

Lecture Notes in Computer Science 7024
Commenced Publication in 1973
Founding and Former Series Editors:
Gerhard Goos, Juris Hartmanis, and Jan van Leeuwen

Editorial Board

David Hutchison
Lancaster University, UK

Takeo Kanade
Carnegie Mellon University, Pittsburgh, PA, USA

Josef Kittler
University of Surrey, Guildford, UK

Jon M. Kleinberg
Cornell University, Ithaca, NY, USA

Alfred Kobsa
University of California, Irvine, CA, USA

Friedemann Mattern
ETH Zurich, Switzerland

John C. Mitchell
Stanford University, CA, USA

Moni Naor
Weizmann Institute of Science, Rehovot, Israel

Oscar Nierstrasz
University of Bern, Switzerland

C. Pandu Rangan
Indian Institute of Technology, Madras, India

Bernhard Steffen
TU Dortmund University, Germany

Madhu Sudan
Microsoft Research, Cambridge, MA, USA

Demetri Terzopoulos
University of California, Los Angeles, CA, USA

Doug Tygar
University of California, Berkeley, CA, USA

Gerhard Weikum
Max Planck Institute for Informatics, Saarbruecken, Germany

Roberto Grossi Fabrizio Sebastiani
Fabrizio Silvestri (Eds.)

String Processing
and Information Retrieval

18th International Symposium, SPIRE 2011
Pisa, Italy, October 17-21, 2011
Proceedings

13

Volume Editors

Roberto Grossi
Università di Pisa
Dipartimento di Informatica
Largo Bruno Pontecorvo 3, 56127 Pisa, Italy
E-mail: grossi@di.unipi.it

Fabrizio Sebastiani
Fabrizio Silvestri
Istituto di Scienza e Tecnologia dell’Informazione
"Alessandro Faedo"
Consiglio Nazionale delle Ricerche
Area della Ricerca di Pisa
Via Giuseppe Moruzzi 1
56124 Pisa, Italy
E-mail:{fabrizio.sebastiani; fabrizio.silvestri}@isti.cnr.it

ISSN 0302-9743 e-ISSN 1611-3349
ISBN 978-3-642-24582-4 e-ISBN 978-3-642-24583-1
DOI 10.1007/978-3-642-24583-1
Springer Heidelberg Dordrecht London New York

Library of Congress Control Number: 2011937624

CR Subject Classification (1998): H.3, J.3, H.2.8, I.5, I.2.7, H.4

LNCS Sublibrary: SL 1 – Theoretical Computer Science and General Issues

© Springer-Verlag Berlin Heidelberg 2011

This work is subject to copyright. All rights are reserved, whether the whole or part of the material is
concerned, specifically the rights of translation, reprinting, re-use of illustrations, recitation, broadcasting,
reproduction on microfilms or in any other way, and storage in data banks. Duplication of this publication
or parts thereof is permitted only under the provisions of the German Copyright Law of September 9, 1965,
in its current version, and permission for use must always be obtained from Springer. Violations are liable
to prosecution under the German Copyright Law.
The use of general descriptive names, registered names, trademarks, etc. in this publication does not imply,
even in the absence of a specific statement, that such names are exempt from the relevant protective laws
and regulations and therefore free for general use.

Typesetting: Camera-ready by author, data conversion by Scientific Publishing Services, Chennai, India

Printed on acid-free paper

Springer is part of Springer Science+Business Media (www.springer.com)

Preface

In the 18 years since its inauguration back in 1993 the International Symposium
on String Processing and Information Retrieval (SPIRE) has become the refer-
ence meeting for the interdisciplinary community of researchers whose activity
lies at the crossroads of string processing and information retrieval. This vol-
ume contains the proceedings of SPIRE 2011, the 18th symposium in the series.
The first four events concentrated mainly on string processing, and were held in
South America under the title “South American Workshop on String Processing”
(WSP) in 1993 (Belo Horizonte, Brazil), 1995 (Valparaiso, Chile), 1996 (Recife,
Brazil), and 1997 (Valparaiso, Chile). WSP was renamed SPIRE in 1998 (Santa
Cruz, Bolivia) when the scope of the event was broadened to include information
retrieval. The change was motivated by the increasing relevance of information
retrieval and its close interrelationship with the general area of string process-
ing. From 1999 to 2007, the venue of SPIRE alternated between South / Latin
America (odd years) and Europe (even years), with Cancun, Mexico in 1999; A
Coruña, Spain in 2000; Laguna de San Rafael, Chile in 2001; Lisbon, Portugal
in 2002; Manaus, Brazil in 2003; Padova, Italy in 2004; Buenos Aires, Argentina
in 2005; Glasgow, UK in 2006; and Santiago, Chile in 2007. This pattern was
broken when SPIRE 2008 was held in Melbourne, Australia, but it was restarted
in 2009 when the venue was Saariselkä, Finland, followed by Los Cabos, Mexico
in 2010.

The SPIRE 2011 call for papers resulted in the submission of 102 papers.
Each submitted paper was reviewed by three of the 64 members of the Program
Committee, who eventually engaged in discussions coordinated by the two PC
Chairmen in cases of lack of consensus. We believe this resulted in a very accurate
selection of the truly best submitted papers. As a result, 30 long papers and 10
short papers were accepted and have been published in these proceedings.

The dense program of SPIRE 2011 started on October 17 with four tutorials
providing in-depth coverage of both introductory as well as advanced topics in
string processing (“Introduction to Sequence Learning”, by Corinna Cortes and
Mehryar Mohri, and “Space-Efficient Data Structure”, by Francisco Claude and
Gonzalo Navarro) and information retrieval (“Introduction to Web Retrieval”
by Ricardo Baeza-Yates, and “Computational Geography”, by Vanessa Murdock
and Gary Gale). The main conference featured keynote speeches by Erik De-
maine and Abdur Chowdhury, plus the presentations of the 30 full papers and 10
short papers. Following the main conference, on October 21, SPIRE 2011 hosted
two workshops, i.e., the Workshop on the Algorithmic Analysis of Biological
Data (WAABD 2011) and the Workshop on Compression, Text, and Algorithms
(WCTA 2011). A Best Paper Award and a Best Student Paper Award were also
assigned, each consisting of a check of 1000 EUR and sponsored by Google and
NoemaLife, respectively.

VI Preface

We would like to take the opportunity to thank Google, NoemaLife, Microsoft
Research, the Department for Information and Communication Technologies of
the Italian National Council of Research, the Italian Association for Automatic
Computation (AICA), Yahoo! Research, Twitter, and the ASSETS project. All
of them provided generous sponsorship, which allowed the organizers to keep the
registration fees as low as possible and thus to enhance participation.

We would also like to thank everybody involved in making SPIRE 2011 such
an exciting event. Specifically, we would like to thank all conference, tutorial,
and workshop participants and presenters, who provided a fascinating one-week
program of high-quality presentations and intensive discussions. Thanks also to
all the members of the Program Committee and to the additional reviewers,
who went to great lengths to ensure the high quality of this conference, and to
the coordinator of the SPIRE Steering Committee, Ricardo Baeza-Yates, who
provided assistance and guidance in the organization.

Furthermore, we would like to thank all the members of the local organiz-
ing team at the Italian National Council of Research and at the University of
Pisa. Particularly, we would like to thank Andrea Esuli who acted as Tutorials
Chair, Nadia Pisanti who acted as Workshops Chair, our Webmaster Stefano
Baccianella, Catherine Bosio and Giulio Galesi who gave us support in local
arrangements, Beatrice Rapisarda who designed the official poster of the sym-
posium, and all the student volunteers. They all made a tremendous effort to
make sure that this event was exciting and enjoyable. It is due to them that the
organization of SPIRE 2011 was not just hard work, but also a pleasure.

October 2011 Roberto Grossi
Fabrizio Sebastiani

Fabrizio Silvestri

Organization

Program Committee

Omar Alonso Microsoft
Gianni Amati Fondazione Ugo Bordoni
Amihood Amir Bar-Ilan University and Johns Hopkins University
Leif Azzopardi University of Glasgow
Rolf Backofen Albert-Ludwigs-University Freiburg
Ricardo Baeza-Yates Yahoo! Research
Alvaro Barreiro University of A Coruña
Philip Bille Technical University of Denmark
Paolo Boldi Università degli Studi di Milano
Danny Breslauer University of Haifa
Edgar Chavez Universidad Michoacana
Charles Clarke University of Waterloo
Maxime Crochemore King’s College London and Université Paris
Brian Davison Lehigh University
Nadia El-Mabrouk University of Montreal
Paolo Ferragina University of Pisa
Frantisek Franek McMaster University
Leszek Gasieniec University of Liverpool
Dora Giammarresi University of Rome “Tor Vergata”
Nazli Goharian Georgetown University
Gregory Grefenstette Exalead
Roberto Grossi Università di Pisa
Concettina Guerra University of Padova and Georgia Tech
Antonio Gulli Microsoft
Jan Holub Czech Technical University in Prague
Heikki Hyyrö University of Tampere
Lucian Ilie University of Western Ontario
Costas Iliopoulos King’s College London
Shunsuke Inenaga Kyushu University
Shen Jialie Singapore Management University
Jaap Kamps University of Amsterdam
Takuya Kida Hokkaido University
Marcin Kubica Warsaw University
Gregory Kucherov CNRS/LIGM
Mounia Lalmas University of Glasgow
Moshe Lewenstein Bar Ilan University
Alistair Moffat University of Melbourne
Laurent Mouchard University of Rouen

VIII Organization

Gonzalo Navarro University of Chile
Wolfgang Nejdl L3S and University of Hannover
Iadh Ounis University of Glasgow
Laxmi Parida IBM Research
Kunsoo Park Seoul National University
Marco Pellegrini Institute for Informatics and Telematics of C.N.R.
Pierre Peterlongo INRIA Rennes-Bretagne-Atlantique
Andrea Pietracaprina University of Padova
Ely Porat Bar-Ilan University
Venkatesh Raman The Institute of Mathematical Sciences
Horacio Rodriguez Universitat Politècnica de Catalunya
Marie-France Sagot Université de Lyon
Cenk Sahinalp Simon Fraser University
Leena Salmela University of Helsinki
Jeanette Schmidt Stanford University
Fabrizio Sebastiani ISTI - CNR
Fabrizio Silvestri ISTI - CNR
Steven Skiena Stony Brook University
Dina Sokol Brooklyn College of the City University of New York
Jens Stoye Bielefeld University
Torsten Suel Yahoo! Research
Fabio Vandin Brown University
Stéphane Vialette Université Paris-Est
Alain Viari INRIA
Jeff Vitter University of Kansas
Oren Weimann Weizmann Institute of Science
Le Zhao CMU
Nivio Ziviani Federal University of Minas Gerais

Additional Reviewers

Andonov, Rumen
Antoniou, Pavlos
Arroyuelo, Diego
Badkobeh, Golnaz
Bernhardt, Daniel
Blanco, Roi
Bressan, Marco
Canovas, Rodrigo
Ceccarelli, Diego
Chikhi, Rayan
Claude, Francisco
Constant, Matthieu
Costa, Fabrizio
Dai, Na

Dan, Ovidiu
David, Julien
Epifanio, Chiara
Fernandes, David
Fertin, Guillaume
Fonseca, Paulo
Franek, Frantisek
Frigeri, Achille
Galle, Matthias
Gerlach, Wolfgang
Giraud, Mathieu
Gurevich, Maxim
Hamel, Sylvie
Hegerty, Ian

Organization IX

Husemann, Peter
Jahn, Katharina
Jaroš, Jakub
Jiang, Minghui
Karenos, Kyriakos
Kopelowitz, Tsvi
Levy, Avivit
Lonati, Violetta
Losada, David
Manzini, Giovanni
Markowetz, Alexander
Martinez-Prieto, Miguel A.
Menezes, Guilherme
Möhl, Mathias
Nanni, Mirco
Nardini, Franco Maria
Noe, Laurent
Peterlongo, Pierre
Pinkas, Benny
Pissis, Solon
Prochazka, Petr
Puglisi, Simon
Qi, Xiaoguang
Radoszewski, Jakub
Rojas, Pablo

Rosone, Giovanna
Russo, Luis M.S.
Santos, Rodrygo
Satti, Srinivasa Rao
Schmidt, Jeanette
Silva, Altigran
Silvestri, Francesco
Starikovskaya, Tatiana
Tannier, Eric
Tischler, German
Tolomei, Gabriele
Utro, Filippo
Veloso, Adriano
Venturini, Rossano
Vigna, Sebastiano
Vildhøj, Hjalte Wedel
Walen, Tomasz
Will, Sebastian
Wittler, Roland
Xu, Bojian
Xue, Zhenzhen
Yan, Hao
Yin, Dawei
Yorukoglu, Deniz
Zelikovitz, Sarah

Table of Contents

Constructing Strings at the Nano Scale via Staged Self-assembly 1
Erik D. Demaine

Discounted Cumulative Gain and User Decision Models 2
Georges Dupret

Cross-Lingual Text Fragment Alignment Using Divergence from
Randomness . 14

Sirvan Yahyaei, Marco Bonzanini, and Thomas Roelleke

Enhancing Document Snippets Using Temporal Information 26
Omar Alonso, Michael Gertz, and Ricardo Baeza-Yates

Spaced Seeds Design Using Perfect Rulers . 32
Lavinia Egidi and Giovanni Manzini

Weighted Shortest Common Supersequence . 44
Amihood Amir, Zvi Gotthilf, and B. Riva Shalom

Approximate Regular Expression Matching with Multi-strings 55
Djamal Belazzougui and Mathieu Raffinot

Persistency in Suffix Trees with Applications to String Interval
Problems . 67

Tsvi Kopelowitz, Moshe Lewenstein, and Ely Porat

Approximate Point Set Pattern Matching with Lp-Norm 81
Hung-Lung Wang and Kuan-Yu Chen

Detecting Health Events on the Social Web to Enable Epidemic
Intelligence . 87

Marco Fisichella, Avaré Stewart, Alfredo Cuzzocrea, and
Kerstin Denecke

A Learned Approach for Ranking News in Real-Time Using the
Blogosphere . 104

Richard McCreadie, Craig Macdonald, and Iadh Ounis

Attribute Retrieval from Relational Web Tables . 117
Arlind Kopliku, Karen Pinel-Sauvagnat, and Mohand Boughanem

Query-Sets++: A Scalable Approach for Modeling Web Sites 129
Barbara Poblete, Myra Spiliopoulou, and Marcelo Mendoza

XII Table of Contents

Indexing with Gaps . 135
Moshe Lewenstein

Fast Computation of a String Duplication History under
No-Breakpoint-Reuse (Extended Abstract) . 144

Broňa Brejová, Gad M. Landau, and Tomáš Vinař

Near Real-Time Suffix Tree Construction via the Fringe Marked
Ancestor Problem . 156

Dany Breslauer and Giuseppe F. Italiano

Approximations and Partial Solutions for the Consensus Sequence
Problem . 168

Amihood Amir, Haim Paryenty, and Liam Roditty

Fixed Block Compression Boosting in FM-Indexes 174
Juha Kärkkäinen and Simon J. Puglisi

Space Efficient Wavelet Tree Construction . 185
Francisco Claude, Patrick K. Nicholson, and Diego Seco

Computing the Longest Common Prefix Array Based on the
Burrows-Wheeler Transform . 197

Timo Beller, Simon Gog, Enno Ohlebusch, and Thomas Schnattinger

A Succinct Index for Hypertext . 209
Chris Thachuk

When Was It Written? Automatically Determining Publication
Dates . 221

Anne Garcia-Fernandez, Anne-Laure Ligozat, Marco Dinarelli, and
Delphine Bernhard

A New Approach for Verifying URL Uniqueness in Web Crawlers 237
Wallace Favoreto Henrique, Nivio Ziviani, Marco Antônio Cristo,
Edleno Silva de Moura, Altigran Soares da Silva, and
Cristiano Carvalho

External Query Reformulation for Text-Based Image Retrieval 249
Jinming Min and Gareth J.F. Jones

A Knowledge-Based Semantic Kernel for Text Classification 261
Jamal Abdul Nasir, Asim Karim, George Tsatsaronis, and
Iraklis Varlamis

Compressed Text Indexing with Wildcards . 267
Wing-Kai Hon, Tsung-Han Ku, Rahul Shah,
Sharma V. Thankachan, and Jeffrey Scott Vitter

Table of Contents XIII

Fast q-gram Mining on SLP Compressed Strings . 278
Keisuke Goto, Hideo Bannai, Shunsuke Inenaga, and
Masayuki Takeda

Succinct Gapped Suffix Arrays . 290
Lúıs M.S. Russo and German Tischler

Finding Frequent Elements in Compressed 2D Arrays and Strings 295
Travis Gagie, Meng He, J. Ian Munro, and Patrick K. Nicholson

On Suffix Extensions in Suffix Trees . 301
Dany Breslauer and Giuseppe F. Italiano

COCA Filters: Co-occurrence Aware Bloom Filters 313
Kamran Tirdad, Pedram Ghodsnia, J. Ian Munro, and
Alejandro López-Ortiz

On-line Construction of Position Heaps . 326
Gregory Kucherov

Computing All Subtree Repeats in Ordered Ranked Trees 338
Michalis Christou, Maxime Crochemore, Tomáš Flouri,
Costas S. Iliopoulos, Jan Janoušek, Bořivoj Melichar, and
Solon P. Pissis

Sparse Spatial Selection for Novelty-Based Search Result
Diversification . 344

Veronica Gil-Costa, Rodrygo L.T. Santos, Craig Macdonald, and
Iadh Ounis

Candidate Document Retrieval for Web-Scale Text Reuse Detection 356
Matthias Hagen and Benno Stein

A Multi-faceted Approach to Query Intent Classification 368
Cristina González-Caro and Ricardo Baeza-Yates

Navigating the User Query Space . 380
Ronan Cummins, Mounia Lalmas, Colm O’Riordan, and
Joemon M. Jose

Improved Compressed Indexes for Full-Text Document Retrieval 386
Djamal Belazzougui and Gonzalo Navarro

ESP-Index: A Compressed Index Based on Edit-Sensitive Parsing 398
Shirou Maruyama, Masaya Nakahara, Naoya Kishiue, and
Hiroshi Sakamoto

XIV Table of Contents

Compressed Indexes for Aligned Pattern Matching 410
Sharma V. Thankachan

Reference Sequence Construction for Relative Compression of
Genomes . 420

Shanika Kuruppu, Simon J. Puglisi, and Justin Zobel

Author Index . 427

Constructing Strings at the Nano Scale

via Staged Self-assembly

Erik D. Demaine

Computer Science and Artificial Intelligence Laboratory
Massachusetts Institute of Technology
32 Vassar St., Cambridge, MA 02139

edemaine@mit.edu

Abstract. Tile self-assembly is an intriguing approach to manufactur-
ing desired shapes with nano-scale feature size. A recent direction in this
theory allows the use of multiple stages—operations performed by the
experimenter, such as mixing two self-assembling systems together. This
flexibility transforms the experimenter from a passive entity into a par-
allel algorithm, and vastly reduces the number of distinct parts required
to construct a desired shape, possibly making the systems practical to
build.

We start with the relatively simple goal of constructing 1D strings
of tiles with distinctive markers, while minimizing the number of mixing
steps (work) performed by the staged assembly. In the practical situation
of few different “glues”, this problem turns out to be closely related to
compressing a string into a context-free grammar with the fewest nonter-
minals. In general, however, the problems turn out to be quite different,
as the implicit parallelism of a mixing operation can be exploited to
reduce the number of steps.

The staged-assembly perspective also enables the possibility of addi-
tional operations, such as adding an enzyme that destroys all tiles with
a special label. By enabling destruction in addition to the usual con-
struction, we can perform tasks impossible in a traditional self-assembly
system. For example, we can build a Replicator, which transforms a given
object of unknown shape or size into many copies of that shape; and we
find a vastly more efficient way to construct a nano computer through
self-assembly.

R. Grossi et al. (Eds.): SPIRE 2011, LNCS 7024, p. 1, 2011.
c© Springer-Verlag Berlin Heidelberg 2011

Discounted Cumulative Gain and User Decision

Models

Georges Dupret

Yahoo!

Abstract. We propose to explain Discounted Cumulative Gain (DCG)
as the consequences of a set of hypothesis, in a generative probabilistic
model, on how users browse the result page ranking list of a search engine.
This exercise of reconstructing a user model from a metric allows us to
show that it is possible to estimate from data the numerical values of
the discounting factors. It also allows us to compare different candidate
user models in terms of their ability to describe the observed data, and
hence to select the best one. It is generally not possible to relate the
performance of a ranking function in terms of DCG with the clicks observed
after the function is deployed on a production environment. We show in
this paper that a user model make this possible. Finally, we show that DCG
can be interpreted as a measure of the utility a user gains per unit of effort
she is ready to allocate. This contrasts nicely with a recent interpretation
given to average precision (AP), another popular Information Retrieval
metric, as a measure of effort needed to achieve a unit of utility [7].

Introduction

An accurate method to quantify the quality of a document ranking is a funda-
mental requisite in the design of a search engine. Evaluation involves typically
several distinct metrics; Some of them are prognostic metrics that can be com-
puted before a new ranking function is deployed while others analyze how users
interacted with the ranking and can be therefore considered as diagnostic met-
ric. The main difference between these two types of metric is that the first one
requires a prediction of the user actions, while the second simply use available
observed actions or clicks.

The main argument of this paper is that to derive a reliable metric, we need
to define how users interact with a ranking list [6]. Robertson [14] expressed this
idea before us: “If we can interpret a measure (. . .) in terms of an explicit user
model (. . .), this can only improve our understanding of what exactly the mea-
sure is measuring”. To illustrate this, consider the traditional 5 labels of DCG that
characterize the relevance of a document to a query: PERFECT, EXCELLENT,
GOOD, FAIR and BAD (P, E, G, F and B in short). Say a first ranking function
–F1– produces a sequence of document with relevances BBPBB, while another
function F2 produces FFFBB. Provided users scan the list sequentially, if users
stop their search after the second position in the ranking, then F2 is better. On
the other hand, if most of them scan at least three positions, then ranking F1

R. Grossi et al. (Eds.): SPIRE 2011, LNCS 7024, pp. 2–13, 2011.
c© Springer-Verlag Berlin Heidelberg 2011

Discounted Cumulative Gain and User Decision Models 3

might be preferred. In conclusion, the user behavior defines which ranking is
best. Moffat & Zobel [13] also derive the Rank Biased Precision (rbf) metric
based on a user model.

Resorting to user modeling is also a first step to break the “chicken and egg”
problem we face when comparing two different metrics: Deciding which metric is
best calls for a third “meta” metric to compare the original metrics [6]. Because
various “meta” metrics are likely to co-exist, a meta metric for the meta metrics
is also necessary, etc. User models on the other hand can be compared based
on their predictive ability. If one model predicts more accurately future user
interactions with a search engine than another, then the metric derived from the
best user model is arguably better. This doesn’t completely solve the problem
though, as different metrics can be derived from a common user model.

This works concentrates on identifying possible user models for maybe the two
most widely used metrics in web search: DCG. This exercise will help us identify
the implicit assumptions behind this metric. We have been inspired by a similar
study [7] on average precision (AP) that we leverage here to provide insight on
the fundamental differences between AP and DCG.

1 Discounted Cumulative Gain

DCG [11] in its more general form can be written as

DCGR =
R∑
1

DrGr (1)

where Dr is a discounting factor decreasing with the rank r and Gr is the gain
achieved by presenting document dr at rank r. There are generally two related
interpretation of this metric:

Utilitarian: The utility of a document to a user decreases when the document
is low in the ranking.

Probabilistic: All documents are not examined with the same probability. Search
Engine logs show that the probability of clicking a document decreases with
its rank and it is natural to discount a document usefulness accordingly.

The original paper [11] introducing DCG doesn’t relate it explicitly to user
behavior or to a decision process, and is therefore closer to interpretation (a).
Departing from this, we propose here two user models that lead to metrics in-
terpretable as variant of DCG, each leading to a distinct set of discounting factor
estimates. These models are generative models and can therefore be used to
predict which documents a user clicks when presented with a list of search re-
sults. By comparing the predicted clicks with the actual clicks observed on a
held out set of sessions, we can identify the best model, and hence the best set
of discounting factors.

We first introduce some notations. Because we suppose that all documents
are judged, we can understand a ranking as a sequence of labels �r, r = 1, . . . , R

4 G. Dupret

where r indexes the position in the ranking. We often use the notation �1:R to
represent the whole ranking up to position R. A user looking at a list search
result will only click on a result if he looks at this specific result (They are no
“accidental” clicks). We call the latter process the examination and define a
binary variable Er depending on the rank r, that indicates whether a particular
rank r is examined by the user. The subscript r is dropped when there is no
ambigüıty. Finally, the binary variable Cr indicates whether a document was
clicked or not.

As discussed, we suppose that if a document is clicked, then its position is
previously examined. We also use the following shorthand: e+ and e− are equiv-
alent to “E is true” and “E is false”, respectively. We also use E = 1 and E = 0
to denote e+ and e− when convenient. The same holds for c+ and c− or other
binary variables introduced later.

2 Deterministic Click User Model

The first user model is also the simplest:

User Model 1 (Deterministic Click)

1. The user chooses to examine a rank r between 1 and R with a probability
P (e+

r).
2. She always clicks on the link to the document at rank r. The document at

rank r has a utility U(�r) for her, where �r is the document label.

This model is unable to predict sessions where no clicks occur. Multiple clicks in
a given sessions are understood as the same user repeating the above process1.
In other words, a multiple clicks session is really a sequence of one-click sessions.

In the case of a one click session, the average utility achieved is:

E(U) =
R∑

r=1

P (e+
r)U(�r)

It is then possible to interpret this expected utility as DCG, provided P (e+
r) is

understood as the discounting factor. This shows that if we assume that (a) the
Deterministic Click model holds, (b) the utility of a session is a valid measure
of user satisfaction, then the average satisfaction cöıncide with the DCG. The
converse is not true as we will illustrate later by introducing another model that
can also imply DCG as a metric.

If search logs are available, then an estimate of P (Er) can be obtained by
maximizing the likelihood. The likelihood of a single session with a click at
position r is:

Lr = P (e+
r) ×

R∏
s=1;s�=r

(1 − P (e+
s))

1 Nothing prevents her from clicking twice on the same document.

Discounted Cumulative Gain and User Decision Models 5

If there are more than one click – say a click at positions r1 and one at r2, then
the likelihood is the product Lr1 × Lr2 because a session with multiple clicks is
equivalent to several sessions with one click. This holds even if r2 = r1.

3 Probabilistic Click User Model

The Deterministic Click model is fairly unrealistic because, among other reasons,
it assumes that the user chooses one position in the ranking and ignores the other.
Once she chooses a position, it is assumed

(a) She clicks blindly on the corresponding document. Real users don’t click
deterministically on a document they examine. Instead, they evaluate the
document snippet before deciding whether to click.

(b) She completely ignores the snippet higher and lower in the ranking. Here
again, real users behave differently. Eye tracking experiments suggest they
tend to browse the result list sequentially [9].

These observations suggest the following model:

User Model 2 (Probabilistic User Model)

1. The user examines sequentially the ranking up to a position r she chooses be-
fore starting the search. After reaching this position she abandons the search.

2. She clicks on a examined document with a probability P (c+|e+; �) where � is
the editorial label of the document2.

Like in [10], we make no assumption on whether the user is satisfied or not
when she abandons the search and once examined, the probability of click on a
document is independent of the position. On the other hand, the probability of
examination depends on the position.

3.1 Expected Utility

In order to evaluate the expected utility associated with a ranking �1:R, we first
define for convenience the multinomial variable A on {1, . . . , R+1} that describes
up to which position the user is willing to examine the ranking: A = r means that
she decides to end the search at position r. The value R + 1 has a special status
and means that the user didn’t abandon her search up to rank R, included. The
event A = r is sometimes written ar for short. A is univoquely related to the set
E1:R: A = r entails {e+

1:r, e
−
r+1:R}, i.e. all snippets up to position r are examined

and none is examined after r.
2 This requires that the search engine generates snippets that represent fairly the

document content. In other word, we assume that the perceived and intrinsic or real
relevance are aligned. If we had editorial labels for the document snippets as well
as the documents themselves we could estimate the probability of a click given the
snippet label rather than the document label.

6 G. Dupret

The joint distribution describing the model is:

P (A, C1:R, E1:R; �1:R) = P (A)
R∏

r=1

P (Cr|Er; �r)P (Er |A)

where E1:R and A depend on each other deterministically. The expected utility
can be expressed as

E(U) = E(
R∑

r=1

U(�r)Cr) =
R∑

r=1

U(�r)P (c+
r)

where Cr = 1 if the document is clicked and 0 otherwise. We therefore need to
compute the expectation of a click at an arbitrary position r. We can always
write

P (c+
r) = P (c+

r , A < r) + P (c+
r , A ≥ r)

= 0 + P (c+
r |e+

r ; �r)P (A ≥ r)

therefore

E(U) =
R∑

r=1

U(�r)P (c+
r |e+

r ; �r)P (A ≥ r)

The terms U(�r)P (c+
r |e+

r ; �r) only depends on the document label, not the rank3,
and can therefore be identified with the DCG gain Gr in Eq. 1. The term P (A ≥ r)
only depends on the position in the ranking and is associated with the discount-
ing factor4 : {

Gr = U(�r)P (c+
r |e+

r ; �r)
Dr ∝ P (A ≥ r)

(2)

It is interesting to observe that the DCG gains Gr incorporate implicitly a click
probability. Another way to state this is to recognize that the utility gained by
a user who clicks on a document with label � is now G�/P (c+|e+; �) instead of
G� as predicted by the first model.

3.2 Parameters Estimation

Because we have defined a user model, we are able to predict user sessions and
hence estimate the model parameters by maximum likelihood. The likelihood is
obtained by marginalizing out the (partially) hidden variables A and E1:R.
3 The presence of r in the expression UrP (c+

r |e+
r ; �r) doesn’t imply a dependence on r

of the gains; It’s role is to identify the document label. For example, UrP (c+
r |e+

r ; �r) =
UsP (c+

s |e+
s ; �s) as long as the documents at positions r and s share the same label.

4 It is always possible to derive discounting factors D1:R from the probabilities P (A ≥
r), r = 1, . . . , R, but the opposite is not true because Dr is not required to be a
probability in the original definition [11].

Discounted Cumulative Gain and User Decision Models 7

Suppose we observe a session St for which the last click is at position b. The
sequence of clicks in this session can be described by {C1:b−1, c

+
b , c−b+1:R}. The

probability of St is:

P (St) =
∑
A

P (A, C1:b−1, c
+
b , c−b+1:R, E1:R; �1:R)

There is no need to sum over the states of E1:R because they are univoquely
defined by the state of A.

In order to keep notations lighter, we will keep E1:R and �1:R implicit wherever
possible. We also sometimes omit the reference to the label in P (Cr|Er; �r) for
convenience. We will estimate P (A, C1:R) for A = 1, . . . R and then add the
results to obtain P (St).

First, we observe that P (A < b, C1:b−1, c
+
b , c−b+1:R) = 0 because by hypothesis

users don’t click on documents they don’t examine. If A = b, that is if the user
decided he would examine the ranking up to position b where he happened to
also click the link, we have:

P (A = b, C1:b−1, c
+
b , c−b+1:R, e+

1:b, e
−
b+1:R) = P (ab)P (c+

b |e
+
b ; �b)

b−1∏
r=1

P (Cr|e+
r ; �r)

If A = b + 1 – the case where the user decides to examine up to position b + 1,
but the link at that position didn’t raise her interest– we have:

P (A = b + 1, C1:b−1, c
+
b , c−b+1:R, e+

1:b+1, e
−
b+2:R)

= P (ab+1)P (c−b+1|e
+
b+1)P (c+

b |e
+
b)

b−1∏
r=1

P (Cr|e+
r)

Generalizing up to R and adding, we obtain the likelihood of session St:

L(St) = P (C1:b−1, c
+
b , c−b+1:R; �1:R)

= P (c+
b |e

+
b ; �b)

b−1∏
r=1

P (Cr|e+
r ; �r)

×
[
P (ab) + P (ab+1)P (c−b+1|e

+
b+1; �b+1)

+P (ab+2)P (c−b+1|e
+
b+1; �b+1)P (c−b+2|e

+
b+2; �b+2) . . .

]
It is convenient to express the probability of abandoning the search in terms

of the examination variables to enforce the search to be sequential:

P (ar) = P (e+
1 , . . . , e+

r−1, e
+
r , e−r+1, . . . e

−
R)

= P (e−R|e
−
R−1)P (e−R−1|e

−
R−2) . . .

×P (e−r+1|e+
r)P (e+

r |e+
r−1) . . . P (e+

2 |e+
1)P (e+

1)

= P (e−r+1|e+
r)P (e+

1)
r−1∏
s=1

P (e+
s+1|e+

s)

8 G. Dupret

1 2 3 4 5 6 7 8 9

0
.0

0
.1

0
.2

0
.3

0
.4

0
.5

101 2 3 4 5 6 7 8 9

0
.0

0
.1

0
.2

0
.3

0
.4

0
.5

10

P (e+
r)P (e+
r)

Fig. 1. Probabilities P (e+) for the Deterministic Click Model

It is a simple matter to multiply the likelihood of a set of observed sessions
and maximize it with respect to P (c+

r |e+
r ; �r) and P (A = r) or P (e−r+1|e+

r),
r = 1 : R to obtain estimates of these probabilities. We used the Expectation
Maximization algorithm [5] for this task.

4 Numerical Experiments

We collected from the logs of a commercial search engine a set of approximately
30.000 sessions with at least one click for which we have an editorial judgment
on a 5 level scales for each of the top 10 urls, together with a record of which
urls have been clicked. Each record in our data set has the following form: A
sequence of 10 labels �1:10 followed by a sequence of 10 True or False tokens that
indicates the states of C1:10.

We divided the data in 10 random subsets and use each of these subsets (i.e.
10% of the original set) as the data we maximize the likelihood on. This results
in 10 different sets of estimates for the parameters of User Models 1 and 2 that
we report in Tables 1 & 2 and in Figs. 1 & 2. The boxplots attest that the
estimates turn out to be fairly stable. In table 2 we also report for comparison
a set of discounting factors often chosen by default.

Table 1. Probabilistic Click Model: Median probability of click given a label, DCG gains
and utilities

label B F G E P

P (c+|e+; �) 0.27 0.27 0.34 0.37 0.85
G(�) 0.0 0.5 3.0 7.0 10.0
U(�) 0.00 1.85 8.82 18.92 11.76

The boxplot in Fig. 1 reports the probability of examination of each rank for
the Deterministic Click model. Results agree with intuition.

Discounted Cumulative Gain and User Decision Models 9

1 2 3 4 5 6 7 8 9

0
.0

0
0
.1

0
0
.2

0
0
.3

0

B F G E P

0
.0

0
.2

0
.4

0
.6

0
.8

1
.0

10

P (A = r) P (c+|e+; �)

Fig. 2. Probability P (A = r) of Abandoning the search at rank r and Probabil-
ity P (c+|e+, �) of click given a label for the probabilistic DCG User Model

In Fig. 2, the left boxplot reports the probability of abandoning the search at
rank r for the probabilistic user model. Because abandoning at rank r entails in
this model that the user examined all ranks up to r, these probabilities cannot be
compared easily with the probabilities derived from the deterministic user model.
Note that more users decide to end their search at ranks 9 or 10 than 8. Intuitively
there is no contradiction because a user who examines up to rank 8 might as well
go until the end of the page. The boxplot on the right reports the probability of
click for examined links for the 5 different labels. Although nothing in the model
enforces it, we see that the model predicts that document with a better label also
have a higher probability of being clicked. BAD and FAIR documents have very
similar probability of being clicked, as do GOOD and EXCELLENT. PERFECT
stands out as a category of document with a particularly high probability of being
clicked. This makes sense as they are defined as the target page for navigational
query.

We have proposed two distinct models to explain DCG, the Deterministic and
the Probabilistic Click User Models. The second model seems more realistic, but
we would like to be able to confirm quantitatively this intuition. Both models are
generative models and can be used to predict user behavior; We can therefore
compare the accuracy of these predictions on the test sets. We use the perplexity
–a common measure of the “surprise” of a model when presented with a new
observation. Given a proposed probability model q of the true distribution p,
one may evaluate q by asking how well it predicts a separate test sample of size
N also drawn from p. The perplexity of the model q is defined as

2−
∑N

i=1
1
N log2 q(xi)

Better models q of the unknown distribution p will tend to assign higher probabil-
ities to the test events. Thus, they have lower perplexity: they are less surprised
by the test sample.

10 G. Dupret

In the context of the user behaviors, the perplexity is a monotonically increas-
ing function of the joint probability of the sessions in the test set. Analytically,
this probability is identical to the likelihood of the test set, but instead of maxi-
mizing it with respect to the parameters, those are held fixed at the values that
maximize the likelihood on the training set.

All the sessions in both the training and test sets have exactly 10 results per
page (R = 10) so that by setting N to 10 times the number of sessions, the per-
plexity can be loosely5 interpreted as the number of trials per correct prediction
of a binary event: the click or skip of a document. The lower the perplexity, the
better the model: A perplexity of 1 corresponds to perfect prediction, while a
perplexity of 2 corresponds to randomly predicting the two possible outcomes
with 50% chances. Perplexity larger than two characterize models that are so
bad that simply inverting the binary predictions would lead to a more accurate
model.

The mean perplexity of the Deterministic Click Model evaluated on the 10
random splits of the data is 1.29, while the mean perplexity of the Probabilis-
tic Click Model is 1.27. A Welch Two Sample t-test lead to a p-value smaller
than 2.2e-16. The Probabilistic Click Model is therefore statistically significantly
better at predicting the user behavior.

Table 2. Left column: Mean probabilities of examination P (e+
r) for the Deterministic

Click model. Right columns: The probability of abandoning beyond rank r for the
Probabilistic Click Model and, for comparison, the popular Dr = 1/ log2(1+r) discount
factor for r = 1, . . . , 10. We observe that the empirical discounting factors decrease
faster beyond rank 3 than what the logarithmic decay accounts for.

rank r P (e+
r) P (A ≥ r) 1/ log2(1 + r)

1 0.53 1.00 1.00
2 0.16 0.70 0.63
3 0.10 0.47 0.50
4 0.06 0.32 0.43
5 0.04 0.23 0.39
6 0.03 0.17 0.36
7 0.03 0.13 0.33
8 0.02 0.09 0.32
9 0.02 0.07 0.30

10 0.01 0.05 0.29

We can qualify the DCG as a prognostic metric because it is typically com-
puted to evaluate a ranking function before it is presented to users. Its aim is to
predict whether the new function is more likely to satisfy users. Once sufficient
data is collected on the interactions of users with the new ranking function, a
diagnostic metric can be evaluated: Instead of computing the expected utility
5 This interpretation is not strictly correct because the clicks and skips in a session

are not independent. The evaluation itself continues however to be valid.

Discounted Cumulative Gain and User Decision Models 11

of the ranking, we compute its empirical utility Û as the average of the sum
of the utilities of the clicked documents. For example, the Diagnostic DCG of a
session {c−1 , c+

2 , c−3 , c+
4 , c−5:10} is Û = U(�2) + U(�4). Note that it is not possible to

associate a diagnostic metric to a prognostic metric like DCG unless a user model
is defined.

For the Deterministic Click model the utility is equal to the gain, while for
the Probabilistic Click Model, the utility is related to the gain by Eq. 2. We
plot in Fig. 3 the prognostic DCG vs. the diagnostic DCG for the Deterministic
Click (left) and Probabilistic (right) models. We have divided the prognostic DCG
in 10 bins of equal range to ease visualization 6. We also computed the Pearson
correlation between the DCG and the diagnostic values of both models: The values
are 15% for the Deterministic Click Model and 34% for the Probabilistic Model.
This argues in favor of distinguishing the gain from the utility and once again
argues in favor of the Probabilistic Click Model.

Although none of the models provides a method to evaluate the gains, we
can use the probability of clicks given an editorial label to estimate the utilities.
Returning to Eq. 2, we see that we have the relation

U(�r) = P (c+
r |e+

r ; �r)/Gr

between the DCG gains and the utilities defined in the Probabilistic Click Model.
If we plug-in the gain values commonly used into this formula, we obtain the
results reported in Fig. 1. This seems to indicate that the gains associated to
EXCELLENT and PERFECT values are inadequate because they don’t respect
the order of the labels on the utility scale. Note also that in order to evaluate
the diagnostic DCG we must use the utility, not the gain. The sum of the gains
of the clicked documents doesn’t lead to the correct estimate unless utility and
gains are equal like in the Deterministic Click model.

Different values for the gains Gr and discounting factors Dr are found in
the Literature or proposed by the original authors [11]. Moffat and Zobel [13]
propose the rbp metric as an improvement over Mean Average Precision. As
it turns out rbp is similar to DCG with numerical values for the discount factor
based on P (e+

r+1|e+
r) = p where p is adjusted to the click data.

5 Discussion

We have seen how the DCG metric can be derived from a set of simple assumptions
on how the user interacts with a ranking list. Making these assumptions explicit
enables us to derive a method to evaluate the discounting factors from past
user interactions. It also suggests that for every prognostic metric based on a
user model, there exists a “diagnostic” metric that is nothing but its empirical
counter-part.

The popular PERFECT, EXCELLENT, GOOD, FAIR and BAD editorial
labels used to evaluate web search ranking is often associated to the numerical
6 We had to withdraw the numerical values out of confidentiality concerns.

12 G. Dupret

D
ia

g
n
o
st

ic

D
ia

g
n
o
st

ic

prognostic DCG prognostic DCG

Deterministic Click User Model DCG User Model

Fig. 3. Diagnostic vs. Prognostic DCG for the Deterministic Click and the DCG User
Models

values 10, 7, 3, 0.5 and 0. We have shown for the data we use in this work that
these values are not appropriate. This conclusion is likely to be true for web
search in general.

The Probabilistic Click Model enables us to determine the discounting fac-
tors, but it doesn’t help to determine the utilities U(�r) or the gains Gr. This
is a consequence of a user model for which the relevance of the clicked docu-
ments have no influence on the user decision to stop the search. This is itself
a consequence of the DCG definition: The discounting factors Dr are the same
no matter how relevant the documents at the other positions and therefore the
contribution of the document at rank r to the final DCG value is independent of
the other documents in the ranking.

Although we believe the Probabilistic Click Model we propose here is the best
explanation of this metric for web search, it is always possible that other, more
accurate user models exist. If this is the case, it should be easy to compare the
models in term of their predictive ability and adjust the gains and discounting
factors accordingly. Note also that adequacy of a user model also depends on the
search engine, because users might behave differently on different search engines.
It is therefore possible that the Deterministic Click Model – or some other model
– is more accurate for certain engines than the Probabilistic Click Model.

The user models for DCG we presented in this work have in common the fact
that the user decide before hand how many links in the ranking she will examine.
If we take this number of ranks as a proxy for the effort the user is willing to
devote in order to reach the desired information, we can say that DCG is an
effort based metric that estimates the amount of utility a user gains per unit
of effort. This is to be contrasted with Average Precision AP: in [7], the authors
show that AP can be understood as a measure related to the number of positions
a user needs to examine in order to recover a pre-defined number of relevant
documents. In this respect, AP can be understood as a measure of effort per unit
of utility.

Discounted Cumulative Gain and User Decision Models 13

References

1. Bollmann, P., Raghavan, V.V.: A utility-theoretic analysis of expected search
length. In: SIGIR 1988, pp. 245–256. ACM, New York (1988)

2. Buckley, C., Voorhees, E.M.: Retrieval evaluation with incomplete information. In:
SIGIR 2004, pp. 25–32. ACM, New York (2004)

3. Carterette, B., Jones, R.: Evaluating search engines by modeling the relationship
between relevance and clicks. Advances in Neural Information Processing Sys-
tems 20, 217–224 (2008)

4. Craswell, N., Zoeter, O., Taylor, M., Ramsey, B.: An experimental comparison of
click position-bias models. In: First ACM International Conference on Web Search
and Data Mining, WSDM 2008 (2008)

5. Dempster, A.P., Laird, N.M., Rubin, D.B.: Maximum likelihood from incomplete
data via the EM algorithm. J. R. Statist. Soc. B 39, 1–38 (1977)

6. Dupret, G.: User models to compare and evaluate web IR metrics. In: Proceedings
of SIGIR 2009 Workshop on The Future of IR Evaluation (2009),
http://staff.science.uva.nl/~{k}amps/ireval/papers/georges.pdf

7. Dupret, G., Piwowarski, B.: A User Behavior Model for Average Precision and
its Generalization to Graded Judgments. In: Proceedings of the 33th ACM SIGIR
Conference (2010)

8. Führ, N.: A probability ranking principle for interactive information retrieval. In:
Information Retrieval. Springer, Heidelberg (2008)

9. Granka, L., Joachims, T., Gay, G.: Eye-tracking analysis of user behavior in www
search. In: ACM SIGIR Conference on Research and Development in Information
Retrieval (SIGIR), pp. 478–479 (2004)

10. Guo, F., Liu, C., Wang, Y.M.: Efficient multiple-click models in web search. In:
WSDM 2009: Proceedings of the Second ACM International Conference on Web
Search and Data Mining, pp. 124–131. ACM, New York (2009)

11. Järvelin, K., Kekäläinen, J.: Cumulated gain-based evaluation of ir techniques.
ACM Transactions on Information Systems (ACM TOIS) 20(4), 222–246 (2002)

12. Kelly, D.: Methods for Evaluating Interactive Information Retrieval Systems with
Users. Foundations and Trends in Information Retrieval, vol. 3 (2009)

13. Moffat, A., Zobel, J.: Rank-biased precision for measurement of retrieval effective-
ness. ACM Trans. Inf. Syst. 27(1), 1–27 (2008)

14. Robertson, S.: A new interpretation of average precision. In: SIGIR 2008, pp. 689–
690. ACM, New York (2008)

15. Voorhees, E.M., Harman, D. (eds.): TREC: Experiment and Evaluation in Infor-
mation Retrieval. MIT Press, Cambridge (2005)

16. Yilmaz, E., Aslam, J.A., Robertson, S.: A new rank correlation coefficient for
information retrieval. In: SIGIR 2008: Proceedings of the 31st Annual International
ACM SIGIR Conference on Research and Development in Information Retrieval,
pp. 587–594. ACM, New York (2008)

http://staff.science.uva.nl/~{k}amps/ireval/papers/georges.pdf

Cross-Lingual Text Fragment Alignment Using

Divergence from Randomness

Sirvan Yahyaei, Marco Bonzanini, and Thomas Roelleke

Queen Mary, University of London
Mile End Road, E1 4NS London, UK

{sirvan,marcob,thor}@eecs.qmul.ac.uk

Abstract. This paper describes an approach to automatically align
fragments of texts of two documents in different languages. A text frag-
ment is a list of continuous sentences and an aligned pair of fragments
consists of two fragments in two documents, which are content-wise re-
lated. Cross-lingual similarity between fragments of texts is estimated
based on models of divergence from randomness. A set of aligned frag-
ments based on the similarity scores are selected to provide an align-
ment between sections of the two documents. Similarity measures based
on divergence show strong performance in the context of cross-lingual
fragment alignment in the performed experiments.

Keywords: fragment alignment, divergence from randomness, sum-
marisation.

1 Introduction

A notable portion of the information available on the Internet is given by docu-
ments which are obtainable from more than one source. For example, the same
web page might be published on different mirror web sites, or the same piece
of news could be reported, in slightly different versions, possibly in different
languages. This phenomenon has several implications.

In the context of web search, data redundancy in the search results has already
been shown to be an issue [4]. For example, even if a document is considered to
be relevant to an information need, when shown after a number of redundant
documents, it does not provide the user any additional information. In other
words, showing redundant documents does not benefit the user for the purpose
of satisfying an information need.

Given the dynamic nature of the Web, it is common to find different versions
of the same document. The task of identifying versioned or plagiarised docu-
ments, with a distinction between real plagiarism and mere topic similarity, is
not trivial. Both versioning and plagiarism might affect a document as a whole,
or just portions (e.g. sections, paragraphs, or more in general fragments) of it.
An intelligent tool which helps in recognising duplicate text fragments could
benefit editors and authors.

R. Grossi et al. (Eds.): SPIRE 2011, LNCS 7024, pp. 14–25, 2011.
c© Springer-Verlag Berlin Heidelberg 2011

Cross-Lingual Text Fragment Alignment Using Divergence from Randomness 15

To tackle one aspect of these implications, this paper investigates the pos-
sibility of aligning text fragments between documents written in two different
languages. The main focus is identifying pairs of fragments with a strong content-
based similarity. Figure 1 shows an example of aligning fragments of texts, which
do not necessarily have the same length. Our approach, starts with measuring
similarity at sentence level between the documents and then extract aligned
fragments of texts based on the sentence similarities. The outcome will be a
set of disjoint aligned fragments with the highest score based on the previously
estimated sentence similarities.

Fig. 1. An example of aligned text fragments

The main component of our method is measuring the similarity between two
text fragments. We have chosen models of information retrieval based on di-
vergence from randomness to estimate the similarities and examine the best
performing model in the context of cross-lingual text alignment. An advantage
of models based on divergence consists in having multiple choices of randomness
models, and hence the opportunity to evaluate many IR models for this task. In
addition, these models are non-parametric and do not require parameter tuning
and training data to perform well.

The information about the fragments of the documents produced by the align-
ment algorithm, can be used later for specific applications. Such applications
include the possibility of automatically creating training data sets for machine
translation or document summarisation, as well as automatically synchronising
complex multi-lingual web sites (e.g. Wiki-based encyclopedias, or other user-
driven sites). Previous work in this area has explored both novelty detection
for improving search effectiveness, and the use of fingerprinting techniques for
identifying redundant documents [4], but mainly in a monolingual environment.

The remainder of this paper is organised as follows: Section 2 provides a review
of current research and methods in fields related to cross-lingual text alignment.

16 S. Yahyaei, M. Bonzanini, and T. Roelleke

Section 3 describes the alignment of text fragments algorithm and similarity
measures to perform the sentence alignment. Construction of the test collection
and experiments are reported in Section 4 and Section 5 concludes the paper.

2 Related Work

This work lays on the overlap between the two areas of document summarisation
and machine translation. Despite their differences in concepts and techniques,
both summarisation and translation systems are mostly built on top of statis-
tical methods, which require training data to acquire statistical patterns. [6]
propose an approach to automatically align documents to their respective sum-
maries and extract transformation rules to shorten phrases to produce shorter
and more informative summaries. Their algorithm is an extension to the stan-
dard HMM model and learns word-to-word and phrase-to-phrase alignment in
an unsupervised manner.

In case of machine translation, availability of training data set is more crucial.
Statistical machine translation, uses manually translated data in the forms of
parallel sentences to learn translation patterns by statistical means. There has
been extensive work focusing in finding parallel documents [14] and aligning sen-
tences in fairly parallel corpora [8] and even non-parallel corpora [9]. [10] presents
an approach to find sub-sentential segments from comparable corpora. Despite
previous work, [14] propose a method that solely relies on textual content of the
documents instead of meta-data or document structure to find near-duplicate
documents. All documents are automatically translated and n-gram features are
extracted to construct a small set of candidate documents in a very large col-
lection of documents. One-by-one comparison is performed using idf -weighted
cosine similarity among the documents in the candidate set. They report that
incorporating term frequency or other retrieval ranking functions degrade the
performance compared to the mentioned similarity measure. Our approach is
also based on textual content only, but the alignment is performed on fragments
(see Section 3) rather than sentences or entire documents.

In cross-lingual plagiarism, the aim is finding fragments of text that have been
plagiarised from the source document written in a different language. [2] describe
an statistical approach based on IBM model 1 [5] to retrieve the plagiarised frag-
ment among a list of candidate fragments. The statistical approach is proposed
to perform cross-lingual retrieval, bilingual classification and cross-lingual pla-
giarism and it focuses on the retrieval aspect of plagiarism. [12] investigates the
performance and effectiveness of different models of cross-lingual retrieval for
the purpose of plagiarism detection. They compare retrieval models based on
parallel and comparable corpora to models based on dictionaries and syntax of
the languages involved. Similarly to [2], IBM model 1 probabilities are used as
translation probabilities in the statistical models and a length component is in-
troduced to take into account the ration of length differences between the two
languages.

Similar work, in a mono-lingual environment, involves the identification of
redundant [4] and co-derivative [3] documents, using fingerprinting techniques.

Cross-Lingual Text Fragment Alignment Using Divergence from Randomness 17

Fingerprints are compact representations of text chunks. In these approaches,
hash functions are used to calculate fingerprints of documents. Different doc-
uments are then identified as redundant, or as co-derivative, according to the
fingerprint similarities. In our approach, the similarity is calculated on a frag-
ment level, based on the content of the fragments.

3 Text Fragment Alignment

We define a text fragment as a list of continuous sentences in a document. Ideally,
the content of a fragment is semantically coherent (i.e. it can be considered
to be about a single topic). The aim of the proposed fragment alignment is
to find fragment pairs in two documents, which are written in two different
languages. Assume de =< se1 , se2 , . . . , sen > and df =< sf1 , sf2 , . . . , sfm > are
two documents in languages e and f , which contain n and m number of sentences
respectively. We want to find a set of paired fragments that contains aligned text
fragments that are related:

{(εi′
i , φj′

j)|1 ≤ i ≤ i′ ≤ n ∧ 1 ≤ j ≤ j′ ≤ m} (1)

where, εi′
i represents a fragment that contains sentences i to i′ from de and φj′

j

is a fragment that contains sentences j to j′ from df . Based on these definitions,
fragments of a document can consist of different number of sentences and even
relatively different number of sentences for each fragment in an aligned one. Since
considering all the possible fragments in a document and aligning them with all
the possible fragments in the other document is computationally very expensive,
we restrict extracting the fragments by initial information about the alignment
of sentences. The initial information is acquired by aligning sentences in the
two documents and finding a few strong links between some of the sentences.
A paired fragment can not contain a link to sentences outside the pair. This
restriction significantly reduces the number of fragments that can be extracted.

Figure 2 sketches the text fragment alignment algorithm. The first step is to
score all the sentence pairs and find a few links between the sentences. Next,
all the fragments which are compatible with the links are extracted and sorted
according to their scores. Finally, a set of non-overlap fragment pairs are selected
as the output. It is important to note that the algorithm takes two documents as
input and the computational cost only depends on the length of the documents.
In other words, the algorithm of Figure 2 is run on a set of paired documents
and does not depend on the document collection size.

3.1 Similarity Measures and Divergence from Randomness

A major step in finding aligned fragments of two documents is estimating sim-
ilarity between sentences. As pointed out in the introduction, we have chosen
a set of probabilistic models of information retrieval based on divergence from
randomness [1]. A basic assumption of DFR (Divergence from Randomness)

18 S. Yahyaei, M. Bonzanini, and T. Roelleke

Input: de and df {de is English document, df is foreign document}
Input: similarity threshold min score
1: for all sei in de do
2: for all sfj in df do
3: score[i][j] ← estimate similarity between sei and sfj

4: link[i][j] ← (score[i][j] > min score)
5: end for
6: end for
7: aligned ← extract fragment pairs compatible with link
8: chosen ← {}
9: for all fragment in (sort aligned) do

10: if fragment overlaps with no member of chosen then
11: chosen ← chosen ∪ fragment
12: end if
13: end for

Fig. 2. Text fragment alignment algorithm. aligned is the set of all aligned fragments
and chosen is the final set of selected fragments.

models is that non-informative words are randomly distributed in the collection.
In DFR, a randomness model M is chosen to compute the probabilities and
there are many ways to choose M , such as Bose-Einstein distribution or Inverse
Document Frequency model. Prob1(tf) is defined as the probability of observ-
ing tf occurrences of a term in a randomly selected document according to M .
Thus, if Prob1 is relatively small for a term, then the term is an informative one.
Another probability, Prob2, is defined as the probability of occurrence of a term
within a document with regard to a set of documents that contain the term.

The term weight, under the above definitions is the product of two factors:
Firstly, information content of the term with respect to the whole collection,
which is formulated as Inf1 = − log2 Prob1. Secondly, Inf2 = 1 − Prob2, infor-
mation gain of the term with respect to its elite set, which is the set of documents
that contain the term.

w = Inf1 × Inf2 = (− log2 Prob1) × (1 − Prob2) (2)

Here, we are computing the similarity between two sentences in two different
languages, se and sf . Terms in sf are translated based on a lexical translation
model and converted to a bag-of-word with, s′f , translation probabilities for
each term. The lexical translation model is based on the IBM model 1 [5], that
does not take into account the order of words in calculating the translation
probabilities. The similarity between two sentences se and sf is calculated as
follows:

sim(se, sf) = sim(se, s
′
f) =

∑
t∈{se∩s′

f}∧τ∈sf

wM (t, se) × p(t|τ) (3)

where, w(t, se) is the weight if term t in sentence se according to similarity model
M and p(t|τ) is the translation probability of translating τ to t. The collection

Cross-Lingual Text Fragment Alignment Using Divergence from Randomness 19

Table 1. Similarity measures used to estimate the similarity between sentences. For
detailed information on each model, please refer to [1].

Name Description

1 TF-IDF The tf . idf weighting function, where tf is the total term fre-
quency and idf is Sparck-Jones’ formulation

2 TFk-IDF Same as above but with the BM25 tf quantification tf
tf+k

3 I(n)L2 Model with Inverse document frequency, with Laplace after-
effect and 2nd normalisation

4 I(F)B2 Model with Inverse of the term frequency, with Bernoulli after-
effect and 2nd normalisation

5 I(ne)B2 Model with Inverse of the expected document frequency, with
Bernoulli after-effect and 2nd normalisation in base 2

6 I(ne)C2 Model with Inverse of the expected document frequency, with
Bernoulli after-effect and 2nd normalisation in base e

7 BB2 Limiting form of Bose-Einstein, with Bernoulli after-effect and
2nd normalisation

8 PL2 Poisson approximation of the binomial model, with Laplace
after-effect and 2nd normalisation

9 BM25b BM25 probabilistic model
10 OkapiBM25 Okapi formulation of BM25; the same as BM25b with within-

query term frequency (k3) set to 0

for equation 3 is de, which is the document that contains se and all the collection
statistics in the similarity measures are computed based on de. Table 1 shows
a list of all the models used in this work to estimate the sentence similarity
between two documents.

3.2 Extraction of Fragments

After scoring all the sentence pairs, only those with similarity score higher than
a certain threshold are aligned. Aligned fragments are extracted by an algorithm
adopted from phrase-based statistical machine translation [11]. Simply, two frag-
ments are aligned if no sentence inside them is aligned to sentences outside the
fragments and there is at least one link between the two fragments. Fragments
in an extracted fragment pair are only aligned to each other and not to any
fragment outside the fragment pair.

Many of the extracted aligned fragments overlap and there are sentences which
belong to more than one fragment. Therefore, we sort all the aligned fragments
according to their similarity score and drop those with lower scores and overlap.
The score of an aligned fragment is estimated by averaging the similarity scores
of its sentence pairs computed before. The remaining aligned fragments are the
result of the algorithm.

4 Experimental Study

Since we did not have a manually annotated documents with aligned fragments,
a pseudo-collection is constructed to perform the experiments. A collection of

20 S. Yahyaei, M. Bonzanini, and T. Roelleke

documents and their summaries in English and Italian is built by crawling the
web-site of the Press releases of the European Union1 and pseudo-documents are
created by randomly concatenating documents and summaries to each other. For
the English side, x documents are randomly chosen and concatenated to create
a document with multiple topics. On the Italian side, y documents are randomly
chosen, added to the set of x aligned summaries of the chosen documents and
randomly concatenated. As a result, we have an English document consisting of
x documents and an Italian document consisting of x + y summaries, including
the summaries of the English documents. The task is now defined as aligning
all the sentences of the summaries to their correct English documents or to
not-align those with no corresponding document. In other words, in the English
side there are x documents and in the Italian side there summaries with y more
summaries mixed with them. Our algorithm tries to align the summaries to
their corresponding documents. Table 2 shows statistics of the corpus. All the
documents and summaries in the collection are processed by tokenisation, lower-
casing and sentence splitting.

Table 2. English-Italian corpus statistics

English Italian Average

Mean Document Length (sentences) 34.66 35.29 34.96
Mean Summary Length (sentences) 5.09 4.87 4.98
Mean Compression Ratio (sentences) 14.68% 13.81% 14.26%

Mean Document Length (words) 794.85 874.73 834.79
Mean Summary Length (words) 106.08 118.74 112.43
Mean Compression Ratio (words) 13.35% 13.58% 13.47%

Number of document/summary pairs 192

4.1 Document-Summary Association

As a basic task compared to finding aligned fragments of text, we examine the
problem of associating documents to their summaries. Association is the process
of finding two related structures in a collection of structures. In a collection
of documents and summaries, the aim is to find the most related summary to
each document. We assume that there is a one-to-one association between the
summaries and the documents.

The association process can be performed in two ways. Firstly, a two-stage
method which translates and summarises the document and computes the sim-
ilarity between the summaries. Secondly, a one-stage cross-lingual association
approach that directly calculates the similarity between the document and the
summary in different languages. An illustration of English-to-Italian associa-
tion is drawn in Figure 3, which shows the two ways that the association can
be performed in. The one-stage approach estimates the similarity between the
document and the summary according to equation 3, but instead of similarity
between sentences, its the similarity between documents and summaries.
1 Available at http://europa.eu/rapid

http://europa.eu/rapid

Cross-Lingual Text Fragment Alignment Using Divergence from Randomness 21

Fig. 3. Cross-lingual Summarisation Pipelines: Two-Stage vs. One-Stage

In the two-stage approach, the summarisation component relies on MEAD
[13], which is an extractive summariser. The machine translation system used
for translation form Italian to English is a phrase-based statistical MT system
with translation model and language model as its main components. The full
detail of the system is described in [15]. The training data for the SMT system
is taken from the Europarl corpus [7]. 1.6 million parallel sentences were used
for building the translation model and 50 million sentences to train the English
language model. For both approaches, lexical probabilities are estimated based
on IBM model 1 and the parallel training data mentioned before.

The scores for the one-stage system, which associates English documents
to Italian summaries, are shown in Table 3, where one can observe that the
OkapiBM25 function is performing the best. The best scores for the two-stage
method are P@1= 78.1% and MRR= 82.0 and the results of the two-stage ap-
proach are in all the cases substantially lower than the one-stage one.

Table 3. Results of document-to-summary association of the one-stage approach with
different similarity measures

Similarity P@1 MRR Similarity P@1 MRR

TF-IDF 88.6 92.1 I(n)L2 90.1 93.1
TFk-IDF 89.1 92.4 I(F)B2 81.8 86.9
IDF 86.0 89.8 I(ne)B2 86.5 90.6
BM25b 89.6 93.0 I(ne)C2 86.0 89.9
OkapiBM25 91.7 94.3 PL2 90.1 93.2

In the two-stage approach approach, the summarisation and translation tasks
lead to a loss of information which cannot be adequately captured by the asso-
ciation functions we have examined. After performing the association of English
summaries and MEAD generated summaries from the documents, a basic simi-
larity measure such as TF-IDF achieved a P@1 score of 98.0 and MRR of 99.2.
This means that the translation component is the major source of precision loss
in the two-stage method. The translation component translates each Italian sen-
tence to exactly one English sentence. For translating each sentence, it selects

22 S. Yahyaei, M. Bonzanini, and T. Roelleke

the translation with highest score according to its model to produce a fluent
English. The produced sentence only contains one possible translation for each
word or phrase. On the other hand, the one-stage approach considers all the
possible translations in the lexical model for each word, hence having a higher
chance of finding a match between document words and summary words. The
91% success rate of the one-stage approach, shows it is possible to associate the
majority of the summaries to their documents in this collection. The results of
the text fragment alignment show the difficulty of finding the same summaries,
while they are mixed with other summaries.

4.2 Text Fragment Alignment Evaluation

To find out the cross-lingual effect of the task, we performed the text fragment
alignment algorithm on mono-lingual data as well as the cross-lingual data. For
each word only the top 5 translations based on the their translation weights are
picked. The threshold is set to the average score of the alignment links, therefore
alignment links with score less than the average are discarded. For each similarity
measure, the alignment algorithm is run 2, 000 times to select different variations
of the documents and summaries.

The goal of text fragment alignment is to find the longest relevant fragments of
text on each side, without including irrelevant sentences. Therefore, both recall
and precision are important in evaluating the algorithm. F -measure combines
the two, to give one single score to demonstrate the performance of the algorithm.
To calculate the F -measure, each sentence on the e side is labelled true positive
if it belongs to a fragment, which is fully or partially correctly aligned. The
sentence is labelled false positive if it belongs to a fragment which is incorrectly
aligned. It is a false positive instance, if it is not aligned and it should not have
been. A false negative instance is an unaligned sentence, which should have been
aligned. F -measure is calculated based on these labels for both sides, English to
foreign and foreign to English.

Table 4 shows the results of both mono-lingual and cross-lingual text frag-
ment alignment experiments. As expected, the results of the mono-lingual text
fragment alignment are higher than the cross-lingual runs. In all settings and in
both directions (source to target and target to source), models based on DFR
substantially outperform TF-IDF weighting methods. In both mono-lingual and
cross-lingual runs OkapiBM25 performs consistently very well compared to oth-
ers. It has been pointed out by [1] that BM25 formula can be derived from the
model I(n)L2, which has the highest score in the target to source cross-lingual
runs and it is very close to other BM25 scores. Substantial drop of F -measure
score of the target to source direction of the cross-lingual runs compared to
mono-lingual ones, shows that the summary to document alignment is more
prone to translation than the other direction.

Two important components of all similarity methods used in these experi-
ments, are document length and average document length in the collection. These
factors are considered to reduce the effect of variance in document length in
text collections. However, since in our experiments, a document is the collection

Cross-Lingual Text Fragment Alignment Using Divergence from Randomness 23

Table 4. The results of text fragment alignment, for mono-lingual and cross-lingual.
For mono-lingual, source and target (src2trg and trg2src) are both English documents
and summaries. In cross-lingual settings, source is English documents and target is
Italian summaries.

Mono-lingual Cross-lingual

Similarity
μF1 μF1 MF1 MF1 μF1 μF1 MF1 MF1

src2trg trg2src src2trg trg2src src2trg trg2src src2trg trg2src

TF-IDF 33.5 77.0 34.9 77.0 23.0 28.5 23.6 27.0
TFk-IDF 35.2 76.4 35.4 76.3 22.4 28.7 21.5 26.6
I(n)L2 35.8 80.2 35.7 80.3 30.0 32.9 29.4 31.8
BB2 34.5 88.1 34.9 88.0 27.6 32.3 28.2 31.4
I(F)B2 35.0 81.9 35.2 81.9 27.4 31.6 27.9 30.4
I(ne)B2 34.9 74.3 35.4 74.2 27.9 31.9 28.4 30.7
I(ne)C2 38.3 71.7 38.2 71.5 29.0 31.4 28.7 30.3
PL2 35.8 79.1 35.5 79.0 29.6 32.5 28.8 31.2
BM25b 36.7 72.4 36.7 72.1 30.8 32.5 30.1 31.3
OkapiBM25 37.3 71.3 37.5 71.1 31.5 31.9 31.0 31.0

and its sentences are the documents, the variance of document length does not
exist. To see the effect of this fact, we investigated two other ways to estimate
sentence length and used them instead of the default method, which was number
of tokens. One is sum of the term frequency in the document for each term in
the sentence2 and the other one, the sum of their selectivity (inverse sentence
frequency)3. Both methods produced different results for all the runs, however,
they were most of the times slightly worse than the number of tokens, and in
general the differences were negligible. Only for TF-IDF similarity, the sum of
the selectivity of the terms performs slightly better than the number of tokens,
but in all other cases it was behind the latter. We concluded that even though
there is a difference between sentence length variation and document length
variation in large collections, the DFR models perform well, regardless of length
estimation method, in the context of sentence similarity.

5 Conclusion and Future Work

We developed an algorithm to perform cross-lingual text fragment alignment and
ran a series of experiments with different similarity measures based on models
of divergence from randomness. The results show that term statistics based on
divergence models are consistently superior to TF-IDF schemes. Despite the
fact that sentences tend to be similar in length, we discovered that other ways
of estimating sentence length does not improve the quality of the alignment
compared to the basic method of counting the number of the tokens. In addition,
2 len tf(s, d) :=

∑
t∈s tf(t, d), where s is a sentence in document d.

3 len isf(s,d) :=
∑

t∈s sf(t, d)−1, where s is a sentence in document d and sf(t, d) is
the number of sentences in d that contain t.

24 S. Yahyaei, M. Bonzanini, and T. Roelleke

for the source to target alignment the cross-lingual scores were not substantially
lower than the mono-lingual ones, which shows that the translation component
performs well enough not to degrade the overall performance considerably.

Preliminary investigation of cross-lingual association of documents and their
summaries showed that a one-stage direct computation of similarity using a
probabilistic dictionary (lexical probabilities) significantly outperforms a method
that translates and summaries the documents and estimates a mono-lingual
similarity between the documents. Experiments on mono-lingual associating of
generated summaries and manual summaries showed that the low performance
of the two-stage method is mainly due to the selective nature of the translation
component. One translation is chosen among a list of possible translations based
on the context of the sentence and the rest of the candidates are discarded,
therefore, the chance of a match between the words of the two documents are
heavily degraded.

Although the scores of the basic similarity measures were lower than most of
the models of DFR in the association task, the difference was not substantial.
In other words, even the basic models of similarity performed well in finding the
corresponding summary for a document in our experiments.

These research results can be used to align multi-lingual content in resources
such as Wikipedia, or other Wiki-based web sites, where the documents are often
not parallel in the different languages.

Acknowledgements. We would like to give special thanks to Hany Azzam for
his valuable comments on the early draft of this work.

References

1. Amati, G., Van Rijsbergen, C.J.: Probabilistic models of information retrieval
based on measuring the divergence from randomness. ACM Trans. Inf. Syst. 20,
357–389 (2002)

2. Barrón-Cedeño, A., Rosso, P., Pinto, D., Juan, A.: On cross-lingual plagiarism anal-
ysis using a statistical model. In: Proceedings of the ECAI 2008 PAN Workshop:
Uncovering Plagiarism, Authorship and Social Software Misuse, Patras, Greece,
pp. 9–13 (July 2008)

3. Bernstein, Y., Zobel, J.: A scalable system for identifying co-derivative documents.
In: Apostolico, A., Melucci, M. (eds.) SPIRE 2004. LNCS, vol. 3246, pp. 55–67.
Springer, Heidelberg (2004)

4. Bernstein, Y., Zobel, J.: Redundant documents and search effectiveness. In: Pro-
ceedings of the 2005 ACM CIKM International Conference on Information and
Knowledge Management, Bremen, Germany, pp. 736–743 (November 2005)

5. Brown, P.F., Pietra, V.J.D., Pietra, S.A.D., Mercer, R.L.: The mathematics of
statistical machine translation: Parameter estimation. Comput. Linguist. 19(2),
263–311 (1993)

6. Daumé III, H., Marcu, D.: A phrase-based HMM approach to document/abstract
alignment. In: Proceedings of the 2004 Conference on Empirical Methods in Natural
Language Processing (EMNLP), Barcelona, Spain, pp. 119–126 (July 2004)

7. Koehn, P.: Europarl: A parallel corpus for statistical machine translations. In: MT
Summit X, Phuket, Thailand, pp. 79–86 (September 2005)

Cross-Lingual Text Fragment Alignment Using Divergence from Randomness 25

8. Ma, X.: Champollion: A robust parallel text sentence aligner. In: Proceedings of
the Fifth International Conference on Language Resources and Evaluation (LREC),
Genova, Italy (May 2006)

9. Munteanu, D.S., Marcu, D.: Improving machine translation performance by ex-
ploiting non-parallel corpora. Comput. Linguist. 31, 477–504 (2005)

10. Munteanu, D.S., Marcu, D.: Extracting parallel sub-sentential fragments from
non-parallel corpora. In: Proceedings of the 21st International Conference on Com-
putational Linguistics and the 44th Annual Meeting of the Association for Com-
putational Linguistics (COLING/ACL), Sydney, Australia, pp. 81–88 (July 2006)

11. Och, F.J., Tillmann, C., Ney, H.: Improved alignment models for statistical machine
translation. In: Proceedings of the Joint SIGDAT Conference of Empirical Methods
in Natural Language Processing and Very Large Corpora, pp. 20–28. College Park,
MD (1999)

12. Pouliquen, B., Steinberger, R., Ignat, C.: Automatic identification of document
translations in large multilingual document collections. In: Proceedings of the
International Conference on Recent Advances in Natural Language Processing
(RANLP), pp. 401–408 (September 2003)

13. Radev, D., Allison, T., Blair-Goldensohn, S., Blitzer, J., Çelebi, A., Dimitrov, S.,
Drabek, E., Hakim, A., Lam, W., Liu, D., Otterbacher, J., Qi, H., Saggion, H.,
Teufel, S., Topper, M., Winkel, A., Zhang, Z.: MEAD - a platform for multidocu-
ment multilingual text summarization. In: LREC 2004, Lisbon, Portugal (2004)

14. Uszkoreit, J., Ponte, J.M., Popat, A.C., Dubiner, M.: Large scale parallel docu-
ment mining for machine translation. In: Proceedings of the 23rd International
Conference on Computational Linguistics (COLING), Beijing, China, pp. 1101–
1109 (August 2010)

15. Yahyaei, S., Monz, C.: The QMUL system description for IWSLT 2010. In: Pro-
ceedings of the Seventh International Workshop on Spoken Language Translation
(IWSLT), Paris, France, pp. 157–162 (December 2010)

Enhancing Document Snippets

Using Temporal Information

Omar Alonso1, Michael Gertz2, and Ricardo Baeza-Yates3

1 Microsoft Corp., Mountain View, California, U.S.A.
omalonso@microsoft.com

2 Institute of Computer Science, Heidelberg University, Germany
gertz@informatik.uni-heidelberg.de

3 Yahoo! Research, Barcelona, Spain
rbaeza@acm.org

Abstract. In this paper we propose an algorithm to enhance the quality
of document snippets shown in a search engine by using temporal expres-
sions. We evaluate our proposal in a subset of the Wikipedia corpus using
crowdsourcing, showing that snippets that have temporal information are
preferred by the users.

1 Introduction

A very important feature of modern search engines is to present a snippet (also
called excerpt or abstract) as part of each entry in the result list. Snippets are
very popular because they provide a short summary of the retrieved document
and users can quickly scan the few lines and assess its relevance. A challenge for
constructing snippets is to determine the most relevant portions of the document
and select the best fragments for presentation.

The temporal coverage and specificity of documents provide users with impor-
tant relevance cues about time related information embedded in the documents
and thus can be very useful in subsequent document exploration and search
tasks. Based on this premise, we study the temporal order of a document, which
concentrates on how the time information in a temporal coverage is actually
organized in a document.

In this work, we use the concept of temporal order to enhance document
snippets presented by search engines as part of the answers to user queries.
Enhancing a snippet does not necessarily make it more relevant, but it gives
a better context and, for many time related queries, an immediate answer. To
achieve this, we present a method that selects a frequent temporal expression
related to the query and adds that sentence that contains the expression to the
snippets.

This paper is organized as follows. In Section 2, we present the concept of
temporal order in a document. In Section 3, we give an algorithm that enhances
snippets by temporal information. Then, in Section 4, we evaluate this enhance-
ment using a subset of Wikipedia and crowdsourcing, showing that most of the
time users prefer the enhanced snippet. We conclude the paper with some final
remarks in Section 5.

R. Grossi et al. (Eds.): SPIRE 2011, LNCS 7024, pp. 26–31, 2011.
c© Springer-Verlag Berlin Heidelberg 2011

Enhancing Document Snippets Using Temporal Information 27

2 Temporal Order

As the basis for analyzing a document in time, we adopt the temporal framework
presented in [2]. We assume a discrete representation of time based on the Gre-
gorian Calendar, with a single day being an atomic time interval called chronon.
Assume a document d from a document collection D. Using the approach pre-
sented in [2], one can determine the sequence t-seq(d) = 〈(c1, p1), (c2, p2), · · · ,
(ck, pk)〉 of chronon/position pairs that describe the temporal expressions occur-
ring in d. We define temporal richness of d, denoted t-rich(d), as the ratio of
the number of chronons in d to the number of chronons in the collection D. The
higher this ratio, the richer a document d is in its temporal information content.
A document d is said to be temporally most specific with respect to chronons of
type T ∈ {century, year, month, week, day}, if most of the chronons in t-seq(d)
are of type T .

The approach applied to identify time related expressions in text data is
named-entity extraction, with temporal entities being time-related concepts that
need to be identified in the text. Such concepts are represented in the document
text as sequences of tokens or words called temporal expressions [3]. In the fol-
lowing, we assume that the collection D has been temporally annotated with a
tagger and has been marked in some standard such as TimeML1.

The above measures are coarse-grained, i.e., they aim at describing aggregated
information about the temporal content of a document. In the following, we
introduce the concept of temporal order to represent the occurrences of chronons
in document order.

A histogram based temporal coverage naturally describes a document’s con-
tent using periods of time. It details how such periods are emphasized in terms
of chronon distributions, frequencies and temporal specificity. In addition to this
content-specific measure, we introduce another measure that helps describing
how the temporal content and underlying chronons are ordered in a document.
This measure is called t-order and is based on the positions chronons occur in a
document.

Assume again t-seq(d) = 〈(c1, p1), (c2, p2), · · · , (ck, pk)〉 is given for a doc-
ument d with document length len(d) and temporal boundaries t-low(d) and
t-high(d), denoting the earliest and latest chronon in d, respectively. A chrono-
logical order for d, denoted t-order(d), is constructed in a position/time coor-
dinate system as follows: the range of the x-axis is 1 to len(d), specifying the
different token positions in d in increasing order. The range of the y-axis is de-
termined by t-low(d) (as minimum value) and t-high(d) (as maximum value).
Conceptually, the units underlying the y-axis are based on the finest granularity
of any chronon in t-seq(d). Assume the units underlying the y-axis are based on
months (for other granularities the approach is analogous), that is, all chronons
in t-seq(d) are of type month or coarser. Each chronon/position pair (ci, pi) in
t-seq(d) is now processed as follows. If ci is of type month, then simply a point
at (pi, ci) is plotted. If the type of ci is of granularity coarser than month, then

1 http://timeml.org

http://timeml.org

28 O. Alonso, M. Gertz, and R. Baeza-Yates

a vertical bar is plotted at position pi, where the bar covers all the y-values that
are contained by ci. For example, if ci is of type year, then the bar at the position
pi spans twelve months.

Figure 1 indicates the t-order for two Wikipedia pages related to Pisa: the
leaning tower2 and the city3. The x-axis represents the position of the temporal
expression in the document and y-axis represents chronons. The horizontal bar
denotes the current timestamp ts = “April 2011” (year 2011 and 21st century,
respectively). Note that in the case of the city, the predominant chronon type
is centuries where in the page about the tower, it is year. Clearly, most of the
temporal expressions refer to points in time in the past.

The rationale for having t-orders in addition to histograms is to describe how
time periods represented by a histogram are in fact organized in the document.
For example, two documents might have very similar histograms, but their t-
orders might look completely different. One t-order, for example, might clearly
show that the time period(s) are covered in a true chronological fashion, starting
with the earliest chronon at the beginning of the document and having the most
recent chronon occurring at the end of the document. In the second t-order, on
the other hand, there might be no such patterns of (partial) chronological order.
There are certain types of documents for which one would expect that many of
the chronons derived from the document’s content follow such a monotonicity
property. Visualizing a t-order in addition to a temporal coverage for a document,
of course, might give the user further cues on the temporal information content.

Fig. 1. Two examples of t-order for documents about Pisa

3 Enhancing Snippets with Temporal Information

Temporal order can also be helpful for detecting the frequency of certain chronons
and where they occur in the document. If a temporal expression is very frequent,
2 http://en.wikipedia.org/wiki/Leaning_Tower_of_Pisa
3 http://en.wikipedia.org/wiki/Pisa

http://en.wikipedia.org/wiki/Leaning_Tower_of_Pisa
http://en.wikipedia.org/wiki/Pisa

Enhancing Document Snippets Using Temporal Information 29

then we believe that this is an indication that the sentences containing such
temporal expression are relevant to the user. As pointed out in [1], temporal
information can be useful when designing document snippets. Let’s take a look
at the snippet for the query [Pisa] that a Web search engine would return, as
presented in Figure 2.

Fig. 2. Web snippet for the query [Pisa]

We claim that a snippet is more informative if it contains at least one frequent
temporal expression. We consider a sentence that contains a highly frequent tem-
poral expression to be representative of a milestone in time, that is, a significant
event in the context of the document. In our example, “12th century” is the
most common temporal expression in the document. The modified example for
the [Pisa] snippet then is

Pisa is a city in Tuscany, Central Italy, on the right bank of the mouth

of the River Arno on the Ligurian Sea ... The city is also home of the

University of Pisa, which has a history going back to the 12th century.

What we are interested in is extracting a sentence, st, that contains a frequent
temporal expression from the document and exchange its placement with the last
sentence in the original snippet (usually second or third, depending on the Web
search engine). The replacement step can be done with a query-dependent or
query-independent approach. For this, we use the following algorithm S:

– S1. For a given a document d, construct t-order(d)
– S2. Compute frequency of temporal expressions and determine a list of all

timex t elements for each temporal expression. A timexid,f,t is the descrip-
tion of the temporal expression identified by the temporal tagger. As exam-
ple, for a short fragment of temporal expressions, the list would be (1991:2,
(t6, t7)), (5th century:1 (t5)).

– S3. [Loop] For each sentence s in d, compute the average sentence length
slen and the average length of sentences that contain temporal expressions.
Compute the mean position x̄ and standard deviation σ of timexid,t within
sentence s.

– S4. [Loop] Select the most frequent temporal expression timexid and for
each ti in timexid:
• Extract surrounding text fragment textchunk with clamp c� and cr, where

c� denotes number of characters to the left and cr to the right of the
position of ti, respectively.

• Clamps c� and cr are set based on x̄ and σ.
• Extract sentence si within text fragment textchunk and store it in lists.

30 O. Alonso, M. Gertz, and R. Baeza-Yates

– S5. Extract last sentence s� from snippet(d).
– S6. Compute Jaccard similarity sim(si, s�) = si∩s�

si∪s�
. If similarity is less than

a threshold δ, then replace s� with si. Otherwise, select next sentence si+1

from lists and compute similarity measure again.
– S7. Return snippet(dt) that contains replacement sentence.

A beneficial side effect of this method is that it determines a complete sentence
instead of chopped lines. Chopped lines have been a general problem for the
constructions of snippets, as reported in [4].

4 Experimental Results

In this section we present the experiments we conducted using the techniques
described in the previous sections and discuss the results. A high quality subset of
articles with excellent content from Wikipedia are “featured articles”. Featured
articles are considered to be the best articles, as determined by Wikipedia’s
editors who review them according to accuracy, neutrality, completeness, and
style.

Fig. 3. Distribution of temporal expressions in Wikipedia’s featured articles collection

The experimental setup is as follows. We pre-process the Wikipedia data
set through a temporal annotation document pipeline that includes a Part-Of-
Speech component, a temporal tagger, and other modules that compute all basic
temporal measures. The distribution of temporal expressions is shown in Fig-
ure 3 in a log-log graph, to show that the distribution is a polynomial in the
central part (the number of temporal expressions is approximately 3.3

√
docid).

The average number of expressions is 160.8 with a standard deviation of 115.8.
This number may seem high, but Wikipedia entries have many references at
the end that include temporal expressions. For this reason, Wikipedia is a good
data set for temporal-based retrieval. Our query set consists of all document ti-
tles from our Wikipedia document collection (e.g., “Belton House”, “1910 Cuba
hurricane” etc.). We use a search engine API to extract the title, URL, and
original snippet for the query set. We then apply our technique as described in
Section 3 and produce the new snippets.

Enhancing Document Snippets Using Temporal Information 31

We use a crowdsourcing approach4 to test our technique by selecting a ran-
dom sample of the queries from the data set. The experiment design consists of
showing a user a query and two snippets A and B. The worker has to select if,
giving the query q, A is better, B is better or if both are the same. We randomize
the order so it is not obvious which is the control and which is the treatment
group. We pay $0.02 cents per task and require 5 workers each for aggregation
and consensus of results. We also include a 10% of honey pots (well known an-
swer in advance) as quality control mechanism for managing the crowd. Recall
from Section 3 that our approach modifies the original snippet by replacing some
text. The exact same title and URL were presented to the workers in case they
wanted to look at the article in detail.

The results show that 42% of the time the modified snippet was preferred and
in 35% of the time the original snippet was selected. For the remaining 23%, it
was not possible to reach a consensus among workers. An example would be that
2 workers selected snippet A, 2 workers B, and the third one selected that A
and B look the same. One possible explanation would be that the extra sentence
that the sentence replaced doesn’t give additional information to the user.

5 Conclusions and Outlook

The temporal order of a document can be valuable for selecting sentences or
text fragments that should be relevant to the user. The combination of different
temporal document measures can be very useful for understanding a document
collection or individual documents. In this paper, we leverage temporal order
to enhance a traditional document snippet by replacing part of the original
content with a sentence that contains the most frequent temporal expression.
The evaluation of our approach using a subset of Wikipedia indicates that users
prefer the modified snippet version to the original one. Still, for cases where
there is a tie, more experimentation and analysis need to be conducted.

References

1. Alonso, O., Strötgen, J., Baeza-Yates, R., Gertz, M.: Temporal Information Re-
trieval: Challenges and Opportunities. In: TWAW Workshop, WWW 2011, pp. 1–8
(2011)

2. Alonso, O., Gertz, M., Baeza-Yates, R.: Temporal analysis of document collections:
Framework and applications. In: Chavez, E., Lonardi, S. (eds.) SPIRE 2010. LNCS,
vol. 6393, pp. 290–296. Springer, Heidelberg (2010)

3. Mani, I., Pustejovsky, J., Gaizauskas, R. (eds.): The Language of Time. Oxford
University Press, Oxford (2005)

4. Rose, D., Orr, D., Kantamneni, R.: Summary Attributes and Perceived Search Qual-
ity. In: 16th WWW, pp. 1201–1202 (2007)

4 www.mturk.com

www.mturk.com

Spaced Seeds Design Using Perfect Rulers�

Lavinia Egidi and Giovanni Manzini

Dipartimento di Informatica, Università del Piemonte Orientale, Italy
{lavinia.egidi,giovanni.manzini}@mfn.unipmn.it

Abstract. We consider the problem of lossless spaced seed design for
approximate pattern matching. We show that, using mathematical ob-
jects known as perfect rulers, we can derive a family of spaced seeds for
matching with up to two errors. We analyze these seeds with respect to
the trade-off they offer between seed weight and the minimum length
of the pattern to be matched. We prove that for patterns of length up
to a few hundreds our seeds have a larger weight, hence a better filtra-
tion efficiency, than the ones known in the literature. In this context,
we study in depth the specific case of Wichmann rulers and prove some
preliminary results on the generalization of our approach to the larger
class of unrestricted rulers.

1 Introduction

The use of spaced seeds for approximate pattern matching has been introduced
in [1,12] and since then has received considerable attention. Spaced seeds are used
to quickly filter-out highly dissimilar regions, and they are a fundamental tool,
for example, for mapping to a reference genome the millions of reads produced
by modern sequencing technologies (see [9] and references therein).

We consider the problem of designing spaced seeds to be used for detecting
whether two strings of length m are at Hamming distance at most k; in the
literature this is known as the (m, k)-detection problem. In particular we are
interested in the design of lossless seeds, i.e., seeds that find all matches with the
above properties. Spaced seeds consist of solid positions and don’t care positions.
The number of solid positions is called the seed weight. For a given pair of
values (m, k) we want to find a seed with the largest possible weight since,
under standard assumptions, this maximizes the filtration efficiency.

For the problem of lossless seed design, an important breakthrough has been
obtained in [4] where, for any given pair (m, k), the authors provide a spaced seed
with an asymptotically optimal weight. Although this result essentially solves
the problem from the theoretical point of view, it remains open the problem
of finding optimal, i.e. weight-maximal, seeds for the pattern lengths m used in
practice (i.e. up to a few hundreds): the seeds in [4] are asymptotically optimal as
m → ∞, but we have no guarantees on their quality for small m. For a given pair

� This research is founded by the BioBITS Project Converging Technologies 2007,
area: Biotechnology-ICT, Regione Piemonte.

R. Grossi et al. (Eds.): SPIRE 2011, LNCS 7024, pp. 32–43, 2011.
c© Springer-Verlag Berlin Heidelberg 2011

Spaced Seeds Design Using Perfect Rulers 33

(m, k) one can find an optimal seed using a combinatorial search algorithm, but
this problem is known to be a hard one [5,6,8,11,14] so the problem of designing
whole families of (suboptimal) seeds of practical interest is still open.

Our starting point is the observation that we can derive a family of lossless
spaced seeds using mathematical objects known as perfect rulers (sometimes
also called difference bases) [3,7,15]. Informally, a perfect d-ruler is a binary
string with a minimal number of 1’s with the property that for any positive
δ ≤ d there exist two 1’s at distance δ (see Section 2 for further details). This
structural property makes them suitable to design spaced seeds able to detect
strings at Hamming distance at most 2. The study of the properties of these
spaced seeds is the main objective of the paper.

As a first step, in Section 3 we analyze the seeds obtained from perfect rulers
with respect to the tradeoff they offer between seed weight and the minimum
m∗ for which the seed is guaranteed to solve the (m, 2)-detection problem for all
m ≥ m∗. In Theorem 1 we establish an upper bound for m∗ for all “interesting”
seeds derived from perfect rules. This upper bound suffices to establish that for
m up to 498 the seeds derived from perfect rulers have a larger weight than the
asymptotically optimal seeds defined in [4] and therefore justifies an in-depth
study of this family of seeds.

In Section 4 we refine our analysis by establishing lower bounds on the min-
imum pattern length m∗. First, we prove that the upper bound of Theorem 1
is tight for the seed of maximal weight derived from a given ruler (Corollary 1).
Then, we introduce the concept of skewness of a ruler and use it to derive general
lower bounds for m∗ (Theorem 3).

In Section 5, we analyze the special case of Wichmann rulers [15] which are
a family of rulers particularly important since they can be easily derived by a
“generating function”, whereas other perfect rulers are usually found by trial
and error. For Wichmann rulers we show that the upper bound of Theorem 1 is
almost tight applying the results of Section 4 (Theorem 4) and with an ad-hoc
analysis (Theorem 5).

Finally, in Section 6 we consider spaced seeds obtained from unrestricted
rulers [7], which are a natural generalization of perfect rulers. We show that
some of the results of the previous sections can be applied to unrestricted rulers
as well. Although we do not provide a complete analysis, our preliminary results
show that, somewhat counterintuitively, spaced seeds derived from unrestricted
rulers are less effective that the ones derived from perfect rulers.

Due to space constraints we omit some of the technical proofs. Full details
can be found in [2].

2 Notation

For spaced seeds we follow the notation introduced in [1,6]. A spaced seed is a
string over the alphabet {#, -}; the symbol ’#’ represents a solid position, the
symbol ’-’ a don’t care position. Informally, a spaced seed defines a set of non-
contiguous positions in which we require two sequences to match. We say that a

34 L. Egidi and G. Manzini

spaced seed S solves the (m, k)-problem if for any pair of strings σ1, σ2 of length
m and Hamming distance k, there exists an index i such that

S[j] = # =⇒ σ1[i + j] = σ2[i + j]. (1)

In other words, we require that, starting from position i, the strings σ1, σ2

contain the same symbols in every position corresponding to a ’#’ in S, while
we tolerate mismatches in positions corresponding to ’-’ in S.

In the context of approximate string matching, if a seed solves the (m, k)
problem it can be used as a filter to quickly discard regions which are not at
Hamming distance at most k (see [1,6] for further details). Note however, that (1)
can hold for a given i even if σ1 and σ2 are not at Hamming distance k. These
events are called false positive matches and it is desirable to reduce their number
as much as possibile. The weight of a seed is defined as the number of #’s in it.
Under standard assumptions, see [4, Sect. 1.1] the number of false positives
decreases exponentially with the seed weight. Thus, it is desirable to solve the
(m, k) problem with a seed with the largest possible weight.

The notion of perfect ruler, has been studied by mathematicians for more than
sixty years [3,7,15] (in earlier works rulers were called difference bases). Here we
recall the basic definitions using modern terminology [10]. We base the definition
of rulers on the concept of measure:

Definition 1 (Measure). Let U be a binary string. For any positive integer δ
we say that U measures δ if there exist i, j, 0 ≤ i < j < |U |, such that j − i = δ
and U [i] = U [j] = 1. The pair (i, j) is said to be a measure of δ in U . �

Definition 2 (Complete ruler). Let R be a binary string of length d+1 such
that R[0] = 1, R[d] = 1, and such that for any integer δ, 0 ≤ δ ≤ d, R measures δ.
The string R is said to be a complete d-ruler, or simply a complete ruler when
the length of R is clear from the context. �

Intuitively, using the 1’s as marks, with a complete d-ruler we can measure all
distances between 1 and d. For example, the string 110101 is a complete 5-
ruler. Note that even the string 16 = 111111 is a complete 5-ruler, but not an
interesting one: the challenge of rule design is to find complete d-rulers with as
few marks as possible. This notion is captured by the following definition.

Definition 3 (Perfect ruler). Let R be a complete d-ruler containing � 1’s.
If there exists no complete d-ruler with less than � 1’s then R is said to be a
perfect d-ruler. �

Let �(d) denote the number of 1’s in a perfect d-ruler. Table 1 reports the values
�(d) for d = 10, . . . , 90. In [15] it is proven that limd→∞(�2(d)/d) exists and that
such limit is between 2.434 and 3. Perfect rulers are not easy to find: they are
usually generated by exhaustive search procedures. An important exception are
Wichman rulers which are discussed in Section 5. Tables of all perfect rulers of
size up to 101 are available on the net [10].

Spaced Seeds Design Using Perfect Rulers 35

Table 1. Number of 1’s �(d) in a perfect d-ruler for d = 10, . . . , 90

d 10–13 14–17 18–23 24–29 30–36 37–43 44–50 51–58 59–68 69–79 80–90

�(d) 6 7 8 9 10 11 12 13 14 15 16

Perfect rulers should not be confused with Golomb rulers that measure each
integer at most once (they are not necessarily complete). Golomb rulers have
been used in [13,14] in relation to seed design, but with the totally different aim
of analyzing the hardness of seed optimization.

3 From Rulers to Spaced Seeds

The structure of complete rulers naturally suggests their use for the design of
spaced seeds. Given a d-ruler R, if we replace each 0 with a ’#’ symbol and
each 1 with a ’-’ symbol we obtain a seed in which there is a pair of don’t care
symbols at distance δ for δ = 1, . . . , d. This seed solves the (m, 2)-problem for
m ≥ 2d + 1. However, this is not the only seed we can derive from R. For any
pair s0, s1 the seed derived from the string 0s0R0s1 also has pairs of don’t care
symbols at distance δ for δ = 1, . . . , d. Hence, it solves the (m, 2)-problem for
a sufficiently large m. Clearly there is a trade-off here: the larger are s0 and s1

the higher is the weight of the corresponding seed (a good thing) and the larger
is the value m for which the seed solves the (m, 2)-problem (a bad thing).

To evaluate to what extent rulers are useful for seed design it is clearly nec-
essary to investigate this trade-off. In this section we give upper bounds to
the minimum m for which the seed associated to the string 0s0R0s1 solves the
(m, 2)-problem. The results of this section are valid for any complete d-ruler R.
However, since seeds of higher weight are preferable, it is natural to derive seeds
from rulers with the minimum number of 1’s, that is, from perfect rulers.

Since the main object of our study are rulers, for simplicity we will only work
with strings over the alphabet {0,1}, with the implicit associations 0 → ’#’,
1 → ’-’. We introduce Definition 4 and Lemma 1 that essentially restate known
properties of seeds in the language of strings over the alphabet {0,1}.

Definition 4 (Completeness). A binary string P is (m, k)-complete if, for
any length-m binary string V containing exactly k 1’s, there exists at least an
index t, with 0 ≤ t ≤ |V | − |P |, such that for i = 0, . . . , |V | − 1, it is

V [i] = 1 =⇒ (i − t < 0) ∨ (i − t ≥ |P |) ∨ (P [i − t] = 1). (2)

If (2) holds we say that P + t matches in V , or that P shifted by t matches
in V . �

Note that P +t matches in V if the 1’s in V are either outside P +t or correspond
to a 1 in P + t. Equivalently, there is no 1 in V corresponding to a 0 in P + t.

36 L. Egidi and G. Manzini

Lemma 1. The binary string P is (m, k)-complete if and only if the spaced seed
obtained with the map 0 → ’#’, 1 → ’-’ solves the (m, k)-problem. �

Having stated Lemma 1, in the rest of the paper most of the results will simply
establish that certain binary strings are, or are not, (m, k)-complete, without
even mentioning the immediate consequence that the corresponding seeds solve,
or do not solve, the (m, k)-problem.

Definition 5 (Minimum length m∗
P). Given a binary string P we denote by

m∗
P the smallest integer m such that P is (m, 2)-complete.1 �

The following theorem provides an upper bound for m∗
P for P = 0s0R0s1 when

R is a complete d-ruler with � 1’s, and max(s0, s1) ≤ d. Since the seed associated
to 0s0R 0s1 has weight s0 + s1 + d + 1 − � the theorem establishes a trade-off
between seed weight and minimum pattern length m∗

P .

Theorem 1. Let P = 0s0R 0s1 where R is a complete d-ruler. If max(s0, s1) ≤
d, then m∗

P ≤ 2|P | − 1 − min(s0, s1).

Proof. To prove the theorem we show that P is (m, 2) complete for m = 2|P | −
1−min(s0, s1). Without loss of generality we assume that s0 ≥ s1 (if this is not
the case consider PR, i.e. the string P reversed).

Let V any length-m binary string containing exactly two ones, in the positions
v1, v2 (0 ≤ v1 < v2 ≤ m − 1). We need to show that for any such pair v1, v2 we
can find a shift t, 0 ≤ t ≤ m−|P |, such that P +t matches in V . By construction
we have |P | = d+1+s0+s1 and m = 2(d+1+s0+s1)−1−s1 = 2d+2s0+s1+1.
Hence the admissible range for t is 0 ≤ t ≤ m − |P | = d + s0.

Note that in our setting the condition in Definition 4 is equivalent to require
that there exists a shift t, 0 ≤ t ≤ d + s0 such that for i = 1, 2

(vi < t) ∨ (vi ≥ t + |P |) ∨ (P [vi − t] = 1) (3)

The proof is based on techniques similar to the ones used in [6, Sect. 4.3]. We
say that a binary string C of length (n + 1) is a complete cyclic n-ruler if for
all δ, 0 < δ ≤ n, there exist 0 ≤ i, j ≤ n such that C[i] = C[j] = 1 and
δ ≡ i− j mod n + 1. We say that C measures δ cyclically. Clearly, any complete
d-ruler is a complete cyclic d-ruler.

We now show that, if R is a complete d-ruler and s0 ≤ d, then C = 0s0R is
a complete cyclic (d + s0)-ruler. Indeed, C measures all integers δ, 0 < δ ≤ d,
since it contains R. Now let d + 1 ≤ δ ≤ d + s0; δ′ = d + s0 + 1 − δ is such that
1 ≤ δ′ ≤ s0 ≤ d so it is measurable in R. Let (i, j) be a measure of δ′ in R, we
show that (j + s0, i + s0) is a cyclic measure of δ in C. Indeed, by construction
i − j = δ′ so

j + s0 − (i + s0) = j − i = −δ′ = δ − (d + s0 + 1).

1 m∗
P also depends on k, but since in this paper we treat uniquely the case k = 2, k

does not appear in m∗
P to make the notation less cumbersome.

Spaced Seeds Design Using Perfect Rulers 37

Table 2. Comparison of seed weight as a function of pattern length. The second row
reports the weights of the asymptotically optimal seeds defined in [4, Th. 5]. The third
row reports the maximal weights for the seeds of the form 0sRd0

s (the last row shows
the values of d and s yielding the maximal weights). The weights of the two families
are both equal to 282 for m = 498.

m 16 32 48 64 80 96 200 300 400 500

[4] 1 3 10 12 21 30 88 150 210 284

Th. 1 7 14 23 31 41 50 109 166 224 283

(d, s) (3,3) (8,5) (10,9) (15,11) (17,15) (19,19) (41,39) (61,59) (81,79) (101,99)

Hence, j + s0 − (i + s0) ≡ δ mod (d + s0 + 1). This proves that C is a complete
cyclic (d + s0)-ruler.

Now consider a length-m binary string V as above and let m′ = d + s0 + 1.
For i = 1, 2, let v′i = vi mod m′. Let V ′ be the length-m′ binary string with
V ′[v′i] = 1 (for i = 1, 2) and V ′[j] = 0 for all other j. Informally, V ′ is obtained
as a projection of V modulo m′. Since |v′1 − v′2| ≤ m′ − 1 = d + s0, and C is a
complete cyclic (d + s0)-ruler, there exists ρ, 0 ≤ ρ ≤ s0 + d, such that

C[(v′i − ρ) mod m′] = 1 for i = 1, 2. (4)

We claim that for t = ρ, P + t matches in V . First notice that t = ρ is in the
correct range, and that, the assumption s1 ≤ s0 implies P [j] = C[j mod m′] for
all j, 0 ≤ j < |P |. To prove that (3) holds for i = 1, 2 observe that if vi−ρ < 0 or
vi−ρ ≥ |P | the proof is trivial. If 0 ≤ vi−ρ < |P |, recalling that v′i = vi mod m′,
we have

P [vi − ρ] = C[(vi − ρ) mod m′] = C[(v′i − ρ) mod m′] = 1.

as claimed. �

As an immediate application of Theorem 1, for different pattern lengths m we
computed the seed 0sRd 0s of maximal weight among those for which Theorem 1
guarantees m∗

P ≤ m. The resulting maximal weights for some values of m are
reported in Table 2, together with the weights of the asymptotically optimal
seeds from [4]. We see that for m up to 498, seeds derived from perfect rulers
have a larger weight. Hence, although such seeds are not asymptotically optimal,
they are preferable for values of m which are of practical interest.

Theorem 1 assumes max(s0, s1) ≤ d. It turns out that if max(s0, s1) > d
then P = 0s0R0s1 has a much larger minimal pattern length m∗

P . The following
theorem proves that this is true even replacing R with an arbitrary binary string
of length d + 1.

Theorem 2. Let P = 0s0U0s1 , where U is any binary string of length d + 1.
Then:

max(s0, s1) > d =⇒ m∗
P ≥ 2|P | (5)

min(s0, s1) > d =⇒ m∗
P ≥ 2|P | + min(s0, s1). (6)

38 L. Egidi and G. Manzini

Proof. Without loss of generality we can assume s0 ≥ s1. Let p = |P |. To
prove (5) we show that if max(s0, s1) > d then P is not (2p − 1, 2)-complete
according to Definition 4. Let V denote the binary string of length 2p − 1 with
1’s in positions v1 = p−1−(d+1) and v2 = p−1. Since P does not measure d+1,
P +t can match V only if v1−t < 0 which implies t > p−1−(d+1) = v2−(d+1).
Moreover, since t ≤ |V | − |P | must hold, then it must be t ≤ p − 1. Hence, we
must have 0 ≤ v2 − t < (d + 1) ≤ s0. This latter inequality implies P [v2 − t] = 0
and (2) cannot hold. To prove (6), we show that if min(s0, s1) > d then P cannot
be (2p − 1 + min(s0, s1), 2)-complete by taking v1 = p − 1 and v2 = p + s1 − 1
and reasoning as above. �

Theorem 2 implies that the seed 0s0R0s1 is not interesting when max(s0, s1) >
d. To see this, compare for example P = 0d+1R0d with P ′ = 0d+1R′ 0d+1 where
R′ is a complete (d+1)-ruler. We have |P | = 3d+2, |P ′| = 3d+4, and P ′ has at
least one 0 more than P . By Theorem 2 it is m∗

P ≥ 6d+4 whereas by Theorem 1
it is m∗

P ′ ≤ 5d + 6 which is preferable for d > 2.
Summing up, we have that among the seeds that we can derive from perfect

rulers there is a family whose members are of practical interest since they offer a
competitive trade-off between seed weight and minimum pattern length m∗

P . In
the next sections we will further investigate the properties of these seeds. Since
the upper bound established in Theorem 1 will play an important role in our
analysis, we introduce a notation for it.

Definition 6 (Upper bound mP). For any string P = 0s0U0s1 , we denote
by mP the value mP = 2|P | − 1 − min(s0, s1). �

4 Lower Bounds on the Minimum Pattern Length m∗
P

In this section we investigate whether the upper bound established in Theorem 1
is tight or there exist seeds of the form 0s0R0s1 which are (m, 2)-complete for
m significantly smaller than the upper bound of Theorem 1.

We begin our analysis with the case of the seed associated to 0dR0d where R
is a complete d-ruler. This is an important case since in Section 3 we saw that
the only interesting seeds are those with min(s0, s1) ≤ d. Among them, 0dR0d is
the one with the largest weight. For P = 0dR0d Theorem 1 yields m∗

P ≤ 5d + 1.
The next result shows that it is indeed m∗

P = 5d + 1 and that such value is the
best possible even if we replace R with an arbitrary binary string of length d+1.

Lemma 2. Let P = 0dU0d, where U is any binary string of length d + 1. Then
m∗

P ≥ 5d + 1.

Proof (sketch). We prove that P is not (5d, 2)-complete reasoning as in the proof
of Theorem 2 taking v1 = d − 1 and v2 = 4d. �

Corollary 1. If P = 0dR0d, where R is a complete d-ruler, then m∗
P = 5d + 1.

�

Spaced Seeds Design Using Perfect Rulers 39

For the general case P = 0s0R 0s1 we provide lower bounds which depend on
the distributions of the 1’s in R. We make use of the following technical lemma.

Lemma 3. Assume P = 0s0U0s1 is (m, 2)-complete where U is an arbitrary
binary string. For any δ that is measurable in U , let (x, x + δ) and (y, y + δ)
denote respectively the leftmost and rightmost measures of δ in P . We have

δ ≤ s0 =⇒ x + δ ≤ m − |P | (7)
δ ≤ s1 =⇒ |P | − 1 − y ≤ m − |P |. (8)

A fundamental notion in our analysis is the one of (λ, σ)-skewness. Informally,
a string is (λ, σ)-skew for small values of λ and σ if there are small integers that
are measured only near the endpoints of the string. This property implies that
the minimum length m∗

P is close to the upper bound mP (see Theorem 3).

Definition 7 (Skewness). Let U denote a binary string of length u. We say
that U is (λ, σ)-skew if there exist δL and δR, not necessarily distinct, such that
(uL, uL + δL) (resp. (uR, uR + δr)) is the only measure of δL (resp. δR) in U ,
and the conditions

max(uL, u − 1 − uR − δR) ≤ λ and max(δL, δR) ≤ σ (9)

hold. �

Note that (9) implies that the range (uL, uL + δL) is entirely within the first
λ + σ positions of U and starts within the first λ positions of U . Symmetrically,
the range (uR, uR + δR) is within the last λ + σ positions of U and ends within
the last λ positions of U .

Example 1. Let U = 1100110000111. The only measure of δL = 3 is (1, 4),
and the only measure of δR = 2 is (10, 12). Since |U | = 13, U is (1, 3)-skew. �

Let P = 0s0U0s1 where U is (λ, σ)-skew. The next theorem establishes a lower
bound for m∗

P , given in terms of the upper bound mP , under the assumption that
min(s0, s1) is larger than the integers that are measured only near the endpoints
of U . The assumption is not restrictive for practical applications, since more 0’s
in P translates to a spaced seed with larger weight.

Theorem 3. For any string U , let P = 0s0U0s1 . If U is (λ, σ)-skew and
min(s0, s1) ≥ σ, then m∗

P ≥ mP − λ.

Proof. We prove the theorem showing that, if P is (m, 2)-complete with m ≤
mP − λ, then necessarily m ≥ mP − λ. Let p = |P |, u = |U |.

Since U is (λ, σ)-skew, for δL and δR as in Definition 7 it is δL, δR ≤ σ ≤
min(s0, s1). Hence, Lemma 3 can be applied to both δL and δR.

Let, as in Definition 7, (s0 + uL, s0 + uL + δL) be the unique measure of δL

in P . By (8) of Lemma 3 and (9) it is

m ≥ 2p − 1 − (s0 + uL) ≥ 2p − 1 − s0 − λ. (10)

40 L. Egidi and G. Manzini

Similarly, let (s0 +uR, s0 +uR + δR) be the unique measure of δR in P . By (7)
of Lemma 3, it is s0 + uR + δR ≤ m− p. Applying (9) and finally recalling that
p = u + s0 + s1, we get

m ≥ p + s0 + uR + δR ≥ p + s0 + u − 1 − λ = 2p − 1 − s1 − λ. (11)

From (10) and (11) we get, as claimed, m ≥ 2p−1−min(s0, s1)−λ = mP −λ. �

The above theorem holds for any (λ, σ)-skew string U . For a complete d-ruler,
combined with Theorem 1, it yields the following result.

Corollary 2. Let P = 0s0R0s1 where R is a (λ, σ)-skew complete d-ruler. If
max(s0, s1) ≤ d and min(s0, s1) ≥ σ, then mP − λ ≤ m∗

P ≤ mP . �

5 Wichmann Rulers

As we mentioned in Section 3, perfect rulers are difficult to find. The exception
is the family of Wichmann rulers [15] which have a sort of “generating function”.
The Wichmann ruler Wr,s is the binary string defined by

Wr,s = 1r+1 0r1 (02r1)r (04r+21)s (02r+11)r+1 1r.

Wr,s has length wr,s = 4(r + 1)2 + s(4r + 3) and contains exactly 4r + s + 3 1’s.
It is a classical result that Wr,s is a complete (wr,s − 1)-ruler [15].

In this section we consider the seeds of the form P = 0s0Wr,s0s1 and we
analyze how tight is Theorem 1 for these seeds. Our first result proves that, if
the number of leading and trailing 0’s in P is large enough, then the upper bound
mP of Theorem 1 is very accurate. Recall that large s0 and s1 are required to
obtain seeds with large weight.

Theorem 4. Let P = 0s0Wr,s0s1 with r > 1. We have

min(s0, s1) ≥ 3r + 1 =⇒ m∗
P ≥ mP − 1 (12)

min(s0, s1) ≥ 2r + 3 =⇒ m∗
P ≥ mP − r + 1 (13)

Proof (sketch). We show that Wr,s is (1, 3r + 1)-skew and use Theorem 3 to
get (12). Similarly, we show that Wr,s is (r − 1, 2r + 3)-skew to obtain (13). �

We now establish lower bounds for P = 0s0Wr,s0s1 with no constraints on s0 and
s1. These results are not based on the concept of skewness, but on the specific
structure of Wichmann rulers.

Lemma 4. Let P = 0s0Wr,s0s1 with r > 1. If max(s0, s1) ≥ 2r + 3 then m∗
P ≥

mP − (2r + 2).

Proof (sketch). We prove the lemma assuming that m∗
P ≤ mP − (2r + 3), and

obtaining a contradiction. If s1 = min(s0, s1), we apply Lemma 3 to δ = 2r+3 ≤
s0. By (7) we get the contradiction m∗

P ≥ mP + 1 − r. If s0 = min(s0, s1), we
apply Lemma 3 to δ = r + 2 ≤ s1 and we get the same contradiction by (8). �

Spaced Seeds Design Using Perfect Rulers 41

Lemma 5. Let P = 0s0Wr,s0s1 with r > 0. If max(s0, s1) ≤ 2r + 2 then m∗
P ≥

mP − (4r + 2).

Proof (sketch). Let p = |P |, and consider the binary string V of length m∗
P with

1’s in positions v1 = p−s1−r−2 and v2 = v1+1. The closest pair of consecutive
1’s in P to the left of (v1, v2) are those in positions (s0 + r − 1, s0 + r). Hence
P + t matches in V only for t ≥ v1 − (s0 + r − 1). Since the largest admissible
shift t is m∗

P − p we must have m∗
P − p ≥ v1 − (s0 + r − 1), which implies the

thesis. �

Combining Lemmas 4 and 5 we get the following theorem that provides a lower
bound for any seed P based on a Wichmann ruler with r > 1.

