 2010). Phenomenological simulation of yield 
surfaces of NiTi polycrystal for different temperatures was presented by 
Lexcellent et al. (2002). A generalized macroscopic J2-J3 criterion to describe the 
transformation onset is proposed and identified (Bouvet et al., 2002). 
Determination and transport of phase transformation yield surfaces for shape 
memory alloys are also given by Gibeau, Laydi and Lexcellent (2010). Yield 
surface of Cu-Al-Be polycrystalline was presented by Lexcellent et al. (2004). 

Experimental yield surface of phase transformation initiation for 
bicompression and tension (compression)–internal pressure tests for CuAlBe 
polycrystalline was obtained by Lexcellent et al. (2002; 2007; 2010). A general 
formula to describe these “yield” surfaces is found by Lexcellent et al. The 
parameters in this formula can be calculated by using the “yield” stresses of 
tension and compression of a particular SMA. The analytical results agree well 
with reported experimental data of NiTi. 

The simulation and experimental yield surfaces of phase transformation for 
shape memory ally (Lexcellent, 2010), as shown in Fig. 19.16. 

 

    
Fig. 19.16 Simulation and experimental yield surface of phase transformation for CuAlBe 
shape memory alloy (Lexcellent, 2010) 

 
A new yield surface is presented by Kolupaev and Altenbach (2010), which is 

illustrated by red line in Fig. 19.17. It is interesting that the Kolupaev-Altenbach 
yield surface is similar to the simulation and experimental yield surfaces of shape 
memory alloy, as shown in Fig. 19.16 (Lexcellent, 2010). 
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Fig. 19.17 New yield surface (Kolupaev-Altenbach, 2010) 
 
The transformation yield surface of shape-memory alloys was also studied by 

Bhattacharya and Schlömerkemper (2004). 

19.9 Atomic-Scale Study of Yield Criterion in Nanocrystalline 
CU 

Atomic-scale study of plastic-yield criterion in nanocrystalline CU is given by 
Dongare et al. (2010). Initial configuration of nanocrystalline Cu with an average 
grain size of 6nm. System consists of approximately 1.2 million atoms arranged in 
122 grains, as shown in Fig. 19.18. Molecular dynamics (MD) simulations for 
yield surface are presented. Plot of the calculated yield stress and flow (peak) 
stress in tension and compression at strain rates 1×109 s�1 to 8×109 s�1, respectively 
is given in Fig. 19.19. It is seen that yield stress and limit stress values are greater 
in compression and the difference increases with increasing strain rates. So, the 
single parameter yield criterion cannot be adopted for nanocrystalline CU.  

Fig. 19.18  Initial configuration of nanocrystalline Cu with an average grain size of 6 nm 
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Fig. 9.19  Plot of the calculated yield stress and limit (peak) stress in tension and compression 
 

In the work of Dongare et al. (2010), the biaxial yield surface is calculated by 
plotting the yield/limit stresses during loading of the nanocrystalline metal by 
equal/unequal amounts in the X and Y directions and keeping the stress in the Z 
direction constant (�x =�1, �y=�2, and �3=�z=0). The calculated yield stresses and 
limit stresses under combined biaxial loading conditions (X-Y) give a locus of 
points that can be described with a traditional ellipse. However, the center of the 
ellipse deviated from the center of coordinate (solid lines) a small value, as shown 
in Fig. 19.20. Dashed lines indicate the shifted center of the ellipse.  

 

     
(a) Yield stress (0.2% offset stress)          (b) Limit stress (peak value of stress) 

Fig. 19.20 Yield loci for biaxial loading in the X and Y directions and zero stress in the Z 
direction 

 
The deviation of shifted center of the ellipse is due to the SD (Strength 

Difference) effect of material, or the tension-compression asymmetry in yield 
stress and limit stress. It is need to find other theory and method to match these 
results. A two-parameters yield criterion (or limit criterion), which the SD effect is 
taken into account, is necessary. The strength ratio of material in tension and in 
compression �=�t /�c is introduced that allows for the incorporation of the tension 
compression asymmetry. The strength ratio of material in tension and in 
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compression is �=�t /�c=0.88 to �=�t /�c=0.9 in this case. The traditional von 
Mises yield criterion and Tresca yield criterion cannot be fitted to the results.  

It is interesting that the results are situated between two convex bounds, as 
shown in Fig. 19.21. The SD effect is taken into account in these two convex 
bounds. The inner bound (dotted line) is the Mohr-Coulomb theory.  

 

(a) Yield stress (0.2% offset stress)        (b) Limit stress (peak value of stress) 

Fig. 19.21 The results situated between two convex bounds  

19.10  A General Yield Criteria for Unit Cell in Multiscale 
Plasticity  

Consider a unit cell on the mesoscale with the length of all edges equal to l� , as 
shown in Fig. 19.22. Within this unit cell, the cell is sufficiently small, higher 
order displacement gradients can be ignored and the strain field varies linearly as 
the Hooke law. It is assumed that the essential structure of conventional plasticity 
is preserved on the micro-scale. The Huber-von Mises criterion was always used 
as the micro-scale effective stress and strain analysis.  

In general, the yield behavious of unit cell in meso-scale and micro-scale is 
always strength asymmetric in tension and in compression. So, a two parameter 
yield criterion is need. 
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Fig. 19.22 Macro-meso-micro analysis of element (or unit cell) under complex stress 

 
The material models are widely used in mesomechanics and macromechanics. 

It is hopeful that a simple model could be found to give useful information. It 
should also be sufficiently general and yield accurate results. Moreover, the 
formulation should contain the least number of state variables. 

It is assumed that: 
1) The strength of unit cell at different direction is identical, but the strength is 

different in tension and in compression. The cell is a SD material. The SD material 
is also referred as strength asymmetrical in tension and in compression.  

2) The strength of unit cell is different at different scales. Denoted the strength 
as Mt

 v tensile strength of unit cell, Mc
v compressive strength of unit cell. 

3) The principal stresses acted on the each sides is denoted as M1, M2 and M3. 
So, the single parameter criteria, such as the Tresca criterion, the Huber-von 

Mises criterion and the twin-shear single parameter criterion (Yu, 1961) or the 
maximum deviatoric stress criterion (Schmidt, 1932; Ishlinsky, 1940; Hill, 1950; 
Haythornthwaite, 1961, see: Chapter 3) cannot be adopted.  

According to the UST, a simple general yield criterion for unit cell may be 
proposed as follows:  
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where �=Mt/Mc is strength ratio of unit cell in tension and in compression. b is a 
parameter for the choice of yield criterion.   

The yield loci of this criterion in plane stress state are illustrated in Fig. 19.23 
for two different ratio of �=Mt/Mc. 
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     (a) �=0.3                               (b) �=0.7 

Fig. 19.23 Strength difference in tension and in compression 
 

This general yield criterion for unit cell can be also extended to the 
non-convex yield loci when the parameter b<0 or b>1. The convex yield loci and 
non-convex yield loci of the unified yield loci of unit cell for �=0.5 material are 
shown in Fig. 19.24. Many problems regarding the non-convex yield surface 
remain open. A Plenary Lecture on “Nonconvex Plasticity and Microstructure” 
was presented by Ortiz at 22nd International Congress of Theoretical and Applied 
Mechanics, Adelaide, Australia, August 27, 2008.  

