
Fast q-gram Mining on SLP Compressed Strings�

Keisuke Goto, Hideo Bannai, Shunsuke Inenaga, and Masayuki Takeda

Department of Informatics, Kyushu University
{keisuke.gotou,bannai,inenaga,takeda}@inf.kyushu-u.ac.jp

Abstract. We present simple and efficient algorithms for calculating
q-gram frequencies on strings represented in compressed form, namely,
as a straight line program (SLP). Given an SLP of size n that represents
string T , we present an O(qn) time and space algorithm that computes
the occurrence frequencies of all q-grams in T . Computational experi-
ments show that our algorithm and its variation are practical for small
q, actually running faster on various real string data, compared to algo-
rithms that work on the uncompressed text. We also discuss applications
in data mining and classification of string data, for which our algorithms
can be useful.

1 Introduction

A major problem in managing large scale string data is its sheer size. Therefore,
such data is normally stored in compressed form. In order to utilize or analyze
the data afterwards, the string is usually decompressed, where we must again
confront the size of the data. To cope with this problem, algorithms that work
directly on compressed representations of strings without explicit decompression
have gained attention, especially for the string pattern matching problem [1]
where algorithms on compressed text can actually run faster than algorithms on
the uncompressed text [23]. There has been growing interest in what problems
can be efficiently solved in this kind of setting [17,8].

Since there exist many different text compression schemes, it is not realistic
to develop different algorithms for each scheme. Thus, it is common to consider
algorithms on texts represented as straight line programs (SLPs) [12,17,8]. An
SLP is a context free grammar in the Chomsky normal form that derives a
single string. Texts compressed by any grammar-based compression algorithms
(e.g. [21,15]) can be represented as SLPs, and those compressed by the LZ-family
(e.g. [24,25]) can be quickly transformed to SLPs [22]. Recently, even compressed
self-indices based on SLPs have appeared [6], and SLPs are a promising repre-
sentation of compressed strings for conducting various operations.

In this paper, we explore a more advanced field of application for compressed
string processing: mining and classification on string data given in compressed
form. Discovering useful patterns hidden in strings as well as automatic and
accurate classification of strings into various groups, are important problems in

� This work was supported by KAKENHI 22680014 (HB).

R. Grossi et al. (Eds.): SPIRE 2011, LNCS 7024, pp. 278–289, 2011.
c© Springer-Verlag Berlin Heidelberg 2011

Fast q-gram Mining on SLP Compressed Strings 279

the field of data mining and machine learning with many applications. As a first
step toward compressed string mining and classification, we consider the problem
of finding the occurrence frequencies for all q-grams contained in a given string.
q-grams are important features of string data, widely used for this purpose in
many fields such as text and natural language processing, and bioinformatics.

In [10], an O(|Σ|2n2)-time O(n2)-space algorithm for finding the most fre-
quent 2-gram from an SLP of size n representing text T over alphabet Σ was
presented. In [6], it is mentioned that the most frequent 2-gram can be found
in O(|Σ|2n logn)-time and O(n log |T |)-space, if the SLP is pre-processed and a
self-index is built. It is possible to extend these two algorithms to handle q-grams
for q > 2, but would respectively require O(|Σ|qqn2) and O(|Σ|qqn log n) time,
since they must essentially enumerate and count the occurrences of all substrings
of length q, regardless of whether the q-gram occurs in the string. Note also that
any algorithm that works on the uncompressed text T requires exponential time
in the worst case, since |T | can be as large as O(2n).

The main contribution of this paper is an O(qn) time and space algorithm
that computes the occurrence frequencies for all q-grams in the text, given an
SLP of size n representing the text. Our new algorithm solves the more general
problem and greatly improves the computational complexity compared to pre-
vious work. We also conduct computational experiments on various real texts,
showing that when q is small, our algorithm and its variation actually run faster
than algorithms that work on the uncompressed text.

Our algorithms have profound applications in the field of string mining and
classification, and several applications and extensions are discussed. For example,
our algorithm leads to an O(q(n1+n2)) time algorithm for computing the q-gram
spectrum kernel [16] between SLP compressed texts of size n1 and n2. It also
leads to an O(qn) time algorithm for finding the optimal q-gram (or emerging
q-gram) that discriminates between two sets of SLP compressed strings, when n
is the total size of the SLPs.

Related Work. There exist many works on compressed text indices [20], but
the main focus there is on fast search for a given pattern. The compressed indices
basically replace or simulate operations on uncompressed indices using a smaller
data structure. Indices are important for efficient string processing, but note that
simply replacing the underlying index used in a mining algorithm will generally
increase time complexities of the algorithm due to the extra overhead required
to access the compressed index. On the other hand, our approach is a new
mining algorithm which exploits characteristics of the compressed representation
to achieve faster running times.

Several algorithms for finding characteristic sequences from compressed texts
have been proposed, e.g., finding the longest common substring of two strings [19],
finding all palindromes [19], finding most frequent substrings [10], and finding
the longest repeating substring [10]. However, none of them have reported results
of computational experiments, implying that this paper is the first to show the
practical usefulness of a compressed text mining algorithm.