Theorem 5. Let P = 0s0Wr,s0s1 with r > 1. It is m∗
P ≥ mP − (4r + 2). �

Note that r = O(√wr,s), so Theorem 5 once more proves the estimate of Theo-
rem 1 accurate. In the following example we present a specific case, in order to
give a feeling of the values involved.

Example 2. The string W2,1 is a complete 46-ruler. Consider the seed P =
0iW2,10i. For i =, 0, . . . , 46 it is mP = 94 + 3i − 1. By Corollary 1, for i = 46 it
is m∗

P = mP = 231. By Theorem 4, for 7 ≤ i ≤ 45 it is mP − 1 ≤ m∗
P ≤ mP .

For example for i = 7 it is 113 ≤ m∗
P ≤ 114. By Theorem 5, for 0 ≤ i ≤ 6, it is

mP − 10 ≤ m∗
P ≤ mP . For example, for i = 0 it is 83 ≤ m∗

P ≤ 93. �

6 Restricted vs. Unrestricted Rulers

The complete rulers defined in Section 2 are sometimes called restricted rulers
since we require that the string R measuring all integers between 1 and d has
length exactly d+1. In the literature [3,7] there is also the notion of unrestricted
d-ruler which is a binary string of arbitrary length that measures all integers
between 1 and d. The next Lemma shows that every spaced seed must have an
unrestricted ruler at its heart.

Lemma 6. If P is (m, 2)-complete, then it must measure any integer δ, 1 ≤
δ ≤ 2|P | − m − 1.

Proof. Let p = |P |. We prove the lemma showing that if P does not measure δ
then δ ≥ 2p − m. Consider the length-m binary string V with 1’s in positions
v1 = p − 1 − δ, and v2 = p − 1. Since P is (m, 2)-complete there must exist
t ≤ m − p such that P + t matches in V according to Definition 4. However, if
P does not measure δ, P + t does not match in V whenever t ≤ v1. Hence, we
must have t ≥ v1 + 1 = p − δ, which is possible only if p − δ ≤ m − p which
implies δ ≥ 2p − m as claimed. �

The above result suggests that it could be worthwhile to analyze also spaced
seeds of the form P = 0s0Ud0s1 , where Ud is an unrestricted d-ruler. This interest
is motivated theoretically by the fact that an unrestricted d-ruler can contain
less 1’s than a perfect d-ruler.

42 L. Egidi and G. Manzini

Example 3. The minimum number of 1’s in a restricted 18-ruler is eight [10].
The string U18 = 1000001001100000010000101 has length 25, seven 1’s, and
is an unrestricted 18-ruler since it measures all integers from 1 to 18. �
In the following we give some evidence that for seed design unrestricted rulers
appear to be less effective than restricted rulers.

Let U18 denote the string defined in Example 3 and let m∗
Q denote the mini-

mum m such that Q = 0sU180s is (m, 2)-complete. The ruler U18 is (0, 6)-skew,
since 6 has the unique measure (0, 6), and 2 has the unique measure (22, 24).
Theorem 3 implies that m∗

Q ≥ mQ = 2|Q|−1−s. Note, however, that Theorem 1
has been proven only for restricted rulers. Indeed, a direct verification shows that
it does not hold for unrestricted ones, since for s ≥ 13 it is m∗

Q > mQ.
Based on the above observations, we compare the completeness properties of

a seed obtained from U18 to one obtained from a restricted d-ruler Rd.

– Let P = 0s0R180s1 , where R18 is a restricted 18-ruler with eight 1’s (see [10]).
Let s0 = s + 4 and s1 = s + 3. Then |P | = |Q| + 1 and P and Q have
the same weight. Since mP = 2(|Q| + 1) − 1 − (s + 3) = mQ − 1, then
m∗

Q ≥ mQ = mP + 1 > m∗
P , which implies m∗

Q > m∗
P .

– If we take P = 0s+4R180s+4 with the same R18, so that P is longer and has
a larger weight than Q, we obtain mQ = mP and therefore m∗

Q ≥ m∗
P .

– Finally, let P = 0s0R170s1 where R17 is a restricted 17-ruler with seven 1’s
as U18 (see [10]). Let s0 = s + 4 and s1 = s + 3. Then, Q and P have the
same length and weight, and mQ = mP + 3, therefore m∗

Q ≥ m∗
P + 3.

We consider now Wichmann rulers. We observe that in general a restricted d′-
ruler with d′ > d is an unrestricted d-ruler. Hence, for b > 0, Wr+b,s can be
seen as an unrestricted (wr,s − 1)-ruler. We show that a seed built out of the
restricted ruler Wr,s is better than one of the same length based on Wr+b,s.

Let P = 0s0Wr,s0s1 . To preserve length, in replacing Wr,s with Wr+b,s we
reduce the number of leading and trailing zeroes. Since |Wr+b,s| − |Wr,s| =
4b(b + 2r + s + 2), we let σb = 2b(b + 2r + s + 2) and define Q = 0s′

0Wr+b,s0s′
1

with s′i = si −σb (i = 0, 1), so that |Q| = |P |. Notice that the following theorem
holds, somewhat counterintuitively, even though P has a larger weight than Q.

Theorem 6. Let P = 0s0Wr,s0s1 and Q = 0s′
0Wr+b,s0s′

1 as above, with r > 1.
It is m∗

Q ≥ m∗
P for b ≥ 1, and m∗

Q > m∗
P for b > 1 or s > 0.

Proof. Since |Q| = |P |, it is mQ = 2|Q|−1−min(s0−σb, s1−σb) = mP +σb. From
Theorem 5 applied to Q and the latter equality we get m∗

Q ≥ mP +σb−4(r+b)−2;
the inequality is strict for b > 1 or s > 0 as claimed. �

7 Conclusions

We have proposed a new family of lossless seeds built using perfect rulers. We
have proven upper and lower bounds on the effectiveness of these seeds and
shown that they are of practical interest. A natural extension of this work is to
study the use of our new family of seeds in the context of multiseed filtration
for the detection of more than two mismatches.

Spaced Seeds Design Using Perfect Rulers 43

Acknowledgements. We thank the anonymous referees for their useful com-
ments. Some of them need a broader treatment than what is allowed by the
space and time allotted for this conference version. We are indebted to one of
the referees for the proof of Theorem 1 (our original, much less elegant, proof is
in [2]).

References

1. Burkhardt, S., Kärkkäinen, J.: Better filtering with gapped q-grams. Fundam. In-
form. 56(1-2), 51–70 (2003)

2. Egidi, L., Manzini, G.: Spaced seeds design using perfect rulers. Technical Re-
port TR-INF-2011-06-01-UNIPMN, Computer Science Department, UPO (2011),
http://www.di.unipmn.it

3. Erdós, P., Gál, I.S.: On the representation of 1, 2, . . . , n by differences. Indagationes
Math. 10, 379–382 (1948)

4. Farach-Colton, M., Landau, G.M., Sahinalp, S.C., Tsur, D.: Optimal spaced seeds
for faster approximate string matching. J. Comput. Syst. Sci. 73(7), 1035–1044
(2007)

5. Keich, U., Li, M., Ma, B., Tromp, J.: On spaced seeds for similarity search. Discrete
Applied Mathematics 138(3), 253–263 (2004)

6. Kucherov, G., Noé, L., Roytberg, M.A.: Multiseed lossless filtration. IEEE/ACM
Trans. Comput. Biology Bioinform. 2(1), 51–61 (2005)

7. Leech, J.: On the representation of 1, 2, . . . , n by differences. J. London Math.
Soc. 31, 160–169 (1956)

8. Li, M., Ma, B., Kisman, D., Tromp, J.: Patternhunter II: Highly sensitive and
fast homology search. J. Bioinformatics and Computational Biology 2(3), 417–440
(2004)

9. Lin, H., Zhang, Z., Zhang, M.Q., Ma, B., Li, M.: Zoom! zillions of oligos mapped.
Bioinformatics 24(21), 2431–2437 (2008)

10. Luschny, P.: Perfect and optimal rulers (2003),
http://www.luschny.de/math/rulers/prulers.html

11. Ma, B., Li, M.: On the complexity of the spaced seeds. J. Comput. Syst. Sci. 73(7),
1024–1034 (2007)

12. Ma, B., Tromp, J., Li, M.: Patternhunter: faster and more sensitive homology
search. Bioinformatics 18(3), 440–445 (2002)

13. Ma, B., Yao, H.: Seed optimization is no easier than optimal Golomb ruler design.
In: Brazma, A., Miyano, S., Akutsu, T. (eds.) APBC. Advances in Bioinformatics
and Computational Biology, vol. 6, pp. 133–144. Imperial College Press, London
(2008)

14. Nicolas, F., Rivals, E.: Hardness of optimal spaced seed design. J. Comput. Syst.
Sci. 74(5), 831–849 (2008)

15. Wichmann, B.: A note on restricted difference bases. J. London Math. Soc. 38,
465–466 (1962)

http://www.di.unipmn.it
http://www.luschny.de/math/rulers/prulers.html

Weighted Shortest Common Supersequence

Amihood Amir1,�, Zvi Gotthilf 2, and B. Riva Shalom3

1 Department of Computer Science, Bar-Ilan University,
Ramat-Gan 52900, Israel and Department of Computer Science,

Johns Hopkins University, Baltimore, MD 21218
amir@cs.biu.ac.il

2 Department of Computer Science, Bar-Ilan University,
Ramat-Gan 52900, Israel
gotthiz@cs.biu.ac.il

3 Department of Software Engineering, Shenkar College,
Ramat-Gan 52526, Israel
riva.shalom@gmail.com

Abstract. The Shortest Common Supersequence (SCS) is the problem
of seeking a shortest possible sequence that contains each of the input se-
quences as a subsequence. In this paper we consider applying the problem
to Position Weight Matrices (PWM). The Position Weight Matrix was
introduced as a tool to handle a set of sequences that are not identical,
yet, have many local similarities. Such a weighted sequence is a ‘statisti-
cal image’ of this set where we are given the probability of every symbol’s
occurrence at every text location. We consider two possible definitions of
SCS on PWM. For the first, we give a polynomial time algorithm, having
two input sequences. For the second, we prove NP-hardness.

1 Introduction

The Shortest Common Supersequence problem (SCS) is a well studied problem
[10,11,14,15]. It is known as NP-hard [11] even in the case of a binary alpha-
bet [13]. However, if the number of input strings is fixed, their SCS can be found
in polynomial running time [14,15].

In the SCS problem we are given a set of L strings and look for shortest
possible string obtaining all input strings as subsequences. For example, let L=2,
A = addab and B = ebadea, a possible supersequence is ebaddeab.

1.1 Motivation

One of the applications that motivate our problem is Planning research. Given
a set of goals (or tasks) which have to be accomplished, one needs to find the
most cost efficient plan that achieves all the goals.

As mentioned in [5], for the AI planning research it is important to exploit the
interactions between different parts of plans. Merging different actions in order
to make the total plan more efficient can be viewed as a supersequence. Similar
applications can be found in the area of Computational Biology.
� Partly supported by NSF grant CCR-09-04581 and ISF grant 347/09.

R. Grossi et al. (Eds.): SPIRE 2011, LNCS 7024, pp. 44–54, 2011.
c© Springer-Verlag Berlin Heidelberg 2011

Weighted Shortest Common Supersequence 45

1.2 Weighted Sequences

This paper considers a more general version of the SCS problem, one where
the input consists of weighted sequences. A weighted sequence is defined as a
sequence S = (s1, v1), ..., (s|S|, v|S|) where si ∈ Σ, vi ∈ R, i = 1..|S|. For
comparison of two weighted sequences a function W : |S1|× |S2| → R is defined.
W assigns a value to every possible match between two characters, one from
the first sequence and the other from the second sequence. The SCS variant for
these weighted sequences aims at both maximizing the weight of the common
supersequence and minimizing the length, rather than merely minimizing its
length. This will be formally defined below.

A possible model of weighted sequences is such that, at each position of the
sequence, any alphabet symbol can occur with a certain probability. To prevent
ambiguity, we refer to such sequences as p-weighted sequences, though in the
literature they are both named weighted sequences.

Definition 1. ([9]) A p-weighted sequence A = a1..an over finite alphabet Σ,
is a sequence of sets ai, 1 ≤ i ≤ n. Every ai is a set of pairs (sj , πi(sj)), where
sj ∈ Σ and πi(sj) is the probability of having symbol sj at location i.
Formally, ai = {(sj , πi(sj)) | sj �= sl for j �= l, and

∑
j πi(sj) = 1}.

The concept of p-weighted sequences was introduced as a tool for motif discovery
and local alignment. A p-weighted sequence is called in the biological literature
a “Position Weight Matrix” (PWM) [12]. A p-weighted sequence of length m is
a |Σ| × m matrix that reports the frequency of each symbol from alphabet Σ
for every possible location. Note that as each location of the input may contains
all σ ∈ Σ (and their probability of appearing there), we refer to the inputs as
sequences rather than as strings. We also denote a location of the p-weighted
sequence a character that contains several symbols.

The first use of PWM sequences was for relatively short sequences, for exam-
ple binding sites or sequences resulting from multiple alignment. Iliopoulos et
al. [9] considered building very large Position Weight Matrices that correspond,
for example, to complete chromosome sequences that have been obtained using
a whole-genome shotgun strategy [16]. By keeping all the information that the
whole-genome shotgun produces, it is possible to ferret out information that has
been previously undetected after being faded during the consensus step. This
concept is true for other applications where local similarities are thus encoded.
Therefore, the necessity of developing adequate algorithms for p-weighted se-
quences increases.

The Longest Common Subsequence of p-weighted strings was defined by Amir
et al. [2] and named the LCWS problem. We similarly define the Shortest
Common Supersequence of p-weighted strings. Note that when dealing with p-
weighted sequences, every added symbol reduces the total weight. Therefore, we
define a lower bound, below which the weight is not allowed to decrease and un-
der this restriction the Shortest Common Supersequence is sought. The bound
is set according to the certainty level required by the application.

Since we consider two p-weighted sequences, we differentiate between their
probabilities by denoting as πA

i the probability of occurring at the ith location

46 A. Amir, Z. Gotthilf, and B.R. Shalom

of sequence A. Throughout the paper we consider, for simplicity, sequences of
the same length. Different lengths sequences can be similarly dealt with. The
formal definition appears below.

Definition 2. The Shortest Common Weighted Supersequence Problem
(SCWS):

Input: Two p-weighted sequences A, B of length n over alphabet Σ,
and a constant α, 0 < α ≤ 1.

Output: The minimal � such that there is a common supersequence
of length �, s1..s�, si ∈ Σ, i = 1, ..., �, where σa

1 ..σa
n = si1 ..sin

and σb
1..σ

b
n = sj1 ..sjn , for increasing indices {iy} and {jy}

(σa
y stands for an alphabet symbol chosen to represent the yth

character of A.)
The supersequence ordering maintains:∏n

y=1(π
A
y (σa

y) · πB
y (σb

y)) ≥ α.

Example: Let Σ = {a, b, c}, α = 0.1 and the p-weighted sequences be as in
Figure 1. There is no SCS of length 4, since a choice of a or b as the first
element would already mean probability 0.1 × 0.8 = 0.08 < α. A choice of c
is even worse, with probability 0.1 × 0.1 = 0.01 < α. However, if we choose
s1 = a,s2 = b, s3 = c, s4 = c, s5 = b with s1, s2, s3, s4 = abcc = σa

1 , σa
2 , σa

3 , σa
4 ,

and s2, s3, s4, s5 = bccb = σb
1, σ

b
2, σ

b
3, σ

b
4, then the probability is 0.8 × 0.8 × 0.7 ×

0.7 × 0.9 × 0.6 × 1 × 0.6 = 0.1016064 > α.

A

ΠA
1 (a) = 0.8 ΠA

2 (a) = 0.1 ΠA
3 (a) = 0.1 ΠA

3 (a) = 0.3
ΠA

1 (b) = 0.1 ΠA
2 (b) = 0.7 ΠA

3 (b) = 0 ΠA
3 (b) = 0.1

ΠA
1 (c) = 0.1 ΠA

2 (c) = 0.2 ΠA
3 (c) = 0.9 ΠA

3 (c) = 0.6

a1 a2 a3 a4

B

b1 b2 b3 b4

ΠB
1 (a) = 0.1 ΠB

2 (a) = 0.1 ΠB
3 (a) = 0 ΠB

3 (a) = 0.3
ΠB

1 (b) = 0.8 ΠB
2 (b) = 0.2 ΠB

3 (b) = 0 ΠB
3 (b) = 0.6

ΠB
1 (c) = 0.1 ΠB

2 (c) = 0.7 ΠB
3 (c) = 1 ΠB

3 (c) = 0.1

prob(ai, bj) a1 a2 a3

b1 4/9 1/3 1/3
b2 8/27 4/9 4/9
b3 56/81 7/27 7/27

Fig. 1. The two p-weighted sequences

Though the SCWS problem seems natural for the position weighted matrices
input, in case the probabilities of the characters of one input sequence S1 are far
from being uniformly distributed, our decision of symbol selection for the SCWS

Weighted Shortest Common Supersequence 47

may be biased and not reflect a real relation between the weighted sequences.
In order to prevent this effect, and obtain informative results we present an ad-
ditional definition to the SCWS problem, Shortest Common Weighted Super-
sequence with two thresholds, referred to as SCWS2. In the SCWS2 problem,
a separate probability bound is set for each of the p-weighted sequences. This
problem can also be useful, when different biological conditions require measur-
ing the probabilities of each sequence independently.

Definition 3. The Shortest Common Weighted Supersequence 2 (SCWS2)
Problem:
Input: Two p-weighted strings A, B of length n over alphabet Σ,

and constants α1, α2, 0 < αi ≤ 1.
Output: The minimal � such that there is a common supersequence of

length �, s1..s� where σa
1 ..σa

n = si1 ..sin and σb
1..σ

b
n = sj1 ..sjn ,

for increasing indices {iy} and {jy}. The supersequence
ordering maintains

∏n
y=1 πA

y (σa
y) ≥ α1 AND

∏n
y=1 πB

y (σb
y) ≥ α2.

This paper is organized as follows: Section 2 describes related work. The SCWS
problem solution appear in Section 3. We then consider the SCWS2 problem
and its hardness in Section 4. Section 5 concludes the paper and poses some
open questions.

2 Related Work

Many hardness and approximation results regarding different variants of the SCS
problem were presented during the last three decades, see e.g. [7,10,11,14,15].

Regarding the p-weighted sequences, Iliopoulos et al. [8] defined the problem of
longest common substring of p-weighted sequences, where the common sequence
is consecutive.

Amir et al. [1] showed some conditions where p-weighted matching problems
can be reduced to ordinary pattern matching problems. In their model, the
probability of each symbol is fixed, regardless to the location in the sequence, and
the text is p-weighted while the pattern is an ordinary string. Both assumptions
are not valid for the SCWS problem.

Finally, Amir et al. [2] solved the Longest Common Weighted Subsequence
problem. They gave two slightly different definitions of the problem. For the first,
they solved the weighted LCS problem of z sequences in time O(znz+1). For the
second, they proved NP-hardness and provided an approximation algorithm.

3 Shortest Common Weighted Supersequence

The S(SCS) problem is closely related to the Longest Common Subsequence
problem, in which we seek common symbols of both sequences, appearing in
the same order in both strings. In fact, The SCS can be solved using the LCS
solution.

48 A. Amir, Z. Gotthilf, and B.R. Shalom

Observation 1. SCS(A, B) = |A| + |B| − LCS(A, B) where SCS(A, B),
LCS(A, B) are the lengths of the SCS, LCS problems, when applied to strings
A, B.

A proof will be provided in the full version.
Similarly, we might consider using the Longest Common Weighted Subse-

quence (LCWS) to solve the Shortest Common Weighted Supersequence (SCWS)
problem. However, in the weighted case, Observation 1 does not hold, as the
LCWS considers probabilities of merely the symbols participating the output,
while the SCWS takes into account the probabilities of all n characters of each
sequence. For example where Σ = {0, 1}, see Figure 2. For the inputs described

A
ΠA

1 (0) = 0.2 ΠA
2 (0) = 0.4

ΠA
1 (1) = 0.8 ΠA

2 (1) = 0.6

a1 a2

B

b1 b2

ΠB
1 (0) = 0.6 ΠB

2 (0) = 0.7
ΠB

1 (1) = 0.4 ΠB
2 (1) = 0.3

Fig. 2. An example for the difference between LCWS and SCWS

in Figure 2, the A sequence has higher probabilities for the σ = 1, whereas B
prefers σ = 0. Therefore, any decision the LCWS solver makes includes matching
a certain aj with bi yielding a lower probability than πA

i (1) · πB
j (0). Since each

ai, bj is to be included in the supersequence, it may be more profitable to ignore
at least part of the LCWS matching suggestions, due to the threshold demands.

A possible solution to the SCWS problem, can be selecting at each character
of the sequences, its most probable symbol, getting ordinary strings. We then,
can apply to these strings a regular SCS solution, like the one suggested in
Observation 1, requiring O(n2) time.

Since the problem demands including all characters of the input strings, no
solution can have a higher probability than the suggested procedure. Neverthe-
less, if the α bound is lower, one can decrease the probability, in case it leads to a
shorter supersequence. In order to improve the length, it is necessary to choose a
single character and select a different representative symbol for it, in a way that
enlarges the LCS of the two strings. However, the option of undoing a certain
match the LCS made to obtain two matches of less probable symbols, needs to
be considered as well. Clearly a naive check of all the options is inefficient.

We therefore present a dynamic programming algorithm for the SCWS prob-
lem. We construct a two dimensional table, where the rows represent the char-
acters of the A sequence, and the columns refer to the characters of sequence B.
A character in a p-weighted sequence is a table containing all symbols of Σ and
the probability of appearing at that location.

Weighted Shortest Common Supersequence 49

As mentioned above, the core of the SCWS problem is minimizing the length
of the supersequence under a weight restriction. Consequentially, we cannot save
at the table entries merely the shortest supersequence achieved so far as its
probability may, in the future, degrade below α and the potential supersequence
would have to be discarded. We therefore save at entry i, j, for every possible
length, the highest probability of a common supersequence that can be obtained
from A[1 . . . i] and B[1 . . . j]. We denote the variables containing this information
by pk

i,j , where k represents the length of the common supersequence. Saving these
probabilities, when some pk

i,j is too small, we can compute pk+1
i,j , which may have

an increased probability exceeding α.
As each position in a p-weighted sequence consists of |Σ| symbols and their

probabilities, when considering the matching of ai and bj, as a mean of shortening
the supersequence, we compute for each symbol σ ∈ Σ the product πA

i (σ)·πB
j (σ)

and select the highest value. We denote the selected value of entry i, j as besti,j
and save the symbol yielding this probability. The SCWS may include characters
originating in a single sequence as well, we therefore save for each weighted
character its most probable symbol at the current location i: symA

i .
We fill the dynamic programming table in row-major order. Computing an en-

try i, j implies computing the most probable common supersequence of A[1 . . . i]
and B[1 . . . j] of length k. k starts from max{i, j}, which means the superse-
quence is of minimal length. The maximal k for pk

i,j is i + j, representing some
sort of concatenation.

Considering pk
i,j, the correlated supersequence can be constructed by match-

ing the ai and bj , selecting their besti,j symbol, and by this extending a smaller
supersequence by that symbol. Another option is to append the most probable
symbol of ai, symA

i , to the supersequence of A[1 . . . i− 1] and B[1 . . . j], Adding
symB

j , the representative of bj, to the supersequence can be done likewise. The
algorithm considers these three options and selects the one with highest proba-
bility.

The table initialization is as follows. Column 0, contains the probability of
a supersequence containing merely prefixes of the A sequence. That is pi,0 =∏i

y=1 symA
y . Row 0, is filled by p0,j =

∏j
y=1 symB

y . Lemma 1 formally defines
the computation required for filling an entry in the dynamic programming table.

Lemma 1. SCWS(A[1 i], B[1 . . . j]) =

{pk
i,j}

i+j
k=max{i,j} = max{symB

j · pk−1
i,j−1, symA

i · pk−1
i−1,j , besti,j · pk−1

i−1,j−1}.

An inductive proof will appear in the full version.
We fill the table and then go over {pk

n,n} in increasing order of k, and check
whether pk

n,n ≥ α. The length of the shortest common supersequence with prob-
ability bounded by α is our output.

Note, that we do not have to compute pk
i,j for all possible k’s in the same

iteration, as the dependency on adjacent entries holds for each of the pk
i,j ’s

separately. Therefore, The algorithm can fill the table layer after layer. At ev-
ery step, it computes pk

i,j for a certain k for all possible i, j. Note that the k

50 A. Amir, Z. Gotthilf, and B.R. Shalom

πB
1 (a) = 0.5 πB

2 (a) = 0.3 πB
3 (a) = 0.1 πB

4 (a) = 0.4

πB
1 (b) = 0.4 πB

2 (b) = 0.2 πB
3 (b) = 0.1 πB

4 (b) = 0.3
πB

1 (c) = 0.1 πB
2 (c) = 0.5 πB

3 (c) = 0.8 πB
4 (c) = 0.3

symB
1 − 0.5 symB

2 − 0.5 symB
3 − 0.8 symB

4 − 0.4

p0 = 1 p1 ↓[a].5 p2 ↓[ac].25 p3 ↓[acc].2 p4 ↓[acca].08
πA

1 (a) = 0.2 p1 →[b].4 (best - 0.16)[b] (best - 0.2)[c] (best - 0.32)[c] (best - 0.12)[b]
πA

1 (b) = 0.4 p1 ↘[b].16 p2 ↘[ac].1 p3 ↘[acc].08 p4 ↓[acca].032
πA

1 (c) = 0.4 p2 →[ab].0.2 p3 ↓ [abb].1 p4 ↓[abbc].08 p5 →.032

symA
1 − 0.4

πA
2 (a) = 0.5 p2 →[ba].2 (best - 0.25)[a] (best - 0.2)[c] (best - 0.32)[c] (best - 0.2)[a]

πA
2 (b) = 0.1 p2 →[ba].1 p2 ↘[bc].032 p3 ↘[acc].0256 p4 ↘[acca].016

πA
2 (c) = 0.4 p3 ↓[aba].1 p3 →[aca].05 p4 ↓[acac].04 p5 ↘.016

symA
2 − 0.5 p4 →[abba].05 p5 ↓ [abbac].04 p6 →.016

p3 →[bab].18 (best - 0.36)[b] (best - 0.18)[b] (best - 0.09)[b] (best - 0.27)[b]
πA

3 (a) = 0 p3 →[bab].09 p3 →[bcb].0288 p3 ↘[bcb].0029 p4 ↘[accb].0069

πA
3 (b) = 0.9 p4 ↓[baba].09 p4 →[acab].045 p4 ↓[bcbc].023 p5 →.0144

πA
3 (c) = 0.1 p5 ↓[babac].045 p5 →.036 p6 →.0144

symA
3 − 0.9 p6 →.036 p7 ↓.0144

p4 →[baba].108 (best - 0.3)[a] (best - 0.18) [a] (best - 0.24)[c] (best - 0.24)[a]
πA

4 (a) = 0.6 p4 →[abab].054 p4 →[bcba].0173 p4 ↘[bcbc].0069 p4 ↘[bcba].0007
πA

4 (b) = 0.1 p5 ↓[ababa].054 p5 →[acaba].027 p5 →.0138 p5 ↘.0055
πA

4 (c) = 0.3 p6 →[babaca].027 p6 ↓.0216 p6 ↘.0086
symA

4 − 0.6 p7 →.0216 p7 →.0086
p8 →.0086

Fig. 3. A SCWS Table

parameter differs as the i, j increase, as the minimal supersequence of growing
prefixes increases. This computation is based on the known values surrounding
pk

i,j , according to Lemma 1.
At the end of the yth iteration, we check whether the current pk

n,n ≥ α,
where k = n + y − 1. In case the inequality is valid we consider n + y − 1 as the
answer, we have just found a common supersequence of this length with a proper
probability. There may be another supersequence with even better probability,
nevertheless, we are interested in the shortest one.

If the contrary holds and pn+y−1
n,n < α we know, due to Lemma 1, that there

is no supersequence of such length, satisfying the weight demands. Yet, we com-
pute pk+1

i,j for the table, in the hope of attaining a higher probability for a
supersequence, in case undoing a single match and obtaining higher individual
probabilities of the characters, as was shown in Figure 2. In addition, we discard
all pk−1

i,j ’s, as their information is useless from now on.
An example of a SCWS table where α = 0.005 appears in Fig. 3. Arrows

attached to each pk
i,j enable us to backtrack and form the supersequence itself.

For each probability we denote the common supersequence implied by it, till the
length of 4, due to technical limitations.

Theorem 1. The SCWS problem is solvable in O(Ln2) time and O(n2) space,
where the output is L + n, the length of the shortest common weighted superse-
quence of the input sequences.

Weighted Shortest Common Supersequence 51

Proof: The Algorithm stops after an iteration in which the weight bound is
satisfied. The first applicable length of a SCS(A[1..n], B[1..n]) equals n, when
the inputs are identical. Therefore, if the SCWS is of length n + L the number
of iterations performed is L + 1. In each iteration, pk

i,js are computed for all
n2 entries of the table. This computation involves a constant number of oper-
ation, as detailed in Lemma 1. In addition, besti,j is determined once in time
O(|Σ|n2).

Since in most applications of the Position Weight Matrix, |Σ| is a constant,
the time complexity is O(Ln2).

Regarding space, at each iteration we consider for each entry, two probabilities
pk

i,j and pk+1
i,j and the table consists of n2 entries, the space requirement is O(n2).

In real-world applications it is rarely the case that one needs to compare only
two data instances. Rather, it is important to be able to compare multiple se-
quences. Our algorithm can be generalized in the natural way to deal with mul-
tiple weighted sequences.

4 Shortest Common Weighted Supersequence with Two
Thresholds

The Shortest Common Weighted Supersequence with Two Thresholds (SCWS2)
problem, defined in Section 1, Definition 3, in which the probability of each of the
sequences, taking part in a supersequence, should exceed its αi threshold. This
problem cannot be solved in the same manner as the SCWS is solved, due to
the fact that in the SCWS problem all probabilities are associatively multiplied.
As a consequence, SCWS optimal solution can consider at every step increasing
prefixes of the input strings, while SCWS2 with different threshold to each
input, can not.

Observation 2. It is not sufficient to consider at every step increasing prefixes
of the input sequences in order to obtain an optimal solution for the SCWS2
problem.

Intuition: In this problem we would like to multiply high probabilities in both
sides. When A[i], B[j] do not agree on a preferable symbol, where there is a
σ1 whose probability is maximal in A[i] but σ2 �= σ1 has maximal probabil-
ity in B[j], it is not clear which symbol one should choose for the common
subsequence. It may be more profitable to choose σ1, even causing the B prob-
ability to decrease a lot, since later on a reversed case will occur and balance
the probabilities. It, therefore, seems intuitive that local considerations do not
suffice for computing the SCWS2 problem. This intuition is proven in the next
subsection.

We prove that the SCWS2 problem is NP-hard using Turing reduction from
the Partition problem. To this aim we define the CWS2 decision version:

52 A. Amir, Z. Gotthilf, and B.R. Shalom

Definition 4. Common Weighted Supersequence with 2 thresholds (CWS2):
Input: Two p-weighted strings A, B of length n over alphabet Σ,

and constants L, α1, α2, 0 < αi ≤ 1.
Output: Is there a common weighted supersequence of length L, where

(
∏n

y=1 πiy (aiy)) ≥ α1 AND (
∏n

y=1 πiy (bjy)) ≥ α2, and
ay, by reffer to the symbols representing each location of the inputs.

Definition 5. The Partition problem: [6]
Input: A finite set S and a “value” v(s) ∈ Z+ for each s ∈ S.
Output: Is there a subset S′ ⊆ S such that

∑
s∈S′ v(s) =

∑
s∈S−S′ v(s) ?

Theorem 2. The SCWS2 problem is NP-hard since Partition ≤p
T CWS2.

Proof: We prove the hardness using a Turing reduction from the Partition prob-
lem. Given set S = s1, s2, ..., sn of integers, we construct two weighted sequences
A = A1..An, B = B1..Bn both over alphabet of size 6. In addition we need to
set a pair of thresholds α1, α2 and L, the length of the optimal supersequence.

Observation 3. The requirement that the product of the probabilities of the
common sequence be higher than αi is equivalent to demanding that the sum of
the logarithm of the probabilities will be higher than log αi.

The logarithms of probabilities are all negative numbers. We can simply invert
the signs of all numbers, making them all positive, and require adding as many
numbers as possible without exceeding (the inverted) log αi.

Note that, given a set S = s1, s2, ..., sn as an input of the Partition problem, if
we multiply all si ∈ S by a constant factor and create the set S′ = s′1, s

′
2, ..., s

′
n,

then the Partition problem for the set S′ remains NP-hard. Therefore, we as-
sume that we can normalize any instance of the Partition problem without chang-
ing its hardness.

We are now ready to define the reduction. Given a set S = {s1, ..., sn} as
an input of the partition problem, we set alphabet of the SCWS2 problem to
be Σ = {σ1, ..., σ6}. We define two p-weighted sequences, A and B, of length
n + (n + 1)(n − 1).

We define the probabilities of the symbols of Σ in the following manner. Let
sum =

∑
s∈S s, the sum of all elements of S. We first multiply every si ∈ S by

a constant factor such that:
∑

s∈S 2−si = 1/n2. Then, we set the probabilities
as follows.

πA
i (σj) =

⎧⎪⎪⎨⎪⎪⎩
2−si j = 1
0.8 j = 2
xi j = 3
0 otherwise

πB
i (σj) =

⎧⎪⎪⎨⎪⎪⎩
2−(1/n2−si) j = 1
0.8 j = 4
yi j = 5
0 otherwise

Notice that, 2−0.32192 = 0.8, hence, the probability of σ2 is 0.8 for every loca-
tion in A and B. Since the sum of all the element in S is 1/n2, then the value
of xi is such that 2−si + 2−xi = 0.2. Therefore it is much more “expensive” to

Weighted Shortest Common Supersequence 53

select σ1 or σ3 relatively to σ2. We can easily see that the sum of all probabilities
for every πA

i is 1. Similarly, the value of yi (in string B) is such that 2si−1/n2
+

2−yi = 0.2.
In the above described construction we only refer to n locations in the SCWS2

instance. In addition we set n+1 characters according to the following probabil-
ities between any two text locations in A and B (altogether we add (n+1)(n−1)
characters to each string). These characters are used as separation between any
two characters from the input:

πA
i (σj) =

{
1 j = 6
0 otherwise

πB
i (σj) =

{
1 j = 6
0 otherwise

We proceed with the Turing reduction. We perform up to n/2 iterations. In
the ith iteration we set α1 = (n − i)0.32192 + 0.5(1/n2), α2 = (n − i)0.32192 +
(i−0.5)(1/n2), and L = (n−1)(n+1)+n+i. We check whether there is a CWS2
with these parameters. In case there is a CWS2 in ith iteration, we declare a
partition of S into sizes i and n− i. Otherwise, we increment i by one and start
a new iteration. If no CWS2 was found after the n/2 iteration we terminate the
search. A formal proof to Theorem 2 is to appear in the journal version of the
article.

5 Conclusions and Open Problems

The main contribution of this paper is in introducing a generalization of the
shortest common supersequence problem defined on position weight matrices
instead of strings. Two different problem variants are defined. For the first model,
a polynomial time algorithm is given, and for the other model, NP-hardness is
shown. It remains unclear what is the actual complexity class of the SCWS2
problem, since we used a Turing reduction for the hardness proof. In addition,
an approximation algorithm can be sought.

References

1. Amir, A., Chencinski, E., Iliopoulos, C.S., Kopelowitz, T., Zhang, H.: Property
Matching and Weighted Matching. Theor. Comput. Sci. 395(2-3), 298–310 (2008)

2. Amir, A., Gotthilf, Z., Shalom, R.: Weighted LCS. J. Discrete Algorithms 8(3),
273–281 (2010)

3. Amir, A., Iliopoulos, C.S., Kapah, O., Porat, E.: Approximate Matching in
Weighted Sequences. In: Lewenstein, M., Valiente, G. (eds.) CPM 2006. LNCS,
vol. 4009, pp. 365–376. Springer, Heidelberg (2006)

4. Apostolico, A., Landau, G.M., Skiena, S.: Matching for run-length encoded strings.
Journal of Complexity 15(1), 4–16 (1999)

5. Clifford, R., Gotthilf, Z., Lewenstein, M., Popa, A.: Restricted common superstring
and restricted common supersequence. In: Giancarlo, R., Manzini, G. (eds.) CPM
2011. LNCS, vol. 6661, pp. 467–478. Springer, Heidelberg (to appear, 2011)

6. Garey, M.R., Johnson, D.S.: Computers and Intractability: A Guide to the Theory
of NP-Completeness. W. H. Freeman and Co., New York (1979)

54 A. Amir, Z. Gotthilf, and B.R. Shalom

7. Gotthilf, Z., Lewenstein, M.: Improved Approximation Results on the Shortest
Common Supersequence Problem. In: Karlgren, J., Tarhio, J., Hyyrö, H. (eds.)
SPIRE 2009. LNCS, vol. 5721, pp. 277–284. Springer, Heidelberg (2009)

8. Iliopoulos, C., Makris, C., Panagis, Y., Perdikuri, K., Theodoridis, E., Tsakalidis,
A.K.: Efficient Algorithms for Handling Molecular Weighted Sequences. In: IFIP
TCS, pp. 265–278 (2004)

9. Iliopoulos, C.S., Mouchard, L., Pedikuri, K., Tsakalidis, A.K.: Computing the repe-
titions in a weighted sequence. In: Proc. of the 2003 Prague Stringology Conference
(PSC 2003), vol. 10, pp. 91–98 (2003)

10. Jiang, T., Li, M.: On the Approximation of Shortest Common Supersequences and
Longest Common Subsequences. SIAM Journal on Computing 24(5), 1122–1139
(1995)

11. Maier, D.: The Complexity of Some Problems on Subsequences and Superse-
quences. Journal of the ACM 25(2), 322–336 (1978)

12. Thompson, J.D., Higgins, D.G., Gibson, T.J.: CLUSTAL W: improving the sen-
sitivity of progressive multiple sequence alignment through sequence weighting,
position-specific gap penalties and weight matrix choice. Nucleic Acids Res. 22,
4673–4680 (1994)

13. Räihä, K.-J., Ukkonen, E.: The Shortest Common Supersequence Problem over
Binary Alphabet is NP-complete. Theoretical Computer Science 16(2), 187–198
(1981)

14. Sankoff, D.: Minimal Mutation Trees of Sequences. SIAM Journal on Applied
Mathematics 28, 35–42 (1975)

15. Timkovsky, V.G.: Complexity of common subsequence and supersequence prob-
lems and related problems. Kibernetika 25, 565–580 (1989); English Translation in
Cybernetics 25: 565-580, 1990

16. Venter, J.C., Celera Genomics Corporation: The Sequence of the Human Genome.
Science 291, 1304–1351 (2001)

Approximate Regular Expression Matching
with Multi-strings�

Djamal Belazzougui and Mathieu Raffinot

LIAFA, Univ. Paris Diderot - Paris 7, 75205 Paris Cedex 13, France
{dbelaz,raffinot}@liafa.jussieu.fr

Abstract. In this paper, we are interested in solving the approximate
regular expression matching problem: we are given a regular expression
R in advance and we wish to answer the following query: given a text
T and a parameter k, find all the substrings of T which match the reg-
ular expression R with at most k errors (an error consist in deleting
inserting, or substituting a character). There exists a well known solu-
tion for this problem in time O(mn) where m is the size of the regular
expression (the number of operators and characters appearing in R) and
n the length of the text. There also exists a solution for the case k = 0
(exact regular expression matching) which solves the problem in time
O(dn), where d is the number of strings in the regular expression (a
string is a sequence of characters connected with concatenation oper-
ator). In this paper, we show that both methods can be combined to
solve the approximate regular approximate matching problem in time
O(kdn) for arbitrary k. This bound can be much better than the bound
O(mn/ logk+2 n) achieved by the best actual regular expression match-
ing algorithm in case d < m

k logk+2 n
(that is k is not too large and R

contains much less occurrences of ∪ and ∗ than occurrences of (·)).

1 Introduction

The need to search for regular expressions arises in many text-based applications,
such as text retrieval, text editing, computational biology and network security.
A regular expression is a generalized pattern composed of (i) basic strings, (ii)
union, concatenation and Kleene closure of other regular expressions. Readers
unfamiliar with the concept and terminology related to regular expressions are
referred to a classical book such as [1]. We call m the length of our regular
expression, not counting operator symbols. The alphabet is denoted Σ, and n is
the length of the text.

Exact regular expression matching is a long standing problem and several
algorithms have been proposed to obtain efficient algorithm in linear space. The
best search results obtained so far are O(nm(log log n)/(log n)3/2) time [4].

A recent paper opened a breakthrough in this field. In [5], Bille and Thorup
consider matching regular expression considering the number d of substrings
� This work is supported by the french ANR-2010-COSI-004 project MAPPI.

R. Grossi et al. (Eds.): SPIRE 2011, LNCS 7024, pp. 55–66, 2011.
© Springer-Verlag Berlin Heidelberg 2011

56 D. Belazzougui and M. Raffinot

(consecutive symbols concatenated) contained in the expression instead of the
number of symbol m. The motivation for studying this kind of pattern is that
most of the regular expression searches are in fact words or parts of complete
words combined together by union and Kleene closure. For instance, in TATA.
(GATA | CATG)∗. GCATA, m = 17, while d = 3. Note that d can be asymptot-
ically o(m). They presented an O(n(d log w/w + log d)) (where w is the number
w of bits in a memory word) algorithm to search a given regular expression in a
text, that is, with a complexity depending on d instead of m.

In this paper we focus on approximate regular expression matching, that is,
searching for a given regular expression in a text allowing a limited number
of errors k, where k might be an insertion, a deletion or a substitution of a
character by another. Approximately searching for a general regular expression
might be performed in O(nm/ logk+2(n)) by the algorithm of Wu, Manber and
Myers [16] which space complexity has been improved by Bille and Farach in [2].
However, similarly to the exact matching case, most of the regular expressions
approximately searched for contain many long strings. We thus consider in this
paper the problem of approximately searching for such patterns and we propose
an O(kdn) algorithm which is faster that the general matching algorithm when
d < m

k logk+2 n .

2 Notations and Definitions

Some notations and definitions that are used in this paper follow.

2.1 Notation

A word is a string or sequence of characters over a finite alphabet Σ. The empty
word is denoted ε and the set of all words built on Σ (ε included) is Σ∗. A word
x ∈ Σ∗ x of p is called a suffix (resp. prefix) of p is p = ux (resp. p = xv),
u, v ∈ Σ∗.

We define also the language to denote regular expressions. Union is denoted
with the infix sign “ |”, Kleene closure with the postfix sign “∗”, and concatenation
simply by putting the sub-expressions one after the other. Parentheses are used
to change the precedence, which is normally “∗”, “.”, “ |”. We call RE our regular
expression pattern, which is of length m and contains d strings. We note L(RE)
the set of words generated by RE. Eventually, given a text T we note by T [i..j],
the substring of T which starts at position i and ends at position j.

2.2 Definitions

Definition 1. We define the edit distance between two strings s1 and s2 as the
minimal number of edit operations needed to transform s1 into s2, where the
possible edit operations are the deletion of a letter, the substitution of a letter
by another and the insertion of a letter. Furthermore we note that number of
operations by δ(s1, s2) = δ(s2, s1).

Approximate Regular Expression Matching with Multi-strings 57

Definition 2. In the approximate string matching problem we are given a string
q, a threshold k and a text T , and we are asked to return all the substrings of T
of the form T [i..j] such that δ(T [i..j], q) ≤ k.

Definition 3. In the regular expression matching we have a regular expression
match R and a text T and we are asked to return every j such there exists a
substring T [j..i] ∈ L(R), where L(R) is the language generated by R.

Definition 4. In the approximate regular expression matching we have a regular
expression match R, a text T and a threshold k and we are asked to return
every j such there exists a substring T [j..i] and a string p ∈ L(R) such that
δ(p, T [j..i]) ≤ k.

3 Thompson’s Automaton

We re-use the classical construction of Thompson’s automaton to build a non
deterministic automaton accepting the language of a given regular expression.
The automaton contains ε-transitions and we distinguish two types of nodes, ε-
nodes, in which all ingoing transitions are ε-transitions, and the others, denoted
L-nodes.

The construction of the automaton is done recursively on the expression using
the patterns shown on figure 1.

α

(a) Let-
ter α

automaton of L2automaton of L1

(b) L1.L2

automaton of L1

automaton of L2ε

ε ε

ε

(c) L1|L2

ε ε

ε

ε

automaton of L

(d) L∗

ε
ε

ε

ε

ε

ε

ε

G A

G

T A A

G
ε

(e) GA(TAA|GG)∗

Fig. 1. Patterns for recursively building Thompson’s automaton on a given regular
expression and an instance of such an automaton built on GA(TAA|GG)∗

The construction is O(m) and the number of states and transitions is also
O(m). We refer the reader to [1] for details on Thompson’s construction.

Most of the regular expression matching are based on Thompson’s automaton
which is directly built from the regular expression using the following rules:

58 D. Belazzougui and M. Raffinot

– a regular expression consisting in a single character c generates an automaton
with two states I and F , linked with one transition labeled with the character
c. The state I is the initial state of the automaton and the state F is the
accepting state of the automaton (see Figure 1-(a)).

– a regular expression R = R1 ·R2 generates an automaton which contains all
original states and transitions of automatons of R1 and R2 except that the
final state of automaton of R1 is merged with initial state of the automaton
of R2 (see Figure 1-(b)).

– a regular expression R = R1 ∪ R2 generates an automaton which contains
the states and the transitions which appear in automaton of the regular
expressions R1, R2 with two new states I, F and four new transitions labeled
with ε (see Figure 1-(c)).

– a regular expression R = R∗
1 generates an automaton which contains all

the original states of R1 with two new states I, F and four new transitions
labeled with ε (see Figure 1-(d)).

The essential property of Thompson’s automaton is that it contains m = O(|R|)
states and O(m) transitions. Exploiting this property there exists a simple al-
gorithm for regular expression matching on a text of length n which runs in
O(mn) time using O(m) working space. This algorithm was extended By Miller
and Myers for solving the approximate regular expression matching in the same
time and space bounds. We present their algorithm in the following section.

4 Approximate Regular Expression Matching

We now describe more in detail the Myers and Miller’s algorithm for approximate
regular expression matching. The algorithm preprocesses the regular expression
and builds Thompson’s automaton on it. A counter ci of �log(k + 1)� bits is
maintained with each state i of the automaton. When set to a value larger than
k a counter saturates and gets the maximal value k + 1.

During the scanning of the text T at each step j this counter will store the
smallest distance between any suffix of T [1..j] and the language represented by
the state i. Thus at any step j the smallest distance between any suffix of j
and the language L(R) is indicated by the counter cF which corresponds to the
accepting state F .

More formally let E[i, j] indicate the smallest distance between state i and the
suffixes of T [1..j]. That is, at a step j during the scanning of the text character
T [j] we let E[i, j] = ci. We denote the states of the automaton by I for the initial
state and F for the final state. The states are numbered from 1 to D excluding
the initial state. Thus our automaton will have D +1 states. We say that a state
i is an L-node if it has only a single ingoing transition labeled by a character
�i. Otherwise the state i will be an ε-node with all ingoing transitions being
labeled by ε. For any node i we note by Pre(i) the set of nodes with outgoing
transitions leading to i (if i is an L-node then clearly the set Pre(i) will have a
single element in it). In addition for ε-nodes, we note by Pre(i) the set of nodes
with outgoing transitions to i excluding the back transition.

Approximate Regular Expression Matching with Multi-strings 59

The values of E[i, j] are set by the following pseudo-code:
1. for j = 1 to n do
2. E[I, j] ← 0
3. E′[I, j] ← 0
4. end for
5. for i ∈ [1, D] do

6. E[i, 0] ←
{

min E[Pre(i), 0] + 1 if i is an L-node
min E[Pre(i), 0] if i is an ε-node

7. end for
8. for j ∈ [1, n] do
9. for i ∈ [1, D] do

10. E′[i, j] ←

⎧⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎩

if i is an L-node
min E[i, j − 1] + 1, E[Pre(i), j − 1] + δ(�i, T [j]),

E′[Pre(i), j] + 1)
if i is an ε-node

min E′[Pre(i), j]
11. end for
12. for i ∈ [1, D] do

13. E[i, j] ←
{

min (E′[i, j], E[Pre(i), j] + 1) if i is an L-node
min (E′[Pre(i), j], E[Pre(i), j]) if i is an ε-node

14. end for
15. end for

An example of the underlying automaton of the algorithm and the values calcu-
lated when matching GA(TAA|GG)∗ in GCTAGG is given in Figure 2.

Lemma 1 ([11]). Given a regular expression R of total size m and after O(m)
preprocessing time, we can solve the approximate regular expression matching
for any given text T of size n in time O(mn). The space used to solve the query
is O(m).

5 Incremental String Comparisons

Our algorithm needs to solve the following problem while scanning the text.
Given a pattern p of length m and a positive integer k we would want to solve
the following problem: given a text T read character by character at any given
step j, identify all suffixes of T [1..j] which are at distance k from p. Note that
because the length of those suffixes can differ from p by at most k (obviously if
they are too short or too long then one needs too much insertions or deletions
to get p) their number is at most 2k +1. The following lemma shows an efficient
solution to this problem.

Lemma 2 ([8]). Given a pattern p of length m and after O(m) preprocessing
time, we can solve approximate string matching problem for a text T and a

60 D. Belazzougui and M. Raffinot

ε
ε

ε

ε

ε

ε

ε

G A

ε
ε

ε

ε

ε

ε

ε
ε

ε

ε

ε

ε

G A

G A

ε
ε

ε

ε

ε

ε

G A

ε
ε

ε

ε

ε

ε

G A

ε
ε

ε

ε

ε

ε

G A

ε
ε

ε

ε

ε

ε

G A

G G

G

G

G

G

G

G

T A A

T A A

T A A

T A A

T A A

T A A

T A A

G

C

T

A

G

G

1

1 1

0 10

10 2 2

2 3 4 5

2 3 4
4 2

1

1

1

2

1 10

0 1

0 1 1

0 0 1

1

1

0 0 1 1

3 4

3
322

1

13

432

321
1

22

2

2

1 2

3

3

3
4

12

212

2

1

1 3

12
211

1 2 3 2

11
111

1 2 3 3

G

G
ε

ε

ε

G

G
ε

G
ε

G
ε

ε

00

0

0

0

0

0 0

0

0 0

00

2

Fig. 2. Myers and Miller’s algorithm applied for searching for GA(TAA|GG)∗ in
GCTAGG

threshold k in time O(kn). The space used by the query is O(k2). More specifically
at any given time step i the algorithm is able to return δ(T [j..i], p) for every j
such that δ(T [j..i], p) ≤ k.

6 Bille and Thorup’s Algorithm

Our algorithm is based on Bille and Thorup’s algorithm, which we describe now.
The main contribution in Bille and Thorup’s algorithm is to show that it is pos-
sible to do the matching in O(dn) time only where d is the number of strings in
the regular expression. Thus this algorithm has the potential to run much faster
than the original Thompson algorithm in case the regular expression contains a
lot of (·) operators. Seen in another way the number of occurrences of operators
∪, ∗ appearing in R is O(d) only. Next we describe more in detail Billes and
Thorup’s algorithm [5].

Approximate Regular Expression Matching with Multi-strings 61

Bille and Thorup Data Structure. First Bille and Thorup generate a new
regular expression R′ by grouping each maximal sequences of (·) consecutive op-
erators in the original regular expression into a single entity which in fact is just
a string of characters. Then each such string is added to a set S and is replaced
by a single meta-character in the regular expression R′. It is easy to see that
the new regular expression has size O(d) states where d is the number of strings
appearing in the regular expression. The alphabet of the new regular expression
R′ will be union of the original alphabet and the set of added metacharacters
and thus will be of size σ + O(d). In a second step Bille and Thorup build an
Aho-Corasick automaton on the set of strings S which takes space O(m) space
and the ordinary Thomson Automaton is built on the regular expression R′.

Regular Expression Matching in Bille and Thorup. For matching the
regular expression Bille and Thorup maintain a queue of length mi for each
string si ∈ S of length mi. This queue uses only mi bits. We note this queue
by qi[1..mi]. At the beginning all the bits in the queue are set to zero. At each
step of the regular expression matching zero or one bit bi is pushed in the back
of each queue qi. This is done by:

1. The element qi[mi] (head of the queue) is thrown out of the queue.
2. Every element qi[j] is stored into qi[j + 1] for j decreasing from mi − 1 to 1.
3. Finally the bit b is written in q[1].

The matching algorithm can be summarized by the following steps:

1. Read next character c from the text and advance the Aho-Corasick automa-
ton based on character c.

2. The Aho-Corasick automaton will output a set of occurrences of patterns of
S. For each pattern si ∈ S reported by the Aho-Corasick automaton push
the bit bi = 1 on the back of queue qi. For all other pattern si ∈ S not
reported by the automaton instead push the bit bi = 0 on the back of the
queue qi.

3. Now advance Thompson’s automaton by considering each transition outgo-
ing from one of the currently active states and take that transition only if it
is labeled with ε or labeled with a metacharacter si ∈ S such that qi[mi] = 1.

Lemma 3 ([6]). Given a regular expression R of size m, containing d strings
and after O(m) preprocessing time, we can solve the exact regular expression
matching for any given text T of size n in time O(dn). The space used to solve
the query is O(m).

7 A New O(kdn) Algorithm

Our solution combines three algorithms:

62 D. Belazzougui and M. Raffinot

– The algorithm of [11] for updating and modifying the distances for each state
of the automaton.

– The Landau et al [8] algorithm for computing the distances of suffixes of the
text and each string in S.

– Additionally we use the approach of Bille and Thorup to maintain the old
distance computed for each state. in the relevant past steps.

In our approach we shall use error counters of �log(k + 1)� bits as defined in
section 4.

0

0

0

0

0

0

0

G

C

T

A

G

G

ε
ε

ε
1 1

1

1
ε

ε

ε

ε
3

1
1 1

G G

AAT
AG

ε

ε
ε

ε
1 1

1

1
ε

ε

ε

ε
2

2
2 1

G G

AAT
AG

ε

ε
ε

ε
1 1

1

1
ε

ε

ε

ε
2

2
2 1

G G

AAT
AG

ε

ε
ε

ε
2 2

2

2
ε

ε

ε

ε
2

4
2 2

G G

AAT
AG

ε

ε
ε

ε
1 1

1

1
ε

ε

ε

ε
4

3
3 1

G G

AAT
AG

ε

ε
ε

ε
1 1

1

1
ε

ε

ε

ε
4

3
3 1

G G

AAT
AG

ε

ε
ε

ε
2 2

2

2
ε

ε

ε

ε
5

4
4 2

G G

AAT
AG

ε

Fig. 3. Our new algorithm applied for searching for GA(TAA|GG)∗ in GCTAGG with
k = 1. For clarity outgoing edges from bold rounded states are not drawn.

Approximate Regular Expression Matching with Multi-strings 63

7.1 Preprocessing

The preprocessing phase is quite similar to Bille and Thorup’s algorithm. Given
the regular expression R, a new regular expression R′ is generated by grouping
each maximal sequences of consecutive operators (·) into strings adding each
such string to a set S and replacing it with a single meta-character in the regular
expression R′.

Then in a second phase for each string si ∈ S, we build the data structures
needed by Landau et al’s text approximate matching algorithm.

Bille and Thorup’s algorithm maintains for each element si ∈ S of length
mi, a queue qi holding mi elements where each element is a bit. In our case we
instead maintain a queue qi of size mi + k, where each element is a counter of
�log(k + 1)� bits. At the beginning all values in the queue are initialized to the
value k + 1.

7.2 Matching Algorithm

During the matching we use the Landau et al’s matching algorithm as a black-
box. At any step j, we let the function ED(i, j) as the function which returns
the vector V [1..min(mi, k+1)+k] containing all distances of si to the substrings
T [j − mi − k + 1..j],. . . ,T [j − max(mi, k + 1) + k + 1..j]1. Also for any queue
qi[1..mi + k] we let push(qi, x) denote the operation which pushes the value x
on the back of the queue qi. In our algorithm we will use a temporary vector Δ
of size 2k + 1. The intermediate results of the algorithm are virtually stored in
a matrix E[1..D, 1..n] but only one column of that matrix need to be stored at
any time. The algorithm pseudo-code follows:

1. E[I, 0] ← 0
2. for i ∈ [1, D] do
3. if i is an L-node then
4. E[i, 0] ← min E[Pre(i), 0] + mi

push(qi, E[Pre(i), 0])
5. else
6. E[i, 0] ← min E[Pre(i), 0] // i is an ε-node
7. end if
8. end for
9. for j ∈ [1, n] do

10. E′[I, j] ← 0
11. for i ∈ [1, D] do
12. if i is an L-node then
13. Δ[1..min(mi, k + 1) + k] = ED(i, j)
14. E′[i, j] ← E′[Pre(i), j] + mi

15. for t = max (mi − k, 1) to mi + k do

1 By convention the distance to undefined substring T [a, j] for a < 1 is k + 1.

64 D. Belazzougui and M. Raffinot

16. E′[i, j] ← min (E′[i, j], qi[t] + Δ[mi − t + k + 1])
/* Note that qi[t] = E[Pre(i), j − t] and
Δ[mi − t + k + 1] = δ(si, T [j − t + 1..j])). /*

17. end for
18. else
19. E′[i, j] ← min E′[Pre(i), j] // i is an ε-node
20. end if
21. end for
22. E[I, j] ← 0
23. for i ∈ [1, D] do
24. if i is an L-node then
25. E[i, j] ← min (E′[i, j], E[Pre(i), j] + mi)

push(qi, E[Pre(i), j])
26. else
27. E[i, j] ← min (E′[Pre(i), j], E[Pre(i), j]) // i is an ε-node
28. end if
29. end for
30. end for

A schematic representation of the underlying automaton of our new algorithm
and the values calculated when matching GA(TAA|GG)∗ in GCTAGG is given
in Figure 3.

Theorem 1. Given a regular expression R of total size m, containing d strings
and after O(m) preprocessing time, we can solve the approximate regular expres-
sion matching for any given text T of size n and a threshold k in time O(kdn).
The space used to solve the query is O(k2d + m).

Proof. To prove the correctness of the algorithm, we need to prove that the
computed distances for both L-nodes and ε-nodes are correct.

For the L-nodes we consider each L-node a with ingoing transition from a node
b labeled with string si. This L-node a represents a language A = B · sj and
its predecessor b represents a language B. Now consider the algorithm above.
At any step j, the variable E[a, j] must store the smallest distance between
any string in sa ∈ A and any suffix x of T [1..j]. Note that we must have
sa = sb · si with sb ∈ B. Now notice that x must be writable as x = x1 · x2

where δ(x, sa) = δ(x1, sb) + δ(x2, si) where sb must be the string in B with the
smallest distance to any suffix of T [1..j − |x2|] and this suffix must be x1. This
implies that E[b, j − |x2|] = δ(x1, sb). For the distance δ(x, sa) to be at most k
we must have both δ(x1, sb) ≤ k and δ(x2, si) ≤ k. The second condition implies
that −k ≤ |x2| − |si| ≤ +k and δ(x2, si) is actually computed by Landau et
al’s algorithm for precisely all possible x2 of lengths in the range [si − k, si + k].
Back to the algorithm, we remark that the counter of an L-node is updated by
lines 4,14,16 and 25 in the algorithm, which precisely compute the minimum
of all possible values of δ(x1, sb) + δ(x2, si), that is lines 4, 14 and 25 take care

Approximate Regular Expression Matching with Multi-strings 65

of the case x2 = ε while line 16 takes care of the other possible suffixes s2

where δ(x2, si) is retrieved from the vector Δ and δ(x1, sb) is retrieved from the
queue qi.

For proving the correctness of update steps of the ε-nodes, we remark our
automaton is exactly the same as that of Myers and Miller’s automaton except
that we suppress all intermediate L-nodes which are only connected to other
L-nodes. We also remark that the update loop for ε-nodes is exactly the same
as in Myers and Miller’s and the involved states (including L-nodes) are also
present in our automaton. Therefore the correctness of our update loop for ε-
nodes follows from the correctness of Myers and Miller’s algorithm loop and from
the fact that the distances of the involved L-nodes is correct as proved above.

The query time of the algorithm is clearly O(kdn) as we have two nested
loops with n and d iterations respectively with the latter loop containing an
inner loop with at most 2k + 1 iterations in addition to a Landau et al’s step
(call to function ED) which takes O(k) time.

Concerning the space usage, we note that only the last column of E and E′

need to be used at any time. The temporary vector Δ uses space O(k). The total
space used by the queues qi for all i amounts to O(dk + m). The space usage
of the algorithm is dominated by the Landau et Al’s matching algorithm which
uses O(k2d + m) space.

References

1. Aho, A., Sethi, R., Ullman, J.: Compilers: Principles, Techniques and Tools.
Addison-Wesley, Reading (1985)

2. Philip, B., Farach-Colton, M.: Fast and compact regular expression matching. The-
oretical Computer Science 409(3), 486–496 (2008)

3. Baeza-Yates, R.A., Gonnet, G.H.: Efficient text searching of regular expressions. In:
Ronchi Della Rocca, S., Ausiello, G., Dezani-Ciancaglini, M. (eds.) ICALP 1989.
LNCS, vol. 372, pp. 46–62. Springer, Heidelberg (1989)

4. Bille, P., Thorup, M.: Faster regular expression matching. In: Albers, S., Marchetti-
Spaccamela, A., Matias, Y., Nikoletseas, S., Thomas, W. (eds.) ICALP 2009.
LNCS, vol. 5555, pp. 171–182. Springer, Heidelberg (2009)

5. Bille, P., Thorup, M.: Regular expression matching with multi-strings and intervals.
In: Proceedings of the Twenty-First Annual ACM-SIAM Symposium on Discrete
Algorithms, SODA 2010, pp. 1297–1308 (2010)

6. Bille, P., Thorup, M.: Regular expression matching with multi-strings and inter-
vals. In: ACM-SIAM Symposium on Discrete Algorithms (SODA), pp. 1297–1308.
SIAM, Philadelphia (2010)

7. Knight, J.R., Myers, E.W.: Approximate regular expression pattern matching with
concave gap penalties. In: Apostolico, A., Galil, Z., Manber, U., Crochemore, M.
(eds.) CPM 1992. LNCS, vol. 644, pp. 67–78. Springer, Heidelberg (1992)

8. Landau, G.M., Myers, E.W., Schmidt, J.P.: Incremental string comparison. SIAM
J. Comput. 27(2), 557–582 (1998)

9. Mužátko, P.: Approximate regular expression matching. In: Proceedings of the
Prague Stringologic Club Workshop 1996, pp. 37–41 (1996)

10. Myers, E.W.: A four russians algorithm for regular expression pattern matching.
J. Assoc. Comput. Mach. 39(2), 430–448 (1992)

66 D. Belazzougui and M. Raffinot

11. Myers, E.W., Miller, W.: Approximate matching of regular expressions. Bull. Math.
Biol. 51, 7–37 (1989)

12. Myers, E.W., Oliva, P., Guimãraes, K.: Reporting exact and approximate regular
expression matches. In: Farach-Colton, M. (ed.) CPM 1998. LNCS, vol. 1448, pp.
91–103. Springer, Heidelberg (1998)

13. Navarro, G., Raffinot, M.: Fast regular expression search. In: Vitter, J.S., Zaroliagis,
C.D. (eds.) WAE 1999. LNCS, vol. 1668, pp. 198–213. Springer, Heidelberg (1999)

14. Thompson, K.: Regular expression search algorithm. Commun. ACM 11, 419–422
(1968)

15. Wu, S., Manber, U., Myers, E.: A subquadratic algorithm for approximate limited
expression matching. Algorithmica 15(1), 50–67 (1996)

16. Wu, S., Manber, U., Myers, E.W.: A subquadratic algorithm for approximate reg-
ular expression matching. J. Algorithms 19(3), 346–360 (1995)

Persistency in Suffix Trees with Applications to

String Interval Problems

Tsvi Kopelowitz1, Moshe Lewenstein2,�, and Ely Porat2,��

1 Weizmann Institute of Science Rehovot, Israel
2 Bar-Ilan University, Ramat-Gan, Israel

Abstract. The suffix tree has proven to be an invaluable indexing data
structure, which is widely used as a building block in many applications.
We study the problem of making a suffix tree persistent. Specifically,
consider a streamed text T where characters are prepended to the begin-
ning of the text. The suffix tree is updated for each character prepended.
We wish to allow access to any previous version of the suffix tree. While
it is possible to support basic persistence for suffix trees using classi-
cal persistence techniques, some applications which can make use of this
persistency cannot be solved efficiently using these techniques alone.

A collection of such problems is that of queries on string intervals of the
text indexed by the suffix tree. In other words, if the text T = t1...tn is in-
dexed, one may want to answer different queries on string intervals, ti...tj ,
of the text. These types of problems are known as position-restricted and
contain querying, reporting, rank, selection etc. Persistency can be uti-
lized to obtain solutions for these problems on prefixes of the text, by solv-
ing these problems on previous versions of the suffix tree. However, for
substrings it is not sufficient to use the standard persistency.

We propose more sophisticated persistent techniques which yield so-
lutions for position-restricted querying, reporting, rank, and selection
problems.

1 Introduction

Text indexing is one of the most important paradigms in searching. The idea is to
preprocess a text T = t1 · · · tn over alphabet Σ and construct a mechanism that
will later provide answers to queries of the form “report all of the occurrences
of a pattern P in the text” in time proportional to the size of the pattern and
output, rather than the size of the text. The suffix tree [10,14,16,17] has proven
to be an invaluable data structure for indexing. It is also considered a building
block for various other indexing and non-indexing problems.

Some of the suffix tree constructions work in the online model [16,17], in which
one maintains a suffix tree for a text that arrives character by character, and at
any given time we might receive a pattern query. For simplicity, we assume that
� This research was partially supported by the ISF (grant no. 1848/04).

�� This research was partially supported by the BSF (grant no. 2006334) and the ISF
grant (grant no. 1484/08).

R. Grossi et al. (Eds.): SPIRE 2011, LNCS 7024, pp. 67–80, 2011.
c© Springer-Verlag Berlin Heidelberg 2011

68 T. Kopelowitz, M. Lewenstein, and E. Porat

the text arrives from the end towards the beginning. Otherwise a single character
added at the end of the text can impose a linear number of changes to the suffix
tree. Of course, if the text arrives from beginning to end we can view the text in
reversed form and then a queried pattern is reversed as well in order to obtain
the correct results. The best currently known results for the online suffix tree
are an O(log |Σ|) amortized time per character by Weiner in [17], and O(log n)
worst case per character by Amir et.al in [2]. We also note that for constant-size
alphabets there is a different indexing structure by Amir and Nor [3].

Data structures which have the ability to allow access to previous versions of
themselves over the updates are known as persistent data structures [5,8,9]. For
a good survey see [12]. We focus on two types of persistent data structures. The
first type is fully persistent data structures, in which an update can be made
to any version of the data structure. In this type, one can imagine a tree of
versions of the data structure as update operations are performed on various
versions. The second type is known as partially persistent data structures, in
which an update can be made only to the last version created. In this type, one
can imagine a list of versions of the data structure as update operations are
performed only on the tail of the list. In Section 2 we will provide a quick review
on some of the known results in this field which we will later use.

To the best of our knowledge persistent suffix trees have not been considered
before. Nevertheless, since suffix trees have constant indegree it follows that one
can make suffix trees persistent using the result of [8]. However, this persistency
is useful solely for navigation purposes, which is sufficient for various standard
applications, e.g. queries of the sort “report all of the times in which a specific
stock has a series of consecutive values in the stock market, before last March”.
More sophisticated queries cannot be answered with navigational data on the
current text alone.

One subset of problems that we focus on is string interval problems, a.k.a.
position restricted problems. Here one has a suffix tree for the full text T =
t1 · · · tn but is interested in queries that are narrowed down onto an interval
ti · · · tj . One problem is known as position restricted indexing, see [13], position
restricted reporting, where one desires to report all matches within an interval of
the text, position restricted rank, where one desires to know the rank of a given
pattern within the interval of the text, and position restricted select, where one
desires to find the i’th appearance of a given pattern. The intuition for using a
persistent suffix tree for these type of problems is that by accessing the version of
the suffix tree just after ti was added, one may reduce the problem to searching
within the prefix of ti · · · tn of length j − i + 1.

Unfortunately, the persistent suffix tree on its own does not suffice for efficient
solutions for these problems. This happens because versions of the data structure
provide bounds for one side of the desired interval query, but not both. Hence,
we need to provide a persistent mechanism which supplies the capability for
answering the different queries for position restricted problems. We do this by
providing a general framework solution, and then show how each of the above
applications can be solved using this general framework.

Persistency in Suffix Trees with Applications to String Interval Problems 69

The most natural problem that our general framework solves is the position
restricted indexing (PRI) problem. In this problem we wish to preprocess the text
T = t1 · · · tn, to support subsequent queries of the form “Given a pattern P =
p1 · · · pm and two indexes i, j report all of the occurrences of P in ti · · · tj”. This
PRI problem is a very natural one, and was introduced by Mäkinen and Navarro
in [13]. PRI has also been addressed by Chien et al [7] where some connections
between PRI and range searching in 2D are shown. Recently, Bille and Gørtz
in [4] provided a solution for the PRI problem using O(n log n) preprocessing
time, O(n logε n) space (for any constant ε > 0), and achieve optimal query time
of O(m + occi,j) (where occi,j is the size of the output).

We show in this paper, using the notion of persistency and our general frame-
work, how one can solve PRI using O(n log n) preprocessing time, O(n logε n)
space (for any constant ε > 0), and achieve query time of O(m + log log |Σ| +
occi,j). For constant size alphabets we achieve the same complexities as those
of Bille and Gørtz in [4], however, for general alphabets their solution is more
efficient. Nevertheless, we choose to demonstrate our solution to this application
as it provides an easier understanding of the use of our general framework, which
later will allow us to solve other applications efficiently.

We discuss several other problems for which our general framework can help to
achieve better query time from what is currently known. For the counting version
of PRI (where we need to count the number of occurrences of P in ti · · · tj) we
obtain a data structure using O(n log n/ log log n) space data structure which
answers queries in O(m + log log |Σ|) time. This is comparable with the results
of [13] which by using n+o(n) space can answer queries in O(m+log n) time. We
note that while the authors in [13] claim that they can construct a data structure
achieving O(m + log log n) query time, using O(n logε n) space, is based on an
(unproven) claim that the data structure of [1] can answer 2D orthogonal range
counting queries in O(log log n) time on a grid. However, this cannot be true
as that would contradict the lower bounds of Patrascu [15]. In addition, our
solution for the counting version improves on the substring rank (SR) problem.
In the substring rank (SR) problem we need to preprocess T for a substring rank
query: given a pattern P and an integer k return the number of occurrences of
P in t1 · · · tk. The SR problem is a special case of the counting version of PRI
since we can answer it using by setting i = 1 and j = k−m+1. Thus the bounds
of the counting version of PRI apply to SR as well.

Finally, we address the substring selection problem where we wish to pre-
process T for a substring selection query: given a pattern P and an integer k
locate the kth occurrence of P in T . This problem was presented by Mäkinen
and Navarro [13], where the authors construct a data structure that requires
O(n� logn |Σ|) space where � is an upper bound on the size of the queried pat-
terns, and answer queries in O(m loglog n |Σ|) time. Our data structure requires
O(n log n/ log log n) space and can answer queries in optimal O(m) time. Fur-
thermore, we do not require any bound on the pattern length to be known in
advance.

70 T. Kopelowitz, M. Lewenstein, and E. Porat

Our paper is organized as follows. In Section 2 we provide some definitions
and preliminaries, including a quick review on some of the known persistent
data structures which we will later use. In Section 3 we describe the persistent
suffix tree. Then, in Section 4 we discuss the general framework used to solve
the applications which we follow up on in Section 5.

2 Definitions and Preliminaries

Given a string S, denote by |S| the length of S. An integer i is a location in
S if i = 1, . . . , |S|. Given a string T = t1 . . . tn (i.e. |T | = n, hereafter the
text) where for every location i ti ∈ Σ (hereafter the alphabet), a suffix of
T is a string of the form ti . . . tn, for some location i. Given another string
P = p1 . . . pm (hereafter the pattern), a location i in T is an occurrence of P in
T if ti . . . ti+m−1 = p1 . . . pm = P . The suffix tree of a string T is denoted by
ST (T).

We would like to assume that |Σ| ≤ n. If this is not the case we can use a hash
function in order to reduce Σ to a new alphabet ΣT such that |ΣT | ≤ n as there
are at most n different characters in T . However, this can be done efficiently
only if we assume that the subset of Σ which we use in T is known in advance.
While this is true in the off-line (static) model of the text, it might not be true
in the online model.

The suffix tree data structure is comprised of three different types of struc-
tures:

1. Tree Structure - The nodes and edges of the tree.
2. Text Structure - The label for each edge in the tree needs to be maintained.

This can be costly, therefore, the suffix tree maintains for each edge a pointer
into a substring of the text corresponding to the label, instead of explicitly
maintaining it.

3. Navigation Structure - Each node in the suffix tree can have up to |Σ|
children, each one corresponding to one of the characters in Σ. Given a
character σ ∈ Σ the navigation structure allows us to quickly decide which
of the edges to the node’s children, if any, correspond to σ. There are two
main approaches to solve this problem. The first is using a pointer array
for each node, where location σ in the array corresponds to the appropriate
outgoing edge. While this could induce a cost of O(|Σ|) space per node, one
can use hash functions in order to reduce the space to be linear in the number
of children of each node. However, in an online setting this would require a
dynamic hash-function which needs to be persistent, and we are not aware of
any good solutions for this problem. The second option is using a balanced
search tree over the children of every node, where the order is determined
by the appropriate character. This will induce an extra O(log |Σ|) time per
node encountered when traversing down the suffix tree.

Note that in the static setting one can maintain for each node two pointers to the
beginning and end of the sub-list of leaves which are in the node’s subtree. This

Persistency in Suffix Trees with Applications to String Interval Problems 71

task is too difficult in the online setting. The main use of these pointers is to allow
reporting the occurrences of a queried pattern. This happens once its appropriate
node is located in time proportional to the size of the output (by scanning the
list). However, we can overcome this in the online setting by performing a scan
of the subtree of the node and outputting the leaves we encounter. This suffices
as the size of the subtree is linear in the number of leaves of the subtree (since
all of the inner nodes have more than one child).

2.1 Some Persistent Data Structures

Fully Persistent Arrays. Consider an array A, with the following operations:

1. Store(v, i, x) - Store the information x in the ith location of the version
named v of A. This also returns v′ which is the name of the new version of
A.

2. Access(v, i) - Return the information in the ith location of the version named
v of A.

Dietz in [8] presented a data structure (DDS for short) that performs Store
operations in O(log log m) expected amortized time, where m is the number of
Store operations performed so far, and Access operations in O(log log m) worst-
case time. Unfortunately, it is unknown if improved bounds exist for the partially
persistent version.

Fully and Partially Persistent Data Structures of Bounded In-degree.
The task of making any data structure in which each node has a constant in-
degree (meaning the number of pointers to any node is O(1)) fully persistent was
solved by Dietz et. al. [9] with an overhead of amortized O(1) space and time
per operation. The partially persistent version was solved by Brodal [5] with a
worst-case overhead of O(1) per operation. Note that in order to be able to use
this in a rooted tree with a non constant fan-out, one cannot maintain pointers
to parents.

Fully and Partially Persistent Balanced Search Trees. Dietz et. al. in [9]
show how one can support a fully persistent red-black tree over n nodes where
each update (insertion or deletion) costs O(log n) worst-case time, and O(1)
worst-case space overhead.

2.2 Problems

Problem 1. PRI-Report Preprocess text T = t1 · · · tn, such that given subse-
quent queries of the form PRI − Report(P = p1 · · · pm, i, j), report all of the
occurrences of P in ti · · · tj .

Problem 2. PRI-Count Preprocess text T = t1 · · · tn, such that given subse-
quent queries of the form PRI − Count(P = p1 · · · pm, i, j), return the number
of occurrences of P in ti · · · tj.

72 T. Kopelowitz, M. Lewenstein, and E. Porat

Problem 3. SSR Preprocess text T = t1 · · · tn, such that given subsequent queries
of the form SSR(P = p1 · · · pm, k), return the number of occurrences of P in
t1 · · · tk.

Problem 4. SSS Preprocess text T = t1 · · · tn, such that given subsequent queries
of the form SSS(P, k), return the kth occurrence of P in T .

3 The Persistent Suffix Tree

In this section we briefly explain how to convert a suffix tree to be persistent in
the online text model, where characters are prepended to the beginning of the
text. Specifically, in a persistent suffix tree for T = t1 · · · tn we wish to be able
to access the suffix tree of ti · · · tn for every 1 ≤ i ≤ n.

Consider ST (T) and ST (σT) for some σ ∈ Σ. It is a well know fact that
the amount of tree structure changed or added in the transition from ST (T)
to ST (σT) is constant [2] [17]. Specifically, the new leaf corresponding to the
new suffix is added, and in addition, a new node might be inserted into an
existing edge in order to insert the new leaf’s parent (if it does not already
exist). The process of locating these changes can cost either amortized O(log |Σ|)
[17], or worst case O(log n) [2]. We use the result of Brodal [5] in order to
obtain partial persistency. Dealing with the text structure is standard. Thus the
remaining task is that of maintaining the navigation structure, which depends
upon implementation.

3.1 Using Pointer Arrays

If the pointer array solution is implemented, one can use the result by Dietz [8]
in order to obtain an expected amortized overhead of O(log log n) per update,
and a worst case O(log log n) overhead per node encountered when traversing
down the suffix tree. While one might think that the number of changes to any
pointer array is bounded by |Σ| due to each pointer changing at most once, this
is not the case as the pointer from, say, a node u corresponding to character
σ can change many times when internal nodes are added. Thus the query time
would be O((m+ occ) log log n). There are two ways to further reduce the query
time. The first is by noting that when traversing the subtree corresponding
to the queried pattern one can use the tree structure (and not the navigation
structure) in order to scan the tree using, say, a post-order search. The second
is using the techniques we discuss later in Section 4.2 which will allow us to
reduce the overhead to O(log log |Σ|). However, this is under the assumption
that Σ = {1, 2, 3, · · · , |Σ|} to avoid the need of using a persistent dynamic hash
function. Thus, the query time can be reduced to O(m log log |Σ|+occ), and the
following theorem has been established.

Theorem 5. A persistent suffix tree can be maintained such that the cost of
prepending a new character suffers an additive overhead of O(log log |Σ|) ex-
pected amortized time and O(1) worst-case space, and indexing queries can be
answered in time O(m log log |Σ| + occ).

Persistency in Suffix Trees with Applications to String Interval Problems 73

3.2 Using Balanced Search Trees

If the choice of implementation is to use a balanced search tree for the navigation
data, one can use the results of Dietz et.al. [9] so that each update will cost an
additional O(log |Σ|) time, and the traversal will suffer from an O(log |Σ|) time
worst-case overhead per node. Thus, the query time would be O(m log |Σ|+occ)
time.

Theorem 6. A persistent suffix tree can be maintained such that the cost of
prepending a new character suffers an additive overhead of O(log |Σ|) expected
amortized time and O(1) worst-case space, and indexing queries can be answered
in time O(m log |Σ| + occ).

4 The General Framework

While in some applications that text is static, it is useful to treat each text
location as a timestamp. Each timestamp will have its own version of the suffix
tree using persistency techniques. More precisely, for text location τ we have a
data structure similar to the suffix tree containing only the suffixes of tτ · · · tn.
Also, time is defined in reverse - so first create the version at time n and move
backwards towards time 1. However, the focus here is on applications that a given
query is confined to the substring ti · · · tj and there is a need for additional tools
so that the version of the suffix tree at time stamp i can answer the queries for
every possible j. Unfortunately, using the persistent suffix tree from the previous
section does not suffice for answering such queries. The problem is that we would
like the running time to depend only on the output in the restricted range given
in the query, while the persistent suffix tree is only able to efficiently filter the
locations which appear before i. Using the persistent suffix tree we still need to
filter all of the locations after j.

We show a general framework of a data structure that for some height h
constructs a data structure which implements a persistent version of the first h
levels of the suffix tree. The choice of h is application dependent, but generally
speaking we do not wish for h to be too large as the space used will depend on
it. Nevertheless, the filtering process for all locations after j will be fast for all
traversals in the suffix tree which end in a node of depth at most h using this
persistent data structure.

4.1 Snapshots

We define the notion of a snapshot for a node u in the suffix tree of T at time
τ . This snapshot is denoted by uτ , and contains the following information:

– A pointer array Aτ
u of |Σ| pointers to the at most |Σ| children of uτ which

are the children of u in the version of the suffix tree at time τ . The pointer
at location σ in Aτ

u will direct to the correct snapshot of child v of uτ such
that the label of the edge (u, v) begins with σ. Of course, if no such edge
exists (whether it does not exist in the suffix tree of T , or it does not exist
yet in the current timestamp) the pointer will be a null pointer.

74 T. Kopelowitz, M. Lewenstein, and E. Porat

– A pointer to the previous snapshot of u. This chain of pointers is called the
snapshot list of u, or SL(u).

– The timestamp of the snapshot τ .

For sake of simplicity, a conceptual timestamp n + 1 is added. This timestamp
has a snapshot for every node of distance at least h from the root in the suffix
tree of T , in which the pointer array is all null pointers. We use this timestamp
in order to have a so called first snapshot of every node. However, in order to
save space we do not maintain an array for these snapshots (which would all be
null pointers as at timestamp n + 1 the suffix tree is empty), and instead we use
a bit to indicate that these conceptual pointer are all null.

The only nodes that change between version τ + 1 of the suffix tree and
version τ of the suffix tree are nodes on the path from the root of the suffix tree
to the leaf corresponding to the suffix at location τ . Since only the first h nodes
on this path are of interest, there is no need to create snapshots for the entire
path. Furthermore, for any node u not on the aforementioned path we have that
uτ = uτ+1 and hence, a new snapshot is not created for such nodes. Therefore,
each timestamp induces at most h snapshots. Say that node u is stamped at time
τ if uτ is created.

Lemma 7. For every node u which is stamped at time τ there exists at most
one child v that is also stamped at time τ . Therefore, the difference between Aτ

u

and Aτ+1
u is only at location σ which corresponds to the edge (u, v).

The time required to create each snapshot other than the n + 1 snapshots is
O(|Σ|) by copying the pointer array. Each of the n timestamps creates at most
h snapshots, and so the total construction time for those timestamps is O(n|Σ|h).

Navigation. Navigating down the suffix tree at timestamp i is done as usual
through the pointer arrays, and thus the cost of locating the node corresponding
to P is O(m).

4.2 Using Persistent Arrays

Consider all of the different snapshots of a node u: uτ1 , uτ2, ..., uτt , un+1, and their
corresponding pointer arrays Aτ1

u , Aτ2
u , ..., Aτt

u , An+1
u . Assume that there exists a

positive integer k such that t = k · |Σ|. It will be shown later how to deal with
the case where t is not a multiple of |Σ|. Thus one can divide the snapshots
of u to k lists, each of |Σ| consecutive snapshots, and in addition the very last
snapshot un+1. Again, for simplicity, assume that k = 1, and thus t = |Σ|. For
larger k the process is a repetition of this simpler case k times.

A pointer array is only created for uτ1 and un+1 (using 1 bit). For the other
versions of u one can use the data structure of Dietz [8] (denoted by DDS) which
was briefly mentioned in Section 2. A bit is used within each snapshot to indicate
if it is a full snapshot with a complete pointer array, or an incomplete snapshot
using the DDS. Note that while the pointer array of un+1 is implemented via

Persistency in Suffix Trees with Applications to String Interval Problems 75

a bit to indicate that it is all null pointers, the data structure of Dietz can be
adjusted to still work in this situation (the details are standard, but require an
exposition of the data structure, and so we choose to omit it here).

The DDS is used on the pointer array of un+1 (which as we mentioned does
not actually exist). Next, iterate over uτx which is a version of u in uτ2 , ..., uτt ,
starting with x = t and ending with x = 2. Next, let σ be the character leading
uτx to its appropriate child vτx . We use DDS to perform Store(x, σ, (uτx , vτx))
inserting the appropriate edge/pointer into the array. uτx is given a pointer to
the DDS, its current timestamp τx, the value |Σ| − x which we call the relative
timestamp of uτx , and finally uτx is added to SL(U).

If t < |Σ|, the DDS is still used, but a pointer array is never fully constructed.
If there is no integer k such that t = k·|Σ|, and t > |Σ|, then the tail of snapshots
use the DDS on the last fully constructed pointer array.

As before, each suffix tree version induces h snapshots. Each incomplete snap-
shot, the DDS uses O(log log |Σ|) time. Each full snapshot, except for snapshots
at time n+1, requires O(|Σ|) time which amortizes to O(1) time over the previ-
ous O(Σ) incomplete snapshots. Thus, the total time spent is O(nh log log |Σ|),
and the space used is O(nh).

Navigation. Navigation is basically done as before; the only difference is the
method of traversing down the current version of the suffix tree without complete
pointer arrays (for the full snapshots simply use the array). This is done using
the DDS. If the navigation reached uτ , whose relative timestamp is x, and needs
to continue traversing with σ, then use Access(x, σ) on the DDS of uτ in order
to obtain the correct pointer. This implies that each traversal through a node in
the current version of the suffix tree will take O(log log |Σ|) time. So the cost of
locating the node corresponding to P is O(m log log |Σ|).

4.3 Renaming

First a solution is provided for navigating with patterns of length which is a
multiple of log log |Σ|. The more general case is considered in the following sub-
section. Given T over alphabet Σ, construct a new alphabet Σ′ ⊆ Σlog log |Σ|

by taking every substring of T of size log log |Σ| and renaming it. The renaming
scheme needs to maintain the lexicographical order between the substrings. For
this, construct a trie for all of the substrings of T of size log log |Σ|, and then
label each leaf. The labels should maintain the order defined by the leaves of
the trie. Thus, the labels preserve the lexicographical ordering of the substrings
corresponding to them. The construction of this trie takes O(n log log |Σ|) time.

Next, construct log log |Σ| new text strings, named T1, T2, ..., Tlog log |Σ| as fol-
lows. For each 1 ≤ i ≤ log log |Σ|, the new text Ti is a text over alphabet Σ′

where the jth character in Ti is the renamed label corresponding to the substring
ti+(j−1) log log |Σ| · · · ti+j log log |Σ|−1. In other words, Ti is the renamed version of
titi+1 · · · .tn, removing any tail of characters that might remain, as n − i + 1
might not be a multiple of log log |Σ|. Note that only the first log log |Σ| suffixes

76 T. Kopelowitz, M. Lewenstein, and E. Porat

of T are being renamed, as the renamed versions of any other suffix (not one
of the first log log |Σ|) is a proper suffix of one of the renamed suffixes. Next,
construct the text T ′ = T1$1T2$2...Tlog log |Σ|$, and use the previous solution
with persistent pointer arrays on this text, but only for height h′ = h

log log |Σ|
as each renamed character corresponds to log log |Σ| original characters (and we
wish to only maintain this data structure for nodes in the original tree of height
at most h).

It is important to note that while the order of the timestamps defined by
the original text become scrambled, it is still possible to maintain the correct
order of timestamps by first constructing the suffix tree for T ′, and then creating
snapshots for paths by order of the original timestamps rather than the order
defined by T ′.

The construction time is now O(n log log |Σ|) time for the renaming, and
O(nh′) = O(nh/ log log |Σ|) for the solution using the persistent pointer arrays
for a total of O(n(log log |Σ| + h

log log |Σ|)).

Navigation. Recall the assumption that m is a multiple of log log |Σ|. So,
one can use the renaming trie in order to obtain a new pattern P ′ over Σ′ of
size m

log log |Σ| , and then the node corresponding to P ′ in O(m′ log log |Σ′|) =

O(m log log |Σ′|
log log |Σ|) time, which is O(m) as:

log log |Σ′| ≤ log log(|Σ|log log |Σ|) = log log |Σ| + log log log |Σ| = O(log log |Σ|).

4.4 Renaming for Any Size Pattern

For the case in which m is not a multiple of log log |Σ|, assume that m ≡ k
modulo log log |Σ| where 0 < k < log log |Σ|. The previous renaming scheme can
still be used on the first m − k characters of P in order to obtain a pattern P ′

over Σ′. Then, one can locate the node corresponding to P ′ in O(m) time. What
is left to be done is to provide another renaming scheme in order to deal with
the last k characters. To this end, the renaming process is done for every length
from 1 to log log |Σ| − 1, by using a renaming trie for each possible length.

For every node u in the suffix tree of T ′, log log |Σ| − 1 pointer arrays are
maintained, each corresponding to one of the renaming schemes for each possible
length, and each of length corresponding to the length of that specific renaming
scheme. So for the renaming scheme for every length x < log log |Σ|, node u uses
a pointer array of size |Σ|x. Each location in the pointer array corresponds to
an edge corresponding to the appropriate renamed character in the renaming
scheme of length x. It is crucial to note that this is only done for nodes u in T ′,
and not recursively. Each of the log log |Σ| − 1 pointer arrays then goes through
the process of becoming persistent using the same techniques as above.

The additional construction time is O(nh′ log log |Σ|), which combines to-
gether with the previous section to O(n(log log |Σ| + h)) time for construction.
the space is O(nh′ log log |Σ|) = O(nh).

Persistency in Suffix Trees with Applications to String Interval Problems 77

Navigation. As for the navigation time, if m ≥ log log |Σ|, the time will still
be O(m) as the extra O(log log |Σ|) cost induced by having to move to a new
renaming scheme and locating the appropriate snapshot can be amortized over
previous work done in the suffix tree for T ′. However, if m < log log |Σ|, the cost
of searching the correct snapshot cannot be amortized, and so the cost will be
O(m − k + log log(|Σ|k)) = O(m + log log |Σ|) time.

5 Applications

In this section we will see how to use the general framework from Section 4 in
order to solve some problems that fit the model.

5.1 PRI-Report

As mentioned by Mäkinen and Navarro [13], one can obtain a data structure
which supports PRI-Report by using the suffix tree and the data structure of
Alstrup et.al. [1]. This provides a data structure that uses O(n log n) prepro-
cessing time with O(n logε n) space (for any constant ε > 0), and achieves query
time of O(m + log log n + occi,j). Thus, by setting h = log log n one can answer
PRI-Report as follows.

If m ≥ log log n then by using the data structure from [13], the query time is
O(m+ occi,j), which is optimal. If m < log log n then navigate through the data
structure from Section 4 with P on version i of the suffix tree till a snapshot uτ

is reached, where u is the node corresponding to P . Note that i ≤ τ . The next
procedure is based on the following lemma.

Lemma 8. Let u be a node in the suffix tree of T corresponding to P , and let
uτ1 , uτ2, ..., uτt , un+1 be the snapshots of u. Then P appears in T only at locations
τ1, τ2, ..., τt.

Proof. Each of the snapshots is created due to P being at the location of that
timestamp. �
Given that the snapshot list for u is ordered by the timestamps, one can scan the
list starting at uτ till a snapshot uτ ′

is reached where τ ′ > j. Due to Lemma 8
every snapshot encountered by the scan except for the last one corresponds to
an occurrence of P . Thus each location in the output costs O(1) time to output
after u is located. This provides the following:

Theorem 9. The PRI-Report problem can be solved using O(n logε n) space (for
any constant ε > 0) and O(n log n) preprocessing time, with O(m + log log |Σ|+
occi,j) query time.

5.2 PRI-Count

In the counting version (PRI-Count), one wishes to report only the number of
occurrences of P in ti · · · tj , without listing the occurrences. While this can be

78 T. Kopelowitz, M. Lewenstein, and E. Porat

solved in O(m + log log |Σ| + occi,j) time using the solution to the reporting
version, this can be wasteful if the output size is fairly large. Instead, the fol-
lowing data structure which is based on ideas similar to the reporting scenario
is presented, which manages to avoid the cost of the output size all together.

If the pattern happens to be large enough (m ≥ log / log log n) the following
solution can be used. Given a PRI-Count query, the suffix tree is first used in
order to locate the node u corresponding to P . This node covers a consecutive
range of suffixes, sorted by their lexicographical ordering (this can be viewed as a
consecutive sub-array of the suffix array). Locating this range (l, r) can be done
offline in linear time per every node in the suffix tree. Next, a 2D orthogonal
range counting query is performed using the data structure of [11]. In [11], it
is shown how to construct a data structure using O(n) space and O(n log n)
preprocessing time which allows to answer 2D orthogonal range counting queries
in (optimal for this space [15]) Ø(log n/ log log n). Thus the total query time is
O(m + log n/ log log n) = O(m) and optimal.

For the case where m < log n/ log log n the general framework is used again.
This time set h = log n/ log log n. When given a query, navigate through the
data structure from Section 4 with P on both versions i and j of the suffix tree
till a snapshot uτ is reached from the i-version and a snapshot uτ ′

is reached
from the j-version. All of the snapshots in the snapshot list of u between uτ and
uτ ′

, excluding uτ ′
, correspond to occurrences we are interested in counting. By

computing the distance of each snapshot from the end of its snapshot list in the
preprocessing phase, one can subtract the distance of uτ ′

from the distance of uτ

during the query phase in constant time. The correctness of this answer follows
directly from Lemma 8.

This provides the following:

Theorem 10. The PRI-Count problem can be solved using O(n log n/ log log n)
space and O(n log n) preprocessing time, with O(m + log log |Σ|) query time.

Substring Rank. The solution for SSR(P, i) is a direct application PRI-Count,
by computing PRI − Count(P, 1, i) as this will count the number of times P
appeared in t1 · · · tn.

5.3 Substring Select

In order to be able to answer substring select queries efficiently, a data structure
which solves the Range Selection problem is required.

Problem 11. Range Selection Given an array of integers A = (a1, ..., an) where
∀1 ≤ i ≤ n, 1 ≤ ai ≤ n, preprocess A such that given a query (i, j, k) return the
kth smallest value in the set {ax|i ≤ x ≤ j}.

Brodal and Jørgensen [6] show a solution for the Range Selection problem which
uses linear space and O(n log n) construction time, and uses O(log n/ log log n)
query time. The construction time there is dominated by the need to sort the

Persistency in Suffix Trees with Applications to String Interval Problems 79

input. By constructing their solution on the suffix array, which is the array of the
locations of the suffixes in their lexicographical ordering, one can answer sub-
string select queries efficiently for m ≥ log n/ log log n as follows. Furthermore,
this construction will take linear time in this case as the range is bounded by
n. Given a SSS query, the suffix tree is first used in order to locate the node u
corresponding to P . This node covers a consecutive range of suffixes, sorted by
their lexicographical ordering (this can be viewed as a consecutive sub-array of
the suffix array). Locating this range (l, r) is done like in the PRI-Count query.
Next, perform a range selection query (l, r, k) in order to obtain the answer for
the query.

For the case where m < log n/ log log n the general framework is used again.
This time set h = log n/ log log n. To answer a query, navigate through the data
structure from Section 4 with P on version 1 of the suffix tree till a snapshot uτ

is reached, where u is the node corresponding to P . Next, one can preprocess
the snapshot lists to all be in arrays. Thus jumping to the kth snapshot of u in
SL(u) to obtain uτ ′

can be done in constant time. τ ′ is the answer to our query.
Thus, the total query time is O(m) which is optimal.

Theorem 12. The SSS problem can be solved using O(n log n/ log log n) space
and preprocessing time, with O(m) query time.

References

1. Alstrup, S., Brodal, G.S., Rauhe, T.: New data structures for orthogonal range
searching. In: IEEE Symposium on Foundations of Computer Science, pp. 198–207
(2000)

2. Amir, A., Kopelowitz, T., Lewenstein, M., Lewenstein, N.: Towards Real-Time
Suffix Tree Construction. In: Consens, M.P., Navarro, G. (eds.) SPIRE 2005. LNCS,
vol. 3772, pp. 67–78. Springer, Heidelberg (2005)

3. Amir, A., Nor, I.: Real-time indexing over fixed finite alphabets. In: Proc. of the
Symposium on Discrete Algorithms (SODA), pp. 1086–1095 (2008)

4. Bille, P., Gørtz, L.: Substring Range Reporting. To Appear in Proc. 22nd Combi-
natorial Pattern Matching Conference (2011)

5. Brodal, G.S.: Partially Persistent Data Structures of Bounded Degree with Con-
stant Update Time. Nord. J. Comput. 3(3), 238–255 (1996)

6. Brodal, G.S., Jørgensen, A.G.: Data structures for range median queries. In: Dong,
Y., Du, D.-Z., Ibarra, O. (eds.) ISAAC 2009. LNCS, vol. 5878, pp. 822–831.
Springer, Heidelberg (2009)

7. Chien, Y., Hon, W., Shah, R., Vitter, J.S.: Geometric Burrows-Wheeler Transform:
Linking Range Searching and Text Indexing. In: Data Compression Conference
(DCC), pp. 252–261 (2008)

8. Dietz, P.F.: Fully Persistent Arrays (Extended Array). In: Proc. of Symposium on
Discrete Algorithms (SODA), pp. 235–244 (1999)

9. Driscoll, J.R., Sarnak, N., Sleator, D.D., Tarjan, R.E.: Making Data Structures
Persistent. J. Comput. Syst. Sci. 38(1), 86–124 (1989)

10. Farach, M.: Optimal suffix tree construction with large alphabets. In: Proc. 38th
IEEE Symposium on Foundations of Computer Science, pp. 137–143 (1997)

80 T. Kopelowitz, M. Lewenstein, and E. Porat

11. JáJá, J., Mortensen, C.W., Shi, Q.: Space-efficient and fast algorithms for multidi-
mensional dominance reporting and counting. In: Fleischer, R., Trippen, G. (eds.)
ISAAC 2004. LNCS, vol. 3341, pp. 558–568. Springer, Heidelberg (2004)

12. Kaplan, H.: Persistent data structures. In: Handbook on Data Structures, pp. 241–
246. CRC Press, Boca Raton (1995)

13. Mäkinen, V., Navarro, G.: Rank and select revisited and extended. Theor. Comput.
Sci. 387(3), 332–347 (2007)

14. McCreight, E.M.: A space-economical suffix tree construction algorithm. J. of the
ACM 23, 262–272 (1976)

15. Patrascu, M.: Lower bounds for 2-dimensional range counting. In: Proceedings of
the 39th Annual ACM Symposium on Theory of Computing (STOC), pp. 40–46
(2007)

16. Ukkonen, E.: On-line construction of suffix trees. Algorithmica 14, 249–260 (1995)
17. Weiner, P.: Linear pattern matching algorithm. In: Proc. 14th IEEE Symposium

on Switching and Automata Theory, pp. 1–11 (1973)

Approximate Point Set Pattern Matching with

Lp-Norm

Hung-Lung Wang1,� and Kuan-Yu Chen2

1 Institute of Information Science and Management
National Taipei College of Business, Taipei, Taiwan 100

hlwang@webmail.ntcb.edu.tw
2 Department of Computer Science and Information Engineering

National Taiwan University, Taipei, Taiwan 106
d94004@csie.ntu.edu.tw

Abstract. Given two sets of points, the text and the pattern, determin-
ing whether the pattern “appears” in the text is modeled as the point set
pattern matching problem. Applications usually ask for not only exact
matches between these two sets, but also approximate matches. In this
paper, we investigate a one-dimensional approximate point set matching
problem proposed in [T. Suga and S. Shimozono, Approximate point set
pattern matching on sequences and planes, CPM’04]. What requested is
an optimal match which minimizes the Lp-norm of the difference vector
(|p2 − p1 − (t′2 − t′1)|, |p3 − p2 − (t′3 − t′2)|, . . . , |pm − pm−1 − (t′m − t′m−1)|),
where p1, p2, . . . , pm is the pattern and t′1, t

′
2, . . . , t

′
m is a subsequence

of the text. For p → ∞, the proposed algorithm is of time complexity
O(mn), where m and n denote the lengths of the pattern and the text,
respectively. For arbitrary p < ∞, the time complexity is O(mnT (p)),
where T (p) is the time of evaluating xp for x ∈ R.

Keywords: point set pattern matching, Lp-norm, dynamic program-
ming.

1 Introduction

Given two sets of points, the text and the pattern, in an Euclidean space, the
point set pattern matching problem (PSPM) determines whether the pattern
“exactly matches” a subset of the text. For two sets of points A and B, A is
said to exactly match B if there is a transformation L such that L(A) = B.
PSPM was first investigated by de Rezende and Lee [5], where point sets are
in a d-dimensional Euclidean space, and transformations such as translation,
rotation, reflection, and scaling are considered. Later in [3], Cardoze and Schul-
man investigated this problem from different aspects that affect the design and
� The authors would like to thank Prof. Kun-Mao Chao for helpful comments. Kuan-

Yu Chen and Hung-Lung Wang were supported in part by NSC grants 98-2221-E-
002-081-MY3 and 99-2115-M-141-003-MY2, respectively, from the National Science
Council, Taiwan.

R. Grossi et al. (Eds.): SPIRE 2011, LNCS 7024, pp. 81–86, 2011.
c© Springer-Verlag Berlin Heidelberg 2011

82 H.-L. Wang and K.-Y. Chen

analysis of algorithms. Parameters that are widely discussed include the di-
mension of the space, the group of transformations, the quality of matches,
and the input datatype. For the quality of matches, measurements adopted
usually include a threshold on the number of mismatches allowed in the pat-
tern or the distance, like the Hausdorff distance, between two sets. Normally,
problems that seek for a subset of the text with the best quality of matches
with respect to the pattern are called the approximate point set pattern match
problems (APSPM). In this paper, we investigate a one-dimensional APSPM,
where the quality of matches is measured by the Lp-distance between two sets
of points [14]. For convenience, we view a set of one-dimensional points as an
increasing number sequences, corresponding to the positions of the points, and
call such sequences the point sequences. The Lp-distance between two point se-
quences p1, p2, . . . , pm and t1, t2, . . . , tn is infinite if m �= n, and the Lp-norm of
the vector (|t2− t1− (p2−p1)|, |t3 − t2− (p3−p2)|, . . . , |tn − tn−1− (pn −pn−1)|)
otherwise. We name the problem as Lp-APSPM.

Related Results:Detailed surveys on PSPM and APSPM can be found in [3,15].
We summarize the results for the one-dimensional case and problems that use Lp-
norm as the measurement. In the remainder of this paper, the cardinalities of the
text and the pattern are denoted by n and m, respectively. For one-dimensional
case, PSPM can be solved in O(n log n + mn)-time [5], which is the currently
best result. In [14], Suga and Shimozono investigated L1-APSPM and proposed
an O(mn2)-time algorithm. Mäkinen [11,12,13] investigated a similar problem,
where the cost on translations are considered. The technique used in [12] can be
applied to solve L1-APSPM in O(mn) time. In [8,9,10], Lipsky and Porat inves-
tigated the one-dimensional APSPM problem where the pattern and the text are
considered as two sequences of natural numbers less than or equal to σ. Matches
are defined only between the pattern and a substring, i.e. a consecutive subse-
quence, of the text. Quality of matches is measured by L1-, L2-, and L∞-norms,
and O(1

ε2 n log m log σ)-, O(n log n)-, and O(1
ε n logm log σ)-time approximation

algorithms, with factor ε, are proposed, respectively.
We shall show that Lp-APSPM, for p � 1, is a generalization of PSPM in

Section 2. For p → ∞, the proposed algorithm is of time complexity O(mn).
For arbitrary p < ∞, we give an algorithm that runs in O(mnT (p)) time, where
T (p) is the time of evaluating xp for x ∈ R. It is noted that T (p) depends on
the model of computation considered (e.g. O(1) if a “shift left” instruction is
allowed [4]). The remainder of this paper is organized as follows. In Section 2,
we formally define the problems and roughly sketch the main ideas of our ap-
proaches. Detailed algorithms are proposed in Sections 3 and 4. Due to the space
limitation, some proofs are omitted in this paper.

2 Problem Definitions

The Lp-APSPM problem is defined as follows.

Approximate Point Set Pattern Matching with Lp-Norm 83

Problem 1. (Lp-APSPM) Given a text point sequence T = t1, t2, . . . , tn and a
pattern point sequence P = p1, p2, . . . , pm, Lp-APSPM seeks for a subsequence
T ′ = t′1, t′2, . . . , t′m of T such that

–
∑

2�i�m |pi − pi−1 − (t′i − t′i−1)|p is minimized, if p < ∞;
– max2�i�m |pi − pi−1 − (t′i − t′i−1)| is minimized, if p → ∞.

According to the definition, PSPM can be reduced to Lp-APSPM by asking
whether the resulting norm equals zero. In the following, we simply denote Lp-
APSPM for p → ∞ as L∞-APSPM.

Outline of the Methods: The problem can be solved via dynamic program-
ming. However, straightforward implementations will result in less efficient al-
gorithms. Our methods are to reduce the time for computing each row of the
DP-table, which, without ambiguity in each section, is the two-dimensional array
induced by the corresponding recurrence relation.

– Lp-APSPM: Each row of the DP-table is computed by searching the column
minima of a monge matrix [1], defined in Section 3.

– L∞-APSPM: Each row of the DP-table is computed via range minimum
query [6].

For succinctness, a number sequence γ1, γ2, . . . , γk is also denoted by {γi}k
i=1,

and w−
j = tj − (pi+1 − pi). In the following, we shall focus on how the (i + 1)th

row of the DP-table is evaluated, given the ith row.

3 Lp-APSPM for Arbitrary p < ∞
For p < ∞, a recurrence relation for Lp-APSPM can be derived immediately as
follows. For 1 � i � m, 1 � j � n, and i � j, we define

di+1,j =

⎧⎨⎩
0, if i = 0;
∞, if i > 0 and j = 1;
mini�k<j{di,k + |w−

j − tk|p}, otherwise,
(1)

where di,j denotes the minimum Lp distance between p1, p2, . . . , pi and a length
i subsequence of T ending at j. The value min1�k�n dm,k corresponds to the
minimum Lp distance between P and T .

For fixed i, we define an n by n matrix Ai = [axy] with

axy =
{

di,x + |w−
y − tx|p, if i � x < y;

∞, otherwise.

Lemma 1. For Ai = [axy], we have min1�x�n axy = di+1,y.

According to Lemma 1, to compute di+1,j for 2 � j � n, it suffices to compute
all column minima of matrix Ai. In Lemma 2, we show that Ai is a monge
matrix. A matrix A = [aij] is said to be monge if aij + a�k � aik + a�j , for all
1 � i < � � n and 1 � j < k � n. To search all the column minima of an n by n
monge matrix, Aggarwal et al. [1] proposed an efficient algorithm, the SMAWK
algorithm, which runs in O(n) time.

84 H.-L. Wang and K.-Y. Chen

Lemma 2. Matrix Ai is a monge matrix.

For each row i in the DP-table, it takes O(nT (p)) time to compute all the
elements, where T (p) is the time of evaluating xp for x ∈ R. Together with
Hirschberg’s algorithm for reducing space [7], we derive the following theorem.

Theorem 1. For p < ∞, Lp-APSPM can be solved in O(mnT (p)) time and
O(n) space.

4 Lp-APSPM for p Approaching Infinity

In this section, we show how to solve L∞-APSPM. Analogously, we let di,j denote
the minimum L∞ distance between p1, p2, . . . , pi and a length i subsequence of
T ending at j. A recurrence relation similar to (1) can be derived except that
mini�k<j{di,k + |w−

j − tk|p} is replaced by min1�k�j max{di,k, |w−
j − tk|}.The

value min1�k�n dm,k corresponds to the minimum L∞ distance between P and
T . A straightforward dynamic programming approach takes O(mn2) time. To
reduce the time complexity, a primary claim is stated in Lemma 3, which will
be proved in Section 4.3.

Lemma 3. Given di,1, di,2, . . . , di,n for some i, the values di+1,1, di+1,2, . . . , di+1,n

can be computed in O(n) time.

Based on Lemma 3, an O(mn)-time algorithm can be derived since there are m
rows to be filled. Unfortunately, the Monge property mentioned in the previous
section is not applicable. In the following, we prove Lemma 3 constructively by
relying on the technique of range minimum query (RMQ for abbreviation) [2].
Section 4.1 explains why RMQ can be applied to compute {di+1,j}n

j=1, given
{di,j}n

j=1. Section 4.2 shows how to determine the queried intervals efficiently.

4.1 Computing the DP-Table with RMQ

Consider xy-plane with n+2 points (tk, di,k), for 0 � k � n+1, where t0 = −∞,
tn+1 = ∞, and di,0 = di,n+1 = 0. Let function f(x) = |w−

j − x|. By definition,
the value di+1,j is either di,k (Figure 1(a)) or |w−

j − tk| (Figure 1(b)), for some
k. In both cases, there is a specific interval I = (t�, tr) satisfying the following:
(i) di,� < f(t�) and di,r < f(tr), (ii) w−

j ∈ I, and (iii) ∀tk ∈ I, di,k > f(tk).
We call such an interval I the dominating interval. It should be noted that the
dominating interval always exists because of the two boundary points (t0, di,0)
and (tn+1, di,n+1). According to the dominating interval, we divide the candidates
that result in di+1,j into three categories, which are stated as in Lemma 4.

Lemma 4. Let Q = I ∩ [t1, tj−1]. We have di+1,j = min{mintk∈Q di,k, |w−
j −

tr|, |w−
j − t�|}.

For convenience, we refer to the queried interval as a point pair of the text. Since
|w−

j − tk| can be computed in constant time, given i, j, and k, the remainder is
to compute mintk∈Q di,k. Notice that computing mintk∈Q di,k is equivalent to an

Approximate Point Set Pattern Matching with Lp-Norm 85

*
*

*

*
*

* **

tjt tr

pi+1pi

w−jt0 = −∞* *tn+1 =∞

*

*

* *
*

* *

tjt tr

pi+1pi

w−jt0 = −∞* *tn+1 =∞

di+1,j
di+1,j

(a) (b)

f(x) = |w−j − x|f(x) = |w−j − x|

Fig. 1. xy-plane with “�” being the points (tk, di,k)

RMQ query over the array [di1 di2 · · · din] with queried interval Q. Therefore,
for 1 � j � n, di+1,j can be computed in amortized constant time (O(n)-time
for preprocessing and constant time for each query), given the queried intervals.

4.2 Determining the Queried Intervals

To ease the representation, we introduce the notion of pivots of a number se-
quence. Given a number sequence Γ = γ1, γ2, . . . , γk, the element γi is a right
pivot (respectively, a left pivot) of Γ if γi < γj , for i < j � k (respectively,
γj < γi for 1 � j < i). The subsequence consisting of all right pivots is called the
right-pivot subsequence. The term left-pivot subsequence is defined similarly. For
example, the right-pivot and left-pivot subsequences of sequence 3, 1, 4, 1, 5, 9, 2, 6
are 1, 2, 6 and 3, 4, 5, 9, respectively. Note that the right-pivot and left-pivot sub-
sequences are both increasing subsequences. Let X = {xk : xk = tk + dik}n

k=1

and Y = {yk : yk = tk − dik}n
k=1. For convenience, the queried interval is repre-

sented as (ta, tb) instead of the index pair (a, b).The procedure for determining
the queried interval works as follows:

– Compute the right-pivot subsequence xα1 , xα2 , . . . , xαs of X .
– Compute the left-pivot subsequence yβ1 , yβ2 , . . . , yβt of Y .
– Find the intervals R = [xαk

, xαk+1] and L = [yβk′ , yβk′+1
], where w− ∈ R∩L.

The dominating interval is I = (tαk
, tβk′+1

), and I ∩ [t1, tj−1] is the queried
interval.

The correctness and time complexity are shown in Lemmata 5 and 6.