 

 
Fig. 19.24 Convex yield loci and non-convex yield loci 

 

This general yield criterion for unit cell is a very simple criterion. However, it 
is better to match many new results. The calculative results of metallic grass at 
atomic base have been obtained by Schuh et al. (2003; 2005), as shown in 
Figs. 19.13 and 19.14. They are shown again with the comparison to yield 
criterion in Fig. 19.25 and Fig. 19.26. The yield surfaces of simulation results for 
metallic glass are convex and strength asymmetric in tension and in compression, 
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which are situated between the two bounds as shown in Fig. 19.25. The 
comparisons of the UST b=0 (inner bound), b=0.5 (median) and b=1 (upper bound) 
with simulation result of Schuh et al. are given. 

Obviously, the results show the strength asymmetric in metallic grass (Schuh 
and Lund, 2003). The Tresca criterion and Huber-von Mises criterion cannot be 
adopted. The Mohr-Coulomb criterion may be used for match the results. It is 
noted that the general yield criterion for unit cell with b=0.5 is also adapted for 
this result, as shown in Figs. 19.25 and 19.26. 

Atomic-scale study of plastic-yield criterion in nanocrystalline CU is given by 
Dongare, et al. (2010), as stated in section 19.9. The results indicate that: 

1) The strength of nanocrystalline CU is tension-compression asymmetry. It 
has been indicated in Fig. 19.20. The strength ratio of material in tension and in 
compression is �=�t /�c=0.88 to �=�t /�c=0.9. So a two-parameter yield criterion 
is needed. 

 

 
Fig. 19.25  Comparison of the UST b=0, b=0.5 and b=1 with simulation result of Schuh et al. 

 
 

 
(a) Simulation results for metallic glass       (b) Match of simulation results with b=1/2 

Fig. 19.26  Comparison of the UST b=0.5 with simulation result of Schuh et al. 
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Fig. 19.27 The comparison of the calculated  yield loci and the general yield criterion for unit 
cell with parameter b=1/2 

2) The yield loci (yield locus and limit locus) obtained from MD simulations 
are situated between two convex bounds, as shown in Fig. 19.21. 

3) The calculated biaxial yield loci for the yield stress and limit stress can be 
fit to the general yield criterion for unit cell, described in equations 19.3a and 
19.3b. A series of yield loci is shown in Figs. 19.23 and 19.24. 

4) Significant work is needed to evaluate the parameter b to plasticity under 
multiaxial loading conditions and, in turn, the yield criterion to predict the 
macroscopic behavior of these metals at different loading conditions. 

5) The comparison of the calculated biaxial yield surface for the yield and 
limit stresses and the general yield criterion for unit cell with parameter b=1/2 are 
shown in Fig. 19.27. 

The shape of yield loci of the unified strength theory will be changed if the 
strength ratio of material in tension and in compression �=�t /�c is decreased. 
Fig. 19.28 shows the yield loci of the unified strength theory with five typed cases 
(b=0, b=1/4, b=1/2, b=3/4, b=1) and three typed cases (b=0, b=1/2, b=1) when the 
strength ratio of material in tension and in compression �=�t /�c=1/2. 
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(a) UST with five and three typed cases 

 
(b) UST with b=1/2 

Fig. 19.28 Yield loci of the UST in plane stress state(for �=�t /�c=1/2 material)
 

19.11  Virtual Material Testing Based on Crystal Plasticity 
Finite Element Simulations 

 

The CPFE (Crystal Plasticity Finite Element) method is studied systematically by 
Raabe et al. (Raabe, 1998; Kraska et al., 2009; Roters et al., 2010). The effects of 
microstructure and texture and their evolution during deformation are taken into 
account. The example in this section presents an application of the CPFE method 
for the concept of virtual material testing using a representative volume element 
(RVE) approach (Kraska et al., 2009). By using such numerical test protocols it 
becomes possible to determine the actual shape of the yield locus, and to use this 
information to calibrate empirical constitutive models used. Along with standard 
uniaxial tensile tests, other strain paths are numerically monitored, such as biaxial 
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tensile, compressive or shear tests. The use of the CPFE method for virtual testing 
of yield locus is demonstrated by Roters et al. for a low-carbon steel grade.  

19.12  Meso-Mechanical Analysis of Failure Criterion for 
Concrete 

The computational modelling of failure criteria for concrete materials was studied 
by Buyukozturk et al. (1970), and Liu et al. (1972). The unit cell of concrete 
combined by circular aggregate and mortar was used. Needleman (1994) gave a 
summary relating the computational modelling of materials failure. 

The model of concrete composited by circular aggregate and mortar is shown 
in Fig. 19.29. The failure criterion for concrete was obtained by Liu et al. (1972) 
as shown in Fig. 19.30, in which the dotted lines is the analysis result, and the 
solid point is the experimental result.  

 

      
Fig. 19.29 Analysis model of concrete composited by circular aggregate and mortar 

 

 
Fig. 19.30 Simulated limit locus for concrete under biaxial compression (Liu et al., 1972) 
 
The computational simulation of failure criterion for concrete was done by Yu 

and Zeng (1993) and Zeng and Wei (1998). The concrete was regarded as a 
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composite material composed of big aggregates (1), small aggregates (2), water 
bubble (3), air bubble (4), and mortar (5) as shown in Figs. 19.31 (a)~19.31(c). 
The Unified Elasto-Plastic Program and the twin-shear strength theory were used 
under plane stress condition and plane strain condition.  

Various stress combinations were calculated. Different model and different 
stress state �1,�2, �3=0 (�3�0) gave different limit value. Twenty-two stress 
combinations were calculated as shown in Fig. 10.32. The failure locus of concrete 
with big aggregate is smallest, and anisotropic. The failure loci obtained according 
to three meso-models are shown by the solid curve, the dotted curve and the 
broken curve, respectively. The horizontal compressive strength of model with big 
aggregate is larger than that of vertical. The failure locus of concrete becomes 
larger and isotropic when the size of aggregates decreased. 

 

(a) Large aggregates      (b) Moderate aggregates        (c) Small aggregates 
1: Large aggregates;  2: Small aggregates;  3: Water bubble;  4: Air bubble;  5: Mortar; 

Fig. 19.31 Three meso-concrete models with different aggregate gradation 
 

 
Fig. 19.32 Failure loci of three meso-concrete models under plastic stress conditions  

 
Figure 19.33 shows the computational failure loci of the meso-model under the 

plane strain condition �1, �2, �3=0 (�3�0) by using of the Mohr-Coulomb strength 
theory and the twin-shear strength theory. The outer failure locus (line 2) is 
obtained using the twin-shear strength theory, and the inner failure locus (line 1) is 
obtained using the Mohr-Coulomb strength theory. The solid points are the 
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experimental results. The biaxial compressive strength of concrete at the 
compressive stress zone under the plane strain condition is larger than that of the 
plane stress condition, which agrees with the experimental results.  

 

 
1: Single-shear theory               2: Twin-shear theory 

Fig. 19.33 Failure loci of meso-concrete models under plastic strain condition   
 

Recently, a meso-mechanical analysis of concrete specimens under biaxial 
loading was presented by Caballero et al. (2007). Finite element mesh for concrete 
and rigid platens and numerical results under plane stress are shown in Fig. 19.34. 
Seventeen simulation results (above the diagonal �1=�2) under different loading 
paths with different proportions of �1 and �2 are obtained as shown in Fig. 19.34. 
The failure locus is obtained by connecting these 17 points and using the 
symmetric condition about the diagonal �1=�2. 