280 K. Goto et al.

Algorithm 1. Calculating vOcc(Xi) for all 1 ≤ i ≤ n

Input: SLP T = {Xi}ni=1 representing string T .
Output: vOcc(Xi) for all 1 ≤ i ≤ n

1 vOcc[Xn]← 1;
2 for i← 1 to n− 1 do vOcc[Xi]← 0;
3 for i← n to 2 do
4 if Xi = X�Xr then
5 vOcc[X�]← vOcc[X�] + vOcc[Xi]; vOcc[Xr]← vOcc[Xr] + vOcc[Xi];

2 Preliminaries

Let Σ be a finite alphabet. An element of Σ∗ is called a string. For any integer
q > 0, an element of Σq is called an q-gram. The length of a string T is denoted
by |T |. The empty string ε is a string of length 0, namely, |ε| = 0. For a string
T = XY Z, X , Y and Z are called a prefix, substring, and suffix of T , respectively.
The i-th character of a string T is denoted by T [i] for 1 ≤ i ≤ |T |, and the
substring of a string T that begins at position i and ends at position j is denoted
by T [i : j] for 1 ≤ i ≤ j ≤ |T |. For convenience, let T [i : j] = ε if j < i.

For a string T and integer q ≥ 0, let pre(T, q) and suf (T, q) represent respec-
tively, the length-q prefix and suffix of T . That is, pre(T, q) = T [1 : min(q, |T |)]
and suf (T, q) = T [max(1, |T | − q + 1) : |T |].

For any strings T and P , let Occ(T, P) be the set of occurrences of P in T ,
i.e., Occ(T, P) = {k > 0 | T [k : k + |P | − 1] = P}. The number of elements
|Occ(T, P)| is called the occurrence frequency of P in T .

2.1 Straight Line Programs

X1 X2

a ba a ab a b a b a a b

X1 X3

X1 X2

X3

X1 X2

X3

X4

X1

X5X4
X6

X1 X2
X3

X1 X2

X3
X4

X1

X5

X7

2 31 4 65 7 8 9 10 11 12 13

Fig. 1. The derivation tree of SLP T =
{Xi}7i=1 with X1 = a, X2 = b, X3 = X1X2,
X4 = X1X3, X5 = X3X4, X6 = X4X5,
and X7 = X6X5, representing string T =
val(X7) = aababaababaab

A straight line program (SLP) T is
a sequence of assignments X1 =
expr1, X2 = expr2, . . . , Xn = exprn,
where each Xi is a variable and each
expri is an expression, where expri =
a (a ∈ Σ), or expri = X�Xr (�, r < i).
Let val(Xi) represent the string de-
rived from Xi. When it is not con-
fusing, we identify a variable Xi with
val(Xi). Then, |Xi| denotes the length
of the string Xi derives. An SLP T
represents the string T = val(Xn).
The size of the program T is the num-
ber n of assignments in T . (See Fig. 1)

The substring intervals of T that each variable derives can be defined recur-
sively as follows: itv (Xn) = {[1 : |T |]}, and itv(Xi) = {[u + |X�| : v] | Xk =
X�Xi, [u : v] ∈ itv(Xk)} ∪ {[u : u + |Xi| − 1] | Xk = XiXr, [u : v] ∈ itv(Xk)} for

Fast q-gram Mining on SLP Compressed Strings 281

Algorithm 2. A näıve algorithm for computing q-gram frequencies
Input: string T , integer q ≥ 1
Report: (P, |Occ(T, P)|) for all P ∈ Σq where Occ(T, P) �= ∅.

1 S← ∅; // empty associative array

2 for i← 1 to |T | − q + 1 do
3 qgram ← T [i : i + q − 1];
4 if qgram ∈ keys(S) then S[qgram]← S[qgram] + 1;
5 else S[qgram]← 1; // new q-gram

6 for qgram ∈ keys(S) do Report (qgram ,S[qgram])

i < n. For example, itv(X5) = {[4 : 8], [9 : 13]} in Fig. 1. Considering the transi-
tive reduction of set inclusion, the intervals ∪n

i=1itv(Xi) naturally form a binary
tree (the derivation tree). Let vOcc(Xi) = |itv(Xi)| denote the number of times a
variable Xi occurs in the derivation of T . vOcc(Xi) for all 1 ≤ i ≤ n can be com-
puted in O(n) time by a simple iteration on the variables, since vOcc(Xn) = 1
and for i < n, vOcc(Xi) =

∑
{vOcc(Xk) | Xk = X�Xi} +

∑
{vOcc(Xk) | Xk =

XiXr}. (See Algorithm 1).

2.2 Suffix Arrays and LCP Arrays

The suffix array SA [18] of any string T is an array of length |T | such that
SA[i] = j, where T [j : |T |] is the i-th lexicographically smallest suffix of T .
The lcp array of any string T is an array of length |T | such that LCP [i] is the
length of the longest common prefix of T [SA[i − 1] : |T |] and T [SA[i] : |T |] for
2 ≤ i ≤ |T |, and LCP [1] = 0. The suffix array for any string of length |T | can be
constructed in O(|T |) time (e.g. [11]) assuming an integer alphabet. Given the
text and suffix array, the lcp array can also be calculated in O(|T |) time [13].