Lemma 5. I = (tαk
, tβk′+1

) is the dominating interval.

Lemma 6. The dominating intervals of di+1,k, for 1 � k � n, can be computed
in O(n) time.

4.3 Proof of Lemma 3

Proof. According to Lemma 4, di+1,j is either mintk∈Q di,k, |w−
j −tr|, or |w−

j −t�|.
For each j, mintk∈Qj di,k is a range minimum query on the array [di1 di2 · · · din]
with queried interval Qj. The queried intervals can be computed in O(n) time

86 H.-L. Wang and K.-Y. Chen

by Lemmata 5 and 6. Once the queried intervals are determined, the time com-
plexity is O(n) (O(n)-time for RMQ preprocessing and constant time for each
query). Thus, the overall time complexity is O(n). �
Theorem 2. L∞-APSPM can be solved in O(mn) time and O(n) space.

5 Concluding Remarks

In this paper, two generalized PSPM problems, Lp-APSPM and L∞-APSPM,
are investigated, and algorithms with time complexity O(mnT (p)) and O(mn)
are proposed, respectively. The results match the currently best time bound of
PSPM. For future work, we would like to further extend the problem such that
mismatch of the pattern is allowed under some criteria.

References

1. Aggarwal, A., Klawe, M.M., Moran, S., Shor, P., Wilber, R.: Geometric applications
of a matrix-searching algorithm. Algorithmica 2, 195–208 (1987)

2. Bender, M.A., Farach-Colton, M.: The LCA problem revisited. In: Gonnet, G.H., Vi-
ola, A. (eds.) LATIN 2000. LNCS, vol. 1776, pp. 88–94. Springer, Heidelberg (2000)

3. Cardoze, D.E., Schulman, L.J.: Pattern matching for spatial point sets. In: FOCS
1998, pp. 156–165 (1998)

4. Cormen, T.H., Leiserson, C.E., Rivest, R.L., Stein, C.: Intorduction to Algorithms,
2nd edn. MIT Press, Cambridge

5. de Rezende, P.J., Lee, D.T.: Point set pattern matching in d-dimensions. Algorith-
mica 13, 387–404 (1995)

6. Fischer, J., Heun, V.: A new succinct representation of RMQ-information and
improvements in the enhanced suffix array. In: Chen, B., Paterson, M., Zhang, G.
(eds.) ESCAPE 2007. LNCS, vol. 4614, pp. 459–470. Springer, Heidelberg (2007)

7. Hirschberg, D.S.: A linear space algorithm for computing maximal common sub-
sequences. Communications of the ACM 18, 341–343 (1975)

8. Lipsky, O., Porat, E.: Approximate matching in the L∞ metric. Information Pro-
cessing Letters 105, 138–140 (2008)

9. Lipsky, O., Porat, E.: L1 pattern matching lower bound. Information Processing
Letters 105, 141–143 (2008)

10. Lipsky, O., Porat, E.: Approximate pattern matching with the L1, L2, and L∞
metrics. Algorithmica 55, 212–223 (2009)

11. Mäkinen, V.: Using edit distance in point-patter matching. In: SPIRE 2001, pp.
153–161 (2001)

12. Mäkinen, V., Ukkonen, E.: Local similarity based point-pattern matching. In:
Apostolico, A., Takeda, M. (eds.) CPM 2002. LNCS, vol. 2373, pp. 115–132.
Springer, Heidelberg (2002)

13. Mäkinen, V.: Parameterized approximate string matching and local-similarity-
based point-pattern matching. Department of Computer Science, University of
Helsinki, Report A-2003-6 (August 2003)

14. Suga, T., Shimozono, S.: Approximate point set pattern matching on sequences
and planes. In: Sahinalp, S.C., Muthukrishnan, S.M., Dogrusoz, U. (eds.) CPM
2004. LNCS, vol. 3109, pp. 89–101. Springer, Heidelberg (2004)

15. Gavrilov, M., Indyk, P., Motwani, R., Venkatasubramanian, S.: Geometric pattern
matching: A performance study. In: SoCG 1999, pp. 79–85 (1999)

Detecting Health Events on the Social Web to

Enable Epidemic Intelligence

Marco Fisichella1, Avaré Stewart1, Alfredo Cuzzocrea2, and Kerstin Denecke1

1 Forschungszentrum L3S, Hannover 30167, Germany
{fisichella,stewart,denecke}@L3S.de

2 ICAR-CNR and University of Calabria, Italy
cuzzocrea@si.deis.unical.it

Abstract. Content analysis and clustering of natural language docu-
ments becomes crucial in various domains, even in public health. Recent
pandemics such as Swine Flu have caused concern for public health offi-
cials. Given the ever increasing pace at which infectious diseases can
spread globally, officials must be prepared to react sooner and with
greater epidemic intelligence gathering capabilities. Information should
be gathered from a broader range of sources, including the Web which in
turn requires more robust processing capabilities. To address this limi-
tation, in this paper, we propose a new approach to detect public health
events in an unsupervised manner. We address the problems associated
with adapting an unsupervised learner to the medical domain and in
doing so, propose an approach which combines aspects from different
feature-based event detection methods. We evaluate our approach with
a real world dataset with respect to the quality of article clusters. Our
results show that we are able to achieve a precision of 62% and a recall
of 75% evaluated using manually annotated, real-world data.

Keywords: Retrospective medical event detection, Clustering, Epidemic
Intelligence.

1 Introduction

A public health event (PHE) is defined as a specific infection, disease or death
that happens at a specific time and place, which may be consecutively reported
by many medical articles in a period. Events such as emerging infectious diseases,
are those considered to be either completely new or reoccurring. An important
strategy used by officials to mitigate the impact of potential threats, is to find
ways to detect the signs of a public health event as early as possible. The body
of work devoted to this effort is known as event-based Epidemic Intelligence
(EI) [16]. In order to provide information as timely as possible, by now all stages
of event-based EI system, including document collection, filtering and processing,
are done with little, or no human intervention. Unstructured and informal text of
Web documents are used as data source to detect facts about current infectious
disease activity within a population [3] .

R. Grossi et al. (Eds.): SPIRE 2011, LNCS 7024, pp. 87–103, 2011.
c© Springer-Verlag Berlin Heidelberg 2011

88 M. Fisichella et al.

Existing event-based EI systems rely upon the enumeration of possible types of
medical reporting patterns (e.g., MediSys [20]). This presents a huge limitation,
since given the variety of natural language, many patterns may be required, and
the recall for identifying relevant events can be low. Other systems rely on pre-
defined keywords for identifying relevant information about public health events.
In both cases, the algorithms are not robust enough for the task of detecting
emerging public health events, since the only threat indicators (e.g., keywords)
they can detect are those that are explicitly under surveillance.

One way to overcome the aforementioned limitations, is to cast a new light on
the task of public health event detection - so that it is done in an unsupervised
manner. In this area, there are two major approaches: those based on predictive
event detection [12,19] which mine representative features, given an event; and
those that detect an event from a list of highly correlated, bursty features [5,7].
The advantages of the former are that they are based on a generative model
and have been shown to provide a more unified framework. They are capable of
incorporating multiple modalities such as time stamps as well as explicit repre-
sentations for various types of entities (i.e., features). A drawback is, however,
that no prior burst analysis is done on these representations. In contrast, ap-
proaches based on the correlation of bursty features can filter out a vast number
of potentially irrelevant features, yet many types of features relevant for public
health event detection (i.e., symptoms, victims or medical conditions) are not
modeled.

Proposed Solution. We hypothesize that applying an unsupervised algorithm
to public health event detection will help to overcome the limitations of existing
EI systems. To justify this hypothesis, we adapt an unsupervised approach to
our problem domain in a way that events can be detected that are rare (ape-
riodic); reoccuring (periodic); and domain or task-specific. In more detail, we
combine burst function analysis with the entity-centric feature representation
in a generative model for predictive event detection. Going beyond a random
initialization of the probabilities in this generative process, we instead exploit
a known distribution of the features that are obtained directly from the burst
function. Additionally, in our burst analysis, we refine the approach to feature
representation by incorporating a Cauchy-Lorentz distribution to more closely
model the true behavior of periodic, non-burst (trough) activity.

The remainder of this paper is organized as follows: works related to event
detection are discussed in Section 2. Section 3 presents details of our approach,
characterizing the nature of event detection in the public health domain, to
lay the foundation for describing the task-specific adaptations required in this
setting. Experimental results for our approach are given in Section 4. Finally, in
Section 5, we conclude and outline future work.

2 Related Work

Event-Based Epidemic Intelligence. Numerous systems exist to detect pub-
lic health events, notably, PULS [17] uses information extraction technology to

Detecting Health Events on the Social Web to Enable Epidemic Intelligence 89

identify the disease and the location of a reported event. PULS is integrated into
MedISys [17], which automatically collects articles concerning public health in
various languages from news, and aggregates the extracted facts according to
pre-defined categories, in a multi-lingual manner.

Proteus-BIO [6] automatically extracts infectious disease outbreak informa-
tion from several sources including ProMed-mail [13], the World Health Organi-
zation (WHO)1 and medical news web sites. EpiSpider [10] extracts publication
dates, locations and topics from ProMed-mail reports and news, converting them
to a semantic interchange format suitable for storage in a relational database.

BioCaster [2] is an ontology-based system which uses a domain-specific event
ontology to perform named entity recognition on outbreak reports. The system
analyzes documents reported from over 1,700 RSS web feeds2, classifies them for
topical relevance and plots them onto a Google map using geo-code information.
BioCaster’s Text Mining process is based on rules that are capable of matching a
number of elements, including entity classes, skip-words, entity types, or regular
expression patterns.

In general, the advantages of event extraction based on text mining process
and information extraction are that they are: deterministic, produce clear gran-
ularity results (sentence level), produce explicit and well structured unit of infor-
mation, and the outputs are easily interpretable. Further, event extraction allows
a system to specifically tune learners to detect specific type of information and
capture linguistics and semantic relations.

In contrast to these systems, we propose an approach that exploits unsuper-
vised machine learning technology. None of the existing approaches consider the
use of such approach. We believe that an unsupervised approach can comple-
ment existing systems since it allows to identify public health event (PHE) even
if no matching keywords or linguistic patterns can be found.

Unsupervised Event-Detection. In the data mining community, the event
detection task is divided into two categories: retrospective and new event detec-
tion, in either on-line or off-line mode [19]. Retrospective event detection refers
to the detection of previously unidentified events from an accumulated histor-
ical collection. New event detection refers to the discovery of the onset of new
events, either from live feeds in real-time (online model) or under a closed-world
assumption.

Two main approaches have been considered to solve the problem of event de-
tection, namely: document-based [1,12,19] or feature-based [5,7]. In document-
based approaches, event detection is done by clustering documents (also named
articles) based on semantics and time stamps using a generative model of doc-
uments. In feature-based approaches the temporal and document distributions
of words are first studied and events are discovered using distributions of the
features over the time, namely trajectory. In order to address the requirements
of Epidemic Intelligence, we incorporate aspects from both the trajectory and

1 http://www.who.int/csr/don/en/index.html
2 http://en.wikipedia.org/wiki/RSS

http://www.who.int/csr/don/en/index.html
http://en.wikipedia.org/wiki/RSS

90 M. Fisichella et al.

generative model approaches. For the trajectory approach, we extend the way
that periodic feature bursts are identified by using Cauchy-Lorentz distribution.
In contrast to feature trajectory, generative modeling has been shown to provide
a more unified framework incorporating multiple modalities such as time stamp
of an article and its content. In the generative model, events are latent vari-
ables and articles are observations. Latent variables (as opposed to observable
variables), are not directly observed, but are rather inferred through the model
from some representation of the article’s content that is observable and directly
measured. Moreover, medical articles exhibit a similar behavior as other type of
data: the documents themselves trigger events; and the document counts of an
event are changed with time. Moreover, several events could be overlapping in
time. Probabilistic models which use the Expectation Maximization (EM) algo-
rithm have been used to capture this kind of behavior [4], and we follow this
approach for the same reasons.

Finally, much of the work done in this area has focused on different ways to
represent the features of a document and we follow a similar direction, adapting
the representation to the public health domain [7,12]. In addition, we refine the
generative model for features described in [12] by modeling the features based on
trajectory distributions that have been computed from the dataset. Comparison
results between [12] and our approach are shown in Section 4.3.

3 Unsupervised Public Health Event Detection

The goal of this work is to introduce an approach to detect PHE in an unsu-
pervised manner. In a typical epidemic investigation task, public health officials
must detect anomalous behavior. They periodically compute statistics about dis-
ease reporting events, using the recent past, in order to build a predictive model
for the near future. The model is used as a baseline for detecting any anoma-
lies. These statistics are based on aggregated information, which in our case, is
derived from detecting events in an unsupervised manner from documents.

We consider a three stage process for detecting unsupervised public health
events:

1. In the first stage, Named Entity Feature Representation, we build
entity-centric document surrogates that are suitable for the medical domain.
The manner in which we extract features and represent documents is outlined
in Section 3.1.

2. We then perform Feature Analysis on the extracted set of features to
prune the less relevant ones. Details are reported in Section 3.2.

3. The resulting set of features is then used as input for the Unsupervised
Public Health Event Detection stage. Section 3.3 spells out how the
detection is conducted.

Finally, to perform at the end an epidemic investigation where officials detect
anomalous behaviors, relations between detected events need to be aggregated.
This task will be considered in future work.

Detecting Health Events on the Social Web to Enable Epidemic Intelligence 91

3.1 Named Entity Feature Representation

As a first step, we process raw text to build an entity-centric feature represen-
tation of the document. Given a collection of text documents, we define a finite
set of articles, A as well as a Health Event Template, T . The template T rep-
resents a set of feature types, which are important for describing public health
events. More specifically, we describe a public health event by four attributes that
provide information on who (victims) was infected by what (diseases), where
(locations) and when (time, defined as the period between the first relevant
article and the last relevant one). Thus, the template is instantiated as:

T =< V ictim, Disease, Location, T ime > .

Instances of the template elements are represented as < v, d, l, t >, for victim,
disease, location and time, respectively. We model the content and time with
different types of models.

Content. The content of each document is represented by a bag-of-words whose
type is given by the health event template. For each document, a vector is cre-
ated for each of the feature types and each entry in the vector corresponds to
the frequency with which a feature, of a given type, appears in the bag-of-words
representation.

Time. Each event corresponds to a peak on an article count versus time dis-
tribution. In other words, the distribution is a mixture of many distributions of
events. A peak is usually modeled by a Gaussian function, where the mean is
the position of the peak and the variance is the duration of event. As a result, a
GaussianMixtureModel is chosen to model times. A medical article also can be
represented by victims, diseases, locations and time (represented by a discrete
value, i.e., the timestamp).

As a result, we describe a PHE and a medical article using the following
tuples:

PHE = {victims, diseases, locations, time(Period)}
article = {victims, diseases, locations, time(T imestamp)}

In order to simplify our model, we assume the four kinds of information of
the i-th medical article, given a PHE ej , are conditional independent. Thus,
the probability of an article is given by the product of the following individual
probabilities:

p(articlei|ej) = p(victimsi|ej)p(diseasesi|ej)p(locationsi|ej)p(timei|ej)

3.2 Feature Analysis

In our work, we posit that Epidemic Intelligence involves a dual task: the detec-
tion of periodic as well as aperiodic events. In our domain, periodic events need
to be determined in order to build statistical models for reoccurring infectious

92 M. Fisichella et al.

diseases, or to track the changes in the prevalence level for an outbreak once
it has occurred. With respect to a window of one year, for example, aperiodic
events are also important, since they can represent a public health event that is
annual (season flu) or quite severe and life threatening, such as a sudden out-
break of Ebola. Given the nature of public health event detection, it is important
to be able to model both types of events for EI.

Spectral analysis is a common technique for identifying periodic and aperi-
odic features [7]. In this approach features are classified with respect to their
periodicity (Pw) and their dominant power spectrum (Sw). The periodicity of
a feature refers to its frequency of appearances. If the feature is aperiodic, then
it occurs once within the period P , and its Pw has a value equal to the period
itself. If the feature is periodic, then it happens regularly with a fixed period-
icity, i.e., Pw ≤ �P/2�. The periodicity is a function of the dominant power
spectrum which is computed via the discrete Fourier transform applied to the
feature distributions, for more details refer to [7].

The dominant power spectrum, Sw, of a feature w is a strong indicator of
its activeness at the specified frequency; the higher the Sw, the more likely it is
for the feature to be relevant within the dataset. Thus Sw can be considered to
filter out irrelevant features, i.e., features with a dominant power spectrum less
than a prefixed threshold chosen according to the domain. After filtering out
irrelevant features, the remaining features are meaningful and could potentially
be representative for some events.

Identifying Burst for Aperiodic Features. Let yw(t) be the distribution of
the feature w over the time t of the period under observation; further, let yw(t)
be computed as in [7]. Then, for each aperiodic feature, we keep only the bursty
period, which is modeled by a Gaussian distribution.

fap(yw(t)) =
1√

2πσ2
w

∗ e
− 1

2σ2
w

(yw(t)−μw)2

(1)

The well known Expectation Maximization (EM) algorithm is used to compute
the Gaussian density parameters μk and σk [4].

Identifying Bursts for Periodic Features. To model the periodic features
we chose a mixture of K Cauchy-Lorentz distributions, where K = �P/Pw�.
Such a distribution is similar to the Gaussian, but differs in the thickness of its
tails. This property, as observed from the computed yw(t), reflects better the
distribution of periodic features, since, even for t far from the peak of the burst
(non burst or trough activity), generally the feature distribution yw(t) reports a
value that is important to be considered. The mixture is described as follows:

fp(yw(t)) =
K∑

k=1

αk ∗ 1
π

[
γ

(yw(t) − μw) + γ2

]
(2)

for the mixture proportions αk of assigning yw into the kth Cauchy-Lorentz
distribution.

Detecting Health Events on the Social Web to Enable Epidemic Intelligence 93

0 ≤ αk ≤ 1where
K∑

k=1

αk = 1, ∀k ∈ [1, K] ⊂ N (3)

Furthermore, μw is the location parameter, specifying where is the peak of the
distribution, and γ is the scale parameter which specifies the half-width at half-
maximum. μ, γ and α are computed using the EM algorithm [4].

Feature Burst Distributions Algorithm. In this section, we present the
algorithm for computing the feature burst distributions. Algorithm 1 wraps to-
gether the concepts and the approaches explained so far. The novelty of this
approach is to represent periodic features with the Cauchy-Lorentz distribution.
Finally, using the feature burst distributions for having a more representative
model has been proved to be successful.

3.3 Detecting Public Health Events

A core step, in the unsupervised detection of events is the clustering of the arti-
cles and generation of events. Formally, from this stage we get the following sets
of conditional probabilities that are shown in Table 1. We use these probabilities,
as a basis for determining that a public health event has occurred, or is currently
occurring.

Table 1. Probabilities obtained from unsupervised PHE detection

Probability Description

Pa|e : Set of conditional probabilities for an article, a, given an event, e
Pw|e : Set of conditional probabilities for a feature, w, given an event, e
Pe : Set of probabilities for an event, e

Approach. In this work, we choose to apply a retrospective event detection
algorithm since it is important in EI to use data historical collection, in order to
build a predictive model of public health events for the near future. The same
idea is used in statistical methods used in public health to analyze event data
from indicator-based systems (e.g., the Farrington Algorithm). Additionally, we
have chosen a probabilistic generative model for event detection, because it has
been proven to be a more unified framework for handling the multiple modalities
(i.e., time, content, entity types) of an article and its content.

For these reasons, we base our unsupervised event detection algorithm on the
Retrospective Event Detection (RED) algorithm presented by Li et al. [12]. It
relies on a generative model where the articles are produced using multinomial
distributions over the feature types. These articles are used later as starting
points for a clustering relying on the iterative EM algorithm. In addition, in their
work, the multinomial distributions are initialized with random probabilities.
Thus, the generated articles are randomly picked.

94 M. Fisichella et al.

Algorithm 1. Feature Analysis using feature burst distributions
Input: A set of extracted features W ; a set of articles A; a fixed threshold τ;
Output: all the feature burst distributions
begin

N := count the number of articles within A ;
D := count the number of distinct date t in A ;
P [|W |] := array storing the dominant period Pw for each feature w ;
S[|W |] := array storing the dominant power spectrum Sw for each feature w ;
F eatureDistributions[|W |][D] :=Matrix storing the vectors of feature distributions yw for each
feature w over the dates t ;
F ourierF eatureDistributions[|W |][D] := Matrix storing the decomposition of the vectors of feature
distributions yw into the sequence of complex vectors via the discrete Fourier transform DF T ;
for each distinct date t in A do

N(t) := count the number of documents at t ;

for each feature w in W do
DFf := count the total number of documents containing entity w ;

for each distinct date t in A do
DFf (t) := count the number of documents containing feature w at date t ;

DF − IDF :=
DFf (t)

N(t) ∗ log
(

N
DFf

)
;

Store DF − IDF into F eatureDistributions[w][t] ;

Compute F ourierF eatureDistributions using DF T on F eatureDistributions ;
for each feature w in W do

P [w] := compute the dominant period Pw of the corresponding feature ;
S[w] := compute the dominant power spectrum Sw of the corresponding feature ;
if S[w] ≥ τ then

if P [w] >
⌈ P

2
⌉

then

model the feature burst by a Gaussian distribution (aperiodic feature) ;

else
model the feature burst by a mixture of K = �P/Pw� Cauchy-Lorentz distributions
(periodic feature) ;

end

As part of our approach, we refine the RED algorithm by going beyond
this random initialization of probabilities - exploiting the feature distributions
from our Feature Analysis stage. The underlying intuition for our approach is
based on proven results, which show that an initial starting point estimated in
a better-than-random way can, in fact, be expected to speed up the iterative
EM algorithm converging closer to the optimum of the computed log lokelihood
of a collection of articles, than an initial point that is picked at random. For
more details refer to [21]. In our approach, we aggregate the computed feature
distributions over the articles, and use this information into the multinomial dis-
tributions of the generative model. Thus, the generated articles, used as starting
points by EM algorithm, are not totally randomly picked.

Although it has been proven that retrieved events are not influenced by the
starting points [8,18], the EM algorithm needs to be restarted several times with
several different random starting points in order to get a good approximation
of events. Supported by the analysis in [21], we do not need multiple restarts of
the EM algorithm, since an initial starting point estimated in this way, can be
expected to be closer to the optimum than a randomly picked initial point.

Events in the unsupervised event detection are latent variables, whose value is
defined with respect to the observed content of articles by a generative process.
An event is defined by a pattern of entity-centric features that co-occur with such
saliency, that an unlabled, real-world event, can be inferred, with some proba-
bility from the observable content of the articles that contain mentions of these
features. Since the set of articles that describe the same event contain similar

Detecting Health Events on the Social Web to Enable Epidemic Intelligence 95

sets of feature co-occurances, the articles themselves cluster and are described
by the conditional probability of an article, given an event, p(ai|ej , θ

j) where
the vector θj are mixing proportions, or the priors of events.

Generative Model for Public Health Events. Our generative model is
described in Algorithm 2.

Algorithm 2. Detection of Public Health Events: the generative model

begin
Choose an event ej ∼ Multinomial(θj);
Generate a medical article ai ∼ p(ai|ej);
Draw a time stamp timei ∼ N(μj , σj);
for each feature of it, according to the type of current feature do

Choose a victimiv ∼ Multinomial(θj
p|timei);

Choose a diseaseid ∼ Multinomial(θj
d|timei);

Choose a locationil ∼ Multinomial(θj
l |timei);

end

In the algorithm, the vector θj represents event probabilities initially instantiated
randomly (here the definition of event is according to the formalization of the
multinomial distribution); μj and σj are parameters of the conditional Gaussian
distribution given event ej ; θj

p, θj
d, θj

l are vectors of probabilities computed by
aggregating the feature burst distributions over the timei of a given event ej.

4 Experiments and Evaluations

In order to analyze the results of the introduced method, we ran several ex-
periments. For the specific task considered here which is public health event
detection, no annotated data set is available. Anyway, we performed some anal-
ysis on a real-world data set. In this section, the data set used for the experiments
is introduced together with the experimental settings and results.

Dataset. To build our data set, we collected source documents from the url
column of the PULS online fact base [17], a state-of-the-art event-based sys-
tem for Epidemic Intelligence which provides public health event summarization
and search capabilities. The data were collected for a four month period, from
September 1 - December 31, 2009, by crawling the website. In total 1,397 docu-
ments were collected. The data were processed by stripping all boilerplate and
markup code using the method introduced by Kohlschütter et al. [11].

The reduced dataset size is due to the unavailability of standard evaluation
data sets for public health event detection, thus a ground truth was manually
built as explained in Section 4.3. Nevertheless, our dataset size is comparable
with other datasets reported in relevant works [9,12,14,15].

96 M. Fisichella et al.

Feature Set. In the experiments, the algorithm is run on a feature set consisting
of named entities. Table 2 presents the main categories of features collected and
their counts. The entities have been extracted using two different named entity
recognition tools: UMLS MetaMap3 and OpenCalais4.

OpenCalais was used to recognize medical conditions and all variants of loca-
tion. MetaMap was used to identify the victim features. MetaMap has originally
been developed for indexing biomedical literature and relies upon the UMLS
Metathesaurus, a very rich biomedical vocabulary. Thus, it allows extracting
highly domain-specific concepts, but leads when applied to social media or news
articles to false positives. For our feature set we are only interested in disease
names and symptoms which are more reliable detected by OpenCalais. In con-
trast, the more detailed information on victims provided by MetaMap is very
useful for our algorithm. For these reasons, we decided to exploit these two
different named entity recognition tools.

Through manual inspection, we further found that noise introduced into the
algorithm due to multi-word expressions causes an explosion of the number of
features. This is particularly acute for a feature-centric approach such as ours in
the medical domain, in which features consisting of many multi-word expressions
quite commonly exacerbate the problem of producing irrelevant events. For this
reason, we normalized the features by the use of a taxonomy. More specifically,
the numerous and more specific concepts that are lower in the taxonomy are re-
represented by a parent concept. For this we rely upon the taxonomy underlying
the UMLS semantic network. As an example, the terms boy, girl, baby, child, kid
were normalized to the single feature, child.

Table 2. Overview on the features collected. norm is the number of normalized fea-
tures; unnorm is the number of unnormalized features.

Feature Feature norm unnorm
Types Categories

Victims Population Group, Age Group, Family Group, Animal 28 4100

Diseases Medical Condition 917 2754

Locations City, ProvinceOrState, Country, Continent 955 982

4.1 Experiment I: Feature Pruning

Objectives: The features described before were analyzed by computing for each
feature the periodicity, Pw, and their dominant power spectrum, Sw. The objec-
tive of this analysis was to prune the less important features, i.e., those that are
potentially not representative to some event. The pruning was driven by looking
at the Sw since it represents the relevance of features within the dataset. As
claimed in [7], setting a threshold over Sw to identify which features to discard

3 http://mmtx.nlm.nih.gov/
4 http://www.opencalais.com

http://mmtx.nlm.nih.gov/
http://www.opencalais.com

Detecting Health Events on the Social Web to Enable Epidemic Intelligence 97

is more of an art than science and it is domain specific. We further provide some
examples of pruned and kept extracted periodic and aperiodic features.

Fig. 1. Dominant period and dominant
power spectrum of the features

Results. In Figure 1, we report the
values of the dominant periods, Pw,
over the dominant power spectrums,
Sw, for each feature extracted (indi-
cated as a point in the diagram). In
the graph one can notice an empty
area between Pw = 62 and Pw = 123.
According to the definition of period-
icity, the bounds of this empty area
correspond respectively to �P/2� and
P , where P is the period under obser-
vation.

Looking at the distributions of all the feature points over the graph, we chose
to set the threshold τ over Sw to 0.5 (τ is specified in Algorithm 1). In Figure 1,
the pruned features are those points to the left of the vertical line put at Sw = 0.5.

4.2 Experiment II: Selection of k

Objectives. A key consideration in a retrospective event detection is the de-
termination of the number of events k to use as input for the generative model.
The choice of the number of events can affect the interpretability of the results.
For example, a solution with too few events will generally result in very broad
events. A solution with too many events will result in un-interpretable events
that pick out idiosyncratic feature combinations. We used a hill-climbing ap-
proach to discover the number of events as done in [12]. The objective of this
experiment is to determine the value of k for which the algorithm performs best.

Results. We ran our method ten times, each time setting a different input value
for the number of events k. Table 3 presents the F1-measure values computed
for different number of events. It can be seen that the best response from our
approach was achieved with k = 15, which correspond to the 50% of all peaks
on the articles count-time distribution. Based on this result, we chose k = 15 for
the manual assessment presented in Experiments III and IV.

Table 3. F1-measure over different num-
ber of events k

k 10 15 20 25 50 100

F1-measure 0.35 0.68 0.33 0.34 0.33 0.41

Table 4. Results for three clustering ap-
proaches

P R F

PULS 40% 31% 34.9%

RED 40.6% 51.5% 45.4%

UPHED 62.5% 74.8% 68.1%

98 M. Fisichella et al.

4.3 Experiment III: Cluster Quality

Objectives. An underlying intuition in our approach is that an unsupervised
event detection algorithm which is tuned to detect public health events, would
produce better quality clusters with respect to the Epidemic Intelligence task,
than either a public health event extraction system based on information extrac-
tion or a generic event detection algorithm. In order to verify this assumption,
we evaluated the quality of three clustering techniques. For the first cluster-
ing, PULS was used standing for a public health event extraction system based
on information extraction. For the second clustering, the approach described in
[12] was adopted as a generic event detection algorithm. This clustering con-
siders time, locations, persons, as well as general keywords as features in the
algorithms; we use RED to identify it. Finally, the third clustering was created
using our approach, namely the Unsupervised Public Health Event Detection,
UPHED. Due to the unavailability of standard evaluation data sets for public
health event detection, a ground truth was manually built. To construct the
ground truth, each document was manually examined by three subjects, who
were instructed to assign each document to one of 15 clusters. Each document
examined contained only a subset of the sentences - specifically, those contain-
ing at least one of the relevant named entities of medical condition, location and
person. Each named entity was highlighted in the sentence. Discrepancies among
the subjects were resolved by a fourth subject, based on mutual agreement. The
manually built clusters were then used as ground truth to evaluate the precision,
recall and f1-measure for the set of clusters that were created by the algorithm.

Results. Table 4 shows the results for precision (P), recall (R) and f1-measure
(F). As it can be seen, UPHED performs better than the other two ones; thus,
incorporating the medical conditions as entity type in fact, and integrating the
burst function analysis in the generative model, helps to improve the clustering
performance with respect to RED. Moreover, it has to be noticed that RED
technique drops with reference to the results shown in [12]; this can be justi-
fied stating that RED works well in general domain, but less when adopting a
particular domain as the Epidemic Intelligence. Regarding the clustering from
PULS, although the achieved results seem relatively low, an important differ-
ence should be noted. There is a difference in vocabulary (feature set) due to
the named entity extraction process used in PULS and our work. Although, we
sought to use the same number of features, as present in the PULS fact base (by
adjusting the minimum document frequency) - the distributions we obtained for
the features still differ. For example, the locations used in PULS are exclusively
at the granularity of the country, whereas those extracted from the correspond-
ing raw PULS text, in our work, contain multiple geographical levels, such as:
cities, providences, states, etc. Second, for the medical conditions we encountered
a similar context: terms caught by UPHED (e.g., coughing, vomiting, disorder,
etc) were not present in the PULS fact base, since they focused on actual dis-
ease mentions. We believe that accounting for the difference in the feature set,
would improve PULS results. Additionally a standardized data set, for the field

Detecting Health Events on the Social Web to Enable Epidemic Intelligence 99

Table 5. Detected aperiodic (E1 - E12) and periodic events (E13 - E15). Columns
respectively show extracted tags, number of documents and brief description of the
real events.

Event Event Terms No. Event
Id Docs Description

E1 wales, united kingdom,
swine flu, flu, people,
children

28 In November 2009, there were a couple of new swine flu cases occurring in Wales.

E2 china, beijing, flu, swine flu,
people, female

47 In October 2009, China had an increased number of swine flu cases. Further, the
population was vaccinated to a large extent.

E3 New York, united states, flu,
swine flu, children, people

71 In November 2009, the flu death toll increased significantly in U.S.

E4 bangalore, india, flu, infec-
tion, people, children

36 In September 2009, the swine flu toll in Bangalore increased.

E5 japan, tokyo, disease, swine
flu, people, children

44 In October 2009, Japan started with swine flu vaccinations.

E6 france, europe, disorder, flu,
people, female

32 In September 2009, an increased number of swine flu cases were reported in France.

E7 surrey, london, e.coli, diar-
rhea, children, animals

50 In September 2009, there was an outbreak of E. coli in England. Mainly children were
concerned who visited the same farm in Surrey.

E8 manila, malaysia, disease, in-
fection, people, father

57 In October 2009 there was an outbreak of leptospirosis in Manila, the capital of Philip-
pines. Further, there was a typhoon which led to an increase of several infectious
diseases which interested also the close Malaysia.

E9 africa, Kenya, cholera, diar-
rhea, female, people

44 In December 2009 a deadly outbreak of cholera in north-western Kenya took place.

E10 delhi, united states, flu,
dengue, children, people

44 In November 2009 there was an outbreak of Dengue in Delhi. Contemporaneously, in
United States several outbreaks of swine flu happened.

E11 china, asia, disease, rabies,
animals, people

30 In September 2009, China’s health officials became aware that rabies had become one
of the biggest public health risks facing China.

E12 united states, finland, can-
cer, chronic fatigue syn-
drome, people, animals

15 An american researcher found out that a virus linked to prostate cancer may also be
linked to Chronic Fatigue Syndrome. The same research was conducted by a finnish
study (October 2009).

E13 nigeria, south africa, disease,
infection, children, people

31 Several studies found out that babies and children in Africa die from infections
(September 2009). Further, there was a measles campaign in South Africa (October
2009). Period: every 7 days.

E14 united states, canada, vom-
iting, swine flu, people, chil-
dren

51 President Obama stated the fight against swine flu (October 2009). Also, several out-
breaks of swine flu in U.S. and Canada happened (October and November 2009).
Period: every 4 days.

E15 united states, russia, swine
flu, disease, people, female

24 Several news articles provide comparison of swine flu statistics for various countries,
comparing mainly cases happening in Russia and U.S. Period: every 4 days.

would also allow for a strong comparison of the approaches. Finally, we noticed
that the magnitude of our results does not exceed a value of 75% for recall. An
explanation is that manually assigning documents to clusters is a very difficult
task.

4.4 Experiment IV: Detected Public Health Events

Objectives. In another experiment, we manually analyzed the clusters together
with the documents assigned to them and tried to describe the underlying event
in own words or even to find an official information reporting the event. Further,
we separated periodic from aperiodic events. The objective of this analysis is
to provide a human interpretation of the clusters and have a critical analysis
on them. The separation between aperiodic and periodic events provides us in-
formation about the earlier re-occurring of some medical event within our time
window.

Results. Table 5 shows the characterizing cluster terms resulted from a clus-
tering by the algorithm for a value of k of 15. The Event T erms shown in this
table were presented to the testers in the manual assessment described in the
section before. For each feature type, the two most probable features have been

100 M. Fisichella et al.

selected for being shown. In addition, the number of documents assigned to the
single clusters is shown, as well as a manually created description of the event
happened that is reflected by most of the documents in the cluster. Evidently,
most of them are very relevant events that express - of course - the global event
happening in 2009 which is swine flu. For the events reporting such a disease,
an outbreak was also detected by Google Flu Trends5. Nevertheless, some of the
discovered events refer to some other diseases.

It can be seen that sometimes the extracted medical entity used to describe the
cluster is the general term disease. This mainly happens when different diseases
were described in the single documents. In the documents, the disease itself is
often mentioned only a few times and often replaced by the more general term
disease. For this reason, the calculated probability of the term disease became
higher than for the more specific medical conditions and this term has been
chosen as cluster describing term by the algorithm.

Some cluster labels reflect the content of the documents quite well - the terms
seem to be consistent with the reported event (e.g., cluster E1). For other clus-
ters, one might get the impression that two different events are described when
looking at the terms. For example, cluster E10, where a subset of the documents
assigned to this cluster deals with dengue in Delhi and another subset of doc-
uments refers to swine flu cases in United States. It can also be seen that the
clusters are somehow overlapping. For example the event related to swine flu in
U.S. is reflected by at least two clusters E3 and E14.

For some of the detected events we could even find official press releases
from health organizations through manual assessment. For example, the event
described by cluster E7 which refers to an outbreak of E.coli in England can be
confirmed by a press release of the Health Protection Agency on September 13,
20096. The terms selected for describing the cluster reflect very well this event:
Children were infected by E.coli after a visit of a farm in Surrey. Further, we
separated and reported aperiodic (E1 - E12) from periodic events (E13 - E15).

In summary, from this manual assessment we learned that documents report-
ing a similar or the same event are clustered together by the algorithm. The
event terms that are selected based on their probability to describe the content
of the clusters reflect the content of the documents quite well. They even reflect
when events are assigned to the same cluster, but describe different events.

4.5 Experiment V: Efficiency Comparison

Objectives. In the last experiment, we compare three strategies for Detecting
Events :

1. The baseline of our method, which initializes the EM algorithm with random
points, as done in [12] and adapted to the medical domain. We use Rdm to
represent it.

5 http://www.google.org/flutrends/
6 http://www.hpa.org.uk/NewsCentre/NationalPressReleases/2009PressReleases/

http://www.google.org/flutrends/
http://www.hpa.org.uk/NewsCentre/NationalPress Releases/2009 PressReleases/

Detecting Health Events on the Social Web to Enable Epidemic Intelligence 101

2. An approximation of our method identifying bursts for periodic features
using a mixture of K = �P/Pw� Gaussians, as suggested in [7]. We use
GaussApp to identify it.

3. Our proposed method, namely the UPHED.

The intention of this analysis is to show that the selection of a good starting
point can boost the EM algorithm to converge quickly to the optimum and
that it is unnecessary to restart the EM algorithm multiple times with different
random starting point.

Table 6. Efficiency comparison of different strategies

Rdm GaussApp UPHED

Optimum (log-likelihood) -3648 -3543 -3497

Best Starting Point (log-likelihood) -3929 -3704 -3665

Average running time (seconds) 18.40 12.91 11.32

Average number of iterations for EM 10 7 5

Best trial: number of iterations for EM 7 4 4

Worst Trial: number of iterations for EM 14 10 8

Average number of restart of EM to get the optimum 5-6 1-2 1-2

Results. All the methods from the three strategies compared were ran on a
machine with an Intel T2500 2GHz processor, 2GB memory under OS Fedora
9. The algorithms were all implemented in Java compiled by JDK 6.0. The
experimental results are shown in Table 6. Here, we report the log likelihood
both for the optimum and for the best starting points of the three strategies.
The log likelihood indicates how likely the documents are generated by models,
so it is the bigger the better. Then, we relate the average running time, and since
this can be affected by implementation preferences, we describe the number of
iterations of the EM algorithm to converge to the optimum in the best case,
in the worst case, and on average. Finally, we show the number of restarts the
EM algorithm needs for converging to the optimum, since the presence of local
maxima can mislead the algorithm to reach the global maximum. From the
results, we can conclude that in all the measures reported, our proposed method
UPHED performs more efficiently than the other two ones. This also assists the
conclusion that UPHED is much easier to get to the optimum than starting
from a random point, thus needs less time and iterations to converge.

5 Conclusions and Future Work

In this paper, we presented an approach to public health event detection within
the context of Epidemic Intelligence. More specifically, an unsupervised algo-
rithm for detecting events from the data mining community was adapted to
address the specific problems of public health event detection. The adaptations
included the consideration of domain specific features that allow to detect only

102 M. Fisichella et al.

domain-specific events. Further, a burst function analysis and the entity-centric
feature representation were combined in a generative model that is the basis of
the algorithm. The model was refined for representing periodic, non-burst fea-
tures with the Cauchy-Lorentz distribution. The evaluations showed that better
sampling is reached by such distribution which resulted also in better efficiency
of the algorithm. For the task of detecting events, our approach achieved good
quality results for a precision of 62% and a recall 75% on manually annotated
data.

As future work, in order to simplify our model, we assumed the four kinds of
information (victims, diseases, locations, and time) of the i-th medical article,
given a PHE ej , are conditional independent. This statement will be corrobo-
rated or confuted with further analysis. Of particular interest will be discovering
if disease and time are conditional independent or not. Exploiting the results
achieved, we will update our approach.

Acknowledgement. This work was funded, in part, by the European Commis-
sion Seventh Framework Programme (FP7/2007-2013) under grant agreement
No.247829.

References

1. Allan, J., Papka, R., Lavrenko, V.: On-line new event detection and tracking. In:
SIGIR 1998: Proceedings of the 21st Annual International ACM SIGIR Conference
on Research and Development in Information Retrieval, pp. 37–45. ACM, New York
(1998)

2. Collier, N., Doan, S., Kawazeo, A., Goodwin, R.M., Conway, M., Tateno, Y., Ngo,
Q.H., Dien, D., Kawtrakul, A., Takeuchi, K., Shigematsu, M., Taniguchi, K.: Bio-
caster: detecting public health rumors with a web-based text mining system (2008),
http://research.nii.ac.jp/~collier/research/publications.date.html

3. Hartley, D., et al.: The of international event-based biosurveillance. Emerging
Health Threats (2009),
http://www.eht-forum.org/ehtj/journal/v3/full/ehtj10003a.html

4. Dempster, A.P., Laird, N.M., Rubin, D.B.: Maximum likelihood from incomplete
data via the EM algorithm. Journal of the Royal Statistical Society 39(1), 1–38
(1977)

5. Fung, G.P.C., Yu, J.X., Yu, P.S., Lu, H.: Parameter free bursty events detection
in text streams. In: VLDB 2005: Proceedings of the 31st International Conference
on Very Large Data Bases, pp. 181–192. VLDB Endowment (2005)

6. Grishman, R., Huttunen, S., Yangarber, R.: Information extraction for enhanced
access to disease outbreak reports. J. of Biomedical Informatics 35(4), 236–246
(2002), http://portal.acm.org/citation.cfm?id=827080

7. He, Q., Chang, K., Lim, E.P.: Analyzing feature trajectories for event detection.
In: SIGIR, pp. 207–214 (2007)

8. Hofmann, T.: Probabilistic latent semantic analysis. In: UAI, pp. 289–296 (1999)
9. Kawamae, N.: Latent interest-topic model: finding the causal relationships behind

dyadic data. In: CIKM, pp. 649–658 (2010)
10. Keller, M., Blench, M., Tolentino, H., et al.: Use of unstructured event-based re-

ports for global infectious disease surveillance 15(5) (May 2009)

http://research.nii.ac.jp/~collier/research/publications.date.html
http://www.eht-forum.org/ehtj/journal/v3/full/ehtj10003a.html
http://portal.acm.org/citation.cfm?id=827080

Detecting Health Events on the Social Web to Enable Epidemic Intelligence 103

11. Kohlschütter, C., Fankhauser, P., Nejdl, W.: Boilerplate detection using shallow
text features. In: Davison, B.D., Suel, T., Craswell, N., Liu, B. (eds.) WSDM, pp.
441–450. ACM, New York (2010),
http://dblp.uni-trier.de/db/conf/wsdm/wsdm2010.html#KohlschutterFN10

12. Li, Z., Wang, B., Li, M., Ma, W.Y.: A probabilistic model for retrospective news
event detection. In: SIGIR, pp. 106–113 (2005)

13. Madoff, L.C.: Promed-mail: An early warning system for emerging disease 2(39),
227–232 (July 2004)

14. Ming, Z., Wang, K., Chua, T.S.: Prototype hierarchy based clustering for the cat-
egorization and navigation of web collections. In: SIGIR, pp. 2–9 (2010)

15. Nallapati, R., Ahmed, A., Xing, E.P., Cohen, W.W.: Joint latent topic models for
text and citations. In: KDD, pp. 542–550 (2008)

16. Paquet, C., Coulombier, D., Kaiser, R., Ciotti, M.: Epidemic intelligence: a
new framework for strengthening disease surveillance in Europe. Euro Surveil-
lence 11(12), 212–214 (2006), http://www.ncbi.nlm.nih.gov/pubmed/17370970

17. Steinberger, R., Fuart, F., van der Groot, E., Best, C., von Etter, P., Yangarber,
R.: Text mining from the web for medical intelligence. Mining Massive Data Sets
for Security 19, 295–310 (2008)

18. Steyvers, M., Griffiths, T.: Probabilistic Topic Models. Lawrence Erlbaum Asso-
ciates, Mahwah (2007)

19. Yang, Y., Pierce, T., Carbonell, J.: A study of retrospective and on-line event
detection. In: SIGIR 1998: Proceedings of the 21st Annual International ACM
SIGIR Conference on Research and Development in Information Retrieval, pp.
28–36. ACM, New York (1998)

20. Yangarber, R.: Verification of facts across document boundaries. In: Proceedings
International Workshop on Intelligent Information Access (2006)

21. Zhang, D., Zhai, C., Han, J., Srivastava, A., Oza, N.: Topic modeling for olap on
multidimensional text databases: topic cube and its applications. Stat. Anal. Data
Min. 2(5-6), 378–395 (2009)

http://dblp.uni-trier.de/db/conf/wsdm/wsdm2010.html#KohlschutterFN10
http://www.ncbi.nlm.nih.gov/pubmed/17370970

A Learned Approach for Ranking News in

Real-Time Using the Blogosphere

Richard McCreadie, Craig Macdonald, and Iadh Ounis

School of Computing Science
University of Glasgow, G12 8QQ, UK

{richardm,craigm,ounis}@dcs.gla.ac.uk

Abstract. Newspaper websites and news aggregators rank news stories
by their newsworthiness in real-time for display to the user. Recent work
has shown that news stories can be ranked automatically in a retrospec-
tive manner based upon related discussion within the blogosphere. How-
ever, it is as yet undetermined whether blogs are sufficiently fresh to rank
stories in real-time. In this paper, we propose a novel learning to rank
framework which leverages current blog posts to rank news stories in a
real-time manner. We evaluate our proposed learning framework within
the context of the TREC Blog track top stories identification task. Our
results show that, indeed, the blogosphere can be leveraged for the real-
time ranking of news, including for unpredictable events. Our approach
improves upon state-of-the-art story ranking approaches, outperforming
both the best TREC 2009/2010 systems and its single best performing
feature.

1 Introduction

Large quantities of fresh news content from e-news providers are being contin-
ually published each day [1]. Meanwhile, millions of users consult e-newspapers
and news aggregators to find out the most interesting events and stories oc-
curring worldwide [1]. However, the volume and rate at which news content is
currently created, highlights the need for automatic means to sort through this
large volume of news in real-time, identifying the most currently newsworthy
stories for display. This task can be seen as a ranking problem. For example, on
the homepage of a news website, current news stories are ranked by their per-
ceived newsworthiness at that time. Highly newsworthy stories receive prominent
placement on the page, while lesser stories are displayed less prominently or not
at all.

Recent work examining the automatic ranking of news stories has indicated
that related blogging activity can be used as an indicator of story newsworthi-
ness [4,14]. Indeed, the blogosphere is well known as a medium for news reporting
and discussion [13,20,21]. Relatedly, almost 20% of searches to a blog search en-
gine were reported to be news-related [17]. This shows that the blogosphere is
likely to be a good source of information regarding current news.

R. Grossi et al. (Eds.): SPIRE 2011, LNCS 7024, pp. 104–116, 2011.
c© Springer-Verlag Berlin Heidelberg 2011

A Learned Approach for Ranking News in Real-Time Using the Blogosphere 105

News stories can be roughly classified into those resulting from predictable
and unpredictable events [2]. Of interest is that only predictable events, ex-
hibit elevated levels of blog posting activity beforehand [14]. For this reason,
the majority of previous models for news story ranking have focused on the
retrospective ranking of news, i.e. at a later point in time [12]. It is not clear
whether the blogosphere will remain an effective source of evidence for ranking
news stories when moving to real-time setting. In particular, there may be as yet
insufficient blog posts to accurately estimate newsworthiness for stories relating
to unpredictable events.

In this paper, we investigate the extent to which it is possible to automatically
rank news stories in real-time using the blogosphere. In particular, we propose
a novel learning to rank (LTR) [8] approach for this task. LTR techniques are
machine learning algorithms which take as input a set of features about each
object to be ranked, i.e. a story in this case. They learn a weight for each feature,
so that by combining weighted features a better overall ranking is produced than
when ranking by any single feature alone. In this work, we aim to define suitable
features which indicate the current newsworthiness of each story, allowing us to
produce an accurate ranking of top news stories in real-time.

The advantages of an LTR approach to this problem in comparison to existing
story ranking strategies are two-fold. Firstly, LTR provides a principled means
for combining multiple sources of timely story ranking evidence as features. Sec-
ondly, LTR is extensible, hence should a new possible feature become available,
e.g. the number of clicks on a specific story, then this can be easily integrated.
Moreover, to our best knowledge, our framework is the first application of LTR
for news story ranking using the blogosphere.

Existing story ranking strategies estimate the newsworthiness of a story based
upon an aggregate of recent blog posts. Building upon recent work in the field
of applying learning to rank techniques to aggregate problems [11], we propose
a novel approach, which leverages existing story ranking approaches as features
for use with learning to rank. In particular, we consider each feature to be
comprised of a story ranking component that estimates a story’s newsworthiness
and a temporal component that specifies for which period of time newsworthiness
should be estimated.

We evaluate the proposed learning to rank approach within the context of the
TREC top news stories identification task. Our experiments examine the value
that the blogosphere can bring to real-time news story ranking. The results show
that our approach is effective at ranking news stories in real-time, including
those relating to unpredictable events. Indeed, it markedly improves upon the
best TREC 2009 and TREC 2010 system performances.

The remainder of the paper is structured as follows. In Section 2, we dis-
cuss prior work in the field of news article ranking. Section 3 describes our
proposed learning to rank approach. Section 4 describes our experimental setup
including corpora used and training/testing details. In Section 5, we report the
performance of our LTR approach in comparison to the best TREC systems and
discuss the most effective features. We provide concluding remarks in Section 6.

106 R. McCreadie, C. Macdonald, and I. Ounis

2 News Story Ranking

The Blog track at the Text REtrieval Conference (TREC) examined how news
story ranking could be achieved in an automatic manner using evidence from the
blogosphere [12]. In particular, the top news stories identification task examined
whether the blogosphere could be used to identify the most newsworthy stories
for a given day [12]. Participants were provided with a large number of news
stories from the period of 2008 and had to rank those stories for a fixed set
of topic days using only evidence extracted from the Blogs08 corpus - a 28.5
million blog post sample of the blogosphere [9]. Notably, the top news stories
identification task was run during both TREC 2009 and TREC 2010. The 2009
task focused on a retrospective setting, i.e. participants were ranking the news
stories at a later point in time, while the 2010 task simulated a real-time setting.

Various strategies to retrospectively measure the newsworthiness of a news
story using the blogosphere have been proposed. For example, Mejova et. al. [15]
use the number of ‘citations’, i.e. the number of blog posts linking to the news
story, for ranking. However, this provided limited effectiveness due to the sparsity
of links to each news story within the blogosphere. Lee et. al. [4] proposed a
language modelling approach, whereby the likelihood of each story generating
recent blog posts indicates the story’s newsworthiness. This approach is more
effective, as it avoids the sparsity problem by exploiting the textual similarity
between a story and recent blog posts. Similarly, McCreadie et. al. [14] also
exploited textual similarity between blog posts, proposing to model a story’s
newsworthiness as a voting process [10]. In particular, they retrieved a fixed
number of blog posts related to the news story. Each blog post acts as a ‘vote’
for the story being newsworthy on the day that the blog post was published.
The final score for a news story is the number of votes received for the day of
the story.

For the real-time setting introduced in TREC 2010, similar strategies were
proposed, however only blog posts published on the topic day or before can be
used. For example, Xu et. al. [22] estimated the current newsworthiness of a
story by summing the BM25 scores for each blog post that was published on the
topic day for that story. Hence, only blog posts published on the same day as
the story were considered. Similarly, Lin et. al. [6] built a vector-space story-to-
blog-post representation, using only those blog posts from the story day. They
estimated a story’s news worthiness based upon the number of blog posts with
a high cosine similarity to it.

Recall that for our proposed LTR approach, we define a set of story ranking
features, each of which estimates the newsworthiness of a news story. We propose
to use existing story ranking strategies, like those described above, as the basis
for our story ranking features. In particular, these story ranking strategies act
as the story ranking component of each of each feature.

However, it is of note that all of the above strategies, excepting that by Mejova
et. al. [15], use a textual representation of the story. For instance, this could
be the headline of an associated news article, or even the full content of such
an article. Furthermore, prior work by McCreadie et. al. [14] indicated that

A Learned Approach for Ranking News in Real-Time Using the Blogosphere 107

Fig. 1. Illustration of the components of a story ranking feature

by enhancing this representation, e.g. by enriching an article headline using
query expansion, overall ranking performance could be improved. As such, we
consider the story ranking component to be comprised of two sub-components:
the ranking model and a story representation. Indeed, we experiment with eight
different story representations in our subsequent experiments. An illustration of
our feature components is shown in Figure 1. In the next section, we detail how
these two sub-components are combined with a temporal component under our
learning to rank approach to rank news stories in real-time.

3 Learning to Rank News Stories

We propose a new learning to rank approach to rank news stories in real-time.
Learning to rank techniques are machine learning algorithms which take as input
a set of document features and learn weights for each of those features within
an information retrieval (IR) system [8]. The aim is to find the weighted linear
combination of these features that results in the most effective document ranking.

Various learning to rank techniques have been proposed within the literature.
These techniques fall into one of three categories. Point-wise techniques learn on
a per-document basis, i.e. each document is considered independently. Pair-wise
techniques optimise the number of pairs of documents correctly ranked. List-
wise techniques optimise an information retrieval evaluation measure, like mean
average precision, that considers the entire ranking list at one time [8]. Prior
work has indicated that list-wise techniques learn more effective models [8]. As
such, we use a list-wise learning to rank technique in this work. In particular,
we use Metzler’s Automatic Feature Selection algorithm (AFS) [16]. This is a
greedy feature selection algorithm, which iteratively selects the feature that most
improves retrieval performance. Notably, features that do not aid retrieval are
not selected, i.e. they receive a weight of 0.

Traditional LTR techniques define features on the object that is to be ranked,
i.e. the news story in this case. However, news story ranking is an aggregate rank-
ing task, i.e. newsworthiness is defined in terms of a collection of related objects,
i.e. blog posts relating to the story, rather than the news story itself. Inspired
by prior work in the field of applying learning to rank techniques to aggregate

108 R. McCreadie, C. Macdonald, and I. Ounis

Fig. 2. Eight story ranking features generated from two story ranking models, two
story representations (headline and content) and two time-restrictions (previous 24
and 48 hours)

problems [11], we propose an novel approach that generates LTR features by
combining different components from multiple story ranking strategies.

In particular, under our LTR approach, a single feature is comprised of three
components, a ranking model, story representation and temporal restriction, as
illustrated previously in Figure 1. These components represent a real-time story
ranking strategy in a generic manner, i.e. to rank a story, a story ranking model
(ranking model) takes as input a textual representation of a story (story repre-
sentation) to be ranked, and a collection of recent blog posts covering a fixed
period of time (temporal restriction). For example, Xu et. al. [22]’s real-time ap-
proach estimates a story’s newsworthiness by summing the BM25 scores for each
blog post published during the last 24 hours using the headline from a related
article as a query. Therefore, one possible example of a story ranking feature
would be to combine the ranking model is that proposed by Xu et. al., an arti-
cle headline representation and blog posts from only the previous 24 hours. By
varying the ranking model amongst those described in Section 2, using methods
to enhance article headline or article content representations, and by consider-
ing more or less recent blog postings, we generate a large number of different
features. Figure 2 illustrates this process.

In the next section, we describe our experimental setup for evaluating our
learning to rank approach to real-time news story ranking and its individual
features.

4 Experimental Setup

We evaluate our learning to rank approach within the context of the TREC
2009/2010 Blog track top news stories identification task. In particular, we rank

A Learned Approach for Ranking News in Real-Time Using the Blogosphere 109

news stories from the period of January 2008 to February 2009 using evidence
from the TREC Blogs08 corpus [9] which spans the same period. Notably, we
rank news stories published by two different news providers, namely: the New
York Times and Reuters. The New York Times corpus, denoted NY T 08, was
used during the TREC 2009 task [12], while the Reuters corpus, denoted TRC2,
was used during TREC 2010 [5]. For each of these news corpora, for a set of
‘topic days’, stories published on those days were assessed in terms of their
newsworthiness. We evaluate story rankings produced by our learning to rank
approach, for both the 55 topic days from NY T 08 and the 50 topic days from
TRC2. Table 1 summarises the corpora used during our subsequent experiments.

Table 1. Statistics for the TREC corpora used during evaluation

Corpus Quantity Value

Blogs08 Time Range 14/01/08 → 10/02/09
Number of blog posts 28,488,766

NY T08 Time Range 01/01/08 → 28/02/09
Stories 102,853
Avg. Stories Per Day 264
Topic Days 55
Avg. Headline Length 7
Avg. Content Length 418

TRC2 Time Range 01/01/08 → 28/02/09
Stories 1,800,370
Avg. Stories Per Day 4,628
Topic Days 50
Avg. Headline Length 8
Avg. Content Length 225

Of note is that the TRC2 news corpus provides both an article headline for
each story, as well as the full article content, whilst the NY T 08 corpus provides
only the article headline. To make these corpora comparable, we independently
crawled the missing article content for the NY T 08 corpus, cleaning the resulting
text with the BoilerPipe [3] article extractor. Furthermore, research has shown
that using simple heuristics to prune away clearly unimportant stories from
news corpora can have a positive impact on story ranking performance [14]. As
such, we implement the following simple corpus pruning techniques. On both
corpora, we reproduce the pattern, date and uppercase pruning heuristics sug-
gested by McCreadie et. al. [14]. However, the editorial patterns that indicate
non-newsworthy stories change from corpus to corpus. As such, for the new
TRC2 corpus, we analysed three days’ worth of news stories and propose an al-
ternative pattern set1. We remove all news stories with article headlines starting
with the named patterns.

1 Patterns: “ADVISORY” “ANALYSIS” “BSE” “CBOT” “CHRONOLOGY” “COR-
RECTED” “CREDIT” “DIARY” “EUROPEAN” “Europe Daily Earnings” “FACT-
BOX” “FEATURE” “India call money” “INDICATORS” “INSTANT” “Japan
Hot Stocks” “NASDAQ” “NSEI” “NYSE” “PRESS” “REFILE” “RESEARCH”
“RPT” “SEALED” “SERVICE” “STOCKS” “TABLE” “TAKE” “TECHNICALS”
“TEXT” “*TOP” “TRADING” “TREASURIES” “US STOCKS” “WORLD”.

110 R. McCreadie, C. Macdonald, and I. Ounis

Using the aforementioned corpora, for all stories published on each of the 105
topic days spanning the two news corpora, we generate 160 story ranking fea-
tures. These features are generated by combining a story ranking model, with
a story representation and blog posts from a restricted period of time, as illus-
trated previously in Figure 2. In particular, we use two of the ranking models
described earlier in Section 2, specifically the relevance-based model proposed by
Xu et. al. [22], denoted Relevance, and the voting model proposed by McCreadie
et. al. [14], denoted Voting. Any model-specific parameters are set as specified in
the aforementioned papers. Furthermore, we use eight different story represen-
tations, four generated from the associated article headline for each story and
four from the article content. Moreover, we vary the number of previous days
of evidence that we make available using the temporal component. Specifically,
we use up to the previous 10 days of published blog posts to rank news stories.
Hence, the 2 ranking models, 8 story representations and 10 temporal restric-
tions multiply together to total 160 individual features. Table 2 lists each of the
components which comprise these features and provides a short description.

Table 2. Feature components and sets for news story ranking

Component Name Description

Model Relevance Aggregated relevance-based story ranking model [22].
V oting Voting-based story ranking model [14].

Story Headline The story headline.
Representation QE Blogs08 The headline expanded using the Blogs06 blog post corpus [9].

QE NY T06 The headline expanded using 2000 news articles from the
New York Times during May 2006.

QE TRC2 The headline expanded using 13 days of news stories from the
TRC2 corpus but before the start of Blogs08 [5].

Content The article content.
Entities Named entities from the article content identified by a

Wikipedia-based dictionary [18].
Noun − Phrases Noun Phrases extracted from the article content [19].
Summary Story summary generated using part-of-speech tagged article

content [7].

Time Restriction tNdays Blog posts are available from the last N days,
where 1 ≤ N ≤ 10.

To train the weights for each of these features, we experiment with two differ-
ent training regimes, namely Cross-Corpus and Per-Corpus. In particular, under
Cross-Corpus training, we train using the topics from one corpus (either NY T 08
or TRC2) and then test upon the topics from the other corpus and vice-versa.
Under Per-Corpus training, we train and test on the same topic set using a 5-fold
cross validation.

Due to slight differences in setting between the TREC 2009/2010 task formu-
lations, we make the following changes to create a consistent setting and make
cross-corpus training possible. Firstly, the TREC 2009 task (NY T 08 topics) con-
sidered that stories both after and before each topic day might still be relevant
due to differences in time-zone, which the 2010 task (TRC2 topics) did not. We
follow the TREC 2010 setting and only rank the stories published on each topic

A Learned Approach for Ranking News in Real-Time Using the Blogosphere 111

day. Secondly, the 2010 task introduced category classification of articles, i.e.
each article was judged as to the degree to which it is important on the topic
day with regard to one of five news categories. Importantly, these categories can
introduce a confounding variable into the evaluation, as even a perfect article
ranking system will be heavily penalised should it use a poor classifier. In this
work, we focus on evaluating overall article ranking performance, and as such
leave category classification for future work.

5 Results

In this section, we evaluate the performance of our learned solution and its
component features for real-time news story ranking, in addition to examining
the types of story (predictable vs unpredictable) that it favours. In particular,
we evaluate the overall story ranking performance in Section 5.1. Section 5.2
examines the strongest features selected by our approach. In Section 5.3, we
evaluate the importance of the three components of each story ranking feature
used, while Section 5.4 investigates whether our approach overall is biased toward
predictable events.

5.1 Story Ranking Performance

We begin by evaluating the overall story ranking performance of our approach in
comparison to the TREC best system for each of the NY T 08 (TREC 2009) and
TRC2 (TREC 2010) topic sets. Table 3 reports the story ranking performance
of the best TREC 2009 and 2010 systems as well as the performance of our best
individual feature, in comparison to our learning to rank approach when trained
under both Cross-Corpus and Per-Corpus regimes.

Table 3. Comparison between our learning to rank approach when trained under
both Cross-Corpus and Per-Corpus training with the best TREC systems in terms of
overall story ranking performance under the NY T08 (TREC 2009) and TRC2 (TREC
2010) story ranking topics. * denotes a statistically significant increase over the best
individual feature (t-test p < 0.05).

Model Training NY T08 Topics TRC2 Topics
(TREC 2009) (TREC 2010)

TREC Best System N/A 0.1862 0.1898

Best Individual Feature N/A 0.1836 0.1949

Learned Model Cross-Corpus 0.1165 0.1689
Per-Corpus 0.2042* 0.2248*

We observe that under Cross-Corpus training, i.e. training on NY T 08 (TREC
2009) and testing on TRC2 (TREC 2010), and vice versa, the performance of our
approach is lower than the best TREC system. However, when moving to Per-
Corpus training, i.e. a 5-fold cross validation, story ranking performance exceeds
that of the best TREC system by 9% and 15% on the NY T 08 and TRC2 topic

112 R. McCreadie, C. Macdonald, and I. Ounis

sets respectively. Moreover, the resulting trained model markedly outperforms
the best individual feature used alone by a similar margin. This shows that our
proposed learning to rank approach can indeed be effective for real-time story
ranking (under Per-Corpus training).

The lesser performance when using Cross-Corpus training indicates that the
best features for story ranking are different for the two news corpora and topic
sets. This is somewhat to be expected, as the NY T 08 and TRC2 corpora differ
markedly in both the story writing style as well as the level of noise contained.
In particular, as reported earlier in Table 1, Reuters (TRC2) published over 17
times as many stories during each day than the New York Times (NY T 08),
of which many are non-newsworthy stock reports. Furthermore, as a result of
crawling and cleaning the article content for NY T 08 ourselves, this content is
likely noisier than pre-provided TRC2 article content. Hence, we would expect
features based upon article content story representations to be less effective on
the NY T 08 topics and not to generalise between corpora. As such, in our further
experiments, we report results using Per-Corpus training only.

5.2 Strongest Story Ranking Features

To examine our approach in more detail, we investigate which of the 160 features
generated contribute most to the ranking of news stories. Table 4 reports the
five strongest positive and negative features selected by our approach on each
topic set.

Table 4. Strongest 5 positive and negative features on the NY T08 and TRC2 topic
sets. Boldened feature weights indicate features with a high impact on the story ranking.

Feature NY T08 Topics TRC2 Topics
Type Components Weight Components Weight

Positive V oting Headline t1day 0.9703 V oting Headline t1day 0.7719
Positive V oting Summary t1day 0.2762 V oting Content t2days 0.1406
Positive V oting Content t1day 0.2646 V oting Noun-Phrases t5days 0.0468
Positive Relevance Summary t2days 0.1213 Relevance Summary t3days 0.0196
Positive V oting QE Blogs06 t3days 0.0982 V oting QE TRC2 t3days 0.0173

Negative V oting Entities t8days -0.0063 V oting Headline t6days -0.0035
Negative V oting Content t8days -0.0286 V oting Content t6days -0.0038
Negative V oting QE TRC2 t7days -0.1032 V oting QE NYT06 t7days -0.0063
Negative Relevance Noun-Phrases t1days -0.1143 V oting Noun-Phrases t10days -0.0077
Negative V oting Headline t7days -0.5215 V oting Summary t6days -0.0101

In general, we observe that the V oting-based ranking model is preferred across
both topic sets, indicating that it produces features better able to distinguish
between newsworthy and non-newsworthy stories than the Relevance-based al-
ternative. Of the eight story representations listed previously in Table 2, we see
that the headline alone is the strongest story representation across topic sets.
However, in contrary to our expectations, the content representations were also
selected. This shows that although content is more noisy in the NY T 08 cor-
pus than its equivalent in TRC2, it appears to still provide valuable ranking

A Learned Approach for Ranking News in Real-Time Using the Blogosphere 113

evidence. Indeed, it is of note that of the positive features selected using the
NY T 08 topics, a higher weight is assigned to the shortened summary of the
content than the content unaltered. This indicates that the summarisation is
removing noise from the content for NY T 08 that is unnecessary for TRC2, al-
though in contrast, the Noun-Phrase representation appears be noisy. In terms
of the temporal restrictions that we place on the story ranking models for the
real-time setting, we make the following two observations. Firstly, only features
that use blog posts from the one or two days before the time of ranking appear to
be useful. Secondly, as we relax the temporal restriction and use older blog posts,
the story ranking features become negative, i.e. if a story has been discussed ex-
tensively beforehand then the story is less likely to be newsworthy. Indeed, for
the NY T 08 topics, the strongest positive feature (V oting + Headline + t1day)
becomes the strongest negative feature by changing the temporal restriction.
Notably, negative features appear not to add value on the TRC2 topics.

5.3 Story Ranking Components

We next examine whether the features generated by varying each of the story
ranking components are useful. In particular, we follow a leave-one-out approach,
whereby we discard any features generated by varying a given single component,
leaving only a single instance of that component. In particular, for the story
representation we keep only features using the article headline representation.
Similarly, for the temporal component, keep only features that used blog posts
1 day old or less. For the ranking model we keep only those features generated
by one or other of the two story ranking models considered.

Table 5 reports the story ranking performance of our learning to rank approach
trained upon feature subsets. We see that by removing features generated by
the V oting model, the ranking performance markedly decreases. This confirms
our earlier observation that the V oting-based model is more effective than the
Relevance-based alternative. Indeed, we see that by removing Relevance-based
features instead, little story ranking performance is lost.

Examining the story representations, performance decreases markedly on the
TRC2 topics by discarding alternate representations, showing that indeed, story
representations can have a strong impact on performance. However, unexpect-
edly, we see that by using the headline of the story alone, ranking performance

Table 5. Story ranking performance of our learning to rank approach in when training
on different feature sets using Per-Corpus (5-fold cross validation) under the NY T08
(TREC 2009) and TRC2 (TREC 2010) story ranking topics

V oting Relevance Story Time NY T08 Topics TRC2 Topics
Model Model Representations Restrictions (TREC 2009) (TREC 2010)

✔ ✔ ✔ ✔ 0.2042 0.2248

✖ ✔ ✔ ✔ 0.1729 0.1130
✔ ✖ ✔ ✔ 0.2034 0.2026
✔ ✔ ✖ ✔ 0.2120 0.1900
✔ ✔ ✔ ✖ 0.1658 0.2313

114 R. McCreadie, C. Macdonald, and I. Ounis

is slightly increased on the NY T 08 topics instead. The inability of the learner
with all features to find this better solution highlights an issue with greedy learn-
ing to rank approaches. In particular, greedy learners, while effective, are not
guaranteed to find the optimal solution and can be trapped in a local minima.

In terms of the temporal restrictions, we see that ranking performance is heav-
ily degraded on the NY T 08 topic set when only blog posts from the same day as
the story (t1day) are considered. On the other hand, story ranking performance
on the TRC2 corpus is not negatively impacted, indeed performance gains are
observed instead. This emphasises the differences in the NY T 08/TRC2 topic
sets. In particular, the performance gain observed on TRC2 indicates that the
corpus contains a higher proportion of unpredictable events, i.e. those for which
only very recent blog posts are relevant. Moreover, the different performances
observed between the topic sets confirm our earlier observation that the learner
on the NY T 08 topics used older blog posting activity as negative features, while
on the TRC2 topics it did not. Indeed, a key advantage that our approach has
over the existing story ranking models that it employs as components, is the
ability to adapt to different news corpora.

5.4 Predictable vs. Unpredictable Events

Lastly, we examine whether the blogosphere lacks sufficient freshness to accu-
rately rank stories relating to unpredictable events in real-time. In particular,
we select the top 5 most newsworthy stories as returned by our learned approach
for each of the 50 topics in the TRC2 corpus, creating a set of 250 newsworthy
stories. We manually annotated each of these as reporting about predictable or
unpredictable events. Should the blogosphere lack sufficient freshness, then our
story ranking approach will be more likely to identify predictable events over
unpredictable ones, i.e. the vast majority of the 250 news stories would relate to
predictable events.

However, in contrast, our results show that 46% of the top stories were un-
predicable, while 54% were predicatable (a close to even spread). This indicates
that, at least for the simulated real-time setting introduced by TREC, there is
no evidence to indicate that bloggers react too slowly for unpredictable stories
to be effectively ranked.

6 Conclusions

In this paper, we proposed a novel learning to rank approach which leverages
current blog posts to rank news stories in a real-time manner. In particular,
we used existing news story ranking models in conjunction with varying story
representations and temporal restrictions to generate 160 story ranking features.
We evaluated our proposed learning approach within the context of the TREC
2009 and 2010 Blog track top stories identification task. Our results show that
the proposed approach is effective at ranking news stories in real-time. Indeed, it
improves upon both the best TREC 2009 and TREC 2010 systems and its best

A Learned Approach for Ranking News in Real-Time Using the Blogosphere 115

internal feature by over 9% and 13% respectively. Moreover, we examined both
the individual features and story ranking components used by our learning to
rank approach, highlighting those that were most useful in terms of impact on
the story ranking. Lastly, we investigated whether our approach based upon mea-
suring bloggers response to news stories, was biased toward predictable events,
due to a lack of timely posting regarding unpredicatable events. However, we
found that there was no evidence to indicate that this was the case, indeed 46%
of top stories ranked by our system were related to unpredicatble events.

References

1. Newspaper Association of America (NAA): Newspaper Web sites attract more than
70 million visitors in June; over one-third of all Internet users visit newspaper Web
sites (2010), http://www.naa.org/PressCenter/SearchPressReleases/2009/

NEWSPAPER-WEB-SITES-ATTRACT-MORE-THAN-70-MILLION-VISITORS.aspx,
(accessed on January 25, 2010)

2. Jones, R., Diaz, F.: Temporal profiles of queries. ACM Trans. Inf. Syst. 25(3), 14
(2007)

3. Kohlschütter, C., Fankhauser, P., Nejdl, W.: Boilerplate detection using shallow
text features. In: Proceedings of WSDM 2010 (2010)

4. Lee, Y., Jung, H.y., Song, W., Lee, J.H.: Mining the blogosphere for top news
stories identification. In: Proceeding of SIGIR 2010 (2010)

5. Leidner, J.L.: Thomson Reuters releases TRC2 news corpus through NIST (2010),
http://jochenleidner.posterous.com/thomson-reuters-releases-

research-collection (accessed on January 16, 2011)
6. Lin, Y.F., Wang, J.H., Lai, L.C., Kao, H.Y.: Top stories identification from blog

to news in TREC 2010 Blog track. In: Proceedings of TREC 2010 (2010)
7. Lioma, C., Macdonald, C., Plachouras, V., Peng, J., He, B., Ounis, I.: University

of Glasgow at TREC 2006: Experiments in Terabyte and Enterprise Tracks with
Terrier. In: Proceedings of TREC 2006 (2006)

8. Liu, T.Y.: Learning to rank for Information Retrieval. Foundations and Trends�
in Information Retrieval 3(3), 225–331 (2009)

9. Macdonald, C., Ounis, I.: The TREC Blogs06 collection: Creating and analysing
a blog test collection. Tech report. Univ. of Glasgow

10. Macdonald, C.: The Voting Model for People Search. Ph.D. thesis, Univ. of Glasgow
(2009)

11. Macdonald, C., Ounis, I.: Learning models for ranking aggregates. In: Clough, P.,
Foley, C., Gurrin, C., Jones, G.J.F., Kraaij, W., Lee, H., Mudoch, V. (eds.) ECIR
2011. LNCS, vol. 6611, pp. 517–529. Springer, Heidelberg (2011)

12. Macdonald, C., Soboroff, I., Ounis, I.: Overview of TREC-2009 Blog track. In:
Proceedings of TREC 2009. NIST (2009)

13. Matheson, D.: Weblogs and the epistemology of the news: Some trends in online
journalism. New Media and Society 6(4), 443–468 (2004)

14. McCreadie, R., Macdonald, C., Ounis, I.: News article ranking: Leveraging the
wisdom of bloggers. In: Proceedings of RIAO 2010 (2010)

15. Mejova, Y., Ha Turc, V., Foster, S., Harris, C., Arens, B., Srinivasan, P.: TREC
Blog and TREC Chem: A view from the corn fields. In: Proceedings of TREC 2009
(2009)

http://www.naa.org/PressCenter/SearchPressReleases/2009/NEWSPAPER-WEB-SITES-ATTRACT-MORE-THAN-70-MILLION-VISITORS.aspx
http://www.naa.org/PressCenter/SearchPressReleases/2009/NEWSPAPER-WEB-SITES-ATTRACT-MORE-THAN-70-MILLION-VISITORS.aspx
http://jochenleidner.posterous.com/thomson-reuters-releases-research-collection
http://jochenleidner.posterous.com/thomson-reuters-releases-research-collection

116 R. McCreadie, C. Macdonald, and I. Ounis

16. Metzler, D.A.: Automatic feature selection in the Markov random field model for
Information Retrieval. In: Proceedings of CIKM 2007 (2007)

17. Mishne, G., de Rijke, M.: A study of blog search. In: Lalmas, M., MacFarlane, A.,
Rüger, S.M., Tombros, A., Tsikrika, T., Yavlinsky, A. (eds.) ECIR 2006. LNCS,
vol. 3936, pp. 289–301. Springer, Heidelberg (2006)

18. Santos, R.L.T., Macdonald, C., Ounis, I.: Voting for related entities. In: Proceed-
ings of RIAO 2010 (2010)

19. Schmid, H.: Treetagger. TC project at the Institute for Computational Linguistics
of the University of Stuttgart (1994)

20. Sussman, M.: The state of the Blogosphere 2009 (2009),
http://technorati.com/blogging/article/state-of-the-

blogosphere-2009-introduction/ (accessed on May 13, 2010)
21. Thelwall, M.: Bloggers during the London attacks: Top information sources and

topics. In: Proceedings of WWW 2006 Blog Workshop (2006)
22. Xu, X., Liu, Y., Xu, H., Yu, X., Peng, Z., Cheng, X., Xiao, L., Nie, S.: ICTNET

at Blog track TREC 2010. In: Proceedings of TREC 2010 (2010)

http://technorati.com/blogging/article/state-of-the-blogosphere-2009-introduction/
http://technorati.com/blogging/article/state-of-the-blogosphere-2009-introduction/

Attribute Retrieval from Relational Web Tables

Arlind Kopliku, Karen Pinel-Sauvagnat, and Mohand Boughanem

IRIT, University of Toulouse, France
{Arlind.Kopliku,Karen.Sauvagnat,Mohand.Boughanem}@irit.fr

Abstract. In this paper, we propose an attribute retrieval approach
which extracts and ranks attributes from HTML tables. Given an in-
stance (e.g. Tower of Pisa), we want to retrieve from the Web its at-
tributes (e.g. height, architect). Our approach uses HTML tables which
are probably the largest source for attribute retrieval. Three recall ori-
ented filters are applied over tables to check the following three prop-
erties: (i) is the table relational, (ii) has the table a header, and (iii)
the conformity of its attributes and values. Candidate attributes are ex-
tracted from tables and ranked with a combination of relevance features.
Our approach can be applied to all instances and is shown to have a high
recall and a reasonable precision. Moreover, it outperforms state of the
art techniques.

Keywords: information retrieval, attribute retrieval.

1 Introduction

Most information retrieval systems answer user queries with a list of documents,
but there are many information needs that can be answered with information
within documents. For instance, the query “features of Mac Book” is not asking
for all pages speaking of Mac Books rather than for their features.

Inspired by the work in [5], we distinguish three types of information needs
that can be answered differently:

- query by attribute (GDP of Italy, adress of Hotel Bellagio)
- query by instance (Samsung Galaxy, Italy, Oscar Wilde)
- query by class (Macintosh notebooks, British writers)

When the query is specifically asking for an attribute, we can return its value
right away. When the query is an instance, we can propose a summary of salient
attributes (properties). When the query is a class of instances, the result can be
a comparative table of the class instances with their attributes. Figure 1 shows
what these results might look like. A direct application can be Google Squared1,
a commerical tool that produces similar results. We will call search based on
attributes, instances and classes relational search.

Relational search is not the only application where attributes play a cru-
cial role. They can also be used for query suggestion [3], faceted search [4], or
1 http://www.google.com/squared

R. Grossi et al. (Eds.): SPIRE 2011, LNCS 7024, pp. 117–128, 2011.
c© Springer-Verlag Berlin Heidelberg 2011

http://www.google.com/squared

118 A. Kopliku, K. Pinel-Sauvagnat, and M. Boughanem

aggregated search [11]. For instance, given the query “Indonesia” and using at-
tributes of “Indonesia” we can produce suggestions such as “Indonesia climate”,
“Indonesia capital” and “Indonesia hotels”, while in a faceted search context we
can navigate returned results on the query “modern architecture” by attributes
such as “country”, “architecture style” and so on. Attributes can also be used
to summarize content about an instance/class.

Fig. 1. Examples of relational search results

In this paper, we treat attribute retrieval which falls in the above defined
framework. More precisely, the research question we address is identifying rele-
vant attributes for a given instance. We use HTML tables to extract attributes
from. There are some main reasons behind this choice. First, tables are widespread
across the Web. Second, many tables contain relational data [7]. Third, tables
have already been used sucessfully for attribute extraction [9,8].

However, the task is not easy. Many of the HTML tables are used for lay-
out design and navigation. In [7], authors estimate that only about 1% of the
Web tables contain relational data. Furthermore, some relational tables have no
headers (schema of attributes) and it is not easy to retrieve all relevant tables
for a given instance.

We propose an attribute retrieval approach at Web scale which takes into
account the above issues. First, we issue the instance as a query to a search
engine. The retrieved documents are used to extract tables from. Successively,
we apply 3 filters to candidate tables to check the following properties: (i) is the
table relational, (ii) has the table a header, (iii) the conformity of its attributes
and values. Extracted attributes are then ranked with relevance features.

Our approach integrates the work of Cafarella et al. [7]. Their work is at our
knowledge the largest mining of Web tables for search purposes. They show we
can filter out many tables that are not relational and that do not have a header.
In addition to their work, we filter out many table columns (or rows) that do
not contain attributes (name and values). We also integrate our previous work
[12], which shows that we can retrieve attributes using a linear combination of
relevance features such as table match, document relevance and external evidence
from Web search, DBPedia and Wikipedia.

The paper is structured as follows. The next section is about related work. In
section 3, we describe our approach including filtering and ranking of attributes.
Then we describe the experimental setup (section 4) and results (section 5)
following with conclusions.

Attribute Retrieval from Relational Web Tables 119

2 Related Work

To acquire attributes from the Web, it is common to use HTML tags, decoration
markup [21,19,10] and text [3,16,13]. Tags for tables, lists and emphasis have
been shown to help for attribute extraction [21,19]. Wong et al. [19] combine tags
and textual features in a Conditional Random Fields model to learn attribute
extraction rules, but they need a seed of relevant documents manually fed.

Another common technique to acquire attributes is through the use of lexico-
syntactic rules. For example, Pasca et al. [1,14] use rules such as “A of I” and
“I’s A” to acquire attributes from query logs. Authors represent the class as a
set of instances and multiple class instances are used to improve extraction. In
[2], authors use more precise lexico-syntactic rules such as “the A of I is”, but
recall of these rules is lower. In [15], Popescu et al. use lexico-syntactic rules to
extract product attributes from reviews.

At last, tables are known to be a mine for relational data and attributes.
Cafarella et al. [7,6] show we can identify billions of relational tables in the Web.
In [9], Chen et al. identify attributes using column (or row) similarities. Another
common technique to extract attribute from tables is through wrapper induction
[8,10,18]. Given a training set or a set of similar documents, wrapper induction
learns extraction rules. Many wrappers extract at record level, but they do not
distinguish between attribute name and attribute value. Furthermore, wrappers
are precision oriented and they work well only for some sites.

To summarize, current attribute acquisition techniques can obtain a high pre-
cision. Although many of these techniques produce a considerable number of
attributes, they cannot cover the needs that can be answered with the Web.
Most of them are conceived to work offline and they cannot extract instance
attributes whatever the instance.

Our work is inspired by work in [1] and [6,7]. It differs from [1], in that we
do not use lexico-syntactic rules but Web tables to identify attributes. It differs
from the work in [6,7], in that we do not use tables for relation search. We make
use of learnings in [6,7], but we introduce another filter at line level and we
introduce relevance features. The combination of filters and relevance ranking
allows us to enable attribute retrieval which was not investigated in [6,7].

3 Attribute Retrieval

We consider an information retrieval situation where the query is an instance
and the results is a list of attributes. Concretely, given an instance i, at-
tribute retrieval should extract and rank attributes with respect to
their relevance to i.

We first collect a seed of potentially relevant tables. We issue the instance as a
query to a search engine and we retrieve tables from the retrieved documents. We
use these tables to extract attributes from. The problem is far away from being
solved. Tables in the Web are quite heterogeneous and many of the retrieved
tables are not relevant or they are partially relevant.

120 A. Kopliku, K. Pinel-Sauvagnat, and M. Boughanem

Before ranking attributes, we apply three filters on tables and attributes namely
relational filter, header filter, and attribute line filter. The first two are the same as
in [7]. They are recall oriented classifiers that can filter out many tables that are
not relational and that do not have headers. Still, after applying these filters there
remain many tables which are not relational. As well there are many tables which
are almost relational such as table 2 in figure 2. Instead of filtering out this kind of
tables, we introduce another filter at column (or row) level which we call attribute
line filter. Each line is checked for its conformity for being an attribute line i.e. an
attribute name followed with attribute values of similar format and length.

After applying the three filters, we rank the remaining attribute lines with
respect to their relevance for the instance. The task is not easy. If we consider
only tables that match the instance, we would lose many relevant tables(e.g.
table 2 in figure 2 is relevant for “France”, but does not match it). To increase
recall, we use all tables from relevant documents. Extracted attributes are ranked
with relevance features as described in section 3.3.

Fig. 2. Examples of interesting tables

3.1 Relational Tables and Headers

We build the relational filter and the header filter using the same features as
done by Cafarella et al. in [7]. Features on the left of table 1 are used to learn a
rule-based classifier for the relational filter and features on the right are used to
learn a rule-based classifier for the header filter. Learning is done with a training
set of human-classified tables described later in the experimental setup.

Features include the dimensions of the table (f1, f2), the fraction of lines with
mostly nulls (empty cells) (f3), the lines with non-string data (numbers, dates)

Table 1. Features for the relational and header filter

Relational Filter Header Filter

f1: � rows f1: � rows
f2: � cols f2: � cols
f3: %rows w/mostly NULLS f8: %head row cells with lower-case
f4: � cols w/non-string data f9: % head row cells with punctuation
f5: cell strlen avg μ f10: % head row cells with non string data
f6: cell strlen stddev σ f11: % cols w/non-string data in body
f7:

σ
μ

f12: % cols w/|len(row 1) − μ| > 2σ

f13 : % cols w/|σ < len(row 1) − μ| ≤ 2σ
f14 : % cols w/|σ > len(row 1) − μ|

Attribute Retrieval from Relational Web Tables 121

(f4), statistics on the character length of cells and their variation (f5, f6, f7, f12,
f13, f14) and conformity of the header cells (lower-case, punctuation, non-string
data) (f8-f11).

The main difference with the work of Cafarella et al. is that they consider that
relational tables are all oriented vertically, i.e. the table header (if present) is on
top of the table and the attribute lines are vertical (the columns). For example,
tables 1 and 3 in figure 2 are oriented vertically and table 2 is oriented horizontally.
We extend their approach to work for both horizontally and vertically oriented
tables. This is not difficult. We consider the origin table t and another table t which
is obtained from t considering its rows as columns and its columns as rows.

If t passes both the relational and header filter, table columns are considered
as candidate attribute lines to extract attributes from. Similarly, if t passes both
the relational and header filter, the table rows that are considered as candidate
attribute lines. It can happen that both columns and rows are considered as
candidate attribute lines. The latter are then passed to the attribute line filter.

3.2 Attribute Line Filter

The attribute (name and values) is extracted from a column of the table or a
row of the table. Let a be the first cell of the line (row or column) and V be the
rest of the cells of the line. A conform attribute line should contain an attribute
name in the first cell and attribute values in the rest of the cells.

Typically, attribute names do not have much punctuation except of the colon
and parenthesis. They rarely contain numbers. On the other hand, attribute
values are usually in the same format (number, string, date) and their length
is similar. Based on the above observations, we define the following features for
the attribute line filter:

– presence of punctuation (except colon and brackets) in a
– presence of numbers in a; a is an English stop word
– length (char) of a; length (words) of a
– average and standard deviation of the length (char) of values: μ, σ
– �values v ∈ V with |len(v) − μ| > 2σ
– �values v ∈ V with |σ < len(v) − μ| ≤ 2σ
– �values v ∈ V with |σ > len(v) − μ|
– data conformity : maxT∈int,string,date(values of type(T)

|V |

These features are then used to learn a rule-based classifier from a training set of
human classified attribute lines described later in the experimental setup. Once
candidate attributes are filtered, we rank the remaining set as explained in the
following section.

3.3 Relevance

It is not easy to tell whether an attribute is relevant for a given instance. There
are many tables relevant to the instance where the instance is not even present
in its cells. We propose combining different features to estimate a relevance score

122 A. Kopliku, K. Pinel-Sauvagnat, and M. Boughanem

for attributes. There features include a score on the match of the instance on
the table, document relevance and external evidence from DBPedia, Wikipedia
and Web search. We use a simple linear combination of these features to rank
attributes. Each of the relevance features is described below.

Table match: Attributes should be extracted from tables that are relevant for
the instance. A necessary condition but not sufficient for a table to be relevant is
to be present in a relevant document for the instance. In some tables, the instance
appears explicitly. Such tables might be better candidates for extraction. The
table match feature will be described below. It is intended to measure at which
extent the table matches the instance (query).

Let a be an attribute extracted from a table T for an instance i. The match
of an instance within a table cell Tx,y is measured with the cosine distance
among the terms of the instance and the terms of the table cell. Let i and c
be the vector representation of the instance and the table cell content. We have
i = (w1,i, w2,i, ..., wn,i) and c = (w1,c, w2,c, ..., wn,c). Each dimension corresponds
to a separate term. If a term occurs in the instance, its value is 1 in i. If it occurs
in the table cell content, its value is 1 in c. The match is computed with the
cosine similarity among the vectors.

The table match score is computed as the maximal match within table cells:

match(i, T) = max
Tx,y∈T

cos(i, Tx,y)

However an attribute name is unlikely to be present in the same line (row or
column) with the instance name, while the relevant attribute value is likely to
appear in the same line with the instance. The latter can be also observed in
table in figure 2. We will define the shadow area of a cell O as the set of cells
in the same row and same column with O. But, there are some exceptions to
this rule. We call headline cells, the ones that have are spanned in one line cell
(colspan > tablewidth)2 such as “Facts” and “Population” in table 2, figure 2.
Headline cells usually act as titles that introduce parts of the table. We consider
that the headline cells are not part of the shadow of another cell (see figure 3).

We define the match score of an attribute as the difference between the table
match score and the shadow match score.

match(a, i, T) = match(i, T)− match(i, shadow(a))
where

match(i, shadow(a)) = max
Tx,y∈shadow(a)

cos(i, Tx,y)

Document relevance (drel): If a document is relevant for the instance, the
tables within the document are likely to be relevant for the instance. We should
though take into account the document relevance. More precisely, let �results
be the number of retrieved results for an instance i and rank be the rank of a
document d within this list. We compute drel(d, i) = 	results−rank

	results .

2 The colspan is an HTML attribute that defines the number of columns a cell should
span.

Attribute Retrieval from Relational Web Tables 123

Fig. 3. The shadow for a cell O, 3 cases

Search hits: Search hits is a feature that has already been used for attribute
extraction [21,15]. It corresponds to the number of search results returned by
a Web search engine to a query “attribute of instance” within double quotes
(successive ordering of terms is obligatory, e.g. “capital of France”). As done
in literature, we use the logarithm (base 10) of the search hits count. To nor-
malize, we used the above observation. Few attributes score higher than 6 i.e
log10(search hits count(a of i)) > 6. All the attributes that score higher than
6 were given a score of 1, the other scores were normalized by 6. Doing so, we
have all scores in the interval [0, 1].

DBPedia feature: DBPedia represents a large ontology of information which
partly relies on information extracted from Wikipedia. Given an instance i and
an attribute a, the DBPedia feature is equal to 1 if a is found as an attribute of
i in DBPedia.

Wikipedia feature: Although information in DBPedia is much more uniform,
there exist many attributes in Wikipedia infobox tables which are not present in
DBPedia. Infobox tables are available for many Wikipedia pages. They contain
lists of attributes for the page. Given an instance i and a candidate attribute a,
we set the Wikipedia feature to 1 if a can be found in the infobox of a page for
i in Wikipedia.

4 Experimental Setup

Data set: To build our dataset, we first chose a set of classes and then 30
instances per class. To choose instances and classes, we use sampling to avoid
biases. 5 participants had to write down 10 classes each. Classes could be broad
(e.g. Countries) or specific (French speaking countries). We sampled 20 classes
out of the 50. This is a reasonable amount as in state of the art approaches
[16,21,3,20,13], the number of assessed classes varies from 2-25 classes.

Similarly for each class, we asked the 5 participants to write down 10 instances.
Sampling and removing duplicates we obtained 10 instances per class. We do not
apply any specific criteria for selecting instances.

This is the list of classes: rock bands, laptops, american universities, hotels,
software, british army generals, chancellors of German, American films, IR pa-
pers, SLR cameras, 2000 novels, Nirvana songs, Nissan vehicles, programmable
calculators, countries, drugs, companies, cities, painters, mobile phones. The en-
tire dataset is in http://www.irit.fr/∼Arlind.Kopliku/FORCEdataset.txt .

124 A. Kopliku, K. Pinel-Sauvagnat, and M. Boughanem

General setup: For each instance of the dataset (200 instances), we retrieved
top 50 search results using the Yahoo! BOSS API. These pages are used as a
seed to extract tables and attributes. For each table, we apply the three filters.
The remaining attribute lines are used as candidate attributes, which are ranked
with the relevance features.

Learning filters: The three filters correspond to rule-based classifiers. They
were trained using the previously mentioned features using the WEKA package
[17]. From the extracted tables, we randomly selected a sample of 3000 tables
(with more than 1 row and more than 1 column) which were judged by 3 as-
sessors. For each table assessors had to tell, if the table is relational. If “yes”
they had to tell if the table is oriented vertically or horizontally and whether the
table has a header.

Similarly, we choose a sample of 3000 random attribute lines from our dataset
of tables. They are as well assessed from our assessors. For each attribute line,
the assessor has to tell if it is a conform attribute line i.e. it contains an attribute
name and attribute values.

Similarly to [7], we cross-validated the trained classifiers by splitting the
human-judged dataset into five parts. Each time four parts are used training
and the fifth for testing. We trained five different classifiers, rotating the testing
set each time. Performance numbers are averaged from the resulting five tests.

Ranking: Candidate attributes are ranked based on the relevance features. To
measure the performance of ranking, the 30 top ranked attributes for each in-
stance were assessed. 5 human participants shared this task assessing each a
disjoint set of attributes.

Assessments were binary. An attribute is assigned 1 if it is relevant for the
instance it was extracted for. It were assigned 0 otherwise. During evaluation,
they could access the source page of the attribute or other sources (Web search,
dictionary) to make their decision. Attributes were shown in alphabetical order
to avoid any bias.

5 Evaluation Results

This section is about experimental results. First, we present the performance of
the three filters. Then we analyze the performance of attribute retrieval.

5.1 Filtering

First, we analyzed all retrieved tables for all instances in our dataset. We found
that only 16.9% of the tables had more than one row and more than one column.
Within the 3000 tables that were assessed only 23% were considered relational.
We can thus estimate a concentration of 3.9% relational tables in the retrieved
Web pages. Now, we will analyze the effect of the filters. It is important to point
out that our goal is not to compare with the results of Cafarella et al. [7], but
to integrate their work and show its effect on attribute retrieval.

Attribute Retrieval from Relational Web Tables 125

Relational filter: As we mentioned earlier, we learn separately a classifier for
relational tables that are oriented horizontally and another classifier for relational
tables that are oriented vertically. Results are shown in table 2 aside with the
results obtained by Cafarella et al. [7].

Table 2. Precision and recall for the relational filter

Horizontal Vertical Cafarella

prec. recall prec. recall prec. recall

yes 0.50 0.82 yes 0.38 0.81 yes 0.41 0.81

no 0.98 0.94 no 0.98 0.95 no 0.98 0.87

We tuned classification for high recall over positives. The performance of our
classifiers is similar to Cafarella et al. The classifier of relational tables oriented
horizontally retains 82% of the true positives and it filters out 94% of the true
negatives. Similarly, the classifier of relational tables oriented vertically retains
81% of the true positives and it filters out 95% of the true negatives. After this
filtering step, we will have about 45% of relational tables within our corpus out
of an initial estimated concentration of about 3.9%.

Table 3. Precision and recall for the header filter in relational tables

Horizontal Vertical Cafarella

prec. recall prec. recall prec. recall

yes 0.96 0.95 yes 0.76 0.89 yes 0.79 0.84

no 0.63 0.70 no 0.87 0.73 no 0.65 0.57

Header filter: In table 3, we show results for the header filter. Results are
better than those of Cafarella et al. In particular, we found that most of the
horizontally oriented relational tables have headers. They usually have two to
three columns and are easier to classify.

The header classifier for relational tables oriented horizontally retains 95%
of the true positives with a precision of 96%. Although, the header classifier of
relational tables oriented vertically is less performant, it retains 89% of the true
positives with a precision of 76%. After this filtering step, about 87.5% of the
relational tables will have headers.

Table 4. Precision and recall for the attribute line filter

prec. recall

yes 0.56 0.95

no 0.69 0.55

Attribute line filter: As well as the other filters, the attribute line filter is
tuned for recall over positives. Results are shown in table 4. This filter retains
95% of the correct attribute lines, while it filters out about 55% of the incorrect

126 A. Kopliku, K. Pinel-Sauvagnat, and M. Boughanem

attribute lines. It clearly helps in filtering out useless attribute lines at the cost
of 5% of correct attribute lines.

5.2 Attribute Retrieval

Precision at rank: Attributes are ranked with a linear combination of the
relevance features. Results are shown in figure 4. They are promising, especially
when all three filters are applied. At rank 10, we have a precision of about 83%.
At rank 20 we have a precision of about 72%. This means that if we apply this
ranking for query suggestion, we will have that about 8.3 correct suggestions
within top 10 suggestions and about 14.4 correct suggestions among the top 20.

Fig. 4. Impact of filters

In figure 4, we can compare results for the ranking when no filter is applied and
when all 3 filters are applied. Clearly, filters improve results. The table in figure
4 allows us to analyze the impact of each filter. We can see that the attribute
line filter has a significant impact in the ranking as well as the relational and
header filter.

Comparison with existing approaches: We first compared our approach
to the one based on Lexico-syntactic rules [3,21,16,14] Lexico-syntactic rules are
common for attribute extraction . We tested the lexico-syntactic extraction rules
in our retrieval framework with our dataset. Concretely, we use the patterns
“A of I” and “I’s A” as done in [14,16]. We collect candidate attributes for
10 instances of all classes. The top 50 search results for all instances are used
as extraction seed for both techniques. The attributes extracted by the lexico-
syntactic extraction method are ranked with the same scoring (excluding table
match score which does not apply to lexico-syntactic rules).

Results are shown in table 5. Our method performs significantly better with
61% of relevant attributes at rank 30 against 33% for the lexico-syntactic rules.

We also compared both approach in term of recall, by considering only the
4 classes used to estimate recall. Lexico-syntactic rules have a lower recall, too.

Table 5. Comparison with lexico-syntactic scores

Approach p@1 p@10 p@20 p@30

Our approach 0.94 0.83 0.72 0.61

Lexico-syntactic rules 0.46 0.48 0.43 0.33

Attribute Retrieval from Relational Web Tables 127

For each class, lexico-syntactic rules identify 55 candidate attributes on average.
Among these there are about 24 relevant attributes per class.

We can conclude that lexico-syntactic rules work well for certain applications
such as queries, but they do not work well for long documents, especially in
terms of precision.

Estimated recall: To estimate in a reasonable time the recall of our method,
we randomly selected 4 classes namely “SLR cameras”, “countries”, “compa-
nies”, “Nissan vehicles”. For all instances of the class, our assessors evaluated
all candidate attributes (the ones that are not filtered out).

We found an average of 918 distinct candidate attributes per class (SLR cam-
eras 689, countries 1253, companies 804, vehicles 925). Among them, there are
on average 256 relevant attributes per class (cameras 303, countries 213, compa-
nies 160, vehicles 347). This is a considerable amount of relevant attributes and
it shows the potential of our method.

Comparison with DBPedia: We compared the recall of our approach with
the one obtained using DBPedia, for the 4 classes mentioned above. To do so,
we collected all Wikipedia pages related of the instances of each class. We then
extracted attributes which are either present in DBPedia or in infoboxes from
Wikipedia. We found an average of 25 distinct relevant attributes per class (cam-
eras 8, countries 38, companies 37, vehicles 18). We can conclude that our ap-
proach has a high recall even if compared with quality and large sources such as
DBPedia and Wikipedia.

6 Conclusions

We propose an attribute retrieval approach that can extract and rank attributes
from HTML tables sparse in the Web. Our method is flexible and recall-oriented.
Given an instance as a query, we retrieve attributes from top ranked search
results. Then, we combine filtering and ranking to obtain a list of attributes
ranked by relevance.

We combine a total three filters. Two of them are already known in litera-
ture. They are applied to HTML tables to filter out non relational tables and
tables without header. In addition, we propose a third filter which is specific
to attributes. All three filters are shown to have a high recall over povitives
and they filter out a huge amount of useless data. The remaining data is candi-
date attributes which are ranked with relevance features. Our ranking algorithm
combines document match, table match and other external evidence. The exper-
imental setup shows that we can rank attributes with a reasonable precision and
a high recall. Our approach outperforms lexico-syntactic rules and it provides
a much larger quantity of attributes than quality sources such as DBPedia and
Wikipedia (for our dataset).

For future work, we will investigate additional relevance features. We will
focus more on attribute values and try combining different attribute acquisition
techniques in a large-scale domain independent attribute retrieval framework.

128 A. Kopliku, K. Pinel-Sauvagnat, and M. Boughanem

References

1. Alfonseca, E., Pasca, M., Robledo-Arnuncio, E.: Acquisition of instance attributes
via labeled and related instances. In: SIGIR 2010, pp. 58–65. ACM, New York
(2010)

2. Almuhareb, A., Poesio, M.: Attribute-based and value-based clustering: An evalu-
ation. In: EMNLP. ACL (2004)

3. Bellare, K., Talukdar, P.P., Kumaran, G., Pereira, O., Liberman, M., Mccallum, A.,
Dredze, M.: Lightlysupervised attribute extraction for web search. In: Proceedings
of Machine Learning for Web Search Workshop, NIPS 2007 (2007)

4. Ben-Yitzhak, O., Golbandi, N., Har’El, N., Lempel, R., Neumann, A., Ofek-
Koifman, S., Sheinwald, D., Shekita, E., Sznajder, B., Yogev, S.: Beyond basic
faceted search. In: WSDM 2008, pp. 33–44. ACM, New York (2008)

5. Cafarella, M.J., Banko, M., Etzioni, O.: Relational Web Search. Technical report,
University of Washington (2006)

6. Cafarella, M.J., Halevy, A., Wang, D.Z., Wu, E., Zhang, Y.: Webtables: exploring
the power of tables on the web. Proc. VLDB Endow. 1(1), 538–549 (2008)

7. Cafarella, M.J., Halevy, A.Y., Zhang, Y., Wang, D.Z., Wu, E.: Uncovering the
Relational Web. In: WebDB (2008)

8. Chang, C.-H., Kayed, M., Girgis, M.R., Shaalan, K.F.: A survey of web information
extraction systems. IEEE Trans. on Knowl. and Data Eng. 18, 1411–1428 (2006)

9. Chen, H.-H., Tsai, S.-C., Tsai, J.-H.: Mining tables from large scale html texts. In:
COLING 2000, USA, pp. 166–172 (2000)

10. Crescenzi, V., Mecca, G., Merialdo, P.: Roadrunner: Towards automatic data ex-
traction from large web sites. In: VLDB 2001, USA, pp. 109–118 (2001)

11. Kopliku, A.: Aggregated search: From information nuggets to aggregated docu-
ments. In: CORIA RJCRI 2009, Toulon, France (2009)

12. Kopliku, A., Pinel-Sauvagnat, K., Boughanem, M.: Retrieving attributes using web
tables. In: Joint Conference on Digital Libraries 2011, Ottawa, Canada (2011)

13. Pasca, M., Durme, B.V.: What you seek is what you get: Extraction of class at-
tributes from query logs. In: IJCAI, pp. 2832–2837 (2007)

14. Pasca, M., Durme, B.V.: Weakly-supervised acquisition of open-domain classes and
class attributes from web documents and query logs. In: ACL, pp. 19–27 (2008)

15. Popescu, A.-M., Etzioni, O.: Extracting product features and opinions from re-
views. In: HLT 2005, pp. 339–346. ACL, Stroudsburg (2005)

16. Tokunaga, K., Kazama, J., Torisawa, K.: Automatic discovery of attribute words
from web documents. In: Dale, R., Wong, K.-F., Su, J., Kwong, O.Y. (eds.) IJCNLP
2005. LNCS (LNAI), vol. 3651, pp. 106–118. Springer, Heidelberg (2005)

17. Witten, I.H., Frank, E.: Data mining: practical machine learning tools and tech-
niques with java implementations. SIGMOD Rec. 31, 76–77 (2002)

18. Wong, T.-L., Lam, W.: A probabilistic approach for adapting information extrac-
tion wrappers and discovering new attributes. In: ICDM 2004, pp. 257–264. IEEE
Computer Society, Washington, DC (2004)

19. Wong, T.-L., Lam, W.: An unsupervised method for joint information extraction
and feature mining across different web sites. Data Knowl. Eng. 68, 107–125 (2009)

20. Wu, F., Hoffmann, R., Weld, D.S.: Information extraction from wikipedia: moving
down the long tail. In: KDD 2008, pp. 731–739. ACM, New York (2008)

21. Yoshinaga, N., Torisawa, K.: Open-domain attribute-value acquisition from semi-
structured texts. In: Proceedings of the Workshop on Ontolex, pp. 55–66 (2007)

Query-Sets++: A Scalable Approach for Modeling Web
Sites

Barbara Poblete1,2, Myra Spiliopoulou3, and Marcelo Mendoza4

1 Department of Computer Science (DCC), University of Chile, Chile
2 Yahoo! Research Latin-America, Chile

3 Otto-von-Guericke-University Magdeburg, Germany
4 Universidad Técnica Federico Santa Marı́a, Chile

Abstract. We explore an effective approach for modeling and classifying Web
sites in the World Wide Web. The aim of this work is to classify Web sites
using features which are independent of size, structure and vocabulary. We es-
tablish Web site similarity based on search engine query hits, which convey doc-
ument relevance and utility in direct relation to users’ needs and interests. To
achieve this, we use a generic Web site representation scheme over different fea-
ture spaces, built upon query traffic to the site’s documents. For this task we
extend, in a non-trivial way, our prior work using query-sets for single document
representation. We discuss why this previous methodology is not scalable for a
large set of heterogeneous Web sites. We show that our models achieve very com-
pact Web site representations. Furthermore, our experiments on site classification
show excellent performance and quality/dimensionality trade-off. In particular,
we sustain a reduction in the feature space to 5% of the size of the bag-of-words
representation, while achieving 99% precision in our classification experiments
on DMOZ.

Keywords: Web Sites, Query Mining, Classification.

1 Introduction

The fast expansion of the Web has made it increasingly important to find ways to extend
the paradigm of Web Information Retrieval (IR) towards richer functionalities. In this
work, we shift the focus of Web IR from the traditional retrieval of documents that
satisfy a certain query, towards the retrieval of complete Web sites. Specifically, Web
site retrieval can enhance search in several ways, for example: (1) retrieving sites that
are relevant to a specific query, (2) retrieving sites that are similar to another given
site, (3) grouping similar sites, and (4) building groups of sites, where each group is
representative of a specific topic.

In particular, in this work we focus on organizing Web sites, which corresponds to
applications (3) and (4). Specifically, we analyze Web site models which allow us to au-
tomatically classify sites into predetermined categories. Currently, this type of problem
is solved through human-intensive initiatives such as the DMOZ1 and Yahoo!2 directo-
ries, which, for a given taxonomy, manually find and assign Web sites that fit best each

1 http://dmoz.org
2 http://dir.yahoo.com

R. Grossi et al. (Eds.): SPIRE 2011, LNCS 7024, pp. 129–134, 2011.
c© Springer-Verlag Berlin Heidelberg 2011

http://dmoz.org
http://dir.yahoo.com

130 B. Poblete, M. Spiliopoulou, and M. Mendoza

topic. Obviously, this approach does not scale well in a rapidly growing and heteroge-
neous environment like the Web; since it requires knowledge of all possible topics and
regular inspection of all of the top Web sites for each topic.

We believe that by obtaining a suitable Web site model we will also have the basis for
addressing applications (1) and (2). Our solution is based on the wisdom of the crowds
paradigm. We consider two Web sites as being similar if users access both of them to
satisfy similar information needs. This type of approach allows us to identify Web sites
that are similar according to their perceived information content, independent of their
structure, size, vocabulary and specific data.

Our contribution is threefold: First, we address the problem of classifying providing
a solution that reflects how each Web site is perceived by users. Second, we show that
our prior work [8], for creating compact document models using queries cannot be
extended to large collections of Web sites in a trivial way. Third, we propose several
feature spaces which are appropriate for representing Web sites on the Web.

2 Related Work

We make the distinction between similar and duplicate or near-duplicate document
detection. Although there is extensive work in the latter area, it pursues a different goal
than similarity research: the goal is to detect almost identical documents. In our work
we focus on similarity research with the goal of finding Web sites that satisfy similar
information needs from users, but are not necessarily alike in contents, extension or
vocabulary.

There have been several efforts towards the automatic classification of Web sites.
Ester et al. [3] propose to model Web sites as feature vectors. They consider each topic
as a feature in a topic-based space, representing each Web site as a topic-based fea-
ture vector. Later, Kriegel and Schubert [6] applied the previous method for automatic
maintenance of Web directories. They modified the method representing each topic by
the centroid of the Web sites which belong to the topic. Lindemann and Littig [7] stud-
ied structural properties of Web sites, using them as features for Web site description.
On the other hand, Rajalakshmi and Aravindan [9] present a soft computing approach
for Web site classification. Their approach is based on features extracted from URLs,
without fetching Web site contents.

3 General Concepts

Web site: A formal and unambiguous definition of Web site is an open problem [2].
Deciding how to automatically classify documents into Web sites is not the purpose
of our work. Instead, we are interested in the task of organizing Web sites as wholes.
Therefore, we adhere to a simple heuristic definition for Web site which considers as
part of a Web site all of the documents that appear under the same host name [3].

Query-set mining: Query-sets are discovered by analyzing all of the search queries
from which a document was clicked, to obtain groups of terms that are used together to
reach the document. Formally, let L be a search engine query log and let Q be the set

Query-Sets++: A Scalable Approach for Modeling Web Sites 131

of distinct queries registered in L. Therefore, each query q ∈ Q can be repeated one or
more times in L. Then, for a given document d, we denote as Q(d) the set of distinct
queries in Q that resulted in a request for d, and as L(d) the portion of L that contains
clicks to d. Further, we denote as QT (d) the set of query-terms used in Q(d).

4 Generic Web Site Vectorization

We introduce a simple scheme for modeling Web sites as vectors over an arbitrary
feature space. We use an extension of the traditional vector-space model for documents,
with the variation that a Web site vector is composed by the sum of the vectors of its
documents. We use this for the creation of several query-based feature spaces.

Let D = {d1, d2, . . . , dn} be a collection of documents and let F = {f1, f2, . . . , fm}
be the set of features that characterize those documents. Further, let wi,j be the weight
associated to the pair (di, fj). Then, the generic document vector for di is defined as
−→
di =< wi,1, wi,2, . . . , wi,j , . . . , wi,m >. This vector is a generalization of the vector
space document model, which incorporates an arbitrary m-dimensional feature space
F . In the traditional vector space representation,F corresponds to the set of terms in D,
and wi,j to the weight of the jth-term in the ith-document - given by the term frequency
in di. Next, we create a representation for Web sites consisting of the aggregation of
each site’s document vectors. Let SITES = {s1, s2, . . . , sN} be a set of Web sites and
let D be the collection of all documents in SITES . Where sk ⊆ D for k = 1, . . . , N .
Then, the vector representation of a Web site sk built over the generic feature space F
is: −→sk =< ck,1, ck,2, . . . , ck,j , . . . , ck,m >, where each ck,j corresponds to a weight as-
sociated to the pair (sk, fj) for fj ∈ F . The value of ck,j is the normalized counterpart
of w′

k,j , according to the tf-idf scaling scheme proposed in [1,5]:

ck,j =

(
0.5 +

0.5 · w′
k,j

maxfl∈F(w′
k,l)

)
×

(
−log2

nj

N

)
,

Where w′
k,j is the sum of the weights of the documents in sk for a given feature fj :

w′
k,j =

∑
di∈sk

wi,j . and maxfl∈F(w′
k,l) is the feature with the largest weight in sk

and nj is the number of sites where fj appears. In particular, this vectorization of a Web
site sk ∈ SITES requires two parameters to be specified: 1) the feature space F over
the documents constituting all the sites in SITES , and 2) the weighting scheme for the
features over the documents.