 

Fig. 19.34 FE mesh for concrete and rigid platens and numerical failure 
  locus for concrete under plane stress (Caballero et al., 2007)  

 
The results show that the tensile strength and compressive strength of concrete 

is different (fc�ft). It means that the single-parameter criteria are not suitable. The 
results also show that the strength of concrete under equal bi-axial compression is 
not equal to unaxial compressive strength (fcc�fc), therefore, the three-parameter 
criterion is better. The two-parameter criterion of single-shear theory 

x
y

z
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(Mohr-Coulomb strength theory) and the three-parameter criterion of single-shear 
theory (dashed line) are plotted in Fig. 19.34. The simulated results do not match 
them. 

The simulation results can also be fitted by using the experience curve. But the 
curve equation is not easy for using. 

This simulation result may be matched by a three-parameter criterion reduced 
from the three-parameter unified strength theory. Comparison of the 
micromechanical analysis of concrete under plane stress with the three-parameter 
unified strength theory is shown in Fig. 19.35. In the figure, the dashed line is the 
three-parameter single-shear theory (or the three-parameter unified strength theory 
with b=0); the solid line is the three-parameter unified strength theory with b=1; 
dot dashed line is the three-parameter unified strength theory with b=1/2. They 
showed an intersection relationship between the simulated results and the 
three-parameter unified strength theory with b=1/2.

 

 
Fig. 19.35 The comparison of the micromechanical analysis of concrete under plane stress with 
the three-parameter unified strength theory 

19.13  Brief Summary 

Mesomechanics and multiscale modelling for yield surface are studied in this 
chapter. The prediction of strength of materials and structures for different scale 
yield surface is influenced strongly by the choosing of the material model. It is 
very important that how to choose the reasonable strength theory (yield criteria, 
failure criterion, or material model in FEM code) in the research and design. The 
change in shape and size of the yield surface of various failure criteria is great. A 
general, but simple and thereby suited for many potential users may be developed.  

The interaction yield surface of structures, yield loci of polycrystalline 
aggregates under the combined stress (�~�) (Lin and Ito), models in meso and 
macro mechanics, failure surface for cellular materials under multiaxial loads, 
multiscale analysis of composite using UST (Li and Ishii), multiscale analysis of 
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yield criterion of metallic glass based on atomistic basis (Schuh and Lund), 
atomic-scale study of plastic-yield criterion in nanocrystalline CU (Dongare et al., 
2010), multiscale analysis of yield criterion of molybdenum and tungsten based on 
atomistic basis (Groger), phase transformation yield criterion of shape-memory 
alloys (Lexcellent et al., 2002; 2004; 2007; Gibeau, 2010; Bhattacharya and 
Schlömerkemper, 2004), extremal yield surfaces of a unit cell (Schrefler, 2009), 
damage surface under combined stress (Murakami, Hayakawa and Liu Y)), virtual 
material testing based on crystal plasticity finite element simulations (Roters et al,. 
2010) and meso-mechanical analysis of failure criterion for concrete (Liu et al., 
1972; Yu and Zeng, 1993; Caballero, 2007) are described in this chapter. 

A general yield criterion for unit cell in multiscale plasticity is proposed in 
Section 19.10, and several comparisons between yield surfaces of material in 
multiscale plasticity are given in Sections 19.10 and 19.12. 
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Miscellaneous Issues:  
Ancient Structures, Propellant of Solid Rocket, 
Parts of Rocket and Generator 

20.1 Introduction 

The stability of `an ancient city wall and the foundation of an ancient pagoda, the 
strength of the parts of a rocket and generator, a plastic analysis of a thick-walled 
cylinder and 2D and 3D finite element simulations of a solid rocket motor grain 
are studied in this chapter. The unified strength theory is used in all these 
problems. Finally, several comments, reviews and research on the unified strength 
theory are presented from published papers and books.  

More than 5000 city walls existed in China before the 1950s. Most of them 
were destroyed between the 1950s and 1970s. Fortunately, several ancient 
structures built during the Tang Dynasty 1350 years ago and the Ming Dynasty 
620 years ago in Xi’an are well preserved. The Ming City Wall in Xi’an is now the 
only large city wall preserved in China, as shown in Fig. 20.1 and Fig. 20.2 (Yu et 
al., 2009).  

Several ancient Pagoda in the Xi’an area are shown in Fig. 20.3. They are the 
Big Goose Pagoda, Small Goose Pagoda and the Famen Temple Pagoda. The Big 
Goose Pagoda was constructed during the Tang Dynasty in A.D. 653 and was 
repaired in A.D. 930. The pagoda is 64.1 meters high from the spire to the ground. 
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Fig. 20.1 South-east corner of Xi’an City Wall (Yu, 2009) 

 

 

Fig. 20.2 South-west corner of Xi’an City Wall (Yu, 2009  

                
(a)Big Goose Pagoda        (b) Small Goose Pagoda    (c) Famen Temple Pagoda 

Fig. 20.3 Ancient Pagoda at Xi’an area built in Tang Dynasty (AD 652-930)  
 

The circumference of the city wall of the Ming Dynasty is 14 km, but the 
length of the bomb shelters (caves) inside or under the city wall reach 41 km. 
One-third of the caves were built in the 1940s to protect against Japanese bombing 
and two-thirds were built in the 1970s at the call of Mao Zedong to “Dig the cave 
deeply”. Some city walls were destroyed, as shown in Fig. 20.4.  

 

   
Fig. 20.4 Destroyed city wall due to the dug caves  

 



20.1  Introduction 

 

483 

Half the Famen Temple Pagoda collapsed on Aug. 24th, 1981 (Fig. 20.5). The 
Big Goose Pagoda is leaning somewhat to the west, as shown in Fig. 20.6. All the 
pagodas have an underground mausoleum chamber. There is a need for research into 
the bearing capacity of the city wall and pagoda foundations (Yu et al., 2008; 2009). 

 

  
Fig. 20.5 Half collapsed Pagoda    Fig. 20.6 The lining of the Big Goose Pagoda  

 
In order to investigate the bearing capacity of the foundations of an ancient 

pagoda, we firstly researched the strength behaviour of the loess in Xi’an. The 
tensile strength and compressive strength of materials of ancient architectures are 
always unequal. They are referred to as SD materials (strength difference in 
tension and in compression). Therefore, the Tresca failure criterion, the Huber-von 
Mises failure criterion and the twin-shear yield criterion for metallic materials are 
not adapted. The test also illustrates that the intermediate principal stress �2 has a 
strong influence on the strength of the loess and should be taken into account in 
numerical analysis for geomechanics and geotechnical engineering.  

A series of failure criteria for SD materials of the unified strength theory have 
been described in Chapter 4. The unified strength theory is represented as follows: 
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When choosing different values of parameter b, the unified strength theory can 
represent or approach various existing yield criteria. The Mohr-Coulomb’s 
single-shear strength theory is obtained when b=0; it is the generalized twin-shear 
strength theory when b=1; when b=1/2 it is a new yield criterion between the 
former two theories. Their limit loci on the deviatoric plane in the stress space is 
shown in Fig. 20.7.
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Fig. 20.7 The limit loci of  Fig. 20.8 The comparison between the 
the unified strength theory          unified strength theory and the experiment result 

 
Many test results indicate that the yield strength of loess is situated between two 

bounds (the twin-shear strength theory and the single-shear theory). The test results 
for loess in Xi’an carried out by Xing et al. (1992) are shown in Fig. 20.8. The 
dotted line in the figure is the Mohr-Coulomb strength theory; on the other hand, the 
solid line is a particular case of the unified strength theory, namely unified strength 
theory with b=1/2, shown as the dodecagon when b=1/2 in Fig. 20.7. 

