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Abstract. The suffix tree has proven to be an invaluable indexing data
structure, which is widely used as a building block in many applications.
We study the problem of making a suffix tree persistent. Specifically,
consider a streamed text T where characters are prepended to the begin-
ning of the text. The suffix tree is updated for each character prepended.
We wish to allow access to any previous version of the suffix tree. While
it is possible to support basic persistence for suffix trees using classi-
cal persistence techniques, some applications which can make use of this
persistency cannot be solved efficiently using these techniques alone.

A collection of such problems is that of queries on string intervals of the
text indexed by the suffix tree. In other words, if the text T = t1...tn is in-
dexed, one may want to answer different queries on string intervals, ti...tj ,
of the text. These types of problems are known as position-restricted and
contain querying, reporting, rank, selection etc. Persistency can be uti-
lized to obtain solutions for these problems on prefixes of the text, by solv-
ing these problems on previous versions of the suffix tree. However, for
substrings it is not sufficient to use the standard persistency.

We propose more sophisticated persistent techniques which yield so-
lutions for position-restricted querying, reporting, rank, and selection
problems.

1 Introduction

Text indexing is one of the most important paradigms in searching. The idea is to
preprocess a text T = t1 · · · tn over alphabet Σ and construct a mechanism that
will later provide answers to queries of the form “report all of the occurrences
of a pattern P in the text” in time proportional to the size of the pattern and
output, rather than the size of the text. The suffix tree [10,14,16,17] has proven
to be an invaluable data structure for indexing. It is also considered a building
block for various other indexing and non-indexing problems.

Some of the suffix tree constructions work in the online model [16,17], in which
one maintains a suffix tree for a text that arrives character by character, and at
any given time we might receive a pattern query. For simplicity, we assume that
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the text arrives from the end towards the beginning. Otherwise a single character
added at the end of the text can impose a linear number of changes to the suffix
tree. Of course, if the text arrives from beginning to end we can view the text in
reversed form and then a queried pattern is reversed as well in order to obtain
the correct results. The best currently known results for the online suffix tree
are an O(log |Σ|) amortized time per character by Weiner in [17], and O(log n)
worst case per character by Amir et.al in [2]. We also note that for constant-size
alphabets there is a different indexing structure by Amir and Nor [3].

Data structures which have the ability to allow access to previous versions of
themselves over the updates are known as persistent data structures [5,8,9]. For
a good survey see [12]. We focus on two types of persistent data structures. The
first type is fully persistent data structures, in which an update can be made
to any version of the data structure. In this type, one can imagine a tree of
versions of the data structure as update operations are performed on various
versions. The second type is known as partially persistent data structures, in
which an update can be made only to the last version created. In this type, one
can imagine a list of versions of the data structure as update operations are
performed only on the tail of the list. In Section 2 we will provide a quick review
on some of the known results in this field which we will later use.

To the best of our knowledge persistent suffix trees have not been considered
before. Nevertheless, since suffix trees have constant indegree it follows that one
can make suffix trees persistent using the result of [8]. However, this persistency
is useful solely for navigation purposes, which is sufficient for various standard
applications, e.g. queries of the sort “report all of the times in which a specific
stock has a series of consecutive values in the stock market, before last March”.
More sophisticated queries cannot be answered with navigational data on the
current text alone.

One subset of problems that we focus on is string interval problems, a.k.a.
position restricted problems. Here one has a suffix tree for the full text T =
t1 · · · tn but is interested in queries that are narrowed down onto an interval
ti · · · tj . One problem is known as position restricted indexing, see [13], position
restricted reporting, where one desires to report all matches within an interval of
the text, position restricted rank, where one desires to know the rank of a given
pattern within the interval of the text, and position restricted select, where one
desires to find the i’th appearance of a given pattern. The intuition for using a
persistent suffix tree for these type of problems is that by accessing the version of
the suffix tree just after ti was added, one may reduce the problem to searching
within the prefix of ti · · · tn of length j − i + 1.