5 Query-Based Feature Spaces for Web Sites

We define several variations of the feature space selection for Web sites. We model each
site s in a given set of Web sites SITES , as a vector over a feature space consisting of
elements that are either queries, query-terms or query-sets. In detail:

• “QUERYTERMS Model”: The feature space F consists of all individual query-
terms that constitute the queries leading to documents in the SITES :
F = ∪s∈SITES (∪d∈sQT (d))

132 B. Poblete, M. Spiliopoulou, and M. Mendoza

• “FULLQUERIES Model”: The feature spaceF consists of complete queries, namely
the queries used to access the documents in SITES : F = ∪s∈SITES (∪d∈sQ(d))

• “FREQPATTERNS Model”: The feature space F consists of the frequent query-sets
for each document in SITES , subject to threshold τ : F =∪s∈SITES (∪d∈sQS(d, τ))

• “FULLPATTERNS Model”: The feature space F consists of all query-set elements
for all documents, i.e. the support threshold τ is zero:F =∪s∈SITES (∪d∈sQS(d, 0))

• “MAXPATTERNS Model”: The feature space F consists of all maximal query-
sets for the documents in SITES , i.e. the frequency threshold to zero as above:

F = ∪s∈SITES

(
∪d∈sQ̂S(d, 0)

)
• “FULLQUERIESPLUS Model”: The feature space F contains for each document

d those query-sets for which there is a query in Q (not necessarily in Q(d)), i.e.
independently of whether this query resulted in a request for d:
F = ∪s∈SITES (∪d∈s(QS(d, 0) ∩ Q))

For the vectorization of a Web site using these feature spaces, we also need the weights
of the features for the individual documents. Let fj be a feature, i.e. a query-term, a
query-set or a complete query, depending on the feature space we use. The weight of
fj for a document d ∈ D is either: a) the number of queries in L(d) that contain fj , in
the case that fj is a query-terms or query-set, or b) the number of queries in L(d) that
match exactly fj , in the case that fj is a query. In other words, the weight of each fj

for a document d is clicks(fj, d) as defined earlier. Then, the unnormalized weight of
feature fj for the site sk ∈ SITES is the sum: w′

k,j =
∑

d∈sk
clicks(fj, d).

Note that QUERYTERMS and FREQPATTERNS models, correspond to the models
presented in [8], the other remaining feature spaces are novel.

6 Model Evaluation and Results

We present our methodology for modeling and classifying Web sites using the previ-
ously defined Web site representations. We present a comparison of their clustering and
classification performance, and consider as a baseline bag-of-words model (denoted as
“TEXT model” hereafter). As in related work, we use the DMOZ directory as a “gold
standard” for this task.

Dataset. As a data source we use a sample of the Yahoo! UK query log, which contains
2,109,198 distinct queries and 3,991,719 query instances. The vocabulary of the query
instances contains 239,274 distinct query terms. Our log sample contained 977 Web
sites in DMOZ, which included 5, 070 URLs with hits from queries. These Web sites
classified into 216 DMOZ categories.

Table 1 shows the number of features obtained for each Web site model in our dataset.
Models based on query sets reduce significantly the dimensionality of the original fea-
ture space (obtained using the vector model). FULLPATTERNS reduces the dimension-
ality by approximately 1/3 of the original feature space, increasing the number of not
null entries with respect QUERYTERMS by approximately 400%.

Difficulties with the FREQPATTERNS model. This model represents the aggregated
version for the best single-document representation proposed in [8]. This method

Query-Sets++: A Scalable Approach for Modeling Web Sites 133

involves a minimum frequency threshold τ for each query-set size (number of elements
in a set). Empirically, we observe that the selection of this parameter is not possible
when faced with documents from a large heterogeneous group of Web sites. In gen-
eral, frequent itemset mining allows to identify many itemsets with little support and
a few itemsets that have high support values. Interestingly, we observe that the aggre-
gated distribution of pattern sizes for documents from multiple Web sites does not fit
the previous assumption. Our collection shows many itemsets with low support and also
many itemsets with high support. Therefore, the selection of τ would require manual
inspection of each Web site’s distribution, which is not desirable.

Experimental Validation. In this study, we consider DMOZ categories to be the real
categories of the Web sites. Therefore, we evaluate the classification solutions against
this external quality indicator, which we consider as a ground truth. In particular, cat-
egories in DMOZ follow a tree hierarchy, this allows to evaluate at different levels of
granularity, ranging from general to very specific. By truncating the tree at height 3
(denoted @3) we consider 45 only categories, at 4 (@4), 75 categories, 5 (@5), 104
categories, and also using the complete tree (Full Dir.) with 216 categories. When trun-
cating the hierarchy tree, all of the categories that extend beyond the cutting point are
collapsed into their parent node.

We create a classifier in which each training instance is composed of a collection
of features, defined using a Web site model, and a label that indicates which category
the instance belongs to. Each testing instance is categorized using the classifier. The
nominal label and the predicted label are compared to evaluate the performance of the
model. We use a method based on logistic regression. Additionally, since this is a multi-
class problem, we extend the logistic regression model using the one versus rest method
(OVR) [4]. The OVR method has shown comparable precision performance to real
multi-class methods reducing training time.

To evaluate the performance of the models we compare for each testing instance the
nominal class and the predicted class. From the four possible cases presented when
comparing both labels, true positives (tp), false positives (fp), false negatives (fn) and
true negatives (tn), we calculate the accuracy measure for the tuning and training pro-
cess (tp+tn

tp+tn+fp+fn) and the precision measure for the testing step (tp
tp+fp). Then the

overall score is calculated by measuring the average.
The dataset is partitioned to perform 3-fold cross validation. Each fold preserves

the original proportions existing among the categories. Table 2 shows the performance
of the classifiers, each entry represents a precision value. As Table 2 shows, FULL-
PATTERNS outperforms the other models in all evaluations, with exceptional testing
precision (99.69 @Full Dir.). In particular, FULLPATTERNS outperform TEXT by ap-
proximately 10% when we consider the full directory. Also, FULLPATTERNS reduces
by approximately 50% the dimensionality of the TEXT feature space, increasing the
precision performance. Regarding FULLQUERIES, FULLQUERIESPLUS or MAX-
PATTERNS, the reduction of the feature space dimensionality is more extreme (app.
the 5% of the TEXT feature space) without losing precision. Regarding the use of fre-
quent patterns in queries for Web site modeling, it can be observed that the models
based on query-sets outperform QUERYTERMS. This result shows the usefulness of
the Web site models based on patterns.

134 B. Poblete, M. Spiliopoulou, and M. Mendoza

Table 1. Number of features of each model

Model No. of Features Not Null Entries
FULLPATTERNS 56,929 72,981

FULLQUERIES 9,151 9,875
FULLQUERIESPLUS 8,957 12,269

MAXPATTERNS 10,518 11,098
QUERYTERMS 6,763 16,096

TEXT 178,449 591,004

Table 2. Testing Precision

No. of Clusters 46 75 104 216
@3 @4 @5 Full Dir.

FULLPATTERNS 98.97 99.38 98.15 99.69
FULLQUERIES 90.48 83.31 89.96 97.03

FULLQUERIESPLUS 88.43 86.28 87.51 96.72
MAXPATTERNS 93.75 93.14 93.55 96.92
QUERYTERMS 87.64 87.23 87.64 88.97

TEXT 94.06 93.34 91.60 89.25

7 Conclusions

In this work we focus on generating simple and scalable Web site representations for
classification. Our approach is centered on providing models which convey users’ infor-
mation needs when visiting relevant Web documents from search engines. Additionally
we aim at finding similarities between Web sites in a way which is independent of
content, structure and size.

The usefulness of our Web site models is measured by applying categorization to
Web site vectors, with the objective of organizing similar sites. Our experimental eval-
uation shows that our models approach use significantly less features than the full text
approach obtaining better results. In addition, the categorization process shows that
FULLPATTERNS is the best discriminative model, achieving a precision performance
of 99.69% (almost perfect), 10% over the baseline. This is an important result, espe-
cially considering that FULLPATTERNS reduces the dimensionality of the original
feature space by approximately 50%.

References

1. Baeza-Yates, R., Ribeiro-Neto, B.A.: Modern Information Retrieval. ACM Press / Addison-
Wesley (1999)

2. Bharat, K., Chang, B.W., Henzinger, M.R., Ruhl, M.: Who links to whom: Mining linkage
between web sites. In: ICDM 2001 (2001)

3. Ester, M., Kriegel, H.P., Schubert, M.: Web site mining: a new way to spot competitors, cus-
tomers and suppliers in the world wide web. In: KDD 2002 (2002)

4. Fan, R., Chang, K., Hsieh, C., Wang, X., Lin, C.: Liblinear: A library for large linear classifi-
cation. JMLR 9, 1871–1874 (2008)

5. Karypis, G.: CLUTO a clustering toolkit, http://www.cs.umn.edu/˜cluto
6. Kriegel, H.P., Schubert, M.: Classification of websites as sets of feature vectors. In: IASTED

2004 (2004)
7. Lindemann, C., Littig, L.: Coarse-grained classification of web sites by their structural prop-

erties. In: WIDM 2006 (2006)
8. Poblete, B., Baeza-Yates, R.: Query-sets: using implicit feedback and query patterns to orga-

nize web documents. In: WWW 2008 (2008)
9. Rajalakshmi, R., Aravindan, C.: Naive bayes approach for website classification. In: Das,

V.V., Thomas, G., Lumban Gaol, F. (eds.) AIM 2011. CCIS, vol. 147, pp. 323–326. Springer,
Heidelberg (2011)

http://www.cs.umn.edu/~cluto

Indexing with Gaps

Moshe Lewenstein�

Department of Computer Science, Bar-Ilan University, Ramat-Gan 52900, Israel
moshe@cs.biu.ac.il

Abstract. In Indexing with Gaps one seeks to index a text to allow pat-
tern queries that allow gaps within the pattern query. Formally a gapped-
pattern over alphabet Σ is a pattern of the form p = p1g1p2g2 · · · g�p�+1,
where ∀i, pi ∈ Σ∗ and each gi is a gap length ∈ N . Often one considers
these patterns with some bound constraints, for example, all gaps are
bounded by a gap-bound G.

Near-optimal solutions have, lately, been proposed for the case of one
gap only with a predetermined size. More specifically, an indexing solu-
tion for patterns of the form p1 · g · p2, where g is known apriori. In this
case the solutions mentioned are preprocessed in O(n logε n) time and
O(n) space, where the pattern queries are answered in O(|p1| + |p2|),
for constant sized alphabets. For the more general case when there is a
bound G these results can be easily adapted with a multiplicative factor
of O(G) for the preprocessing, i.e. O(n logε nG) preprocessing time and
O(nG) preprocessing space. Alas, these solutions do not lend to more
than one gap.

In this paper we propose a solution for k gaps one with preprocessing
time O(nG2k logk n log log n) and space of O(nG2k logk n) and query time
O(m + 2k log log n), where m =

∑
i=1 |pi|.

1 Introduction

Indexing refers to the preprocessing of data, in our case text, in order to answer
subsequent pattern queries. Suffix trees and suffix arrays are two classical data
structures that index text. We denote the text T = t1t2 · · · tn. The queries are
then answered online quickly. Query patterns are of the form p = p1p2 · · · pm.

Pattern matching with wildcards is the problem of finding all appearances
of a pattern in a text where the text and pattern are over alphabet Σ ∪ {φ},
where φ denotes the wildcard; where a wildcard matches all other characters.
Pattern matching with wildcards was introduced and solved efficiently using
convolutional methods in [10]. Slightly tighter solutions have been presented
in [5,7,13,14].

Naturally the question was whether there were efficient solutions to indexing
with wildcards. Initially it seemed that even solving indexing with one mismatch
or wildcard is difficult. In [1] an efficient solution was given. A similar result was
also proposed in [9]. Both solutions convert the problem to geometric representa-
tions and use fast and effective geometric data structures. Lately, a new result [3]
� This research was supported by the Israel Science Foundation (grant no. 1848/04).

R. Grossi et al. (Eds.): SPIRE 2011, LNCS 7024, pp. 135–143, 2011.
c© Springer-Verlag Berlin Heidelberg 2011

136 M. Lewenstein

was proposed with optimal query times. These were achieved by reducing to a
data structure with tighter results. These solutions work very well for the case of
one wildcard or mismatch, but do not carry over, efficiently, to a larger number
of wildcards or mismatches. In [6] a solution for a larger number of wildcards
was devised.

Pattern matching with gaps, a natural problem, has been considered exten-
sively, see [4,8] for an example of one earlier paper and another recent one. The
problem is important in Computational Biology and Computational Musicology.
It is also an extension of pattern matching with wildcards, i.e. wildcards with a
length (or an interval of lengths).

Indexing with gaps was considered in [15]. They present an interesting and
detailed algorithm. However, their running time depends on parameters of the
number of matches between the blocks of the non-gaps. In [18] the same problem
is considered, only here only one gap in the pattern is assumed (and some other
constraints). The problem was also considered in [3,12]. In all three one gap of a
predetermined length was considered, i.e. the pattern is of the form p = p1φ

gp2,
where g is an input to the preprocessing. In the first paper [18] also the lengths
of P1 and P2 were predetermined. While, the results of [18] were very initial
the results in [12,3] were more sophisticated and followed along the lines of the
one mismatch/wildcard solutions. Each reduces the problem to geometric data
structural problems in the preprocessing and then, in the query stage, performs
an appropriate query in the geometric data structure. Actually the one mismatch
problem is more difficult than one wildcard (because with a mismatch we do not
know where mismatch occurs). The one wildcard extends naturally to one g-
length gap since the construction is basically the same.

The reduction in all these problems is to two dimensional range queries. The
idea is to construct separate suffix trees one for the text T , denoted ST , and one
for it’s reverse T R, denoted ST R . The central idea is the same in all solutions.
Consider the case of one wildcard then one can view any match (in the text)
as having a pivot at the location i where the wildcard occurs. Therefore, if the
pattern is P1φP2 then we can match P2 in ST and PR

1 in ST R . PR
1 starts at one

before the pivot and P2 starts one after the pivot. So, we construct on a 2D range
grid a point for each (potential) pivot i. Specifically, we have a lexicographic
ordering L1 of the suffixes (the ordering of the suffixes at the bottom of the
suffix tree = ordering of the suffix array) of T and a lexicographic ordering L2

of the suffixes of T R (which are prefixes of T). The point of pivot i is (x, y),
where x is the location of suffix i + 1 in L1 and y is the location in L2 of the
prefix of T ending at i − 1. Now, for query P1φP2 one walks down ST with P2

and down ST R and down ST R with PR
1 . In each we reach a node which defines a

range of leaves. We need to find all the pivots which have a point in the pair of
ranges. This translates into a two dimensional range query where all points in a
rectangle need to be found. There are different data structures for this problem
used in the different solutions. For g-length gaps all that is changed is that the
pivot point is now constructed for a pair i − 1 and i + g. It is easy to see that
the solution does not carry over to more than one wildcard (or gap).

Indexing with Gaps 137

1.1 Our Results

In this paper we are interested in generalizing indexing with gaps in two senses.
First we remove the constraint that the length of the gap g is known a-priori and
rather assume that there is a bound G for which the gaps are no larger than it.
Second, we allow more than one gap. Let us give the most general definition of
pattern matching with gaps. We will later add some constraints. This definition
follows along the lines of [4].

Given integers a and b, 0 ≤ a ≤ b, a variable length gap g{a,b} is an arbitrary
string over alphabet Σ of length between a and b, both inclusive. A variable
length gap pattern (for short VLG pattern) P is the concatenation of a sequence
of strings and variable length gaps, that is, P is of the form

p = p1 · g{a1, b1} · p2 · g{a2, b2} · · · g{ak, bk} · pk+1.

A VLG pattern P matches a substring S of T iff S = P1 · g1 · · · · gk ·Pk+1, where
gi is any string of length between ai and bi, i = 1, · · · , k. We say that P appears
at location i of T if there is a substring S of T starting at i which P matches. We
will classify VLG patterns into 3 classes; general VLG patterns, right-end VLG
patterns, i.e. where all ai = 1, and (simple) gapped-patterns, i.e. non-variable
or ai = bi. We also say that a VLG pattern is G-bounded if bi ≤ G for all i. We
say that a VLG pattern is k-gap-count-bounded if it contains at most k gaps.

For the sake of simplicity we will focus only on gapped-patterns throughout
this paper and leave the handling of general VLG patterns to the journal version.

The Indexing with Gaps problem is defined as follows.

Preprocessing Input: Text T = t1t2 · · · tn, G, and k.
Preprocessing Output: Data structure supporting G-bounded, k-gap-count-
bounded gapped-pattern queries.
Query Input: A G-bounded, k-gap-count-bounded gapped-pattern P .
Query Output: All locations i in T where P appears.

To solve the first problem of removing the a-priori constraint of length g, we
will use the results of [3] and update them accordingly. An O(G) factor in the
preprocessing seems unavoidable. On the other hand, an O(G) factor is sufficient
for extending the problem to G-bounded queries for the case of gapped-patterns.
For the more general case of G-bounded general VLG pattern queries, where only
one gap is allowed one can solve the problem with O(nG2) space with the same
time bounds or with O(nG log G) overhead and O(log G) query time.

If we want to allow more than one gap we will need a different data structure
than those that reduce to geometric data structures that we have seen before. We
will follow along similar lines to the result presented in [6]. However, things get
complicated when extending wildcards to G-length gaps. Unlike, the geometric
solutions the transfer is not trivial. We will need to produce new updates.

138 M. Lewenstein

The rest of our paper is organized as follows: in Sect. 2, we give some pre-
liminaries and problem definitions. In Sect. 3 we show our methods for allowing
multiple gaps in a few phases.

2 Problem Definitions and Preliminaries

2.1 Preliminary Definitions and Notations

Given a string S, |S| is the length of S. Throughout this paper we denote n = |S|.
An integer i is a location or a position in S if i = 1, . . . , |S|. The substring S[i . . j]
of S, for any two positions i ≤ j, is the substring of S that begins at index i and
ends at index j. Concatenation is denoted by juxtaposition. The suffix Si of S
is the substring S[i . . n].

The suffix tree [16,17,20,21] of a string S, denoted ST(S), is a compact trie
of all the suffixes of S$ (i.e. S concatenated with a delimiter symbol $ �∈ Σ).
Each of its edges is labeled with a substring of S (actually, a representation of
it, e.g. the start location and its length). The “compact” property is achieved by
contracting nodes having a single child. The children of every node are sorted
in the lexicographical order of the substrings on the edges leading to them.
Consequently, each leaf of the suffix tree represents a suffix of S, and the leaves
are sorted from left to right in the lexicographical order of the suffixes that they
represent.

ST(S) requires O(n) space. Algorithms for the construction of a suffix tree
enable O(n) preprocessing time when |Σ| is constant (where Σ is the alphabet
set), and O(n log min(n, |Σ|)) time when |Σ| is not. In fact, the suffix tree can be
constructed in linear time even for alphabets drawn from a polynomially-sized
range, see [16].
LCA queries. An LCA query lca(u, v) is given two nodes u, v in a tree T and
reports the lowest common ancestor w of u and v in T . Once w is known, its
height in the tree can also be determined. Often, data structures for constant
time LCA queries are used with suffix trees, as will be the case here as well.
Data structures for answering LCA queries in O(1) time can be built in linear
time [11,19]. These data structures also allow the reporting in O(1) time of the
edges exiting w on the paths to u and v. In addition, they yield the length of the
longest common prefix of the suffixes su and sv associated with u and v, again
in O(1) time.
Measured ancestor structure. We will also need a data structure for answering
the following query on an n-node compressed trie in O(log log n) time: Given a
leaf u and a distance h, report the location at which the prefix of su of length
|su| − h ends, i.e. the location distance h above u, where edges are deemed to
have length equal to their labels. We call this the measured ancestor structure.
Again, such data structures can be built in linear time [2].
Centroid path decomposition. Our construction uses centroid paths and centroid
path decompositions. For our setting, we define the centroid path of a tree T to
be the path starting at T ’s root, which at each node v on the path branches to

Indexing with Gaps 139

v’s “largest” child, with ties broken arbitrarily; the size of a node is simply the
number of leaves in the subtree rooted at that node. In a centroid path decom-
position, we decompose each off-path subtree of the centroid path recursively.

The weight of a node on a centroid path is defined to be the number of leaves
in its off-path subtrees. In our applications, for node v on a centroid path with
off-path child u, it is convenient to include edge (v, u) in the off-path subtree Tu

incorporating node u. We will also say that Tu hangs from node v.
The following property of a centroid path decomposition of a tree is well known.

Property 1. Let T be an n-node tree with a centroid path decomposition. Let v
be a node of T . The path from the root of T to v traverses at most log n centroid
paths.

3 G-Bounded Queries with k Gaps

Given the text T of size O(n) and a suffix tree S(T), a brute-force search for a
gapped-pattern p = p1 · g1 · p2 · g2 · · · gk · pk+1, can proceed as follows: descend
from the root of S(T), find the path that exactly matches p1. We refer to this
path as the first tier path. Now, the search can allow for a g1 gap by searching
all the paths hanging off the first tier path at that point in the path (these
are the second tier paths), taking the g1 gap at the top of each of these paths.
Recall that |Σ| edges may hang off a single node of the suffix tree and, therefore,
|Σ|g1 paths of length g1 may hang off of v; this implies that we can search for
a pattern containing a single gap (of length g1) in O(|p1|+ |Σ|g1 |p2|) time. It is
not difficult to see that a simple extension of this algorithm can handle multiple
gaps (for k = 2 we must search the third tier paths hanging off the second tier
paths, etc.), yielding a run time of O(|Σ|g1+···+gkm), where m =

∑�
i=1 |pi|. This

is accomplished without any modifications to the trie, and therefore only O(n)
space is used.

3.1 Speeding Up the Search

A first step towards improving the costly run time of the brute force method
involves a tradeoff between the inefficient run time of the algorithm and the
optimal space requirement of O(n). Specifically, we remove the |Σ|g1+···+gk term
from the runtime, but require Θ(nk+1Gk) space.

At each node of the trie, we wish to anticipate taking a single gap during
the search. To this end, before having knowledge of the gapped-pattern p we
preprocess the trie. The gap to be taken can be of any length between 1 and
G. So, at every node we create G gap subtrees, one for each possible gap length,
which will be searched if a gap is taken starting at that node. Note, that the
traversal in a tier may end in the middle of an edge. However, in this case it is
sufficient to “slide” to the node under it and adapt, g, the length of the gap, i.e.
if there are x characters on the edge from the location the traversal reached on
the edge until the node under it, we move to the node under it and continue the
search with a gap of g − x.

140 M. Lewenstein

a
b

a
c

c
c

b
c

a
c
a
b
b
c
b

b b
b

c a
a

a b
a c

c c
b

c

a
c
a
b
b
c
b

b b
b

c a
a

c
b

b

b
c

a
a

b

start of gap

c
a

c
a

c
a

Fig. 1. (a) node v with two suffixes in subtree, (b) 6-length gaps marked, (c) 6-gap-tree
created

A gap subtree for length r, 1 ≤ r ≤ G, which we call a gap-r-tree, at node
v contains a merge of all the subtrees at the end of the r-length paths starting
at v, see Figure 1. Another way to envision the gap-r-tree is to think of all the
leaves of the suffix tree in the subtree of v. Each corresponds to a suffix, say Si.
If we truncate the h-length prefix of Si we have the suffix Si+h. So, if the set
of leaves in the subtree of v corresponds to suffixes {Si1 , · · · , Siq} and the string
associated with node v (the locus of the root-to-v node) is of length d then the
gap-r-tree at node v is a compressed trie of the suffixes {Si1+d+r, · · · , Siq+d+r}
(for those that satisfy ij + d + r ≤ n). To create the gap-r-tree at node v one
traverses the suffixes and updates their index and uses the lexicographic ordering
to resort them. The lexicographic ordering is obtainable from the suffix tree of
the original tree (or one may use any other suffix sorting algorithm that one
desires). Once they are resorted one uses standard techniques to construct the
compressed trie over these updated suffixes giving the desired. The resorting
can be done in O(q log log n) time, where q is the number of elements in the
subtree of v. The sorting is done with a van-Emde Boas tree or with a y-fast-
trie. This can be done because all the “new” suffixes are really just suffixes from
the original suffix tree and they have been enumerated from 1, · · · , n according
to their lexicographic ordering. Hence, the “universe” of the q elements that are
sorted is of size n.

The size of the modified overall trie is Θ(n2G). This is because in the original
suffix tree, every leaf u representing a suffix, may have O(n) ancestors and each
have G gap trees hanging off the node containing u.

A search for a gapped-pattern with one gap, i.e. p = p1g1p2, on the new trie
descends from the root, and as before finds the path for p1. This is the first tier
path. Now, the search will continue in the g1-gap tree with the pattern p2. This
search takes time O(|p1|+ |p2|). It is not difficult to see that a simple extension

Indexing with Gaps 141

of this algorithm can handle multiple gaps – for k = 2 we must create secondary
gap subtrees for each node of each primary gap tree, etc. – yielding a run time
of O(m), where m =

∑�
i=1 |pi| with space O(nk+1Gk).

3.2 Better Tradeoffs

Although the aforementioned technique improves the run time significantly, the
space requirement is now problematic. However, a variant of this technique yields
an O(nG2k logk n) structure that supports gapped-pattern queries in O(2km)
time.

As before, before having knowledge of p we preprocess the trie and create a
gap subtree for each node. However, there is a slight twist here. We will consider
the centroid partition of the suffix tree. The gap subtrees created at a node v
will not contain all (truncated) suffixes in the subtree of v as before, but rather
will contain only those whose v-to-suffix path leave the centroid path within the
gap size, see Figure 2.

a
b

a
c

c
c

b
c

b
b

c

start of gap

A

B C

D

centroid path

A

B C

D

A

B C

Merge of 3 trees within
6 character area

Fig. 2. (a) 1 centroid path with suffix tree subtrees hanging off, (b) merge of appro-
priate subtrees (off centroid-path trees) for 6-gap-tree

If during the execution of a search a gap is taken at the node, then both
the gap tree and the subtree where the gap is along the centroid path must be
searched. That is, taking a gap will spawn two searches – better than the |Σ|g
searches spawned in the brute-force algorithm, but less efficient than the single
search required in the search speedup.

The benefit of this tradeoff lies in reducing the size of the structure, which is
now O(nG2 log n). This bound follows easily when one considers each leaf in the
original trie: Each gap tree that contains this leaf is associated with a distinct

142 M. Lewenstein

ancestor of this leaf, and further each such ancestor lies on a centroid path from
which the subtree containing the leaf diverges within at most G levels down. As
a leaf may have at most �log2 n� centroid paths on the path from root to leaf,
a leaf may be found in the gap subtrees of at most G�log2 n� ancestors in the
modified trie. Each such ancestor has at most G such subtrees.

It is not difficult to see that, as before, a simple extension of this algorithm
can handle multiple gaps – we create k-ary gap subtrees for each node of each
(k − 1)-ary gap subtree. This yields a run time for the query of O(2km) with
space O(nG2k logk n).

In the next subsection we will see how to reduce the query time to
O(2k log log n + m).

3.3 Final Speedup of the Query

The multiplicative factor of O(m) follows from the traversals on the pi’s and the
2k and the logk n factors are for the number of subtrees that we need to traverse
within.

A circumvention to the traversal is as follows. Recall that each of these sub-
trees is actually a trie over a collection of suffixes of the original suffix tree. We
have also assumed that these suffixes have been sorted (lexicographically) either
by the suffix tree construction or by some other suffix sorting method. There-
fore, each trie is actually a collection of numbers (the lexicographic ranks). Now,
when we first see the gapped pattern for each i we traverse with pi from the root
of the suffix tree. When we reach the end of pi we are at a node (or just above
a node) u. The leftmost leaf and the rightmost leaf in the subtree of u represent
suffixes with pi as a prefix of this suffix. So, they, actually their lexicographic
ranks, may represent pi.

So, now when we reach a gap subtree instead of traversing it from top with pi we
will do a predecessor query with the lexicographic rank of pi as the query and the
lexicographic ranks of the suffixes of the subtree as the data. Once we have found
the predecessor and successor we will be able to find the node in the subtree rep-
resenting the end of the pi search by applying an LCA query to the newly found
predecessor and successor. If there is only a predecessor (or only a successor) we
may use a measured ancestor query. This predecessor/successor queries and mea-
sured ancestor queries can be implemented in O(log log n) time. This yields:

Theorem 1. Let T be a text of size n. One can build an indexing scheme of size
O(nG2k logk n) so that one can answer gapped queries bounded by gap-bound G
with k gaps in time O(m + 2k log log n).

References

1. Amir, A., Keselman, D., Landau, G., Lewenstein, N., Lewenstein, M., Rodeh, M.:
Text indexing and dictionary matching with one error. J. of Algorithms 37(2),
309–325 (2000)

2. Amir, A., Landau, G., Lewenstein, M., Sokol, D.: Dynamic pattern, static text
matching. ACM Transactions on Algorithms 3(2) (2007)

Indexing with Gaps 143

3. Bille, P., Gørtz, I.L.: Substring range reporting. In: Giancarlo, R., Manzini, G.
(eds.) CPM 2011. LNCS, vol. 6661, pp. 299–308. Springer, Heidelberg (to apppear,
2011)

4. Bille, P., Li Gørtz, I., Vildhøj, H.W., Wind, D.K.: String matching with variable
length gaps. In: Chavez, E., Lonardi, S. (eds.) SPIRE 2010. LNCS, vol. 6393, pp.
385–394. Springer, Heidelberg (2010)

5. Clifford, P., Clifford, R.: Self-normalised distance with don’t cares. In: Ma, B.,
Zhang, K. (eds.) CPM 2007. LNCS, vol. 4580, pp. 63–70. Springer, Heidelberg
(2007)

6. Cole, R., Gottlieb, L., Lewenstein, M.: Dictionary matching and indexing with
errors and don’t cares. In: Proceedings of the Symposium On Theory of Computing
(STOC), pp. 91–100 (2004)

7. Cole, R., Hariharan, R.: Verifying candidate matches in sparse and wildcard match-
ing. In: Proceedings of the Symposium On Theory of Computing (STOC), pp.
592–601 (2002)

8. Crochemore, M., Iliopoulos, C., Makris, C., Rytter, W., Tsakalidis, A., Tsichlas,
K.: Approximate string matching with gaps. Nordic J. of Computing 9(1), 54–65
(2002)

9. Ferragina, P., Muthukrishnan, S., de Berg, M.: Multi-method dispatching: A geo-
metric approach with applications to string matching problems. In: Proceedings of
the Symposium on Theory of Computing (STOC), pp. 483–491 (1999)

10. Fischer, M., Paterson, M.: String matching and other products. In: Karp, R.M.
(ed.) Complexity of Computation, SIAM-AMS Proceedings, vol. 7, pp. 113–125
(1974)

11. Harel, D., Tarjan, R.: Fast algorithms for finding nearest common ancestors. SIAM
Journal on Computing 13(2), 338–355 (1984)

12. Iliopoulos, C., Rahman, M.: Indexing factors with gaps. Algorithmica 55(1), 60–70
(2008)

13. Indyk, P.: Faster algorithms for string matching problems: Matching the convolu-
tion bound. In: Proceedings of the Symposium on Foundations of Computer Science
(FOCS), pp. 166–173 (1998)

14. Kalai, A.: Efficient pattern matching with don’t cares. In: Proceedings of the Sym-
posium on Discrete Algorithms (SODA), pp. 655–656 (2002)

15. Lam, T.-W., Sung, W.-K., Tam, S.-L., Yiu, S.-M.: Space efficient indexes for string
matching with don’t cares. In: Tokuyama, T. (ed.) ISAAC 2007. LNCS, vol. 4835,
pp. 846–857. Springer, Heidelberg (2007)

16. Farach-Colton, S.M.M., Ferragina, P.: On the sorting-complexity of suffix tree con-
struction. J. ACM 47(1), 987–1011 (2000)

17. McCreight, E.M.: A space-economical suffix tree construction algorithm. J.
ACM 23(2), 262–272 (1976)

18. Peterlongo, M.S.P., Allali, J.: Indexing gapped-factors using a tree. Int. J. Found.
Comput. Sci. 19(1), 71–87 (2008)

19. Schieber, B., Vishkin, U.: On finding lowest common ancestors: simplifications and
parallelization. SIAM Journal on Computing 17(6), 1253–1262 (1988)

20. Ukkonen, E.: On-line construction of suffix trees. Algorithmica 14(3), 249–260
(1995)

21. Weiner, P.: Linear pattern matching algorithms. In: 14th Annual Symposium on
Switching and Automata Theory, pp. 1–11. IEEE, Los Alamitos (1973)

Fast Computation of a String Duplication

History under No-Breakpoint-Reuse

(Extended Abstract)

Broňa Brejová1, Gad M. Landau2, and Tomáš Vinař1

1 Faculty of Mathematics, Physics, and Informatics, Comenius University,
Mlynská Dolina, 842 48 Bratislava, Slovakia

2 Department of Computer Science, University of Haifa, Haifa 31905, Israel

Abstract. In this paper, we provide an O(n log2 n log log n log∗ n) algo-
rithm to compute a duplication history of a string under no-breakpoint-
reuse condition. Our algorithm is an efficient implementation of earlier
work by Zhang et al. (2009). The motivation of this problem stems from
computational biology, in particular from analysis of complex gene clus-
ters. The problem is also related to computing edit distance with block
operations, but in our scenario the start of the history is not fixed, but
chosen to minimize the distance measure.

Keywords: duplication, edit distance, sequence evolution, dynamic text.

1 Introduction

We are given a string T over a finite alphabet Σ, and we assume that it was
created by the following process. We start with some string S which is a permu-
tation of alphabet symbols. In each step, we apply a duplication which takes a
substring of the current string (source), and inserts its copy at a different posi-
tion (target) within the string (the target position cannot be inside the source).
For example, if the current string is uvwx, the duplication with source v and
target between w and x creates string uvwvx. The last string in this sequence
of duplications should be T . We call a sequence of duplications leading to the
construction of string T from some permutation of the alphabet a duplication
history of T .

In the general model, starting from a simple string uv, string (uv)k can be
created by �log k� duplication operations. However, we will consider a restricted
version of the problem under the no breakpoint reuse rule. In this version of the
problem, each duplication introduces three breakpoints: at the left boundary of
the source, at the right boundary of the source, and between the two symbols
around the target position. The example above does not satisfy the breakpoint
reuse rule because we repeatedly reuse the breakpoint between u and v.

For each symbol x, we denote |x its left boundary and x| its right boundary.
A breakpoint between symbols x and y uses the right boundary of x and the
left boundary of y. Under the no-breakpoint-reuse rule, each boundary of each

R. Grossi et al. (Eds.): SPIRE 2011, LNCS 7024, pp. 144–155, 2011.
c© Springer-Verlag Berlin Heidelberg 2011

Fast Computation of a String Duplication History 145

symbol of the alphabet can be used at most once in the whole duplication history.
Consider, for example, the sequence of duplications:

abcdefg → abcdefbcdeg → abccddefbcdeg

The first duplication uses boundaries a|, |b, e|, |f |, and |g, and the second du-
plication b|, |e, |c|, and |d|. Thus no more duplications can be performed on this
string without violating the no-breakpoint-reuse rule.

Definition 1 (Viable strings under no-breakpoint-reuse). We call string
T viable if there is a permutation of alphabet symbols S such that T can be
created from S by a sequence of duplications under the no-breakpoint-reuse rule.

In this paper, we introduce an efficient quasilinear algorithm that finds a shortest
duplication history of a viable string. Our new algorithm builds on the work of
Zhang et al. (2009) and is the first efficient algorithm presented for this problem.
In the rest of the section, we describe motivation for this problem and introduce
related work.

1.1 Motivation and Related Work

A similar problem has been studied in computational biology, in particular in the
context of gene cluster evolution analysis. Briefly, each symbol of our alphabet
corresponds to a segment of the DNA sequence, which may appear in several
copies in the studied gene cluster. In the simplest scenario, we ignore small
local changes (e.g., point mutations and short insertions and deletions), and
only concentrate on large-scale evolutionary events, such as duplications. The
segmentation of the DNA sequence is created based on the observed local self-
alignments of the DNA sequence so that the breakpoints of duplications will
always fall between the individual segments.

In this context, Zhang et al. (2009) introduced a problem of reconstruction of
duplication histories, while considering an extended set of operations, including
not only segmental duplications, but also tandem duplications and duplications
with reversal; we do not consider these additional types of events in this pa-
per. The no-breakpoint-reuse rule stems from the assumption that the DNA
sequences are long, and since the evolution is considered to be a random pro-
cess, it is unlikely that the same event would act on the same boundary twice
(Nadeau and Taylor, 1984).

Zhang et al. (2009) developed an elegant solution to the problem of comput-
ing the number of duplications. In the input string, they identify a candidate
duplication defined by a set of simple rules. They assume this duplication is the
last (most recent) duplication in the history and undo it by deleting the string
inserted by the duplication event. Then they continue the process on the re-
sulting shorter string, until they obtain a string in which each symbol appears
only once. We describe the notion of candidate duplications in detail in the next
section.

146 B. Brejová, G.M. Landau, and T. Vinař

Interestingly, although there can be several candidate duplications in a given
step, undoing any of them will lead to an optimal history. Zhang et al. (2009)
did not investigate the time complexity of the algorithm. Straightforward imple-
mentation takes O(n3) time, where n is the length of the input string, whereas
in this paper, we provide a quasilinear algorithm.

Another model of duplicated strings has been introduced by Kahn et al.
(2010). Here, duplications are not performed within the string, but instead we
are given a source string S and a target string T , and our task is to assemble
T by repeatedly inserting substrings of S into the initially empty target string.
The structure of the target string is much simpler in this case, and Kahn et al.
(2010) show a dynamic programming algorithm to compute the smallest number
events needed to create the target string.

Several authors have considered also local mutations in the DNA sequences
corresponding to individual segments and combined phylogenetic trees inferred
on individual segments with the reconstruction of duplication histories. Opti-
mization of such combined objectives is difficult to formulate as a clean combi-
natorial problem. Works of Song et al. (2010) and Vinar et al. (2010) extend on
Zhang et al. (2009) model, while Elemento et al. (2002) and Lajoie et al. (2007)
consider only a single type of segments (e.g., strings of the form uk), making the
problem similar to the gene tree vs. species tree reconciliation problem.

In a more combinatorial setting, several authors have considered computing
the edit distance with block operations, where in addition to the usual symbol
insertions, deletions, and substitutions, we allow moving, deleting, or copying
whole blocks of text to transform one string into another. Computing the edit
distance in the presence of such large-scale operations is typically NP-hard, de-
pending on the exact model (Lopresti and Tomkins, 1997; Shapira and Storer,
2007), and authors concentrate on providing approximation algorithms
(Shapira and Storer, 2003; Ergün et al., 2003; Cormode and Muthukrishnan,
2007) or algorithms for special cases where editing proceeds from left to right
(Ann et al., 2010). In general, these problems differ from ours by allowing a
richer set of operations, but also by fixing both endpoints of the history, while
we minimize over all possible initial permutations.

1.2 Relationship to Breakpoint Graphs

Ma et al. (2008) give a polynomial-time algorithm for a very general problem
of inferring an evolutionary history of multiple species under several large-scale
operations, including duplications, insertions, deletions, and rearrangements. To
achieve this result, they use the no-breakpoint-reuse rule and additionally they
assume that it is possible to reconstruct the phylogeny of each segment type
(each symbol in our alphabet). In our work, we do not use this assumption,
and indeed it would not be practical in gene cluster analysis, where individual
segments are often short and highly similar to each other, making phylogeny
reconstruction difficult.

Nonetheless, techniques of Ma et al. (2008) can be used to compute the num-
ber of events in a duplication history of a viable string in linear time. We create

Fast Computation of a String Duplication History 147

a breakpoint graph which has two vertices for each symbol in the alphabet, rep-
resenting the boundaries |a and a|. Two vertices are connected by an edge if they
are adjacent in the input string. In a string without duplications, all connected
components have size one or two. Each duplication replaces three components of
size two by one component of size six or two components of size three. Therefore
the number of duplication events in the history is simply s + t/2 where s is the
number of components of size six and t is the number of components of size
three. However, examination of the breakpoint graph of a string is not sufficient
to reconstruct the history itself or even to distinguish if a string is viable or
not (see Fig.1). In the rest of this paper, we provide an algorithm capable of
answering both of these questions.

a| b| c| d| e| f | g|

|a |b |c |d |e |f |g

a b d e c d e f b d g
a b d e f b d e c d g

a| b| c| d| e| f | g|

|a |b |c |d |e |f |g

a b d e f c d b d e e f g
a b d e e f c d b d e f g

Fig. 1. Left: Two strings with the same breakpoint graph have different candidate
duplications. Right: Two strings have the same breakpoint graph, but one of them is
viable and the other is not. In viable strings, destinations of candidate duplications are
underlined, any copy of these strings can serve as a source of the duplication.

2 Candidate Duplications

In this section, we introduce necessary notation and define candidate duplica-
tions, which are the crucial ingredient of the algorithm from Zhang et al. (2009).

Consider a string X = x1x2 . . . xn. Let X [i . . . j] denote the substring xi . . . xj .
Let #X(u) be the number of occurrences of a string u in a string X . Let sX(a) be
the set of all symbols that immediately follow one of the occurrences of a in X ,
and similarly let pX(a) be the list of immediate predecessors of a in X . We say
that two symbols a and b are linked in string X if sX(a) = {b} and pX(b) = {a}.
We say that two symbols a and b form a unique pair in X if #X(ab) = 1. For
simplicity, we will implicitly assume two sentinel symbols at the beginning and
at the end of the string which are never duplicated.

Definition 2 (Candidate duplication). A candidate duplication in a string
X is a pair of substrings S = X [i . . . j] (source) and D = X [k . . . �] (destination)
such that all of the following conditions hold.

1. Intervals [i, j] and [k, �] are disjoint and non-empty.
2. Substrings X [i . . . j] and X [k . . . �] are identical.
3. Symbols xi−1, xj , and xk−1 are pairwise distinct; similarly xi, xj+1 and x�+1

are also three distinct symbols.

148 B. Brejová, G.M. Landau, and T. Vinař

4. Let X ′ be the string obtained by deleting D from X, i.e. X ′ = X [1 . . . k −
1]X [� + 1 . . . n]. Then symbols xk−1 and x�+1 are linked in X ′.

5. Similarly, symbols xi−1 and xi, as well as xj and xj+1, are also linked in X ′.

See Fig.1 for an example of candidate duplications in several viable strings.
This definition of a candidate duplication slightly differs from the one in

Zhang et al. (2009), since we allow linked symbols in X , whereas Zhang et al.
(2009) assume each pair of linked symbols was collapsed to a single symbol. The
following theorem forms the basis of the algorithm.

Theorem 1 (Zhang et al. (2009)). Let us consider all duplication histories
with no breakpoint reuse for a viable string X. Then the following holds.

1. The most recent event in each history is one of the candidate duplications in
X.

2. For every candidate duplication in X there is a history in which this dupli-
cation is the most recent event.

3. All histories of X have the same number of events.

Note that Zhang et al. (2009) allow a richer set of events, yet their proof of
correctness can be modified and even simplified for our scenario. The full proof of
the theorem is omitted due the space constraints. However, to build the intuition
about the problem, we at least prove the statement 1 of the theorem, that is, that
the most recent duplication necessarily satisfies the definition of the candidate
duplication.

Clearly, conditions 1 and 2 are satisfied by every duplication. Condition 3 is
satisfied because otherwise the duplication would use the same breakpoint twice.
Finally, in the starting string of any history, every symbol occurs only once, and
therefore every symbol is linked to both its neighbours. If a and b are linked
before a duplication but not after the duplication, the duplication needs to use a
breakpoint after a or before b. If one of the conditions 4 and 5 was not satisfied,
then one of the characters xi−1, xi, xj , xj+1, xk−1, x�+1 could never become
linked to its neighbour in X ′ without breakpoint reuse.

According to this theorem, we can obtain the shortest duplication history by
repeatedly undoing an arbitrary candidate duplication, until we arrive at a string
in which each symbol occurs exactly once. Regardless of the choice of candidate
duplications, we always obtain a history of equal length, and the history will not
contain breakpoint reuse. (Note that if two symbols are linked, in the algorithm
they will never become a breakpoint of a candidate duplication.)

In this paper, we are focused on efficient implementation of this algorithm,
and particularly on efficient detection of candidate duplications. To this end, we
formulate a lemma that will allow us to quickly verify whether a given substring
is a destination string of a candidate duplication; note that a single destination
can be often paired with multiple sources, but we will never have to list all these
source strings explicitly.

Lemma 1 (Destination detection). A substring D = X [k . . . �] is the desti-
nation of a candidate duplication if and only if the following conditions hold:

Fast Computation of a String Duplication History 149

C1 xk−1 and xk are a unique pair in X and so are x� and x�+1.
C2 String X [k . . . �] has at least one other copy in X, i.e. #X(X [k . . . �]) ≥ 2
C3 x� �= xk−1 and xk �= x�+1.
C4 The two symbols surrounding D occur paired with each other everywhere else

in X, i.e. sX(xk−1) ⊆ {xk, x�+1}, pX(x�+1) ⊆ {x�, xk−1}
C5 pX(xk) = {xk−1, c} for some c �= xk−1, and similarly sX(x�) = {x�+1, d} for

some d �= x�+1.
C6 Symbols c and d from the previous condition have only one neighbor, more

precisely sX(c) = {xk} and pX(d) = {x�}

We omit the proof of the lemma due to space constraints.

3 Finding a Candidate Duplication in Linear Time

In this section, we introduce a simple linear-time algorithm for finding a can-
didate duplication in a string X . We can simply repeat this algorithm in each
iteration, until we undo all duplications. Since there are O(|Σ|) duplications in
any valid history under the no breakpoint reuse rule, this yields O(n|Σ|) algo-
rithm for duplication history reconstruction. We will later introduce additional
data structures to achieve Õ(n) overall time.

According to condition C1, each destination of a candidate duplication is
bordered by a unique pair on each side. Clearly, a unique pair cannot occur
inside any destination, otherwise it would not have a source copy (C2). Therefore,
we can simply split string X into possible destinations bordered by successive
unique pairs and to check for each such possible destination whether it indeed
satisfies the conditions from Lemma 1 of being the destination of some candidate
duplication.

In order to quickly find all unique pairs and check conditions C4-C6, we
create a data structure that lists for each symbol a ∈ Σ its successors sX(a),
and for each successor b ∈ sX(a), the number of occurrences of the pair ab in X .
Similarly, we will keep a list of predecessors and the number of their occurrences.
Both tables can be easily created by a single linear-time pass through the string,
because each symbol has at most two distinct successors, as implied by the
following lemma.

Lemma 2. Consider a valid duplication history under no-breakpoint-reuse, that
is, a sequence of strings X1 . . . Xm such that X1 contains each symbol at most
once and Xi+1 was obtained from Xi by a duplication. Then for every symbol a
the set of its successors sXi(a) changes at most once in the history and only the
following three cases can occur:

– The set sXi(a) has size 1 and does not change throughout the history.
– The set sXi(a) starts with size 1 at i = 1 and at some point another element

is added, creating a set of size 2.
– The set sXi(a) starts with size 1 at i = 1 and at some point it changes to a

different singleton set.

150 B. Brejová, G.M. Landau, and T. Vinař

In addition to the successor and predecessor tables, we construct a suffix ar-
ray of string X and the longest common prefix (lcp) table, both in O(n) time
(Kärkkäinen et al., 2006; Kasai et al., 2001). With these data structures, we can
easily enumerate all possible destinations and to check conditions from Lemma
1 as follows.

First of all, we scan through the string and for each pair of adjacent symbols
ab use the successor table to verify if b follows a only once. This will give us a
list of unique pairs, and we process each two successive unique pairs xk−1xk and
x�x�+1 in turn.

Condition C1 is already satisfied and condition C3 can be checked trivially.
Condition C2 can be checked in O(1) time by testing if the lcp value of the suffix
X [k . . . n] with one of its neighbors in the suffix array is at least �− k + 1. Con-
ditions C4-C6 can be checked easily using the successor and predecessor tables.
The overall running time for finding all destinations of candidate duplications is
O(n), because we need O(n) time for preprocessing and we check O(n) potential
destinations, each in O(1) time.

4 Quasi-Linear Algorithm for History Reconstruction

In order to obtain a faster algorithm, we notice that it is not necessary to build
the data structures from scratch after undoing each duplication. Instead, we will
show how to update the data structures in each iteration so that fast evaluation
of all conditions C1-C6 can be achieved.

Testing the existence of the source. The main hurdle is testing of C2, i.e. evalu-
ating whether a substring has more than one copy in the current string. In the
previous section, a suffix array was sufficient to facilitate this query, but it would
be difficult to update the array after deleting the substring corresponding to a
candidate destination. Instead, we use a data structure of Alstrup et al. (2000)
capable of supporting the following operations over a dynamic collection of texts:

– string(a) where a ∈ Σ creates a new string of length one in the collection,
– concatenate(s1, s2) concatenates two existing strings in the collection,
– split(s, i) splits string s into two strings at position i, and
– find(s) finds all occurrences of string s from the collection in the remaining

collection strings.

Operations concatenate and split work in O(log2 n log log n log∗ n) time,
string works in O(log n log∗ n) time, and find works in O(occ log n +
log n log log n) time, where occ is the number of occurrences of the string.

In our scenario the number of occurrences can be high, but we only need
two of them (arbitrarily chosen). The underlying data structure for the find
operation is a dynamic range tree (Mehlhorn and Näher, 1990), which can be
easily modified to retrieve two arbitrary occurrences (instead of all of them), and
the resulting running time will be O(log n log log n).

With this data structure, we will support operations needed in our sce-
nario as follows. At the beginning, we use n times string and n − 1 times

Fast Computation of a String Duplication History 151

concatenate to create a representation of X in the data structure, in the
overall time O(n log2 n log log n log∗ n). To delete a destination D = X [k . . . �],
we use split twice to split X into X [1 . . . k − 1], X [k . . . �], and X [� + 1 . . . n].
The middle part is split into individual singletons by additional �− k splits, and
the two remaining parts of X are concatenated together. The overall time for a
deletion of a substring of length p from X is thus O((p+1) log2 n log log n log∗ n).
Since every symbol in X is deleted at most once over the course of the whole
algorithm, we spend the total of O(n log2 n log log n log∗ n) time on all deletions
together.

Finally, to check if a possible destination X [k . . . �] has at least one other copy
in X , we split X into X [1 . . . k−1], X [k . . . �] and X [�+1 . . . n] and use operation
find on the middle string. Regardless of the total number of occurrences of
X [k . . . �] in X , we only need to find out if there is at least one additional
copy, and if yes, at which position. Finally, we concatenate the two strings back
together. The whole operation can be achieved in O(log2 n log log n log∗ n) time.
(Note that singletons from deleted substrings technically remain in the collection,
and therefore we need to test for occurrences of strings of length one by a different
method. This can be easily achieved by other data structures maintained in our
algorithm.)

Efficient maintenance of possible destinations. Even though we have a data
structure that can efficiently answer queries about the existence of a source for
a particular destination, to achieve quasi-linear time, we cannot afford to test
all possible destinations in each round of the algorithm.

To address this problem, we will maintain a catalog of all possible destinations
(i.e., regions between unique pairs), and we will also maintain a status on each
such destination. The status can achieve one of three values: discarded, waiting
or valid. A possible destination is discarded, if it does not satisfy at least one
condition out of C3-C6. The destination is valid, if it satisfies C2 (it has another
occurrence in X). A valid destination may or may not satisfy conditions C3-
C6, but we have never seen those conditions violated in any check done so far.
Finally, waiting destinations do not satisfy condition C2 and we have never seen
conditions C3-C6 violated.

Waiting destinations may become valid destinations by emergence of new
sources after removal of some of the duplications, and valid destinations can also
become waiting. However, once a destination is discarded (by checking conditions
C3-C6 and finding that one of them is not satisfied), it can never become a valid
destination again, as outlined in the following lemma.

Lemma 3 (Life cycle of possible duplications). If a possible duplication
bordered by two unique pairs fails one of the conditions C3-C6, it will never meet
all conditions of Lemma 1 in the course of the history reconstruction algorithm.

Proof. Clearly, condition C3 can be changed only by a change in the unique
pairs at the boundaries which would lead to the disappearance of this partic-
ular possible duplication. The remaining conditions C4-C6 concern the sets of
predecessors and successors of the symbols at the proposed breakpoints. Let us

152 B. Brejová, G.M. Landau, and T. Vinař

assume, without loss of generality, that the condition which is not satisfied in-
volves the list of successors of symbol a. The only time a set of successors of a
changes is when we create a breakpoint after a. However, that means that in the
rest of the history a cannot be used as a left side of the breakpoint, and therefore
no duplication involving a breakpoint after a will ever satisfy all conditions of
Lemma 1. �

To maintain the list and status of possible destinations, we use several simple
data structures. First of all, we augment the table of predecessors and successors
of each symbol with the list of occurrences for each pair of symbols a and b ∈
sX(a). Coordinates of occurrences will be kept with respect to the original input
string before any deletions. The list of occurrences will be kept in a balanced
binary search tree, facilitating deletions of occurrences in O(log n) time.

The entire string is kept in an augmented binary search tree with the original
position used as the key. This will allow us to find predecessor and successor of
each symbol of the current string and to find a character at a given position in
either current or original coordinates. All of these operations can be performed
in O(log n) time, deletion of any character is also O(log n) time.

Finally, we keep coordinates of all unique pairs in a binary search tree with
the original coordinate of the first letter in the pair as the key. For each unique
pair, we will also maintain the status of the possible destination in the region
between this pair and its successor. The set of valid destinations is kept in a
separate binary search tree, indexed by the original coordinate.

Upon removal of destination D, all these data structures need to be updated.
In particular:

– All symbols of D need to be removed from the binary tree storing X .
– Predecessor and successor data structures need to be updated for every pair

of adjacent symbols from D.
– Let a and b be symbols adjacent to D before its deletion. We need to add

pair ab to the successor and predecessor tables.

As a consequence of these steps, there can be new unique pairs created, as well
as some of the previous unique pairs deleted. Such pairs can be easily identified
during the above mentioned update steps. The binary tree storing unique pairs
thus needs to be updated. Finally, we create a “due for revision” list of potential
destinations whose status needs to be recalculated after the removal of D. This
list includes newly created destinations, that is those that are adjacent to newly
created unique pairs as well as those that were created by merging adjacent
possible destinations after unique pairs were removed. Some existing destinations
might also change status from waiting to valid, if a copy was created by removal
of D. All such destinations must contain pair ab as a substring. We can find all
destinations containing ab using our data structures and add them to the “due
for revision” list. The only destination that may change status from valid to
waiting is the source of the current destination D, and we treat it separately in
the algorithm.

Fast Computation of a String Duplication History 153

Algorithm and time complexity. Now we are ready to state the final version of
our algorithm. Its key part is the operation check(k, �) which checks if a possible
destination X [k . . . �] in the current string X satisfies the conditions of Lemma
1, and returns the new state of the destination: discard, valid, or waiting; if the
new state is valid, it also returns one possible source S.

The running time of this procedure is O(log2 n log log n log∗ n) time. We need
O(log n) time to convert between different forms of coordinates and one call to
operation find in the dynamic text data structure.

At the beginning we initialize the dynamic text data structure, create all
necessary binary trees and test status of every possible destination. Afterwards
we proceed as follows:

1. Let D be one of the valid destinations. Remove D from the list of valid
destinations. If there are no more valid destinations, finish.

2. Use check to classify D. If the result is “discarded”, mark D as “discarded”
and repeat from step 1. Otherwise, let S be the returned source. (At this
step, the result cannot be “waiting”).

3. Remove D from the dynamic text data structure.
4. Remove D from the data structures used for the maintenance of possible

destinations. Let R be the list of destinations “due for revision”.
5. For each D′ from R, run check(D′) and update its state.
6. If S is a possible destination, run check(S) and update its state.
7. Repeat from step 1.

To analyze the running time, first note that throughout the whole algorithm
each symbol of the alphabet may be the left part of at most two unique pairs,
and therefore overall at most O(|Σ|) unique pairs are both created and deleted.
The overall number of possible destinations considered in the algorithm is also
O(|Σ|) = O(n).

Status of each new possible destination is checked once in step 5, when it
is created. Each possible destination is handled at most once in step 2, and
afterwards it is either discarded or undone. Step 6 is run O(n) times in the
whole algorithm, at most once for every duplication. Finally, step 5 is also run
for all possible destinations containing currently created new pair ab. For each
a ∈ Σ, this happens at most once due to the no breakpoint reuse assumption.
Therefore for each occurrence of a in the original string X this rule will trigger
the check of the possible destination currently containing a at most once. The
total number of calls to check is thus O(n).

The remaining operations necessary to update and use our data structures
take either O(log n) per iteration, or O(log n) per deleted character, leading to
an O(n log n) contribution to the overall running time. The total running time
of the algorithm is thus O(n log2 n log log n log∗ n) = Õ(n).

5 Conclusion and Open Problems

In this paper, we have presented an efficient algorithm to compute the short-
est duplication history of a string under no-breakpoint-reuse rule. The original

154 B. Brejová, G.M. Landau, and T. Vinař

algorithm is due to Zhang et al. (2009), who did not study its complexity or an
efficient implementation.

Many questions in this area still remain open. First of all, our algorithm
computes one possible history, and it can be easily extended to enumerate all
possible histories in O(n2) time per history. However, a faster algorithm should
be possible by appropriate changes in the data structures. Instead of enumerating
all histories, one might be interested in efficiently counting or sampling possible
histories, which remains an open problem. A natural extension asks for a history
with a fixed starting string. If the nice structure of the problem carries into this
scenario, the problem may become one of the few tractable block edit distance
problems.

Another class of open problems concerns models in which the no-breakpoint-
reuse assumption is partially or completely relaxed or in which additional opera-
tions, such as deletions, are allowed. An interesting scenario, with strong biology
motivation, allows an operation of speciation. In this scenario, we work with a
collection of strings, each from a different biological species. The history starts
with a single string, and at any point in the duplication history, we may create
another copy of one of the strings in the collection. No further copying between
the different strings in the collection is allowed; all duplications must act within
the confines of one of these strings (i.e., the strings in the collection evolve inde-
pendently). Towards solution of this problem, Zhang et al. (2009) states without
a proof that under the no-breakpoint-reuse scenario, this problem can be solved
by a slight modification of their algorithm, but a more detailed investigation of
this problem is warranted.

Acknowledgements. This research was partially supported by the National
Science Foundation Award 0904246, Israel Science Foundation grant 347/09, Ya-
hoo, Grant No. 2008217 from the United States-Israel Binational Science Foun-
dation (BSF) and DFG, European Community FP7 grants IRG-224885 and
IRG-231025, and grant VEGA 1/0210/10.

References

Alstrup, S., Brodal, G.S., Rauhe, T.: Pattern matching in dynamic texts. In: Sympo-
sium on Discrete Algorithms (SODA), pp. 819–828 (2000)

Ann, H.-Y., Yang, C.-B., Peng, Y.-H., Liaw, B.-C.: Efficient algorithms for the block
edit problems. Information and Computation 208(3), 221–229 (2010)

Cormode, G., Muthukrishnan, S.: The string edit distance matching problem with
moves. ACM Transactions on Algorithms 3(1), 1–19 (2007)

Elemento, O., Gascuel, O., Lefranc, M.-P.: Reconstructing the duplication history of
tandemly repeated genes. Molecular Biology and Evolution 19(3), 278–278 (2002)

Ergün, F., Muthukrishnan, S.M., Şahinalp, S.C.: Comparing sequences with segment
rearrangements. In: Pandya, P.K., Radhakrishnan, J. (eds.) FSTTCS 2003. LNCS,
vol. 2914, pp. 183–194. Springer, Heidelberg (2003)

Kahn, C.L., Mozes, S., Raphael, B.J.: Efficient algorithms for analyzing segmental
duplications with deletions and inversions in genomes. Algorithms for Molecular
Biology 5(1), 11 (2010)

Fast Computation of a String Duplication History 155

Kärkkäinen, J., Sanders, P., Burkhardt, S.: Linear work suffix array construction. Jour-
nal of the ACM 53(6), 918–936 (2006)

Kasai, T., Lee, G.H., Arimura, H., Arikawa, S., Park, K.: Linear-time longest-common-
prefix computation in suffix arrays and its applications. In: Amir, A., Landau, G.M.
(eds.) CPM 2001. LNCS, vol. 2089, pp. 181–192. Springer, Heidelberg (2001)

Lajoie, M., Bertrand, D., El-Mabrouk, N., Gascuel, O.: Duplication and inversion his-
tory of a tandemly repeated genes family. Journal of Computational Biology 14(4),
462–468 (2007)

Lopresti, D.P., Tomkins, A.: Block edit models for approximate string matching. The-
oretical Computer Science 181(1), 159–179 (1997)

Ma, J., Ratan, A., Raney, B.J., Suh, B.B., Miller, W., Haussler, D.: The infinite
sites model of genome evolution. Proceeding of the National Academy of Sciences
USA 105(38), 14254–14261 (2008)

Mehlhorn, K., Näher, S.: Dynamic fractional cascading. Algorithmica 5(2), 215–241
(1990)

Nadeau, J.H., Taylor, B.A.: Lengths of chromosomal segments conserved since diver-
gence of man and mouse. Proceeding of the National Academy of Sciences USA 81(3),
814–818 (1984)

Shapira, D., Storer, J.A.: Large edit distance with multiple block operations. In: Nasci-
mento, M.A., de Moura, E.S., Oliveira, A.L. (eds.) SPIRE 2003. LNCS, vol. 2857,
pp. 369–377. Springer, Heidelberg (2003)

Shapira, D., Storer, J.A.: Edit distance with move operations. Journal of Discrete
Algorithms 5(2), 380–392 (2007)

Song, G., Zhang, L., Vinar, T., Miller, W.: CAGE: Combinatorial Analysis of Gene-
cluster Evolution. Journal of Computational Biology 17(9), 1227–1232 (2010)

Vinar, T., Brejova, B., Song, G., Siepel, A.: Reconstructing histories of complex gene
clusters on a phylogeny. Journal of Computational Biology 17(9), 1267–1269 (2010)

Zhang, Y., Song, G., Vinar, T., Green, E.D., Siepel, A., Miller, W.: Evolutionary his-
tory reconstruction for mammalian complex gene clusters. Journal of Computational
Biology 16(8), 1051–1060 (2009)

Near Real-Time Suffix Tree Construction

via the Fringe Marked Ancestor Problem�

Dany Breslauer1 and Giuseppe F. Italiano2

1 Caesarea Rothchild Institute, University of Haifa, Haifa, Israel
2 Università di Roma “Tor Vergata”, Rome, Italy

Abstract. We contribute a further step towards the plausible real time
construction of suffix trees by presenting an on-line algorithm that spends
O(log log n) time processing each input symbol and takes O(n log log n)
time in total. Our results improve on a previously published algorithm
that take O(log n) time per symbol and O(n log n) time in total. The
improvements are achieved using a new data structure for the fringe
marked ancestor problem, a special case of the nearest marked ancestor
problem, which may be of independent interest.

1 Introduction

The suffix tree is a ubiquitous data structure at the heart of numerous text
algorithms. Weiner [25] introduced suffix trees and gave a linear-time on-line
algorithm for their reverse right-to-left construction. Ukkonen [24] derived a
linear-time left-to-right on-line algorithm that is a close relative of an earlier
algorithm by McCreight [20]. The analysis of these three algorithms is amortized
and the algorithms may spend up to O(n) time processing some input symbols.
Suffix arrays, that were introduced by Manber and Myers [19], provide similar
theoretical benefits to suffix trees and are much more efficient in practice thanks
to their use of a compact array representation, but lose some of their advantages
in the on-line setting. Throughout this paper, unless specified otherwise, we
assume that the input alphabet has constant size.

Amir et al. [2,16] reported some progress towards constructing the suffix tree
in real-time, namely, attempting to limit the time spent while processing each
individual input symbol in the worst case. Their algorithm uses balanced search
trees to maintain a balanced indexing structure that quickly finds the suffix tree
insertion points, for an input text that is extended from right-to-left over an
arbitrarily large but ordered alphabet, spending O(log n) time processing each
symbol and O(n log n) time in total. They also note that similar results could be
derived by using existing more complicated dynamic data structures for searching
� Work partially supported by the European Research Council (ERC) Project

SFEROT, by the Israeli Science Foundation Grant 347/09, by the 7th Framework
Programme of the EU (Network of Excellence “EuroNF: Anticipating the Network
of the Future - From Theory to Design”) and by MIUR, the Italian Ministry of
Education, University and Research, under Project AlgoDEEP.

R. Grossi et al. (Eds.): SPIRE 2011, LNCS 7024, pp. 156–167, 2011.
c© Springer-Verlag Berlin Heidelberg 2011

Near Real-Time Suffix Tree Construction 157

multidimensional keys [11,13]. The suffix tree insertion point of any given suffix
is its longest prefix that has already appeared earlier in the text; it has numerous
applications in text algorithms and in data compression.

In related work, Kosaraju [17] and Amir and Nor [3] solve the real-time pattern
matching and indexing problems by building a suffix tree in quasi real-time using
Kosaraju’s “candelabra” approach. Although Slisenko [22] claimed to have solved
these problems and even to classify all periodicities in a string in real-time,
a convincing solution was considered to be an open problem [3,12,17]. Quasi
real-time means that sufficient parts of the suffix tree are built “just in time”
before needed by an algorithm that is traversing the suffix tree starting from
its root. The size of the candelabra can be quite large, however, and neither
algorithm guarantees any meaningful upper bound on the time required to find
the insertion points of a specific text suffix, but only that parts of the suffix tree
will be completed before reached. Thus, finding the suffix tree insertion points is
at least as hard, if not harder, than the real-time pattern matching and indexing
problems that offer further amortization opportunities, distilling the following
question: is it possible to compute the suffix tree insertion points in real-time?

We present an algorithm that spends only O(log log n) time processing each
input symbol and takes O(n log log n) time in total, contributing a further step
towards the plausible real-time construction of suffix trees. To achieve these
bounds, we design a data structure for the dynamic fringe marked ancestor
problem, a special case of the nearest marked ancestor problem on trees [1],
where the marked nodes form a contiguous subtree. Our data structure, which
may be of independent interest, supports updates and queries in worst case
O(log log n) time. We use our new fringe marked ancestor data structure in an
adaptation of Weiner’s [25] right-to-left on-line suffix tree construction algorithm,
shortcutting the occasional long path traversals using fringe-ancestor queries and
de-amortizing certain skipped invisible internal updates over time.

Weiner’s [9,14,25] algorithm maintains suffix links, which are invisible internal
components that are not part of the suffix tree’s definition, but are, nonetheless,
useful in many applications. Our suffix links, which are related to the edges of the
directed acyclic word graph [4,8,9] and were also used by Kosaraju [17] and by
Amir and Nor [3], turn out to be extremely helpful in navigating the suffix tree
by allowing us to use our fringe marked ancestor data structure instead of the
nearest marked ancestor data structure that was used by Breslauer [6] to build
the suffix tree of a tree in a related approach that spends O(log n

log log n) time per
symbol [1]. However, these invisible suffix links need to be individually created
and repeatedly updated, tasks that are postponed and later de-amortized over
time while the complete visible suffix tree is available immediately at all times.
The invisible suffix links could be made available “just in time”, if required, to
an algorithm that traverses the suffix tree starting from its root, similarly to
Kosaraju’s [17] “quasi” real-time construction. Our use of the word “quasi” in
this context has a double meaning here: not only are parts of the construction
de-amortized and completed later, but the time spent processing each input
symbol is up to O(log log n) rather than constant time.

158 D. Breslauer and G.F. Italiano

The on-line construction of a suffix tree from left-to-right is a much more
complicated matter that requires a suitably defined de-amortization. Now, all
the text’s suffixes are extended simultaneously, and therefore, the visible suffix
tree may undergo many structural changes that are effectuated in large batches
inserting multiple new nodes and leaves at once [5,9,14,24]. We use our near
real-time adaptation of Weiner’s right-to-left algorithm, applied to the reverse
left-to-right text, to de-amortize the new node insertions in Ukkonen’s [24] left-
to-right algorithm. Moreover, by applying our adaptations of both Weiner’s and
Ukkonen’s algorithms to either end of a bi-directionally extended text and to
its reverse, we obtain near real-time bi-directional suffix tree and affix tree [23]
construction algorithms, enhancing respective results of Inenaga [15] and Maaß
[18] by limiting the worst case time processing each individual text symbol.

2 The Fringe Marked Ancestor Problem

The fringe marked ancestor problem is a special case of the nearest marked
ancestor problem with the additional restriction that the marked nodes must
form a contiguous subtree at the root. Specifically, the fringe marked ancestor
problem is concerned with maintaining a rooted tree whose nodes are either
marked or unmarked, under an intermixed sequence of the following operations:
make-tree(x) returns a tree consisting of only an unmarked node x; insert(u, x, v)
inserts a new node x in the middle of an edge (u, v), where x becomes a child
of u, a parent of v and adopts v’s marked status; insert-leaf(u, x) inserts a new
unmarked node x as a child of u; delete(u, x, v) deletes node x with an only
child v and replaces it with an edge (u, v); delete-leaf(x) deletes leaf x from the
tree; mark(x) marks node x, if x is the root or x’s parent is already marked;
unmark(x) unmarks node x, if x has no marked children; fringe-ancestor(x)
returns the nearest marked ancestor of x (which is x itself if it is marked).

These operations maintain the invariant that the marked nodes constitute
a contiguous subtree at the root, a restriction that enables faster algorithm,
circumventing an Ω(log n

log log n) worst case time lower bound for the nearest marked
ancestor problem [1]. We do not detail the decremental operations delete, delete-
leaf and unmark which are not used in our suffix tree algorithm, but remark that
their implementation is analogous to the incremental operations.

Let T be the given tree. We maintain an Euler tour ET (T) of T , as follows.
ET (T) is a path that starts and ends at the tree root, and traverses each edge
exactly twice, once from the parent to the child and once from the child to the
parent, according to a depth-first traversal of the tree. Note that for each edge
(x, y) in T there are exactly two corresponding edges in ET (T), and for each
node in T of degree k there are exactly k corresponding nodes in ET (T) (except
for the root that has k + 1).

We store the Euler tour ET (T) in a linear list, such that each tree node in
T holds pointers to all its corresponding elements in the linear list, and each
edge in T store pointers to its two corresponding edges in ET (T). We maintain
this linear list as a dynamic union-split-find data structure, which is capable

Near Real-Time Suffix Tree Construction 159

of performing the following operations: add(x, y) inserts a new element y after
element x in ET (T); remove(x) deletes element x from ET (T); split(x) marks
element x if x was not marked already; union(x) unmarks element x if x was
previously marked; find(x) returns the previous marked element (closest to x) in
the linear list. Using the data structure by Dietz and Raman [10], each of these
five operations can be implemented in O(log log n) time in the worst case. In
addition, we also maintain in tandem a copy of the tree T in the least common
ancestor (lca) data structure of Cole and Hariharan [7], which supports insert,
insert-leaf, delete, delete-leaf and lca queries, all in worst-case constant time.

We now show how these data structures are used to implement the operations
in the fringe marked ancestor problem. A make-tree operation creates a tree
consisting of a single node and no edge. The corresponding Euler tour consists
of one single element and is initialized in O(1) worst-case time. Operations insert-
leaf and insert require the insertion of one or two elements into the Euler tour
ET (T), respectively, and thus are implemented in O(log log n) worst-case time
with a constant number of add operations in the incremental union-split-find
data structure. The lca data structure is maintained in tandem in O(1) worst-
case time for each update. To mark a tree node x, we perform a split on the first
element corresponding to x in the Euler tour ET (T) in O(log log n) time. The
operations delete-leaf, delete, and unmark are implemented analogously.

Finally, the fringe-ancestor query is supported through one find query in the
union-split-find data structure and and one lca query in the lca data structure,
taking O(log log n) time in the worst-case, as the following lemma shows.

Lemma 1. Let T be a tree, let x be a node of T and let x0 be the first element of
the Euler tour ET (T) corresponding to node x. Let v0 be the closest marked ele-
ment to the left of element x0 in ET (T) and let v be the tree node corresponding
to v0. Then lca(v, x) is the fringe ancestor of x in T .

Proof. Let y be the fringe ancestor of x in T , and assume by contradiction that
y �= lca(v, x). Node v0 is a marked element of ET (T), and thus the corresponding
node v in T must be marked. Since the Euler tour ET (T) follows a depth-first
visit of tree T , denote by DFS(u) be the depth-first number of node u according
to the Euler tour. The fact that v0 is the closest marked element to the left of
x0 in the Euler tour is equivalent to saying that DFS(v) ≤ DFS(x) and that
no marked node u is such that DFS(v) < DFS(u) ≤ DFS(x) (i.e., a depth-first
traversal in T enters v before entering x and it does not enter any other marked
node while going from v to x). Since lca(v, x) is an ancestor of v and v is marked,
lca(v, x) must be marked as well; furthermore, since lca(v, x) is an ancestor of x
and lca(v, x) �= y, lca(v, x) must be a proper ancestor of y, i.e., y must be in the
tree path from lca(v, x) and x. But then, the depth-first traversal of T would
enter marked node y while going from v to x, clearly a contradiction. �

Thus, we have proved the following theorem.

Theorem 1. The above data structure solves the fringe marked ancestor prob-
lem on an unbounded degree tree in O(log log n) worst-case time per operation.

160 D. Breslauer and G.F. Italiano

3 Suffix Trees and Suffix Links

We assume that the reader has some textbook familiarity with suffix trees [9,14].
Given a text w = w1 · · ·wn over the alphabet Σ, denote its reverse by w̃ =
wn · · ·w1. The suffix tree Tw is a rooted tree with edges and nodes that are
labeled with substrings of w. The suffix tree satisfies the following properties:
(1) edges leaving any given node are labeled with non-empty strings v that start
with different alphabet symbols (v is a substring of w); (2) each node is labeled
with a string v formed by the concatenation of the edge labels on the path from
the root to that node (v is a substring of w); (3) each branching internal (non-
leaf) node has at least two descendants (the root may be an exception in the
degenerate case when a string is empty or it is formed by repetitions of a single
alphabet symbol); (4) for each substring v of w, there exists a vertex labeled u,
such that v is a prefix of u.

The locus of a substring v of w is the unique location in Tw that is labeled
with v. Whenever possible, it is convenient to append at the end of the text w
a special unique alphabet symbol $ which does not appear anywhere within w.
This guarantees that Tw$ has exactly |w|+ 1 leaves that are labeled with all the
distinct non-empty suffixes of w$. The number of branching internal nodes is no
larger than |w|. However, in on-line algorithms that construct the suffix trees
for a left-to-right streaming text, it is not possible to append and then remove
the special alphabet symbol $ at each step. Therefore, an on-line algorithm for
left-to-right extended text must deal also with suffix tree nodes representing
text suffixes which may not be branching out of the tree. The locus of such text
suffixes may coincide with an internal branching suffix tree node, but it may also
be in the middle of a suffix tree edge; in the latter case, it is called an implicit
node and it is not represented explicitly. We associate an edge between parent u
and child v with the child suffix tree node v. A locus in the middle of such edge
is defined by the node v and the slack distance in number of symbol to v.

Weiner [25], McCreight [20] and Ukkonen [24] all augment the suffix tree T
with shortcuts called suffix links that are used to efficiently traverse the suffix
tree. For a suffix tree node v = v1 · · · vk, the M-link M(v) = u, McCreight suffix
link (also used by Ukkonen), is defined to be a pointer to the suffix tree node
u = v2 · · · vk that is obtained by chopping off the first symbol a = v1 of v = au.
These M-links are well defined for any branching suffix tree node (except for
the root), since if v is a branching suffix tree node, then its suffix u must be a
branching suffix tree node as well. However, the M-link M(v) of a leaf v might
be an implicit node, and therefore undefined. Nonetheless, each leaf v = au
represents a suffix and if the M-link M(v) = u is defined then it is also a suffix.
Observe that M-links cannot form cycles and each branching suffix tree node
(except for the root) has exactly one M-link. Therefore, the M-link form a tree,
which becomes a trie when labeled with the chopped first symbols. This trie is
a subtree of the suffix trie for the reversed text.

Similarly, the W-Link Wa(u) = v, Weiner’s suffix link, of a suffix tree node
u and symbol a ∈ Σ, is defined to be a pointer to the suffix tree locus labeled
v = au, obtained by appending the symbol a before u. The W-link is only

Near Real-Time Suffix Tree Construction 161

defined for those symbols a ∈ Σ, such that v = au is a substring of the text
w, and undefined otherwise. If v = au is a suffix tree node, then the W-link
Wa(u) = v is called a hard W-link and is just the opposite pointer of the M-link
M(v) = u. However au may also be the locus in the middle of the edge ending
at vx = aux, x �= ε, rather than a suffix tree node, in which case it is a soft
W-link that is defined as a pointer to the shortest extension vx = aux that is a
branching suffix tree node or a leaf. Thus, if Wa(u) is defined, then au is always
prefix of the node Wa(u). Observe that when new nodes are inserted into the
suffix tree, if a new node auy is created between au and Wa(u) = aux, then the
soft W-link Wa(u) must be updated to point to auy; hard W-links and their
opposite M-links are not affected by the insertion of new nodes.

We sometimes also maintain Tw̃, the suffix tree of the reversed text w̃. We will
need to identify nodes v ∈ Tw with their reverse nodes ṽ ∈ Tw̃. If both v ∈ Tw

and ṽ ∈ Tw̃ are branching nodes, then we define the R-link to be a pointer from
the node v in the suffix tree Tw to the node ṽ in the reverse suffix tree Tw̃. These
pointers will be maintained in both directions. For simplicity, we do not define
R-links for leaves. The next lemma shows that the W-links are contiguous in
the suffix tree, what allows us to use the fringe marked ancestor data structure.

Lemma 2. If the W-link Wa(u) is defined for a node u ∈ Tw and symbol a ∈ Σ,
then all ancestors u′ ∈ Tw of u must also have their W-link Wa(u′) defined.

Proof. If u ∈ Tw has a W-link Wa(u) defined, then au is a substring of w and
any prefix au′ of au is also a substring of w. �

4 Right-to-Left Construction

Weiner’s [25] on-line algorithm constructs the suffix tree for a text that is ex-
tended from right-to-left, where in each step, the existing set of suffixes does
not change and only one new suffix, the longest suffix equal to the whole text,
is added to the suffix tree. In this case, we can also conveniently assume that
the text is terminated with the special unique symbol $ and therefore, that all
suffixes are represented by leaves.

Suppose that the text w$ is extended from right-to-left with the next alphabet
symbol a ∈ Σ. Then, the suffix tree Tw$ has to be updated to become Taw$ by
inserting the new leaf aw$ hanging off some internal branching node v, that
might already exist in Tw$ or might need to be inserted as well. Observe that
the insertion point v is the longest prefix of the text aw$ that is equal to a
substring of w$, also called sometimes the longest repeated prefix. Unless v is the
suffix tree root, which may only happen if a ∈ Σ is a new alphabet symbol never
seen before (aw$ will be hanging off the root), the suffix tree Taw$ must also
contain the branching node u = M(v). Furthermore, this node u was already in
the suffix tree Tw$ before w$ was extended to aw$. Observe that u is an ancestor
and a prefix of w$. Moreover, u ∈ Tw$ is the deepest ancestor and longest prefix
of w$, that has the W-link v′′ = Wa(u) defined. The possibly new node v ∈ Taw$

is an ancestor of v′′.

162 D. Breslauer and G.F. Italiano

w$

aw$

a

u'

u

u''

v'

v

v''

(a)
w$

aw$

a

u'

u

u''

v'

v

v''

(b)

w$

aw$

a

u'

u

u''

v'

v

v''

(c)

Fig. 1. Extending Tw$ to Taw$. (a) W-links before extending. (b) W-links to v′′ from
all nodes on the path between u up to u′ are adjusted to point to v instead. (c) New
W-links to aw$ are created from all nodes on the path between w$ up to u. Observe
that each one of these adjusted (new and updated) W-links is at a different suffix tree
depth. The new node v also adopts all the outgoing W-links of v′′ (not shown).

To extend Tw$ into Taw$ the algorithm finds the node u by tracing the path
from the leaf w$ towards the root until the first ancestor u of w$ whose W-link
Wa(u) is defined. If v′′ = Wa(u) is a soft W-link, then a new branching node v,
such that M(v) = u, is also created on the edge between v′′ and its parent v′ in
the suffix tree Tw$, and its W-links are initialized to be the same as its child v′′.
If v′′ = Wa(u) is a hard W-link, then the node v = v′ = v′′ already exists. Now,
the algorithm hangs the new leaf aw$ off the branching node v. See Figure 1.

We must not forget the W-links that need to be created and updated along the
way. The nodes on the path between w$ up to and excluding u, will now have new
W-links defined Wa(x) = aw$ (all soft, except the one hard Wa(w$) = aw$).
The nodes on the path between u up to and excluding u′, will now have their W-
links updated from v′′ to Wa(x) = v (all soft, except the one hard Wa(u) = v).
Observe that each one of these new and updated W-links is at a different suffix
tree depth. In addition, if a new branching node v was created, then v also adopts
all the W-links of v′′ (all adopted W-links become soft).

The amortized analysis of Weiner’s algorithm is based on the fact that the
suffix tree depth of aw$ is by at most one larger than the suffix tree depth of w$.
This is the case because each ancestor of aw$, except for the root, has an M-link
that points to a different ancestor of w$. Thus, the number of steps traversing the
path from w$ towards the root to find u is bounded by the depth reduction and
the overall depth increases throughout the algorithm are bounded by the number
of text symbols. To get the near real-time adaptation of Weiner’s algorithm, we
maintain a de-amortization stack with the postponed W-link adjustment (new
W-link insertion and existing W-link update) tasks.

Theorem 2. We can adapt Weiner’s right-to-left on-line suffix tree algorithm
over constant size alphabets to take up to O(log log n) time processing each input
symbol and spend O(n log log n) time in total.

Near Real-Time Suffix Tree Construction 163

Proof. For each alphabet symbol a ∈ Σ, we maintain in tandem a separate
fringe marked ancestor data structure mirroring the suffix tree, where a node
u is marked if and only if the W-link Wa(u) is defined. By Lemma 2, the W-
links are contiguous and the fringe marked ancestor data structure may be used.
Over constant size alphabets, all these data structures are updated in additional
O(log log n) worst case time per each new suffix node and leaf and each new W-
link (W-link updates do not affect the fringe marked ancestor data structure).
Thus, we created an alternative mechanism to find the suffix tree insertion point
instead of tracing the path to the root; we use symbol a’s fringe marked ancestor
data structure to directly find the nearest ancestor u of w$ that is marked, or
in other words, has W-link Wa(u) defined, in O(log log n) worst case time.

While this allows us to insert the new leaf and branching node quickly (with
their associated M-links, opposite hard W-links and the adopted W-links), we
also need to create the new soft W-links on the path between w$ and u and
update the existing soft W-links on the path between u and u′. We maintain a
de-amortization stack for these soft W-link adjustment tasks, and execute these
tasks later, adjusting the W-links from shallow to deep. Since the depth of the
suffix tree insertion point increases at most by one in each step, if we update
at least two or more W-links from the de-amortization stack at each step, we
guarantee that the depths of the remaining pending W-link adjustment tasks on
the stack are strictly increasing. �

The hard W-links (opposite M-links) were updated immediately for each new
branching node and new leaf. An algorithm may also wish to gain access to the
internal invisible soft W-links through “just in time” de-amortizaion.

Corollary 1. An algorithm may access the internal invisible W-links that will
be available “just in time”, if it executes the delayed W-link adjustment tasks
from the de-amortization stack, provided that such algorithm traverses the suffix
tree starting from the root.

Remark. The common textbook description of Weiner’s [9,14] algorithm, that can
probably be traced back to Seiferas’ [21] simplified presentation, uses Boolean
indicator variables instead of soft W-links (Figure 2a-b; the fringe marked an-
cestor data structure is actually used to maintain these indicators). This is very
appealing since neither hard W-links nor Boolean indicators need to be updated
once set, unlike soft W-links that require constant maintenance. We wish to
point out a rather trivial observation, that the Boolean indicators are not re-
quired at all and it suffices to maintain only the hard W-links and use a second
quick scan to locate the suffix tree insertion point v, borrowing a technique from
McCreight’s [20] and Ukkonen’s [24] algorithms. See Figure 2c, where the edge
between v′ and its child v′′ corresponds to the path between u′ = M(v′) and
u′′ = M(v′′); u = M(v) = lca(w$, u′′) and the edge labels on the path between
u′ and u are equal to the corresponding parts of the edge label between v′ and
v. Thus, u is the most shallow node on this path between u′ and u′′, where the
first symbol on the edge at u is not equal to its corresponding symbol on the
edge between v′ and v′′.

164 D. Breslauer and G.F. Italiano

w$

aw$

a

u'

u

u''

v'

v

v''

(a)

w$

aw$

a

u'

u

u''

v'

v

v''

(b)

w$

aw$

a

u'

u

u''

v'

v

v''

(c)

Fig. 2. Finding the insertion point v. (a) Soft and hard W-links: follow the first ancestor
u with W-link v′′ = Wa(u) defined. (b) Hard W-links and indicators (nodes with
indicators shown as thicker dots): follow the first ancestor u′ with hard W-link v′ =
Wa(u′) defined, using the offset of the first ancestor u with set indicator. (c) Only
hard W-links: follow the first ancestor u′ with hard W-link v′ = Wa(u′) defined and
compute the offset of v from v′ in a second scan.

5 Left-to-Right and Bi-directional Construction

Constructing the suffix tree from left-to-right is a much more complicated matter
that requires suitably defined de-amortization, because all the text’s suffixes
are simultaneously extended, and therefore, the visible suffix tree may undergo
many structural changes that are effectuated in large batches inserting multiple
new nodes and leaves [5,9,14]. We briefly review Ukkonen’s [24] left-to-right
algorithm and use our adaptation of Weiner’s right-to-left algorithm, applied to
the reverse left-to-right text, to de-amortize the new node insertion in Ukkonen’s
algorithm. Due to tight space we skimp on details in this conference abstract.

Ukkonen observed that once some text suffix is a leaf, it will remain forever a
leaf after all future left-to-right extensions. By labeling the external suffix tree
edges leading to leaves “open ended”, reaching to the current growing end of
the text, Ukkonen invented an automatic gratuitous extension mechanism for
these edge labels. Unfortunately, the remaining text suffixes are called “implicit
nodes” and do not branch out. The algorithm maintains the active suffix, the
longest suffix of the text that has not branched out to become a leaf, which is
the longest repeated suffix of the text that appeared previously in the text. If
the active suffix cannot be extended within the suffix tree, an insertion batch
creates leaves for all suffixes between the old active suffix and up to (excluding)
the new active suffix. In particular: those implicit nodes that were in the middle
of an edge must branch out by creating a branching node splitting the edge and
inserting a leaf; and those implicit nodes that coincided with an existing explicit
node branch out by creating a leaf hanging off the existing explicit node.

Ukkonen’s algorithm maintains the locus of current active suffix, the longest
repeated suffix, that is updated while tracing the suffix tree, selecting the ap-
propriate branch at each internal suffix tree node according to the first symbol

Near Real-Time Suffix Tree Construction 165

on the branching edges. During an insertion batch, the algorithm follows the M-
links to find the next active suffix. While following suffix links, more suffix tree
nodes may appear on the path between the suffix tree node and the offset repre-
senting the implicit node’s locus and the representation has to be updated to the
canonical representation specifying implicit nodes’ locus by their offset relative
to the beginning of the edge where they are located. Ukkonen’s algorithm, like
the algorithm by McCreight, only has to navigate the suffix tree by selecting the
edges at each branching node according to their first branching symbol, quickly
moving down the suffix tree path towards the implicit node. The total amount
of work is amortized to linear time, but an insertion batch might be very long.

To get the quasi real-time adaptation of Ukkonen’s algorithm, we maintain
a de-amortization stack with the postponed suffix tree node insertion tasks. We
execute Weiner’s right-to-left algorithm simultaneously, applied to the reverse
left-to-right text, and shortcut long insertion batches in Ukkonen’s algorithm by
effectuating the node insertion in reverse to de-amortize the insertions. We rely
on the following trivial observation.

Lemma 3. The active point in Ukkonen’s algorithm is the reverse of the inser-
tion point in Weiner’s right-to-left algorithm applied to the reverse text.

Proof. The active point v is the longest repeated suffix in the text $wa that also
appeared earlier in $w. That is, the insertion point ṽ is the same as the longest
repeated prefix of the reversed text aw̃$ that appeared earlier in w̃$. �

Thus, by maintaining R-links from the right-to-left suffix tree Tw̃$ to the left-to-
right suffix tree T$w, we can use Weiner’s insertion point information to jump
ahead to the end of Ukkonen’s insertion batch and perform the node insertions
in Ukkonen’s left-to-right suffix tree in reverse order from short to long insertion
points, de-amortizing the insertions over time. This is done by maintaining a de-
amortization stack with delayed insertions at lengths that are strictly increasing.
Since the lengths of the active suffix increases at most by one with each input
symbol, if we insert at least one pending suffix from the de-amortization stack
we guarantee that the lengths of the pending suffix insertion tasks on the stack
are strictly increasing. Special attention is also required to the existing nodes
which are traversed between the newly inserted nodes.

Lemma 4. We can find Ukkonen’s new active point in T$wa in constant time
with the assistance of Weiner’s reverse suffix tree Taw̃$.

Proof. First, apply the text extension to Weiner’s algorithm to get Taw̃$. There
are two cases. If the new insertion point v is exactly one symbol longer than the
old insertion point, then the old insertion point was u, the immediate ancestor
of w̃$ with defined W-link Wa(u) = v. Ukkonen’s active point’s length also
increases by one and its locus is computed by moving ahead in the suffix tree
T$w. Otherwise, the search for the ancestor u with defined W-link Wa(u) took
a few steps up the reverse suffix tree Taw̃$. Observe that in this case the node
u in Weiner’s algorithm not only has the W-link Wa(u) defined, but also some

166 D. Breslauer and G.F. Italiano

W-link Wb(u) defined, for another alphabet symbol b �= a, and therefore, ũ must
be a branching node in Ukkonen’s suffix tree T$w. We get to the node ũ in T$w

by following the R-link from u in the reverse suffix tree Taw̃$ to T$w, and then
advance to the locus of ũa by following the alphabet symbol a in T$w. �

To be able to use the previous lemma, it is crucial to correctly maintain the R-
links from the reverse suffix tree Tw̃$ to T$w. When Weiner’s algorithm inserts a
new node ṽ into the reverse suffix tree Tw̃$, Lemma 4 gives us the corresponding
locus of the Ukkonen’s new active point in T$w and if it is a node, then we set the
R-link accordingly. An insertion batch in Ukkonen’s algorithm is de-amortized,
but since we have the new active point, we can proceed while de-amortizing
the inserts, but still set the R-links when the nodes are eventually inserted
from shallow to deep. The corresponding loci in Weiner’s reverse suffix tree are
contiguous ancestor loci of Weiner’s old insertion point, between the node u that
had its W-link set and the old insertion point of w̃$.

Thus, we can prove the following theorem.

Theorem 3. An algorithm may access the suffix tree constructed for the left-
to-right extended text and its internal invisible M-links (opposite hard W-links).
The suffix tree and the M-links will be available just in time, if the algorithm
executes the delayed update tasks from the de-amortization stack, provided that
such algorithm traverses the suffix tree starting from the root by increasing the
its traversal locus by one symbol in each step.

Inenaga [15] and Maaß [18] combined Weiner’s and Ukkonen’s algorithms to
obtain bi-directional suffix tree and affix tree [23] construction algorithms. Com-
bining our adaptations with Inenaga’s and Maaß’ observations, we can symbiot-
ically construct the suffix tree of a bi-directionally text and of the reverse text,
yielding also an affix tree construction algorithm.
Remark. Weiner’s algorithm immediately inserts each new text suffix and pro-
ceeds with suffix tree depth amortization. In contrast, McCreight’s and Ukko-
nen’s algorithms hold back on inserting some suffixes and proceed with trie depth
(length in symbols) amortization that is intermixed with suffix tree depth argu-
ments, and therefore, the de-amortization here requires that the traversal locus’
length increases by one symbol rather than depth increases by one edge.

Acknowledgments. We thank Amir Ben-Amram, Johannes Fischer, Roberto
Grossi, Gadi Landau and Oren Weimann for discussions about this work and
the anonymous reviewers for their useful comments.

References

1. Alstrup, S., Husfeldt, T., Rauhe, T.: Marked ancestor problems. In: FOCS, pp.
534–544 (1998)

2. Amir, A., Kopelowitz, T., Lewenstein, M., Lewenstein, N.: Towards real-time suf-
fix tree construction. In: Consens, M.P., Navarro, G. (eds.) SPIRE 2005. LNCS,
vol. 3772, pp. 67–78. Springer, Heidelberg (2005)

Near Real-Time Suffix Tree Construction 167

3. Amir, A., Nor, I.: Real-time indexing over fixed finite alphabets. In: Teng, S.H.
(ed.) SODA, pp. 1086–1095. SIAM, Philadelphia (2008)

4. Blumer, A., Blumer, J., Haussler, D., McConnel, R., Ehrenfeucht, A.: Complete
inverted files for efficient text retrieval and analysis. J. Assoc. Comput. Mach. 34(3),
578–595 (1987)

5. Breslauer, D., Italiano, G.F.: On Suffix Extensions in Suffix Trees (2011), this
conference proceedings

6. Breslauer, D.: The Suffix Tree of a Tree and Minimizing Sequential Transducers.
Theor. Comput. Sci. 191(1-2), 131–144 (1998)

7. Cole, R., Hariharan, R.: Dynamic LCA Queries on Trees. SIAM J. Comput. 34(4),
894–923 (2005)

8. Crochemore, M.: Transducers and repetitions. Theoret. Comput. Sci. 12, 63–86
(1986)

9. Crochemore, M., Rytter, W.: Text Algorithms. Oxford University Press, Oxford
(1994)

10. Dietz, P.F., Raman, R.: Persistence, amortization and randomization. In: SODA,
pp. 78–88 (1991)

11. Franceschini, G., Grossi, R.: A general technique for managing strings in
comparison-driven data structures. In: Dı́az, J., Karhumäki, J., Lepistö, A., San-
nella, D. (eds.) ICALP 2004. LNCS, vol. 3142, pp. 606–617. Springer, Heidelberg
(2004)

12. Galil, Z.: Open problems in stringology. In: Apostolico, A., Galil, Z. (eds.) Com-
binatorial Algorithms on Words. NATO ASI Series F, vol. 12, pp. 1–8. Springer,
Berlin (1984)

13. Grossi, R., Italiano, G.F.: Efficient techniques for maintaining multidimensional
keys in linked data structures. In: Wiedermann, J., Van Emde Boas, P., Nielsen,
M. (eds.) ICALP 1999. LNCS, vol. 1644, pp. 372–381. Springer, Heidelberg (1999)

14. Gusfield, D.: Algorithms on Strings, Trees, and Sequences - Computer Science and
Computational Biology. Cambridge University Press, Cambridge (1997)

15. Inenaga, S.: Bidirectional construction of suffix trees. Nord. J. Comput. 10(1),
52–67 (2003)

16. Kopelowitz, T.: From Off-line to On-line Indexing Data-Structures. Ph.D. thesis,
Dept. of Computer Science, Bar-Ilan University (2011)

17. Kosaraju, S.R.: Real-time pattern matching and quasi-real-time construction of
suffix trees (preliminary version). In: STOC, pp. 310–316 (1994)

18. Maaß, M.G.: Linear bidirectional on-line construction of affix trees. Algorith-
mica 37(1), 43–74 (2003)

19. Manber, U., Myers, E.W.: Suffix arrays: A new method for on-line string searches.
SIAM J. Comput. 22(5), 935–948 (1993)

20. McCreight, E.: A space economical suffix tree construction algorithm. J. Assoc.
Comput. Mach. 23, 262–272 (1976)

21. Seiferas, J.: Subword Trees (undated manuscript)
22. Slisenko, A.: Detection of periodicities and string-matching in real time. J. of Soviet

Mathematics, 1316–1386 (1983)
23. Stoye, J.: Affix Trees. Master’s thesis, Technische Fakultat, Universitat Bielefeld,

Bielefeld, Germany (2000), report 2000-04
24. Ukkonen, E.: On-line construction of suffix trees. Algorithmica 14(3), 249–260

(1995)
25. Weiner, P.: Linear pattern matching algorithms. In: Proc. 14th Symposium on

Switching and Automata Theory, pp. 1–11 (1973)

Approximations and Partial Solutions for the

Consensus Sequence Problem

Amihood Amir1,2,�, Haim Paryenty1,��, and Liam Roditty1

1 Department of Computer Science, Bar Ilan University, Ramat Gan 52900, Israel
{amir,liamr}@cs.biu.ac.il, haimpa@gmail.com

2 Department of Computer Science, Johns Hopkins University, Baltimore, MD 21218

Abstract. The problem of finding the consensus of a given set of strings
is formally defined as follows: given a set of strings S = {s1, . . . sk}, and a
constant d, find, if it exists, a string s∗, such that the Hamming distance
of s∗ from each of the strings does not exceed d.

In this paper we study an LP relaxation for the problem. We prove an
additive upper bound, depending only in the number of strings k, and
randomized bounds. We show that empirical results are much better.
We also compare our program with some algorithms reported in the
literature, and it is shown to perform well.

1 Introduction and Related Work

The Consensus Sequence problem is a basic problem in the area of sequence
comparison. Formally the Consensus Sequence problem asks, given a parameter
d and a set of sequences S = {s1, ..., sk} each of length �, whether there exists a
sequence s∗, called a consensus, that is of distance at most d from each sequence
in S. The consensus sequence need not be contained in S. The distance metric
between two strings s and t has historically been the Hamming distance, H(s, t).
The Consensus Sequence Problem is NP-complete, even when the characters in
the strings are drawn from the binary alphabet.

Thus, attention has been restricted to approximation solutions [1, 3, 4, 9–12]
and fixed-parameter solutions [5–7, 12]. Furthermore, some efficient algorithms
for a small constant k have been developed [5, 8, 2]. For brief surveys on the
approximation solutions, readers are referred to [2, 12].

There has been activity in seeking practical implementations for the Consen-
sus Sequence problem. Two major directions were attempted: Various successful
Integer Linear Programming (ILP) approaches [13, 1], and pruning a search
tree [14]. The ILP algorithms work well for strings of relatively small length.
The search tree algorithms do not work when the ratio between the number
of errors d and the string length � is large. Thus a general practical consensus
sequence algorithm is still an elusive goal.
� Partly supported by NSF grant CCR-09-04581 and ISF grant 347/09.

�� Partly supported by a BIU President Fellowship. This work is part of H. Paryenty’s
Ph.D. thesis.

R. Grossi et al. (Eds.): SPIRE 2011, LNCS 7024, pp. 168–173, 2011.
c© Springer-Verlag Berlin Heidelberg 2011

Approximations and Partial Solutions for the Consensus Sequence Problem 169

The main contribution of this paper is by proposing and analysing a Linear
Programming (LP) relaxation for the problem. Recently, [13] also showed an LP
relaxation. However, we use a different Linear Program, which requires a smaller
number of variables, thus our algorithm runs faster.

In Section 2 we present two approximation algorithms based on LP relaxation.
The first algorithm is deterministic. It computes an approximated consensus with
an additive error of at most (k−1)(k!−1) when k is the number of input strings.
The second algorithm is randomized. It computes, whp, an approximated con-
sensus with an additive error of at most O(

√
d log k) when d is the maximal

distance of the optimal consensus from the input strings. In practice, our algo-
rithms run very fast even for very large inputs, and the results prove much better
than the additive worst case upper bound, in fact it rarely exceeds a Hamming
distance 2 from the optimal consensus sequence.

In Section 3 we present the results of an extensive empirical study on the LP
based algorithms presented in Section 2 We show the high quality of the ap-
proximation result. We also compare our algorithms to several other algorithms
reported recently in the literature. Our experiments indicate that the running
times of our algorithms are better.

Notation: Throughout this paper, we will be considering our input as a matrix.
If the set S has k strings, s1, ..., sk, each of length �, we view S as a k × �
matrix. We can thus refer to columns and rows. We will say column to denote
a column of this matrix, and row to denote a row in the matrix. Thus, e.g., the
element is the second row of column i, is the ith symbol of s2. Each column
has a corresponding entry in the consensus sequence, which we call the column’s
consensus value. The distance of a string ŝ from S is maxs∈S d(ŝ, s). Given a
string s we denote with ci(s) the character in the ith position of s.

We refer to two identical columns as having the same column type. We denote
with T (S) the column types of S. For a column type t ∈ T (S) we denote with #t
the number of columns of type t in S. For a string s and column type t ∈ T (S)
we denote with s|t the string that we get from s when we delete all characters
but those at locations of column type t.

2 An Approximation Algorithm for the Consensus
Problem

In this section we present Linear Programming based algorithms to approxi-
mate the consensus sequence. The main result is an algorithm with an additive
approximation. Let S be a set of k strings over alphabet Σ and let T (S) be
its column types. Let d∗ be the distance of the optimal consensus from S. Our
first algorithm computes an approximated consensus with distance of at most
d∗+(k−1)|T (S)| from S. Our second algorithm computes, whp, an approximated
consensus with distance of at most d∗ + O(

√
d∗ log k) from S.

170 A. Amir, H. Paryenty, and L. Roditty

2.1 Integer Programs

Ben-Dor et al. [1] suggested an Integer Program for the consensus problem. The
number of variables in their IP is |Σ| · �. Ben-Dor et al. [1] used LP relaxation
together with randomized rounding to solve their program and then to convert
the fractional solution into an integral one. Recently, Chimani et al. [13] showed
that it is possible to slightly reduce the number of variables to |Σ| · (� − 1).

Gramm et al. [6] suggested the following, different, Integer Programming for-
mulation to this problem:

min d
s.t.

∑
t∈T (S)

∑
σ∈Σ\{σt,i} xt,σ ≤ d ∀i ∈ {1, . . . , k}∑

σ∈Σ xt,σ = #t ∀t ∈ T (S)
xt,σ ∈ {0, 1, . . . , #t} ∀σ ∈ Σ, ∀t ∈ T (S)

In this formulation, for every t ∈ T (S) and σ ∈ Σ, the variable xt,σ is the
number of occurrences that σ has in the consensus sequence at locations that
correspond to column type t. Let si ∈ S and let σt,i be the character of string si

in column type t (note that si has the same character in all the locations that
correspond to column type t). The distance of si from the consensus sequence is∑

t∈T (S)

∑
σ∈Σ\{σt,i} xt,σ, that is, for each column type t we sum the characters

in the consensus sequence at locations that correspond to t that are different
from the character si has in these locations.

Gramm et al. [6] solved the decision version of this IP directly using the
algorithm of Lenstra [15] that has an exponential dependency in the number of
variables. Thus, they were not able to solve the IP for more than four strings.

2.2 Linear Program Relaxation

We present a LP relaxation for the IP suggested by Gramm et al. [6] and two
different rounding techniques. The only change in the LP with respect to the IP
is that for every t ∈ T (S) and σ ∈ Σ the variable xt,σ is allowed to be a real
non-negative number. This means that for alphabet Σ = {σ1, σ2, σ3, σ4} and a
set of strings S that has a certain column type t that repeats 14 times it might
be that xt,σ1 = 2.3, xt,σ2 = 3.8, xt,σ3 = 4.6 and xt,σ4 = 3.3.

Let at,σ be the value of xt,σ for every column type t and character σ ∈ Σ in
the LP optimal solution. In our first rounding procedure for every column type t
and character σ ∈ Σ we set ât,σ = �at,σ�. As there are |Σ| variables for column
type t we are left with at most |Σ|−1 locations of column type t in the consensus
sequence to fill. We then fill the empty places with characters in a non-increasing
order of the size of their fractional part, at,σ − ât,σ, starting from the character
with the largest fractional part. We increment ât,σ by one for every character σ

that is chosen in this process. We denote with d̂ the value of the integral solution
obtained by this rounding process. The lemma below bounds the error of this
rounding process. Its proof will appear in the journal version.

Lemma 1. d̂ ≤ d∗ + (k − 1)|T (S)|.

Approximations and Partial Solutions for the Consensus Sequence Problem 171

For k strings the number of different column types is at most the bell number
B(k) ≤ k!. Hence, our additive error is at most (k−1)k!. In practice the additive
error is rarely more than 2 as we show in Section 3.

Another approach to obtain an integral solution is to use randomized rounding
in a similar manner to Ben-Dor et al. [1]. As before, let at,σ be the value of xt,σ

for every column type t and every character σ ∈ Σ in the LP optimal solution.
The probability of a character σ to be placed in the consensus sequence at a
location of column type t is at,σ

#t . The expected distance of the consensus string
from an arbitrary string of the input is presented in the theorem below, whose
proof is ommitted for lack of space.

Theorem 1. Let S be a set of k strings, and let s∗ be an optimal consensus. Let
d∗ be the distance between S and s∗. Let ŝ be the approximated consensus obtained
using randomized rounding and let d̂ be its distance from S. Then Pr(d̂ > d∗ +√

3d∗ log k
ε) < ε, where ε > 0 is a constant.

3 Empirical Results

All algorithms have been implemented with Visual C++ 2008 Compiler. Our
experiments were done on a Intel Centrino T6600, 2.20 GHz, 4 GB RAM running
Windows 7 in 32 bit mode. We used GNU GLPK as our LP and ILP solver. We
applied a time limit, as usual in ILP approaches, of 30 minutes as used by [13].

We used the data set of Hufsky et al. [14], as was conveniently organize by [13].
This is a biological data set that was obtained using approximate gene clustering
to five γ-proteobacteria genomes (see Hufsky et al. [14] for more details).

We have implemented five algorithms:

1. The ILP algorithm suggested by Ben-Dor et al. [1] (BD-IP). In this ILP there
is a binary variable that corresponds to every character from the alphabet
and location in the string.

2. The LP relaxation of Ben-Dor et al. [1] (BD-LP) using standard randomized
rounding to obtain an integral solution.

3. The ILP algorithm suggested by Gramm et al. [6] (GR-IP). In this ILP
there is a variable that corresponds to every character from the alphabet
and column type (rather than any possible location). For more details, see
Section 2

4. An LP relaxation of Gramm et al. [6], (NEW-LP-1) with randomized round-
ing to obtain an integral solution. For more details, see Section 2

5. An LP relaxation of Gramm et al. [6], (NEW-LP-2) where fractional vari-
ables are rounded using a simple rounding procedure. For more details, see
Section 2.

In [13] the first two algorithms are implemented and tested. We have conducted
extensive experiments using all these algorithms. One goal was to analyze the
quality of the approximation produced by our suggested algorithms (4 and 5).
Another goal was to compare between the running time of these five algorithms.

172 A. Amir, H. Paryenty, and L. Roditty

Fig. 1. Comparing the
running time of GR-IP
and BD-IP

Fig. 2. Comparing BD-
IP, NEW-LP-1 and NEW-
LP-2

Fig. 3. Comparing ap-
proximated and exact
consensus

We started by comparing between the running time of BD-IP and GR-IP.
In Figure 1 we present the average time (in milliseconds) that it took for each
algorithm to compute the consensus with respect to the number of strings in the
input and their length. As can be seen GR-IP is much faster than BD-IP. The
reason for that is that the number of variables used by GR-IP is much smaller
than the number of variables used by BD-IP. While BD-IP has a variable for
each character and each location in the string (i.e, |Σ| × � variables), in GR-IP
there is a variable for each character and each column type.

Next, we compared between the running time of BD-LP, NEW-LP-1 and
NEW-LP-2. In Figure 2 we present the average time (in milliseconds) that it
took for each algorithm to compute the consensus with respect to the number
of strings in the input and their length. Algorithms NEW-LP-1 and NEW-LP-
2 were significantly better than BD-LP. As before, the reason for that is that
these algorithms are using an LP with much less variables than BD-LP. The
performance of NEW-LP-1 and NEW-LP-2 were pretty much the same, since
the difference between them is only in the rounding, and the running time is
dominated by solving the LP.

It follows from the above experimental results that the LP-based algorithms
are much faster than the IP-based algorithms. This is not surprising as in LP-
based algorithms we compute a fractional solution rather than integral and the
algorithms for that are much faster. The main question is whether we pay for
this time efficiency in the quality of the approximated consensus that these
algorithms compute. The theoretical results of Section 2 suggest that the ap-
proximation would be good. Testing the theoretical results, was another goal of
our experiments.

In Figure 3 we present a comparison between the approximated consensus
computed by the LP-based algorithm to the optimal consensus as found by the
IP algorithm. In particular, we take the approximated consensus and find the
string that is farthest from it. We do the same with the optimal consensus. The
difference between these two values is the error of the approximated consensus.
We compute the average difference for a given number of strings and their length.
The results of NEW-LP-2 were the best. The results of BD-LP are better than
the results of NEW-LP-1. This may be explained by the fact that exploiting
the freedom of rounding every column separately improves the accuracy with
respect to the case in which a bundle of columns are rounded together.

Approximations and Partial Solutions for the Consensus Sequence Problem 173

References

1. Ben-Dor, A., Lancia, G., Perone, J., Ravi, R.: Banishing bias from consensus se-
quences. In: Proceedings of the 8th Symposium on Combinatorial Pattern Match-
ing, pp. 247–261 (1997)

2. Boucher, C., Brown, D.G., Durocher, S.: On the structure of small motif recognition
instances. In: Amir, A., Turpin, A., Moffat, A. (eds.) SPIRE 2008. LNCS, vol. 5280,
pp. 269–281. Springer, Heidelberg (2008)

3. Gasieniec, L., Jansson, J., Lingas, A.: Efficient approximation algorithms for the
Hamming center problem. In: Proceedings of the 10th ACM-SIAM Symposium on
Discrete Algorithms, pp. 905–906 (1999)

4. Gasieniec, L., Jansson, J., Lingas, A.: Approximation algorithms for Hamming
clustering problems 2, 289–301 (2004)

5. Gramm, J., Niedermeier, R., Rossmanith, P.: Exact solutions for closest string
and related problems. In: Proceedings of the 12th International Symposium on
Algorithms and Computation, pp. 441–453 (2001)

6. Gramm, J., Niedermeier, R., Rossmanith, P.: Fixed-parameter algorithms for clos-
est string and related problems. Algorithmica 37(1), 25–42 (2003)

7. Stojanovic, N., Berman, P., Gumucio, D., Hardison, R., Miller, W.: A linear-time
algorithm for the 1-mismatch problem. In: Rau-Chaplin, A., Dehne, F., Sack, J.-
R., Tamassia, R. (eds.) WADS 1997. LNCS, vol. 1272, pp. 126–135. Springer,
Heidelberg (1997)

8. Sze, S.-H., Lu, S., Chen, J.: Integrating sample-driven and pattern-driven ap-
proaches in motif finding. In: Jonassen, I., Kim, J. (eds.) WABI 2004. LNCS
(LNBI), vol. 3240, pp. 438–449. Springer, Heidelberg (2004)

9. Lanctot, K., Li, M., Ma, B., Wang, S., Zhang, L.: Distinguishing string selec-
tion problems. In: Proceedings of the 10th ACM-SIAM Symposium on Discrete
Algorithms, pp. 633–642 (1999)

10. Li, M., Ma, B., Wang, L.: Finding similar regions in many strings. In: Proceedings
of the 31st Annual ACM Symposium on Theory of Computing, pp. 473–482 (1999)

11. Li, M., Ma, B., Wang, L.: On the closest string and substring problems. Journal
of the ACM 49(2), 157–171 (2002)

12. Ma, B., Sun, X.: More efficient algorithms for closest string and substring problems.
In: Vingron, M., Wong, L. (eds.) RECOMB 2008. LNCS (LNBI), vol. 4955, pp.
396–409. Springer, Heidelberg (2008)

13. Chimani, M., Woste, M., Bocker, S.: A Closer Look at the Closest String and
Closest Substring Problem, pp. 13–24. ALENEX (2011)

14. Hufsky, F., Kuchenbecker, L., Jahn, K., Stoye, J., Böcker, S.: Swiftly computing
center strings. In: Moulton, V., Singh, M. (eds.) WABI 2010. LNCS, vol. 6293, pp.
325–336. Springer, Heidelberg (2010)

15. Lenstra, H.W.: Integer programming with a fixed number of variables. Mathematics
of Operations Research 8, 538–548 (1983)

Fixed Block Compression Boosting in

FM-Indexes�

Juha Kärkkäinen1 and Simon J. Puglisi2

1 Department of Computer Science, University of Helsinki, Finland
juha.karkkainen@cs.helsinki.fi

2 Department of Informatics, King’s College London, London, United Kingdom
simon.puglisi@kcl.ac.uk

Abstract. A compressed full-text self-index occupies space close to that
of the compressed text and simultaneously allows fast pattern matching
and random access to the underlying text. Among the best compressed
self-indexes, in theory and in practice, are several members of the FM-
index family. In this paper, we describe new FM-index variants that
combine nice theoretical properties, simple implementation and improved
practical performance. Our main result is a new technique called fixed
block compression boosting, which is a simpler and faster alternative to
optimal compression boosting and implicit compression boosting used in
previous FM-indexes.

