

Lecture Notes in Computer Science 7011
Commenced Publication in 1973
Founding and Former Series Editors:
Gerhard Goos, Juris Hartmanis, and Jan van Leeuwen

Editorial Board

David Hutchison
Lancaster University, UK

Takeo Kanade
Carnegie Mellon University, Pittsburgh, PA, USA

Josef Kittler
University of Surrey, Guildford, UK

Jon M. Kleinberg
Cornell University, Ithaca, NY, USA

Alfred Kobsa
University of California, Irvine, CA, USA

Friedemann Mattern
ETH Zurich, Switzerland

John C. Mitchell
Stanford University, CA, USA

Moni Naor
Weizmann Institute of Science, Rehovot, Israel

Oscar Nierstrasz
University of Bern, Switzerland

C. Pandu Rangan
Indian Institute of Technology, Madras, India

Bernhard Steffen
TU Dortmund University, Germany

Madhu Sudan
Microsoft Research, Cambridge, MA, USA

Demetri Terzopoulos
University of California, Los Angeles, CA, USA

Doug Tygar
University of California, Berkeley, CA, USA

Gerhard Weikum
Max Planck Institute for Informatics, Saarbruecken, Germany

Marc Joye Debdeep Mukhopadhyay
Michael Tunstall (Eds.)

Security Aspects
in InformationTechnology

First International Conference
InfoSecHiComNet 2011
Haldia, India, October 19-22, 2011
Proceedings

13

Volume Editors

Marc Joye
Technicolor, Security and Content Protection Labs
1 avenue de Belle Fontaine, 35576 Cesson-Sévigné Cedex, France
E-mail: marc.joye@technicolor.com

Debdeep Mukhopadhyay
Indian Institute of Technology
Department of Computer Science and Engineering
Kharagpur 721302, West Bengal, India
E-mail: debdeep@cse.iitkgp.ernet.in

Michael Tunstall
University of Bristol
Department of Computer Science
Merchant Venturers Building
Woodland Road
Bristol BS8 1UB, UK
E-mail: tunstall@cs.bris.ac.uk

ISSN 0302-9743 e-ISSN 1611-3349
ISBN 978-3-642-24585-5 e-ISBN 978-3-642-24586-2
DOI 10.1007/978-3-642-24586-2
Springer Heidelberg Dordrecht London New York

Library of Congress Control Number: 2011937700

CR Subject Classification (1998): E.3, C.2, K.6.5, D.4.6, J.1, G.2.1

LNCS Sublibrary: SL 4 – Security and Cryptology

© Springer-Verlag Berlin Heidelberg 2011

This work is subject to copyright. All rights are reserved, whether the whole or part of the material is
concerned, specifically the rights of translation, reprinting, re-use of illustrations, recitation, broadcasting,
reproduction on microfilms or in any other way, and storage in data banks. Duplication of this publication
or parts thereof is permitted only under the provisions of the German Copyright Law of September 9, 1965,
in its current version, and permission for use must always be obtained from Springer. Violations are liable
to prosecution under the German Copyright Law.
The use of general descriptive names, registered names, trademarks, etc. in this publication does not imply,
even in the absence of a specific statement, that such names are exempt from the relevant protective laws
and regulations and therefore free for general use.

Typesetting: Camera-ready by author, data conversion by Scientific Publishing Services, Chennai, India

Printed on acid-free paper

Springer is part of Springer Science+Business Media (www.springer.com)

Message from the General Chairs

We are happy to host the first International Conference on Security Aspects
in Information Technology, High-Performance Computing and Networking,
InfoSecHiComNet 2011, at Haldia Institute of Technology, Haldia, India, 19–22
October, 2011. This conference is being organized in cooperation with the In-
ternational Association for Cryptographic Research (IACR) and in association
with the Cryptology Research Society of India (CRSI).

As we are aware, different aspects of security, such as development of encryp-
tion algorithms and analysis of secrecy systems using high performance comput-
ing infrastructure, are of paramount importance for securing information. It is
not only important to secure conventional electronic communication but security
of networks is also emerging as a major thrust area of research in this age of dig-
ital communication. In this context, the present conference, InfoSecHiComNet
2011, is a very important event where the research community can deliberate
upon different aspects of theoretical as well as application oriented work in the
area of cryptology and information security. The conference has been divided
into three tracks — Cryptography, Security Aspects in High Performance Com-
puting, and Security Aspects in Networks.

It is expected that this conference will emerge as a powerful forum for re-
searchers to interact and share their thoughts and their work with others, stim-
ulating the growth of information and network security and cryptology research
in the world, more specifically in India. The overwhelming response in quality
submissions to the conference and transparent open review mechanism helped in
keeping the standards high and also in encouraging researchers to participate in
the conference and take up serious interest in pursuing research and development
in this area. The presence of a large number of students indicates the growing
interest in this area where achieving security and efficiency simultaneously in a
network is a challenge.

The complete InfoSecHiComNet 2011 event spans over four days from 19
to 22 October 2011. The first day is totally dedicated to tutorials conducted
by Michael Tunstall from the University of Bristol, UK and C. Pandurangan
from IIT Madras, India. The main conference is held on the remaining three
days with invited talks by experts from different parts of the world. Out of
the 112 submitted papers, 14 papers have been selected through a transparent
open review process and presented by the authors. The tutorials delivered by
eminent speakers on areas covering recent developments in information security
and cryptography provided insight to young researchers and also stimulated
the thinking of others. We are thankful to all invited speakers who delivered
stimulating talks and interesting tutorials on the subject.

A conference of this kind would not have been possible to organize without full
support from different people across different committees. While all logistic and

VI Message from the General Chairs

general organizational aspects were looked after by the Organizing Committee
teams headed by Prof. Debasis Giri, the coordination and selection of technical
papers required dedicated and time-bound efforts by the Program Chairs. We
are thankful to Marc Joye, Michael Tunstall, and Debdeep Mukhopadhyay for
their efforts in bringing out such an excellent technical program for the partic-
ipants. We are also thankful to all the Technical Program Committee members
for thoroughly reviewing the papers submitted to the conference and sending
constructive suggestions and comments within the deadlines.

We are indebted to our fellow Organizing Chair, Prof. Debasis Giri, and his
team, who worked hard in making the stay of the participants comfortable and
the event enjoyable. Thanks are also due to the Chairman and Director of Haldia
Institute of Technology for providing the venue and infrastructure and agreeing
to host the conference.

We express our heartfelt thanks to Intel, Neucleodyne, the Defence Research
and Development Organization (DRDO), the Ministry of Communication and
Information Technology (MCIT), and the Department of Science and Technology
(DST) for sponsoring the event.

Last but not least, we extend our sincere thanks to all those who contributed
to InfoSecHiComNet 2011 and especially to the researchers who are now authors
in this prestigious LNCS series of conference proceedings, which has been brought
out so nicely.

October 2011 P.K. Saxena
P.D. Srivastava

Preface

We are glad to present the proceedings of the first International Conference on
Security Aspects in Information Technology, High-Performance Computing and
Networking (InfoSecHiComNet 2011), held October 19–22, 2011 in Haldia, West
Bengal, India.

In response to the call for papers, 112 papers were submitted to the conference.
These papers were evaluated on the basis of their significance, novelty, and tech-
nical quality. Each paper was reviewed by at least three members of the Program
Committee. The Program Committee was aided by 13 sub-reviewers. Reviewing
was double-blind, meaning that the Program Committee was not able to see the
names and affiliations of the authors, and the authors were not told which com-
mittee members reviewed which papers. The Program Committee meeting was
held electronically, with intensive discussions over a period of almost ten days. Of
the papers submitted, 14 papers were selected for presentation at the conference.
The program was completed with two instructive tutorials by C. Pandurangan
(IIT Madras, India) and Michael Tunstall (University of Bristol, UK). Further, we
had six invited talks by Ingrid Verbauwhede (Katholieke Universiteit Leuven, Bel-
gium), Jörn-Marc Schmidt (IAIK, TUGraz, Austria), C.E. Venimadhavan (IISc,
Bangalore,India), Benedikt Gierlichs (K.U.Leuven, Belgium), Palash Sarkar (ISI
Kolkata,India), and Sanjay Burman (CAIR, India).

This conference was sponsored by Intel, Neucleodyne, the Defence Research
and Development Organization, the Ministry of Communication and Information
Technology, and the Department of Science and Technology, India. We would
like to thank these organizations for their support, which helped us to reduce
registration fees and make the conference a success.

InfoSecHiComNet 2011 was also organized in cooperation with the Inter-
national Association for Cryptologic Research (IACR) and the Cryptology Re-
search Society of India (CRSI). Their support has significantly contributed to
raising the profile of the conference, which is reflected in the high quality of the
submissions we received.

There is also a long list of people who volunteered their time and energy to
put together the conference and who deserve acknowledgment. Thanks to all the
members of the Program Committee, and the external reviewers, for all their
hard work in the evaluation of the submitted papers. Our hearty thanks to the
makers of EasyChair for allowing us to use the conference management system,
which was largely instrumental in the timely and smooth operation needed in
hosting such an international event. We also thank Springer for agreeing to pub-
lish the proceedings as a volume in the Lecture Notes in Computer Science series.

VIII Preface

We are also very grateful to all the people who gave their assistance and ensured a
smooth organization process: the local Organizing Committee of Haldia Institute
of Technology. Special thanks to Dr. Debasis Giri, our Organizing Chair, for all
his hard work, help and advice in initiating and making the conference a reality.

Last, but certainly not least, our thanks go to all the authors who submitted
papers and all the attendees. We hope you find the program stimulating.

August 2011 Marc Joye
Debdeep Mukhopadhyay

Michael Tunstall

InfoSecHiComNet 2011

First International Conference on Security Aspects in
Information Technology, High-Performance Computing

and Networking

Haldia, India
October 19–22, 2011

Patron

Lakshman Seth Haldia Institute of Technology, India

Honorary Chair

C. Chang Feng Chia University, Taiwan

Publication and Organizing Chair

Debasis Giri Haldia Institute of Technology, India

Program Chairs

Marc Joye Technicolor, France
Debdeep Mukhopadhyay IIT Kharagpur, India
Michael Tunstall University of Bristol, UK

Program Committee

Anirban Banerjee Indian Institute of Science, Education and
Research – Kolkata, India

Ranieri Baraglia ISTI-CNR, Italy
S.S. Bedi SAG, Delhi, India
Sanjukta Bhowmick University of Nebraska at Omaha, USA
Swarup Bhunia Case Western Reserve Univ., USA
Santosh Biswas IIT Guwahati, India
Bezawada Bruhadeshwar IIIT Hyderabad, India
Sanjay Burman CAIR Bangalore, India
Junwei Cao Tsinghua University, China
Amlan Chakrabarti Calcutta University, India
R.S. Chakraborty IIT Kharagpur, India
C. Chang Feng Chia University, Taiwan
Amit Chattopadhyay Rijksuniversity of Groningen, The Netherlands

X InfoSecHiComNet 2011

Tzungshi Chen National University of Tainan, Taiwan
Peter Chong Nanyang Technological University, Singapore
Abhijit Das IIT Kharagpur, India
Ashok Kumar Das IIIT, Hyderabad, India
Sajal Das University of Texas at Arlington, USA
Ratna Dutta IIT Kharagpur, India
Niloy Ganguly IIT Kharagpur, India
Praveen Gauravaram Technical University of Denmark, Denmark
S.K. Ghosh IIT Kharagpur, India
Debasis Giri Haldia Institute of Technology, India
Tiong Goh Victoria University of Wellington, New Zealand
Guangjie Han Hohai University, China
Jing He Georgia State University, USA
Honggang Hu University of Waterloo, Canada
Shaoquan Jiang University of Electronic Science and

Technology of China, China
Xiaohong Jiang Tohoku University, Japan
Willem Jonker EIT ICT Labs, The Netherlands
Marc Joye Technicolor, France
Ramesh Karri Polytechnic University, NY, USA
Chun-Ta Li Tainan University of Technology, Taiwan
Jie Li University of Tsukuba, Japan
Constandinos Mavromoustakis University of Nicosia, Cyprus
Bivas Mitra French National Centre for Scientific

Research(CNRS), Paris
Animesh Mukherjee ISI Foundation, Italy
Debdeep Mukhopadhyay IIT Kharagpur, India
Sourav Mukhopadhyay IIT Kharagpur, India
Sukumar Nandi IIT Guwahati, India
Saibal Pal SAG, Delhi, India
Subrat Panda IBM, India
C. Pandu Rangan Indian Institute of Technology, Madras, India
Goutam Paul Jadavpur University, India
Rajesh Pillai SAG, Delhi, India
Vincent Rijmen IAIK, Graz University of Technology, Austria
Bimal Roy Indian Statistical Institute, Kolkata, India
Romit Roychoudhury Duke University, USA
Dipanwita Roychowdhury IIT Kharagpur, India
Kouichi Sakurai Kyushu University, Japan
Areejit Samal Univ. Paris-Sud, France and Max Planck

Institute for Mathematics in the Sciences,
Germany

P. Saxena SAG, India
Peter Schwabe Academia Sinica, Institute of Information

Science, Taiwan
Indranil Sengupta IIT Kharagpur, India

InfoSecHiComNet 2011 XI

P. Srivastava IIT Kharagpur, India
Shamik Sural IIT Kharagpur, India
Willy Susilo University of Wollongong, Australia
Junko Takahashi NTT Information Sharing Platform

Laboratories, Japan
Sabu Thampi Indian Institute of Information Technology and

Management, India
Michael Tunstall University of Bristol, UK
Athanasios Vasilakos University of Western Macedonia, Greece
Kamakoti Veezhinathan IIT Madras, India
Ramarathnam Venkatesan Microsoft Research, USA
Michal Wozniak Wroclaw University of Technology, Poland
Naixue Xiong Georgia State University, USA
Eiko Yoneki University of Cambridge, UK
Amr Youssef Concordia University, Canada

External Reviewers

Indivar Gupta
Arun Karthik Kanuparthi
Aswin Krishna
P.R. Mishra
Seetharam Narasimhan
Ruchira Naskar
Takashi Nishide

Rajesh Pillai
Yizhi Ren
Sharmila Deva Selvi
Easter Selvan Suviseshamuthu
S.K. Tiwari
Mallapur Verraya Verraya
Xinmu Wang

Local Organizing Committee

M.M. Bag
Subhabrata Barman
Nandan Bhattacharyya
Debdas Ganguly
Tarun Kumar Ghosh
Subhankar Joardar
Shyamalendu Kandar
Asish Lahiri
A.B. Maity
Susmit Maity

Sourav Mandal
Anjan Mishra
Apratim Mitra
Anupam Pattanayak
Soumen Paul
Palash Ray
Soumen Saha
Sk. Sahnawaj
Kabita Thaoroijam

Table of Contents

Invited Talks

Engineering Trustworthy Systems . 1
Sanjay Burman

Secure Implementations for the Internet of Things 2
Jörn-Marc Schmidt

Embedded Security

Model Based Hybrid Approach to Prevent SQL Injection Attacks in
PHP . 3

Kunal Sadalkar, Radhesh Mohandas, and Alwyn R. Pais

Security of Prime Field Pairing Cryptoprocessor against Differential
Power Attack . 16

Santosh Ghosh and Dipanwita Roychowdhury

Embedded Software Security through Key-Based Control Flow
Obfuscation . 30

Rajat Subhra Chakraborty, Seetharam Narasimhan, and
Swarup Bhunia

Digital Rights Management

Reversible Watermarking Using Priority Embedding through Repeated
Application of Integer Wavelet Transform . 45

Sambaran Bandyopadhyay, Ruchira Naskar, and
Rajat Subhra Chakraborty

Access Policy Based Key Management in Multi-level Multi-distributor
DRM Architecture . 57

Ratna Dutta, Dheerendra Mishra, and Sourav Mukhopadhyay

Access Polynomial Based Self-healing Key Distribution with Improved
Security and Performance . 72

Ratna Dutta

Cryptographic Protocols

An ID-Based Proxy Multi Signature Scheme without Bilinear
Pairings . 83

Namita Tiwari and Sahadeo Padhye

XIV Table of Contents

Distributed Signcryption Schemes with Formal Proof of Security 93
Indivar Gupta and P.K. Saxena

Identity Based Online/Offline Encryption and Signcryption Schemes
Revisited . 111

S. Sharmila Deva Selvi, S. Sree Vivek, and C. Pandu Rangan

Cryptanalysis/Side Channel Attacks

“Rank Correction”: A New Side-Channel Approach for Secret Key
Recovery . 128

Maxime Nassar, Youssef Souissi, Sylvain Guilley, and
Jean-Luc Danger

A Cache Trace Attack on CAMELLIA . 144
Rishabh Poddar, Amit Datta, and Chester Rebeiro

An Improvement of Linearization-Based Algebraic Attacks 157
Satrajit Ghosh and Abhijit Das

Cipher Primitives

Generalized Avalanche Test for Stream Cipher Analysis 168
P.R. Mishra, Indivar Gupta, and N.R. Pillai

On Applications of Singular Matrices over Finite Fields in
Cryptography . 181

Dhirendra Singh Yadav, Rajendra K. Sharma, and Wagish Shukla

Author Index . 187

Engineering Trustworthy Systems

Sanjay Burman

Centre for Artificial Intelligence and Robotics,
C V Raman Nagar, Bangalore-560093, India

sb@cair.drdo.in

Abstract. Focus on building systems that are secure by design is being
driven by increasing number of security threats and the cost of system
compromise. The pervasive deployment of information technology in en-
tertainment to finance management to health care to critical infrastruc-
tures has lead to a situation where today - everything is a computing
device which can process and store information. These are networked for
communication.

There is increasing interdependence of all these networked computing
devices which have kinetic impact on the real world. The increased in-
terdependence leads to a situation where a security failure at one point
can lead to a cascading domino effect leading to the ultimate failure of
critical infrastructure. Their failure can be disastrous to human life and
national security. Therefore, today the need for engineering secure sys-
tems is as necessary as the traditional engineering requirements such as
performance, energy-efficiency, cost, programmability and usability. This
emphasis on engineering security can drive the development of architec-
tures and methodologies that are essential for achieving trustworthiness
in the realized systems. This talk will introduce the challenges in real-
ization of systems that perform securely in the real world. An approach
to engineering the systems right from the architectural level to the final
implementation and security assessment of the systems to determine the
adequacy of robustness will be suggested.

M. Joye et al. (Eds.): InfoSecHiComNet 2011, LNCS 7011, p. 1, 2011.
c© Springer-Verlag Berlin Heidelberg 2011

Secure Implementations for the Internet of

Things

Jörn-Marc Schmidt

Graz University of Technology
Institute for Applied Information Processing and Communications

Inffeldgasse 16a, 8010 Graz, Austria
joern-marc.schmidt@iaik.tugraz.at

Abstract. In the world envisioned by the Internet of Things (IoT), ev-
ery object is able to communicate digitally. An important step towards
this vision is the use of passive RFID tags. These devices are contactless
powered by a reader field and hence do not require a dedicated power
source. The corresponding counter-parts to these tags are already inte-
grated in some modern mobile phones. The combination of mobile read-
ers integrated in every-day objects like smart phones and low-cost tags
could deliver basic building blocks for a lot of new applications. How-
ever, in order to get broad acceptance, the capabilities of such systems
in the sense of usability are as important as their security to preserve the
privacy of the users. No malicious user should benefit from information
that is collected, transferred, or processed. Hence, the user must be able
to rely on the protocol as well as on the implementation. In this talk, we
discuss potential future developments of the Internet of Things and the
requirements regarding security and privacy. Furthermore, we highlight
the need for trustworthy implementations and show actual results in this
context.

M. Joye et al. (Eds.): InfoSecHiComNet 2011, LNCS 7011, p. 2, 2011.
c© Springer-Verlag Berlin Heidelberg 2011

Model Based Hybrid Approach to Prevent SQL

Injection Attacks in PHP

Kunal Sadalkar, Radhesh Mohandas, and Alwyn R. Pais

Department of Computer Science and Engineering
National Institute of Technology Karnataka, Surathkal,India - 575025
kunalsadalkar@yahoo.co.in, {radhesh,alwyn.pais}@gmail.com

Abstract. SQL Injection vulnerability is ranked 1st in the OWASP1

top 10 vulnerability list and has resulted in massive attacks on a number
of websites in the past few years. Inspite of preventive measures like edu-
cating developers about safe coding practices, statistics shows that these
vulnerabilities are still dominating the top. Various static and dynamic
approaches have been proposed to mitigate this vulnerability. In this pa-
per, we present a hybrid approach to prevent SQL injection attacks in
PHP, a popular server side scripting language. This technique is more
effective to prevent SQL injection attack in a dynamic web content envi-
ronment without use of complex string analyzer logic. Initially, we con-
struct a Query model for each hotspot by running the application in safe
mode. In the production environment, dynamically generated queries are
validated with it. The results and analysis shows the proposed approach
is simple and effective to prevent common SQL injection vulnerabilities.

Keywords: SQL injection attack, static analysis, dynamic analysis, web
vulnerabilities, unauthorized access, authentication bypass,input valida-
tion,database mapping.

1 Introduction

The industry is moving fast towards web based technologies. Ubiquity and cost
effective remote services are the driving factors for the growth of the web based
industries. Companies and organizations are adapting these upcoming technol-
ogy to reduce cost and to satisfy their customers. Services like online shopping,
e-banking, e-reservation, e-governance etc. have made daily life more productive.
In a race to support more and more flexible solutions, web developers are skip-
ping steps of best coding practices leading to serious web vulnerabilities. Lack of
proper code review and increased complexity of configuring the security policies
of web applications, enable malicious users to misuse these services and achieve
monitory gains. Testing for these security vulnerabilities requires considerable
time and resources and even known attacks are not addressed completely.

1 Open Web Application Security Project.

M. Joye et al. (Eds.): InfoSecHiComNet 2011, LNCS 7011, pp. 3–15, 2011.
c© Springer-Verlag Berlin Heidelberg 2011

4 K. Sadalkar, R. Mohandas, and A.R. Pais

Nowadays, PHP is well-known for server-side web development and widely
used general-purpose scripting language on 75% of web servers. The overall pro-
portion of PHP-related vulnerabilities on the database amount to: 20% in 2004,
28% in 2005, 43% in 2006, 36% in 2007, 35% in 2008, and 30% in 2009 [12,13].
According to SANS [14] statistics, the total numbers of vulnerabilities exploited
in web applications are more than those of stand-alone system vulnerabilities.
SQL Injection attacks continue to remain among the top three popular tech-
niques used for compromising web sites. In SQL injection vulnerability the data
from untrusted sources is used in a trusted manner and that allows execution of
unintended queries.

Although the causes for SQL injection have been known for a long time and
various solutions including defensive coding practices, static code reviews and
runtime checks have been proposed, the problem persists for several reasons.
Human code reviews are time consuming and expensive. Moreover the quality
of code review strongly depends on the expertise of the reviewer. Defensive pro-
gramming and input filtration prevents from malicious command to get executed,
but this approach is fairly oblivious to new unanticipated patterns. Performance
of runtime checks is sensitive to the size of the applications and also increases
the false positive rates as the application logic gets updated. Finally any solution
based on hybrid technique [1] to prevent SQL injection attacks suffers from the
limitation of string analysis precision and execution performance penalty.

This paper addresses the comparative analysis of static and dynamic ap-
proach, highlights the inability of existing hybrid approaches[2] to prevent SQL
injection attacks in PHP. Furthermore we propose a new alternative model based
approach to counter the SQL injection attack in PHP. An empirical analysis
shows that the proposed approach is extremely simple and does not need com-
plex logic of static analysis based on a string analyzer.

2 Related Work

Our approach is a simple variant of the existing model based hybrid approach
AMNeSIA [2]. This approach combines static analysis and runtime monitoring.
In the static phase, it builds a query model for legitimate SQL with the help
of java string analyzer (JSA)[8]. Query models are constructed as NDFA (Non
Deterministic Finite Automata) whose nodes are SQL keywords and operators
with special symbols for user input. During the run time, queries are intercepted
with the instrumented code and crosschecked with the statically built query
models. A limitation of AMNeSIA[2] tool is that it cannot be used for web
applications other than those built on JSP. As the tool makes implicit use of
JSA[8] library to build query model, the proposed approach does not work for
PHP applications. Moreover this tool’s success is dependent on the accuracy of
the string analyzer.

Similarly JDBC checker[9] statically validates the correctness of dynamically
generated queries. SQLDOM [7] and Safe Query Object [15] make use of encap-
sulation of database query in order to access the database safely. But in these

Model Based Hybrid Approach to Prevent SQL Injection Attacks in PHP 5

cases, the developer has the overhead of learning a new programming paradigm.
SQLrand [4] is another effective approach that based on query randomization.
However the security of this approach totally depends on the key that had used
for randomization.

Our mechanism provides SQL injection prevention for PHP web application
based on the AMNeSIA logic, but with modifications to bypass the complex
logic of static analysis and prevents the common SQL injection attacks.

3 Classifying SQL Injection Vulnerability

SQL injection is an attack technique that tricks the database to execute unin-
tentional malicious code. SQL injection usually involves the combination of over
elevated permissions, un-sanitized user input and/or true software vulnerabili-
ties. This section briefly describes the vulnerability and its classification based
on the methods of exploitation (see [11] for a detailed explanation of various
types of SQL vulnerabilities).

Fig. 1. Generic Login page in PHP

To classify SQL injection let us consider a typical web application as shown
in Fig. 1 with a login page written in PHP and connected to a MySQL database
[Fig. 2]in the backend. When an user enters his credentials and presses the submit
button, the data is sent to the server with well-known GET/POST command.
On the server, the user input is embedded into a precrafted SQL statement and
executed to retrieve the expected data. Let us assume that the query is of the
form;
SELECT * FROM Employee WHERE user name = ’$uname’ and password =
’$password’;
If user name and password is provided from the user submitted form, query to
be executed is form;
SELECT * FROM Employee WHERE user name = ’alice’ and password =
’secret’;

6 K. Sadalkar, R. Mohandas, and A.R. Pais

Fig. 2. Backend logic to connect database and execute SQL command

Now, one of the root causes for SQL injection is to accept the user input with-
out proper validation. Many programmers are simply not aware or do not care
that the security of their application could be compromised through the entry
of malicious input. Another reason could be the financial and time constraints
imposed by management. Implementing functional requirementa quickly is the
top of priority, while non-functional requirementa like security is often neglected.
We classify SQL injection attack for the given application as follows.

3.1 Attack Based on Tautology

In the example above, suppose the attacker inputs ’$password’ and enters the
value a’ OR ’1’ = ’1’, the corresponding query becomes;
SELECT * FROM Employee WHERE user name = ’alice’ and password = ’a’
OR ’1’ =’1’;

In this case no matter what the password entered is, the query will always
return true and will allow the attacker to bypass the authentication.

3.2 Attack Based on Union

In this case attacker executes a malicious query along with the predefined query.
Suppose an attacker inputs password as a’ UNION SELECT * from password,
query becomes;
SELECT * FROM Employee WHERE user name = ’alice’ and password = ’a’
UNION SELECT * from password;

Here, the attacker performs unauthorize access to other table data that meant
to be remain confidential.

3.3 Attack Based on Comments

The character ”–” marks the beginning of a SQL comment and anything beyond
that is ignored. Suppose an attacker inputs ’$uname’ as a’ OR ’1’ = ’1’ – then
final query is interpreted as;

Model Based Hybrid Approach to Prevent SQL Injection Attacks in PHP 7

SELECT * FROM Employee WHERE user name = ’a’ OR ’1’ = ’1’ – and
password = ’anything’;

This is one of the classic type of SQL injection attack where attacker bypasses
common authentication by inserting comments at the user input field.

4 Static vs Dynamic Approach

Several static and dynamic approaches have been proposed to detect SQLIA on
web applications[16]. Both suffer from their own sets of limitations. Static code
analyzing is mainly based on tainted information flow tracking which suffers from
the precision problem which models semantics of input sanitization of routines.
They manually need to write routines for each query or every bug and also they
are not fully automated. Most of the dynamic analysis approaches do not involve
the development team directly, and they lead to higher false alarms.
Only static source code review or dynamic checking is not sufficient to protect
from SQLIA vulnerabilities. Thus an automated hybrid mechanism is proposed
to prevent SQLIA effectively.

5 Basic AMNeSIA Model for JSP Web Application and
Its Limitation

AMNeSIA is a model based solution to prevent SQLIA on JSP web applications.
It works in two phases.

Static analysis : It uses static analysis to analyze web application code and au-
tomatically generate the SQL model.

Runtime analysis : This is the step that monitors all dynamically generated
queries and checks them to be with compliance to the statically generated mod-
els. When this step detects that a query is violating the model, it classifies the
input as an attack, logs the necessary information and throws an exception that
the application can then deal with suitably.

5.1 Principles

– Identify the Hotspots:
This step involves analyzing the web application code by simply scanning
the code and identifying the hotspots which are the locations where the
queries are sent for execution.

– Build the SQL query model:
• The Application class files are given as input to JSA (Java String

Analyzer)[8]. It outputs a NDFA (Non-Deterministic Finite Automata)
with all character level possibilities of the strings.

• It further analyzes the NDFA to create a query model and transforms it
into semantically meaningful SQL keywords, operators and literal values.

– Instrument the Application:

8 K. Sadalkar, R. Mohandas, and A.R. Pais

• In this phase, AMNeSIA[2] creates a monitor function that checks for
queries at runtime.

• It inserts the call to the monitor function before accessing the database
at each place.

• The Monitor call is invoked with two parameters; the query that is to
be submitted and the unique identifier to the hotspot.

– Runtime monitor:

• During runtime, the query is sent to the runtime monitor before accessing
the database.

• The monitor parses the query string into a sequence of tokens.
• Runtime monitoring verifies for query acceptance test by traversing the

sequence of tokens. Depending on test result, it allows/restrict the
database access.

5.2 Limitations and Assumptions of AMNeSIA Model in JSP

At the time of evaluation this technique doesn’t produces any false negatives or
false positives. But there is a chance to get false positives and false negatives in
some situations

– When the string analysis results in a SQL query model that is overly conser-
vative and includes spurious queries (i.e. queries that could not be generated
by the application) that happen to match an attack;

– When a legitimate query happens to have the same ”SQL structure” of an
attack. For example, if a developer adds conditions to a query from within a
loop, an attacker who inserts an additional condition of the same type would
generate a query that does not violate the SQL-query model.

– In some cases, as the analysis cannot distinguish a variable or a hard-coded
SQL token, it raises false positives for a string model that is precise enough.
In particular, if the hard-coded string is used in the application to construct
a SQL token, the technique will generate an incomplete SQL-query model.

– AMNeSIA[2] tool makes use of Java String Analyzer (JSA)[8] library to
statically analyze the source code and thereby get the query models. Thus
it can’t be used for web applications other than those built on JSP such as
PHP or ASP.

6 Proposed Solution

AMNeSIA was developed exclusively for JSP web applications. We propose a
variant of this approach for PHP web applications. We modified the program
flow of basic AMNeSIA[2] model to make it applicable for PHP web applications
without using the complex logic of static analysis.

Our mechanism is divided into a safe mode and a production mode envi-
ronment. Initially a given web application is scanned for hotspot signatures.

Model Based Hybrid Approach to Prevent SQL Injection Attacks in PHP 9

Hotspots are the locations in a web application where the query gets exe-
cuted (EX: functions like mysql query(), db→ query() etc.). After identifying
the hotspot, the application is instrumented with a special function. Then we
run it under a safe mode environment that is defined with the valid set of in-
puts from the developer/tester. Because the application is instrumented with
the special function at the hotspot, it changes the program flow and, helps to
capture the particular query. The instrumented code calls the special function
with arguments (hotspot id, query). The captured query is then tokenized; The
DFA is constructed and stored as a query model. During the production mode
environment, queries with user input are intercepted with the instrumented call
and are verified against the query models built in the safe mode. Queries those
violate the model are prevented from getting executed.

The primary advantage of running the application in a safe mode environment
is to bypass the complex logic of static analysis of source code that includes
intermediate code generation, control flow generation, data flow generation and
finally DFA construction.

6.1 Algorithms

Our algorithm has been divided into two distinct parts. First part of it focuses
on identifying the hotspots and instrumenting an application for either safe or
production environment mode. Query model validation and attack detection is
in the second part of it. In the safe environment mode, proposed algorithm stat-
ically analyzes the source code and constructs standard query model by taking
legitimate set of input parameters from the tester/developer. After obtaining
query models, application is once again instrumented for the production mode
environment. Detection algorithm in the production mode performs verification
of dynamically generated query with the query model built in safe mode. It
makes use of the graph traversal algorithm to validate with the query model.

6.2 Examples

Following examples illustrates the working of our proposed algorithm. We have
considered two cases. First one is the input parameters without SQL injection,
and the second one is with the SQL injection string. Before we test for these cases,
let us once again consider a web application as shown in the Fig.1, with two text
boxes which accepts (α, β) as input and a submit button. Then corresponding
query model obtained after safe mode testing is represented as below.
SQL query:
SELECT * FROM Employee WHERE user name = ′α′and password = ′β′;
Query model:
SQL(H id,α, β):
Where,
H id: ID of the Hotspot
α is the value from the textbox user name
β is the value from the textbox password

10 K. Sadalkar, R. Mohandas, and A.R. Pais

Algorithm 1. Identify Hotspots and Instrument the source code
Inputs: PHP web application with safe input parameters.
Output: Instrumented Files
—————————————————————————————————————–
get count files(path): Returns total number of files for the specified application path
get token all(file):PHP inbuilt function that returns all tokens for the given input file.
signature found(token):Matches token with predefined hotspot signatures.
get hotspot location(hotspot id): Returns hotspot position in the file for given
hotspot id.
get environment():Returns safe or production environment mode.
instrument for safe mode(hotspot id,code,location):Instruments the source file for safe
environment mode with special function query validate()
instrument for production mode(hotspot id,code,location):Instruments the source file
for production environment mode with special function query validate()
—————————————————————————————————————–

1: for i = 0 TO get count files(path) do

2: list of tokens← get token all(file[i])

3: hotspots← {}
4: hotspot count← 0

5: for j = 0 TO get count(list of tokens) do

6: if signature found(list of tokens[j]) = True then

7: hotspots← location pointer

8: hotspot id← hotspot count

9: hotspot count← hotspot count + 1

10: else

11: continue

12: end if

13: end for

14: end for

15: for k = 0 TO hotspot count do

16: hotspot id← get hotspot id(hotspot[k])

17: location← get hotspot location(hotspot id)

18: if get environment() = safe then

19: instrumented files[]← instrument for safe mode(hotspot id, instr code, location)

20: else

21: instrumented files[]← instrument for production mode(hotspot id, instr code, location)

22: end if

23: end for

24: return instrumented files[]

Model Based Hybrid Approach to Prevent SQL Injection Attacks in PHP 11

Algorithm 2. Algorithm to detect SQL injection attack in the production mode
environment
Inputs: PHP web application instrumented for production mode environment.
Output: Injection = True / False
—————————————————————————————————————–
read query(): Captures dynamic generated query in the production mode.
parse query(query string):Parses query according to the SQL standard rules and
returns corresponding tokens.
query validate(hotspot id,query tokens): Uses the graph traversal algorithm to validate
dynamically generated query with its static model.
—————————————————————————————————————–

1: production mode query ← read query()
2: query tokens← parse query(production mode query)
3: if query validate(hotspot id, query tokens) = FALSE then
4: return TRUE
5: else
6: return FALSE
7: end if

CASE 1 Verifying with normal input parameters:
Let us assume that user had input α = abc; β = pwd123 in the production
mode environment. SQL statement generated for the corresponding query at
that hotspot becomes,
SELECT * FROM Employee WHERE user name =’abc’ AND password=’pwd123’
As per our algorithm, initially above query is tokenized according to the SQL
standard rules and further it passes to the query validation module. In the query
validation module, get safe mode query() returns query model which has already
obtained in the safe mode environment. Each token obtained after tokenizing
production mode query is validated with this query model (DFA). In this case
as each token matches with expected query model, the query validate() function
returns true and ultimately allows execution of the query.
CASE 2 Verifying parameters with SQL injection string:
Let us assume that user had input α= a’ OR 1 =1 - -; β= pwd123 in the produc-
tion mode environment. SQL statement generated for the corresponding query
at that hotspot is interpreted as,
SELECT * FROM Employee WHERE user name =’a’ OR 1=1 - - AND pass-
word=’pwd123’
As we can see that, the attacker has inserted malicious input which tries to
change the semantic of the query.Here special characters like single quote (’)
and double dash (- -) along with the SQL keywords has been inserted in the
input field. Because of these extra tokens, production mode query mismatches
with the expected query model and query validate() function returns false. As
a result it forbids the database access and prevents from executing unintended
malicious query.

12 K. Sadalkar, R. Mohandas, and A.R. Pais

7 Implementation

We implemented the proposed approach for PHP web applications. In this sec-
tion we briefly explain the PHP tool and the mechanism to overcome the chal-
lenge of statically analyzing the PHP web application.

Fig.3 shows the different modules of the implemented tool. Initially the

Fig. 3. Architecture of the Model Based Hybrid Approach to Prevent SQL injection
Attack Tool

scanning engine scans PHP files from the web application. It uses the inbuilt
PHP function get token all() to tokenize the given application and searches for
hotspot signatures. Once it finds the hotspot signatures, the instrumentation
module puts a special function call,query validate(), just before it. This special
function query validate(), modifies the original program flow and collects the
query run in the safe mode environment. The same function has been used in
validation module where it validates the production run query with the query
model built in safe mode. The validate module contains both DFA construc-
tion module and DFA acceptance module. We describe the functionality of each
module as below.

1. Hotspot identification module: Accepts PHP files as an input and identifies
hotspot for given hotspot signatures.

2. Instrumentation module: Patches extra instrumented code before every
hotspot and includes file containing dynamic checking function at the begin-
ning of every php file.

3. Query parsing module: Queries obtained at the hotspots are passed to the
sql parser module. The sql parser module tokenizes the query according to
the MySQL standards and the tokens are then passed to the DFA construc-
tion module.

4. DFA construction module in Safe mode Environment : A DFA (M) is defined
as a 5-tuple, (Q,Σ,δ,q0,F), consisting of a finite set of states (Q),a finite set

Model Based Hybrid Approach to Prevent SQL Injection Attacks in PHP 13

of input symbols called the alphabet (Σ), a transition function (δ : Q Σ →
Q), a start state (q0 ∈Q), a set of accept states (F ⊆ Q)
The Tokenized query is given to the DFA construction module that converts
it into above specified format.

5. DFA verification module in Production mode Environment: This module uses
the graph based DFA traversal method to identify deviation in the produc-
tion time environment query with the model obtained in safe environment
mode.

6. Error reporting module: Depending on the result from DFA verification mod-
ule this module either reports the injection activity or allows to accessing
the database.

8 Experimental Setup

All tests were performed on a PC with Intel core 2 Duo processor (2.0 GHz)
and 3 GB DDR3 memory.To validate our approach, we have taken a proof of
concept perspective about making an application secure from users or insider
SQL-injections. Our objective was to test the proposed mechanism thoroughly
with respect to all kind of SQL injection attacks and for the applications with dif-
ferent complexities.We choose five well-known open source applications[17].This
set of subjects was used in previous work by us and also other researchers.

As per our approach, for each application we had generated two sets of test
inputs. First test set contained HTTP request statements with valid the input
set. For each application, the test-bed had about 600 legitimate HTTP requests.
They had been used during the safe mode environment in order obtain query
models. The inputs were generated for the safe mode testing in a manner that
they covered almost every hotspot in an application.

Also we assumed that the testing done for the safe mode environment is in-
house testing, therefore developer must have knowledge about the number of
the input that must be tested with respect to cover all the hotspots within
an application. If the developer fails to test for certain valid input, then the
semantics of the query may not get captured in the safe mode environment. As
a result it may lead to the false alarm in the production mode environment.

Second test set contained request statements with the malicious SQL injection
input. For each application, the production mode test set contained about 3000
malformed HTTP requests with SQL injection related strings. These malformed
requests are constructed by surveying different exploits.

9 Result and Analysis

The applications chosen are vulnerable to SQL injection attacks and could be
compromised with any one of the attacking technique described in section 3.
Instrumentation overhead is computed as total percentage of extra code added
into the original application. Table 1 show, instrumentation overhead is directly

14 K. Sadalkar, R. Mohandas, and A.R. Pais

Table 1. Empirical analysis of Model based Hybrid Technique to Prevent SQL Injection
Attacks in sample open source PHP web applications

Web Line Hotspots Detection Instrumentation False AVG Query
App of Instrumented Rate (%) Size Positive Overhead(%)

Code (K) Overhead(%)

BookStore 6.8 75 100 13 15 2.43

Classifieds 3.7 55 100 10 11 1.89

EmpDir 1.8 35 100 7 13 1.70

Events 2.5 39 100 12 9 1.71

Portal 6.2 61 100 11 15 1.99

proportional to the number of hotspots found in the application. We have mod-
ified the testbed of attack vectors as per our requirements and collected the
results. We believe that the attack vectors used covers almost all kind of SQL
injection attacks. The effectiveness of the proposed approach determined by the
ratio of the number of attacks prevented by the total number of attacks per-
formed. Results shows that the proposed approach is 100% effective to prevent
known SQL injection attacks. However, it also shows that proposed approach
raises some false positives where it detects as SQL injection attack even if it
doesn’t exists. The reason for false positive is because the developer ran the test
with a limited set of inputs in the safe mode. They can be eliminated by testing
with complete set of valid input cases in safe environment mode. Finally the last
column represents average time overhead to access database in the production
mode environment.

10 Conclusion and Future Work

In this paper we presented an automatic technique to prevent SQL injection
attack in PHP web applications. We made significant changes in the original
approach to reduce the complexity and made it applicable to PHP. The technique
utilizes the inherent nature of the program flow to construct query models and
bypasses the complex logic of static analysis. Unlike other security analysis tools,
our tool can be readily used on existing application or newly developed ones.
This proposed approach seems to be more promising for preventing SQL injection
attacks in normal PHP web applications with very little overhead.

In future, we will focus on reducing false alarm by applying machine learn-
ing algorithms in Safe Environment mode and hence improving the accuracy.
Further, we shall apply the same approach to prevent SQL injection attacks in
other scripting language such as PERL.

Acknowledgments. We acknowledge the financial support provided by MCIT-
NewDelhi, GOI, by the sanction Order No: 12(10)/09ESD dated 08.01.2010.

Model Based Hybrid Approach to Prevent SQL Injection Attacks in PHP 15

References

1. Halfond, W.G., Orso, A.: Combining Static Analysis and Runtime Monitoring to
Counter SQL-Injection Attacks. In: Proc. of the Third Intern. ICSE Workshop on
Dynamic Analysis (WODA 2005), pp. 22–28 (May 2005)

2. Halfond, W., Orso, A.: AMNESIA: Analysis and Monitoring for NEutralizing SQL
Injection Attacks. In: Proc. 20th IEEE and ACM Int’l Conf. Automated Software
Eng., pp. 174–183 (2005)

3. Halfond, W.G., Orso, A.: Combining Static Analysis and Runtime Monitoring
to Counter SQL-Injection Attacks. In: Proceedings of the Third International
ICSE Workshop on Dynamic Analysis (WODA 2005), St. Louis, MO, USA,
pp. 22–28 (May 2005)

4. Boyd, S.W., Keromytis, A.D.: SQLrand: Preventing SQL injection attacks.
In: Jakobsson, M., Yung, M., Zhou, J. (eds.) ACNS 2004. LNCS, vol. 3089,
pp. 292–302. Springer, Heidelberg (2004)

5. Buehrer, G.T., Weide, B.W., Sivilotti, P.A.G.: Using Parse Tree Validation to Pre-
vent SQL Injection Attacks. In: International Workshop on Software Engineering
and Middleware, SEM (2005)

6. Su, Z., Wassermann, G.: The Essence of Command Injection Attacks in Web Appli-
cations. In: The 33rd Annual Symposium on Principles of Programming Languages,
POPL 2006 (January 2006)

7. McClure, R., Kruger, I.: SQL DOM: Compile Time Checking of Dynamic SQL
Statements. In: Proceedings of the 27th International Conference on Software En-
gineering (ICSE 2005), pp. 88–96 (2005)

8. Christensen, A.S., Møller, A., Schwartzbach, M.I.: Precise Analysis of String Ex-
pressions. In: Cousot, R. (ed.) SAS 2003. LNCS, vol. 2694, pp. 1–18. Springer,
Heidelberg (2003)

9. Gould, C., Su, Z., Devanbu, P.: JDBC Checker: A Static Analysis Tool for
SQL/JDBC Applications. In: Proceedings of the 26th International Conference
on Software Engineering (ICSE 2004) Formal Demos, pp. 697–698 (2004)

10. Monticelli, F.: PhD SQLPrevent thesis. University of British Columbia (UBC)
Vancouver, Canada (2008)

11. Owasp, O. W.: Top ten most critical web application vulnerabilities (2010),
http://www.owasp.org/index.php/Top_10_2010-Main

12. PHP usage statistics, http://www.php.net/usage.php
13. Wikipedia, http://en.wikipedia.org/wiki/PHP
14. System Administration, Networking, and Security Institute (SANS),

http://www.sans.org/

15. Cook, W.R., Rai, S.: Safe Query Objects: Statically Typed Objects as Remotely
Executable Queries. In: Proc. 27th Intl Conf. Software Eng., pp. 97–106 (May 2005)

16. Amirtahmasebi, K., et al.: A survey of SQL injection defense mechanisms. In:
Int. Conf. for Internet Technology and Secured Trans., ICITST 2009, pp. 1–8
(November 2009)

17. PHP Open source web applications, http://www.goto.com

http://www.owasp.org/index.php/Top_10_2010-Main
http://www.php.net/usage.php
http://en.wikipedia.org/wiki/PHP
 http://www.sans.org/
http://www.goto.com

Security of Prime Field Pairing Cryptoprocessor

against Differential Power Attack

Santosh Ghosh and Dipanwita Roychowdhury

Department of Computer Science and Engineering,
Indian Institute of Technology,

Kharagpur, India
{santosh,drc}@cse.iitkgp.ernet.in

Abstract. This paper deals with the differential power attack on a pair-
ing cryptoprocessor. The cryptoprocessor is designed for pairing com-
putations on elliptic curves defined over finite fields with large prime
characteristic. The work pinpoints the vulnerabilities of such pairing
computations against side-channel attacks. By exploiting the power con-
sumptions, the paper experimentally demonstrates such vulnerability on
FPGA platform. A suitable counteracting technique is also suggested to
overcome such vulnerability.

Keywords: Pairing Based Cryptography, Side-channel Analysis, Power
Analysis Attack, DPA Attack, Prime Fields.

1 Introduction

Bilinear pairing or pairing is a new and increasingly popular way of constructing
cryptographic protocols. This has resulted in the development of pairing based
schemes such as identity based encryption (IBE) which are ideally used in iden-
tity aware devices. The security of such devices leads to the security of pairing
computations. In the last decade, an increasingly popular form of attack known
as side-channel attack (SCA) [5,6], which exploits the weakness in implementa-
tions, have developed. SCA breaks a cryptosystems by analyzing the information
that could be measured through some covert channel of a cryptoprocessor like :
power consumption, time, electromagnetic radiation, fault, etc.

Pairing can be computed on different characteristic fields like binary (F2m),
trinary (F3m), and large prime (Fp). The security of pairing computations over
first two fields against differential power analysis (DPA) attack have been de-
scribed in [11] and [7], respectively. DPA on pairing in general is described
in [3,4]. However, security analysis of pairing computations especially on prime
fields against side-channel attack has not been considered before.

This paper explores the side-channel vulnerability of pairing computations
on FPGA platform. One of the popular pairing friendly elliptic curves defined
over Fp is the Barreto-Naehrig curve (BN curve) [13]. A dual-core pairing cryp-
toprocessor for BN curves has been developed on FPGA platform. The paper
proposes an optimized parallel scheduling of underlying finite field operations

M. Joye et al. (Eds.): InfoSecHiComNet 2011, LNCS 7011, pp. 16–29, 2011.
c© Springer-Verlag Berlin Heidelberg 2011

Security of Prime Field Pairing Cryptoprocessor 17

for Tate pairing computations by the cryptoprocessor. It further observes the
mathematical formula of different steps of the pairing computation and pin-
points the vulnerability against side-channel attacks. The paper then describes
a differential power analysis (DPA) technique based on such vulnerability. The
actual DPA attack has been mounted on FPGA platforms which ascertains the
secret parameter of pairing computation. The paper then proposes a suitable
computation technique for counteracting the above vulnerability.

The paper is organized as follows: section 2 provides a mathematical back-
ground of pairing computation technique. The description of pairing crypto-
processor over prime field is given in section 3. The vulnerability of pairing
computation over prime fields is pointed out in section 4. The proposed DPA
attack and its counteracting technique is described in section 5. The paper is
concluded in section 6.

2 Mathematical Background

Pairing is a bilinear map which is performed on a pair of elements of a group
(say G1) to an element of another group (say G3). Pairings for cryptographic
applications use an additive group defined over elliptic or hyperelliptic curves as
G1 and a multiplicative group defined over an integer field as G2 [9]. The map-
ping also follow two important properties called bilinearity and non-degeneracy.
Sometimes the pairing is computed on two elements from two different additive
groups (say G1 and G2) and it maps to an element of a multiplicative group
G3. The groups G1 and G2 are in general formed by an elliptic curve over Fq

and Fqk , where k is also known as embedding degree of the elliptic curve. The
security of a pairing is based on the difficulty to solve the discrete logarithm
problem in G1, G2, and G3.

The computation efficiency of such bilinear map is also an important factor for
cryptographic applications. Cryptographic pairings are efficiently computed by
Miller’s algorithm [1,2] which is shown in Alg. 1. More specifically this algorithm
shows the computation of Tate pairing. Several optimizations of this algorithm
have been presented in [10]. The resulting algorithm proposed in [10] is called
BKLS algorithm for Tate pairing computation. Other pairings like ate, R-ate
are computed by similar way using different parameters other than r and by
interchanging the input points [15].

The underlying elliptic curve plays an important role for achieving compu-
tation efficiency and security of a pairing computation. Active research is go-
ing on for finding out such a pairing-friendly elliptic curves. One of the most
popular pairing-friendly elliptic curves is known as Barreto-Naehrig curves (BN
curves) [13]. The BN curve is defined over a large prime field with embedding
degree 12. Thus G1 and G2 in Alg. 1 are additive elliptic curve groups defined
over Fp and Fp12 , respectively. The pairing value tr(P, Q) = f ∈ G3, where G3 is
a multiplicative integer group defined over Fp12 . For achieving 128-bit security
the BN curve is defined over a 256-bit prime field.

The BN curves also admit a sextic twist [15], which means that the point Q in
Alg. 1) is mapped on a point Q′ defined over Fp2 . Thus, the line functions lT,T (Q)

18 S. Ghosh and D. Roychowdhury

Input: P ∈ G1 and Q ∈ G2.
Output: tr(P, Q).

Write r in binary : r =
∑L−1

i=0 ri2
i.

T ← P , f ← 1.
for i from L− 2 downto 0 do

T ← 2T .
f ← f2 · lT,T (Q).
if ri = 1 and i �= 0 then

T ← T + P .
f ← f · lT,P (Q).

end

end

return f (qk−1)/r.

Algorithm 1. Computing the Tate pairing

and lT,P (Q) is computed over Fp2 instead of Fp12 . Value of the line functions are
represented as : l0 + l1W

2 + l2W
3, with l0 ∈ Fp, l1, l2 ∈ Fp2 , and a quadratic

non-residue W over Fp2 . The Miller function f is computed over Fp12 , which is
represented as : f0 + f1W + f2W

2 + f3W
3 + f4W

4 + f5W
5, with fi ∈ Fp2 . So in

the Tate pairing computation f2, f2 · lT,T (Q), and f · lT,P (Q) are performed on
Fp12 . Whereas all other computations are performed on Fp and Fp2 .

The detailed procedure of pairing computation including the final exponentia-
tion on BN curve is described in [15] and [16]. Another efficient way of computing
final exponentiation is described in [17]. We use Jacobian coordinate systems for
performing elliptic curve operations, where a point (X, Y, Z) corresponds to the
point (x, y) in affine coordinates with x = X/Z2 and y = Y/Z3.

3 Pairing Crytoprocessor (PCP)

The major operations for a pairing computation are point doubling (PD), point
addition (PA), line computation (l(Q)), f2, and f · l(Q). In case of Tate pairing
on BN curve, the PA and PD are performed in Fp. Similarly, the operation
l(Q) is performed in Fp2 while the other two operations are performed in Fp12 .
However, the operations in these extension fields consist of a set of operations
in underlying Fp.

The current work explores the side-channel vulnerabilities of a pairing cryp-
toprocessor (PCP). Therefore, instead of designing a new architecture from the
scratch, we implement the pairing cryptoprocessor that was proposed in [18] on
FPGA platform. The work first implement a programmable core for computing
all necessary Fp operations. Based on this programmable core we
design a cryptoprocessor for pairing computation on FPGA platform. The pro-
posed design consists two programmable cores which exploit the parallelism of
Miller’s algorithm. Each of the programmable cores can perform operations on Fp

and Fp2 .

Security of Prime Field Pairing Cryptoprocessor 19

We follow the formula and algorithms for the computation of asymmetric Tate
pairing that are given in [15]. The major steps in pairing algorithm (Alg. 1) are
the Miller function and the final exponentiation. The Miller function consists
of two major steps, namely : doubling step and addition step. Here, we discuss
the computation of above steps for Tate pairing over BN curve on our dual-core
PCP.

The Tate pairing (tr) over BN curve takes input points P and Q over Fp

and Fp2 , respectively. The parameter r is a 256-bit prime of Hamming weight
91. Thus, the Miller algorithm runs for 255 iterations having 255 doubling steps
and 90 addition steps. There are sufficient independent operations within the
doubling and addition steps which can be performed in parallel. Our dual-core
PCP consists of a fixed number of functional units. Therefore, an optimization
can be done based on the available functional units and the operations. In the
following subsections, we describe an optimized scheduling of above steps on
proposed PCP.

3.1 Computation of Doubling Step

The doubling step consists of the following computations.

• The point doubling (2T) operation.
• The computation of tangent line at point T (lT,T (Q)).
• The squaring of Miller function (f2).
• The multiplication of Miller function with line function (f2 · lT,T (Q)).

The computation of 2T , lT,T (Q), and f2 are performed in parallel on our PCP.
In Jacobian coordinates the formulae for doubling a point T = (X, Y, Z) are
2T = (X3, Y3, Z3) where X3 = 9X4 − 8XY 2, Y3 = (3X2)(4XY 2 − X3) − 8Y 4

and Z3 = 2Y Z. The tangent line at T , after clearing denominators, is l(x, y) =
3X3 − 2Y 2 − 3X2Z2x + Z3Z

2y [14].
In case of Tate pairing computation on BN curves, the parameters {x, y} ∈ Fp2

and {X, Y, Z, X3, Y3, Z3} ∈ Fp. Let us assume that x and y are represented as
x0 + x1U and y0 + y1U , where {x0, x1, y0, y1} ∈ Fp and U is an indeterminant.
The above operations are performed by one of the programmable cores in the
dual-core PCP by following way.

1. t0 ← X2, t1 ← Y 2, t2 ← Y · Z
2. t3 ← (t0)2, t4 ← X · t1, t5 ← (t1)2

3. t4 ← 2t4, t6 ← 2t3, Z3 ← 2t2
4. t4 ← 2t4, t6 ← 2t6, t5 ← 2t5
5. t3 ← t3 + t6, t5 ← 2t5
6. X3 ← t3 − t2, t5 ← 2t5
7. t3 ← t4 − X3, t7 ← t7 + t0

20 S. Ghosh and D. Roychowdhury

8. t7 ← t7 · t3, t4 ← Z2, t2 ← X · t0
9. Y3 ← t7 − t5, t1 ← 2t1, t5 ← 2t2

10. t4 ← t4 · t0, t0 ← t4 · Z3

11. t2 ← 2t4, t5 ← t2 + t5
12. t4 ← t4 + t2, l0 ← t5 − t1
13. l10 ← t4 · x0, l11 ← t4 · x1

14. l20 ← t0 · y0, l21 ← t0 · y1

In the above scheduling nonlinear Fp operations are performed in the instructions
1, 2, 8, 10, 13, and 14. If we assume that Fp squaring (s) ≈ Fp multiplication (m)
then the cost of above operations is 6m on a programmable core in our dual-core
PCP. At the same time other core starts the computation of f2. We represent the
Miller function f ∈ F((p2)3)2 as : (f0,0+f0,1V+f0,2V2)+(f0,0+f0,1V+f0,2V2)W ,
where fi,j ∈ Fp2 . The equivalent representations of f are :

f = f0 + f1W , wheref0, f1 ∈ Fp6 ; f ∈ F(p6)2 .

= (f0,0 + f0,1V + f0,2V2) + (f1,0 + f1,1V + f1,2V2)W ,

wherefi,j ∈ Fp2 ; f ∈ F((p2)3)2 .

= f0,0 + f1,0W + f0,1W2 + f1,1W3 + f0,2W4 + f1,2W5

wherefi,j ∈ Fp2 ; f ∈ F(p2)6 .

The computation of c = f2 is performed in Fp12 using complex method by
following way.

v = f0 · f1,

c0 = (f0 + f1)(f0 + βf1) − v − βv,

c1 = 2v,

where v, c0, c1 are in Fp6 and β is a quadratic non-residue in Fp6 . It requires two
Fp6 multiplications. Now, one Fp6 multiplication is performed in the tower field
F(p2)3 using Karatsuba technique by six multiplications in Fp2 . Let us consider
that an element ai ∈ Fp2 is represented as : ai0+ai1U , aij ∈ Fp. The computation
of v = f0 · f1 on a programmable core is as follows:

1. ṽ0 ← f00 · f10, where f00, f10 ∈ Fp2

2. ṽ1 ← f01 · f11, where f01, f11 ∈ Fp2

3. ṽ2 ← f02 · f12, where f02, f12 ∈ Fp2

4. t10 ← f010 + f020, t11 ← f011 + f021

5. t20 ← f110 + f120, t21 ← f111 + f121

6. t3 ← t1 · t2, where t1, t2 ∈ Fp2

7. t10 ← ṽ10 + ṽ20, t11 ← ṽ11 − ṽ21

8. t30 ← t30 − t10, t31 ← t31 − t11
9. t31 ← t31 + t31

10. v00 ← ṽ00 − t31, v01 ← ṽ01 + t30

Security of Prime Field Pairing Cryptoprocessor 21

11. t10 ← f000 + f010, t11 ← f001 + f011

12. t20 ← f100 + f110, t21 ← f101 + f111.
13. t3 ← t1 · t2, where t1, t2 ∈ Fp2

14. t10 ← ṽ00 + ṽ10, t11 ← ṽ01 − ṽ11

15. t20 ← ṽ21 + ṽ21

16. t10 ← t10 + t20, t11 ← ṽ20 − t11
17. v10 ← t30 − t10, v11 ← t31 + t11
18. t10 ← f000 + f020, t11 ← f001 + f021

19. t20 ← f100 + f120, t21 ← f101 + f121

20. t3 ← t1 · t2, where t1, t2 ∈ Fp2

21. t10 ← ṽ00 + ṽ20, t11 ← ṽ01 + ṽ21

22. t10 ← ṽ10 − t10, t11 ← ṽ11 − t11
23. v20 ← t30 + t10, v21 ← t31 + t11

The result v ∈ Fp6 is represented as : (v00+v01U)+(v10+v11U)V+(v20+v21U)V2,
where vij ∈ Fp. In the above computation, steps 1, 2, 3, 6, 13, 20 perform
multiplications in Fp2 . Thus the cost of v = f0 · f1 is 6m, which is computed in
parallel with 2T , lT,T (Q) by the proposed PCP.

