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Abstract. In Indexing with Gaps one seeks to index a text to allow pat-
tern queries that allow gaps within the pattern query. Formally a gapped-
pattern over alphabet Σ is a pattern of the form p = p1g1p2g2 · · · g�p�+1,
where ∀i, pi ∈ Σ∗ and each gi is a gap length ∈ N . Often one considers
these patterns with some bound constraints, for example, all gaps are
bounded by a gap-bound G.

Near-optimal solutions have, lately, been proposed for the case of one
gap only with a predetermined size. More specifically, an indexing solu-
tion for patterns of the form p1 · g · p2, where g is known apriori. In this
case the solutions mentioned are preprocessed in O(n logε n) time and
O(n) space, where the pattern queries are answered in O(|p1| + |p2|),
for constant sized alphabets. For the more general case when there is a
bound G these results can be easily adapted with a multiplicative factor
of O(G) for the preprocessing, i.e. O(n logε nG) preprocessing time and
O(nG) preprocessing space. Alas, these solutions do not lend to more
than one gap.

In this paper we propose a solution for k gaps one with preprocessing
time O(nG2k logk n log log n) and space of O(nG2k logk n) and query time
O(m + 2k log log n), where m =

∑
i=1 |pi|.

1 Introduction

Indexing refers to the preprocessing of data, in our case text, in order to answer
subsequent pattern queries. Suffix trees and suffix arrays are two classical data
structures that index text. We denote the text T = t1t2 · · · tn. The queries are
then answered online quickly. Query patterns are of the form p = p1p2 · · · pm.

Pattern matching with wildcards is the problem of finding all appearances
of a pattern in a text where the text and pattern are over alphabet Σ ∪ {φ},
where φ denotes the wildcard; where a wildcard matches all other characters.
Pattern matching with wildcards was introduced and solved efficiently using
convolutional methods in [10]. Slightly tighter solutions have been presented
in [5,7,13,14].

Naturally the question was whether there were efficient solutions to indexing
with wildcards. Initially it seemed that even solving indexing with one mismatch
or wildcard is difficult. In [1] an efficient solution was given. A similar result was
also proposed in [9]. Both solutions convert the problem to geometric representa-
tions and use fast and effective geometric data structures. Lately, a new result [3]
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was proposed with optimal query times. These were achieved by reducing to a
data structure with tighter results. These solutions work very well for the case of
one wildcard or mismatch, but do not carry over, efficiently, to a larger number
of wildcards or mismatches. In [6] a solution for a larger number of wildcards
was devised.

Pattern matching with gaps, a natural problem, has been considered exten-
sively, see [4,8] for an example of one earlier paper and another recent one. The
problem is important in Computational Biology and Computational Musicology.
It is also an extension of pattern matching with wildcards, i.e. wildcards with a
length (or an interval of lengths).

Indexing with gaps was considered in [15]. They present an interesting and
detailed algorithm. However, their running time depends on parameters of the
number of matches between the blocks of the non-gaps. In [18] the same problem
is considered, only here only one gap in the pattern is assumed (and some other
constraints). The problem was also considered in [3,12]. In all three one gap of a
predetermined length was considered, i.e. the pattern is of the form p = p1φ

gp2,
where g is an input to the preprocessing. In the first paper [18] also the lengths
of P1 and P2 were predetermined. While, the results of [18] were very initial
the results in [12,3] were more sophisticated and followed along the lines of the
one mismatch/wildcard solutions. Each reduces the problem to geometric data
structural problems in the preprocessing and then, in the query stage, performs
an appropriate query in the geometric data structure. Actually the one mismatch
problem is more difficult than one wildcard (because with a mismatch we do not
know where mismatch occurs). The one wildcard extends naturally to one g-
length gap since the construction is basically the same.

The reduction in all these problems is to two dimensional range queries. The
idea is to construct separate suffix trees one for the text T , denoted ST , and one
for it’s reverse T R, denoted ST R . The central idea is the same in all solutions.
Consider the case of one wildcard then one can view any match (in the text)
as having a pivot at the location i where the wildcard occurs. Therefore, if the
pattern is P1φP2 then we can match P2 in ST and PR

1 in ST R . PR
1 starts at one

before the pivot and P2 starts one after the pivot. So, we construct on a 2D range
grid a point for each (potential) pivot i. Specifically, we have a lexicographic
ordering L1 of the suffixes (the ordering of the suffixes at the bottom of the
suffix tree = ordering of the suffix array) of T and a lexicographic ordering L2

of the suffixes of T R (which are prefixes of T ). The point of pivot i is (x, y),
where x is the location of suffix i + 1 in L1 and y is the location in L2 of the
prefix of T ending at i − 1. Now, for query P1φP2 one walks down ST with P2

and down ST R and down ST R with PR
1 . In each we reach a node which defines a

range of leaves. We need to find all the pivots which have a point in the pair of
ranges. This translates into a two dimensional range query where all points in a
rectangle need to be found. There are different data structures for this problem
used in the different solutions. For g-length gaps all that is changed is that the
pivot point is now constructed for a pair i − 1 and i + g. It is easy to see that
the solution does not carry over to more than one wildcard (or gap).
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1.1 Our Results