Unfortunately, the persistent suffix tree on its own does not suffice for efficient
solutions for these problems. This happens because versions of the data structure
provide bounds for one side of the desired interval query, but not both. Hence,
we need to provide a persistent mechanism which supplies the capability for
answering the different queries for position restricted problems. We do this by
providing a general framework solution, and then show how each of the above
applications can be solved using this general framework.
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The most natural problem that our general framework solves is the position
restricted indexing (PRI) problem. In this problem we wish to preprocess the text
T = t1 · · · tn, to support subsequent queries of the form “Given a pattern P =
p1 · · · pm and two indexes i, j report all of the occurrences of P in ti · · · tj”. This
PRI problem is a very natural one, and was introduced by Mäkinen and Navarro
in [13]. PRI has also been addressed by Chien et al [7] where some connections
between PRI and range searching in 2D are shown. Recently, Bille and Gørtz
in [4] provided a solution for the PRI problem using O(n log n) preprocessing
time, O(n logε n) space (for any constant ε > 0), and achieve optimal query time
of O(m + occi,j) (where occi,j is the size of the output).

We show in this paper, using the notion of persistency and our general frame-
work, how one can solve PRI using O(n log n) preprocessing time, O(n logε n)
space (for any constant ε > 0), and achieve query time of O(m + log log |Σ| +
occi,j). For constant size alphabets we achieve the same complexities as those
of Bille and Gørtz in [4], however, for general alphabets their solution is more
efficient. Nevertheless, we choose to demonstrate our solution to this application
as it provides an easier understanding of the use of our general framework, which
later will allow us to solve other applications efficiently.

We discuss several other problems for which our general framework can help to
achieve better query time from what is currently known. For the counting version
of PRI (where we need to count the number of occurrences of P in ti · · · tj) we
obtain a data structure using O(n log n/ log log n) space data structure which
answers queries in O(m + log log |Σ|) time. This is comparable with the results
of [13] which by using n+o(n) space can answer queries in O(m+log n) time. We
note that while the authors in [13] claim that they can construct a data structure
achieving O(m + log log n) query time, using O(n logε n) space, is based on an
(unproven) claim that the data structure of [1] can answer 2D orthogonal range
counting queries in O(log log n) time on a grid. However, this cannot be true
as that would contradict the lower bounds of Patrascu [15]. In addition, our
solution for the counting version improves on the substring rank (SR) problem.
In the substring rank (SR) problem we need to preprocess T for a substring rank
query: given a pattern P and an integer k return the number of occurrences of
P in t1 · · · tk. The SR problem is a special case of the counting version of PRI
since we can answer it using by setting i = 1 and j = k−m+1. Thus the bounds
of the counting version of PRI apply to SR as well.

Finally, we address the substring selection problem where we wish to pre-
process T for a substring selection query: given a pattern P and an integer k
locate the kth occurrence of P in T . This problem was presented by Mäkinen
and Navarro [13], where the authors construct a data structure that requires
O(n� logn |Σ|) space where � is an upper bound on the size of the queried pat-
terns, and answer queries in O(m loglog n |Σ|) time. Our data structure requires
O(n log n/ log log n) space and can answer queries in optimal O(m) time. Fur-
thermore, we do not require any bound on the pattern length to be known in
advance.
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Our paper is organized as follows. In Section 2 we provide some definitions
and preliminaries, including a quick review on some of the known persistent
data structures which we will later use. In Section 3 we describe the persistent
suffix tree. Then, in Section 4 we discuss the general framework used to solve
the applications which we follow up on in Section 5.

2 Definitions and Preliminaries

Given a string S, denote by |S| the length of S. An integer i is a location in
S if i = 1, . . . , |S|. Given a string T = t1 . . . tn (i.e. |T | = n, hereafter the
text) where for every location i ti ∈ Σ (hereafter the alphabet), a suffix of
T is a string of the form ti . . . tn, for some location i. Given another string
P = p1 . . . pm (hereafter the pattern), a location i in T is an occurrence of P in
T if ti . . . ti+m−1 = p1 . . . pm = P . The suffix tree of a string T is denoted by
ST (T ).