20.2 Stability of Ancient City Wall in Xi’an 

The ancient city of the Ming Dynasty in Xi’an is the most completely preserved 
among all the ancient city relics in China. It is a famous historic city relic of 
worldwide reputation. The city wall has collapsed several times in history. To 
solve the problem, a research group started a study on the stability of the city wall 
in the 1980s, cooperating with the Xi’an City Ring Construction Committee. Yu 
MH, Zeng WB, Ma GW, Yang SY, He LN and Wang Y programmed a 
finite-element computational program UEPP (unified elastic-plastic program) 
based on the unified strength theory and associated flow rule (see: Chapters 4–6). 
Some research on the bearing capacity of the ancient city wall was carried out 
using UEPP (Yu et al., 2008; 2009). The mesh of the city wall is shown in Fig. 
20.9. 

Figure 20.10 shows the spread of the plastic region in the load process on the 
Xi’an ancient city wall. Figure 20.11 shows the displacement of the ancient city 
wall. It can be seen that the original failure started from the cave. 
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Fig. 20.9 Mesh of city wall for FEM  

 

   
Fig. 20.10 Spread of plastic region of ancient city wall in the load process 

 

 
Fig. 20.11 Displacement of the ancient city wall 

 
Figure 20.12 shows the plastic zones surrounding the cave that was dug inside 

and under the ancient Xi’an city wall. The result of the calculation indicates that 
these caves made a great contribution to the collapse of the city wall. They are the 
main reason for the collapse, especially the caves in the upper part of the wall. The 
city wall has higher strength, but the strength will decrease seriously when the 
wall is soaked and becomes saturated (Yu, 1993; 2009). Therefore, settlement 
caused by the soaking of the loess of the city wall is another reason why it 
collapsed. These conclusions have become an important basis for the preservation 
and repair of the ancient Xi’an city wall. 

The deformations of the city wall under five different load cases are shown in 
Fig. 20.13. Case(e) is the dangerous one. 

The effect of the yield criterion on the plastic zone is also obvious, as shown in 
Fig. 20.14. The single-shear theory gives the maximum plastic zone, and the 
twin-shear theory gives the minimum plastic zone under the same load. It can be 
illustrated from Fig. 20.14(f). 
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Fig. 20.12 The plastic failure of city wall around a cave in the wall  
 

 

(a)                             (b)

 
(c)                      (d)                    (e) 

Fig. 20.13 The deformations of city wall under the five load cases  
 

In a normal situation, the ancient Xi’an city wall gains enough strength to 
resist breaking down, when the safety factor is more than 3. It provides a 
theoretical basis for the safety of the annual Xi’an City Wall International 
Marathon. Nowadays, the Xi’an City Wall International Marathon has become one 
of the representative activities of Xi’an. There are about ten thousand people from 
around 50 countries all over the world who come to Xi’an to participate in the race. 
Moreover, the number of people who climb up on the city wall to celebrate the 
Lantern Festival is more than 100,000. More descriptions can be seen in (Yu et al., 
2009; 2011). 
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(a) UST with b=0 (Single-shear theory)        (b) UST with b=1/4 (New criterion) 

       
(c) UST with b=1/2 (New criterion)          (d) UST with b=3/4 (New criterion) 

       
   (e) UST with b=1.0 (Twin-shear theory)             (f) Five typical criteria 

Fig. 20.14 Effect of yield criteria on the spread of plastic zone of city wall 

20.3 Stability of the Foundation of Ancient Pagoda 

20.3.1 Structure of Foundation of Ancient Pagoda 

The Big Goose pagoda is now a brick-soil structure 7 storeys high and 64.1 m 
from top to bottom, as shown in Fig. 20.3(a). It is built on a base which is 45.9 m 
from east to west, 48.9 m from south to north and 4.2 m high. The main body of 
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the pagoda is 51.63 m high and is a square-pyramid shape. The length of each side 
of the base square is 25 m. The body of the tower binds the loess on the inside to 
the outside brick. This is similar to modern high-rise tube structures. The Pagoda 
had very good earthquake resistance.  

The Big Goose Pagoda has national key protection among cultural relics and is 
a world-renowned Buddhist site. Any destructive testing is prohibited. The shape 
of the foundation is unknown. Therefore, based on several documents and the 
historical records of other ancient pagodas in Xi’an, which were built at a similar 
period to that of the Big Goose Pagoda, Yu Mao-hong proposed and divided the 
foundation structure of the Big Goose Pagoda into four main forms: rectangular 
foundation structure, stepped foundation structure, inverted stepped foundation 
structure, inverted stepped foundation structure with underground chamber, as 
shown in Fig. 20.15. The structure is simplified to a spatial axial symmetric 
structure. The bearing capacity of the foundation of the Big Goose Pagoda has 
been studied (Gu, 1993; Gao, 1995; Yu and Meng, 1994; Yu et al., 2008; 2009; 
2011).  
 

    
(a) Rectangular foundation               (b) Stepped foundation 

    
    (c) Inverted stepped foundation    (d) Inverted stepped foundation with chamber 

Fig. 8.15 The possible structure of the foundation of the Big Goose Pagoda 
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20.3.2  The Effect of Yield Criterion on Plastic Zone of Soil 
Foundation of Pagoda 

The mesh of the finite element analysis for a high ancient pagoda in Xi’an is 
shown in Fig. 20.16(a). This is a simulation of the Big Goose Pagoda built during 
the Tang Dynasty. The plastic zones using different yield criteria for the 
rectangular foundation of the pagoda under the same load are obtained as shown 
in Figs. 20.16(b), 20.16 (c) and 20.16 (d). It is seen that the spreads of the plastic 
zone of the soil foundation of the ancient pagoda are strongly influenced by the 
choice of the yield criterion.  
 

   
(a) FE Mesh                 (b) Plastic zone with Drucker-Prager 

      
(c) UST with b=0 (Single-shear theory)   (d) UST with b=1 (Twin-shear theory) 

Fig. 20.16 Plastic zones for rectangular foundation  
 

If the structural shape of the foundation of the Pagoda has changed, the effect 
of yield criteria on the plastic analysis is also noticed. Plastic zones obeying the 
single-shear theory and twin-shear theory for the stepped foundation, 
reverse-stepped foundation and reverse-stepped foundation with underground 
chamber, are shown in Figs. 20.17, 20.18 and 20.19, respectively. 
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(a) UST with b=0 (Single-shear theory)   (b) UST with b=1 (Twin-shear theory) 

Fig. 20.17 Plastic zones for stepped foundation 
 

      
(a) UST with b=0 (Single-shear theory)   (b) UST with b=1 (Twin-shear theory) 

Fig. 20.18 Plastic zones for reverse-stepped foundation 
 

   
(a) UST b=0 (Single-shear theory)      (b) UST b=1(Twin-shear theory) 

Fig. 20.19 Plastic zones for reverse-stepped foundation with a chamber 
 

The results of the research indicate the following: 
(1) The size of the plastic area decreases as parameter b increases. Under the 

same load and the same foundation structure, the area of the plastic zone is largest 
when b=0; the area of the plastic zone is smallest when b=1. It can be concluded that 
considering the effect of intermediate principal stress, the limiting load of the 
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structure will increase. Therefore, it is important to choose a proper value of the 
UST parameter b in order to make efficient use of material. 