In this paper we are interested in generalizing indexing with gaps in two senses.
First we remove the constraint that the length of the gap g is known a-priori and
rather assume that there is a bound G for which the gaps are no larger than it.
Second, we allow more than one gap. Let us give the most general definition of
pattern matching with gaps. We will later add some constraints. This definition
follows along the lines of [4].

Given integers a and b, 0 ≤ a ≤ b, a variable length gap g{a,b} is an arbitrary
string over alphabet Σ of length between a and b, both inclusive. A variable
length gap pattern (for short VLG pattern) P is the concatenation of a sequence
of strings and variable length gaps, that is, P is of the form

p = p1 · g{a1, b1} · p2 · g{a2, b2} · · · g{ak, bk} · pk+1.

A VLG pattern P matches a substring S of T iff S = P1 · g1 · · · · gk ·Pk+1, where
gi is any string of length between ai and bi, i = 1, · · · , k. We say that P appears
at location i of T if there is a substring S of T starting at i which P matches. We
will classify VLG patterns into 3 classes; general VLG patterns, right-end VLG
patterns, i.e. where all ai = 1, and (simple) gapped-patterns, i.e. non-variable
or ai = bi. We also say that a VLG pattern is G-bounded if bi ≤ G for all i. We
say that a VLG pattern is k-gap-count-bounded if it contains at most k gaps.

For the sake of simplicity we will focus only on gapped-patterns throughout
this paper and leave the handling of general VLG patterns to the journal version.

The Indexing with Gaps problem is defined as follows.

Preprocessing Input: Text T = t1t2 · · · tn, G, and k.
Preprocessing Output: Data structure supporting G-bounded, k-gap-count-
bounded gapped-pattern queries.
Query Input: A G-bounded, k-gap-count-bounded gapped-pattern P .
Query Output: All locations i in T where P appears.

To solve the first problem of removing the a-priori constraint of length g, we
will use the results of [3] and update them accordingly. An O(G) factor in the
preprocessing seems unavoidable. On the other hand, an O(G) factor is sufficient
for extending the problem to G-bounded queries for the case of gapped-patterns.
For the more general case of G-bounded general VLG pattern queries, where only
one gap is allowed one can solve the problem with O(nG2) space with the same
time bounds or with O(nG log G) overhead and O(log G) query time.

If we want to allow more than one gap we will need a different data structure
than those that reduce to geometric data structures that we have seen before. We
will follow along similar lines to the result presented in [6]. However, things get
complicated when extending wildcards to G-length gaps. Unlike, the geometric
solutions the transfer is not trivial. We will need to produce new updates.
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The rest of our paper is organized as follows: in Sect. 2, we give some pre-
liminaries and problem definitions. In Sect. 3 we show our methods for allowing
multiple gaps in a few phases.

2 Problem Definitions and Preliminaries

2.1 Preliminary Definitions and Notations

Given a string S, |S| is the length of S. Throughout this paper we denote n = |S|.
An integer i is a location or a position in S if i = 1, . . . , |S|. The substring S[i . . j]
of S, for any two positions i ≤ j, is the substring of S that begins at index i and
ends at index j. Concatenation is denoted by juxtaposition. The suffix Si of S
is the substring S[i . . n].

The suffix tree [16,17,20,21] of a string S, denoted ST(S), is a compact trie
of all the suffixes of S$ (i.e. S concatenated with a delimiter symbol $ �∈ Σ).
Each of its edges is labeled with a substring of S (actually, a representation of
it, e.g. the start location and its length). The “compact” property is achieved by
contracting nodes having a single child. The children of every node are sorted
in the lexicographical order of the substrings on the edges leading to them.
Consequently, each leaf of the suffix tree represents a suffix of S, and the leaves
are sorted from left to right in the lexicographical order of the suffixes that they
represent.