The second Fp6 multiplication, i.e., the computation of (f0 + f1)(f0 + βf1) is
performed by both the programmable cores, which costs only 3m in the PCP.
Therefore, the total cost of computing 2T , lT,T (Q), and f2 by the PCP is 9m.

The l(Q) is represented as : (l0 + l1V) + (l2V)W , where l0 ∈ Fp, l1, l2 ∈ Fp2 ,
which is equivalent to l0+l1W2+l2W3. The computation of f ·l(Q) is performed
in the tower field F((p2)3)2 by following way.

f ′ = f · l(Q)
= ((f0,0 + f0,1V + f0,2V2) + (f1,0 + f1,1V + f1,2V2)W) ·

((l0 + l1V) + (l2V)W)

The top most extension is quadratic. Thus the computation of f · l(Q) is done
by three Fp6 multiplications, which are identified as :

t11 = (l0 + l1V) · (f0,0 + f0,1V + f0,2V2)
t12 = (l2V) · (f1,0 + f1,1V + f1,2V2)
t13 = (l0 + (l1 + l2)V) · (((f0,0 + f1,0) + (f0,1 + f1,1)V +

(f0,2 + f1,2)V2)

One multiplication in Fp6 using Karatsuba method requires 18 Fp multiplica-
tions. However, due to the sparse representation of l(Q) the cost of computing
t1i , 1 ≤ i ≤ 3 is lesser than the actual costs of three Fp6 multiplications. Both
the equations for t11 and t13 require only 14 Fp multiplications. In our parallel
cryptoprocessor the above two equations are computed in parallel on two pro-
grammable cores, which costs 5m. The computation of t12 requires only nine
Fp multiplications, which is performed on both the cores and it costs only 2m.

22 S. Ghosh and D. Roychowdhury

Therefore, the computation of f · l(Q) requires 37 Fp multiplications, which costs
only 7m in our PCP. Therefore, the total cost for computing the doubling step
(the computation of 2T, lT,T (Q), f2, and f ·l(Q)) of the Miller algorithm for Tate
pairing on BN curve is 9m + 7m = 16m.

3.2 Computation of Addition Step

The addition step consists of the computations of T + P , lT,P (Q), and f ·
lT,P (Q). The formulae for mixed Jacobian-affine addition are the following: if
T = (X1, Y1, Z1) is in Jacobian coordinates and P = (X2, Y2) is in affine co-
ordinates, then T + P = (X3, Y3, Z3) where X3 = (Y2Z

3
1 − Y1)2 − (X2Z

2
1 −

X1)2(X1 +X2Z
2
1), Y3 = (Y2Z

3
1 −Y1)(X1(X2Z

2
1 −X1)2−X3)−Y1(X2Z

2
1 −X1)3,

Z3 = Z1(X2Z
2
1 − X1). The line through T and P is l(x, y) = (X2(Y2Z

3
1 − Y1) −

Y2Z3) − (Y2Z
3
1 − Y1)x + Z3 · y. During the addition step of Miller algorithm

we compute the above operations in parallel on both cores. There are limited
independent operations in this step. Therefore, there are scopes for optimizing
the scheduling of operations on Fp arithmetic units for reducing the additional
registers and related wiring. The respective scheduling is shown here.

1. t0 ← Y2 · Z1, t0 ← (Z1)2

2. t0 ← t1 · t0, t1 ← t1 · X2

3. t4 ← t1 + X1, t0 ← t0 − Y1, t5 ← t1 − X1

4. t3 ← (t0)2, Z3 ← t5 · Z1, t7 ← (t5)2; l10 ← t0 · x0,
l11 ← t0 · x1

5. t2 ← t7 · X1, t4 ← t4 · t7, t5 ← t5 · t7; t10 ← t0 · X2

6. X3 ← t3 − t4
7. t2 ← t2 − X3

8. t2 ← t2 · t0, t4 ← Y2 · Z3, t5 ← t5 · Y1; l20 ← Z3 · y0,
l21 ← Z3 · y1

9. Y3 ← t2 − t5; l0 ← t10 − t4

In the above scheduling, the nonlinear operations (multiplication and squaring)
in Fp are performed in steps 1, 2, 4, 5, and 8. Thus, the cost of computing T +P ,
lT,P (Q) is 5m in the PCP. This computation is followed by f · l(Q), which costs
7m. Therefore, the cost for evaluating the addition step is 5m + 7m = 12m in
the PCP.

3.3 Computation of Final Exponentiation

The final exponentiation is computed by following way. It follows the optimiza-
tion to factor (p12 − 1)/r into three parts [16] and compute f (p12−1)/r as :

f
p12−1

r = f
(p6−1)× p6+1

p4−p2+1
× p4−p2+1

r

= ((fp6−1)p2+1)
p4−p2+1

r .

Security of Prime Field Pairing Cryptoprocessor 23

The computation is done by following way:

1. f ← fp6−1.

2. f ← fp2+1.

3. a ← f−(6z+5), b ← ap, b ← a · b.
4. Compute fp, fp2

, fp3
.

5. f ← fp3 ·
[
b · (fp)2 · fp2

]6z2+1

· b · (fp · f)9 · a · f4,

where z is a BN parameter and we choose z = 6000000000001F2D (in hexadec-
imal). Table 1 lists the operation costs of final exponentiation on the PCP. The
power of (p6 − 1) in F(p

6)2 is an easy exponentiation, which is performed by a
conjugation (Frobenius) and a division [17,12]. The operation fp6

= f0 − f1W .
Thus, fp6−1 is performed by one inversion and one multiplication in Fp12 , which
costs 29m on our dual-core PCP.

Table 1. Operation costs for the final exponentiation on our PCP

Operation cost on PCP

fp6−1 29m

fp2+1 12m

f−(6z+5) 480m

ap, a · b, fp, fp2
, fp3

21m

T ← b · (fp)2 · fp2
24m

T ← T 6z2+1 951m

fp3 · T · b · (fp · f)9 · f4 93m

The exponentiations f6z+5, T z and (T z)6z are performed by repeated square-
and-multiply. Note that 6z + 5 and 6z have bitlength 66 and Hamming weight
11, while z has bitlength 63 and Hamming weight 11.

3.4 Cost for Computing Tate Pairing

In case of BN curve, r has bitlength 256 and Hamming weight 91. Thus the total
cost for evaluating iterative Miller function of the Tate pairing computation is
5176m on our PCP. The cost for computing the final exponentiation is 1610m.
Hence, the total cost for computing a Tate pairing over BN curves by our crypto-
processor is 6786m, which takes 1, 764, 360 cycles. The cryptoprocessor finishes
one Tate pairing computation over BN curve in 35.3ms on a Virtex-4 FPGA
platform. It consumes 52k slices and runs at 50 MHz clock frequency.

4 Side-Channel Vulnerability

Page and Vercauteren [7] presented SPA and DPA attacks on the pairing com-
putations performed by the Duursma-Lee algorithm [8] and the BLKS algo-
rithm [10] over F3m . The power consumption attack on ηT pairing computation

24 S. Ghosh and D. Roychowdhury

over F2m is described by Kim et al. in [11]. However, the same in case of Fp

has not been studied so far. This section investigates the security of pairing
computations over Fp against power consumption attacks.

4.1 Weakness of Pairing Computations in Fp

In the decryption step of identity-based encryption schemes, a dominant op-
eration is e(U, SID), where SID is the fixed secret key, and U is a part of a
ciphertext [19]. In this case side-channel attacks may try to extract the secret
key from the pairing computation by repeatedly manipulating U . The Tate pair-
ing over Fp consists of elliptic curve group operations (ECD and ECA), the line
functions, and the Miller function [15]. The line functions as per the definition
provided by Chatterjee et al. [14] use both the public point U and private point
SID. The formula of line functions are based on the underlying Fp primitives.

During the addition step of Tate pairing computation the formula of the line
function is l(x, y) = (y − Y2)Z3 − (x − X2)(Y2Z

3
1 − Y1) [14]. In pairing based

cryptographic schemes, the point T = (X1, Y1, Z1) is an intermediate resultant
point of current point doubling operation, the point U = (X2, Y2) is used as a
public parameter (it could be the plain texts or messages), and SID = (x, y) is
used as the private key. The resultant point (T+U) is represented by (X3, Y3, Z3).
Therefore, in such a scheme the operations (x − X2) and (y − Y2) could be
exploited through side-channel attacks for finding out the x and y-coordinates
of the secret point.

5 Proposed DPA Attack

In this section, we investigate differential power analysis (or DPA) attack against
the subtraction (x−X2) used in the Tate pairing on elliptic curves in Fp, where
x is secret and X2 is public and known to, or even chosen by, the attacker. The
subtraction (x−X2) in Fp is computed by first computing S = x−X2 and then
the result is reduced (if required) by adding p with S. Let us assume that all
operations are performed on 2’s complement numbers. Therefore, the subtraction
S = x−X2 could be performed as: S =

∑k
i=0 2isi =

∑k−1
i=0 2ixi+

∑k−1
i=0 2iX̄2i +1,

where k represents the bit length of operands (x, X2) and X̄2i corresponds to
the 1’s complement of X2i . The subtraction is started from the least significant
bit (or LSB) by computing sum and carry bits iteratively. The formula for i-th
carry bit is: ci = xiX̄2i ⊕ xici−1 ⊕ X̄2ici−1. Similarly, the i-th sum bit is
computed as: si = xi ⊕ X̄2i ⊕ ci−1 for k − 1 ≤ i ≤ 0 with c−1 = 1.

The proposed DPA attack works by following way. The attacker first collects
the power consumption traces of n number of randomly chosen public point U .
We consider the simplified Hamming weight model for power leakage [20]. In this
model, power consumption depends on the Hamming weight of the data being
processed. Thus, we can express the power consumption W as:

Security of Prime Field Pairing Cryptoprocessor 25

W = εH + η (1)

where H , ε, and η represent the Hamming weight of the intermediate data, the
incremental amount of power for each extra 1 in the Hamming weight, and the
noise, respectively. We assume that the average of noise η is zero.

Let W be the power consumption associated with the subtraction operation
(x−X2). We start from the LSB and iteratively find all bits of the x-coordinate
of the secret point SID = (x, y). To recover the i-th bit of x, we guess that xi = 0
and divide power consumptions into two sets by X̄2i ⊕ ci−1.

Pk = { W | X̄2i ⊕ ci−1 = k} with k = {0, 1}

Thus, the differential power consumption is:

Δ = < P1 − P0 > .

If the guess is correct, then the averages of P1 and P0 are, ε(M + 1)/2 and
ε(M − 1)/2, where M corresponds to the bit length of S. Thus, if Δ > 0, we
know that xi = 0; otherwise, the averages of P1 and P0 is ε(M − 1)/2 and
ε(M + 1)/2. Thus, if Δ < 0 then xi = 1. There should be a positive peak when
xi = 0 and a negative peak when xi = 1.

In summary, since the subtraction operation (x−X2) of line function in pairing
computation is vulnerable to the proposed attack, we can recover x. Next, we
can obtain the value of y-coordinate of the secret point SID by solving the curve
equation.

5.1 Mounting the DPA on FPGA Platform

We perform the actual DPA attack on aforementioned pairing cryptoprocessor
(or PCP). The PCP is implemented on a customized FPGA board for power
analysis. We put an one ohm resistor between the VCCint pin of the FPGA
chip and the on board voltage regulator. We measure the current drawn through
that resistor during pairing computation by a current probe. The specification
of the probe is Tektronix current probe (serial number B014316). We use the
probe with a TCPA300 power amplifier in standby mode. The measured power is
displayed and stored in a Tektronix TDS5032B Digital Phosphor Oscilloscope.
We develop software tools to automate the whole process for varying inputs.
The power consumptions are measured in terms of mV which is varying around
±5mV . The power signal is sampled at 12.5MS/s.

We choose an x with x0 = 0 and perform (x − X2) for 2000 times with 2000
different randomly chosen X2. The respective power consumptions are stored in
2000 one dimensional vectors. Now we differentiate the the power vectors in two
sets namely P1 and P0. A vector will be in set P1 if X̄20 ⊕ c−1 = 1; i.e., X20 = 1.
Otherwise, the vector will be in set P0. For computing the differential power
consumption we subtract the average of P0 vectors (means) from the average of

26 S. Ghosh and D. Roychowdhury

50 100 150 200
0

2

4

6

8

x 10
−3

samples

di
ffe

re
nc

e−
of

−
m

ea
ns

(a)

50 100 150 200

−8

−6

−4

−2

0
x 10

−3

samples

di
ffe

re
nc

e−
of

−
m

ea
ns

(b)

Fig. 1. The correlation between LSB and corresponding average power differences of
an addition in Fp. (a) for x0 = 0 and (b) for x0 = 1.

P1 vectors. We say this differential power consumption vector as difference-of-
means which is represented by Δ. Then we accumulate the samples of Δ and
plot it. The respective difference-of-means is depicted in Fig. 1(a), which shows
a positive peak as expected for x0 = 0.

The same experiment has been repeated for another x with x0 = 1. The
difference-of-means in this case is plotted in Fig. 1(b). In this case the expectation
of < P1 − P0 > is negative and we got the result as expected with 2000 random
X2.

Above experimental result ensures that an attacker can easily mount the DPA
attack on pairing computation over Fp. After finding out the LSB, DPA can be
performed for second LSB, and so on. The same power traces could be utilized
for finding out all secret bits. The differentiation of power vectors into two sets
depending on the current value of (X̄2i ⊕ ci−1) upto the generation of the
difference-of-means will be repeated for finding out each of the secret bits. Thus,
above DPA attack iteratively finds out all bits of the x-coordinate of secret SID.
After obtaining the x-coordinate, the value of y-coordinate could be obtained
easily by solving the underlying elliptic curve equation.

5.2 Proposed Counteracting Technique

In the pairing computation, the secret point is only used for computing the line
functions. The formula of the line function during doubling step of the Miller
algorithm over Fp is as follows:

lT,T (x, y) = Z3Z
2y − 2Y 2 − 3X2(Z2x − X),

where T = (X, Y, Z) be the intermediate resultant point of Miller algorithm
while 2T = (X3, Y3, Z3) [14].

Security of Prime Field Pairing Cryptoprocessor 27

The formula of lT,T (x, y) is using the secret point SID = (x, y) of identity
based encryption (IBE) [19]. But, it does not use the public point U = (X2, Y2).
Therefore, this function could not be exploited by any side-channel attacks.

The second line function lT,P (x, y) is computed during the addition step of the
Miller algorithm. In IBE scheme P is replaced by U . The formula of lT,P (x, y)
is:

lT,U (x, y) = (y − Y2)Z3 − (x − X2)(Y2Z
3
1 − Y1),

where T (X1, Y1, Z1) is the intermediate result of doubling step and (X3, Y3, Z3)
represents the addition result of T + U . In this line computation formula both
public point U = (X2, Y2) and private point SID = (x, y) are used. The compu-
tation of lT,U (x, y) is the main weakness of pairing computation over Fp against
side-channel attacks. The DPA attack described above can easily find out the x
and y-coordinates of private point SID by exploiting the above formula.

The main drawback of the above formula is that the public and private pa-
rameters are directly involved to perform an Fp operation. The side-channel
attack thus exploit the respective Fp operation for finding out the secret bits by
manipulating public parameter U . To counter act on such computation against
side-channel attacks it could be computed by following way.

lT,P (x, y) = (X2(Y2Z
3
1 − Y1) − Y2Z3) − (Y2Z

3
1 − Y1)x + Z3 · y.

The above computation technique does not have any Fp primitive which is per-
formed on one public parameter and one private parameter. The attacker may
try to exploit the power consumption of the cryptoprocessor during the compu-
tation of lT,P (x, y). The private parameter x in the above formula is multiplied
with an unknown parameter (Y2Z

3
1 − Y1). Therefore, no difference-of-mean can

be computed for identifying the secret bits of x.
The second secret parameter y is multiplied with Z3 in the modified com-

putation of lT,P (x, y). The parameter Z3 is computed by executing the formula
Z3 = Z1(X2Z

2
1 − X1) which ensures Z3 is unknown due to the unknown tem-

porary point T (X1, Y1, Z1). Therefore, no difference-of-mean value can be com-
puted based on the specific bits of Z3 for identifying the secret bits of y. Thus,
the proposed counteracting technique protects both x and y coordinates of se-
cret point SID, which ensures the security of pairing computation against DPA
attack.

5.3 Overhead of DPA Countermeasure

The respective costs of existing DPA-vulnerable formula of lT,U (x, y) are 6m+ s
and 14m in Tate and ate/optimal-ate pairings. The same in case of our proposed
DPA-resistance formula are 8m+s and 18m in Tate and ate/optimal-ate pairings,
respectively. For BN curves the number of iterations of Miller’s loop are r = 256,
t = 128, and a = 66 having respective Hamming weights 91, 28, and 9. The
overhead of proposed DPA resistance scheme in terms of the cost for computing
one Fp-multiplication (m) is shown in Table 2.

28 S. Ghosh and D. Roychowdhury

Table 2. DPA resistance overhead for pairing computations

Pairings Overhead in one lT,U (x, y) Total overhead

Tate 2m 182m
ate 4m 108m
optimal-ate 4m 32m

6 Conclusion

This paper has demonstrated an optimized scheduling of Tate pairing computa-
tion over BN curve on a dualcore pairing cryptoprocessor. The computation cost
for One Tate pairing achieving 128-bit security on FPGA platform is 35.3ms.
The paper further analyzes the effect of covert power channel of the pairing cryp-
toprocessor against physical security. The paper has pinpointed the vulnerability
of such pairing computation against DPA attack. The actual DPA has been per-
formed on FPGA platform and respective vulnerability has been demonstrated.
Finally, the paper has proposed a suitable counteract to protect secret point of
pairing computation against DPA attack.

References

1. Miller, V.S.: Short Programs for Functions on Curves (1986) (unpublished
manuscript)

2. Miller, V.S.: The Weil pairing, and its efficient calculation. Journal of Cryptol-
ogy 17, 235–261 (2004)

3. Mrabet, N.E., Natale, G.D., Flottes, M.L., Rouzeyre, B., Bajard, J.C.: Differential
Power Analysis against the Miller Algorithm. HAL: lirmm-00323684, Version 1,
http://hal-lirmm.ccsd.cnrs.fr/lirmm-00323684/en/

4. Mrabet, N.E., Flottes, M.L., Natale, G.D.: A practical Differential Power Anal-
ysis against the Miller Algorithm. Research in Microelectronics and Electronics,
PRIME, Ph.D (2009)

5. Kocher, P.C.: Timing Attacks on Implementations of Diffie-Hellman, RSA, DSS,
and Other Systems. In: Koblitz, N. (ed.) CRYPTO 1996. LNCS, vol. 1109, pp.
104–113. Springer, Heidelberg (1996)

6. Kocher, P.C., Jaffe, J., Jun, B.: Differential power analysis. In: Wiener, M. (ed.)
CRYPTO 1999. LNCS, vol. 1666, pp. 388–397. Springer, Heidelberg (1999)

7. Page, D., Vercauteren, F.: Fault and side-channel attacks on pairing based cryptog-
raphy. Cryptology ePrint Archive, Report 2004/283, http://eprint.iacr.org/

8. Duursma, I., Lee, H.: Tate pairing implementation for hyperelliptic curves y2 =
xp−x+ d. In: Laih, C.-S. (ed.) ASIACRYPT 2003. LNCS, vol. 2894, pp. 111–123.
Springer, Heidelberg (2003)

9. Hoffstein, J., Pipher, J., Silverman, J.H.: An introduction to mathmatical cryptog-
raphy. Springer, Heidelberg (2008)

10. Barreto, P.S.L.M., Kim, H., Lynn, B., Scott, M.: Efficient algorithms for pairing-
based cryptosystems. In: Yung, M. (ed.) CRYPTO 2002. LNCS, vol. 2442,
pp. 354–368. Springer, Heidelberg (2002)

http://hal-lirmm.ccsd.cnrs.fr/lirmm-00323684/en/
http://eprint.iacr.org/

Security of Prime Field Pairing Cryptoprocessor 29

11. Kim, T.H., Takagi, T., Han, D.G., Kim, H., Lim, J.: Power analysis attacks
and countermeasures on ηT pairing over binary fields. ETRI Journal 30(1),
68–80 (2008)

12. Naehrig, M., Barreto, P.S.L.M., Schwabe, P.: On compressible pairings and their
computation. In: Vaudenay, S. (ed.) AFRICACRYPT 2008. LNCS, vol. 5023,
pp. 371–388. Springer, Heidelberg (2008)

13. Barreto, P.S.L.M., Naehrig, M.: Pairing-friendly elliptic curves of prime order. In:
Preneel, B., Tavares, S. (eds.) SAC 2005. LNCS, vol. 3897, pp. 319–331. Springer,
Heidelberg (2006)

14. Chatterjee, S., Sarkar, P., Barua, R.: Efficient Computation of Tate Pairing in
Projective Coordinate over General Characteristic Fields. In: Park, C.-s., Chee,
S. (eds.) ICISC 2004. LNCS, vol. 3506, pp. 168–181. Springer, Heidelberg (2005)

15. Hankerson, D., Menezes, A., Scott, M.: Software implementation of pairings. In:
Joye, M., Neven, G. (eds.) Identity-Based Cryptography (2008)

16. Devegili, A.J., Scott, M., Dahab, R.: Implementing Cryptographic Pairings over
Barreto-Naehrig Curves. In: Takagi, T., Okamoto, T., Okamoto, E., Okamoto,
T. (eds.) Pairing 2007. LNCS, vol. 4575, pp. 197–207. Springer, Heidelberg (2007)

17. Scott, M., Benger, N., Charlemagne, M., Perez, L.J.D., Kachisa, E.J.: On the final
exponentiation for calculating pairings on ordinary elliptic curves. In: Shacham, H.,
Waters, B. (eds.) Pairing 2009. LNCS, vol. 5671, pp. 78–88. Springer, Heidelberg
(2009)

18. Ghosh, S., Mukhopadhyay, D., Roychowdhury, D.: High speed flexible pairing cryp-
toprocessor on FPGA platform. In: Joye, M., Miyaji, A., Otsuka, A. (eds.) Pairing
2010. LNCS, vol. 6487, pp. 450–466. Springer, Heidelberg (2010)

19. Boneh, D., Franklin, M.K.: Identity-Based Encryption from the Weil Pairing. In:
Kilian, J. (ed.) CRYPTO 2001. LNCS, vol. 2139, pp. 213–229. Springer, Heidelberg
(2001)

20. Messerges, T.S.: Using second-order power analysis to attack DPA resistant soft-
ware. In: Paar, C., Koç, Ç.K. (eds.) CHES 2000. LNCS, vol. 1965, pp. 238–251.
Springer, Heidelberg (2000)

Embedded Software Security through Key-Based

Control Flow Obfuscation

Rajat Subhra Chakraborty1, Seetharam Narasimhan2, and Swarup Bhunia2

1 Department of Computer Science and Engineering
Indian Institute of Technology, Kharagpur, West Bengal, India–721302

rschakraborty@cse.iitkgp.ernet.in
2 Department of Electrical Engineering and Computer Science
Case Western Reserve University, Cleveland, OH–44106, USA

{sxn124,skb21}@case.edu

Abstract. Protection against software piracy and malicious modifica-
tion of software is proving to be a great challenge for resource-constrained
embedded systems. In this paper, we develop a non-cryptographic, key-
based, control flow obfuscation technique, which can be implemented by
computationally efficient means, and is capable of operating with min-
imal hardware support. The scheme is based on matching a series of
expected keys in sequence, similar to the unlocking process in a com-
bination lock, and provides high levels of resistance to static and dy-
namic analyses. It is capable of protecting embedded software against
both piracy as well as non-self-replicating malicious modifications. Sim-
ulation results on a set of MIPS assembly language programs show that
the technique is capable of providing high levels of security at nominal
computational overhead and about 10% code-size increase.

1 Introduction

The market share of embedded processors is ever-increasing, with more than 98%
of the total microprocessor market share (in terms of unit sold) already occu-
pied by them [1]. They can be found in a wide variety of electronic applications
- from low-end household items such as microwave ovens to high-end 3G/4G
cell phones and PDAs. Combined with this trend is the increase in computing
capabilities of embedded processors (with maximum operating frequencies of
up to 2 GHz in 2010) rivalling that of mainstream microprocessors [2], as they
are expected to run more computation-intensive software. An example is that
cutting-edge cellular devices are being increasingly used to surf the internet,
play graphics intensive games and perform “mobile commerce”, functionalities
that were traditionally associated with personal computers. Software develop-
ment for the mobile platform has also advanced immensely, with users routinely
downloading, installing and using both free and commercial software for their
devices.

However, this trend has increased the security concerns encompassing data
confidentiality and integrity, authentication, privacy, denial of service, nonrepu-
diation, and digital content protection [4], which were again relevant earlier only

M. Joye et al. (Eds.): InfoSecHiComNet 2011, LNCS 7011, pp. 30–44, 2011.
c© Springer-Verlag Berlin Heidelberg 2011

Embedded Software Security through Key-Based Control Flow Obfuscation 31

in the domain of commercial and personal computing. The threat is a two-edged
sword - on one hand, malicious software installed in an embedded system can
harm the user; on the other hand, reverse-engineering of software causes loss of
millions of dollars of intellectual property (IP) revenue to the software vendors.
Unfortunately, the traditional hardware or software security measures target-
ing personal computers are not directly applicable to embedded systems. The
computational demands of secure processing often overwhelm the computing
capabilities of embedded processors, and physically the portable embedded sys-
tems are often severely constrained by form factor, resulting in limited battery
capacities and memory [4].

In this work, we propose a novel technique of protecting embedded software
against piracy, reverse engineering and infection by obfuscating its control-flow.
The obfuscation is based on a key validation mechanism that internally generates
and compares a sequence of keys with their expected values loaded from mem-
ory. The keys are execution trace dependent, meaning thereby that for different
input parameters to the program, the sequence and values of keys involved in the
validation process are different. The normal functionality of the program is en-
abled only after a successful validation process, otherwise, the program produces
incorrect output. In addition, it provides additional authentication features by
which even if an adversary breaks the security scheme, the ownership of the
software can be proven by an authentication mechanism based on a digital wa-
termark. The proposed technique is not based on the weak “security through
obscurity” paradigm, where the algorithm used to obfuscate the functionality is
itself hidden from the adversary [5]. In our work we assume a threat scenario
where the adversary only has access to the program and tries to reverse-engineer
it to unveil the security scheme, and does not have access to the hardware system
which is successfully running such an obfuscated software.

The rest of the paper is organized as follows: In Section 2, we describe the
proposed key-based control flow obfuscation methodology with a complete illus-
trative example. In Section 3, we analyze the security of the scheme against a
possible attack model, and estimate the computational overhead of implement-
ing the proposed scheme. We describe the automated flow to implement the
methodology for a given MIPS assembly language program [36] in Section 4. We
present the simulation results for a suite of MIPS programs in Section 5. Finally,
we draw conclusions and indicate future research directions in Section 6.

2 Methodology

2.1 Obfuscation Technique

The fundamental idea of the technique proposed in this work is to validate
the code during execution using a “challenge-response validation” protocol. The
correct execution of the program is achieved only after the correct application
of a set of input values, which constitute the validation key sequence. The steps
of the validation process are distributed throughout the program and operates
concurrently with the rest of the program, thus making it difficult to bypass

32 R.S. Chakraborty, S. Narasimhan, and S. Bhunia

Algorithm 1. Procedure Enumerate Paths Depth First
Enumerate all possible control-flow paths of given assembly language program
segment.
Inputs: Directed Acyclic Graph G corresponding to given assembly language program segment,
instr stack, current node, last node
Outputs: Set of edges (E) with corresponding number of paths on which each edge lies

1: if curr node �= Φ then
2: push on stack(instr stack, curr node)
3: if curr node == last node then
4: e.pathcount ← (e.pathcount + 1) ∀ edge e on current path
5: end if
6: Enumerate Paths Depth First(G, instr stack, curr node → left child, last instruction)
7: Enumerate Paths Depth First(G, instr stack, curr node → right child, last instruction)
8: pop from stack(instr stack)
9: else
10: return
11: end if

the defense mechanism [6]. The security is also increased by the fact that the
required validation key sequence depends on the input argument to the program.

The keys of the validation key sequence are fetched from pre-determined mem-
ory locations and compared with the expected “golden” values. If all the values
match, the program execution follows the normal control flow. However, if even
a single comparison fails, the program executes incorrect instructions which pro-
duces an incorrect result. The main challenge in implementing this technique is
the hiding of the instructions dedicated to the validation procedure in the pro-
gram. Although pre-determined values are fetched from pre-determined memory
locations, the key and memory location values are not hard-coded in the pro-
gram. Rather, they are derived during program execution, and different sets of
values are derived depending on the input argument. This makes static analysis
of the code and “program profiling” to discover the validation mechanism ex-
tremely challenging, because each and every validation step in the obfuscated
program must be identified and neutralized to ensure that the program operates
properly in every situation. The requirement of the predicates and variables in-
volved in obfuscation to be opaque, i.e. difficult to be deduced by static analysis
was pointed out in [9].

The obfuscation algorithm proceeds by finding the feasible control-flow paths
in the program (or a part of it) and their dependence on the input values, and
then making modifications at optimal locations in the program, such that for a
given code-size and run-time overhead, the modifications would have maximum
overall effect. Algorithm-1 shows the pseudo-code for the algorithm to enumer-
ate the paths of the program using a Depth-first Search (DFS). The procedure
assumes that the given MIPS program has been modeled as a “Directed Acyclic
Graph” (DAG), with the edges forming loops removed. Each instruction of the
program forms a node of the graph, and each node has one child (the non-branch
instructions) or two children (the non-loop branch instructions). For each node,
one among the children is always the next instruction. Note that a return from
a procedure call is not treated as being part of a loop, because the “directed

Embedded Software Security through Key-Based Control Flow Obfuscation 33

Algorithm 2. Procedure Find Optimal Modifications
Find the optimal modification locations for a set of given control-flow paths and
given number of modifications.
Inputs: Set of edges E, modification pool M, required number of modifications (M), minimum
modification radius (rmod)
Outputs: List of modification locations in the program

1: Sort E based on number of paths on which each edge e ∈ E lies (i.e. e.pathcount)
2: num mods ← 0
3: for all edge e ∈ E do
4: e.modified ← FALSE
5: end for
6: /*Iterate over the ordered edges and make modifications based on rmod constraint*/
7: for i = 1 to |E| and num mods < M do
8: Set Er = {ej ∈ E : |ei − ej | ≤ rmod} /* |ei − ej | stands for the physical separation of the two

edges */
9: if e.modified == FALSE ∀e ∈ Er then
10: Choose previously unchosen m ∈ M

11: Insert m on ei

12: ej .modified ← TRUE ∀ej ∈ Er

13: num mods ← num mods + 1 /*Update number of modifications*/
14: end if
15: end for

acyclic” nature of the graph can be still maintained. In addition to the regular
DFS, the number of paths on which an edge lies is tracked. This information is
utilized in determining optimal locations to perform modifications in the pro-
gram, as described next.

Algorithm-2 shows the procedure to find the optimal locations to make M
modifications for a given program (or a part of it). At first, the edges of the graph
are ranked in descending order in terms of the number of paths on which the
edges lie. Then, M modifications chosen greedily from a pool of modifications
are inserted on the top-ranked edges, with the constraint that the modified
edges are situated at least a pre-defined “modification radius” rmod distance
away from each other. If any edge connects two vertices which do not represent
consecutive instructions in the program, jump instructions are used to connect
the modification code block to the two vertices on the edge. The following points
should be noted about this algorithm:

– Choosing the top-ranked edges ensures maximum effect of a single modifi-
cation on multiple paths, while the rmod constraint ensures that the modifi-
cations are not inserted too close to each other.

– The constraint rmod determines the average number of modifications per
path:

Mav =

|P|∑
i=1

Mi

|P| (1)

where |P| denotes the total number of paths in the part of the program
segment being processed, Mi denotes the number of modifications lying on
the i-th path, and 1 < Mav ≤ M . An increase in the value of Mav can

34 R.S. Chakraborty, S. Narasimhan, and S. Bhunia

be thought of to signify an increase in the security of the system, because
more successful validations are required on average per path to make the
program run successfully. Another metric that is determined by rmod is the
average distance between modifications. Let Emod be the list of modified
edges, ordered by their positions in the program, and M be the total number
of modifications inserted. Then the average distance between modifications
is given (for M > 1) by:

Dav =

M−1∑
i=1

|ei+1 − ei|

M − 1
(2)

for ei ∈ Emod, with rmod ≤ Dav < N
M−1 , where N is the number of in-

structions in the program. If rmod is small, say rmod = 1, the minimum
value possible, the top M ranked edges would be chosen which would in-
crease the value of Mav. However, on the flip-side, the value of Dav might
decrease, meaning that the modifications would be placed too close to each
other which puts them at the risk of being more identifiable to an adversary.
Also, a higher value of Mav also implies an increase in the average execution
time of the obfuscated program with respect to the original program. Hence,
the parameter rmod provides a degree of freedom to balance between the
quantitative metrics Mav and Dav, and the performance of the program.

– This algorithm inserts the modifications at “preferred pseudo-random” lo-
cations, with preference being given to locations that would affect the max-
imum possible number of paths, while being “pseudo-random” in the sense
that the modification locations are distributed throughout the program,
through the effect of rmod.

– If a modification is inserted between two instructions which are part of a loop,
then the key-validation step would be repeated as many times as the loop
repeated, even if the validation is successful. To avoid this, the modification
should be such that any successful validation is “remembered”, so that the
next time the loop is executed, the validation mechanism is not exercised.
This can be implemented easily by having a “flag” register and local jumps
in the modification. We have elucidated this point with an example in the
next sub-section.

– To increase the level of security, the operations dedicated to deriving and
comparing the keys of a sequence do not appear in the order in which the
keys are compared.

Next we give a complete example program to elucidate the two algorithms de-
scribed above.

2.2 Obfuscation Example

Fig. 1(a) shows an example MIPS assembly language program to calculate and
display the value of the n-th Fibonacci number for a given non-negative integer

Embedded Software Security through Key-Based Control Flow Obfuscation 35

Fig. 1. Example of application of the proposed algorithm on a MIPS program to cal-
culate the value of the n-th Fibonacci number for a given non-negative integer n

n. The main part of the program to be modified occurs between the markers
#begin text and #end text, and the instructions between these two markers
have been numbered for ease of understanding. The DAG representation of the
program has been shown in Fig. 1(b). The feasible control paths of the program
are then enumerated by analyzing the DAG using Algorithm-1. The feasible
paths for this program (paths #1, #2 and #3) are shown in Fig. 1(b), where
each instruction has been represented by its serial number. Note that the differ-
ent paths are followed depending on the value of the input argument n to the
program - path-1 if n < 0, path-2 if 0 ≤ n < 2 and path-3 if n ≥ 2. When
Algorithm-2 is applied to find the optimal modification locations for M = 3
modifications and rmod = 5, the modifications are placed between instructions 1
and 2 (modification #1), between 14 and 15 (modification #2) and between 28
and 29 (modification #3). Modification #1 and #3 affect all three paths, while
modification #2 affects only paths 2 and 3. The average number of modifications
is per path is thus Mav = (3+3+2)/3 = 2.67, which is less than the ideal value
of Mav = M = 3.00. The average distance between modifications Dav = 9.00,
while the ideal value is N

2 = 29
2 = 14.50.

Note that Algorithm 2 implies that the first modification would always be in-
serted on one of the edges connecting the “root node” to the node corresponding
to the first branch instruction in the program. This feature might make the first

36 R.S. Chakraborty, S. Narasimhan, and S. Bhunia

modification identifiable to an adversary performing static analysis. This issue
is handled by modifying the algorithm so that an exception is made about the
position of the first modification, so that no modification appears between the
“root” node and the first branch node.

An example modification has also been shown which is derived from the cor-
responding modification pool after binding the generic register names reg0, reg1
etc. to actual resisters t5, t3, etc. As mentioned before, the register binding keeps
the original functionality of the program functionally correct by a liveness anal-
ysis. In the given case, registers t0 and t2 collect the input and golden values
of the key from memory locations 0x10000040 and 0x10000044 respectively, and
normal operation is allowed only if the fetched values match. In this particular
case, incorrect operation is due to the fact that the register t0 contains an in-
correct value (it should contain zero when the label loop is reached). In case no
registers are found free to be used bound to generic registers, register spilling
and restoration has to be applied.

2.3 Implementation

To make the obfuscated software operate correctly, the user must buy the soft-
ware license in the form of a small support software from the software vendor
to manage the key installation in memory. The user has to run this support
software to install the keys in the correct memory location, and then install the
main software. The security of the scheme can be increased by changing the key
sequence for each instance of the licensed software, so that the support software
would be bound with the particular copy of the original software which it was
designed to activate.

2.4 Integration with Hardware-Assisted Approaches

The proposed software obfuscation technique can co-exist with hardware-assisted
security solutions, such as Trusted Platform Module (TPM) [17,18], thus adding
an extra level of protection. The security features provided in such platforms can
be useful in situations where the adversary has physical access to the hardware
successfully running the program. In addition to the proposed software obfusca-
tion technique, if the memory contents are encrypted (e.g. in [15]) or memory
addresses are re-mapped to hide the control flow (e.g. in [27]), the adversary
would face an additional challenge of first breaking the hardware-assisted se-
curity scheme, and then de-obfuscating every obfuscated software individually.

3 Obfuscation Efficiency and Overheads

In this section we present theoretical analyses to obtain a quantitative estimate
of the achievable security and overhead incurred by the proposed scheme.

Embedded Software Security through Key-Based Control Flow Obfuscation 37

3.1 Obfuscation Efficiency

We borrow the following metrics which have been previously proposed to esti-
mate the success of a software obfuscation scheme [9]:

– Potency: the complexity in comprehending the obfuscated program com-
pared to the unobfuscated one.

– Resilience: difficulty faced by an automatic de-obfuscator in breaking the
obfuscation.

– Stealth: how well the obfuscated code blends in with the rest of the program,
and

– Cost : how much computational overhead it adds to the obfuscated program.

A potent software obfuscation technique should provide high levels of potency,
resilience and stealth, while incurring minimal cost. In particular, it should pro-
vide sufficient protection against both dynamic (i.e. run-time) and static pro-
gram analyses. The technique automatically provides high levels of protection
against dynamic analysis because of the fact that the particulars of the basic
“challenge-response” mechanism of fetching the key from memory, comparing it
with the golden key, and modifying the control-flow based on the result of the
comparison, vary depending on the input arguments of the program. Because
the input argument-space of most practical programs is larger beyond complete
enumeration, hence, breaking the obfuscation scheme simply by observing the ex-
ecution of the obfuscated program is practically infeasible. Hence, we concentrate
on the protection provided by the proposed key-based obfuscation methodology
against static code analysis efforts of an adversary.

Consider an assembly language program containing N instructions, to which
n instructions are added to modify the control flow by the technique described
above, as a result of which the code size increases to (N + n). Let there be L
“load” instructions in the original program, to which l “key load” instructions
are added during modifications to increase the number of load instructions to
(L + l). Note that as pointed out earlier, these load instructions need not occur
in the same order as the key comparison sequence. Similarly, let there be C
“comparison-based branch” instructions in the original program to which c are
added to bring the total number of branch instructions to (C + c). To identify
the modifications that have been made to the original program based on random
choice, an adversary must perform the following steps:

– Identify the n instructions dedicated in modifying the original program, out
of a total (N +n) instructions in the obfuscated program. This is one out of(

N + n

n

)
possibilities.

– Identify the l “load” instructions dedicated to the obfuscation scheme out of
the total (L + l) “load” instructions, and from them determine the correct
order in which the keys are collected from memory and compared to modify
the control flow. Note that the adversary does not know a-priori the number
of key comparisons for a given feasible control-flow path of a given program.

38 R.S. Chakraborty, S. Narasimhan, and S. Bhunia

Let Mav be the average number of modifications performed among all the
feasible control-flow paths of the given program. Then, to break the scheme,

the adversary has to make exactly one out of

⎡
⎣
Mav�∑

i=1

(
L + l

i

)
× i!

⎤
⎦ choices

to determine the correct number and sequence of keys to be applied.
– Identify the c “comparison-based branch instructions” dedicated in control-

flow modification, from a total of (C + c) such instructions in the obfuscated
program.

– Identify the (n− l− c) dataflow operations dedicated to obfuscate the code,
from among the total (N + n − L − C − l − c) in the obfuscated code.

Combining the three above factors, we propose the following quantitative metric
to estimate the effectiveness of the proposed key-based obfuscation scheme:

Mobf,random =
1⎡

⎣
Mav�∑
i=1

(
L + l

i

)
× i!

⎤
⎦×

(
C + c

c

)
×
(

N + n − L − C − l − c

n − l − c

)

(3)
Lower values of this metric implies higher levels of potency, resilience and stealth.
To get an idea of the numerical order of this metric, consider the example shown
in Fig. 1 and the portion of the code between the two markers #begin text and
#end text. Assuming the length of all modifications to be similar to the one
shown, we have the values
Mav� = 3, rmod = 5, N = 29, n = 3×13 = 39, C = 3,
c = 3 × 2 = 6, L = 1 and l = 3 × 2. This gives the value Mobf ≈ 9.63 × 10−20.
In real-life applications, the value of this metric would be much smaller because
of larger values of N and L, which in turn would allow larger values of n and l.

3.2 Computational Overhead of the Obfuscation Technique

Time Complexity. The time complexity of the path enumeration step is essen-
tially the time complexity of the dept-first traversal, which is O (|V| + |E|), where
|V| and |E| are the number of vertices and edges respectively in the graph [32].
However, note that in our particular case, N − 1 ≤ |E| ≤ 2N , where N = |V|
is the number of instructions in the block of the program to be obfuscated. The
lower limit occurs when there is no non-loop branch instructions in the program,
while the upper limit is because of the fact that no node in the graph has more
than two children. However, note that an upper limit of 2N is overly pessimistic
for real programs, because (approximately) only one in every seven instructions
in real-life programs are branch instructions. Hence, the time complexity of the
depth-first traversal step is O(N). For the program modification step, the time
complexity is O(|E|), which because of the argument presented just now is O(N).
The time complexity of ranking the instructions based on the number of paths
on which they lie is O(N log N), assuming an efficient sorting algorithms such
as “Heapsort”. Hence, the overall time-complexity of the obfuscation procedure
is O(N log N).

Embedded Software Security through Key-Based Control Flow Obfuscation 39

To estimate the value of the average number of modifications made per path
(Mav), it is essential to find the number of modifications made on every path
individually, as well as the total number of paths. The total number of paths
can be found during the first depth-first search. However, finding the number of

modifications made individually on each path will require O

⎛
⎝ |P|∑

i=1

|pi|

⎞
⎠ steps,

where |P| stands for the total number of paths, and |pi| is the length of the i-th
path in the set of paths P.

Space Complexity. The space complexity of the entire procedure is O(N),
the space required to store the information about the instructions constituting
the program. If the program to be processed is of considerable size, it should be
partitioned into segments of manageable sizes; each segment can be obfuscated
independently and then the obfuscated segments are to be integrated to get the
obfuscated program in its entirety.

4 Automation of the Obfuscation Technique

The program obfuscation methodology described in Section 2 was implemented
through an automated flow, as shown in Fig. 2. The top-level tcsh script sob-
fus accepts as input arguments the un-obfuscated MIPS program segment in a
single file (let it be “file.mips”), the number of modifications (M) to be made
and the modification radius (rmod). M is estimated a-priori from the size of the
modification code blocks in the modification pool, the size of the program, and
the maximum code size overhead acceptable. sobfus invokes the TCL script
format code which formats the input code by removing all comments and
blank lines and replacing all labels for branch instructions in the program by

Fig. 2. Automation of the proposed obfuscation technique

40 R.S. Chakraborty, S. Narasimhan, and S. Bhunia

Table 1. Functionality of the MIPS assembly programs used to evaluate the proposed
obfuscation technique. The test programs cover a variety of representative applications
from embedded domain.

Program Functionality

TokenQuest.mips One player adventure game

hanoi.mips Recursive solution of the “Tower of Hanoi” problem

MD5.mips MD5 hashing of a given ASCII text file

connect4.mips Two player “Four in a Line” game

DES.mips Digital Encryption Standard (DES) encrypter/decypter (for ASCII text files)

sudoku.mips Sudoku puzzle

ID3Ediror.mips Reading and editing of ID3 tag information in MP3 music files

string.mips MIPS implementation of the functions of the C standard header “string.h”

cipher.txt Various cipher techniques for ASCII text

decoder.mips MP3 music format decoder

the corresponding destination line numbers. It produces a formatted version of
the program in the file “file formatted.mips”, and a hash of the program labels
and the corresponding line numbers in the file “label indices array.tcl”. sobfus
then calls the C program mobfus which enumerates all the possible control-flow
paths in the program segment using Algorithm-1, and finds the optimal mod-
ification locations using Algorithm-2. It reports the enumerated paths in the
file “paths.txt” and the modification locations in the file “mods.txt”. sobfus
then invokes the TCL script modify code which finally produces the obfus-
cated program in the file “file obfuscated.mips” by using the modification code
blocks provided in the file “mod pool.txt”, and binds the register mnemonics to
registers available at a given point in the program (as described in Section 2.1
and elucidated in Section 2.2). It also produces an estimate of the obfuscation
metric Mobf according to eqn. 3, and values for the metrics Mav and Dav.

To extend the proposed obfuscation technique to binary executables, one
would need to disassemble the equivalent assembly language program from a
given binary, substitute all absolute addresses by symbolic addresses, apply the
proposed obfuscation technique, and then again convert it back to the binary
form. Note that the address substitution is essential because the insertion of
modification code fragments shifts the relative positions of the instructions. Dis-
assembly and de-compilation of binary code to assembly language code is not
very difficult, and free tools are available online [33] to serve the purpose.

5 Results

The proposed technique was applied on a suite of MIPS programs varying in
size from 109 to 21024 instructions. The test programs represent components of
various embedded applications. The functionality of the programs are listed in
Table 1. The functionality of the original and the obfuscated versions of all the
programs were verified using the SPIM simulator [34]. The program obfuscation

Embedded Software Security through Key-Based Control Flow Obfuscation 41

Fig. 3. Variation of (a) average modification per path (Mav) and (b) the average dis-
tance between modifications (Dav) vs. the modification radius (rmod), in the program
connect4.mips, for M = 3 modifications

methodology described in Section 4 was implemented and the programs were
simulated on a Linux workstation with 2GB of main memory and a 2GHz quad-
core processor.

We investigated the effect of variation of the modification radius (rmod) on
the average modifications per path (Mav) and the average distance between
modifications (Dav) for the N = 270 instruction program connect4.mips. The
number of modifications (M) was set at 3, and rmod was varied between 1 and
80. Fig. 3 shows the plots of Mav and Dav vs. rmod. The values for Mav were
normalized with respect to its value at rmod = 1 (the minimum possible value
of rmod). The trends are as expected, with Mav decreasing with rmod and Dav

increasing with rmod. Note that the metrics Mav and Dav satisfy the constraints
1 < Mav ≤ M and rmod ≤ Dav < N

M−1 , as stated in Section 2.1.
Table 2 shows the effects of applying the proposed application technique on

the MIPS program suite, at a modification radius (rmod = 50), with a 10% target
code-size overhead. For the largest program decoder.mips, only 1000 paths were
considered to keep the memory requirement manageable, and rmod was set to
500. As is evident from the obtained Mobf values, the proposed technique can
provide high levels of protection at a nominal code-size overhead of 10%. Note
that in larger programs and in programs with higher number of “load” and
“branch” instructions, the effectiveness of the technique increases.

Table 3 shows the code-size overhead of the obfuscated program (with respect
to the original program), the CPU time and average increase in execution cycles
to implement algorithms 1 and 2. The run-time overheads were not calculated
by direct functional simulations by SPIM, but by indirect analysis of the original
and modified programs. The average increase in execution time was estimated by
calculating the average increase in execution cycles per modification, and then
multiplying the quantity with the average number of modifications per path.
The CPU time has a strong correlation to the number of paths in the program,
and a weaker correlation to the program size. These trends are consistent with
the analysis of Section 3.2.

42 R.S. Chakraborty, S. Narasimhan, and S. Bhunia

Table 2. Program obfuscation efficiency for a targeted 10% code-size overhead at a
modification radius rmod = 50

Program Parameters† Obfuscation Efficiency
Program N C L |P| M n c l Mobf Mav Dav

TokenQuest.mips 109 19 14 11 2 18 3 3 1.09e-20 1.55 95.0

hanoi.mips 132 20 40 169 2 16 3 3 1.43e-19 1.91 67.0

MD5.mips 250 41 35 114 4 26 5 5 6.33e-33 3.67 65.33

connect4.mips 270 72 37 4146 4 26 5 5 1.30e-33 3.47 89.33

DES.mips 372 43 64 5241 6 34 7 9 1.54e-40 5.31 68.00

sudoku.mips 436 110 43 111113 8 41 9 11 2.66e-49 6.76 58.29

ID3Editor.mips 878 160 134 98724 12 89 16 19 1.71e-106 5.66 79.45

string.mips 876 156 224 111075 12 89 16 19 4.42e-103 10.90 60.55

cipher.mips 1956 231 218 150129 27 188 35 43 1.65e-222 26.23 75.12

decoder.mips‡ 21024 174 231 1000‡ 27 188 35 43 <10−400 13.50 502.00‡

†The meaning and significance of these parameters are as described in Section
3.
‡Only 1000 paths were enumerated, and rmod was set to 500.

Table 3. Overheads for the obfuscation technique (with parameters of Table 2)

Overheads
Program Code-size (%) CPU time (s) Average Increase in Execution Cycles

TokenQuest.mips 18.85 0.10 17.83

hanoi.mips 12.12 0.40 20.06

MD5.mips 10.40 0.90 31.20

connect4.mips 9.63 1.00 29.50

DES.mips 9.14 2.00 41.60

sudoku.mips 9.40 66.00 48.17

ID3Editor.mips 10.14 112.00 54.71

string.mips 10.16 217.00 105.37

cipher.txt 10.61 1474.00 241.90

decoder.mips 0.89% 1840.00 124.50

6 Conclusions

Security of embedded software has emerged as a major challenge because of
their increasing vulnerability to piracy and malicious modifications. Severe con-
straints on hardware and energy resources of embedded devices often limit the
applicability of complex hardware and software protection approaches. We have
presented a low-overhead “execution trace dependent control-flow obfuscation”
technique, which requires the application of an input-dependent set of validation
keys to enable a software module to function properly. The key verification mech-
anism is implemented by distributing the verification code throughout the pro-
gram to balance the code overhead and proximity of the modifications. We have
theoretically analyzed the level of security and the associated computational
overhead. Application of the algorithm on a suite of MIPS programs resulted in
high levels of security at nominal code size and modest computational

Embedded Software Security through Key-Based Control Flow Obfuscation 43

overhead. The technique can be easily automated and applied to arbitrarily
large programs by appropriate program partitioning. Future work would involve
implementation of a working prototype (including proper hardware support) of
the proposed obfuscation scheme.

References

1. Turley, J.: The two percent solution,
http://www.embedded.com/story/OEG20021217S0039

2. Gwennap, L., Byrne, J.: A Guide to High-Speed Embedded Processors. The Linley
Group (2008)

3. Dube, R.: Hardware-based Computer Security Techniques to Defeat Hackers. ch.
5. John Wiley and Sons, Chichester (2008)

4. Ravi, S., Raghunathan, A., Kocher, P., Hattangady, S.: Security in embedded
systems: design challenges. ACM Transactions on Embedded Computing Sys-
tems 3(3), 461–491 (2004)

5. Kerckhoff, A.: La cryptographie militaire. Journal des Sciences Militaires IX,
5–38 (1883)

6. Chang, H., Atallah, M.J.: Protecting software code by guards. In: Sander, T. (ed.)
DRM 2001. LNCS, vol. 2320, pp. 160–175. Springer, Heidelberg (2002)

7. Barak, B.: Can we obfuscate programs?,
http://www.math.ias.edu/~boaz/Papers/obf_informal.html

8. Barak, B., Goldreich, O., Impagliazzo, R., Rudich, S., Sahai, A., Vadhan,
S.P., Yang, K.: On the (im)possibility of obfuscating programs. In: Conference
on Advances in Cryptology (2001)

9. Collberg, C., Thomborson, C., Low, D.: Manufacturing Cheap, Resilient, and
Stealthy Opaque Constructs. In: ACM Symposium on Principles of Programming
Languages (1998)

10. Collberg, C., Thomborson, C.: Watermarking, Tamper-Proofing, and Obfuscation
– Tools for Software Protection. IEEE Transactions on Software Engineering 28(8),
735–746 (2002)

11. Collberg, C., Thomborson, C., Low, D.: Breaking abstractions and unstructuring
data structures. In: International Conference on Computer Languages (1998)

12. Linn, C., Debray, S.: Obfuscation of executable code to improve resistance
to static disassembly. In: ACM Conference on Computer and Communications
Security (2003)

13. Hou, T.W., Chen, H.Y., Tsai, M.H.: Three control flow obfuscation methods for
Java software. IEE Proceedings 153(2), 80–86 (2006)

14. Barak, B., et al.: On the (Im)possibility of obfuscating programs. In: Kilian,
J. (ed.) CRYPTO 2001. LNCS, vol. 2139, pp. 1–18. Springer, Heidelberg (2001)

15. White, S.R., Comerford, L.: ABYSS: An architecture for software protection. IEEE
Transactions on Software Engineering 16(6), 619–629 (1990)

16. Dallas Semiconductor, Dallas DS5240 Secure Microcontroller,
http://datasheets.maxim-ic.com/en/ds/DS5240.pdf

17. Trusted Computing Group, Trusted Platform Module: Design Principles,
http://www.trustedcomputinggroup.org/resources/tpm_main_specification

18. Trusted Computing Group, TCG Mobile Trusted Module Specification,
http://www.trustedcomputinggroup.org/files/resource files/87852F33-

1D093519AD0C0F141CC6B10D/Revision 6-tcg-mobile-trusted-module-1 0.pdf

http://www.embedded.com/story/OEG20021217S0039
http://www.math.ias.edu/~boaz/Papers/obf_informal.html
http://datasheets.maxim-ic.com/en/ds/DS5240.pdf
http://www.trustedcomputinggroup.org/resources/tpm_main_specification
http://www.trustedcomputinggroup.org/files/resource_files/87852F33-1D093519AD0C0F141CC6B10D/Revision_6-tcg-mobile-trusted-module-1_0.pdf
http://www.trustedcomputinggroup.org/files/resource_files/87852F33-1D093519AD0C0F141CC6B10D/Revision_6-tcg-mobile-trusted-module-1_0.pdf

44 R.S. Chakraborty, S. Narasimhan, and S. Bhunia

19. Leavitt Communications, Will proposed standard make mobile phones more
secure?, http://www.leavcom.com/ieee_dec05.htm

20. Joepgen, H.G., Krauss, S.: Software by means of the protprog method.
Elektronik 42(17), 52–56 (1993)

21. Schulman, A.: Examining the Windows AARD detection code. Dr. Dobbs Jour-
nal 18(9), 42, 448, 89 (1993)

22. Jakubowski, M.H., Saw, C.W., Venkatesan, R.: Tamper-tolerant software: Model-
ing and implementation. In: Takagi, T., Mambo, M. (eds.) IWSEC 2009. LNCS,
vol. 5824, pp. 125–139. Springer, Heidelberg (2009)

23. Aucsmith, D.: Tamper resistant software: an implementation. In: Anderson,
R. (ed.) IH 1996. LNCS, vol. 1174, pp. 317–333. Springer, Heidelberg (1996)

24. Lie, D., et al.: Architectural support for copy and tamper resistant software. ACM
SIGPLAN Notices 35(11), 168–177 (2000)

25. Arora, D., Ravi, S., Raghunathan, A., Jha, N.K.: Hardware-assisted run-time mon-
itoring for secure program execution on embedded processors. IEEE Transactions
on VLSI 14(12), 1295–1308 (2006)

26. Fiskiran, A.M., Lee, R.B.: Runtime execution monitoring (REM) to detect and
prevent malicious code execution. In: IEEE International Conference on Computer
Design (2004)

27. Zhuang, X., Zhang, T., Lee, H.S., Pande, S.: Hardware assisted control flow obfus-
cation for embedded processors. In: ACM International Conference on Compilers,
Architecture, and Synthesis for Embedded Systems (2004)

28. Chakraborty, R.S., Bhunia, S.: HARPOON: An obfuscation-based SoC de-
sign methodology for hardware protection. IEEE Transactions on CAD 28(10),
1493–1502 (2009)

29. Chakraborty, R.S., Bhunia, S.: RTL hardware IP protection using key-based control
and data flow obfuscation. In: VLSI Design (2010)

30. Copeland, B.J. (ed.): The Essential Turing: Seminal Writings in Computing, Logic,
Philosophy, Artificial Intelligence, and Artificial Life Plus the Secrets of Enigma.
Oxford University Press, Oxford (2004)

31. Dube, R.B.: Hardware-based Computer Security Techniques to Defeat Hackers. ch.
5. John Wiley and Sons, Chichester (2008)

32. Cormen, T.H., Leiserson, C.E., Rivest, R.L., Stein, C.: Introduction to Algorithms,
2nd edn. ch. 22. MIT Press, Cambridge (2001)

33. The Boomerang Decompiler Project, Boomerang: A general, open source, retar-
getable decompiler of machine code programs,
http://boomerang.sourceforge.net

34. Larus, J.: SPIM: A MIPS32 simulator,
http://pages.cs.wisc.edu/~larus/spim.html

35. Balakrishnan, A., Schulze, C.: Code obfuscation literature survey,
http://pages.cs.wisc.edu/~arinib/writeup.pdf

36. Patterson, D.A., Hennessy, J.L.: Computer Organization and Design: The Hard-
ware/Software Interface (Appendix A), 4th edn. Morgan Kaufmann Publishers,
San Francisco (2009)

http://www.leavcom.com/ieee_dec05.htm
http://boomerang.sourceforge.net
http://pages.cs.wisc.edu/~larus/spim.html
http://pages.cs.wisc.edu/~arinib/writeup.pdf

Reversible Watermarking Using Priority
Embedding through Repeated Application of

Integer Wavelet Transform�

Sambaran Bandyopadhyay1, Ruchira Naskar2, and Rajat Subhra Chakraborty2

1 Department of Computer Science and Engineering
Institute of Engineering and Management, Kolkata, India–700091

sam krish89@rediffmail.com
2 Department of Computer Science and Engineering

Indian Institute of Technology, Kharagpur, India–721302
{ruchira,rschakraborty}@cse.iitkgp.ernet.in

Abstract. Digital Watermarking is a well-known technique for digital
content protection. Reversible Watermarking techniques are a special
class of watermarking techniques whereby after the watermark has been
extracted, the original content can be retrieved without any distortion.
In this paper we present a novel high capacity reversible watermarking
technique for grayscale images, based on repeated application of integer
wavelet transform. The process is performed after determining a priority
of the different image pixels to be used for watermark embedding. Our
experimental results fare favourably when compared to other state–of–
the–art reversible watermarking techniques of similar principle.