1 Introduction

A compressed full-text self-index [13] of a text string T is a data structure that
stores T in a compressed form that allows fast random access to T and also
supports fast pattern matching queries. We focus here on the count query that,
given a pattern string P , returns the number of occurrences of P in T . 1 Many
of the best compressed self-indexes, in theory and in practice, belong to the
FM-index family originating from the FM-index of Ferragina and Manzini [5].
In particular, they combine good compression with fast count queries [6,11,4,2].
In this paper, we describe new variants of the FM-family achieving even better
compression and faster count queries.

The main components of most FM-indexes are:

– The Burrows–Wheeler transform (BWT) [1]: an invertible permutation of
the text T . A procedure called backward search [5] turns a count query on
T into a sequence of rank queries on the BWT.

– The wavelet tree [7]: a representation of the BWT that turns a BWT rank
query into a sequence of rank queries on bitvectors.

– A bitvector rank index, which supports fast rank queries on bitvectors.

� Juha Kärkkäinen is supported by Academy of Finland grant 118653 (ALGODAN).
Simon J. Puglisi is supported by a Newton Fellowship.

1 Our indexes support other common queries such as locate and extract, but the al-
gorithmic and implementation issues in engineering them are quite different and
outside the scope of this paper.

R. Grossi et al. (Eds.): SPIRE 2011, LNCS 7024, pp. 174–184, 2011.
c© Springer-Verlag Berlin Heidelberg 2011

Fixed Block Compression Boosting in FM-Indexes 175

The total length of standard wavelet tree bitvectors is equal to the size of
the original, uncompressed text in bits. All other data structures can be fitted
in less space: asymptotically less in theory, and significantly less in practice.
Basic zero-order compression is achieved either with compressed bitvector rank
structures, such as RRR [15], or Huffman-shaped wavelet trees [8]. For higher
order compression, we can use a technique called compression boosting [3,6],
where the BWT is partitioned into blocks of varying sizes based on the context
of symbols in T , and there is a separate, zero-order compressed wavelet tree for
each block. An optimal partitioning into context blocks can be found in linear
time [3].

Our main result is a technique called fixed block compression boosting. It is
similar to context block boosting, but divides the BWT into blocks of fixed sizes
without any regard to the symbol contexts. Such a division is inoptimal, but
we show that it cannot be much worse than the optimal one. What we gain is
simpler and faster data structures. The difference is particularly dramatic in the
construction phase.

The RRR-structure for compressed bitvector rank [15] divides the bitvectors
into small blocks of fixed sizes. Mäkinen and Navarro [11] show that this achieves
a similar compression boosting effect without any explicit division of the BWT.
This is called implicit compression boosting. Their analysis of the effect of fixed
blocks inspired our analysis, but the extension from small blocks on bitvectors
to larger blocks and larger alphabets is non-trivial.

There are implementations of FM-indexes without any compression boost-
ing [4], with optimal context block boosting [4], and with implicit boosting [2].
Fixed block boosting has practical advantages over all these, which we demon-
trate experimentally.

2 Basic Algorithmic Machinery

Let T = T [0..n−1] = T [0]T [1] . . . T [n−1] be a string of n symbols or characters
drawn from an alphabet Σ = {0, 1, .., σ − 1}. We assume that T [n − 1] = 0 and
0 does not appear anywhere else in T . In the examples, we use ‘$’ to denote 0
and letters to denote other symbols.

For any i ∈ 0..n − 1, the string T [i..n − 1]T [0..i − 1] is a rotation of T . Let
M be the n × n matrix whose rows are all the rotations of T in lexicographic
order. Let F be the first and L the last column of M, both taken to be strings of
length n. The string L is the Burrows–Wheeler transform of T . An example
is given in Fig. 1. Note that F and L are permutations of T .

The FM-family of compressed text self-indexes is based on a procedure called
backward search, which finds the range of rows in M that begin with a given
pattern P . This range represents the occurrences of P in T . Fig. 2 shows how
backward search is used for implementing the count query. In the algorithm,
C[c] is the position of the first occurrence of the symbol c in F , and the function
rankL is defined as

rankL(c, j) ≡
∣∣{i | i < j and L[i] = c}

∣∣

176 J. Kärkkäinen and S.J. Puglisi

F L
$ B A N A N A

A $ B A N A N

A N A $ B A N

A N A N A $ B

B A N A N A $
N A $ B A N A

N A N A $ B A

Fig. 1. BWT matrix M for text T = BANANA$

Algorithm. FM-Count(P [0..m − 1])
1: b ← 0; e ← n
2: for i ← m − 1 downto 0 do
3: c ← P [i]
4: b ← C[c] + rankL(c, b)
5: e ← C[c] + rankL(c, e)
6: if b = e then break //The range is empty
7: return e − b //The range is b..e − 1

Fig. 2. Counting pattern occurrences using backward search

The main difference between the members of the FM-family is how they imple-
ment the rankL-function. The best ones use wavelet trees.

A wavelet tree of a string X over an alphabet Σ is a binary tree with leaves
labelled by the symbols of Σ. Each node v is associated with the subsequence
of X consisting of those symbols that appear in the subtree rooted at v. The
associated strings are not stored; instead each internal node v stores a bitvector
B(v) that tells for each character in the associated string whether it is in the left
or right subtree of v. Fig. 3 shows examples of the two commonly used variants
of wavelet trees, the balanced and the Huffman-shaped.

The balanced wavelet tree is easy to implement with low overhead. The total
length of the bitvectors is |X |
log |Σ|�, which is exactly the length of X in
bits using the standard representation. On the other hand, the Huffman-shaped
wavelet tree (HWT) is the one that minimizes the total length of the bitvectors,
which equals the size of the Huffman compressed string X .

A rank query rankX(c, r) over a wavelet tree is evaluated by a traversal from
the root to the leaf labelled by c, as shown in Fig. 4. The procedure involves
rank queries over the bitvectors stored on the root-to-leaf path.

There are many data structures for representing bitvectors so that rank queries
can be answered efficiently [14,16,2]. They can be divided into two main cate-
gories. Uncompressing techniques leave the bitvector intact but use a small (usu-
ally sublinear) data structure on top of it. Compressing techniques compress the
bitvector as well as prepare it for rank queries.

Fixed Block Compression Boosting in FM-Indexes 177

B NA$

AAA B NN$

ANNB$AA
0111000

110
NNB

1011
A$AA

N

A

B$

NN

B

AAA

$

0111100
ANNB$AA

B$
01

NNB$
0011

Fig. 3. Balanced (left) and Huffman-shaped (right) wavelet trees

Algorithm. WT-Rank(c, r)
1: v ← root; q ← r
2: while v is not a leaf do
3: if c is in the left subtree of v then
4: q ← q − rankB(v)(1, q)
5: v ← leftchild(v)
6: else
7: q ← rankB(v)(1, q)
8: v ← rightchild(v)
9: return q

Fig. 4. Rank operation using a wavelet tree

3 Compression Boosting

Recall that T is a string of length n over an alphabet Σ of size σ. For each c ∈ Σ,
let nc denote the number of occurrences of c in T . The zero-order empirical
entropy [12] of T is

H0(T) =
∑
c∈Σ

nc

n
log

n

nc
= log n − 1

n

∑
c∈Σ

nc log nc. (1)

Let nw be the number of occurrences of a string w in T , and let T |w be the sub-
sequence of T consisting of those characters that appear in the (right) context w,
i.e., that are immediately followed by w. Here T is taken to be a cyclic string,
so that each character has a context of every length. The kth order empirical
entropy is

Hk(T) =
∑

w∈Σk

nw

n
H0(T |w) .

The value nHk(T) represents a lower bound on the number of bits needed to
encode T by any compressor that considers a context of size at most k when
encoding a symbol. Note that Hk+1(T) ≤ Hk(T) for all k.

178 J. Kärkkäinen and S.J. Puglisi

A remarkable property of L, the BWT of T , is that T |w is a contiguous
substring of L for any w; we call the substring the w-context block of L. For
example, if T = BANANA$, then T |A = NNB = L[1..3] (see Fig. 1). Thus we get
the following result.

Lemma 1 ([12]). For any k ≥ 0, there exists a partitioning of L1L2 · · ·L� = L
of the BWT L of T into � ≤ σk blocks so that

�∑
i=1

|Li|H0(Li) = nHk(T) .

In other words, by compressing each BWT block to zero-order entropy level, we
obtain kth order entropy compression for the whole text. This is called compres-
sion boosting [3].

The space requirement of an FM-index is usually dominated by the wavelet
tree bitvectors. The total length of the bitvectors in the balanced wavelet tree of
L is n
log σ�. Using a Huffman-shaped wavelet tree reduces this down to at most
n(H0(T) + 1). An alternative way to achieve zero-order compression is to use
compressed bitvector rank indexes. For example, using a rank index of Raman,
Raman and Rao (RRR) [15], the total size of the rank indexes (without HWT
or boosting) is nH0(T) + o(n) log σ.

Compression boosting improves the H0(T) factor to Hk(T) [6]: Divide the
BWT into context blocks using context of length k and implement a separate
wavelet tree for each block. There is an additional space overhead of O(σ log n)
bits per block from having many blocks and wavelet trees instead of just one.
The total overhead is o(n) for k ≤ ((1 − ε) logσ n) − 1 and any constant ε > 0.

It may not be optimal to use the same context length in all parts of L. Fer-
ragina et al. [3] show how to find an optimal partitioning with varying context
length in linear time. The resulting compression is at least as good as with any
fixed k.

Mäkinen and Navarro [11] show that the boosting effect is achieved with the
RRR bitvector rank index without any explicit context partitioning. This is
called implicit compression boosting. First, they observe that instead of parti-
tioning the BWT, we could partion the bitvectors and obtain the same boosting
effect. Second, the RRR technique partitions the bitvectors into blocks of size
b = (log n)/2 and compresses each independently. The RRR partitioning is not
optimal, but Mäkinen and Navarro show that the overhead due to the inopti-
mality is at most 2σ�b ≤ σk+1 log n = o(n) under the assumptions mentioned
above.

Theorem 2 ([6,11]). The FM-index either with explicit boosting and optimal
partitioning [6] or with implicit boosting [11] can be implemented in nHk(T) +
o(n) log σ bits of space for any k ≤ ((1 − ε) logσ n) − 1 and any constant ε > 0.

Fixed Block Compression Boosting in FM-Indexes 179

4 Fixed Block Compression Boosting

In this section, we show that the compression boosting effect can also be achieved
with a partitioning into blocks of fixed sizes without any regard to symbol con-
text.

Let H(x, y) = |B|H0(B), where B is a bitvector containing x 0’s and y 1’s.
Let |X |c denote the number of occurrences of a symbol c in a string X . The
following lemma shows what can happen to the total zero-order entropy when
two strings are concatenated.

Lemma 3. For any two strings X and Y over an alphabet Σ,

0 ≤ |XY |H0(XY) − |X |H0(X) − |Y |H0(Y)

= H(|X |, |Y |) −
∑
c∈Σ

H(|X |c , |Y |c) ≤ H(|X |, |Y |) ≤ |XY | .

Proof. The last two inequalities are trivial and the first is a standard application
of Gibb’s inequality. We will prove the equality part. For brevity, we write x =
|X |, y = |Y |, xc = |X |c and yc = |Y |c. Using (1), we can write the left-hand side
terms as follows

(x + y)H0(XY) = (x + y) log(x + y) −
∑
c∈Σ

(xc + yc) log(xc + yc)

xH0(X) = x log x −
∑
c∈Σ

xc log xc

yH0(Y) = y log y −
∑
c∈Σ

yc log yc

and the right-hand side terms as follows

H(x, y) = (x + y) log(x + y) − x log x − y log y

H(xc, yc) = (xc + yc) log(xc + yc) − xc log xc − yc log yc

From this it is easy to see that the terms on both sides match. �

In other words, the concatenation cannot reduce the total entropy, and the en-
tropy can increase by at most one bit per character. Furthermore, the maximum
increase happens only if the two strings have the same length and no common
symbols.

Using the above lemma we can bound the increase in entropy when we switch
from a context block partitioning to a fixed block partitioning.

Lemma 4. Let X1X2 · · ·X� = X be a string partitioned arbitrarily into � blocks.
Let Xb

1X
b
2 · · ·Xb

m = X be a partition of X into blocks of size at most b. Then

m∑
i=1

|Xb
i |H0(Xb

i) ≤
�∑

i=1

|Xi|H0(Xi) + (� − 1)b .

180 J. Kärkkäinen and S.J. Puglisi

Proof. Consider a process, where we start with the first partitioning, add the
split points of the second partitioning, and then remove the split points of the
first partitioning (that are not split points in the second). By Lemma 3, adding
split points cannot increase the total entropy, and removing each split point can
increase the entropy by at most b bits. �

If we assume the same number of blocks in the two partitionings, the very worst
case increase in the entropy is n − b bits.

This increase in entropy can be reduced by reducing the block size in the fixed
block partitioning (thus increasing the number of blocks). In particular, if we set
the block size to b = σ(log n)2, we obtain the following result.

Theorem 5. The FM-index with explicit boosting and blocks of fixed sizes can
be implemented in Hk(T)+o(n) log σ bits of space for any k ≤ ((1−ε) logσ n)−1
and any constant ε > 0.

Proof. Using context block boosting with fixed context length k and RRR to
compress the bitvectors, the size of the FM-index is nHk(T) + o(n) log σ bits.
When we switch from context blocks to fixed blocks, we must add two types
of overhead. First, by Lemma 4, the total entropy increases by at most σkb =
σk+1(log n)2 = n1−ε(log n)2 = o(n) bits. Second, the space needed for everything
else but the bitvector rank indexes is O(σ log n) bits per block. In total, this is
O(n/ log n) = o(n) bits. Thus the total increase in the size of the FM index is
o(n) bits.

Thus, we have the same theoretical result as with context block boosting or
implicit boosting.

The advantages of fixed block boosting compared to context block boosting
are:

– To compute rankL(c, r), we have to find the block containing the position r.
With fixed blocks this is simpler and faster than with varying size context
blocks.

– Computing the optimal partitioning is complicated and expensive in prac-
tice. With fixed blocks, construction is much simpler and faster.

Explicit boosting (with either context blocks or fixed blocks) enables faster
queries than implicit boosting for the following reasons:

– Compressed bitvector rank indexes are slower than uncompressed ones by a
significant constant factor. Explicit boosting can achieve higher order com-
pression with Huffman-shaped wavelet trees allowing the use of the faster
uncompressed rank indexes.

– With implicit boosting, i.e., with a single wavelet tree for the whole BWT,
the average count query time for a pattern P is Θ(|P | log σ) with a balanced
wavelet tree and Θ(|P |H0(T)) with a HWT. With explicit boosting and
HWTs, the average query time is reduced down to O(|P |Hk(T)).

Fixed Block Compression Boosting in FM-Indexes 181

Table 1. Data sets used for empirical tests. For each type of data (dna, xml, english,
source) a 100Mb file was used.

Data set name σ H0 Mean Longest Common Prefix

xml 97 5.23 44
dna 16 1.98 31
english 239 4.53 2,221
source 230 5.54 168

5 Experimental Results

To assess practical performance we used the files listed in Table 12. All tests
were conducted on a 3.0 GHz Intel Xeon CPU with 4Gb main memory and
1024K L2 Cache. The machine had no other significant CPU tasks running. The
operating system was Fedora Linux running kernel 2.6.9. The compiler was g++
(gcc version 4.1.1) executed with the -O3 option. The times given were recorded
with the C getrusage function. The memory requirements are sums of the sizes
of all data structures as reported by the sizeof function.

We measured the following FM-Index variants:

– SSA [10] simply stores a single HWT for the whole L, consuming nH0 +
o(n log σ) bits of space. This is the fastest index according to experiments in
both [2] and [4].

– SSA+RRR is the implicit compression boosting approach of Mäkinen and
Navarro [11]. As with SSA it builds a single HWT of L, however the bitvec-
tors of the wavelet tree are now stored in a RRR compressed rank data
structure. This method was first implemented by Claude and Navarro [2].

– AFFMI [6] uses optimal context block boosting with a separate HWT for
each block. The implementation we use is from [4].

– Fixed Block and Fixed Block+RRR are implementations of the new fixed
block boosting technique that use, respectively, plain and RRR preprocessed
HWTs to represent blocks.

Figure 5 shows the trade-off between index size and pattern counting time.
Following the methodology of [2,4] we report query times averaged over a large
number of random patterns of length 20, extracted from the underlying text. In
the figure, the multiple points for the Fixed Block indexes correspond to different
blocksizes; and for SSA+RRR a tradeoff is given by the sample rate in the RRR
implementation.

With the compressible texts (xml, source and english) the fixed block in-
dexes dominate the others in both space and time. On dna, which is not very
compressible, fixed block indexes are still small and fast, but the ranks stored at
block boundaries are no longer paid for by compression and the SSA+RRR, which
does not need to store ranks at block boundaries, is the smallest index. The small
alphabet of dna means the single HWT of the SSA is shallow, making it fast.
2 Available from http://pizzachili.dcc.uchile.cl/

http://pizzachili.dcc.uchile.cl/

182 J. Kärkkäinen and S.J. Puglisi

0 2 4 6

Memory (bits/symbol)

0.00

0.02

0.04

0.06

0.08

0.10

T
im

e
(m

se
c/

pa
tte

rn
)

XML 100MB

0 1 2 3

Memory (bits/symbol)

0.00

0.02

0.04

0.06

T
im

e
(m

se
c/

pa
tte

rn
)

DNA 100MB

SSA
AFFMI
SSA + RRR
Fixed Block
Fixed Block + RRR

0 1 2 3 4 5

Memory (bits/symbol)

0.00

0.02

0.04

0.06

0.08

0.10

T
im

e
(m

se
c/

pa
tte

rn
)

ENGLISH 100MB

0 2 4 6

Memory (bits/symbol)

0.00

0.02

0.04

0.06

0.08

0.10

T
im

e
(m

se
c/

pa
tte

rn
)

SOURCE 100MB

Fig. 5. Time-Space tradeoff for various self-indexes. Memory (abscissa) is the index
size in bits per input symbol. Time (ordinate) is the average number of milliseconds
taken to count pattern occurrences (averaged over 106 patterns of length 20).

The AFFMI, despite using optimal partitioning, is larger and slower than
the fixed block indexes. AFFMI stores a bitvector marking the partitioning and
issues a rank query on this bitvector to determine the appropriate wavelet tree
to use at each step in the backward search process. This adds a significant time
and space overhead which the fixed block approach avoids entirely.

6 Concluding Remarks

The indexes we have presented based on fixed block compression boosting are
the most practical self-indexes to date, but we believe there is yet more room
for improvement. Our current focus is on improving the RRR data structure to
better exploit the structure of wavelet tree bitvectors produced by the BWT.

Fixed Block Compression Boosting in FM-Indexes 183

We are also exploring an improved implementation of Huffman-shaped wavelet
trees which use substantially less space, enabling smaller blocks and thus better
compression.

A virtue of fixed block compression boosting our experiments have not touched
on is construction, which is easier with fixed blocks. The final phase of indexing,
where the BWT is turned into an FM-index, now requires only nHk+o(n) log σ+
b logσ bits of space, instead of the (at least) n log σ + o(n) log σ bits required
by variants to date. If the final index does not have to reside in memory then
at most 2b logσ bits are needed for construction of the index from the BWT.
Construction time remains linear and is fast in practice as the BWT is scanned
only once, from left to right. For example, constructing a fixed block index for the
XML file takes just 12 seconds, while to build an index with optimal compression
boosting requires 273 seconds. Ease of construction is also important when the
aim is full inversion of the BWT in a general purpose file compressor [9].

References

1. Burrows, M., Wheeler, D.J.: A block sorting lossless data compression algorithm.
Technical Report 124, Digital Equipment Corporation, Palo Alto, California (1994)

2. Claude, F., Navarro, G.: Practical rank/Select queries over arbitrary sequences. In:
Amir, A., Turpin, A., Moffat, A. (eds.) SPIRE 2008. LNCS, vol. 5280, pp. 176–187.
Springer, Heidelberg (2008)

3. Ferragina, P., Giancarlo, R., Manzini, G., Sciortino, M.: Boosting textual compres-
sion in optimal linear time. Journal of the ACM 52, 688–713 (2005)

4. Ferragina, P., González, R., Navarro, G., Venturini, R.: Compressed text indexes:
From theory to practice. ACM Journal of Experimental Algorithmics 13, 1.12–1.31
(2009)

5. Ferragina, P., Manzini, G.: Indexing compressed text. Journal of the ACM 52,
552–581 (2005)

6. Ferragina, P., Manzini, G., Mäkinen, V., Navarro, G.: Compressed representations
of sequences and full-text indexes. ACM Transactions on Algorithms 3, Article 20
(2007)

7. Grossi, R., Gupta, A., Vitter, J.S.: High-order entropy-compressed text indexes. In:
Proc. 14th Annual ACM-SIAM Symposium on Discrete Algorithms, pp. 841–850.
SIAM, Philadelphia (2003)

8. Grossi, R., Gupta, A., Vitter, J.S.: When indexing equals compression: experiments
with compressing suffix arrays and applications. In: Proc. 15th Annual ACM-SIAM
Symposium on Discrete Algorithms, pp. 636–645. SIAM, Philadelphia (2004)

9. Kärkkäinen, J., Puglisi, S.J.: Medium-space algorithms for inverse bwt. In: de Berg,
M., Meyer, U. (eds.) ESA 2010. LNCS, vol. 6346, pp. 451–462. Springer, Heidelberg
(2010)

10. Mäkinen, V., Navarro, G.: Succinct suffix arrays based on run-length encoding.
Nordic Journal of Computing 12, 40–66 (2005)

11. Mäkinen, V., Navarro, G.: Implicit compression boosting with applications to self-
indexing. In: Ziviani, N., Baeza-Yates, R. (eds.) SPIRE 2007. LNCS, vol. 4726, pp.
229–241. Springer, Heidelberg (2007)

12. Manzini, G.: An analysis of the Burrows-Wheeler transform. Journal of the
ACM 48, 407–430 (2001)

184 J. Kärkkäinen and S.J. Puglisi

13. Navarro, G., Mäkinen, V.: Compressed full-text indexes. ACM Computing Sur-
veys 39 (2007)

14. Okanohara, D., Sadakane, K.: Practical entropy-compressed rank/select dictio-
nary. In: Proc. Workshop on Algorithm Engineering and Experiments (ALENEX).
SIAM, Philadelphia (2007)

15. Raman, R., Raman, V., Rao, S.S.: Succinct indexable dictionaries with applica-
tions to encoding k-ary trees, prefix sums and multisets. ACM Transactions on
Algorithms 3 (2007)

16. Vigna, S.: Broadword implementation of rank/select queries. In: McGeoch, C.C.
(ed.) WEA 2008. LNCS, vol. 5038, pp. 154–168. Springer, Heidelberg (2008)

Space Efficient Wavelet Tree Construction�

Francisco Claude1, Patrick K. Nicholson1, and Diego Seco2

1 David R. Cheriton School of Computer Science, University of Waterloo, Canada
2 University of A Coruña, A Coruña, Spain

{fclaude,p3nichol}@cs.uwaterloo.ca, dseco@udc.es

Abstract. Wavelet trees are one of the main building blocks in many
space efficient data structures. In this paper, we present new algorithms
for constructing wavelet trees, based on in-place sorting, that use virtu-
ally no extra space. Furthermore, we implement and confirm that these
algorithms are practical by comparing them to a known construction al-
gorithm. This represents a step forward for practical space-efficient data
structures, by allowing their construction on more massive data sets.

1 Introduction

Succinct data structures supporting rank, select and access operations represent
the core of most space efficient data structures [24,21,4]. For example, struc-
tures supporting rank and select over binary sequences allow for space efficient
representation of trees [6,7,23,12,2].

One of the most elegant generalizations of such structures for binary rank,
select and access is the wavelet tree [17]. Wavelet trees have not only proven to
be a crisp theoretical solution, but also perform well in practice [13,8]. As such,
they are used by many practical compressed text indexes, such as the SSA [24],
LZ77-Index [20] and SLP-Index [9,10]. Another fact that makes wavelet trees
interesting as a structure is that they support richer queries than initially ex-
pected. For example, they have been used for representing binary relations [4,11],
discrete set of points [5] and permutations [3], among others. In all of these do-
mains, wavelet trees support a rich set of operations efficiently.

There has been a great deal of study on the performance of different variants
of wavelet trees [8], considering the shape and internal representation of the
bitmaps [18,7,25]. However, not much effort has been put into space efficient
construction algorithms for wavelet trees.

We present several new algorithms for constructing wavelet trees, using virtu-
ally no extra space. This is a significant improvement over the näıve construction
algorithm, as well as a previously known technique [22]. We discuss our results
in detail at the end of this section, but first we elaborate on the problem.

Given a sequence A of length n, denoted A[0..n− 1], drawn from an alphabet
Σ of size σ. A wavelet tree is a data structure that supports the following opera-
tions: (1) access(A, i): retrieve the symbol at position i in A. (2) ranka(A, i):
� This work was supported in part by the David R. Cheriton scholarships program

(first author) and an NSERC of Canada PGS-D Scholarship (second author).

R. Grossi et al. (Eds.): SPIRE 2011, LNCS 7024, pp. 185–196, 2011.
c© Springer-Verlag Berlin Heidelberg 2011

186 F. Claude, P.K. Nicholson, and D. Seco

count how many times the symbol a appears in A[0..i]. (3) selecta(A, j): re-
trieve the position of the j-th occurrence of a in A.

Supporting these operations in constant time, using nH0(A) + o(n) bits of
space1, was first solved for binary alphabets (i.e., Σ = {0, 1}) by Raman et
al. [25]. Wavelet trees extend this result to arbitrary alphabets in the following
way. Every node in a wavelet tree has two children, and we identify them as left
and right. Each node represents a range R ⊆ [1, σ] of the alphabet Σ, and its
left child represents a subset R� ⊂ R and the right child a subset Rr = R \ R�.
Every node virtually represents a subsequence A′ of A composed of elements
whose value is in R. This subsequence is stored as a bitmap B of length |A′|,
and, for each position i in the bitmap, a 0 bit means that position i belongs to
R� and a 1 bit means that it belongs to Rr.

One can access a position in A by following the path from the root to a leaf
guided by the bit representing the position at each level. When moving to the
left child the position i is mapped to rank0(B, i) and when moving to the right
child the position is mapped to rank1(B, i). By similar observations, it is an
easy exercise to show that a wavelet tree can support rank, select and access
operations in O(lg σ) time2, assuming that rank and select are supported in
constant time on the bitmaps in each level. Furthermore, the wavelet tree uses
n lg σ + o(n lg σ) bits because the bitmaps representing the nodes use n lg σ bits
in total and the little-oh term covers the cost of the rank and select structures.

Wavelet trees were later extended to generalized wavelet trees, where the fan
out of each node is increased from 2 to O(polylog(n)), increasing the speed of
the three operations to O(lg σ/ lg lg n) time [14]. In favour of clarity, we focus on
binary wavelet trees, though our results also extend to the generalized version.

A simple construction algorithm works in the following way. First, we build
the root of the wavelet tree. To do this, we partition the alphabet Σ into Σ�

and Σr according to some balancing rule, and then create a bitmap of length n
that stores a 0 in position i if A[i] ∈ Σ� and a 1 in position i otherwise. Then,
we generate a copy of the subsequence of elements whose bit at position i is a 0
and recurse on this subsequence to build the left subtree. Finally, we recurse on
the 1 bits to construct the right subtree.

It is easy to see that this method is inefficient and requires O(n lg2 σ) bits,
since we copy the array A at each of the lg σ levels. This can be improved by
realizing that, at each level in the recursion, we can reuse the space from the
previous level and avoid recopying the sequence. The only exception to this is
the root, since our application might require us to leave A unmodified after the
construction process. Thus, we can construct the wavelet tree in O(n lg σ) extra
bits, since we must copy A. An example of such an application is a library for
succinct data structures, such as Libcds3, where the user might want to further
process the sequence used to build the wavelet tree.

1 H0(A) denotes the 0th-order empirical entropy of the string A.
2 Throughout this paper we denote �log2 n� as lg n.
3 http://libcds.recoded.cl

Space Efficient Wavelet Tree Construction 187

Our Results: In this paper we present several new algorithms for constructing
wavelet trees space efficiently. All of our results hold in the word-RAM model
with word size Ω(lg n). Throughout this section, we denote the input array as A
and the wavelet tree as T . All of our results are for uncompressed wavelet trees,
that is, the case where the bitmaps of the wavelet tree occupy n lg σ bits. Thus
T occupies n lg σ + S(n lg σ) bits, where S(m) denotes the extra space required
by auxiliary rank and select structures on a bitmap of length m. Extending our
results to compressed wavelet trees, e.g., Huffman shaped wavelet trees, is left as
an open problem. Before discussing the results, we need the following definitions.

We refer to a construction algorithm as non-destructive if A is unmodified
after T has been constructed. If A is modified, rendering it unusable, we say the
construction algorithm is destructive.

Since there are many choices of rank and select data structures for bitmaps,
we will attempt to state our results as generally as possible. We do, however,
assume that the auxiliary structures used for bitmaps support rank and select
in constant time. Let C(m) denote the construction time for auxiliary rank
and select structures on a bitmap of length m, and E(m) denote the extra bits
required to construct these structures. We note that in many existing algorithms,
E(n) = O(lg n) extra bits. Given a bitmap B[0..n − 1], suppose we construct
auxiliary rank and select structures in time C(p) on a prefix of B, B[0..p] where
0 ≤ p < n, such that we can answer rank and select queries on B[0..p]. If
we can extend our rank and select structures to support queries on B[0..q] for
p < q < n in C(q − p) time, we say these rank and select structures can be
constructed incrementally.

In Section 2 we present a non-destructive algorithm for constructing the
wavelet tree T in O(n lg σ + C(n lg σ)) time, using O(lg n lg σ) + E(n lg σ) bits
beyond the space occupied by A and T . This section serves as a warm-up, in-
troducing many of the concepts used later in the paper.

In Section 3 we present a destructive algorithm for constructing the wavelet
tree T in O(n lg n lg2 σ+C(n lg σ)) time using O(lg n lg σ)+E(n lg σ) bits beyond
the space required for T . In other words, this algorithm replaces A with the
bitmaps for each node in T . We also present a more practical algorithm that runs
in O(n lg σ + C(n lg σ)) time and uses n + O(lg n lg σ) + E(n lg σ) bits beyond
the space required for T . In all of the previous results, we show how to replace
the O(lg n lg σ) bit term in the space bound with O(lg n) bits, if the rank and
select structures for T can be constructed incrementally.

Finally, in Section 4 we provide experimental results for the algorithms dis-
cussed in Section 3. These results show that our algorithms are practical.

2 Encoding Scheme

In this section, we show how to reorder the elements of an array A[0..n − 1]
according to the bitmap B[0..n − 1] representing the root of the wavelet tree.
This allows us to construct T without copying the subsequences of A into sep-
arate arrays at each level. We refer to this process as partitioning, and it is the

188 F. Claude, P.K. Nicholson, and D. Seco

bottleneck in any space efficient wavelet tree construction algorithm. After de-
scribing partitioning, we show how to reverse a partitioning step. That is, given
the subsequence of elements from the left subtree, A�, the elements from the
right subtree, Ar, and the bitmap representing the root of the wavelet tree, B,
we show how to rebuild A. We refer to this process as merging. In other words,
denote string concatenation by · and let A′ = A� ·Ar . Partitioning is the process
of constructing A′ from A and B, and merging is the process of reconstructing
A from A′ and B.

2.1 Partitioning

We describe the method implemented in Libcds that shows a simple way of
partitioning the array A given that we can support constant time rank and
select queries on the bitmap B [22]. Let n� denote rank0(B, n − 1). It is easy
to see that the bitmap B defines a permutation π on the elements of array A as
follows:

π(i) =

{
rank0(B, i) − 1 if B[i] = 0,
rank1(B, i) − 1 + nl otherwise.

(1)

One way of partitioning A is to create an auxiliary bitmap Aux of length n,
where initially all of the bits are set to 0. We then do a scan of the array A and,
for each position p = 0..n − 1, if Aux[p] = 0, we move the element at position
p to its corresponding place, position q = π(p), and set Aux[p] = 1. We repeat
this process with the element that was at position q in A until returning to a
position q′ where Aux[q′] = 1 [22]. It is not hard to see that q′ = p: following
standard terminology [15], we call position p a cycle leader of π, since it has
the smallest index in the cycle of element swaps. Furthermore, we say that the
elements in a cycle are rotated according to π. Thus, the auxiliary array is used
to identify cycle leaders.

The procedure just described requires n + O(lg n) extra bits to identify cycle
leaders and perform the partitioning in O(n) time, assuming we can support rank
operations on B in constant time. The O(lg n) term comes from the constant
number of pointers needed to scan the array and rotate the elements.

Let πk(i) = π(πk−1(i)), for k > 1 and π1(i) = π(i). If π(i) = i then we say
position i is a self-cycle. Let A′ denote the array A after it has been partitioned.
In order to improve the space requirements, we prove the following property of
the permutation π:

Lemma 1. If π(i) �= i (i.e., position i is not a self-cycle), then πk(i) ≥ n� for
some k ≥ 1. Similarly, if j ≥ n� and π(j) �= j, then πk(j) < n� for some k ≥ 1.

Proof. The relative ordering of the elements that are symbols in Σ� in A′[0..n�−1]
is the same as the relative ordering of these elements in A[0..n − 1]. Thus, if a
rotation begins at an element in Σ� in position i, it will be moved to a position
0 ≤ j < i. Since the rotation will end at position i, at some point we must

Space Efficient Wavelet Tree Construction 189

encounter an element in Σr. By the definition of π, this element will be moved
to a position j′ ≥ n�. The second part of the lemma follows by symmetry. �

Based on the previous lemma, we make the following observation:

Observation 1. Rotating only the cycle leaders in positions where B[i] = 0 is
sufficient to complete the partitioning of A into A′, since every cycle that is not
a self-cycle involves elements from both Σ� and Σr.

We now show how to perform the partitioning without access to Aux. We con-
tinue assuming that |Σ�| ≤ |Σr|. If this condition does not hold, we can apply
Observation 1 symmetrically, considering only positions where B[i] = 1.

The idea that allows us to discard Aux is to encode it inside A as we perform
the partitioning. We do this by defining an invertible function f : Σ� → Σr. This
function exists since |Σ�| ≤ |Σr|. We run exactly the same partitioning algorithm
described in the beginning of this section, except that, during a rotation, every
time we move a symbol s ∈ Σ� at position i to position π(i), we write f(s) in
position π(i) instead. Since we do not have to rotate cycle leaders from Σr by
Observation 1, this encoding step is functionally equivalent to having access to
Aux. Every time we encounter an element in Σ�, that element would have had
a 0 in its corresponding position in Aux, and we can ignore elements that either
would have a 1 in Aux or were originally in Σr.

After finishing this process, we need one extra pass to decode the values that
are supposed to be in Σ�. We do this by traversing A′ and replacing position
i by f−1(A[i]) if i < n�. Recall our assumption that T is an uncompressed
wavelet tree, i.e., each partitioning step moves the elements with a 0 as their
most significant bit to the left child and each element with a 1 as their most
significant bit to the right child. Since the ranges of Σ spanned by Σ� and Σr

are contiguous and adjacent, computing f() and f−1() boils down to a simple
addition and subtraction, respectively.

Lemma 2. Given an array A over an alphabet Σ and support for constant time
rank and select operations on the bitmap B, we can partition A in-place to gen-
erate A′ in O(n) time using O(lg n) extra bits of space.

2.2 Merging

The merging process is just the partitioning process in reverse. We describe this
problem in a similar way, using the inverse permutation π−1:

π−1(i) =

{
select0(B, i + 1) if i < nl,
select1(B, i + 1 − nl) otherwise.

(2)

It is easy to see that Lemma 1 and Observation 1 also hold in the merging
case. The only difference is that now elements in Σ� are rotated to the right and
elements from Σr are rotated to the left. Thus, there is at least one element in Σ�

and one in Σr for each cycle of length greater than 1. These observations allow
us to apply the same method as in Lemma 2, obtaining the following lemma.

190 F. Claude, P.K. Nicholson, and D. Seco

Lemma 3. Given the array A′ and support for constant time rank and select
operations on the bitmap B, we can reconstruct A in-place in O(n) time using
O(lg n) extra bits of space.

Using a stack of size O(lg σ) pointers to keep track of the node in T that we are
currently processing, we can recursively apply partitioning to A, to construct T .
After T is constructed, we can reverse the process by merging to recover A. We
can compute B in linear time for each node.

Theorem 2. There exists a non-destructive algorithm for constructing a wavelet
tree T that uses O(n lg σ+C(n lg σ)) time, and O(lg n lg σ)+E(n lg σ) bits beyond
the space required for T and the input array A.

2.3 Extension to Generalized Wavelet Trees

The encoding scheme for generalized wavelet trees works in a similar way to that
of the binary case. We begin by stating the generalized partitioning problem:
given an array A[0, n − 1] with values in Σ = [0, σ − 1] and a sequence S with
values in D = [0, k − 1] that partitions Σ into k disjoint sets Σ0, . . . , Σk−1,
we want to generate an array A′ where elements of A are stable-sorted by their
corresponding value in D. We can describe the re-ordering in A as a permutation:
πk(i) = rankj(S, i) + (

∑
v<j rankv(S, n − 1)) − 1, where j = S[i].

Lemma 4. The permutation πk is strictly increasing for positions containing
the same value in D.

Proof. We can write πk(i) as rankj(S, i) + g(j), where j = S[i] and g(j) =∑
v<j rankv(S, n − 1), and rankj(S, i) is strictly increasing in i. �

Lemma 5. Any cycle C in πk such that |C| > 1, contains at least two positions
i, j such that S[i] �= S[j].

Proof. By contradiction, assume |C| > 1 and all positions pi ∈ C satisfy S[pi] = s
for a fixed s. Let p = min C. Since all positions in C point to elements in S whose
value is the same, then πk is strictly increasing in C, thus, there is no pj such
that πk(pj) = p, therefore, C is not a cycle. �

Now we can present the encoding method. Let m ∈ [0, k − 1] be the index such
that |Σm| ≥ |Σj |. We then generate fj : Σj → Σm such that fj

−1 exists. Then,
the algorithm for partitioning works in the following way: for each cycle leader,
we start rotating the elements if the position is not in Σm. Every time we rotate
an element e in Σj , we replace it with fj(e).

Once we finish the process, we do a final pass through A′ fixing the val-
ues at position p using fj

−1, where j is determined by the position, i.e., j =
min{r|

∑
v<r rankv(S, n − 1) > p}.

There is one detail remaining, and this is how to compute g(j) =∑
v<j rankv(S, n − 1). We can do this by pre-computing all possible answers

in linear time. This option requires O(σ lg n) bits of extra space. Another option

Space Efficient Wavelet Tree Construction 191

is to use compressed bitmaps to represent this in σ lg(n/σ) + o(n) bits, while
supporting queries in constant time [25]. We now state the partitioning theorem
for the generalized wavelet tree:

Theorem 3. We can solve the partitioning problem for the generalized wavelet
tree in O(nτ) time using min(σ lg(n/σ) + o(n), O(σ lg n)) bits of extra space,
where τ represents the maximum between the time to answer rank and access in
a sequence over an alphabet of size k.

The generalized merging process is similar, and the permutation π−1
k is defined

as follows: π−1
k (i) = selectj(S, i + 1 − g(j)), where j = S[i] and g(j) =∑

v<j rankv(S, n − 1).
Lemmas 4 and 5 also apply to π−1

k , since select is strictly increasing for posi-
tions that contain the same element. This allows us to apply the same encoding
technique as before; the only difference is the transformation at the end. Instead
of examining the range we are in, we examine the character in S associated with
our position.

Theorem 4. We can solve the merging problem for the generalized wavelet tree
in O(nτ) time using min(σ lg(n/σ) + o(n), O(σ lg n)) bits of extra space, where
τ represents the maximum between the time to answer access and select in a
sequence over an alphabet of size k.

Regarding the rank, select and access times in Theorems 3 and 4, there are many
alternatives [17,14,16], in particular, it is possible to adapt the solution by [14]
to compute the function g() in constant time, achieving the following Corollary.

Corollary 1. We can solve the partitioning and merging problems for the gen-
eralized wavelet tree in O(n) time using min(n lg(n/σ) + o(n), O(σ lg n)) ex-
tra bits of space, if the branching factor of the generalized wavelet tree is k =
O(polylog(n)).

3 Construction by Permuting Bits

In this section we show how to destructively permute the bits of an input array
A, converting them into the bit vectors of a binary wavelet tree T .

Let Bv represent the bitmap stored at the root v of T , and vl and vr represent
the left and right children of v. Define B(v) = Bv · B(vl) · B(vr). Thus, B(v) is
the concatenation of the bitmaps stored at the nodes of T , in depth first order
from the root, v. We describe an algorithm for computing B(v) that works by
permuting the bits of A in place. For our purposes in this section, we consider
A to be a bitmap of length n lg σ. Let φ be the permutation that maps A to
B(v); we abuse notation and denote this as φ(A) = B(v). We show that φ is the
composition of 2σ permutations: two permutations, χ and ψ, corresponding to
each node in T .

192 F. Claude, P.K. Nicholson, and D. Seco

3.1 Overview of Permutations

In the next section we describe the two permutations χ and ψ that correspond
to the root v of T . Before specifying the technical details of these permutations,
we first briefly outline what they do to the array A.

The first permutation χ shifts the most significant bit of each character in
A to a prefix of the bitmap, preserving relative order. More precisely, χ(A)
consists of an n bit prefix Bv[0..n − 1], representing the most significant bits of
each element in A (which is the bitmap stored at the root of T), followed by
n truncated characters of length lg σ − 1; the i-th truncated character is A[i]
without its most significant bit, for 0 ≤ i < n.

Let At[0..n−1] represent the n truncated characters. The second permutation,
ψ, partitions At[0..n − 1] according to the bits Bv[0..n − 1]. Thus, applying ψ
is equivalent to the partitioning step in a standard wavelet tree construction
algorithm: if Bv[i] is a 0, then At[i] is partitioned to the left and, if Bv[i] is a 1,
then At[i] is partitioned to the right.

After applying χ and ψ to A, ψ(χ(A)) consists of Bv[0..n− 1], which are the
first n bits of B(v), followed by the partitioned truncated characters, which can
then be recursively converted into the remaining bits of B(v) in a depth first
manner. In the sequel, we rely heavily on the following result of Fich et al.:

Theorem 5 (Theorem 2.2 [15]). In the worst case, permuting an array of
length n, given the permutation and its inverse, can be done in O(n lg n) time
and O(lg n) additional bits of storage.

The next two sections define the permutations χ and ψ, and their respective
inverses.

3.2 Chopping the Most Significant Bits

Since A is a bitmap of length n lg σ, we refer to individual bits in A. Let A =
b0, . . . , bn lg σ−1, where bj lg σ, ..., b(j+1) lg σ−1 are the bits in A[j] for 0 ≤ j < n,
in decreasing order of significance4. Using this notation, we can now describe
χ(A, i), the i-th bit of χ(A) in terms of the bits in A, for 0 ≤ i < n lg σ. If
χ(A, i) = j, then the i-th bit of χ(A) is the j-th bit of A, or bj; in the equations
we write j instead of bj for readability.

χ(A, i) =

{
i

lg σ if lg σ divides i,

i + n −
⌊

i
lg σ

⌋
− 1 otherwise.

Similarly, we can describe the permutation χ−1(A, i) as follows:

χ−1(A, i) =

{
i lg σ if i < n,

i − n +
⌊

i−n
lg σ−1

⌋
+ 1 otherwise.

4 If the characters are stored in increasing order of significance, then we can easily
reverse their bits in O(n lg σ) time and O(lg n) extra bits.

Space Efficient Wavelet Tree Construction 193

Running Time: Using χ and χ−1 we can apply Theorem 5 to A. This allows us
to compute χ(A) in place using O(n lg σ lg(n lg σ)) = O(n lg σ lg n) time.

3.3 Partitioning the Truncated Letters

We now describe how to compute ψ(χ(A)) from χ(A). Note that χ(A) = Bv[0..n−
1] ·At[0..n− 1], and suppose we build a rank and select data structure over Bv.
We discuss the space issues associated with this in the next section. The permu-
tations ψ and ψ−1 make use of rank and select queries in order to determine how
to partition At[0..n− 1]. Not surprisingly, ψ and ψ−1 are almost identical to the
permutations described in Equations 1 and 2, respectively. The only difference
is that we need to account for the fact that the truncated characters At begin
at an offset of n from the beginning of A and consist of lg σ − 1 bits. We omit
the exact details since they are not difficult, but tedious.

Running Time: As before, using ψ and ψ−1 we can apply Theorem 5 to χ(A).
Observe that we can easily swap lg σ−1 bit elements in constant time, assuming
the word size is Ω(lg n) and n ≥ σ. This allows us to compute ψ(χ(A)) in place
using O(n lg n) time.

3.4 Overall Requirements

Running Time: We must apply χ and ψ appropriately at each node in T in
order to compute φ(A). This means that our overall running time is T (n, lgσ) =
T (nl, lg σ − 1) + T (n− nl, lg σ − 1) + O(n lg n lg σ), where T (n, 1) = O(1). Since
the height of the tree is bounded in terms of lg σ rather than n, T (n, lg σ) =
O(n lg n lg2 σ).

Extra Space: As discussed in Section 3.3, at each node v in T we construct
auxiliary rank and select structures for the bitmap of length m ≤ n, associated
with v. Let S(m) denote the number of bits required for the auxiliary structures.
The auxiliary structures for T require S(n lg σ) extra bits, since B(v) is a bitmap
of length n lg σ. Furthermore, we can release the memory used by the auxiliary
structures for each v ∈ T after we have applied the permutations to v. Thus, we
can avoid using extra space for the auxiliary structures associated with v, with
careful memory management.

In addition to the O(1) extra pointers required by Theorem 5, we need a
stack of size O(lg σ) pointers in order to remember our current location within
T . However, we can get rid of the stack at the cost of some complexity. Suppose
w1, ..., wσ are the nodes of T in depth-first order. Then by storing only n and
the bits representing the path to wi, we can compute the offset and length of the
bitmap representing wi+1 in O(lg σ) time using the rank and select structures
constructed for w1, ..., wi. Note that w1, ..., wi represent a contiguous prefix of
the bitmap B(v). Thus, if we can construct rank and select structures for B(v)
incrementally, we can discard the stack.

194 F. Claude, P.K. Nicholson, and D. Seco

Trade Off: If we have an extra n bits available to us, then we can apply χ and
ψ to each node in T in O(n) time per level of T , using a strategy similar to
Arroyuelo and Navarro [1]. To apply χ, we copy the most significant bits in A
into the auxiliary bitmap, then shift the remaining bits to the end of A, and
finally, overwrite the first n bits of A with those stored in the auxiliary bitmap.
This requires O(n) time if we make use of word-level parallelism during the
shifting stage, or O(n lg σ) time if we shift the bits one at a time. To apply ψ
we use the auxiliary bitmap to store the cycle leaders, as described in Section 2.
Thus, with the n extra bits, we can compute φ(A) in O(n lg σ) time, or O(n lg2 σ)
time without word-level parallelism during the shifting stage.

Theorem 6. Suppose we are given an array A of n symbols drawn from an
alphabet of size σ. Let C(m) denote the construction time for the auxiliary rank
and select structures on a bitmap of length m, E(m) denote the extra bits required
during the construction of these structures, and S(m) denote the total number of
bits occupied by these structures. Furthermore, assume these structures support
rank and select in constant time. We can permute the n lg σ bits of A, replacing
A with the bitmaps of a wavelet tree T occupying n lg σ + S(n lg σ) bits in:

1. O(n lg n lg2 σ+C(n lg σ)) time using O(lg σ lg n)+E(n lg σ) extra bits beyond
the space occupied by T .

2. O(n lg σ + C(n lg σ)) time, and using n + O(lg n lg σ) + E(n lg σ) extra bits
beyond the space occupied by T .

In both of the previous results, we can replace the O(lg n lg σ) bit term in the
space bound with O(lg n) bits, if we can construct the rank and select structures
for T incrementally.

The same idea can be extended to the generalized setting, though we defer the
details to a later version of this paper.

4 Experiments

As a proof of concept we implemented two of the algorithms described in The-
orem 6. We refer to the algorithm that uses O(lg σ lg n) extra bits and runs in
O(n lg n lg2 σ) time as Permute, and the algorithm that uses n + O(lg σ lg n)
extra bits and runs in O(n lg2 σ) time (not making use of word-level parallelism)
as Permute2. For a base line comparison, we used the space efficient destruc-
tive construction algorithm found in Libcds, which is similar to the algorithm
described in Section 2. The code for Permute is an adaptation of the code
from [15, Figure 5], modified to use a simple heuristic speed-up called Fast-
Break [19]. The code for Permute2 is even more straightforward since it uses
an auxiliary bitmap.

The machine used for the experiments has an AMD AthlonTM 64 X2 Dual
Core Processor 5600+, core speed 2900MHz, L1 Cache size 256KB and L2 Cache
size 1024KB. It has 4GB of 800MHz main memory. The operating system in-
stalled is GNU/Linux (Ubuntu 10.04 LTS) and the code was compiled using
GNU/g++ version 4.4.3, with optimization flags -O9.

Space Efficient Wavelet Tree Construction 195

 0

 10

 20

 30

 40

 50

 60

 70

0 524288 1048576 1572864 2097152 2621440 3145728 3670016 4194304

C
on

st
ru

ct
io

n
T

im
e

(s
ec

on
ds

)

Input size (bytes)

Wavelet tree construction time as a function of input size

PERMUTE
PERMUTE2

LIBCDS

Fig. 1. A comparison of the space efficient construction algorithms Permute and Per-
mute2 with the standard Libcds construction algorithm. In this experiment lg σ = 8.

We ran experiments for the case when lg σ = 8, i.e., the array A consists of
8-bit characters. For n = 8, 16, 32, ..., 4194304, we generated 10 strings of length
n, where each string consists of n 8-bit integers drawn uniformly at random.
For each n we kept track of the best, worst and average running time of the
three construction algorithms. Since the best and worst times were very close
to the average, we report only on the average time. A graph comparing the
average construction times of the algorithms can be found in Figure 1. We ob-
tained similar results when testing on prefixes of English and DNA text from
http://pizzachili.dcc.uchile.cl.

As expected, Permute is slower than Libcds for all tested values of n, by a
factor that increases with n. For all values tested this factor was less than 11.
Although this is a significant slow down, this experiment demonstrates that the
space efficient algorithm we describe is implementable and that its performance
is not impractical.

On the other hand, Permute2 ran only slightly slower than Libcds, which
has complexity O(n lg σ). This suggests that Permute2 is highly competitive
as a construction algorithm, due to low constant factors. Furthermore, since it
only uses n + O(lg n lg σ) extra bits on top of the space required for the wavelet
tree, it provides a nice compromise between the slower Permute algorithm and
the construction algorithm currently used by Libcds.

References

1. Arroyuelo, D., Navarro, G.: Space-efficient construction of lempel-ziv compressed
text indexes. Information and Computation 209(7), 1070–1102 (2011)

2. Arroyuelo, D., Cánovas, R., Navarro, G., Sadakane, K.: Succinct trees in practice.
In: Proc. ALENEX, pp. 84–97 (2010)

196 F. Claude, P.K. Nicholson, and D. Seco

3. Barbay, J., Navarro, G.: Compressed representations of permutations, and appli-
cations. In: Proc. STACS, pp. 111–122 (2009)

4. Barbay, J., Claude, F., Navarro, G.: Compact rich-functional binary relation rep-
resentations. In: López-Ortiz, A. (ed.) LATIN 2010. LNCS, vol. 6034, pp. 170–183.
Springer, Heidelberg (2010)

5. Bose, P., He, M., Maheshwari, A., Morin, P.: Succinct orthogonal range search
structures on a grid with applications to text indexing. In: Dehne, F., Gavrilova,
M., Sack, J.-R., Tóth, C.D. (eds.) WADS 2009. LNCS, vol. 5664, pp. 98–109.
Springer, Heidelberg (2009)

6. Clark, D.: Compact Pat Trees. Ph.D. thesis, University of Waterloo (1996)
7. Clark, D.R., Munro, J.I.: Efficient suffix trees on secondary storage. In: Proc.

SODA, pp. 383–391 (1996)
8. Claude, F., Navarro, G.: Practical rank/select queries over arbitrary sequences. In:

Amir, A., Turpin, A., Moffat, A. (eds.) SPIRE 2008. LNCS, vol. 5280, pp. 176–187.
Springer, Heidelberg (2008)

9. Claude, F., Navarro, G.: Self-indexed text compression using straight-line pro-
grams. In: Královič, R., Niwiński, D. (eds.) MFCS 2009. LNCS, vol. 5734, pp.
235–246. Springer, Heidelberg (2009)

10. Claude, F., Fariña, A., Mart́ınez-Prieto, M., Navarro, G.: Compressed q-gram in-
dexing for highly repetitive biological sequences. In: Proc. BIBE, pp. 86–91 (2010)

11. Farzan, A., Gagie, T., Navarro, G.: Entropy-bounded representation of point grids.
In: Cheong, O., Chwa, K.-Y., Park, K. (eds.) ISAAC 2010, Part II. LNCS, vol. 6507,
pp. 327–338. Springer, Heidelberg (2010)

12. Farzan, A.: Succinct Representation of Trees and Graphs. Ph.D. thesis, University
of Waterloo (2009)

13. Ferragina, P., González, R., Navarro, G., Venturini, R.: Compressed text indexes:
From theory to practice. ACM JEA 13, 30 pages (2009)

14. Ferragina, P., Manzini, G., Mäkinen, V., Navarro, G.: Compressed representations
of sequences and full-text indexes. ACM Trans. on Alg. 3(2), article 20(2007)

15. Fich, F., Munro, J.I., Poblete, P.: Permuting in place. SIAM J. on Comp. 24, 266
(1995)

16. Golynski, A., Munro, J.I., Rao, S.S.: Rank/select operations on large alphabets: a
tool for text indexing. In: Proc. SODA, pp. 368–373 (2006)

17. Grossi, R., Gupta, A., Vitter, J.S.: High-order entropy-compressed text indexes.
In: Proc. SODA, pp. 841–850 (2003)

18. Jacobson, G.: Space-efficient static trees and graphs. In: Proc. FOCS, pp. 549–554
(1989)

19. Keller, J.: A heuristic to accelerate in-situ permutation algorithms. Inf. Proc.
Lett. 81(3), 119–125 (2002)

20. Kreft, S., Navarro, G.: Self-indexing based on LZ77. In: Giancarlo, R., Manzini, G.
(eds.) CPM 2011. LNCS, vol. 6661, pp. 41–54. Springer, Heidelberg (2011)

21. Mäkinen, V., Navarro, G.: Rank and select revisited and extended. Theo. Comp.
Sci. 387, 332–347 (2007)

22. Mäkinen, V., Välimäki, N.: Personal communication
23. Munro, J.I.: Tables. In: Chandru, V., Vinay, V. (eds.) FSTTCS 1996. LNCS,

vol. 1180, pp. 37–42. Springer, Heidelberg (1996)
24. Navarro, G., Mäkinen, V.: Compressed full-text indexes. ACM Comp. Surv. 39(1),

article 2 (2007)
25. Raman, R., Raman, V., Rao, S.S.: Succinct indexable dictionaries with applications

to encoding k-ary trees and multisets. In: Proc. SODA, pp. 233–242 (2002)

Computing the Longest Common Prefix Array
Based on the Burrows-Wheeler Transform

Timo Beller, Simon Gog, Enno Ohlebusch, and Thomas Schnattinger

Institute of Theoretical Computer Science, University of Ulm, D-89069 Ulm
{Timo.Beller,Simon.Gog,Enno.Ohlebusch,Thomas.Schnattinger}@uni-ulm.de

Abstract. Many sequence analysis tasks can be accomplished with a
suffix array, and several of them additionally need the longest common
prefix array. In large scale applications, suffix arrays are being replaced
with full-text indexes that are based on the Burrows-Wheeler transform.
In this paper, we present the first algorithm that computes the longest
common prefix array directly on the wavelet tree of the Burrows-Wheeler
transformed string. It runs in linear time and a practical implementation
requires approximately 2.2 bytes per character.

1 Introduction

A suffix tree for a string S of length n is a compact trie storing all the suffixes
of S (so it is a full-text index). It is an extremely important data structure
with applications in string matching, bioinformatics, and document retrieval, to
mention only a few examples; see e.g. [8]. Suffix arrays can replace suffix trees
and they use less memory than those. The suffix array SA of the string S is an
array of integers in the range 1 to n specifying the lexicographic ordering of the
n suffixes of the string S. To be precise, it satisfies SSA[1] < SSA[2] < . . . < SSA[n],
where Si denotes the i-th suffix S[i..n] of S; see Fig. 1 for an example. In the
last decade, much effort has gone into the development of efficient suffix array
construction algorithms (SACAs); see [20] for a survey.

However, the meteoric increase of DNA sequence information produced by
next-generation sequencers demands new computer science approaches to data
management because the data must be stored, analyzed, and mined. To analyze
the massive quantities of data, established data structures like the suffix array
(and the suffix tree) are being replaced by less space consuming data structures
like the wavelet tree of the Burrows-Wheeler transformed sequence. It goes as fol-
lows: the sequence is subjected to the Burrows-Wheeler transform (BWT) [2], the
Burrows-Wheeler transformed sequence is stored in a wavelet tree (or, more gen-
erally, in an FM-index [4]), and the wavelet tree [7] supports backward search on
the original sequence. Let us recall the backward search technique in more detail.
Let Σ be an ordered alphabet of size σ whose smallest element is the so-called
sentinel character $. In the following, S is a string (sequence) of length n over
Σ having the sentinel character at the end (and nowhere else). The BWT trans-
forms the string S into the string BWT[1..n] defined by BWT[i] = S[SA[i] − 1]

R. Grossi et al. (Eds.): SPIRE 2011, LNCS 7024, pp. 197–208, 2011.
c© Springer-Verlag Berlin Heidelberg 2011

198 T. Beller et al.

i SA LCP BWT SSA[i]

1 19 -1 n $
2 3 0 l _anele_lepanelen$
3 9 1 e _lepanelen$
4 4 0 _ anele_lepanelen$
5 13 5 p anelen$
6 8 0 l e_lepanelen$
7 1 1 $ el_anele_lepanelen$
8 6 2 n ele_lepanelen$
9 15 3 n elen$

10 17 1 l en$
11 11 1 l epanelen$
12 2 0 e l_anele_lepanelen$
13 7 1 e le_lepanelen$
14 16 2 e len$
15 10 2 _ lepanelen$
16 18 0 e n$
17 5 1 a nele_lepanelen$
18 14 4 a nelen$
19 12 0 e panelen$
20 -1

nle_pl$nnlleee_eaae
1100110111100000000

e_$eee_eaae
10011101111

$
101

$ _

eeeeeaae
11111001

a e

nlplnnll
00100000

nllnnll
1001100

l n

p

l$nnll
101111

lnnll
00000

lnnll
01100

$
0

$
0

Fig. 1. Left: Suffix array, LCP-array, and Burrows-Wheeler-transformed string BWT
of string S = el_anele_lepanelen$. Right: Conceptual illustration of the wavelet
tree of the string BWT = nle_pl$nnlleee_eaae. Only the bit vectors are stored; the
corresponding strings are shown for clarity. The shaded regions will be explained later.

for all i with SA[i] �= 1 and BWT[i] = $ otherwise; see Fig. 1. Ferragina and
Manzini [4] showed that it is possible to search a pattern backwards, character-
by-character, in the suffix array SA of string S, without storing SA. Let c ∈
Σ and ω be a substring of S. Given the ω-interval [i..j] in the suffix array
SA of S (i.e., ω is a prefix of SSA[k] for all i ≤ k ≤ j, but ω is not a pre-
fix of any other suffix of S), backwardSearch(c, [i..j]) returns the cω-interval
[C[c] +Occ(c, i− 1) + 1 .. C[c] +Occ(c, j)], where C[c] is the overall number of
occurrences of characters in S which are strictly smaller than c and Occ(c, i) is
the number of occurrences of the character c in BWT[1..i].

The approach described above was used for example in the software-tools
Bowtie, BWA, SOAP2, and 2BWT for short read alignment (mapping short
DNA sequences to a reference genome); see [5]. More recently, it was suggested to
use it also in de novo sequence assembly [23]. In the field of genome comparisons,
this approach was first used in the software-tool bbwt [13], which uses k-mers
(exact matches of fixed length k that appear in both sequences) as a basis of
the comparison. It should be stressed that all these software-tools rely on the
BWT (backward search) but not on the LCP-array. However, there is at least
one algorithm that uses both BWT and LCP [18], and we expect that others will
follow. The algorithm from [18] can be used in genome comparisons because it

Computing the Longest Common Prefix Array Based on the BWT 199

computes maximal exact matches (exact matches that cannot be extended in
either direction towards the beginning or end without allowing for a mismatch)
between two long strings (e.g. chromosomes).

In the last years, several algorithms have been proposed that construct the
BWT either directly or by first constructing the suffix array and then deriving
the BWT in linear time from it. The latter approach has a major drawback:
all known SACAs require at least 5n bytes of main memory (provided that
n < 232). If one has to deal with large datasets, it is therefore advantageous to
construct the BWT directly. For example, Okanohara and Sadakane [19] have
shown that the SACA devised by Nong et al. [17] can be modified so that it
directly constructs the BWT. Because it does not have to store the suffix array,
it requires only O(n log σ log logσ n) bits to construct the BWT [19] (ca. 2.5n
bytes in practice; Sadakane, personal communication 2011).

As described above, some sequence analysis tasks require the longest common
prefix array (LCP-array): an array containing the lengths of the longest common
prefix between every pair of consecutive suffixes in SA; see Fig. 1. Formally,
the LCP-array is defined by LCP[1] = −1, LCP[n + 1] = −1, and LCP[i] =
|lcp(SSA[i−1], SSA[i])| for 2 ≤ i ≤ n, where lcp(u, v) denotes the longest common
prefix between the strings u and v. There are several linear time LCP-array
construction algorithms (LACAs); see Section 2. They all first construct the
suffix array and then obtain the LCP-array in linear time from it. So these
LACAs suffer from the same drawback as mentioned above: at least 5n bytes of
main memory are required. Here, we present the first LACA that acts directly
on the Burrows-Wheeler transformed string (and not on the suffix array). The
algorithm has a worst case time complexity of O(nσ). Hence its run time is linear
for a constant size alphabet. Moreover, we provide a practical implementation
with a worst case time complexity of O(n logn) that requires approximately
2.2n bytes (throughout the paper, log stands for log2). Finally, we show that the
approach can be used in other applications.

2 Related Work

In their seminal paper [14], Manber and Myers did not only introduce the suffix
array but also the longest-common-prefix array. They showed that both the suf-
fix array and the LCP-array can be constructed in O(n log n) time for a string
of length n. Kasai et al. [12] gave the first linear time algorithm for the compu-
tation of the LCP-array. Their algorithm uses the string S, the suffix array, the
inverse suffix array, and of course the LCP-array. Each of the arrays requires 4n
bytes, thus the algorithm needs 13n bytes in total (for an ASCII alphabet). The
main advantage of their algorithm is that it is simple and uses at most 2n char-
acter comparisons. But its poor locality behavior results in many cache misses,
which is a severe disadvantage on current computer architectures. Manzini [15]
reduced the space occupancy of Kasai et al.’s algorithm to 9n bytes with a slow
down of about 5% − 10%. Kärkkäinen et al. [11] proposed another variant of
Kasai et al.’s algorithm, which computes a permuted LCP-array (PLCP-array).

200 T. Beller et al.

In the PLCP-array, the lcp-values are in text order (position order) rather than
in suffix array order (lexicographic order). This algorithm is much faster than
Kasai et al.’s algorithm because it has a much better locality behavior. However,
in virtually all applications lcp-values are required to be in suffix array order, so
that in a final step the PLCP-array must be converted into the LCP-array. In a
different approach, Puglisi and Turpin [21] tried to avoid cache misses by using
the difference cover method but their algorithm is still slower than Kasai et al.’s.
Just recently, Gog and Ohlebusch [6] presented a very space efficient and fast
LACA, which trades character comparisons for cache misses.

3 Wavelet Tree

The wavelet tree introduced by Grossi et al. [7] supports one backward search
step in O(log σ) time. To explain this data structure, we may view the ordered
alphabet Σ as an array of size σ so that the characters appear in ascending order
in the array Σ[1..σ], i.e., Σ[1] = $ < Σ[2] < . . . < Σ[σ]. We say that an inter-
val [l..r] is an alphabet interval, if it is a subinterval of [1..σ]. For an alphabet
interval [l..r], the string BWT[l..r] is obtained from the Burrows-Wheeler trans-
formed string BWT of S by deleting all characters in BWT that do not belong to
the sub-alphabet Σ[l..r] of Σ[1..σ]. As an example, consider the string BWT =
nle_pl$nnlleee_eaae and the alphabet interval [1..4]. The string BWT[1..4] is
obtained from nle_pl$nnlleee_eaae by deleting the characters l, n, and p.
Thus, BWT[1..4] = e_$eee_eaae. The wavelet tree of the string BWT over the
alphabet Σ[1..σ] is a balanced binary search tree defined as follows. Each node v
of the tree corresponds to a string BWT[l..r], where [l..r] is an alphabet interval.
The root of the tree corresponds to the string BWT = BWT[1..σ]. If l = r, then
v has no children. Otherwise, v has two children: its left child corresponds to
the string BWT[l..m] and its right child corresponds to the string BWT[m+1..r],
where m = � l+r2 �. In this case, v stores a bit vector B[l..r] whose i-th entry is 0
if the i-th character in BWT[l..r] belongs to the sub-alphabet Σ[l..m] and 1 if it
belongs to the sub-alphabet Σ[m+1..r]. To put it differently, an entry in the bit
vector is 0 if the corresponding character belongs to the left subtree and 1 if it
belongs to the right subtree; see Fig. 1. Moreover, each bit vector B in the tree
is preprocessed so that the queries rank0(B, i) and rank1(B, i) can be answered
in constant time [10], where rankb(B, i) is the number of occurrences of bit b
in B[1..i]. Obviously, the wavelet tree has height O(log σ). Because in an actual
implementation it suffices to store only the bit vectors, the wavelet tree requires
only n log σ bits of space plus o(n log σ) bits for the data structures that support
rank queries in constant time.

Instead of reviewing the implementation of one backward search step on a
wavelet tree, we present a generalization thereof: for an ω-interval [i..j], the
procedure getIntervals([i..j]) presented in Algorithm 1 returns the list of all
cω-intervals. More precisely, it starts with the ω-interval [i..j] at the root and
traverses the wavelet tree in a depth-first manner as follows. At the current
node v, it uses constant time rank queries to obtain the number b0− a0 of zeros

Computing the Longest Common Prefix Array Based on the BWT 201

Algorithm 1. For an ω-interval [i..j], the function call getIntervals([i..j]) re-
turns the list of all cω-intervals, and is defined as follows.
getIntervals([i..j])
list← []
getIntervals′([i..j], [1..σ], list)
return list

getIntervals′([i..j], [l..r], list)
if l = r then
c← Σ[l]
add(list, [C[c] + i..C[c] + j])

else
(a0, b0)← (rank0(B[l..r], i− 1), rank0(B[l..r], j))
(a1, b1)← (i− 1− a0, j − b0)
m = � l+r2 �
if b0 > a0 then
getIntervals′([a0 + 1..b0], [l..m], list)

if b1 > a1 then
getIntervals′([a1 + 1..b1], [m+ 1..r], list)

in the bit vector of v within the current interval. If b0 > a0, then there are
characters in BWT[i..j] that belong to the left subtree of v, and the algorithm
proceeds recursively with the left child of v. Furthermore, if the number of ones
is positive (i.e. if b1 > a1), then it proceeds with the right child in an analogous
fashion. Clearly, if a leaf corresponding to character c is reached with current
interval [p..q], then [C[c]+p .. C[c]+ q] is the cω interval. In this way, Algorithm
1 computes the list of all cω-intervals. This takes O(k log σ) time for a k-element
list. Because the wavelet tree has less than 2σ nodes, O(σ) is another upper
bound for the wavelet tree traversal. Consequently, Algorithm 1 has a worst-
case time complexity of O(min{σ, k log σ}), where k is the number of elements
in the output list. As an illustration of Algorithm 1, we compute all intervals of
the form ce in the suffix array of Fig. 1 by invoking getIntervals([6..11]); note
that [6..11] is the e-interval. In the wavelet tree of Fig. 1, the visited nodes of
the depth-first traversal are marked grey. The resulting list contains the three
intervals [1..1], [13..15], and [17..18]. Algorithm 1 was developed by the fourth
author [22] but others apparently had the same idea [3].

4 A LACA Based on the BWT

Pseudo-code of our new LACA is given in Algorithm 2; it relies on Algorithm 1.
We will illustrate Algorithm 2 by an example. The first interval which is pulled

from the queue is the ε-interval 〈[1..19], 0〉, and getIntervals([1..19]) returns
a list of the seven ω-intervals [1..1], [2..3], [4..5], [6..11], [12..15], [16..18], and
[19..19], where |ω| = 1 for each ω. For every interval [ik..jk], LCP[jk+ 1] is set to

202 T. Beller et al.

Algorithm 2. Computation of the LCP-array in O(nσ) time.
initialize the array LCP[1..n + 1] /* i.e., LCP[i] = ⊥ for all 1 ≤ i ≤ n+ 1 */
LCP[1]← −1; LCP[n+ 1]← −1
initialize an empty queue
enqueue(〈[1..n], 0〉)
while queue is not empty do
〈[i..j], �〉 ← dequeue()
list← getIntervals([i..j])
for each [lb..rb] in list do

if LCP[rb + 1] = ⊥ then
enqueue(〈[lb..rb], �+ 1〉)
LCP[rb+ 1]← �

0, except for the last one, because LCP[20] = −1. These six intervals are pushed
on the queue, with the �-value 1. Next, 〈[1..1], 1〉 is pulled from the queue. The
list returned by getIntervals([1..1]) just contains the n$-interval [16..16]. Since
LCP[17] has not been computed yet, 〈[16..16], 2〉 is pushed on the queue, LCP[17]
is set to 1, and so on.

It is not difficult to see that Algorithm 2 maintains the following invariant:
The set of the second components of all elements of the queue has either one
element � or two elements � and �+ 1, where 0 ≤ � < n. In the latter case, the
elements with second component � precede those with second component �+ 1.

Theorem 1. Algorithm 2 correctly computes the LCP-array.

Proof. We proceed by induction on �. In the base case, we have � = 0. For every
character c = Σ[k] occurring in S, the c-interval [lb..rb] is in the list returned by
getIntervals([1..n]), where lb = C[c] + 1 and rb = C[d] with d = Σ[k + 1]. The
algorithm sets LCP[rb+1] = 0 unless rb = n. This is certainly correct because the
suffix SSA[rb] starts with the character c and the suffix SSA[rb+1] starts with the
character d. Clearly, because for every character c occurring in S the c-interval
is in the list returned by getIntervals([1..n]), all entries of LCP with value 0 are
set. Let � > 0. By the inductive hypothesis, we may assume that Algorithm 2 has
correctly computed all lcp-values < �. After the last LCP-entry with value �− 1
has been set, the queue solely contains elements of the form 〈[i..j], �〉, where [i..j]
is the ω-interval of some substring ω of S with |ω| = �. Let the cω-interval [lb..rb]
be in the list returned by getIntervals([i..j]). If LCP[rb+ 1] = ⊥, then we know
from the induction hypothesis that LCP[rb + 1] ≥ �, i.e., the suffixes SSA[rb] and
SSA[rb+1] have a common prefix of length at least �. On the other hand, cω is a
prefix of SSA[rb] but not of SSA[rb+1]. Consequently, LCP[rb+1] < �+1. Altogether,
we conclude that Algorithm 2 assigns the correct value � to LCP[rb + 1].

We still have to prove that all entries of the LCP-array with value � are really
set. So let k, 0 ≤ k < n, be an index with LCP[k+1] = �. Since � > 0, the longest
common prefix of SSA[k] and SSA[k+1] can be written as cω, where c ∈ Σ, ω ∈ Σ∗,
and |ω| = � − 1. Consequently, ω is the longest common prefix of SSA[k]+1 and

Computing the Longest Common Prefix Array Based on the BWT 203

SSA[k+1]+1. Let [i..j] be the ω-interval, p be the index with SA[p] = SA[k] + 1,
and q be the index with SA[q] = SA[k + 1] + 1. Clearly, i ≤ p < q ≤ j. Because
ω is the longest common prefix of SSA[p] and SSA[q], there must be at least one
index t with p < t ≤ q so that LCP[t] = |ω| = � − 1. If there is more than one
index with that property, let t denote the smallest. According to the inductive
hypothesis, Algorithm 2 assigns the value � − 1 to LCP[t]. Just before that, a
pair 〈[s..t − 1], �〉 must have been pushed to the queue, where [s..t − 1] is some
ω′-interval with |ω′| = �. By the definition of t, we have LCP[r] > � − 1 for all
r with p < r ≤ t − 1. Thus, p lies within the interval [s..t − 1]. In other words,
ω′ is a prefix of SSA[p]. Moreover, BWT[p] = c implies that the cω′-interval, say
[lb..rb], is not empty. Since BWT[r] �= c for all p < r < q, it follows that rb = k.
At some point, 〈[s..t− 1], �〉 is removed from the queue, and [lb..k] is in the list
returned by getIntervals([s..t−1]). Consequently, LCP[k+1] will be set to �. ��

Algorithm 2 has a worst case time complexity of O(nσ). This can be seen as
follows. The number of iterations of its while-loop depends on the overall number
of elements that enter the queue. Because an element is pushed on the queue
only if an LCP-entry is set, the while-loop is executed n − 1 times. Within the
while-loop, both the procedure call getIntervals([i..j]) and the for-loop take
O(σ) time, whereas the remaining statements take constant time.

Algorithm 2 uses only the wavelet tree of the BWT of S, a queue to store the
ω-intervals and the LCP-array. Because a practical implementation should use
as little space as possible, we next show how to reduce the space consumption of
the latter two. The second components (�-values) of the queue entries need not
be stored because one can simply count how many ω-intervals with |ω| = � enter
the queue; see Algorithm 3 for details. For a fixed �, the ω-intervals with |ω| = �
do not overlap. Thus, they can be stored in two bit vectors, say B and E of
size n, and an ω-interval [i..j] is stored by setting the bits B[i] and E[j] (due to
singleton intervals, we actually need two bit vectors). By the invariant mentioned
above, at any point in time Algorithm 2 has to deal with at most two different
�-values. Therefore, we can replace the queue with four bit vectors of length n.
The price to be paid for this is an increase in the worst case time complexity. For
each �-value, two bit vectors of length n are scanned to determine all ω-intervals
with |ω| = �. So the number of scans is proportional to the maximum lcp-value.
Since this can be n − 2 (consider the string S = an−1$), the time complexity
rises to O(n2). For this reason, we prefer the following hybrid approach. For a
fixed �, if there are more than n

2 logn ω-intervals with |ω| = � (note that this can
happen only O(log n) times), we use the bit vectors; otherwise we use the queue.
More precisely, we start with the queue, switch to the bit vectors when there are
more than n

2 logn ω-intervals with the current �-value, and switch back if there
are less than n

2 logn ω-intervals with the current �-value. Note that the queue uses
at most n bits because each queue entry is an interval that can be represented by
two numbers using logn bits each. In this hybrid approach, the identification of
ω-intervals takes O(n log n) time because the bit vectors of length n are scanned
O(log n) times. Under the assumption that σ ≤ c logn for some constant c, this
is also the worst case time complexity of the whole algorithm. However, our

204 T. Beller et al.

experiments showed that this O(n logn) time implementation of Algorithm 2 is
actually faster than the O(nσ) time implementation which solely uses the queue
(from the STL of C++). This can be attributed to fewer cache misses due to
the fact that the bit vectors are accessed sequentially.

Up to now, our LACA needs n log σ bits for the wavelet tree of the BWT
plus o(n log σ) bits for the data structures that support rank/select queries in
constant time, 4n bits for the storage of the ω-intervals, and 4n bytes for the
LCP-array itself. Our goal is to stay below 2.5n bytes because this is (currently)
the space that is needed to build the BWT; cf. Sect. 1. To meet this goal, we
stream the LCP-array to disk. This is possible because Algorithm 2 calculates
lcp-values in ascending order. Clearly, the LCP-array requires only k · n bits to
store all lcp-values less than 2k. During the computation of these lcp-values, the
i-th bit of a bit vector D of length n is set when a value is assigned to LCP[i].
Afterwards the LCP-array is written to disk, but the bit vector D tells us which
LCP-entries are already done and we preprocess D so that rank queries can be
answered in constant time. Let m be the number of zeros in D. We use a new
array A of length m that also occupies k · n bits. In other words, each array
element of A consists of b = �k·nm � bits, which are initially set to zero. Then, we
compute all lcp-values less than 2k + 2b − 1. When a value � is to be assigned
to LCP[i], we store the value � − 2k + 1 in A[rank0(D, i)]. After all lcp-values
less than 2k+ 2b− 1 have been computed, we further proceed as follows. During
a scan of the bit vector D, we count the number of zeros seen so far. So when
an index i with D[i] = 0 is encountered, we know that this is, say, the j-th zero
seen so far. Now we use a case analysis. If A[j] = 0, then LCP[i] has not been
computed yet and there is nothing to do. Otherwise, the value 2k − 1 + A[j] is
written at index i to the LCP-array on the disk, and D[i] is set to one. When the
scan of D is completed, the (updated) bit vector D is preprocessed so that rank
queries can be answered in constant time. This process is iterated (calculate the
new values of m and b, initialize a new array A, etc.) until the LCP-array is
completely filled.

In several applications, the access to the LCP-array is sequential, so it can be
streamed from disk. If random access is needed, one can get a compressed repre-
sentation of the LCP-array by streaming it from disk, and then this compressed
version is kept in main memory. There are several compressed versions of the
LCP-array which use about 1 byte per entry in practice, while the access time
remains essentially the same as for the uncompressed version; see e.g. [1].

5 Experimental Results

Programs were compiled using gcc version 4.4.3 with options -O9 -DNDEBUG on
a 64 bit Ubuntu (Kernel 2.6.32) system equipped with a six-core AMD Opteron
processor 2431 with 2.4 GHz and 32GB of RAM. The data originates from the
Pizza&Chili Corpus (http://pizzachili.dcc.uchile.cl/). For space reasons,
we report only the results for files of 200 MByte. Additionally, the genome of the
house mouse (NCBIm36, http://www.ensembl.org/Mus_musculus) was used.

http://pizzachili.dcc.uchile.cl/
http://www.ensembl.org/Mus_musculus

Computing the Longest Common Prefix Array Based on the BWT 205

Table 1. Experimental results: for each file, the first column shows the real runtime in
seconds and the second column shows the maximum memory usage per character. As
an example, consider the 200MB file dna. The construction of its suffix array takes 67
sec. and 5n bytes (1000MB), whereas the direct construction of its BWT takes 88 sec.
and 1.9n bytes (380MB). Rows 3-7 refer to the construction of the LCP-array under
the assumption that the suffix array (the BWT, respectively) has already been built. In
rows 8-12, the first column shows the overall runtime and the second shows the overall
maximum memory usage per character. For a fair comparison of the run time, the data
was chosen in such a way that all data structures fit in the main memory. Of course,
for very large files the space usage of 9n bytes is disadvantageous because then the
data structures must reside in secondary memory, and this slows down the algorithms.

dna english proteins sources xml mouse genome
200MB 200MB 200MB 200MB 200MB 3242MB

SA constr. 67 5 67 5 73 5 44 5 48 5 1876 8.9
BWT constr. 88 1.9 106 2.2 147 2.6 89 2.2 83 2.2 1556 2.1
KLAAP 54 9 47 9 47 9 31 9 32 9 1530 9
Φ 35 9 30 9 30 9 21 9 23 9 1122 9
Φ64 79 5.1 82 5.1 77 5.1 59 5.1 72 5.1 - -
goPHI 50 2 74 2 71 2 51 2 49 2 1338 2.3
new algorithm 66 1.8 123 2 133 2 131 2.2 99 2.1 1488 1.8
KLAAP 121 9 114 9 120 9 75 9 80 9 3406 9
Φ 102 9 97 9 103 9 65 9 71 9 2998 9
Φ64 146 5.1 149 5.1 150 5.1 103 5.1 120 5.1 - -
goPHI 117 5 141 5 144 5 95 5 97 5 3214 8.9
new algorithm 154 1.9 229 2.2 280 2.6 220 2.2 182 2.2 3044 2.1

We compared our new algorithm with the KLAAP-algorithm of Kasai et al.
[12], the Φ and Φ64 algorithms1 of Kärkkäinen et al. [11], and the goPHI algo-
rithm of Gog and Ohlebusch [6]. The suffix array construction was done by Mori’s
libdivsufsort-algorithm2 (http://code.google.com/p/libdivsufsort/), while
the direct BWT construction is due to Okanohara and Sadakane [19]. The KLAAP-
algorithm is our own implementation, all other programs were kindly provided
by the authors. Looking at the experimental results in Table 1, one can see that
the Φ algorithm is the fastest LACA. However, in large scale applications its
space usage of 9n bytes is the limiting factor. The memory usage of algorithm
goPHI (row 6) is similar to that of our algorithm but it relies on the suffix array,
so its overall space usage (row 11) is due to the suffix array construction (row 1).
By contrast, our new algorithm solely depends on the BWT, so that its overall
maximum memory usage per character is approximately 2.2n bytes (row 12). It
can be attributed to the usual space-time trade-off that our new algorithm is
the slowest LACA in the contest for the 200MB files. However, this changes in
large scale applications when memory is tight.
1 The Φ64 algorithm is limited to files of size ≤ 231, because it is implemented with

signed 32 bit integers.
2 Because the 32 bit version is also limited to files of size ≤ 231, we had to use the 64

bit version for the mouse genome (which needs 9n bytes).

http://code.google.com/p/libdivsufsort/

206 T. Beller et al.

6 Other Applications

There are at least two other problems to which our new approach can be applied.
As a first application, we will briefly describe how to find all shortest unique
substrings in optimal time. This is relevant in the design of primers for DNA
sequences; As a second application, our approach allows us to compute shortest
absent words; see e.g. [9]. This is relevant because short DNA sequences that do
not occur in a genome are interesting to biologists. For example, the fact that
the human genome does not contain all possible DNA sequences of length 11
may be due to negative selection. For space reasons, however, we can present
only the first application. Because $ is solely used to mark the end of the string
S, we have to exclude it in the considerations below.

Definition 1. A substring S[i..j] is unique if it occurs exactly once in S. The
shortest unique substring problem is to find all shortest unique substrings of S.

Clearly, every suffix of S is unique because S is terminated by the special symbol
$. Since we are not interested in these, we will exclude them. One can show that
the (�+1)-length prefix of SSA[i], where � = max{LCP[i], LCP[i+1]}, is the short-
est unique substring of S that starts at position SA[i]. Using this observation,
we can modify Algorithm 2 so that it computes a shortest unique substring of S.
The resulting Algorithm 3 can easily be changed so that it computes all shortest
unique substrings or even all unique substrings of S. We make use of the fact
that Algorithm 2 computes lcp-values in ascending order. So when Algorithm 2
executes the statement LCP[rb + 1] ← � and LCP[rb] has been set before, then
max{LCP[rb], LCP[rb + 1]} = � and S[SA[rb]..SA[rb] + �] is the shortest unique
substring of S that starts at position SA[rb]. Analogously, if LCP[rb+2] has been
set before, then max{LCP[rb+1], LCP[rb+2]} = � and S[SA[rb+1]..SA[rb+1]+�]
is the shortest unique substring of S that starts at position SA[rb+ 1]. Because
the current value of � is always available, all we have to know is whether or not
LCP[rb] (LCP[rb+ 2], respectively) has been computed before. Consequently, we
can replace the LCP-array with the bit vector D of length n, and D[i] is set to
one instead of assigning a value to LCP[i]. However, there are two subtleties that
need to be taken into account. First, the suffix array is not at hand, so we have
to find an alternative way to output the string S[SA[rb]..SA[rb] + �]. Second, we
have to exclude this string if it is a suffix. Fortunately, the wavelet tree provides
the needed functionality, as we shall see next. The LF -mapping is defined by
LF (i) = SA−1[SA[i]−1] for all i with SA[i] �= 0 and LF (i) = 0 otherwise (where
SA−1 denotes the inverse of the permutation SA). Its long name last-to-first col-
umn mapping stems from the fact that it maps the last column L = BWT to the
first column F , where F contains the first character of the suffixes in the suffix
array, i.e., F [i] = S[SA[i]]. Its inverse is defined by ψ(i) = SA−1[SA[i]+1] for all i
with 2 ≤ i ≤ n and ψ(1) = SA−1[1]. With the wavelet tree, both LF (i) and ψ(i)
can be computed in O(log σ) time; see [16]. Moreover, the character F [i] can be
determined in O(log σ) time by a binary search on C. Since S[SA[rb]] = F [rb],
S[SA[rb] + 1] = F [ψ(rb)], S[SA[rb] + 2] = F [ψ(ψ(rb))] etc., it follows that the
string S[SA[rb]..SA[rb] + �] coincides with F [rb] F [ψ(rb)] . . . F [ψ�(rb)] (which

Computing the Longest Common Prefix Array Based on the BWT 207

Algorithm 3. Computation of a shortest unique substring.
initialize a bit vector D[1..n + 1] /* i.e., D[i] = 0 for all 1 ≤ i ≤ n+ 1 */
D[1]← 1; D[n + 1]← 1
initialize an empty queue
enqueue([1..n])
�← 0; size← 1; idx← 1
while queue is not empty do

if size = 0 then
�← �+ 1
size← current size of the queue
idx← LF (idx)

[i..j] ← dequeue()
size← size− 1
list← getIntervals([i..j])
for each [lb..rb] in list do

if D[rb + 1] = 0 then
enqueue([lb..rb])
D[rb + 1]← 1
if D[rb] = 1 and rb 	= idx then

return F [rb] F [ψ(rb)] . . . F [ψ�(rb)] /* the string S[SA[rb]..SA[rb] + �] */
if D[rb + 2] = 1 and rb+ 1 	= idx then

return F [rb+ 1] F [ψ(rb+ 1)] . . . F [ψ�(rb+ 1)]

can be computed in O(� log σ) time). This solves our first little problem. The
second problem was to exclude suffixes from the output. This can be done by
keeping track of the suffix of length � + 1, where � is the current length. To
be precise, initially � = 0 and the suffix of length 1 is the character $, which
appears at index idx = 1. Every time � is incremented, we obtain the index of
the suffix of length � + 1 by the assignment idx ← LF (idx). Consequently, a
unique substring at index rb is output only if rb �= idx.

References

1. Brisaboa, N.R., Ladra, S., Navarro, G.: Directly addressable variable-length codes.
In: Karlgren, J., Tarhio, J., Hyyrö, H. (eds.) SPIRE 2009. LNCS, vol. 5721, pp.
122–130. Springer, Heidelberg (2009)

2. Burrows, M., Wheeler, D.J.: A block-sorting lossless data compression algorithm.
Research Report 124, Digital Systems Research Center (1994)

3. Culpepper, J.S., Navarro, G., Puglisi, S.J., Turpin, A.: Top-k ranked document
search in general text databases. In: de Berg, M., Meyer, U. (eds.) ESA 2010.
LNCS, vol. 6347, pp. 194–205. Springer, Heidelberg (2010)

4. Ferragina, P., Manzini, G.: Opportunistic data structures with applications. In:
IEEE Symposium on Foundations of Computer Science, pp. 390–398 (2000)

5. Flick, P., Birney, E.: Sense from sequence reads: Methods for alignment and as-
sembly. Nature Methods 6(11 suppl.), S6–S12 (2009)

208 T. Beller et al.

6. Gog, S., Ohlebusch, E.: Lightweight LCP-array construction in linear time (2011),
arxiv.org/pdf/1012.4263

7. Grossi, R., Gupta, A., Vitter, J.S.: High-order entropy-compressed text indexes.
In: Proc.14th Annual ACM-SIAM Symposium on Discrete Algorithms, pp. 841–850
(2003)

8. Gusfield, D.: Algorithms on Strings, Trees, and Sequences. Cambridge University
Press, New York (1997)

9. Herold, J., Kurtz, S., Giegerich, R.: Efficient computation of absent words in ge-
nomic sequences. BMC Bioinformatics 9, 167 (2008)

10. Jacobson, G.: Space-efficient static trees and graphs. In: Proc. 30th Annual Sym-
posium on Foundations of Computer Science, pp. 549–554. IEEE, Los Alamitos
(1989)

11. Kärkkäinen, J., Manzini, G., Puglisi, S.J.: Permuted longest-common-prefix array.
In: Kucherov, G., Ukkonen, E. (eds.) CPM 2009 Lille. LNCS, vol. 5577, pp. 181–
192. Springer, Heidelberg (2009)

12. Kasai, T., Lee, G.H., Arimura, H., Arikawa, S., Park, K.: Linear-time longest-
common-prefix computation in suffix arrays and its applications. In: Amir, A.,
Landau, G.M. (eds.) CPM 2001. LNCS, vol. 2089, pp. 181–192. Springer, Heidel-
berg (2001)

13. Lippert, R.A.: Space-efficient whole genome comparisons with Burrows-Wheeler
transforms. Journal of Computational Biology 12(4), 407–415 (2005)

14. Manber, U., Myers, E.W.: Suffix arrays: A new method for on-line string searches.
SIAM Journal on Computing 22(5), 935–948 (1993)

15. Manzini, G.: Two space saving tricks for linear time LCP array computation. In:
Hagerup, T., Katajainen, J. (eds.) SWAT 2004. LNCS, vol. 3111, pp. 372–383.
Springer, Heidelberg (2004)

16. Navarro, G., Mäkinen, V.: Compressed full-text indexes. ACM Computing Sur-
veys 39(1), Article 2 (2007)

17. Nong, G., Zhang, S., Chan, W.H.: Linear suffix array construction by almost pure
induced-sorting. In: Proc. Data Compression Conference, pp. 193–202. IEEE Com-
puter Society, Los Alamitos (2009)

18. Ohlebusch, E., Gog, S., Kügel, A.: Computing matching statistics and maximal
exact matches on compressed full-text indexes. In: Chavez, E., Lonardi, S. (eds.)
SPIRE 2010. LNCS, vol. 6393, pp. 347–358. Springer, Heidelberg (2010)

19. Okanohara, D., Sadakane, K.: A linear-time burrows-wheeler transform using in-
duced sorting. In: Karlgren, J., Tarhio, J., Hyyrö, H. (eds.) SPIRE 2009. LNCS,
vol. 5721, pp. 90–101. Springer, Heidelberg (2009)

20. Puglisi, S.J., Smyth, W.F., Turpin, A.: A taxonomy of suffix array construction
algorithms. ACM Computing Surveys 39(2), 1–31 (2007)

21. Puglisi, S.J., Turpin, A.: Space-time tradeoffs for longest-common-prefix array com-
putation. In: Hong, S.-H., Nagamochi, H., Fukunaga, T. (eds.) ISAAC 2008. LNCS,
vol. 5369, pp. 124–135. Springer, Heidelberg (2008)

22. Schnattinger, T.: Bidirektionale indexbasierte Suche in Texten. Diploma thesis,
University of Ulm, Germany (2010)

23. Simpson, J.T., Durbin, R.: Efficient construction of an assembly string graph using
the FM-index. Bioinformatics 26(12), i367–i373 (2010)

arxiv.org/pdf/1012.4263

A Succinct Index for Hypertext

Chris Thachuk

Department of Computer Science, University of British Columbia, Vancouver, Canada
cthachuk@cs.ubc.ca

Abstract. Recent advances in nucleic acid sequencing technology has motivated
research into succinct text indexes to represent reference genomes that support ef-
ficient pattern matching queries. Similar sequencing technology can also produce
millions of reads (patterns) derived from transcripts which need to be aligned to
a reference transcriptome. A transcriptome can be modeled as a hypertext. Mo-
tivated by this application, we propose the first succinct index for hypertext. The
index can model any hypertext and places no restriction on the graph topology.
We also propose a new pattern matching algorithm, capable of aligning a pattern
to any path in the hypertext, that is especially efficient when few nodes of the hy-
pertext share the same text—in this important case, our algorithm is a significant
improvement over all existing approaches.

1 Introduction

Fueling the discovery of genetic variation amongst populations and individuals has been
the application of next generation sequencing technology (NGS). The new technology
focuses on massively parallel sequencing and is capable of producing millions of reads
(patterns) in a typical run [10,9]. Due to the sheer volume of data, the task of effi-
ciently aligning reads to a reference genome is one of the most actively researched
problems in contemporary bioinformatics. NGS is also being utilized to capture data
from the transcriptome; a process referred to as RNA-Seq [13]. Instead of sequencing
genomic DNA, RNA-Seq aims to sequence the complementary DNA (cDNA) of RNA
molecules in a cell. Transcriptome read alignment is providing valuable information to
researchers, beyond genomic sequencing. In particular, this technology can be used to
quantify the level of expression of various transcripts by sequencing messenger RNA,
thus implicating the relative expression level of proteins.

Much more progress has been made in mapping reads from genome data to refer-
ence genomes than on aligning reads derived from transcriptomes. The latter problem
is harder by the very nature of the events it is capable of capturing compared to ge-
nomic sequencing. Since introns are spliced from genes in the process of transcription
(see Figure 1), spliced reads may map to two regions of the genome that are separated
by many hundreds or thousands of bases. The difficulty of aligning NGS reads that span
intron boundaries is exacerbated by their short length, and often is not attempted, re-
sulting in a significant loss of information. The transcriptome read alignment problem
is modeled more accurately by the problem of aligning patterns to a hypertext.

Informally, hypertext is a generalization of text from a linear structure to a directed
graph, G = (V, E), with each node being a fragment of text and edges implying which

R. Grossi et al. (Eds.): SPIRE 2011, LNCS 7024, pp. 209–220, 2011.
c© Springer-Verlag Berlin Heidelberg 2011

210 C. Thachuk

fragments of text can be appended; thus, any path in the graph is a substring of the hy-
pertext. The example transcriptome in Figure 1 consists of five overall exons between
two genes. The splicing events, and valid transcripts are also shown. The resulting hy-
pertext model of this transcriptome has a node for each exon, and an edge between
exons joined by a splicing event, resulting in two components (one for each gene).

The seminal work on pattern matching in hypertext is due to Manber and Wu [12]
who proposed a O(|V |+m|E|+occ log log m) time algorithm, where m is the length of
the pattern and occ are the number of matches. Akutsu [1] proposed an O(n) algorithm
for matching in hypertext forming a tree structure, where n is the total length of text in
all nodes. Park and Kim [16] considered the case where the hypertext forms a directed
acyclic graph by proposing a O(n + m|E|) time algorithm, under the assumption that
no node in G matches to more than one position in the pattern. Amir et al., [2] proposed
an algorithm with the same runtime complexity; however, theirs was the first algorithm
for the case of hypertext forming a general graph. Amir et al., [2] and Navarro [14] also
considered the problem of approximate matching in hypertext.

In all cases, the runtimes of the previously proposed pattern matching algorithms in
hypertext are impractical for alignment of millions of transcriptome reads. Surprisingly,
no succinct index for hypertext has been previously proposed. In this work, we propose
a succinct index to model hypertext and focus on the case where the space required
to index the text dominates the space to represent the topology of the graph. We note
that in the case of the Human transcriptome, exons number in the tens of thousands,
splicing events in the hundreds of thousands, and the combined length of exons in the
hundreds of millions. Our index can model any hypertext forming a general graph. We
also propose a new pattern matching algorithm, capable of aligning a pattern to any
path in the hypertext, that is especially efficient for hypertexts where few nodes share
the same text. In particular, our new algorithm can report all patterns crossing at most
one edge—a valid assumption for current transcriptome read datasets—in O(m log σ +
m log |V |

log log |V | + occ1 log n + occ2
log |V |

log log |V |) time, where occ1 (occ2) is the number of
matches that cross no (one) edge. We also consider a restricted version of the problem,
where only certain paths in the hypertext are considered valid.

2 Preliminaries

For a string T of length n over an alphabet Σ, let T [i] denote the ith character of T ,
and let T [i . . . j] denote the substring from the ith to the jth character of T , for i ≤
j. The ith suffix of T is the substring T [i . . . n]. A suffix array of T $, the string T
followed by a special sentinel character $, is a permutation of the integers [1, . . . , n+1]
giving the lexicographic order of all suffixes of T $, where $ /∈ Σ and $ < c, ∀c ∈ Σ.
Conceptually, the suffix array can be thought of as a matrix where each row is a different
suffix of T $, and the rows are in lexicographic order. See Figure 2 for an example.

2.1 Compressed Suffix Arrays

A compressed suffix array F is a succinct representation of the Burrows-Wheeler
transform (BWT) of the string T , denoted as FBWT, in addition to some auxiliary

A Succinct Index for Hypertext 211

. .

e1 e2 e3 e4 e5

g1 g2

t1
e1 e2

t2
e1 e3

t3
e1 e2 e3

t4
e4

t5
e4 e5

S

G

T

Fig. 1. A simple genome, G, having five exons contained in two genes, along with its transcrip-
tome, T , consisting of five transcripts. Also shown is a splicing graph S where each directed edge
denotes a splicing event found in T .

data structures. The ith character in the string FBWT corresponds to the character, in T ,
that precedes the ith lexicographically smallest suffix of T . See Figure 2 for an example.
The structure of the suffix array of T can be inferred directly from FBWT by the so-called
LF -mapping. Specifically, the jth occurrence of a character c in FBWT corresponds to the
jth lexicographically smallest suffix of T that begins with the character c.

Ferragina and Manzini [7] showed that a pattern P [1 . . .m] can be matched against
T by performing a backward search in F. The backward search initially finds matches
of P [m . . . m] in T , then attempts to extend those into matches of P [m− 1 . . . m] in T ,
and so on. The search maintains a suffix array range denoting the interval in the sorted
suffixes that match the current pattern as a prefix. If the final range [a, b] is non-empty,
then P matches in T exactly b− a + 1 times. A compressed suffix array can also report
the locations of all matches in T , if any. Details of backward search, and compressed
suffix arrays in general, can be found in the review by Navarro and Mäkinen [15].

Lemma 1 (Grossi et al., [8]). A compressed suffix array for a string T , of length n,
over an alphabet of size σ, can be represented in (1 + o(1))n log σ bits of space, such
that the suffix array range for every suffix of a string P can be computed in O(|P | log σ)
time, and each match of P in T can be reported in an additional O(log n) time.

A full-text dictionary is designed to index a collection of patterns. It has the same ca-
pabilities as a compressed suffix array, and in addition can report all patterns from the
dictionary that are contained in an input text P .

Lemma 2 (Thachuk [18]). A succinct full-text dictionary D of a set of k patterns,
having combined length n, over an alphabet of size σ, can be represented in (1 +
o(1))n log σ + O(n) + k(�log n

k �+ 2 + o(1)) bits such that the matching statistics of
a string P with respect to D can be determined in O(|P | log σ) time, all occ1 patterns
contained in P can be reported in an additional O(occ1) time, and all occ2 positions
where P is contained within a pattern can be reported in an additional O(occ2 log n)
time.

212 C. Thachuk

Fig. 2. (left) An example of the underlying compressed suffix array in F, for the text T =
φacaφgφgaφcgφct$, representing the serialization of possible text in exons e1, . . . , e5 from
Figure 1. (right) The compressed suffix array R for the text T R = φacaφgφagφgcφtc$.

The matching statistics of a string P , with respect to T , is a list of tuples (q, [a, b]),
one for each suffix of P , where q denotes the longest match of the suffix anywhere in
T , and [a, b] is the suffix array range of the matches.

2.2 Orthogonal Range Query Structures

An orthogonal range query data structure indexes a set of points from a two-dimensional
grid so that given as input a bounding rectangle, all points contained within the bounds
can be reported efficiently.

Lemma 3 (Bose et al., [4]). A set N of points from universe M = [1..k] × [1..k],
where k = |N |, can be represented in (1 + o(1))k log k bits to support orthogonal
range counting in O(log k

log log k) time, and orthogonal range reporting in O(occ log k
log log k)

time, where occ is the size of the output.

2.3 Hypertext

A hypertext generalizes the notion of text to be a directed graph G = (V, E) such that
each node v ∈ V contains text over an alphabet Σ and the outgoing edges of v are
incident to nodes containing text that can follow v’s. A match of a pattern P to the
hypertext G is a path p = v1, . . . , vk through G, and an offset l into the first node
v1, such that P matches the concatenation of the text in nodes v1, . . . , vk, beginning at
position l in v1, and ending at some prefix of vk.

Pattern Matching in Hypertext Problem

Instance: A hypertext G and a pattern P .
Question: Which paths in G match P ?

A Succinct Index for Hypertext 213

Previous algorithms for matching in hypertext focused on reporting only the initial
node, and offset within that node, of paths in G matching P . For our motivating problem
of aligning patterns to a transcriptome, the actual path is required to be known, and that
is our focus in the remainder of the paper. However, our matching algorithm can be
simplified if only the initial node of a match (and the offset within the node) is desired.

3 Construction of the Hypertext Index

The succinct hypertext index is a collection of three sets of data structures: those storing
the node text, those storing the graph topology, and a useful auxiliary structure. In our
pattern matching algorithms we find it useful to identify nodes of the graph by two
different identifiers: forward id, and reverse id. This is reflected in our descriptions of
the data structures below. The forward id gives the prefix lexicographic rank of the text
contained within the node as compared with all other nodes in V . Similarly, the reverse
id gives the rank with respect to the suffix lexicographic rank. We show how these ids
can be determined in Section 3.3.

3.1 Indexing Node Text

For a given hypertext G = (V, E) over an alphabet Σ of size σ, we construct a text
T = φv1φv2φ . . . φv|V |$, of length n, that is a serialization of the combined text of the
nodes of V , each prefixed by a character φ < c, ∀c ∈ Σ. We will construct and store a
full-text dictionary index F of T . We also construct and store a compressed suffix array
R for T R, the serialization of the reverse of all node text. We let FBWT (RBWT) denote the
BWT string for F (R). See Figure 2 for an example.

3.2 Storing Graph Topology

We store the graph topology in a 2D range query index, Q, that is heavily utilized in our
pattern matching algorithm. Conceptually, the y-axis corresponds to forward ids and
the x-axis corresponds to reverse ids. A point (a, b) is added to the index if and only if
in E there is an edge from the node with reverse id a to the node with forward id b.

3.3 Auxiliary Data Structures

Each node can be ranked according to its prefix lexicographic order in the forward
index F. For instance, we can determine the prefix lexicographic order of all |V | nodes
by performing backward search on the serialized text T . After the text ‘v|V |$’ has been
matched in F, three facts are known: (i) the matching suffix array range [a, b] will be a
size one interval (i.e., a = b) since $ occurs only in one position of T , (ii) FBWT[a] = φ
since each node is prefixed by a φ character, and (iii) the rank of the φ character at
position a in FBWT corresponds to the prefix lexicographic rank of node v|V |, with respect
to all other nodes in V , due to the properties of the LF mapping. We can continue
to determine the prefix lexicographic order of all nodes in V in a single traversal of
T . Similarly, we can determine the suffix lexicographic order of all nodes using the

214 C. Thachuk

reverse index. We find it convenient to store a permutation ΠR→F that maps the suffix
lexicographic order of a node in the reverse index to the prefix lexicographic order of
that node in the forward index. We report all matches with respect to the forward id
label and assume edges are defined with respect to forward ids. Should matches require
reporting of an alternative labeling of the nodes, such as exon identifiers in the case of
transcriptomes, then another auxiliary permutation can be stored for that purpose. Our
overall space usage is summarized in Table 1 and Lemma 4.

Table 1. Inventory of space usage for succinct hypertext index

Symbol Description Space (bits)
F full-text dictionary of forward text (1 + o(1))n log σ + O(n) + |V |(�log n

|V | + 2 + o(1))

R compressed suffix array of reverse text (1 + o(1))n log σ
Q 2D point structure containing graph topology (1 + o(1))|E| log |E|
ΠR→F mapping of reverse id to forward id |V |�log |V |

Lemma 4. A hypertext G = (V, E) can be represented in (2 + o(1))n log σ + O(n) +
(1 + o(1))|E| log |E| + |V |(log |V | + log n

|V | + 2 + o(1)) bits by the above scheme,
where the text of the nodes in V are over an alphabet of size σ and have a combined
length of n− |V |.

4 Pattern Matching in the Hypertext Index

We now demonstrate that extensions of techniques used to solve the problem of match-
ing a pattern against a text containing wildcards are applicable and effective for match-
ing a pattern in a hypertext. In a solution to the wildcard matching problem, Lam
et al., [11] classified a match of a pattern P to the text T into three cases: P matches
a position in T containing no wildcard group, P matches a position in T containing
one wildcard group, and P matches a position in T containing more than one wildcard
group, where a wildcard group is a consecutive sequence of wildcard characters. We
will solve the problem of matching a pattern P in a hypertext G = (V, E) by consid-
ering three analogous cases: (i) P does not span any edge from E, (ii) P spans exactly
one edge from E, and (iii) P spans more than one edge from E. As we will see, case (i)
is identical, case (ii) is a restriction, and case (iii) is a generalization of the respective
wildcard cases.

4.1 Preprocessing the Pattern

Considering that a match of P is a path through G, we need an efficient means to de-
termine which nodes contain P as a substring, which are contained within P , which
nodes contain a prefix of P as a suffix, and which contain a suffix of P as a prefix. Con-
sider for a moment how we may determine which nodes contain the suffix P [i . . .m]
as a prefix. Suppose P [i . . .m] has a non-empty suffix array range [a, b] in the forward
index F. If P [i . . .m] is a prefix of some node vi then two things must be true: (i) [c, d],
the suffix array range of vi in F, must be a sub-interval of [a, b], and (ii) FBWT[c . . . d]
must contain a φ character corresponding to vi, since all node texts are prefixed by the

A Succinct Index for Hypertext 215

φ character in the construction of F. Therefore, by determining the rank of the first and
the last φ characters in FBWT[a . . . b], we will determine a range of forward ids corre-
sponding to nodes that contain P [i . . .m] as a prefix. Using backward search we can
determine the range of matching forward ids, if any, for each suffix of P in O(m log σ)
time (by Lemma 1). To determine which nodes contain a prefix of P as a suffix, we
can instead determine which nodes, when their text is reversed, contain a suffix of PR,
the reverse of P , as a prefix. Therefore, by performing a backward search of PR in
the reverse index R, a range of reverse ids can be determined in O(m log σ) time (by
Lemma 1). Finally, we also determine the matching statistics of P and P [2 . . .m − 1]
with respect to F in O(m log σ) time (by Lemma 2). The matching statistics for P are
used to determine matches within nodes, while the matching statistics for P [2 . . .m−1]
are used to determine matches of nodes within P [2 . . .m− 1]. The forward and reverse
id ranges for every prefix and suffix of P as well as the matching statistics for P and
P [2 . . .m− 1] can be stored in O(m log n) bits.

4.2 Matching within a Node

If a match of P in G does not span an edge, then P must match as a substring of some
node. Let (q, [a, b]) be the matching statistics of P [1 . . .m] calculated in the prepro-
cessing step. If q = m then there exists at least one match of P as a substring of a node
of G. Furthermore, the suffix array range [a, b] is non-empty and P is contained as a
substring of one or more nodes exactly b− a+1 times. In each instance, the forward id
and offset into the node can be determined by the usual location reporting capabilities
of a compressed suffix array.

Lemma 5. For a pattern P of length m, the occ number of matches of P within a
node of G can be counted in O(m log σ) time. Their locations can be reported in an
additional O(occ log n) time. The working space is O(m log n) bits.

4.3 Matching across a Single Edge

If a match of P in G spans a single edge, then there must exist some i, 1 < i ≤ m, such
that P [1 . . . i− 1] is a suffix of some node vj ∈ V , P [i . . .m] is a prefix of some node
vk ∈ V , and the edge (j, k) ∈ E. In the preprocessing step, the range [c, d] of forward
ids corresponding to nodes that contain P [i . . .m] as a prefix, as well as the range [a, b]
of reverse ids corresponding to nodes that contain P [1 . . . i−1] as a suffix, were stored.
Similar to other applications in stringology [18,17,5], we make use of the range query
data structure to relate the two ranges. If both ranges are non-empty, we can determine
exactly which pairs of ids are connected by a forward edge by reporting all points in
Q contained in the range [a, b]× [c, d]. If (x, y) is a reported point, then the forward id
of x can be determined as ΠR→F [x]. We can repeat this procedure m − 1 times, for
1 < i ≤ m.

Lemma 6. For a pattern P of length m the occ number of matches of P that cross
a single edge of G can be counted in O(m log σ + m log |V |

log log |V |) time. Their path de-

scriptions can be reported in an additional O(occ log |V |
log log |V |) time. The working space is

O(m log n) bits.

216 C. Thachuk

4.4 Matching across Multiple Edges

If a match of P in G spans more than one edge, then P [2 . . .m−1] must contain at least
one node of G as a substring. The strategy here, as in previous solutions to the text with
wildcard problem [11,17,18], is an extension of the dictionary matching problem: first
identify all γ nodes contained within P [2 . . .m − 1], and second, for each of those γ
candidate matches, determine if it can be extended into a full match of P in G. Consider
a candidate match of a node vj , with forward id j, to the substring P [i . . . i + k − 1],
where i > 1 and i+k−1 < m. This candidate can be extended into a full match if both
the suffix condition—there exists a path leaving vj matching P [i + k . . . m] —and the
prefix condition—there exists a path ending at vj matching P [1 . . . i−1]—are satisfied.
This strategy is motivated by applications where few nodes share identical text (e.g.,
transcriptomes). Under this assumption, γ is expected to be within a small constant of
m. More specifically, in the case of transcriptomes where exons are generally long and
unique, γ is expected to be a small constant.

Recently, Thachuk proposed a dynamic programming algorithm to solve the corre-
sponding text with wildcards version of the problem [18]. The algorithm works in m
stages, by considering successively longer suffixes of P , and in the process determines
if the suffix and prefix conditions of candidate matches are satisfied. We will adapt this
algorithm for our purposes here. However, we note that verifying the suffix (prefix)
condition in the hypertext problem is more challenging as we must consider any path
beginning (ending) at a node representing a candidate match. In the text with wildcards
problem, one must only verify the text immediately preceding (succeeding) a candi-
date match position. This can be viewed as verifying a single path. For this reason, the
algorithm we propose below is a generalization of the original algorithm.