3 Algorithm

3.1 Computing q-gram Frequencies on Uncompressed Strings

We describe two algorithms (Algorithm 2 and Algorithm 3) for computing the
q-gram frequencies of a given uncompressed string T .

A näıve algorithm for computing the q-gram frequencies is given in Algo-
rithm 2. The algorithm constructs an associative array, where keys consist of
q-grams, and the values correspond to the occurrence frequencies of the q-grams.
The time complexity depends on the implementation of the associative array, but
requires at least O(q|T |) time since each q-gram is considered explicitly, and the
associative array is accessed O(|T |) times: e.g. O(q|T | log |Σ|) time and O(q|T |)
space using a simple trie.

The q-gram frequencies of string T can be calculated in O(|T |) time using
suffix array SA and lcp array LCP , as shown in Algorithm 3. For each 1 ≤ i ≤ |T |,
the suffix SA[i] represents an occurrence of q-gram T [SA[i] : SA[i]+ q−1], if the

282 K. Goto et al.

Algorithm 3. A linear time algorithm for computing q-gram frequencies
Input: string T , integer q ≥ 1
Report: (i, |Occ(T, P)|) for all P ∈ Σq and some position i ∈ Occ(T, P).

1 SA← SUFFIXARRAY (T); LCP ← LCPARRAY (T, SA); count ← 1;
2 for i← 2 to |T |+ 1 do
3 if i = |T |+ 1 or LCP [i] < q then
4 if count > 0 then Report (SA[i− 1], count); count ← 0;

5 if i ≤ |T | and SA[i] ≤ |T | − q + 1 then count ← count + 1;

suffix is long enough, i.e. SA[i] ≤ |T | − q + 1. The key is that since the suffixes
are lexicographically sorted, intervals on the suffix array where the values in the
lcp array are at least q represent occurrences of the same q-gram. The algorithm
runs in O(|T |) time, since SA and LCP can be constructed in O(|T |). The rest is
a simple O(|T |) loop. A technicality is that we encode the output for a q-gram as
one of the positions in the text where the q-gram occurs, rather than the q-gram
itself. This is because there can be a total of O(|T |) different q-grams, and if we
output them as length-q strings, it would require at least O(q|T |) time.

3.2 Computing q-gram Frequencies on SLP

We now describe the core idea of our algorithms, and explain two variations
which utilize variants of the two algorithms for uncompressed strings presented
in Section 3.1. For q = 1, the 1-gram frequencies are simply the frequencies of
the alphabet and the output is (a,

∑
{vOcc(Xi) | Xi = a}) for each a ∈ Σ, which

takes only O(n) time. For q ≥ 2, we make use of Lemma 1 below. The idea is
similar to the mk Lemma [5], but the statement is more specific.

Lemma 1. Let T = {Xi}n
i=1 be an SLP that represents string T . For an interval

[u : v] (1 ≤ u < v ≤ |T |), there exists exactly one variable Xi = X�Xr such that
for some [u′ : v′] ∈ itv(Xi), the following holds: [u : v] ⊆ [u′ : v′], u ∈ [u′ :
u′ + |X�| − 1] ∈ itv(X�) and v ∈ [u′ + |X�| : v′] ∈ itv(Xr).

Proof. Consider length 1 intervals [u : u] and [v : v] corresponding to leaves
in the derivation tree. Xi corresponds to the lowest common ancestor of these
intervals in the derivation tree. ��

q - 1q - 1

q

Xi

Xℓ Xrti

T

Fig. 2. Length-q intervals cor-
responding to Xi = X�Xr

From Lemma 1, each occurrence of a q-gram
(q ≥ 2) represented by some length-q interval of
T , corresponds to a single variable Xi = X�Xr,
and is split in two by intervals corresponding
to X� and Xr. On the other hand, consider all
length-q intervals that correspond to a given vari-
able. Counting the frequencies of the q-grams
they represent, and summing them up for all vari-
ables give the frequencies of all q-grams of T .

Fast q-gram Mining on SLP Compressed Strings 283

For variable Xi = X�Xr, let ti = suf (X�, q − 1)pre(Xr, q − 1). Then, all q-
grams represented by length q intervals that correspond to Xi are those in ti.
(Fig. 2). If we obtain the frequencies of all q-grams in ti, and then multiply each
frequency by vOcc(Xi), we obtain frequencies for the q-grams occurring in all
intervals derived by Xi. It remains to sum up the q-gram frequencies of ti for all
1 ≤ i ≤ n. We can regard it as obtaining the weighted q-gram frequencies in the
set of strings {t1, . . . , tn}, where each q-gram in ti is weighted by vOcc(Xi).

We further reduce this problem to a weighted q-gram frequency problem for
a single string z as in Algorithm 4. String z is constructed by concatenating ti
such that q ≤ |ti| ≤ 2(q−1), and the weights of q-grams starting at each position
in z is held in array w. On line 8, 0’s instead of vOcc(Xi) are appended to w
for the last q − 1 values corresponding to ti. This is to avoid counting unwanted
q-grams that are generated by the concatenation of ti to z on line 6, which are
not substrings of each ti. The weighted q-gram frequency problem for a single
string (Line 9) can be solved with a slight modification of Algorithm 2 or 3. The
modified algorithms are shown respectively in Algorithms 5 and 6.