We would like to assume that |Σ| ≤ n. If this is not the case we can use a hash
function in order to reduce Σ to a new alphabet ΣT such that |ΣT | ≤ n as there
are at most n different characters in T . However, this can be done efficiently
only if we assume that the subset of Σ which we use in T is known in advance.
While this is true in the off-line (static) model of the text, it might not be true
in the online model.

The suffix tree data structure is comprised of three different types of struc-
tures:

1. Tree Structure - The nodes and edges of the tree.
2. Text Structure - The label for each edge in the tree needs to be maintained.

This can be costly, therefore, the suffix tree maintains for each edge a pointer
into a substring of the text corresponding to the label, instead of explicitly
maintaining it.

3. Navigation Structure - Each node in the suffix tree can have up to |Σ|
children, each one corresponding to one of the characters in Σ. Given a
character σ ∈ Σ the navigation structure allows us to quickly decide which
of the edges to the node’s children, if any, correspond to σ. There are two
main approaches to solve this problem. The first is using a pointer array
for each node, where location σ in the array corresponds to the appropriate
outgoing edge. While this could induce a cost of O(|Σ|) space per node, one
can use hash functions in order to reduce the space to be linear in the number
of children of each node. However, in an online setting this would require a
dynamic hash-function which needs to be persistent, and we are not aware of
any good solutions for this problem. The second option is using a balanced
search tree over the children of every node, where the order is determined
by the appropriate character. This will induce an extra O(log |Σ|) time per
node encountered when traversing down the suffix tree.

Note that in the static setting one can maintain for each node two pointers to the
beginning and end of the sub-list of leaves which are in the node’s subtree. This



Persistency in Suffix Trees with Applications to String Interval Problems 71

task is too difficult in the online setting. The main use of these pointers is to allow
reporting the occurrences of a queried pattern. This happens once its appropriate
node is located in time proportional to the size of the output (by scanning the
list). However, we can overcome this in the online setting by performing a scan
of the subtree of the node and outputting the leaves we encounter. This suffices
as the size of the subtree is linear in the number of leaves of the subtree (since
all of the inner nodes have more than one child).

2.1 Some Persistent Data Structures

Fully Persistent Arrays. Consider an array A, with the following operations:

1. Store(v, i, x) - Store the information x in the ith location of the version
named v of A. This also returns v′ which is the name of the new version of
A.

2. Access(v, i) - Return the information in the ith location of the version named
v of A.

Dietz in [8] presented a data structure (DDS for short) that performs Store
operations in O(log log m) expected amortized time, where m is the number of
Store operations performed so far, and Access operations in O(log log m) worst-
case time. Unfortunately, it is unknown if improved bounds exist for the partially
persistent version.

Fully and Partially Persistent Data Structures of Bounded In-degree.
The task of making any data structure in which each node has a constant in-
degree (meaning the number of pointers to any node is O(1)) fully persistent was
solved by Dietz et. al. [9] with an overhead of amortized O(1) space and time
per operation. The partially persistent version was solved by Brodal [5] with a
worst-case overhead of O(1) per operation. Note that in order to be able to use
this in a rooted tree with a non constant fan-out, one cannot maintain pointers
to parents.

Fully and Partially Persistent Balanced Search Trees. Dietz et. al. in [9]
show how one can support a fully persistent red-black tree over n nodes where
each update (insertion or deletion) costs O(log n) worst-case time, and O(1)
worst-case space overhead.

2.2 Problems

Problem 1. PRI-Report Preprocess text T = t1 · · · tn, such that given subse-
quent queries of the form PRI − Report(P = p1 · · · pm, i, j), report all of the
occurrences of P in ti · · · tj .
Problem 2. PRI-Count Preprocess text T = t1 · · · tn, such that given subse-
quent queries of the form PRI − Count(P = p1 · · · pm, i, j), return the number
of occurrences of P in ti · · · tj.
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Problem 3. SSR Preprocess text T = t1 · · · tn, such that given subsequent queries
of the form SSR(P = p1 · · · pm, k), return the number of occurrences of P in
t1 · · · tk.