Overview of the Algorithm. Conceptually, the algorithm will consider successively
longer suffixes of P [2 . . .m−1]. Specifically, for each suffix P [i . . .m−1], for i = m−
1, m− 2, . . . , 2, the algorithm will consider all γi nodes of G that prefix P [i . . .m− 1]
using the full-text dictionary F. Each of these γi nodes is a candidate requiring the
suffix condition to be first verified, and if successful, the prefix condition is tested.
The algorithm will maintain a compact list of all sub-paths of G that are matched by
P [i . . .m]. The head of the list for suffix i will be stored at W[i], a working space
array maintained during the search. In later stages of the algorithm, we will determine
if these sub-paths can be extended to match longer suffixes of P . Overall, there are
γ candidate positions that will be evaluated. Note that the exact count of candidates,
γ, can be determined using F, prior to the first stage of the algorithm in O(m log σ)
time. This permits us to allocate sufficient working space. Our algorithm attempts to
track all matching sub-paths in as little working space as possible. We describe the
information tracked during the course of the algorithm, and comment at the end on
the overall working space complexity. In what follows, we describe how the suffix and
prefix conditions are verified for a candidate node vj that matches a k length prefix of
P [i . . .m − 1]. This same procedure will be used to verify all γ candidates, across all
suffixes of P [2 . . .m− 1].

A Succinct Index for Hypertext 217

Verifying the Suffix Condition. We must verify that there exists a sub-path in G match-
ing P [i+k . . . m] that begins at some node vt such that (j, t) ∈ E. There are two cases
to consider: such a sub-path is a prefix of vt (and thus ends within vt), or it properly
contains vt. We will refer to the former as a sub-path initiation event, and the latter as
a sub-path extension event. For each candidate node vj we must consider both types.

To verify an initiation event, we first determine the range [a, b] of forward ids cor-
responding to nodes that contain P [i + k . . .m] as a prefix. This range was stored in
the preprocessing step. Then, we must determine if any of those nodes have an incom-
ing edge from node vj . Recall that node vj has forward id j and therefore reverse id
j′ = ΠR→F [j]. A counting query in the range [j′, j′]× [a, b] of Q determines cntinit, the
number of matching nodes. Specifically, cntinit is the number of sub-paths that originate
at node vj , match P [i . . .m], and end within a node connected to vj .

An extension event implies that P [i + k . . .m] must match a sub-path that contains,
but does not end within, a node connected to vj . Therefore, to verify an extension event,
we must determine if any putative sub-paths stored in the list at W[i + k] begin with a
node vt such that (j, t) ∈ E. (Note that if one or more of these sub-paths do exist, they
would have been stored in W[i+ k] at an earlier stage of the algorithm.) For each of the
at most γ entries in W[i+k], we use the forward id of its initial node, and j′, the reverse
id of vj , to perform a range query in Q in order to determine if they are adjacent. Note
that since we only need to establish adjacency in the range query, then no assumption
on the graph topology is made and therefore any directed graph (possibly cyclic) is
handled correctly. Let cntext be the number of entries in W[i + k] that are connected by
an edge from vj .

If the suffix condition is satisfied we append a new putative sub-path entry to the list at
W[i] and associate with it vj as the initial node. If cntext > 0, then we associate with that
entry a list of the cntext offsets that denote the entries in W[i + k] which are connected
to vj and form new putative sub-path matches for P [i . . .m]. We also associate with
each entry the count of sub-paths it begins. Consider that each of the cntext entries in
W[i+k] connected to vj may represent many sub-paths. The number of sub-paths each
represents is stored in the entry. Therefore, the number of sub-paths represented by our
new entry is the sum of the counts for these previous cntext entries, plus cntinit.

Verifying the Prefix Condition. If the suffix condition is satisfied for a candidate node
vj , we can test the prefix condition. We need to determine if there exists one or more
nodes that contain P [1 . . . i − 1] as a suffix and have an outgoing edge to node vj . In
the preprocessing step, we stored the range [a, b] of reverse ids corresponding to nodes
that contain P [1 . . . i− 1] as a suffix. The cntp number of matching nodes can be found
by querying the range [a, b] × [j, j] in Q. If cntp > 0, and the current count of sub-
paths beginning at vj that match P [i . . .m] is cnts, then G contains cntp × cnts paths
matching P .

Reporting all Matching Paths. Whenever a prefix condition is verified, all matching
paths can be enumerated by a simple backtracking procedure using the information
previously stored in W and the new prefix matches. The point data structure Q is once
again queried to determine the forward ids of nodes that contain the end of a matching
path. The permutation ΠR→F is used to ensure all nodes are reported by forward id.

218 C. Thachuk

Lemma 7. For a pattern P of length m, the occ number of matches of P that cross
more than one edge in G, can be determined in O(m log σ + γ2 log |V |

log log |V |) time. Their

path descriptions can be reported in an additional O(h + occ log |V |
log log |V |) time, where h

is the total number of nodes in all occ sub-paths matched by P . The working space is
O(m log n + γ2 log γ + γ log |V |) bits.

Proof. For each candidate node vj , the suffix condition must be verified by checking
for both initiation events and for extension events. When verifying initiation events,
a range query on Q is performed in O(log |V |

log log |V |) time. When verifying extension
events for vj , at most O(γ) previous entries representing putative sub-paths are con-
sidered to be extended by vj . For each putative sub-path, a range query is performed in

O(log |V |
log log |V |) time. Thus, verifying extension events for vj takes O(γ log |V |

log log |V |) time.

The suffix condition can be verified for all γ candidate nodes in O(γ2 log |V |
log log |V |) time.

Verifying the prefix condition is analogous to verifying suffix initiation events and takes
O(γ log |V |

log log |V |) time to verify the at most γ candidates that satisfy the suffix condition.

This yields an overall worst case time O(m log σ + γ2 log |V |
log log |V |).

The working space includes the O(m log n) bits from the preprocessing step, and
O(γ log |V |) bits to store counts of putative sub-paths and initial nodes of those sub-
paths. However, the working space is dominated by storing back pointers (offsets) in
the putative sub-path entries of the working array W to each previous entry that forms a
valid sub-path match for a suffix of P . There are at most O(γ) entries in W. Thus, each
can be uniquely identified with �log γ� bits. In the worst case, each entry stores O(γ)
back pointers giving an overall working space of O(m log n+γ log |V |+γ2 log γ) bits.
Importantly, we note that the total number of matches γ can be determined by F in a
preprocessing step in O(m log σ) time in order to allocate sufficient working space. ��

Combining Lemmas 4 through 7 we have our main result.

Theorem 1. A hypertext G = (V, E) can be represented in (2+o(1))n log σ+O(n)+
(1 + o(1))|E| log |E| + |V |(log |V | + log n

|V | + 2 + o(1)) bits, where the text of the
nodes in V are over an alphabet of size σ and have a combined length of n − |V |,
such that all matches of a pattern P of length m can be counted in O(m log σ +
m log |V |

log log |V | + γ2 log |V |
log log |V |) time, and reported in an additional O(occ1 log n + (occ2 +

occ3)
log |V |

log log |V | +h) time, where occ1 is the number of matches within a node of G, occ2

is the number of matches crossing a single edge, and h is the total number of nodes
in all occ3 sub-paths matching P that cross more than one edge. The working space is
O(m log n + γ2 log γ + γ log |V |) bits.

5 Considering Path Constraints in Hypertext

While our motivating problem of aligning transcripts to transcriptomes is better mod-
eled using a hypertext index than a linear text index, the model does not completely
capture all necessary information. Specifically, the hypertext models the splicing graph;
however, the set of valid transcripts in the transcriptome is a set P of paths through the

A Succinct Index for Hypertext 219

splicing graph. Not every path in the splicing graph is necessarily a valid transcript. We
now show how we can easily extend our index to only report matches of a pattern P if
they are a sub-path of at least one path in P .

For illustrative purposes, assume we have constructed a hypertext index for the exam-
ple in Figure 1 and all transcripts are valid, expect for t3. Further suppose the node labels
in the hypertext correspond to the exon labels in the figure. Then the set of valid paths
are P = {[e1, e2], [e1, e3], [e4], [e4, e5]}. We construct a serialization of these paths as
a string S = φe1e2φe1e3φe4φe4e5, over the integer alphabet [1 . . . |V |] ∪ {φ}, where
φ = 0. Next, we create a compressed suffix array S for S. We use the same matching
algorithm as before, and for each candidate path p = p1, . . . , pk through G reported,
we perform an additional verification step. Specifically, we see if the string ‘p1 . . . pk’
exists in S as a substring by performing a backward search query in S. Clearly, if the
path description of p is a substring in S, then p is a sub-path of some valid path in P .

Lemma 8. A set of valid paths P can be represented in (1 + o(1))h log |V | bits, where
h is the total number of nodes in all paths in P , such that a candidate path p, crossing
k nodes, can be verified in O(k log |V |) time.

We note that the space required to store all valid paths (by node ids) of a transcriptome
is still dominated by and nearly negligible compared to the space to index the node text.

6 Conclusions

We proposed a succinct index to model hypertext and focused on the case where the
space required to index the text dominates the space to represent the topology of the
graph. The index can model any hypertext and places no restriction on the graph topol-
ogy. We proposed a new pattern matching algorithm, capable of aligning a pattern to
any path in the hypertext, that is especially efficient for hypertexts where few nodes
share the same text. In this case, which is motivated by the problem of aligning pat-
terns to transcriptomes, the proposed algorithm is a significant improvement in runtime
complexity compared with all existing algorithms. We also showed how matches in a
hypertext can be restricted to a set of valid paths. Development of an efficient algorithm
to report approximate matches in the hypertext index is an important future direction.
Another interesting direction is to consider time and space trade-offs when using dif-
ferent graph topology representations [6,3].

Acknowledgments. The author is grateful to the anonymous reviewers who suggested
a more space efficient means to store the graph topology and other useful ideas and also
to Anne Condon for feedback on this manuscript.

References

1. Akutsu, T.: A Linear Time Pattern Matching Algorithm Between a String and a Tree. In:
Apostolico, A., Crochemore, M., Galil, Z., Manber, U. (eds.) CPM 1993. LNCS, vol. 684,
pp. 1–10. Springer, Heidelberg (1993)

2. Amir, A., Lewenstein, M., Lewenstein, N.: Pattern matching in hypertext. Journal of Algo-
rithms 35(1), 82–99 (2000)

220 C. Thachuk

3. Barbay, J., Claude, F., Navarro, G.: Compact rich-functional binary relation representations.
In: López-Ortiz, A. (ed.) LATIN 2010. LNCS, vol. 6034, pp. 170–183. Springer, Heidelberg
(2010)

4. Bose, P., He, M., Maheshwari, A., Morin, P.: Succinct orthogonal range search structures on
a grid with applications to text indexing. In: Dehne, F., Gavrilova, M., Sack, J.-R., Tóth, C.D.
(eds.) WADS 2009. LNCS, vol. 5664, pp. 98–109. Springer, Heidelberg (2009)

5. Claude, F., Navarro, G.: Self-indexed text compression using straight-line programs. In:
Královič, R., Niwiński, D. (eds.) MFCS 2009. LNCS, vol. 5734, pp. 235–246. Springer,
Heidelberg (2009)

6. Farzan, A., Munro, J.: Succinct representations of arbitrary graphs. In: 16th Annual European
Symposium on Algorithms, pp. 393–404 (2008)

7. Ferragina, P., Manzini, G.: Opportunistic data structures with applications. In: Symposium
on Foundations of Computer Science, pp. 390–398 (2002)

8. Grossi, R., Gupta, A., Vitter, J.S.: High-order entropy-compressed text indexes. In: ACM-
SIAM Symposium on Discrete Algorithms, pp. 841–850 (2003)

9. Horner, D., Pavesi, G., Castrignano, T., De Meo, P., Liuni, S., Sammeth, M., Picardi, E.,
Pesole, G.: Bioinformatics approaches for genomics and post genomics applications of next-
generation sequencing. Briefings in Bioinformatics (2009)

10. Jay, S., Ji, H.: Next-generation DNA sequencing. Nature Biotechnology 26(10), 1135–1145
(2008)

11. Lam, T.-W., Sung, W.-K., Tam, S.-L., Yiu, S.-M.: Space efficient indexes for string match-
ing with don’t cares. In: Tokuyama, T. (ed.) ISAAC 2007. LNCS, vol. 4835, pp. 846–857.
Springer, Heidelberg (2007)

12. Manber, U., Wu, S.: Approximate String Matching With Arbitrary Costs for Text and Hyper-
text. In: IAPR International Workshop on Structural and Syntactic Pattern Recognition, pp.
22–33 (1992)

13. Mortazavi, A., Williams, B., McCue, K., Schaeffer, L., Wold, B.: Mapping and quantifying
mammalian transcriptomes by RNA-Seq. Nature Methods 5(7), 621–628 (2008)

14. Navarro, G.: Improved approximate pattern matching on hypertext. Theoretical Computer
Science 237(1-2), 455–463 (2000)

15. Navarro, G., Mäkinen, V.: Compressed full-text indexes. ACM Computing Surveys 39(1), 2
(2007)

16. Park, K., Kim, D.: String Matching in Hypertext. In: Symposium on Combinatorial pattern
matching, p. 318 (1995)

17. Tam, A., Wu, E., Lam, T.-W., Yiu, S.-M.: Succinct text indexing with wildcards. In: Karl-
gren, J., Tarhio, J., Hyyrö, H. (eds.) SPIRE 2009. LNCS, vol. 5721, pp. 39–50. Springer,
Heidelberg (2009)

18. Thachuk, C.: Succincter text indexing with wildcards. In: Giancarlo, R., Manzini, G. (eds.)
CPM 2011. LNCS, vol. 6661, pp. 27–40. Springer, Heidelberg (2011)

When Was It Written?
Automatically Determining Publication Dates

Anne Garcia-Fernandez1,�, Anne-Laure Ligozat1,2,
Marco Dinarelli1, and Delphine Bernhard1

1 LIMSI-CNRS, Orsay, France
2 ENSIIE, Evry, France

{annegf,annlor,marcod,bernhard}@limsi.fr

Abstract. Automatically determining the publication date of a docu-
ment is a complex task, since a document may contain only few intra-
textual hints about its publication date. Yet, it has many important
applications. Indeed, the amount of digitized historical documents is con-
stantly increasing, but their publication dates are not always properly
identified via OCR acquisition. Accurate knowledge about publication
dates is crucial for many applications, e.g. studying the evolution of doc-
uments topics over a certain period of time.

In this article, we present a method for automatically determining the
publication dates of documents, which was evaluated on a French news-
paper corpus in the context of the DEFT 2011 evaluation campaign. Our
system is based on a combination of different individual systems, relying
both on supervised and unsupervised learning, and uses several exter-
nal resources, e.g. Wikipedia, Google Books Ngrams, and etymological
background knowledge about the French language. Our system detects
the correct year of publication in 10% of the cases for 300-word excerpts
and in 14% of the cases for 500-word excerpts, which is very promising
given the complexity of the task.

1 Introduction

Automatically determining the publication date of a document is a complex
task, since a document may contain only few intra-textual hints about its pub-
lication date. This task has many important applications including temporal
text-containment search [13] and management of digitized historical documents.
Indeed, the amount of digitized historical documents is constantly increasing, but
their publication dates are not always properly identified by automatic methods.

In this article, we present a novel method for automatically determining the
publication dates of documents, which was evaluated on a French newspaper
corpus in the context of the DEFT 20111 evaluation campaign [5]. Our approach
combines a large variety of techniques, based on both a training corpus and
� The author is now working at CEA-LIST, DIASI-LVIC lab at Fontenay-Aux-Roses,

France.
1 http://deft2011.limsi.fr/

R. Grossi et al. (Eds.): SPIRE 2011, LNCS 7024, pp. 221–236, 2011.
c© Springer-Verlag Berlin Heidelberg 2011

http://deft2011.limsi.fr/

222 A. Garcia-Fernandez et al.

external resources, as well as supervised and unsupervised methods. The main
contributions of the paper are as follows:

– We use the Google Books Ngrams, which were made recently available by
Google, in order to automatically identify neologisms and archaisms.

– We build classification models on a corpus covering a large range of historical
documents and publication dates.

– We apply Natural Language Processing techniques on challenging OCRized
data.

– We study and evaluate different independent systems for determining pub-
lication dates, as well as several combination techniques.

In the next section, we discuss the state of the art. In section 3 we detail the train-
ing and evaluation corpora as well as the evaluation methodology. In section 4 we
describe corpus independent approaches, which we call “chronological methods”,
while in section 5 we describe supervised classification methods. Combination
techniques for aggregating the individual systems are detailed in section 6. Fi-
nally, we evaluate the systems in section 7 and conclude in section 8 providing
some perspectives for future work.

2 State of the Art

Though there is an extensive literature on text categorization tasks, research on
temporal classification is scarce. Existing approaches are based on the intuition
that, for a given document, it is possible to find its publication date by selecting
the time partition whose term usage has the largest overlap with the document.
The models thus assign a probability to a document according to word statistics
over time.

De Jong et al. [3] aim at linking contemporary search terms to their historical
equivalents and at dating texts, in order to improve the retrieval of historical
texts. They propose building independent language models for documents and
time partitions (with varying granularities for model and output), using unigram
models only. Then the divergence between the models of a partition and a tested
document is measured by a normalized log-likelihood ratio with smoothing. Due
to the lack of huge digitized reference corpora, the experiments are performed
on contemporary content only, consisting of articles from Dutch newspapers,
with a time span ranging from 1999 to 2005. The models based on documents
outperform those based on time partitions.

Kanhabua and Nørvåg [8] reuse the previous model, but incorporate sev-
eral preprocessing techniques: part-of-speech tagging, collocation extraction (e.g.
“United States”), word sense disambiguation, concept extraction and word fil-
tering (tf-idf weighting and selection of top-ranked terms). They also propose
three methods for improving the similarity between models: word interpolation
(smoothing of frequencies to compensate for the limited size of corpora), tem-
poral entropy (to measure how well a term is suited for separating a document
from other documents in a document collection) and external search statistics

When Was It Written? Automatically Determining Publication Dates 223

from Google Zeitgeist (trends of search terms). They created a corpus of about
9,000 English web pages, mostly web versions of newspapers, covering on aver-
age 8 years for each source. The techniques were evaluated for time granularities
ranging from one week to one year. The preprocessing techniques improved the
results obtained by de Jong et al. [3]. This work lead to the creation of a tool
for determining the timestamp of a non-timestamped document [9].

The DEFT 2010 challenge proposed a task whose goal was to identify the
decade of publication of a newspaper excerpt [6]. The corpus was composed of
articles from five French newspapers, automatically digitized with OCR (Opti-
cal Character Recognition) and covering a time range of a century and a half.
The best performing system [1] obtained an f-measure of 0.338 using spelling re-
forms, birth dates, and learning of the vocabulary. The second best system [15]
used orthographic correction, named entity recognition, correction with Google
Suggest, date search on Wikipedia, and language models.

3 Methodology

3.1 Corpus Description

The dataset used for training and evaluating our system was provided in the
context of the DEFT 2011 challenge.

The corpora were collected from seven French newspapers available in
Gallica:2 La Croix, Le Figaro, Le Journal de l’Empire, Le Journal des Débats, Le
Journal des Débats politiques et littéraires, and Le Temps plus an unknown news-
paper present only in the evaluation data set. The corpus is composed of article
excerpts, called portions, containing either 300 or 500 words and published be-
tween 1801 and 1944. The excerpts with 300 or 500 words were obtained without
taking the structure of the source article into account so that the last sentence
of each excerpt can be incomplete. Moreover dates present in the excerpts were
removed, in order to circumvent the bias of dates available within the document
itself.

Table 1 summarizes general statistics about the corpora.3 The training corpus
provided by DEFT contains 3,596 newspaper portions. We divided this corpus
in two parts: an actual training set (TRN) and a development set (DEV). The
evaluation corpus (EVAL) was unavailable at the time of system development
and contains 2,445 portions.

The corpora were automatically digitized with OCR. Figure 1 shows an ex-
ample of digitized text in which erroneous words are underlined, while Figure 2
shows the original corresponding document.

Different kinds of errors can be identified, such as erroneous uppercasing, ad-
ditional and/or missing letters, punctuation, or space, sequence of one or several
erroneous letters... There are also archaic forms of words, such as “fragmens”. We
2 http://gallica.bnf.fr/
3 The number of portions per year is 24 for each year except for 1815: 21 portions

were proposed in the training set and 17 in the evaluation set.

http://gallica.bnf.fr/

224 A. Garcia-Fernandez et al.

Table 1. General description of training and test corpora

Training data Evaluation data
300 words 500 words 300 words 500 words

TRN DEV TRN DEV EVAL EVAL
portions 2396 1200 2396 1200 2445 2445
words 718,800 360,000 1,198,000 600,000 733,500 1,222,500
different words 73,921 48,195 107,617 67,012 78,662 110,749
different newspapers 6 6 6 6 7 7
Mean # portions per year 16 8 16 8 14 14

La séance musicale de M. Félicien David
au Palais de l’Industrie a obtenu un suc-
cès complet les fragmens du Désert, de
Christophe Colomb et de Moïse au Sinaï ont
été très vivemçnt applaudis; le Chant du soir a
été redemandé par une acclamation unanime.
Jeudi 22, le même programme sera de nouveau
exécuté dans les mêmes conditions: l,2S0 cho-
ristes et’instrumentistes. Samedi 24, seconde
exécution du concert dirigé par M. Berlioz.
Dimanche 2S, fermeture de la nef centrale du
Palais de l’Industrie et clôture des fêtes mu-
sicales. Lotecfètairedela rédaction, F. Carani.

Fig. 1. Digitized text from a 1855 document Fig. 2. Excerpt from a 1855 docu-
ment

estimated the number of out of vocabulary (OOV) words using a contemporary
spell checker: hunspell.4 There are between 0 and 125 OOV words in 300-word
portions and a mean of 22 OOV words per portion. We observed that there is
no clear correlation between the publication year of an excerpt and the number
of OOV words, i.e., the quality of the OCR document.

This kind of text is especially challenging for NLP tools, since traditional
techniques such as part-of-speech tagging or named entity recognition are likely
to have much lower performance on these texts.

3.2 Corpus Pre-processing

The corpus was preprocessed by the TreeTagger [17] for French, and words were
replaced by their lemmas. The goal was to reduce the vocabulary, to improve the
similarity between documents. For the portions of the TRN corpus for example,
the vocabulary thus dropped from 74,000 to 52,000 different words.

3.3 Evaluation Score

The evaluation measures that we use for our final system are the percentages of
correct decades and years given by our systems. Yet the aim is to be as close as
4 Open source spell checker: http://hunspell.sourceforge.net/

http://hunspell.sourceforge.net/

When Was It Written? Automatically Determining Publication Dates 225

possible to the reference year so we also use an evaluation metric which takes
into account the distance between the predicted year and the reference year,
which is the official DEFT 2011 evaluation score [5]. Given a text portion ai

whose publication year in the reference is dr (ai), a system gives an estimated
publication date dp (ai). The system then receives a score S which depends on
how close the predicted year is to the reference year. This similarity score is
based on a gaussian function and is averaged on the N test portions. The precise
formula is given by equation 1.

S =
1
N

N∑
i=1

e−
π

102
(dp(ai)−dr(ai))

2
(1)

This score is thus a variant of the fraction of correctly predicted years, where
wrong predictions at a certain distance from the correct answer are given less
points than correct answers, instead of no point as do more traditional measures.
For example, the score is of 1.0 if the predicted year is correct, of 0.97 if off by
one year, of 0.5 if off by 4.7 years, and falls to 0 if it is off by more by 15 years.

3.4 Description of the Methods

We used two types of methods. Chronological methods (see section 4) yield the
periods of time which are most plausible for each portion, but without ranking
the corresponding years. In the above example (Figure 1), several cues give indi-
cations on the publication date of the document: several persons are mentioned
(“M. Félicien David” and “M. Berlioz” for example), which means that the pub-
lication date is (at least) posterior to their birthdates; moreover, the spelling of
the word “fragmens” is an archaism, since it would now be written “fragments”,
which means that the text was written before the spelling reform modifying this
word; finally, the exhibition hall “Palais de l’Industrie” was built in 1855 and
destroyed in 1897, so the document date must be posterior to 1855, and is likely
to be anterior to 1897 (as word statistics over time such as Google Books Ngrams
can show). These are the kinds of information used by chronological methods to
reduce the possible time span. These methods make use of external resources,
and are thus not dependent on the corpora used.

Classification methods (see section 5) make use of the training corpora to
calculate temporal similarities between each portion and a reference corpus.

4 Chronological Methods

4.1 Named Entities

The presence of a person’s name in a text portion is an interesting clue for
determining its date, since the date of the document must be posterior to the
birthyear of this person.

We used the following strategy:we automatically gathered the birthyears of per-
sons born between 1781 and 1944 by using Wikipedia’s “Naissance_en_AAAA”

226 A. Garcia-Fernandez et al.

categories.5 About 99,000 person names were thus retrieved, out of which we se-
lected 96,000 unambiguous ones (for example two “AlbertKahn” were found), since
we have no simple way of knowing which particular instance is mentioned in the
texts.

For each text portion, we extracted occurrences of person names using
WMatch,6 which allows for fast text annotation [4,16]. For the TRN corpus,
529 names were detected in 375 portions (out of 2,359 portions), out of which 16
(3%) were actually namesakes or false detections (for example, Wikipedia has
an entry for the French novelist “Colette”, whose name is also a common first
name).

A score was then given to each candidate year for a given portion, according
to the person mentions found in that portion. We considered that before the
person birthyear Yb, the probability of a year y < Yb being the correct answer
is low (here 0.3), then for a year y between the birthyear and 20 years after7
(Yb ≤ y ≤ Yb + 20), the probability raises linearly reaching 1.0 (see Figure 3a).

(a) with Jules Verne (b) with Jules Verne and Antoni Gaudí

Fig. 3. Scoring function given person mentions

For a given text portion p, the score for each year is the product of the score
for each person mention found in p. Figure 3b shows the score obtained in the
presence of two person mentions, Jules Verne, born in 1828 and Antoni Gaudí,
born in 1852.

4.2 Neologisms and Archaisms

Neologisms correspond to newly created words, while archaisms refer to words
which cease being used at some time. Both neologisms and archaisms constitute
interesting cues for identifying publication dates: given the approximate year of
apparition of a word, one can assign a low probability for all preceding years and
a high probability to following years (the reverse line of argument can be applied
to archaisms). However, there is no pre-compiled list of words with their year
5 Category:Y Y Y Y _birth.
6 Rule-based automatic annotation tool, available upon request.
7 Intuitively, a person that is less than 20 years old will not be cited in a newspaper

and, in the absence of a more appropriate model, we considered that then s/he has
a equal probability to be cited all over his/her life.

When Was It Written? Automatically Determining Publication Dates 227

of appearance or disappearance. This type of information is sometimes included
in dictionaries, but depends on the availability of these resources. We therefore
developed a method to automatically extract neologisms and archaisms from
Google Books unigrams for French [10].

Automatic Acquisition of Neologisms and Archaisms. Automatically
determining the date of appearance and disappearance of a word is not a triv-
ial task. In particular, metadata associated with Google Books are not always
precise [14]. It is therefore not possible to use a simple criterion such as
extracting the first year when the occurrence count of a word exceeds 1 to
identify neologisms. We developed instead a method relying on the cumulatice
frequency distribution, i.e., for each year, the number of occurrences of the word
since the beginning of the considered time span divided by the total number of
occurrences:

1. Get the word’s count distribution for years ranging from 1700 to 2008;8
2. Smooth the distribution with a flat smoothing window9 of size 3;
3. Get the word’s cumulative frequency distribution and determine the appear-

ance/disappearance date as the first year where the cumulative frequency
exceeds a given threshold.

We defined the best cumulative frequency thresholds by using manually selected
development sets consisting of 32 neologisms (e.g. “photographie” – photography,
“télévision” – television) and 21 archaisms (old spellings which are no longer in
use, see Section 4.3). This number of neologisms and archaisms was sufficient to
find reliable thresholds. The obtained thresholds were 0.008 for neologisms and
0.7 for archaisms. Moreover, we only kept neologisms with a mean occurrence
count of at least 10 and archaisms with a mean occurrence of at least 5 over the
considered year range. Overall, we were able to extract 114,396 neologisms and
53,392 archaisms with appearance/disappearance year information.

Figure 4 displays two cumulative frequency curves: one for an archaism (the
old spelling of the word “enfants”, children), and the other for a neologism (“dy-
namite”, invented in 1867). The thresholds correspond to the horizontal dotted
lines. The curves have very different profiles: archaisms are characterised by a
logistic curve, which reaches a plateau well before the end of the considered year
range. On the other hand, neologisms correspond to an increasing curve.

We calculated the error rate on the DEV corpus: for 90% of the archaisms
found in the corpus, the date of the portion is anterior to the disappearance
date, and for 97% of them, it is anterior to the disappearance date plus 20 years.
For the neologisms, the date of the portion is posterior to the appearance date
for 97% of them, and to the appearance date minus 20 years for 99.8% of them.
This 20-years “shift” (20 years giving the most accurate and precise results on
the training corpus) is taken into account in the scoring formula.
8 The first available year in Google Books ngrams is actually 1536. However, given the

year-range of our task, we considered that 1700 was an adequate lower threshold.
9 As defined in http://www.scipy.org/Cookbook/SignalSmooth

http://www.scipy.org/Cookbook/SignalSmooth

228 A. Garcia-Fernandez et al.

(a) Archaism (b) Neologism

Fig. 4. Cumulative frequency distributions

Scoring with Neologisms and Archaisms. The automatically extracted lists
of neologisms and archaisms are used to assign a score for each year, given a text
portion. For neologisms, years following the appearance date are given a high
score, while preceding years are assigned a lower score. The following formula is
used for neologisms. p corresponds to text portion, w is a word, y a year in the
considered year range 1801-1944 and year(w) is the date of appearance extracted
for a neologism.

scoreneo(p, y) =
∑

w∈p score-neo(w,y)

|p| where: score-neo(w, y) =⎧⎪⎪⎪⎨⎪⎪⎪⎩
1.0 if w /∈ neologisms
1.0 if w ∈ neologisms and y ≥ year(w)
0.2 if w ∈ neologisms and (year(w) − y) > 20
0.2 + 0.04 · (20 + y − year(w)) otherwise

An equivalent formula is used for archaisms, by considering that years following
the disappearance of a word have a low score.

4.3 French Spelling Reforms

During the 1801-1944 period, French spelling underwent two major reforms: one
in 1835 and another in 1878. The main change induced by the first reform is
that conjugated verbs ending with “oi” changed to “ai”: e.g. the inflected form
“avois” of the verb “avoir” (to have), was changed into “avais”. The second re-
form mostly concerned names ending with “ant” or “ent”, whose plural changed
to “ants”/“ents” instead of “ans”/“ens” (for example “enfans” was changed into
“enfants”–children).

Figure 5 displays the distribution of each type of words (“oi” and “a/ents”)
in the training corpus for each year. The first type of words is present mostly
before 1828, and the second type only before 1891, which roughly correspond to
the reform dates.

Scoring with Spelling Reforms. Following Albert et al. [1], we use this
information as a clue to determine the date of a text. We assign a score for each

When Was It Written? Automatically Determining Publication Dates 229

(a) Words ending with "oi" (b) Words ending with "a/ents"

Fig. 5. Distributions of pre-reforms words in the TRN corpus

year to each text portion. In order to determine old spellings in use before the
reforms, we use the following method:

– Get unknown words with hunspell (with the French DELA as a dictio-
nary [2]);

– If the word ends with “ois/oit/oient”, replace “o” with “a”;
If the new word is in the dictionary, increment the counter n28, which
corresponds to the number of old word spellings in use before the first
reform;

– Else, if the word ends with “ans/ens”, insert “t” before “s”;
If the new word is in the dictionary, increment the counter n91, which
corresponds to the number of old word spellings in use before the second
reform.

Then, a function was used to determine a score for each year y and a portion p
based on the counters n28 and n91, according to the following formulas (where
r in fr can be either 28 or 91):

scorespell(p, y) = score28(p, y) · score91(p, y) with:

scorer(p, y) =

{
fr(y) if y > r

1 if y ≤ r
, f28(y) =

⎧⎪⎪⎨⎪⎪⎩
1 if n28 = 0

0.15 if n28 = 1

0 if n28 > 1

and f91(y) =

{
1 if n91 = 0

0 if n91 > 0

For example, if n28 = 1 and n91 = 1 for a text portion, the score for years before
1828 is 1.0, for years between 1828 and 1891, the score is 0.15, which corresponds
to the error rate for using this criterion on our training corpus, and for years
after 1891, the score is 0 since the presence of an old spelling in use before the
second reform is a very strong indication that the text was written before 1891.

4.4 Intermediate Conclusion

As we have shown in the previous section, chronological methods yield very
accurate indications for a text’s time span (with a maximum error rate of 3%).
However, they only discriminate between large time periods, and are not precise
enough for identifying the publication date (e.g. if a portion contains a person’s
name whose birthyear is 1852, we can only say the portion has not been published
before 1852). Thus, we also used corpus-based classification methods: a cosine

230 A. Garcia-Fernandez et al.

similarity relying on a feature vector representation of text portions and using
the standard tf · idf feature weighting; and a machine learning approach based
on SVMs. These approaches are described in next sections.

5 Classification Methods

Temporal similarity methods calculate similarities between each portion and a
reference corpus.

5.1 Cosine Similarity-Based Classification

Using the Training Corpus. The training corpus provides examples of texts
for each year in the 1801-1944 year range. These texts can be used as a reference
to obtain word statistics over time. We grouped all portions for the same year
in the TRN corpus and used these portion groups as references for the corre-
sponding years. For classification, the similarity is computed between a group of
portions in the same year and the portion to be classified. Each group and each
portion were converted into feature vectors using the tf · idf score as feature
weighting. Given an n-gram i and a portion (or group of portions) j:

tf · idfi,j = ni,j∑
k nk,j

· log |Y |
|{yj:wi∈yj+smoothing}|

where ni,j is the number of occurrences of n-gram wi in portion (or group) j, |Y |
is the number of years in the training corpus, yj is the group of text portions for
year j; smoothing = 0.5 is applied to take into account words in the test corpus
which were not found in the training corpus.

For a text portion in the test corpus, we computed the similarities between
the portion and each group representing a year with a standard cosine similarity.
Experiments were made for word n-grams with n ranging from 1 to 5; yet, for
n>2, the small size of the training corpus leads to sparse data. For word n-grams,
we used the lemmatized version of the corpora since it gave better results in
preliminar experiments.

As the corpus is composed of OCRized documents, there are many errors
in the texts, which poses many problems for tf.idf scoring: the tfs and dfs are
smaller than what would be expected for “real” words since errors impede the
identification of some occurrences, and some erroneous words have higher idfs
than would be expected. In order to cope with this difficulty, we also computed
the similarity using character n-grams (following [12] for information retrieval
on an OCRized corpus). Thus, for example for the text “sympathie1” which
contains a “real” word “sympathie” and an OCR error “1”, character n-grams
(for n<9) will match all n-grams of the word "sympathie", despite the OCR
error. Then, portions were indexed as before, and a cosine similarity was also
applied to match each portion with the best corresponding year.

When Was It Written? Automatically Determining Publication Dates 231

Using Google Books Ngrams. The training corpus is rather small, and we
therefore also experimented with using Google Books Ngrams as training data.
Due to the huge amount of data in Google Books Ngrams, we only used the n-
grams with alphanumeric content and with more than 10 occurrences in a given
year. The resulting data was used instead of our training corpora. The tf.idf
formula is slightly modified for the training corpus, since ni,j is the number of
occurrences of n-gram wi for year j and yj is the Google Ngram data for year j.

5.2 Support Vector Machines (SVM)

SVMs are well-known machine learning algorithms belonging to the class of
maximal margin linear classifiers [18]. For our experiments with SVM we used
svm-light10 [7]. Two kernel functions have been tested for our task: polynomial
kernel and radial basis function, both available in the svm-light package.
Given the small amount of data available for each year (25 portions for each
year, except for 1815 which has 21 portions), the one-VS-all training approach
was used: a model was created for each year against all other years. The SVM
system consists of 144 binary models, one corresponding to each year, from 1801
to 1944. In each model, positive instances are those extracted from portions
belonging to the target year to be detected, negative instances are all the others.
Each model is able to distinguish portions belonging to the corresponding year.
At classification time, each portion is evaluated with all 144 models and the one
providing the highest score is chosen as the correct answer.

SVM Settings and Tuning. SVM parameters as well as feature sets were
tuned on the TRN and DEV sets. Neither all parameters, nor all features types
were optimized. A full optimization of all parameters and features requires a huge
number of experiments. Instead, based also on our experience, in some cases we
used default or a-priori parameters. The SVM parameter C for soft margin (see
[18]) was set to 1. In most of the tasks the best value is between 1 and 10, 1
gives always fair results. The cost-factor parameter, affecting the weighting of
errors made on positive and negative instances, was set to the ratio between
the number of negative and positive instances, as suggested in [11]. Concerning
kernel functions, the polynomial kernel was more effective than the radial
basis function on the DEV set and it was kept for following system tuning.
Default values for polynomial kernel parameters were used (1 for c and 3 for
polynomial degree d).

Concerning the feature set, we tried several sets for preliminary studies, and
for further experiments we kept only the most promising in terms of performance
on DEV. We first experimented with some configurations typical of text cate-
gorization tasks. For example we removed stop-words and we replaced words
by their lemmas (in inflectional languages like French, they provide roughly
the same information as stems). Surprisingly this led to a degradation of per-
formances. In contrast, using both words and lemmas and keeping stop-words,
10 Available at http://svmlight.joachims.org/

http://svmlight.joachims.org/

232 A. Garcia-Fernandez et al.

gave better results than those obtained using only words. This configuration was
chosen as baseline SVM system. Further experiments were performed to tune the
size of word n-grams to be used in feature vectors. We tried to use n-grams of
size from 1 up to 4. 2-grams gave best results.

Using this configuration we integrated the information provided by systems
described in section 4: birth dates of persons, neologisms and archaisms, French
spelling reforms. In particular each of these systems provides information that
could be encoded in SVM feature vectors as feature:year, where feature is a
person name in case of birth dates, a neologism or archaism word or a word
that has been reformed in one of the two French spelling reforms. Given the
sparsity of feature vectors representation, feature values in the baseline system
are always much smaller than any of the year provided by any of the chrono-
logical methods. This has been a problem for learning the SVM models. The
problem still holds when shifting year values from the range 1801..1944 to the
range 1..144. Indeed we experienced training problems or performance degrada-
tion when using such a representation. In order to overcome this problem we
split the information provided by chronological methods in two parts, corre-
sponding to two sets of binary features (the value is 0 if the feature is absent, 1
if present): one for the information alone, e.g. NEOLOGISM_<WORD> or RE-
FORMED_<WORD> for neologisms or reformed words,11 respectively; another
for the year the information appears in, e.g. NEOLOGISM-YEAR_<YEAR> or
REFORMED-YEAR_<YEAR>. This representation always led to performance
improvements.

Since in preliminar studies experiments on 500-word portions reflected the
behavior of 300-word portions, we did not carry out all experiments also on
500-word portions. Instead we applied directly the best configuration found for
300-word portions.

6 Scoring Combination

Given the differences in characteristics of individual systems described in previ-
ous sections, we made a combination of the score provided by each individual
system with the aim of improving the final result. The methods do not have
the same overall performance nevertheless they all provide useful information:
for instance, archaisms indicate an upper limit for the publication date. For
the combination of scores, we experimented with two different strategies: simple
multiplication and linear regression of scores provided by individual systems.

Multiplication of Scores. This combination consists in multiplying the scores
provided by the different methods, for each portion and for each year:

scoremultiplication(p, y) =
∏

k scorek(p, y)

where scorek(p, y) is the score of the system k labelling portion p as being
published in year y.
11 <WORD> is a place holder for any word belonging to the specified category.

When Was It Written? Automatically Determining Publication Dates 233

Linear Regression on Scores. In this case, scores from different systems are
not multiplied but summed according to the following formula:

scoreregression(p, y) =
∑

k αk · scorek(p, y) + ε

with αk the coefficient for the system k, scorek(p, y) the score given by the
system k to the portion p for the year y and ε the error term.

Coefficients were fitted on the training corpus using the R function lm(). The
linear regression process finds the best model (ie. α values) to predict a numerical
value from clues (system scores in our case). In our case, the numerical value to
be predicted depends on the distance dist between a year and the true year of
publication of the portion : the value is 1.0− dist/143.

In the development phase, we fitted the α and ε values on the TRN corpus
and tested the combination on the DEV corpus. As the cosine and SVM systems
need to be trained, we did not include the score of those systems in our regression
model. We thus computed a regression score based on scores from neologism,
archaism, birth dates of person, and spelling reforms information. The scores of
the cosine and SVM systems were multiplied by this regression score. For the
test phase, we fitted the values on the entire training data set.

7 Results

We evaluate our approach using the measures described in section 3.3. We first
present the results of the cosine and SVM approaches and then the results of
the two scoring combination methods described in section 6. The systems used
for the evaluation data have been trained on the entire training data (TRN +
DEV).

7.1 Results for Classification Methods

Cosine Similarity. The results of the cosine similarity system are presented in
table 2 (only the best scoring settings are given). With the training corpus, char-
acters 5-grams have the best results on both portion sizes, which was expected
since the documents are quite noisy. Word unigrams are better on 300-word
portions than bigrams. Yet bigrams perform better on 500-word portions, which
tends to show that they benefit from an increased amount of data.

Table 2. Results obtained for the cosine based methods

Training corpus Google Ngrams
DEV EVAL DEV EVAL

300 w. 500 w. 300 w. 500 w. 300 w. 500 w. 300 w. 500 w.
word 1-grams 0.260 0.299 0.267 0.321 0.210 0.221 0.200 0.216
word 2-grams 0.209 0.319 0.263 0.327 0.238 0.295 0.241 0.264
char 5-grams 0.287 0.327 0.311 0.363 - - - -

234 A. Garcia-Fernandez et al.

For the cosine method based on Google Ngrams, the corpus used was not
lemmatized, since Google Ngrams contain inflected words. The best results were
obtained with bigrams. Results are lower than those using only the training
corpus which was not expected because Google Ngrams is a much larger data set.
This could be due to the different nature of documents: our corpus is composed
only of newspaper excerpts. Moreover the publication dates in Google Books are
not completely reliable [14].

SVM System. Results obtained with the system based on SVM are reported
in tables 3 and 4. As can be seen from table 3, incrementally adding features
encoding the information provided by chronological methods leads to consistent
performance improvements. In table 4 we detail all the results obtained with the
best system on 300 and 500-word portions.

Table 3. Additive results of the SVM sys-
tem with different features on the DEV cor-
pus for 300 words

Baseline 0.228
(word 2-grams + lemmas)
+neologisms 0.234
+spelling reforms 0.242
+birth dates 0.243

Table 4. Results of SVM system

DEV EVAL
300 words 500 words 300 words 500 words

0.243 0.293 0.272 0.330

DEV EVAL
300 w. 500 w. 300 w. 500 w.

mult. 0.343 0.401 0.378 0.452
regress. 0.356 0.390 0.374 0.428

Fig. 6. Scores and correct decades/years obtained with fusion

Scoring Fusion. Figure 6 displays the results obtained on the training and
evaluation data sets for the various system combinations. Scoring fusions con-
sistently improve the scores of individual systems. Results on 500-word portions
are much higher than results on 300-word portions. For the evaluation data,
fusion by multiplication performs better than fusion using linear regression.

When Was It Written? Automatically Determining Publication Dates 235

Figure 6 shows results in terms of correct decades and years at the first rank.
35% of first rank decades are the correct ones for 300-word portions and 40%
for 500-word portions. For years, the fusion using linear regression detects the
correct year for respectively 10% and 14% of the 300 and 500-word text portions.
Those results are much higher than the random selection of a decade or a year
in the time span (7% for decades and 0.7% for years). For decades, using the
DEFT 2010 evaluation metric, our results are also higher than results obtained
by the best participants to the DEFT 2010 challenge [6].

8 Conclusions and Future Work

In this article, we present a system for automatically dating historical docu-
ments. It is based on several methods, both supervised and unsupervised, and
takes advantage of different external resources, such as Google Ngrams or knowl-
edge about spelling reforms. We obtain 14% of correct years and 42% of correct
decades in our best-performing setting.

The results show that this is a challenging task for several reasons: the docu-
ments may not contain many intra-textual hints about their publication dates,
digitized historical documents can be of a low quality, the vocabulary is differ-
ent from the vocabulary currently in use, and external resources are not always
completely reliable.

These experiments made it possible to observe the quality of digitized docu-
ments, and to adapt the NLP techniques we used to this specific condition, for
example by considering characters n-grams instead of word n-grams. In order to
improve the quality of documents, we plan to use OCR correction. We would also
like to investigate the application of named entity recognition, including event
detection. Finally, we plan to work on different corpora in order to test the ro-
bustness of our methods, and to perform experiments with whole documents
without date anonymisation instead of text portions.

References

1. Albert, P., Badin, F., Delorme, M., Devos, N., Papazoglou, S., Simard, J.: Décennie
d’un article de journal par analyse statistique et lexicale. In: DEFT 2010, TALN
(2010)

2. Blandine, C., Silberzstein, M.: Dictionnaires électroniques du français. Langue
française 87 (1990)

3. De Jong, F., Rode, H., Hiemstra, D.: Temporal language models for the disclosure
of historical text. In: Humanities, Computers and Cultural Heritage, p. 161 (2005)

4. Galibert, O.: Approches et méthodologies pour la réponse automatique à des ques-
tions adaptées à un cadre interactif en domaine ouvert. Ph.D. thesis, Université
Paris-Sud 11, Orsay, France (2009)

5. Grouin, C., Forest, D., Paroubek, P., Zweigenbaum, P.: Présentation et résultats
du défi fouille de texte DEFT2011. In: Actes TALN (2011)

6. Grouin, C., Forest, D., Sylva, L.D., Paroubek, P., Zweigenbaum, P.: Présentation
et résultats du défi fouille de texte DEFT 2010: Oú et quand un article de presse
a-t-il été écrit? In: Actes TALN (2010)

236 A. Garcia-Fernandez et al.

7. Joachims, T.: Making large-scale SVM learning practical. In: Advances in Kernel
Methods - Support Vector Learning. MIT Press, Cambridge (1999)

8. Kanhabua, N., Nørvåg, K.: Improving temporal language models for determining
time of non-timestamped documents. In: Research and Advanced Technology for
Digital Libraries, pp. 358–370 (2008)

9. Kanhabua, N., Nørvåg, K.: Using temporal language models for document dat-
ing. In: Buntine, W., Grobelnik, M., Mladenić, D., Shawe-Taylor, J. (eds.) ECML
PKDD 2009. LNCS, vol. 5782, pp. 738–741. Springer, Heidelberg (2009)

10. Michel, J.B., Shen, Y.K., Aiden, A.P., Veres, A., Gray, M.K., The Google Books
Team, Pickett, J.P., Hoiberg, D., Clancy, D., Norvig, P., Orwant, J., Pinker, S.,
Nowak, M.A., Aiden, E.L.: Quantitative Analysis of Culture Using Millions of
Digitized Books. Science 331(6014), 176–182 (2011)

11. Morik, K., Brockhausen, P., Joachims, T.: Combining statistical learning with a
knowledge-based approach - a case study in intensive care monitoring. In: Proceed-
ings of ICML 1999, pp. 268–277. Morgan Kaufmann Publishers Inc., San Francisco
(1999)

12. Naji, N., Savoy, J., Dolamic, L.: Recherche d’information dans un corpus bruité
(OCR). In: CORIA (2011)

13. Nørvåg, K.: Supporting temporal text-containment queries in temporal document
databases. Data & Knowledge Engineering 49(1), 105–125 (2004)

14. Nunberg, G.: Google’s Book Search: A Disaster for Scholars. The Chronicle of
Higher Education (August 2009) (Online, accessed April 13, 2011)

15. Oger, S., Rouvier, M., Camelin, N., Kessler, R., Lefèvre, F., Torres-Moreno, J.:
Système du LIA pour la campagne DEFT 2010: datation et localisation d’articles
de presse francophones. In: DEFT 2010, TALN (2010)

16. Rosset, S., Galibert, O., Bernard, G., Bilinski, E., Adda, G.: The LIMSI partic-
ipation to the QAst track. In: Working Notes of CLEF 2008 Workshop, Aarhus,
Danemark (2008)

17. Schmid, H.: Probabilistic part-of-speech tagging using decision trees. In: Interna-
tional Conference on New Methods in Language Processing, pp. 44–49 (1994)

18. Vapnik, V.N.: Statistical Learning Theory. John Wiley and Sons, Chichester (1998)

A New Approach for Verifying URL Uniqueness

in Web Crawlers

Wallace Favoreto Henrique1, Nivio Ziviani1, Marco Antônio Cristo2,
Edleno Silva de Moura2, Altigran Soares da Silva2, and Cristiano Carvalho1

1 Universidade Federal de Minas Gerais,
Department of Computer Science, Belo Horizonte, Brazil

{wallace,nivio,cristiano.dcc}@dcc.ufmg.br
2 Universidade Federal do Amazonas,

Department of Computer Science, Manaus, Brazil
{marco.cristo,edleno,alti}@dcc.ufam.edu.br

Abstract. The Web has become a huge repository of pages and search
engines allow users to find relevant information in this repository. Web
crawlers are an important component of search engines. They find, down-
load, parse content and store pages in a repository. In this paper, we
present a new algorithm for verifying URL uniqueness in a large-scale
web crawler. The verifier of uniqueness must check if a URL is present in
the repository of unique URLs and if the corresponding page was already
collected. The algorithm is based on a novel policy for organizing the set
of unique URLs according to the server they belong to, exploiting a lo-
cality of reference property. This property is inherent in Web traversals,
which follows from the skewed distribution of links within a web page,
thus favoring references to other pages from a same server. We select the
URLs to be crawled taking into account information about the servers
they belong to, thus allowing the usage of our algorithm in the crawler
without extra cost to pre-organize the entries. We compare our algorithm
with a state-of-the-art algorithm found in the literature. We present a
model for both algorithms and compare their performances. We carried
out experiments using a crawling simulation of a representative subset
of the Web which show that the adopted policy yields to a significant
improvement in the time spent handling URL uniqueness verification.

1 Introduction

In July 2008, Google has reported more than 1 trillion unique URLs in its sched-
uler queue1. To get to this number of unique URLs, the crawler starts at a set
of initial pages and follow each of their links to new pages. Then it follows the
links on those new pages to more pages, in a continuous fashion. In fact, they
found more than 1 trillion individual URLs, but not all of them lead to unique
web pages, as many pages are duplicates or auto-generated copies of each other.

1 http://googleblog.blogspot.com/2008/07/we-knew-web-was-big.html

R. Grossi et al. (Eds.): SPIRE 2011, LNCS 7024, pp. 237–248, 2011.
c© Springer-Verlag Berlin Heidelberg 2011

http://googleblog.blogspot.com/2008/07/we-knew-web-was-big.html

238 W.F. Henrique et al.

Search engines consist of web crawlers (which find, download, parse content
and store each page), indexers (which construct an inverted file index for fast
retrieval of pages), and query processors (which rank documents by relevance to
answer user queries). Search engines download and index only a subset of the
pages related to the set of unique URLs.

This paper focuses on the problem of verifying URL uniqueness in a web
crawler. The verifier of uniqueness must check if a URL is present in the reposi-
tory of unique URLs and if the corresponding page was already collected. For a
repository of URLs stored in a disk file, URLs can be checked against a buffer
of popular URLs and only those not present are searched in the disk file. In [2]
and [4], the RAM buffer is a LRU cache with an array of recently added URLs,
in [5], a general purpose database is used with a RAM caching, and in [6], a
balanced tree of URLs is used for disk checking.

A better idea is to accumulate URLs into a RAM buffer and check several
URLs sequentially in one pass. This batch disk check strategy is used by DRUM
(Disk Repository with Update Management), which is part of the IRLBot web
crawler [3]. DRUM can store large volumes of arbitrary hashed data on disk and
implement very fast check, update, and check+update operations using bucket
sort. Through a set of comparison experiments it is shown that DRUM outper-
forms all the previously cited ones. Thus, in this work, we will use DRUM as
our comparison baseline to evaluate our proposed strategy. While DRUM can
be applied to other tasks such as handling “robots.txt” files and DNS caching,
we here focus on its use for verifying URL uniqueness.

For a large number of pages, the task of verifying URL uniqueness becomes
very complex. As shown in [3], the complexity of verifying URL uniqueness is
quadratic on the number of links that must pass through URL check. In the
batch disk check strategy large sets of URLs are overwritten in lexicographic
order in disk files, which is a time consuming operation.

In this paper, we present VEUNIQ (VErifier of UNIQueness). VEUNIQ is
based on a novel policy for organizing the set of known URLs according to the
server they belong. Following such a policy, the algorithm exploits a locality of
reference property, which is inherent in Web traversals. This property follows
from the skewed distribution of links within a web page, which favors references
to other pages from a same server. Previous work [1, 7] have observed and ex-
ploited this property for ranking purposes, and, in here, we take advantage of
such property to speed up the crawling process.

VEUNIQ is part of a larger web crawling project developed by us. Our schedul-
ing strategy in this crawler also selects URLs taking into account information
about the servers they belong to, thus allowing the usage of VEUNIQ in the
crawler without extra cost to pre-organize the entries.

We present a model for both algorithms, DRUM and VEUNIQ, and compare
their performance. We carried out experiments using a crawling simulation of
a representative subset of the Web which show that the adopted policy yields
to an improvement in the time spent handling URL uniqueness verification in
comparison to the baseline algorithm.

A New Approach for Verifying URL Uniqueness in Web Crawlers 239

2 Related Work

Few works in literature have addressed the problem of ensuring that a certain
page will not be collected more than once during a crawling cycle. A very first
approach to deal with this problem was proposed by Pinkerton [5]. He used
the B-Tree structure of a database management system (DBMS) to verify the
uniqueness of each page URL, thus avoiding repeated occurrences in the list
of URLs to be collected. This strategy is simple to implement since it takes
advantage of the large availability of commercial DBMS systems. However, the
use of a DBMS to store and retrieve a massive number of URLs leads to poor
disk performance with large impact over the whole crawling process.

To cope with this problem, Heydon and Najork [2] proposed the use of a cache
in memory to minimize random disk access operations. Their algorithm, called
Mercator-A, would only perform disk accesses if the current URL being checked
was not found in the cache. In such a case, to minimize the probability of new
misses, a new set of URLs would be retrieved from the disk instead of only the
missing one. The disadvantage of Mercator-A lies in the fact that, in the worst
case, it requires a disk access for each URL and that access operation comprises
much more data to be transferred.

A better strategy to minimize random disk-accesses operations is to check
several URLs sequentially in one pass, a strategy called batch disk check. The
idea is to accumulate URLs into a memory buffer. When this buffer is full, the
URLs are sorted in place. They are then merged with blocks of (already sorted)
URLs retrieved from the disk, so that duplicates are not stored. This is the
main idea behind the approaches referred to as Mercator-B [4] and Polybot [6].
Polybot avoids the sorting step because it uses a binary tree as memory buffer.

A more recent algorithm, called DRUM (Disk Repository with Update Man-
agement), was proposed for the IRLBot web crawler [3]. As this algorithm was
used as the baseline for an experimental comparison with VEUNIQ, a detailed
description of DRUM is provided in Section 4.

3 Crawler Architecture

In this section, we present a high-level description of our crawler. It has four main
components: fetcher, extractor of URLs, verifier of uniqueness and scheduler.
Figure 1 illustrates the crawl cycle involving the four components. The fetcher
is the component that sees the Web. In step 1, the fetcher receives from the
scheduler a set of URLs to download web pages. In step 2, the extractor of
URLs parses each downloaded page and obtains a set of new URLs. In step 3,
the uniqueness verifier checks each URL against the repository of unique URLs.
In step 4, the scheduler chooses a new set of URLs to be sent to the fetcher, thus
finishing one crawl cycle.

Considering cycle i, the fetcher locates and downloads web pages. It receives
from the scheduler a set of candidate URLs to be crawled and returns a set Li

of URLs actually downloaded. The set of candidate URLs is small, determined

240 W.F. Henrique et al.

����������

��	�
�	

������

����

�����	

���	����	

��������	
�����������

�	�����

�	�����

����
�	��������

���	����������

���

�������

Fig. 1. Web page crawling cycle

by the amount of memory space available to VEUNIQ. The downloaded pages
are stored on disk for efficient access and retrieval.

Important to notice that there are many different policies in the literature to
select the set of candidates to be crawled from a given set of servers at each cycle.
Also important is that the interval between two accesses to the same server must
follow politeness rules, which might cause a significant slowdown in the whole
process. In this paper, we will not address these issues but rather concentrate
on the algorithm for verifying URL uniqueness.

The extractor of URLs parses each downloaded page and output two sets: the
set Ei of URLs just extracted and the set Mi with auxiliary metadata for each
page such as the repository disk file address and its offset.

The verifier of uniqueness receives as input the three sets Li, Ei and Mi and
creates as output an updated repository of unique URLs. It identifies from Li

and Ei the following sets: (i) URLs crawled in previous cycles; (ii) URLs seen
in previous cycles but not crawled yet; (iii) URLs crawled in the current cycle;
(iv) New URLs. The URLs from sets (i) and (ii) are discarded (they are already
in the set of unique URLs), the set Mi and the information on disk location for
URLs from set (iii) are updated, and new URLs from set (iv) are merged to the
repository of unique URLs.

4 The Baseline Algorithm (DRUM)

The verifier of uniqueness must check if a URL is present in the repository
of unique URLs. Before presenting our approach VEUNIQ for checking URL
uniqueness we describe DRUM, which we use as a comparison baseline approach.

DRUM (Disk Repository with Update Management) is a technique for effi-
cient storage of key/value pairs (KV-pairs) with asynchronous support to three
operations: check (a key is checked against a disk repository and, if found, its
corresponding value can be retrieved), update (KV-pairs are merged into the disk
repository), and check+update (the two previous operations combined). While
DRUM is a more general solution to external hashing, as far as we know it is
also the best solution published in literature, to verify uniqueness of URLs in a
web crawler. Further, as it can be seen in the article where DRUM was proposed,
verifying uniqueness in web crawlers is its main application focus.

A New Approach for Verifying URL Uniqueness in Web Crawlers 241

DRUM keeps the set of unique URLs in a large persistent repository, which
is sorted by means of a bucket sort strategy, described as follows. Input received
by DRUM is inserted into two sets of memory arrays, according to their key
values. The KV-pairs are stored in the first set while auxiliaries are sent to the
second one. For each array, two corresponding buckets are kept in disk, one for
KV-pairs (KV-bucket) and another for auxiliaries (A-bucket). Once an array
is filled, their values are moved to the corresponding disk buckets. The arrays
continue to receive KV-pairs until one of the KV-buckets reaches a certain size r.
When this happens, all the KV-buckets are merged with the central repository
of URLs. To accomplish this, each KV-bucket is loaded into a memory buffer
and sorted. The buffer content is then merged with the central repository. After
the pairs have been processed, the buffer is restored to its original order so that
KV-pairs match those in the corresponding A-bucket. Key, value and auxiliary
data are then dispatched for further processing. All these steps are repeated for
all buckets sequentially.

Note that sorting is only done when a KV-bucket is read into memory, which
allows an efficient synchronization of all buckets with the central repository in
a single pass. Further, to ensure fast sequential writing/reading operations, all
buckets are pre-allocated on disk before they are used.

DRUM Model

As shown by Lee et al. [3], after some time, a crawler reaches a steady state
where the probability p of a page to be unique remains constant. Assume that in
such state: (i) the crawler is scheduled to visit N pages, each one with an average
of 	 links. Thus, n = N 	 pages have to be checked to verify their uniqueness; (ii)
a RAM of R bytes is allocated to this task which, as previously described, will
require the merge of n input URLs with U unique URLs stored in a central disk
repository; (iii) the average URL length is b, H is the size of the URL hashes
used by the crawler, and P is the size of a memory pointer.

As previously mentioned, DRUM starts a merge each time one of the KV-
buckets reaches a size r. If we assume that the hashing distributes the URLs
evenly into k buckets, when one of them reaches size r, a total of kr disk bytes
was filled with URL hashes. Thus, DRUM performs nH

kr merges to check n URLs.
To fill the KV-buckets, in each iteration i, it is necessary:

– Read/write the i-th A-bucket once to load into memory the URL text of kr
H

URLs, for a total amount of 2krb
H bytes.

– Read/write all the KV-buckets, i.e., 2kr bytes.
– Read/write URLs from the central repository, i.e., 2UH +(i− 1)2krp bytes.
– Append new URL hashes, i.e., krp bytes.

Thus, after adding the final overhead to store pbn bytes of unique URLs, the
read/write DRUM overhead to check n URLs is given by (see Eq.(15) from [3]):

242 W.F. Henrique et al.

w(n,R) = pbn +

nH
kr∑

i=1

(
2UH +

2krb

H
+ 2kr + 2krpi− krp

)
= nb

(
(2UH + pHn)H

bkr
+ 2 + p +

2H

b

)
(1)

Now assume that to support efficient read and write operations, a buffer of size
M is maintained to each opened file, a buffer of size Δ is used to load the
repository into memory, and r ≥ Δ. Thus, if R ≥ 2Δ(H+P)

H and DRUM can use
up to D bytes of disk for the checking, final overhead is w(n,R) = α(n,R)bn,
where α(n,R) is a proportion of the input size, given by:

α(n,R) =

{
8M(H+P)(2UH+pHn)

bR2 + 2 + p + 2H
b R2 < 8MD H+P

H+b
(H+b)(2UH+pHn)

bD + 2 + p + 2H
b R2 ≥ 8MD H+P

H+b

(2)

Finally, to avoid unnecessary allocation of disk space, D = R2(H+b)
8M(H+P) and .k =

R
4M . We refer the interested reader to [3] for a more detailed explanation of
this model. Note that DRUM strategy requires that a large set of U URLs be
overwritten several times to check n input URLs. This is a time consuming
operation with large impact on the overall performance.

VEUNIQ takes advantage of the site order the scheduler is able to provide to
maximize URL locality. This allows the overwriting of the disk repository using
much less disk accesses, as we will show in the next section. The parameters
used in both DRUM and VEUNIQ models are summarized in Table 1.

Table 1. Summary of parameters used in DRUM and VEUNIQ models

Variable Meaning Unit

b URL average size bytes
β Probability of a link point to a page not in the current repository -
D Disk size available for buckets in DRUM bytes
Δ Memory buffer size for loading repository of unique URLs bytes
H URL hash size bytes
k # of URL buckets in DRUM -
� Average number of links per page -
M Memory buffer size for each opened file in DRUM bytes
n # of links requiring URL checking -
N # of repositories in VEUNIQ -
p Probability of URL uniqueness -
P Memory pointer size bytes
r Size of buffer used to load URLs to be checked bytes
R RAM memory allocated to uniqueness checking bytes
Ri Disk repository of unique URLs maintained by VEUNIQ -
U # of URLs in the set of unique URLs stored on disk -

A New Approach for Verifying URL Uniqueness in Web Crawlers 243

5 Algorithm VEUNIQ

In VEUNIQ, the set of unique URLs is stored in N persistent repositories Ri

(0 ≤ i < N). Each repository Ri contains URLs from a set of servers. The
servers are distributed according to a hashing strategy whereas the URLs are
sorted lexicographically within each server. VEUNIQ benefits from the locality
of reference provided by the skewed distribution of links within each web page,
which tends to reference other pages in the same server. For instance, in a sample
of 400 servers crawled from the Web, the total number of links extracted was
29,580, with 18,712 (63.3%) links pointing to one of the 400 servers.

The crawler visits and updates the URLs of the repositories using a round
robin strategy, so that after processing repository i, the next repository to process
is (i+1) mod N . At each cycle, the scheduler loads from current disk repository
Ri the seed set of unique URLs. From this set, it derives the set of candidate
URLs to be crawled and send it to the fetcher, which returns the set Li. From |Li|
downloaded pages, the extractor parses new URLs (Ei). These URLs (Li ∪ Ei)
are then delivered to VEUNIQ. Note that |Li| is the number of URLs crawled
in a cycle. Considering that we have about 10 links per page, we thus should set
|Li| to roughly 1/11 of the number of URLs that we want VEUNIQ to verify in
each cycle.

Algorithm 1 describes the usage of VEUNIQ in each crawling cycle. First,
each URL found in a cycle is inserted into its corresponding buffer (lines 1 to
8). In line 4, the URLs that correspond to the current repository i are stored in
buffer P i

M and URLs corresponding to other repositories (which are expected to
be the minority of them, being about 20% in our experiments) are inserted into
their corresponding buffer TMP j

M , 0 ≤ j < N and j �= i. Note that the hash
function h′(u) assigns each URL a number that corresponds to its appropriate
repository. Further, as it takes only the URL server into account, all URLs of
a same server are assigned to the same repository. After inserting all URLs
in memory, the URLs related to repositories other than Ri are stored in their
corresponding temporary disk files TMPh �=i

D (line 10) and the memory used by
them is deallocated.

Further, VEUNIQ recovers from the disk the URLs in TMP i
D, which should

also be stored in Ri and were found in previous cycles that processed other
repositories than Ri. URLs from TMP i

D are loaded and inserted in P i
M (line 12),

obtaining as a result a buffer P i
M containing all the URLs related to repository

Ri available at that moment. We then sort P i
M in lexicographical order (line 13)

and merge its content to the corresponding repository Ri on disk. After this final
step, a new crawling cycle starts.

VEUNIQ Model

As in Section 4, we assume that the crawler has reached a steady state and
has to check n URLs. VEUNIQ needs R bytes for buffer P i

M , which achieves
its maximum number of elements in line 4 of the VEUNIQ algorithm. In fact, a

244 W.F. Henrique et al.

Algorithm 1. Using Algorithm VEUNIQ to verify the uniqueness of URLs
found in a crawling cycle and considering that the current repository is Ri

Input: Set of URLS Li ∪ Ei crawled in a cycle
Output: Disk repository Ri updated
1: for all u in Li ∪ Ei do
2: Let H be the value obtained by applying hash function h′(u)
3: if H = i then
4: Insert u into P i

M

5: else
6: Insert u into TMPH

M

7: end if
8: end for
9: for all 0 ≤ j < N AND i �= j do

10: Move contents from TMPj
M to TMP j

D and delete the memory buffer TMPj
M

11: end for
12: Load TMP i

D, inserting its content into P i
M

13: Sort P i
M in lexicographical order

14: Ri = Merge of P i
M and Ri (disk merge)

few constant-size read/write buffers are used to minimize seek. The size of these
buffers is proportional to the size of a disk block. Since such sizes are small, they
will not be considered here.

An interesting property of VEUNIQ is that it does not require much memory
to achieve good performance. The only restriction is that the number of URLs
in each cycle should be large enough to allow the time required for sequential
disk access performed on each cycle to be higher than the time required for disk
seek operations related to the change of repositories among cycles. VEUNIQ
does not require much memory due to its usage of locality properties to reduce
the merge costs each time the memory is filled. Notice that when using DRUM,
whenever the memory is filled, it is necessary to perform a merge with the whole
set of pages in the repository, an operation that makes the memory requirement
a bottleneck.

In VEUNIQ, the number of URLs crawled in a cycle is chosen based on
restrictions related to the scheduling process, since the algorithm can be adjusted
to use a large range of RAM memory. For instance, in our crawler, a typical value
is 1 million of URLs crawled per cycle, but we run experiments in machines that
would allow more than 15 million URLs in memory. When VEUNIQ uses less
RAM, one can increase the number of repositories, so that each merge operation
in a cycle have its cost reduced. We consider this smaller dependency of RAM
as one of the most important properties of VEUNIQ.

Unlike DRUM, the U unique URLs stored on disk by VEUNIQ are divided
into N repositories. Thus, VEUNIQ performs a complete merge after N steps.
When considering a model where disk seeks are not taken into account, we could
say that VEUNIQ runs faster as we increase N . However, in practice, when we
increase N two practical problems arise. First, the disk seek operations become
a significant portion of the total run time (note that this also happens when

A New Approach for Verifying URL Uniqueness in Web Crawlers 245

we use a large number of buckets in DRUM). Second, when N increases, the
number of servers in each repository might become too small to allow effective
scheduling techniques. While we do not discuss scheduling here, we remember
that it is important to the crawling process.

Disk seeks play an important role in DRUM and VEUNIQ computational
costs. However, disk seek costs heavily depend on the adopted hardware ar-
chitecture, with many possible scenarios. As the model presented in [3] does
not include disk seeks, we also decided do not include disk seeks in our cost
model. This decision has no impact on the comparison with the DRUM model.
Moreover, we compare VEUNIQ with DRUM using their optimal parameters,
and disk seeks would not affect VEUNIQ even if we had taken disk seeks into
consideration in both models. Finally, as in [3], we also assume that the URLs
requiring uniqueness checking are made available to VEUNIQ as a stream in
memory. Thus, its loading into memory is not modeled.

Consider that VEUNIQ is configured to take the maximum amount of memory
(R) available. Consider that the c-th VEUNIQ cycle processes the i-th repository.
Then, the costs related to this run for the n

N URLs of one repository is:

– Write temporary buffers TMP j
M , 0 ≤ j < N , j �= i to the corresponding

TMP j
D (Algorithm 1, line 10). In each cycle, this corresponds to βR, being

β the maximum number of links external to current repository Ri.
– Read bucket TMP i

D into memory (Algorithm 1, line 12). This also corre-
sponds to βR bytes.

– Read/write the current repository Ri and update it (Algorithm 1, line 14).
Note that the current repository grows along the c cycles at a rate pR,
where p is the uniqueness probability. Thus, the merge cost to update Ri is[
pR+ 2

(
U
N b + (c− 1)pR

)]
bytes.

The total number of cycles depends on the number of bytes required to store
each URL in memory, which is about b+P . Thus, the number of URLs that can
be processed at each cycle is R

b+P , and the total number of cycles necessary to
process n

N URLs is n
N

b+P
R .

Considering the number of cycles and the cost per cycle, the read/write
VEUNIQ overhead to check the n URLs of the N repositories is given by:

w(n,R) =
N−1∑
i=0

n
N

b+P
R∑

c=1

[
pR+ 2

(
U

N
b + (c− 1)pR

)
+ 2βR

]
= nb

[
(b + P)(bnp + npP + 2bU + 2NRβ)

bNR

]
(3)

6 Comparison between Methods

We now compare the performance of VEUNIQ and DRUM using their compu-
tational cost model and a crawling simulation.

246 W.F. Henrique et al.

6.1 Computational Cost Model

Table 2 shows the overhead of the two methods as RAM size R, disk size D, and
number of URLs n increase. The overhead unit is the number of times (α(n,R))
that bn bytes are written to/read from disk. The performance was calculated
considering p = 1/9, U = 1 billion URLs, b = 110 bytes, 	 = 59 links per page,
P = 4 bytes, H = 8 bytes, and M = 256,000 bytes. In the case of DRUM,
optimum recommended values were used for D and k. Note that, despite we did
not model disk seek cost, in DRUM, such a cost is proportional to the number
of disk bucket files. Unlike DRUM, VEUNIQ seek cost is less sensible to the
growth of its set of repositories, given by N , because most of the URLs (1− β)
will be sent to the same repository (the current one). Thus, in this analysis, the
number of repositories N starts equal k and grows proportionally to ln(n). In
this way, we ensure that very few repository reorganizations are carried out as n
grows. As we can see, VEUNIQ outperforms DRUM for all sets of parameters.

Table 2. Overhead α(n,R) = w(n,R)
nb

calculated for DRUM and VEUNIQ

R = 2 Gb R = 4 Gb R = 8 Gb R = 16 Gb
D = 22.1 Tb D = 88.6 Tb D = 354.2 Tb D = 1,417.1 Tb

k = 2,097 k = 4,194 k = 8,388 k = 16,777
n N Drum Veuniq Drum Veuniq Drum Veuniq Drum Veuniq

300 Mb 2,097 2.257 0.673 2.257 0.635 2.257 0.625 2.257 0.623
3 Gb 2,097 2.257 0.681 2.257 0.637 2.257 0.626 2.257 0.623
30 Gb 6,926 2.258 0.664 2.257 0.632 2.257 0.624 2.257 0.622
300 Gb 38,822 2.269 0.672 2.260 0.634 2.257 0.625 2.257 0.623
3 Tb 306,991 2.386 0.682 2.289 0.636 2.265 0.626 2.259 0.623

6.2 A Crawling Simulation

The computaional cost models for DRUM and VEUNIQ do not consider seek
times and other computational costs, such as CPU costs. These points may
raise questions about the usefulness of the models for comparison purposes. We
thus decided to also perform a practical experiment to give more insight to the
reader. However, due to space restrictions, we do not present detailed practical
comparison experiments, focusing our comparison in the model, which is more
hardware free, and letting detailed experiments for future work.

To evaluate the performance of the algorithms we proposed a crawling simu-
lation. In such a simulation, VEUNIQ and DRUM take as input in each crawl
cycle the following: (a) a set of crawled URLs; (b) a set of metadata collected
from the pages corresponding to these URLs, and (c) a set of URLs extracted
from collected pages.

For this experiment, a simulated crawling is preferable to actually carrying
out a crawling over the Web, thus focusing only on the URL uniqueness verifier,
isolating its analysis from the other components of the crawler (i.e., fetcher,
scheduler and URL extractor). Furthermore, simulation yields more control over
the experiments, enforcing well defined limits and easing its reproduction.

A New Approach for Verifying URL Uniqueness in Web Crawlers 247

For this simulation we use the ClueWeb09 web page collection2, containing
approximately 1 billion Web pages and occupies approximately 25 terabytes. We
simulate the crawling of 350 million URLs, divided into 35 cycles that handle 1
million URLs each. In the simulation, 100,000 of these URLs are collected and
900,000 are extracted from the collected pages. For each cycle we measure the
time it takes to update the data structures used by VEUNIQ and DRUM.

The results of this experiment are shown in Table 3. We use a public C++ im-
plementation of DRUM for URL uniqueness verification3. This implementation
performs the final merge of the repository by storing the URLs in a database
using the BerkeleyDB DBMS. However, to ensure fairness, the times reported
disregard the time spent accessing the data stored in the database. In the ex-
periment, we also set the value of N to be equal to k, which gives DRUM an
advantage in the experiments.

Figure 2 illustrates the time spent in each crawl cycle. Notice the improve-
ments achieved by VEUNIQ over DRUM. For instance, with 350 million URLs
stored, the baseline requires 82.85 seconds to enter the URLs of the current
crawl cycle, while VEUNIQ spent just 9.26 seconds to accomplish the same
task. Finally, we observed that the total time spent by VEUNIQ in one cycle
to crawl 100,000 URLs was approximately 267.3 seconds, being 240 seconds by
the fetcher, 12 seconds by the extractor, 9.3 by the uniqueness verification and
6 seconds by the scheduler. Taking out the time spent by the fetcher, which de-
pends mainly on the bandwidth available, the percentual of the total time (27.3
seconds) spent by the uniqueness verification is approximately 34% (44% for the
extractor and 22% for the scheduler).

Table 3. Summary of the time required to update the respective data structures –
DRUM vs. VEUNIQ

Millions of URL 1 50 100 150 200 250 300 350

Time (s)
DRUM 16.28 26.39 35.62 44.70 53.99 64.46 73.18 82.85
VEUNIQ 1.38 2.78 3.62 4.50 5.47 7.20 7.44 9.26

7 Conclusions

In this paper, we presented VEUNIQ (VErifier of UNIQueness), a new algo-
rithm for verifying URL uniqueness in a web crawler. VEUNIQ uses the idea of
accumulating URLs into a RAM buffer and check several URLs sequentially in
one pass. This batch disk check strategy is also used by DRUM (Disk Reposi-
tory with Update Management), which is part of the IRLBot web crawler [3].
The algorithm to verify URL uniqueness in DRUM was used as our comparison
baseline to evaluate our proposed strategy.

VEUNIQ is a based on a novel policy for organizing the set of unique URLs
according to the server they belong to, exploiting a locality of reference property
2 ClueWeb09 Dataset, http://www.lemurproject.org/clueweb09.php
3 http://www.codeproject.com/KB/recipes/cppdrumimplementation.aspx

http://www.codeproject.com/KB/recipes/cppdrumimplementation.aspx

248 W.F. Henrique et al.

 0

 20

 40

 60

 80

 100

 0 50 100 150 200 250 300 350

S
ec

on
ds

Millions of URLs

VEUNIQ
DRUM

Fig. 2. Time required to update the respective data structures – DRUM vs. VEUNIQ

inherent in Web traversals. We presented a model for both DRUM and VEU-
NIQ and compare their performances. We also carried out experiments which
show that the adopted policy yields to an improvement in the crawling rate in
comparison to the baseline algorithm.

Acknowledgments. This work was partially sponsored by the Brazilian Na-
tional Institute of Science and Technology for the Web (grant MCT/CNPq
573871/2008-6) and authors’ individual grants and scholarships from CNPq.

References

1. Berlt, K., Moura, E., Carvalho, A., Cristo, M., Ziviani, N., Couto, T.: Modeling
the web as a hypergraph to compute page reputation. Information Systems 35(5),
530–543 (2010)

2. Heydon, A., Najork, M.: Mercator: A scalable, extensible web crawler. World Wide
Web 2(4), 219–229 (1999)

3. Lee, H.-T., Leonard, D., Wang, X., Loguinov, D.: Irlbot: Scaling to 6 billion pages
and beyond. ACM Transactions on the Web 3(3), 1–34 (2009)

4. Najork, M., Heydon, A.: High-performance web crawling. Technical report, SRC
Research Report 173, Compaq Systems Research, Palo Alto, CA (2001)

5. Pinkerton, B.: Finding what people want: Experiences with the web crawler. In:
WWW, pp. 30–40 (1994)

6. Shkapenyuk, V., Suel, T.: Design and implementation of a high-performance dis-
tributed web crawler. In: ICDE, pp. 357–368 (2002)

7. Xue, G.-R., Yang, Q., Zeng, H.-J., Yu, Y., Chen, Z.: Exploiting the hierarchical
structure for link analysis. In: SIGIR, pp. 186–193 (2005)

External Query Reformulation for Text-Based

Image Retrieval

Jinming Min and Gareth J.F. Jones

Centre for Next Generation Localisation
School of Computing, Dublin City University

Dublin 9, Ireland
{jmin,gjones}@computing.dcu.ie

Abstract. In text-based image retrieval, the Incomplete Annotation
Problem (IAP) can greatly degrade retrieval effectiveness. A standard
method used to address this problem is pseudo relevance feedback (PRF)
which updates user queries by adding feedback terms selected automat-
ically from top ranked documents in a prior retrieval run. PRF assumes
that the target collection provides enough feedback information to se-
lect effective expansion terms. This is often not the case in image re-
trieval since images often only have short metadata annotations leading
to the IAP. Our work proposes the use of an external knowledge re-
source (Wikipedia) in the process of refining user queries. In our method,
Wikipedia documents strongly related to the terms in user query (“defini-
tion documents”) are first identified by title matching between the query
and titles of Wikipedia articles. These definition documents are used as
indicators to re-weight the feedback documents from an initial search
run on a Wikipedia abstract collection using the Jaccard coefficient. The
new weights of the feedback documents are combined with the scores
rated by different indicators. Query-expansion terms are then selected
based on these new weights for the feedback documents. Our method is
evaluated on the ImageCLEF WikipediaMM image retrieval task using
text-based retrieval on the document metadata fields. The results show
significant improvement compared to standard PRF methods.

1 Introduction

The volume of online images has been expanding at an increasing rate in recent
years. Searching for interesting and useful images from among the enormous
number of images available generally relies either on content-based image re-
trieval using visual image features or text based search using text queries to
search for images based on textual annotations of the images. Often it is diffi-
cult to find a sample image to use as a query image for visual search, and thus
the text-based method is often the most commonly used by search engine ven-
dors such as Google, Bing and Yahoo! . Where high quality detailed annotations
are available, the text-based method can be very effective. However, annotations

R. Grossi et al. (Eds.): SPIRE 2011, LNCS 7024, pp. 249–260, 2011.
c© Springer-Verlag Berlin Heidelberg 2011

250 J. Min and G.J.F. Jones

Fig. 1. Incomplete annotation problem example

are unfortunately often found to be noisy or incomplete, e.g. Picasa1, Flickr2.
The annotations are generally provided by those contributing the images who
often only provide very brief or sometimes inaccurate details. These issues of
poor image annotation can greatly affect image retrieval effectiveness based on
textual metadata. Without complete textual description of an image, it is dif-
ficult to reliably match the image with text queries, since relevant images may
not contain useful annotation terms. Thus is is not possible for the retrieval
system to return the relevant images with high accuracy. We refer to this effect
as the incomplete annotation problem (IAP) in image retrieval. An example of
this problem is shown on the left of Figure 1 which is an image example from
Wikinews 3. Compared to the text version of same content, there are many fewer
terms used to describe content of the image in the annotation.

In ad-hoc information retrieval (IR) tasks, a popular method to address the
more general problem of query-document mismatch is query expansion (QE).
This seeks to add terms to the user query which will match with terms appear-
ing in relevant documents. Standard QE methods can also be applied to improve
retrieval effectiveness in image retrieval. In our research, we aim to address the
question: is standard QE the most suitable method to address the IAP problem
in text-based image retrieval? Classical QE methods greatly depend on the tar-
get collection to provide useful terms for QE. The IAP problem means that the
assumption that the target collection provides enough information for feedback
in image retrieval may often be violated. We propose that an effective solution
to IAP for image search could be the introduction of an external resource in
the feedback process. Furthermore, since the search query in image retrieval is
usually a noun phrase for which there is a high chance that Wikipedia contains
specific articles to describe it, Wikipedia is a suitable external source for QE in

1 http://picasaweb.google.com/
2 http://www.flickr.com/
3 http://en.wikinews.org/

http://picasaweb.google.com/
http://www.flickr.com/
http://en.wikinews.org/

External Query Reformulation for Text-Based Image Retrieval 251

image search. In our work we refer to Wikipedia articles which directly describe
the contents of a user query as definition documents (DDs). Based on this anal-
ysis, we propose a definition document based relevance feedback (DRF) method
for text-based image retrieval task.

The remainder of this paper is structured as follows: Section 2 overviews
background and related work to our investigation; Section 3 presents our DRF
method including identifying DDs using query key terms, feedback document
weighting and feedback term selection; Section 4 describes our experimental
setup and results, this compares standard PRF methods based on the target
annotated search collection, external PRF which conducts QE on the external
resource collection, feedback term selection from DDs only and our DRF method;
and finally Section 5 gives conclusions and directions for further work.

2 Background and Related Work

The IAP problem in text-based image retrieval task is typically addressed by rel-
evance feedback (RF) approach [1]. One standard approach to RF is QE where
terms from top ranked documents from an initial search are added to the original
query before performing another search run. A popular method of RF is pseudo
relevance feedback (PRF) where top ranked documents are assumed to be rele-
vant without being judged by the searcher. PRF via QE traditionally focuses on
selecting expansion terms from top ranked documents from an initial retrieval
on the target document collection. In recent research however, with the rapid
growth of the web and other electronic document resources, QE from external
resources has received increased attention. This approach, the initial retrieval
run is carried out on an external corpus, and feedback terms are then selected
from the top ranked documents in external corpus. The new expanded query is
applied to the target corpus to conduct the final retrieval run. These research
topics are strongly related to our query reformulation method for image retrieval
tasks.

Various techniques and resources have been investigated for RF using external
resources in existing work. Elsas et al. [2] utilize the link structure of Wikipedia
for QE in a Blog distillation task and yield significant improvement for retrieval
effectiveness, this work also showed that standard PRF does not perform well
in a Blog distillation task. Yang et al. [3] classify user queries into three types:
entity queries, ambiguous queries, and broader queries. In this work, for entity
queries expansion terms are selected only from an entity page in Wikipedia.
Their experiments show improvement on several TREC evaluation tasks. Yin
et al. [4] compare two QE methods from an external resource, one selects QE
terms from user search query logs, the other method selects feedback terms from
snippets gathered from search engine output results. Their results show that the
snippet approach was more effective. Kwok et al. [5] use a technique of collection
enrichment for QE which is essentially QE from an external resource. Their
system performs between 9% to 26% better than the initial retrieval as measured
using mean average precision (MAP) as reference. Xu et al. [6] identify an entity

252 J. Min and G.J.F. Jones

Fig. 2. Flowchart of the algorithm

page and reformulate the query with phrases from the entity page in Wikipedia.
Their results show improvement in several TREC evaluation tasks compared to
a language modelling IR baseline. Weerkamp et al. [7] explore different ways of
using external corpora to expand the original query in a Blog post retrieval task.
They achieve their best results when using external expansion on a combination
of news, Wikipedia and blog posts. Custis et al. [8] apply language modelling
keyword search augmented with Berger and Lafferty’s (1999) translation model
for QE to formulate three QE methods using word co-occurrence statistics from a
large external corpus and user clickthrough data. Results show that QE using the
translation model is effective for retrieval in the legal domain. Weerkamp et al.
[9] propose a generative model for expanding queries using external collections in
which dependencies between queries, documents, and expansion documents are
explicitly modeled. Results using two external collections (news and Wikipedia)
show texternal expansion for retrieval of user generated content to be effective.
Hersh et al. [10] expand the query from web pages online in a genomic IR task.
Our own previous work [11] reports initial experiments on QE from Wikipedia
for a text-based image retrieval tasks, and shows improvement compared with
the QE from the target corpus. We extend this earlier work in this paper.

3 Definition Documents Based Relevance Feedback

In this section, we introduce our definition documents (DDs) based RF method.
This method utilises DDs identified by key-term title matching to re-weight the
feedback documents. Our document-based relevance feedback (DRF) algorithms
consist of the following steps as shown in Figure 2:

External Query Reformulation for Text-Based Image Retrieval 253

1. The user query is applied to Wikipedia to conduct an initial retrieval run to
produce a ranked list;

2. The user query is applied to the top ranked documents retrieved in stage 1
to conduct key-term title matching to find the DDs for this query;

3. The DDs identified in the second stage are used as indicators to compute the
similarity score with the top k ranked documents from the initial retrieval
run in stage 1 by the Jaccard coefficient;

4. The similarity score from DDs is used to form a new weight for every feedback
document;

5. Feedback terms are selected from the feedback documents from stage 2 with
new associated weights;

6. The new query updated with feedback terms is applied to the target search
collection to carry out the final retrieval run.

In the following subsections, we introduce the standard PRF method used in our
work in subsection 3.1, then the key-term title matching method is described in
subsection 3.2, and the feedback term weighting method is addressed in subsec-
tion 3.3.

3.1 Pseudo Relevance Feedback

PRF is the standard method used for QE. It has been found to improve average
search effectiveness in many ad-hoc text search tasks. Equation 2 is a typical
method for selection of feedback terms in PRF [12].

RW (i) = log[
(r + 0.5)(N − n−R + r + 0.5)

(n− r + 0.5))(R− r + 0.5)
] (1)

WeightPRF (t) = r ∗RW (i) (2)

where r is the number of top-ranked feedback documents which contain the
term t and RW (i) is computed using Equation 1 where N is the total number of
documents in the corpus and n is the number of documents where the term t ap-
pears. R is the number of known relevant documents for a query. Another simple
version for PRF is Equation 3 where idf can be computed using Equation 4.

WeightPRF (t) = r ∗ idf(t) (3)

idf(t) = log
N

n
(4)

3.2 Identifying Definition Documents by Key-Term Title Matching

In this section, we address the problem of how to find the DDs for a query. For
a query, some documents very strongly related to the query can be found in
Wikipedia, we can refer to these documents as “relevant” to the query in the
sense that they essentially describe one or more concepts contained in the query.
For example, given a query “Ferrari” a Wikipedia DD will appear among the top

254 J. Min and G.J.F. Jones

ranked list after a prior retrieval run. Figure 3 illustrates an example user query
with a DD in Wikipedia. Since exact DDs may not be found for all queries, our
DRF method allows a more relaxed matching approach in these cases. We use
a partial matching approach with regard to Wikipedia documents in top ranked
documents from the prior retrieval whose title contains the key term of the user
query as the DD of this query.

Fig. 3. Definition Document Example

Given a query Q: {q1,q2,...,qm} and a document D with title T: {t1, t2, ..., tn},
the key term qk of the Q is the term with highest idf score given by Equation 4.
Document D whose title contains qk is called the DD of query Q. There may be
more than one DD for a given query in Wikipedia. We use the idf values of the
terms in the target collection to identify the key term in the query.

3.3 Feedback Term Weighting

Our RF method is built on the simple version of PRF in Equation 3. In Equa-
tion 3, PRF assigns all the top documents from the prior retrieval the same
importance, which is usually not actually true. This is built on the assumption
that the top k feedback documents in the prior retrieval are all relevant to the
query. Of course, this assumption is generally not true for most retrieval tasks.

When some DDs have already been identified by title matching, we assume
those feedback documents which are similar to the DDs have a higher proba-
bility of providing useful external knowledge to the query. The similarity of the
feedback documents and the DDs is computed using a pairwise method using the
Jaccard coefficient in Equation 5 where Vi, Vj is the vocabulary set of document
i and j [13].

sim(Di, Dj) =
Vi

⋂
Vj

Vi

⋃
Vj

(5)

By knowing which document is more useful to the query, new document weights
are assigned to the feedback documents using Equation 9. DDs are used as
indicators for the top-ranked feedback documents in the prior retrieval as shown
in Equation 7. For each feedback document, we have an initial retrieval score for
query Si. We normalize the scores into the range [0, 1] using Equation 6.

Snm(i) =
Si − Smin

Smax − Smin
(6)

External Query Reformulation for Text-Based Image Retrieval 255

In Equation 7, J is the set of all DDs and j ∈ J ; sim(Di, Dj) is the similarity
score of document i for DD j calculated using Equation 5; Snm(j) is the nor-
malized retrieval score of DD j; sim(J)avg is the average similarity score for all
definition documents J with all feedback documents;

G(i) =
∑

J (sim(Di, Dj)− sim(j)avg)Snm(J)∑
J Snm(j)

(7)

Before combining these scores into the final weight score for a feedback docu-
ment, G(i) is normalized into the range [0, 1] using Equation 8 where Gmax and
Gmin are the highest and lowest G(i) scores calculated using Equation 7 for all
feedback documents.

Gnm(i) =
Gi −Gmin

Gmax −Gmin
(8)

Wnew(Di) = α ∗ Snm + β ∗Gnm(i) (9)

where Snm is the average normalized retrieval score for all the feedback doc-
uments. α and β are parameters to adjust the rating system (α ≥ 0, β ≥ 0).
In Equation 9, the new weight of a FD is combined from two parts: one is the
average normalized retrieval score which is identical for every FD; the other is
from the rating scores of different DDs. If we set β = 0 and α �= 0, our method
automatically falls into the simple version of PRF method; if we set β �= 0 and
α = 0, the weights of FDs are all decided by the rating scores of the DDs.

With the new weights for the all feedback documents in the prior retrieval, the
top feedback terms are selected using Equation 10 where r is the set of feedback
documents which contain term t.

WeightDRF (t) = idf(t) ·
∑
Di∈r

Wnew(Di) (10)

4 Experimental Setup and Results

In this section, we describe our experimental setup and results. The data and
retrieval model used in experiments are described in subsection 4.1, while the
manual evaluation of precision of DDs is described in subsection 4.2. The effect of
parameter setting on DRF and PRF is presented in subsection 4.3, with results of
comparing DRF and PRF in subsection 4.4, and a comparison with our method
of selecting feedback terms only from DDs in Section 4.5.

4.1 Experimental Setup

In this section, we describe our experimental setup. Experiments were conducted
using the collection from the ImageCLEF WikipediaMM 2008 and 2009 tasks.
The corpus is taken from the (INEX MM) Wikipedia image collection and in-
cludes 151,519 images [14]. Every image is associated with a metadata file. These

256 J. Min and G.J.F. Jones

Table 1. Data Average Length

Data Average Length (by terms)

Topics 2.8

Annotation Documents 24.4

English DBpedia Documents 99.7

Table 2. Overview on the definition documents

No. of topics 120

No. of overall definition documents 421

Average No. of DDs per topic 3.5

DDs with total match 77

Topics with total match DDs 46

metadata documents are typically very short, meaning that there is a high chance
of IAP problems in this collection.

All our experimental results are based on the 120 official queries in this col-
lection. Another important resource we use is the English Wikipedia abstract
collection (DBpedia) including 2,452,726 documents which is used as the exter-
nal resource for QE. We chose the English DBpedia collection as the external
resource for QE in this study since: 1) the DBpedia dataset contains only the
abstract documents of Wikipedia terms and so contains less noise than full arti-
cles; 2) the DBpedia corpus covers many topics which holds the promise that we
can find relevant documents for a large number of queries. The average length of
data are shown in Table 1. We use the Okapi BM25 model in the Lemur toolkit4

for retrieval tasks.

4.2 Evaluation on Definition Documents

Our DDs are selected by key term matching from document titles. A further
question in this process is how good are DDs as indicators for feedback? We
manually evaluated the DDs for the official queries from WikipediMM tasks.
These DDs are selected from the top 30 Wikipedia documents in the prior re-
trieval run. In Table 2, DDs with “total match” means those DD’s with titles
which exactly match the query terms after removal of stop words. We also man-
ually evaluate the relevance of the DDs with the original topics. The results are
shown in Table 3. As shown in Table 3, all the total match DDs and most partial
match DDs are relevant to the original topics. The results indicate that DDs are
a good feedback source for text queries in image retrieval.

4.3 Parameters Setting

To find suitable parameters for our DRF method for Equation 9, several combi-
nations of α, β values were tested in our experiments as shown in Table 4. Firstly
4 http://www.lemurproject.org/

http://www.lemurproject.org/

External Query Reformulation for Text-Based Image Retrieval 257

Table 3. Evaluation on the definition documents

Relevant Non-relevant

total match definition documents 100% 0

partial match definition documents 85.5% 14.5%

Table 4. Parameters Choice for DRF Method

Parameters Setting MAP NDCG P@10 R-Prec

α = 1, β = 0 0.2529 0.5322 0.3157 0.2899

α = 1, β = 1 0.2619 0.5409 0.3386 0.2986

α = 1, β = 2 0.2623 0.5413 0.3400 0.2980

α = 1, β = 5 0.2641 0.5414 0.3414 0.2987

α = 0, β = 1 0.2650 0.5404 0.3457 0.2995

α = 2, β = 1 0.2568 0.5350 0.3343 0.2900

α = 5, β = 1 0.2503 0.5147 0.3157 0.2803

we set α = 1, the results show that larger values of β give better results; secondly
we set β = 1, the results show that smaller α gives better results. From Table 4,
we can see that α = 0 and β = 1 gives the best result in our experiments. In
Table 4, the number of feedback documents is 30 (a higher number than is typ-
ically used for standard PRF, but is more effective when using DBpedia) and
the number of feedback terms is 10 (a typical value for QE using PRF).

To further investigate the impact of parameter setting, we compare the per-
formance of DRF on external resource (Run: DRF) to the PRF on external
resource (Run: PRF2) and PRF on target annotation collection results (Run:
PRF1) with different parameter settings. On the left side of Figure 4, the num-
ber of feedback terms in all Runs is set as 10; on the right side, the number
of feedback documents in all Runs is set as 30. As shown in Figure 4, DRF
outperforms PRF1 and PRF2 when the number of feedback documents is larger
than 15, where the number of feedback terms is fixed at 10; DRF outperforms
PRF1 and PRF2 for all choices of number of feedback terms for a fixed number
of feedback documents.

4.4 Comparing DRF with PRF

Table 5 shows results comparing DRF, PRF1 (baseline Run) and PRF2 with
their best performance. The results in Table 5 indicate that PRF from DBpedia
achieves higher retrieval effectiveness than the baseline based on the criterion
of MAP. Furthermore, DRF outperforms PRF for all retrieval criteria. A paired
t-test was applied to compare MAP for PRF2 and DRF (p = 0.0069 < 0.05;
significant improvements are indicated by ∗ in Table 5). Comparing the DRF
method with PRF on the target annotation collection, the result gains 11.67%
in terms of MAP.

258 J. Min and G.J.F. Jones

Fig. 4. Performance in Different Parameters Setting

Table 5. Results Comparison

Runs MAP NDCG P@10 R-Prec

PRF1 0.2373 0.5055 0.3200 0.2772

PRF2 0.2529 +6.58% 0.5322 0.3157 0.2899

DRF 0.2650 +11.67% 0.5404 0.3457 0.2995

4.5 Comparing DRF with Feedback from DDs

Since DDs play a very important role in the feedback process, one question is
why not directly select terms from the DDs as the feedback terms. We carry
out the PRF method to select feedback terms from DDs only using Equation
3. The results of this experiment are shown in Table 6. This experiment shows
that using DRF is more effective in call cases.

4.6 Discussion

The key issue in QE is selecting feedback terms from the top ranked documents
from the prior retrieval run. As stated previously, PRF assumes that all the top
ranked documents are relevant, which will generally not be true. The identified
relevant documents from Wikipedia help to judge which documents are more
relevant to the query. Our results show that the DRF method can be effective
for queries for which the DDs can be found in Wikipedia. However, feedback
terms selected from non relevant documents can introduce a query drift problem
for in the QE process.

Our results show that directly selecting feedback terms from DDs only does
not perform better than our proposed method. The main reason for this is the
fact that the number of DDs is very small and cannot not provide enough in-
formation in the feedback process. Our term weighting method fully utilizes the
characteristic of queries in image retrieval where all queries are noun phrases.

External Query Reformulation for Text-Based Image Retrieval 259

Table 6. Compare DRF with term selection from DDs only

Parameters Setting MAP NDCG P@10 R-Prec

DRF 0.2650 0.5404 0.3457 0.2995

DDs only 0.2403 0.5221 0.3180 0.2831

We assume that it is easy to find DDs among the Wikipedia dataset for these
queries. Our manual evaluation of the relevance of DDs on original topics proves
that our assumption is true.

5 Conclusion and Future Work

In this paper we have introduced the incomplete annotation problem in image
retrieval. As a solution to this, an external knowledge resource was introduced
in the relevance feedback process. Comparing PRF on the target annotation col-
lection to PRF on external resource, the external method achieves better results
in our experiments. Furthermore, we presented a DD based relevance feedback
method for QE from external resources. The key idea of the DRF method is to
use the DDs identified from Wikipedia as an indicator to judge the quality of
the feedback documents. The assumption is that the DDs provide more useful
external knowledge in the process of feedback term selection. Thus combining
the new weights from different rating scores, the DRF method can help to ensure
that selected expansion terms from these documents with a high probability of
being useful are used to expand the query knowledge, with the objective of solv-
ing the IAP problem in image retrieval. Our results show that the DRF method
outperforms the PRF using the same external resource significantly.

We conclude that using the DDs as an evidence to help in QE is a good
direction for utilizing Wikipedia related resources in text-based image retrieval
research. For future work, the DRF method will be explore for other information
retrieval tasks, including those which do not suffer so obviously from incomplete
annotation.

Acknowledgments. This research is supported by the Science Foundation Ire-
land (Grant 07/CE/I1142) as part of the Centre for Next Generation Localisa-
tion (CNGL) project.

References

1. Tsikrika, T., Kludas, J.: Overview of the wikipediamm task at imageCLEF 2008.
In: Peters, C., Deselaers, T., Ferro, N., Gonzalo, J., Jones, G.J.F., Kurimo, M.,
Mandl, T., Peñas, A., Petras, V. (eds.) CLEF 2008. LNCS, vol. 5706, pp. 539–550.
Springer, Heidelberg (2009)

2. Elsas, J.L., Arguello, J., Callan, J., Carbonell, J.G.: Retrieval and feedback models
for blog feed search. In: SIGIR 2008: Proceedings of the 31st Annual International
ACM SIGIR Conference on Research and Development In Information Retrieval,
pp. 347–354. ACM, New York (2008)

260 J. Min and G.J.F. Jones

3. Yang, X., Jones, G.J.F., Wang, B.: Query dependent pseudo-relevance feedback
based on Wikipedia. In: SIGIR 2009: Proceedings of the 32nd International ACM
SIGIR Conference on Research and Development in Information Retrieval, pp.
59–66. ACM, New York (2009)

4. Yin, Z., Shokouhi, M., Craswell, N.: Query expansion using external evidence. In:
Boughanem, M., Berrut, C., Mothe, J., Soule-Dupuy, C. (eds.) ECIR 2009. LNCS,
vol. 5478, pp. 362–374. Springer, Heidelberg (2009)

5. Kwok, K.L.: Improving English and Chinese ad-hoc retrieval: A Tipster text phase
3 project report. Inf. Retr. 3(4), 313–338 (2000)

6. Xu, Y., Ding, F., Wang, B.: Entity-based query reformulation using Wikipedia. In:
CIKM 2008: Proceeding of the 17th ACM Conference on Information and Knowl-
edge Management, pp. 1441–1442. ACM, New York (2008)

7. Weerkamp, W., de Rijke, M.: External query expansion in the blogosphere. In:
Seventeenth Text Retrieval Conference (TREC 2008), NIST (February 2009)

8. Custis, T., Al-Kofahi, K.: Investigating external corpus and clickthrough statistics
for query expansion in the legal domain. In: CIKM 2008: Proceeding of the 17th
ACM Conference on Information and Knowledge Management, pp. 1363–1364.
ACM, New York (2008)

9. Weerkamp, W., Balog, K., de Rijke, M.: A generative blog post retrieval model
that uses query expansion based on external collections. In: ACL-IJCNLP 2009:
Proceedings of the Joint Conference of the 47th Annual Meeting of the ACL and
the 4th International Joint Conference on Natural Language Processing of the
AFNLP, vol. 2, pp. 1057–1065. Association for Computational Linguistics, Morris-
town (2009)

10. Hersh, W.R., Bhupatiraju, R.T., Price, S.: Phrases, boosting, and query expansion
using external knowledge resources for genomic information retrieval. In: TREC,
pp. 503–509 (2003)

11. Min, J., Wilkins, P., Leveling, J., Jones, G.J.F.: DCU at WikipediaMM 2009:
Document expansion from Wikipedia abstracts. In: Working Notes for the CLEF
2009 Workshop, Corfu, Greece (2009)

12. Robertson, S., Spärck Jones, K.: Simple, proven approaches to text retrieval. Tech-
nical Report UCAM-CL-TR-356, University of Cambridge, Computer Laboratory
(December 1994)

13. Jaccard, P.: Etude comparative de la distribution florale dans une portion des alpes
et des jura. Bulletin de la Socit Vaudoise des Sciences Naturelles 37, 547C–579C
(1901)

14. Westerveld, T., van Zwol, R.: The INEX 2006 multimedia track. In: Fuhr, N.,
Lalmas, M., Trotman, A. (eds.) INEX 2006. LNCS (LNAI), vol. 4518, pp. 331–
344. Springer, Heidelberg (2007)

A Knowledge-Based Semantic Kernel for

Text Classification

Jamal Abdul Nasir1, Asim Karim1, George Tsatsaronis2, and Iraklis Varlamis3

1 School of Science and Engineering, LUMS, Pakistan
2 Biotechnology Center (BIOTEC), Technische Universität Dresden, Germany

3 Department of Informatics and Telematics, Harokopio University of Athens, Greece
{jamaln,akarim}@lums.edu.pk,

george.tsatsaronis@biotec.tu-dresden.de,

varlamis@hua.gr

Abstract. Typically, in textual document classification the documents
are represented in the vector space using the “Bag of Words” (BOW)
approach. Despite its ease of use, BOW representation cannot handle
word synonymy and polysemy problems and does not consider semantic
relatedness between words. In this paper, we overcome the shortages of
the BOW approach by embedding a known WordNet-based semantic
relatedness measure for pairs of words, namely Omiotis, into a seman-
tic kernel. The suggested measure incorporates the TF-IDF weighting
scheme, thus creating a semantic kernel which combines both seman-
tic and statistical information from text. Empirical evaluation with real
data sets demonstrates that our approach successfully achieves improved
classification accuracy with respect to the standard BOW representation,
when Omiotis is embedded in four different classifiers.

Keywords: Text Classification, Thesaurus, Semantic Kernels.

1 Introduction

The key steps in text classification are document representation and classifier
training using a corpus of labeled documents. In the commonly used ‘Bag of
Words’ (BOW) representation, documents are represented by vectors whose
components are weights given to different words or terms occurring in the doc-
ument. Weights indicate the importance of each word, typically quantified by
measures like TF-IDF. However, the BOW representation has some significant
limitations: (1) It disregards the sequential order of words in documents. (2) It
considers synonyms as distinct components of the vector (synonymy problem).
(3) It disregards polysemy of words (i.e. words having multiple senses or mean-
ings – polysemy problem). The lack of semantics in the BOW representation
limits the effectiveness of automatic text classification methods.

In the absence of external semantic knowledge, corpus-based statistical meth-
ods, such as Latent Semantic Analysis (LSA) [1] can be applied to alleviate the
synonymy problem, but the problem of polysemy still remains. The application

R. Grossi et al. (Eds.): SPIRE 2011, LNCS 7024, pp. 261–266, 2011.
c© Springer-Verlag Berlin Heidelberg 2011

262 J. Abdul Nasir et al.

of Word Sense Disambiguation (WSD) techniques [2] during document prepro-
cessing can be helpful; however, this is usually computationally expensive, and
the performance of the unsupervised techniques is poor while use of supervised
techniques requires large amounts of hand-annotated text documents. The use of
external semantic knowledge provided by word thesauri or ontologies to adjust
or “smooth” the BOW representation has shown much promise [3,4]. However,
the embedding of semantic information is usually computationally expensive.

In this paper, we present and evaluate a semantically-enriched BOW represen-
tation for text classification. We adopt a recently proposed semantic relatedness
measure called Omiotis [5] for building a smoothing matrix and a kernel for se-
mantically adjusting the BOW representation. Omiotis is constructed from the
word thesaurus and lexical ontology WordNet, and is capable of handling the
synonymy and polysemy problems. We evaluate four popular text classification
methods on four different data sets with and without Omiotis-based semantic
smoothing of BOW representation. The results demonstrate that our semantic
kernel produces significant improvement in text classification performance.

The paper is organized as follows. Section 2 discusses the related work. Sec-
tion 3 presents the Omiotis measure for the semantic relatedness between pairs
of terms. In Section 4, we develop our semantic kernel and semantic smooth-
ing matrix, and discuss its computational complexity. Section 5 presents our
experimental results. Finally, Section 6 discusses our next steps.

2 Semantics in Text Mining and Information Retrieval

The importance of embedding semantic relatedness between two text segments
for text classification was initially highlighted in [6] where semantic similarity
between words has been used for the semantic smoothing of the TF-IDF vectors.

Semantic-aware kernels have been proposed by Mavroeidis et al. [4] who pro-
pose a generalized vector space model with WordNet senses and their hyper-
nyms to improve text classification performance. Bloehdorn at al. [7] propose
smoothing kernels for text classification by implicitly encoding a super concept
expansion and achieve satisfactory results under poor training data and data
sparseness. In [8] authors use the Latent Semantic Indexing (LSI) approach for
capturing semantic relations between terms and embed them into their semantic
kernel. Basili et al.[9] propose kernel functions to use prior knowledge in learn-
ing algorithms for document classification by means of the term similarity based
on the WordNet hierarchy (conceptual density). Results show the benefit of the
approach for Support Vector Machines when few training examples are available.

In this work, we present a new semantic smoothing matrix and kernel for text
classification, based on a semantic relatedness measure that takes into account
all of the available semantic relations in WordNet, by embedding the Omiotis
measure introduced by Tsatsatonis et al. [5]. Our experimental evaluation offers
an additional empirical evidence towards the claim that embedding semantic
information from a knowledge base, such as WordNet, through a semantic kernel,
improves the text classification performance.

A Knowledge-Based Semantic Kernel for Text Classification 263

3 Semantic Relatedness and the Omiotis Measure

Lexical relatedness measures can be roughly classified in three categories: (1)
knowledge-based measures; (2) corpus-based measures; and (3) hybrid measures.
In this work, we are using the Omiotis[5] knowledge-based measure for comput-
ing the relatedness between terms or words. Omiotis is based on a sense related-
ness measure, called SR. Due to space limitations, we suggest readers to consult
[5] for the details of SR, which given a pair of senses s1, s2, finds all the paths
that connect s1 to s2 in the WordNet’s graph and defines the pair’s relatedness
as:

SR(s1, s2) = max
P=〈s1,...,s2〉

{SCM (P) · SPE (P)}

where P ranges over all the paths that connect s1 to s2, SCM and SPE cap-
ture respectively the notions of the value of the path connecting two senses in
WordNet, as well as of the depth of path’s edges in the path with respect to the
height of the used thesaurus/ontology. If no path exists, then SR(s1, s2) = 0.

The measure can be expanded to measure the semantic relatedness between
terms, by selecting the maximum for each of the pairwise sense combinations for
a pair of terms. More precisely, given a pair of terms T : (t1, t2) for which there
are entries in O, let X1 be the set of senses of t1 and X2 be the set of senses of
t2 in O. Let S : {S1, S2, . . . , S|X1|·|X2|} be the set of pairs of senses, Sk = (si, sj),
with si ∈ X1 and sj ∈ X2. Then SR(T, S, O) is defined as:

max
Sk

{max
P

{SCM(Sk, O, P) · SPE(Sk, O, P)}} = max
Sk

{SR(Sk, O)}∀k = 1..|X1 | · |X2|.
(1)

Semantic relatedness between two terms t1, t2 where t1 ≡ t2 ≡ t and t /∈ O is
defined as 1. Semantic relatedness between t1, t2 when t1 ∈ O and t2 /∈ O, or
vice versa, is considered 0. This latter definition of SR for a pair of terms is the
definition of the Omiotis measure that we are using in our case.1

4 Omiotis-Based Semantic Kernel

4.1 Semantic Smoothing Matrix and Semantic Kernel Design

A document d is represented in the BOW representation as follows:

φ : d �→ φ(d) = [tf -idf(t1, d), tf -idf(t2, d), . . . , tf -idf(tD, d)]T ∈ �D

where tf -idf(ti, d) is the TF-IDF weight of term ti in document d, and D is the
total number of terms (e.g. words) in the dictionary (the superscript T denotes
the transpose operator). In the above expression, the function φ(d) represents
the document d as a TF-IDF vector. This function, however, can be any other
mapping from a document to its vector space representation.
1 A Web service implementation of Omiotis with pre-computed SR scores for all Word-

Net sense pairs is made available by the authors in [5], at http://omiotis.hua.gr/.

264 J. Abdul Nasir et al.

To enrich the BOW representation with semantic information, we construct
the semantic relatedness matrix R using the Omiotis semantic relatedness mea-
sure. Specifically, the i, j element of matrix R is given by SR(T, S, O) (refer to
Eq. 1), which quantifies the semantic relatedness between terms T : (ti, tj). Thus,
R is a D×D symmetric matrix with 1’s in the principal diagonal. This smooth-
ing matrix can be used to transform the documents’ vectors in such a way that
semantically related documents are brought closer together in the transformed
(or feature) space (and vice versa). Mathematically, the semantically enriched
BOW representation of a document d is given as:

φ̄(d) = (φ(d)T R)T

Although the feature space defined above can be used directly in many classifi-
cation methods, it is sometimes helpful to define the feature space implicitly via
the kernel function. This is particularly important in kernel-based methods or
kernel machines when the feature space is very large or even infinite in size. By
definition, the kernel function computes the inner product between documents
di and dj in the feature space. For our case, this can be written as:

κ(di, dj) = φ̄(di)T φ̄(dj) = φ(di)T RRT φ(dj) (2)

For this to be a valid kernel function, the Gram matrix G (where Gij = κ(di, dj))
formed from the kernel function must satisfy the Mercer’s conditions [8]. These
conditions are satisfied when the Gram matrix is positive semi-definite. It has
been shown in [8] that the matrix G formed by the kernel function (Eq. 2) with
the outer matrix product RRT is indeed a positive semi-definite matrix.