Keywords: Digital watermarking, embedding capacity, integer wavelet
transform, PSNR, reversible watermarking.

1 Introduction

Digital watermarking is a class of popular techniques whereby hard–to–detect
information (called the “signature” or “payload”) is embedded in digital content
(audio, image or video) for purposes of content authentication and intellectual
property (IP) protection. Since only the creator or distributor of the digital con-
tent has knowledge about the hidden information and how to retrieve it, she
can prove her ownership in case of litigation. In many application domains such
as medical and military imaging, the original information is extremely sensitive
and recovery of the original information in an unaltered form is of utmost impor-
tance. In such cases, reversible watermarking techniques have been found useful
where by the very nature of the watermarking scheme, the original content can
be retrieved exactly with zero distortion [3,11,12].

In this paper we present a high quality, high capacity reversible watermarking
scheme for images. We use integer wavelet transform [3] to convert the original
� The work is based on our earlier work published in the IEMCON 2011 conference.

M. Joye et al. (Eds.): InfoSecHiComNet 2011, LNCS 7011, pp. 45–56, 2011.
c© Springer-Verlag Berlin Heidelberg 2011

46 S. Bandyopadhyay, R. Naskar, and R.S. Chakraborty

image into a set of average and difference numbers, and then repeat the same
procedure for the reduced matrix. In our scheme each row of the original image
matrix [13] is replaced by a single average number and multiple difference num-
bers. Since usually the difference numbers can be encoded in relatively fewer
number of bits, through our technique we create space to embed larger number
of payload bits in the difference numbers. To embed the bits into these difference
numbers, we make a priority list depending on the value of the hiding ability
of difference numbers. The visual quality of the watermarked image compared
to the original image is also found to be satisfactory, and is reflected in the
calculated peak signal-to-noise ratio (PSNR).

The rest of the paper is organized as follows: in Section 2 we provide the
mathematical formulation of integer wavelet transform based reversible water-
marking. In Section 3, we describe the methodology proposed in this paper. In
Section 4, we present experimental results of applying the proposed algorithm
to an example image. We conclude in Section 5.

2 Background

2.1 Reversible Integer Wavelet Transform

The integer wavelet transform maps integers to integers, and allows for perfect
invertibility with finite precision arithmetic. Also, the integer wavelet transform
can be implemented with only three operations – addition, subtraction and shift,
on a digital computer. This feature makes it attractive compared to other discrete
wavelet transforms. For example, for the Haar wavelet filter, the integer wavelet
transforms are:

li =
⌊

x2i + x2i+1

2

⌋
, hi = x2i − x2i+1 (1)

where �
 implies the “floor function” which means the ”greatest integer less than
or equal to”. The corresponding inverse transforms are:

x2i = li +
⌊

hi + 1
2

⌋
, x2i+1 = li −

⌊
hi

2

⌋
(2)

2.2 Watermarking Based on Integer Wavelet Transform

Reversible watermarking is based on applying the above integer wavelet trans-
form on the pixel encoded values, and utilizing the high spatial redundancy in
pixel values in natural images. Let (x, y) be two pixel values in a grayscale image
utilizing 8–bit binary encoding, where x, y ∈ [0, 255]. Then, the following values
are computed:

l =
⌊

x + y

2

⌋
, h = x − y (3)

Due to the high redundancy in natural images, the difference values h are
usually comparatively smaller, and can be encoded using less than eight bits.

Reversible Watermarking Using Priority Embedding 47

The space saved can be thus utilized to embed the bits of the signature to be
embedded. As an example, consider x = 205, y = 200, l = 202, h = 5 = 1012.
Suppose a bit b = 0 of information is to be embedded at the location right
after the most significant bit (MSB) in the binary representation of h. Then, the
modified value of h becomes h

′
= 10012 = 9. Thus, the new grayscale values are:

x
′
= l +

⌊
h

′
+ 1
2

⌋
= 207, y

′
= x

′
− h

′
= 198

From the embedded pair (x
′
, y

′
), the watermark detector can extract the em-

bedded bit b and get back the original pair (x, y) by:

l
′
=

⌊
x

′
+ y

′

2

⌋
= 202, h

′
= x

′ − y
′
= 9 = 10012

Note that the values of l and l
′
are the same. With the knowledge of the location

of the inserted watermark bit, the original difference value h = 5 = 1012 can be
extracted from h

′
, and with the average number l

′
and the difference number h,

the original values (x, y) can be re-calculated using the inverse integer transform.
The above procedure of embedding the digital watermark by expanding the
difference values is generally termed as difference expansion.

Difficulty arises when the value of h is large, which can lead to underflow
or overflow conditions with the values to be embedded. For example, let x =
105, y = 22, then l = 63, h = x − y = 83 = 10100112. If we embed a bit “0” in
h, the new value is h

′
= 100100112 = 147. This leads to the embedded values

x
′

= 137 and y
′

= −10. This will cause an underflow problem as grayscale
values are restricted in the range [0, 255]. To restrict the overflow or underflow
conditions, the following conditions must be satisfied:

0 ≤ l +
⌊

h + 1
2

⌋
≤ 255, 0 ≤ l −

⌊
h

2

⌋
≤ 255

which is equivalent to

|h| ≤ min(2(255 − l), 2l + 1) (4)

The least significant bit (LSB) of the difference h is usually selected as the
embedding area. Since

h =
⌊

h

2

⌋
· 2 + LSB(h)

for LSB(h) = 0 or 1, the difference number h is changeable if∣∣∣∣
⌊

h

2

⌋
· 2 + b

∣∣∣∣ ≤ min(2(255 − l), 2l + 1) (5)

for both b = 0 and 1.

48 S. Bandyopadhyay, R. Naskar, and R.S. Chakraborty

Note that modifying changeable h (without compression) does not provide
additional storage space. The extra storage space is gained from expandable
difference numbers. For a grayscale pixel pair (x, y), its difference number h is
expandable if

|2 · h + b| ≤ min(2(255 − l), 2l + 1) (6)

for both b = 0 and 1. For each expandable difference number, we get at least
one bit of space to embed the watermark.

The information about the pixel locations and bit positions in the binary val-
ues of the pixels where the bits of the watermark are to be inserted is stored in
a location map. The location map of the expanded difference numbers is usually
in the form of a “bi-level image”, where the pixel value is “1” at each location
where it is expanded, and “0” otherwise. It is usually losslessly compressed us-
ing a compression technique such as JBIG2 or run–length coding. Similarly, the
concatenation of the LSBs of the changeable difference numbers can be further
compressed using arithmetic coding or Huffman coding. Optionally, a secure hash
of the original digital image can be created by an algorithm such as SHA–256.
All of the above bitstreams are then combined into a final bitstream and trans-
mitted. In this work, for simplicity, we have not embedded the location map or
hash information in the image, and have not applied any lossless compression
algorithm to further compress these information.

3 Proposed Method

3.1 Multi–Bit Hiding

Till now we have been concerned about embedding one extra bit of the water-
mark per difference number. But, we can go further by checking whether more
than one bit can be embedded into a single difference number. We do so by
examining the hiding ability of the difference number h. For a given difference
number h, let k be the largest integer such that:

|k ∗ h + b| ≤ min(2(255 − l), 2l + 1) (7)

for all 0 ≤ b ≤ k−1, where the number b no longer represents the value of a single
bit. In such a case, we say that the hiding ability of h is log 2k. Hiding ability
gives us the information of how many bits we can embed into the difference
number without causing an underflow or overflow. It is to be noted that higher
the value of hiding ability, better the embedding capacity. In most practical
images, the hiding capacity of a difference term (calculated for two adjacent
pixel values) is greater than one. For a difference number to be expandable, the
value of hiding ability must be at least one (since log2 2 = 1). Hiding ability
can also indirectly help us to select the expandable difference numbers for data
embedding. For each row of the reduced image matrix (which is in the form
of a collection of average–difference value pairs), we first calculate the hiding
ability of the difference terms and then examine the pairs of average values and
replace them by another average–difference value pair. We repeat this procedure

Reversible Watermarking Using Priority Embedding 49

for the reduced average–difference matrix to have multiple difference values (not
necessarily expandable) and a single average value for each row. Since a large
fraction of the set of difference values are expandable, a large number of bits
of the payload can be embedded in them. We make a list (called the mask)
of hiding abilities of difference terms and save the mask for extraction process.
Then we select the difference terms according to non–increasing order of hiding
abilities to embed watermark bits. As we embed a bit, we modify the hiding
ability of that difference term. As the total sum of hiding abilities is very large,
the total embedding capacity of the image is also very high. Also as we are not
embedding bits randomly, but assign priorities to difference terms, the quality
of the process also increases. This observation and its implementation are the
main contributions of this paper.

In the next section we describe the proposed watermark embedding and ex-
traction for multi–bit hiding.

3.2 Watermark Embedding

Algorithm 1 shows the steps of the proposed watermark embedding algorithm.
The algorithm embeds a given watermark in a given cover image, by giving pri-
ority to the difference terms with higher hiding ability, and repeatedly applying
integer wavelet transform to the expandable difference terms. If the size of the
input watermark exceeds that of the total hiding ability of the input image, the
algorithm returns an error message.

As a simple example, consider a 8 × 8 block of an “image matrix” (with the
pixel values in decimal):

X =

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

129 128 129 134 149 171 196 220
127 127 128 136 148 166 189 215
124 124 126 136 147 163 183 211
124 125 131 131 136 157 182 204
122 122 126 133 138 158 181 203
122 120 123 133 137 154 176 198
124 122 122 129 133 149 169 190
126 123 120 127 131 147 165 185

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

(8)

Suppose, we want to embed the payload bitstream msg = 110110011101101 · · ·
00111101111101010. When X and msg are input to the watermark embedding
algorithm, let w m image be the final image matrix. Let mask be the “image
mask matrix” to represent the hiding ability of each pixel; mask1 be the matrix
showing the number of watermark bits embedded in different pixel positions,
and avgdiff be the matrix of average and difference terms obtained from the
rows of the original cover image matrix. The evolution of the avgdiff matrix
over successive iterations is as follows:

50 S. Bandyopadhyay, R. Naskar, and R.S. Chakraborty

Algorithm 1. EMBED WATERMARK

/* Embed watermark bits into the cover image */
Input: The m × n original image matrix: image; the bitstream to be embedded: msg.
Output: The m × n watermarked image: w m image; a matrix representing hiding abilities of

original average-difference matrix:mask image; size of watermark embedded in bits: len.
1: Initialize avgdiff , mask and w m image to be m × n null matrices.
2: t ← log2n
3: for t1 = 0 → t − 1 do
4: for i = 1 → m do
5: j ← 1
6: k ← 2t1 + 1
7: while (j ≤ n)&&(k ≤ n) do
8: if (image(i, j) + image(i, k))%2 == 0 then

9: avgdiff(i, j) ← image(i,j)+image(i,k)
2

10: else
11: avgdiff(i, j) ← image(i,j)+image(i,k)−1

2
12: end if
13: avgdiff(i, k) ← image(i, j) − image(i, k)
14: mask(i, k) ← hiding ability of (avgdiff(i, j), avgdiff(i, k))
15: /*Calculate the hiding ability of (i, j)th term of the reduced matrix and store it to

mask(i, j)*/

16: j ← j + 2t1+1

17: k ← k + 2t1+1

18: end while
19: end for
20: image ← avgdiff
21: end for
22: mask image ← mask
23: /*To embed the watermark msg into avgdiff*/
24: l ← length of msg in bits
25: p ← 1
26: while p ≤ l do
27: [ij] ←row and column number of the largest element in mask
28: if mask(i, j) == 0 then
29: error(’msg size exceeded embedding capacity.’)
30: end if
31: avgdiff(i, j) ← avgdiff(i, j) ∗ 2 + msg(p)
32: p ← p + 1
33: mask(i, j) ← mask(i, j) − 1
34: end while
35: /*Apply repeated reverse integer wavelet transform to the avgdiff matrix*/
36: w m image ← avgdiff
37: t ← log2n
38: for t1 = (t − 1) → 0 step −1 do
39: for i = 1 → m do
40: j ← 1
41: k ← 2t1 + 1
42: while (j ≤ n)&&(k ≤ n) do

43: w m image(i, j) ← avgdiff(i, j) +
⌊

avgdiff(i,k)+1
2

⌋
44: w m image(i, k) ← avgdiff(i, j) −

⌊
avgdiff(i,k)

2

⌋
45: j ← j + 2t1+1

46: k ← k + 2t1+1

47: end while
48: end for
49: avgdiff ← w m image
50: end for
51: len ← size of msg in bits

Reversible Watermarking Using Priority Embedding 51

1st iteration:

avgdifff (1) =

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

128 1 131 −5 160 −22 208 −24
127 0 132 −8 157 −18 202 −26
124 0 131 −10 155 −16 197 −28
124 −1 131 0 146 −21 193 −22
122 0 129 −7 148 −20 192 −22
121 2 128 −10 145 −17 187 −22
123 2 125 −7 141 −16 179 −21
124 3 123 −7 139 −16 175 −20

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

2nd iteration:

avgdifff (2) =

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

129 1 −3 −5 184 −22 −48 −24
129 0 −5 −8 179 −18 −45 −26
127 0 −7 −10 176 −16 −42 −28
127 −1 −7 0 169 −21 −47 −22
125 0 −7 −7 170 −20 −44 −22
124 2 −7 −10 166 −17 −42 −22
124 2 −2 −7 160 −16 −38 −21
123 3 1 −7 157 −16 −36 −20

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

3rd iteration:

avgdifff (3) =

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

156 1 −3 −5 −55 −22 −48 −24
154 0 −5 −8 −50 −18 −45 −26
151 0 −7 −10 −49 −16 −42 −28
148 −1 −7 0 −42 −21 −47 −22
147 0 −7 −7 −45 −20 −44 −22
145 2 −7 −10 −42 −17 −42 −22
142 2 −2 −7 −36 −16 −38 −21
140 3 1 −7 −34 −16 −36 −20

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

The final watermarked image matrix output by the algorithm is:

w m image =

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

126 122 131 140 149 171 196 220
129 122 130 138 148 166 189 215
124 118 129 139 147 163 183 211
119 124 137 132 136 157 182 204
122 115 126 139 138 158 181 203
123 113 126 136 137 154 176 198
127 119 123 130 133 149 169 190
126 123 119 126 131 147 165 185

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

52 S. Bandyopadhyay, R. Naskar, and R.S. Chakraborty

The values of mask and mask1 are as follows:

mask =

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

0 6 6 5 1 3 1 1
0 7 5 4 2 3 1 2
0 7 5 4 2 3 1 2
0 7 5 7 2 3 1 2
0 7 5 5 2 3 1 2
0 6 5 4 2 3 2 2
0 6 6 5 2 3 2 2
0 5 6 5 2 3 2 3

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

and

mask1 =

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

0 2 2 1 0 0 0 0
0 3 1 0 0 0 0 0
0 3 1 0 0 0 0 0
0 3 1 3 0 0 0 0
0 3 1 1 0 0 0 0
0 2 1 0 0 0 0 0
0 2 1 0 0 0 0 0
0 0 1 0 0 0 0 0

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

3.3 Watermark Extraction

The watermark extraction algorithm shown in Algorithm 2 works in exactly the
reverse way compared to the embedding algorithm.

4 Results

The proposed technique was implemented in MATLAB and applied to a 256 ×
256, 8 bits per pixel (bpp) grayscale version of the “Lena” and “Mandrill” im-
ages. Fig. 1 shows the original and watermarked versions of the images with
0.5 bpp embedded into both. From these two images, it is evident that the pro-
posed approach has minimal adverse effect on the visual quality of the image.
To calculate the PSNR, first the mean square error (MSE) was calculated as:

MSE =
m∑

i=1

n∑
j=1

(Xorg(i, j) − Xwm(i, j))2

m · n (9)

where Xorg(i, j) is the (i, j)–th pixel of the original image, and Xwm(i, j) is the
(i, j)–th pixel of the watermarked image, and m and n are the dimensions of the
image (here each is 256). Then, PSNR is calculated as:

PSNR = 10 log10

(
MAX2

I

MSE

)
= 10 log10

(
2552

MSE

)
(10)

where MAXI is the maximum possible pixel value of the image, which is 255 in
this case because of the 8–bit grayscale nature of the image.

Reversible Watermarking Using Priority Embedding 53

Algorithm 2. EXTRACT WATERMARK

/* Extract watermark bits from the watermarked image */
Input: The m × n watermarked image: w m img; matrix representing hiding abilities of original

average-difference matrix:maskimage; size of embedded watermark in bits: len.
Output: The retrieved m × n cover image: image; extracted watermark: msg.
1: Initialize avgdiff , mask1 and image to be m × n null matrices.
2: t ← log2n
3: for t1 = 0 → t − 1 do
4: for i = 1 → m do
5: j ← 1
6: k ← 2t1 + 1
7: while (j ≤ n)&&(k ≤ n) do
8: if (w m img(i, j) + w m img(i, k))%2 == 0 then

9: avgdiff(i, j) ← w m img(i,j)+w m img(i,k)
2

10: else
11: avgdiff(i, j) ← w m img(i,j)+w mßimg(i,k)−1

2
12: end if
13: avgdiff(i, k) ← w m img(i, j) − w m img(i, k)
14: mask1(i, k) ← mask of hiding abilities of watermarked avgdiff(i, j), avgdiff(i, k)

15: j ← j + 2t1+1

16: k ← k + 2t1+1

17: end while
18: end for
19: w m img ← avgdiff
20: end for
21: s ← len
22: Initialize msg and index to be zero vectors of sizes 1 × s and 1 × 2s respectively.
23: p ← 1
24: while p ≤ s do
25: [ij] ←row and column number of the largest element in mask
26: index(2 ∗ p − 1) ← i
27: index(2 ∗ p) ← j
28: mask(i, j) ← mask(i, j) − 1
29: p ← p + 1
30: end while
31: p ← s
32: while p ≥ 1 do
33: t1 ← index(2 ∗ p − 1)
34: t2 ← index(2 ∗ p)
35: msg(p) ← avgdiff(t1, t2)%2 /*Extract the watermark bit*/

36: avgdiff(t1, t2) ←
⌊

avgdiff(t1,t2)
2

⌋
37: p ← p − 1
38: end while
39: /*Apply repeated reverse integer wavelet transform to the avgdiff matrix*/
40: image ← avgdiff
41: t ← log2n
42: for t1 = t − 1 → 0 step -1 do
43: for i = 1 → m do
44: j ← 1
45: k ← 2t1 + 1
46: while (j ≤ n)&&(k ≤ n) do

47: image(i, j) ← avgdiff(i, j) +
⌊

avgdiff(i,k)+1
2

⌋
48: image(i, k) ← avgdiff(i, j) −

⌊
avgdiff(i,k)

2

⌋
49: j ← j + 2t1+1

50: k ← k + 2t1+1

51: end while
52: end for
53: avgdiff ← image
54: end for

54 S. Bandyopadhyay, R. Naskar, and R.S. Chakraborty

(a) Original Lena (b) Watermarked Lena

(c) Original Mandrill (d) Watermarked Mandrill

Fig. 1. Proposed scheme: (Left) Original images; (Right) Watermarked images with
0.5 watermark bits embedded per pixel

Fig. 2 shows a plot of the peak signal–to–noise ratio (PSNR, in dB) of the
watermarked images against the embedded payload size (in bits per pixel). These
results are compared with state–of–the–art techniques, [3,6,9], in Fig. 3, which
clearly shows the superiority of the proposed technique. Note that the set of
payload size values for the four techniques are not the same, as we have tabulated
only those values which were available in the original publications where the
techniques were described.

Reversible Watermarking Using Priority Embedding 55

Fig. 2. Plot of PSNR vs. embedded payload size

Fig. 3. Comparison with other state–of–the–art techniques

5 Conclusions

Reversible watermarking is an important class of techniques for digital content
protection and authentication where it is possible to retrieve the original content
with zero distortion. In this paper, we have proposed a high capacity reversible
digital watermarking technique for images, where the spatial redundancy of im-
ages are utilized in embedding the watermark. The novelty of the proposed
technique lies in the repeated application of the principle of difference expansion
to decrease the number of average terms to a single average term and increase
the number of difference terms, so that more bits of the payload can be embed-
ded in the difference terms. This effectively increases the embedding capacity of
the watermarked image. Experimental results on the common benchmark image
“Lena” shows that the technique is capable of achieving good PSNR values even
at relatively large payload sizes.

56 S. Bandyopadhyay, R. Naskar, and R.S. Chakraborty

References

1. Cox, I.J., Miller, M.L., Bloom, J.A., Fridrich, J., Kalker, T.: Digital Watermarking
and Steganography. Morgan Kaufmann Publishers, San Francisco (2008)

2. Feng, J.B., Lin, I.C., Tsai, C.S., Chu, Y.P.: Reversible watermarking: current status
and key issues. International Journal of Network Security 2(3), 161–171 (2006)

3. Tian, J.: Wavelet–based reversible watermarking for authentication. In: Security
and Watermarking of Multimedia Contents IV, vol. 4675, pp. 679–690 (2002)

4. Tian, J.: Reversible data embedding using a difference expansion. IEEE Transac-
tions on Circuits Systems and Video Technology 13(8), 890–896 (2003)

5. Tian, J.: Reversible watermarking by difference expansion. In: Proceedings of
Workshop on Multimedia and Security, pp. 19–22 (December 2002)

6. Celik, M.U., Sharma, G., Tekalp, A.M., Saber, E.: Lossless generalized-LSB data
embedding. IEEE Transactions on Image Processing 14(2), 253–266 (2005)

7. Celik, M.U., Sharma, G., Tekalp, A.M., Saber, E.: Localized lossless authentication
watermark (LAW). In: International Society for Optical Engineering, California,
USA, vol. 5020, pp. 689–698 (January 2003)

8. Celik, M.U., Sharma, G., Tekalp, A.M., Saber, E.: Reversible data hiding. In:
Proceedings of International Conference on Image Processing, pp. III-157–III-160
(Sepetmber 2002)

9. Luo, L., Chen, Z., Chen, M., Zeng, X., Xiong, Z.: Reversible image watermarking
using interpolation technique. IEEE Transactions on Information Forensics and
Security 5(1), 187–193 (2010)

10. Ni, Z., Shi, Y.Q., Ansari, N., Su, W.: Reversible data hiding. IEEE Transactions
on Circuits and Systems for Video Technology 16(3), 354–362 (2006)

11. Ni, Z., Shi, Y.Q., Ansari, N., Su, W.: Reversible data hiding. In: Proceedings of
the IEEE International Symposium of Circuits and Systems (2003)

12. Calderbank, A.R., Daubechis, I., Sweldens, W., Yeo, B.L.: Wavelet Transforms
that map integers to integers. Applied and Computational Harmonic Analysis 5,
332–369 (1998)

13. Gonzalez, R.C., Woods, R.E.: Digital Image Processing, 3rd edn. Pearson educa-
tion, London (2009)

14. Gonzalez, R.C., Woods, R.E., Eddins, S.L.: Digital Image Processing using
MATLAB. Pearson Education, London (2004)

Access Policy Based Key Management in

Multi-level Multi-distributor DRM Architecture

Ratna Dutta, Dheerendra Mishra, and Sourav Mukhopadhyay

Department of Mathematics
Indian Institute of Technology

Kharagpur–721302, India
{ratna,dheerendra,sourav}@maths.iitkgp.ernet.in

Abstract. We present a multi-level multi-distributor based DRM ar-
chitecture that facilitates client mobility and propose key management
mechanism for this system using Identity-Based Encryption (IBE) and
Attribute-Based Encryption (ABE). The encrypted digital content sent
by a package server can only be decrypted by the DRM client and is
protected from attacks by other parties/servers in the system. Our key
management protects the key used to encrypt a digital content during its
delivery from the package server to the DRM client, not only from pur-
chasers but also from the distribution servers and the license server. The
IBE and ABE enables efficiency gains in computation time and storage
over the existing certificate-based Public Key Infrastructure (PKI) based
approaches as no certificate management and verification is needed by
the entities in the system.

Keywords: DRM, key management, content protection, security, access
structure, access policy, IBE, ABE.

1 Introduction

The core concept in DRM is the use of digital licenses. The consumer purchases
a digital license granting certain rights to him instead of buying the digital
content. The content access is regulated with the help of a license that contains
permissions, constraints and a content decryption key. Permissions are privileges
or actions that a principal can be granted to exercise against some object under
some constraints. Examples of permissions include printing, playing, copying,
and embedding the content into other content items. Constraints are restric-
tions and conditions under which permissions are executed. Constraints may
include expiration date, available regional zone, software security requirements,
hardware security requirements, and watermarking requirements. A set of con-
straints can also include another set of constraints recursively, which means that
the included set of constraints must also be satisfied.

Current Digital Rights Management (DRM) systems support only two-party
systems, involving the package server and purchaser [3], [4], [6], [8], [11]. However,
DRM systems need to be sufficiently flexible to support existing business models

M. Joye et al. (Eds.): InfoSecHiComNet 2011, LNCS 7011, pp. 57–71, 2011.
c© Springer-Verlag Berlin Heidelberg 2011

58 R. Dutta, D. Mishra, and S. Mukhopadhyay

and extensible to adapt to future models. The DRM architecture in multi-party
multi-level setups has been used [7], [9], [12], [13], [16] as an alternative to the
traditional two-party DRM architecture.

Our Contribution: In this paper, we design a DRM system considering a net-
work with multi-level multi-distributors. A local distributor can better explore
potentially unknown markets for the owner (package server) and make strategies
according to the market. In addition, the distributors can also help in handling
different pricing structures of media in different countries, and share with the
owner any information on price or demand fluctuation cost. We consider a hi-
erarchy of distributors and the package server is at the top (say, level 0) of this
hierarchy who appoints the level 1 distribution servers based on their access poli-
cies or attributes. In general, level i distributors appoint level i + 1 distributors
based on their access policies or attributes for i > 0. In our DRM system, the
DRM client has the flexibility of choosing a distributor based on his own pref-
erence. The DRM client may be mobile and roam from one region to another.
The DRM client may contact the distributor who is nearest to him by location
or who offers promotions/discounts on the price or offers more commissions.

We provide a secure and efficient key management scheme in our proposed
DRM system using IBE and ABE instead of certificate-based Public Key Infras-
tructure (PKI). The ABE has the property that a user’s public key is an easily
calculated function of his access policy, such as Γ = 〈IIT ∩ CSDepartment ∪
ElectronicsDepartment ∩ DSCMember〉 or set of attributes, such as γ = {IISc,
MathematicsDepartment, M.Tech}, while a user’s private key can be calculated for
him by a trusted authority, called Private Key Generator (PKG). The attribute-
based public key cryptosystem needs verification of user’s access policy or at-
tributes only at the private key extraction phase. Consequently, the
identity-based public key cryptography simplifies certificate management and
verification and is an alternative for certificate-based PKI, especially when effi-
cient key management and security are required. We obtain efficiency gains in
computation time and storage over the existing certificate-based PKI approaches
as no certificate management and verification are needed by the entities in our
DRM system. The ABE is a generalization of IBE. In IBE system, only one
attribute is used which is the identity of the receiver.

In our key management mechanism, the package server does not trust distri-
bution servers or license server. The symmetric decryption key used to encrypt
a digital content is delivered from the package server to the DRM client in a
secure manner and is protected from its generation to consumption. Unlike cur-
rent DRM systems which have focused on content protection from purchasers,
our scheme protects the key not only from purchasers, but also from other prin-
cipals such as the distribution servers and the license server. Consequently, the
encrypted digital content sent by a package server can only be decrypted by the
DRM client who has a valid license and no one else.

Access Policy Based Key Management 59

2 Preliminaries

2.1 Definitions and Notations

Definition 2.1: (Access Structure). Let P = {P1, . . . , Pn} be a set of parties.
A collection Γ ⊆ 2P is monotone if for ∀B, C: if B ∈ Γ and B ⊆ C then C ∈ Γ .
An access structure (respectively, monotone access structure) is a collection (re-
spectively, monotone collection) Γ of non-empty subsets of P. i.e., Γ ⊆ 2P\{∅}.
The sets in Γ are called the authorized sets, and the sets not in Γ are called the
unauthorized sets.

In our context, the role of the parties is taken by the attributes. Thus the
access structure Γ will contain the authorized sets of attributes.

We describe below a tree-access structure.

Access Tree: We now describe access tree. Let T be a tree representing an access
structure. Each non-leaf node of the tree represents a threshold gate, described
by its children and a threshold value. If numx is the number of children of a
node x and kx is its threshold value, then 0 < kx ≤ numx. When kx = 1, the
threshold gate is an OR gate and when kx = numx, it is an AND gate. Each leaf
node x of the tree is described by an attribute and a threshold value kx = 1.

To facilitate working with the access trees, we define a few functions. We
denote the parent of the node x in the tree by parent(x). The function att(x)
is defined only if x is a leaf node and denotes the attribute associated with the
leaf node x in the tree. The access tree T also defines an ordering between the
children of every node, that is, the children of a node are numbered from 1 to
num. The function index(x) returns such a number associated with the node x
where the index values are uniquely assigned to nodes in the access structure for
a given key in an arbitrary manner.

Satisfying an access tree: Let T be an access tree with root r. Denote by Tx

the subtree of T rooted at the node x. Hence T is the same as Tr. If the set of
attributes γ satisfies the access tree Tx, we denote it as Tx(γ) = 1. We compute
Tx(γ) recursively as follows. If x is a non-leaf node, evaluate Tx′(γ) for all children
x′ of node x. Tx(γ) returns 1 if and only if at least kx children return 1. If x is
a leaf node, then Tx(γ) returns 1 if and only if att(x) ∈ γ.

Definition 2.2: (Linear Secret Sharing Scheme). A secret sharing scheme
Π over a set of parties P is called linear (over Zp) if

1. The shares from each party form a vector over Zp.
2. There exists a matrix M called the share generation matrix for Π. The

matrix M has l rows and n + 1 columns. For all i = 1, . . . , l, the i-th row
of M is labeled with a party named xi ∈ P. When we consider the column
vector v = (s, r1, r2, . . . , rn), where s ∈ Zp is the secret to be shared, and
r1, . . . , rn ∈ Zp are randomly chosen, then Mv is the vector of l shares of
the secret s according to Π. The share (Mv)i belongs to party xi.

Every linear secret sharing scheme according to the above definitions also enjoys
the linear reconstruction property, defined as follows: Suppose that Π is a linear

60 R. Dutta, D. Mishra, and S. Mukhopadhyay

secret sharing scheme for the access structure Γ . Let S ∈ Γ be any authorized
set, and let I ⊂ {1, 2, . . . , l} be defined as I = {i : xi ∈ S}. Then, there exists
constants {w ∈ Zp}i∈I such that, if {λi} are valid shares of any secret s according
to Π , then

∑
i∈I wiλi = s. Furthermore, these constants {wi} can be found in

time polynomial in the size of the share generation matrix M.
Table 1 explains the meaning of symbols used throughout the paper.

Table 1. Notations

Name Description

P package server
Di,j j-th distribution server in the i-th level
L license server
C DRM client
IDU public identity of user U
SU private key of user U associated with IDU

Γi,j access policy ascribed to Di,j

SKi,j private key of user Di,j associated with Γi,j

PKG private key generator
IBE.Enc encryption algorithm for IBE
IBE.Dec decryption algorithm for IBE
ABE.Enc encryption algorithm for KP-ABE
ABE.Dec decryption algorithm for KP-ABE
Sig signature generation algorithm
Ver signature verification algorithm
MKIBE master key of PKG for IBE
PKIBE public parameters of PKG for IBE
MKABE master key of PKG for KP-ABE
PKABE public parameters of PKG for KP-ABE
A|B concatenation of A and B

2.2 Identity Based Encryption (IBE)

The concept of identity-based cryptosystem is due to Shamir [15]. Such a scheme
has the property that a user’s public key is an easily calculated function of his
identity, such as his email address, while a user’s private key can be calculated for
him by a trusted authority, called Private Key Generator (PKG). The identity-
based public key cryptosystem can be an alternative for certificate-based PKI,
especially when efficient key management and moderate security are required.

In identity-based public key encryption, the public key distribution problem is
eliminated by making each user’s public key derivable from some known aspect
of his identity, such as his email address. When Alice wants to send a message to
Bob, she simply encrypts her message using Bob’s public key which she derives
from Bob’s identifying information. Bob, after receiving the encrypted message,
obtains his private key from a third party called a Private Key Generator (PKG),

Access Policy Based Key Management 61

after authenticating himself to PKG and can then decrypt the message. The
private key that PKG generates on Bob’s query is a function of its master key
and Bob’s identity.

Shamir [15] introduced this concept of identity-based cryptosystem to simplify
key management procedures in certificate-based public key infrastructure. The
first identity-based Encryption (IBE) was proposed by Boneh and Franklin [2]
in 2001 that uses bilinear pairing. Shortly after this, many identity-based cryp-
tographic protocols were developed based on pairings and is currently a very
active area of research.The identity-based public key cryptosystem can be an
alternative for certificate-based PKI, especially when efficient key management
and moderate security are required.

The advantage of identity-based encryption are compelling. It makes main-
taining authenticated public key directories unnecessary. Instead, a directory for
authenticated public parameters of PKGs is required which is less burdensome
than maintaining a public key directory since there are substantially fewer PKGs
than total users. In particular, if everyone uses a single PKG, then everyone in
the system can communicate securely and users need not to perform on-line
lookup of public keys or public parameters.

An IBE scheme consists of the following four algorithms.

Setup: This is a randomized algorithm that takes no input other than the implicit
security parameter. It outputs the public parameters PKIBE and a master key
MKIBE. PKIBE is made public and used for encryption. MKIBE is used to generate
user private keys and is kept secret to the PKG.

Encryption: This is a randomized algorithm that takes as input a message
M , a set of attributes γ, and the public parameters PKIBE. It outputs the
ciphertext CT.

Key Generation: This is a randomized algorithm that takes as input - a public
identity ID, the master key MKIBE and the public parameters PKIBE. It outputs
a decryption key SID

Decryption: This algorithm takes as input - the ciphertext CT that was encrypted
under the public identity ID, the decryption key SID corresponding ID and the
public parameters PKIBE. It outputs the message M .

2.3 Attribute Based Encryption (ABE)

Current Attribute Based Encryption (ABE) schemes are built by cleverly com-
bining the basic techniques of IBE with a linear secret sharing scheme. The ABE
can be viewed as a generalization of IBE [2]. In IBE systems, only one attribute
is used which is the identity of the receiver, whereas ABE systems enable the use
of multiple attributes simultaneously. The ABE systems are designed to enable
fine grained access control of the encrypted data. In ABE, an encryptor will
associate encrypted data with a set of attributes or an access policy. An access

62 R. Dutta, D. Mishra, and S. Mukhopadhyay

policy is an access structure over attributes. An authority will issue users differ-
ent private keys, where user’s private key is associated with an access policy or a
set of attributes ascribed to the user. Only the receivers who are assigned com-
patible access policies or sets of attributes can decrypt the encrypted message.
Formally, the attributes can be considered as boolean variables with arbitrary
labels, and the policies are expressed as conjunction and disjunction of attribute
variables. In ABE, the access policies are written in the form of a monotonic
boolean formula over the attribute variables. [5]. There are two alternatives in
enforcing the access policy:

– The access policy can be embedded in the private key of a user, which leads
to Key-Policy ABE (KP-ABE) [5] cryptosystem.

– The access policy can be embedded in the ciphertext, which leads to the
Ciphertext-Policy ABE (CP-ABE) [1] cryptosystem.

Both KP-ABE and CP-ABE systems ensure that a group of users cannot access
any unauthorized data by colluding with each other. The syntax of both KP-
ABE and CP-ABE are described below.

1. Key-Policy Attribute Based Encryption (KP-ABE) [5]

Key policy attribute based encryption (KP-ABE) is a generalization of Fuzzy
IBE (FIBE) [14] which allows the authority to specify more advanced de-
cryption policies. In KP-ABE, as in Fuzzy IBE, each ciphertext is labeled by
the sender with a set of descriptive attributes. However, each private key is
associated with an access structure (say access tree) that specifies which type
of ciphertexts the key can decrypt. A particular key can decrypt a partic-
ular ciphertext only if the ciphertext attributes satisfy the access structure
(tree) of the key. A KP-ABE scheme consists of the following four algorithms.

Setup: This is a randomized algorithm that takes no input other than the
implicit security parameter. It outputs the public parameters PKABE and a
master key MKABE. PKABE is public and used for encryption. MKABE is used
to generate user private keys and is kept secret to the PKG.

Encryption: This is a randomized algorithm that takes as input a message
M , a set of attributes γ, and the public parameters PKABE. It outputs the
ciphertext CT. The set of attributes γ is sent as part of the ciphertext CT.

Key Generation: This is a randomized algorithm that takes as input - an ac-
cess structure Γ , the master key MKABE and the public parameters PKABE.
It outputs a decryption key SK.

Decryption: This algorithm takes as input - the ciphertext CT that was en-
crypted under the set γ of attributes, the decryption key SK for access struc-
ture Γ and the public parameters PKABE. It outputs the message M if γ ∈ Γ .

Access Policy Based Key Management 63

Besides, individual users can generate new private keys using their own pri-
vate keys, which can then be delegated to other users using the following
algorithm.

Delegate: A user with a private key SK corresponding to access structure Γ
can compute a new private key SK corresponding to any access structure Γ
which is more restrictive than Γ , i.e. Γ ⊆ Γ . Thus the users are capable of
acting as a local key authority which generate and distribute private keys to
other users.

2. Ciphertext-Policy Attribute Based Encryption (CP-ABE) [1]

In the CP-ABE scheme, each user is associated with a set of attributes and
her private key is generated based on these attributes. When encrypting a
message M , the encryptor specifies an access structure which is expressed in
terms of a set of selected attributes for M . The message is then encrypted
based on the access structure such that only those whose attributes satisfy
this access structure can decrypt the message. Unauthorized users are not
able to decrypt the ciphertext even if they collude. A CP-ABE scheme con-
sists of the following four algorithms.

Setup: This is a randomized algorithm that takes no input other than the
implicit security parameter. It outputs the public parameters PKABE and a
master key MKABE. PKABE is made public and used for encryption. MKABE

is used to generate user private keys and is kept secret to the PKG.

Encryption: This is a randomized algorithm that takes as input a message
M , an access structure Γ , and the public parameters PKABE. It outputs the
ciphertext CT.

Key Generation: This is a randomized algorithm that takes as input - the
set of a uses’s attributes γ, the master key MKABE and the public parameters
PKABE. It outputs a decryption key SK that identifies with γ.

Decryption: This algorithm takes as input - the ciphertext CT, the decryp-
tion key SK for an attribute set γ and the public parameters PKABE. It
outputs the message M if γ satisfies the access structure Γ embedded in the
ciphertext CT.

Besides, individual users can generate new private keys using their pri-
vate keys, which can then be delegated to other users using the following
algorithm.

Delegate: A user with a private key SK corresponding to a set of attributes
γ can compute a new private key SK corresponding to any set of attributes

64 R. Dutta, D. Mishra, and S. Mukhopadhyay

γ which is more restrictive than γ, i.e. γ ⊆ γ. Thus the users are capable of
acting as a local key authority which generate and distribute private keys to
other users.

3 Protocol

3.1 Overview of the Proposed Multi-party Multi-level DRM
Architecture

Our multi-party multi-level DRM architecture allows existence of more that one
distributors arranged in a hierarchy based on attributes or access policy (e.g.
wholesalers, retailers, or resellers). Entities involved in our DRM model are:

– package server P
– multiple levels of distribution servers Di,j , 1 ≤ i ≤ k, 1 ≤ j ≤ ni, where Di,j

represents the j-th distribution server at the i-th level
– license server L
– DRM client C.

The distribution servers in level 1 are appointed by the package server P ac-
cording to some attributes or access policy to facilitate the distribution process.
Each distribution server in level 1 further appoints some subdistribution servers
by attaching attributes or access policies to them and so forth. The total number
of levels of distribution servers may depend upon the extent of the region to be
explored and density of DRM clients. For instance, in a general business scenario
such as live broadcasting and video on demand, the system may have distribu-
tion servers from University 1, distribution servers from University 2 etc.. The
distribution servers from University 1 have further subdistribution servers such
as subdistribution servers from the department of Computer Science, subdistri-
bution servers from the department of Arts etc. and so on. The DRM client C is
mobile and move from one region to another. C can download encrypted contents
from its preferred distributor, say Di,j , which might be location wise nearest to
C or offering some promotions/discounts on the price. The owner of the package
server P has raw content and wants to protect it. None of the principals except
P should know how to decrypt the content.

3.2 Secure Delivery of Content Key

Our key distribution scheme makes use of the setups for IBE and KP-ABE
as shown in Figure 2 and Figure 3 respectively. A similar construction can be
designed using CP-ABE instead of using KP-ABE. Use of the setup of IBE in-
stead of certificate-based setup simplifies certificate management and certificate
verification.

We now describe in detail our proposed key distribution scheme.

Access Policy Based Key Management 65

L

SID
L L

k,nk

k,nk k,nk

... D

IDD S
D

...

ID
D k,1

...

S
D k,1

D
k,1

...
... ...

D 2,1

ID
D 2,1

...

S
D 2,1

1,n1

1,n1

1,n1

2,n2

2,n2

2,n2

PKG

MK
IBE

PK
IBE

...

...

D 1,1
P

P P
SID

ID D1,1
S D 1,1

S
D

ID
D

D

S
D

... D

ID
D

......

...C

ID
C

S
C

Fig. 1. IBE key setup (IDU is the identity of user U and SU is U ’s private key issued
by its parent in the hierarchy)

1. Key setup

1.1) The principals of the package server P , and the license server L submit
their public identities to PKG and obtain the corresponding private keys SP ,
and SL respectively through a secure communication channel. PKG uses its
master key MKIBE to generate the principals private key after verifying the
validity of the principals public identity submitted to PKG.

1.2) The principal of the DRM client C submits its public identity IDC to the
principal of the package server P and obtains the corresponding private key
SC through a secure communication channel. P uses its own private key SP

issued by PKG to generate the private key of C after verifying the validity
of C’s public identity IDC submitted to P .

1.3) The principal of the distribution server D1,j , 1 ≤ j ≤ n1, submits its
public identities IDD1,j and access policy Γ1,j to PKG and obtains the private
keys SD1,j and SK1,j respectively through a secure communication channel.
PKG uses its master keys MKIBE and MKABE to generate D1,j’s private keys

66 R. Dutta, D. Mishra, and S. Mukhopadhyay

1,n1

2,n2

k,nk

k,nk k,nk

2,n2 2,n2

1,n1 1,n1

PKG

MK
ABE

PK
ABE

...

...

D 1,1
D

... D

......

...

Γ Γ

Γ

... D

...

Γ

...

D
k,1 ...

Γ

... ...
D 2,1 ...

Γ

SK
SK

SK
SK

SK
SKk,1 k,1

2,1 2,1

1,1 1,1

Fig. 2. KP-ABE key setup (Γi,j is the access policy for distributor Di,j and SKi,j is
Di,j ’s secret key issued by its parent in the hierarchy)

SD1,j and SK1,j respectively after verifying the validity of IDD1,j and Γ1,j

submitted to PKG.

1.4) The principal of the distribution server Di,j , 2 ≤ i ≤ k, 1 ≤ j ≤ ni

submits its public identities IDDi,j and access policy Γi,j to the principal of
its parent distribution server in the (i−1)-th level, say Di−1,j1 in the hierar-
chy of the distribution servers. Di−1,j1 in turn generates the corresponding
private keys SDi,j and SKi,j respectively for Di,j using its own private keys
SDi−1,j1

and SKi−1,j1 respectively after verifying the validity of Di,j ’s public
identities IDDi,j and Γi,j . Di−1,j1 then sends SDi,j and SKi,j to Di,j through
a secure communication channel.

2. Key Delivery when Packaging the Content

The package server P creates the content key K to encrypt a raw digital con-
tent M using symmetric encryption while packaging M . P splits the content
key K and distributes a different part of K to each of the license server L

Access Policy Based Key Management 67

ABE.Enc (K)
P

K = K | K 2

γ

Hierarchy of

 Distributors

L

1

IBE.Enc (K) ID D L
2

1

Fig. 3. Service flow during content packaging (signature and verification are not
shown), γ being a set of attributes

and the distribution servers Di,j , 1 ≤ i ≤ k, 1 ≤ j ≤ ni. These servers
in turn keep their respective partial content keys secret. We describe below
details. The service flow is shown in Figure 4.

2.1) P splits the content key K as K = K1|K2.

2.2) P chooses a set of attributes γ, computes Yγ = ABE.Encγ(K1), gener-
ates signature σYγ = sigSP

(Yγ) using P ’s own private key SP and broadcast
Yγ |σYγ . The set of attributed γ is sent as part of Yγ resulting from ABE.Enc
for KP-ABE system.

2.3) P computes YL = IBE.EncIDL
(K2) using L’s public identity IDL, gen-

erates signature σYL = sigSP
(YL) using P ’s own private key SP and sends

YL|σYL to L.

2.4) Since the ciphertext Yγ is encrypted under a set γ of attributes, only
the distribution servers who has assigned compatible access policies can de-
crypt it and recover K1. For instance, the j-th distribution server in level
i, Di,j, can extract K1 using its private key SKi,j from Yγ if γ ∈ Γi,j . On
receiving Yγ |σYγ , Di,j first verifies the signature σγ on Yγ using P ’s public
identity IDP . If verification succeeds, i.e. VerIDP

(Yγ , σYγ) = true, then Di,j

decrypts Yγ using its decryption key SKi,j for access policy Γi,j , recovers
K1 = ABE.DecSKi,j

(Yγ) and stores K1 to its secure database.

2.5) L upon receiving YL|σYL , verifies the signature σYL on YL using P ’s pub-
lic identity IDP . If verification succeeds, i.e. VerIDP (YL, σYL) = true, then L

68 R. Dutta, D. Mishra, and S. Mukhopadhyay

decrypts YL using its private key SL, recovers K2 = IBE.DecSL(YL). L stores
K2 to its secure database.

3. Key Delivery when Content Service is Provided

Suppose a DRM client C requests the content service for encrypted content
M from a distribution server, say Di,j , which is within nearest reach to C.
The following steps are executed. Figure 5 displays the service flow.

3.1) Di,j computes YC = IBE.EncIDC
(K1) using C’s public identity IDC , sig-

nature σYC = SigSDi,j
(YC) using Di,j ’s own private key SDi,j , and sends

YC |σYC to L.

3.2) L on receiving YC |σYC , verifies the signature σYC on YC using Di,j ’s
public identity IDDi,j . If verification succeeds, i.e. VerIDDi,j

(YC , σYC) = true,
L computes YL = IBE.EncIDC

(K2) using C’s public identity IDC , signature
σYC |YL

= SigSL
(YC |YL) using L’s own private key SL, and issues the license

that contains YC |YL|σYC |YL
together with rights, content URL, and so forth.

3.3) The DRM client C analyzes the licence issued by L, verifies σYC |YL
on

YC |YL using L’s public key IDL. If verification succeeds, C decrypts YC and
YL using its own private key SC , extracts the partial content keys K1 and
K2, reassembles these partial content keys to obtain the original content key
K = K1|K2. Finally, C decrypts the encrypted content using the recovered
content key K and can view (playback) M .

4 Analysis

We design our key management scheme keeping in mind the following specific
security objectives.

– Preventing insider attacks: Raw content should not be exposed to unintended
parties with the help of an insider.

– Minimizing attacks by outsiders: Unauthorized outsiders should not illegally
obtain the content keys.

– Protecting distribution channels for content key/license: The security of the
following two distribution channels should be ensured.
– the distribution channel between the distribution servers and the license
server to transport the content key
– the distribution channel between the DRM client, the distribution servers
and the license server to transport the license.

By splitting the content key, each of the distribution servers has a distinct partial
content key. Thus if an insider attack on a server is successful, the partial content
key obtained in the attack is insufficient to decrypt the DRM-enabled content.

Access Policy Based Key Management 69

content
website

media
server

D i,j

IBE.Enc (K)
IDC

1

ID
IBE.Enc (K)

C
1 , IBE.Enc (K)

IDC
2

L

C

issue license

select

 content

ID S D i,jD i,j
,

request license issue

Fig. 4. Service flow when content service is provided (signature and verification are
not shown)

For an outside attack to succeed, the attacker must break into the license
server and any distribution server to obtain sufficient partial content keys. Thus
the proposed scheme achieves multi-party security.

We use IBE and ABE and digital signature schemes to protect the con-
tent key/license distribution channel from impersonation attacks, replay attacks,
man-in-the-middle attacks etc. Therefore, the security of the content key/license
distribution channel depends on the security of the mechanisms IBE and ABE,
digital signatures used for the key management.

Note that the content keys in the license file are transmitted to the client
module under encryption with the client module’s public key. Consequently,
entities other than the client module cannot retrieve the content key even when
they have obtained the license file.

The process of authentication or verification of the identities of the parties is
necessary in a DRM system to ensure that the packaged digital content is from
the genuine authorized content distributor. In our design, digital certificates
are not used to authenticate or verify the identity of the parties involved in
the system unlike certificate-based public key infrastructure, thus saving large
amount of computing time and storage. Instead, we use IBE and ABE that
simplifies our key management mechanism.

Our key management scheme enables the symmetric content key to be pro-
tected from the principals who manages the distribution servers and the license
server. The digital content can thus be protected from attacks during the con-
tent distribution since the encrypted digital content is sent by the package server
and only the DRM client can decrypt the digital content. Besides, we use IBE
and ABE and digital signature instead of digital certificates. This simplifies the
process of authentication or verification of the identities in the system.

70 R. Dutta, D. Mishra, and S. Mukhopadhyay

The license server performs a range of tasks such as service monitoring, pay-
ment processing, license management and much information passes through it.
License issuance and content key management involve time-consuming opera-
tions such as digital signature and public key encryption. Thus the license server
could potentially become a bottleneck. However, the license server may consists
of many subsystems arranged in a modular design that allows them to run in-
dependently to overcome this bottleneck. We have not addressed all these issues
in this article and refer to Hwang et al.[7]. In our design, we mainly focus on
ensuring security in content key management.

5 Conclusion

We propose a key management scheme for a multi-level multi-distributor DRM
system where distributors and their sub-distributors are arranged in a hierar-
chy based on principals’ access policies or attributes. Our scheme enables DRM
clients to choose a distributor/subdistributor according to his own preference.
The package server sits at the top of the hierarchy. In our scheme, the package
server does not trust the distribution servers or the license server. The encrypted
digital content sent by a package server can only be decrypted by the DRM client
who has a valid license and is protected from attacks by other parties/servers
in the system. We use the IBE and ABE that incurs less computation cost and
storage as certificate managements are not necessary and certificate verifications
are no longer needed.

References

1. Bethencourt, J., et al.: Ciphertext-Policy Attribute-Based Encryption. In: Proceed-
ings of IEEE SP (2007)

2. Boneh, D., Franklin, M.: Identity-Based Encryption from the Weil Pairing. In:
Kilian, J. (ed.) CRYPTO 2001. LNCS, vol. 2139, pp. 213–229. Springer, Heidelberg
(2001)

3. Camp, L.J.: First Principles of Copyright for DRM Design. IEEE Internet Com-
puting 7, 59–65 (2000)

4. Cohen, J.E.: DRM and Privacy. Communications of the ACM 46(4) (April 2003)
5. Goyal, V., et al.: Attribute-Based Encryption for Fine Grained Access Control of

Encrypted Data. In: Proceedings of ACM CCS (2006)
6. Hartung, F., Ramme, F.: Digital Rights Management and Watermarking of Mul-

timedia Content for M-Commerce Applications. IEEE Comm. 38, 78–84 (2000)
7. Hwang, S.O., Yoon, K.S., Jun, K.P., Lee, K.H.: Modeling and implementation of

digital rights. Journal of Systems and Software 73(3), 533–549 (2004)
8. Lee, J., Hwang, S., Jeong, S., Yoon, K., Park, C., Ryou, J.: A DRM Frame-

work for Distribution Digital Contents through the Internet. ETRI Journal 25,
423–436 (2003)

9. Liu, X., Huang, T., Huo, L.: A DRM Architecture for Manageable P2P Based
IPTV System. In: IEEE Conference on Multimedia and Expo., pp. 899–902
(July 2007)

Access Policy Based Key Management 71

10. Liu, Q., Safavi-Naini, R., Sheppard, N.P.: Digital Rights Management for Con-
tent Distribution. In: Proceedings of Australasian Information Security Workshop
Conference on ACSW Frontiers 2003, vol. 21 (January 2003)

11. Mulligan, D.K., Han, J., Burstein, A.J.: How DRM- Based Content Delivery Sys-
tems Disrupt Expectations of Personal Use. In: Proc. 2003 ACM Works. Digital
Rights Management, pp. 77–88 (October 2003)

12. Rosset, V., Filippin, C.V., Westphall, C.M.: A DRM Architecture to Dis-
tribute and Protect Digital Content Using Digital Licenses. Telecommunication,
422–427 (July 2005)

13. Sachan, A., Emmanuel, S., Das, A., Kankanhalli, M.S.: Privacy Preserving Mul-
tiparty Multilevel DRM Architecture. In: IEEE Consumer Communications and
Networking Conference, CCNC (January 2009)

14. Sahai, A., Waters, B.: Fuzzy identity-based encryption. In: Cramer, R. (ed.)
EUROCRYPT 2005. LNCS, vol. 3494, pp. 457–473. Springer, Heidelberg (2005)

15. Shamir, A.: Identity-Based Cryptosystems and Signature Schemes. In: Blakely,
G.R., Chaum, D. (eds.) CRYPTO 1984. LNCS, vol. 196, pp. 47–53. Springer,
Heidelberg (1985)

16. Zhang, J., Wu, N., Luo, J., Yang, S.: A scalable Digital Rights Management
Framework for Large Scale Content Distribution. In: ISPACS, pp. 761–764 (2005)

Access Polynomial Based Self-healing Key

Distribution with Improved Security and
Performance

Ratna Dutta

Indian Institute of Technology, Kharagpur, India
ratna@maths.iitkgp.ernet.in

Abstract. In this paper, we develop and analyze a computationally
secure self-healing key distribution scheme with revocation capability,
adopting the idea of access polynomial and a one-way hash chain. The
main emphasis of our proposed scheme is that it achieves a stronger se-
curity goal, namely it can resist collusion against any number of users,
while having a significant improvement in the communication overhead
as compared to the existing schemes. Our design uses constant storage
and hence is especially suitable for unreliable environments in which
devices have limited resources. The security analysis is in an existing
security model.

Keywords: self-healing key distribution, computational security, for-
ward and backward secrecy, collusion resistance.

1 Introduction

The key distribution in wireless networks is not trivial due to unreliable lossy na-
ture of wireless medium. The nodes/devices are powered by batteries and have
the unique feature of moving in and out of range frequently. The session key
has to be updated frequently due to this frequent membership change in the
communication group. Self-healing is a solution for key distribution in wireless
networks for efficiency and security reasons. Self-healing key distribution schemes
have wide applications in military operations, rescue missions and scientific ex-
plorations. Also these scheme have found applicable in broadcast communication
over low-cost channels, pay-per-view TV, information service delivering sensitive
content/information to authorized recipients and several other Internet-related
settings.

The concept of self-healing key distribution is that users, in a large and dy-
namic group communication over an unreliable network, can recover lost session
keys on their own, even if they have lost some previous key distribution mes-
sages, without requesting additional transmissions from the group manager. This
reduces network traffic and the risk of user exposure through traffic analysis and
also decreases the work load on the group manager. The basic idea of the self-
healing key distribution scheme is to broadcast information that is useful only

M. Joye et al. (Eds.): InfoSecHiComNet 2011, LNCS 7011, pp. 72–82, 2011.
c© Springer-Verlag Berlin Heidelberg 2011

Access Polynomial Based Self-healing Key Distribution 73

Table 1. Comparison among computationally secure access polynomial based self-
healing key distribution schemes in the j-th session

Schemes Storage Overhead Communication Overhead

Construction of [21] 3 log q max{(3t + 1)j, [
∑j

i=1 |Gi|+ (2t + 1)j]} log q

Construction of [19] 3 log q max{(t + 1)j, [
∑j

i=1 |Gi|+ 2j]} log q

Construction of [14] 4 log q max{(t + j + 1)j, [
∑j

i=1 |Gi|+ j + 1]} log q
Our Construction 2 log q (|Gj |+ 2μ + j) log q

for trusted users. Combined with pre-distributed secrets, this broadcast infor-
mation enables a trusted user to reconstruct a session key. On the contrary, a
revoked user is unable to infer useful information from the broadcast message.

Self-healing key distribution is first introduced by Staddon et al. in [18].
Following it, a number of self-healing key distribution approaches are proposed
[1],[2], [9], [12], [13], [15], [16], [21], [6]. Improvements in efficiency are obtained
by relaxing the security slightly - from unconditional to computational [3], [4],
[10], [11]. The schemes [4], [15], [16], [20] are based on vector space access struc-
ture instead of Shamir’s [17] secret sharing. The schemes [5], [14], [19], [21] use
the concept of access polynomial.

Our main contribution in this article is to design a computationally secure and
efficient group key distribution scheme with self-healing property and revocation
capability for large and dynamic groups over unreliable wireless networks. Our
scheme uses constant storage. To avoid the redundancy in the key updating
broadcast message, we bind different access polynomials according to the time of
users’ joining and a special one-way hash function. This reduces communication
bandwidth significantly as compared to the existing access polynomial based self-
healing key distribution schemes [5], [14], [19], [21]. Table 1 analyzes the efficiency
of our scheme compared to the previous access polynomial based constructions.
(Gi being the set of legitimate active users in the session i, μ being the maximum
number of joining operations during m sessions, 1 ≤ μ ≤ m, and t denotes the
maximum number of users that can be revoked from the wireless system.) We
emphasize that, unlike the existing schemes, our design holds a stronger security
performance in the sense that it can deal with any number of colluding users
to achieve forward and backward secrecy, and collusion resistance capability. All
these results are supported by proper security analysis in an existing security
framework.

The rest of the paper is organized as follows: Section 2 presents some basic
definitions and the security model. In Section 3, we propose our self-healing key
distribution scheme. The security analysis is provided in Section 4. Finally, we
conclude in Section 5.

2 Preliminaries

2.1 One-Way Function

Our constructions for self-healing key distribution are based on the intractability
of one-way function. Informally speaking, a one-way function f : A → B satisfies

74 R. Dutta

the following two properties where A and B are two finite set: (a) f is easy to
compute; and (b) f is hard to invert, i.e., it is difficult to get x from f(x). See [7]
for a formal definition of one-way function.

An important component of our system is a cryptographically secure one way
Hash function. The underlying principle here is that we must have a measure of
the difficulty of reversing such functions. More formally a function H : A → B is
a cryptographically secure hash function if it satisfies the following requirements:

- H can be applied to any size input and produce a fixed length output.
- H is easy to compute.
- H has the one-way property, i.e. Given H(x) it is computationally infeasible

to find x.
- H is weak collision resistant, i.e. Given x it is computationally infeasible to

find y �= x with H(y) = H(x).
- H is strong collision resistant, i.e. It is computationally infeasible to find a

distinct pair (x, y) with H(x) = H(y).