Problem 4. SSS Preprocess text T = t1 · · · tn, such that given subsequent queries
of the form SSS(P, k), return the kth occurrence of P in T .

3 The Persistent Suffix Tree

In this section we briefly explain how to convert a suffix tree to be persistent in
the online text model, where characters are prepended to the beginning of the
text. Specifically, in a persistent suffix tree for T = t1 · · · tn we wish to be able
to access the suffix tree of ti · · · tn for every 1 ≤ i ≤ n.

Consider ST (T ) and ST (σT ) for some σ ∈ Σ. It is a well know fact that
the amount of tree structure changed or added in the transition from ST (T )
to ST (σT ) is constant [2] [17]. Specifically, the new leaf corresponding to the
new suffix is added, and in addition, a new node might be inserted into an
existing edge in order to insert the new leaf’s parent (if it does not already
exist). The process of locating these changes can cost either amortized O(log |Σ|)
[17], or worst case O(log n) [2]. We use the result of Brodal [5] in order to
obtain partial persistency. Dealing with the text structure is standard. Thus the
remaining task is that of maintaining the navigation structure, which depends
upon implementation.

3.1 Using Pointer Arrays

If the pointer array solution is implemented, one can use the result by Dietz [8]
in order to obtain an expected amortized overhead of O(log log n) per update,
and a worst case O(log log n) overhead per node encountered when traversing
down the suffix tree. While one might think that the number of changes to any
pointer array is bounded by |Σ| due to each pointer changing at most once, this
is not the case as the pointer from, say, a node u corresponding to character
σ can change many times when internal nodes are added. Thus the query time
would be O((m+ occ) log log n). There are two ways to further reduce the query
time. The first is by noting that when traversing the subtree corresponding
to the queried pattern one can use the tree structure (and not the navigation
structure) in order to scan the tree using, say, a post-order search. The second
is using the techniques we discuss later in Section 4.2 which will allow us to
reduce the overhead to O(log log |Σ|). However, this is under the assumption
that Σ = {1, 2, 3, · · · , |Σ|} to avoid the need of using a persistent dynamic hash
function. Thus, the query time can be reduced to O(m log log |Σ|+occ), and the
following theorem has been established.

Theorem 5. A persistent suffix tree can be maintained such that the cost of
prepending a new character suffers an additive overhead of O(log log |Σ|) ex-
pected amortized time and O(1) worst-case space, and indexing queries can be
answered in time O(m log log |Σ| + occ).
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3.2 Using Balanced Search Trees

If the choice of implementation is to use a balanced search tree for the navigation
data, one can use the results of Dietz et.al. [9] so that each update will cost an
additional O(log |Σ|) time, and the traversal will suffer from an O(log |Σ|) time
worst-case overhead per node. Thus, the query time would be O(m log |Σ|+occ)
time.

Theorem 6. A persistent suffix tree can be maintained such that the cost of
prepending a new character suffers an additive overhead of O(log |Σ|) expected
amortized time and O(1) worst-case space, and indexing queries can be answered
in time O(m log |Σ| + occ).

4 The General Framework

While in some applications that text is static, it is useful to treat each text
location as a timestamp. Each timestamp will have its own version of the suffix
tree using persistency techniques. More precisely, for text location τ we have a
data structure similar to the suffix tree containing only the suffixes of tτ · · · tn.
Also, time is defined in reverse - so first create the version at time n and move
backwards towards time 1. However, the focus here is on applications that a given
query is confined to the substring ti · · · tj and there is a need for additional tools
so that the version of the suffix tree at time stamp i can answer the queries for
every possible j. Unfortunately, using the persistent suffix tree from the previous
section does not suffice for answering such queries. The problem is that we would
like the running time to depend only on the output in the restricted range given
in the query, while the persistent suffix tree is only able to efficiently filter the
locations which appear before i. Using the persistent suffix tree we still need to
filter all of the locations after j.