4.2 Computational Aspects

The computational complexity of the suggested semantic kernel depends on two
main factors: (1) the similarity measure between two documents d1 and d2, which
requires the evaluation of all the unique term pairs’ relatedness values and has
a theoretical complexity of O(|d1| · |d2|), where |d| denotes the total number of
distinct terms in document d; (2) the computational complexity of Omiotis for
all |d1| · |d2| term pair combinations, which comprises the construction time of
the semantic network to compute the paths connecting the senses of two words,
and the time needed to execute the Dijkstra’s algorithm in order to find the
optimal path connecting two senses. The complexity of the former is O(2 · kl+1)
[10], where k is the maximum branching factor of the used thesaurus nodes
and l is the maximum semantic path length in the thesaurus, and of the latter is
O(nL+mD+nE), where n is the number of nodes in the network, m the number
of edges, L is the time for insert, D the time for decrease-key and E the time for
extract-min. Using The use of Fibonacci heaps reduces the cost of extract-min
to O(log n) and L = D = O(1), thus significantly reducing the cost of execution.
The pre-computation of all the pairwise sense and term relatedness values, which
are publicly available through the Omiotis service2 makes the semantic kernel
computation applicable even for large data sets.
2 http://omiotis.hua.gr/WebSite/wsinfo.html

http://omiotis.hua.gr/WebSite/wsinfo.html

A Knowledge-Based Semantic Kernel for Text Classification 265

5 Empirical Evaluation

We evaluate the performance of our semantic smoothing approach by using four
classification methods on four popular text classification data sets (Ohsumed3, 20
Newsgroups4, WebKB5 and Movie Reviews6). All data sets are preprocessed via
tokenization, stop word removal, and TF-IDF vector construction (the standard
BOW representation).

Supervised text classification methods can be based on a generative or a
discriminative model of the problem. We employ two discriminative methods,
Support Vector Machines (SVM) and Balanced Winnow (BW), and two com-
mon generative methods, Naive Bayes (NB) and Maximum Entropy (ME). We
perform our experiments using the software RapidMiner7 (for SVM and NB)
and the Mallet toolkit8 (for ME and BW). For each method, we evaluate its
performance under two settings: (1) standard BOW representation and (2) se-
mantically smoothed BOW represented using the Omiotis measure. We report
the performance with average classification accuracy obtained from an 10-fold
cross-validation process.

Table 1 shows the results of our empirical evaluation. It gives the percent
accuracy obtained from 10-fold cross-validation by each method on the four
data sets. The methods identified with the Omiotis subscript are the ones using
our Omiotis-based semantic kernel (or semantic smoothing approach). These
results demonstrate that enriching the BOW representation with our semantic
smoothing approach improves text classification performance. This improvement
is seen across different classification methods and different data sets. From among
the 16 pairs of results, the performance of the Omiotis-based methods is better
than the standard methods in 14 pairs.

Table 1. Text classification performance in percent accuracy

MovieReview Ohsumed 20Newsgroups WebKB

SV M 83.30 55.15 90.08 86.37
SV MOmiotis 91.97 57.17 92.93 84.58
NB 77.41 50.32 87.27 84.17
NBOmiotis 84.13 51.29 90.44 88.52
ME 79.11 51.47 85.31 91.02
MEOmiotis 81.86 50.17 87.35 91.52
BW 76.23 50.93 81.66 81.42
BWOmiotis 79.25 51.83 84.58 85.34

3 http://ir.ohsu.edu/ohsumed/ohsumed.html
4 http://people.csail.mit.edu/jrennie/20Newsgroups/
5 http://www.cs.cmu.edu/afs/cs.cmu.edu/project/theo-20/www/data/
6 http://www.cs.cornell.edu/people/pabo/movie-review-data/
7 http://www.rapid-i.com/
8 http://mallet.cs.umass.edu/

http://ir.ohsu.edu/ohsumed/ohsumed.html
http://people.csail.mit.edu/jrennie/20Newsgroups/
http://www.cs.cmu.edu/afs/cs.cmu.edu/project/theo-20/www/data/
http://www.cs.cornell.edu/people/pabo/movie-review-data/
http://www.rapid-i.com/
http://mallet.cs.umass.edu/

266 J. Abdul Nasir et al.

To verify the consistency of the observed results, we applied the Wilcoxon
signed-ranks test, which is recommended for our case [11], on the observed dif-
ferences in performances of all methods on all the data sets. In our test, we found
that the observed differences are statistically significant and the null hypothesis
is rejected (having achieved a very low p-value of only 0.0023). This test con-
firms that our semantic kernel produces consistent and statistically significant
improvement in text classification performance.

6 Conclusions and Future Work

In this paper, we present a semantic kernel for smoothing the BOW representa-
tion. We evaluate the impact of our semantic kernel on text classification prob-
lems using four popular classifiers on four commonly-used text corpora. We find
that the Omiotis enhanced representation produces significant improvement in
classification accuracy for all classifiers. As a next step, we will extend the BOW
representation by incorporating discrimination information for text classifica-
tion and evaluate and compare our representation approaches for text clustering
tasks.

References

1. Deerwester, S.C., Dumais, S.T., Landauer, T.K., Furnas, G.W., Harshman, R.A.:
Indexing by Latent Semantic Analysis. JASIS 41(6), 391–407 (1990)

2. Navigli, R.: Word sense disambiguation: A survey. ACM Computing Surveys 41(2),
10:1–10:69 (2009)

3. Basili, R., Cammisa, M., Moschitti, A.: A semantic kernel to exploit linguistic
knowledge. In: Proc. of the AI*IA 2005, pp. 290–302 (2005)

4. Mavroeidis, D., Tsatsaronis, G., Vazirgiannis, M., Theobald, M., Weikum, G.:
Word sense disambiguation for exploiting hierarchical thesauri in text classifica-
tion. In: Jorge, A.M., Torgo, L., Brazdil, P.B., Camacho, R., Gama, J. (eds.) PKDD
2005. LNCS (LNAI), vol. 3721, pp. 181–192. Springer, Heidelberg (2005)

5. Tsatsaronis, G., Varlamis, I., Vazirgiannis, M.: Text relatedness based on a word
thesaurus. Journal of Artificial Intelligence Research 37, 1–39 (2010)

6. Siolas, G., d’Alché-Buc, F.: Support vector machines based on a semantic kernel for
text categorization. In: Proc. of IEEE IJCNN 2000, Washington, DC, USA (2000)

7. Bloehdorn, S., Basili, R., Cammisa, M., Moschitti, A.: Semantic kernels for text
classification based on topological measures of feature similarity. In: Proc. of ICDM
2006, pp. 808–812 (2006)

8. Cristianini, N., Taylor, J.S., Lodhi, H.: Latent Semantic Kernels. In: Proc. of the
Eighteenth International Conference on Machine Learning, pp. 66–73 (2001)

9. Basili, R., Cammisa, M., Moschitti, A.: A Semantic Kernel to classify texts with
very few training examples. Informatica 30(2), 163–172 (2006)

10. Tsatsaronis, G., Vazirgiannis, M., Androutsopoulos, I.: Word sense disambiguation
with spreading activation networks generated from thesauri. In: Proc. of IJCAI,
pp. 1725–1730 (2007)

11. Demsar, J.: Statistical comparisons of classifiers over multiple data sets. Journal
of Machine Learning Research 7, 1–30 (2006)

Compressed Text Indexing with Wildcards�

Wing-Kai Hon1, Tsung-Han Ku1, Rahul Shah2,
Sharma V. Thankachan2, and Jeffrey Scott Vitter3

1 National Tsing Hua University, Taiwan
{wkhon,thku}@cs.nthu.edu.tw

2 Louisiana State University, USA
{rahul,thanks}@csc.lsu.edu

3 The University of Kansas, USA
jsv@ku.edu

Abstract. Let T = T1φ
k1T2φ

k2 · · ·φkdTd+1 be a text of total length n,
where characters of each Ti are chosen from an alphabet Σ of size σ, and
φ denotes a wildcard symbol. The text indexing with wildcards problem
is to index T such that when we are given a query pattern P , we can lo-
cate the occurrences of P in T efficiently. This problem has been applied
in indexing genomic sequences that contain single-nucleotide polymor-
phisms (SNP) because SNP can be modeled as wildcards. Recently Tam
et al. (2009) and Thachuk (2011) have proposed succinct indexes for
this problem. In this paper, we present the first compressed index for
this problem, which takes only nHh + o(n log σ) + O(d log n) bits space,
where Hh is the hth-order empirical entropy (h = o(logσ n)) of T .

1 Introduction

Text indexing is a fundamental problem in computer science, where the task is
to index a given text T [1..n] for locating all the occurrences of an online query
pattern P [1..p] within T efficiently. Suffix trees [20,14] and suffix arrays [13]
are the most popular indexes which can answer this query in O(p + occ) and
O(p + log n + occ) times respectively, where occ is the number of occurrences
of P in T . Both indexes take O(n log n) bits space. Note that the query time
is (almost) optimal, but the index size can be asymptotically higher than the
optimal n�logσ� bits required to store the text in plain form; here, σ denotes
the size of the alphabet Σ from which the characters of T and P are chosen. The
goal of designing optimal-size indexes was first achieved by Grossi and Vitter
(Compressed Suffix Arrays) [8] and Ferragina and Manzini (FM-index) [5]. Their
indexes are based on Burrows-Wheeler transform (BWT) [2].

A more general problem of text indexing deals with the case where
wildcard characters may appear in the input text T [4,17,18]. Let T =
T1φ

k1T2φ
k2 · · ·φkdTd+1 be a text of total length n, where characters of each

Ti are chosen from an alphabet Σ of size σ, and φ represents a wildcard sym-
bol that may match any single character in Σ. The text indexing problem with
� This work is supported in part by Taiwan NSC Grant 99-2221-E-007-123 (W. Hon)

and US NSF Grant CCF–1017623 (R. Shah).

R. Grossi et al. (Eds.): SPIRE 2011, LNCS 7024, pp. 267–277, 2011.
c© Springer-Verlag Berlin Heidelberg 2011

268 W.-K. Hon et al.

wildcards is to index T such that when we are given a query pattern P , we can
locate the occurrences of P in T efficiently. This problem has been applied in in-
dexing genomic sequences that contain single-nucleotide polymorphisms (SNP)
because SNP can be modeled as wildcards.

The problem of text indexing with wildcards was first studied by Cole et al [4].
They proposed an O(n logk n)-word index with O(p+logk n log log n+occ) query
time, where k is the total number of wildcards. Later, Lam et al. [17] proposed
an O(n)-word index, but the query time introduces an additional term of γ =∑

i,j prefix(P [i..p], Tj), where prefix(P [i..p], Tj) = 1 if the text segment Tj is a
prefix of P [i..p], else 0. Note that γ is upper bounded by pd. Tam et al. [18] further
reduced the space requirement of this index to (3 + o(1))n log σ + O(d log n)
bits. Recently, Thachuk [19] proposed a more space-efficient solution, taking
(2 + o(1))n log σ + O(n) + O(d log n) + O(k log k) bits and requiring a smaller
working space of O((d + log n)p) bits.

In all the above solutions (which has a γ term in query time), the common
approach is to categorize the occurrences into the following 3 types and build
separate data structures for reporting each type of occurrences of P in T .

Type-1: P matching a substring of T with no wildcard groups;
Type-2: P matching a substring of T with exactly 1 wildcard group;
Type-3: P matching a substring of T with 2 or more wildcard groups.

In this paper, we propose an index which takes near-optimal nHh + o(n log σ) +
O(d log n) bits space, where Hh is the hth-order empirical entropy of T . The
central technique is to make use of the same data structure (which is an FM-
index of T) for handling all types of occurrences. We need auxiliary structures
in locating type-2 and type-3 occurrences, but the space of those structures is
bounded by O(d log n) + o(n) bits. Moreover, the working space requirement is
O((p + γ) log n). As γ is upper bounded by dp, therefore our working space will
be at most a log n factor worse than Thachuk’s index. However, our index has its
advantage when γ is small (γ = o(dp/ log n)). The table below summarizes the
results of our index along with the previously known results supporting matching
with wildcard characters. Here k, d and d̂ represents the number of wildcards,
wildcard groups, distinct wildcard group lengths, respectively; occ1, occ2 and
occ represents the number of type-1, type-2 and overall occurrences of P in T
respectively, and ε′ > 0 is any fixed constant.

Ref Index (bits) Query Time Working (bits)

[4] O(n logk+1 n) O(p + logk n log log n + occ) –

[17] O(n log n) O(p log n + γ + occ) O(n log n)

[18]
(3 + o(1))n log σ +
O(d log n)

O(p(log σ + min(p, d̂) log d) + occ1 log n +
occ2 log d + γ)

O(n log d + p log n)

[18]
(3 + o(1))n log σ +
O(d log n)

O(p(log σ + min(p, d̂) log d) + occ1 log n +
occ2 log d + γ logσ d)

O(n log σ + p log n)

[19]
(2 + o(1))n log σ +
O(n+ d log n+ k log k)

O(p(log σ + min(p, d̂) log k/ log log k) +
occ1 log n + occ2 log k/ log log k + γ)

O(dp + p log n)

Ours
nHh + o(n log σ) +
O(d log n)

O(p(log1+ε′ n + min(p, d̂) log d) +

occ1 log1+ε′ n + occ2 logε′ d + γ log γ)
O(γ log n + p log n)

Compressed Text Indexing with Wildcards 269

2 Preliminaries

2.1 Bit Vectors with Rank/Select

Let B be a bit vector of length n, the rank and select operations are defined as
rank(k) =

∑k
i=1 B[i] and select(k) = i such that A[i] = 1 and rank(i) = k.

Let d be the number of 1s in B, then B can be maintained in d log(n/d) +
O(d + n log log n/ log n) bits such that both rank and select operations can be
performed in constant time [16].

2.2 Suffix Trees and Suffix Arrays

Suffix trees [20,14] and suffix arrays [13] are two classic data structures for online
pattern matching queries. For a text T [1..n], a substring T [i..n] with i ∈ [1, n]
is called a suffix of T . The suffix tree for T is a lexicographic arrangement of all
these n suffixes in a compact trie structure, where the ith leftmost leaf represents
the ith lexicographically smallest suffix. For any node v, the string formed by
concatenating the edge labels from root to v is called path(v). The locus node v
of a pattern P is defined as the node closest to the root, such that P is a prefix
of path(v).

Suffix array SA[1..n] is an array of length n, such that SA[i] is the starting
position of the ith lexicographically smallest suffix of T . The suffix range of a
pattern P in SA is defined as the the maximal range [L, R] such that for all
j ∈ [L, R], SA[j] is the starting point of a suffix of T with P as a prefix. Both
suffix trees and suffix arrays take O(n log n) bits space and can perform pattern
matching in O(p + occ) and O(p + log n + occ) time respectively, where p = |P |
and occ is the number of occurrences of P within T .

2.3 Compressed Text Indexes

Text indexes which take space close to the size of the text is called compressed/
succinct text indexes. There are different compressed text indexes available in the
literature, such as [8] and FerMan05. For our purpose, we use the FM-index by
Ferragina et al. [6] which takes only nHh+o(n log σ) bits space, where Hh denotes
the hth-order empirical entropy (h = o(logσ n)) of T . For σ = O(poly log(n)),
this index can count the number of occurrences of P within T in O(p) time,
locate each pattern occurrence in O(log1+ε n) and display a text substring of
length 	 in O(+ log1+ε n) time.

2.4 Compressed Index for Dictionary Matching

The dictionary matching problem is to index a set of (short) text segments
{T1, T2, . . . , Td+1} of total length n, such that all the occurrences of these text
segments within an online (long) query pattern P can be computed efficiently.
This is a well-studied problem and many indexes are available in the

270 W.-K. Hon et al.

literature [1,9,10]. The recently proposed indexes by Belazzougui [1] and Hon et
al. [9] can solve this problem in (almost) optimal space and optimal time. For our
purpose, we choose the most space-efficient index (even though the query time is
not optimal) by Hon et al. [10]. Their index takes nHh + o(n log σ) + O(d log n)
bits space and the query time is O(p(logε n + log d) + γ), where Hh denotes
the hth-order empirical entropy of the text segments collection and γ denotes
number of occurrences of text segments in P , and ε > 0 is any fixed constant.
In [10], it is assumed that the text segments are stored using Ferragina-Venturini
scheme, where the storage space is nHh + o(n log σ) bits and displaying a text
substring of length 	 takes O(/ logσ n + 1) time [7] .

2.5 Orthogonal Range Reporting

LetR = {(x1, y1), (x2, y2), . . . , (xn, yn)}be a set ofnpoints in the two-dimensional
space. An orthogonal range reporting query on R is defined as follows: Given a
query range [x�, xr]× [y�, yr], report all points (xi, yi) such that x� ≤ xi ≤ xr and
y� ≤ yi ≤ yr. For our purpose, we use the O(n log n) bits structure by Nekrich [15]
which can perform an orthogonal range reporting of t output points in O(log n +
t logε n) time.

2.6 Sparse Suffix Trees

Sparse suffix tree of a text is a compact trie, which consists of only selected
suffixes of the text [3,11,12]. We shall define the sparse suffix tree for a collection
{T1, T2, . . . , Td+1} of d + 1 text segments of total length n as follows: Let α be
a sampling factor, and for each text segment Tj[1..|Tj |], the suffix T [i..|Tj|] such
that i mod(α) = 1 is called an α-sampled suffix of Tj. A trie of all α-sampled
suffixes of all text segments is called a (forward) sparse suffix tree Δf . Similarly
a trie of all α-sampled suffixes of

←−
Tj for j = 1, 2, . . . , d + 1 is called (reverse)

sparse suffix tree Δr, where
←−
Tj is the reverse of Tj . The number of nodes in Δf

(Δr) can be bounded by O(n/α + d). For each internal node u �= root, there
exists a unique node v such that path(v) can be obtained by deleting the first
α characters of path(u). Then we maintain a pointer from node u to node v,
which we called an α-sampled suffix link. The contiguous range of all α-sampled
suffixes in the subtree of u is called the suffix range of a pattern P , where u is
the locus node (node closest to root such that P is a prefix of path(u)) of P .
Note that neither Δf , nor Δr is a self-index, hence we maintain the original text
T = T1φ

k1T2φ
k2 · · ·φkdTd+1 in the form of FM-index [6] in nHh +o(n log σ) bits,

which is capable of retrieving any substring of T of length 	 in O(+ log1+ε n)
time (σ = polylog(n)). We store the starting character of every edges explicitly
and from every node (�= root), we maintain a pointer to its ancestor. By choosing
α = log1+ε n, ε > 0, the size of Δf and Δr, together with the encoding of T , can
be bounded by nHh + o(n log σ) + O(d log n) bits.

Compressed Text Indexing with Wildcards 271

Lemma 1. Given a pattern P [1..p], the suffix ranges of all its suffixes (P [i..p]
for i = 1, 2, 3, . . . , p) in Δf can be computed in O(p log1+ε′ n) time. Similarly the
suffix ranges of the reverse of all its prefixes (

←−−−−
P [1..i], for i = 1, 2, 3, . . . , p) in Δr

can be computed in O(p log1+ε′ n) time, where ε′ > 0.

Proof: Firstly we show how to compute the suffix ranges of all suffixes of P
in Δf . The procedure works in α stages. At stage k (for k = 1, 2, 3, . . . , α),
we compute the suffix ranges of all α-sampled suffixes (P [k..p], P [(k + α)..p],
P [(k + 2α)..p], . . .) of P [k..p]. The main challenge comes from the fact that
the time for retrieving a substring of T of length 	 is O(+ log1+ε n), which
means O(log1+ε n) time is needed for retrieving even a single character in T . We
handle this situation carefully as follows: Firstly, we do a blind matching of first
α characters of P [k..p] in Δf by only matching the starting characters of the
edges. Next, we verify if this matching is correct by retrieving α characters from
the FM-index and matching them in O(α log σ) time. If the first α characters
are matched, we continue matching the next α characters, and so on. We stop
when all characters in T [k..p] are matched or encounter the first mismatch. Let
x be the number of characters matched, then the matching time can be bounded
by O(x log σ + log1+ε n) (O(x + log1+ε n) time for retrieving x characters from
FM-index of T and matching those x characters with a prefix of P [k..p] takes
O(x log σ) time).

If x = p − k + 1, then P [k..p] is fully matched with prefixes of some text
segments and the first node obtained by traversing further down in Δf will be
the locus node uk of P [k..p]. Now the locus node of P [(k+α)..p] can be computed
as follows: First reach the node u′

k by chasing the α-sampled suffix link from uk,
then the locus node uk+α of P [(k+α)..p] is given by the node closest to the root
in the path from u′

k to root, which is at least x−α distance away from root. The
locus node uk+2α of P [(k + 2α)..p] can be obtained similarly by further chasing
the α-sampled suffix link of uk+α and so on. The total number of α-sampled
suffix links chased will be O(p/α + 1) and given the locus node of a pattern, its
suffix range can be obtained in constant time. Hence, the total time is bounded
by O(p log σ + log1+ε n).

If x < p− k + 1, then P [k..p] is not fully matched. Let vk be the node closest
to the root such that x is the length of the longest common prefix of P [k..p] and
path(vk). Then, we chase the α-sampled suffix link from vk and reach a node
v′k, and continue matching from the position x − α distance away from root in
path(v′k). Thus, we continue the matching of P [k..p], P [(k+α)..p], P [(k+2α)..p],
and and so on by chasing the α-sampled suffix links. Each time we match a
small portion of P (that portion will not be matched again) of length say 	′ in
O(′ + log1+ε n) time and the number of such portions (number of α-sampled
suffix links chased) is O(p/α +1). Hence, the time for computing the locus node
(if exists) and the corresponding suffix ranges of all α-sampled suffixes of P [k..p]
is given by O(p log σ+log1+ε n(p/α+1)). Thus, the total time for computing the
suffix ranges of all suffixes of P [1..p] (i.e. α-sampled suffixes of P [k..p], for k =
1, 2, 3, . . . , α) is given by O((p log σ + log1+ε n) log1+ε n) = O(p log1+ε n log σ),
when p > logσ n logε n.

272 W.-K. Hon et al.

For computing the suffix range of short patterns (p ≤ logσ n logε n), we main-
tain an o(n) bits additional information on Δf as follows: Along the path of every
(log2 n)th α-sampled suffix in Δf , we write the first log1+ε n characters explicitly,
which takes only O((n/α + d)/ log2 n) log1+ε n) = o(n) bits extra space. Thus,
to find the suffix range of a pattern P , we first compute the suffix range [L, R]
by considering only those suffixes whose first log1+ε n characters are explicitly
written. This traversal will take only O(p log σ) time. After this, to find the exact
suffix range, we need to perform a binary search only among log2 n α-sampled
suffixes on either side of the [L, R] and check if the pattern P is matching with
its prefix. Thus we need to retrieve only O(log(log2 n)) substrings of T (each of
length p ≤ logσ n logε n). Hence, the time for computing the suffix range of P

is O(p log σ + log1+ε n log log n) = O(log1+ε′ n), where ε′ ≥ 2ε. Now the suffix
range of each suffix of P can be computed independently and the total time is
O(p log1+ε′ n).

The query time for finding the suffix ranges of the reverse of all prefixes of P

(
←−−−−
P [1..i], for i = 1, 2, 3, . . . , p) in Δr can be analyzed in the same fashion. ��

3 Matching with Wildcards in Compressed Text

A wildcard is a character which can match with any character in an alpahbet Σ,
and it is denoted by φ in this paper. Given a text T = T1φ

k1T2φ
k2 · · ·φkdTd+1

of total length n, where each Ti are strings drawn over the alphabet Σ of size σ
(assume σ = O(poly log(n))), and φj denotes a string of j consecutive wildcards,
our objective is to construct an index for T for locating all the occurrences of an
online pattern P of length p efficiently. The general way to approach this problem
is to categorize the occurrences of P in T into the following 3 types [17,18,19]
and build a dedicated data structure for handling each type.

Type-1: P matching a substring of T with no wildcard groups;
Type-2: P matching a substring of T with exactly 1 wildcard group;
Type-3: P matching a substring of T with 2 or more wildcard groups.

We also follow the same approach, however we reduce the index space by mak-
ing use of the same data structure (which is an FM-index of T) for handling all
the three types of occurrences. We need auxiliary structures in type-2 and type-3
occurrences, but the space of those structures is bounded by O(d log n)+o(n) bits.

3.1 Type-1 Matching

In type-1 matching, we are looking for exact matches of P within T (without
matching any wildcards). This case is the same as the basic text indexing prob-
lem, and by using FM-index [6], we have the following lemma.

Lemma 2. By maintaining an nHh + o(n log σ) bits index, all the type-1 occur-
rences can be reported in O(p + occ1 log1+ε n) time, where occ1 is the number of
type-1 occurrences.

Compressed Text Indexing with Wildcards 273

3.2 Type-2 Matching

In type-2 matching, we are looking for each substring S within T which matches
with P , such that S contains exactly one wildcard group (could be partial). We
further divide such an occurrence S into the following 3 subcases:

1. S is a concatenation of a suffix of Tj , φkj and a prefix of Tj+1. For this,
we need to find all those text segments Tj such that

←−−−−
P [1..i] is a prefix of

←−
Tj

and P [i + kj + 1..p] is a prefix of Tj+1 for 1 ≤ i < (i + kj + 1) ≤ p. If these
conditions are satisfied, then P matches at position z − i in T , where z is
the starting position of jth wildcard group within T .

2. S is a concatenation of a portion of φkj and a prefix of Tj+1. For this, we
need to find all those text segments Tj+1 such that P [i + 1..p] is a prefix of
Tj+1 and 1 ≤ i ≤ kj . Then, the matching position of P within T is z+kj− i.

3. S is a concatenation of a suffix of Tj and a portion of φkj . For this, we need
to find all those text segments Tj such that

←−−−−
P [1..i] is a prefix of

←−
Tj and

1 ≤ p− i ≤ kj . Then, the matching position of P within T is z − i.

The above conditions can be verified easily by maintaining different 2-dimensional
orthogonal range reporting structures, where each structure corresponds to a dis-
tinct wildcard group lengths. Let RSβ represents the orthogonal range searching
structure which links two text segments on either side of all wildcard groups
of length β, then RSβ contains all those points (xj , yj) such that the (lexico-
graphically) xjth (α-sampled) suffix in Δr is

←−
Tj, the (lexicographically) yjth

(α-sampled) suffix in Δf is Tj+1, and kj = β (i.e., there are exactly β wildcard
symbols between Tj and Tj+1 in T). The number of 2-dimensional orthogonal
range reporting structures is d̂ (the number distinct wildcard group lengths) and
the total number of points among all those d̂ structures is O(d).

Now, type-2 matching can be performed as follows: first we obtain the suffix
ranges [Lf

i , Rf
i] of P [i..p] for i = 1, 2, . . . , p in Δf and the suffix ranges [Lr

i , R
r
i]

of
←−−−−
P [1..i] for i = 1, 2, . . . , p in Δr in O(p log1+ε′ n) (using Lemma 1). Then, we

have:

– All case-1 occurrences can be obtained by reporting all those points in RSβ

with query range [Lr
i , R

r
i] × [Lf

(i+β+1), R
f
(i+β+1)] for all β < p and 1 ≤ i <

(i + β + 1) ≤ p.
– All case-2 occurrences can be obtained by reporting all those points in RSβ

with query range [−∞,∞]× [Lf
(i+1), R

f
(i+1)] for all β < p and 1 ≤ i < β.

– All case-3 occurrences can be obtained by reporting all those points in RSβ

with query range [Lr
i , R

r
i]× [−∞,∞] for all β < p and 1 ≤ p− i < β.

The number of orthogonal range searching queries is O(p min(p, d̂)) and the to-
tal number of points among all the orthogonal range searching structures is
O(d). Therefore, by using an O(d log n)-bit orthogonal range searching structure

274 W.-K. Hon et al.

by [15], the query time can be bounded by O(p log1+ε′ n + p min(p, d̂) log d +
occ2 logε′ d), where occ2 is the number of type-2 occurrences. Moreover, P can
trivially be matched at all (kj−p+1) positions within a wildcard group of length
kj ≥ p.

Lemma 3. By maintaining an nHh + o(n log σ) + O(d log n) bits index, all the
type-2 occurrences of P in T can be reported in O(p(log1+ε′ n+min(p, d̂) log d)+
occ2 logε′ d) time, where ε′ > 0.

3.3 Type-3 Matching

In type-3 matching, we are looking for each substring of T which matches with
P and contains more than one wildcard groups. Therefore, P contains at least a
whole text segment Tj . We follow a similar approach proposed by Lam et al. [17]
for handling this case, where we first retrieve all those text segments Tjs which
are completely contained in P , and check if each such Tj can be extended for
a type-3 matching. This is equivalent to the dictionary matching problem as
described in Section 2.4.

The dictionary matching can be performed in O(p(logε n + log d) + γ) time
using an o(n log σ) + O(d log n) bits index, where γ is the number of dictionary
matching outputs (Section 2.4) [10]. In [10], it is assumed that the text segments
are stored using Ferragina-Venturini scheme [7], where the storage space is nHh+
o(n log σ) bits and a text substring of length 	 can be displayed in O(/ logσ n+1)
time. However, we cannot afford to store the text segments using this scheme as
it will double the index space. Since FM-index is already stored for the type-1
and type-2 matchings, we will use the same FM-index as the storage scheme for
the text collection (even though retrieval time is slower). It remains to check
how the dictionary matching time will be affected by using FM-index (as a
storage scheme) instead of Ferragina-Venturini scheme. For this, we consider the
following two facts: (i) The time for displaying a substring of length 	 < log1+ε n
using FM-index is O(log1+ε n) and that of Ferragina-Venturini scheme is Ω(1).
Hence, FM-index is worse by at most a factor of O(log1+ε n). (ii) When 	 ≥
log1+ε n, FM-index takes O() time, where as Ferragina-Venturini scheme takes
O(/ logσ n) time. Hence, FM-index is worse by a factor of Θ(logσ n). Therefore,
by using FM-index as a storage scheme, the dictionary matching time can get
worse by a factor O(max(log1+ε n, logσ n)) = O(log1+ε n). We remark1 that only
the term p logε n will get multiplied by log1+ε n. Choosing ε′ ≥ 2ε > 0, we have
the following lemma.

Lemma 4. Dictionary matching can be performed in O(p log1+ε′ n+ γ) time by
maintaining an nHh + o(n log σ) + O(d log n) bits index.

1 In the paper by Hon et al. [10], the computation of the locus of all suffixes of P in their
dictionary matching index takes O(p logε n) time and reporting all the occurrences
takes O(p(logε n + log d) + γ) time. Note that the pattern matching is needed only
in the first step.

Compressed Text Indexing with Wildcards 275

To perform type-3 matching, we first use the above lemma to find all the γ
occurrences of text segments within P . Corresponding to each such occurrence,
we compute a pair (s, e) as follows: Let the text segment Tj has a match within
P at position i (i.e. Tj = P [i..(i + |Tj|] − 1)]) and Tj starts at position j′ in
T . This match will be a part of a valid occurrence of P in T if and only if P
starts at position (j′ − i + 1) within T . Then (s, e) for this match is given by
s = j′ − i + 1 and e = j′. Further, we obtain a sorted sequence of all γ pairs
(s1, e1), (s2, e2), (s3, e3), . . . , (sγ , eγ) such that sk < sk+1 or sk = sk+1 and ek <
ek+1 in O(γ log γ) time. Along with this γ pairs of values, we also maintain the
suffix ranges corresponding to all suffixes of P and

←−
P in Δf and Δr respectively

(using Lemma 1). Therefore, our query working space is O((p + γ) log n) bits.
We maintain two bit vectors Bs[1..n] and Be[1..n] for marking the starting

and ending positions of text segments within T , such that Bs[i] = 1 if T [i] �= φ
and T [i − 1] = φ or i = 1, else 0, and Be[i] = 1 if T [i] �= φ and T [i + 1] = φ
or i = n, else 0. Using these two bit vectors, the staring position and ending
position (selectBs(j) and selectBe(j), respectively) of any given text segment Tj

can be computed in constant time (Section 2.1). Similarly the text segment Tj

or wildcard group φkj corresponding to a given position i in T can be computed
in constant time (j = rankBs(i) and T [i] will be within a text segment if i ≤
selectBe(j), else T [i] will be a part of jth wildcard group). We also maintain two
arrays Af [1..d] and Ar[1..d], such that Af stores the lexicographic ordering of
Tj in Δf (Af [j] = k if Tj is the kth lexicographically smallest α-sampled suffix
in Δf) and Ar stores the lexicographic ordering of

←−
T j in Δr (Ar [j] = k if

←−
T j

is the kth lexicographically smallest α-sampled suffix in Δr) . Thus, given the
suffix range of any pattern in Δf , in constant time we can check if this is a prefix
of given text segment using Af . Similarly, given the suffix range of the reverse
of any pattern in Δr, in constant time we can check if this is a prefix of given
text segment using Ar. Now for a pattern P to match at position s in T (i.e.
P = T [s..(s + p− 1)]), the following conditions should be satisfied:

1. Corresponding to each text segment Tj which is completely contained in
T [s..(s+p−1)], there should be a pair (s, e) with e being the staring position
of the Tj within T , and e = selectBs(j).

2. The longest prefix of T [s..(s+p−1)] without any wildcard should be a prefix
of P . In other words, if T [s] �= φ and T [s− 1] �= φ (i.e., a prefix P [1..x] of P

has a match with a suffix (�= Tj′) of a text segment Tj′),
←−−−−
P [1..x] should be

a prefix of
←−
T j′ (i.e., Ar[j′] should be within the suffix range of

←−
T j′ in Δr) ,

where j′ = rankBs(s) and x = selectBe(j′)− s + 1.
3. The longest suffix of T [s..(s+p−1)] without any wildcard should be a suffix

of P . In other words, if T [s+p−1] �= φ and T [s+p] �= φ (i.e., a suffix P [y..p]
of P has a match with a prefix (�= Tj′′) of a text segment Tj′′), P [y..p] should
be a prefix of Tj′′ (i.e. Af [j′′] should be within the suffix range of Tj′′ in Δf),
where j′′ = rankBs(s + p− 1) and y = selectBs(j′′)− s + 1.

In each contiguous sublist of (s, e) with same s value, the first condition can be
verified by scanning the corresponding e values and the remaining conditions can

276 W.-K. Hon et al.

be verified in constant time. Thus, the time for filtering all type-3 occurrences
from the sorted list of (s, e) values can be bounded by O(γ). Thus, we have the
following lemma.

Lemma 5. By maintaining an nHh + o(n log σ) + O(d log n) bits index, all the
type-3 occurrences of P in T can be reported in O(p log1+ε′ n + γ log γ) time,
where ε′ > 0. The working space required is O((p + γ) log n) bits.

Combining the results of type-1 (Lemma 2), type-2 (Lemma 3), and type-3
(Lemma 5) matchings, we have the following theorem.

Theorem 1. There exists an index of size nHh +o(n log σ)+O(d log n) bits for
wildcard matching, which can answer each online query for a pattern P of length
p in O(p(log1+ε′ n + min(p, d̂) log d)+ occ1 log1+ε′ n+ occ2 logε′ d+γ log γ) time,
for any fixed ε′ > 0. The working space required is O((p + γ) logn) bits.

References

1. Belazzougui, D.: Succinct Dictionary Matching with No Slowdown. In: Amir, A.,
Parida, L. (eds.) CPM 2010. LNCS, vol. 6129, pp. 88–100. Springer, Heidelberg
(2010)

2. Burrows, M., Wheeler, D.J.: A Block-sorting Lossless Data Compression Algo-
rithm. Technical Report 124, Digital Equipment Corporation, Paolo Alto, CA,
USA (1994)

3. Chien, Y.F., Hon, W.K., Shah, R., Vitter, J.S.: Geometric Burrows-Wheeler Trans-
form: Linking Range Searching and Text Indexing. In: DCC, pp. 252–261 (2008)

4. Cole, R., Gottlieb, L.-A., Lewenstein, M.: Dictionary Matching and Indexing with
Errors and Don’t Cares. In: STOC, pp. 91–100 (2004)

5. Ferragina, P., Manzini, G.: Indexing Compressed Text. Journal of the ACM 52(4),
552–581 (2005)

6. Ferragina, P., Manzini, G., Mäkinen, V., Navarro, G.: Compressed Representations
of Sequences and Full-Text Indexes. ACM Transactions on Algorithms 3(2) (2007)

7. Ferragina, P., Venturini, R.: A Simple Storage Scheme for Strings Achieving En-
tropy Bounds. Theoretical Computer Science 372(1), 115–121 (2007)

8. Grossi, R., Vitter, J.S.: Compressed Suffix Arrays and Suffix Trees with Applica-
tions to Text Indexing and String Matching. SIAM Journal on Computing 35(2),
378–407 (2005)

9. Hon, W.-K., Ku, T.-H., Shah, R., Thankachan, S.V., Vitter, J.S.: Faster Com-
pressed Dictionary Matching. In: Chavez, E., Lonardi, S. (eds.) SPIRE 2010. LNCS,
vol. 6393, pp. 191–200. Springer, Heidelberg (2010)

10. Hon, W.K., Lam, T.W., Shah, R., Tam, S.L., Vitter, J.S.: Compressed Index for
Dictionary Matching. In: DCC, pp. 23–32 (2008)

11. Hon, W.-K., Shah, R., Thankachan, S.V., Vitter, J.S.: On Entropy-Compressed
Text Indexing in External Memory. In: Karlgren, J., Tarhio, J., Hyyrö, H. (eds.)
SPIRE 2009. LNCS, vol. 5721, pp. 75–89. Springer, Heidelberg (2009)

12. Kärkkäinen, J., Ukkonen, E.: Sparse Suffix Trees. In: COCOON, vol. 219–230
(1996)

13. Manber, U., Myers, G.: Suffix Arrays: A New Method for On-Line String Searches.
SIAM Journal on Computing 22(5), 935–948 (1993)

Compressed Text Indexing with Wildcards 277

14. McCreight, E.M.: A Space-economical Suffix Tree Construction Algorithm. Journal
of the ACM 23(2), 262–272 (1976)

15. Nekrich, Y.: Orthogonal Range Searching in Linear and Almost-Linear Space. Com-
putational Geometry 42(4), 342–351 (2009)

16. Raman, R., Raman, V., Rao, S.S.: Succinct Indexable Dictionaries with Applica-
tions to Encoding k-ary Trees, Prefix Sums and Multisets. ACM Transactions on
Algorithms 3(4) (2007)

17. Lam, T.-W., Sung, W.-K., Tam, S.-L., Yiu, S.-M.: Space Efficient Indexes for String
Matching with Don’t Cares. In: Tokuyama, T. (ed.) ISAAC 2007. LNCS, vol. 4835,
pp. 846–857. Springer, Heidelberg (2007)

18. Tam, A., Wu, E., Lam, T.-W., Yiu, S.-M.: Succinct Text Indexing with Wildcards.
In: Karlgren, J., Tarhio, J., Hyyrö, H. (eds.) SPIRE 2009. LNCS, vol. 5721, pp.
39–50. Springer, Heidelberg (2009)

19. Thachuk, C.: Succincter Text Indexing with Wildcards. In: Giancarlo, R., Manzini,
G. (eds.) CPM 2011. LNCS, vol. 6661, pp. 27–40. Springer, Heidelberg (2011)

20. Weiner, P.: Linear Pattern Matching Algorithms. In: FOCS, pp. 1–11 (1973)
21. Ziv, J., Lempel, A.: Compression of Individual Sequences via Variable Length Cod-

ing. IEEE Transactions on Information Theory 24(5), 530–536 (1978)

Fast q-gram Mining on SLP Compressed Strings�

Keisuke Goto, Hideo Bannai, Shunsuke Inenaga, and Masayuki Takeda

Department of Informatics, Kyushu University
{keisuke.gotou,bannai,inenaga,takeda}@inf.kyushu-u.ac.jp

Abstract. We present simple and efficient algorithms for calculating
q-gram frequencies on strings represented in compressed form, namely,
as a straight line program (SLP). Given an SLP of size n that represents
string T , we present an O(qn) time and space algorithm that computes
the occurrence frequencies of all q-grams in T . Computational experi-
ments show that our algorithm and its variation are practical for small
q, actually running faster on various real string data, compared to algo-
rithms that work on the uncompressed text. We also discuss applications
in data mining and classification of string data, for which our algorithms
can be useful.

1 Introduction

A major problem in managing large scale string data is its sheer size. Therefore,
such data is normally stored in compressed form. In order to utilize or analyze
the data afterwards, the string is usually decompressed, where we must again
confront the size of the data. To cope with this problem, algorithms that work
directly on compressed representations of strings without explicit decompression
have gained attention, especially for the string pattern matching problem [1]
where algorithms on compressed text can actually run faster than algorithms on
the uncompressed text [23]. There has been growing interest in what problems
can be efficiently solved in this kind of setting [17,8].

Since there exist many different text compression schemes, it is not realistic
to develop different algorithms for each scheme. Thus, it is common to consider
algorithms on texts represented as straight line programs (SLPs) [12,17,8]. An
SLP is a context free grammar in the Chomsky normal form that derives a
single string. Texts compressed by any grammar-based compression algorithms
(e.g. [21,15]) can be represented as SLPs, and those compressed by the LZ-family
(e.g. [24,25]) can be quickly transformed to SLPs [22]. Recently, even compressed
self-indices based on SLPs have appeared [6], and SLPs are a promising repre-
sentation of compressed strings for conducting various operations.

In this paper, we explore a more advanced field of application for compressed
string processing: mining and classification on string data given in compressed
form. Discovering useful patterns hidden in strings as well as automatic and
accurate classification of strings into various groups, are important problems in

� This work was supported by KAKENHI 22680014 (HB).

R. Grossi et al. (Eds.): SPIRE 2011, LNCS 7024, pp. 278–289, 2011.
c© Springer-Verlag Berlin Heidelberg 2011

Fast q-gram Mining on SLP Compressed Strings 279

the field of data mining and machine learning with many applications. As a first
step toward compressed string mining and classification, we consider the problem
of finding the occurrence frequencies for all q-grams contained in a given string.
q-grams are important features of string data, widely used for this purpose in
many fields such as text and natural language processing, and bioinformatics.

In [10], an O(|Σ|2n2)-time O(n2)-space algorithm for finding the most fre-
quent 2-gram from an SLP of size n representing text T over alphabet Σ was
presented. In [6], it is mentioned that the most frequent 2-gram can be found
in O(|Σ|2n logn)-time and O(n log |T |)-space, if the SLP is pre-processed and a
self-index is built. It is possible to extend these two algorithms to handle q-grams
for q > 2, but would respectively require O(|Σ|qqn2) and O(|Σ|qqn log n) time,
since they must essentially enumerate and count the occurrences of all substrings
of length q, regardless of whether the q-gram occurs in the string. Note also that
any algorithm that works on the uncompressed text T requires exponential time
in the worst case, since |T | can be as large as O(2n).

The main contribution of this paper is an O(qn) time and space algorithm
that computes the occurrence frequencies for all q-grams in the text, given an
SLP of size n representing the text. Our new algorithm solves the more general
problem and greatly improves the computational complexity compared to pre-
vious work. We also conduct computational experiments on various real texts,
showing that when q is small, our algorithm and its variation actually run faster
than algorithms that work on the uncompressed text.

Our algorithms have profound applications in the field of string mining and
classification, and several applications and extensions are discussed. For example,
our algorithm leads to an O(q(n1+n2)) time algorithm for computing the q-gram
spectrum kernel [16] between SLP compressed texts of size n1 and n2. It also
leads to an O(qn) time algorithm for finding the optimal q-gram (or emerging
q-gram) that discriminates between two sets of SLP compressed strings, when n
is the total size of the SLPs.

Related Work. There exist many works on compressed text indices [20], but
the main focus there is on fast search for a given pattern. The compressed indices
basically replace or simulate operations on uncompressed indices using a smaller
data structure. Indices are important for efficient string processing, but note that
simply replacing the underlying index used in a mining algorithm will generally
increase time complexities of the algorithm due to the extra overhead required
to access the compressed index. On the other hand, our approach is a new
mining algorithm which exploits characteristics of the compressed representation
to achieve faster running times.

Several algorithms for finding characteristic sequences from compressed texts
have been proposed, e.g., finding the longest common substring of two strings [19],
finding all palindromes [19], finding most frequent substrings [10], and finding
the longest repeating substring [10]. However, none of them have reported results
of computational experiments, implying that this paper is the first to show the
practical usefulness of a compressed text mining algorithm.

280 K. Goto et al.

Algorithm 1. Calculating vOcc(Xi) for all 1 ≤ i ≤ n

Input: SLP T = {Xi}n
i=1 representing string T .

Output: vOcc(Xi) for all 1 ≤ i ≤ n
1 vOcc[Xn] ← 1;
2 for i ← 1 to n − 1 do vOcc[Xi] ← 0;
3 for i ← n to 2 do
4 if Xi = X�Xr then
5 vOcc[X�] ← vOcc[X�] + vOcc[Xi]; vOcc[Xr] ← vOcc[Xr] + vOcc[Xi];

2 Preliminaries

Let Σ be a finite alphabet. An element of Σ∗ is called a string. For any integer
q > 0, an element of Σq is called an q-gram. The length of a string T is denoted
by |T |. The empty string ε is a string of length 0, namely, |ε| = 0. For a string
T = XY Z, X , Y and Z are called a prefix, substring, and suffix of T , respectively.
The i-th character of a string T is denoted by T [i] for 1 ≤ i ≤ |T |, and the
substring of a string T that begins at position i and ends at position j is denoted
by T [i : j] for 1 ≤ i ≤ j ≤ |T |. For convenience, let T [i : j] = ε if j < i.

For a string T and integer q ≥ 0, let pre(T, q) and suf (T, q) represent respec-
tively, the length-q prefix and suffix of T . That is, pre(T, q) = T [1 : min(q, |T |)]
and suf (T, q) = T [max(1, |T | − q + 1) : |T |].

For any strings T and P , let Occ(T, P) be the set of occurrences of P in T ,
i.e., Occ(T, P) = {k > 0 | T [k : k + |P | − 1] = P}. The number of elements
|Occ(T, P)| is called the occurrence frequency of P in T .

2.1 Straight Line Programs

X1 X2

a ba a ab a b a b a a b

X1 X3

X1 X2

X3

X1 X2

X3

X4

X1

X5X4
X6

X1 X2
X3

X1 X2

X3
X4

X1

X5

X7

2 31 4 65 7 8 9 10 11 12 13

Fig. 1. The derivation tree of SLP T =
{Xi}7

i=1 with X1 = a, X2 = b, X3 = X1X2,
X4 = X1X3, X5 = X3X4, X6 = X4X5,
and X7 = X6X5, representing string T =
val(X7) = aababaababaab

A straight line program (SLP) T is
a sequence of assignments X1 =
expr1, X2 = expr2, . . . , Xn = exprn,
where each Xi is a variable and each
expri is an expression, where expri =
a (a ∈ Σ), or expri = X�Xr (, r < i).
Let val(Xi) represent the string de-
rived from Xi. When it is not con-
fusing, we identify a variable Xi with
val(Xi). Then, |Xi| denotes the length
of the string Xi derives. An SLP T
represents the string T = val(Xn).
The size of the program T is the num-
ber n of assignments in T . (See Fig. 1)

The substring intervals of T that each variable derives can be defined recur-
sively as follows: itv (Xn) = {[1 : |T |]}, and itv(Xi) = {[u + |X�| : v] | Xk =
X�Xi, [u : v] ∈ itv(Xk)} ∪ {[u : u + |Xi| − 1] | Xk = XiXr, [u : v] ∈ itv(Xk)} for

Fast q-gram Mining on SLP Compressed Strings 281

Algorithm 2. A näıve algorithm for computing q-gram frequencies
Input: string T , integer q ≥ 1
Report: (P, |Occ(T, P)|) for all P ∈ Σq where Occ(T, P) �= ∅.

1 S ← ∅; // empty associative array

2 for i ← 1 to |T | − q + 1 do
3 qgram ← T [i : i + q − 1];
4 if qgram ∈ keys(S) then S[qgram] ← S[qgram] + 1;
5 else S[qgram] ← 1; // new q-gram

6 for qgram ∈ keys(S) do Report (qgram ,S[qgram])

i < n. For example, itv(X5) = {[4 : 8], [9 : 13]} in Fig. 1. Considering the transi-
tive reduction of set inclusion, the intervals ∪n

i=1itv(Xi) naturally form a binary
tree (the derivation tree). Let vOcc(Xi) = |itv(Xi)| denote the number of times a
variable Xi occurs in the derivation of T . vOcc(Xi) for all 1 ≤ i ≤ n can be com-
puted in O(n) time by a simple iteration on the variables, since vOcc(Xn) = 1
and for i < n, vOcc(Xi) =

∑
{vOcc(Xk) | Xk = X�Xi} +

∑
{vOcc(Xk) | Xk =

XiXr}. (See Algorithm 1).

2.2 Suffix Arrays and LCP Arrays

The suffix array SA [18] of any string T is an array of length |T | such that
SA[i] = j, where T [j : |T |] is the i-th lexicographically smallest suffix of T .
The lcp array of any string T is an array of length |T | such that LCP [i] is the
length of the longest common prefix of T [SA[i − 1] : |T |] and T [SA[i] : |T |] for
2 ≤ i ≤ |T |, and LCP [1] = 0. The suffix array for any string of length |T | can be
constructed in O(|T |) time (e.g. [11]) assuming an integer alphabet. Given the
text and suffix array, the lcp array can also be calculated in O(|T |) time [13].

3 Algorithm

3.1 Computing q-gram Frequencies on Uncompressed Strings

We describe two algorithms (Algorithm 2 and Algorithm 3) for computing the
q-gram frequencies of a given uncompressed string T .

A näıve algorithm for computing the q-gram frequencies is given in Algo-
rithm 2. The algorithm constructs an associative array, where keys consist of
q-grams, and the values correspond to the occurrence frequencies of the q-grams.
The time complexity depends on the implementation of the associative array, but
requires at least O(q|T |) time since each q-gram is considered explicitly, and the
associative array is accessed O(|T |) times: e.g. O(q|T | log |Σ|) time and O(q|T |)
space using a simple trie.

The q-gram frequencies of string T can be calculated in O(|T |) time using
suffix array SA and lcp array LCP , as shown in Algorithm 3. For each 1 ≤ i ≤ |T |,
the suffix SA[i] represents an occurrence of q-gram T [SA[i] : SA[i]+ q−1], if the

282 K. Goto et al.

Algorithm 3. A linear time algorithm for computing q-gram frequencies
Input: string T , integer q ≥ 1
Report: (i, |Occ(T, P)|) for all P ∈ Σq and some position i ∈ Occ(T, P).

1 SA ← SUFFIXARRAY (T); LCP ← LCPARRAY (T, SA); count ← 1;
2 for i ← 2 to |T | + 1 do
3 if i = |T | + 1 or LCP [i] < q then
4 if count > 0 then Report (SA[i − 1], count); count ← 0;

5 if i ≤ |T | and SA[i] ≤ |T | − q + 1 then count ← count + 1;

suffix is long enough, i.e. SA[i] ≤ |T | − q + 1. The key is that since the suffixes
are lexicographically sorted, intervals on the suffix array where the values in the
lcp array are at least q represent occurrences of the same q-gram. The algorithm
runs in O(|T |) time, since SA and LCP can be constructed in O(|T |). The rest is
a simple O(|T |) loop. A technicality is that we encode the output for a q-gram as
one of the positions in the text where the q-gram occurs, rather than the q-gram
itself. This is because there can be a total of O(|T |) different q-grams, and if we
output them as length-q strings, it would require at least O(q|T |) time.

3.2 Computing q-gram Frequencies on SLP

We now describe the core idea of our algorithms, and explain two variations
which utilize variants of the two algorithms for uncompressed strings presented
in Section 3.1. For q = 1, the 1-gram frequencies are simply the frequencies of
the alphabet and the output is (a,

∑
{vOcc(Xi) | Xi = a}) for each a ∈ Σ, which

takes only O(n) time. For q ≥ 2, we make use of Lemma 1 below. The idea is
similar to the mk Lemma [5], but the statement is more specific.

Lemma 1. Let T = {Xi}n
i=1 be an SLP that represents string T . For an interval

[u : v] (1 ≤ u < v ≤ |T |), there exists exactly one variable Xi = X�Xr such that
for some [u′ : v′] ∈ itv(Xi), the following holds: [u : v] ⊆ [u′ : v′], u ∈ [u′ :
u′ + |X�| − 1] ∈ itv(X�) and v ∈ [u′ + |X�| : v′] ∈ itv(Xr).

Proof. Consider length 1 intervals [u : u] and [v : v] corresponding to leaves
in the derivation tree. Xi corresponds to the lowest common ancestor of these
intervals in the derivation tree. ��

q - 1q - 1

q

Xi

Xℓ Xrti

T

Fig. 2. Length-q intervals cor-
responding to Xi = X�Xr

From Lemma 1, each occurrence of a q-gram
(q ≥ 2) represented by some length-q interval of
T , corresponds to a single variable Xi = X�Xr,
and is split in two by intervals corresponding
to X� and Xr. On the other hand, consider all
length-q intervals that correspond to a given vari-
able. Counting the frequencies of the q-grams
they represent, and summing them up for all vari-
ables give the frequencies of all q-grams of T .

Fast q-gram Mining on SLP Compressed Strings 283

For variable Xi = X�Xr, let ti = suf (X�, q − 1)pre(Xr, q − 1). Then, all q-
grams represented by length q intervals that correspond to Xi are those in ti.
(Fig. 2). If we obtain the frequencies of all q-grams in ti, and then multiply each
frequency by vOcc(Xi), we obtain frequencies for the q-grams occurring in all
intervals derived by Xi. It remains to sum up the q-gram frequencies of ti for all
1 ≤ i ≤ n. We can regard it as obtaining the weighted q-gram frequencies in the
set of strings {t1, . . . , tn}, where each q-gram in ti is weighted by vOcc(Xi).

We further reduce this problem to a weighted q-gram frequency problem for
a single string z as in Algorithm 4. String z is constructed by concatenating ti
such that q ≤ |ti| ≤ 2(q−1), and the weights of q-grams starting at each position
in z is held in array w. On line 8, 0’s instead of vOcc(Xi) are appended to w
for the last q− 1 values corresponding to ti. This is to avoid counting unwanted
q-grams that are generated by the concatenation of ti to z on line 6, which are
not substrings of each ti. The weighted q-gram frequency problem for a single
string (Line 9) can be solved with a slight modification of Algorithm 2 or 3. The
modified algorithms are shown respectively in Algorithms 5 and 6.

Theorem 1. Given an SLP T = {Xi}n
i=1 of size n representing a string T , the

q-gram frequencies of T can be computed in O(qn) time for any q > 0.

Proof. Consider Algorithm 4. The correctness is straightforward from the above
arguments, so we consider the time complexity. Line 1 can be computed in O(n)
time. Line 2 can be computed in O(qn) time by a simple dynamic programming.
For pre(): If Xi = a for some a ∈ Σ, then pre(Xi, q− 1) = a. If Xi = X�Xr and
|X�| ≥ q−1, then pre(Xi, q−1) = pre(X�, q−1). If Xi = X�Xr and |X�| < q−1,
then pre(Xi, q − 1) = pre(X�, q − 1)pre(Xr, q − 1− |X�|). The strings suf () can
be computed similarly. The computation amounts to copying O(q) characters
for each variable, and thus can be done in O(qn) time. For the loop at line 4,
since the length of string ti appended to z, as well as the number of elements
appended to w is at most 2(q − 1) in each loop, the total time complexity is
O(qn). Finally, since the length of z and w is O(qn), line 9 can be calculated in
O(qn) time using the weighted version of Algorithm 3 (Algorithm 6). ��

Note that the time complexity for using the weighted version of Algorithm 2
for line 9 of Algorithm 4 would be at least O(q2n): e.g. O(q2n log |Σ|) time and
O(q2n) space using a trie.

4 Applications and Extensions

We showed that for an SLP T of size n representing string T , q-gram frequency
problems on T can be reduced to weighted q-gram frequency problems on a string
z of length O(qn), which can be much shorter than T . This idea can further be
applied to obtain efficient compressed string processing algorithms for interesting
problems which we briefly introduce below.

284 K. Goto et al.

Algorithm 4. Calculating q-gram frequencies of an SLP for q ≥ 2
Input: SLP T = {Xi}n

i=1 representing string T , integer q ≥ 2.
Report: all q-grams and their frequencies which occur in T .

1 Calculate vOcc(Xi) for all 1 ≤ i ≤ n;
2 Calculate pre(Xi, q − 1) and suf (Xi, q − 1) for all 1 ≤ i ≤ n − 1 ;
3 z ← ε; w ← [];
4 for i ← 1 to n do
5 if Xi = X�Xr and |Xi| ≥ q then
6 ti = suf (X�, q − 1)pre(Xr, q − 1); z.append(ti);
7 for j ← 1 to |ti| − q + 1 do w.append(vOcc(Xi));
8 for j ← 1 to q − 1 do w.append(0);

9 Report q-gram frequencies in z, where each q-gram z[i : i + q − 1] is weighted
by w[i].

Algorithm 5. A variant of Algorithm 2 for weighted q-gram frequencies
Input: string T , array of integers w of length |T |, integer q ≥ 1
Report: (P,

∑
i∈Occ(T,P) w[i]) for all P ∈ Σq where

∑
i∈Occ(T,P) w[i] > 0.

1 S ← ∅; // empty associative array

2 for i ← 1 to |T | − q + 1 do
3 qgram ← T [i : i + q − 1];
4 if qgram ∈ keys(S) then S[qgram] ← S[qgram] + w[i];
5 else if w[i] > 0 then S[qgram] ← w[i]; // new q-gram

6 for qgram ∈ keys(S) do Report (qgram ,S[qgram])

4.1 q-gram Spectrum Kernel

A string kernel is a function that computes the inner product between two strings
which are mapped to some feature space. It is used when classifying string or text
data using methods such as Support Vector Machines (SVMs), and is usually the
dominating factor in the time complexity of SVM learning and classification. A
q-gram spectrum kernel [16] considers the feature space of q-grams. For string T ,
let φq(T) = (|Occ(T, p)|)p∈Σq . The kernel function is defined as Kq(T1, T2) =
〈φq(T1), φq(T2)〉 =

∑
p∈Σq |Occ(T1, p)||Occ(T2, p)|. The calculation of the kernel

function amounts to summing up the product of occurrence frequencies in strings
T1 and T2 for all q-grams which occur in both T1 and T2. This can be done in
O(|T1|+|T2|) time using suffix arrays. For two SLPs T1 and T2 of size n1 and n2 rep-
resenting strings T1 and T2, respectively, the q-gram spectrum kernel Kq(T1, T2)
can be computed in O(q(n1 + n2)) time by a slight modification of our algorithm.

4.2 Optimal Substring Patterns of Length q

Given two sets of strings, finding string patterns that are frequent in one set
and not in the other, is an important problem in string data mining, with many
problem formulations and the types of patterns to be considered, e.g.: in Bioin-
formatics [3], Machine Learning (optimal patterns [2]), and more recently KDD

Fast q-gram Mining on SLP Compressed Strings 285

Algorithm 6. A variant of Algorithm 3 for weighted q-gram frequencies
Input: string T , array of integers w of length |T |, integer q ≥ 1
Output: (i,

∑
i∈Occ(T,P) w[i]) for all P ∈ Σq where

∑
i∈Occ(T,P) w[i] > 0 and

some position i ∈ Occ(T, P).
1 SA ← SUFFIXARRAY (T); LCP ← LCPARRAY (T, SA); count ← 1;
2 for i ← 2 to |T | + 1 do
3 if i = |T | + 1 or LCP [i] < q then
4 if count > 0 then Report (SA[i − 1], count); count ← 0;

5 if i ≤ |T | and SA[i] ≤ |T | − q + 1 then count ← count + w[SA[i]];

(emerging patterns [4]). A simple optimal q-gram pattern discovery problem can
be defined as follows: Let T1 and T2 be two multisets of strings. The problem is
to find the q-gram p which gives the highest (or lowest) score according to some
scoring function that depends only on |T1|, |T2|, and the number of strings re-
spectively in T1 and T2 for which p is a substring. For uncompressed strings, the
problem can be solved in O(N) time, where N is the total length of the strings
in both T1 and T2, by applying the algorithm of [9] to two sets of strings. For
the SLP compressed version of this problem, the input is two multisets of SLPs,
each representing strings in T1 and T2. If n is the total number of variables
used in all of the SLPs, the problem can be solved in O(qn) time.

4.3 Different Lengths

The ideas in this paper can be used to consider all substrings of length not
only q, but all lengths up-to q, with some modifications. For the applications
discussed above, although the number of such substrings increases to O(q2n),
the O(qn) time complexity can be maintained by using standard techniques of
suffix arrays [7,13]. This is because there exist only O(qn) substring with distinct
frequencies (corresponding to nodes of the suffix tree), and the computations of
the extra substrings can be summarized with respect to them.

5 Computational Experiments

We implemented 4 algorithms (NMP, NSA, SMP, SSA) that count the frequen-
cies of all q-grams in a given text. NMP (Algorithm 2) and NSA (Algorithm 3)
work on the uncompressed text. SMP (Algorithm 4 + Algorithm 5) and SSA (Al-
gorithm 4 + Algorithm 6) work on SLPs. The algorithms were implemented us-
ing the C++ language. We used std::map from the Standard Template Library
(STL) for the associative array implementation.1 For constructing suffix arrays,
we used the divsufsort library2 developed by Yuta Mori. This implementation is

1 We also used std::hash map but omit the results due to lack of space. Choosing the
hashing function to use is difficult, and we note that its performance was unstable
and sometimes very bad when varying q.

2 http://code.google.com/p/libdivsufsort/

http://code.google.com/p/libdivsufsort/

286 K. Goto et al.

not linear time in the worst case, but has been empirically shown to be one of the
fastest implementations on various data.

All computations were conducted on a Mac Xserve (Early 2009) with 2 x
2.93GHz Quad Core Xeon processors and 24GB Memory, only utilizing a sin-
gle process/thread at once. The program was compiled using the GNU C++
compiler (g++) 4.2.1 with the -fast option for optimization. The running times
are measured in seconds, starting from after reading the uncompressed text into
memory for NMP and NSA, and after reading the SLP that represents the text
into memory for SMP and SSA. Each computation is repeated at least 3 times,
and the average is taken.

5.1 Fibonacci Strings

 0.0001

 0.001

 0.01

 0.1

 1

 10

 100

 1000

 100 10000 1e+06 1e+08 1e+10 1e+12 1e+14 1e+16 1e+18 1e+20

to
ta

l t
im

e
(s

ec
on

ds
)

text length

NMP
NSA
SMP
SSA

Fig. 3. Running times of NMP, NSA,
SMP, SSA on Fibonacci strings for q = 50

The i th Fibonacci string Fi can be rep-
resented by the following SLP: X1 =
b, X2 = a, Xi = Xi−1Xi−2 for
i > 2, and Fi = val (Xi). Fig. 3
shows the running times on Fibonacci
strings F20, F25, . . . , F95, for q = 50.
Although this is an extreme case since
Fibonacci strings can be exponentially
compressed, we can see that SMP and
SSA that work on the SLP are clearly
faster than NMP and NSA which work
on the uncompressed string.

5.2 Pizza and Chili Corpus

 0

 1

 2

 3

 4

 5

 6

 0 0.5 1 1.5 2

na
iv

e
tim

e
/ s

lp
 ti

m
e

|z | / text length

NMP / SMP
NSA / SSA

F
as

te
r

on
 S

LP

Fig. 4. Time ratios NMP/SMP and
NSA/SSA plotted against ratio |z|/|T |

We also applied the algorithms
on texts XML, DNA, ENGLISH,
and PROTEINS, with sizes 50MB,
100MB, and 200MB, obtained from
the Pizza & Chili Corpus3. We used
RE-PAIR [15] to obtain SLPs for this
data.

Table 1 shows the running times
for all algorithms and data, where q
is varied from 2 to 10. We see that for
all corpora, SMP and SSA running on
SLPs are actually faster than NMP
and NSA running on uncompressed
text, when q is small. Furthermore,
SMP is faster than SSA when q is smaller. Interestingly for XML, the SLP
versions are faster even for q up to 9.

3 http://pizzachili.dcc.uchile.cl/texts.html

http://pizzachili.dcc.uchile.cl/texts.html

Fast q-gram Mining on SLP Compressed Strings 287

Table 1. Running times in seconds for data from the Pizza & Chili Corpus. Bold
numbers represent the fastest time for each data and q. Times for SMP and SSA
are prefixed with �, if they become fastest when all algorithms start from the SLP
representation, i.e., NMP and NSA require time for decompressing the SLP (denoted
by decompression time). The bold horizontal lines show the boundary where |z| in
Algorithm 4 exceeds the uncompressed text length.

XML
50MB 100MB 200MB

SLP Size: 2,702,383 SLP Size: 5,059,578 SLP Size: 9,541,590
decompression time: 0.82 secs decompression time: 1.73 secs decompression time: 3.52 secs

q |z| NMP NSA SMP SSA |z| NMP NSA SMP SSA |z| NMP NSA SMP SSA
2 8,106,861 5.9 9.8 1.1 2.0 15,178,446 12.0 21.0 2.1 4.3 28,624,482 24.7 46.9 4.3 8.9
3 13,413,565 13.0 9.8 2.5 3.2 25,160,162 27.8 21.1 4.9 6.8 47,504,478 58.7 46.1 9.8 14.3
4 18,364,951 21.0 9.8 5.7 4.7 34,581,658 47.2 21.3 11.3 9.9 65,496,619 100.3 46.2 22.5 20.0
5 22,873,060 28.7 9.8 10.2 5.9 43,275,004 63.0 21.1 20.4 12.5 82,321,682 139.4 46.2 40.1 25.1
6 27,032,514 35.2 9.8 14.9 7.1 51,354,178 77.1 21.0 29.6 14.8 98,124,580 172.4 46.3 59.4 30.2
7 30,908,898 40.0 9.8 19.4 8.2 58,935,352 87.4 21.1 38.9 16.9 113,084,186 197.7 46.8 78.5 34.9
8 34,559,523 44.3 9.8 26.0 9.3 66,104,075 97.5 21.1 52.5 19.1 127,316,007 218.3 46.3 103.9 39.9
9 37,983,150 49.0 9.8 31.0 � 10.1 72,859,310 105.3 21.1 60.9 20.9 140,846,749 234.6 46.3 124.7 44.1
10 41,253,257 52.5 9.9 35.8 11.2 79,300,797 115.3 21.2 72.2 � 22.7 153,806,891 253.6 46.3 148.8 � 48.8

DNA
50MB 100MB 200MB

SLP Size: 6,406,324 SLP Size: 12,233,978 SLP Size: 23,171,463
decompression time: 1.23 secs decompression time: 2.54 secs decompression time: 5.21 secs

q |z| NMP NSA SMP SSA |z| NMP NSA SMP SSA |z| NMP NSA SMP SSA
2 19,218,924 2.2 13.7 1.9 5.7 36,701,886 4.7 30.5 3.9 12.6 69,514,341 9.8 70.0 8.0 26.1
3 32,030,826 4.4 13.7 3.0 8.6 61,169,030 9.1 30.5 5.8 18.6 115,856,038 18.7 70.1 11.8 38.8
4 44,833,624 6.5 13.7 4.5 12.3 85,624,856 13.4 30.5 8.9 25.3 162,182,697 28.0 70.0 17.6 52.9
5 57,554,843 8.6 13.8 6.7 15.5 109,976,706 17.8 30.5 13.1 32.3 208,371,656 37.0 69.9 26.3 67.9
6 69,972,618 11.1 13.7 10.1 19.0 133,890,719 23.3 31.0 19.8 40.0 253,939,731 47.6 70.2 39.5 86.6
7 81,771,222 15.3 13.6 � 14.7 23.0 156,832,841 31.0 30.5 28.6 49.3 298,014,802 63.2 69.9 56.1 104.5
8 92,457,893 21.1 13.6 22.9 27.3 177,888,984 42.2 30.5 44.9 58.5 338,976,517 85.4 69.9 88.5 126.3
9 101,852,490 33.0 13.7 42.8 31.4 196,656,282 65.7 30.4 81.5 67.5 375,928,060 132.1 69.9 159.3 147.9
10 109,902,230 56.5 13.7 65.9 34.9 213,075,531 113.2 30.5 129.2 75.9 408,728,193 226.0 69.9 248.4 166.3

ENGLISH
50MB 100MB 200MB

SLP Size: 4,861,619 SLP Size: 10,063,953 SLP Size: 18,945,126
decompression time: 1.15 secs decompression time: 2.43 secs decompression time: 5.07 secs

q |z| NMP NSA SMP SSA |z| NMP NSA SMP SSA |z| NMP NSA SMP SSA
2 14,584,329 5.7 13.1 1.9 4.5 30,191,214 11.5 28.2 4.2 10.3 56,834,703 23.5 64.2 8.5 21.7
3 24,230,676 11.4 13.0 4.0 7.4 50,196,054 23.8 28.2 8.3 16.8 94,552,062 50.3 65.5 16.5 34.9
4 33,655,433 20.0 12.9 8.2 9.9 69,835,185 42.1 28.2 17.6 22.1 131,758,513 89.7 64.2 34.1 45.8
5 42,640,982 33.1 12.9 16.1 12.7 88,711,756 72.6 28.2 35.1 � 28.6 167,814,701 156.9 64.2 68.2 59.7
6 51,061,064 49.5 12.9 27.1 15.5 106,583,131 111.8 28.5 59.7 35.3 202,293,814 240.8 64.4 116.1 74.3
7 58,791,311 65.1 12.9 40.1 18.4 123,180,654 143.6 28.3 88.3 42.3 234,664,404 313.7 64.3 173.5 90.3
8 65,777,414 79.6 12.9 59.1 20.8 138,382,443 176.8 28.3 131.3 48.5 264,668,656 385.9 64.8 256.7 104.5
9 71,930,623 92.7 12.9 74.2 23.0 152,010,306 207.8 28.5 166.0 54.2 291,964,684 454.6 64.5 335.0 118.0
10 77,261,995 105.3 13.0 89.7 25.1 164,021,382 235.9 28.4 205.2 59.8 316,387,791 521.2 64.7 425.3 131.4

PROTEINS
50MB 100MB 200MB

SLP Size: 10,357,053 SLP Size: 18,806,316 SLP Size: 32,375,988
decompression time: 1.67 secs decompression time: 3.51 secs decompression time: 7.05 secs

q |z| NMP NSA SMP SSA |z| NMP NSA SMP SSA |z| NMP NSA SMP SSA
2 31,071,084 4.5 14.5 4.0 10.2 56,418,873 9.0 32.2 7.6 20.4 97,127,889 18.0 69.0 13.6 38.0
3 51,749,628 9.4 14.5 7.6 16.2 93,995,974 18.7 32.1 14.1 32.3 161,825,337 37.3 69.0 25.5 60.0
4 70,939,655 22.4 14.3 21.3 24.6 129,372,571 45.4 32.2 39.1 49.0 223,413,554 91.5 69.0 � 69.1 91.8
5 86,522,157 66.6 14.4 54.9 32.2 159,110,124 137.5 32.2 100.5 65.6 275,952,088 270.9 69.4 175.5 125.1
6 95,684,819 116.7 14.5 107.7 37.6 178,252,162 251.5 32.3 204.4 79.1 311,732,866 502.8 69.4 356.0 151.7
7 99,727,910 142.8 14.5 143.7 40.8 187,623,783 327.6 32.4 299.8 85.6 330,860,933 675.2 69.7 586.4 168.0
8 100,877,101 147.8 14.4 166.3 42.5 190,898,844 343.0 32.4 363.6 88.7 337,898,827 731.0 69.6 771.8 175.5
9 101,631,544 149.3 14.4 171.6 42.8 192,736,305 348.1 32.4 393.0 91.2 341,831,651 742.2 69.7 820.3 181.8
10 102,636,144 150.5 14.4 178.6 43.4 195,044,390 350.4 32.5 404.2 93.1 346,403,103 747.7 69.7 831.9 185.8

288 K. Goto et al.

Fig. 4 shows the same results as time ratio: NMP/SMP and NSA/ SSA, plot-
ted against ratio: (length of z in Algorithm 4)/(length of uncompressed text). As
expected, the SLP versions are basically faster than their uncompressed coun-
terparts, when |z|/(text length) is less than 1, since the SLP versions run the
weighted versions of the uncompressed algorithms on a text of length |z|. SLPs
generated by other grammar based compression algorithms showed similar ten-
dencies (data not shown).

6 Conclusion

We presented an O(qn) time and space algorithm for calculating all q-gram
frequencies in a string, given an SLP of size n representing the string. This solves,
much more efficiently, a more general problem than considered in previous work.
Computational experiments on various real texts showed that the algorithms run
faster than algorithms that work on the uncompressed string, when q is small.
Although larger values of q allow us to capture longer character dependencies,
the dimensionality of the features increases, making the space of occurring q-
grams sparse. Therefore, meaningful values of q for typical applications can be
fairly small in practice (e.g. 3 ∼ 6), so our algorithms have practical value.

A future work is extending our algorithms that work on SLPs, to algorithms
that work on collage systems [14]. A Collage System is a more general framework
for modeling various compression methods. In addition to the simple concatena-
tion operation used in SLPs, it includes operations for repetition and prefix/suffix
truncation of variables.

This is the first paper to show the potential of the compressed string processing
approach in developing efficient and practical algorithms for problems in the
field of string mining and classification. More and more efficient algorithms for
various processing of text in compressed representations are becoming available.
We believe texts will eventually be stored in compressed form by default, since
not only will it save space, but it will also have the added benefit of being able
to conduct various computations on it more efficiently later on, when needed.

References

1. Amir, A., Benson, G.: Efficient two-dimensional compressed matching. In: Proc.
Data Compression Conference (DCC 1992), pp. 279–288 (1992)

2. Arimura, H., Wataki, A., Fujino, R., Arikawa, S.: A fast algorithm for discovering
optimal string patterns in large text databases. In: Richter, M.M., Smith, C.H.,
Wiehagen, R., Zeugmann, T. (eds.) ALT 1998. LNCS (LNAI), vol. 1501, pp. 247–
261. Springer, Heidelberg (1998)

3. Brazma, A., Jonassen, I., Eidhammer, I., Gilbert, D.: Approaches to the automatic
discovery of patterns in biosequences. J. Comp. Biol. 5(2), 279–305 (1998)

4. Chan, S., Kao, B., Yip, C.L., Tang, M.: Mining emerging substrings. In: Proc. 8th
International Conference on Database Systems for Advanced Applications (DAS-
FAA 2003), p. 119 (2003)

5. Charikar, M., Lehman, E., Liu, D., Panigrahy, R., Prabhakaran, M., Sahai, A.,
abhi shelat: The smallest grammar problem. IEEE Transactions on Information
Theory 51(7), 2554–2576 (2005)

Fast q-gram Mining on SLP Compressed Strings 289

6. Claude, F., Navarro, G.: Self-indexed grammar-based compression. In: Fundamenta
Informaticae (to appear), preliminary version: Proc. MFCS 2009, pp. 235–246 (2009)

7. Gusfield, D.: Algorithms on Strings, Trees, and Sequences. Cambridge University
Press, Cambridge (1997)

8. Hermelin, D., Landau, G.M., Landau, S., Weimann, O.: A unified algorithm for ac-
celerating edit-distance computation via text-compression. In: Proc. STACS 2009,
pp. 529–540 (2009)

9. Hui, L.C.K.: Color set size problem with application to string matching. In: Apos-
tolico, A., Galil, Z., Manber, U., Crochemore, M. (eds.) CPM 1992. LNCS, vol. 644,
pp. 230–243. Springer, Heidelberg (1992)

10. Inenaga, S., Bannai, H.: Finding characteristic substring from compressed texts.
In: Proc. The Prague Stringology Conference 2009, pp. 40–54 (2009)

11. Kärkkäinen, J., Sanders, P.: Simple linear work suffix array construction. In:
Baeten, J.C.M., Lenstra, J.K., Parrow, J., Woeginger, G.J. (eds.) ICALP 2003.
LNCS, vol. 2719, pp. 943–955. Springer, Heidelberg (2003)

12. Karpinski, M., Rytter, W., Shinohara, A.: An efficient pattern-matching algorithm
for strings with short descriptions. Nordic Journal of Computing 4, 172–186 (1997)

13. Kasai, T., Lee, G.H., Arimura, H., Arikawa, S., Park, K.: Linear-Time Longest-
Common-Prefix Computation in Suffix Arrays and Its Applications. In: Amir, A.,
Landau, G.M. (eds.) CPM 2001. LNCS, vol. 2089, pp. 181–192. Springer, Heidelberg
(2001)

14. Kida, T., Shibata, Y., Takeda, M., Shinohara, A., Arikawa, S.: Collage system: A
unifying framework for compressed pattern matching. Theoret. Comput. Sci. 298,
253–272 (2003)

15. Larsson, N.J., Moffat, A.: Offline dictionary-based compression. In: Proc. Data
Compression Conference (DCC 1999), pp. 296–305 (1999)

16. Leslie, C., Eskin, E., Noble, W.S.: The spectrum kernel: A string kernel for SVM
protein classification. In: Pacific Symposium on Biocomputing, vol. 7, pp. 566–575
(2002)

17. Lifshits, Y.: Processing compressed texts: A tractability border. In: Ma, B., Zhang,
K. (eds.) CPM 2007. LNCS, vol. 4580, pp. 228–240. Springer, Heidelberg (2007)

18. Manber, U., Myers, G.: Suffix arrays: A new method for on-line string searches.
SIAM J. Computing 22(5), 935–948 (1993)

19. Matsubara, W., Inenaga, S., Ishino, A., Shinohara, A., Nakamura, T., Hashimoto,
K.: Efficient algorithms to compute compressed longest common substrings and
compressed palindromes. Theoret. Comput. Sci. 410(8–10), 900–913 (2009)

20. Navarro, G., Mäkinen, V.: Compressed full-text indexes. ACM Computing Sur-
veys 39(1), 2 (2007)

21. Nevill-Manning, C.G., Witten, I.H., Maulsby, D.L.: Compression by induction of
hierarchical grammars. In: Proc. Data Compression Conference (DCC 1994), pp.
244–253 (1994)

22. Rytter, W.: Application of Lempel-Ziv factorization to the approximation of
grammar-based compression. Theoret. Comput. Sci. 302(1–3), 211–222 (2003)

23. Shibata, Y., Kida, T., Fukamachi, S., Takeda, M., Shinohara, A., Shinohara, T.,
Arikawa, S.: Speeding up pattern matching by text compression. In: Bongiovanni,
G., Petreschi, R., Gambosi, G. (eds.) CIAC 2000. LNCS, vol. 1767, pp. 306–315.
Springer, Heidelberg (2000)

24. Ziv, J., Lempel, A.: A universal algorithm for sequential data compression. IEEE
Transactions on Information Theory IT-23(3), 337–349 (1977)

25. Ziv, J., Lempel, A.: Compression of individual sequences via variable-length coding.
IEEE Transactions on Information Theory 24(5), 530–536 (1978)

Succinct Gapped Suffix Arrays�

Lúıs M.S. Russo1,2,�� and German Tischler3

1 Instituto Superior Técnico-Universidade Técnica de Lisboa (IST/UTL),
Av. Rovisco Pais, 1049-001 Lisboa, Portugal

luis.russo@ist.utl.pt
2 INESC-ID, Knowledge Discovery and Bioinformatics Group,

R. Alves Redol, 9,1000-029 Lisbon, Portugal
3 Lehrstuhl für Informatik II, Universität Würzburg,

Am Hubland, 97074 Würzburg, Germany
tischler@informatik.uni-wuerzburg.de

Abstract. Gapped suffix arrays (also known as bi-factor arrays) were
recently presented for approximate searching under the Hamming dis-
tance. These structures can be used to find occurrences of a pattern P ,
where the characters inside a gap do not have to match. This paper
describes a succinct representation of gapped suffix arrays.

1 Introduction

In this paper we consider gap matching, which consists in determining all the
positions of a text string T where the pattern P occurs, except possibly for
the characters inside a gap. We study efficient succinct representations of index
structures for this problem. This type of search is relevant for bioinformatic
applications. Typically such applications use large genome sequences and need
to compute a large amount of queries. Genome sequences are error prune and
thus exact matching retrieves only a partial amount of information.

Gapped suffix arrays were first introduced as bi-factor arrays by Peterlongo
et al. (cf.[10]), who also proposed a tree variant [9]. These arrays were reinvented
by Crochemore et al. [3], who introduced a simple compression scheme not reach-
ing any succinct space guarantees. Up to now, gapped suffix arrays were defined
as classical data structures and therefore have large space requirements. In this
paper we study different succinct representations of gapped suffix arrays, using
state of the art succinct trees, such as wavelet trees [6].

2 Definitions

Throughout this paper log refers to the binary logarithm log2 and in runtime
and space descriptions we will use log v as a short form of �log v�.
� Supported by FCT through projects TAGS PTDC/EIA-EIA/112283/2009, HELIX

PTDC/EEA-ELC/113999/2009 and the PIDDAC Program funds (INESC-ID mul-
tiannual funding).

�� Corresponding author.

R. Grossi et al. (Eds.): SPIRE 2011, LNCS 7024, pp. 290–294, 2011.
c© Springer-Verlag Berlin Heidelberg 2011

Succinct Gapped Suffix Arrays 291

Let Σ = {0, 1, . . . , σ−1} be an ordered alphabet and T = t0t1 . . . tn−1 a string
of length |T | = n over Σ. We write i mod n for integers i as i%n. We denote the
symbol ti%n by T [i] and write T [i . . j] to represent the factor T [i]T [i+1] . . . T [j]
where j ≥ i and T [i . . j] = ε otherwise. We assume that T is terminated by a
unique minimal character $. The string S is a prefix of T if S = T [0]T [1] . . .T [m−
1] for some m ∈ N, a suffix of T if S = T [m]T [m+1] . . .T [n−1] for some integer
m, a factor of T if S = T [i . . j] for some integers i, j.

The operation Rank(S, a, i) counts for S = s0, s1, . . . , sm−1 how many in-
stances of a appear in s0, s1, . . . , si while Select(S, a, j) yields the smallest
number i such that Rank(S, a, i) = j +1. For binary sequences both can be per-
formed in constant time using indexes of o(m) bits (cf. [7,8]). Balanced wavelet
trees (cf. [6]) can be used to support the operations for sequences over general al-
phabets Γ = {0, 1, . . . , γ−1}, of size γ, in O(log γ) time and m log γ +o(m) log γ
bits. The order 0 entropy H0(S) of a sequence S of length m over the finite
alphabet Γ = {0, 1, . . . , γ−1} of size γ is defined as H0(S) = −

∑
a∈Γ ma log ma

m
where ma = Rank(S, a, m − 1). Using a Huffman shaped wavelet tree (cf. [4])
Rank and Select operations on a sequence S of length m can be performed in
average time O(κ) using index space of mκ + o(m)κ bits, where κ is the average
code length of a Huffman code used for coding the sequence S. In the best case
we have κ = H0(S).

A factor S of T is lexicographically smaller than a factor R of T (S < R)
if S �= R and either |S| = 0 or |S|, |T | > 0 and S[0] < R[0] or |S|, |T | > 0
and S[0] = T [0] and S[1 . . |S| − 1] < R[1 . . |R| − 1] (where we use the bracket
operator on S and R in analogy to the use on T). The suffix array SA of T is
the permutation of 0, 1, . . . , n−1 such that T [SA[0] . . n−1] < T [SA[1] . . n−1] <
. . . < T [SA[n− 1] . . n− 1]. The inverse permutation for SA is called the inverse
suffix array of T and denoted by ISA. The Burrows-Wheeler transform (cf. [1])
BWT of T is a string of length n given by BWT[r] = T [(SA[r]−1)%n]. This string
is useful to compute the LF function, given by LF(r) = ISA[(SA[r]− 1)%n]. The
longest common prefix of two strings S = s1s2 . . . ss and R = r1r2 . . . rr written
as lcp(S, R) is the largest 	 such that s1s2 . . . s� equals r1r2 . . . r�. The array
LCP of the string T is defined by LCP[0] = 0 and LCP[r] = lcp(T [SA[r− 1] . . n−
1], T [SA[r] . . n−1]) for r = 1, 2, . . . , n−1. Assuming σ ∈ O(nc) for some constant
c the arrays SA and other arrays based on SA can be computed in time O(n)
from T (cf. [2]).

We define the cyclic factor of T of length n at position i written as T [i . .] by
T [i . .] = T [i . . i+n−1]. Given two parameters p, q ∈ N we say that T [i . .] is (p, q)-
lexicographically smaller than T [j . .] for 0 ≤ i, j < n written as T [i . .] <(p,q)

T [j . .] if i%n �= j%n and either T [i . . i+p−1] < T [j . . j+p−1] or T [i . . i+p−1] =
T [j . . j + p − 1] and T [i + p + q . . i + n − 1] < T [j + p + q . . j + n − 1] or
T [i . . i+p−1] = T [j . . j+p−1] and T [i+p+q . . i+n−1] = T [j+p+q . . j+n−1]
and T [i + p . . i + p + q − 1] < T [j + p . . j + p + q − 1]. Note that for i%n �= j%n
we have either T [i . .] <(p,q) T [j . .] or T [j . .] <(p,q) T [i . .] due to the terminator
symbol of T . We define the gapped suffix array gSA(p,q) of T as the permutation
of 0, 1, . . . , n−1 satisfying T [gSA(p,q)[0] . .] <(p,q) T [gSA(p,q)[1] . .] <(p,q) . . . <(p,q)

292 L.M.S. Russo and G. Tischler

T [gSA(p,q)[n−1] . .]. Note that this definition using circular strings slightly differs
from the definition given in [3]. The circular definition is better suited for our
goal of a succinct representation. In both cases the gapped suffix array is easily
computed in linear time from the array SA and LCP of T (see [3]). We denote
the inverse permutation of gSA(p,q) by IgSA(p,q). The gapped version gLF(p,q) of
the LF function is defined by gLF(p,q)(r) = IgSA(p,q)((gSA(p,q)(r)− 1)%n).

r gSA[r] gLF(r) T [gSA[r] . .]
L P G B

0 15 1 a $a ab bbbaabaabbba 1
1 14 9 b a$ aa bbbbaabaabbb 1
2 6 8 b aa ba abbba$aabbbb 0
3 9 10 b aa bb ba$aabbbbaab 0
4 0 0 $ aa bb bbaabaabbba$ 0
5 10 3 a ab bb a$aabbbbaaba 0
6 1 4 a ab bb baabaabbba$a 0
7 7 2 a ab aa bbba$aabbbba 0

r gSA[r] gLF(r) T [gSA[r] . .]
L P G B

8 5 15 b ba ab aabbba$aabbb 1
9 13 13 b ba $a abbbbaabaabb 0
10 8 7 a ba ab bba$aabbbbaa 0
11 11 5 a bb ba $aabbbbaabaa 0
12 2 6 a bb bb aabaabbba$aa 0
13 12 11 b bb a$ aabbbbaabaab 0
14 3 12 b bb ba abaabbba$aab 0
15 4 14 b bb aa baabbba$aabb 0
16 1

Fig. 1. Matrix of cyclic factors of length n for string T = aabbbbaabaabbba$ sorted by
<(2,2). We denote column n − 1 by L, column p − 1 by P and column p + q − 1 by G.

3 Computing the Gapped LF Function in Succinct Space

In this section we show how to compute the function gLF(p,q) based on a dic-
tionary of O(n log σ) bits. This is in contrast to using an array for gSA(p,q) and
another for IgSA(p,q), which requires O(n log n) bits. Based on gLF(p,q) we can
represent gSA(p,q) in space O(n log σ) such that each element can be accessed in
time O(log n) by using a sampled gSA(p,q) array and the gLF(p,q) function (cf. [4]).
Throughout this section we assume fixed parameters p and q and consequently
strip them from notations.

Theorem 1. The function gLF can be computed in time O(log σ) using a data
structure of (3 logσ + 1)(n + o(n)) bits.

Proof. The computation of gLF(r), where 0 ≤ r < n, is performed in three steps:

1. Remove the last letter of the prefix, the letter at column p− 1.
2. Add a letter before the prefix, the letter at column n− 1.
3. Add a letter at the end of the gap, the letter at column p + q − 1, .

The first step is in fact the most complicated one and involves two calculations.
The first uses a bitmap B, defined as B[r] = 1 for r = n or if LCP[r] < p−1 and
B[r] = 0 otherwise, for 0 ≤ i < n, which means it uses n + 1 bits. The second
will be presented along with the third step.

Succinct Gapped Suffix Arrays 293

Assume δ = �logσ� and consider the strings L, G, P of length n defined by
L[r] = T [(gSA[r]−1)%n], G[r] = T [(gSA[r]+p+q−1)%n], P [r] = T [(gSA[r]+p−
1)%n], for r = 0, 1, . . . , n−1. In fact we represent L and G combined into a string
LG were each letter is a pair, with a letter from L and a letter from G, therefore
LG[r] = (L[r], G[r]). A simple way to encode the pairs is as L[r]2δ + G[r]. We
store the strings LG and P using wavelet trees of depth 2δ and δ respectively.
The strings L and G are and not stored explicitly, we access them via the wavelet
tree that stores LG.

The wavelet trees, including supporting data structures for Rank and Select,
that requires (2δ+δ)(n+o(n)) = 3δ(n+o(n)) bits. We also store a representation
of B, in n + o(n) bits, that supports Rank and Select. The total index size
adds up to (3δ +1)(n+ o(n)) bits. The wavelet trees also support range quantile
queries (RQQ, cf. [5]) and smaller queries (smaller, cf. [11]). Given 	, r, k ∈ N

where 	 ≤ r, k ∈ [l, r] the query RQQ(S, [, r], k) returns the k-th element of
S[. . r] if it were in sorted order, for a wavelet tree over string S. The query
smaller(S, [, r], k) returns the number of elements smaller than k in S[. . r].
Hence we can compute these queries over LG and P in time O(δ).

We illustrate the procedure with the computation of gLF(12) on our example
string T , see Fig. 1. We compute a sequence of intervals, I = [α, β], in the first
step, J = [ι, λ], in the second step, a reduction of J to J ′ = [ι′, λ], in the third
step. The process terminates by choosing an element of J ′.

First set I = [Select(B, 1,Rank(B, 1, r)),Select(B, 1,Rank(B, 1, r)+1)−
1], this interval corresponds to the region that contains the prefix p−1 of gSA[r].
Note that implicitly we are discarding the letter in column p−1. In the example
I = [8, 15], the prefix is b and we are discarding the second b. The second
step is a standard LF step. Let c = L[r], in the example L[12] = a. Compute
J = [smaller(L, [0, n − 1], c) + rank(L, c, α − 1), . . .]. This LF mapping works
because the interval I was chosen irrespectively of the gap, meaning that the
cyclic factors of SA in I are the same as those of gSA in I, albeit in a different
order. In the example J = [5, 7]. The relative order, compared to SA, can be
altered by two factors: The first case is when character previously in column
p + g − 1, (d = G[r]) is pushed outside the gap to column p + g, which makes it
relevant for sorting. The second case is when the letter in column p−1 is moved
into the gap area, and is thus no longer relevant for sorting.

The first case is solved in the third step. The second case is related to the first
step and is determined in the final selection. In the third step we use smaller and
Rank operations in LG and can count the number of characters that are smaller
than, or equal to, d and simultaneously have L = c. Therefore the equation for J ′

is J ′ = [ι+smaller(LG, [α, β], (c, d))−smaller(L, [α, β], c)), . . .]. In our example we
obtain [6, 7]. Now to address the second case and finish the first step we determine
the relative position of r in J ′, ζ = Rank(LG, (c, d), r) −Rank(LG, (c, d), α −
1) − 1, this determines the relative position of rank r among the rows where
L is c and G is d, inside I. In the example ζ = 1. The computation returns

294 L.M.S. Russo and G. Tischler

RQQ(P, J ′, ζ) as the final result, in our example 6. The process used a constant
number of calls to functions which run in time O(δ) = O(log σ), so the total
running time is O(log σ).

Bringing the balanced wavelet trees to Huffman shape is not straight-forward, as
smaller and RQQ require need to encode the symbols in the lexicographic order,
which is generally destroyed by Huffman coding. However in most applications
the actual alphabet order is unimportant, and this encoding is preferable over a
general encoding that uses more space.

Theorem 2. The function gLF for some alphabet ordering can be computed in
average time O(κ) using a data structure of (3κ + 1)(n + o(n)) bits.

The gLF operation is useful to represent gSA structure, by sampling the values
of gSA and IgSA, hence supporting forward search. It can also be extended to
support general backward search, although this process is not guaranteed to find
all the gap matches of P . We discuss this issue in an extended version.

References

1. Burrows, M., Wheeler, D.J.: A block-sorting lossless data compression algorithm.
Technical report, Digital SRC Research Report (1994)

2. Crochemore, M., Hancart, C., Lecroq, T.: Algorithms on Strings, 392 pages. Cam-
bridge University Press, Cambridge (2007)

3. Crochemore, M., Tischler, G.: The gapped suffix array: A new index structure for
fast approximate matching. In: Chavez, E., Lonardi, S. (eds.) SPIRE 2010. LNCS,
vol. 6393, pp. 359–364. Springer, Heidelberg (2010)

4. Ferragina, P., Manzini, G., Mäkinen, V., Navarro, G.: An alphabet-friendly FM-
index. In: Apostolico, A., Melucci, M. (eds.) SPIRE 2004. LNCS, vol. 3246, pp.
150–160. Springer, Heidelberg (2004)

5. Gagie, T., Puglisi, S.J., Turpin, A.: Range quantile queries: Another virtue of
wavelet trees. In: Karlgren, J., Tarhio, J., Hyyrö, H. (eds.) SPIRE 2009. LNCS,
vol. 5721, pp. 1–6. Springer, Heidelberg (2009)

6. Grossi, R., Gupta, A., Vitter, J.: High-order entropy-compressed text indexes. In:
Proc. 14th Annual ACM-SIAM Symposium on Discrete Algorithms (SODA), pp.
841–850 (2003)

7. Jacobson, G.: Space-efficient Static Trees and Graphs. In: Foundations of Computer
Science, pp. 549–554 (1989)

8. Munro, J.I.: Tables. In: Chandru, V., Vinay, V. (eds.) FSTTCS 1996. LNCS,
vol. 1180, pp. 37–42. Springer, Heidelberg (1996)

9. Peterlongo, P., Allali, J., Sagot, M.-F.: Indexing gapped-factors using a tree. Int.
J. Found. Comput. Sci. 19(1), 71–87 (2008)

10. Peterlongo, P., Pisanti, N., Boyer, F., Sagot, M.-F.: Lossless filter for finding long
multiple approximate repetitions using a new data structure, the bi-factor array.
In: Consens, M.P., Navarro, G. (eds.) SPIRE 2005. LNCS, vol. 3772, pp. 179–190.
Springer, Heidelberg (2005)

11. Schnattinger, T., Ohlebusch, E., Gog, S.: Bidirectional search in a string with
wavelet trees. In: Amir, A., Parida, L. (eds.) CPM 2010. LNCS, vol. 6129, pp.
40–50. Springer, Heidelberg (2010)

Finding Frequent Elements in Compressed 2D

Arrays and Strings

Travis Gagie1, Meng He2, J. Ian Munro2, and Patrick K. Nicholson2

1 Department of Computer Science and Engineering, Aalto University, Finland
2 Cheriton School of Computer Science, University of Waterloo, Canada

Abstract. We show how to store a compressed two-dimensional array
such that, if we are asked for the elements with high relative frequency
in a range, we can quickly return a short list of candidates that includes
them. More specifically, given an m × n array A and a fraction α > 0,
we can store A in O

(
mn(H + 1) log2(1/α)

)
bits, where H is the entropy

of the elements’ distribution in A, such that later, given a rectangular
range in A and a fraction β ≥ α, in O(1/β) time we can return a list of
O(1/β) distinct array elements that includes all the elements that have
relative frequency at least β in that range. We do not verify that the
elements in the list have relative frequency at least β, so the list may
contain false positives. In the case when m = 1, i.e., A is a string, we
improve this space bound by a factor of log(1/α), and explore a space-
time trade off for verifying the frequency of the elements in the list. This
leads to an O(n min(log(1/α), H + 1) log n) bit data structure for strings
that, in O(1/β) time, can return the O(1/β) elements that have relative
frequency at least β in a given range, without false positives, for β ≥ α.

1 Introduction

An α-majority in an array is an element that has relative frequency at least α,
for 0 < α < 1. Finding α-majorities in strings is a well-studied problem: Misra
and Gries [12], Demaine, López-Ortiz and Munro [4] and Karp, Shenker and
Papadimitriou [10] all independently discovered the same algorithm that, given
α, makes one pass over the string to build a list of 1/α candidate α-majorities,
and then makes a second pass to verify them, all using O(1/α) words of working
memory. Recently, this problem has been considered in the approximate set-
ting, using the term heavy hitters instead of α-majorities, where false positives
and even false negatives are allowed [3,7]. Very recently, Durocher, He, Munro,
Nicholson and Skala [5] showed how to store a string in O(log(1/α) log n) bits1

per character such that, given a range, the list of α-majorities in that range can
be returned in O(1/α) time; an improvement in both time and space over the
previous best result [11]. As with Misra and Gries’ algorithm, they first build a
list of O(1/α) candidates and then verify them, but this time using a wavelet
tree [9] for batched rank queries. In this paper we extend Durocher et al.’s result

1 We use log n to denote log2 n.

R. Grossi et al. (Eds.): SPIRE 2011, LNCS 7024, pp. 295–300, 2011.
c© Springer-Verlag Berlin Heidelberg 2011

296 T. Gagie et al.

in three directions: we consider two-dimensional arrays, we achieve compression,
and we show how to answer queries faster when asked only for the β-majorities,
for some fraction β > α.

In Section 2 we describe a data structure for storing an m × n array A such
that later, given a rectangular range in A and a fraction β ≥ α, in O(1/α)
time we can return a list of O(1/β) distinct array elements that includes all the
elements that have relative frequency at least β in that range. We do not consider
how to verify which of the O(1/β) candidates are truly β-majorities, so the list
may contain false positives. We assume throughout that A’s elements are from
the alphabet {1, . . . , mn}. This data structure occupies O(mn(H + 1) log(1/α))
bits, where H is the entropy of the elements’ distribution in A. We then show
how, by increasing the space by a factor of O(log 1/α), we can build the list of
candidates in O(1/β) time.

In Section 3 we show that if A is a string, then our space bounds are reduced
by a factor of log(1/α). We also explore a space-time trade off for verifying the
candidates in a string. Ultimately, we present a data structure that occupies
O(n min(log(1/α), H + 1) log n) bits, and can return all the O(1/β) verified β-
majorities in a range in O(1/β) time. If we reduce the space to O(n(H + 1))
bits, we can still return the verified β-majorities in O(log log n/α) time.

2 Two-Dimensional Arrays

For the moment, assume that we are always willing to spend O(1/α) time to
compute the list, regardless of β. We store a Huffman-coded copy of A and a
bit-vector that supports select in O(1) time [2], with a 1 marking the position
of the first bit of each codeword. This takes a total of mn(H + O(1)) bits and
allows us O(1)-time access to any element in A.

For the sake of simplicity, assume m and n are powers of 2; otherwise, we pad
A with null values to make this true. Let I be the set{

[i1..i2] ⊆ [1..m] : i2 − i1 + 1 = 2k, i1 = t2k−1, (i1, i2, t, k ∈ Z
∗)
}

,

and J be the set{
[j1..j2] ⊆ [1..n] : j2 − j1 + 1 = 2k, j1 = t2k−1, (j1, j2, t, k ∈ Z

∗)
}

.

For each vertical interval [i1..i2] ∈ I and horizontal interval [j1..j2] ∈ J with
	1	2 > 1/α, where 	1 = i2 − i1 + 1 is the length of [i1..i2] and 	2 = j2 − j1 + 1 is
the length of [j1..j2], we store a list of the at most 9/α distinct array elements
that each occurs at least α 	1	2 times in A[i1 − 	1..i2 + 	1, j1 − 	2..j2 + 	2] (we
assume these indices are valid; border cases can be handled similarly), in non-
increasing order by frequency. Figure 1 shows an example. For any β ≥ α,
the first 9/β elements in this list include all β-majorities for any range that is
contained in A[ii − 	1..i2 + 	1, j1 − 	2..j2 + 	2] but contains A[i1..i2, j1..j2]. We
call A[i1..i2, j1..j2] a block, and we define the size of the block to be 	1 × 	2.

Finally, we build a Huffman code for the all the blocks’ lists and store them
encoded, together with another bit-vector that supports select in O(1) time, with

Finding Frequent Elements in Compressed 2D Arrays and Strings 297

Fig. 1. Consider a vertical interval [i1..i2] ∈ I (shown as thick line at left) of
length �1 = i2 − i1 + 1 and a horizontal interval [j1..j2] ∈ J (shown as thick
line at top) of length �2 = j2 − j1 + 1, with �1�2 > 1/α. The first 9/β ele-
ments in the list we store include all β-majorities for any range that is contained in
A[ii − �1..i2 + �1, j1 − �2..j2 + �2] but contains A[i1..i2, j1..j2]. One such range is shown
in grey, with A[i1 − �1..i2 + �1, j1 − �2..j2 + �2] shown as the 9-part rectangle containing
it and A[i1..i2, j1..j2] as the center part.

a 1 marking the position of the first bit of the first codeword in each list. We now
describe how our structure answers queries, and then analyse its space usage.

Answering Queries: Given a rectangular query range in A, we can compute the
block size and dimensions of the query block, i.e., the largest block contained in
the query range, in O(1) time. Once we have the block size and dimensions, the
offset of the query block in the Huffman-coded block lists is easily obtained based
on the position of the query rectangle, and we can access the corresponding list
in O(1) time using select. Thus, in O(1/β) time we can retrieve the list, and
report the first O(1/β) candidates, if the query block has size greater than 1/α.
If we are asked to find the β-majorities in a smaller range, then we scan the
range with Misra and Gries’ algorithm [12] in O(1/α) time.

To reduce the time bound from O(1/α) to O(1/β) when the query block is
smaller than size 1/α, we store log(1/α) instances of our data structure. The
k-th instance is set up to return candidate (1/2k)-majorities in O

(
2k

)
time. To

find candidate β-majorities, we use the �log(1/β)�-th instance2.

Space Analysis: Since I and J contain O(m) and O(n) intervals, respectively, it
is not difficult to see that we use a total of O((mn/α) log(mn)) bits. In fact, we
will show that because we do not store lists for ranges with size 1/α or less, the
1/α factor in the space bound is reduced to log(1/α). Moreover, encoding the lists
using Huffman codes reduces the log(mn) factor to H + 1. The following three
lemmas solidify these arguments, bounding the space occupied by our structure.

2 Some of the block lists in the k-th instance are prefixes of lists in the (k + 1)-th
instance. However, removing this redundancy does not asymptotically reduce space.

298 T. Gagie et al.

Lemma 1. Any block B of size 2b overlaps O
(
α 2b log(1/α)

)
blocks of size at

most 2b.

Proof. The number of such blocks that B overlaps is at most 9 times the number
it contains (including itself), so we count the latter. For k ≤ b, there are k + 1
possible rectangular shapes with size 2k and sides whose lengths are powers of
2: i.e., 1 × 2k, 2 × 2k−1, . . . , 2k × 1. For each such shape, B contains at most
4 · 2b/2k blocks with that shape. Therefore, since

∑b
k=log(1/α)(k + 1)(2b/2k) =

O
(
α 2b log(1/α)

)
, B overlaps O

(
α 2b log(1/α)

)
blocks of size at most 2b. ��

Lemma 2. Any array element c occurs in blocks’ lists O(log(1/α)) times as
often as it occurs in A.

Proof. Let s be the total size of all the blocks B such that c is in B’s list but not
in the list of any larger block that overlaps B. Some of the choices of B could
overlap but c still occurs at least α s/9 times in A. On the other hand, it follows
from Lemma 1 that c occurs in O(α s log(1/α)) blocks’ lists. ��

Lemma 3. The Huffman-coded lists take a total of O(mn(H + 1) log(1/α)) bits.

Proof. Suppose we encode the lists with a Huffman code based on A, which can-
not give better compression than using one based on the lists themselves. Since
encoding A takes mn(H + O(1)) bits, it follows from Lemma 2 that encoding
the lists takes O(mn(H + 1) log(1/α)) bits. ��

Recall that if we are always willing to spend O(1/α) time to find the candidates,
regardless of β, then we store only one instance of our data structure and, by
Lemma 3, this occupies O(mn(H + 1) log(1/α)) bits. Otherwise, we store a data
structure for each of the log(1/α) fractions, 1/2, 1/4, . . . , α, and use a total of
O
(
mn(H + 1) log2(1/α)

)
bits. We get the following theorem:

Theorem 1. Given an m × n array A and a fraction α > 0, A can be stored
in O

(
mn(H + 1) log2(1/α)

)
bits, where H is the entropy of the elements’ dis-

tribution in A, such that later, given a rectangular range in A and a fraction
β ≥ α, a list of O(1/β) distinct array elements that includes all the elements
that have relative frequency at least β in that range can be returned in O(1/β)
time. Alternatively, A can be stored in O(mn(H + 1) log(1/α)) bits, and return
the same list in O(1/α) time, regardless of β.

3 Improvements for Strings

Space Reduction: In the special case when A is a string — i.e., when m = 1 — a
range of given size can have only one shape. Using the following lemma instead
of Lemma 1, we reduce our space bounds by a log(1/α) factor.

Lemma 4. In one dimension, any block B of size 2b overlaps O
(
α 2b

)
blocks of

size at most 2b.

Finding Frequent Elements in Compressed 2D Arrays and Strings 299

Proof. The number of such blocks that B overlaps is at most 3 times the number
it contains (including itself), which is

∑b
k=log(1/α) 2b/2k = O

(
α 2b

)
. ��

Theorem 2. Given a string A of length n and a fraction α > 0, A can be stored
in O(n(H + 1) log(1/α)) bits, where H is the 0th-order empirical entropy of A,
such that later, given a range in A and a fraction β ≥ α, a list of O(1/β) distinct
characters that includes all those with relative frequency at least β in that range
can be returned in O(1/β) time. Alternatively, A can be stored in O(n(H + 1))
bits, and return the same list in O(1/α) time, regardless of β.

Verifying the Elements: Barbay et al. [1] showed how to store A in nH+o(n)(H+
1) bits and answer rank queries on it in O(log log n) time. Combining this with
Theorem 2, we can easily verify each candidate c in O(log log n) time using a
rankc query at either end of the range. In the sequel, we show how to verify the
O(1/β) candidates returned by the data structure in Theorem 2, in O(1) time
per candidate, using O(n min(log(1/α), H + 1) log n) bits.

For each block A[j1..j2] in the string, we store a copy S of the substring
A[j1 − 	, j2 +], where 	 = j2 − j1 + 1, replacing each character with its rank in
the list for A[j1..j2]; characters not in the list are replaced with 0. Thus, each
substring S contains characters drawn from the alphabet {0, . . . , σ}, where σ ≤
�3/α�. Furthermore, recall that the list for A[j1..j2] is sorted by the characters’
frequency in the substring A[j1 − 	, j2 +] in non-increasing order. This means
that, with the exception of 0, the characters’ lexicographic order in S is the same
as their order by frequency. We call S the rank sequence for the block A[j1..j2].

Observation 1. Let S be a sequence of m characters, drawn from the alpha-
bet Σ = {0, 1, ..., σ}, where, ignoring character 0, character i is the i-th most
frequent character in S. There exists a skewed wavelet tree T , representing the
sequence S using Elias gamma coding [6], that has the following properties:

1. The leaf representing i has depth O(log(i + 2)) in T (the root has depth 0).
2. For 1 ≤ k ≤ σ, the leaves representing 1, ..., k can be traversed in O(k) time.
3. The wavelet tree T occupies O(m(H(S) + 1)) bits, where H(S) denotes the

0th-order empirical entropy of the sequence S.

We store the concatenation of the rank sequences of all blocks of size 2b, in
ascending order of block starting position, as a string Yb, for log(1/α) < b ≤
log n, noting that |Yb| = O(n). Using the wavelet tree from Observation 1 to
represent these strings will allow us to count the frequency of candidate elements
efficiently. However, at this point we have not built concatenated strings for
blocks of size smaller than 1/α. We now explain how to construct Yb′ , for block
sizes 2b′ , where 1 ≤ b′ ≤ log(1/α), in order to verify the frequency of candidates
in these smaller blocks in O(1/β) time.

Recall that the first result in Theorem 2 keeps log(1/α) copies of the data
structure, constructed for values in the set F = {1/2, 1/4, ..., α}. Let Dα′ denote
the data structure constructed for α′ ∈ F . The string Yb′ is constructed using
the block lists from Dα′ , where α′ is the smallest value in F such that Dα′ stores
candidate lists for blocks of size 2b′ . We now argue that representing all of the
log n strings using Observation 1 requires O(n min(log(1/α), H + 1) log n) bits.

300 T. Gagie et al.

Consider the rank sequence S of a block B of size 2b, and the original substring
S′ of A, to which S corresponds. Applying a many-to-one mapping to a string’s
alphabet — e.g., from characters to their ranks or 0 — cannot increase its
entropy, so H(S) ≤ H(S′). Moreover, if we partition a string, then the average of
the substrings’ entropies, weighted by length, is at most the string’s entropy [8],
so H(Yb) = O(H) for 1 ≤ b ≤ log n. Furthermore, it is clear that H(Yb) =
O(log(1/α)), since the alphabet size is at most �3/α�. Since there are log n
strings, the space is O(n min(log(1/α), H + 1) log n) bits overall.

Verifying the candidates for a block of size 2b involves traversing the first
O(1/β) leaves of the skewed wavelet tree representing Yb, which takes O(1/β)
time by Observation 1. At each leaf, which represents a candidate, at most two
O(1) time rank queries on a bit vector can be used to determine the frequency
of the candidate in a range, in O(1/β) time overall.

Theorem 3. Given a string A of length n and a fraction α > 0, A can be stored
in O(n min(log(1/α), H + 1) log n) bits, where H is the 0th-order empirical en-
tropy of A, such that later, given a range in A and a fraction β ≥ α, the list of
O(1/β) distinct characters with relative frequency at least β in that range can
be returned in O(1/β) time. Alternatively, A can be stored in O(n(H + 1)) bits,
and return the same list in O(log log n/α) time.

References

1. Barbay, J., Gagie, T., Navarro, G., Nekrich, Y.: Alphabet partitioning for com-
pressed rank/Select and applications. In: Cheong, O., Chwa, K.-Y., Park, K. (eds.)
ISAAC 2010, Part II. LNCS, vol. 6507, pp. 315–326. Springer, Heidelberg (2010)

2. Clark, D., Munro, J.I.: Efficient Suffix Trees on Secondary Storage (extended ab-
stract). In: Proc. SODA, p. 383 (1996)

3. Cormode, G., Muthukrishnan, S.: An improved data stream summary: the count-
min sketch and its applications. J. of Alg. 55(1), 58–75 (2005)

4. Demaine, E.D., López-Ortiz, A., Munro, J.I.: Frequency estimation of internet
packet streams with limited space. In: Möhring, R.H., Raman, R. (eds.) ESA 2002.
LNCS, vol. 2461, pp. 348–360. Springer, Heidelberg (2002)

5. Durocher, S., He, M., Munro, J.I., Nicholson, P.K., Skala, M.: Range majority in
constant time and linear space. In: Aceto, L., Henzinger, M., Sgall, J. (eds.) ICALP
2011. LNCS, vol. 6755, pp. 244–255. Springer, Heidelberg (2011)

6. Elias, P.: Universal codeword sets and representations of the integers. IEEE Trans.
on Inf. Theory 21(2), 194–203 (1975)

7. Fang, M., Shivakumar, N., Garcia-Molina, H., Motwani, R., Ullman, J.: Computing
iceberg queries efficiently. In: Proc. VLDB, pp. 299–310 (1998)

8. Ferragina, P., Manzini, G., Mäkinen, V., Navarro, G.: Compressed representations
of sequences and full-text indexes. ACM Trans. on Alg. 3(2) (2007)

9. Grossi, R., Gupta, A., Vitter, J.S.: High-order entropy-compressed text indexes.
In: Proc. SODA, pp. 841–850 (2003)

10. Karp, R.M., Shenker, S., Papadimitriou, C.H.: A simple algorithm for finding fre-
quent elements in streams and bags. ACM Trans. Data. Sys. 28(1), 51–55 (2003)

11. Karpinski, M., Nekrich, Y.: Searching for frequent colors in rectangles. In: Proc.
CCCG, pp. 11–14 (2008)

12. Misra, J., Gries, D.: Finding repeated elements. Sci. Comp. Prog. 2, 143–152 (1982)

On Suffix Extensions in Suffix Trees�

Dany Breslauer1 and Giuseppe F. Italiano2

1 Caesarea Rothchild Institute, University of Haifa, Haifa, Israel
2 Università di Roma “Tor Vergata”, Rome, Italy

Abstract. Suffix trees are inherently asymmetric: prefix extensions only
cause a few updates, while suffix extensions affect all suffixes causing a
wave of updates. In his elegant linear-time on-line suffix tree algorithm
Ukkonen relaxed the prevailing suffix tree representation and introduced
two changes to avoid repeated structural updates and circumvent the in-
herent complexity of suffix extensions: (1) open ended edges that enjoy
gratuitous leaf updates, and (2) the omission of implicit nodes. In this
paper we study the implicit nodes as the suffix tree evolves. We parti-
tion the suffix tree’s edges into collections of similar edges called bands,
where implicit nodes exhibit identical behavior, and generalize the notion
of open ended edges to allow implicit nodes to “float” within bands, only
requiring updates when moving from one band to the next, adding up to
only O(n) updates. We also show that internal implicit nodes are sepa-
rated from each other by explicit suffix tree nodes and that all external
implicit nodes are related to the same periodicity. These new properties
may be used to keep track of the waves of implicit node updates and to
build the suffix tree on-line in amortized linear time, providing access to
all the implicit nodes in worst-case constant time.