In what follows A and B are Fq. As the hash function landscape is constantly
changing we do not specify a particular algorithm to compute H, but note that
our construction is not dependent on a particular hash function.

2.2 Key Distribution and Self-healing

Consider the scenario in which is a setup for pay-per-view TV channel. Sup-
pose {U1, . . . , Un} is a dynamically changing group of users (clients) and GM /∈
{U1, . . . , Un} is the group manager (the cable operator). The problem is how the
GM can securely communicate with its dynamically changing group of clients
over an insecure broadcast channel, so that only authorized clients (who pay)
may view the content broadcast by the GM. The GM encrypts the content using
a session key. We need a mechanism of distributing this session key in such a
way that only the authorized users can recover this session key and decrypt the
encrypted content. This mechanism is referred to as the key distribution prob-
lem. Our goal is to minimize the overhead for this key distribution keeping the
following few issues in mind: (a) group-rekeying is needed on each membership
change; (b) depending on specific nature of applications, we can adopt periodic
group-rekeying; (c) efficient and secure revocation as well as joining mechanisms
are required for dynamic groups etc.

On top of this, Ui may get off-line for some time due to power failure and
may need to recover lost session keys immediately after being on-line. Self-healing
property enables qualified users to recover lost session keys on their own, without
requesting additional transmission from the GM.

2.3 Notational Convention

The following notations are used throughout the paper.

Access Polynomial Based Self-healing Key Distribution 75

U : set of all users in the networks
Ui : i-th user
GM : group manager
n : total number of users in the network
m : total number of sessions
μ : total number of joining operations occurred in m sessions
G0 : initial group members prior to the beginning of the first session
Gj : the group established by the GM in session j
Fq : a field of order q
Si : personal secret of user Ui

SKj : session key generated by the GM in session j
Bj : broadcast message by the GM during session j
Zi,j : the information learned by Ui through Bj and Si

H : a cryptographically secure one-way function
Ekey(·) : symmetric encryption function under the key key
Dkey(·) : symmetric decryption function under the key key

2.4 Security Framework

Let U = {U1, . . . , Un} be the universe of the network. We assume the availability
of a broadcast unreliable channel and there is a group manager GM who sets up
and performs join and revoke operations to maintain a communication group,
which is a dynamic subset of users of U . Let m be the maximum number of
sessions, i ∈ {1, . . . , n}, j ∈ {1, . . . , m} and Gj ∈ U be the group established
by the GM in session j. In the following definitions, Si denotes the personal
secret of user Ui, SKj is the session key generated by the GM in session j, Bj is
the broadcast message by the GM during session j, and Zi,j is the information
learned by Ui through Bj and Si.

Definition 21. (Session Key Distribution with privacy [18]) Let i ∈ {1, . . . , n}
and j ∈ {1, . . . , m}.

1) D is a session key distribution with privacy if
(a) for any user Ui, the session key SKj is efficiently determined from Bj

and Si.
(b) for any set R ⊆ U of revoked users and Ui /∈ R, it is computationally

infeasible for users in R to determine the personal key Si.
(c) If we consider separately either the set of m broadcasts {B1, . . . ,Bm} or

the set of n personal keys {S1, . . . , Sn}, then it is computationally infeasible for
users U1, . . . , Un to compute session key SKj (or other useful information) from
either set. Information from both the sets is required in order to compute SKj or
any useful information.

2) D has revocation capability if given any R ⊆ U of users revoked in and before
session j, the group manager GM can generate a broadcast Bj, such that for all

76 R. Dutta

Ui /∈ R, Ui can efficiently recover the session key SKj, but the revoked users can-
not. i.e. it is computationally infeasible to compute SKj from Bj and {Sl}Ul∈R.

3) D is self-healing if the following is true for any j, 1 ≤ j1 < j < j2 ≤ m:
(a) For any user Ui who is a member in sessions j1 and j2, the key SKj is

efficiently determined by the set {Zi,j1 , Zi,j2}.
(b) Let 1 ≤ j1 < j < j2 ≤ m. For any disjoint subsets R, J ⊂ U , where

the set R is a coalition of users removed before and in session j1 and the set
J is a coalition of users joined since session j2, the set {Zl,j}Ul∈R,1≤j≤j1 ∪
{Zl,j}Ul∈J,j2≤j≤m cannot determine the session key SKj, j1 < j < j2. i.e. SKj

can not be obtained by the coalition R ∪ J . This is collusion resistance property
for self-healing.

Definition 22. (Forward and backward secrecy [12]) Let i ∈ {1, . . . , n} and
j ∈ {1, . . . , m}.

1) A key distribution scheme D guarantees forward secrecy if for any set R ⊆ U
of users revoked in and before session j, it is computationally infeasible for the
members in R together to get any information about SKj, even with the knowl-
edge of group keys SK1, . . . , SKj−1 before session j.

2) A session key distribution D guarantees backward secrecy if for any set J ⊆ U
of users joined after session j, it is computationally infeasible for the members
in J together to get any information about SKj, even with the knowledge of group
keys SKj+1, . . . , SKm after session j.

3 Scheme Description

3.1 Protocol Requirements

For our construction, we consider a setting in which there is a group manager
(GM) and n users U = {U1, . . . , Un}. All operations take place in a finite field, Fq,
where q is a large prime number (q > n). Let Ekey(·), Dkey(·) denote respectively
an encryption and corresponding decryption function, which may be viewed as
keyed permutations over Fq under key key ∈ Fq. Let H : Fq −→ Fq be a
cryptographically secure one-way function. This may be viewed as a random
one way permutation over Fq such that Hi(u) �= Hj(u)) for all positive integers
i, j and u ∈ Fq (Hi means the permutation H is applied i times on u ∈ Fq

3.2 Self-healing Session Key Distribution

Our self-healing key distribution consists of five phases: Setup, Broadcast, Ses-
sion Key Recovery, Addition of Group Members, Revocation of Group Members.

(1) Setup: Let G0 denotes the initial group members prior to the beginning of the
first session. For each user Ui ∈ G0, the GM selects at random a private unique

Access Polynomial Based Self-healing Key Distribution 77

identity αi ∈ Fq. Each user Ui ∈ G0, receives its personal secret key Si = {αi}
from the GM via the secure communication channel between them.

(2) Broadcast

(i) Let Gj = {G(1)
j , G

(2)
j , . . . , G

(v)
j , G

(v+1)
j , . . . , G

(j)
j } be the set of legitimate

active users in the session j, where G
(v)
j denotes the set of users who joined

the group in the session v and are still active in the session j. G
(v)
j = ∅ if

there is no users joined in the session v, and 1 ≤ v ≤ j.
(ii) In the j-th session, the GM chooses blinding values θ

(v)
j ∈ Fq, θ

(v)
j /∈ {αi ∈

Fq|Ui ∈ G
(v)
j } for 1 ≤ v ≤ j. Using these blinding values and the private

identities of legitimate active users in the group Gj , the GM constructs access
polynomials:

A
(v)
j (x) = 1 + (θ(v)

j x − 1)
∏

{i:Ui∈G
(v)
j }

(x − αi), v = 1, 2, . . . , j (1)

The factor (θ(v)
j x − 1) is a blinding term and θ

(v)
j ∈ Fq is randomly selected

in each session j for 1 ≤ v ≤ j and is different from {αi ∈ Fq|Ui ∈ G
(v)
j }. The

purpose of (θ(v)
j x − 1) is to make A

(v)
j (x) different for different session even

they contain the same α’s of active (authorized) users. Note that A
(v)
j (αi) = 1

for an active user Ui ∈ G
(v)
j . However, for a non-active user (unauthorized

user) Ui /∈ G
(v)
j , A

(v)
j (αi) is a random value.

(iii) In the j-th session, the GM randomly picks an initial seed β
(1)
j ∈ Fq. It

repeatedly applies the one-way function H to compute the one-way key chain
of length j:

β
(v)
j = H(β(v−1)

j) = Hv−1(β(1)
j) (2)

for 1 ≤ v ≤ j, where Hv(·) denotes applying v times hash operation. For
security, seeds of the key chain for different sessions are also different. That
is, for j1 �= j2, β

(1)
j1

�= β
(1)
j2

.
(iv) The GM randomly chooses a session key SKj ∈ Fq.
The GM computes

Φ
(v)
j (x) = β

(v)
j A

(v)
j (x), v = 1, 2, . . . , j. (3)

Henceforth, we refer β
(v)
j as the masking key.

(v) Finally, the GM broadcasts the message

Bj = {Φ(v)
j (x)|v = 1, 2, . . . , j} ∪ {E

β
(1)
j

(SK1), Eβ
(2)
j

(SK2), . . . , Eβ
(j)
j

(SKj)},(4)

where, Ekey(·) is a symmetric encryption function and SKv, 1 ≤ v ≤ j is the
session key at the v-th session randomly selected by the GM. Note that if
no users joined in session v, (v = 1, 2, . . . , j), A

(v)
j (x) = ∅ and Φ

(v)
j (x) is not

included in Bj.

78 R. Dutta

(3) Session Key Recovery: When an active (non-revoked) user Ui ∈ G
(v)
j ⊂ Gj

receives the j-th session key distribution message Bj , it recovers the session key
as follows:

(i) Ui computes the masking key β
(v)
j = Φ

(v)
j (αi) for 1 ≤ v ≤ j as A

(v)
j (αi) = 1

for any active user Ui ∈ G
(v)
j .

(ii) Ui computes all masking keys {β(w)
j } for v < w ≤ j in the j-th key chain

using equation (2).
(iii) Finally, Ui recovers the session keys SKw for v ≤ w ≤ j by decrypting E

β
(w)
j

with corresponding keys β
(w)
j .

Our scheme allows the user only to recover session keys used after the user joined
the group. That is, in the session j, a new user joined the group in the session
v, 1 ≤ v ≤ j, can recover session keys SKv, SKv+1, . . . , SKj , and cannot recover
previous session keys SK1, SK2, . . . , SKv−1.

(4) Addition of Group Members: When a new user Ur wants to join the commu-
nication group starting from session j, the user gets in touch with the GM. The
GM in turn picks an unique secret identity αr ∈ Fq and allocates the personal
key Sr = {αr} to this new group member Ur via the secure communication
channel between them. To handle the dynamic scenario, the GM constructs the
new access polynomial A

(v)
j (x) including (x − αr), and operates as Broadcast

phase.

(5) Revocation of Group Members: If a user Uw who joined the group in the
session v is revoked in the session j, the GM excludes (x − αw) from A

(v)
j (x),

and launches the key updating process to exclude Uw (see Broadcast phase).

3.3 Complexity

– Storage overhead: Each user Ui needs to store two field elements, its personal
secret αi and the session key SKj . Hence the storage complexity for user Ui

is 2 log q bits, and is constant.
– Communication overhead: Communication bandwidth for key management

in the j-th session is (|Gj | + 2μ + j) log q bits, where Gj is the set of active
users in the session j and μ is the maximum number of joining operations
occurred in m sessions, 1 ≤ μ ≤ j ≤ m. This comes from the fact that
the broadcast message (see equation (4)) in the j-th session consists of a
maximum μ polynomials Φ

(v)
j (x) and j encrypted value. Note that if no user

joined in the session v, 1 ≤ v ≤ j, A
(v)
j (x) = ∅ and Φ

(v)
j (x) is not included

in Bj.
– Computation overhead: The computation cost for key management for an

active user Ui in the j-th session consists of j symmetric key decryption
operations, |Gj | + 1 multiplication operations needed to find a point on

Access Polynomial Based Self-healing Key Distribution 79

|Gj | + 1-degree polynomial, and a maximum j hash operations to compute
the masking keys β

(v)
j , 1 ≤ v ≤ j.

4 Analysis

Theorem 41. Our construction is computationally secure, self-healing session
key distribution scheme with privacy, revocation capability with respect to Defini-
tion 21 and achieves forward and backward secrecy with respect to Definition 22
in our security model as described in Section 2.4 under the security of the sym-
metric encryption function.

Proof

1) (a) An active user Ui ∈ Gj can recover the session key SKj as described in
Session Key Recovery phase of our construction.

(b) For any set Rj ⊆ U of users revoked in and before session j, and any non-
revoked user Ui /∈ Rj , the coalition Rj is not able to compute the personal secret
Si = {αi} of Ui unless Rj can guess αi correctly, as αi is selected randomly and
is independent of the personal secret Sr = {αr} for Ur ∈ Rj .

(c) The j-th session key SKj is independent of the personal secret Si = {αi}.
Hence, using only the personal secret keys, one cannot compute session keys. On
the other hand, since the masking key and the session key are selected randomly,
broadcast messages cannot give any information about session keys under the
assumption that the symmetric encryption function is secure. Therefore, SKj

cannot be determined by only the personal key Si or the broadcast message Bj .

2) (Revocation property) Let Rj = {R(1)
j , R

(2)
j , . . . , R

(v)
j , R

(v+1)
j , . . . , R

(j)
j } ⊆ U

be a collection of revoked users in the session j, where R
(v)
j for v = 1, 2, . . . , j

is the set of users who join the group in the session v and are revoked before or
in the session j. It is impossible for the coalition Rj to recover the j-th session
key SKj as Rj has no information about the masking keys β

(v)
j , v = 1, 2, . . . , j

generated in the j-th session. This is because of the fact that seeds of the key
chain to generate the masking keys are different for different sessions. Moreover,
since the unique identity is kept secret, the collusion of Rj cannot construct
the access polynomial A

(v)
j (x) for v = 1, 2, . . . , j. The masking key β

(v)
j appears

randomly to all Ui ∈ R
(v)
j as the value A

(v)
j (αi) computed by Ui ∈ R

(v)
j using

Ui’s own private unique identity αi is random.

3) (a) (Self-healing property) Let Ui be a group member that receives session
key distribution messages Bj1 and Bj2 in sessions j1 and j2 respectively, where
1 ≤ j1 < j2, but not the session key distribution message Bj for session j, where
j1 < j < j2. User Ui can still recover all the lost session keys SKj for j1 < j < j2
as desired by Definition 21 3(a) using the following steps.

– In the Session Key Recovery phase, Ui, as a member in the session j3, 1 ≤
j1 ≤ j3, can recover the masking key β

(j1)
j3

.

80 R. Dutta

– Ui uses β
(j1)
j3

to generate part of the j3-th one-way hash key chain, {β(j1)
j3

,

β
(j1+1)
j3

, . . ., β
(j2)
j3

, β
(j2+1)
j3

, . . ., β
(j3)
j3

}.
– Ui recovers session keys SKj1 , SKj1+1, . . . , SKj2 , SKj2+1, . . . , SKj3 by decrypt-

ing respectively E
β

j1
j3

(SKj1), Eβ
j1+1
j3

(SKj1+1), . . ., E
β

j2
j3

(SKj2), Eβ
j2+1
j3

(SKj2+1),

. . ., E
β

j3
j3

(SKj3) with the respective masking keys β
(j1)
j3

, β
(j1+1)
j3

, . . ., β
(j2)
j3

,

β
(j2+1)
j3

, . . ., β
(j3)
j3

.

(b) Our construction can also resist collusion. Let 1 ≤ j1 < j < j2 ≤ m and
let R, J ∈ U be two disjoint subsets, where R is a set of revoked users from the
group before session j1 and J is a set of users who join the group from session
j2. Consider a coalition from R∪J . We show the users in R∪J together are not
entitled to know the j-th session key SKj for any j1 ≤ j < j2 − 1.

A user Ur ∈ R, who joined the group in the session j′, (j′ < j) and is revoked
before the session j1, knows Sr = {αr} and a user Ut ∈ J , who joined the group
in the session j′′(j2 < j′′ ≤ m), only knows St = {αt}. Note that αr and αt are
selected randomly and the values A

(v)
j (αr), A

(v)
j (αt) for v = 1, 2, . . . , j computed

respectively by users Ur ∈ R and Ut ∈ J using their respective private unique
identities αr and αt. This makes the masking keys β

(v)
j appear randomly to

users Ur ∈ R, Ut ∈ J . Hence, the collusion of Ur ∈ R and Ut ∈ J are not able
to recover the masking keys β

(v)
j , v = 1, 2, . . . , j unless they guess β

(v)
j correctly.

Consequently, the collusion of users in R∪J cannot recover the session key, SKj ,
for j1 ≤ j < j2, assuming the encryption function is secure.
We will show that our construction satisfies all the conditions required by Defi-
nition 22.

1) (Forward secrecy) Let Rj = {R(1)
j , R

(2)
j , . . . , R

(v)
j , R

(v+1)
j , . . . , R

(j)
j } ⊆ U ,

where R
(v)
j for v = 1, 2, . . . , j − 1 is the set of users who join the group in

the session v and are revoked before the session j. The coalition Rj can not get
any information about the current session key SKj even with the knowledge of
group keys before session j. In order to recover the j-th session key SKj along
with all broadcast messages {B1,B2, . . . ,Bm}, any user Ul ∈ R

(v)
j needs to know

the j-th masking key β
(v)
j . For any user Ul ∈ R

(v)
j , A

(v)
j (αl) is a random value

which means that Ul is not able to recover the masking key β
(v)
j unless Ul can

guess β
(v)
j correctly. Hence, even all revoked users in the set Rj collude together,

the session key SKj cannot be recovered under the assumption that the sym-
metric encryption function is secure. Similar argument shows that the revoked
users cannot compute the subsequent session keys SKj1 for j1 > j, as desired.
This is forward secrecy from computation point of view.

2) (Backward secrecy) Let J ⊆ U , and each user Ul, Ul ∈ J , joins the group after
the session j. The coalition J cannot get any information about any previous
session key SKj1 for j1 ≤ j even with the knowledge of group keys after session
j. This is because of the fact that the access polynomials A

(v)
j1

(x), 1 ≤ v ≤ j1,

Access Polynomial Based Self-healing Key Distribution 81

contain no private identity of any user who joined the group after the session j1,
j1 ≤ j, and so, A

(v)
j1

(αl) is a random value for any user Ul ∈ J . Consequently,
with all broadcast messages {B1,B2, . . . ,Bm}, users in J cannot compute the
masking keys β

(v)
j1

, v = 1, 2, . . . , j1 for j1 ≤ j to perform decryption in order
to recover the session keys SKj1 , j1 ≤ j. Hence, our proposed key distribution
scheme achieves backward secrecy under the assumption that the symmetric
encryption function is secure. ��

5 Conclusion

We present a computationally secure constant storage self-healing key distri-
bution scheme. The users are classified according to the time of their joining.
We couple the time at which a user joins the group with its capability of re-
covering previous session keys. We use the concept of access polynomials and a
special one-way hash chain and reduce the redundancy in the communication
bandwidth. Additionally, we have shown in an existing security model that the
proposed self-healing key distribution scheme is able to deal with any number of
colluding users to achieve the forward secrecy, backward secrecy and collusion
resistance capability. We feel that our scheme guarantees stronger security and
performance as compared to the existing similar schemes.

References

1. Blundo, C., D’Arco, P., Santis, A., Listo, M.: Design of Self-healing Key Distribu-
tion Schemes. Design Codes and Cryptology 32, 15–44 (2004)

2. Blundo, C., D’Arco, P., Santis, A., Listo, M.: Definitions and Bounds for Self-
Healing Key Distribution Schemes. In: Dı́az, J., Karhumäki, J., Lepistö, A.,
Sannella, D. (eds.) ICALP 2004. LNCS, vol. 3142, pp. 234–245. Springer, Hei-
delberg (2004)

3. Dutta, R., Chang, E.-C., Mukhopadhyay, S.: Efficient self-healing key distribution
with revocation for wireless sensor networks using one way key chains. In: Katz, J.,
Yung, M. (eds.) ACNS 2007. LNCS, vol. 4521, pp. 385–400. Springer, Heidelberg
(2007)

4. Dutta, R., Mukhopadhyay, S., Das, A., Emmanuel, S.: Generalized Self-healing Key
Distribution Using Vector Space Access Structure. In: Das, A., Pung, H.K., Lee,
F.B.S., Wong, L.W.C. (eds.) NETWORKING 2008. LNCS, vol. 4982, pp. 612–623.
Springer, Heidelberg (2008)

5. Dutta, R., Mukhopadhyay, S., Dowling, T.: Enhanced Access Polynomial Based
Self-healing Key Distribution. In: Gu, Q., Zang, W., Yu, M. (eds.) SEWCN 2009.
Lecture Notes of the Institute for Computer Sciences, Social Informatics and
Telecommunications Engineering, vol. 42, pp. 13–24. Springer, Heidelberg (2010)

6. Sáez, G.: Self-healing Key Distribution Schemes with Sponsorization. In: Dittmann,
J., Katzenbeisser, S., Uhl, A. (eds.) CMS 2005. LNCS, vol. 3677, pp. 22–31.
Springer, Heidelberg (2005)

7. Goldreich, O.: Foundations of Cryptography: Basic Tools. Cambridge University
Press, Cambridge (2001)

82 R. Dutta

8. Simmons, G.J., Jackson, W., Martin, K.: The Geometry of Secret Sharing Schemes.
Bulletin of the ICA 1, 71–88 (1991)

9. Hong, D., Kang, J.: An Efficient Key Distribution Scheme with Self-healing Prop-
erty. IEEE Communication Letters 9, 759–761 (2005)

10. Jiang, Y., Lin, C., Shi, M., Shen, X.: Self-healing Group Key Distribution
with Time-limited Node Revocation for Wireless Sensor Networks. Ad Hoc Net-
works 5(1), 14–23 (2007)

11. Kausar, F., Hassian, S., Park, J.H., Masood, A.: Secure Group Communication with
Self-healing and Rekeying in Wireless Sensor Networks. In: Zhang, H., Olariu, S.,
Cao, J., Johnson, D.B. (eds.) MSN 2007. LNCS, vol. 4864, pp. 737–748. Springer,
Heidelberg (2007)

12. Liu, D., Ning, P., Sun, K.: Efficient Self-healing Key Distribution with Revocation
Capability. In: Proceedings of the 10th ACM CCS 2003, pp. 27–31 (2003)

13. More, S., Malkin, M., Staddon, J.: Sliding-window Self-healing Key Distribution
with Revocation. In: ACM Workshop on Survivable and Self-regenerative Systems
2003, pp. 82–90 (2003)

14. Xu, Q.Y., He, M.X.: Improved Constant Storage Self-healing Key Distribution
with Revocation in Wireless Sensor Network. In: Chung, K.-I., Sohn, K., Yung, M.
(eds.) WISA 2008. LNCS, vol. 5379, pp. 41–55. Springer, Heidelberg (2009)

15. Saez, G.: On Threshold Self-healing Key Distribution Schemes. In: Smart, N.P.
(ed.) Cryptography and Coding 2005. LNCS, vol. 3796, pp. 340–354. Springer,
Heidelberg (2005)

16. Saez, G.: Self-healing Key Distribution Schemes with Sponsorization. In: Dittmann,
J., Katzenbeisser, S., Uhl, A. (eds.) CMS 2005. LNCS, vol. 3677, pp. 22–31.
Springer, Heidelberg (2005)

17. Shamir, A.: How to Share a Secret. Communications of the ACM 22(11), 612–613
(1979)

18. Staddon, J., Miner, S., Franklin, M., Balfanz, D., Malkin, M., Dean, D.: Self-healing
key distribution with Revocation. In: Proceedings of IEEE Symposium on Security
and Privacy 2002, pp. 224–240 (2002)

19. Tian, B., Han, S., Dillon, T.-S.: An Efficient Self-Healing Key Distribution Scheme.
In: Proceedings of the 2nd IFIP Internal Conference on New Technologies, Mobility
and Security (2008)

20. Tian, B., Han, S., Dillon, T.-S., Das, S.: A Self-Healing Key Distribution Scheme
Based on Vector Space Secret Sharing and One Way Hash Chains. In: Proceedings
of IEEE WoWMoM (2008)

21. Zou, X.K., Dai, Y.S.: A Robust and Stateless Self-Healing Group Key Management
Scheme. In: ICCT 2006, vol. 28, pp. 455–459 (2006)

An ID-Based Proxy Multi Signature Scheme

without Bilinear Pairings

Namita Tiwari and Sahadeo Padhye

Department of Mathematics
Motilal Nehru National Institute of Technology

Allahabad-211004, India
{namita.mnnit,sahadeomathrsu}@gmail.com

Abstract. As a variation of ordinary digital signature scheme, a proxy
signature scheme enables a proxy signer to sign messages on behalf of
the original signer. Proxy multi-signature is an extension of the basic
proxy signature primitive, and permits two or more entities to delegate
their signing capabilities to some other entity. Many identity-based proxy
multi signature (IBPMS) schemes using bilinear pairings have been pro-
posed. But the relative computation cost of the pairing is approximately
more than ten times of the scalar multiplication over elliptic curve group.
In order to save the running time and the size of the signature, in this
paper, we propose an IBPMS scheme without bilinear pairings. We also
prove the security of our scheme against adaptive chosen message at-
tack under random oracle model. With the running time being saved
greatly, our scheme is more applicable than the previous related schemes
for practical applications.

Keywords: Digital signature, Identity-based cryptography, Proxy-multi
signature, Elliptic curve discrete log problem.

1 Introduction

The central idea of identity based cryptography (Shamir [14]), is to simplify
public-key and certificate management by using a users identity(e.g., its email
address) as its public key. For this to be possible, the system requires a trusted
third party, typically called a Private Key Generator (PKG), to generate users
secret keys from its master secret and the users identity. Only the PKG has a
traditional public key. In an identity based signature scheme, the verifier verifies a
signature by using the signer’s identity and the PKG’s public key, the verification
information does not include any certificate or any individual public key for the
signer.

The notion of proxy signature scheme was firstly introduced by Mambo et
al. [12]. A proxy signature scheme allows an entity called original signer to del-
egate his signing capability to another entity, called proxy signer. Since it is
proposed, the proxy signature schemes have been suggested for use in many ap-
plications, particularly in distributed computing where delegation of rights is

M. Joye et al. (Eds.): InfoSecHiComNet 2011, LNCS 7011, pp. 83–92, 2011.
© Springer-Verlag Berlin Heidelberg 2011

84 N. Tiwari and S. Padhye

quite common. Since the proxy signature primitive was introduced, various ex-
tensions of the basic proxy signature primitive have been considered. These in-
clude threshold proxy signature, blind proxy signature, one-time proxy signature,
multi proxy signature, proxy multi-signature, and multi-proxy multi-signature,
etc.

Proxy multi-signature means a proxy signer can generate the signature for
a message on behalf of several original signers. It can be used in the following
scenario: A company releases a document that may involve the financial de-
partment, engineering department, and program office, etc. The document must
be signed jointly by these entities, or signed by a proxy signer authorized by
these entities. One solution to the latter case of this problem is to use a proxy
multi-signature scheme.

Using bilinear pairings, many new ID-based signature schemes [1,2,10], ID-
based proxy signature(IBPS) schemes [7,8,11,16,17] and proxy multi signature
schemes [3,15] etc. were proposed. All the above IBPS schemes are very practical,
but they are based on bilinear pairings and the pairing is regarded as the most
expensive cryptography primitive. According to [9], the relative computation
cost of a pairing is approximately more than ten times of the scalar multiplication
over elliptic curve group [4]. Therefore, IBPMS schemes without bilinear pairings
would be more appealing in terms of efficiency. In this paper, we present an
IBPMS scheme without pairings. To achieve 1024 − bits RSA level security,
512 − bits supersingular elliptic curve and 160 − bits non-supersingular elliptic
curves are used in applications. In general pairing is defined on the supersingular
elliptic curve. But the ECC uses non supersingular elliptic curves. Because our
scheme is based on the elliptic curve cryptosystem, it is efficient and have smaller
key size than pairing based system. The proposed scheme is based on the elliptic
curve discrete logarithm problem (ECDLP). With the pairing-free realization,
proposed schemes overhead is lower than that of previous schemes [3,15] in
computation.

Organization: The rest of this paper is organized as follows: In Section 2, we
introduce the complexity assumption. In Section 3, we define a formal model of
identity-based proxy multi-signature scheme and it’s security. In Section 4, we
propose a new identity-based proxy multi-signature scheme, and we prove its
security using the model in Section 5. In Section 6, we compare the efficiency of
our scheme with that in [3,15]. Finally, Section 7 concludes the paper.

2 Preliminaries

2.1 Background of Elliptic Curve Group

Let the symbol E/Fp denote an elliptic curve E over a prime finite field Fp,
defined by an equation

y2 = x3 + ax + b, a, b ∈ Fp, and
discriminant Δ = 4a3 + 27b2 �= 0

An ID-Based Proxy Multi Signature Scheme without Bilinear Pairings 85

The points on E/Fp together with an extra point O called the point at infinity
form a group G = {(x, y) : x, y ∈ Fp, E(x, y) = 0} ∪ {O} .

Let the order of G be n. G is a cyclic additive group under the point addition
”+” defined as follows: Let P, Q ∈ G, l be the line containing P and Q (tangent
line to E/Fp if P = Q), and R, the third point of intersection of l with E/Fp.
Let l

′
be the line connecting R and O. Then P + Q is the point such that l

′

intersects E/Fp at R and O and P + Q.
Scalar multiplication over E/Fp can be computed as follows:

tP = P + P + + P (t times).

2.2 Complexity Assumption

The following problem defined over G are assumed to be intractable within
polynomial time.

Elliptic curve discrete logarithm problem (ECDLP): For x ∈R Zn
∗ and P the

generator of G , given Q = x.P compute x.

3 Formal Model of Identity-Based Proxy-Multi Signature
Scheme

Based on the work of [7,9], we give a formal definition and security model for
identity-based proxy multi-signature schemes.

3.1 Identity-Based Proxy Multi Signature Scheme

In an identity-based proxy multi-signature scheme, there is one proxy signer and
a group of original signers. Let A1, A2,Al be the original signers and A0 be
the proxy signer designated by original signers. Ai (∀i = 0, 1, 2...l) has an iden-
tity IDi.

Definition 1. An identity-based proxy multi-signature scheme is a tuple IBPMS
=(Setup; Extract; Delgen; Delverif; PKGen; PMSign; PMVerif).

Setup: The parameters generation algorithm, takes as input a security parameter
k, and returns a master secret key x and system parameters Ω. This algorithm
is performed by KGC.

Extract: Given an identity IDi ∈ {0, 1}∗, the master secret key s and params Ω,
KGC uses this algorithm to generate the private key Di of IDi. The master en-
tity will use this algorithm to generate private keys for all entities participating
in the scheme and distribute the private keys to their respective owners through
a secure channel.

Delgen: The delegation algorithm, takes Ai’s secret key Diand warrant mw as
inputs and outputs the delegation WAi→A0 , ∀i = 1, 2...l.

86 N. Tiwari and S. Padhye

DelVerif: This algorithm, takes IDi, WAi→A0 as input and verifies whether
WAi→A0 is a valid delegation came from Ai, ∀i = 1, 2...l .

PKgen: The proxy key generation algorithm, takes Wi, ∀i = 1, 2...l and some
other secret information (for example, the secret key of the executor) as input,
and outputs a signing key Dp for proxy signature.

PMSign: The proxy signing algorithm, takes a proxy signing key Dp and a mes-
sage m ∈ {0, 1}∗ as input, and outputs a proxy signature (m, δ).

PMVerif: The proxy verification algorithm, takes IDi, ∀i = 0, 1, 2...l, and a proxy
signature (m, δ) as input, and outputs 0 or 1. In the later case, (m, δ) is a valid
proxy multi-signature for m by the proxy signer on behalf of the original signers.

We consider an adversary T which is assumed to be a probabilistic Turing
machine which takes as input the global scheme parameters and a random tape.

Definition 2. For an ID-based proxy multi signature scheme IBPMS, we de-
fine an experiment ExpIBPMS

T of adversary T and security parameter k as
follows [7]:

1. A challenger C runs Setup and gives the system parameters Ω to T .
2. Clist ← φ, Dlist ← φ, Glist ← φ, Slist ← φ. (φ means null).
3. Adversary T can make the following requests or queries adaptively.

Extract(.): This oracle takes user’s IDi as input, and returns the corresponding
private key Di. If T gets Di ← ExtractIDi, let Clist ← Clist

⋃
{IDi, Di}.

Delgen(.): This oracle takes the designator’s identity IDi and a warrant mw as in-
put, and outputs a delegation WAi→A0 . If T gets WAi→A0 ← Delegate{IDi, mw},
let Dlist ← Dlist

⋃
{IDi, mw, WAi→A0}.

PKgen(.): This oracle takes the proxy signer’s ID0 and a delegation W as in-
put, and outputs a proxy signing key Dp. If T gets Dp ← PKgen(ID, W), let
Glist ← Glist

⋃
(ID0, mw, W).

PSign(.): This oracle takes the delegation W and message m ∈ {0, 1}∗ as in-
put, and outputs a proxy signature created by the proxy signer. If T gets
(m, δ) ← PSign(W, m), let Slist ← Slist

⋃
{(m, δ)}.

4. T outputs (IDi, mw, WAi→A0) or (W, m, δ).
5. If T ’s output satisfies one of the following terms, T ’s attack is successful.

a) The output is (IDi, mw, WAi→A0), and satisfies: DelVerif(WAi→A0 , IDi) =
1 where (IDi, .) is not in Clist, (IDi, .) is not in Glist and (ID

i
, mw, .) is not in

Dlist. ExpIBPMS
T (k) returns 1.

b) The output is (W, m, δ), and satisfies PVerif((m, δ), IDi, ID0) = 1, (W, m, .)

An ID-Based Proxy Multi Signature Scheme without Bilinear Pairings 87

not in Slist and (ID0, .) not in Clist. (ID0, W, .) not in Glist, where IDi and ID0

are the identities of the designator and the proxy signer defined by W , respec-
tively. ExpIBPMS

T (k) returns 2.
Otherwise ExpIBPMS

T (k) returns 0.

Definition 3 [7]. An ID-based proxy digital signature scheme IBPS is said
to be existential delegation and signature unforgeable under adaptive chosen
message and ID attacks (DS-EUF-ACMIA), if for any polynomial-time adversary
T , Pr[ExpIBPMS

T (k) = 1] and Pr[ExpIBPMS
T (k) = 2] are negligible.

4 Proposed Scheme

In this section, we present an ID-based proxy multi signature scheme without
pairing. Our scheme is based on the intractability of ECDLP.

Setup: Takes a security parameter k, returns system parameters and a master
key. Given k, KGC does as follows.
1. Chooses a k-bit prime p and determines the tuple Fp, E/Fp, G, P as defined
in Section 2.
2. Chooses the master private key x ∈ Z∗

n and computes the master public key
Ppub = x.P .
3. Chooses two cryptographic secure hash functions H1 : {0, 1}∗ → Z∗

n and
H2 : {0, 1}∗ × G → Z∗

p .
4. Publishes {Fp, E/Fp, G, P, Ppub, H1, H2} as system parameters Ω and keep
the master key x secretly.

Extract: Takes system parameters, master key, and a users identity as input, re-
turns the users ID-based private key. With this algorithm, KGC works as follows
for each user Ai with identity IDi (0 ≤ i ≤ l).

1. Chooses at random ri ∈ Z∗
n, computes Ri = ri.P and hi = H1(IDi, Ri).

2. Computes Di = ri + hix.
Ai’s private key is the tuple (Di, Ri) and is transmitted to Ai via a secure
channel.
Ai can validate her private key by checking whether the equation
DiP = Ri +hiPpub holds. The private key is valid if the equation holds and vice
versa.

Delgen: Let A1, A2,Al be the original signers and A0 be the proxy signer des-
ignated by original signers. This algorithm takes Ai’s secret key Di (∀i = 1, 2...l)
and a warrant mw as input, and outputs the delegation WAi→Ao as follows:

For each (1 ≤ i ≤ l)
1. Generates a random ai ∈ Z∗

n, computes Ki = ai.P .
2. Computes ei1 = H2(mw, ID0, Ki) and σi = ei1Di + ai modn.

88 N. Tiwari and S. Padhye

Each Ai sends individual delegation WAi→Ao = {IDi, Ri, ID0, mw, Ki, σi} to
proxy signer A0.

DelVerif: To verify the delegation WAi→Ao for each (1 ≤ i ≤ l) and message mw,
proxy signer A0 first computes
ei1 = H2(mw, ID0, Ki) and hi = H1(IDi, Ri),
then checks whether σiP = ei1 [Ri + hiPpub] + Ki.
Accept if it is equal, otherwise reject.

PKgen: If A0 accepts the each delegation WAi→Ao , he computes the proxy
signing key Dp for each (1 ≤ i ≤ l) as:

Dpi = σi + D0ei2 , where ei2 = H2(mw, IDi, Ki)
Dp =

∑l
1 Dpi .

Dp is the proxy signing key.

PMSign: Takes system parameters, the proxy signing key Dp and a message m
as inputs, returns a signature of the message m. The user A0 does as follows:

1. Chooses at random b ∈ Z∗
n to compute R = bP .

2. Computes h = H2(m, R).
3. Verifies whether the equation gcd (b + h, n) = 1 holds, continue if it does,
otherwise return to step 1.
4. Compute s = (b + h)−1Dp mod n.
5. The resulting signature is ((IDi, Ri, Ki, (∀i = 1, 2, ...l)), ID0, R0, mw, m, R, s).

PMVerif: To verify the signature ((IDi, Ri, Ki, (∀i = 1, 2, ...l)), ID0, R0, mw,
m, R, s) for message m, a verifier first checks if the proxy signer and the message
confirm to mw, then he computes

hi = H1(IDi, Ri), ho = H1(ID0, R0)
ei1 = H2(mw, ID0, Ki), ei2 = H2(mw, IDi, Ki)
h = H2(m, R), K =

∑l
1 Ki,

then checks whether s(R+hP) =
∑l

1 ei1(Ri+hiPpub)+K+
∑l

1 ei2(R0+h0Ppub),
Accept if it is equal, otherwise reject.

Correctness: Since R = bP and s = (b + h)−1Dp mod n, we have
s(R + hP) = (b + h)−1Dp(bP + hP)

=DpP

=(
∑l

1 σi).P + D0

∑l
i ei2 .P

=
∑l

1 ei1(Ri + hi.Ppub) + K +
∑l

1 ei2(R0 + h0.Ppub).

5 Security Analysis

Assume there is an adversary T who can break our ID based proxy multi sig-
nature scheme

∑
. We will construct a polynomial-time algorithm F that, by

An ID-Based Proxy Multi Signature Scheme without Bilinear Pairings 89

simulating the challenger and interacting with T , solves the ECDLP.

Theorem 1. Consider an adaptively chosen message attack in the random oracle
model against

∑
. If there is an attacker T that can break

∑
with at most

qH2 H2-queries and qs signature queries within time bound t and non-negligible
probability ε. Then we can solve the ECDLP with non-negligible probability.

Proof. Suppose an attacker T can break
∑

through adaptively chosen message
attack then Pr[ExpIBPMS

T (k) = 1] and Pr[ExpIBPMS
T (k) = 2] are non negligi-

ble. Our aim is to show that using the ability of T one can construct an algorithm
F for solving the ECDLP.

Suppose F is challenged with a ECDLP instance (P, Q) and is tasked to com-
pute x ∈ Z∗

n satisfying Q = xP . For this purpose F sets {Fp, E/Fp, G, P, Ppub,
H1, H2} as system parameters and answers T ’s queries (described in Definition
2) as follows.

Extract-query: T is allowed to query the extraction oracle for an identity IDi.
There exist a simulator S that simulates the oracle as follows.
It chooses ai; bi ∈ Z∗

n at random and sets
Ri = ai.Ppub + bi.P, Di = bi

hi = H1(IDi, Ri) ← −ai mod n. Note that (Di, Ri) generated
in this way satisfies the equation Di.P = Ri + hiPpub in the extract algorithm.
It is a valid secret key. F outputs (Di, Ri, hi) as the secret key of IDi and stores
the value of (Di, Ri, hi) in the Clist table (we modify the content of Clist table).

Delgen-query: T queries the delegate oracle for a warrant mw, ID0 and original
signer’s identity group {IDi, ∀i = 1, 2, ..l}, F first checks that whether ID0, and
{IDi, ∀i = 1, 2, ..l} have been queried for the extraction oracle before. If yes,
it just retrieves (Di, Ri, hi), ∀i = 1, 2, ..l} from the table and uses these values
to delegate a warrant mw, according to the delgen algorithm described in the
scheme.

It outputs the delegation WAi→Ao = {IDi, Ri, ID0, mw, Ki, σi}, ∀i = 1, 2, ..l
and stores the values in the hash table Dlist for consistency. If ID0, and
{IDi, ∀i = 1, 2, ..l} has not been queried to the extraction oracle, F executes
the simulation of the extraction oracle and uses the corresponding secret key to
sign the message.

Since F knows every users private key(described in Extract-query), he
can simulate Delgen-query, DelVerif-query, PKgen-query, PMSign-query, and
PMVerif-query as he simulates Delgen-query. There are two following cases:

Case 1. If T can forge a valid delegation on warrant mw with the prob-
ability Pr[ExpIBPMS

T (k) = 1] = ε ≥ 10(qH2 + 1)(qH2 + qs)/2k where mw

has not been queried to the signature oracle, then a replay of F with
the same random tape but different choice of H2 will output two valid
delegations ({IDi, Ri, ID0, mw, Ki, σi, ei1}, and {IDi, Ri, ID0, mw, Ki, σ

′
i, e

′
i1},

∀i = 1, 2, ..l). Then we have

90 N. Tiwari and S. Padhye

σi.P = ei1 [Ri + hiPpub] + Ki, and
σ

′
i.P = e

′
i1 [Ri + hiPpub] + Ki.

Let Ki = ai.P , Ri = ai.Ppub + bi.P, Ppub = Q = x.P , then
σi.P = ei1 [ai.Ppub + bi.P + hi.x.P] + ai.P (a)
σ

′
i.P = e

′
i1

[ai.Ppub + bi.P + hi.x.P] + ai.P (b)
Subtracting (b) to (a) we have,

(ei1ai + ei1hi − e
′
i1

ai − e
′
i1

hi).x.P = (σi − σ
′
i − ei1 .bi + e

′
i1

.bi).P

Let ui = (ei1ai + ei1hi − e
′
i1

ai − e
′
i1

hi)−1 mod n (inverse exist with high
probability, if not then repeat the queries),

and vi = (σi − σ
′
i − ei1 .bi + e

′
i1 .bi) mod n ,

then we get x = uivi mod n ∀i = 1, 2, ...l.
According to Lemma 4 [6] the ECDLP can be solved with probability ε

′ ≥ 1/9
and time t

′ ≤ 23qH2t/ε.

Case 2. From Case 1, we know the adversary T can not generate a valid
delegation. In this case we prove, if T can forge a valid signature on message m
under the delegation WAi→Ao = {IDi, Ri, ID0, mw, Ki, σi} ∀i = 1, 2, ..l, with
the probability Pr[ExpIBPMS

T (k) = 2] = ε ≥ 10(qH2 + 1)(qH2 + qs)/2k where
m has not been queried to the signature oracle, then a replay of F with the
same random tape but different choice of H2 will output two valid signatures
((IDi, Ri, Ki,), ID0, R0, mw, m, R, s, ei1 , ei2 , h) and
((IDi, Ri, Ki), ID0, R0, mw, m, R, s

′
, e

′
i1

, e
′
i2

, h
′
), (∀i = 1, 2, ...l).

Then we have
s(R + h.P) =

∑l
1 ei1(Ri + hi.Ppub) + K +

∑l
1 ei2(R0 + h0.Ppub)

s
′
(R + h

′
.P) =

∑l
1 e

′
i1

(Ri + hi.Ppub) + K +
∑l

1 e
′
i2

(R0 + h0.Ppub)

Since K =
∑l

1 Ki =
∑

ai.P , R = b.P,
Ri = ai.Ppub + bi.P, and Ppub = Q = x.P ,
then we have

s(b + h) =
∑l

1 ei1(ai.x + bi + hi.x) +
∑l

1 ai

+
∑l

1 ei2(a0.x + b0 + h0.x) mod n, (c)
s
′
(b + h

′
) = (

∑l
1 e

′
i1(ai.x + bi + hi.x) +

∑l
1 ai

+
∑l

1 e
′
i2

(a0.x + b0 + h0.x)). mod n, (d)

Since there are two equations (c), (d) and two unknowns b and x. Thus output x
is the solution of the ECDLP with probability ε

′ ≥ 1/9 and time t
′ ≤ 23qH2t/ε

(Lemma 4 [6]).

6 Comparative Analysis

In this section, we will compare the efficiency of our new scheme with Wang and
Cao scheme [15] and Cao and Cao scheme [3]. To analyze the computational
efficiency of different schemes, we use the method given in [5,13]. We compare

An ID-Based Proxy Multi Signature Scheme without Bilinear Pairings 91

the computational efficiency of these schemes to our scheme only for a single
user. According to the running time calculations in millisecond (ms) given
in [9], the running time of one pairing operation is 20.04 ms, ECC-based
scalar multiplication is 2.21 ms and Map-to-point hash function is 3.04 ms.
Computational cost and running time analysis of our scheme with schemes [3,15]
are given in table 1 and table 2 respectively.

Table 1. Computational Cost Comparison

Scheme Extract Delgen DelVerif PKgen

scheme [15] 2MP + 2HM 3MP + 1HM 1MP + 3HM + 3OP 0
scheme [3] 1MP + 1HM 2MP + 1HM 2HM + 3OP 1MP

Our scheme 1ME 1ME 2ME 0

Scheme PMsign PMverif Total
scheme [15] 3MP + 1HM 2MP + 5HM + 3OP 11MP + 12HM + 6OP

scheme [3] 2MP + 1HM 1MP + 3HM + 4OP 7MP + 8HM + 7OP

Our scheme 1ME 4ME 9ME

Where ME , MP , HM , OP stand for one ECC based scalar multiplication,
pairing based scalar multiplication, Map-to-point hash function and pairing
operation respectively.

Table 2. Running Time Comparison(in ms)

Scheme Extract Delgen DelVerif PKgen PMsign PMverif Total

scheme [15] 18.84 22.18 75.62 0 22.18 88.08 226.90
scheme [3] 9.42 15.80 66.20 6.38 15.80 95.66 209.26
Our scheme 2.21 2.21 4.42 0 2.21 8.84 19.89

According to these running time computations, the running time of PMSign
algorithm of our scheme is 13.98% of Cao and Cao scheme [3] and 9.96% of
Wang and Cao [15] scheme. Total running time of our scheme is 8.76% of the
Wang and Cao scheme [15] and 9.50% percent of the Cao and Cao scheme [3].

7 Conclusion

In this paper, we have proposed an efficient identity-based proxy multi signa-
ture scheme without using bilinear pairings. We also prove the security of the
proposed scheme against adaptive chosen message attack under random oracle
model. Compared with previous schemes, the new scheme reduces the running
time heavily. Therefore, our scheme is more practical than the previous related
schemes for practical application.

92 N. Tiwari and S. Padhye

References

1. Barreto, P.S.L.M., Libert, B., McCullagh, N., Quisquater, J.-J.: Efficient and
Provably-Secure Identity-Based Signatures and Signcryption from Bilinear Maps.
In: Roy, B. (ed.) ASIACRYPT 2005. LNCS, vol. 3788, pp. 515–532. Springer,
Heidelberg (2005)

2. Cha, J.C., Cheon, J.H.: An Identity-Based Signature from Gap Diffie-Hellman
Groups. In: Desmedt, Y.G. (ed.) PKC 2003. LNCS, vol. 2567, pp. 18–30. Springer,
Heidelberg (2002)

3. Cao, F., Cao, Z.: A secure identity-based proxy multi-signature scheme. Informa-
tion Sciences 179, 292–302 (2009)

4. Chen, L., Cheng, Z., Smart, N.P.: Identity-based key agreement protocols from
pairings. International Journal of Information Security, 213–241 (2006)

5. Cao, X., Kou, W., Du, X.: A pairing-free identity-based authenticated key agree-
ment protocol with, minimal message exchanges. Information Sciences 180, 2895–
2903 (2010)

6. David, P., Jacque, S.: Security arguments for digital signatures and blind signa-
tures. Journal of Cryptology 13(3), 361–396 (2000)

7. Gu, C., Zhu, Y.: Provable security of ID-based proxy signature schemes. In: Lu,
X., Zhao, W. (eds.) ICCNMC 2005. LNCS, vol. 3619, pp. 1277–1286. Springer,
Heidelberg (2005)

8. Gu, C., Zhu, Y.: An efficient ID-based proxy signature scheme from pairings. In:
Pei, D., Yung, M., Lin, D., Wu, C. (eds.) Inscrypt 2007. LNCS, vol. 4990, pp.
40–50. Springer, Heidelberg (2008)

9. He, D., Chen, J., Hu, J.: An ID-Based proxy signature schemes without bilinear
pairings. Annalas of Telicommunications, doi:10.1007/s12243-011-0244-0

10. Hess, F.: Efficient identity based signature schemes based on pairings. In: Nyberg,
K., Heys, H.M. (eds.) SAC 2002. LNCS, vol. 2595, pp. 310–324. Springer, Heidel-
berg (2003)

11. Ji, H., Han, W., Zhao, L., et al.: An identity-based proxy signature from bilin-
ear pairings. In: 2009 WASE International Conference on Information Engineering
(2009)

12. Mambo, M., Usuda, K., Okamoto, E.: Proxy signatures: Delegation of the power
to sign messages. IEICE Transactions Fundamentals E79-A(9), 1338–1353 (1996)

13. The Certicom Corporation, SEC 2: Recommended Elliptic Curve Domain Param-
eters, www.secg.org/collateral/sec2_final.pdf

14. Shamir, A.: Identity-based cryptosystems and signature schemes. In: Blakely, G.R.,
Chaum, D. (eds.) CRYPTO 1984. LNCS, vol. 196, pp. 47–53. Springer, Heidelberg
(1985)

15. Wang, Q., Cao, Z.: Identity based proxy multi-signature. The Journal of Systems
and Software 80, 1023–1029 (2007)

16. Wu, W., Mu, Y., Susilo, W., et al.: Identity-based proxy signature from pairings.
In: Xiao, B., Yang, L.T., Ma, J., Muller-Schloer, C., Hua, Y. (eds.) ATC 2007.
LNCS, vol. 4610, pp. 22–31. Springer, Heidelberg (2007)

17. Zhang, J., Zou, W.: Another ID-based proxy signature scheme and its extension.
Wuhan Univ. Journal of Natural Science 12, 133–136 (2007)

www.secg.org/collateral/sec2_final.pdf

Distributed Signcryption Schemes with Formal

Proof of Security

Indivar Gupta and P.K. Saxena

SAG, DRDO, Metcalfe House Complex, Delhi-110054, India
{indivargupta,pksaxena}@sag.drdo.in

Abstract. A distributed signcryption scheme was proposed by Mu and
Varadharajan [18] in 2000 . Since then some more distributed signcryp-
tion schemes have been proposed [11,13]. But formal security models and
security proofs have not been presented in any of these schemes.

In this paper, we propose formal security model for distributed sign-
cryption for confidentiality and unforgeability. We also modify schemes
proposed by Mu & Varadharajan [18] and Gupta et al [11] to achieve
formally provable security. We show that these modified schemes pro-
vide confidentiality against chosen ciphertext attack and unforgeability
against chosen message attack.

Keywords: Signcryption, Distributed Signcryption, Formal Security
Model, Confidentiality, Unforgeability, Security Proofs, Gap Diffie Hell-
man Problem.

1 Introduction

In a normal secure communication on a network, confidentiality of the message
is provided usually through encryption and authenticity is achieved through dig-
ital signatures. Traditionally, the message is first signed and then encrypted for
securing the information. This two-step approach is called sign-then-encryption
technique. To accomplish the two tasks, ‘digital signature’ and ‘encryption’ in a
single logical step, Zheng [24] introduced the notion of signcryption in 19971. The
motivation was to achieve significantly lower computational cost and communi-
cation overheads while achieving both message confidentiality and authenticity.

There are certain applications that demand a suitable & efficient protocol and
schemes for ‘individual’ to ‘group’ or ‘group’ to ‘group’ communication ensur-
ing security as well as authentication. For example, when the communicating
parties are big organizations (groups), the Head of the establishment (group
manager) may not send/receive all messages herself/himself but may delegate
authority to subordinate officers (group members) to communicate within and
outside the group. Such authorization may be restricted to only some individu-
als based on subject such as ‘Legal’, ‘Negotiations’, ‘Finance’, ‘Administrative’

1 In symmetric key cryptography the equivalent notions is Authenticated Encryp-
tion [12].

M. Joye et al. (Eds.): InfoSecHiComNet 2011, LNCS 7011, pp. 93–110, 2011.
c© Springer-Verlag Berlin Heidelberg 2011

94 I. Gupta and P.K. Saxena

etc. Similarly in case of grid/cluster computing, where the users/groups are
connected through network, such restricted authorization to nodes for decryp-
tion of information is needed. In sharing of information by intelligence agen-
cies also, there may be requirements of encryption as well as authentication
of individual recipients within the agencies involved. In case of pay TV chan-
nels where the broadcast companies may restrict their programs to be viewed
by only authorized subscribers by signcrypting the programs and distributing
to their authorized subscribers. In all of these example, signcrypted message
is to be received by a group of receivers/multiple parties but in restricted way
through authorization. The concept of “signcryption” as proposed by Zheng sup-
ported multiple parties receiving signcrypted message sent by a sender, instead
of just point-to-point communication application. To design such kind of pro-
tocols/schemes, mainly two approaches can be followed: (i) either the group of
authorized receivers/legitimate subscribers share the common private key with
the same public key, or (ii) group of receivers share common group public key
but corresponding private keys are different. The first case is not recommended
in ‘individual/user’ to ‘group’/‘group’ to ‘group’ secure communication since if
any member of the receiving group is dishonest and leaks the private key, it
would be difficult to trace her/him and also because the group manager (server)
or the controlling authority has no role to play in the protocol. Therefore case
(ii) is preferred for meeting some of specific requirements as discussed above.
The concept is termed as ‘Distributed Signcryption’.

Distributed Signcryption was first introduced by Mu and Varadharajan [18]
in 2000 (scheme called MVS-DSC here onwards). In this scheme, a signcrypted
message can be de-signcrypted by any member of the receiving designated group.
This definition can be extended for transmission of information between two or
more designated groups. This means that any member of the designated group
can signcrypt the message on behalf of the group and distribute it to the re-
ceiving group. Signcrypted message can be de-signcrypted by any member of
the receiving group. A scheme which offers communication between two desig-
nated groups is known as group signcryption. In both of the schemes proposed by
Mu and Varadharajan [18], the computational complexity and communication
overheads depend on the number of members in the designated group and it be-
comes very cumbersome if the number of users in the group increases. Kwak and
Moon [13] also proposed distributed signcryption scheme as group signature,
which provided sender identity confidentiality but had the same weaknesses as
Mu and Varadharajan scheme had. Gupta, Pillai and Saxena [11] proposed a
scheme (called GPSS here onwards) where such weaknesses were overcome upto
a great extent.

In all the schemes mentioned above, authors did not include formal security
notions and proofs. Kwak and Moon [13], however, gave some heuristic argu-
ments for security analysis of their scheme (Distributed Signcryption proposed
by Kwak and Moon would be referred as KMS-DSC and their Group Signcryp-
tion as KMS-GSC). Bao, Cao and Quin [3] analyzed KMS-DSC and showed that
the Distributed signcryption scheme with sender ID confidentiality proposed by

Distributed Signcryption Schemes with Formal Proof of Security 95

Kwak and Moon actually did not provide sender ID confidentiality since the
verification step in Kwak and Moon scheme requires sender ID. Thus there was
no significant advantage of KMS-DSC over MVS-DSC. DongJin Kwak et al pro-
posed a secure extension of KMS-GSC [14] and gave some informal proofs for
unforgeability and coalition-resistance along with heuristic arguments for other
security notions.

In this paper, we propose a formal security model for distributed signcryption
for the two aspects of security i.e. confidentiality of the message and unforgeabil-
ity (for authenticity of message). We also propose modifications to the schemes
proposed by Mu & Varadharajan and Gupta et al and give formal security proofs.
We show that our modified schemes ensure message confidentiality against cho-
sen ciphertext attack and unforgeability against chosen message attacks.

The paper is organized as follows. In section 2, we present a generic distributed
signcryption and a formal security model for confidentiality and unforgeability. In
section 3, we review the two distributed signcryption schemes - MVS and GPSS.
In section 4, we propose modifications to both of these, calling the modified
schemes as MMVS and MGPSS respectively. In section 5, we give security proofs
for the confidentiality and unforgeability of MGPSS and also sketch the proof
of security for MMVS. The paper ends with conclusion in section 6 followed by
Acknowledgments and References.

2 Security Model for Distributed Signcryption

2.1 Generic Scheme for Distributed Signcryption

In normal signcryption between two members in a group, each member has its
individual public key, kept in a public directory, whereas in case of distributed
signcryption, the designated group as a whole has a common public key with the
individual members having different individual private keys. The Group Manager
(called GM here onward) of the designated group also has the secret parameters
which are referred as group secret parameters (gsp). The public key associated
with the group is referred as group public key (gpk). A group with a single
member (who is GM himself) would be referred as single user. If n + 1 persons
are in the group (including GM), the GM selects (n + 1) pairs of integers or
a set of integers randomly from Z∗

q (where q is a prime) and then uses these
integers for initialization of the designated group. The group public key (gpk),
the group secret parameters(gsp) and individual members secret keys (member
secret key is denoted by msk) are to be computed at the time of initialization
of the designated group. The Keys are distributed in the following way. The gpk
being common to all members of the group, is kept in public directory. The GM
keeps gsp secret and distributes individual secret keys to group members. In
case of a single user, the GM has only one public - secret key pair (pk, sk) (i.e
gpk = pk, gsp = sk) and scheme works as ordinary signcryption scheme.

We now define basic algorithms for distributed signcryption required in the
rest of the paper.

96 I. Gupta and P.K. Saxena

Setup: Based on the input of unary string 1Kp , where Kp is the security param-
eter, it generates common system parameters referred as ‘params’.

SenKeyGen: On the input of params, this algorithm generates the keys for the
sender returning the secret / public key pair (skS , pkS).

RecKeyGen: On the input of (params, n), this algorithm generates the keys
of receiving designated group returning gpk, gsp and the members’ secret keys
for each individual members of the group. We denote member secret key of lth
member by mskl.

DisSignCrypt: DisSignCrypt is an algorithm which accepts the sender’s secret
key skS , the recipients public key (gpk) as well as the message m as input and
outputs a ciphertext C.

DisDeSignCrypt: DisDeSignCrypt is an algorithm which accepts the sender’s
public key pkS and the recipient’s (a member of the group) secret key (msk)
and ciphertext a C and outputs a message m, or the special symbol ⊥ in the
case of an invalid ciphertext.

It is noted that Setup, SenKeyGen, RecKeyGen and DisSignCrypt are ran-
domized algorithms and DisDeSignCrypt is a deterministic algorithm. For con-
sistency of the whole scheme, we must have the following:

C ← DisSignCrypt (skS , gpk , m) & m̂ ← DisDeSignCrypt (C, mskl), then
m̂ = m ∀l.

Thus our generic method of distributed signcryption and security model as
described above can be viewed as generalization of signcryption.