We show a general framework of a data structure that for some height h
constructs a data structure which implements a persistent version of the first h
levels of the suffix tree. The choice of h is application dependent, but generally
speaking we do not wish for h to be too large as the space used will depend on
it. Nevertheless, the filtering process for all locations after j will be fast for all
traversals in the suffix tree which end in a node of depth at most h using this
persistent data structure.

4.1 Snapshots

We define the notion of a snapshot for a node u in the suffix tree of T at time
τ . This snapshot is denoted by uτ , and contains the following information:

– A pointer array Aτ
u of |Σ| pointers to the at most |Σ| children of uτ which

are the children of u in the version of the suffix tree at time τ . The pointer
at location σ in Aτ

u will direct to the correct snapshot of child v of uτ such
that the label of the edge (u, v) begins with σ. Of course, if no such edge
exists (whether it does not exist in the suffix tree of T , or it does not exist
yet in the current timestamp) the pointer will be a null pointer.
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– A pointer to the previous snapshot of u. This chain of pointers is called the
snapshot list of u, or SL(u).

– The timestamp of the snapshot τ .

For sake of simplicity, a conceptual timestamp n + 1 is added. This timestamp
has a snapshot for every node of distance at least h from the root in the suffix
tree of T , in which the pointer array is all null pointers. We use this timestamp
in order to have a so called first snapshot of every node. However, in order to
save space we do not maintain an array for these snapshots (which would all be
null pointers as at timestamp n + 1 the suffix tree is empty), and instead we use
a bit to indicate that these conceptual pointer are all null.

The only nodes that change between version τ + 1 of the suffix tree and
version τ of the suffix tree are nodes on the path from the root of the suffix tree
to the leaf corresponding to the suffix at location τ . Since only the first h nodes
on this path are of interest, there is no need to create snapshots for the entire
path. Furthermore, for any node u not on the aforementioned path we have that
uτ = uτ+1 and hence, a new snapshot is not created for such nodes. Therefore,
each timestamp induces at most h snapshots. Say that node u is stamped at time
τ if uτ is created.

Lemma 7. For every node u which is stamped at time τ there exists at most
one child v that is also stamped at time τ . Therefore, the difference between Aτ

u

and Aτ+1
u is only at location σ which corresponds to the edge (u, v).

The time required to create each snapshot other than the n + 1 snapshots is
O(|Σ|) by copying the pointer array. Each of the n timestamps creates at most
h snapshots, and so the total construction time for those timestamps is O(n|Σ|h).

Navigation. Navigating down the suffix tree at timestamp i is done as usual
through the pointer arrays, and thus the cost of locating the node corresponding
to P is O(m).

4.2 Using Persistent Arrays

Consider all of the different snapshots of a node u: uτ1 , uτ2, ..., uτt , un+1, and their
corresponding pointer arrays Aτ1

u , Aτ2
u , ..., Aτt

u , An+1
u . Assume that there exists a

positive integer k such that t = k · |Σ|. It will be shown later how to deal with
the case where t is not a multiple of |Σ|. Thus one can divide the snapshots
of u to k lists, each of |Σ| consecutive snapshots, and in addition the very last
snapshot un+1. Again, for simplicity, assume that k = 1, and thus t = |Σ|. For
larger k the process is a repetition of this simpler case k times.

A pointer array is only created for uτ1 and un+1 (using 1 bit). For the other
versions of u one can use the data structure of Dietz [8] (denoted by DDS) which
was briefly mentioned in Section 2. A bit is used within each snapshot to indicate
if it is a full snapshot with a complete pointer array, or an incomplete snapshot
using the DDS. Note that while the pointer array of un+1 is implemented via
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a bit to indicate that it is all null pointers, the data structure of Dietz can be
adjusted to still work in this situation (the details are standard, but require an
exposition of the data structure, and so we choose to omit it here).