Theorem 1. Given an SLP T = {Xi}n
i=1 of size n representing a string T , the

q-gram frequencies of T can be computed in O(qn) time for any q > 0.

Proof. Consider Algorithm 4. The correctness is straightforward from the above
arguments, so we consider the time complexity. Line 1 can be computed in O(n)
time. Line 2 can be computed in O(qn) time by a simple dynamic programming.
For pre(): If Xi = a for some a ∈ Σ, then pre(Xi, q − 1) = a. If Xi = X�Xr and
|X�| ≥ q−1, then pre(Xi, q−1) = pre(X�, q−1). If Xi = X�Xr and |X�| < q−1,
then pre(Xi, q − 1) = pre(X�, q − 1)pre(Xr, q − 1 − |X�|). The strings suf () can
be computed similarly. The computation amounts to copying O(q) characters
for each variable, and thus can be done in O(qn) time. For the loop at line 4,
since the length of string ti appended to z, as well as the number of elements
appended to w is at most 2(q − 1) in each loop, the total time complexity is
O(qn). Finally, since the length of z and w is O(qn), line 9 can be calculated in
O(qn) time using the weighted version of Algorithm 3 (Algorithm 6). ��

Note that the time complexity for using the weighted version of Algorithm 2
for line 9 of Algorithm 4 would be at least O(q2n): e.g. O(q2n log |Σ|) time and
O(q2n) space using a trie.

4 Applications and Extensions

We showed that for an SLP T of size n representing string T , q-gram frequency
problems on T can be reduced to weighted q-gram frequency problems on a string
z of length O(qn), which can be much shorter than T . This idea can further be
applied to obtain efficient compressed string processing algorithms for interesting
problems which we briefly introduce below.

284 K. Goto et al.

Algorithm 4. Calculating q-gram frequencies of an SLP for q ≥ 2
Input: SLP T = {Xi}ni=1 representing string T , integer q ≥ 2.
Report: all q-grams and their frequencies which occur in T .

1 Calculate vOcc(Xi) for all 1 ≤ i ≤ n;
2 Calculate pre(Xi, q − 1) and suf (Xi, q − 1) for all 1 ≤ i ≤ n− 1 ;
3 z ← ε; w ← [];
4 for i← 1 to n do
5 if Xi = X�Xr and |Xi| ≥ q then
6 ti = suf (X�, q − 1)pre(Xr, q − 1); z.append(ti);
7 for j ← 1 to |ti| − q + 1 do w.append(vOcc(Xi));
8 for j ← 1 to q − 1 do w.append(0);

9 Report q-gram frequencies in z, where each q-gram z[i : i + q − 1] is weighted
by w[i].

Algorithm 5. A variant of Algorithm 2 for weighted q-gram frequencies
Input: string T , array of integers w of length |T |, integer q ≥ 1
Report: (P,

∑
i∈Occ(T,P) w[i]) for all P ∈ Σq where

∑
i∈Occ(T,P) w[i] > 0.

1 S← ∅; // empty associative array

2 for i← 1 to |T | − q + 1 do
3 qgram ← T [i : i + q − 1];
4 if qgram ∈ keys(S) then S[qgram]← S[qgram] + w[i];
5 else if w[i] > 0 then S[qgram]← w[i]; // new q-gram

6 for qgram ∈ keys(S) do Report (qgram ,S[qgram])

4.1 q-gram Spectrum Kernel

A string kernel is a function that computes the inner product between two strings
which are mapped to some feature space. It is used when classifying string or text
data using methods such as Support Vector Machines (SVMs), and is usually the
dominating factor in the time complexity of SVM learning and classification. A
q-gram spectrum kernel [16] considers the feature space of q-grams. For string T ,
let φq(T) = (|Occ(T, p)|)p∈Σq . The kernel function is defined as Kq(T1, T2) =
〈φq(T1), φq(T2)〉 =

∑
p∈Σq |Occ(T1, p)||Occ(T2, p)|. The calculation of the kernel

function amounts to summing up the product of occurrence frequencies in strings
T1 and T2 for all q-grams which occur in both T1 and T2. This can be done in
O(|T1|+|T2|) time using suffix arrays. For two SLPs T1 and T2 of size n1 and n2 rep-
resenting strings T1 and T2, respectively, the q-gram spectrum kernel Kq(T1, T2)
can be computed in O(q(n1 + n2)) time by a slight modification of our algorithm.

4.2 Optimal Substring Patterns of Length q

Given two sets of strings, finding string patterns that are frequent in one set
and not in the other, is an important problem in string data mining, with many
problem formulations and the types of patterns to be considered, e.g.: in Bioin-
formatics [3], Machine Learning (optimal patterns [2]), and more recently KDD

Fast q-gram Mining on SLP Compressed Strings 285

Algorithm 6. A variant of Algorithm 3 for weighted q-gram frequencies
Input: string T , array of integers w of length |T |, integer q ≥ 1
Output: (i,

∑
i∈Occ(T,P) w[i]) for all P ∈ Σq where

∑
i∈Occ(T,P) w[i] > 0 and

some position i ∈ Occ(T, P).
1 SA← SUFFIXARRAY (T); LCP ← LCPARRAY (T, SA); count ← 1;
2 for i← 2 to |T |+ 1 do
3 if i = |T |+ 1 or LCP [i] < q then
4 if count > 0 then Report (SA[i− 1], count); count ← 0;