(2) With respect to different foundation shapes, while using the same yield 
criterion, the results show that the size of the plastic area of the stepped foundation 
structure is larger than that of the inverted stepped foundation.  

(3) It can be said that where there is a pagoda, there could be an underground 
chamber. A Buddhist temple also has an underground chamber. Ancient pagodas 
of the Tang Dynasty are mostly in Shaanxi Province. The protection of ancient 
pagodas should include the protection of the underground chamber. The influence 
of the underground chamber on the size of the plastic region is not remarkable.  

According to the results of analysis, the frequency of four foundation 
structures (rectangular, stepped, inverted stepped with and without underground 
chamber) differs little one from the other. Their first-order frequency is 1.25 Hz, 
close to the test result (1.3~1.4 Hz). Furthermore, from research on the two 
different foundation structures of the Small Goose Pagoda, a similar conclusion is 
also obtained. The results show that the strength of the foundation of the Small 
Goose Pagoda has big potential. According to the result of a triaxial test on the 
loess of ancient architectures (Yu et al., 2008; 2009), loess has relatively high 
strength. However, when it is soaked and becomes saturated, the strength 
decreases sharply. The main reason for the collapse of the pagoda of the FaMen 
Temple is that there was much rain that year and the foundation was soaked, 
causing a decrease in the strength of the loess. 

The plastic zones for four foundations using the single-shear theory and 
twin-shear theory are shown in Fig. 20.20 and Fig. 20.21. 
 

 
(a) Rectangular      (b) Stepped      (c) Reverse-stepped    (d) With chamber 

Fig. 20.20 The plastic zones for four foundations using UST with b=0 (Single-shear theory)  
 

 
(a) Rectangular       (b) Stepped       (c) Reverse-stepped    (d) With chamber 

Fig. 20.21 The plastic zones for four foundations using UST with b=1 (Twin-shear theory) 
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20.4 Plastic Analysis of Thick-Walled Cylinder  

Plastic analysis of a thick-walled cylinder for non-SD materials was carried out by 
Li JC and Fan LF in 2009, in which the unified yield criterion with b=0, b=1/4, 
b=1/2, b=3/4, and b=1 were used. These five typical 
criteria cover the entire convex region of failure 
criteria. Five results for the plastic analysis of 
structures were obtained. The scheme of a 
thick-walled cylinder is shown in Fig. 20.22.  

The relation between the circumferential stress 
�� and the normalized radius r/ra is shown in 
Fig. 20.23. The relation between the radial stress �r
and the normalized radius r/ra is shown in Fig. 20.24. 
Figure 20.25 shows the relation between the elastic 
limit pressure pe and the normalized radius r/ra.  

  

  

Fig. 20.23 Relation between the circumferential stress �� and radial stress �r with r/ra 

 
Fig. 20.24 The relation between the radial stress �r with r/ra

 

Fig. 20.22 Scheme for a 
thick-walled cylinder 
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Fig. 20.25 The relation between pe and r/ra  

 
The five elastic limit pressures of the thick-walled cylinder for non-SD 

materials (r/ra =1) with five parameters b=0, b=1/4, b=1/2, b=3/4 and b=1 are 
obtained and shown in Fig. 20.26. The numerical results agree well with the 
analytical results. The analytical solution for non-SD materials and SD materials 
can be seen in sections 10.5 to 10.7 in (Yu et al., 2004). 

 

 
Fig. 20.26 Elastic limit pressure pe versus the UST parameter b  

 

Figure 20.27 shows the plastic regions of the thick cylinder using the unified 
strength theory with five parameters b=0, b=1/4, b=1/2, b=3/4 and b=1 under the 
same load.  
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   (a) UST with b=0.0               (b) UST with b=0.25 

         
(c) UST with b=0.5        (d) UST with b=0.75        (e) UST with b=1.0 

Fig. 20.27 Plastic region distribution at the same load 

20.5 Plastic Analysis of the Structural Part of a Rocket 

The rocket is always used to launch communication satellites and meteorological 
satellites (Hu et al., 2010) as shown in Fig. 20.28. The structure of a part of a 
rocket is shown in Fig. 20.29. 
 

      
Fig. 20.28 Launch of communication satellite and meteorological satellite 
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Fig. 20.29 The structure of a part of a rocket  
 

A stress analysis of this part is shown in Fig. 20.30. Several results are 
illustrated in Fig. 20.31. The important result is the limit pressure shown in 
Fig. 20.32. 

 

 
 

 
Fig. 20.30 Plastic analysis of a part of a rocket 

 
 

   
(a)                                    (b) 

   
(c)                                    (d) 
Fig. 20.31 Several results of numerical analysis
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The Tresca yield criterion (i.e. unified yield criterion with b=0) is always used 
for the design of this part of a rocket. If the unified yield criterion with b=1 is used, 
the thickness of the bottom of this part can be decreased by about 5mm. The 
weight of the rocket can be decreased.  

 

 
Fig. 20.32 Limit pressure of a part of a rocket 

20.6 Numerical Analysis of Rocket Motor Grain 

The mechanical behavior of the propellant and the strength and reliability of the 
solid rocket motor grain were studied by Qiang (1998), Qiang et al. (2008), Li et 
al. (2008), Zhang (2010). The unified strength theory and elasto-visco-plastic FE 
Program (UEPP) were used for rocket motor grain by Qiang et al. (2008). The 
failure criteria for rocket motor grain are complex, because the tensile strength is 
not equal to the compressive strength for grain. The Tresca criterion and the 
Huber-von Mises criterion cannot be adapted for the numerical simulation. The 
test results show the tensile yield strength of a grain is �t=0.95 MPa, the 
compressive yield strength of a grain is �c=4.07 MPa, the strength ratio of grain in 
tension and in compression is �=0.234. The three yield criteria of the unified 
strength theory with parameters b=1, b=1/2 and b=0 are used. They can be 
introduced from the unified strength theory Eq. (20.1) as follows. 

(1) b=1 
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(3) b=0 

 
F = F 
 = 1 3 t� �� �� �                          (17.4) 

 
The structure of a solid rocket motor is shown in Fig. 20.33. The grain in the 

rocket motor can be considered as an axial symmetric problem. Figure 20.34 
shows the numerical simulation mesh for structure A. 

 

 
Fig. 20.33 The structure of a solid rocket motor  

 

 
Fig. 20.34 Axial symmetric mesh of a solid rocket motor grain (Structure A) 

 
The numerical simulation shows the plastic yield starts from element E159 of 

structure A (Fig. 20.34), as shown in Fig. 20.35. 
 

 
(a) UST with b=0        (b) UST with b=0.5   (c) UST with b=1 (Twin-shear theory) 

Fig. 20.35 Plastic zones of motor grain (Structure A) for three criteria 
 
The stress-time steps of element E159 obeying the three yield criteria are 

shown in Fig. 20.36. The displacement-time steps of element E390 obeying the 
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three yield criteria are shown in Fig. 20.37. The results are dependent on the yield 
criterion. 