ST(S) requires O(n) space. Algorithms for the construction of a suffix tree
enable O(n) preprocessing time when |Σ| is constant (where Σ is the alphabet
set), and O(n log min(n, |Σ|)) time when |Σ| is not. In fact, the suffix tree can be
constructed in linear time even for alphabets drawn from a polynomially-sized
range, see [16].
LCA queries. An LCA query lca(u, v) is given two nodes u, v in a tree T and
reports the lowest common ancestor w of u and v in T . Once w is known, its
height in the tree can also be determined. Often, data structures for constant
time LCA queries are used with suffix trees, as will be the case here as well.
Data structures for answering LCA queries in O(1) time can be built in linear
time [11,19]. These data structures also allow the reporting in O(1) time of the
edges exiting w on the paths to u and v. In addition, they yield the length of the
longest common prefix of the suffixes su and sv associated with u and v, again
in O(1) time.
Measured ancestor structure. We will also need a data structure for answering
the following query on an n-node compressed trie in O(log log n) time: Given a
leaf u and a distance h, report the location at which the prefix of su of length
|su| − h ends, i.e. the location distance h above u, where edges are deemed to
have length equal to their labels. We call this the measured ancestor structure.
Again, such data structures can be built in linear time [2].
Centroid path decomposition. Our construction uses centroid paths and centroid
path decompositions. For our setting, we define the centroid path of a tree T to
be the path starting at T ’s root, which at each node v on the path branches to
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v’s “largest” child, with ties broken arbitrarily; the size of a node is simply the
number of leaves in the subtree rooted at that node. In a centroid path decom-
position, we decompose each off-path subtree of the centroid path recursively.

The weight of a node on a centroid path is defined to be the number of leaves
in its off-path subtrees. In our applications, for node v on a centroid path with
off-path child u, it is convenient to include edge (v, u) in the off-path subtree Tu

incorporating node u. We will also say that Tu hangs from node v.
The following property of a centroid path decomposition of a tree is well known.

Property 1. Let T be an n-node tree with a centroid path decomposition. Let v
be a node of T . The path from the root of T to v traverses at most log n centroid
paths.

3 G-Bounded Queries with k Gaps

Given the text T of size O(n) and a suffix tree S(T ), a brute-force search for a
gapped-pattern p = p1 · g1 · p2 · g2 · · · gk · pk+1, can proceed as follows: descend
from the root of S(T ), find the path that exactly matches p1. We refer to this
path as the first tier path. Now, the search can allow for a g1 gap by searching
all the paths hanging off the first tier path at that point in the path (these
are the second tier paths), taking the g1 gap at the top of each of these paths.
Recall that |Σ| edges may hang off a single node of the suffix tree and, therefore,
|Σ|g1 paths of length g1 may hang off of v; this implies that we can search for
a pattern containing a single gap (of length g1) in O(|p1|+ |Σ|g1 |p2|) time. It is
not difficult to see that a simple extension of this algorithm can handle multiple
gaps (for k = 2 we must search the third tier paths hanging off the second tier
paths, etc.), yielding a run time of O(|Σ|g1+···+gkm), where m =

∑�
i=1 |pi|. This

is accomplished without any modifications to the trie, and therefore only O(n)
space is used.

3.1 Speeding Up the Search

A first step towards improving the costly run time of the brute force method
involves a tradeoff between the inefficient run time of the algorithm and the
optimal space requirement of O(n). Specifically, we remove the |Σ|g1+···+gk term
from the runtime, but require Θ(nk+1Gk) space.

At each node of the trie, we wish to anticipate taking a single gap during
the search. To this end, before having knowledge of the gapped-pattern p we
preprocess the trie. The gap to be taken can be of any length between 1 and
G. So, at every node we create G gap subtrees, one for each possible gap length,
which will be searched if a gap is taken starting at that node. Note, that the
traversal in a tier may end in the middle of an edge. However, in this case it is
sufficient to “slide” to the node under it and adapt, g, the length of the gap, i.e.
if there are x characters on the edge from the location the traversal reached on
the edge until the node under it, we move to the node under it and continue the
search with a gap of g − x.
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Fig. 1. (a) node v with two suffixes in subtree, (b) 6-length gaps marked, (c) 6-gap-tree
created

A gap subtree for length r, 1 ≤ r ≤ G, which we call a gap-r-tree, at node
v contains a merge of all the subtrees at the end of the r-length paths starting
at v, see Figure 1. Another way to envision the gap-r-tree is to think of all the
leaves of the suffix tree in the subtree of v. Each corresponds to a suffix, say Si.
If we truncate the h-length prefix of Si we have the suffix Si+h. So, if the set
of leaves in the subtree of v corresponds to suffixes {Si1 , · · · , Siq} and the string
associated with node v (the locus of the root-to-v node) is of length d then the
gap-r-tree at node v is a compressed trie of the suffixes {Si1+d+r, · · · , Siq+d+r}
(for those that satisfy ij + d + r ≤ n). To create the gap-r-tree at node v one
traverses the suffixes and updates their index and uses the lexicographic ordering
to resort them. The lexicographic ordering is obtainable from the suffix tree of
the original tree (or one may use any other suffix sorting algorithm that one
desires). Once they are resorted one uses standard techniques to construct the
compressed trie over these updated suffixes giving the desired. The resorting
can be done in O(q log log n) time, where q is the number of elements in the
subtree of v. The sorting is done with a van-Emde Boas tree or with a y-fast-
trie. This can be done because all the “new” suffixes are really just suffixes from
the original suffix tree and they have been enumerated from 1, · · · , n according
to their lexicographic ordering. Hence, the “universe” of the q elements that are
sorted is of size n.