5 if i ≤ |T | and SA[i] ≤ |T | − q + 1 then count ← count + w[SA[i]];

(emerging patterns [4]). A simple optimal q-gram pattern discovery problem can
be defined as follows: Let T1 and T2 be two multisets of strings. The problem is
to find the q-gram p which gives the highest (or lowest) score according to some
scoring function that depends only on |T1|, |T2|, and the number of strings re-
spectively in T1 and T2 for which p is a substring. For uncompressed strings, the
problem can be solved in O(N) time, where N is the total length of the strings
in both T1 and T2, by applying the algorithm of [9] to two sets of strings. For
the SLP compressed version of this problem, the input is two multisets of SLPs,
each representing strings in T1 and T2. If n is the total number of variables
used in all of the SLPs, the problem can be solved in O(qn) time.

4.3 Different Lengths

The ideas in this paper can be used to consider all substrings of length not
only q, but all lengths up-to q, with some modifications. For the applications
discussed above, although the number of such substrings increases to O(q2n),
the O(qn) time complexity can be maintained by using standard techniques of
suffix arrays [7,13]. This is because there exist only O(qn) substring with distinct
frequencies (corresponding to nodes of the suffix tree), and the computations of
the extra substrings can be summarized with respect to them.

5 Computational Experiments

We implemented 4 algorithms (NMP, NSA, SMP, SSA) that count the frequen-
cies of all q-grams in a given text. NMP (Algorithm 2) and NSA (Algorithm 3)
work on the uncompressed text. SMP (Algorithm 4 + Algorithm 5) and SSA (Al-
gorithm 4 + Algorithm 6) work on SLPs. The algorithms were implemented us-
ing the C++ language. We used std::map from the Standard Template Library
(STL) for the associative array implementation.1 For constructing suffix arrays,
we used the divsufsort library2 developed by Yuta Mori. This implementation is

1 We also used std::hash map but omit the results due to lack of space. Choosing the
hashing function to use is difficult, and we note that its performance was unstable
and sometimes very bad when varying q.

2 http://code.google.com/p/libdivsufsort/

http://code.google.com/p/libdivsufsort/

286 K. Goto et al.

not linear time in the worst case, but has been empirically shown to be one of the
fastest implementations on various data.

All computations were conducted on a Mac Xserve (Early 2009) with 2 x
2.93GHz Quad Core Xeon processors and 24GB Memory, only utilizing a sin-
gle process/thread at once. The program was compiled using the GNU C++
compiler (g++) 4.2.1 with the -fast option for optimization. The running times
are measured in seconds, starting from after reading the uncompressed text into
memory for NMP and NSA, and after reading the SLP that represents the text
into memory for SMP and SSA. Each computation is repeated at least 3 times,
and the average is taken.

5.1 Fibonacci Strings

 0.0001

 0.001

 0.01

 0.1

 1

 10

 100

 1000

 100 10000 1e+06 1e+08 1e+10 1e+12 1e+14 1e+16 1e+18 1e+20

to
ta

l t
im

e
(s

ec
on

ds
)

text length

NMP
NSA
SMP
SSA

Fig. 3. Running times of NMP, NSA,
SMP, SSA on Fibonacci strings for q = 50

The i th Fibonacci string Fi can be rep-
resented by the following SLP: X1 =
b, X2 = a, Xi = Xi−1Xi−2 for
i > 2, and Fi = val (Xi). Fig. 3
shows the running times on Fibonacci
strings F20, F25, . . . , F95, for q = 50.
Although this is an extreme case since
Fibonacci strings can be exponentially
compressed, we can see that SMP and
SSA that work on the SLP are clearly
faster than NMP and NSA which work
on the uncompressed string.

5.2 Pizza and Chili Corpus

 0

 1

 2

 3

 4

 5

 6

 0 0.5 1 1.5 2

na
iv

e
tim

e
/ s

lp
 ti

m
e

|z | / text length

NMP / SMP
NSA / SSA

F
as

te
r

on
 S

LP

Fig. 4. Time ratios NMP/SMP and
NSA/SSA plotted against ratio |z|/|T |

We also applied the algorithms
on texts XML, DNA, ENGLISH,
and PROTEINS, with sizes 50MB,
100MB, and 200MB, obtained from
the Pizza & Chili Corpus3. We used
RE-PAIR [15] to obtain SLPs for this
data.

Table 1 shows the running times
for all algorithms and data, where q
is varied from 2 to 10. We see that for
all corpora, SMP and SSA running on
SLPs are actually faster than NMP
and NSA running on uncompressed
text, when q is small. Furthermore,
SMP is faster than SSA when q is smaller. Interestingly for XML, the SLP
versions are faster even for q up to 9.

3 http://pizzachili.dcc.uchile.cl/texts.html

http://pizzachili.dcc.uchile.cl/texts.html

Fast q-gram Mining on SLP Compressed Strings 287

Table 1. Running times in seconds for data from the Pizza & Chili Corpus. Bold
numbers represent the fastest time for each data and q. Times for SMP and SSA
are prefixed with �, if they become fastest when all algorithms start from the SLP
representation, i.e., NMP and NSA require time for decompressing the SLP (denoted
by decompression time). The bold horizontal lines show the boundary where |z| in
Algorithm 4 exceeds the uncompressed text length.