 

 
Fig. 20.36 Stress-time steps of element E159 (Structure A)  

 

 
Fig. 20.37 The displacement-time steps of element E390  

 
The numerical simulation mesh for structure B is shown in Fig. 20.38. The 

plastic yield starts from the element E184 (Fig. 20.38) of structure B, as shown in 
Fig. 20.38. The spread of the plastic zone of the three yield criteria under the same 
conditions are similar. However, the size of the plastic zone is dependent on the 
choice of yield criterion. 
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Fig. 20.38  Axial symmetric mesh of a solid rocket motor grain (Structure B) 

 

          
 (a) UST with b=0      (b) UST with b=0.5   (c) UST with b=1 (Twin-shear theory) 

Fig. 20.39 Plastic zones of motor grain (Structure B) for three criteria 

20.7 3D Numerical Simulation for a Solid Rocket Motor 

The 3D numerical simulation for a solid rocket motor was conducted by Qiang 
(1998). The structural mesh of a solid rocket motor is shown in Figs. 20.40(a) and 
20.40(b). Owing to the symmetry and the periodicity of the structure (Fig. 20.33), 
a one-eighth mesh is constructed, as shown in Fig. 20.40. The finite element mesh 
is divided into 1248 elements, 5709 nodes. The shell part has a total of l86 
elements and the number of nodes is 633; the grain part has a total of 1062 
elements and the number of nodes is 5709. This can be very close to the actual 
boundary conditions of a solid motor, so the results maintain a high accuracy. The 
3D finite element mesh of a missile solid rocket motor including metal shell and 
inner grain are shown in Fig. 20.40. 

Distribution of the radial stress �r, circumferential stress �� and vertical stress 
�z in grain are shown in Figs. 20. 41, 20.42 and 20.43, respectively. Figure 20.44 is 
the effective stress analysis based on the unified strength theory with parameter 
b=0.5. 

The numerical simulations of a solid missile motor under the condition of 
vertical storage are shown in Figs. 20.45, 20.46, and 20.47. Effective stress 
analysis based on the unified strength theory with b=0.5 is illustrated in 
Fig. 20.48. 
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(a) Shell of rocket motor                     (b) Grain 

Fig. 20.40 The mesh of a solid rocket motor 
 
 

 

Fig. 20.41 Distribution of radial stress �r  

 
 

 

Fig. 20.42 Distribution of circumferential stress �� 
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Fig. 20.43 Distribution of vertical stress �z 

 
Fig. 20.44 Effective stress based on the unified strength theory with b=0.5. 

 
 

 
Fig. 18.45 Distribution of horizontal stress �x 
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Fig. 18.46 Distribution of circumferential stress �� 

 

 

Fig. 18.47 Distribution of vertical stress �z 

 

 
Fig. 20.48 Effective stress based on the unified strength theory with b=0.5 
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The numerical simulations of a solid missile motor under curing and reduction 
in temperature, as well as the storage conditions, were conducted. The simulation 
results are basically consistent with the process of curing and the reduction in 
temperature. They also agree with the condition of the vertical storage of the 
missile. 

20.8 Structural Part of the Generator of Nuclear Power Station 

The pressure ring is a structural part of a turbo-generator stator, which is used to 
press the silicon steel pieces of the stator, as shown in Fig. 20.49. It can be 
simplified to a spatial axisymmetric problem. The finite element mesh is also 
shown in Fig. 20.49 (Yu et al., 1992). 
 

 
Fig. 20.49  Pressure ring of turbo-generator stator and its simulation mesh 

 
The finite element analysis of the pressure ring for a 600 MW generator stator 

of a nuclear power station is shown in Fig. 20.50(a). Figure 20.50(b) shows the 
stress field in the pressure ring.  

 

 
Fig. 20.50 FE mesh and stress field of a large pressure ring of turbo-generator stator  

 
Elasto-plastic analysis was carried out for the pressure ring of a 300 MW 

turbo-generator. Four yield criteria of the unified yield criterion with b=0, b=1/2, 
b=1 and the Huber-von Mises yield criterion are used. The different plastic zones 
of the pressing ring using a different yield criterion at the same load are given in 
Figs. 20.35(a)~20.35(d). 
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(a) Unified yield criterion with b=0        (b) Huber-von Mises criterion 

 
(c) Unified yield criterion with b=1/2     (d) Unified yield criterion with b=1 

Fig. 20.51 Plastic zones of the pressing ring 
 

The unified yield criterion and associated elasto-plastic constitutive model 
have been implemented into a special finite element program and used for the 
analysis of the pressure ring of different generators. The effect of the intermediate 
principal stress is taken into account. It can be adapted for all the materials which 
have the same yield stress in tension and in compression. It can be easily used for 
elasto-plastic analysis of the structures. The comparison between different zones 
of the pressing ring using a different parameter b of the unified yield criterion 
indicates that the plastic zone using twin shear model (b=1) is smaller than that 
using the unified yield criterion (0<b<1). The plastic zones using the unified yield 
criterion with b=1/2 and the Huber-von Mises criterion are similar. These results 
agree with the prediction of the theoretical analysis. The unified yield criterion 
with �=1 and b=1/2 may be referred to as the linear approximation of the 
Huber-von Mises criterion. 

20.9 The Effect of Yield Criterion on the Spread of the Shear 
Strain of Structure 

The UST (unified strength theory) has been used in many fields. Figures 20.52 
and 20.53 show a new example presented by Ma and Liao (2010). Generalized 
shear strain contours of a slope using UST with different parameters of b are 
shown in Fig. 20.52. The generalized shear strain contours of a slope using  the 
Drucker-Prager criterion are also presented for comparison (Liao et al., 2010; Ma 
and Liao, 2010). The effect of the yield criterion on the spread of the shear strain 
of a structure is obvious.
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(a) UST with b=0              (b) UST with b=0.25 

  
(c) UST with b=0.5                   (d) UST with b=0.75 

            
(e) UST with b=1.0            

Fig. 20.52 Generalized shear strain contours of slope using UST with different parameter of b 

     
(a) Outer cone yield surface of D-P criterion    (b) Inner cone yield surface of D-P criterion 

Fig. 20.53 Generalized shear strain contours of slope using the Drucker-Prager criterion 

20.10 About the Unified Strength Theory: Reviews and 
Comments 

The UST (Unified Strength Theory) has achieved widespread application and been 
the subject of much research. Several comments, reviews and research on UST, 
which are presented in published papers and books, are introduced as follows.

In 2006, “Zentralblatt MATH” (Mathematics Digest) published comments of 
the applied mathematician and scholar of mechanics, Academician Petre P. 
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Teodorescu of the European Mathematics Society, relating to “Unified Strength 
Theory and its Applications” the monograph (Yu, 2004) , as follows. 

“Strength theories focus on the limit states of stress and strain in order to 
compare them with admissible stresses and strains. Uniaxial experiments and 
results are no longer sufficient and two- or three-axial studies are needed. 
Because different materials have different mechanical behavior under complex 
stress-strain states, yield criteria and failure criteria play an important part. The 
goal of these theories is to ensure the safety of civil and mechanical structures. 
But,in general, such a theory can be applied to a small number of materials and 
states of stress and strain in their deterministic aspects, and does not cover the 
area of all problems which may arise, so that unified theories have been looked 
for. 

Here, starting from the idea of twin-shear and twin-shear yield criterion, the 
author sets up a twin-shear strength theory and then a unified strength theory, the 
limit loci of which cover all regions of the convex limit loci and can be extended 
to the region of non-convex limit loci. The present book is not only a presentation 
of the theory, experiments, applications and history, but also a monograph on the 
own research of the author as evidenced by its contents. 

The book is intended for a large community of readers and represents an 
important contribution to the field. The present book is not only a presentation of 
the theory, experiments, applications and history, but is also a monograph on the 
author’s own research”. 