2.2 Security Models for Distributed Signcryption

Recently, many authors proposed several public key schemes and presented se-
curity models also for their schemes [1, 5, 8, 9, 10]. Formal models for security
of signcryption have also been discussed by many authors [2, 15, 16, 23]. How-
ever, a formal models of security for distributed signcryption has not yet been
proposed. In this section, we present a formal security model for confidentiality
and unforgeability of distributed signcryption. We call the confidentiality secu-
rity notion as IND-DSC-CCA (indistinguishability of distributed signcryption
against chosen ciphertext attacks).

Definition 2.1. We say that a distributed signcryption scheme ensures message
confidentiality against chosen-ciphertext attacks i.e. IND-DSC-CCA if no proba-
bilistic polynomial time adversary has a non-negligible advantage in the following
game:

1. Challenger CH generates two pairs (skU , pkU) and (mskG, gpkG) where skU

and pkU denote the secret key and the public key of a user U , mskG denotes
the secret key of any member of the group G and gpkG denotes the public
key of the group G. skU and mskG are kept secret, while gpkG and pkU are
sent to the adversary A.

Distributed Signcryption Schemes with Formal Proof of Security 97

2. A performs a series of queries of the following kinds:
DisSignCrypt queries: A submits a message m ∈ M (message space) and an
arbitrary group public key gpkGR of the receiving group R (which may differ
from gpkG) to CH for the result of DisSignCrypt(m, skU , gpkGR).
DisDeSignCrypt queries: A submits a pair (pkS , C) to CH and requires the
result of DisDeSignCrypt (C, mskG, pkS). It is noted that pkS may be dif-
ferent from pkU . CH returns a plaintext or rejects symbol ⊥ after running
DisDeSignCrypt.

These queries can be asked adaptively i.e. each query may depend on the
answer of previous ones. After a number of queries, A outputs two plaintexts
m0, m1 ∈ M and an arbitrary private key of the form skS. CH flips a coins
b ∈R {0, 1} to compute a distributed signcrypted message C∗ = DisSignCrypt
(mb, skS , gpkG) of mb with the sender’s private key skS under the attacked
group public key gpkG. Ciphertext C∗ is sent to A as challenge.

3. A performs number of new queries as in the first stage with a restriction that
A may not ask the DisDeSignCrypt query of the challenged ciphertext C∗.
At the end of the game, A outputs a bit b′ and wins if b′ = b.

A’s advantage is defined to be AdvIND−DSC−CCA(A) = 2Pr[b′ = b] − 1.

Definition 2.2. A distributed signcryption scheme ensures existentially unforge-
ability against chosen-message attack (EUF-DSC-CMA) if no probabilistic poly-
nomial time forger F has a non-negligible advantage in the following game:

1. Challenger CH generates two key pairs (skU , pkU) and (mskG, gpkG) as in
step 1 of IND-DSC-CCA game (Definition 2.1). skU and mskG are kept
secret while pkU and gpkG are given to forger F .

2. F makes series of DisSignCrypt(m, skU , gpkGR) and DisDeSignCrypt (C,
mskG, pkS) adaptive queries exactly in the same way as in step 2 of IND-
DSC-CCA game (Definition 2.1).

3. F produces a ciphertext C∗ and a key pair (mskGR∗ , gpkGR∗) and wins the
game if (i) DisDeSignCrypt(C∗, mskGR∗ , pkU) returns a signed message m∗

(ii) the query (m∗, gpkGR∗ , skU) has not been submitted as input to DisSign-
Crypt oracle during the game.

3 Distributed Signcryption Schemes - MVS and GPSS

3.1 Mu and Varadharajan Scheme(MVS) [13,18]

Let p be a large prime number, Z∗
p the multiplicative group of order q(= p − 1)

and g ∈ Z
∗
p a primitive element. Assume that Hash() denotes a strong one-

way function, Hashk() a keyed one-way hash function with key k, and Ek(Dk)
denotes a symmetric encryption (decryption) function.

98 I. Gupta and P.K. Saxena

Initialization of a Group. In order to construct a group including n members,
the manager selects a set of integers εi ∈R Zq (i = 1, 2, · · · , n), and computes
the coefficients α0, · · · , αn ∈ Zq of the polynomial:

f(x) =
n∏

i=1

(x − εi) =
n∑

i=1

αix
i mod q.

Define gi = gαi mod p (i = 0, 1, · · · , n) which produces

F (εl) =
n∏

i=0

g
εi

l

i = 1 mod p,

where εl is an element of {εi}. This is because F (εl) = gf(εl) and f(εl) = 0 in
Zq. This is an important property of the system. However, there is a weak point
if {gi}n

i=1 is used as group public key. In that case, an adversary would add
another illegal ε′i to the set {εi} by using the gi polynomial. Thus to avoid this
weakness, the method given in [17] is adopted. For the given (α0, α1, · · · , αn),
a new set is defined as (α

′
0, α

′
1, · · · , α

′
n), where α

′
0 = α0 , α

′
n = αn, α

′
1 = · · · =

α
′
n−1 =

∑n−1
i=1 αi. Define βi = gα′

i and Al =
∑n−1

i=1,j=1,i�=j αjε
i
l , then for all εl|nl=1

F ′(εl) = g−Al

n∏
i=0

β
εi

l

i = g−Alg
∑ i=n

i=0 α
′
iε

i
l = 1 mod p.

Thus function F and F ′ have the same properties at {εl}n
l=1. The GM picks a

random number γ ∈R Zq, then computes its inverse γ−1 and ρl = −γAl mod q
for member l. The group public key is defined as n + 2 tuple, {β0, · · · , βn+1} =
{β0, · · · , βn, gγ−1}. The manager keeps γ and all {αi} secret and gives εl and ρl

to the group member l as his/her secret key pair.

Description of MVS. Assume that A is the sender who signcrypts a message
m and sends the message to a designated group. Further, let B be a member of
the designated group who De-signcrypts the message.

Setup: On giving the security parameters, the algorithm generates common system
parameter (p, Z∗p, g, q, Hash, Hashk).

SenKeyGen: A picks xa ∈ Zq, and runs SenKeyGen to generate the public-private
key pair (xa, ya = gxa).

RecKeyGen: This generates gpk = ({β0, · · · , βn, gγ−1}), gsp = (αi|ni=0, γ), and the

individual members’ secret keys (εl, ρl) for l = 1, · · · , n. Assume that B is the lth

member of group with the secret key (εl, ρl).

DisSignCrypt: To signcrypt the message m, A follows the following steps:

Step 1. Choose z ∈R Zq, and compute k = gz mod p.
Step 2. Split k into k1 and k2.

Distributed Signcryption Schemes with Formal Proof of Security 99

Step 3. Compute r = Hashk2(m), s = z(kr + xa)−1 mod q and w = Hash(m).
Step 4. Generates the signcrypted message as follows:

c1 = {a0, · · · , an, an+1} = {gkrβw
0 , βw

1 , · · · , βw
n+1}, & c2 = Ek1(m)

Step 5. A sends the ciphertext C = (c1, c2, r, s) to B.

DisDeSignCrypt: On receiving C = (c1, c2, r, s), B can de-signcrypt the signcrypted
message as per following steps.

Step 1 B computes the secret key k as follows:

k = (yaa0(

n∏
i=1

a
εi
l

i)a
ρl
n+1)

s = (yagrk
n∏

i=0

gwαiεi
l)s = (yagrkgwf(εl))s = gz mod p

Step 2. B splits k into k1 and k2 as agreed earlier.
Step 3. B computes m? = Dk1(c2) and verifies that r? = Hashk2(m).

3.2 Gupta, Pillai and Saxena Scheme(GPSS) [11]

Let C be a hyperelliptic curve (HEC) of genus g defined over the finite field Fq

of characteristic p and let J(Fq) be the Jacobian of C such that the discrete
logarithm problem in J(Fq) is hard. Each element of J(Fq) has an unique rep-
resentation as a reduced divisor D(a, b). Let Hτ : F g

q −→ ZN denote one way
keyed hash function with key τ . Assume that π and π1 are maps from g-tuple of
Fq elements to a set of keys (of desired length). Further, let ENCχ and DECχ

denote the encryption and the decryption functions of the symmetric key cipher
with key χ.

Initialization of a Group. For the construction of a group of n + 1 members
with one GM in it, the GM selects a base point D ∈ J(Fq) of prime order (say N)
and a set of distinct pairs of nonzero integers (x0, y0), (x1, y1), . . . , (xn, yn) ∈R

ZN . Then the group manager computes the Lagrange’s interpolation polynomial:
f(x) =

∑n
i=0 βix

i mod N , passing through the points (xi, yi)i=n
i=0 . Clearly the

polynomial f(x) satisfies the condition: f(xi) = yi mod N, 0 ≤ i ≤ n. We can
rewrite the polynomial in the form:

f(x) = β0 +
n∑

j=1

βj

n∑
k=1

xk −
n∑

j=1,k=1,j �=k

βjx
k mod N

or
f(x) = β0 + βδ1(x) − δ2(x) mod N,

where β =
∑n

j=1 βj , δ1(x) =
∑n

j=1 xj and δ2(x) =
∑n

j=1,k=1,j �=k βjx
k.

Consider the polynomials Fi(x) = f(x) − yi mod N(i = 0, 1, . . . , n). Clearly,
the polynomial Fi(x) vanishes at xi for each value of i. Define a new function
F ∗

i (x, D) = Fi(x) · D on divisors of the HEC. Then F ∗
i (xi, D) = O mod N for

0 ≤ i ≤ n (O ∈ C is a point at infinity).

100 I. Gupta and P.K. Saxena

For construction of gpk , the group manager keeps βi secret for all i and
computes β0 · D and β · D. Then he selects a random number γ ∈R Z∗

N and
computes the parameters ρl for l = 0, 1, . . . , n such that ρl = γδ2(xl) mod N
where γ is the multiplicative inverse of γ. Finally, the group manager com-
putes γ · D and keeps it secret. Observe that gpk is defined by the triplet
(Dβ0 = β0 · D, Dβ = β · D, Dγ = γ · D). The group manager registers the
public key in the public directory and distributes the secret keys (xl, yl, ρl) to
the group members l (0 ≤ l ≤ n).

Distributed Signcryption on HEC. Let A denote a person who wants to
communicate with the designated group. Let B be the lth member of the desig-
nated group who receives the message. The algorithms work as follows.

Setup: On giving the security parameters, this algorithm generates common system
parameters (C, g, Fq, J(Fq), D, Hτ , π, π1, ENCχ, DECχ) as described earlier.

SenKeyGen: A runs SenKeyGen to get his / her public key-private key pair (xa,
Dxa).

RecKeyGen: The group manager runs RecKeyGen and generates gpk = (Dβ0 =
β0 · D, Dβ = β · D, Dγ = γ · D) and the individual member’s secret keys (xl, yl, ρl),
l = 0, 1, · · · , n which are distributed to its members securely.

DisSignCrypt: To signcrypt a message m, A carries out the following steps.

Step 1. A chooses random numbers k, k1 & k2 ∈R {2, 3, . . . , N − 2} and computes
Dk = k ·D, E = k1 ·D and k2 ·D. It may be noted that Dk is the short form of Dk(d̂, ê)
for some polynomials d̂ (a polynomial of degree g with leading coefficient 1) and ê (a
polynomial of degree g−1) where d̂ = < d̂g−1, . . . , d̂1, d̂0 > and ê = < êg−1, . . . , ê1, ê0 >.
Here di|g−1

i=0 and ei|g−1
i=0 denote the coefficients of the polynomial d̂ and ê respectively.

Step 2. A computes E0 = k2 ·D + k1 ·Dβ0 , E1 = k1 ·Dβ , E2 = k1 ·Dγ .
Step 3. A computes the encryption key χ = π(d̂⊕ ê) and the hash key χ1 = π1(d̂⊕ ê)
(as in the step 2 of Section 2.1) and r = Hχ1(m).
Step 4. A computes the signature: s = (k − k2 − xar) mod N on the message.
Step 5. A computes c = ENCχ(m).
Step 6. A sends the ciphertext C =< E, E0, E1, E2, r, s, c > to B.

DisDeSignCrypt: To de-signcrypt the message, B follows the following steps.

Step 1. B computes ρl ·E2, s ·D and r ·Dxa .
Step 2. B computes wl · E1 =

(
xl + x2

l + · · ·+ xn
l

) ·E1 and yl ·E.

Step 3. B computes Dk = s·D+E0 + wl ·E1 - ρl ·E2 + r ·Dxa - ylE which is Dk(d̂, ê) for
some polynomials d̂ & ê, where d̂ = < d̂g−1, . . . , d̂1, d̂0 > and ê = < êg−1, . . . , ê1, ê0 >.
B then computes two keys χ = π(d̂⊕ ê) and χ1 = π1(d̂⊕ ê).
Step 4. B computes m′ = DECχ(c).
Step 5. B verifies if r = Hχ1(m

′) and accepts the signature. He thus recovers the
message m and also verifies its authenticity.

This scheme had advantage over MVS in the sense of computational complexity
and communication overhead. Details of the comparison can be found in [11].

Distributed Signcryption Schemes with Formal Proof of Security 101

4 Modifications in Distributed Signcryption Schemes
MVS and GPSS

Merits of a protocol /scheme also depend on its security proof. As the original
schemes MVS and GPSS did not have security proofs, both MVS and GPSS
needed modifications to enable one to give security proofs for these schemes.

4.1 Modified Mu and Varadharajan Scheme [MMVS]

With all the symbols and notations as used in section 3.1, let H : {0, 1}∗ →
{0, 1}λ, H1 : {0, 1}∗ →< g > and H2 : {0, 1}∗ → Zq be three hash functions.
The group manager selects z ∈R Zq and computes gz. The group public /secret
keys are gpk =

{
(β0, · · · , βn, βn+1 = gγ−1

), βn+2 = gz
}
, gsp = (α0, · · · , αn, z).

Assume that π is a permutation function over Zq.

DisSignCrypt: To signcrypt a message m, A follows the following steps:

Step 1. Choose z′ ∈R Zq, and compute k = gzz′
mod p.

Step 2. Compute encryption key τ = H(gz′
, gzz′

) of desired length λ.

Step 3. Compute gr = H1(m,gzz′
, gz, gz′

, gxa) and w = H2(m, gz′
, gzz′

). Then Com-

pute r′ = π(gz′
.gr mod q), and s = kg(xar−z′)r′

mod p.
Step 4. The message is signcrypted as follows:

c1 = {a0, · · · , an, an+1, an+2} = {gxa−xarβw
0 , βw

1 , · · · , βw
n+1, g

z′} and c2 = Eτ (m)

Step 5. A sends the ciphertext C = (c1, c2, g
r, s) to B.

DisDeSignCrypt: B can de-signcrypt the message in the following steps.

Step 1 First compute r′ = π(gz′
.gr) and then the secret key k as follows:

k = (y−1
a gz′

a0(
∏i=n

i=1 a
εi
l

i)aρl
n+1)

r′
s = (g−xagz′

gxa−xar
∏i=n

i=0 gwαiεi
l)rkg(xar−z′)r′

=

(gz′−xargwf(εl))r′
kg(xar−z′)r′

mod p

Step 2. Compute key τ = H(gz′
, gz′z).

Step 3. Compute m? = Dτ (c2) and verify that gr? = H1(m, gzz′
, gz, gz′

, gxa).

4.2 Modified Gupta, Pillai and Saxena Scheme [MGPSS]

With all symbols and notations as used in the section 3.2 being same, let
H : {0, 1}∗ → {0, 1}λ and H1 : {0, 1}∗ →< D > be two hash functions. The
group manager selects k ∈ Zn and computes Dk = k · D. The group public key
gpk is (Dβ0 , Dβ, Dγ , Dk) and group secret parameters gsp is (β0, β, γ, k). Assume
that π is a map from g-tuple of Fq element to a set of integers.

DisSignCrypt:

Step 1. A chooses random numbers k′, k1, ∈R {2, 3, . . . , N − 2} and computes K ·D =

DK = k′ ·Dk = kk′ ·D, E = k1 ·D.

102 I. Gupta and P.K. Saxena

Step 2. A computes the encryption key χ = H(k′ ·D,K·D), rD = D(d̃, ẽ) = H1(m, Dxa ,

Dk′ , Dk, DK) and r′ = π(d̃⊕ ẽ).

Step 3. A computes E0 = k1 · Dβ0 + xar · D − Dxa . E1 and E2 are same as in the

original scheme, GPSS.

Step 4. A computes S = k′k ·D + r′(k′ ·D − xar ·D) mod N .

Step 5. A computes c = ENCχ(m).

Step 6. A sends the ciphertext C =< E, E0, E1, E2, k
′D, S, r ·D, c > to B.

DisDeSignCrypt:

Step 1. B computes wl · E1 =
(
xl + x2

l + · · ·+ xn
l

) ·E1, ρl ·E2, yl · E.

Step 2. B computes DK = K ·D = S + r′(E0 + wl ·E1− ρl ·E2− yl ·E + Dxa − k′ ·D).

Step 3. B computes the encryption key χ = H(k′ · D,K · D) and m′ = DECχ(c). B

checks whether r ·D = H1(m
′, Dxa , Dk′ , Dk, DK)? If yes then B accepts the signature.

Thus he recovers the message.

5 Security Analysis of MMVS and MGPSS

There are many models for proof of security for any public key scheme [19, 21,
22, 23] but we prove security for present cases in random oracle model [4]. The
security of MGPSS relies on the intractability of the Hyperelliptic Curve Gap
Diffie-Hellman Problem whereas the security of MMVS relies on the intractabil-
ity of Gap Diffie-Hellman Problem. Before giving security proofs, we briefly recall
such computationally intractable problems.

Discrete Logarithm Problem (DLP)is the base of many public key cryptosys-
tems and has been used to derive many other intractable problems such as De-
cisional Diffie-Hellman Problem (DDHP) [6], Gap Diffie-Hellman Problem [20]
and Gap Discrete Log Problem (GDLP). We first discuss definitions on a natural
multiplicative group then we extend these definitions on an algebraic group.

For a security parameter K′
p ∈ Zn, let (G, .) be a finite cyclic group of order

n > 2K′
p , and let g be a random generator of G. Let ODDH denote a Decision

Diffie-Hellman Oracle that solves DDHP i.e. which answers whether a given
quadruple (g, ga′

, gb′ , gc′) from G is a Diffie-Hellman quadruple or not where
a′, b′, c′ ∈R Zn. Given g, ga, gb in G for some a, b ∈R Zn, finding gab with the
help of a ODDH is called Gap Diffie Hellman Problem (GDHP) [20]. The
“advantage” of any probabilistic, polynomial-time algorithm A in solving GDHP
in G is defined as follow:

AdvGDHP
A,G = Prob[A(G, g, n, ga, gb|ODDH(·, ·, ·, ·)) = gab : a, b ∈R Zn].

The Gap Diffie-Hellman assumption is that for every probabilistic, polynomial
time algorithm A, AdvGDHP

A,G is negligible. It is a function of the security pa-
rameter K′

p and can be written as negl(K′
p). In GDLP attacker, in addition to

ga whose discrete log with respect to a given base g is desired, the attacker is
also given access to a restricted DDH oracle in which the first two elements g,
ga of the quadruple are fixed. Further details of these problems can be found
in [2, 6, 20].

Distributed Signcryption Schemes with Formal Proof of Security 103

Some of these definitions can easily be extended to Hyperelliptic curves over
finite fields by replacing the group (G, .) by its Jacobian which forms a group
under composition-divisor addition. Let C be a hyperelliptic curve of genus g
defined over the finite field Fq of characteristic p and let J(Fq) be the Jacobian
of C of order N′. Let D be any element of J(Fq). For a security parameter Kp ∈ N,
let order of D be N > 2Kp . It is clear that N | N′. Given a reduced divisor D
of order N and the random reduced divisor a · D, b · D and c · D in < D > for
some a, b, c ∈R ZN, the Hyperelliptic Curve Decisional Diffie-Hellman
Problem (HECDDHP) is to determine if ab ·D = c ·D. If ab ·D = c ·D then
the quadruple (D, a ·D, b ·D, c ·D) in < D > is called an HECDDH quadruple.
Let OHECDDH

J(Fq) denote a Hyperelliptic Curve Decision Diffie-Hellman Oracle
that solve HECDDHP i.e. which answers whether a given quadruple is a Diffie-
Hellman quadruple or not. Given a reduced divisor a ·D, b ·D and c ·D in < D >
for some a, b, c ∈R ZN, finding the reduced divisor D = ab ·D with the help of a
HECDDHP is a Hyperelliptic Curve Diffie-Hellman quadruple or not) is called
Hyperellipic Curve Gap Diffie Hellman Problem (HECGDHP). The
“advantage” in term of probability and HEC-GDL can also be defined similarly
as done for GDHP.

In the following Theorems, we prove that MGPSS is secure under assumption
of the hardness of HECGDHP. To prove confidentiality and unforgeability of
the scheme, we the follow approach as given by Libert and Quisquater [15, 16].
We also assume that hash functions used in the scheme are modelled as random
oracle.

Theorem 5.1. Assume that an adversary A is allowed to have a limited access
to OHECDDH . If A has non-negligible advantage ε over the IND−DSC−CCA
security of the MGPSS when running in a time t and asking qh and qh1 queries to
the random oracle H and H1 respectively, qDSC queries to DisSignCrypt oracle
and qDDSC queries to DisDeSignCrypt oracle then for any 0 ≤ ν ≤ ε, there
exists

- an algorithm B that can solve the HECGDHP in the groups J(Fq) with the
probability ε′ ≥ ε − ν − qDDSC/2Kp − qh1qDDSC/22Kp within time t′ ≤ t +
O(qh + qh1 + qDDSC)tHECDDH

O , where tHECDDH
O denotes the time required

for running the oracle OHECDDH .
- a passive adversary breaking the semantic security of the symmetric key en-

cryption scheme (ENC, DEC) with the advantage ν within time t′.

Proof. It is given that the adversary has non negligible advantage over the
IND−DSC−CCA. Our aim is to build an algorithm B that solves HECGDHP.
Algorithm B starts with a common parameter generation subroutine and then
interacts with A with the public key. Thus B uses A as a subroutine to solve
HECGDHP. Our aim is to compute ab · D given a · D and b · D with the help
of OHECDDH oracle. We assume that (a · D, b · D) is any random instant of
HECGDHP. Let gpkG = (Dβ∗

0
, Dβ∗ , Dγ∗ , Db) be challenged public key of any

group G and secret key-public key pair of user U be (skU , pkU) = (xa, Dxa).
Algorithm B runs subroutine A with challenged gpkG = (Dβ∗

0
, Dβ∗ , Dγ∗ , Db). A

104 I. Gupta and P.K. Saxena

adaptively performs the hash queries, DisSignCrypt queries and DisDeSignCrypt
queries. As the scheme uses two hash functions H, H1, B maintains the lists for
handling the queries to keep track of the answers given to random oracles H and
H1. We assume that H-queries are handled using lists L and L′ and H1-queries
are handled using list L1 and L′

1. All the queries are performed as follows:

H-queries: When a hash query H is made on the input (Dk′
i
, DKi), B first checks

if (D, Dk′
i
, Db, DKi) is valid HECDDH quadruple by using OHECDDH oracle. If

it is then

– B checks if Dk′ = a ·D, and halts outputting DKi = ab ·D which is a solution
that it was looking for.

– If Dk′ �= a · D then B does the following:
B checks if L′ contains an entry of the form (Dk′

i
, · · ·hi). If it contains, B

returns hi ∈ {0, 1}λ and includes (Dk′
i
, Db, DKi , hi, 1) in the list L. (It may

be noted that 1 is indicating here a output of OHECDDH oracle). If there is
no entry of the form (Dk′

i
, · · ·hi) in the list L′, B selects the random string

hi ∈R {0, 1}λ and inserts (Dk′
i
, Db, DKi , hi, 1) in the list L.

If (D, Dk′
i
, Dk, DKi) is not a HECDDH quadruple then the random simulator

stores the 5-tuple (Dk′
i
, Dk, DKi , hi, 0).

H1-queries: When a hash query H1 is made on the input (m, Dxa , Dk′
i
, Db,

DKi), B follows the same procedure as in H-queries and maintains the list L′
1

and L1.

DisSignCrypt queries: A selects the plaintext m and the group public key
gpkGR

= (Dβ0 , Dβ , Dγ , Dk) of the receiver and submits it for DisSignCrypt
queries. On receiving (m, gpkR), B does the following:

– B selects k′ and computes K·D = k′(k ·D) and E3 = k′ ·D. It may be noted
that k · D has been picked up from the challenged group public key.

– B simulates the hash functions H and H1 to obtain h = H(k′ ·D,K ·D) and
H1 = H1(m, Dxa , Dk′ , Dk, DKi).

– B computes S = K · D + r′(k′ · D − xaH1) mod N . Then B computes c =
ENCh(m). Finally B computes E, E0, E1, E2, and returns the ciphertext
C =< E, E0, E1, E2,
E3, S,H1, c >.

DisDeSignCrypt queries: A submits the pair (C, pkS) for DisDeSignCrypt queries
where C =< E, E0, E1, E2, E3,H1, S, c > denotes the ciphertext and pkS = D̃sk

is the public key of the sender. On receiving (C, Dsk
), B computes K̃ · D̃ using

mskG = (x̃l, ỹl, ρ̃l) and D̃sk
. It may be noted that there are chances that A has

selected the ciphertext randomly in which some of the reduced divisors / sender
public key are not the elements of < D >. In that case, K̃ · D̃ and E3 = D̃k̃′

will not be the elements of < D > and the ciphertext will be rejected. Thus we
assume that all the reduced divisors are present in the ciphertext C and D̃sk

is
the element of < D > (i.e. D̃sk

= Dsk
, D̃k̃′ = Dk̃′ , K̃ · D̃ = K̃ ·D). Now B checks

if the list L contains the unique 5-tuple (Dk̃′ , Db, DK̃, h, 1).

Distributed Signcryption Schemes with Formal Proof of Security 105

– If yes, this implies (D, Dk̃′ , Db, DK̃) is HECDDH quadruple and H(Dk̃′ , DK̃)
was set to h. Thus B obtains χ = h = H(Dk̃′ , DK̃). B then computes m =
DECχ(c) and simulates H1 on the input (m, Dsk

, Dk̃′ , Db, DK̃). Finally B
checks whether r · D = H1 = H1(m, Dsk

, Dk̃′ , Db, DK̃). If yes, B returns
message signature pair (m, S) otherwise rejects the ciphertext.

– If not, B selects h ∈R {0, 1}λ and inserts a record (Dk̃′ , · · · , h) in the list L′

for answering subsequent H queries on the input (Dk̃′ , Db, DK̃, · · ·h). Since
h = H(Dk̃′ , Db,
DK̃, h), B computes c = DECχ(m) using encryption key χ = h. B now checks
the list L′

1 for answering the hash query H1(m, Dsk
, Dβ0 , Dk̃′ , Db, DK̃), if it

does not contain tuple of the form (m, Dsk
, Dk̃′ , Db, DK̃,H1), it is inserted

so as to answer subsequent H1 query. B now verifies whether

r · D = H1 = H1(m, Dsk
, Dk̃′ , Db, DK̃)?.

If yes, B returns (m, S) otherwise rejects the ciphertext.

At the end of the first stage, A provides B the two plaintexts m0 and m1 which
have never been queried to DisSignCrypt together with an arbitrary senders
private key xsk(say) and requires a challenge ciphertext built under the group
public key gpkG = (Dβ∗

0
, Dβ∗ , Dγ∗ , Db). B randomly picks b ∈R {0, 1}, binary

string h∗ ∈ {0, 1}λ and H∗
1 ∈R< D >. Then B computes E0, E1, E2, E3, S, r′ as

follows:

– B computes E0, E1, E2, E3 and r′ as described in the section 4.2.
– B sets χ = h and r · D = H1

– B selects a′ and sets S = a′a · D + r′(a′ · D − xskr · D).
– B computes c = ENCχ(mb)
– B sends the tuple: < E, E0, E1, E2, E3, S, r · D, c > to A as a challenged

ciphertext.

Once A receives the challenged ciphertext, A performs second series of queries.
These queries are handled as in the first stage. But A is not allowed to DisDe-
SignCrypt query of the challenged ciphertext.

In the distributed signcryption, a symmetric scheme (ENC, DEC) has been
used for encryption of message. If this scheme is semantically secure against pas-
sive adversary, it is clear that A will not be able to guess whether challenged
cipher text is DisSignCrypt of m0 or m1. Thus A’s observation will be indepen-
dent from the hidden bit b ∈ {0, 1} unless A queries a tuple containing ab · D
to random oracles H or H1. If A makes hash queries for H and H1, then the
solution of the HECGDHP will be obtained while answering H and H1 queries.

As we have assumed that the adversary A has non-negligible advantage ε
over IND − DSC − CCA, we have to find the probability of success of B in
solving HECGDHP. Let AskHq denote an event that A asks the hash value of
the tuple containing ab · D during the simulation of H and H1. As we know
that attacker wins the game if b = b′ and attacker advantage over the game is
defined as AdvIND−DSC−CCAA∗ = 2 × Pr[b = b′] − 1 ⇒ Pr[b = b′] = (ε+1)

2 , we

106 I. Gupta and P.K. Saxena

first determine the probability for which b = b′. Let Evt1 be an event in which
attacker wins the game i.e. b = b′ and Evt2 be an event in which A has not
asked H and H1 hash queries. We assume that the simulation of the attack’s
environment is perfect i.e an attack where A interacts with oracles. Then the
probability for AskHq to happen is the same as in a real attack. Thus we have
Pr[Evt1] = Pr[Evt1|Evt2]Pr[Evt2] + P [Evt1|¬Evt2]Pr[¬Evt2], which implies
that:

Pr[b = b′] = Pr[b = b′|¬AskHq]Pr[¬AskHq] + Pr[b = b′|AskHq]Pr[AskHq]
≤ Pr[b = b′|¬AskHq](1 − Pr[AskHq]) + Pr[AskHq]

≤ (1 + ν)
2

(1 − Pr[AskHq]) + Pr[AskHq] ≤ 1
2
Pr[AskHq] +

(1 + ν)
2

⇒ (ε + 1)
2

≤ 1
2
Pr[AskHq] +

(1 + ν)
2

Here ν denotes the maximal advantage of any passive adversary against the
semantic security of the symmetric key encryption scheme (ENC, DEC). Thus
Pr[AskHq] ≥ ε − ν.

In case the simulation fails, one needs to handle the only two possibilities.
In the first case, when the random challenge ciphertext had been submitted
to the DisDeSignCrypt oracle before the challenge phase and in the second
case when the simulation is not perfect. The first event will occur with the
probability smaller than qDDSC/2Kp . In the second event, there is a chance in
which DisDeSignCrypt oracle rejects the valid ciphertext. Since the hash func-
tion h1 is used to decide the acceptance of the message. The probability to
reject the valid ciphertext is not greater than qh1qDDSC/22Kp . Thus the suc-
cess probability of B = ε′ = Pr[AskHq] − qDDSC/2Kp − qh1qDDSC/22Kp ≥
ε−ν−qDDSC/2Kp−qh1qDDSC/22Kp . Hence B would be able to solve HECGDHP
with the success probability ε′ ≥ ε − ν − qDDSC/2Kp − qh1qDDSC/22Kp .

Finally, we compute the running time t′ of the algorithm B. On H and H1

queries, B runs oracle OHECDDH to check whether given tuple is on HECDH
tuple. The oracle is also called by B on DisDeSignCrypt queries. Thus maximum
number of possibilities for which B runs OHECDDH is proportional to O(qh +
qh1 + qDDSC). Thus B can solve HECGDHP in time t′ ≤ t + O(qh + qh1 +
qDDSC)tHECDDH

O . ��

Theorem 5.2. Let a forger F be allowed to have a limited access to OHECDDH .
If the forger F has non-negligible advantage ε over the EUF −DSC−CMA se-
curity of the MGPSS when running in time t, and asking qh and qh1 queries
to the random oracle H and H1 respectively, qDSC queries to DisSignCrypt
oracle and qDDSC queries to DisDeSignCrypt oracle, then there is an algo-
rithm B that can solve the HECGDHP in groups J(Fq) with the probability
ε′ ≥ ε− qDSC/2Kp(qh1 + qDSC + qDDSC)− qh1qDDSC/22Kp − 1/2Kp within time
t′ ≤ t+O(qh+qh1+qDDSC)tHECDDH

O where tHECDDH
O denotes the time required

for running the oracle OHECDDH .

Distributed Signcryption Schemes with Formal Proof of Security 107

Proof. We first assume that there exists a forger F who wins the game of EUF-
DSC-CMA as defined in definition 2.2. It would be shown that, we can construct
an algorithm B that solves HECGDHP.

We follow the same procedure as in theorem 5.1. We assume that (a·D, b·D) is
any random instant of HECGDHP. Let pkU = Db be the challenged public key of
any group user U . The forger F adaptively performs hash queries, DisSignCrypt
queries and DisDeSignCrypt queries. All the queries are performed as follows:

H-queries: H queries are handled similar to as in the Theorem 5.1.

H1-queries: H1 queries are handled using the list L1. When the H1 query is
received on the input (m, Db, Dk′

i
, Dki , DKi), B first checks if the query tuple

(m, Db, Dk′
i
, Dki ,

DKi) is already in the list L1. If it exists, B returns existing defined value. If not
exist then B picks r ∈R ZN and defines H1(m, Db, Dk′

i
, Dki , DKi) = r(a ·D). In

this case B returns r(a · D) to A and updates list L1 accordingly.

DisSignCrypt queries: A the selects plaintext m and the group public key gpkGR

= (Dβ0 , Dβ, Dγ , Dk) of receiver and submits it for DisSignCrypt queries. On
receiving (m, gpkGR), B does the following:

– B selects k′ and computes K · D = k′(k · D) and k′ · D.
– B simulates the hash function H to obtain h = H(k′ · D,K).
– B checks list L1 if H1 is already defined on the input (m, Db, Dk′ , Dk, DK). In

this case, B outputs ‘failure’ and halts. Otherwise, B picks r ∈ ZN and return
H1 = r · D as an answer of H1 query and updates the list L1 accordingly.

– B computes r′ and S = K · D + r′(k′ · D − br · D). Then B computes
c = ENCh(m). Finally B computes E, E0, E1, E2, E3, S and returns the
ciphertext C =< E, E0, E1, E2,
E3,H1, S, c >.

DisDeSignCrypt queries: These queries on the input (C, pkS) are answered in
the similar way as in the Theorem 5.1.

At the end of the first stage, the forger F provides a ciphertext C∗ and a key pair
(mskGR , gpkGR). B performs DisDeSignCrypt operation as discussed above on
the input of (C∗, mskGR , pkU) where pkU = Db = b ·D is the challenged public
key. If the ciphertext is valid then DisDeSignCrypt(C∗, mskGR , pkU) returns
the valid message signature pair (m∗, S) for the sender public key b · D and
H1 = H1(m∗, Db, Dk′ , Dk, DK). If F had not made H1 query on the input
(m∗, Db, Dk′ , Dk, DK) during the simulation then B reports failure and stops.
Otherwise, there must be entry in L1 for H1(m∗, Db, Dk′ , Dk, DK) and it must
be in the form of r∗a ·D for some r∗ ∈ ZN . The value of ab ·D can be computed
using the signature, kk′ · D and k′ · D as follows:

108 I. Gupta and P.K. Saxena

r∗−1(k′ · D−r′−1(S − k′k · D))

= r∗−1(k′ · D − r′−1r′(k′ · D − b · H1(m∗, Db, Dk′ , Dk, DK)))

= r∗−1(k′ · D − (k′ · D − br∗a · D))

= r∗−1(br∗a · D)) = r∗−1(r∗ab · D))
= ab · D mod N.

This yields solution of Diffie-Hellman Problem. Now, we compute the probability
of success of B in solving HECGDHP. We first consider the cases where the
simulation fails. Only three situations arise: (i) H1 is already defined on given
input when DisSignCrypt query is made (ii) hash value H1(m∗, Db, Dk′ , Dk, DK)
was not asked during the simulation or (iii) simulation is not perfect. Since there
is atmost (qh1 + qDSC + qDDSC) elements in the list L1 for each DisSignCrypt
query, the probability of the first case can not be greater than qDSC(qh1 +
qDSC +qDDSC)/2Kp . The probability that the hash was not asked for during the
simulation is at most 1/2Kp . In the last case, the probability when simulation is
not perfect can not exceed qDDSCqh1/22K. As we have assumed that the forger
F has non-negligible advantage ε over the EUF − DSC − CMA, B would be
able to solve HECGDHP with the success probability ε′ ≥ ε − qDSC/2Kp(qh1 +
qDSC + qDDSC) − qh1qDDSC/22Kp − 1/2Kp . ��

In the following theorems, we give proofs of security of MMVS. Here also we
assume that the hash function used are modelled as random oracle.

Theorem 5.3. Assume that an adversary A is allowed to have a limited access
to ODDH . If A has non-negligible advantage ε over the IND − DSC − CCA
security of the MMVS when running in a time T and asking qh and qhi (i = 1, 2)
queries to the random oracle H and Hi respectively, qDSC queries to DisSign-
Crypt oracle and qDDSC queries to DisDeSignCrypt oracle then, for any 0 ≤
ν1 ≤ ε1, there exist

- an algorithm B that can solve the GDHP in group G = Z∗
p with the probability

ε′1 ≥ ε1−ν1−qDDSC/2K′
p(1+qh1/2K′

p +qh2/2K′
p) within time T ′ ≤ T +O(qh+

qh1 + qDDSC)T DDH
O , where T DDH

O denotes the time required for running the
oracle ODDH .

- a passive adversary breaking the semantic security of the symmetric key en-
cryption scheme (E, D) with the advantage ν1 within time T ′.

Proof. Suppose (ga, gb) is any random instant of GDHP. It is required to com-
pute gab. The proof is similar to Theorem 5.1. The probability that the simulation
is not perfect is atmost 1/22K′

pqDDSC(qh1 + qh2).

Theorem 5.4. Let a forger F be allowed to have a limited access to ODDH .
Assume that F has non-negligible advantage ε over the EUF − DSC − CMA
security of the MMVS when running in a time T and asking qh and qhi (i =
1, 2) queries to the random oracle H and Hi respectively, qDSC queries to Dis-
SignCrypt oracle and qDDSC to DisDeSignCrypt oracle. Then there is an al-
gorithm B that can solve the GDHP in groups G = Z

∗
p with the probability

Distributed Signcryption Schemes with Formal Proof of Security 109

ε′ ≥ ε−qDSC/2K′
p(qh1 +qDSC +qDDSC)−(qh1 +qh2)qDDSC/22Kp −1/2Kp within

time T ′ ≤ T +O(qh+qh1 +qDDSC)T DDH
O where T DDH

O denotes the time required
for running the oracle ODDH .

Proof. The proof is similar to Theorem 5.2 and is omitted.

6 Conclusion

In this paper, we gave a generic model for distributed signcryption and proposed
formal security notions for two security aspects IND-DSC-CCA and EUF-DSC-
CMA. We proposed a modified distributed signcryption scheme MMVS (MVS
proposed by Mu & Varadharajan) and a modified scheme MGPSS (GPSS pro-
posed by Gupta, Pillai and Saxena) and gave Security proofs of IND-DSC-CCA
and EUF-DSC-CMA for both the modified schemes in the random oracle model.
Such proofs of security were not there in MVS & GPSS. As far as the complexity
of the MMVS and MGPSS is concerned, it is of the same order as that of MVS
and GPSS respectively. The communication overheads in modified schemes are
also comparable to those in the original schemes. Further work on other secu-
rity models and security proofs for both schemes MGPSS and MMVS is being
carried out.

Acknowledgments. The authors would like to thank Prof. Rana Barua, ISI
Kolkata for technical discussions and valuable suggestions. Authors would also
like to thank Prof C. E. Veni Madhavan, Prof A. Tripathi, Dr. S S Bedi, Dr.
Meena Kumari and N R Pillai for continuous encouragement and support they
gave.

References

1. An, J.H., Dodis, Y., Rabin, T.: On the Security of Joint Signature and Encryp-
tion. In: Knudsen, L.R. (ed.) EUROCRYPT 2002. LNCS, vol. 2332, pp. 83–107.
Springer, Heidelberg (2002)

2. Baek, J., Steinfeld, R., Zheng, Y.: Formal Proofs for the Security of Signcryption.
Journal of Cryptology 20, 203–235 (2007)

3. Bao, H., Cao, Z., Qian, H.: On the Security of a Group Signcryption Scheme from
Distributed Signcryption Scheme. In: Desmedt, Y.G., Wang, H., Mu, Y., Li, Y.
(eds.) CANS 2005. LNCS, vol. 3810, pp. 26–34. Springer, Heidelberg (2005)

4. Bellare, M., Rogaway, P.: Random Oracles Are Practical: A Paradigm for Designing
Efficient Protocols. In: Proceedings of the First ACM Conference on Computer and
Communications Security, pp. 62–73. ACM Press, New York (1993)

5. Bellare, M., Desai, A., Pointcheval, D., Rogaway, P.: Relations among No-
tions of Security for Public-Key Encryption Schemes. In: Krawczyk, Y. (ed.)
CRYPTO 1998. LNCS, vol. 1462, pp. 26–45. Springer, Heidelberg (1998)

6. Boneh, D.: The Decision Diffie-Hellman Problem. In: Buhler, J.P. (ed.) ANTS 1998.
LNCS, vol. 1423, pp. 48–63. Springer, Heidelberg (1998)

7. Boyen, X.: Multipurpose Identity-Based Signcryption: A Swiss Army Knife for
Identity-based Cryptography. In: Boneh, D. (ed.) CRYPTO 2003. LNCS, vol. 2729,
pp. 383–399. Springer, Heidelberg (2003)

110 I. Gupta and P.K. Saxena

8. Cramer, R., Shoup, V.: A Practical Public Key Cryptosystem Provably
Secure against Adaptive Chosen Ciphertext Attack. In: Krawczyk, H. (ed.)
CRYPTO 1998. LNCS, vol. 1462, pp. 13–25. Springer, Heidelberg (1998)

9. Cramer, R., Shoup, V.: Design and Analysis of Practical Public-Key Encryption
Schemes Secure Against Adaptive Chosen Ciphertext Attack. Report 2001/108, In-
ternational Association for Cryptographic Research (IACR), ePrint Archive (2001)

10. Goldwasser, S., Micali, S., Rivest, R.: A Digital Signature Scheme Secure against
Adaptive Chosen Message Attacks. SIAM Journal of Computing 17(2), 281–308
(1988)

11. Gupta, I., Pillai, N.R., Saxena, P.K.: Distributed Signcryption Scheme on Hyper-
elliptic Curve. In: Proceedings of the Fourth IASTED International Conference on
Communication, Network and Information Security, CNIS 2007, pp. 33–39. Acta
Press, Calgary (2007)

12. Julta, C.S.: Encryption Modes with Almost Free Message Integrity. In: Pfitzmann,
B. (ed.) EUROCRYPT 2001. LNCS, vol. 2045, pp. 529–544. Springer, Heidelberg
(2001)

13. Kwak, D., Moon, S.: Efficient Distributed Signcryption Scheme as Group Sign-
cryption. In: Zhou, J., Yung, M., Han, Y. (eds.) ACNS 2003. LNCS, vol. 2846, pp.
403–417. Springer, Heidelberg (2003)

14. Kwak, D., Moon, S., Wang, G., Deng, R.H.: A Secure Extension of the Kwak-Moon
Group Signcryption Scheme. Computer & Security 25, 435–444 (2006)

15. Libert, B., Quisquater, J.: Efficient Signcryption with Key Privacy from Gap Diffie-
Hellman Groups. In: Bao, F., Deng, R., Zhou, J. (eds.) PKC 2004. LNCS, vol. 2947,
pp. 187–200. Springer, Heidelberg (2004)

16. Libert, B.: New Secure Applications of Bilinear Maps in Cryptography. PhD Thesis,
Microelectronics Laboratory Laboratory, Université Catholique de Louvain (2006)

17. Mu, Y., Varadharajan, V., Nguyen, K.Q.: Delegated decryption. In: Walker, M.
(ed.) Cryptography and Coding 1999. LNCS, vol. 1746, pp. 258–269. Springer,
Heidelberg (1999)

18. Mu, Y., Varadharajan, V.: Distributed signcryption. In: Roy, B., Okamoto, E. (eds.)
INDOCRYPT 2000. LNCS, vol. 1977, pp. 155–164. Springer, Heidelberg (2000)

19. Naor, M., Yung, M.: Public-Key Cryptosystems Secure against Chosen Ciphertext
Attacks. In: 22nd ACM Symposium on Theory of Computing, pp. 427–437. ACM
Press, New York (1990)

20. Okamoto, T., Pointcheval, D.: The Gap-Problems: A New Class of Problems for the
Security of Cryptographic Schemes. In: Kim, K. (ed.) PKC 2001. LNCS, vol. 1992,
pp. 104–118. Springer, Heidelberg (2001)

21. Schnorr, C.P., Jakobsson, M.: Security of Signed ElGamal Encryption. In:
Okamoto, T. (ed.) ASIACRYPT 2000. LNCS, vol. 1976, pp. 73–89. Springer,
Heidelberg (2000)

22. Shoup, V.: Sequences of Games, A Tool for Taming Complexity in Security Proofs.
Report 2004/332, International Association for Cryptographic Research (IACR)
ePrint Archive (2004)

23. Tsiounis, Y., Yung, M.: On the Security of ElGamal Based Encryption. In: Imai,
H., Zheng, Y. (eds.) PKC 1998. LNCS, vol. 1431, pp. 117–134. Springer, Heidelberg
(1998)

24. Zheng, Y.: Digital Signcryption or How to Achieve Cost (Signature & Encryption)
<< Cost(Signature) + Cost(Encryption). In: Kaliski, B. (ed.) CRYPTO 1997.
LNCS, vol. 1294, pp. 165–179. Springer, Heidelberg (1997)

Identity Based Online/Offline Encryption and

Signcryption Schemes Revisited

S. Sharmila Deva Selvi, S. Sree Vivek, and C. Pandu Rangan

Theoretical Computer Science Laboratory,
Department of Computer Science and Engineering,

Indian Institute of Technology Madras,
Chennai, India

{sharmila,svivek}@cse.iitm.ac.in, prangan@cse.iitm.ac.in.

Abstract. Consider the situation where a low power device with limited
computational power has to perform cryptographic operation in order to
do secure communication to the base station where the computational
power is not limited. The most obvious way is to split each and every
cryptographic operations into resource consuming, heavy operations and
the fast light weight operations. This concept can be efficiently imple-
mented through online/offline cryptography. In this paper, we show the
security weakness of an identity based online offline encryption scheme
proposed in ACNS 09 by Liu et al. [9]. The scheme in [9] is the first iden-
tity based online offline encryption scheme in the random oracle model,
in which the message and recipient are not known during the offline
phase. We have shown that this scheme is not CCA secure. We have also
proposed a new identity based online offline encryption scheme in which
the message and receiver are not known during the offline phase and is
efficient than the scheme in [9].

Online/Offline signcryption is a cryptographic primitive where the
signcryption process is divided into two phases - online and offline phase.
To the best of our knowledge there exists three online/offline signcryption
schemes in the literature: we propose various attacks on two of the exist-
ing schemes. Then, we present an efficient and provably secure identity
based online/offline signcryption scheme. We formally prove the security
of the new scheme in the random oracle model.

Keywords: Identity Based Cryptography, Encryption, Signcryption,
Confidentiality, Unforgeability, Online/Offline, Cryptanalysis, Random
Oracle Model.

1 Introduction

Separating the process of signing or encrypting into two phases namely, online
phase and offline phase is the concept of ”Online/Offline” cryptography. This
notion was first introduced in the context of digital signatures by Even, Gol-
dreich and Micali [5]. Their construction is inefficient as it increases the size of
� Currently Head, Indian Statistical Institute, Chennai, India.

M. Joye et al. (Eds.): InfoSecHiComNet 2011, LNCS 7011, pp. 111–127, 2011.
c© Springer-Verlag Berlin Heidelberg 2011

112 S. Sharmila Deva Selvi, S. Sree Vivek, and C. Pandu Rangan

each signature by a quadratic factor. Shamir and Tauman [13] proposed an im-
proved version which makes use of a new paradigm called “hash-sign-switch” to
design more efficient online/offline signature schemes. During the offline phase,
heavy computations like exponentiation and bilinear pairing are done and in the
online phase, only light weight integer operations (multiplication and addition)
and hashing are performed to make the computations faster. In an online/offline
signature scheme the message is not known in the offline phase and in an on-
line/offline encryption scheme both the message and receiver are not known in
the offline phase. Thus, online/offline schemes find use in low power devices
such as PDA’s, sensor networks, hand held devices including mobile phones and
smart-cards.

Adi Shamir introduced the concept of identity based cryptography and pro-
posed the first identity based signature scheme. The idea of identity based cryp-
tography is to enable an user to use any arbitrary string that uniquely identifies
him as his public key. Identity based cryptography serves as an efficient alter-
native to Public Key Infrastructure (PKI) based systems. Most of the identity
based encryption (IBE) schemes use the costly bilinear pairing operation and
the concept of online/offline computation is an important area of research with
respect to IBE. The first identity based online/offline encryption scheme was
proposed by Guo et al.[7]. It should be noted that, the major difference be-
tween online/offline signature and encryption schemes is that, the message and
the receiver are not known during the offline phase of encryption schemes. This
makes it subtle and interesting to explore for new directions in constructing ef-
ficient and elegant online/offline encryption schemes. Few motivating examples
for online/offline encryption schemes can be found in [7] and [9].
Related Works
Online/Offline Encryption: Guo et al. [7] have shown natural extension of the
IBE of Boneh and Boyen [2] and Gentry [6]. They have also given constructions
which efficiently divide the IBE schemes in [2] and [6]. All the schemes are in the
standard model. In 2009, Joseph. K. Liu et al. [9] have proposed an identity based
online/offline encryption scheme. It was proved to be chosen ciphertext (CCA)
secure in the random oracle model and was claimed to be much efficient that
the scheme in [7] (obviously true due to random oracle assumption). Recently,
Chow et al. in [3] proposed a CPA secure identity based online/offline encryption
scheme and have given a KEM (Key Encapsulation Mechanism) based CCA con-
struction. Although they are giving a generic transformation from identity based
online/offline KEM (IBOOKEM) to CCA secure identity based online/offline en-
cryption, there is no concrete IBOOKEM scheme discussed in the paper. Hence,
we do not compare our results with the results reported in [3].
Online/Offline Signcryption: Confidentiality and authenticity are two funda-
mental properties offered by public key cryptography which are achieved through
encryption schemes and digital signatures respectively. In scenarios where both
these properties are needed, a Sign-then-Encrypt approach was used earlier. In
1997, Zheng [17] introduced the concept of signcryption where both these prop-
erties are achieved in a single logical step, but in a more efficient way. The notion

Identity Based Online/Offline Encryption and Signcryption 113

of online/offline signcryption was first discussed in An et al. [1]. In their paper,
they did not give any concrete method, but they have given general security
proof notions for signcryption schemes. Zhang et al. [16] extended the work of
An et al. [1] and provided a concrete scheme making use of short signatures.
However, Zhang’s scheme [16] is PKI based scheme and the focus of our paper
is on identity based signcryption schemes. Sun et al. [14] were the first to pro-
pose an identity based online/offline signcryption scheme. In their paper, they
formally defined the identity based online/offline signcryption and its security
model. They also proposed a new scheme where the offline computations can be
done before the message is available and the online computations are done after
the message is received. After this, Sun et al. proposed another generic scheme
in [15].
Our Contribution: In this paper, we show that the scheme in [9] is not CCA
secure, i.e. an adversary can distinguish the challenge ciphertext by accessing
the decryption oracle. Although the authors of [9] (footnote 4) claim that a bug
in [9] was identified and presented in the conference, we are unable to trace any
record of its presence. In view of this we present the details of the attack here
explicitly. We provide a fix for the bug in the scheme and also propose a new
efficient construction for identity based online/offline encryption. We prove the
new scheme in the random oracle model.

Moreover, to the best of our knowledge there are three online/offline sign-
cryption schemes in the literature: two schemes by sun et al. [15], [14] and one
scheme by Liu et al. [8]. In this paper, we point out some weaknesses in the
generic scheme by Sun et al. [15] and forgeability attack on the specific scheme
by Sun et al [14]. Then, we present a new online/offline identity based sign-
cryption scheme. In our scheme the online phase includes only modular addition
operations and an XOR operation. The striking feature of our scheme is that the
sender does not require the knowledge of receiver identity as well as the message
in the offline phase. The security of the scheme is proved under random oracle
model.

2 Preliminaries

2.1 Bilinear Pairing

Let G1 be an additive cyclic group generated by P , with prime order q, and G2

be a multiplicative cyclic group of the same order q. Let ê be a bilinear pairing
ê : G1 × G1 → G2.

2.2 Computational Assumptions

In this section, we recall the computational assumptions related to bilinear
maps[4] that are relevant to the security of our scheme.
Modified BDHI for k values (k-mBDHIP): k-mBDHIP is the bilinear
variant of the k-CAA problem. Given (P, aP, (x1+a)−1P, ..., (xk+a)−1P) ∈ G

k+2
1

114 S. Sharmila Deva Selvi, S. Sree Vivek, and C. Pandu Rangan

for unknown a ∈ Zq
∗ and known x1, ..., xk ∈ Zq

∗, the k-mBDHIP problem is to
compute ê(P, P)(a+x∗)−1

for some x∗ /∈ {x1, ..., xk}.
The advantage of any probabilistic polynomial time algorithm A in solving the

k-mBDHIP problem in G1 is defined as

AdvA k−mBDHIP = Pr[A(P, aP, (x1 + a)−1P, ..., (xk + a)−1P, x1, ..., x
k)

= ê(P, P)(a+x∗)−1 |a, x∗ ∈R Zq
∗, x∗ /∈ {x1, ..., xk}].

We say that the k-mBDHIP problem is (t, ε) hard if for any t time probabilistic
algorithm A, the advantage AdvA k−mBDHIP < ε.

The q-Computation Diffie-Hellman Inverse problem (q-CDHIP): Given
an additive group G1 and a multiplicative group G2, all with prime order p and
(q + 1) tuples (G, sG, s2G, . . . , sqG) , computing (1/s)P is the q-Computation
Diffie-Hellman Inverse problem.

The q-Bilinear Diffie-Hellman Inversion problem (q-BDHIP): Given
an additive group G1 and a multiplicative group G2, all with prime order p and
(q+1) tuples (G, sG, s2G, . . . , sqG) , computing ê(G, G)1/s ∈ G2 is the q-Bilinear
Diffie-Hellman Inversion problem.

2.3 Identity Based Online/Offline Encryption Schemes(IBOOE)

An identity based online/offline encryption scheme consists of the following al-
gorithms.

Setup(1κ): Given a security parameter κ, the Private Key Generator(PKG)
generates a master private key msk and public parameters Params. Params is
made public while msk is kept secret by the PKG.

Extract(ID): Given an identity ID, the PKG executes this algorithm to gen-
erate the private key DID corresponding to ID and transmits DID to the user
with identity ID via. secure channel.

Off-Encrypt (Params): To generate the offline share of the encryption, this
algorithm is executed without the knowledge of message to be encrypted and
the receiver of the encryption. The offline ciphertext is represented as φ.

On-Encrypt (m, IDA, φ): For encrypting a message m to user with identity
IDA, any sender can run this algorithm to generate the encryption σ of mes-
sage m. This algorithm uses a new offline ciphertext φ and generates the full
encryption σ.

Decrypt(σ, IDA, DA): For decryption of σ, the receiver IDA uses his private
key DA and run this algorithm to get back the message m.

Definition 1. An ID-Based online/offline encryption scheme is said to be in-
distinguishable against adaptive chosen ciphertext attacks (IND-IBOOE-CCA2)
if no polynomially bounded adversary has a non-negligible advantage in the fol-
lowing game.

Identity Based Online/Offline Encryption and Signcryption 115

Setup: The challenger C runs the Setup algorithm with a security parameter κ
and obtains public parameters Params and the master private key msk. C sends
Params to the adversary A and keeps msk secret.
Phase I : The adversary A performs a polynomially bounded number of queries.
These queries may be adaptive, i.e. current query may depend on the answers
to the previous queries.

– Key extraction queries(Oracle OExtract(ID)): A produces an identity
ID and receives the private key DID.

– Decryption queries(Oracle ODecrypt(σ, IDA)): A produces the receiver
identity IDA and the ciphertext σ. C generates the private key DA and sends
the result of Decrypt(σ, IDA, DA) to A. This result will be “Invalid′′ if σ is
not a valid ciphertext or the message m if σ is a valid encryption of message
m to IDA.

Challenge: A chooses two plaintexts, m0 and m1 and the receiver identity IDR,
on which A wishes to be challenged. A should not have queried for the private
key corresponding to IDR in Phase I. C chooses randomly a bit b ∈ {0, 1},
computes σ = Encrypt(mb, IDR) and sends it to A.
Phase II : A is now allowed to get training as in Phase−I. During this interac-
tion, A is not allowed to extract the private key corresponding to IDR. Also, A
cannot query the decryption oracle with σ, IDR as input, i.e. ODecrypt(σ, IDR).

Guess: Finally, A produces a bit b
′
and wins the game if b

′
= b.

A’s advantage is defined as Adv(A)=2
∣∣∣Pr
[
b
′
= b
]
− 1
∣∣∣, where Pr

[
b
′
= b
]

de-

notes the probability that b
′
= b.

2.4 Identity Based Online/Offline Signcryption

Identity based online/offline signcryption scheme consists of the following algo-
rithms.
Setup(κ): Given a security parameter κ, the Private Key Generator (PKG)
generates the systems public parameters params and the corresponding master
private key msk that is kept secret by PKG.
Key Extract(IDi): Given a user identity IDi by user Ui, the PKG computes
the corresponding private key Di and sends Di to Ui via. a secure channel.
OffSigncrypt(IDS, DS): Given the sender identity IDS and the private key DS

of IDS, this algorithm outputs an offline signcryption σ′. This is executed by
the sender with identity IDS.
OnSigncrypt(m, IDS, IDR, σ′): This algorithm takes as input a message m ∈
M, the sender identity IDS, the receiver identity IDR and the offline signcryption
σ′ by IDS as input and outputs the signcryption σ. This algorithm is executed
by the sender with identity IDS.
Unsigncrypt(σ, IDS, IDR, DR): This algorithm takes as input the signcryption
σ, sender’s identity IDS, the receiver identity IDR and the receiver’s private key

116 S. Sharmila Deva Selvi, S. Sree Vivek, and C. Pandu Rangan

DR as input and produces the plaintext m, if σ is a valid signcryption of m from
the sender IDS to IDR or “Invalid” otherwise.

Definition 2. (Confidentiality) An identity based online/offline signcryption
(IBOOSC) is indistinguishable against adaptive chosen ciphertext attacks (IND-
IBOOSC-CCA2) if there exists no polynomially bounded adversary having non-
negligible advantage in the following game:

Setup Phase: The challenger C runs the Setup algorithm with the security
parameter κ as input and sends the system parameters params to the adversary
A and keeps the master private key msk secret.
Phase-I : A performs polynomially bounded number of queries to the oracles
provided to A by C. The description of the queries in the first phase are listed
below:

– Key Extract query : A produces an identity IDi and receives the private
key Di corresponding to IDi.

– Signcryption query : A produces a message m, the sender identity IDS,
and the receiver identity IDR to the challenger C. C computes IDS’s private
key DS and runs the algorithm OffSigncrypt(IDS, DS) to obtain an offline
signcryption σ′. Finally C returns σ = OnSigncrypt(m, IDR, σ′) to A.