XML
50MB 100MB 200MB

SLP Size: 2,702,383 SLP Size: 5,059,578 SLP Size: 9,541,590
decompression time: 0.82 secs decompression time: 1.73 secs decompression time: 3.52 secs

q |z| NMP NSA SMP SSA |z| NMP NSA SMP SSA |z| NMP NSA SMP SSA
2 8,106,861 5.9 9.8 1.1 2.0 15,178,446 12.0 21.0 2.1 4.3 28,624,482 24.7 46.9 4.3 8.9
3 13,413,565 13.0 9.8 2.5 3.2 25,160,162 27.8 21.1 4.9 6.8 47,504,478 58.7 46.1 9.8 14.3
4 18,364,951 21.0 9.8 5.7 4.7 34,581,658 47.2 21.3 11.3 9.9 65,496,619 100.3 46.2 22.5 20.0
5 22,873,060 28.7 9.8 10.2 5.9 43,275,004 63.0 21.1 20.4 12.5 82,321,682 139.4 46.2 40.1 25.1
6 27,032,514 35.2 9.8 14.9 7.1 51,354,178 77.1 21.0 29.6 14.8 98,124,580 172.4 46.3 59.4 30.2
7 30,908,898 40.0 9.8 19.4 8.2 58,935,352 87.4 21.1 38.9 16.9 113,084,186 197.7 46.8 78.5 34.9
8 34,559,523 44.3 9.8 26.0 9.3 66,104,075 97.5 21.1 52.5 19.1 127,316,007 218.3 46.3 103.9 39.9
9 37,983,150 49.0 9.8 31.0 � 10.1 72,859,310 105.3 21.1 60.9 20.9 140,846,749 234.6 46.3 124.7 44.1
10 41,253,257 52.5 9.9 35.8 11.2 79,300,797 115.3 21.2 72.2 � 22.7 153,806,891 253.6 46.3 148.8 � 48.8

DNA
50MB 100MB 200MB

SLP Size: 6,406,324 SLP Size: 12,233,978 SLP Size: 23,171,463
decompression time: 1.23 secs decompression time: 2.54 secs decompression time: 5.21 secs

q |z| NMP NSA SMP SSA |z| NMP NSA SMP SSA |z| NMP NSA SMP SSA
2 19,218,924 2.2 13.7 1.9 5.7 36,701,886 4.7 30.5 3.9 12.6 69,514,341 9.8 70.0 8.0 26.1
3 32,030,826 4.4 13.7 3.0 8.6 61,169,030 9.1 30.5 5.8 18.6 115,856,038 18.7 70.1 11.8 38.8
4 44,833,624 6.5 13.7 4.5 12.3 85,624,856 13.4 30.5 8.9 25.3 162,182,697 28.0 70.0 17.6 52.9
5 57,554,843 8.6 13.8 6.7 15.5 109,976,706 17.8 30.5 13.1 32.3 208,371,656 37.0 69.9 26.3 67.9
6 69,972,618 11.1 13.7 10.1 19.0 133,890,719 23.3 31.0 19.8 40.0 253,939,731 47.6 70.2 39.5 86.6
7 81,771,222 15.3 13.6 � 14.7 23.0 156,832,841 31.0 30.5 28.6 49.3 298,014,802 63.2 69.9 56.1 104.5
8 92,457,893 21.1 13.6 22.9 27.3 177,888,984 42.2 30.5 44.9 58.5 338,976,517 85.4 69.9 88.5 126.3
9 101,852,490 33.0 13.7 42.8 31.4 196,656,282 65.7 30.4 81.5 67.5 375,928,060 132.1 69.9 159.3 147.9
10 109,902,230 56.5 13.7 65.9 34.9 213,075,531 113.2 30.5 129.2 75.9 408,728,193 226.0 69.9 248.4 166.3

ENGLISH
50MB 100MB 200MB

SLP Size: 4,861,619 SLP Size: 10,063,953 SLP Size: 18,945,126
decompression time: 1.15 secs decompression time: 2.43 secs decompression time: 5.07 secs

q |z| NMP NSA SMP SSA |z| NMP NSA SMP SSA |z| NMP NSA SMP SSA
2 14,584,329 5.7 13.1 1.9 4.5 30,191,214 11.5 28.2 4.2 10.3 56,834,703 23.5 64.2 8.5 21.7
3 24,230,676 11.4 13.0 4.0 7.4 50,196,054 23.8 28.2 8.3 16.8 94,552,062 50.3 65.5 16.5 34.9
4 33,655,433 20.0 12.9 8.2 9.9 69,835,185 42.1 28.2 17.6 22.1 131,758,513 89.7 64.2 34.1 45.8
5 42,640,982 33.1 12.9 16.1 12.7 88,711,756 72.6 28.2 35.1 � 28.6 167,814,701 156.9 64.2 68.2 59.7
6 51,061,064 49.5 12.9 27.1 15.5 106,583,131 111.8 28.5 59.7 35.3 202,293,814 240.8 64.4 116.1 74.3
7 58,791,311 65.1 12.9 40.1 18.4 123,180,654 143.6 28.3 88.3 42.3 234,664,404 313.7 64.3 173.5 90.3
8 65,777,414 79.6 12.9 59.1 20.8 138,382,443 176.8 28.3 131.3 48.5 264,668,656 385.9 64.8 256.7 104.5
9 71,930,623 92.7 12.9 74.2 23.0 152,010,306 207.8 28.5 166.0 54.2 291,964,684 454.6 64.5 335.0 118.0
10 77,261,995 105.3 13.0 89.7 25.1 164,021,382 235.9 28.4 205.2 59.8 316,387,791 521.2 64.7 425.3 131.4