In 2008, Altenbach and Kolupaev published a paper entitled “Remarks on 
Model of Mao-Hong Yu” (Altenbach and Kolupaev, 2008). They indicate that 
“The development of unified strength theory (UST) is an event in 
phenomenological material science. UST provides a new family of material 
models. It contains a number of new models and highlights an interrelation 
between known models. The UST-model can be fitted to different materials and 
therefore is suitable for the analysis of experimental results. The material 
parameters can be computed showing results of only three experiments (e.g. 
tension, compression and torsion)”. The variety of the unified strength theory is 
shown in Fig. 20.54 (Altenbach and Kolupaev, 2008). The comparison of 
experimental results with polymers using the unified strength theory is shown in 
Fig. 20.55 (Altenbach and Kolupaev, 2010). 
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Fig. 20.54 UST covers all the region  

 

 
Fig. 20.55 Test results of plastics situated in the region of UST (Altenbach and Kolupaev) 
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A paper was presented by the State Key Laboratory of Geomechanics and 
Geotechnical Engineering, Institute of Rock and Soil Mechanics, Chinese 
Academy of Sciences, Wuhan, China in 2008. One of the authors is Professor 
Feng XT, the president of the International Society for Rock Mechanics and 
Engineering (Zhang et al., 2008). The abstract stated that: 

“The unified strength theory is a new theory system which can almost describe 
the strength characteristics of most geomaterials and has been applied widely. And 
FLAC3D is an excellent geotechnical program. If the former can be integrated into 
the latter, many complex problems in engineering will be well settled. So 
according to this problem, the numerical scheme of an elasto-plastic unified 
constitutive model in FLAC3D was studied. And the numerical format of the 
elasto-plastic constitutive model based on the unified strength theory was derived. 
The corresponding UDM interface codes were programmed. Finally, a circular 
tunnel case is analyzed using this program. The corresponding simulated results 
are presented and compared with the analytical solution. The comparison 
expresses good agreement with the analytical solution and verifies the validity of 
the numerical scheme and the codes. The merits of the unified strength theory and 
the FLAC3D program will be utilized well in geo-engineering after their 
combination.” 

The conclusion of the paper is “The unified strength theory for geomaterials 
was proposed by Professor Yu Mao-hong in 1991. It established a theory as 
suitable for each kind of material; it has a unified mathematical expression; it 
contains each kind of main strength theory and some new strength theories not 
before expressed. Moreover, the unified strength theory considers well the effect 
of the intermediate principal stress on the rock strength, and can match the results 
of true triaxial tests for geomaterials. It has achieved widespread application in 
geotechnical engineering.”  

“The unified strength theory has a solid rationale and can express the strength 
characteristics for each kind of geomaterial. There has been also widespread 
application of the new strength theory. FLAC3D has formidable computational 
analysis functions and it is also aimed specifically at geotechnical project 
development by the widespread application of numerical analysis software. If can 
unify the theory and code which,, without doubt, can greatly promote the solution 
of correlation problems in geotechnical projects.”   

In 2006, the twin shear unified strength theory was included in “China's Water 
Conservancy Encyclopedia” (2006) and the “Handbook of Engineering Mechanics, 
Rock Mechanics, Engineering Structures and Materials” (Zhao, 2006). It states 
that: “Twin-shear stress strength theory was first proposed by Chinese scholar 
Mao-Hong Yu in 1961. In the subsequent 20 years, Mao-Hong Yu turned his 
attention to the progressive development of the theory to create a unified system 
of generalized twin-shear strength theory and, in 1991, it became officially known 
as the unified strength theory. The unified strength theory can explain not only the 
plastic yield, but also explain the tensile failure, shear failure, compressive failure 
and a variety of biaxial and tri-axial failures, suitable for metal, concrete, 
geotechnical and other materials. The theory is of important academic interest and 
has powerful application potential.” 



20.10  About the Unified Strength Theory: Reviews and Comments 

 

509 

The introduction to the monograph “Unified Strength Theory and its 
Applications” is written by the Multidisciplinary Center for Earthquake 
Engineering Research (MCEER), USA. MCEER is a national center of excellence 
dedicated to the discovery and development of new knowledge, tools and 
technologies that equip communities to become more disaster resilient in the face 
of earthquakes and other extreme events. 

“This text introduces a new theory dealing with the yield and failure of 
materials under multi-axial stresses. It provides a system of yield and failure 
criteria adopted for most materials, from metallic materials to rocks, concrete, 
soils and polymers. It describes the unified strength theory and shows how a series 
of results can be obtained with its use. An experimental verification, engineering 
applications, a detailed historical review and more than 1000 references are 
provided. It is intended primarily for researchers, practitioners and students.” 

In 2008, the Chairman of the Chinese Society of Rock Mechanics and 
Engineering, and Chairman of  the Science and Technology Commission of the 
PLA General Staff Headquarters, Academician Qian Qihu, presented an invited 
lecture at the Sun Jun Fellow’s Lecture of Tongji University in Shanghai, a Lectur 
“rock, rock strength and dynamic failure criterion” was reported. He pointed out 
that “The further development of single-shear theory is the twin-shear theory, the 
further development of twin-shear strength theory is the unified strength theory. 
Single- shear theory, twin-shear theory and the other failure criteria between the 
single-shear and twin-shear theories are special cases of the unified strength 
theory or linear approximation. It can be said that the unified strength theory is 
making an outstanding contribution to the developmental history of strength 
theory.”  

Recently, “Considerations on the Unified Strength Theory due to Mao-Hong 
Yu” were presented by Kolupaev and Altenbach (2010) in Germany. The English 
abstract states: 

“As a basis for systematization of different models, the unified strength theory 
(UST) was proposed by Yu It can be used in order to describe incompressible 
inelastic material behavior as well as compressible materials with different 
behavior in tension and in compression. In this paper Yu’s theory is analyzed, 
compared to the existing models and approximated by simpler ones”. 

“For UST and other models the Poisson’s ratio and the hydrostatic stress are 
computed. Using the Poisson’s ratio for tension as well as for simple stress 
relations, different models are compared to each other. Constraints on the 
parameters of the model based on the latter values can be provided. In order to 
reduce the number of models, an alternative systematization based on the 
geometrical properties of the equivalent stresses is suggested. In this 
systematization Yu’s model plays a quite important role.” 

“The beauty of the twin-shear-unified strength theory is its feasibility in 
defining the convex shape of the surfaces”. It is the conclusion of a paper 
presented by a professor of Nanyang Technological University, Singapore (Fan 
and Qiang, 2001). 

More reviews, introductions, descriptions, applications and comments on the 
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unified strength theory can be found in the published papers and books, in which 
the unified strength theory (UST) was used. The unified strength theory is a family 
of yield criteria and failure criteria. The yield surfaces of UST cover all regions 
from the lower bound to upper bound. It is possible for us to adopt different values 
of the unified strength theory parameter b to meet the requirements of different 
materials and structures. The unified strength theory can be used in all those fields 
in which the Tresca yield criterion, the Huber von Mises criterion or the 
Mohr-Coulomb theory was used. However, a higher limit load of structures can be 
obtained using the unified strength theory. It is advantageous in material and 
energy saving and also advantageous in environmental protection. 

The Unified Strength Theory, as n important original innovation in applied 
mechanics and engineering design, has been written in more than 260 scientific 
monographes, handbook of engineering mechanics and textbooks. In 2011, the 
unified strength theory is awarded the one of the highest science award in China: 
National Natural Science Award. 

20.11 Signification and Determination of the UST Parameter b 

The unified strength theory, its implementation in FE codes and its applications 
have been studies in above chapters. The parameter b is an important idea. What 
are the physical meaning of UST parameter b and how to determine the value of 
UST parameter b for various materials? It is interesting and important. 