– Unsigncryption query : A produces the signcryption σ, the sender identity
IDS, and the receiver identity IDR to C. C generates the private key DR

by querying the Key Extraction oracle. C unsigncrypts σ using DR and
returns m if σ is a valid signcryption from IDS to IDR, else outputs “Invalid”.

A can present its queries adaptively, i.e. every request may depend on the re-
sponse to the previous queries.
Challenge: A chooses two plaintexts {m0, m1} ∈ M of equal length and IDA

and IDB as the sender and receiver identities on which A wishes to be challenged.
The restriction is that A should not have queried the private key corresponding
to IDB in Phase-I. C now chooses a bit δ̄ ∈R {0, 1} and computes the challenge
signcryption σ∗ of mδ̄ and sends σ∗ to A.
Phase-II : A performs polynomially bounded number of requests just like the
Phase-I, with the restrictions that A cannot make Key Extraction query on
IDB and should not query for unsigncryption query on C∗.
Guess: Finally, A produces a bit δ̄′ and wins the game if δ̄′ = δ̄. The success
probability is defined by:

SuccA IND−IBOOSC−CCA2 (κ) = 1
2 + ε

Here, ε is called the advantage for the adversary in the above game.

Definition 3. (Unforgeability) An identity based online/offline signcryption
scheme (IBOOSC) is said to be existentially unforgeable against adaptive chosen
messages attacks (EUF-IBOOSC-CMA) if no polynomially bounded adversary
has a non-negligible advantage in the following game:

Identity Based Online/Offline Encryption and Signcryption 117

Setup Phase: The challenger runs the Setup algorithm with a security param-
eter κ and gives the system parameters params to the adversary A and keeps
msk secret.
Training Phase: A performs polynomially bounded number of queries as de-
scribed in Phase-I of Definition 2. The queries may be adaptive, i.e. the current
query may depend on the previous query responses.
Existential Forgery : Finally, A produces a new triple (IDA, IDB, C∗) (i.e. a
triple that was not produced by the signcryption oracle), where the private key
of IDA was not queried in the training phase. A wins the game if the result
of the unsigncryption of (IDA, IDB, C∗) is �= “Invalid”, in other words C∗ is a
valid signcrypt of some message m ∈ M.

3 Review and Attack of IBOOE in [9]

In this section we review the identity based online/offline encryption scheme
proposed in [9].

3.1 Review of of Liu et al.’s Scheme (L-IBOOE) [9]

Let G and GT be groups of prime order q , and let ê:G × GT → GT be the
bilinear pairing. We use a multiplicative notation for the operation in G and
GT .
Setup: The PKG selects a generator P ∈ G and randomly chooses s, w ∈ Z∗

q .
It sets Ppub = sP, P

′
pub = s2P and W = (w+s)−1P. Define M to be the message

space. Let nM = | M |. Let H1:{0,1}∗ → Z∗
q H2:{0,1}∗ × GT → Z∗

q and H3:{0,1}∗
→ {0,1}nM be two cryptographic hash functions. The public parameters Params
and master private key msk are given by,

Params= 〈G, GT , q, Ppub, P
′
pub, W, w, M, H1, H2, H3〉 msk= s.

Extract(ID):
– qID = H1(ID)

– DID =
1

qID + s
P .

Off-Encrypt(Params):
– u, x, α, β, γ, δ ∈R Z∗

q

– U = W - uP
– R = ê(wP+ Ppub,P)x

– T0 = x(w αP + (w+
γ)Ppub+P

′
pub)

– T1 = xwβP .
– T2 = xδPpub.
– Output the offline ciphertext

φ = 〈u, x, α, β, γ, δ, U, R, T0, T1, T2〉.

On-Encrypt(m, IDA, φ):
– t1 = β−1(H1(IDA)- α) mod q
– t2 = δ−1(H1(IDA)- γ) mod q
– t = H2(m, R)x+u mod q
– c = H3(R)⊕ m
– Output the ciphertext

σ = 〈U, T0, T1, T2, t, t1, t2, c〉
Decrypt(σ,IDA, DA):

– R = ê(T0+ t1T1 + t2T2, DA)
– m = c ⊕H3(R)

– and if RH2(m,R) ?= ê(tP + U,
wP + Ppub) ê(P,P)−1, output
m else output ⊥

118 S. Sharmila Deva Selvi, S. Sree Vivek, and C. Pandu Rangan

3.2 Attack on Confidentiality
1During the confidentiality game, after the completion of Phase-1 of training,
the adversary A picks two messages, (m0, m1) of equal length and an identity
IDR(DR is not known to A), and submits them to C. C chooses a bit b ∈R {0, 1},
generates the challenge ciphertext σ∗ = 〈U, T0,T1, T2, t

′
1,t

′
2,t, c〉 of message mb

and gives σ∗ to A. Now, we show that A can cook up another valid ciphertext
δ= (U∗, T∗

0, T∗
1, T∗

2, t∗1, t∗2, t∗, c∗) as given below:

– Chooses r∗, t∗1, t∗2 ∈R Z∗
q .

– ComputesU∗ = U - r∗P = W - (u+ r∗)P.
– Chooses T∗

1, T∗
2 ∈R G.

– Computes T∗
0 = T0 - (t∗1T

∗
1+ t∗2T

∗
2) +(t1T1+ t2T2) = x(w+ s)(qA+ s)P-

(t∗1T∗
1+t∗2T∗

2) (since T0+ t1T1+ t2T2 = x(w+ s)(qA+ s)P).
– Computes t∗= t + r∗ mod q
– Sets c∗= c
– Now, A queries the decrypt oracle with δ as input during Phase − 2 of

training. Here, the relations between σ∗ and δ are R = R∗ = ê(P,P)(w+s)x

and c= c∗. Hence, the decryption of δ will give the message mb= c ⊕ H3(R) =
c∗⊕ H3(R∗). So, A can obtain mb by constructing δ from σ∗ and querying the
decrypt oracle with δ as input (which is allowed in the security model of [9],
i.e. δ is totally different from the challenge ciphertext). The only restriction
for A during Phase - 2 is that A should not query the decryption of the
challenge ciphertext σ∗ and the extract of IDR. Also, it should be noted
that the check R∗H2(mb,R

∗) ?= ê(t∗P + U∗, wP + Ppub) ê(P,P)−1 should
hold.

Proof of Correctness: The equality of R and R∗ can be shown by,

R∗ = ê(T ∗
0 + t∗1T

∗
1 + t∗2T

∗
2 , DR)

= ê(x(w + s)(qR + s)P − (t∗1T
∗
1 + t∗2T

∗
2) + t∗1T

∗
1 + t∗2T

∗
2 , DR)

= ê(x(w + s)(qR + s)P, DR)

= ê(x(w + s)(qR + s)P,
1

qR + s
P)

= ê(x(w + s)P, P) = ê((w + s)P, xP) = ê(wP + Ppub, P)x = R

Also, the derived ciphertext δ will pass the verification test, which can be shown
as,

ê(t∗P + U∗,wP + Ppub)ê(P, P)−1=ê((t + r∗)P + U − r∗P, wP + Ppub)ê(P, P)−1

= ê((xH2(mb, R
∗) + u + r∗)P, wP + Ppub)
ê(W − (u + r∗)P, wP + Ppub)ê(P, P)−1

= ê(xH2(mb, R)P + W, wP + Ppub)ê(P, P)−1 (Since R∗ = R)
= ê(xH2(mb, R)P, wP + Ppub)ê(W, wP + Ppub)ê(P, P)−1

= ê(xH2(mb, R)P, wP + Ppub)ê(P, P)ê(P, P)−1

= ê(wP + Ppub, P)xH2(mb,R) = RH2(mb,R) = R∗H2(mb,R∗)

1 Although the authors of [9] have claimed that an attack was discussed in a private
communication, to the best of our knowledge, it is not recorded anywhere. The attack
is subtle and non-trivial. We report the same here.

Identity Based Online/Offline Encryption and Signcryption 119

3.3 A Possible Fix for the Weakness in [9]

The security weakness of [9] shown in section 3.2 can be fixed by providing the
modifications to the On − Encrypt algorithm and the definition of the hash
function H2 allowing all other algorithms unaltered. The improved On-Encrypt
protocol can be given by,
On-Encrypt(m, IDA, φ)

– t1 = β−1(H1(IDA)- α) mod q
– t2 = β−1(H1(IDA)- γ) mod q
– t = H2(m, U, R, T0, T1, T2, t1, t2)x+u mod q
– c = H3(R)⊕ m
– Output the ciphertext σ = 〈U, T0, T1, T2, t, t1, t2, c〉

The hash function H2 is redefined as H2 : {0, 1}∗ × GT × G
3 × Z

∗
q × Z

∗
q → Z

∗
q

4 The New IBOOE

In this section we provide a new identity based online/offline encryption scheme
(New-IBOOE), which is more efficient than the fixed version of [9].

4.1 The Scheme

Let G be a cyclic additive group and GT be a cyclic multiplicative group. Both
the groups have prime order, q and let ê:G × G → GT be the bilinear pairing.
The algorithms in the scheme are described below:
Setup: The PKG selects a generator P ∈R G and randomly chooses s ∈ Z∗

q .
It computes Ppub = sP and α = ê(P, P). Let M denotes the message space
and nM = | M |. Let H1 : {0, 1}∗ → Z

∗
q , H2 : {0, 1}∗ × GT × G

4 → Z
∗
q and

H3 : {0, 1}∗ → {0, 1}nM be three cryptographic hash functions. The public
parameters Params and master private key msk are given as:

Params= 〈G, GT , q, Ppub, α, M, H1, H2, H3〉 and msk= s.

Extract(IDA):
– qA = H1(IDA)

– DA =
1

qA + s
P .

Off-Encrypt(Params):
– u, x, a, b̂ ∈R Z

∗
q

– U = uP
– R = αx

– β = H3(R)
– T1 = a−1xP
– T2 = x(b̂ + s)P .
– Outputs the offline ciphertext

φ = 〈u, x, a, b̂, U, R, T1, T2, β〉.

On-Encrypt(m, IDA, φ):
– t1 = a(qA − b̂)mod q
– t2 = H2(m, R, U, T1, T2, t1)x +

u mod q
– c = β ⊕ m
– Outputs the ciphertext

σ = 〈U, T1, T2, t1, t2, c〉.
Decrypt(σ, IDA, DA):

– R = ê(T2 + t1T1, DA)
– m = c ⊕ H3(R)
– h = H2(m, R, U, T1, T2, t1)
– If Rh ?= ê(t2P − U, P),

output m else output ⊥

120 S. Sharmila Deva Selvi, S. Sree Vivek, and C. Pandu Rangan

It should be noted that the offline encryption process is carried out before know-
ing the message m as well as the receiver identity IDA. These are the attracting
features of our scheme. The correctness of the verification of the equation Rh

?= ê(t2P − U, P) done during the decryption process is given below:

LHS = Rh = ê(T2 + t1T1, DA)h

= ê(x(b̂ + s)P + a(qA − b̂)a−1xP, 1
qA+sP)h

= ê(xb̂P + xsP + qAxP − b̂xP, 1
qA+sP)h

= ê(x(s + qA)P, 1
qA+sP)h

= ê(xP, P)h

RHS = ê(t2P − U, P) = ê((hx + u)P − U, P) = ê(hxP + uP − U, P) = ê(xP, P)h

Since LHS=RHS, the verification of a well formed ciphertext holds.

Theorem 1. If there exists an adversary A that breaks the IND-IBOOE-CCA2
security of the New-IBOOE scheme then, there exists an algorithm C to solve
the k-modified Bilinear Diffie Hellman Inversion Problem (k-mBDHIP).

Please refer the proof of this theorem in the full version of the paper [11].

5 Review and Attack of IBOOSC Schemes

In this section, we recall the identity based online/offline schemes by Sun et al.
presented in [14] and [15]. We demonstrate attacks on both these schemes in this
section.

5.1 Scheme by Sun et al.[14]

Review of the Scheme: The scheme consists of five algorithms - Setup,
Extract, OffSigncrypt, Onsigncrypt and UnSigncrypt. A secure symmetric
key encryption scheme (E ,D) is employed in this scheme where E and D are the
secure symmetric encryption and decryption algorithms respectively.
Setup: Given security parameters κ, n and G1,G2 of order q and generator P
of G1, PKG picks a random s ∈ Z

∗
q , ands sets Ppub = sP . Choose cryptographic

hash functions H0: {0, 1}∗ → G1, H1: {0, 1}∗ × G1 × G1 → Z∗
q , H2: Z∗

q → {0,
1}n, H3: G2 → Z∗

q × Z∗
q . The system parameters are 〈P, Ppub, H0, H1, H2, H3〉.

The master secret key is s.
Key Extract: Given an identity IDi, the algorithm computes the public key
as Qi = H0(IDi) and the corresponding private key as Di = sH0(IDi). The
private key is returned to the user via a secure channel.
OffSigncrypt: To send a message m to user UR with identity IDR, the sender
US with identity IDS follows the steps below.

1. Computes QR = H0(IDR).
2. Picks random x, y ∈ Z

∗
q , and sets k = H3(e(Ppub, QR)x).

Identity Based Online/Offline Encryption and Signcryption 121

3. Splits k into k1, k2 such that k1 ∈ Z∗
q and k2 ∈ Z∗

q , then stores them for
future use.

4. Using the private key DS, US outputs the offline signcryption (S, U), where
S = DS − xPPub , U = (y − k1)P ; also stores x, y for future use.

OnSigncrypt: Given a message m ∈ Z∗
q , and an off-line signcryption (S, U),

this algorithm sets k3 = H2(k2) first. The message encryption is done with k3

and a symmetric-key encryption algorithm E such as AES. The ciphertext is
c = Ek3(m). Computes r = H1(c, S, U) and on-line signcryption σ = rx + y;
returns signcryption (c, S, U, σ).
UnSigncrypt: Given a signcryption (c, S, U, σ), the receiver with identity IDR

does the following:

1. Computes T = e(−S, QR)e(QS, DR).
2. Sets k = H3(T),then splits k into k1, k2.
3. Sets k3 = H2(k2) and decrypts the message Dk3(c) = m. m is valid if

e(σPpub + rS, P) ?= e(U + k1P + rQIDA , Ppub) holds, where r = H1(c, S, U).

Existential Forgeability of the Scheme: This scheme is not secure against
existential forgery. A forger F can forge a signcryption for an identity whose
private key is not queried. This can be done as follows:

– F sets an identity IDA as the target identity for which the forged signcryp-
tion is to be generated.

– During unforgeability game, a forger is allowed to extract the private key of
receiver (used for generating the forgery) according to the model given by
Sun et al [14]

– During the Training phase, F asks for the signcryption of a message m
from IDA to an arbitrary receiver IDB. Let the response be (c, S, U, σ). On
receiving this, F computes the following
• Gets the private key of IDB using a Key Extract query on IDB.
• Computes T = ê(−S, QB)ê(QA, DB)
• Sets k = H3(T) and divides k into two parts: k1 and k2.

– F can now modify the above ciphertext (c, S, U, σ) so that it becomes a
valid signcryption on some message m′ from IDA to an arbitrary IDC . For
achieving this F computes following:

• T ′ = ê(−S, QC)ê(QA, DC)
• k′ = H3(T ′) and it is divided into two parts: k′

1 and k′
2

• Δk = k′
1 − k1 and σ′ = rx + y + Δk

• Outputs the new signcryption (c, S, U, σ′)

This will pass through the verification because

LHS= ê(σ′Ppub + rS, P)
= ê((rx + y + Δk)Ppub + r(DA − xPpub), P)
= ê((y + Δk)Ppub + rsQA, P)

122 S. Sharmila Deva Selvi, S. Sree Vivek, and C. Pandu Rangan

= ê((y + k′
1 − k1)P + rQA, sP)

= ê((y − k1)P + k′
1P + rQA, Ppub)

= ê(U + k′
1P + rQA, Ppub)

= RHS
5.2 Generic Scheme by Sun et al. [15]

Review of the Scheme: We review the generic online/offline signcryption
scheme by Sun et al. [15] in this section.
Systems Parameter Generation: Let t be a prime power, and E(Ft) an
elliptic curve over finite field Ft. Let #E(Ft) be the number of points of #E(Ft),
and P be a point of E(Ft) with prime order q where q|#E(Ft). G1 is the subgroup
generated by P . G2 is a finite group of order q. Choose cryptographic hash
function H1 : G2 → {0, 1}n. Let (L,H) be the chameleon hash family, which
will be sent to the designated user on request, based on the discrete logarithm
assumption and (G,S,V) be any identity-based signature scheme. The system
parameters are SP = (#E(Ft), t, q, P, G1, G2, (G,S,V), H1).
Key Extract: Given an identity ID, run the key extract algorithm of the
original identity-based signature scheme to obtain the private/public key pair
(DID, QID). On input 1k, the sender runs the key generation algorithm of the
trapdoor hash family (L,H) to obtain the hash/trapdoor key pair (Y = xP, x).

Assume user US with identity IDS sends m to user UR with identity IDR. US

obtains private key and hash/trapdoor key {DS, Y, x}. UR obtains private key
DR . {QS, QR} are public to both of them.
OffSigncrypt: Offline signcryption is done as follows:
– Choose at random (m, r) ∈R M × R, where M is a message space and R

is a finite space, and compute the chameleon hash value h = HY (m′, r′) =
m′P + r′Y .

– Run the signing algorithm S with the signing key DS to sign the hash value
h. Let the output be σ = SDS

(h||HY), where HY is the description of the
chameleon hash.

– Choose at random y ∈R Z∗
q and compute X = yP then compute ω =

e(yPpub, QR). Finally set y′ = H1(ω).
– Store the pair (m′, r′) and y′ for future use.

OnSigncrypt: Online signcryption is done as follows:
– For a given message m, retrieve from the memory x−1 and the pair (m, r).
– Compute r = x−1(m′ − m) + r′ mod q.
– The message encryption is done with y′ and a symmetric-key encryption

algorithm such as AES. The ciphertext is c = Ency′(σ||IDS||m||r||HY).
– Final ciphertext is (c, X).

Unsigncrypt: Given ciphertext (c, X), unsigncryption is done as follows:
– Compute ω = e(X, dIDB) and y′ = H1(ω) .
– Decrypt c as σ||IDS||m||r||HY = Decy′(c).
– Compute h = HY (m, r) = mP + rY .
– Verify that σ is indeed a signature of the value h||HY with respect to the

verification key QS.

Identity Based Online/Offline Encryption and Signcryption 123

Attack on the Scheme: In the scheme proposed by Sun et al. [15], there is no
binding between the encryption and the signature. Therefore, a signcryption on
a message m from IDA to IDB can be changed to a valid signcryption on the
same message m from IDA to IDC . This can be done as follows:

– Get the signcryption of message m from the sender IDA to receiver IDB

and decrypt it using the secret key DB of IDB to get σ||IDA||m||r||HY .
– Choose η ∈R Z∗

q and compute ω∗ = ê(Ppub, QC)η and set X* = ηP and y*
= H1(ω).

– Compute c∗ = Ency∗(σ||IDA||m||r||HY)
– Output the signcryption as (c∗, X*)

Note that QC is the public key of the user with identity IDC whose private key
is not known. The new signcryption (c∗, X*) is a valid signcryption from IDA

to IDC .

6 The New IBOOSC

In this section, we present a provably secure identity based online/offline sign-
cryption scheme. It should be noted that the scheme presented in this section
is more efficient than the naive combination of online/offline identity based sig-
nature and online/offline identity based encryption because, we have considered
the case where the receiver identity is not known during the offline phase and
more over it is explicit that just combining a signature scheme and an encryption
scheme is not signcryption but signcryption should involve cheap computation
than the naive combination. The size of the ciphertext and the computations
done during the unsigncryption process are bulky than normal signcryption
but we consider only the computation complexity of the online signcryption
algorithm where we have only modular addition, multiplication and bit-wise
exclusive-OR operations. This is considered as the highlight of any online/offline
primitive. The IBOOSC scheme consists of the following algorithms:
Setup(1κ): Given the security parameter 1κ as input, PKG chooses two groups
G1, G2 of prime order q, a bilinear map ê: G1 × G1 → G2 and a generator
P ∈R G1. The PKG chooses s ∈R Z∗

q and sets master secret key msk = s and
also sets master public key Ppub = sP. PKG then computes α = ê(P, P) and
defines five cryptographic hash functions:

– H1: {0, 1}∗ → G1.
– H2: G1 × G1 × G1 × {0, 1}n1 × {0, 1}∗ → Z∗

q .
– H3: {0, 1}n1 × {0, 1}∗ × G1 {0, 1}∗ → Z∗

q .
– H4: G2 → {0, 1}n1+nm . where nm is the message size n1 is the number of

random bits concatenated to message.
– H5: {0, 1}nm ×G2 × {0, 1}n1 ×Z∗

q ×Z∗
q × {0, 1}n1+nm × {0, 1}∗ × {0, 1}∗ →

Z∗
q .

The public parameters Params of the system are set to be Params = 〈G1, G2,
ê, P, R, Ppub, H1, H2, H3, H4, H5, α 〉.

124 S. Sharmila Deva Selvi, S. Sree Vivek, and C. Pandu Rangan

Key Extract(IDi): On input of identity IDi of user Ui, the private key Di is
computed as Di = (1

qi+s)P), where qi = H1(IDi). Di is given to user by PKG
via. secure channel.
Off-Signcrypt(IDS, DS): This algorithm is run by the sender US with identity
IDS for sending any message to any receiver. Note that the sender carries out
these computations without the knowledge message and receiver information.

1. Selects δ ∈R {0, 1}n1 and b, x, y, z, r ∈R Z
∗
q .

2. Computes U1 = αr ∈ G2, U2 = yP ∈ G1 and U3 = zP ∈ G1.
3. Computes V = (r + h2)DS ∈ G1, where h2 = H2(U1, U2, U3, δ, IDS).
4. Computes a = H3(δ, V, IDS).
5. Computes C1 = a−1xP , C2 = x(b + s)P .
6. Sets k = H4(ω = αx).

Outputs the offline signcryption σ′ = 〈C1, C2, V, U1, U2〉, while σsecret = 〈k, ω,
a, b, y, z〉 are kept as secret for future use in online phase and they are not made
public. Note here that the output of the Off −Signcrypt algorithm can be used
only once to generate an online signcryption.
Remark: It should be noted that above offline signcryption σ′ does not require
the knowledge of the message or the receiver.
On-Signcrypt(m, IDS, IDR, σ′, σsecret): This algorithm is run by the sender,
once the message m ∈ M and the receiver identity IDR are available and makes
use of the offline signature σ′ = 〈C1, C2, V, U1, U2〉, along with the stored values
σsecret = 〈k, ω, a, b, y, z〉.
1. Compute C3 = a(qR − b) mod q.
2. Compute C4 = (m‖δ) ⊕ k.
3. Compute v = yh + z mod q where h = H5(m, ω, δ, h2, C3, C4, IDS, IDR).
4. Outputs the signcryption σ = 〈{Ci}i=1 to 4, U1, U2, U3, V, v〉.

Remark: Here, the On−Signcrypt phase includes only one hash computation.
Unsigncrypt(σ, IDS, IDR, DR): When the receiver UR with identity IDR is pro-
vided with the signcryption 〈σ, US, UR〉 uses the following steps to unsigncrypt
the signcryption σ = 〈{Ci}i=1 to 4, U1, U2, U3, V, v〉 from IDR:

1. Computes ω′ = ê(C3C1 + C2, DR) and k′ = H3(ω′).
2. (m′‖δ′) = C4 ⊕ k′.
3. Computes h′

2 = H2(U1, U2, U3, δ′, IDS) and h′ = H5(m′, ω′, δ′, h′
2, C3, C4,

IDS, IDR).
4. Verify h′U2+U3

?= vP , ê(P, C1)H3(δ′, V, IDS) ?= ω′ and ê(V, (qS +s)P)α−h′
2

?=
U1

5. If all the checks in the above step holds, then output the message m′, else
output “Invalid′′.

Correctness: We show the correctness of the unsigncryption algorithm here.

ω′ = ê(C3C1 + C2, DR) = ê((qR − b)xp + x(b + s)P, 1
qR+sP)

= ê((qR + s)xP, 1
qR+sP)

= ê(xP, P) = ê(P, P)x = αx = ω

Identity Based Online/Offline Encryption and Signcryption 125

The correctness of the verification tests U2h
′ + U3

?= vP , ê(P, C1)H3(δ′, V, IDS) ?=
ω′ and ê(V, (qS + s)P)α−h′ ?= U1 is shown below:

Correctness of U2h
′ + U3

?= vP

h′U3 + U1 = h′(yP) + rP = (h′y + r)P = vP

Correctness of ê(P, C1)H3(δ′, V, IDS) ?= ω′

ê(P, C1)H3(δ′, V, IDS) = ê(P, a−1xP)a = ê(P, P)x = ω′ = ω

Correctness of ê(V, (qS + s)P)α−h′ ?= U1

ê(V, (qS + s)P)α−h′
2 = ê((r + h2)DS, (qS + s)P)ê(P, P)−h′

2

= ê((r + h2)
1

qS + sP
, (qS + s)P)ê(P, P)−h′

2

= ê(P, P)r+h2 ê(P, P)−h′
2 = ê(P, P)r = U1

7 Security Analysis of Our IBOOSC

In the new identity based online/offline signcryption scheme proposed above, we
are not directly signing the message, instead two randomness are signed which
are acting as the public keys for signing the message using a one-time schnorr
signature[10].

Theorem 2. If there exists an attacker A that can break the IND-IBOOSC-
CCA2 security (confidentiality) of IBOOSC, then there exists an algorithm C
that is capable of solving the q-SDHIP.

Please refer the proof of this theorem in the full version of the paper [12].

Theorem 3. If there exists an attacker A who can break the EUF-IBOOSC-
CMA security of IBOOSC, then there exists an algorithm C that is capable of
solving the q-CDHIP.

Please refer the proof of this theorem in the full version of the paper [12].

Conclusion

Identity based encryption schemes wherein the encryption is carried out in two
phases namely, offline and online phase according to the complexity of the oper-
ations performed is known to be identity based online/offline encryption scheme.
The subtle issue in designing an identity based online/offline encryption scheme
is to split the operations into heavy weight (for offline phase) and light weight
(for online phase) without knowing the message and receiver. [9] gives a solution
for this problem in the random oracle model. In this paper, we have pointed
out that the scheme in [9] is not CCA secure. We have proposed a possible fix
for the same and have also given a more efficient identity based online/offline
encryption scheme. We have formally proved the security of the new scheme in
the random oracle model. The complexity figure of our scheme is given below:

126 S. Sharmila Deva Selvi, S. Sree Vivek, and C. Pandu Rangan

Table 1. Comparison of Complexity

Scheme Encrypt Decrypt
Offline Online

BP SPM EXP M Ex BP SPM EXP M Ex
Improved L-IBOOE 1 7 1 3 1 3 4 1 - 1

(Sec. 3.3)
New-IBOOE - 4 1 2 1 2 2 1 - 1

SPM - Scalar Point Multiplication, BP - Bilinear Pairing, EXP -
Exponentiation in GT , M - Modular Computation in Z∗

q, Ex - Exclusive OR

We have also showed security weaknesses in two existing identity based on-
line/offline signcryption schemes[14,15]. Also, we proposed a provably secure
identity based online/offline signcryption scheme which does not require the
knowledge of the message and receiver. We proved the security of our scheme in
the random oracle model. Since two existing identity based online/offline sign-
cryption schemes are showed to be flawed in one way or the other we compare our
scheme only with [8]. The IBOOSC scheme presented in this paper has efficiency
gain in the online signcryption phase and unsigncryption with one less modular
arithmetic and one less hashing, and has one less pairing during respectively
when compared with [8]

Table 2. Comparison of Complexity

Scheme Signcrypt Unsigncrypt
Offline Online

BP SPM EXP M Ex HF BP SPM EXP M Ex
[8] - 6 1 3 1 3 3 4 - - 1

IBOOSC - 6 2 2 1 2 2 5 - - 1

SPM - Scalar Point Multiplication, BP - Bilinear Pairing, EXP -
Exponentiation in GT , M - Modular Computation in Z∗

q, Ex - Exclusive OR,
HF - Hash Computation

References

1. An, J.H., Dodis, Y., Rabin, T.: On the Security of Joint Signature and Encryp-
tion. In: Knudsen, L.R. (ed.) EUROCRYPT 2002. LNCS, vol. 2332, pp. 83–107.
Springer, Heidelberg (2002)

2. Boneh, D., Boyen, X.: Efficient Selective-ID Secure Identity-Based Encryption
Without Random Oracles. In: Cachin, C., Camenisch, J.L. (eds.) EUROCRYPT
2004. LNCS, vol. 3027, pp. 223–238. Springer, Heidelberg (2004)

3. Chow, S.S.M., Liu, J.K., Zhou, J.: Identity-based online/offline key encapsulation
and encryption. Cryptology ePrint Archive, Report 2010/194 (2010)

4. Dutta, R., Barua, R., Sarkar, P.: Pairing-based cryptographic protocols: A survey.
In: Cryptology ePrint Archive, Report 2004/064 (2004)

Identity Based Online/Offline Encryption and Signcryption 127

5. Even, S., Goldreich, O., Micali, S.: On-line/off-line digital signatures. Journal of
Cryptology 9(1) (1996)

6. Gentry, C.: Practical Identity-Based Encryption Without Random Oracles. In:
Vaudenay, S. (ed.) EUROCRYPT 2006. LNCS, vol. 4004, pp. 445–464. Springer,
Heidelberg (2006)

7. Guo, F., Mu, Y., Chen, Z.: Identity-Based Online/Offline Encryption. In: Tsudik,
G. (ed.) FC 2008. LNCS, vol. 5143, pp. 247–261. Springer, Heidelberg (2008)

8. Liu, J.K., Baek, J., Zhou, J.: Online/Offline identity-based signcryption revisited.
In: Lai, X., Yung, M., Lin, D. (eds.) Inscrypt 2010. LNCS, vol. 6584, pp. 36–51.
Springer, Heidelberg (2011), http://eprint.iacr.org/

9. Liu, J.K., Zhou, J.: An Efficient Identity-Based Online/Offline Encryption Scheme.
In: Abdalla, M., Pointcheval, D., Fouque, P.-A., Vergnaud, D. (eds.) ACNS 2009.
LNCS, vol. 5536, pp. 156–167. Springer, Heidelberg (2009)

10. Schnorr, C.-P.: Efficient signature generation by smart cards. J. Cryptology 4(3)
(1991)

11. Sharmila Deva Selvi, S., Sree Vivek, S., Pandu Rangan, C.: Identity based on-
line/offline encryption scheme. Cryptology ePrint Archive, Report 2010/178 (2010)

12. Sharmila Deva Selvi, S., Sree Vivek,S., Pandu Rangan, C.: Identity based on-
line/offline signcryption scheme. Cryptology ePrint Archive, Report 2010/376
(2010)

13. Shamir, A., Tauman, Y.: Improved Online/Offline Signature Schemes. In: Kilian,
J. (ed.) CRYPTO 2001. LNCS, vol. 2139, pp. 355–367. Springer, Heidelberg (2001)

14. Sun, D., Huang, X., Mu, Y., Susilo, W.: Identity-based on-line/off-line signcryp-
tion. In: Cao, J., Li, M., Wu, M.-Y., Chen, J. (eds.) NPC 2008. LNCS, vol. 5245,
pp. 34–41. Springer, Heidelberg (2008)

15. Sun, D., Mu, Y., Susilo, W.: A generic construction of identity-based online/offline
signcryption. In: ISPA, pp. 707–712. IEEE, Los Alamitos (2008)

16. Zhang, F., Mu, Y., Susilo, W.: Reducing security overhead for mobile networks.
In: AINA 2005: Proceedings of the 19th International Conference on Advanced
Information Networking and Applications, pp. 398–403. IEEE Computer Society,
Los Alamitos (2005)

17. Zheng, Y.: Digital Signcryption or How to Achieve Cost (Signature & Encryption)
<< Cost(Signature) + Cost(Encryption). In: Kaliski Jr., B.S. (ed.) CRYPTO 1997.
LNCS, vol. 1294, pp. 165–179. Springer, Heidelberg (1997)

http://eprint.iacr.org/

“Rank Correction”: A New Side-Channel

Approach for Secret Key Recovery

Maxime Nassar1,2, Youssef Souissi1, Sylvain Guilley1, and Jean-Luc Danger1

1 Institut TELECOM / TELECOM ParisTech, CNRS LTCI (UMR 5141)
2 Bull TrustWay

firstname.lastname@telecom-paristech.fr

Abstract. In this paper we present the “Rank Corrector”(RC), an em-
pirical approach aiming at enhancing most Side Channel Attack (SCA).
We show that during an SCA on a cryptographic algorithm like the Data
Encryption Standard (DES), the rank of the secret key displays a specific
behaviour with regards to other hypotheses. Hence the Rank Corrector
algorithm is devised, in order to improve existing SCAs by exploiting
such behaviours. With a profiling phase on a clone device, we precisely
evaluate the set of parameters that ensure the adaptability of RC to a
large range of cryptographic systems, and the possibility to discriminate
the secret key from other hypotheses in an efficient manner. The main
principle of RC is to detect and discard the false keys hypotheses when
analysing the ranking evolution. This results in improving the rank of the
secret key, thus accelerating the attack. The efficiency of our algorithm
is assessed by performing a Differential Power Analysis (DPA) with and
without the rank corrector. We observe a gain of at least 15% on the
“Measurements To Disclosure” (MTD) criteria.

Keywords: Side-channel analysis, distinguishers, success rate, guessing
entropy, rank correction.

1 Introduction

Side-channel analysis (SCA) is a technique to recover secrets concealed in em-
bedded systems. They exploit unintentional physical leakage, such as the power
consumption or the radiated magnetic field. Since the initial publication of the
differential power analysis in 1998, the theoretical tools to conduct SCAs have
been much refined. Notably, through adequate evaluation frameworks (typically
that of F.-X. Standaert et al. [17]), the attacks have been formally described in
two independent steps.

1. A partitioning of the side-channel observations, which depends on the sce-
nario (known/chosen plaintext/ciphertext), on the algorithm (to explore the
internal rounds by guessing manageable parts of the secret), and on the
implementation (whether it is software or hardware, pipelined or unrolled,
protected or not, etc.)

M. Joye et al. (Eds.): InfoSecHiComNet 2011, LNCS 7011, pp. 128–143, 2011.
c© Springer-Verlag Berlin Heidelberg 2011

“Rank Correction”: A New Side-Channel Approach for Secret Key Recovery 129

2. A distinguisher that selects the most relevant partitionings, amongst all
the secret hypotheses. The distinguisher is basically a statistical tool, that
aims at putting forward any bias. They can be for instance a difference of
means [10], a covariance [6], a correlation (linear [2] or rank-based [9]), a
mutual information [4] or a variance [16, 12].

Some studies suggest that all distinguishers are equivalent asymptotically [13]
(i.e. they are sound), and that they only differ by statistical artifacts that are
data-dependent. However, in concrete operational cases, the goal is clearly to
find some ways to accelerate the attack, taking into account that the scarce
resource is the number of measurements. Some papers compare distinguishers,
and conclude about their difference of efficiency [16]. Interesting results [5] show
that some distinguishers are better for the first order success rate and that others
are better for the guessing entropy. Nonetheless, few papers have tried to devise
generic methods to improve existing attacks.

In this article, we will present such a scheme: the rank corrector, an algorithm
which aims at enhancing existing attacks, independently of the distinguisher or
the architecture.

The rest of the paper is organized as follows. Sec. 2 presents the background
of the study. The principle of the rank corrector, as well as its algorithm are
detailed in Sec. 3, then, experimental results, illustrated by first order success
rate and guessing entropy are given in sec. 4. Finally, Sec. 5 concludes the paper
and opens some perspectives. A comparison with other profiling-based attacks
is given in appendix A.

2 Background Knowledge

2.1 Rank-Based SCAs

As stated in Sec. 1, the main difference regarding most SCAs relies on the mea-
surements partitioning process and the used distinguisher. Otherwise they usu-
ally run iteratively and a new ranking of all secret hypotheses is created at each
iteration. Then, when the first ranked hypothesis is stable for a certain amount
of iterations, it is returned by the SCA software. The attack is successful when
it is, indeed, the actual secret.

In this article, we focus on SCA targeting cryptographic devices embedded
with algorithms like the Data Encryption Standard (DES) or the Advanced
Encryption Standard (AES), which usually aims at recovering a secret key. Al-
though various biases and noises are introduced by implementations, architec-
tures, and especially measurements acquisition tools, we will show that the rank
of the secret key displays a specific behaviour with regards to other hypotheses.
This article is based on the study of such behaviours, and explains how to exploit
them in order to enhance existing SCAs.

2.2 Notations

In the rest of this article, we will use the following notations:

130 M. Nassar et al.

– RC is the rank corrector.
– SK is the secret key.
– PK, the predicted key, is the key hypothesis which has the best rank for the

current iteration. The value of PK is updated for each new observation.
– PKi denotes the predicted key at iteration i.
– FK represents a false key hypothesis (all but the secret key).
– Rk, Rk,i are respectively the ranks of key hypothesis k for the current iter-

ation and iteration i.
– Sinit is the iteration number corresponding to the beginning of stability for

a given PK.
– Trace denotes a power or electro-magnetic measurement.
– MTD, or Measurement To Disclosure, is the total number of traces needed

to successfully perform the attack.

2.3 Key Rank Behaviours

In theory, for a great number of observations, SK should always be ranked first,
as we are doing the correct partitioning of traces for each iteration. This is not
the case for FKs which should have an unstable (random) rank. However, actual
attacks are usually performed with a limited number of measurements, or aim,
at least, to be successful using as few of them as possible. Therefore, we studied
the behaviours of the ranks of both the secret key and false key hypotheses, by
performing numerous DPAs and CPAs on four different architectures of DES
and three of AES, implemented Altera Stratix-II and Xilinx Virtex-II FPGAs.
The goal of this study was to find an empirical method taking advantage of the
distinctive behaviours between SK and the FKs.

First of all, we observed that RSK is always roughly decreasing until it reaches
first position, considering that the best rank is 0. Fig. 1 shows examples of such
behaviour during a Differential Power Analysis (DPA) on 6 bits of the first S-Box
of a DES coprocessor (a) and a Correlation Power Analysis (CPA) on 8 bits of
the first S-Box of an AES 256(b), both implemented on FPGA. While in Fig. 1(a)
RSK decreases almost monotonically, in Fig. 1(b) it oscillates much more while
doing so. Then, in both cases, RSK clearly fluctuates within a short range of
the first positions before definitely stabilising. This behaviour is observed most
of the time, however, in rare cases, RSK can stabilise as soon as it reaches the
first position, without fluctuating.

Regarding false keys, we observed that, as the number of processed traces
increases, they clearly tend to display more random behaviours. Fig. 2 shows
two examples of false key rank evolution during the same DPA as Fig. 1(a).
On the one hand, the leftmost one (FK1) is almost random and never ranks
first, thus will not be treated as a potential secret key. This type of behaviour is
easily differentiable from SK. On the another hand, the rank of the rightmost
key (FK2) does reach the first position at some point and could therefore be
concurrent to SK. However, with the increasing iteration number, RFK2 clearly
raises, which would not be the case for SK.

“Rank Correction”: A New Side-Channel Approach for Secret Key Recovery 131

In conclusion, our study shows that it should indeed be possible to differentiate
between SK and the FKs based on the observation of their ranking. As a matter
of fact, RSK is roughly decreasing and then usually fluctuates between a few
positions before stabilising, whereas the RFKs, when they reach the first rank,
usually become random a few iterations later.

(a) Rank of SK during a DPA on DES (b) Rank of SK during a CPA on AES

Fig. 1. Examples of rank behaviours for the secret key

(a) (b)

Fig. 2. Examples of rank behaviours for false keys

3 Rank Corrector: Principle

3.1 Application Field

The main feature of the rank corrector is to be as generic as possible. It can
therefore be applied to a wide range of attacks. Indeed, an attack scheme only
needs to meet three requirements to be compatible, with our software:

1. It has to be iterative (for instance DPA iterates on a number of power con-
sumption measurements).

132 M. Nassar et al.

2. A ranking of all key hypotheses must be produced at each iteration.
3. The SCA software must decide on the secret key by observing the stability

of the first ranked hypothesis.

Up to now, the usual criterion employed to decide on SK is, indeed, the stabil-
ity of the rank. For example, in the first edition of DPA contest [18], a stability
of 100 traces had to be achieved in order to validate the attacks, performed
on an unprotected DES cryptoprocessor. Moreover, most of the passive SCAs,
usually based on the exploitation of power consumption or electromagnetic mea-
surements, present an iterative behaviour as, at some point, they process those
traces one after the other.

Thereby, the rank corrector can be used to enhance a very large number of
attacks, like DPA, CPA or Mutual Information Attack (MIA).

3.2 Basic Principle

The rank corrector (RC) is a generic1 custom-made algorithm, which aims at
exploiting the key behaviours described in Sec. 2.3 in order to significantly reduce
the number of traces needed to achieve a successful SCA.

As a matter of fact, it studies in real-time, the evolution of an iterative ranking
(for instance the one produced by a DPA software), in order to virtually reassign
previous rank positions to the current PK, depending on past and current rank-
ings. The detailed algorithm is described in Sec. 3.4. It is totally independent of
the attack, given that it verifies the requirements described in section 3.1. In-
deed, it only modifies, on the fly, the stability of the target SCA, while creating
a new ranking in parallel (for the sake of displaying the results).

Eventually, RC can be seen as a plug-in, designed to enhance most existing
SCAs.

Now suppose that we are performing a DPA on one sub-key of a cryptographic
device implementing an algorithm like DES or AES, and that it will be successful,
meaning that SK will eventually be ranked first and reach the given stability.
Before stabilizing, RSK should be roughly decreasing (as stated in Sec.2.3). Then
most of the time, after reaching the first position (rank = 0), it will fluctuate
within a short range, and then stabilize, from Sinit to MTD.

In this case, RC will detect those fluctuations in the proximity of the stabili-
sation, remove them and increase the stability counter by an equal amount (G)
of traces. Thereby, G represents the gain of RC with regards to a simple DPA.
Fig. 3 illustrates this scenario, by showing a zoom of the evolution of the RSK

displayed in Fig. 1(a), with and without the rank corrector. As we can see in this
example, without RC the stability starts after 340 traces, whereas with RC, it
does after only 240 traces. Thus we have a gain of 100 traces.

1 We insist that our methodology does not consist in trying to tune an attack on
a given acquisition campaign so that it retrieves the key as fast as possible, as
in [11]. Instead, we attempt to pre-characterize a set of parameters from a training
campaign, and to use this prior knowledge subsequently in a positive view to speed
up forthcoming attacks.

“Rank Correction”: A New Side-Channel Approach for Secret Key Recovery 133

(a) Basic DPA. (b) DPA with RC.

Fig. 3. Rank of SK during a DPA, with and without RC

The main idea of RC is to locate and disqualify FKs that are ranked first
during the fluctuations of SK. Therefore, it proceeds as follows:

1. When a PK has been stable for certain amount of traces STH (stability
threshold), starting at Sinit, it is considered as a potential SK, as shown in
Fig. 4(a).

2. Then RC scans a small range of traces before Sinit (called correction range)
searching for fluctuations of the current PK (let’s call it CPK). If they
exceed a certain limit Rmax, CPK is disqualified and will no longer be a
candidate for SK.

3. In the other case, RC will check the ranks, at the current iteration, of all
other PKs present in the correction range and discard all those that show
a rank exceeding Rmax. Then the rank of SK, within the correction range,
is modified by removing the discarded keys.

Moreover, RC operates by using increasing values of STH . Each time the sta-
bility of PK reaches given values STHn (with n ∈ N∗), RC is launched. This
threshold mechanism was chosen for two reasons. On one hand it allows RC to
easily discard any PK that isn’t stable for at least STH1 , and only take into
consideration the potential SKs. Moreover, for each new threshold, the correc-
tion range (i.e. the potential gain) increases, as shown in Fig. 4(b) which is
coherent with the fact that the more stable a PK is, the more likely it is to be
SK. On another hand, it keeps the computation time of the attack close to the
original one as RC is only called a few times.

3.3 RC Parameters and Their Evaluation

In order to be as generic as possible, RC was designed as a parametric algo-
rithm. It is thereby based on two main parameters, that allow RC to adapt to

134 M. Nassar et al.

Rmax

Sinit

STH

Correction range
(C)

(a) RC principle.

Rmax

STH1

STH2

Sinit

at STH2 (C2)
Correction range Correction range

at STH1 (C1)

(b) RC threshold mechanism.

Fig. 4. Illustration of RC principle

almost any attack, independently of any bias introduced by either the architec-
ture, the implementation, or the acquisition technique:

1. S is the minimum stability required to ensure that the attack will always
decide on the actual secret key (SK).

2. Rmax is the maximum fluctuation range of SK before the stabilization (i.e.
between the first time SK attains the first position, and its stabilization).

These two parameters must be correctly evaluated for RC to work properly.
For instance choosing S too small, could easily lead any SCA to decide on a
false key, and using RC in this context would clearly increase the probability of
doing so.

For this purpose, we use a clone device, and undergo a profiling phase, com-
puting multiple attacks for different SK. For each key and each attack, we record
the evolution of the ranks of SK (RSK) and every FK, in order to determine
the best Rmax and S. Indeed, the more representative these two parameters are
of SK (and not of any FK), the more efficient RC will be, as it will be able to
disregard more FKs, and almost only consider the actual SK as a correction
target.

Thanks to this profiling, we are then able to ensure that RC will not lead to
finding a false key.

Aside from Rmax and S, RC takes into account a few other secondary param-
eters: while these parameters do influence the maximum gain of RC, they do not
have a major impact on the overall results. Therefore, and in order to simplify
the notations, they will be fixed, in the rest of this article, to the values we used
during our experiments.

1. n: the number of thresholds, n ∈ 1, 2, 3.
2. STHn: the n − th stability threshold, STHn = (n ∗ S)/4.
3. Cn: the n − th correction range, Cn = STHn/2.

“Rank Correction”: A New Side-Channel Approach for Secret Key Recovery 135

Those empirical values were deduced from thorough studies on several crypto-
graphic devices. Naturally, they may not be optimal for all SCAs and all im-
plementations, and a finer study should be carried out, using the clone device,
before every specific attack.

3.4 Description of the Algorithm

Algo. 1 gives a detailed description of RC. When launched, it starts by searching
for an occurrence of the current PK (CPK), in the first rank of the Cn iterations
before Sinit (the current iteration number being CIT = Sinit + STHn). The
search starts at Sinit − Cn down to Sinit − 1 (step 2 and 3 of our algorithm).
Finding CPK at iteration IT , means that RCPK did actually reach first position
and fluctuate before stabilizing, meaning it is, as such, open to correction by RC
(step 4).

All PKs between Sinit and IT are then checked in the reverse order (from
Sinit to IT), and reassigned to CPK when possible (step 5). This way, whenever
a rank that should not be corrected is found, RC is stopped. Several scenarios
can then occur: the trivial one is when PKj = CPK, with j ∈ Sinit to IT
(though it is never true for j = Sinit − 1). In this case, RC directly increases the
stability by one iteration. When PKj �= CPK (step 9), RC will look at RCPK,j .
If RCPK,j < Rmax (i.e. RCPK,j is near the first position), that means CPK is
a possible candidate to be SK (step 10). RC then checks if RPKj ,CIT ≥ Rmax,
and if this second condition is verified, PKj is disqualified as a potential SK,
and removed from the ranking (step 12 and 13). This check is mandatory, as, for
the first thresholds, CPK could be a false key, in which case the real SK is likely
to be one of the PKj, with j < Sinit. This step is repeated until CPK = PKj or
a PKj that cannot be disqualified (RPKj ,CIT < Rmax) is found. Indeed, when
RPKj ,CIT < Rmax our algorithm considers PKj to be a possible SK and thus no
correction is made. Then, if CPK = PKj, the stability is once again increased
(step 15). As a matter of fact we suppose, based on the observations of Sec. 2.3,
and the profiled value of Rmax that RSK will never go past Rmax once it has
been ranked first. Thus any PK that goes past Rmax is definitively discarded.

These steps are repeated for each threshold, and each time the number of
traces that might be corrected increases. As a matter of fact, the more stable a
PK is, the more likely it is to be SK. Moreover, a FK that was not corrected
at the first threshold, (for instance because it was ranked second), will usually
not be in the same position at the second threshold, and will then be replaced
by PK.

Consequently, the maximum gain of RC can be computed as shown in eq. 1:

GAINmax =
3∑

n=1

STHn

2
≡

3∑
n=1

n ∗ S

8
(1)

3.5 Example

Fig. 5 illustrates the evolution of key ranks during an SCA using RC, when the
stability of a given key reaches the first threshold. K represents our secret key,

136 M. Nassar et al.

Algorithm 1. RC detailed algorithm.
1: for each threshold STHn (n ∈ 1, 2, 3) do
2: for iteration in Sinit −Cn to Sinit do
3: Search for an occurrence of the current CPK.
4: if CPK is found at iteration = IT then
5: for j in Sinit to IT do
6: Check the value of PKj

7: if PKj = CPK then
8: increase stability by 1
9: else

10: if RCPK,j < Rmax then
11: while CPK �= PKj and RPKj ,CIT ≥ Rmax do
12: Remove PKj from the ranking
13: if CPK = PKj then
14: increase stability by 1
15: else
16: Exit.
17: else
18: Exit.
19: return stability

and Sinit the iteration number marking the beginning of its stability, while K0,
K1 and K2 are three false keys. The process of RC can be described in three
steps:

1. The rank of K (RK) reaches the first threshold (i.e. a stability of STH1 =
S/4 traces), thus RC searches for K in the PKs of the S/8 prior traces. It
is found at iteration IT , implying that RK did actually reach rank 0 and
fluctuate before stabilizing.

2. Two different PKs, K1 and K2 are found respectively at iteration Sinit − 1
and Sinit −3. For those iterations RK is compared to Rmax. As RK ≥ Rmax

is true in both cases, RC enters the next step of the algorithm and checks
the ranks of K1 and K2 at the current iteration CIT = Sinit + S/4.

3. RK2,CIT is greater than Rmax, so K2 is discarded. Then, K which was ranked
second, becomes the new PK of iteration Sinit − 1 and the stability is in-
creased. K is already ranked first at iteration Sinit−2 so the stability is once
again increased. RK1,CIT , on another hand, does not verify the condition,
meaning it is a possible candidate for SK, and RC is therefore stopped.

In this example RC produced a gain of 2 traces after the first threshold, and
Sinit is thereby updated as shown in Fig. 5.

3.6 Optimization

Although most of the time SK does fluctuate before stabilizing, there are rare
cases where it permanently stabilizes as soon as it reaches the first position (this
occurred in less than 4% of all the attacks we performed during our study). In

“Rank Correction”: A New Side-Channel Approach for Secret Key Recovery 137

��
��
��
��

��
��
��
��

���
���
���
���

��
��
��
��

��
��
��
��

���
���
���
���

��
��
��

��
��
��

��
��
��

��
��
��

���
���
���

���
���
���

��
��
��

��
��
��

��
��
��

��
��
��

���
���
���

���
���
���

K KK0 K1 K K traces (iterations)K2 K . . .

K KK0 K1 K K traces (iterations)K2 K . . .

RK < Rmax ? YES
YESRK < Rmax ?

Rank = 0

1

2

K KK0 K1 K KK2 K . . .
KK

K . . .K KK0 K1 K K

3

Sinit − S
8

Sinit Sinit + S
4
≡ CIT

Rank = 0

STH1C1

Step

traces (iterations)

Rank = 1

Rank = 0

RK2 ≥ Rmax ? NO

RK1 ≥ Rmax ? YES

New Sinit

traces (iterations)K

IT

Fig. 5. Illustration of an SCA using RC, at the first threshold

this case, the gain should be null. In order to decrease the probability of having
such a gain, we take advantage of the fact that RSK is likely to be < Rmax just
before stabilizing. Thus RC will search for occurrences of SK in those ranks,
before the stabilization, and try to disqualify the corresponding PKs, in order
to reassign SK to the first rank. This new search range, called C2n, is another
secondary parameter (like n and Cn), and will also be fixed in the rest of this
article to our experimental value: C2n = STHn/4 (see Sec. 3.3).

Algo. 1 is then complemented as follows: step 18 is replaced by algo. 2. Then
when CPK is not present in the first search range (step 17 of algo. 1) RC will
check if RCPK < Rmax for a smaller range of iterations: from Sinit−C2n to Sinit.
The following process is similar to the former one, if all PKs can be disqualified
(RPKk,CIT ≥ Rmax), CPK becomes PKk and the stability is increased.

Algorithm 2. RC optimization.
1: if CPK is not found then
2: for k in Sinit to Sinit − I2n do
3: if RCPK < Rmax then
4: while CPK �= PKj and RPKj ,CIT ≥ Rmax do
5: Remove PKj from the ranking
6: if CPK = PKj then
7: increase stability by 1
8: else
9: Exit

Obviously SK will not always display such a behaviour, and there will thus
be cases where the gain is null. A more thorough study of these situations could
certainly result in an improvement of our algorithm, but is out of the scope of
this article.

138 M. Nassar et al.

4 Experimental Results

Our experiments were conducted on Stratix-II FPGAs, soldered on two SASEBO-
B boards provided by the RCIS [8] (one for the actual attack an one for the clone
device). The target cryptoprocessor implemented in those devices is an unpro-
tected DES. Power consumption measurements were acquired, using a differen-
tial probe plugged to the positive rail of the FPGA core power supply through
a 1 Ω shunt resistor, coupled with a 54855 Infiniium oscilloscope from Agilent
Technologies [1].

First of all, we estimated the parameters (S and Rmax) with a profiling phase
on the first FPGA. Using three different keys, we performed 100 attacks for each
one. Eventually, S = 110 and Rmax = 5 were deduced as the optimal values for
these parameters.

Then, we acquired 50000 traces in order to perform several DPAs on the real
device, with and without using the rank corrector.

In order to better assess the efficiency of our algorithm, we use two evaluation
metrics introduced by Standaert et al. [17]. On one hand, the first-order success
rate (Fig. 6) expresses the probability that, given a pool of traces, the attack’s
best guess is the correct key. On the other hand, the guessing entropy (Fig. 7)
measures the position of the correct key in a list of key hypotheses ranked by a
distinguisher.

The improvement brought by our scheme is clearly visible on the curve of the
success rate in Fig. 6. For instance a success rate of 80% is reached with less
than 90 traces with RC, when the basic DPA needs more than 110 traces to
do so.

While the guessing entropy is also always lower with RC than without, the gap
between the two is definitely thinner than for the success rate. This is explained
by the fact that the correction takes place when the rank of SK is lower than 5,
so when computing the mean of ranks on a large number of attacks, it doesn’t
have a great impact on the final results.

Moreover, after 300 complete attacks on random pool of traces, we obtain a
mean gain of 43.7 traces. Considering that the basic DPA requires 250 to 300
traces to complete the attack, as shown in Fig. 6, we conclude that using RC
results in a gain of ∼ 15% in terms of MTD.

5 Conclusion and Perspectives

In this paper the “rank corrector” method which aims at enhancing any kind
of SCA attack, has been presented and evaluated. The principle based on the
distinguishable evolution of the ranking between the secret key and any false key
has been observed on different SCAs. Two parameters which are the threshold
of stability and the maximum range are necessary for the RC to work efficiently.
When these parameters are well profiled a gain of at least 15% in terms of MTD
can be expected with regards to the classical DPA. As perspectives to enhance
the RC it should be interesting to consider the evolution of the values obtained

“Rank Correction”: A New Side-Channel Approach for Secret Key Recovery 139

by the SCA to refine the rank evolution. The RC also needs more experimental
validation on many kinds of SCAs and target devices even if the ranking be-
haviour seems identical between different attacks. A theoretical approach based
on a study of the probability distribution evolution is also foreseen to prove and
improve the efficiency of the method.

Fig. 6. First order success rate for DPA with and without RC

Fig. 7. Guessing entropy for DPA with and without RC

140 M. Nassar et al.

References

1. Agilent Technologies, http://www.agilent.com/
2. Brier, É., Clavier, C., Olivier, F.: Correlation Power Analysis with a Leakage Model.

In: Joye, M., Quisquater, J.-J. (eds.) CHES 2004. LNCS, vol. 3156, pp. 16–29.
Springer, Heidelberg (2004)

3. Chari, S., Rao, J.R., Rohatgi, P.: Template attacks. In: Kaliski Jr., B.S., Koç,
Ç.K., Paar, C. (eds.) CHES 2002. LNCS, vol. 2523, pp. 13–28. Springer, Heidelberg
(2003)

4. Gierlichs, B., Batina, L., Tuyls, P., Preneel, B.: Mutual information analysis. In:
Oswald, E., Rohatgi, P. (eds.) CHES 2008. LNCS, vol. 5154, pp. 426–442. Springer,
Heidelberg (2008)

5. Gierlichs, B., De Mulder, E., Preneel, B., Verbauwhede, I.: Empirical comparison of
side channel analysis distinguishers on DES in hardware. In: IEEE (ed.) ECCTD.
European Conference on Circuit Theory and Design, Antalya, Turkey, August 23-
27, pp. 391–394 (2009)

6. Guilley, S., Sauvage, L., Danger, J.-L., Selmane, N., Pacalet, R.: Silicon-level solu-
tions to counteract passive and active attacks. In: FDTC, 5th Workshop on Fault
Detection and Tolerance in Cryptography, pp. 3–17. IEEE-CS, Washington DC,
USA (2008)

7. Homma, N., Nagashima, S., Imai, Y., Aoki, T., Satoh, A.: High-Resolution Side-
Channel Attack Using Phase-Based Waveform Matching. In: Goubin, L., Matsui,
M. (eds.) CHES 2006. LNCS, vol. 4249, pp. 187–200. Springer, Heidelberg (2006)

8. Japanese RCIS-AIST,
http://www.rcis.aist.go.jp/special/SASEBO/index-en.html

9. Karsmakers, P., Gierlichs, B., Pelckmans, K., Cock, K.D., Suykens, J., Preneel,
B., Moor, B.D.: Side channel attacks on cryptographic devices as a classification
problem. COSIC technical report

10. Kocher, P.C., Jaffe, J., Jun, B.: Differential Power Analysis. In: Wiener, M. (ed.)
CRYPTO 1999. LNCS, vol. 1666, pp. 388–397. Springer, Heidelberg (1999)

11. Lomné, V., Dehbaoui, A., Maurine, P., Torres, L., Robert, M.: Differential Power
Analysis enhancement with statistical preprocessing. In: IEEE (ed.) DATE, March
8-12 (2010)

12. Maghrebi, H., Danger, J.-L., Flament, F., Guilley, S.: Evaluation of Countermea-
sures Implementation Based on Boolean Masking to Thwart First and Second
Order Side-Channel Attacks. In: SCS, November 6-8, pp. 1–6. IEEE, Los Alamitos
(2009)

13. Mangard, S., Oswald, E., Standaert, F.-X.: One for All - All for One: Unifying
Standard DPA Attacks. Cryptology ePrint Archive, Report 2009/449 (2009)

14. Schindler, W.: Advanced stochastic methods in side channel analysis on
block ciphers in the presence of masking. Journal of Mathematical Cryptol-
ogy 2(3), 291–310 (2008); ISSN (Online) 1862-2984, ISSN (Print) 1862-2976,
doi:10.1515/JMC.2008.013

15. Schindler, W., Lemke, K., Paar, C.: A Stochastic Model for Differential Side Chan-
nel Cryptanalysis. In: Rao, J.R., Sunar, B. (eds.) CHES 2005. LNCS, vol. 3659,
pp. 30–46. Springer, Heidelberg (2005)

16. Standaert, F.-X., Gierlichs, B., Verbauwhede, I.: Partition vs. Comparison Side-
Channel Distinguishers: An Empirical Evaluation of Statistical Tests for Univari-
ate Side-Channel Attacks against Two Unprotected CMOS Devices. In: Lee, P.J.,
Cheon, J.H. (eds.) ICISC 2008. LNCS, vol. 5461, pp. 253–267. Springer, Heidelberg
(2009)

http://www.agilent.com/
http://www.rcis.aist.go.jp/special/SASEBO/index-en.html

“Rank Correction”: A New Side-Channel Approach for Secret Key Recovery 141

17. Standaert, F.-X., Malkin, T.G., Yung, M.: A Unified Framework for the Analysis
of Side-Channel Key Recovery Attacks. In: Joux, A. (ed.) EUROCRYPT 2009.
LNCS, vol. 5479, pp. 443–461. Springer, Heidelberg (2009)

18. TELECOM ParisTech SEN research group. DPA Contest 1st edn. (2008–2009,
http://www.DPAcontest.org/

A Comparison of the Rank Corrector with Other
Profiling Attacks

The rank corrector technique shares characteristics with the profiling attacks,
such as template attacks [3]. This section clarifies the common points and the
differences between the two types of attacks, and explains in which context
the proposed attack methodology empowers an attacker when template attacks
would be infeasible or impossible.