PROTEINS
50MB 100MB 200MB

SLP Size: 10,357,053 SLP Size: 18,806,316 SLP Size: 32,375,988
decompression time: 1.67 secs decompression time: 3.51 secs decompression time: 7.05 secs

q |z| NMP NSA SMP SSA |z| NMP NSA SMP SSA |z| NMP NSA SMP SSA
2 31,071,084 4.5 14.5 4.0 10.2 56,418,873 9.0 32.2 7.6 20.4 97,127,889 18.0 69.0 13.6 38.0
3 51,749,628 9.4 14.5 7.6 16.2 93,995,974 18.7 32.1 14.1 32.3 161,825,337 37.3 69.0 25.5 60.0
4 70,939,655 22.4 14.3 21.3 24.6 129,372,571 45.4 32.2 39.1 49.0 223,413,554 91.5 69.0 � 69.1 91.8
5 86,522,157 66.6 14.4 54.9 32.2 159,110,124 137.5 32.2 100.5 65.6 275,952,088 270.9 69.4 175.5 125.1
6 95,684,819 116.7 14.5 107.7 37.6 178,252,162 251.5 32.3 204.4 79.1 311,732,866 502.8 69.4 356.0 151.7
7 99,727,910 142.8 14.5 143.7 40.8 187,623,783 327.6 32.4 299.8 85.6 330,860,933 675.2 69.7 586.4 168.0
8 100,877,101 147.8 14.4 166.3 42.5 190,898,844 343.0 32.4 363.6 88.7 337,898,827 731.0 69.6 771.8 175.5
9 101,631,544 149.3 14.4 171.6 42.8 192,736,305 348.1 32.4 393.0 91.2 341,831,651 742.2 69.7 820.3 181.8
10 102,636,144 150.5 14.4 178.6 43.4 195,044,390 350.4 32.5 404.2 93.1 346,403,103 747.7 69.7 831.9 185.8

288 K. Goto et al.

Fig. 4 shows the same results as time ratio: NMP/SMP and NSA/ SSA, plot-
ted against ratio: (length of z in Algorithm 4)/(length of uncompressed text). As
expected, the SLP versions are basically faster than their uncompressed coun-
terparts, when |z|/(text length) is less than 1, since the SLP versions run the
weighted versions of the uncompressed algorithms on a text of length |z|. SLPs
generated by other grammar based compression algorithms showed similar ten-
dencies (data not shown).

6 Conclusion

We presented an O(qn) time and space algorithm for calculating all q-gram
frequencies in a string, given an SLP of size n representing the string. This solves,
much more efficiently, a more general problem than considered in previous work.
Computational experiments on various real texts showed that the algorithms run
faster than algorithms that work on the uncompressed string, when q is small.
Although larger values of q allow us to capture longer character dependencies,
the dimensionality of the features increases, making the space of occurring q-
grams sparse. Therefore, meaningful values of q for typical applications can be
fairly small in practice (e.g. 3 ∼ 6), so our algorithms have practical value.

A future work is extending our algorithms that work on SLPs, to algorithms
that work on collage systems [14]. A Collage System is a more general framework
for modeling various compression methods. In addition to the simple concatena-
tion operation used in SLPs, it includes operations for repetition and prefix/suffix
truncation of variables.

This is the first paper to show the potential of the compressed string processing
approach in developing efficient and practical algorithms for problems in the
field of string mining and classification. More and more efficient algorithms for
various processing of text in compressed representations are becoming available.
We believe texts will eventually be stored in compressed form by default, since
not only will it save space, but it will also have the added benefit of being able
to conduct various computations on it more efficiently later on, when needed.

References

1. Amir, A., Benson, G.: Efficient two-dimensional compressed matching. In: Proc.
Data Compression Conference (DCC 1992), pp. 279–288 (1992)

2. Arimura, H., Wataki, A., Fujino, R., Arikawa, S.: A fast algorithm for discovering
optimal string patterns in large text databases. In: Richter, M.M., Smith, C.H.,
Wiehagen, R., Zeugmann, T. (eds.) ALT 1998. LNCS (LNAI), vol. 1501, pp. 247–
261. Springer, Heidelberg (1998)

3. Brazma, A., Jonassen, I., Eidhammer, I., Gilbert, D.: Approaches to the automatic
discovery of patterns in biosequences. J. Comp. Biol. 5(2), 279–305 (1998)

4. Chan, S., Kao, B., Yip, C.L., Tang, M.: Mining emerging substrings. In: Proc. 8th
International Conference on Database Systems for Advanced Applications (DAS-
FAA 2003), p. 119 (2003)