The DDS is used on the pointer array of un+1 (which as we mentioned does
not actually exist). Next, iterate over uτx which is a version of u in uτ2 , ..., uτt ,
starting with x = t and ending with x = 2. Next, let σ be the character leading
uτx to its appropriate child vτx . We use DDS to perform Store(x, σ, (uτx , vτx))
inserting the appropriate edge/pointer into the array. uτx is given a pointer to
the DDS, its current timestamp τx, the value |Σ| − x which we call the relative
timestamp of uτx , and finally uτx is added to SL(U).

If t < |Σ|, the DDS is still used, but a pointer array is never fully constructed.
If there is no integer k such that t = k·|Σ|, and t > |Σ|, then the tail of snapshots
use the DDS on the last fully constructed pointer array.

As before, each suffix tree version induces h snapshots. Each incomplete snap-
shot, the DDS uses O(log log |Σ|) time. Each full snapshot, except for snapshots
at time n+1, requires O(|Σ|) time which amortizes to O(1) time over the previ-
ous O(Σ) incomplete snapshots. Thus, the total time spent is O(nh log log |Σ|),
and the space used is O(nh).

Navigation. Navigation is basically done as before; the only difference is the
method of traversing down the current version of the suffix tree without complete
pointer arrays (for the full snapshots simply use the array). This is done using
the DDS. If the navigation reached uτ , whose relative timestamp is x, and needs
to continue traversing with σ, then use Access(x, σ) on the DDS of uτ in order
to obtain the correct pointer. This implies that each traversal through a node in
the current version of the suffix tree will take O(log log |Σ|) time. So the cost of
locating the node corresponding to P is O(m log log |Σ|).

4.3 Renaming

First a solution is provided for navigating with patterns of length which is a
multiple of log log |Σ|. The more general case is considered in the following sub-
section. Given T over alphabet Σ, construct a new alphabet Σ′ ⊆ Σlog log |Σ|

by taking every substring of T of size log log |Σ| and renaming it. The renaming
scheme needs to maintain the lexicographical order between the substrings. For
this, construct a trie for all of the substrings of T of size log log |Σ|, and then
label each leaf. The labels should maintain the order defined by the leaves of
the trie. Thus, the labels preserve the lexicographical ordering of the substrings
corresponding to them. The construction of this trie takes O(n log log |Σ|) time.

Next, construct log log |Σ| new text strings, named T1, T2, ..., Tlog log |Σ| as fol-
lows. For each 1 ≤ i ≤ log log |Σ|, the new text Ti is a text over alphabet Σ′

where the jth character in Ti is the renamed label corresponding to the substring
ti+(j−1) log log |Σ| · · · ti+j log log |Σ|−1. In other words, Ti is the renamed version of
titi+1 · · · .tn, removing any tail of characters that might remain, as n − i + 1
might not be a multiple of log log |Σ|. Note that only the first log log |Σ| suffixes
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of T are being renamed, as the renamed versions of any other suffix (not one
of the first log log |Σ|) is a proper suffix of one of the renamed suffixes. Next,
construct the text T ′ = T1$1T2$2...Tlog log |Σ|$, and use the previous solution
with persistent pointer arrays on this text, but only for height h′ = h

log log |Σ|
as each renamed character corresponds to log log |Σ| original characters (and we
wish to only maintain this data structure for nodes in the original tree of height
at most h).

It is important to note that while the order of the timestamps defined by
the original text become scrambled, it is still possible to maintain the correct
order of timestamps by first constructing the suffix tree for T ′, and then creating
snapshots for paths by order of the original timestamps rather than the order
defined by T ′.

The construction time is now O(n log log |Σ|) time for the renaming, and
O(nh′) = O(nh/ log log |Σ|) for the solution using the persistent pointer arrays
for a total of O(n(log log |Σ| + h

log log |Σ|)).