A.1 Assumptions on the Profiling Stage

Exactly as template attacks, the proposed methodology applies to the cases when
it is wanted to break devices very fast, in “production mode”. Template attacks
require as a preliminary stage to characterize exhaustively a clone device, that
is furthermore “open”. This means that the device can be programmed with
arbitrary secrets. Once programmed with a key, the device is exercised and
some of its side-channels are recorded. The observation under this key leads
to the construction of a template (typically consisting in the average and the
covariance of the observations when the noise is Gaussian). It is noted in [15]
that it can be sufficient to program the device with only one known key, in
order to build all the templates. This case requires the templates not to be
indexed by the key value, but instead by a sensitive variable (such as the distance
between two states within the algorithm) that depends on the key. Then, in the
attack phase, the distance with this key is retrieved by an exhaustive matching
against all pre-built templates. Such an attack nevertheless requires that the EIS
hypothesis2 holds, which is very often the case in practice (at least no flagrant
counter-example has been published so far). In a very similar idea, the stochastic
approach [15,14] also considers a partial construction of an approximated model,
but still requires the attacker to know the key for the purpose of this step;
this condition is a mandatory requirement for the basis characterization of the
stochastic approach.

The rank corrector does not demand that the attacker know the value of
one key on a clone device. Instead, it only requires that a clone be available and
attackable. On this device, the key is extracted by any suitable non-profiled side-
channel attack. Then, various behaviours about the attack convergence (those
2 The “Equal Images under the same Sub-key” (EIS) hypothesis assumes that in case

the round sub-key k is merged with the plaintext m by a bitwise exclusive-or (XOR)
and that the rest of the computation depends only on m⊕ k, then the device would
leak exactly the same if the key was k′ = k⊕ δ (for an arbitrary δ) and the messages
were also translated by δ [15].

http://www.DPAcontest.org/

142 M. Nassar et al.

discussed in Sec. 3.3) are gathered, and serve as a basis to forge portable indica-
tors of the attack unfolding. These parameters make up the basic substrate for
subsequent attacks speed up. Thus, as opposed to template attacks, for which
the attacker is expected to know at least one key, this methodology can be con-
ducted blindly w.r.t. the secret. Therefore, in practice, the clone device can be
bought from the normal market, as opposed to traditional profiling-based attacks
that require an insider ships out an “engineering sample” (normally concealed
carefully in strictly access-controlled facilities).

A.2 Templates Portability

In the cases where the attacker indeed manages to get an open clone device,
another factor has to be taken into account when comparing the rank-corrector
with the traditional template attacks. The templates (or the projection basis
involved in stochastic analysis) should be characterized on a clone device, with
a similar test environment. Now, the portability of templates is an open issue in
the literature.

We indeed show that the waveforms shapes differ from one “training” cam-
paign that has been carried out a long time ago and the “matching” campaign.
For the sake of illustration, we compare three campaigns, denoted A, B and C.

1. Campaign A: 80 000 measurements garnered in year 2006 at nominal volt-
age (1.2 V) serve to build the templates,

2. Campaign B: 50 000 measurements garnered in year 2010 at nominal volt-
age (1.2 V) on the same ASIC are used for the matching,

3. Campaign C: 50 000 measurements garnered in year 2010 at reduced volt-
age (1.0 V) on the same ASIC are also used.

All campaigns have been averaged sixteen times by the oscilloscope to filter
out as much environmental noise as possible. The goal of the campaign C is
to provide with a comparison of two campaigns (B and C) that were carried
out close in time, but with slightly different experimental conditions. Here, the
variation comes from the supply power.

We observe first of all that campaign A is not in phase with campaigns B and
C. The figure 8 typically emphasizes the timing mismatch between A, on the one
hand, and B & C on the other hand. This figure is zoomed on the first round of
encryption.

Now, if we apply the phase-only correlation (aka POC [7]) resynchronization
technique, we end up with a global resynchronization of the curves. The result
is depicted in Fig. 9.

Moreover, the amplitudes are not the same. This could be fixed by scaling
vertically the curves. Eventually, we observe in Fig. 9 that the waves are differ-
ent. We also compare the templates in the PCA subspaces. Without surprise,
the principal directions are also desynchronized. Using the similar POC resyn-
chronization method as previously done on the average raw traces, we get a time
offset correction. After this time shift, the eigenvectors are in phase, as depicted
in Fig. 10.

“Rank Correction”: A New Side-Channel Approach for Secret Key Recovery 143

-50

 0

 50

 100

 150

 200

 250

 5000 5500 6000 6500

V
ol

ta
ge

 [m
V

]

Time [samples]

Campaign A
Campaign B
Campaign C

Fig. 8. Comparison of the average of cam-
paigns A, B and C

-50

 0

 50

 100

 150

 200

 250

 5000 5500 6000 6500

V
ol

ta
ge

 [m
V

]

Time [samples]

Campaign A
Resynchronized campaign B
Resynchronized campaign C

Fig. 9. Comparison of the average of
resynchronized campaigns A, B and C

The eigenvector shapes also differ. Therefore, the success rate of the attack is
diminished. At the opposite, the rank-corrector considers global attack parame-
ters, and it is thus free from the local modifications (for instance the waveforms).
Although it is likely that some preprocessing on both the training and the match-
ing campaigns manage to ensure a most successful success rate, these are so far
to be considered advanced and are unstudied. In this paper, we argue that the
rank corrector parameters are global parameters that are little affected by the
acquisition conditions, even if they are differing. Thus, their portability (in the-
ory and in practice) is trivially true. This means that we have put forward a
systematic and algorithm independent methodologies to speed up the attacks.
Still better, if a template profiling stage is feasible, then it is even possible to
combine a template attack with the rank-corrector attack accelerator.

-50

 0

 50

 100

 150

 200

 5000 5500 6000 6500

V
ol

ta
ge

 [m
V

]

Time [samples]

Campaign A
Resynchronized campaign B
Resynchronized campaign C

Fig. 10. Comparison of resynchronized first eigenvectors for A,B and C campaigns
passed through PCA

A Cache Trace Attack on CAMELLIA

Rishabh Poddar, Amit Datta, and Chester Rebeiro

Department of Computer Science and Engineering,
Indian Institute of Technology, Kharagpur, India
{rishavp,adatta,chester}@cse.iitkgp.ernet.in

Abstract. CAMELLIA is a 128 bit block cipher certified for its security
by NESSIE and CRYPTREC. Yet an implementation of CAMELLIA can
easily fall prey to cache attacks. In this paper we present an attack on
CAMELLIA, which utilizes cache access patterns along with the differen-
tial properties of CAMELLIA’s s-boxes. The attack, when implemented
on a PowerPC microprocessor having a 32 byte cache line size requires
power traces from 216 different encryptions. Further, the work shows that
this trace requirement reduces to 211 if a 64 byte cache line is used.

1 Introduction

With the development of newer and better encryption schemes, it has become
increasingly difficult to find flaws in the algorithm and therefore the schemes are
more secure. However, implementations of the encryption algorithms are highly
susceptible to being attacked. Attacks that target implementations are known
as side channel attacks, and were discovered by Paul Kocher in 1996 [10]. These
attacks take advantage of the information that gets leaked during the cipher’s
execution. The channels for leakage are generally power consumption, timing for
execution, and electro-magnetic radiation.

Cache attacks are a class of side-channel attacks that glean secret information
from the behavior of the processor’s cache memory. These attacks utilize the fact
that a cache miss has a different power and timing profile compared to a cache
hit. Cache attacks were first prophesied by Kelsey et al. in [9]. A theoretical
model of a cache attack was then constructed by Page in [12]. In [17] and [18],
the first cache attacks were successfully demonstrated. The ciphers targeted were
MISTY1, DES, and 3-DES. Since the arrival of AES, it has been the favorite
choice among side-channel attackers. There were several variants of cache attacks
that were demonstrated on AES [1,3,4,5,6,7,8,11,16]. All attacks on AES can be
classified into three depending on the channel used to collect information. These
channels are power consumption traces, spy processes, and timing information.
In scenarios where the attacker has direct access to the encryption device, mon-
itoring power consumption traces is the best strategy in order to minimize the
interactions with the device. These attacks, which came to be known as cache
trace attacks, was the method used to attack AES in [1,4,7,8].

M. Joye et al. (Eds.): InfoSecHiComNet 2011, LNCS 7011, pp. 144–156, 2011.
c© Springer-Verlag Berlin Heidelberg 2011

A Cache Trace Attack on CAMELLIA 145

S

x y

k(1)k(0)

S

Fig. 1. S-box Table Accesses

One strategy common to all cache attacks is to split the large secret key of
the cipher into a number of small key parts (for example the 128 bit key of AES
is split into 16 bytes). During the attack, each of these key parts is obtained
independently and then combined to obtain the entire key. In a Substitution-
Permutation Network (SPN) structure like AES, all 16 bytes of the key are used
in the first round itself. Attacking just the first round is simple because it is easy
for the adversary to have control of the round inputs. In Feistel ciphers however,
retrieving the entire 128 bit key often requires attacking more than one round.
This is much more difficult because as the depth of the attack (in terms of the
round being attacked) increases, it becomes increasingly difficult for the attacker
to control the round inputs. In [13] for example, an attack was demonstrated on
the generalized Feistel cipher CLEFIA [15], where obtaining the entire 128 byte
key required attacking three rounds of the cipher. As seen in [13], the attack on
the first round is very simple compared to the second round, while the third is
the most complex.

In this paper we propose a cache trace attack on the 128-bit block cipher
CAMELLIA [2]. CAMELLIA like CLEFIA is based on the Feistel structure.
Therefore our attack follows a similar strategy as the attack on CLEFIA de-
scribed in [13]. CAMELLIA however has the classical Feistel structure, while
CLEFIA uses a type-2 generalized Feistel structure [19]. In a type-2 generalized
Feistel structure, the adversary can control round inputs up to the 4th round.
In the classical Feistel structure, however, only the second round inputs can be
controlled. Further, retrieving the 128 bit CLEFIA key required attacking only 3
rounds. On the other hand, for CAMELLIA, 4 rounds need to be attacked. These
reasons make an attack on CAMELLIA a bigger challenge and hence motivates
the work in this paper.

The outline of the paper is as follows: the next section introduces cache at-
tacks and gives a brief summary of CAMELLIA. Section 3 present the attack
procedure. Section 4 discusses how the attack was practically mounted. The final
section has the conclusions and future directions.

2 Preliminaries

In this section we first present the principle behind cache attacks and then give
a brief description of the CAMELLIA structure.

146 R. Poddar, A. Datta, and C. Rebeiro

F

F

F

F

F

kw1
k1

k2

k3

k4

k5

kw2

P1 − P8 P9 − P16

64 64

S1

S4

S3

S2

S4

S3

S2

S1

64

64

64

64

64

Permutation

out

key

in

64

I11
S1

I11
S4

I11
S3

I11
S2

I12
S4

I12
S3

I12
S2

8

8

8

8

8

8

8

8

8

8

8

8

8

8

8

8

I12
S1

Function

6464

Fig. 2. Partial Structure of CAMELLIA

2.1 Principle of Cache Attacks

All cache attacks target structures in the block cipher such as in Figure 1. The
figure shows two accesses to table S with indices (x⊕k(0)) and (y⊕k(1)). When
a cache hit occurs the following relation holds, leading to leakage of information
about the ex-or of the keys.

〈k(0) ⊕ k(1)〉 = 〈x ⊕ y〉 (1)

We note that due to the affects of the cache line, only the most significant bits
can be equated, therefore 〈·〉 refers to only these most significant bits. If the size
of k(0) and k(1) is l bits, and there are 2δ elements that share a cache line, then
only the most significant b = l − δ bits satisfy the above equation. Similarly,
when a cache miss occurs, the following inequality holds.

〈k(0) ⊕ k(1)〉 �= 〈x ⊕ y〉 (2)

2.2 The CAMELLIA Structure

CAMELLIA is the 128-bit block cipher that was jointly developed by Mitsubishi
and NTT in 2000. Since this cipher has been made available under a royalty-free
license, it has been certified for use by the European Union and Japan. It has
also become part of the OpenSSL Project, and incorporated in Mozilla’s Network
Security Services (NSS modules). Support for CAMELLIA has been added to
several security libraries as well as Mozilla’s popular web-browser, Firefox 3.

A Cache Trace Attack on CAMELLIA 147

CAMELLIA has been so designed that an encryption can be done using either
a 128-bit, a 192-bit or a 256-bit key. We have tested our attack on a 128-bit
implementation. However the techniques described can be extended to other key
lengths.

The 128−bit block cipher CAMELLIA [2] has a Feistel structure as shown in
Figure 2. The 16 bytes plaintext input P1 · · ·P16 is grouped in two words of 8
bytes each. There are 18 rounds in all, broken up into groups of 6 each. After the
6th and the 12th rounds, there are two FL/FL−1 function layers. In each round,
there is an F -function, which is a combination of key addition, substitution and
diffusion. The substitution is done by using four s-boxes, whereas the diffusion
is implemented as follows:⎛

⎜⎜⎜⎜⎝
z1

z2

.

.
z8

⎞
⎟⎟⎟⎟⎠ �−→

⎛
⎜⎜⎜⎜⎝

z′1
z′2
.
.
z′8

⎞
⎟⎟⎟⎟⎠ = M ·

⎛
⎜⎜⎜⎜⎝

z1

z2

.

.
z8

⎞
⎟⎟⎟⎟⎠

where,

M =

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

1 0 1 1 0 1 1 1
1 1 0 1 1 0 1 1
1 1 1 0 1 1 0 1
0 1 1 1 1 1 1 0
1 1 0 0 0 1 1 1
0 1 1 0 1 0 1 1
0 0 1 1 1 1 0 1
1 0 0 1 1 1 1 0

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

Each round has an addition of a round key. The ith round uses the round key ki.
Each of these round keys are of 64 bits. Additionally, whitening keys kw1 and
kw2 are applied at the start of encryption, while kw3 and kw4 are applied at the
end of encryption.

The implementation of CAMELLIA attacked in this paper consists of one 256
byte table which implements each s-box. The next part of the section discusses
the basic principle behind cache attacks.

3 The Attack on CAMELLIA

We depict the first two rounds of CAMELLIA’s Feistel structure to describe the
principle behind the proposed attack (Figure 3).

The input x consists of 8 concatenated bytes (x1|x2|x3|x4|x5|x6|x7|x8) and is
known as the differential introducing input. The input y consists of the bytes
(y1|y2|y3|y4|y5|y6|y7|x8) and is known as the restoring input. The F in the figure
is CAMELLIA’s F function (see Figure 2). For a particular fixed value of x, we
vary the bytes of y until we obtain cache hits in all s-box tables in the second

148 R. Poddar, A. Datta, and C. Rebeiro

k(1)

F

F

k(0)

x y

Fig. 3. First two rounds of CAMELLIA

round F function. We call this the collision setup phase. At the end of the setup,
the following equations holds for 1 ≤ i ≤ 8 if a cache hit is obtained.

〈xi ⊕ k
(0)
i 〉 = 〈yi ⊕ k

(1)
i ⊕ F (x, k(0))i〉 (3)

Similarly, the following inequalities hold if a cache miss is obtained.

〈xi ⊕ k
(0)
i 〉 �= 〈yi ⊕ k

(1)
i ⊕ F (x, k(0))i〉 (4)

We now displace the input byte x1 by dx1 �= 0, keeping the rest of the bytes
of x unchanged. After the s-box operation, the displacement is diffused to the
output bytes of the F function. As a result, some or all of the cache hits in the
second round are lost. We now modify the bytes of y to restore cache hits in
the second round, and once again obtain the collision state. This is called the
restoring phase. Let y′ = (y′

1|y′
2|y′

3|y′
4|y′

5|y′
6|y′

7|y′
8) be the new value of y after

the modification. Therefore, the differences in the output of the F function are
dyi = yi ⊕ y′

i.
From the difference distribution table for the s-box, one can derive the set of

possible output differentials corresponding to the input differential dx1 . Let this
set be called D. For every output differential do ∈ D, we compute the matrix
product M · (do , 0 , 0 , 0 , 0 , 0 , 0 , 0)T . This is used to obtain the differentials
(dz1 , dz1 , dz2 , dz3 , dz4 , dz5 , dz6 , dz7 , dz8)T . For the correct s-box output dif-
ferential do, 〈dzi〉 = 〈dyi〉 for 1 ≤ i ≤ 8. We exploit this to obtain the set of
possible keys (S) for the key byte k

(0)
1 . The number of candidate keys can be re-

duced by repeating the attack several times and taking the intersection between
the sets. If r repetitions are done, then,

Expected number of candidate keys after r repetitions =
|S|r

256r−1
(5)

In a similar way, displacements introduced at x2, x3,. . . , x8, would lead to leak-
ages in k

(0)
2 ,k(0)

3 , . . . , k
(0)
8 respectively. The technique used to generate the candi-

date keys is given by Algorithm 1, provided the collisions have been set up. The

A Cache Trace Attack on CAMELLIA 149

next part of the section describes the full attack on CAMELLIA. The proposed
attack first determines k1⊕kw1, then k2⊕kw2, followed by k3⊕kw1, and finally
k4 ⊕ kw2 (see Figure 2). This information is used to reverse the key scheduling
algorithm to obtain the entire key.

Algorithm 1. find : Finding Key Byte k
(0)
i assuming collisions have been

setup
Input: i ∈ {1, 2, . . . , 8}, the differential introducing input x and restoring input y

Output: S(k
(0)
i) : Candidate Key Set for k

(0)
i

1 begin

2 S(k
(0)
i) ← {}

3 xi ← xi ⊕ dxi

4 Restore collisions : Find y′
1, y′

2, . . . , y′
8 which causes collisions in the accesses of the

2nd round
5 D ← output difference set corresponding to the input difference dxi

6 foreach do ∈ D do

7 (dz1 , dz2 , dz3 , dz4 , dz5 , dz6 , dz7 , dz8)
T ← M · (do , 0 , 0 , 0 , 0 , 0 , 0 , 0)T

8 if (〈dz1〉 = 〈y1 ⊕ y′
1〉 and 〈dz2〉 = 〈y2 ⊕ y′

2〉 and 〈dz3〉 = 〈y3 ⊕ y′
3〉 and

〈dz4〉 = 〈y4 ⊕ y′
4〉 and 〈dz5〉 = 〈y5 ⊕ y′

5〉 and 〈dz6〉 = 〈y6 ⊕ y′
6〉 and

〈dz7〉 = 〈y7 ⊕ y′
7〉 and 〈dz8〉 = 〈y8 ⊕ y′

8〉) then

9 S(k
(0)
i) ← S(k

(0)
i) ∪ {do}

10 end

11 end

12 end

3.1 Determining k1 ⊕ kw1

Let the 16 bytes of the input plaintext be (P1|P2| · · · |P16). We consider the
memory accesses to the first and second round F functions. The structure is
similar to Figure 3 with the 8 leftmost bytes P1, P2, · · ·P8 as the differential
introducing input, and the 8 rightmost bytes P9, P10, · · ·P16 as the restoring
input. In CAMELLIA, each s-box is used twice per round. Therefore, a resulting
cache hit in the second round would be due to collisions with either of these
accesses. Let Iαi

Sβ be the index to the ith access to table Sβ in round α (see
Figure 2). Thus, a collision in I21

S1 could be with either or both of I11
S1 and

I12
S1. To eliminate this ambiguity, we ensure that all accesses in the first round

are themselves colliding. That is for S1,

〈I11
S1〉 = 〈I12

S1〉

Similarly, for S2, S3 and S4 we have

〈I11
S2〉 = 〈I12

S2〉

〈I11
S3〉 = 〈I12

S3〉
and

〈I11
S4〉 = 〈I12

S4〉
We call such a state the 1−round collision state. Algorithm 2 shows how a
1−round collision state can be obtained in the cipher. Algorithm 3 is then used
to determine k1 ⊕ kw1.

150 R. Poddar, A. Datta, and C. Rebeiro

Algorithm 2. 1−round collision
Input: P1, P2, P3 and P4
Output: P5, P6, P7 and P8

1 begin
2 Find P5 causing a collision in I12

S1
3 Find P6 causing a collision in I12

S2
4 Find P7 causing a collision in I12

S3

5 Find P8 causing a collision in I12
S4

6 end

Analysis : From side-channel analysis, it is possible to determine whether a
memory access resulted in a cache hit or a miss. Testing for a collision at
a particular memory access requires 256

C encryptions, where C is the cache
line size. However, by using the inequality in Equation 4, it is sufficient to
have 256

C − 1 encryptions in order to find the collision. Algorithm 2 therefore
requires 4(256

C − 1) encryptions. Setting up the 8 collisions in line 4 of Algo-
rithm 3 requires 8(256

C − 1) encryptions. Further, each invocation of the find
function requires 8(256

C − 1) encryptions. Thus in total, finding all the 8 bytes of
k1 ⊕ kw1 requires 60(256

C − 1) encryptions.

Algorithm 3. Finding candidate keys for κ = k1 ⊕ kw1

Output: S(κi) : Candidate Keys for κ = k1 ⊕ kw1, where i ∈ {1, 2, . . . , 8}
1 begin
2 Randomly select P1, P2, P3 and P4
3 (P5, P6, P7, P8) ← 1−RoundCollision(P1, P2, P3, P4)

4 Set up collisions : Find P9, P10, · · · , P16 causing collisions in I21
S1, I21

S2, . . . , I22
S4

respectively
5 S(κ1) ← find(1, P1 · · ·P8, P9 · · ·P16)
6 S(κ2) ← find(2, P1 · · ·P8, P9 · · ·P16)
7 S(κ3) ← find(3, P1 · · ·P8, P9 · · ·P16)
8 S(κ4) ← find(4, P1 · · ·P8, P9 · · ·P16)
9 S(κ5) ← find(5, P1 · · ·P8, P9 · · ·P16)

10 S(κ6) ← find(6, P1 · · ·P8, P9 · · ·P16)
11 S(κ7) ← find(7, P1 · · ·P8, P9 · · ·P16)
12 S(κ8) ← find(8, P1 · · ·P8, P9 · · ·P16)

13 end

For a 64 byte cache line, 228 encryptions are required to obtain a set of 64
candidates per key on average. On average repeating the attack 4 times would
result in a single key. Therefore in total 912 encryptions are required. Similarly
for a 32 byte cache line, 532 encryptions are required to obtain a candidate key
set. Filtering out the wrong keys would require a total of 1596 encryptions.

3.2 Determining k2 ⊕ kw2

We consider the F functions in the second and third rounds to determine can-
didates for k2 ⊕ kw2, with P9 · · ·P16 as the differential introducing inputs, and
P1 · · ·P8 as the restoring inputs. As in the first stage of the attack, ambigui-
ties about collisions may arise when cache hits are forced in the third round F
function. Therefore, the cipher is put in a 2−round colliding state. In a 2−round
colliding state, all accesses except the first are in collision for each table, i.e.,

A Cache Trace Attack on CAMELLIA 151

〈I11
S1〉 = 〈I12

S1〉 = 〈I21
S1〉 = 〈I22

S1〉

〈I11
S2〉 = 〈I12

S2〉 = 〈I21
S2〉 = 〈I22

S2〉

〈I11
S3〉 = 〈I12

S3〉 = 〈I21
S3〉 = 〈I22

S3〉

〈I11
S4〉 = 〈I12

S4〉 = 〈I21
S4〉 = 〈I22

S4〉

We note that the results obtained in the previous stage of the attack (i.e. deter-
mining k1 ⊕ kw1) may be used to put the cipher in the 2−round colliding state.
Hence, no additional encryptions are required.

To prevent further ambiguities in the third round accesses to a table, the
inputs must be controlled in a manner that causes no hits to be lost in all
previous accesses made to that table, i.e. the 2−round colliding state remains
intact. This is accomplished as follows.

The restoring inputs for this stage of the attack are formed by P1 · · ·P8 ex-
ored with the outputs of the second round F (see Figure 2). These values may
be controlled by displacements made in the values of P1 · · ·P8 ensuring that
collisions are not lost in the first two rounds. For example, suppose a hit is desired
in I31

S1. This is done by controlling P1. However changing P1 may result in loss
of collision in I12

S1. Further, the change in P1 would affect several outputs of the
first round F function due to the diffusion. This might disturb the collisions in
the second round. To avoid this loss in the 2−round colliding state, the previously
determined value of k1⊕kw1 is used. Using this, P8 can be set to ensure collision
in I12

S1 persists. The determined key is also used to compute the outputs of the
first round F . The values of P9 · · ·P16 are now ex-ored with these outputs, so
that the effect of the disturbance on the second round accesses is annulled. Thus,
the 2−round colliding state persists.

This principle can similarly be applied to determine candidates for all the
bytes of k2 ⊕ kw2. Algorithm 4 describes the steps for the attack. An important
point to note is the modification that needs to be made in the restore collisions
phase of Algorithm find. This step must now be performed in keeping with the
discussion in the previous paragraph.

Algorithm 4. Finding candidate keys for κ = k2 ⊕ kw2

Input: P1 · · ·P16, so that a 2−round colliding state has been set up
Output: S(κi) : Candidate Keys for κ = k2 ⊕ kw2, where i ∈ {1, 2, . . . , 8}

1 begin
2 Set up collisions : Find P1, P2, · · · , P8 causing collisions in I31

S1, I31
S2, . . . , I32

S4
respectively

3 S(κ1) ← find(1, P9 · · ·P16, P1 · · ·P8)
4 S(κ2) ← find(2, P9 · · ·P16, P1 · · ·P8)
5 S(κ3) ← find(3, P9 · · ·P16, P1 · · ·P8)
6 S(κ4) ← find(4, P9 · · ·P16, P1 · · ·P8)
7 S(κ5) ← find(5, P9 · · ·P16, P1 · · ·P8)
8 S(κ6) ← find(6, P9 · · ·P16, P1 · · ·P8)
9 S(κ7) ← find(7, P9 · · ·P16, P1 · · ·P8)

10 S(κ8) ← find(8, P9 · · ·P16, P1 · · ·P8)

11 end

152 R. Poddar, A. Datta, and C. Rebeiro

Analysis : Obtaining collisions in all eight accesses in the third round requires
8(256

C −1) encryptions. Once this is done, deducing each key byte requires 8(256
C −

1) encryptions. Since there are 8 unknown key bytes, a total of 65(256
C − 1)

encryptions is needed to obtain the candidate key set. With a 64−byte cache
line, this attack step should be repeated 4 times to isolate a single key. This
requires 768 encryptions. Similarly with a 32−byte cache line, and 3 iterations
of the attack step, a single key is isolated in 1365 encryptions.

3.3 Determining k3 ⊕ kw1 and k4 ⊕ kw2

To determine candidates for k3 ⊕ kw1, we consider the F functions in the third
and fourth rounds, with P1 · · ·P8 as the differential introducing inputs, and
P9 · · ·P16 as the restoring inputs. The cipher should be ideally put in a 3−round
colliding state before mounting the attack. However, achieving such a state is
more difficult than obtaining a 2−round colliding state. To circumvent this dif-
ficulty, we initially put the cipher in a partial 3−round colliding state using the
following technique, for the third stage of the attack.

We first obtain a 2−round colliding state. The values of P9 · · ·P16 are sub-
sequently ex-ored by small amounts less than the cache line size. Since these
displacements are small, accesses in the second round continue to collide with
the same cache lines, and no hits are lost. These small displacements, however,
would become random changes affecting all outputs of the second round F .
Thus, for suitable values of these displacements, collisions may be established in
particular accesses of our choice in the third round (creating a partial 3−round
colliding state), without losing any hits in the first 2 rounds. The state is thus a
partial colliding state because not all third round accesses are hits. The colliding
accesses are chosen as follows.

Suppose the byte of the key to be determined is ex-ored with a byte of the
differential introducing input (P1 · · ·P8) that accesses table Sβ in the third round
F (see Figure 2). Then both accesses to Sβ must be established as hits. Evidently,
once this state has been obtained, for β = 1,

〈I11
S1〉 = 〈I12

S1〉 = 〈I21
S1〉 = 〈I22

S1〉 = 〈I31
S1〉 = 〈I32

S1〉

while for β �= 1, 〈I31
Sβ〉 and 〈I32

Sβ〉 may or may not be equal to 〈I11
Sβ〉 =

〈I12
Sβ〉 = 〈I21

Sβ〉 = 〈I22
Sβ〉. This does not affect the results of the attack in any

way.
The restoring inputs are controlled following the principle described in section

3.2 using bytes P9 · · ·P16. However, this might lead to ambiguities in the fourth
round memory accesses. For example, a cache hit in I41

S1 can be forced by small
displacements in one or more of P9 · · ·P16. Since these displacements are small,
no collisions will be lost in the second round accesses to S1. However, changing
these bytes may cause hits to be lost in the third round S1 accesses. Thus a
collision in I41

S1 may be a result of the desirable cache hit with I11
S1, I12

S1, I21
S1

and I22
S1, or due to undesirable cache hits with I31

S1 and I32
S1.

Thus, for a table Sβ, a collision in the fourth round is the result of a desirable
cache hit with a probability 1

n+1 , where n is the number of misses in the third

A Cache Trace Attack on CAMELLIA 153

round accesses to the table. Since 2 accesses are made to each table per round,
this probability is at least 1

3 , and sufficient confidence in the correctness of the
collision is obtained if the test is repeated 3 times.

In the fourth stage of the attack, candidates for k4 ⊕ kw2 are obtained by
considering the F functions in the fourth and fifth rounds, with P9 · · ·P16 as
the differential introducing inputs, and P1 · · ·P8 as the restoring inputs. Ideally,
the cipher should be initially put in at least a partial 4−round colliding state
before mounting the attack on the fourth round. However, such a state cannot
be easily obtained without losing collisions in the accesses of the previous rounds.
Moreover, attempting small displacements in the values of P9 · · ·P16 will entail
a lot more encryptions to obtain a partial 4−round colliding state, as opposed
to a partial 3−round colliding state. Therefore, we proceed to mount the attack
with the cipher in a partial 3−round colliding state as obtained earlier.

Collisions in the fourth round may be established at the expense of hits in the
third round. For a table Sβ, this implies that hits obtained in the fourth round
may either be due to desirable collisions with accesses in the first 2 rounds, or
due to undesirable collisions with any access resulting in a miss in the third
round. That is, for table S1,

〈I11
S1〉 = 〈I12

S1〉 = 〈I21
S1〉 = 〈I22

S1〉

are desirable collisions. Accesses 〈I31
S1〉 and 〈I32

S1〉 may or may not be desirable.
Thus, for a table Sβ, a collision in the fourth round is the result of a desirable
cache hit with a probability 1

m+1 , where m is the number of misses in the third
round accesses to the table.

Similarly, we may obtain hits in the fifth round with the restoring inputs by
small displacements of P9 · · ·P16 at the expense of the third and fourth round
hits. The probability of a correct hit is thus 1

n+1 , where n is the total number
of misses in the third and fourth round accesses. Therefore, the entire method
results in a success with probability 1

(m+1)(n+1) . Since in the worst case, m = 2
and n = 4, this probability is at least 1

(2+1)(4+1) = 1
15 , and the test should be

repeated 15 times on an average, to obtain sufficient confidence in the result.

Analysis : Once a 2−round colliding state has been obtained, we need to enforce
hits in 2 accesses in the third round to get a partial 3−round colliding state. Since
an access to a table may occupy any of 4 cache lines for C = 64 and 8 cache
lines for C = 32, we get the required cache hit with a probability 1

4 on 64 byte
cache lines and 1

8 on 32 byte cache lines after one encryption.
For the third stage of the attack, once a partial 3−round colliding state has

been created, collisions are obtained in the fourth round with a minimum prob-
ability of 1

3 . Thus, an attack in the third stage is successful with a probability
1

3×4 = 1
12 for C = 64 and 1

3×8 = 1
24 for C = 32. Thus for C = 64, 12 encryptions

are required to extract key candidates for one byte of the key. Since the key com-
prises 8 bytes, the expected number of encryptions is 12×8 = 96. This has to be
repeated at-least 8 times to isolate a unique key, making a total requirement of
768 encryptions. Similarly, for C = 32, a total of 1536 encryptions are required.

154 R. Poddar, A. Datta, and C. Rebeiro

For the fourth stage, the attack is successful with a minimum probability 1
15 .

Since we need to obtain a partial 3−round colliding state before mounting the
attack, the minimum probability of success is 1

15×4 = 1
60 for C = 64. Thus,

60 encryptions are required on an average to extract one byte of the key. The
expected number of encryptions for extracting the entire key is 60×8×8 = 3480
when C = 64 and 7680 encryptions are needed when C = 32.

3.4 Obtaining the Secret Key

The third and fourth stages of the attack on the cipher leak the values of k3⊕kw1

and k4 ⊕ kw2 respectively. From the CAMELLIA key schedule for a 128-bit key,
we know that

k3 ⊕ kw1 = (KL ⊕ (KL ≪ 15))L

k4 ⊕ kw2 = (KL ⊕ (KL ≪ 15))R

Thus, from the attack on the first 4 rounds, we can obtain the value C = (KL ⊕
(KL ≪ 15)). This information is sufficient to derive the value of KL, which is
the required secret 128-bit key. Algorithm 5 shows how the candidates for the
secret key can be extracted. Using the algorithm, we get at most 2 candidates
for KL. For the sake of convenience, the 128-bit values have been represented as
arrays of dimension 128.

Algorithm 5. Finding candidates for the secret key KL

Input: C[] = (KL ⊕ (KL ≪ 15))
Output: S(K) : Candidate key set for the secret key KL

1 begin
2 S ← {}
3 K[] ← {0}
4 for lsb ∈ {0, 1} do
5 K[0] ← lsb
6 j ← 0
7 for i ∈ {0, 1, . . . , 127} do
8 if j ≥ 128 then
9 j ← j%128

10 end
11 K[(j − 15)%128] ← K[j] ⊕ C[j]

12 end
13 S ← S ∪ {K}
14 end
15 return S

16 end

4 Practically Mounting the Attack

To test the attack we used a similar setup as in [13] with CAMELLIA’s reference
code1 modified to use 4 tables. The attack consists of two phases, the online
and the offline phase, which are repeated for each step of the attack. The online
phase dealt with obtaining the required power traces from the board. The attack

1 http://info.isl.ntt.co.jp/crypt/eng/camellia/source.html

A Cache Trace Attack on CAMELLIA 155

targeted the cache of the PowerPC present in the Xilinx FPGA in the SASEBO
board [14]. The PowerPC cache has a 32 byte cache line and a size of 16KB.
During the offline phase, the traces are first analyzed in Matlab to retrieve the
cache access patterns. This is then fed to the analysis program, which guesses
the secret key. For the 32 byte cache line, the number of encryptions required to
be made is 12177.

5 Conclusions and Future Directions

The paper presents a cache trace attack on the 128 bit block cipher CAMEL-
LIA. The attack first finds the keys used in rounds 1 to 4 and then uses the
key scheduling algorithm of CAMELLIA to retrieve the entire secret key. On a
PowerPC processor, having a 32−byte cache line size, this requires monitoring
of around 216 power traces. On a processor using the more standard 64 byte
cache line, the number of power traces required are 211.

A comparison of the proposed attack on CAMELLIA with cache trace attacks
on AES exemplifies the difficulty in attacking Feistel ciphers. As a future work
various cipher structures can be analyzed for their robustness against cache at-
tacks. This analysis would play a pivotal role in constructing a cipher inherently
secure against cache attacks.

References

1. Acıiçmez, O., Koç, Ç.K.: Trace-Driven Cache Attacks on AES (Short Paper). In:
Ning, P., Qing, S., Li, N. (eds.) ICICS 2006. LNCS, vol. 4307, pp. 112–121. Springer,
Heidelberg (2006)

2. Aoki, K., Ichikawa, T., Kanda, M., Matsui, M., Moriai, S., Nakajima, J., Tokita,
T.: Specifications of Camellia – a 128-bit Block Cipher (2001)

3. Bernstein, D.J.: Cache-timing Attacks on AES. Tech. rep. (2005)
4. Bertoni, G., Zaccaria, V., Breveglieri, L., Monchiero, M., Palermo, G.: AES Power

Attack Based on Induced Cache Miss and Countermeasure. In: ITCC (1), pp. 586–
591. IEEE Computer Society, Los Alamitos (2005)

5. Bonneau, J., Mironov, I.: Cache-Collision Timing Attacks Against AES. In:
Goubin, L., Matsui, M. (eds.) CHES 2006. LNCS, vol. 4249, pp. 201–215. Springer,
Heidelberg (2006)

6. Canteaut, A., Lauradoux, C., Seznec, A.: Understanding Cache Attacks. Research
Report RR-5881, INRIA (2006), http://hal.inria.fr/inria-00071387/en/

7. Fournier, J.J.A., Tunstall, M.: Cache Based Power Analysis Attacks on AES. In:
Batten, L.M., Safavi-Naini, R. (eds.) ACISP 2006. LNCS, vol. 4058, pp. 17–28.
Springer, Heidelberg (2006)

8. Gallais, J.-F., Kizhvatov, I., Tunstall, M.: Improved Trace-Driven Cache-Collision
Attacks against Embedded AES Implementations. In: Chung, Y., Yung, M. (eds.)
WISA 2010. LNCS, vol. 6513, pp. 243–257. Springer, Heidelberg (2011)

9. Kelsey, J., Schneier, B., Wagner, D., Hall, C.: Side Channel Cryptanalysis of Prod-
uct Ciphers. J. Comput. Secur. 8(2,3), 141–158 (2000)

10. Kocher, P.C.: Timing Attacks on Implementations of Diffie-Hellman, RSA, DSS,
and Other Systems. In: Koblitz, N. (ed.) CRYPTO 1996. LNCS, vol. 1109, pp.
104–113. Springer, Heidelberg (1996)

http://hal.inria.fr/inria-00071387/en/

156 R. Poddar, A. Datta, and C. Rebeiro

11. Osvik, D.A., Shamir, A., Tromer, E.: Cache Attacks and Countermeasures: The
Case of AES. In: Pointcheval, D. (ed.) CT-RSA 2006. LNCS, vol. 3860, pp. 1–20.
Springer, Heidelberg (2006)

12. Page, D.: Theoretical Use of Cache Memory as a Cryptanalytic Side-Channel (2002)
13. Rebeiro, C., Mukhopadhyay, D.: Cryptanalysis of CLEFIA Using Differential

Methods with Cache Trace Patterns. In: Kiayias, A. (ed.) CT-RSA 2011. LNCS,
vol. 6558, pp. 89–103. Springer, Heidelberg (2011)

14. Research Center for Information Security National Institute of Advanced Industrial
Science and Technology: Side-channel Attack Standard Evaluation Board Specifi-
cation (Version 1.0) (2007)

15. Sony Corporation: The 128-bit Blockcipher CLEFIA : Algorithm Specification
(2007)

16. Tromer, E., Osvik, D.A., Shamir, A.: Efficient Cache Attacks on AES, and Coun-
termeasures. Journal of Cryptology 23(2), 37–71 (2010)

17. Tsunoo, Y., Saito, T., Suzaki, T., Shigeri, M., Miyauchi, H.: Cryptanalysis of DES
Implemented on Computers with Cache. In: Walter, C.D., Koç, Ç.K., Paar, C.
(eds.) CHES 2003. LNCS, vol. 2779, pp. 62–76. Springer, Heidelberg (2003)

18. Tsunoo, Y., Tsujihara, E., Minematsu, K., Miyauchi, H.: Cryptanalysis of Block
Ciphers Implemented on Computers with Cache. In: International Symposium on
Information Theory and Its Applications, pp. 803–806 (2002)

19. Zheng, Y., Matsumoto, T., Imai, H.: On the Construction of Block Ciphers Prov-
ably Secure and Not Relying on Any Unproved Hypotheses. In: Brassard, G. (ed.)
CRYPTO 1989. LNCS, vol. 435, pp. 461–480. Springer, Heidelberg (1990)

An Improvement of Linearization-Based

Algebraic Attacks

Satrajit Ghosh and Abhijit Das

Department of Computer Science and Engineering
Indian Institute of Technology Kharagpur, India
{satrajit,abhij}@cse.iitkgp.ernet.in

Abstract. In an algebraic attack on a cipher, one expresses the encryp-
tion function as a system (usually overdefined) of multivariate polyno-
mial equations in the bits of the plaintext, the ciphertext and the key, and
subsequently solves the system for the unknown key bits from the knowl-
edge of one or more plaintext/ciphertext pairs. The standard eXtended
Linearization algorithm (XL) expands the initial system of equations by
monomial multiplications. The expanded system is treated as a linear
system in the monomials. For most block ciphers (like the Advanced En-
cryption Standard (AES)), the size of the linearized system turns out to
be very large, and consequently, the complexity to solve the system often
exceeds the complexity of brute-force search. In this paper, we propose a
heuristic strategy XL SGE to reduce the number of linearized equations.
This reduction is achieved by applying structured Gaussian elimination
before each stage of monomial multiplication. Experimentation on small
random systems indicates that XL SGE has the potential to improve the
performance of the XL algorithm in terms of the size of the final solvable
system. This performance gain is exhibited by our heuristic also in the
case of a toy version of AES.

Keywords: Block cipher, AES, multivariate polynomial equation, alge-
braic attack, linearization, XL, sparse linear system, structured Gaussian
elimination.

1 Introduction

The security of many cryptosystems is based on the difficulty of solving large
systems of nonlinear multivariate polynomial equations [1]. The main idea of
algebraic cryptanalysis is to express the encryption transform of a cipher as
an overdefined system of multivariate polynomial equations in the bits of the
plaintext, the ciphertext and the key. Algebraic cryptanalysis deals with differ-
ent ways of solving the multivariate system from known plaintext/ciphertext
pairs. Techniques based upon Gröbner-basis computation (like Faugère’s F4 and
F5 algorithms [2,3]) usually take exponential (or more) time in the size of the
system, and so are practically infeasible. Kipnis and Shamir [4] introduce an
alternative elimination technique called relinearization which is expected to run

M. Joye et al. (Eds.): InfoSecHiComNet 2011, LNCS 7011, pp. 157–167, 2011.
� Springer-Verlag Berlin Heidelberg 2011

158 S. Ghosh and A. Das

in subexponential time. Several variants of this relinearization technique have
been proposed in the literature (like XL [5], XSL [6] and MutantXL [7]). A third
elimination technique proposed by Bard et al. [8] makes use of SAT solvers.

There are practical examples of algebraic attacks on stream ciphers, block
ciphers and public-key cryptosystems. In 1999, Kipnis and Shamir cryptanalyze
the HFE public-key cryptosystem by their relinearization technique [4]. In 2000,
Courtois et al. [5] propose the XL algorithm (eXtended Linearization). Its modifi-
cation named XSL (eXtended Sparse Linearization) is proposed by Courtois and
Pieprzyk [6] in 2002. In 2007, Courtois and Bard [9] cryptanalyze six rounds of
DES from only one known plaintext/ciphertext pair using SAT solvers. In 2008,
Courtois et al. [10] use slide-algebraic attack to cryptanalyze the KeeLoq block
cipher using SAT solvers, with a complexity equivalent to about 253 KeeLoq en-
cryptions (with 216 known pairs). In 2009, Courtois et al. [11] describe a full-key
recovery attack on the Hitag2 stream cipher. The Master’s thesis of Vörös [12]
lists practical algebraic attacks on some other stream ciphers.

Although algebraic attacks have a few success stories, the general time com-
plexity of these attacks is prohibitively high. The main problem of applying
algebraic attacks to the case of block ciphers is that the size of the final solvable
system becomes unmanageably huge. As a result, the attack complexity exceeds
the complexity of brute-force search. For example, in the case of 128-bit AES,
a direct application of XL produces a solvable system for D = 18 [6], but the
size of the solvable system is very large (about 2110). As a result, the complex-
ity to solve that system (more than 2220 with sparse system solvers) exceeds
the complexity of brute-force search (at most 2128 encryptions). To bring down
the complexity of algebraic attacks on block ciphers, one possibility is to reduce
the size of the final system so that the system can be generated and solved
efficiently. Since the linearized equations generated by XL are usually sparse,
special sparse system-solving algorithms may be exploited in the context of XL.

Our Contribution: In this paper, we propose a new heuristic to improve the
XL method by reducing the size of the final linearized system. The heuristic uses
the structured Gaussian elimination (SGE) algorithm [13] to reduce the growth
of the number of variables during the expansion stage of XL. It also helps by
decreasing the number of linearly dependent equations. SGE sometimes exhibits
excessive reduction in the system size (a phenomenon called avalanche effect)
which adversely affects the application of SGE in tandem with XL. We control
the avalanche effect by tuning a heuristic parameter. Experiments carried out
on small systems and toy ciphers indicate that our heuristic holds the promise
of bringing down the complexity of XL.

In short, the basic novelty of our work is the application of sparse system-
solving techniques in the expansion phase of the standard XL algorithm. Two
main improvements of the XL algorithm, already available in the literature, are
XSL [6] and MutantXL [7]. Both of these are capable of generating smaller lin-
earized systems compared to XL. However, neither of these seems to be practical
for solving real-life ciphers like 128-bit AES. Our heuristic too does not imme-
diately lead to a practical cryptanalytic method for AES (or, for that matter,

An Improvement of Linearization-Based Algebraic Attacks 159

for any other real-life cipher). It is instead proposed as another improvement
of XL with the hope that it may throw some insight in research pertaining to
algebraic attacks. Indeed, most of the current algebraic attack techniques are es-
sentially heuristic in nature, and many of them lack solid analytic foundations.
Our method too seems promising only from the positive results we obtained
from our experimental experience with it. As a final remark, we mention that
XL SGE is, by design, not competing with XSL or MutantXL. On the contrary,
it can be used to boost the performance of these XL variants in the same way
as it aids XL. Currently, we have experimented with XL only.

The rest of the paper is organized as follows. Section 2 provides some basic
background on algebraic attacks over AES-like block ciphers. In particular, it
describes the XL algorithm. Moreover, we briefly discuss the structured Gaussian
elimination procedure in this section. In Sections 3, we propose our algorithm
XL SGE. In Section 4, we supply our experimental results, and compare the
performance of XL SGE with that of XL. We conclude the paper in Section 5
after highlighting scopes for further research in this direction.

2 Background

In this section, we briefly describe algebraic attacks and the structured Gaussian
elimination procedure.

2.1 Algebraic Attack on AES-Like Ciphers

In August 2000, the block cipher Rijndael [14] was selected as the Advanced
Encryption Standard (AES). Rijndael is a key-iterated block cipher with a strong
algebraic structure. AES can be represented as algebraically closed equations
over GF(28) [6]. It can also be represented as a system of multivariate quadratic
equations over GF(2) with plaintext, ciphertext and key bits as variables.

The MQ problem is the problem of solving systems of multivariate quadratic
equations. The MQ problem is NP-Hard for a general field [15]. Solving a system
of quadratic equations over any finite field is NP-Complete [12] (since over a
finite field, one can verify a correct solution in polynomial time). In general,
no polynomial-time algorithm is known to solve the MQ problem. However, for
overdefined systems of multivariate quadratic equations (Number of equations
� Number of variables), there exist algorithms which can run in polynomial
time under certain conditions [4,5].

An algebraic attack consists of two basic steps: (1) Equation generation, and
(2) Solving the system of equations. These steps are briefly described below.

Equation Generation
Usually, a block cipher consists of a linear part and a nonlinear part. The nonlin-
ear part is due to the presence of S-Boxes in the cipher. Constructing equations
for the linear part is trivial. To construct the equations for the nonlinear part
of the cipher, one follows two different approaches. First, the structure of the

160 S. Ghosh and A. Das

S-Boxes is exploited to generate equations. Second, one uses the null-space equa-
tions for the S-Boxes. For our experiments, we have used a scaled-down version of
AES (Baby Rijndael) as described in [15]. Baby Rijndael has the same algebraic
structure as AES. The block size and the key size of baby Rijndael are 16 bits.
The linear layer of baby Rijndael yields linear equations, whereas the S-Boxes
produce quadratic equations. Using the inverse function used in the S-Box of
baby Rijndael, one obtains 11 quadratic equations per S-Box. Computing the
null space for each S-Box yields 21 linearly independent equations. For details
on how the equations are generated, we refer the reader to [15].

Solving the System of Equations
The usual method to solve overdefined multivariate systems of equations is to use
Gröbner-basis algorithms. The fastest of such algorithms are F4 and F5 proposed
by Faugère [2,3]. The XL (eXtended Linearization) algorithm was proposed as an
efficient alternative [5]. For a system of m quadratic equations with n variables,
the algorithm is expected to run in polynomial time with an exponent O(1/

√
ε),

if m ≥ εn2, 0 < ε ≤ 1/2. In general, the XL algorithm is expected to run in
subexponential time. A third approach based upon SAT solvers is also proposed
in the literature [8] to solve systems of multivariate algebraic equations.

2.2 eXtended Linearization (XL)

The XL algorithm is effective when the number of equations exceeds the number
of variables. The main idea is to increase the number of initial equations by
adding new algebraically dependent equations which are linearly independent of
the initial system. This system expansion is carried out using multiplications by
monomials of limited degrees.

The XL algorithm accepts as input the initial system of equations A (which
has at least one solution), and a degree bound D ∈ N. The steps of the algorithm
are described now.

1. Multiply: Generate the new system A′:

A
′ =

⋃
0≤k≤D−dmax

Xk
A,

where Xk stands for the set of all monomials of degree k, and dmax is the
maximum degree of the initial system of equations.

2. Linearize: Consider each monomial in the variables xi of degree ≤ D as
a new variable, and perform Gaussian elimination on the system A

′. The
ordering of the monomials must be such that all the terms containing single
variables (like x1) are eliminated last.

3. Solve: Assume that Step 2 yields at least one univariate polynomial equation
in some variable x1. Solve this equation over the underlying finite field using
a standard root-finding algorithm.

4. Repeat: Simplify the equations, and repeat the process to find the values
of the other variables.

An Improvement of Linearization-Based Algebraic Attacks 161

2.3 Structured Gaussian Elimination

Structured Gaussian Elimination (SGE) is an algorithm used to reduce the di-
mension of a sparse matrix by eliminating some of its rows and columns [13]. SGE
exploits the special structure of the matrices arising from integer-factorization
and discrete-logarithm algorithms. It is applicable for sparse matrices where the
columns can be divided into two types: heavy-weight and light-weight. It is a
heuristic procedure that tends to preserve the sparsity of the light columns.

SGE repeats the following steps until no further reduction is possible.

1. Delete columns of weight 0 and 1.
2. Delete rows of weight 0 and 1.
3. Delete rows of weight 1 in the light part. After Step 2 and Step 3, update

column weights.
4. Delete redundant rows.

3 eXtended Linearization with Structured Gaussian
Elimination (XL SGE)

3.1 Motivation

The problem with the XL algorithm is that the size of the system increases
drastically with the increase in the degree bound D used in the algorithm. Many
linearly dependent equations are generated during the expansion process (Step 1)
in XL. The equations generated by the XL algorithm are generally very sparse.
Moreover, we have observed, from the statistics of the system obtained in XL
(for D = 2), that the columns of the generated system can be distinguished
as heavy-weight and light-weight. Depending on these observations, we propose
a new heuristic (XL SGE) to reduce the number of linearized equations in XL.
According to the heuristic, the generated intermediate systems are reduced using
structured Gaussian elimination (SGE). The reduced systems are multiplied with
monomials to get systems of higher algebraic degrees.

The XL SGE algorithm reduces the sizes of the intermediate systems of equa-
tions in XL using the first three steps of structured Gaussian elimination. It
does not use the apparently irrelevant fourth step of SGE. The main motivation
behind proposing XL SGE is size reduction. Besides this, XL SGE is expected to
exhibit some side effects, some of which can be exploited to our advantage. For
example, partial elimination of variables before each stage of monomial multipli-
cation may result in the generation of fewer linearized variables (higher-degree
monomials). This, in turn, is capable of reducing the rank deficit. As a result,
we may even expect a smaller degree bound D than XL for arriving at a solvable
system. One should, however, avoid the avalanche effect of SGE, which results
in a slow growth of the linearized system, demanding larger values of D than
needed in XL.

162 S. Ghosh and A. Das

3.2 XL SGE Algorithm

The XL SGE algorithm accepts as input the initial system of equations (con-
sisting of linear equations and quadratic equations) A (which has at least one
solution), and a degree bound D ∈ N. The basic steps of the XL SGE expansion
procedure are as follows.

1. Expand the initial system of equations A up to degree d = 2 using XL to
obtain a linearized system A′.

2. Apply structured Gaussian elimination (SGE) on A′ to obtain a reduced
system of equations A′′ of degree d.

3. Multiply the reduced system A′′ with monomials of degree 1, append the
generated equations to A′′, and rename this appended system as A′. A′ now
contains equations of degrees up to d + 1.

4. If the degree of the system of equations A′ is D, end the process. Otherwise,
go to Step 2.

If we get a full-rank system (or a close-to-full-rank system) for a particular D, we
solve that system. Otherwise, we increase the degree bound D, and run XL SGE
again to obtain a system of smaller rank deficit. This process is repeated until
the rank deficit becomes zero or goes below a tolerable limit.

We have observed that sometimes due to avalanche effect, most of the equa-
tions are removed in the SGE stage. Consequently, XL SGE suffers from a slow
growth in the size of the linearized system with the increase in the degree bound
D, and the rank deficit in XL SGE decreases much more slowly with D than
in XL. To reduce this avalanche effect, we use a parameter K in Step 2 of
the XL SGE algorithm. Suppose that the j-th column has weight 1 with the
non-zero entry appearing in the i-th row. Only if this row contains at least K
non-zero entries, the i-th row and the j-th column are removed. The value of K
is heuristically chosen depending upon the weight distribution of the rows.

An optional preprocessing of A offers a possibility of initial reduction in the
system size. As mentioned during the description of baby Rijndael, we get both
linear and quadratic equations from the encryption rounds. If we substitute the
linear equations in appropriate quadratic equations, we can eliminate some of
the variables, and remove all the linear equations from the initial system A. The
reduced system consisting only of quadratic equations is expanded. Although the
number of non-zero terms in each quadratic equation increases because of these
substitutions, the effects of this increase can be appropriately handled. However,
whether this initial reduction helps at all is not clear from our experiments.

4 Experimental Results

We have tried the heuristic (XL SGE) on small random sparse quadratic sys-
tems, and have found that the heuristic significantly improves the performance
of the XL algorithm in most cases, in terms of the size of the final system. The
results obtained for some small random systems are shown in Table 1. This table

An Improvement of Linearization-Based Algebraic Attacks 163

corresponds to K = 0, that is, the avalanche effect for SGE is not handled in
these experiments. The initial system size x× y indicates x quadratic equations
in y variables. On the other hand, the final system size x × y indicates x lin-
earized equations in y monomials. For both XL and XL SGE, we report the final
system size. Notice that we apply SGE before each stage of monomial multipli-
cation. This, in turn, implies that the final systems in XL SGE, reported in all
the tables below, are again expected to reduce in size if another round of SGE
is applied to them. Indeed, it is a standard practice to apply SGE to any large
sparse system before solving it. The final systems available from XL would also
experience size reduction upon application of a round of SGE. For both XL and
XL SGE, the sizes reported in the tables correspond to those systems before
that external application of SGE which may be used to solve the systems.

Table 1. Comparison of XL with XL SGE (with K = 0) for random systems

Size of D in System Size Rank D in System Size Rank
Initial System XL SGE after XL SGE Deficit XL after XL Deficit

10× 6 3 67× 27 0 3 149× 42 0
15× 8 3 231× 87 0 3 276× 93 0
20× 10 3 427× 156 0 3 500× 172 0
20× 10 6 3959 × 655 0 5 7445 × 638 0
20× 12 7 2809 × 917 11 7 98611 × 3302 0
20× 12 7 5006 × 1547 10 7 114863 × 3302 0
20× 12 3 714× 271 0 3 795× 299 0
22× 12 3 708× 209 0 4 5464 × 794 0
22× 12 3 897× 263 0 4 6478 × 794 0
24× 13 3 1029 × 375 0 3 1137 × 378 0
24× 14 3 1085 × 449 0 5 44476 × 3473 0

From the experimental results, it is clear that for the same degree bound
(D), the size of the final system obtained from XL SGE is in most cases much
smaller than the size of the final system obtained from XL. There are instances
where larger degree bounds D are needed by XL SGE (than XL) for obtaining a
full-rank system, but the size reduction is always a positive feature of XL SGE.
The performance of the XL SGE algorithm hugely depends on the structure of
the initial system of equations. We have observed that if the initial system of
equations enjoys the following two properties, XL SGE performs significantly
better than XL.

1. Number of equations � Number of variables
2. Number of equations � Number of one-degree terms + Number of two-

degree terms

There are cases where XL performs better than XL SGE. In some cases, XL
generates a full-rank system, whereas XL SGE fails to generate a full-rank sys-
tem. Consider the example of Row 5 of Table 1. In this case, we get a full-rank
system for D = 7 using XL. For the same D, the rank deficit in case of XL SGE

164 S. Ghosh and A. Das

is 11. However, the size of the final system in case of XL is much larger, that
is, a slightly increased rank deficit for XL SGE is more than compensated by a
dramatic reduction in the system size. Interestingly, for the same initial system,
we obtain a system of size 502× 253 and rank deficit 2 using XL SGE for D = 3
(using XL with D = 3, the system size is 639 × 296 with rank deficit 10).