20.11.1 Signification of the UST Parameter b 

The unified strength theory parameter b has clear physical meaning. It offers a 
variety of attractions.  

1) b is a parameter that reflects the influence of the intermediate principal 
shear stress. 

In the expression of the mathematical modeling of the unified strength theory, 
the parameter b was displayed originally in 1991 (Yu, 1991; 1992; 2004). It is 
rewritten as  
 

13 12 13 12 12 12 23 23( ) , when F b b C� � � � � � �� � ��� � � � � � � �  (20.5a) 

13 23 13 23( ) ,F b b C� � � � �
 � � � � �   when   12 12 23 23� �� � ��� � � (20.5b) 
 
It can be seen, b is a parameter that reflects the influence of the intermediate 
principal shear stress �12 (or �23) and respective normal stresses �12 (or �23) acting 
on the sections that the intermediate principal shear stress �12 (or �23) acted. 
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2) b is a parameter that reflects the influence of the intermediate principal 
stress. 

The unified strength theory is expressed in terms of the three principal stresses 
as  
 

1 3
1 2 3 2( ) , when   

1 1tF b
b

� ���
� � � � �

�
�

� � � � �
� �

,         (20.6a) 

 

   F 
 1 3
1 2 3 2

1 ( ) , when   
1 1tb

b
� ��
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�

�
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� �
,   (20.6b) 

 
It is seen, b is a parameter that reflects the influence of the intermediate principal 
stress �2 

3) b is a choice parameter of the yield criterion. 
The mathematical modeling and the mathematical expression of UST with b=0 

is deduced to  
 

13 13 ,F F' C� ��� � � � F =F'= 1 3 t� �� �� �         (20.8) 
 

It is the familiar Mohr-Coulomb strength theory. Obviously, only single shear 
stress �13 and respective normal stress �13 are taken into account in mathematical 
modeling (Eq. (20.7)), and the intermediate principal stress �2 is not displayed in 
the mathematical expression (Eq. (20.8)). So, it may be referred as the single-shear 
theory. 

The mathematical expression of UST Eq.20.6 is deduced to the twin-shear 
theory when the parameter b equals b=1, as  

 
1 3

1 2 3 2( ) ,    when  
2 1tF

� ���� � � � �
�

�
� � � � �

�
           (20.9a) 

1 3
1 2 3 2

1 ( ) ,   when   
2 1tF

� ��
� � �� � �

�
�
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�

           (20.9b) 

 
A series of new yield criteria can be obtained when 0<b<1.  

4) b is a control parameter of the shape and size of yield surface. 
The yield surfaces of the unified strength theory on deviatoric plane are 

represented in Fig. 20.56. It is seen, b is a control parameter of the shape and size 
of yield criteria, which reflects the influence of the shape and size for yield surface, 
as shown in Fig. 20.56. The yield loci are hexagonal when b=0 and b=1, and the 
yield loci are a dodecagonal locus when 0<b<1. 
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Fig. 20.56  Convex and non-convex yield loci of UST 

 
5) b is a critical parameter of the convexity of yield criterion. 
The yield loci of UST are convex when yield criterion parameter b (0�b�1), 

and the yield loci of UST are non-convex when yield criterion parameter b<0 or 
>1, as shown in Fig. 20.56. The non-convex yield criterion is rare studied up to 

now. 
6) b is a parameter that reflects the shear strength of materials. 
It will be discussed as follows. 

20.11.2  Determination of the UST Parameter b  

The UST parameter b can be determined by different methods. 
1) Complex stress test 
The values of parameter b can be determined by comparison with 

experimental verification for various materials. The comparisons between the 
unified strength theory and several experiment results are shown in Fig. 20.8. It is 
very expensive, however, because of the expense of the experimental facilities in 
which the materials can be acted under complex stress.  

2) Pure shear test 
The stress state of pure shear is �1=�, �1=0, �3= –�, the yield state at pure shear 

is �1=�0, �2=0, �3= –�0. This state coincidence the condition 1 3
2  

1
� ���

�
�

�
�

, the 

Eq. (20.6a) is used. 
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1 2 3 0 0( ) ( ) 0
1 1t tb

b b
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� �

      (20-10) 

 
where �=�t/�c is ratio of material strength in tension and in compression. The 
relationship among shear strength �0, the uniaxial tensile strength �t , uniaxial 
compressive strength �c  and  unified strength theory parameter b can be 
determined as follows: 
 

         0 0

0 t 0

(1 )
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t

b
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Eq. 20-11 can be simplified to Eq. 20-12 for non-SD materials, as follows 
 

            0 0

0 t 0

2
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                  (20.12) 

 
3) Plane strain test 
Unified strength theory can be also expressed by the stress invariant, stress 

angle and material parameters cohesion and friction angle, as (see Chapter 4) 
 

 2 21 2 22
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where C0 is material cohesion parameters and � is friction angle of material, 
which are always obtained by a conventional tri-axial test, i.e. triaxial confined 
pressure experiment. 

The relationship of friction angle �0 under trial-axial test and unified friction 
angle �unified in terms of the unified strength theory (Fig. 20.57) has been 
established by Yu in 1997, and represented in (Yu et al., 2006). It is expressed as 
follows 
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Fig. 20.57  Relation between UST parameter b with friction angle 

 
The unified strength theory parameter b can be determined as  

 
0
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          (20.15) 

20.12 Brief Summary 

Several ancient structures and parts of rocket and generator are studied. A lot of 
results can be obtained by using of the unified strength theory and associated flow 
rule. It can be adapted for more materials and structures. It is evident that 

1) The unified strength theory with b=0 (single-shear theory) gives the lower 
limit load and the unified strength theory with b=1 (twin-shear theory) gives the 
upper limit load.  

2) The unified strength theory with b=0 gives the larger plastic zone, and the 
unified strength theory with b=1 gives the smaller plastic zone under the same 
load.  

3) It means that more materials in structure are contributed for the bearing 
capacity of structure when the unified strength theory parameter b>0, and the 
highest limit load can be obtained when the UST parameter b=1 is used.  

4) The limit bearing capacity of structure can be obtained when the material 
parameter b>0. It is also means that the weight of structure may be decreased. It is 
advantageous especially for airplane and rocket structures, also for traffic 
structures. 

5) The unified strength theory provides us a theoretical base and more 
practical applications. The unified strength theory (UST) can be used in all those 



20.12  Brief Summary 

 

515 

fields that the Tresca-Mohr-Coulomb theory (lower bound), the Huber-von 
Mises-Drucker-Prager criterion or the twin-shear strength theory (upper bound) 
was used. More new results will also be obtained. 

6) The development of strength theories can be summarized briefly as shown 
in Fig. 20.58. 
 

 
Fig. 20.58  The development of strength theories 

 
7) The application of the unified strength theory can be illustrated by an 

example as show in Fig. 20.59. 
 
 
 

 



20  Miscellaneous Issues: Ancient Structures, Propellant of Solid Rocket, 
Parts of Rocket and Generator 

 

516 

 

 

 

   

  

  
Fig. 20.59  Shear strain spread with several yield criteria for a slope  

 
Unified strength theory is important and interesting not only in theory form a 

series of yield criterion, which covering all convex regions from the inner 
boundary to outer oundary. It is also important and interesting in structural 
analysis and engineering applications, a series of new results can be obtained for 
engineering application. It provides us more information and choice. This is a 
series of results for the plastic analysis of a slope.  
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