Navigation. Recall the assumption that m is a multiple of log log |Σ|. So,
one can use the renaming trie in order to obtain a new pattern P ′ over Σ′ of
size m

log log |Σ| , and then the node corresponding to P ′ in O(m′ log log |Σ′|) =

O(m log log |Σ′|
log log |Σ| ) time, which is O(m) as:

log log |Σ′| ≤ log log(|Σ|log log |Σ|) = log log |Σ| + log log log |Σ| = O(log log |Σ|).

4.4 Renaming for Any Size Pattern

For the case in which m is not a multiple of log log |Σ|, assume that m ≡ k
modulo log log |Σ| where 0 < k < log log |Σ|. The previous renaming scheme can
still be used on the first m − k characters of P in order to obtain a pattern P ′

over Σ′. Then, one can locate the node corresponding to P ′ in O(m) time. What
is left to be done is to provide another renaming scheme in order to deal with
the last k characters. To this end, the renaming process is done for every length
from 1 to log log |Σ| − 1, by using a renaming trie for each possible length.

For every node u in the suffix tree of T ′, log log |Σ| − 1 pointer arrays are
maintained, each corresponding to one of the renaming schemes for each possible
length, and each of length corresponding to the length of that specific renaming
scheme. So for the renaming scheme for every length x < log log |Σ|, node u uses
a pointer array of size |Σ|x. Each location in the pointer array corresponds to
an edge corresponding to the appropriate renamed character in the renaming
scheme of length x. It is crucial to note that this is only done for nodes u in T ′,
and not recursively. Each of the log log |Σ| − 1 pointer arrays then goes through
the process of becoming persistent using the same techniques as above.

The additional construction time is O(nh′ log log |Σ|), which combines to-
gether with the previous section to O(n(log log |Σ| + h)) time for construction.
the space is O(nh′ log log |Σ|) = O(nh).
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Navigation. As for the navigation time, if m ≥ log log |Σ|, the time will still
be O(m) as the extra O(log log |Σ|) cost induced by having to move to a new
renaming scheme and locating the appropriate snapshot can be amortized over
previous work done in the suffix tree for T ′. However, if m < log log |Σ|, the cost
of searching the correct snapshot cannot be amortized, and so the cost will be
O(m − k + log log(|Σ|k)) = O(m + log log |Σ|) time.

5 Applications

In this section we will see how to use the general framework from Section 4 in
order to solve some problems that fit the model.

5.1 PRI-Report

As mentioned by Mäkinen and Navarro [13], one can obtain a data structure
which supports PRI-Report by using the suffix tree and the data structure of
Alstrup et.al. [1]. This provides a data structure that uses O(n log n) prepro-
cessing time with O(n logε n) space (for any constant ε > 0), and achieves query
time of O(m + log log n + occi,j). Thus, by setting h = log log n one can answer
PRI-Report as follows.

If m ≥ log log n then by using the data structure from [13], the query time is
O(m+ occi,j), which is optimal. If m < log log n then navigate through the data
structure from Section 4 with P on version i of the suffix tree till a snapshot uτ

is reached, where u is the node corresponding to P . Note that i ≤ τ . The next
procedure is based on the following lemma.

Lemma 8. Let u be a node in the suffix tree of T corresponding to P , and let
uτ1 , uτ2, ..., uτt , un+1 be the snapshots of u. Then P appears in T only at locations
τ1, τ2, ..., τt.

Proof. Each of the snapshots is created due to P being at the location of that
timestamp. ��
Given that the snapshot list for u is ordered by the timestamps, one can scan the
list starting at uτ till a snapshot uτ ′

is reached where τ ′ > j. Due to Lemma 8
every snapshot encountered by the scan except for the last one corresponds to
an occurrence of P . Thus each location in the output costs O(1) time to output
after u is located. This provides the following:

Theorem 9. The PRI-Report problem can be solved using O(n logε n) space (for
any constant ε > 0) and O(n log n) preprocessing time, with O(m + log log |Σ|+
occi,j) query time.