The performance of XL SGE also depends on the proportion of linear equa-
tions and quadratic equations present in the initial system. For some systems,
we get a full-rank system after few iterations of XL SGE (say, for D = 3). So
the size of the final system is small in those cases. For some other systems of
the same initial size, we get full-rank systems after more number of iterations
of XL SGE (say, for D = 6). In those cases, the size of the final system is large.
Consider the examples of Row 3 and Row 4 of Table 1. In both cases, the sizes
of the initial systems are the same. The initial system of the third row contains
4 linear equations and 16 quadratic equations. The initial system of the fourth
row contains 2 linear equations and 18 quadratic equations. In the case of Row 3,
XL SGE gives a full-rank system of size 427×156 for D = 3, whereas for Row 4,
we get a full-rank system of size 3959× 655 for D = 6.

The main problem with XL SGE is the avalanche effect suffered by the SGE
stage. If any intermediate generated system of XL SGE experiences avalanche
effect, no further increment in the size of the system is possible. In that case,
XL SGE fails to generate a full-rank system, no matter how large the degree
bound D is. In some cases, little reduction takes place (depends on the structure
of the initial system) with XL SGE. In those cases, the performances of XL SGE
and XL are similar.

Table 2. Comparison of XL with XL SGE (with K ≥ 0) for random systems

Size of D in K in System Size Rank D in System Size Rank
Initial System XL SGE XL SGE after XL SGE Deficit XL after XL Deficit

22× 12 3 4 513× 292 0 3 534× 298 0
23× 13 4 4 2863× 1073 0 5 11219 × 2379 0
24× 13 3 0 726× 377 0 3 726× 377 0
24× 15 4 0 6400× 1940 0 4 6451 × 1940 0
24× 16 4 7 6311× 2516 0 4 6587 × 2516 0
24× 16 4 5 6513× 2516 0 4 6527 × 2516 0
25× 17 4 6 8609× 3213 0 4 8609 × 3213 0
25× 18 5 6 34027 × 12615 0 5 36825 × 12615 0

Table 2 lists results on some small random systems with the avalanche effect
taken into account. For a given D, we have tuned the parameter K in the se-
quence 0, 1, 2, . . . until we obtain a value of K for which the rank deficit of the
expanded system is zero. In all our experiments, we could locate suitable values
for K (although there is no theoretical guarantee that such a K must exist).
These results once again illustrate the superiority of XL SGE over XL in terms
of the size of the final solvable system.

An Improvement of Linearization-Based Algebraic Attacks 165

Table 3 describes the variation of the performance of the XL SGE expansion
procedure with the parameter K for a random initial system of size 25 × 18.
This is the same system reported in the last row of Table 2. In general, for
small values of K, the size reduction in SGE may be too high, that is, the
avalanche effect may set in. This may lead XL SGE to obtain higher rank deficits
compared to XL for the same degree bound D. On the other hand, if K is too
large, SGE fails to reduce the intermediate system sizes, and consequently, the
performance of XL SGE becomes identical to that of XL. A good value of K can
be experimentally chosen for a given input system.

Table 3. Dependence of the performance of XL SGE on the parameter K

K D = 3 D = 4 D = 5
System Size Rank Deficit System Size Rank Deficit System Size Rank Deficit

0 922× 975 271 6015× 4047 294 28070 × 12615 131
5 958× 976 244 6357× 4047 132 30043 × 12615 38
6 1032 × 982 192 7043× 4047 19 34027 × 12615 0
8 1050 × 983 179 7214× 4047 10 35014 × 12615 0
10 1086 × 987 154 7556× 4047 4 36988 × 12615 0

Depending on the initial structure of the system, some modifications of the
XL SGE algorithm may improve the performance of the algorithm. The exact
nature of this dependence is not clear yet. To see whether XL SGE works well on
the systems generated by AES-like block ciphers, we have generated systems of
equations for the toy version of AES (Baby Rijndael) as described in Section 2.1.
On this system, XL SGE exhibits slightly better performance than XL. The
results are shown in Table 4.

Table 4. Comparison of XL with XL SGE for baby Rijndael for D = 3

Number of Size of K in System Size Rank System Size Rank
Rounds Initial System XL SGE after XL SGE Deficit after XL Deficit

1 232 × 64 0 142945 × 43745 0 178892 × 43745 0
2 448 × 112 3 634810 × 233633 24 642423 × 234225 48
3 664 × 160 7 1755432 × 682273 576 1768628 × 682401 576

We have also reduced the initial system (according to the last paragraph of
Section 3) of baby Rijndael for one round, and get a system of 192 quadratic
equations in 24 variables. After expanding that system using XL SGE, we get
a final system of size 97447 × 12919 for D = 4 with rank deficit 36. On the
other hand, XL gives a final system of size 97943×12919 with rank deficit 36 for
the same D. It, therefore, remains uncertain whether the preprocessing of the
initial system (that is, absorbing the linear equations in the quadratic equations)
produces any noticeable benefits at all.

The programs for generating equations and expanding equations using XL and
XL SGE were written in the C programming language. The PARI/GP package

166 S. Ghosh and A. Das

was used to carry out some intermediate calculations needed to generate equa-
tions. The mathematical package Sage (Version 4.4.2) was used to calculate the
rank of sparse matrices available from XL and XL SGE.

5 Conclusion

The main problem with algebraic attacks on block ciphers is that the solvable
system size becomes large, and so the complexity to solve the system often ex-
ceeds the complexity of brute-force search. XL generates too many linearly de-
pendent equations while expanding the initial system of equations. The number
of variables also grows rapidly during the expansion stage of XL. Our proposed
heuristic XL SGE uses structured Gaussian elimination in order to improve the
performance of XL by reducing the growth of variables and of linearly dependent
equations in the expansion stage of the XL algorithm. Experiments reveal that
XL SGE performs better than XL in many cases for random systems and also
for a toy version of AES.

We end this paper after highlighting some directions for future research.

– It is not yet clear on which factors the performance of XL SGE depends. A
theoretical analysis of XL SGE is required, and accordingly modifications of
our present algorithm are called for to make it more versatile and effective.
As an example, the nature of dependency of the performance of XL SGE on
the choice of the heuristic parameter K needs to be analytically investigated.

– Columns of weight two can be eliminated in the SGE phase without increas-
ing the number of non-zero entries in the matrix. However, elimination of
columns of weight three or more cannot be so gracefully handled.

– Partial monomial multiplication during the expansion phase can effectively
reduce the size (both the number of variables and the number of equations)
of the final solvable system. Moreover, after each application of SGE, all
columns have weight at least two. Complete monomial multiplication on this
system can never generate columns of weight zero or one. Partial monomial
multiplication can potentially solve this problem, but possibly at the cost of
degradation in the rank profile with increasing D.

– Another important area of investigation is to use SGE in conjunction with
the variants of XL (like XSL and MutantXL) already proposed in the lit-
erature. Comparisons with other algebraic-attack algorithms (like F4, F5,
SAT-solver techniques) are also worth studying.

References

1. Shannon, C.E.: Communication theory of secrecy systems. Bell System Technical
Journal 28, 657–715 (1949)

2. Faugère, J.C.: A new efficient algorithm for computing Gröbner basis (F4). Journal
of Pure and Applied Algebra 139(1), 61–88 (1999)

3. Faugère, J.C.: A new efficient algorithm for computing Gröbner basis without
reduction to zero (F5). In: ISSAC 2002, pp. 75–83 (2002)

An Improvement of Linearization-Based Algebraic Attacks 167

4. Kipnis, A., Shamir, A.: Cryptanalysis of the HFE public key cryptosystem by
relinearization. In: Wiener, M. (ed.) CRYPTO 1999. LNCS, vol. 1666, pp. 19–30.
Springer, Heidelberg (1999)

5. Courtois, N.T., Klimov, A.B., Patarin, J., Shamir, A.: Efficient algorithms for
solving overdefined systems of multivariate polynomial equations. In: Preneel, B.
(ed.) EUROCRYPT 2000. LNCS, vol. 1807, pp. 392–407. Springer, Heidelberg
(2000)

6. Courtois, N., Pieprzyk, J.: Cryptanalysis of block ciphers with overdefined systems
of equations. In: Zheng, Y. (ed.) ASIACRYPT 2002. LNCS, vol. 2501, pp. 267–287.
Springer, Heidelberg (2002)

7. Ding, J., Buchmann, J., Mohamed, M., Moahmed, W., Weinmann, R.: Mutantxl.
In: SCC, pp. 16–22 (2008)

8. Bard, G., Courtois, N., Jefferson, C.: Solution of sparse polynomial systems over
GF(2) via sat-solvers. In: ECRYPT workshop Tools for Cryptanalysis (2007)

9. Courtois, N., Bard, G.V.: Algebraic cryptanalysis of the data encryption standard.
In: IMA Int. Conf., pp. 152–169 (2007)

10. Courtois, N., Bard, G.V., Wagner, D.: Algebraic and slide attacks on keeLoq. In:
Nyberg, K. (ed.) FSE 2008. LNCS, vol. 5086, pp. 97–115. Springer, Heidelberg
(2008)

11. Courtois, N., O’Neil, S., Quisquater, J.J.: Practical algebraic attacks on the hitag2
stream cipher. In: Samarati, P., Yung, M., Martinelli, F., Ardagna, C.A. (eds.) ISC
2009. LNCS, vol. 5735, pp. 167–176. Springer, Heidelberg (2009)

12. Vörös, M.: Algebraic attack on stream ciphers. Master’s thesis, Comenius Univer-
sity, Faculty of Mathematics, Physics and Informatics, Department of Computer
Science (2007)

13. LaMacchia, B.A., Odlyzko, A.M.: Solving large sparse linear systems over finite
fields. In: Menezes, A., Vanstone, S.A. (eds.) CRYPTO 1990. LNCS, vol. 537, pp.
109–133. Springer, Heidelberg (1991)

14. Daemen, J., Rijmen, V.: Rijndael for AES. In: AES Candidate Conference, pp.
343–348 (2000)

15. Kleiman, E.: The XL and XSL attacks on Baby Rijndael. Master’s thesis, Iowa
State University, Department of Mathematics (2005)

Generalized Avalanche Test for Stream Cipher

Analysis

P.R. Mishra, Indivar Gupta, and N.R. Pillai

SAG , DRDO, Metcalfe House Complex, Delhi-110054, India
{pr_mishra,indivargupta,nrpillai}@sag.drdo.in

Abstract. In this paper we consider tests for avalanche effect in Key
sequence generators. In avalanche effect, small changes in input result
in large changes in the output. We adapt the Strict Avalanche Criterion
(SAC) randomness test proposed by Castro et al in 2005 in their paper in
Mathematics and Computers in Simulation to obtain an avalanche test
for Key sequence generators. We then propose a Generalized avalanche
criterion (GAC) test which includes strict avalanche criterion and other
known avalanche criteria. We apply the known avalanche criteria on a
toy example and demonstrate that GAC is able to detect a bigger set of
related keys as compared to other existing criteria. GAC may prove a
useful criterion for analysis of Key sequence generators.

Keywords: Avalanche Criteria, Hamming Distance, Strict Avalanche
Criteria, Correlation, block cipher, stream cipher and security evaluation.

1 Introduction

To resist cryptanalysis, it is desirable that small changes in the input settings
lead to large changes in the output. This makes it difficult to apply Hill climbing
or gradient descent approaches for key search. The property of small changes in
inputs triggering large changes in output has been known as avalanche criteria
(AC)/Strict Avalanche Criteria (SAC) [2,7] and is a desired property to check
for during security evaluation of any cipher. Different mathematical formulations
of this criterion have been given in different contexts eg block ciphers, boolean
functions, hash algorithms etc. In the case of a block cipher, a small change
in either the plaintext or the key should produce a significant change in the
ciphertext [5]. Similarly, SAC for Boolean functions has been proposed in [2].
Different generalizations of SAC for boolean functions were analyzed in [3,4].
In stream ciphers, the underlying pseudo-random generator should exhibit good
avalanche effect with respect to its key. In this article, we consider avalanche
criteria for stream ciphers.

The most common definition of Avalanche Criteria (AC) found in the litera-
ture is based on the amount of change in the output sequence when the key is
changed by one bit [1,5,7]. Mathematically, a mapping F taking a fixed length
input to an n-bit output satisfies avalanche criteria if

∀x | ∀y such that Hwt(y) = 1, Hdist(F (x), F (x ⊕ y)) ≈ n/2, (1)

M. Joye et al. (Eds.): InfoSecHiComNet 2011, LNCS 7011, pp. 168–180, 2011.
c© Springer-Verlag Berlin Heidelberg 2011

Generalized Avalanche Test 169

Where y are chosen in a such way that the Hamming weight (Hwt(y)) is equal
to 1 and Hdist denotes Hamming distance. Since it is infeasible to apply the test
for all possible keys in the key space, the test is applied for randomly chosen
subset from the key space. If avalanche property is satisfied for all the keys in the
subset, then one assumes that generator might be satisfying avalanche criteria.
For an m-bit key, this involves m + 1 runs of the key sequence generator and m
Hamming distance computations of n-bit sequences. A useful (but impractical)
generalization would be to remove condition on Hamming weight of y. The defi-
nition would become – F should satisfy the condition H(F (x), F (x ⊕ y)) ≈ n/2
for arbitrary x, y ∈ K, K being the key space. This would be a test for re-
lated keys. This criterion requires the calculation of Hamming distances for any
two pairs of distinct keys in the key space. It can be easily seen that for a key
length m, 2m runs of key sequence generator and

(
2m

2

)
computations of Ham-

ming distance between two n-bit sequences are to be made. This generalization
is impractical as to apply it even for a single key, one has to compare it with all
the other keys in the entire key space.

In this article, we suggest a method with m+1 runs of key sequence generator
and

(
m
2

)
sequence comparisons which subsumes the 1-bit change test and at

the same time checks for existence of related keys which are different only in k
consecutive bit positions.1 The conventional SAC test in comparison takes m+1
runs and m sequence comparisons.

An interesting generalization of SAC was proposed by Castro et al. They inter-
preted the Hamming distances between F (x) and F (x⊕y) as a random variable
and stated that it should follow the Binomial distribution B(1/2, n) [1]. We will
refer to their test as SAC-CAS. For applying the test on key sequence generator,
the sequence is interpreted as a sequence of n-bit blocks (n ∈ {8, 16, 32, 64, 128})
and the distribution of Hamming distances between pairs of adjacent blocks is
observed. The closeness of this distribution with B(1/2, n) is measured by means
of chi-square goodness-of-fit test and used as avalanche criteria.

The SAC-CAS test as proposed in [1] is more of a randomness test for a
single sequence rather than test for avalanche effect in a key sequence generator.
We adapt the SAC-CAS test for checking avalanche effect in a key sequence
generator.

We briefly summarize the contributions of this paper below.

1. We adapted the procedure of avalanche criterion test by Castro et al [1] to
obtain a test for avalanche effect in key sequence generators.

2. We propose a generalization for avalanche criterion: Generalized Avalanche
Criterion (GAC) and a test based on it. This test checks for the avalanche
effect for 1-bit changes in the key. It also detects closeness of sequences
generated by pairs of keys where the keys differ in k consecutive bits. Such
a generalization has not been studied before, to the best of our knowledge.

1 In the case of block ciphers one can apply this test on the Keyschedule which takes
in the user key and produces the expanded key.

170 P.R. Mishra, I. Gupta, and N.R. Pillai

3. We demonstrate the effectiveness of GAC for detecting avalanche effect where
other methods fail by applying them on a toy stream cipher designed by us.

Organization of our paper is as follows.
In Section 2 we briefly describe the avalanche test given by Castro et al fol-

lowed by our remarks on the test.
In Section 3 we propose a new generalized avalanche criterion (GAC) for anal-

ysis of stream ciphers. A Toy stream cipher (designed for testing purpose only)
is presented in Subsection 4.1 and the avalanche criteria tests are compared in
Subsection 4.2.

Experimental results and the discussions on the comparative performance are
given. We conclude the paper with Section 5.

2 Castro et al Strict Avalanche Criterion Test

Castro et al [1] proposed a new definition for Strict Avalanche Criterion Test
(SAC-CAS) for randomness testing. The first improvement suggested was to look
at the distribution of the Hamming distances, instead of just checking closeness
of Hamming distance to n/2. The definition of SAC-CAS suggested was:

∀x | ∀y such that Hwt(y) = 1, Hdist(F (x), F (x ⊕ y)) ∼ B(
1
2
, n). (2)

Where B(1
2 , n) denotes the Binomial distribution function with parameters 1

2
and n.

While applying it on Key sequence generators, they converted it into a ’ran-
domness test’. The test is applied on sequences from the generator taken one at
a time. The sequence under test is interpreted as a sequence of n-bit words. The
value of n can be chosen 8, 16, 32, 64, 128 · · · etc. The distribution of Hamming
distance for adjacent words of sequence is taken and compared with B(1/2, n),
which is the expected distribution for distances in the case of random sequences.
If the observed distribution is close to the expected distribution, the sequence is
considered to pass the test.

2.1 Our Observation on SAC-CAS Test

The test as described in [1] checks for randomness property of a sequence. In
fact the SAC-CAS test can be described as a poker test [6] on the sequence
derived by xoring the given sequence with a shifted (shift of n bits) version of
itself.

It is important to note that in SAC-CAS test, the authors have not applied
the definition in the sense of an avalanche criterion. They have assumed that
the function2. F is a transition function that takes bit stream of length n and

2 The definition of F is also such that there will be sequences where it is not well
defined. Map is a more appropriate description of F .

Generalized Avalanche Test 171

produces n bits output. (n can be any value from 8, 16, 32, 64, 128). They inter-
pret the given sequence as a sequence of n-bit words w0, w1, w2, w3, w4, · · · and
F is considered to be the map which takes wi to wi+1. For measuring avalanche
properties of F , instead of checking for Hdist(F (x), F (x ⊕ y)) with Hwt(y) = 1,
they calculate the value of Hdist(wi, wi+1) for all i and check if the observed
distribution follows the distribution B(1

2 , n). In this case the x is wi−1 and the
corresponding y is wi ⊕ wi−1. Observe that Hwt(y) can take any value between
0 to n. That is, the test is not checking for avalanche in the true sense (small
change in input leading to large change in output).

The second point to be noted is that the test checks for randomness property
of a sequence and it is not checking for ’small changes to key setting leading large
changes in the key sequence’ which is what one means by avalanche criterion for
key sequence generators.

2.2 Modified SAC-CAS Test

In this subsection we adapt the SAC-CAS for checking avalanche property of
key sequence generators. We will refer to the modified SAC-CAS test as MSAC
test. As is clear from our observations in 2.1 that the pairs of inputs to the
transition function F described above are not having ’small’ differences in input
and hence are not capturing the idea of avalanche criterion. Therefore, it becomes
imperative to modify their test suitably. Moreover, we also made our criterion a
check for the avalanche effect in true sense.

A direct application of the definition given in [1] gives one possible test when
F (x) is interpreted as the output of the key sequence generator on initializing
with key x. This test will be a generalization of the usual method of expecting
the Hamming distance to be close to N/2 where N is the length of F (x).

Instead of a simple Hamming distance test for closeness of two sequences,
we considered the Hamming distances between corresponding blocks of the se-
quences and then used the fact that the expected distribution was Binomial
distribution. This is explained more precisely in the following paragraphs.

Given a key sequence generator taking m-bit keys an producing say N -bit
output, we take F as a black box function which takes m bits as input and
produces m1 n-bit blocks as output (n can be 8,16, 32 .. and m1 = N/n). Let
for a given m-bit input x, Fi(x) denote the ith n−bit block of the output where
1 ≤ i ≤ m1.

Using the definition that a single bit change in input causes changes in out-
put according to B(1/2, n), we arrive at the following condition for avalanche
criterion - for all m-bit vectors y such that Hwt(y) = 1;

∀0 ≤ i ≤ m1, Hdist(Fi(x), Fi(x ⊕ y)) ∼ B
(1
2
, n
)

Ideally one should run the test for each block separately and in effect check
for avalanche property of function Fi. However, to simplify the test, we do not
distinguish between the Hamming distances computed at one block location
from those computed at another block location. This is same as relaxing the

172 P.R. Mishra, I. Gupta, and N.R. Pillai

condition that the avalanche is satisfied within each block of output to condition
of avalanche being satisfied when all the m1 blocks are considered together.

For a given y, for j, 0 ≤ j ≤ n, we define freqy(j) = #
{
i|Hdist(Fi(x), Fi(x ⊕

y)) = j, i = 1, . . . , m1

}
. We use freqy(j), j = 0, . . . , n as the observed frequen-

cies for the random variable and check for its closeness to distribution B(1/2, n).
For the implementation purpose we have taken n = 8.

3 Generalized Avalanche Test

Avalanche test can be generalized in two directions –

1. by relaxing the constraint on Hamming distance of y (interpretation of the
condition ‘small difference in input’)

2. the interpretation of the condition ‘large difference in output’

Generalization in the direction (2) has been suggested in [1] where the Hamming
distance of output sequences is considered to be following Binomial distribution
(instead of the usual definition of Hamming distance should be close to n/2).
The other direction (1) is relaxing the condition on input differences. If we
allow input Hamming distance up to k, then one has to generate

∑
i=0..k

(
m
i

)
sequences and perform

∑
i=1,...,k

(
m
i

)
Hamming distance computations. For input

Hamming distances up to k, the number of sequences to be generated becomes
mk. Generation and storage of the sequences will take both lot of storage and
time.

In this section we propose a way of testing avalanche properties of sequence
generators which not only checks for the effect of 1-bit changes in the input
but also checks for all k-bit changes in input where the k bits are consecutive.
We have devised our test in such a way that it has only a small time overhead
and no data overhead. We have to generate m + 1 sequences which is the same
as for standard SAC case with 1-bit input difference. Since Hamming distance
computations are not as costly as sequence generation, we have taken the liberty
of increasing the number of Hamming distance computations from m to

(
m
2

)
.

We assume that the key length is m and the black box function F , takes m
bits as input (key) and produces n bit sequence as output. Let us denote the m-
bit key by a vector K = (k1, . . . , km) ∈ Fm

2 where ki denotes bit at ith position.
We define support of vector as follows:

Supp(K) = {i : ki �= 0}.

For a given key K ∈ Fm
2 We generate m + 1 difference vectors (Y s) viz Y0, Y1,

. . . Ym ∈ Fm
2 with the property that Supp(Yi) = {1, . . . , i} and Supp(Y0) = φ

Now we set generalized avalanche criterion as follows.
Let S = {Y0, Y1, . . . , Ym} then F is said to follow Generalized Avalanche

Criterion (GAC) if following condition holds:

∀K ∈ F
m
2 and ∀Y, Z ∈ S, Y �= Z Hdist(F (K ⊕ Y), F (K ⊕ Z)) ≈ n

2
. (3)

Generalized Avalanche Test 173

As in the usual SAC tests we apply this test for a randomly chosen subset of
Keys. Though this criterion involves

(
m
2

)
computations of Hamming distances,

we have to generate only m + 1 sequences F (K ⊕ Y0), F (K ⊕ Y1), .., F (K ⊕ Ym)
in the pre-computation phase. In this way we have kept the data generation
overheads from increasing.

It can be easily seen that the case of single bit Hamming distance in ith input
bit is checked for when Y = Yi and Z = Yi−1 (in this case, Hdis(K ⊕ Yi, K ⊕
Yi−1) = 1 for 1 ≤ i ≤ m). In a single application of this test, the effect of single
bit change is checked for all possible input positions which is what SAC/AC
does. In this sense GAC is a generalization of AC/SAC.

4 Advantage of GAC over Other Avalanche Criteria

As GAC covers a wider portion of changes over key space, the probability of
detecting related keys increases for the same amount of data generation and a
marginal increase in computation. There are sequence generators which escape
AC/SAC but do not pass GAC. In this section we present a stream cipher that
passes AC but it fails GAC.

A toy stream cipher has been designed to show the comparative advantage of
GAC over AC and SAC-CAS. Many other security considerations have not been
taken into account while designing it. Authors do not recommend using it for
practical purposes. The block diagram of the cipher is given in Figure 1.

4.1 Description of the Toy Cipher

The algorithm takes 92-bit key for its initialization. There are two LFSRs (of
lengths 73 and 79) and three 8:1 multiplexers used in this cipher. There are
two polynomial banks, each containing 32 polynomials of degree 73 and 79 re-
spectively for providing polynomials for LFSRs. We denote the 92-bit key by
k1,k1,...,k92. The initialization details are provided in the table below:

Table 1. Key Distribution in Toy Cipher

S.No. Key bits Initialization

1 k1-k73 LFSR-73

2 k74-k78 Polynomial selection for LFSR-73

3 k79-k83 Polynomial selection for LFSR-79

4 k84-k86 Selection bits for multiplexer-1

5 k87-k89 Selection bits for multiplexer-2

6 k90-k92 Selection bits for multiplexer-3

While initializing LFSR-73, k1 is kept at feedback end. For all selection keys,
the key bit with lowest index forms the MSB. If all the bits from k1 to k73 are
zero then k1 is taken to be 1 before initialization. This is done to ensure that
LFSR is not initialized to an all zero state.

174 P.R. Mishra, I. Gupta, and N.R. Pillai

Fig. 1. Toy Stream Cipher

After initialization of LFSR-73, it is run 500 times without taking output.
Then 79 output bits are collected to initialize LFSR-79. Once the initialization
is completed, LFSR-79 is clocked once and 24 bits are tapped for three 8:1
multiplexers. The details of multiplexers are given in table below:

Table 2. Multiplexer Tap Points

Multiplexer No. Tap points

1 2,4,8,12,12,18,20,24

2 5,9,17,25,35,17,62,74

3 13,19,35,47,58,60,66,75

The counting starts from 1 at feedback end of the LFSR. The three output
bits from three multiplexers are xored to get one bit output of the cipher. For
generating the other bits of the sequence, only LFSR-79 is clocked.

4.2 Comparative Studies and Analysis

For comparative studies we implemented all the definitions of strict avalanche
criteria on the Toy stream cipher described in the section 4.1.

For the conventional AC, we randomly chose a 92-bit key K = (k1, k2, . . . , k92)
and generated 92 keys K1, . . . , K92 with the property that Supp(K ⊕ Ki) =
{i}, i = 1, 2, . . . , 92. We then generated 106 bit key sequence by the Toy stream
cipher corresponding to the original key and the related keys. We calculated
the %Hamming Distances and correlation values. We found that %Hamming

Generalized Avalanche Test 175

Distance values lie near 50% and the correlation values lie near zero which is as
per expected. The results are placed in Appendix A.

As SAC-CAS test is more of a sequence randomness test and not a test for
avalanche property with respect to key, we compare results from the modified
version of SAC-CAS test with the test we propose. We applied the MSAC test
(modified SAC-CAS test) for checking key avalanche properties on sequences
generated from our Toy cipher. The results are in Appendix B.

For the same key vector we calculated 93 key sequences as described in Section
3 and then applied our GAC test. It has been observed that our GAC detects
inherent weakness of the stream cipher indicating the related keys. As, there
are

(
93
2

)
correlation values, we have not listed all the values but listed only

those values which exceed a threshold of 0.002 i.e., the correlation values lying
outside the interval [−0.002, 0.002]. These values are listed in Appendix C. It is
clear from the result that the key sequence pairs (83,86),(83,89)and (86,89) have
correlation 1 i.e., they are identical.3

From the results given in Appendices A, B and C, it is clear that GAC is an
improvement over existing avalanche criteria. It is possible to combine Castro’s
idea of Binomial Distribution and χ2 goodness-of-fit with our GAC. In the results
here we have shown only raw correlation values here to reflect identical key
sequences.

5 Conclusion

We have presented a new avalanche criterion viz., Generalized Avalanche Crite-
rion (GAC). With the same amount of data generation as for a single bit SAC
test, the proposed test covers the existing single bit change SAC tests and also
checks for related keys which differ in k consecutive positions.

We have constructed a toy cipher to show a class of maps which will pass the
regular SAC tests, the SAC-CAS test and MSAC test, but fail our GAC test.
Therefore it can be used as a replacement for the existing avalanche criteria.

Acknowledgements. The authors would like to extend their gratitude to Di-
rector SAG for allowing them to carry out this work. Authors are also grateful
to Dr. S S Bedi and Dr. Meena Kumari for technical discussions and valuable
suggestions. Finally authors express their sincere thanks to Navneet Gaba for
her insightful comments which helped them to improve the quality of the paper.

References

1. Castro, J.C.H., Sierrab, J.M., Sezneca, A., Izquierdoa, A., Ribagordaa, A.: The strict
avalanche criterion randomness test. Mathematics and Computers in Simulation 68,
1–7 (2005)

3 All the tests given in the paper have been implemented by the authors in C/C++.
Source code can be obtained from the authors.

176 P.R. Mishra, I. Gupta, and N.R. Pillai

2. Forre, R.: The strict avalanche criterion: Spectral properties of boolean functions
and an extended definition. In: Goldwasser, S. (ed.) CRYPTO 1988. LNCS, vol. 403,
pp. 450–468. Springer, Heidelberg (1990)

3. Gupta, K.C., Sarkar, P.: Construction of Perfect Nonlinear and Maximally Nonlinear
Multi-output Boolean Functions Satisfying Higher Order Strict Avalanche Criteria.
In: Johansson, T., Maitra, S. (eds.) INDOCRYPT 2003. LNCS, vol. 2904, pp. 107–
120. Springer, Heidelberg (2003)

4. Hussain, I., Shah, T., Mahmood, H., Afzal, M.: Comparative Analysis of S-boxes
Based on Graphical SAC. International Journal of Computer Applications 2(5), 5–8
(2010)

5. Gustafson, H., Dawson, E., Neilsen, L., Caelli, W.: A Computer Package for Mea-
suring the Strength of Encryption Algorithm. Computer and Security 13, 687–697
(1994)

6. Menezes, A.J., van Oorschot, P.C., Vanstone, S.A.: Handbook of Applied Cryptog-
raphy, p. 182. CRC Press, New York (1997)

7. Webster, A.F., Tavares, S.E.: On the Design of S-boxes. In: Williams, H.C. (ed.)
CRYPTO 1985. LNCS, vol. 218, pp. 523–534. Springer, Heidelberg (1986)

Generalized Avalanche Test 177

A Test Result of Conventional AC

Number of sequences: 93
Length of each sequence: 1000000
===

SN CorCoef %HD
1. -1.05e-003 50.05 2.
-2.02e-003 50.10 3.
-1.14e-003 50.06 4.
-6.70e-004 50.03 5.
-6.72e-004 50.03 6.
+1.77e-003 49.91 7.
+1.77e-003 49.91 8.
+1.77e-003 49.91 9.
+8.80e-004 49.96 10.
-9.10e-004 50.05 11.
-1.74e-003 50.09 12.
-3.02e-004 50.02 13.
+2.19e-003 49.89 14.
-7.10e-004 50.04 15.
-4.86e-004 50.02 16.
+4.28e-004 49.98 17.
-5.02e-004 50.03 18.
+1.16e-003 49.94 19.
+1.16e-003 49.94 20.
+1.15e-003 49.94 21.
+6.88e-004 49.97 22.
+1.34e-003 49.93 23.
+1.34e-003 49.93 24.
+1.67e-003 49.92 25.
-5.88e-004 50.03 26.
-5.86e-004 50.03 27.
-1.28e-003 50.06 28.
-7.04e-004 50.04 29.
+1.57e-003 49.92 30.
+1.57e-003 49.92 31.
-2.66e-004 50.01

SN CorCoef %HD
32. -2.66e-004 50.01
33. -1.11e-003 50.06
34. -1.11e-003 50.06
35. -1.11e-003 50.06
36. -1.11e-003 50.06
37. -4.18e-004 50.02
38. -4.18e-004 50.02
39. +1.07e-003 49.95
40. +1.06e-003 49.95
41. +9.04e-004 49.95
42. +8.32e-004 49.96
43. +8.32e-004 49.96
44. -1.21e-003 50.06
45. +2.98e-004 49.99
46. +2.96e-004 49.99
47. -8.96e-004 50.04
48. -1.38e-003 50.07
49. -1.38e-003 50.07
50. +9.30e-004 49.95
51. -4.20e-004 50.02
52. +1.46e-004 49.99
53. -4.80e-005 50.00
54. +4.70e-004 49.98
55. +1.00e-005 50.00
56. +1.20e-005 50.00
57. +1.17e-003 49.94
58. +1.20e-005 50.00
59. +1.00e-005 50.00
60. +8.00e-006 50.00
61. -1.45e-003 50.07
62. +6.64e-004 49.97

SN CorCoef %HD
63. +6.66e-004 49.97
64. -4.14e-004 50.02
65. +5.56e-004 49.97
66. +1.17e-003 49.94
67. +1.44e-003 49.93
68. +1.44e-003 49.93
69. -1.32e-004 50.01
70. +9.34e-004 49.95
71. +9.36e-004 49.95
72. -2.80e-005 50.00
73. -2.80e-005 50.00
74. -1.07e-003 50.05
75. +1.64e-004 49.99
76. +1.76e-003 49.91
77. -3.22e-004 50.02
78. +2.30e-004 49.99
79. +2.68e-004 49.99
80. +1.24e-004 49.99
81. +4.78e-004 49.98
82. -6.98e-004 50.03
83. +3.40e-004 49.98
84. +8.04e-004 49.96
85. -1.29e-003 50.06
86. -2.56e-004 50.01
87. -1.18e-003 50.06
88. -1.52e-003 50.08
89. +1.38e-003 49.93
90. +3.12e-004 49.98
91. +8.66e-004 49.96
92. -5.42e-004 50.03

==
Max. +2.19e-003 50.10
Min. -2.02e-003 49.89
==
CorCoeff=Correlation Coefficient
%HD=%Hamming Distance

178 P.R. Mishra, I. Gupta, and N.R. Pillai

B MSAC Test Result

Sequence size (in bytes): 125000

Number of sequences: 93

Chi square value= 3.138240743. Passed at 1% los.

Chi square value= 21.205184743. Failed at 1% los.

Chi square value= 3.982119143. Passed at 1% los.

Chi square value= 4.300912286. Passed at 1% los.

Chi square value= 2.838120971. Passed at 1% los.

Chi square value= 9.755295829. Passed at 1% los.

Chi square value= 4.779102000. Passed at 1% los.

Chi square value= 5.368223829. Passed at 1% los.

Chi square value= 10.126934686. Passed at 1% los.

Chi square value= 3.094804857. Passed at 1% los.

Chi square value= 16.933371257. Passed at 1% los.

Chi square value= 5.774294686. Passed at 1% los.

Chi square value= 15.533395029. Passed at 1% los.

Chi square value= 6.792567600. Passed at 1% los.

Chi square value= 8.337220400. Passed at 1% los.

Chi square value= 6.784393886. Passed at 1% los.

Chi square value= 9.150035029. Passed at 1% los.

Chi square value= 8.912814457. Passed at 1% los.

Chi square value= 8.416123257. Passed at 1% los.

Chi square value= 6.235877314. Passed at 1% los.

Chi square value= 8.145363029. Passed at 1% los.

Chi square value= 11.602774686. Passed at 1% los.

Chi square value= 7.544487143. Passed at 1% los.

Chi square value= 7.229863143. Passed at 1% los.

Chi square value= 3.945595257. Passed at 1% los.

Chi square value= 6.167565543. Passed at 1% los.

Chi square value= 5.816414000. Passed at 1% los.

Chi square value= 1.076361886. Passed at 1% los.

Chi square value= 19.761410571. Passed at 1% los.

Chi square value= 10.694596400. Passed at 1% los.

Chi square value= 4.073357543. Passed at 1% los.

Chi square value= 4.955156857. Passed at 1% los.

Chi square value= 5.546571714. Passed at 1% los.

Chi square value= 4.904823600. Passed at 1% los.

Chi square value= 15.194472971. Passed at 1% los.

Chi square value= 12.338628400. Passed at 1% los.

Chi square value= 7.468948857. Passed at 1% los.

Chi square value= 2.536790686. Passed at 1% los.

Chi square value= 10.148764171. Passed at 1% los.

Chi square value= 5.664909543. Passed at 1% los.

Chi square value= 5.675273886. Passed at 1% los.

Chi square value= 4.361430686. Passed at 1% los.

Chi square value= 8.671315029. Passed at 1% los.

Chi square value= 3.144073886. Passed at 1% los.

Chi square value= 7.249246000. Passed at 1% los.

Generalized Avalanche Test 179

Chi square value= 17.977584286. Passed at 1% los.

Chi square value= 6.296461543. Passed at 1% los.

Chi square value= 13.848403029. Passed at 1% los.

Chi square value= 7.986957543. Passed at 1% los.

Chi square value= 10.664955257. Passed at 1% los.

Chi square value= 3.295775829. Passed at 1% los.

Chi square value= 9.858405314. Passed at 1% los.

Chi square value= 5.268676400. Passed at 1% los.

Chi square value= 2.994317543. Passed at 1% los.

Chi square value= 1.524307029. Passed at 1% los.

Chi square value= 5.586149314. Passed at 1% los.

Chi square value= 2.970560743. Passed at 1% los.

Chi square value= 5.887991600. Passed at 1% los.

Chi square value= 6.787195257. Passed at 1% los.

Chi square value= 5.512827257. Passed at 1% los.

Chi square value= 8.279177886. Passed at 1% los.

Chi square value= 7.921128971. Passed at 1% los.

Chi square value= 7.744726686. Passed at 1% los.

Chi square value= 8.658463829. Passed at 1% los.

Chi square value= 4.465640971. Passed at 1% los.

Chi square value= 11.652950686. Passed at 1% los.

Chi square value= 3.938866114. Passed at 1% los.

Chi square value= 5.481284400. Passed at 1% los.

Chi square value= 3.293544971. Passed at 1% los.

Chi square value= 7.122372400. Passed at 1% los.

Chi square value= 3.750987714. Passed at 1% los.

Chi square value= 12.817728743. Passed at 1% los.

Chi square value= 5.280891257. Passed at 1% los.

Chi square value= 5.881858571. Passed at 1% los.

Chi square value= 16.454164857. Passed at 1% los.

Chi square value= 11.366208743. Passed at 1% los.

Chi square value= 3.982821314. Passed at 1% los.

Chi square value= 4.505887829. Passed at 1% los.

Chi square value= 3.192055600. Passed at 1% los.

Chi square value= 5.939769429. Passed at 1% los.

Chi square value= 5.007717314. Passed at 1% los.

Chi square value= 4.356563029. Passed at 1% los.

Chi square value= 4.606748171. Passed at 1% los.

Chi square value= 1.854931029. Passed at 1% los.

Chi square value= 6.852160743. Passed at 1% los.

Chi square value= 4.105902457. Passed at 1% los.

Chi square value= 3.168211029. Passed at 1% los.

Chi square value= 3.433683029. Passed at 1% los.

Chi square value= 5.027941314. Passed at 1% los.

Chi square value= 6.780447829. Passed at 1% los.

Chi square value= 7.340180857. Passed at 1% los.

Chi square value= 8.088863829. Passed at 1% los.

180 P.R. Mishra, I. Gupta, and N.R. Pillai

C Test Result of GAC

Key Pair Cor. Value

(1,3) 0.002828
(4,75) -0.002502
(5,12) -0.00259
(5,80) -0.003064
(6,8) -0.002894
(6,80) -0.002516
(7,38) -0.00294
(7,69) -0.003004
(8,39) -0.00294
(9,28) -0.002754
(12,52) -0.002902
(12,70) 0.002592
(17,41) 0.002666
(18,34) 0.00266
(18,35) 0.003008
(19,36) 0.00301
(21,22) -0.002644
(21,28) 0.002534

Key Pair Cor. Value

(21,33) 0.00348
(21,34) 0.003128
(22,29) 0.002534
(22,34) 0.00348
(22,35) 0.003128
(25,26) -0.002528
(26,50) 0.003264
(28,87) 0.002736
(30,90) -0.002888
(31,42) 0.003052
(33,46) -0.002726
(34,47) -0.002726
(34,83) -0.003372
(34,86) -0.003372
(34,89) -0.003372
(36,45) 0.003154
(39,53) -0.002714
(42,51) -0.00253

Key Pair Cor. Value

(43,52) -0.00253
(43,62) -0.002816
(45,87) 0.002594
(57,72) -0.002864
(58,68) -0.00278
(58,88) 0.002746
(59,69) -0.002782
(60,68) 0.002554
(64,91) 0.003428
(66,85) 0.002636
(69,73) -0.003042
(82,84) 0.002712
(83,86) 1
(83,89) 1
(86,89) 1
(87,91) -0.002616

On Applications of Singular Matrices over Finite

Fields in Cryptography

Dhirendra Singh Yadav, Rajendra K. Sharma, and Wagish Shukla

Department of Mathematics
Indian Institute of Technology Delhi

Hauz Khas, New Delhi - 110016, India

Abstract. The main goal of this paper is to exhibit the use of singu-
lar matrices over finite fields in cryptography. Using these matrices, we
propose a key exchange method in which two users over an insecure
channel want to agree upon a secret key to be used in some private key
cryptosystem.

Keywords: Finite Fields, Cryptography, Singular Matrices, Sequences.

1 Introduction

The origin of the general theory of finite fields began with the work of Galois [1]
while the structure theory of finite prime fields reach back into the 17th and 18th
centuries with the work of eminent mathematicians as Euler, Fermat, Legendre,
and Lagrange.

Finite fields play a vital role in cryptography. For example, the arithmetic of
Advanced Encryption Standard (AES) is done in a special finite field so-called
“Rijndael field” [9]. Elliptic curve cryptography proposed by Neal Koblitz [2]
is an approach to public-key cryptography based on the algebraic structure of
elliptic curves over finite fields. Permutation polynomials over finite fields have
been used in designing public key cryptosystem and digital signatures [3,4,6].
Finite fields have also been used in many other cryptosystems such as in stream
ciphers, and McEliece cryptosystem [11,10,12,13,8].

Suppose a user Alice wants to send a secret message to another user Bob. She
decides to represent her plaintext as a long string of elements of finite field Fq.
She wants to use a small key as a “seed” to create a sufficiently long key string
of elements of Fq to encrypt the message. Encryption is done by adding this key
string to the message string and decryption by subtracting the same key string
from the encrypted message string. Now the question arises how to exchange the
“seed” which is to be used for encryption by Alice and for decryption by Bob?

We propose a possible solution to the above problem using singular matri-
ces over finite fields. To achieve a viable solution we make use of the linear
recurring sequences over finite fields. The mechanism that follows is similar to
Shamir’s 3-pass protocol but as mentioned before this setup is only to demon-
strate how this protocol works. The main objective here is to exhibit the use of

M. Joye et al. (Eds.): InfoSecHiComNet 2011, LNCS 7011, pp. 181–185, 2011.
c© Springer-Verlag Berlin Heidelberg 2011

182 D.S. Yadav, R.K. Sharma, and W. Shukla

singular matrices in cryptography. There may be many other possible ways to
implement it.

We first give a brief introduction about linear recurring sequences over finite
fields. Let Fq be a finite field with q elements and k be a positive integer. A
kth-order homogeneous linear recurrence relation (HLRR) is given by

sn+k = ak−1sn+k−1 + ak−2sn+k−2 + · · · + a0sn for n = 0, 1, 2 . . . (1)

with initial state vector S̄0 = (s0, s1, . . . , sk−1) ∈ Fk
q and ai ∈ Fq for 0 ≤ i ≤

(k − 1). HLRR given by (1) generates a sequence s0, s1, s2 This sequence
is called a kth-order homogeneous linear recurring sequence (HLRS) over Fq

corresponding to the HLRR (1).
If we associate a k × k matrix

M =

⎡
⎢⎢⎢⎢⎢⎣

0 0 0 · · · 0 a0

1 0 0 · · · 0 a1

0 1 0 · · · 0 a2

...
...

... · · ·
...

...
0 0 0 · · · 1 ak−1

⎤
⎥⎥⎥⎥⎥⎦

k×k

(2)

over Fq, then the nth state vector S̄n = (sn, sn+1, . . . sn+k−1) ∈ Fk
q of the se-

quence is given by
S̄n = S̄0M

n for n = 0, 1, 2, . . . (3)

The polynomial

f(x) = xk − ak−1x
k−1 − ak−2x

k−2 − · · · − a0 ∈ Fq[x]

is called the characteristic polynomial of the HLRS. Every kth-order HLRS
over Fq is ultimately periodic with least period bounded by qk − 1 and if its
characteristic polynomial f(x) is a primitive polynomial over Fq and its ini-
tial state vector S̄0 is non-zero then it is periodic with least period qk − 1
(see [10], Ch. 6).

Berlekamp Messey algorithm [7,5] shows that if an HLRS has characteris-
tic polynomial of degree ≤ k then any 2k consecutive terms of the sequence
determine a characteristic polynomial and thus the entire sequence. Therefore
these sequences are not suitable for constructing secure cryptosystems. In spite
of their proven insecurity they are very popular in stream ciphers because their
large least periods. Since our purpose here is to exhibit the protocol, we do not
worry about these facts as they can easily be overcome by using some more
sophisticated sequences such as multi-sequences etc.

2 Exchanging the Seed over Insecure Channel

Alice first chooses a k-th order HLRS over Fq for a suitable k so that least
period of the HLRS is sufficiently large to encrypt her message. In view of (1),

On Applications of Singular Matrices over Finite Fields in Cryptography 183

(2), and (3) it is clear that the matrix M and the initial state vector S̄0 =
(s0, s1, . . . , sk−1) ∈ Fk

q can be taken as a “seed” to generate the whole sequence.
Alice then constructs the matrix T of order k + 1 by k given by

T =

⎡
⎢⎢⎢⎢⎢⎢⎢⎣

s0 s1 s2 · · · sk−2 sk−1

0 0 0 · · · 0 a0

1 0 0 · · · 0 a1

0 1 0 · · · 0 a2

...
...

... · · ·
...

...
0 0 0 · · · 1 ak−1

⎤
⎥⎥⎥⎥⎥⎥⎥⎦

(k+1)×k

(4)

=
[

S̄0

M

]
(k+1)×k

Thus the matrix T in (4) contains the “seed” which is sufficient to generate the
whole sequence.

Then she chooses a positive integer t and construct a matrix A having t rows
and t+k +1 columns over Fq such that rows of matrix A are linearly dependent
i.e. Rank(A) < t.

Finally she constructs the square matrix L of order t+k+1 over Fq as follows

L =

⎡
⎢⎢⎢⎢⎢⎢⎣

At×(t+k+1)

O(k+1)×(t+1) T(k+1)×k

⎤
⎥⎥⎥⎥⎥⎥⎦

(5)

where O(k+1)×(t+1) is null matrix.
Since rows of matrix A are linearly dependent so matrix L is non-invertible.

Thus the matrix T in (4) which contains the “seed” has been embedded in a
singular matrix L. Notice that the design of the matrix L is such that “seed”
matrix T can easily be recognized and extracted from L.

After constructing matrix L Alice chooses a random matrix LA ∈ GL(t + k +
1, Fq)(i.e. invertible square matrix of order (t + k + 1) over Fq)) and computes
U = LAL and sends it to Bob. After receiving U , Bob chooses some random
matrix LB ∈ GL(t + k + 1, Fq) and computes V = ULB and sends V back to
Alice. Alice again computes W = L−1

A V and sends it to Bob and finally Bob
computes X = WL−1

B .
Following computation shows that matrix X is equal to the matrix L:

X = WL−1
B = (L−1

A V)L−1
B = L−1

A (ULB)L−1
B

= L−1
A (LAL)LBL−1

B = L

Thus Bob can extract the “seed” matrix T from the matrix X(= L) and use it
to generate the same HLRS to decrypt the message sent by Alice.

184 D.S. Yadav, R.K. Sharma, and W. Shukla

3 Security of the Method

In this method information that has been transmitted over insecure channel are
the matrices U(= LAL), V (= LALLB) and W (= LLB). Breaking this system is
equivalent to computing any one of the matrices LA, LB, or L using the matrices
U, V, and W .

Security of this method depends on the singularity of matrix L. Notice that
if the matrix L had not been singular then so would have been the matrices U ,
V and W . And then U , V and W would immediately have produced all three
matrices LA, LB, and L since LB = U−1V, LA = V W−1 and then L = L−1

A U =
WL−1

B .
Since the matrix L is singular so are the matrices U , V and W as the product

of singular and non-singular matrices is singular. Following are the two viable
attacks, an adversary could try to break the system:

1. By factoring any of the matrix U, V , or W , and
2. By observing that V = ULB or V = LAW and trying to solve these matrix

equations.

First attack leads to factorization of singular matrices as product of a singular
and a non-singular matrix over finite fields which we believe is a hard problem
and a knowledgeable reader will easily recognize. Though it is not proven but
there is not much literature available that deals with the factorization of matri-
ces. There are some known factorization techniques but they work only on some
special kind of matrices and produce only specific kind of factors and these are
completely irrelevant in our case so we prefer not to refer them here.

For second attack we only discuss the case V = ULB as the second case is
similar in nature. In the case of V = ULB, matrices V and U are known singular
matrices and LB is unknown non-singular matrix.

Suppose Rank(L) = r then r < (t + k + 1) since the matrix L is singular.
Using the fact that if A and B are matrices such that product A.B is defined
then Rank(AB) ≤ min{Rank(A), Rank(B)} we see that

max{Rank(U), Rank(V), Rank(W)} ≤ r.

Solving the matrix equation V = ULB for LB leads to t + k + 1 system of linear
equations of the form UX = b. Each of these linear system of equations gives at
least q possible solutions for X(depending on the rank of matrix U). By solving
these t+ k +1 systems, we see that matrix LB will have at least qt+k+1 possible
choices which is obviously not practical.

4 Conclusion

We have shown that singular matrices can be used for cryptographic purposes.
Security of our proposed method depends on the seemingly difficult problem of
factorization of matrices. We are working on some protocols that answer the

On Applications of Singular Matrices over Finite Fields in Cryptography 185

questions like “why” one may prefer this new method over existing methods
like RSA and Diffie-Hellman key exchange,“how” to protect the integrity of the
secret, and some other cryptographic issues. Finding new ways to factor matrices
is a problem which requires a lot more attention of mathematical community.

Acknowledgments. The authors would like to thank the reviewers for their
constructive comments. This work was partly supported by grant no. 09/086
(0749)/2005-EMR-I funded by Council of Scientific and Industrial Research
(CSIR), India.

References

1. Galois, E.: Sur La théorie Des Nombres. Bull. Sci. Math. de M. Ferussac 30,
428–435 (1830)

2. Koblitz, N.: Elliptic Curve Cryptosystems. Mathematics of Computation 48,
203–209 (1987)

3. Levine, J., Brawley, J.V.: Some Cryptographic Applications of Permutation Poly-
nomials. Cryptologia 1, 76–92 (1977)

4. Lidl, R., Muller, W.B.: Permutation Polynomials in Rsacryptosystems. In:
Advances in Cryptology, pp. 293–301 (1984)

5. Massey, J.L.: Shift-register Synthesis and BCH Decoding. IEEE Trans. Information
Theory 15, 122–127 (1969)

6. Schwenk, J., Huber, K.: Public Key Encryption and Digital Signatures Based on
Permutation Polynomials. Electronics Letters 34(2), 759–760 (1998)

7. Berlekamp, E.R.: Algebraic Coding Theory. McGraw-Hill, New York (1968)
8. Shparlinski, I.E.: Finite Fields: Theory and Computation. Kluwer Academic Pub-

lishers, Dordrecht (1999)
9. Daemen, J., Rijmen, V.: The Design of Rijndael: AES - The Advanced Encryption

Standard. Springer, Heidelberg (2002)
10. Lidl, R., Niederreiter, H.: Introduction to Finite Fields and Their Applictions.

Cambridge University Press, Cambridge (1994)
11. Koblitz, N.: Algebraic Aspects of Cryptography. Springer, Heidelberg (1999)
12. Lidl, R., Niederreiter, H.: Finite Fields: Encyclopedia of Mathematics and Its Ap-

plications. Cambridge University Press, Cambridge (1997)
13. Menezes, A.J., Blake, I.F., Gao, X., Mullin, R.C., Vanstone, S.A.: Applications of

Finite Fields. Kluwer Academic Publishers, Dordrecht (1993)

Author Index

Bandyopadhyay, Sambaran 45
Bhunia, Swarup 30
Burman, Sanjay 1

Chakraborty, Rajat Subhra 30, 45

Danger, Jean-Luc 128
Das, Abhijit 157
Datta, Amit 144
Dutta, Ratna 57, 72

Ghosh, Santosh 16
Ghosh, Satrajit 157
Guilley, Sylvain 128
Gupta, Indivar 93, 168

Mishra, Dheerendra 57
Mishra, P.R. 168
Mohandas, Radhesh 3
Mukhopadhyay, Sourav 57

Narasimhan, Seetharam 30
Naskar, Ruchira 45
Nassar, Maxime 128

Padhye, Sahadeo 83
Pais, Alwyn R. 3
Pandu Rangan, C. 111
Pillai, N.R. 168
Poddar, Rishabh 144

Rebeiro, Chester 144
Roychowdhury, Dipanwita 16

Sadalkar, Kunal 3
Saxena, P.K. 93
Schmidt, Jörn-Marc 2
Sharma, Rajendra K. 181
Sharmila Deva Selvi, S. 111
Shukla, Wagish 181
Souissi, Youssef 128
Sree Vivek, S. 111

Tiwari, Namita 83

Yadav, Dhirendra Singh 181

	Title

	Preface
	Table of Contents
	Invited Talks
	Engineering Trustworthy Systems
	Secure Implementations for the Internet of
Things

	Embedded Security
	Model Based Hybrid Approach to Prevent SQL
Injection Attacks in PHP
	Introduction
	Related Work
	Classifying SQL Injection Vulnerability
	Attack Based on Tautology
	Attack Based on Union
	Attack Based on Comments

	Static vs Dynamic Approach
	Basic AMNeSIA Model for JSP Web Application and Its Limitation
	Principles
	Limitations and Assumptions of AMNeSIA Model in JSP

	Proposed Solution
	Algorithms
	Examples

	Implementation
	Experimental Setup
	Result and Analysis
	Conclusion and Future Work
	References

	Security of Prime Field Pairing Cryptoprocessor
against Differential Power Attack
	Introduction
	Mathematical Background
	Pairing Crytoprocessor (PCP)
	Computation of Doubling Step
	Computation of Addition Step
	Computation of Final Exponentiation
	Cost for Computing Tate Pairing

	Side-Channel Vulnerability
	Weakness of Pairing Computations in Fp

	Proposed DPA Attack
	Mounting the DPA on FPGA Platform
	Proposed Counteracting Technique
	Overhead of DPA Countermeasure

	Conclusion
	References

	Embedded Software Security through Key-Based
Control Flow Obfuscation
	Introduction
	Methodology
	Obfuscation Technique
	Obfuscation Example
	Implementation
	Integration with Hardware-Assisted Approaches

	Obfuscation Efficiency and Overheads
	Obfuscation Efficiency
	Computational Overhead of the Obfuscation Technique

	Automation of the Obfuscation Technique
	Results
	Conclusions
	References

	Digital Rights Management
	Reversible Watermarking Using Priority
Embedding through Repeated Application of Integer Wavelet Transform
	Introduction
	Background
	Reversible Integer Wavelet Transform
	Watermarking Based on Integer Wavelet Transform

	Proposed Method
	Multi–Bit Hiding
	Watermark Embedding
	Watermark Extraction

	Results
	Conclusions
	References

	Access Policy Based Key Management in
Multi-level Multi-distributor DRM Architecture
	Introduction
	Preliminaries
	Definitions and Notations
	Identity Based Encryption (IBE)
	Attribute Based Encryption (ABE)

	Protocol
	Overview of the Proposed Multi-party Multi-level DRM Architecture
	Secure Delivery of Content Key

	Analysis
	Conclusion
	References

	Access Polynomial Based Self-healing Key
Distribution with Improved Security and Performance
	Introduction
	Preliminaries
	One-Way Function
	Key Distribution and Self-healing
	Notational Convention
	Security Framework

	Scheme Description
	Protocol Requirements
	Self-healing Session Key Distribution
	Complexity

	Analysis
	Conclusion
	References

	Cryptographic Protocols
	An ID-Based Proxy Multi Signature Scheme
without Bilinear Pairings
	Introduction
	Preliminaries
	Background of Elliptic Curve Group
	Complexity Assumption

	Formal Model of Identity-Based Proxy-Multi Signature Scheme
	Identity-Based Proxy Multi Signature Scheme

	Proposed Scheme
	Security Analysis
	Comparative Analysis
	Conclusion
	References

	Distributed Signcryption Schemes with Formal
Proof of Security
	Introduction
	Security Model for Distributed Signcryption
	Generic Scheme for Distributed Signcryption
	Security Models for Distributed Signcryption

	Distributed Signcryption Schemes - MVS and GPSS
	Mu and Varadharajan Scheme(MVS) bib:KM03,bib:MV00
	Gupta, Pillai and Saxena Scheme(GPSS) bib:GPS07

	Modifications in Distributed Signcryption Schemes MVS and GPSS
	Modified Mu and Varadharajan Scheme [MMVS]
	Modified Gupta, Pillai and Saxena Scheme [MGPSS]

	Security Analysis of MMVS and MGPSS
	Conclusion
	References

	Identity Based Online/Offline Encryption and
Signcryption Schemes Revisited
	Introduction
	Preliminaries
	Bilinear Pairing
	Computational Assumptions
	Identity Based Online/Offline Encryption Schemes(IBOOE)
	Identity Based Online/Offline Signcryption

	Review and Attack of IBOOE in LiuZ09
	Review of of Liu et al.'s Scheme (L-IBOOE) LiuZ09
	Attack on Confidentiality
	A Possible Fix for the Weakness in LiuZ09

	The New IBOOE
	The Scheme

	Review and Attack of IBOOSC Schemes
	Scheme by Sun et al.Susilo08
	Generic Scheme by Sun et al. SunMS08

	The New IBOOSC
	Security Analysis of Our IBOOSC
	References

	Cryptanalysis/Side Channel Attacks
	“Rank Correction”: A New Side-Channel
Approach for Secret Key Recovery
	Introduction
	Background Knowledge
	Rank-Based SCAs
	Notations
	Key Rank Behaviours

	Rank Corrector: Principle
	Application Field
	Basic Principle
	RC Parameters and Their Evaluation
	Description of the Algorithm
	Example
	Optimization

	Experimental Results
	Conclusion and Perspectives
	References

	A Cache Trace Attack on CAMELLIA
	Introduction
	Preliminaries
	Principle of Cache Attacks
	The CAMELLIA Structure

	The Attack on CAMELLIA
	Determining k1 kw1
	Determining k2 kw2
	Determining k3 kw1 and k4 kw2
	Obtaining the Secret Key

	Practically Mounting the Attack
	Conclusions and Future Directions
	References

	An Improvement of Linearization-Based
Algebraic Attacks
	Introduction
	Background
	Algebraic Attack on AES-Like Ciphers
	eXtended Linearization (XL)
	Structured Gaussian Elimination

	eXtended Linearization with Structured Gaussian Elimination (XL_SGE)
	Motivation
	XL_SGE Algorithm

	Experimental Results
	Conclusion
	References

	Cipher Primitives
	Generalized Avalanche Test for Stream Cipher Analysis
	Introduction
	Castro et al Strict Avalanche Criterion Test
	Our Observation on SAC-CAS Test
	Modified SAC-CAS Test

	Generalized Avalanche Test
	Advantage of GAC over Other Avalanche Criteria
	Description of the Toy Cipher
	Comparative Studies and Analysis

	Conclusion
	References

	On Applications of Singular Matrices over Finite Fields in Cryptography
	Introduction
	Exchanging the Seed over Insecure Channel
	Security of the Method
	Conclusion
	References

	Author Index