5. Charikar, M., Lehman, E., Liu, D., Panigrahy, R., Prabhakaran, M., Sahai, A.,
abhi shelat: The smallest grammar problem. IEEE Transactions on Information
Theory 51(7), 2554–2576 (2005)

Fast q-gram Mining on SLP Compressed Strings 289

6. Claude, F., Navarro, G.: Self-indexed grammar-based compression. In: Fundamenta
Informaticae (to appear), preliminary version: Proc. MFCS 2009, pp. 235–246 (2009)

7. Gusfield, D.: Algorithms on Strings, Trees, and Sequences. Cambridge University
Press, Cambridge (1997)

8. Hermelin, D., Landau, G.M., Landau, S., Weimann, O.: A unified algorithm for ac-
celerating edit-distance computation via text-compression. In: Proc. STACS 2009,
pp. 529–540 (2009)

9. Hui, L.C.K.: Color set size problem with application to string matching. In: Apos-
tolico, A., Galil, Z., Manber, U., Crochemore, M. (eds.) CPM 1992. LNCS, vol. 644,
pp. 230–243. Springer, Heidelberg (1992)

10. Inenaga, S., Bannai, H.: Finding characteristic substring from compressed texts.
In: Proc. The Prague Stringology Conference 2009, pp. 40–54 (2009)

11. Kärkkäinen, J., Sanders, P.: Simple linear work suffix array construction. In:
Baeten, J.C.M., Lenstra, J.K., Parrow, J., Woeginger, G.J. (eds.) ICALP 2003.
LNCS, vol. 2719, pp. 943–955. Springer, Heidelberg (2003)

12. Karpinski, M., Rytter, W., Shinohara, A.: An efficient pattern-matching algorithm
for strings with short descriptions. Nordic Journal of Computing 4, 172–186 (1997)

13. Kasai, T., Lee, G.H., Arimura, H., Arikawa, S., Park, K.: Linear-Time Longest-
Common-Prefix Computation in Suffix Arrays and Its Applications. In: Amir, A.,
Landau, G.M. (eds.) CPM 2001. LNCS, vol. 2089, pp. 181–192. Springer, Heidelberg
(2001)

14. Kida, T., Shibata, Y., Takeda, M., Shinohara, A., Arikawa, S.: Collage system: A
unifying framework for compressed pattern matching. Theoret. Comput. Sci. 298,
253–272 (2003)

15. Larsson, N.J., Moffat, A.: Offline dictionary-based compression. In: Proc. Data
Compression Conference (DCC 1999), pp. 296–305 (1999)

16. Leslie, C., Eskin, E., Noble, W.S.: The spectrum kernel: A string kernel for SVM
protein classification. In: Pacific Symposium on Biocomputing, vol. 7, pp. 566–575
(2002)

17. Lifshits, Y.: Processing compressed texts: A tractability border. In: Ma, B., Zhang,
K. (eds.) CPM 2007. LNCS, vol. 4580, pp. 228–240. Springer, Heidelberg (2007)

18. Manber, U., Myers, G.: Suffix arrays: A new method for on-line string searches.
SIAM J. Computing 22(5), 935–948 (1993)

19. Matsubara, W., Inenaga, S., Ishino, A., Shinohara, A., Nakamura, T., Hashimoto,
K.: Efficient algorithms to compute compressed longest common substrings and
compressed palindromes. Theoret. Comput. Sci. 410(8–10), 900–913 (2009)

20. Navarro, G., Mäkinen, V.: Compressed full-text indexes. ACM Computing Sur-
veys 39(1), 2 (2007)

21. Nevill-Manning, C.G., Witten, I.H., Maulsby, D.L.: Compression by induction of
hierarchical grammars. In: Proc. Data Compression Conference (DCC 1994), pp.
244–253 (1994)

22. Rytter, W.: Application of Lempel-Ziv factorization to the approximation of
grammar-based compression. Theoret. Comput. Sci. 302(1–3), 211–222 (2003)

23. Shibata, Y., Kida, T., Fukamachi, S., Takeda, M., Shinohara, A., Shinohara, T.,
Arikawa, S.: Speeding up pattern matching by text compression. In: Bongiovanni,
G., Petreschi, R., Gambosi, G. (eds.) CIAC 2000. LNCS, vol. 1767, pp. 306–315.
Springer, Heidelberg (2000)

24. Ziv, J., Lempel, A.: A universal algorithm for sequential data compression. IEEE
Transactions on Information Theory IT-23(3), 337–349 (1977)

25. Ziv, J., Lempel, A.: Compression of individual sequences via variable-length coding.
IEEE Transactions on Information Theory 24(5), 530–536 (1978)

	Fast q-gram Mining on SLP Compressed Strings
	Introduction
	Preliminaries
	Straight Line Programs
	Suffix Arrays and LCP Arrays

	Algorithm
	Computing q-gram Frequencies on Uncompressed Strings
	Computing q-gram Frequencies on SLP

	Applications and Extensions
	q-gram Spectrum Kernel
	Optimal Substring Patterns of Length q
	Different Lengths

	Computational Experiments
	Fibonacci Strings
	Pizza and Chili Corpus

	Conclusion
	References