5.2 PRI-Count

In the counting version (PRI-Count), one wishes to report only the number of
occurrences of P in ti · · · tj , without listing the occurrences. While this can be
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solved in O(m + log log |Σ| + occi,j) time using the solution to the reporting
version, this can be wasteful if the output size is fairly large. Instead, the fol-
lowing data structure which is based on ideas similar to the reporting scenario
is presented, which manages to avoid the cost of the output size all together.

If the pattern happens to be large enough (m ≥ log / log log n) the following
solution can be used. Given a PRI-Count query, the suffix tree is first used in
order to locate the node u corresponding to P . This node covers a consecutive
range of suffixes, sorted by their lexicographical ordering (this can be viewed as a
consecutive sub-array of the suffix array). Locating this range (l, r) can be done
offline in linear time per every node in the suffix tree. Next, a 2D orthogonal
range counting query is performed using the data structure of [11]. In [11], it
is shown how to construct a data structure using O(n) space and O(n log n)
preprocessing time which allows to answer 2D orthogonal range counting queries
in (optimal for this space [15]) Ø(log n/ log log n). Thus the total query time is
O(m + log n/ log log n) = O(m) and optimal.

For the case where m < log n/ log log n the general framework is used again.
This time set h = log n/ log log n. When given a query, navigate through the
data structure from Section 4 with P on both versions i and j of the suffix tree
till a snapshot uτ is reached from the i-version and a snapshot uτ ′

is reached
from the j-version. All of the snapshots in the snapshot list of u between uτ and
uτ ′

, excluding uτ ′
, correspond to occurrences we are interested in counting. By

computing the distance of each snapshot from the end of its snapshot list in the
preprocessing phase, one can subtract the distance of uτ ′

from the distance of uτ

during the query phase in constant time. The correctness of this answer follows
directly from Lemma 8.

This provides the following:

Theorem 10. The PRI-Count problem can be solved using O(n log n/ log log n)
space and O(n log n) preprocessing time, with O(m + log log |Σ|) query time.

Substring Rank. The solution for SSR(P, i) is a direct application PRI-Count,
by computing PRI − Count(P, 1, i) as this will count the number of times P
appeared in t1 · · · tn.

5.3 Substring Select

In order to be able to answer substring select queries efficiently, a data structure
which solves the Range Selection problem is required.

Problem 11. Range Selection Given an array of integers A = (a1, ..., an) where
∀1 ≤ i ≤ n, 1 ≤ ai ≤ n, preprocess A such that given a query (i, j, k) return the
kth smallest value in the set {ax|i ≤ x ≤ j}.
Brodal and Jørgensen [6] show a solution for the Range Selection problem which
uses linear space and O(n log n) construction time, and uses O(log n/ log log n)
query time. The construction time there is dominated by the need to sort the
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input. By constructing their solution on the suffix array, which is the array of the
locations of the suffixes in their lexicographical ordering, one can answer sub-
string select queries efficiently for m ≥ log n/ log log n as follows. Furthermore,
this construction will take linear time in this case as the range is bounded by
n. Given a SSS query, the suffix tree is first used in order to locate the node u
corresponding to P . This node covers a consecutive range of suffixes, sorted by
their lexicographical ordering (this can be viewed as a consecutive sub-array of
the suffix array). Locating this range (l, r) is done like in the PRI-Count query.
Next, perform a range selection query (l, r, k) in order to obtain the answer for
the query.

For the case where m < log n/ log log n the general framework is used again.
This time set h = log n/ log log n. To answer a query, navigate through the data
structure from Section 4 with P on version 1 of the suffix tree till a snapshot uτ

is reached, where u is the node corresponding to P . Next, one can preprocess
the snapshot lists to all be in arrays. Thus jumping to the kth snapshot of u in
SL(u) to obtain uτ ′

can be done in constant time. τ ′ is the answer to our query.
Thus, the total query time is O(m) which is optimal.

Theorem 12. The SSS problem can be solved using O(n log n/ log log n) space
and preprocessing time, with O(m) query time.
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