The size of the modified overall trie is Θ(n2G). This is because in the original
suffix tree, every leaf u representing a suffix, may have O(n) ancestors and each
have G gap trees hanging off the node containing u.

A search for a gapped-pattern with one gap, i.e. p = p1g1p2, on the new trie
descends from the root, and as before finds the path for p1. This is the first tier
path. Now, the search will continue in the g1-gap tree with the pattern p2. This
search takes time O(|p1|+ |p2|). It is not difficult to see that a simple extension
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of this algorithm can handle multiple gaps – for k = 2 we must create secondary
gap subtrees for each node of each primary gap tree, etc. – yielding a run time
of O(m), where m =

∑�
i=1 |pi| with space O(nk+1Gk).

3.2 Better Tradeoffs

Although the aforementioned technique improves the run time significantly, the
space requirement is now problematic. However, a variant of this technique yields
an O(nG2k logk n) structure that supports gapped-pattern queries in O(2km)
time.

As before, before having knowledge of p we preprocess the trie and create a
gap subtree for each node. However, there is a slight twist here. We will consider
the centroid partition of the suffix tree. The gap subtrees created at a node v
will not contain all (truncated) suffixes in the subtree of v as before, but rather
will contain only those whose v-to-suffix path leave the centroid path within the
gap size, see Figure 2.
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Fig. 2. (a) 1 centroid path with suffix tree subtrees hanging off, (b) merge of appro-
priate subtrees (off centroid-path trees) for 6-gap-tree

If during the execution of a search a gap is taken at the node, then both
the gap tree and the subtree where the gap is along the centroid path must be
searched. That is, taking a gap will spawn two searches – better than the |Σ|g
searches spawned in the brute-force algorithm, but less efficient than the single
search required in the search speedup.

The benefit of this tradeoff lies in reducing the size of the structure, which is
now O(nG2 log n). This bound follows easily when one considers each leaf in the
original trie: Each gap tree that contains this leaf is associated with a distinct
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ancestor of this leaf, and further each such ancestor lies on a centroid path from
which the subtree containing the leaf diverges within at most G levels down. As
a leaf may have at most �log2 n� centroid paths on the path from root to leaf,
a leaf may be found in the gap subtrees of at most G�log2 n� ancestors in the
modified trie. Each such ancestor has at most G such subtrees.

It is not difficult to see that, as before, a simple extension of this algorithm
can handle multiple gaps – we create k-ary gap subtrees for each node of each
(k − 1)-ary gap subtree. This yields a run time for the query of O(2km) with
space O(nG2k logk n).

In the next subsection we will see how to reduce the query time to
O(2k log log n + m).

3.3 Final Speedup of the Query

The multiplicative factor of O(m) follows from the traversals on the pi’s and the
2k and the logk n factors are for the number of subtrees that we need to traverse
within.

A circumvention to the traversal is as follows. Recall that each of these sub-
trees is actually a trie over a collection of suffixes of the original suffix tree. We
have also assumed that these suffixes have been sorted (lexicographically) either
by the suffix tree construction or by some other suffix sorting method. There-
fore, each trie is actually a collection of numbers (the lexicographic ranks). Now,
when we first see the gapped pattern for each i we traverse with pi from the root
of the suffix tree. When we reach the end of pi we are at a node (or just above
a node) u. The leftmost leaf and the rightmost leaf in the subtree of u represent
suffixes with pi as a prefix of this suffix. So, they, actually their lexicographic
ranks, may represent pi.

So, now when we reach a gap subtree instead of traversing it from top with pi we
will do a predecessor query with the lexicographic rank of pi as the query and the
lexicographic ranks of the suffixes of the subtree as the data. Once we have found
the predecessor and successor we will be able to find the node in the subtree rep-
resenting the end of the pi search by applying an LCA query to the newly found
predecessor and successor. If there is only a predecessor (or only a successor) we
may use a measured ancestor query. This predecessor/successor queries and mea-
sured ancestor queries can be implemented in O(log log n) time. This yields:

Theorem 1. Let T be a text of size n. One can build an indexing scheme of size
O(nG2k logk n) so that one can answer gapped queries bounded by gap-bound G
with k gaps in time O(m + 2k log log n).
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