1 Introduction

Suffix trees and suffix arrays are perhaps the most prevalent data structures
in the study of string algorithms, with numerous applications [2,9,16]. Weiner
[30] introduced suffix trees and gave a reverse right-to-left on-line algorithm for
their construction in linear-time. McCreight [24] gave a linear-time left-to-right
algorithm that is not on-line since it must process sufficient “lookahead” of text
symbols to find the correct insertion points in the suffix tree. Suffix arrays, that
were introduced by Manber and Myers [23], provide similar theoretical benefits
to suffix trees, but are much more efficient in practice thanks to their use of
efficient array representation, avoiding the extra space and irregular memory
access patterns inherent in pointer-based data structures. The compact and effi-
cient suffix array representation in a contiguous memory block, however, is less

� Work partially supported by the European Research Council (ERC) Project
SFEROT, by the Israeli Science Foundation Grant 347/09, by the 7th Framework
Programme of the EU (Network of Excellence “EuroNF: Anticipating the Network
of the Future - From Theory to Design”) and by MIUR, the Italian Ministry of
Education, University and Research, under Project AlgoDEEP.

R. Grossi et al. (Eds.): SPIRE 2011, LNCS 7024, pp. 301–312, 2011.
c© Springer-Verlag Berlin Heidelberg 2011

302 D. Breslauer and G.F. Italiano

amenable to on-line construction, because the eventual insertions in the mid-
dle of an array would be costly. In fact, the fastest existing linear-time suffix
array construction algorithms over large integer alphabets [18,19,20] and their
earlier linear-time suffix tree counterparts [12,13] usually use bucket sort and
other techniques that are unfortunately off-line.

Ukkonen’s [29] on-line algorithm is often regarded as the simplest and the
most intuitive among the suffix tree construction algorithms. To develop an
efficient linear-time “on-line” left-to-right suffix tree algorithm, Ukkonen had
to relax the prevailing representation of suffix trees in order to avoid repeated
structural updates to the suffix tree. In particular, Ukkonen introduced two
changes: (1) open ended edges leading to suffix tree leaves that represent ever
growing suffixes of the text, introducing gratuitous leaf updates; and (2) the
omission of implicit non-branching suffix nodes until such nodes can be made
explicit by inserting branching nodes and leaves. Analogous issues arise in an
incrementally maintained suffix array or the closely related Burrows-Wheeler
Transform compressed text [25,26].

While open ended edges are an elegant concept that was celebrated by
Geigerich and Kurtz [15] who speculate that “if Weiner had seen this idea in
1973, he would have designed Ukkonen’s algorithm then”, the omission of “im-
plicit” internal suffix nodes is necessitated by their frequent updates. Gusfield
[16] calls Ukkonen’s intermediate suffix trees “implicit suffix trees” and Ukko-
nen [29] writes that “when explicit final states are needed in some application,
they are obtained gratuitously by adding to T an end marking symbol that does
not occur elsewhere in T .” However, it might be costly to follow this suggestion
repeatedly. Indeed, always updating explicitly all the implicit nodes in a text of
length n takes at least Ω(n log|Σ| n) updates and up to O(n2) updates, depend-
ing on the structure of the text (e.g., anbanc). The need for an end marking
symbol to complete the construction is related to subsequential transducers [5,8]
where the computation is completed only upon a terminating input symbol.

Throughout the paper, we assume that the input alphabet Σ has constant
size and refer to edges leading to suffix tree leaves either as open ended edges or
as external leaf edges and to the other edges as internal edges. Our contributions
in this paper are two-fold. First, we use properties of periodicities in the text
to draw conclusions about the locations of the implicit nodes as the suffix tree
evolves. Specifically, we prove that (1) there can be only one implicit node float-
ing within each internal suffix tree edge, and that (2) external open ended suffix
tree edges may contain several implicit floating nodes, but all such implicit nodes
are related to the same periodicity; these external implicit nodes do not require
updates until they branch out since they never reach the end of an open ended
edge. These two properties stem from the fact that longer irregular periods which
are not multiples of a string’s shortest period correspond to terminated prefix
periods that introduce branching nodes in the suffix tree, separating the implicit
nodes. While periodicity properties are often used in comparison based string
matching algorithms, suffix trees capture all the internal structure of the text
and algorithms typically do not need periodicity properties in their construction.

On Suffix Extensions in Suffix Trees 303

Periodicity properties were occasionally used either implicitly or explicitly, how-
ever, in several suffix tree based algorithms [3,7,17,22].

We then push Ukkonen’s approach one step further and generalize the notion
of open ended edges to allow implicit nodes to “float” within suffix tree edges,
requiring updates only when an implicit node moves from one edge to the next.
We group the suffix tree edges containing implicit floating nodes into bands,
which are collections of similar edges whose both endpoints are connected by
suffix links, where implicit floating nodes exhibit identical behavior. We prove
that if we maintain only one implicit node representative in each band, then
the number of representative updates throughout the suffix tree construction
drops to O(n), significantly fewer than the O(n2) total explicit updates of all
the implicit nodes.

Based on these properties, we present a linear-time on-line algorithm that
maintains the representatives of the implicit nodes in each band via an auxiliary
data structure, providing access to all the implicit nodes in worst-case constant
time via queries that produce the implicit nodes on any given suffix tree edge, en-
abling algorithms that might require these nodes to use the intermediate implicit
suffix trees without continuously adding the end marking symbol.

2 Suffix Trees and Ukkonen’s Algorithm

Given a text w, the suffix tree of w is a rooted tree with edges and nodes that are
labeled with substrings of w. The suffix tree satisfies the following properties:
(1) edges leaving any given node are labeled with non-empty strings v that start
with different alphabet symbols (v is a substring of w); (2) each node is labeled
with a string v formed by the concatenation of the edge labels on the path from
the root to that node (v is a substring of w); (3) each branching internal (non-
leaf) node has at least two descendants (the root may be an exception in the
degenerate case when a string is empty or it is formed by repetitions of a single
alphabet symbol); (4) for each substring v of w, there exists a vertex labeled u,
such that v is a prefix of u.

It is a common practice to append at the end of the text w a special unique
alphabet symbol $, which does not appear anywhere within w. This guarantees
that the suffix tree has exactly |w|+1 leaves that are labeled with all the distinct
non-empty suffixes of w$. The number of branching internal nodes is no larger
than |w|. However, in on-line algorithms that construct the suffix trees for a
left-to-right streaming text, it is not possible to append the special alphabet
symbol $ at each step. Therefore, an on-line algorithm must deal also with suffix
tree nodes representing text suffixes which may not be branching out of the tree.
Such text suffixes might end at internal branching suffix tree nodes, but also in
the middle of suffix tree edges. We use the convenient notation of associating an
edge between parent u to child v with the child suffix tree node v. One can realize
such suffix trees by taking the suffix trees with the special terminating symbol
$, and removing all edges that are labeled only with the symbol $ and the leaves
connected to these edges. This process may introduce internal non-branching

304 D. Breslauer and G.F. Italiano

nodes into the suffix tree, which are sometimes called implicit nodes, that may
or may not be represented explicitly in the suffix tree. Such suffix trees were
called extended suffix trees by Breslauer and Hariharan [6] and implicit suffix
trees by Gusfield [16].

Weiner [30], McCreight [24] and Ukkonen [29] all augment the suffix trees
with shortcuts called suffix links, that are used to efficiently traverse the suffix
tree. We define the suffix link for a suffix tree node labeled v = au, a ∈ Σ, to be
a pointer to the suffix tree node labeled with its suffix u, obtained by chopping
off v’s first symbol a. Suffix links are always defined for each internal branching
node. If the node v = au branches with edges that begin with alphabet symbols
b and c, b �= c, then the suffix tree also contains the substrings ub and uc and
there must be a node labeled u, branching on the symbols b and c. The situation
with suffix tree leaves is a little more complicated. Leaves clearly represent text
suffixes, since only suffixes of the text end abruptly on their right side. If the
text is terminated with a unique symbol, then all suffixes of the text are leaves
and, therefore, if v = au is a leaf then its suffix u must also be a leaf. However, if
the text is not terminated, then the suffix u might be an implicit non-branching
node in the middle of an edge or coincide with an existing branching node.

Since each non-root node has one suffix link and suffix links cannot introduce
cycles, suffix links define a tree rooted at the suffix tree root. In fact, if each
tree edge between nodes v = au and u is labeled with the alphabet symbol a,
this tree is actually an un-compacted trie, which is a subtree of the suffix trie
for the reversed text. In this paper we maintain the edges of this trie in both
directions (McCreight and Ukkonen only need edges pointing towards the root),
and call this tree the suffix link trie. The path in the suffix link trie from the
longest leaf representing the full text to the root goes through all the suffixes of
the text, which are the only substrings that get extended while the input text is
processed from left to right. We call this path the suffix chain (see Figure 1).

Lemma 1. The suffix chain can always be partitioned into the following con-
secutive segments: (1) leaves; (2) external implicit nodes within leaf edges; (3)
internal implicit nodes within internal edges; and (4) implicit nodes that coincide
with explicit nodes.

Proof. Let v be a suffix of the text. If v is not a leaf in the suffix tree, then it can
be extended and so can all its suffixes, making all suffixes of v implicit nodes. If
v is not an external implicit node, then it can be extended to some branching
node and so can all its suffixes, making all suffixes of v internal implicit nodes.
Similarly, if v coincides with some branching node, then all its suffixes must also
coincide with branching nodes. ��

Ukkonen [29] noted the great resemblance between his and McCreight’s algo-
rithms, by observing that “in its final form our algorithm is a rather close rela-
tive of McCreight’s method.” The parallels between McCreight’s, Ukkonen’s and
Weiner’s algorithms have been studied by Geigerich and Kurtz [15], who showed
that the difference between Ukkonen’s and McCreight’s algorithms boils down
to their “control structure” and that, essentially, they update the suffix tree in

On Suffix Extensions in Suffix Trees 305

b
aba

abaabab

b
a
a
baa
ba
baa
ba
b

b
a
a
baa

ba
baa

ba
b

b
a

b

a

b
aba

abaabab

b
a
a
baa
ba
baa
ba
b

a

(a)

b
aba

abaabab

b
a
a
baa
ba
baa
ba
b

b
a
a
baa

ba
baa

ba
b

b
a

b

a

b
aba

abaabab

b
a
a
baa
ba
baa
ba
b

a

(b)

Fig. 1. (a) The suffix tree for the text “abaababaababaabab” with internal node suffix
links. (b) The suffix tree with implicit nodes and the suffix chain. The suffix link trie
consists of the suffix chain in figure (b) plus the suffix links shown in (a).

exactly the same insertion batches. McCreight’s algorithm reads ahead sufficient
“lookahead” symbols to find the final insertion points of new suffix leaves, while
Ukkonen’s algorithm holds off inserting new suffixes until sufficient text symbols
have been scanned to insert new branching suffix leaves, omitting the implicit
nodes. While the input text is streamed on-line from left to right, all the suf-
fixes of the text are extended with each right text extension. Ukkonen observed
that once some text suffix is a leaf, it will remain forever a leaf after all future
extensions. By labeling the external suffix tree edges leading to leaves “open
ended”, reaching to the current growing end of the text, Ukkonen invented an
automatic gratuitous extension mechanism for these edge labels. Unfortunately,
the remaining text suffixes that are not represented by leaves still move around
the suffix tree, and it would be too costly to update all their locations. Hence,
Ukkonen chose not to update these “implicit” nodes explicitly.

Ukkonen’s on-line algorithm maintains the active suffix, the longest suffix of
the text that has not branched out to become a leaf, which is the longest repeated
suffix of the text that appeared previously in the text. By Lemma 1, any suffix
of the active suffix must have also appeared previously and has not branched
out yet. If upon the next symbol the active suffix cannot be extended within
the suffix tree, an insertion batch creates leaves for all suffixes between the old
active suffix and up to the new active suffix. In particular: those implicit nodes on
the suffix chain that were in the middle of an edge must branch out by creating an
internal branching node splitting the edge and inserting a leaf; and those implicit
nodes that coincided with an explicit node branch out by creating a leaf hanging
off the existing explicit node. Ukkonen’s algorithm maintains the current active
suffix by a pointer to a suffix tree node and an offset within a suffix tree edge
that are updated while tracing the suffix tree, selecting the appropriate branch at
each internal node according to the first symbol on the branching edges. During
an insertion batch, the algorithm follows the suffix links to find the next active
suffix. While following suffix links, more suffix tree nodes may appear on the
path between the suffix tree node and the offset representing the implicit node

306 D. Breslauer and G.F. Italiano

and the representation must be updated to the canonical representation speci-
fying implicit nodes by their offset relative to the beginning of the edge where
they are located. Ukkonen’s algorithm, like McCreight’s algorithm, only has to
navigate the suffix tree by selecting edges at each branching node according to
their first branching symbol, quickly moving down the suffix tree path towards
the implicit node. The total amount of work is amortized to linear time.

3 The Locations of Implicit Nodes

Periodicity is often used in efficient string matching algorithms. However, suffix
trees and related index data structures that express all internal repetition struc-
ture of a string typically rely instead on the mechanics of maintaining various
graph pointers and on identifying alphabet symbols via direct array access. In
this section we use simple periodicity properties to sort through the locations of
implicit nodes. Before doing that, we need to review some basic terminology.

A string u is a period of a string w if w is a prefix of uk for some integer k, or
equivalently if w is a prefix of uw. The shortest period of w is called the period
of w and w is called periodic if it is at least twice as long as its period. If v is
a prefix of w, then the period of v is said to continue in w if v and w have the
same period and otherwise the period of v terminates in w. A string v is called
a border of w, if v is both a prefix and a suffix of w. By these definitions v is a
border of w = uv = vu′ if and only if u is a period of w, and therefore, u is the
shortest period of w if and only if v is the longest proper border. The following
Periodicity Theorem is due to Fine and Wilf [14].

Theorem 1. If a string u has periods of length p and q, and its length |u| ≥
p + q − gcd(p, q), then u also has a period of length gcd(p, q).

The following simple observation connects periods and borders of strings to their
suffix trees and suffix link tries.

Lemma 2. A string v is an ancestor of w both in the suffix tree and in the suffix
link trie if and only if v is a border of w.

Proof. Recall that v is an ancestor of w in the suffix tree if and only if v is a
prefix of w, i.e., w = vu′. Similarly, v is an ancestor of w in the suffix link trie if
and only if v is a suffix of w, i.e., w = uv. Therefore, v is an ancestor of w both
in the suffix tree and in the suffix link trie if and only if v is a border of w. ��

We will next exploit the connection given in Lemma 2 to prove the following two
properties on suffix trees: (1) there might be only one implicit node within each
internal edge, and (2) although external leaf edges may contain many implicit
nodes, those implicit nodes enjoy some nice structural properties.

Theorem 2. An internal suffix tree edge may contain at most one implicit node.
This node may coincide with the branching node at the end of the edge.

On Suffix Extensions in Suffix Trees 307

Proof. Let w be an internal branching suffix tree node. Assume by contradiction
that there exist two different implicit nodes u and v on the edge leading to w,
such that |u| < |v| ≤ |w|. Node u is clearly an ancestor of v in the suffix tree.
Since implicit nodes always represent suffixes of the text, it is not difficult to see
that u must be an ancestor of v also in the suffix link trie. Then, by Lemma 2,
u is a border of v and v = xu has a period x. Let vy be the longest prefix of w
which continues that period x of v. If vy is a proper prefix of w, then let vya
be the prefix of w where that period x terminated and let vyb = xuyb, which is
not in the suffix tree, be a string that continues the periodicity, such that uyb
is a prefix of vy = xuy. Otherwise, if vy = w, then w is an internal branching
node and it must have at least two outgoing edges, at least one of which contains
wa = vya that does not continue that period x, while wb = vyb = xuyb, a �= b,
may continue the periodicity x. In either case, the suffix tree contains both uya
and uyb, a �= b, and uy must be a branching suffix tree node, either between u
and v if |u| ≤ |uy| < |v| or between v and w if |v| ≤ |uy| < |w| contradicting the
assumption that u, v and w are on the same edge. ��

Leaf edges may each contain several external implicit nodes. The following the-
orem characterizes all the external implicit nodes and shows that these nodes
must obey a simple arithmetic progression formula derived from the total num-
ber of external implicit nodes, the longest external implicit node and the period
length of its associated leaf.

Theorem 3. Let v0, . . . , vk−1 be all the external implicit nodes ordered in de-
creasing length, and let w0, . . . , wk−1 be the leaves at the end of their respective
edges. Let p = |w0| − |v0|, m = �k/p� and r = k − pm. Then:
(1) The implicit node vi has length |vi| = |v0| − i, i = 0, . . . , k − 1.
(2) There are at most p distinct leaves with lengths |wi| = |w0| − i, i =

0, . . . , min{p, k} − 1. For i = p, . . . , k − 1, we have wi = wi−p.
(3) The implicit nodes within the leaf edges to wi have lengths

|wi| − 	p

{
for 	 = 1, . . . , m + 1, if 0 ≤ i < r
for 	 = 1, . . . , m, if r ≤ i < p

(4) All leaves wi, i = 0, . . . , min{p, k} − 1, have a period of length p.
(5) If the text is periodic, then w0 = w is the whole text, p = |w0|− |v0| is the

period length, and all implicit nodes whose length is at least p are external.
Specifically, k > |w| − 2p and |vi| < 2p, i = max{0, k − p}, . . . , k − 1.

Proof. Let w′
0 = w0 and let w′

i be the suffix of w′
i−1 obtained after chopping

off the first symbol of w′
i−1, i.e., following w′

i−1’s suffix link. Let κ = min{p, k}.
By Lemma 1, since p = |w0| − |v0|, the external implicit nodes are vi = w′

i+p,
0 ≤ i ≤ k − 1, with |vi| = |v0| − i. Since vi is an ancestor of w′

i, the longer
wi = w′

i, 0 ≤ i ≤ κ − 1, are leaves and |wi| = |w0| − i. The leaf wi at the edge
containing vi, p ≤ i ≤ k − 1, must be the same as that at the edge containing
vi−p = w′

i. Thus wi = wi−p, p ≤ i ≤ k − 1, establishing (1) and (2). Observe
that the implicit nodes on the leaf edge to wi are vi+jp, for 0 ≤ i ≤ p − 1

308 D. Breslauer and G.F. Italiano

and 0 ≤ i + jp ≤ k − 1. Recalling that k = r + pm, we get 0 ≤ j ≤ m when
0 ≤ i < r and 0 ≤ j < m when r ≤ i < p, proving (3) since vi+jp has length
|v0|− i− jp = |w0|− p− i− jp = |wi|− (j +1)p. We next turn to (4). Since v0 is
an ancestor of w0 both in the suffix tree and in the suffix link trie, by Lemma 2,
p = |w0| − |v0| is a period length of w0, and by the maximal length of v0, p is
the smallest such period length. The same holds for any other leaf wi and its
longest border vi, i = 1, . . . , κ− 1.

We finally turn to (5). Let u be an implicit node and let z0 be the longest leaf
descendant of u. We first prove that if z0 = u0u has period u0, |u0| ≤ |u|, then
u must be external. Assume it is not: then u is also ancestor of another shorter
leaf z1 = u1u with period u1, such that |u1| < |u0|. But z1 is a suffix of z0 with
periods of length |u0| and |u1|, such that |u0| + |u1| ≤ |u| + |u1| ≤ |z1|, and
therefore by Theorem 1, z1 must have a period of length gcd(|u0|, |u1|), and z0

also must have period length gcd(|u0|, |u1|) < |u0|, clearly a contradiction. Let
x be the period of the text, w = xv. Then by Lemma 2, v is an implicit node
that is ancestor of w and since the text is periodic, |x| ≤ |v|. Therefore, v0 = v
must be an external implicit node, w0 = w its leaf, and p = |w0| − |v0| the text
period length. Let vi be the suffix of v0 of length |vi| = |v0| − i, and let w′

i be
the longest leaf descendant of vi. Since the period length of w′

i is at most p, if
|vi| ≥ p then vi must be an external implicit node and wi = w′

i its leaf. This
holds for all vi such that |vi| = |w| − p− i ≥ p, i.e., for i = 0, . . . , |w| − 2p. Thus,
it must be that k > |w| − 2p, and the last p implicit nodes in the sequence are
such that |vi| < 2p, i = max{0, k − p}, . . . , k − 1. ��

We remark that irregular long periods (small overlap borders) are permitted
by Theorem 1. However, by Theorems 2 and 3, these irregular periods must be
separated from each other and from the arithmetic progression of large overlap
periods by branching suffix tree nodes. Multiple implicit floating nodes within
an external edge also indicate the eventual formation of new maximal repetitions
in the sense of [17,21]. Theorem 3 also shows that an implicit suffix tree that is
enhanced by the external implicit nodes, which are easy to represent, provides
all suffix nodes except possibly for those in the last period of the text, missing
fewer suffixes than half of the text’s length. An algorithm may choose to represent
the external implicit text suffixes by an arithmetic progression, or to start pro-
actively inserting such implicit nodes into the tree anticipating their suffix tree
locations when they eventually branch out.

4 Maintaining Implicit Nodes Efficiently

We push Ukkonen’s approach one step further and allow implicit nodes to “float”
within suffix tree edges. Since implicit nodes always represent suffixes of the text,
implicit nodes that do not branch out of the suffix tree as the text grows can be
envisioned to be floating along the tree edges, and need to be updated only when
they move from one edge to the next. This is analogous to having “bounded
ended edges” leading to branching nodes as opposed to “open ended” edges
leading to leaves, and updates are required to skip to the next edge only when

On Suffix Extensions in Suffix Trees 309

b a

d

a
b b

b
a

b c
ac

c
d

c
b
d

c
a
d

b c

A

B C D E

F G H I J K

2 17 10 6 9 12 3 5 8 11 4

14 13

abcabcdbcdbcadab
1234567890123456

(a)

b
c

B

F

b
c

E

K

b c

A

D

a

D

J

a

C

H

a
A

E

b
d

c

C

G

b
d

c

D

I

d
A

B c
A

C

(b)

Fig. 2. (a) The suffix tree for “abcabcdbcdbcadab”. For brevity, the last characters of
suffixes are omitted and the leaves are identified by numbers giving the start position
of the corresponding suffix. (b) Band trees of the internal edges in (a).

the edge boundary is reached at branching suffix tree nodes. Unfortunately, even
with this proposed modification that eliminates the need to maintain implicit
nodes inside a suffix tree edge, the number of updates might still be too large,
as shown by the example anbanc, which requires Θ(n2) updates. Note that an
implicit floating node within an open ended edge that is leading to a leaf will
never reach the end of the edge since both the implicit node and the leaf at
the end of the edge keep getting extended to the current end of the text. Such
external implicit nodes will therefore remain implicit nodes until they branch
out to become suffix tree leaves.

To reduce the number of updates, we partition the suffix tree edges into bands
and maintain only one representative for the implicit nodes within each band.
Considering a suffix tree edge e = (au, auv) from the node au to the node auv,
the suffix link to u must be an ancestor of the suffix link to uv. If e′ = (u, uv)
is an edge in the suffix tree, we say that e is in the same band as e′ and connect
the suffix tree edge e to e′ by an edge in the band forest, partitioning all edges of
the suffix tree into a collection of band trees (see Figure 2). For any suffix tree
edge e the root in e’s band tree is the band representative of e. We only maintain
representative implicit nodes within these band representatives. Since all the
beginning nodes and end nodes of all edges in a band are connected by a suffix
link path, an implicit node enters and exits the band together with the band
representative, allowing us to update only band representatives. This definition
leads to reduce the number of implicit node representative updates to O(n).

Theorem 4. An on-line algorithm has to update band representatives at most
2n times.

Proof. We give an implementation of Ukkonen’s algorithm that maintains im-
plicit nodes representatives in each band. We maintain a stack of the active

310 D. Breslauer and G.F. Italiano

bands, observing that bands on the stack are nested, because their endpoints
are suffix tree nodes that have suffix link paths all the way up to the suffix link
trie root. We first pop from the stack all the bands whose end is reached, keeping
the active node that is the end of the last popped edge, or the suffix tree root if
no bands were popped from the stack (this active node is the first explicit node
on the suffix chain after the active point in Ukkonen’s algorithm, whereas all
the longer implicit nodes are in the middle edges). We then check whether the
current input symbol does not branch out of the suffix tree at the deepest band
(the active point in Ukkonen’s algorithm). If it does, then the stack is reset, new
suffix tree nodes are inserted and the band tree structure is updated accordingly.
In either eventuality, we repeatedly take the suffix tree edge that starts at the
active node and the current input symbol and find the end of its band, the edge
at the root of its band tree. That band is pushed onto the stack and the active
node is set to the next band, the suffix link of the node at the beginning of the
band tree root, repeatedly, stopping only after the suffix tree root. Because the
bands on the stack are all nested, each band popped from the stack must have
started or must end at a different text position. This implies that at most 2n
bands can be popped from the stack while processing a string of length n. ��

Theorem 4 can be used in an on-line implementation of Ukkonen’s algorithm to
maintain the band representatives and to produce implicit nodes upon queries.

Corollary 1. An on-line algorithm can maintain band representatives using
auxiliary data structures in O(n) amortized time. Queries returning the implicit
nodes within a specified suffix tree edge take worst-case O(1) time.

Proof. The algorithm maintains two dynamic auxiliary data structures. The first
data structure maintains the various band trees under operations that insert
band tree leaves or delete band tree roots (splitting up the tree) in amortized
O(n) time, supporting queries that return the band tree’s root, which is the top
suffix tree edge in the band tree, in worst-case O(1) time. This can be achieved
with the help of data structures for dynamic nearest marked ancestors in trees
[1,31]. The second data structure maintains the active part between the first and
last active band edges in a band tree, supporting queries that check if a specific
suffix tree edge that is represented by a band tree node is currently active or not,
with tree updates and queries taking worst-case O(1) time. This can be done by
testing whether the query edge is on the band tree path between the first band
edge and the last band edge, i.e., the band tree root, and can be implemented
efficiently by checking for ancestor relationship [4,10,28].

The stack in Theorem 4 is then implemented using these data structures,
where each band that is pushed on the stack has its band representative, the
band tree root, updated and the active band part set, leading to an O(n) on-line
implementation of Ukkonen’s suffix tree algorithm. Insertions in each batch are
effectuated from shallow to deep, from the shortest inserted suffix towards the
longest (reverse of Ukkonen’s algorithm using reverse suffix links), so that only
band tree roots are deleted at each step and the split edge’s parts are inserted as
leaves into their appropriate band trees. Queries about some specified suffix tree

On Suffix Extensions in Suffix Trees 311

edge first locate the root of its band tree, and then check if the edge is in the
active part of the band tree. If the edge is part of an active band, the band tree
root gives the single implicit node in the band representative for internal suffix
tree bands (Theorem 2) or the arithmetic progression representing the implicit
nodes in external suffix tree bands (Theorem 3). Bands of external leaf edges are
optional due to the global properties of Theorem 3. ��

5 Conclusions

We proved some new combinatorial properties about suffix trees that appear to
be mostly of theoretical interest; we are curious whether they can be used in new
applications. For example, the intermediate suffix trees could be used as an on-
line index to report all occurrences of a pattern in the text in time proportional
to the pattern length and the number of reported occurrences. However, one
could use instead the suffix tree of the reverse text [30] that undergoes only
O(n) structural changes while being updated on line.

There exist off-line linear-time algorithms for suffix tree and suffix array con-
struction over larger integer alphabets [12,13,18,19,20,27] (DAWG and Aho-
Corasick Automata by reductions [6,11]). We are curious whether linear-time
on-line suffix tree algorithms exist over large integer alphabets.

Acknowledgments. We thank Maxime Crochemore, Roberto Grossi, Gadi
Landau and Filippo Mignosi for several discussions about this work and the
anonymous reviewers for their useful comments.

References

1. Amir, A., Farach, M., Idury, R., Poutré, J.L., Schäffer, A.: Improved Dynamic
Dictionary-Matching. Information and Computation 119, 258–282 (1995)

2. Apostolico, A.: The Myriad Virtues of Subword Trees. In: Apostolico, A., Galil,
Z. (eds.) Combinatorial Algorithms on Words. NATO ASI Series F, vol. 12, pp.
85–96. Springer, Berlin (1985)

3. Apostolico, A., Preparata, F.: Optimal Off-line Detection of Repetitions in a String.
Theoret. Comput. Sci. 22, 297–315 (1983)

4. Bender, M.A., Cole, R., Demaine, E.D., Farach-Colton, M., Zito, J.: Two Simplified
Algorithms for Maintaining Order in a List. In: Möhring, R.H., Raman, R. (eds.)
ESA 2002. LNCS, vol. 2461, pp. 152–164. Springer, Heidelberg (2002)

5. Berstel, J.: Transductions and Context-Free Languages. Teubner-Verlag (1979)
Revised version is available electronically as,
http://www-igm.univ-mlv.fr∼berstel/LivreTransductions/

LivreTransductions14dec2009.pdf
6. Breslauer, D., Hariharan, R.: Optimal Parallel Construction of Minimal Suffix and

Factor Automata. Parallel Processing Letters 6(1), 35–44 (1996)
7. Cohen, H., Porat, E.: Range Non-overlapping Indexing. In: Dong, Y., Du, D.-Z.,

Ibarra, O. (eds.) ISAAC 2009. LNCS, vol. 5878, pp. 1044–1053. Springer, Heidel-
berg (2009)

8. Crochemore, M.: Transducers and Repetitions. Theoret. Comput. Sci. 12, 63–86
(1986)

http://www-igm.univ-mlv.fr~berstel/LivreTransductions/LivreTransductions14dec2009.pdf
http://www-igm.univ-mlv.fr~berstel/LivreTransductions/LivreTransductions14dec2009.pdf

312 D. Breslauer and G.F. Italiano

9. Crochemore, M., Rytter, W.: Text Algorithms. Oxford University Press, Oxford
(1994)

10. Dietz, P.F., Sleator, D.D.: Two Algorithms for Maintaining Order in a List. In:
STOC, pp. 365–372. ACM, New York (1987)

11. Dori, S., Landau, G.M.: Construction of Aho Corasick Automaton in Linear Time
for Integer Alphabets. Inf. Process. Lett. 98(2), 66–72 (2006)

12. Farach, M.: Optimal Suffix Tree Construction with Large Alphabets. In: FOCS,
pp. 137–143 (1997)

13. Farach-Colton, M., Ferragina, P., Muthukrishnan, S.: On the Sorting-Complexity
of Suffix Cree construction. J. ACM 47(6), 987–1011 (2000)

14. Fine, N., Wilf, H.: Uniqueness Theorems for Periodic Functions. Proc. Amer. Math.
Soc. 16, 109–114 (1965)

15. Giegerich, R., Kurtz, S.: From Ukkonen to McCreight and Weiner: A Unifying View
of Linear-Time Suffix Tree Construction. Algorithmica 19(3), 331–353 (1997)

16. Gusfield, D.: Algorithms on Strings, Trees, and Sequences - Computer Science and
Computational Biology. Cambridge University Press, Cambridge (1997)

17. Gusfield, D., Stoye, J.: Linear Time Algorithms for Finding and Representing all
the Tandem Repeats in a String. J. Comput. Syst. Sci. 69(4), 525–546 (2004)

18. Kärkkäinen, J., Sanders, P., Burkhardt, S.: Linear Work Suffix Array Construction.
J. ACM 53(6), 918–936 (2006)

19. Kim, D.K., Sim, J.S., Park, H., Park, K.: Constructing Suffix Arrays in Linear
Time. J. Discrete Algorithms 3(2-4), 126–142 (2005)

20. Ko, P., Aluru, S.: Space Efficient Linear Time Construction of Suffix Arrays. J.
Discrete Algorithms 3(2-4), 143–156 (2005)

21. Kolpakov, R.M., Kucherov, G.: Finding Maximal Repetitions in a Word in Linear
Time. In: FOCS, pp. 596–604 (1999)

22. Kosaraju, S.: Computation of Squares in a String. In: Crochemore, M., Gusfield,
D. (eds.) CPM 1994. LNCS, vol. 807, pp. 146–150. Springer, Heidelberg (1994)

23. Manber, U., Myers, E.W.: Suffix Arrays: A New Method for On-line String
Searches. SIAM J. Comput. 22(5), 935–948 (1993)

24. McCreight, E.: A Space Economical Suffix Tree Construction Algorithm. J. Assoc.
Comput. Mach. 23, 262–272 (1976)

25. Salson, M., Lecroq, T., Léonard, M., Mouchard, L.: A Four-Stage Algorithm for
Updating a Burrows-Wheeler Transform. Theor. Comput. Sci. 410(43), 4350–4359
(2009)

26. Salson, M., Lecroq, T., Léonard, M., Mouchard, L.: Dynamic Extended Suffix
Arrays. J. Discrete Algorithms 8(2), 241–257 (2010)

27. Shibuya, T.: Constructing the Suffix Tree of a Tree with a Large Alphabet. In:
Aggarwal, A.K., Pandu Rangan, C. (eds.) ISAAC 1999. LNCS, vol. 1741, pp. 225–
236. Springer, Heidelberg (1999)

28. Tsakalidis, A.K.: Maintaining Order in a Generalized Linked List. Acta Inf. 21,
101–112 (1984)

29. Ukkonen, E.: On-line Construction of Suffix Trees. Algorithmica 14(3), 249–260
(1995)

30. Weiner, P.: Linear Pattern Matching Algorithms. In: Proc. 14th Symposium on
Switching and Automata Theory, pp. 1–11 (1973)

31. Westbrook, J.: Fast Incremental Planarity Testing. In: Kuich, W. (ed.) ICALP
1992. LNCS, vol. 623, pp. 342–353. Springer, Heidelberg (1992)

COCA Filters: Co-occurrence Aware Bloom

Filters�

Kamran Tirdad, Pedram Ghodsnia, J. Ian Munro, and Alejandro López-Ortiz

Cheriton School of Computer Science
University of Waterloo

Abstract. We propose an indexing data structure based on a novel vari-
ation of Bloom filters. Signature files have been proposed in the past as
a method to index large text databases though they suffer from a high
false positive error problem. In this paper we introduce COCA Filters,
a new type of Bloom filters which exploits the co-occurrence probability
of words in documents to reduce the false positive error. We show exper-
imentally that by using this technique we can reduce the false positive
error by up to 21.6 times for the same index size. Furthermore Bloom
filters can be replaced by COCA filters wherever the co-occurrence of
any two members of the universe is identifiable.

Keywords: Information Retrieval, Bloom Filters, Signature Files, Lo-
cality Sensitive Hash Functions.

1 Introduction

Inverted indices and variants thereof are the preferred data structure currently
in use in search engines. However in environments that are very sensitive to
index size this method becomes impractical since they require approximately
50% of the size of the corpus for the index file. By compressing the index file
and pruning of the less frequent query terms we can reduce the size of inverted
indexes down to 10% of the corpus size [30]. In areas where false positive errors
are acceptable a more space efficient method called signature files is applicable.
With this method it is possible to reduce the size of index file significantly
at the cost of precision. Another key advantage of this method is that it can
be used in optimizing intersection queries in distributed inverted indices[20,26].
Parallelizability and the simplicity of the insertion are two other benefits of this
method that make it a suitable choice for certain environments.

When using signature files a signature is maintained for each document. A
signature is basically a sequence of bits. There are several different methods for
computing the signature of a document. One of the most common methods is
to use a randomized data structure called Bloom filter. In Bloom filter-based
signature files it is implicitly assumed that every pair of words is equally likely
to appear in the same document while in practice this assumption is not true.
� This work was supported by NSERC of Canada and the Canada Research Chairs

program.

R. Grossi et al. (Eds.): SPIRE 2011, LNCS 7024, pp. 313–325, 2011.
c© Springer-Verlag Berlin Heidelberg 2011

314 K. Tirdad et al.

In this paper we introduce a new variant of Bloom filters named co-occurrence
aware Bloom filters or COCA Filters for short. COCA Filters utilize the prob-
ability of the co-occurrences of the words in documents to improve the false
positive error. We show through experiments that COCA Filters can reduce the
space by up to 75% for the same false positive error or equivalently reduce the
false positive error by up to 21 times for the same index size.

Reducing the size of the signature file index or equivalently its false positive
error makes COCA Filters ideally suited for applications which are extremely
sensitive to the size of the storage.

The rest of the paper is organized as follows: Section 2 reviews related work
and background. Section 3 describes the details of our approach and our proposed
methods. Section 4 presents the evaluation and analysis of our proposed methods
and finally we conclude our work in section 5.

2 Previous Work and Background

Inverted file indices and signature files are two well established indexing methods
which have been proposed for large text databases [11,15,30]. Although using the
inverted files is more favourable because of its wide range of useful properties in
comparison to signature files, Carterette and Can in [11] showed that signature
file indexes can be as good as inverted file indexes in special environments where
memory is scarce and a given false positive rate is acceptable. Library catalogues,
multimedia files with many attributes, medical cross references, and a large
lexicon or lists of streets for a GPS system are examples of text databases in
which signature file can work faster with less storage. However, the high false
positive error rate is one of the critical problems of the signature file method
which makes it impractical for many applications.

Signature files are a forward index method which stores a signature for every
document. Hashing every single term of a document and concatenating the hash
values of the terms can be considered as a simple signature for that document.
Alternatively, superimposed coding can be used to create a signature of a docu-
ment. In this method, hashing every word of the document yields a bit pattern
of size m, with k bits set to 1, in which m and k are design parameters. The
bit patterns are superimposed (OR-ed) together to form the document signa-
ture. Searching for a set of words is handled by creating the signature of each
word and OR-ing them together to build the query signature and returning all
documents with a matching pattern.

To avoid having document signatures that are flooded with 1s, long documents
are divided into smaller blocks, that is, pieces of text that contain a constant
number of unique words. Each block of a document gives a block signature and
block signatures are concatenated to form the document signature.

Although not explicitly stated in the literature, superimposed coding is a
variation of Bloom filters, a well-known randomized data structure first suggested
in [5]. A Bloom filter is a probabilistic data structure used to check whether an
element belongs to a set with possible false positive error but zero false negative

COCA Filters: Co-occurrence Aware Bloom Filters 315

error. It consists of a bit vector of size m and k independent hash functions
h1, h2, ..., hk with ranges of 1, ..., m. All the bits are initially set to zero. These
hash functions can be interpreted as uniform random number generators over the
range of 1, ..., m. For every element of the set, say x, the bits hi(x) for (1 ≤ i ≤ k)
are set to 1. Some bits of the array might be turned on more than once, but this
will not affect the status of the array. To check if an item, say y, is a member of
S, the k positions of hi(y) for 1 ≤ i ≤ k in the array should be checked and if
one or more of the k positions are set to 0, it can be assured that y has not been
inserted to this array and consequently is not a member of S. If all k positions
are set to 1, it is assumed that y is in S. However, there is some probability that
this assumption is wrong. Therefore, a Bloom filter may result in a false positive
error, also known as false drop error.

Bloom filters have been used in a wide variety of applications in recent years.
They are used as spell-checkers [23], as a means of succinctly storing a dictionary
of unsuitable passwords for security purposes [28], to speed up semi-join opera-
tions [22], for Web cache sharing [16] and in many other areas. In order to support
multi-sets, Cohen and Matias introduced spectral Bloom filters [14]. Chazelle et
al. in [13] introduce a similar data structure which is called a Bloomier filter in
order to approximate functions.

Bloom [5] proved that the false positive probability of the Bloom filter is
about f = (1 − e−kn

m)k. Recently Bose et al. in [6] showed that the Bloom’s
formula for false positive is not accurate and gave a proper formula. They also
demonstrated that for large enough values of m (size of Bloom filter) with small
values of k (number of hash functions), the difference between Bloom’s formula
and the actual false positive rate is negligible.

To obtain an estimate of the efficiency of Bloom filters, it is good to know
the information theoretic lower bound of the size of any data structure that can
represent all sets of n elements from a universe with false positive for at most a
fraction t of the universe but allows no false negative. Broder et al. [7] showed
that to achieve a false positive rate less than t, we must have m > n lg(1

t)
bits. Furthermore, they showed that this lower bound in Bloom filters is m >
n lg(e) · lg(1

t) and consequently argued that space-wise Bloom filters need more
than a lg(e) � 1.44 factor of the information theoretic lower bound. In [25] Pagh
et al. introduced a more complicated data structure that achieved this lower
bound.

One of the key observations in both of the aforementioned proofs is the as-
sumption that there is no correlation between any two members of the universe,
and any subset of the universe with cardinality of n is equally likely. Now assume
that some members of the universe are strongly correlated (i.e. given that one of
them belongs to a subset, the probability that the other is also a member of that
set is very likely). Intuitively this property of possible subsets can be exploited
by using special hash functions which produce more “similar” bit patterns (i.e.
with smaller hamming distances) for more correlated members of our set and vice
versa. For doing so, we use locality sensitive hash (LSH) functions which are cus-
tomized to hash similar items to the same hash value with high probability [12].

316 K. Tirdad et al.

The LSH algorithm has been used in numerous applied settings from bio-sequence
similarity search [10] to audio similarity identification [29] and many other ar-
eas [17,19,24]. Min-wise independent permutations is a locality sensitive hashing
scheme for a collection of subsets with the similarity function defined as follows:

Prh∈F [h(A) = h(B)] = sim(A, B) =
|A ∩B|
|A ∪B|

In this setting, hash of a set A is defined as h(A) = mina∈Aπ(a) where π is a
permutation which was chosen randomly from a min-wise independent permu-
tation family F. A permutation family F (subset of all n factorial permutations)
is min-wise independent if for any subset X of [1...n], and any x ∈ X , when π is
chosen randomly from F we have Pr(min{π(X)} = π(x)) = 1

|X| [9].
One of the applications of min-wise independent hash functions was suggested

by Broder in [8] to detect near duplicate documents over a large set of documents.
Broder suggested to consider a set of shingles (contiguous subsequences of words)
for each document and choose a set of t independent random permutations
π1, π2, π3, ..., πt. For each document D, calling its set of shingles SD, he defined
the sketch of Document D as (mina∈SDπ1(a); mina∈SDπ2(a); ...; mina∈SDπt(a)).
Then, he argued that the sketch of two documents can be used to estimate their
resemblance by computing how many corresponding elements in their sketches
are equal. In the next section a similar approach is taken in order to reduce the
false positive errors of signature files.

3 COCA Filters

Considering the concept of signature files over human readable texts, some terms
(members of the universe) are more likely to exist in the same document (set).

In order to exploit this non randomness, it is preferable to modify the k
hash functions of the Bloom filter such that “similar” words (i.e. with high co-
occurrence ratio) have “similar” bit patterns (i.e. with less hamming distance).
For example if two words occur in almost the same set of documents their bit
patterns can be designed such that they differ in a few places. More importantly
by using these bit patterns, after inserting these two words there would be more
bit positions available for the rest of the words in the Bloom filter causing re-
duction in the average false positive error. This observation can be formalized
as the following optimization problem.

Consider two keywords of x and y from the universe of all the words W with
corresponding posting lists of X and Y . Furthermore assume that the k bit
positions of each of these two terms are stored in the sets of H(x) and H(y).
Rather than having k random numbers between 1 to m, the proposed objective
is to design hash functions such that:

∀x, y ∈ W,
|H(x) ∩H(y)|
|H(x) ∪H(y)| =

|X ∩ Y |
|X ∪ Y |

COCA Filters: Co-occurrence Aware Bloom Filters 317

Note that the right hand side is determined by the corpus and so is fixed.
So this problem can be characterized as given N2 rational numbers pij design a
bipartite graph with m vertices on one side and N vertices the other side such
that for every two vertices Vi and Vj where 0 < i, j � N the following constraints
hold:

|Neighbour(Vi) ∩Neighbour(Vj)|
|Neighbour(Vi) ∪Neighbour(Vj)|

= pij

We conjecture that this problem is NP-hard when we are given pij as a pair
Iij (intersection size) and Uij (union size). Here we propose the following ad-
hoc probabilistic approach. Define k co-occurrence-aware hash functions of x
to be k of the min-wise independent permutations over the set of X . So, the
probability that each hash of two distinct terms x and y be equal to each other
is |X∩Y |

|X∪Y | = sim(x, y). This new data structure is named co-occurrence-aware
Bloom filters or in short COCA filter.

Assuming that the probability that two different hash functions produce the
same bit position for two different words is negligible, the expected value of the
difference between the left and right hand side of the objective function for every
two term can be calculated as follows:

E

[∣∣∣∣ |H(x) ∩H(y)|
|H(x) ∪H(y)| −

|X ∩ Y |
|X ∪ Y |

∣∣∣∣] � (1)∣∣∣∣ k × sim(x, y)
2k − k × sim(x, y)

− sim(x, y)
∣∣∣∣ = (2)∣∣∣∣sim(x, y)× (sim(x, y)− 1)

2− sim(x, y)

∣∣∣∣ (3)

The approximation from (1) to (2) is based on the assumption that pairs of
sets with large intersections on average have large unions but obviously this
is not true in general. Since sim(x, y) = |X∩Y |

|X∪Y | and is in [0, 1], with simple
algebraic calculations it can be shown that this value is less than 0.172 and
more importantly for the pairs of x and y such that sim(x, y) is close to 0 or 1
this value is close to 0. So over the sets that most of the members are strongly
co-related or are not related to each other at all this approach can perform very
well. Note that the reason this formula is not dependant on k, the number of
hash functions, is the implicit assumption that the bit vector is large enough
such that it is quite unlikely for two different hash functions to produce the
same bit position for two different words.

Note that by doing so, the reduction in the false positive probability for all
of the terms in documents happens at the cost of increasing the false positive
probability over random terms which do not exist in any of the documents. In the
next section we describe three experiments over three different English corpora
comparing COCA Filters to traditional Bloom Filters.

In order to implement COCA filters, k min-wise independent permutations
should be picked randomly from a min-wise independent family. Since min-wise

318 K. Tirdad et al.

independent families are too big for practical applications (in fact it is known that
their size is at least lcm(1, 2, ..., n) [9]), variant notions of min-wise independence
have been introduced in the literature [21,27].

In our experiments in order to keep the implementation relatively simple
two-universal hash functions has been employed to replicate the behaviour of k
independent permutations. For a large prime value of p, k random pairs of (ai, bi)
are generated where 1 � i � k. The hash of each document ID, say x can be
calculated by (ai ∗ x + bi)modp. Each hash of the document IDs corresponds to
one permutation over the set of all document IDs. This procedure is repeated for
all the k random pairs so that there are k different permutations. Consequently,
for each permutation the minimum value of each posting list is the hash of the
corresponding keyword.

In algorithm 1, the pseudocode as explained in the last paragraph shows how
to calculate the k hash functions of the COCA filter and store them in k hash
tables h1, h2, ..., hk.

Algorithm 1. Hash Calculator For COCA Filter
input: Assume documents are numbered from 1 to N and m is the size of the bit
vector. The posting list of each term t can be accessed as a set by posting-list(t). k
random pairs of (ai, bi) where 1 � i � k are generated.
Output: k hash tables h1, h2, ..., hk

1: for i = 1 to N do
2: for j = 1 to k do
3: perm[i][j] ← (aji + bj)modP
4: end for
5: end for
6: for every term t in the corpus do
7: for x = 1 to k do
8: hx[t] = [minnum∈posting−list(t)(perm[num][x])]mod(m)
9: end for

10: end for

4 Experimental Results

In order to evaluate the effectiveness of COCA Filters in reducing the false
positive error, we test them experimentally on three collections. The first corpus
is a collection of Wikipedia articles [2]. This collection consists of 2000 high
quality pages selected by a team of volunteers. For indexing purposes we stripped
all HTML tags, Java scripts, comments and other non-related elements from the
html files and removed all numbers and words shorter than 3 characters. The
total size of the html files is 244 Megabytes and after cleaning the files and
removing the duplicates of the words in each file the total size is reduced to 20.4
Megabytes. According to the statistics provided in [4], in Wikipedia, the average
number of words per document is about 400. Based on this assumption, each
document of the test collection is divided into partitions of size 400 words. After

COCA Filters: Co-occurrence Aware Bloom Filters 319

partitioning each document, the size of its last partition will be less than or equal
to 400 words. To address this problem, the number of words in all fragments of
each document has been balanced. For example, after partitioning a 700 word
document, there will be 2 partitions of size 350 words. The output of this step
is 7, 500 partitions with the average size of 350 words per document and 212568
unique terms in total.

0.32(1) 0.64(2) 0.96(3) 1.28(4) 1.59(5) 1.91(6) 2.23(7) 2.55(8) 2.87(9) 3.19(10)
Theory 0.6326 0.3937 0.2369 0.1470 0.0919 0.0561 0.0347 0.0216 0.0133 0.0082
Bloom Filter 0.6366 0.3971 0.2395 0.1506 0.0951 0.0589 0.0370 0.0234 0.0146 0.0095
COCA Filter 0.1887 0.0435 0.0142 0.0070 0.0044 0.0033 0.0027 0.0023 0.0020 0.0019

Av
er

ag
e

Fa
ls

e
Po

si
tiv

e
Er

ro
r

Average False Positive Error Comparison

Size(m/n)

Fig. 1. The comparison of the average false positive error of the COCA filter method
with the conventional Bloom filter and the theoretic formula for the sampled Wikipedia
corpus. The x-axis shows the index size in Megabytes and the value in the parentheses
indicates the m

n
ratio.

The goal of the experiment is to compare the average false positive error of the
proposed hash function with that of the theoretic formula and the conventional
Bloom filters. Let W be the set of all words. FP (d) is defined as the number
of words in W which are not in document d but its corresponding Bloom filter
falsely claims that they are. For each document, the false positive error of its
corresponding Bloom filter is defined as FPE(d) = FP (d)

|W | . Thus, the average

false positive error of a signature file method is
∑

d∈D FPE(d)

|D| .
In figure 1, the x-axis shows the result of this experiment for different m

n
ratios and y-axis shows the corresponding average false positive error. In each
method, for each m

n ratio, only the result for the k value which minimizes the
false positive error is shown. The total size of the signature file along with the
average false positive error is also included in the table below the figure.

From this experiment the following key observations can be derived:

– For all values of m
n , the false positive error of conventional Bloom filters is just

slightly more than that of the theoretic formula. It confirms the argument
of Bose in [6] that Bloom’s formula provides only a lower bound for false
positive probability. The closeness of the average false positive error of the
conventional Bloom filter and the theoretic formula justifies the validity of
our implementation of the conventional Bloom filters as well.

320 K. Tirdad et al.

– For all values of m
n , the false positive error of our proposed methods is

significantly better than the false positive ratio predicted by the conventional
Bloom filter and the theoretic formula.

– In some cases there is about 21 times improvement in the average false
positive error. For example, in m

n = 6, the average false positive error of the
COCA filter is about 21 times better than the Bloom filter.

– In some cases there is up to a 75% reduction in the size of the index for the
same average false positive error. For example if the objective is to achieve
an average false positive error less than 0.19 in conventional Bloom filters
the m

n ratio should be at least 4 while in COCA filter with the m
n ratio of

1 the average false positive error of 0.19 is achievable. In other words for
every bit that is used in the COCA filter, 3 extra bits are required in a
conventional Bloom filter. Note that when m

n = 1 the index size is only 1.6%
of the polished corpus.

0.33(1) 0.67(2) 1(3) 1.34(4) 1.68(5) 2.01(6) 2.35(7) 2.69(8) 3.02(9) 3.36(10)
Theory 0.6326 0.3937 0.2369 0.1470 0.0919 0.0561 0.0347 0.0216 0.0133 0.0082
Bloom Filter 0.6312 0.3929 0.2425 0.1568 0.0990 0.0634 0.0411 0.0266 0.0174 0.0113
COCA Filter 0.5333 0.2872 0.1548 0.0780 0.0473 0.0286 0.0144 0.0094 0.0055 0.0033

Av
er

ag
e

Fa
ls

e
Po

si
tiv

e
Er

ro
r

Average False Positive Error Comparison

Size(m/n)

Fig. 2. The comparison of the average false positive error of the COCA filter method
with the conventional Bloom filter and the theoretic formula for the sampled Google
corpus. The x-axis shows the index size in Megabyte and the value in the parentheses
indicates the m

n
ratio.

Our proposed approach is based on the co-occurrence of the words in doc-
uments and therefore is sensitive to the correlation of documents. In order to
investigate the relationship between the degree of correlation among documents
and the improvements in average false positive error, the previous experiment
was repeated over a collection of weakly-correlated web pages. This collection
is a random selection of 900, 000 web pages released by Google in 2002 for a
programming contest [1]. We chose about 13500 samples from this collection
randomly and performed the previous experiment on the resulting collection.
We used the same method as the first experiment for cleaning the documents
and fragmenting them. Due to the smaller average size of documents in this

COCA Filters: Co-occurrence Aware Bloom Filters 321

0

0.05

0.1

0.15

0.2

0.25

0.
01

0.
03

0.
05

0.
07

0.
09

0.
11

0.
13

0.
15

0.
17

0.
19

0.
21

0.
23

0.
25

0.
27

0.
29

0.
31

0.
33

0.
35

0.
37

0.
39

0.
41

0.
43

0.
45

0.
47

0.
49

Po
rt

io
n

of
 o

f D
oc

um
en

ts

Falese Positive Error

(a) Distribution of false positive error for
m
n

= 2 for the Wikipedia collection

0

0.05

0.1

0.15

0.2

0.25

0.3

0.35

0.4

0.45

0

0.
01

0.
02

0.
03

0.
04

0.
05

0.
06

0.
07

0.
08

0.
09 0.
1

0.
11

0.
12

0.
13

0.
14

0.
15

0.
16

0.
17

0.
18

0.
19 0.
2

0.
21

Po
rt

io
n

of
 D

oc
um

en
ts

False Positive Error

(b) Distribution of false positive error for
m
n

= 4 for the Wikipedia collection

0

0.02

0.04

0.06

0.08

0.1

0.12

0.14

0.16

0.18

0 0.04 0.08 0.12 0.16 0.2 0.24 0.28 0.32 0.36 0.4 0.44 0.48 0.52 0.56

Po
rt

io
 o

f D
oc

um
en

ts

False Positive Error

(c) Distribution of false positive error for
m
n

= 6 for the Google collection

0
0.02
0.04
0.06
0.08
0.1

0.12
0.14
0.16
0.18
0.2

0

0.
02

0.
04

0.
06

0.
08 0.
1

0.
12

0.
14

0.
16

0.
18 0.
2

0.
22

0.
24

0.
26

0.
28 0.
3

0.
32

0.
34

0.
36

Po
rt

io
n

of
 D

oc
um

en
ts

False Positive Error

(d) Distribution of false positive error for
m
n

= 6 for the Google collection

Fig. 3. Comparison of the distribution of the false positive error of the COCA Filter
and the conventional Bloom filter. In each graph the left curve corresponds to the
COCA filter and the right curve corresponds to the conventional Bloom filter.

collection, we divided the documents into partitions of size 100. After partition-
ing, the collection had about 35200 documents with the average size of 80 terms
and 228715 terms in total.

Figure 2 shows the result of this experiment. Although COCA Filter is still
better than conventional Bloom Filter, the improvement in this experiment is
not as good as the first experiment. The result of this experiments confirms the
sensitivity of our proposed method to the correlation among the terms of the
documents.

In the first experiment we chose a collection of high quality articles of Wikipedia
which are all coherent in writing and have a scientific theme. It is normal to
encounter many synonyms of a word instead of a repetition and there is also a
somewhat predictable set of antonyms to follow. On the contrary, in the second
corpus documents are not coherent neither in meaning nor in the style which
results to have lots of random terms from street names and addresses to gene
sequences and peoples’ names in them. Moreover the diversity of the topics that
these terms are covering is higher than the first collection and this diversity
reduces the probability of the co-occurrence of the words in documents and
consequently reduces the effectiveness of our proposed method.

To ensure that the size of corpus does not have a negative effect on the quality
of COCA Filters we repeated the first experiment with a similar but larger
collection of Wikipedia documents [3]. This collection is a more comprehensive

322 K. Tirdad et al.

Fig. 4. The Comparison of Information Theoretic lower bound with COCA filters over
two different corpora

Table 1. Comparison of the average false positive error of COCA filter over two
wikipedia corpora with different sizes

m/n 1 2 3 4 5 6 7 8 9 10

Wikipedia(6500) 0.18913 0.04369 0.01193 0.00476 0.00264 0.00179 0.00142 0.00116 0.00099 0.00087

Wikipedia(2000) 0.18869 0.04346 0.01415 0.00703 0.00439 0.00331 0.00272 0.00234 0.00204 0.00185

version of the first collection and consists of 6500 high quality pages selected
by a team of volunteers for school students. The size of this collection is more
than 3 times the size of the first collection but it is very similar to the first
collection in terms of coherency and writing style. We used the same method
as the first experiment for cleaning the documents and fragmenting them. After
partitioning, the collection had 21543 documents with the average size of 350
words per document and 321500 unique terms in total. Table 1 compares the
result of this experiment with the result of the first experiment. It shows that
increasing the size of the collection does not increase the average false positive
error given that the coherency and style of the corpus remains the same. It
confirms that the higher average false positive error of COCA Filters on Google
collection is not because of the larger size of this collection and it is only due to
the non-coherent, random nature and diversity of that collection.

One area of concern is whether in COCA Filters the average false positive
error decreases at the cost of having many bloom filters with low false positive
error and many with high false positive error (i.e. having a bimodal distribution).
Figure 3 illustrates a comparison between the distribution of the false positive
error in the COCA Filter and the conventional Bloom filter for m

n = 2 , 4 over
the Wikipedia and Google corpora. In each graph the left curve corresponds
to the COCA filter and the right curve corresponds to the conventional Bloom
filter. In all graphs, in both curves, by increasing the distance from the average,

COCA Filters: Co-occurrence Aware Bloom Filters 323

the frequency of documents decreases rapidly. It shows that there are only a
few documents with a false positive error significantly greater than (or smaller
than) the average false positive error. It can be seen that in the Wikipedia
corpus which has higher correlation even the worst false positive error of the
COCA filter method is significantly better than the best false positive error of
the conventional Bloom filter method while in the Google corpus this property
does not hold. Moreover, in the Wikipedia corpus the deviation of the COCA
filter curve from the average is much smaller than its corresponding Bloom filter
curve while in the other corpus this is not easily observable.

Another interesting comparison is between the COCA filter and the informa-
tion theoretic lower bound on the three corpora as suggested in [7]. In other
words we want to compare our method in terms of space efficiency with the best
possible randomized data structure which does not utilize the co-occurrence
probability of the words. Figure [4] illustrates this comparison. Note that the y-
axis is the average false positive error in logarithmic scale in order to demonstrate
the difference more clearly. While the COCA filter for the Google corpus never
beats the information theoretic lower bound, the COCA filter for the Wikipedia
corpus beats it in most of the cases by a significant margin. Note that as the
false positive error gets closer to zero the distance between the curves shows a
smaller difference. Interestingly as the correlation among the terms of the cor-
pus gets stronger the rate of the decrease in false positive error tends to be
hyper-exponential (as in Wikipedia corpus) rather than exponential (in Google
Corpus) but as the index size increases the improvement rate decreases until it
becomes very close to Bloom filter. This shows that for these applications where
the elements of the corpus are highly correlated, utilizing the extra information
about this correlation can be very valuable.

5 Conclusion and Future Work

In this paper the problem of false positive error of Bloom filters has been ad-
dressed and a novel technique to reduce the false positive error is proposed. The
effectiveness of this approach was evaluated by conducting two experiments and
our experimental results showed that up to 21.6 times improvement in false pos-
itive error or equivalently up to 75% reduction in space is achievable. Although
this improvement is surprisingly good it is important to note that this technique
is very sensitive to the correlation among the terms of the documents in the
corpus.

In the current definition of the similarity function the size of each posting
list can not affect the similarity of any two words as long as the ratio of the
intersection and the union of their corresponding posting list is the same. It
would be interesting to investigate similarity functions which are sensitive to the
size of the posting lists as well.

Finding the information theoretic lower bound for the minimum number of
bits required for a Bloom filter, given the extra information of the co-occurrence
probability of each pairs of the members of the universe is another avenue for
research.

324 K. Tirdad et al.

More recently a particular type of memory called ternary content addressable
memory (TCAM) was used to replicate a set of Bloom filters in order to solve
the subset query problem for small sets [18]. Another potential opportunity is
to explore the possible positive effect of COCA filters in areas where TCAM is
used as a group of Bloom filters.

References

1. http://www.google.com/programming-contest (2002) (accessed, January 2011)

2. http://www.wikipediaondvd.com/site.php (2007) (accessed, January 2011)
3. http://schools-wikipedia.org (2008) (accessed, January 2011)
4. http://en.wikipedia.org/wiki/Wikipedia:Words_per_article

(2009) (accessed, January 2011)

5. Bloom, B.H.: Space/time trade-offs in hash coding with allowable errors. Commun.
ACM 13, 422–426 (1970)

6. Bose, P., Guo, H., Kranakis, E., Maheshwari, A., Morin, P., Morrison, J., Smid,
M.H.M., Tang, Y.: On the false-positive rate of bloom filters. Inf. Process.
Lett. 108(4), 210–213 (2008)

7. Broder, A., Mitzenmacher, M.: Network applications of bloom filters: A survey. In:
Internet Mathematics, pp. 636–646 (2002)

8. Broder, A.: Identifying and filtering near-duplicate documents. In: Giancarlo, R.,
Sankoff, D. (eds.) CPM 2000. LNCS, vol. 1848, pp. 1–10. Springer, Heidelberg
(2000)

9. Broder, A.: Min-wise independent permutations: Theory and practice. In: Welzl,
E., Montanari, U., Rolim, J.D.P. (eds.) ICALP 2000. LNCS, vol. 1853, p. 808.
Springer, Heidelberg (2000)

10. Buhler, J., Tompa, M.: Finding motifs using random projections. Journal of Com-
putational Biology 9(2), 225–242 (2002)

11. Carterette, B., Can, F.: Comparing inverted files and signature files for searching
a large lexicon. Inf. Process. Manage. 41(3), 613–633 (2005)

12. Charikar, M.: Similarity estimation techniques from rounding algorithms. In:
STOC, pp. 380–388 (2002)

13. Chazelle, B., Kilian, J., Rubinfeld, R., Tal, A.: The bloomier filter: an efficient data
structure for static support lookup tables. In: SODA, pp. 30–39 (2004)

14. Cohen, S., Matias, Y.: Spectral bloom filters. In: Proceedings of the 2003 ACM
SIGMOD International Conference on Management of Data, SIGMOD 2003, pp.
241–252. ACM, New York (2003)

15. Faloutsos, C., Christodoulakis, S.: Signature files: an access method for documents
and its analytical performance evaluation. ACM Trans. Inf. Syst. 2, 267–288 (1984)

16. Fan, L., Cao, P., Almeida, J., Broder, A.Z.: Summary cache: a scalable wide-area
web cache sharing protocol. IEEE/ACM Trans. Netw. 8, 281–293 (2000)

17. Georgescu, B., Shimshoni, I., Meer, P.: Mean shift based clustering in high dimen-
sions: A texture classification example. In: ICCV, pp. 456–463 (2003)

18. Goel, A., Gupta, P.: Small subset queries and bloom filters using ternary associa-
tive memories, with applications. SIGMETRICS Perform. Eval. Rev. 38, 143–154
(2010)

19. Haveliwala, T.H., Gionis, A., Indyk, P.: Scalable techniques for clustering the web.
In: WebDB (Informal Proceedings), pp. 129–134 (2000)

http://www.google.com/programming-contest
http://www.wikipediaondvd.com/site.php
http://schools-wikipedia.org
http://en.wikipedia.org/wiki/Wikipedia:Words_per_article

COCA Filters: Co-occurrence Aware Bloom Filters 325

20. Li, J., Loo, B., Hellerstein, J., Kaashoek, M., Karger, D., Morris, R.: On the feasi-
bility of peer-to-peer web indexing and search. In: Kaashoek, M.F., Stoica, I. (eds.)
IPTPS 2003. LNCS, vol. 2735, pp. 207–215. Springer, Heidelberg (2003)

21. Matousek, J.: On restricted min-wise independence of permutations (2002)
22. Mullin, J.: Optimal semijoins for distributed database systems. IEEE Transactions

on Software Engineering 16(5), 558–560 (1990)
23. Mullin, J.K., Margoliash, D.J.: A tale of three spelling checkers. Softw. Pract.

Exper. 20, 625–630 (1990)
24. Ouyang, Z., Memon, N.D., Suel, T., Trendafilov, D.: Cluster-based delta compres-

sion of a collection of files. In: WISE, pp. 257–268 (2002)
25. Pagh, A., Pagh, R., Rao, S.S.: An optimal bloom filter replacement. In: SODA

2005, pp. 823–829 (2005)
26. Reynolds, P., Vahdat, A.: Efficient peer-to-peer keyword searching. In: Endler,

M., Schmidt, D.C. (eds.) Middleware 2003. LNCS, vol. 2672, pp. 21–40. Springer,
Heidelberg (2003)

27. Saks, M., Srinivasan, A., Zhou, S., Zuckerman, D.: Low discrepancy sets yield
approximate min-wise independent permutation families. Information Processing
Letters 73(1-2), 29–32 (2000)

28. Spafford, E.H.: Opus: Preventing weak password choices. Computers & Secu-
rity 11(3), 273–278 (1992)

29. Yang, C.: Macs: music audio characteristic sequence indexing for similarity re-
trieval. In: 2001 IEEE Workshop on the Applications of Signal Processing to Audio
and Acoustics, pp. 123–126 (2001)

30. Zobel, J., Moffat, A.: Inverted files for text search engines. ACM Comput.
Surv. 38(2) (2006)

On-Line Construction of Position Heaps

Gregory Kucherov

Université Paris-Est & CNRS, Laboratoire d’Informatique Gaspard Monge,
Marne-la-Vallée, France

Gregory.Kucherov@univ-mlv.fr

Abstract. We propose a simple linear-time on-line algorithm for con-
structing a position heap for a string [EMOW11]. Our definition of po-
sition heap differs slightly from the one proposed in [EMOW11] in that
it considers the suffixes ordered in the descending order of length. Our
construction is based on classic suffix pointers and resembles the Ukko-
nen’s algorithm for suffix trees [Ukk95]. Using suffix pointers, the position
heap can be extended into the augmented position heap that allows for
a linear-time string matching algorithm [EMOW11].

1 Introduction

The theory of string algorithms developed beautiful data structures for string
matching and text indexing. Among them, suffix tree and suffix array are most
widely used structures, providing efficient solutions for a wide range of appli-
cations [CR94, Gus97]. The DAWG (Directed Acyclic Word Graph) [BBH+85],
also known as suffix automaton [Cro86], is another elegant structure that can be
used both as a text index [BBH+85] or as a matching automaton [Cro88, CR94].

Recently, a new position heap data structure was proposed [EMOW11]. Sim-
ilar to the suffix tree, DAWG or suffix array, position heap allows for a pre-
processing of a text string in order to efficiently search for patterns in it. As for
the above-mentioned data structures, a position heap for a string of length n can
be constructed in time O(n). Then all locations of a pattern of length m can be
found in time O(m + occ), where occ is the number of occurrences.

The construction algorithm of [EMOW11] processes the string from right to
left, like the Weiner’s algorithm does for suffix trees [Wei73]. Moreover, the con-
struction requires a so-called dual heap, which is an additional trie on the same
set of nodes. The position heap and its dual heap are constructed simultaneously.

To obtain a linear-time pattern matching algorithm of [EMOW11], the posi-
tion heap should be post-processed in order to add some additional information,
resulting in the augmented position heap. Most importantly, this information
includes so-called maximal-reach pointers assigned to certain nodes. Computing
these pointers makes use of the dual heap too.

In this paper, we propose a different construction of the position heap. First,
we change the definition of the position heap by reversing the order of suffixes
and thus allowing for a left-to-right traversal of the input string. The modified
definition, however, preserves good properties of the position heap and does not

R. Grossi et al. (Eds.): SPIRE 2011, LNCS 7024, pp. 326–337, 2011.
c© Springer-Verlag Berlin Heidelberg 2011

On-Line Construction of Position Heaps 327

affect the string matching algorithm proposed in [EMOW11]. For this modified
definition, we propose an on-line algorithm for constructing the position heap.
Our algorithm does not use the dual heap, replacing it by classic suffix point-
ers used for constructing suffix trees by the Ukkonen’s algorithm [Ukk95] or for
constructing the DAWG [BBH+85]. Our algorithm is simple and has some sim-
ilarity with the Ukkonen’s algorithm for suffix trees, as opposed to the Weiner’s
algorithm. We deliberately use some terminology of the Ukkonen’s algorithm to
underline this similarity.

We further show that the augmented position heap can be easily constructed
using suffix pointers. Thus, we completely eliminate the use of the dual heap,
replacing it by suffix pointers for constructing both the position heap and its
augmented version. Even if this replacement does not provide an immediate
improvement in space or running time, we believe that our construction is con-
ceptually simpler and more natural.

Throughout the paper, we assume given a constant-size alphabet A. Posi-
tions of strings over A are numbered from 1, that is, a string w of length k
is w[1] . . . w[k]. The length k of w is denoted by |w|. w[i..j] denotes substring
w[i] . . . w[j].

A trie (term attributed to Fredkin [Fre60]) is a simple natural data structure
for storing a set of strings. It is a tree with edges labeled by alphabet letters, such
that for any internal node, the edges leading to the children nodes are labeled
by distinct letters. In this paper, we assume the edges to be directed towards
leaves, and call an edge labeled by a letter a an a-edge. A label of a node (path
label) is the string formed by the letters labeling the edges of the path from the
root to this node. Given a trie, a string w is said to be represented in the trie
if it is a path label of some node. The corresponding node will then be denoted
by w.

2 Definition of Position Heap

To define position heaps, we first need to introduce the sequence hash tree pro-
posed by Coffman and Eve back in 1970 [CE70] as a data structure for im-
plementing hash tables. Assume we are given an ordered set of strings W =
{w1, . . . , wn} and assume for now that no wi is a prefix of wj for any j < i. The
sequence hash tree for W , denoted SHT (W), is a trie defined by the following it-
erative construction. We start with the tree SHT0(W) consisting of a single root
node root1. We then construct SHT (W) by processing strings w1, . . . , wk in this
order and for each wi, adding one node to the tree. By induction, assume that
SHTi(W) is the sequence hash tree for {w1, . . . , wi}. To construct SHTi+1(W),
we find the shortest prefix v of wi+1 which is not represented in SHTi(W). Note
that by our assumption, such a prefix always exists. Let v = v′a, a ∈ A, i.e.
v′ is the longest prefix of wi+1 represented in SHTi(W). Then SHTi+1(W) is
1 This definition agrees with the definition of [CE70] but is slightly different from

that of [EMOW11] which defines the root to store w1. The difference is insignificant,
however.

328 G. Kucherov

obtained from SHTi(W) by adding a new node as a child of v′ connected to v′

by an a-edge and pointing to wi+1. After inserting all strings of W , we obtain
SHT (W), that is SHT (W) = SHTk(W). Thus, SHT (W) is a trie of n + 1
nodes such that a node pointing to wi is labeled by some prefix of wi. Note that
the size of the sequence hash tree depends only on the number of strings in the
set and does not depend on the length of these words. An example of sequence
hash tree is given on Figure 1.

1

2

3

45

6

a

a

b

a b

b

1. babbaab

2. bbab

3. ab

4. baaa

5. aabab

6. babaaba

Fig. 1. Sequence hash tree for the set of words shown on the right. Each node stores
the rank of the corresponding word in the set.

We now define the position heap of a string T . In [EMOW11], the position
heap for T is defined as the sequence hash tree for the set of suffixes of T , where
the suffixes are ordered in the ascending order of length, i.e. from right to left.
This insures, in particular, the condition that no suffix is a prefix of a previously
inserted suffix, and then no suffix is already represented in the position heap at
the time of its insertion.

In this paper, we define the position heap of T to be the sequence hash tree for
the set of suffixes of T , where the suffixes are ordered in the descending order of
length, i.e. from left to right. From now on, we stick to this order. An immediate
observation is that the assumption of the suffix hash tree does not hold anymore,
and it may occur that an inserted suffix is already represented in the position
heap by an existing node. One easy way to cope with this is to systematically
assume that T is ended by a special sentinel symbol $, like it is generally assumed
for the suffix tree.

On the other hand, as we will be interested in an on-line construction of the
position heap, we will still need to construct the position heap for strings without
the ending sentinel symbol. For that, we have to slightly change the definition of
sequence hash tree of a set W , by allowing one node to point to several strings
of W . The definition of the position heap extends then to any string, with the
only difference that inserting a suffix may no longer lead to the creation of a
node, but to inserting a new pointer to an existing node. This feature, however,
will be used in a very restricted way, as the following observation shows.

On-Line Construction of Position Heaps 329

Lemma 1. Let W be a set of distinct strings. Then every node of SHT (W)
points to at most two strings of W .

Proof. Straightforward from the definition of SHT (W) and the fact that all
strings are distinct. ��

As a consequence of Lemma 1, a position heap contains two types of nodes,
pointing respectively to one and two suffixes of T . The former will be called
regular nodes and the latter double nodes. We naturally assume that a pointer
to a suffix is simply the starting position of that suffix, therefore regular and
double nodes store one and two string positions respectively. Hereafter we in-
terchangeably refer to “suffixes” and “positions” when the underlying string is
unambiguously defined.

Figure 2 provides an example of a position heap.

1

2, 12

3, 13

4

5

6

78

9 1011

a

a

b

b

a
b

b

a

b

b

a

1 2 3 4 5 6 7 8 9 10 11 12 13
a a b a b b b a a b a a b

Fig. 2. Position heap for string aababbbaabaab. Double nodes store pairs of positions.

3 Properties of Position Heap

Denote by PH(T) the position heap for a string T [1..n] constructed as defined in
the previous section. In the following theorem, we summarize some key properties
of the position heap. Property (i) is a straightforward from the definition, and
properties (ii)-(iv) have been established in [EMOW11] but remain valid for our
definition of position heap when suffixes are inserted from left to right.

Theorem 1 ([EMOW11]). Consider PH(T [1..n]). The following properties
hold.

(i) A substring T [i..j] is represented in PH(T) iff there exist in T occurrences
of strings T [i], T [i..i + 1], T [i..i + 2], . . . , T [i..j], appearing in this order.

(ii) The labels of all nodes of PH(T) form a factorial set. That is, if a string
is represented in PH(T), all its substrings are represented too.

330 G. Kucherov

(iii) The depth of PH(T) is no more than 2h(T), where h(T) is the length of
the longest substring w of T which occurs |w| times in T (possibly with
overlap).

(iv) If a string w occurs in T at least |w| times, then w is represented in PH(T).
Inversely, if w is not represented in PH(T) and w′ is the longest prefix of
w which is represented, then w cannot occur in T more than |w′| times.

Properties (iii) and (iv) show that the position heap of a string “adapts” to
frequencies of its substrings. In particular, if a string is “frequent” (occurs as
many times as it is long), then it is necessarily represented in the position heap.
On the other hand, if it is not represented, it has less occurrences than its
length. The latter property is crucial for obtaining a linear-time string matching
algorithm of [EMOW11].

4 On-Line Construction Algorithm

Let us have a closer look at the properties of double nodes of a position heap
PH(T). Each such node stores two positions i, j of T . Assume i < j, then posi-
tions i and j will be called the primary and the secondary positions respectively.

Lemma 2. If j is the secondary position of some node of a position heap, then
so is j + 1.

Proof. Consider PH(T) for some string T [1..n]. Assume i, j, i < j, are respec-
tively primary and secondary positions of some node. This means that by the
time the suffix T [j..n] is inserted into PH(T) during its construction, node T [j..n]
already exists. By Theorem 1(ii), node T [j + 1..n] exists too. A fortiori, node
T [j + 1..n] exists when T [j + 1..n] is inserted into PH(T). Therefore, j + 1 be-
comes the secondary position of that node after the insertion of suffix T [j+1..n].

��

Lemma 2 implies that all positions of T [1..n] are split into two intervals: primary
positions [1..s− 1], for some position s, and secondary positions [s..n]. Position
s will be called active secondary position, or active position for short.

Assume we have constructed the position heap PH(T [1..k]) for some pre-
fix T [1..k] of the input string T [1..n]. Let us analyze the differences between
PH(T [1..k]) and PH(T [1..k + 1]) and the modifications that need to be made
to transform the former into the latter.

Let s be the active position of T [1..k]. First observe that for suffixes 1, . . . , s−1,
no changes need to be made. Inserting each suffix T [i..k] for 1 ≤ i ≤ s − 1 into
PH(T [1..k]) led to the creation of a new node. This means that by the time this
suffix was inserted into PH(T [1..k]), some prefix T [i..] of T [i..k], 	 ≤ k, was
not represented in the position heap, which led to the creation of a new node
T [i..] with the minimal such 	. This shows that inserting suffixes 1, . . . , s − 1
involve completely identical steps in the construction of both PH(T [1..k]) and
PH(T [1..k + 1]).

On-Line Construction of Position Heaps 331

The situation is different for the secondary positions s, . . . , k. Each suffix
T [i..k] for s ≤ i ≤ k was already represented in PH(T [1..k]) at the moment
of its insertion, and then resulted in the addition of the secondary position i
to the node T [i..k]. When inserting the corresponding suffix T [i..k + 1] into the
position heap PH(T [1..k + 1]), two cases arise. In the first case, inserting the
suffix T [i..k+1] leads to the creation of the new node T [i..k + 1] if this node does
not exist yet. Position i then becomes the primary position of this new node.
Observe that this only occurs when PH(T [1..k]) does not contain an T [k + 1]-
edge outgoing from the node T [i..k]. It is easily seen that such an edge cannot
appear by the time of insertion of T [i..k + 1] into PH(T [1..k + 1]) if it is not
already present in PH(T [1..k]). In the second case, node T [i..k] has an outgoing
T [k + 1]-edge in PH(T [1..k]), and in the construction of PH(T [1..k + 1]), the
secondary position i stored in this node should be “moved” to the child node
T [i..k + 1]. It becomes then the secondary position of this node.

Observe now that if for a secondary position i, the corresponding node T [i..k]
has an outgoing T [k + 1]-edge, then so does the node T [i + 1..k] storing the
secondary position i + 1. This can again be seen from the factorial property of
the position heap (Theorem 1(ii)). This shows that the above two cases split
the interval of secondary positions [s..k] into two subintervals [s..t−1] and [t..k],
such that node T [i..k] does not have an outgoing T [k + 1]-edge for i ∈ [s..t− 1]
and does have such an edge for i ∈ [t..k].

The above discussion is summarized in the following lemma specifying the
changes that have to be made to transform PH(T [1..k]) into PH(T [1..k + 1]).

Lemma 3. Given T [1..n], consider PH(T [1..k]) for k < n. Let s be the active
secondary position, stored in the node T [s..k]. Let t ≥ s be the smallest position
such that node T [t..k] has an outgoing T [k+1]-transition. To obtain PH(T [1..k+
1]), PH(T [1..k]) should be modified in the following way:

(i) for every node T [i..k], s ≤ i ≤ t− 1, create a new child linked to T [i..k] by a
T [k + 1]-edge. Delete secondary position i from the node T [i..k] and assign
it as a primary position to the new node T [i..k + 1],

(ii) for every node T [i..k], i ≥ t, move the secondary position i from node T [i..k]
to node T [i..k + 1].

We describe now the algorithm implementing the changes specified by Lemma 3.
We augment PH(T) with suffix pointers f defined in the usual way:

Definition 1. For each node T [i..j] of PH(T), a suffix pointer is defined by
f(T [i..j]) = T [i + 1..j].

Note that the definition is sound, as the node T [i + 1..j] exists whenever the
node T [i..j] exists, according to Theorem 1(ii). For the root node, it will be
convenient for us to define f(root) =⊥, where ⊥ is a special node such that
there is an a-edge between ⊥ and root for every a ∈ A (cf [Ukk95]). Figure 3
shows the position heap of Figure 2 supplemented by suffix pointers.

332 G. Kucherov

⊥

1

2, 12

3, 13

4

5

6

78

9 1011

a, b

a

a

b

b

a
b

b

a

b

b

a

Fig. 3. Position heap for string aababbbaabaab with suffix pointers (dotted arrows).
Secondary positions are shown in italic.

We now begin to describe the on-line construction algorithm for PH(T), given
a text T [1..n]. Consider the node T [s..k] of PH(T [1..k]) storing the active sec-
ondary position s, that we call the active node. If the active secondary position
does not exist (i.e. there is no secondary positions at all), then the active node
is root and the active position is set to k + 1. Observe that the nodes storing
the other secondary positions s + 1, s + 2, . . . , n can be reached, in order, by
following the chain of suffix pointers f(T [s..n]), f(f(T [s..n])), . . . until the root
node is reached. Figure 3 provides an illustration.

This leads us to the main trick of our construction: we will not store secondary
positions at all, but only memorize the active secondary position and the active
node. The secondary positions can be easily recovered by traversing the chain
of suffix pointers starting from the active node and incrementing the position
counter after traversing each edge. Note also that if the input string T is ended
by a unique sentinel symbol, the resulting position heap does not contain any
secondary nodes and there is no need to recover them.

Having in mind that the secondary positions are not stored explicitly, the
transformation of PH(T [1..k]) into PH(T [1..k+1]) specified by Lemma 3 is done
by the following simple procedure. Starting from the active node, the algorithm
traverses the chain of suffix pointers as long as the current node does not have
an outgoing T [k + 1]-edge. For each such node, a new node is created linked
by a T [k + 1]-edge to the current node. A suffix pointer to this new node is
set from the previously created new node. Once the first node with an outgoing
T [k + 1]-edge is encountered, the algorithm moves to the node this edge leads
to, sets the suffix pointer to this node, and assigns this node to be the active
node for the following iteration. The correctness of the last assignment is stated
in the following lemma.

On-Line Construction of Position Heaps 333

Lemma 4. Consider PH(T [1..k]) and let s be the active position, and t ≥ s be
the smallest position such that node T [t..k] has an outgoing T [k + 1]-edge. Then
node T [t..k + 1] is the active node of PH(T [1..k + 1]).

Proof. As it follows from Lemma 3, t is the largest secondary position of T [1..k+1].
��

Algorithm 1 provides a pseudo-code of the algorithm.

Algorithm 1. On-line construction of the position heap PH(T [1..n])
1: create states root and ⊥
2: f(root) ←⊥
3: for all a ∈ A do
4: set an a-edge from ⊥ to root
5: end for
6: currentnode ← root
7: currentsuffix ← 1
8: for i = 1 to n do
9: lastcreatednode ← undefined

10: while currentnode does not have an outgoing T [i]-edge do
11: create a new node newnode pointing to currentsuffix
12: set a T [i]-edge from currentnode to newnode
13: if lastcreatednode �= undefined then
14: f(lastcreatednode) ← newnode
15: end if
16: lastcreatednode ← newnode
17: currentnode ← f(currentnode)
18: currentsuffix ← currentsuffix + 1
19: end while
20: move currentnode to the target node of the outgoing T [i]-edge
21: if lastcreatednode �= undefined then
22: f(lastcreatednode) ← currentnode
23: end if
24: end for

The correctness of Algorithm 1 follows from Lemmas 3, 4 and the discussion
above. It is instructive, in addition, to observe the following:

– it is easily seen that the suffix pointers of T [1..k + 1] are correctly updated.
Indeed, the algorithm assigns to T [i..k + 1] a suffix pointer to T [i + 1..k + 1]
which is obviously correct. Note that for the active position s of T [1..k], the
created node T [s..k + 1] does not get pointed to by any suffix pointer, which
is correct, as T [s−1..k+1] is not represented in PH(T [1..k+1]): the position
s − 1 is primary in T [1..k] and therefore the node T [s− 1..k], if it exists in
PH(T [1..k]), does not get extended by a T [k + 1]-edge (cf Lemma 3).

– since the depth of T [s..k] (s is the active position) in PH(T [1..k]) is k+1−s
and a traversal of a suffix link decrements the depth by 1 and increments
the current position by 1, it follows that if the traversal of the suffix chain

334 G. Kucherov

reaches the root node, the active position value becomes k + 1, which is
exactly what we need to start processing the next letter T [k+1]. This shows
why Algorithm 1 correctly maintains currentsuffix and never needs to reset
it at the beginning of the for-loop iteration.

It is easy to see that the running time of Algorithm 1 is linear in the length n
of the input string. Since each iteration of the while-loop creates a node, this
loop iterates exactly n times over the whole run of the algorithm. Trivially, the
for-loop iterates n times too, and all the involved operations are constant time.
Thus, the whole algorithm takes O(n) time. The following theorem concludes
the construction.

Theorem 2. For an input string T [1..n], Algorithm 1 correctly constructs PH(T)
on-line in time O(n).

5 Augmented Position Heap

Assume we have a text T [1..n] for which we constructed the position heap
PH(T). We don’t assume that T is ended by a unique letter, and therefore some
nodes of PH(T) are double nodes and store two positions of T , one primary and
one secondary. Here we assume that the secondary positions are actually stored
(or can be retrieved in constant time for each node). As explained in Section 4,
even if the secondary positions are not stored during the construction of PH(T),
they can be easily recovered once the construction is completed.

[EMOW11] proposed a linear-time string matching algorithm using
PH(T [1..n]), i.e. an algorithm that computes all occurrences of a pattern string
in T in time O(m + occ), where m is the pattern length and occ the number of
occurrences. Describing this elegant algorithm is beyond the scope of this paper,
we refer the reader to [EMOW11] for its description. Note that the algorithm
itself applies without changes to our definition of position heap, as it does not
depend in any way on the order that the suffixes of T are inserted.

However, the algorithm of [EMOW11] runs on PH(T) enriched with some
additional information. Let i denote the node of PH(T) storing position i, 1 ≤
i ≤ n. The extended data structure, called the augmented position heap, should
allow the following queries to be answered in constant time:

– given a position i, retrieve the node i,
– given two nodes i and j, is i a (not necessarily immediate) ancestor of j?
– given a position i of T , retrieve the node T [i..i +], where T [i..i +] is the

longest substring of T starting at position i and represented in PH(T).

To answer the first query, [EMOW11] simply introduces an auxiliary array stor-
ing, for each position i, a pointer to the node i. Maintaining this array during
the construction of PH(T) by Algorithm 1 is trivial: once a position is assigned
to a newly created node (line 11 of Algorithm 1), a new entry of the array is
created. If T is not ended by a unique symbol and then the final PH(T) has
secondary positions, those are easily recovered by traversing the chain of suffix
pointers at the very end of the construction.

On-Line Construction of Position Heaps 335

The second query can be also easily answered in constant time after a linear-
time preprocessing of PH(T). A solution proposed in [EMOW11] consists in
traversing PH(T) depth-first and storing, for each node, its discovery and fin-
ishing times [CLR99]. Then node i is an ancestor of node j if and only if the
discovery and finishing time of i is respectively smaller and greater than the
discovery and finishing time of j.

A more space-efficient solution would be to use a balanced parenthesis repre-
sentation of the tree topology of PH(T), taking 2n bits, and link each node to
the corresponding opening parenthesis. Then the corresponding closing paren-
thesis can be retrieved in constant time by the method of [MR01] using o(n)
auxiliary bits. This allows ancestor queries to be answered in constant time.

The third type of queries is answered by a precomputed function, called
maximal-reach pointer [EMOW11]: for a position i of T [1..n], define mrp(i) to
be the node T [i..i +], where T [i..i+] is the longest prefix of T [i..n] represented
in PH(T). Observe first that if i is a secondary position, then mrp(i) = i. This
is because a secondary position i is stored in node T [i..n], which trivially corre-
sponds to the longest prefix starting at i. Therefore, as it is done in [EMOW11],
mrp can be represented by pointers from node i to node mrp(i) whenever these
nodes are different. In our case, we have then to keep in mind that a maximal-
reach pointer from a double node applies to the primary position of this node.
Figure 4 provides an illustration.

1

2, 12

3, 13

4

5

6

78

9 1011

a

a

b

b

a
b

b

a

b

b

a

Fig. 4. Position heap for string aababbbaabaab with suffix pointers and maximal-reach
pointers mrp (double arrows). Only values for which mrp(i) �= i are shown, namely
mrp(1) = 11, mrp(8) = 11, mrp(2) = 9, mrp(3) = 10. Note that maximal reach
pointers outgoing from double nodes are unambiguous as for all secondary positions i,
we have mrp(i) = i.

In [EMOW11], maximal-reach pointers are computed by an extra traversal of
PH(T), using an auxiliary dual heap structure on top of it (see Introduction).
Here we show that maximal-reach pointers can be easily computed using suffix
pointers instead of the dual heap. Thus, we completely get rid of the dual heap
for constructing the augmented position heap, replacing it with suffix pointers.

We compute mrp(i) iteratively for i = 1, 2, . . . , s − 1, where s is the active
secondary position of T [1..n]. Assume we have computed mrp(i) for some i and

336 G. Kucherov

have to compute mrp(i + 1). Assume mrp(i) = T [i..i +]. It is easily seen that
T [i + 1..i +] is a prefix of the string represented by mrp(i + 1). To compute
mrp(k +1), we follow the suffix link f(mrp(k)) to reach T [i + 1..i +] and then
keep extending the prefix T [i + 1..i +] as long as it is represented in PH(T).
The resulting pseudo-code is given in Algorithm 2.

It is very easy to see that Algorithm 2 works in time O(n): the while-loop
makes exactly n iterations overall, as each iteration increments the readhead
counter.

The following property of Algorithm 2 is useful to observe: as soon as readhead
gets the value n + 1 (line 6), the node currentnode gets assigned to the active
node of PH(T [1..n]) (line 9); at the subsequent iterations, the algorithm simply
traverses the chain of suffix links and sets the maximal-reach pointer for each
secondary position to be the node storing this position (lines 8-9).

Algorithm 2. Linear-time computation of maximal-reach pointers mrp(i)
1: currentnode ← root
2: readhead ← 1
3: for i = 1 to n do
4: while currentnode has an outgoing T [readhead]-edge and readhead ≤ n do
5: move currentnode to the target node of the outgoing T [readhead]-edge

6: readhead ← readhead + 1
7: end while
8: mrp(i) ← currentnode
9: currentnode ← f(currentnode)
10: end for

6 Concluding Remarks

We proposed a construction algorithm of a position heap of a string, under a
modified definition of position heap compared to [EMOW11]. In contrast with
the algorithm of [EMOW11] that processes the text right-to-left, our algorithm
reads the string left-to-right and has the on-line property. Drawing a parallel to
suffix trees, our algorithm can be compared to the Ukkonen’s on-line algorithm
[Ukk95], while the algorithm of [EMOW11] can be compared to the Weiner’s
algorithm [Wei73]. The similarity of our algorithm to the Ukkonen’s algorithm
goes beyond this parallel, as the two algorithms are also somewhat analogous in
their design.

The O(n) complexity bounds of both Algorithm 1 (Theorem 2) and Algo-
rithm 2 are stated for a constant-size alphabet, otherwise a correcting factor
log |A| should be introduced, similarly to the suffix tree construction.

The position heap is a smaller data structure than the suffix tree: it con-
tains exactly n + 1 nodes whereas the suffix tree has n leaves and then up to
2n nodes. Still, the position heap allows for a linear-time string matching. The
authors of [EMOW11] proposed algorithms for updating the position heap when

On-Line Construction of Position Heaps 337

the input string undergoes modifications (character insertions/deletions). These
algorithms can be easily applied to our definition of position heap. Other inter-
esting applications of position heap are still to be discovered.

It would be interesting to study further the properties of maximal-reach point-
ers. Note that their structure differs between our definition of position heap and
the definition of [EMOW11]. It would be also interesting to exploit the “adap-
tiveness” of position heaps to substring frequencies, mentioned in Section 3.

References

[BBH+85] Blumer, A., Blumer, J., Haussler, D., Ehrenfeucht, A., Chen, M.T.,
Seiferas, J.: The smallest automaton recognizing the subwords of a text.
Theoretical Computer Science 40, 31–55 (1985)

[CE70] Coffman, E., Eve, J.: File structures using hash functions. Communica-
tions of the ACM 13, 427–432 (1970)

[CLR99] Cormen, T., Leiserson, C., Rivest, R.: Introduction to Algorithms. MIT
Press, Cambridge (1999)

[CR94] Crochemore, M., Rytter, W.: Text algorithms. Oxford University Press,
Oxford (1994)

[Cro86] Crochemore, M.: Transducers and repetitions. Theoretical Computer Sci-
ence 45, 63–86 (1986)

[Cro88] Crochemore, M.: String matching with constraints. In: Koubek, V.,
Janiga, L., Chytil, M.P. (eds.) MFCS 1988. LNCS, vol. 324, pp. 44–58.
Springer, Heidelberg (1988)

[EMOW11] Ehrenfeucht, A., McConnell, R., Osheim, N., Woo, S.-W.: Position heaps:
A simple and dynamic text indexing data structure. CPM 2009 Lille 9(1),
100–121 (2011); Preliminary version in Proc. 20th Anniversary Edition of
the Annual Symposium on Combinatorial Pattern Matching (CPM 2009)

[Fre60] Fredkin, E.: Trie memory. Communications of the ACM 3(9), 490–499
(1960)

[Gus97] Gusfield, D.: Algorithms on Strings, Trees, and Sequences: Computer
Science and Computational Biology. Cambridge University Press, Cam-
bridge (1997)

[MR01] Munro, J.I., Raman, V.: Succinct representation of balanced parentheses
and static trees. SIAM J. Comput. 31(3), 762–776 (2001)

[Ukk95] Ukkonen, E.: On-line construction of suffix-trees. Algorithmica 14(3),
249–260 (1995)

[Wei73] Weiner, P.: Linear pattern matching algorithm. In: 14th Annual IEEE
Symposium on Switching and Automata Theory, pp. 1–11 (1973)

Computing All Subtree Repeats in Ordered

Ranked Trees

Michalis Christou1, Maxime Crochemore1,2, Tomáš Flouri3, Costas S.
Iliopoulos1,4, Jan Janoušek3, Bořivoj Melichar3, and Solon P. Pissis1

1 Dept. of Informatics, King’s College London, UK
2 Université Paris-Est, France

3 Dept. of Theoretical Computer Science, Faculty of Information Technology, Czech
Technical University in Prague, Czech Republic

4 Digital Ecosystems & Business Intelligence Institute, Curtin University, Perth,
Australia

Abstract. We consider the problem of finding all subtree repeats in a
given ordered ranked tree. Specifically, we transform the given tree to a
string representing its postfix notation, and then propose an algorithm
based on the bottom-up technique. The proposed algorithm is divided
into two phases: the preprocessing phase, and the phase where all subtree
repeats are computed. The linear runtime of the algorithm, as well as
the use of linear auxiliary space, are important aspects of its quality.

1 Introduction

Tree pattern matching has been intensively studied over the past decades be-
cause of its various applications, among others, in mechanical theorem proving,
term-rewriting, instruction selection, non-procedural programming languages,
and computational biology [4, 8, 11–13].

In many applications, it is essential to extract the repeated patterns in a tree
within a mathematical structure [3, 5, 10]. In particular, the common subtrees
problem consists of finding all of the subtrees having the same structure and
the same labels on the corresponding nodes of two ordered labeled unranked
trees [7]. This problem of equivalence, which is strictly related to the common
subexpression problem [3, 5], arises, for instance, in the code optimization phase
of compiler design, or in saving storage for symbolic computations [1, 3, 5].

In this article, we consider a slightly different problem, and provide a com-
pletely different solution to what has been done so far. We focus on finding all
subtree repeats – the subtrees occurring more than once – in a tree structure.
This problem is analogous to the well-known problem of finding all the repeti-
tions in a given word [2]. Notice that finding all subtree repeats can be solved
by the algorithm presented in [7]. However, the presented solution requires the
construction of a suffix tree, which is expensive in practical terms. Moreover,
by analogy with standard suffix automata and repeats in strings, all subtree
repeats in a tree can be directly computed by analyzing states of the determin-
istic subtree pushdown automaton, which represents a full index of a tree for all

R. Grossi et al. (Eds.): SPIRE 2011, LNCS 7024, pp. 338–343, 2011.
c© Springer-Verlag Berlin Heidelberg 2011

Computing All Subtree Repeats in Ordered Ranked Trees 339

subtrees [9]. This way of computing all subtree repeats in a tree can be found
in [14], leading, however, to an O(n log n)-time complexity.

The proposed algorithm is divided into two phases: the preprocessing phase
and the phase where all subtree repeats are computed. The preprocessing phase
transforms the given tree to a string representing its postfix notation, and then
computes arrays that store the height of each node of the tree, the parent of each
node, and an indicator showing whether a node is the leftmost (first) child of its
parent or not. The second phase, for computing all subtree repeats, is done in
a bottom-up manner, using a partitioning technique. The linear runtime of the
algorithm, as well as the use of linear auxiliary space, are important aspects of
its quality.

2 Preliminaries

We define an alphabet Σ as a finite, non-empty set of symbols. A string is
a succession of zero or more symbols from an alphabet Σ. A string w is a
factor (or substring) of x if x = uwv for u, v ∈ Σ∗, and is represented as
w = xi . . . xj , 1 ≤ i ≤ j ≤ |x|. A ranked alphabet is a couple A = (Σ, ϕ), where
Σ is an alphabet and ϕ is the mapping ϕ : Σ �→ N. The arity (rank) of a symbol
x ∈ Σ is denoted by ϕ(x), the number of children of the node that has x as a
symbol.

We define an ordered tree as in [6]. A tree t is unordered if no ordering is
given on the edge lists of its nodes. A tree t is labeled if every node f ∈ N is
labeled by a symbol a ∈ Σ, Σ a finite alphabet. A tree t is ranked if for every
node f ∈ N its out-degree is given. The number of nodes of a tree t is denoted
by |t|. The height of a tree t, denoted by Height(t), is defined as the maximal
length of a path from the root of t to a leaf of t.

The postfix notation post(t) of a labeled, ordered, ranked tree t is obtained by
applying the following Step recursively, beginning at the root of t:
Step: Let this application of Step be node v. If v is a leaf, list v and return to
the previous node. If v is an internal node having descendants v1, v2, . . . , vϕ(v),
apply Step to v1, v2, . . . , vϕ(v) in that order and then list v.

Two ranked trees are equal iff their postfix notations are equal strings. A
subtree p matches tree T at node v, if p is equal to the subtree of t rooted at v.

A subtree repeat p in a tree T , represented by its postfix notation x = post(T),
is a tuple: Mx,u = (p; i1, i2, . . . , ir), r ≥ 2, where i1 < i2 < . . . < ir and u =
xi1 . . . xi1+|p|−1 = xi2 . . . xi2+|p|−1 = . . . = xir . . . xir+|p|−1 = post(p). If the tuple
includes all the occurrences of u in x, then Mx,u is said to be complete and is
written M∗

x,u.
We formally define the problem of computing all subtree repeats in ordered

ranked trees, as follows.

Problem 1 (All subtree repeats of an unlabeled ordered ranked tree). Find all
complete subtree repeats of an unlabeled ordered ranked tree T consisting of n
nodes.

340 M. Christou et al.

3 Properties of Ranked Trees in Postfix Notation

Lemma 1. Given a tree t and its postfix notation post(t), the postfix notations
of all subtrees of t are factors of post(t).

Definition 1. Let w = a1a2 . . . am, m ≥ 1, be a string over a ranked alphabet
A. Then, the arity checksum ac(w) =

∑m
i=1 ϕ(ai)−m + 1.

Lemma 2. Let post(t) and w be a tree t in postfix notation and a factor of
post(t), respectively. Then w = w1 . . . w|w|, wi ∈ A, is the postfix notation of a
subtree of t iff:

– w is composed by one symbol of arity 0, or
– |w| ≥ 2, ac(w) = 0 and w1 is a symbol of arity 0 which corresponds to a leaf

being the first child of some subtree of t.

4 Algorithms

In this section we present an algorithm for solving Problem 1. It consists of two
phases: the preprocessing phase and the searching phase.

4.1 Preprocessing

Given a tree t, its postfix notation is first computed using a simple postorder
traversal of the tree. Let post(t) = x1x2 . . . xn be the postfix notation of tree t.
The preprocessing phase completes by computing 3 auxiliary arrays, which will
be accessed during the searching phase.

1. The height of each subtree of t, having node xi as its root, is stored in an
array H , at position i, for 1 ≤ i ≤ n.

2. An array P of n elements, with the i-th element having the value p if xp is
the parent of xi.

3. A binary array FC consisting of 1’s and 0’s, with the i-th element being 1 in
case xi is the first (leftmost) child of its parent node xP [i].

4.2 Finding Subtree Repeats

We are now in a position to present Alg. 1 for solving Problem 1. The computa-
tion is based on a bottom-up traversal of the input tree t, described by its postfix
notation post(t) = x1x2 . . . xn. The algorithm, at each step (level) i, locates and
outputs all subtree repeats of height i by expanding the leaves of the tree as
suggested by Lemma 2. We also introduce an auxiliary array called level array
(LA), which keeps track of queues of triplets. These triplets describe factors of
post(t), and are of the form (S, 	, ac), where S is a set containing the starting
positions of the occurrences of the factor, 	 is the factor’s length, and ac is its
arity checksum, which, in case is 0, indicates that the factor corresponds to some
subtree of t.

Computing All Subtree Repeats in Ordered Ranked Trees 341

Algorithm 1. Subtree-Repeats

Input : post(t) = x1x2 . . . xn over ranked alphabet A = (Σ, ϕ)
Output: Sets of starting positions of factors of post(t) and their lengths,

representing subtrees from t

sc ← 11

for i ← 1 to n do2

if ϕ(xi) = 0 then3

S ← S ∪ {i}4

T [i] ← sc5

TL[i] ← 16

else7

T [i] ← 08

TL[i] ← 09

Output (S, 1)10

Assign-Level((S, 1, 0))11

for i ← 1 to H [n] do12

while not empty LA[i] do13

Partition(Dequeue(LA[i]))14

The algorithm starts by constructing a triplet (S, 1, 0), representing all leaves,
i.e. subtrees of height 0 (lines 3-6 of Alg. 1), with its set S containing all positions
of the unary symbol in post(t). The triplet is then passed to the function Assign-
Level, which splits the elements of S in several subsets, according to the height
of the subtree specified by the parent (stored in H [P [root]]) of each element in S
(line 4 of Assign-Level). Elements which do not correspond to subtrees being
first children of their parent nodes are discarded. The resulting subsets are then
wrapped into triplets and appended in the appropriates queues of LA according
to H [P [root]]. Note, that the function Assign-Level takes as input only triplets
describing factors that correspond to subtrees.

Function. Assign-Level(E)
Input : E = (S, �, ac)
Output: Partitioning of E in levels

for each i ∈ S do1

root = i + TL[i] − 12

if FC[root] = 1 then3

SH[P [root]] ← SH[P [root]] ∪ {i}4

L ← L ∪ {H [P [root]]}5

for i ∈ L do Enqueue(LA[i], (Si, �, 0))6

At each step i of the algorithm, the triplets in LA[i] are passed to the function
Partition, which partitions a triplet according to the next factor, starting at
position r (line 2 of Partition), that is to be concatenated with the factor
described by the triplet. The next factor either represents a subtree of t in

342 M. Christou et al.

Function. Partition(E)
Input : E = (S, �, ac), post(t) = x1x2 . . . xn

Output: Partitioning E in classes

for i ∈ S do1

r = i + �2

if T [r] �= 0 then3

ST [r] ← ST [r] ∪ {i}4

ET [r] ← (ST [r], � + TL[r], ac − 1)5

L ← L ∪ {ET [r]}6

else7

Sxr ← Sxr ∪ {i}8

Exr ← (Sxr , � + 1, ac − 1 + ϕ(xr))9

L ← L ∪ {Exr}10

for each Ei = (Si, �i, aci) ∈ L do11

if aci = 0 then12

Output(Si, �i)13

sc = sc + 114

for j ∈ Si do15

T [j] ← sc16

TL[j] ← �i17

Assign-Level(Ei)18

else19

Partition(Ei)20

postfix notation, in case its first symbol marks the beginning of a subtree (lines
3-6), or a single symbol (lines 7-10). The triplets are then recursively partitioned
(line 20) until they describe factors representing subtrees in postfix notation
(lines 12-18). When a triplet finally describes a factor representing a subtree,
starting positions of those factors are assigned an index (stored in array T), and
their lengths are stored in an array TL (lines 16-17). This is to indicate that the
factor starting at position i and having length TL[i] was found to correspond
to a subtree. Those triplets are then passed to Assign-Level, which partitions
them in levels and stores them in the appropriate queues of LA. As stated before,
we consider only the elements i of the set S of a triplet E = (S, 	, 0), such that
the subtree corresponding to the factor xi . . . xi+� is the first child of the subtree
specified by its parent node (Lemma 2). The algorithm terminates when the
level array LA is empty.

Theorem 1. The algorithm Subtree-Repeats computes all complete subtree
repeats of a given tree t in Θ(n) time, where |t| = n.

Proof. The preprocessing phase, i.e. the computation of post(t), arrays P , H and
FC, is done in Θ(n) time. During the expansion of the subtrees, performed in
function Partition, the algorithm does not read a symbol more than once, but
rather reads the previously expanded subtrees. Merging the subtrees is done in
n− 1 operations (number of children of the tree). ��

Computing All Subtree Repeats in Ordered Ranked Trees 343

5 Conclusion

In this article, we have formally defined the problem of computing all subtree
repeats in ordered ranked trees, and presented a new algorithm based on the
bottom-up technique. The proposed algorithm runs in linear time and space.
It is important to note that the proposed algorithm can be easily modified to
compute all subtree repeats in labeled ordered ranked trees in linear time and
space.

References

1. Aho, A.V., Lam, M.S., Sethi, R., Ullman, J.D.: Compilers: Principles, Techniques,
and Tools, 2nd edn. Addison-Wesley, Reading (2006)

2. Crochemore, M.: An optimal algorithm for computing the repetitions in a word.
Inf. Process. Lett. 12(5), 244–250 (1981)

3. Downey, P.J., Sethi, R., Tarjan, R.E.: Variations on the common subexpression
problem. J. ACM 27, 758–771 (1980)

4. Dubiner, M., Galil, Z., Magen, E.: Faster tree pattern matching. J. ACM 41, 205–
213 (1994)

5. Flajolet, P., Sipala, P., Steyaert, J.M.: Analytic variations on the common subex-
pression problem. In: Proceedings of the Seventeenth International Colloquium on
Automata, Languages and Programming, pp. 220–234. Springer-Verlag New York,
Inc., New York (1990)

6. Flouri, T., Janoušek, J., Melichar, B.: Subtree matching by pushdown automata.
Computer Science and Information Systems/ComSIS 7(2), 331–357 (2010)

7. Grossi, R.: On finding common subtrees. Theor. Comput. Sci. 108(2), 345–356
(1993)

8. Hoffmann, C.M., O’Donnell, M.J.: Pattern matching in trees. J. ACM 29, 68–95
(1982)

9. Janousek, J.: String suffix automata and subtree pushdown automata. In: Holub, J.,
Zdárek, J. (eds.) Stringology. pp. 160–172. Prague Stringology Club, Department
of Computer Science and Engineering, Faculty of Electrical Engineering, Czech
Technical University in Prague (2009)

10. Karp, R.M., Miller, R.E., Rosenberg, A.L.: Rapid identification of repeated pat-
terns in strings, trees and arrays. In: Proceedings of the Fourth Annual ACM
Symposium on Theory of Computing, STOC 1972, pp. 125–136. ACM, New York
(1972)

11. Kosaraju, S.R.: Efficient tree pattern matching. In: Proceedings of the 30th Annual
Symposium on Foundations of Computer Science, pp. 178–183. IEEE Computer
Society, Washington, DC (1989)

12. Kuboyama, T.: Matching and Learning in Trees. Ph.D. thesis, University of Tokyo
(2007)

13. Mauri, G., Pavesi, G.: Algorithms for pattern matching and discovery in rna sec-
ondary structure. Theor. Comput. Sci. 335, 29–51 (2005)

14. Melichar, B.: Arbology: Trees and pushdown automata. In: Dediu, A.-H., Fernau,
H., Mart́ın-Vide, C. (eds.) LATA 2010. LNCS, vol. 6031, pp. 32–49. Springer,
Heidelberg (2010)

Sparse Spatial Selection for Novelty-Based

Search Result Diversification

Veronica Gil-Costa1, Rodrygo L.T. Santos2,
Craig Macdonald2, and Iadh Ounis2

1 Universidad Complutense de Madrid, Spain and Yahoo! Research Latin America
gvcosta@yahoo-inc.com

2 University of Glasgow, UK
{rodrygo,craigm,ounis}@dcs.gla.ac.uk

Abstract. Novelty-based diversification approaches aim to produce a
diverse ranking by directly comparing the retrieved documents. However,
since such approaches are typically greedy, they require O(n2) document-
document comparisons in order to diversify a ranking of n documents. In
this work, we propose to model novelty-based diversification as a similar-
ity search in a sparse metric space. In particular, we exploit the triangle
inequality property of metric spaces in order to drastically reduce the
number of required document-document comparisons. Thorough exper-
iments using three TREC test collections show that our approach is
at least as effective as existing novelty-based diversification approaches,
while improving their efficiency by an order of magnitude.

1 Introduction

Search result diversification has emerged as an effective approach for tackling
ambiguous queries. In particular, a diverse ranking aims to satisfy as many
aspects of an ambiguous query as possible, and as early as possible. By satisfying
multiple query aspects, a high coverage of these aspects is achieved. By having
different aspects satisfied as early as possible, a high novelty is also attained [10].

Promoting coverage is typically more efficient than promoting novelty: while
coverage can be estimated for different documents independently, the same is
not true for novelty. In particular, the notion of novelty entails a dependence
between the relevance of different documents—i.e., a novel document is one that
covers aspects not covered by the other documents. As a result, novelty-based
diversification becomes essentially the problem of finding a set of documents
that together cover most of the aspects of a query at a given rank cutoff. In
this general formulation, this is an NP-hard problem [1]. Most of the approaches
proposed in the literature for this problem deploy a greedy approximation algo-
rithm: at each iteration, the algorithm selects a document that covers the most
aspects not yet covered by the documents selected in the previous iterations. In a
typical case, after the system retrieves n documents to be diversified, this greedy
algorithm performs O(n2) document-document comparisons—i.e., O(n) similar-
ity searches across n iterations [7]—which can severely impact the efficiency of
these approaches.

R. Grossi et al. (Eds.): SPIRE 2011, LNCS 7024, pp. 344–355, 2011.
c© Springer-Verlag Berlin Heidelberg 2011

Sparse Spatial Selection for Novelty-Based Search Result Diversification 345

In this paper, we propose to reduce the number of required similarity com-
putations in novelty-based diversification approaches, by modelling novelty in
a metric space [7]. Metric spaces have been used for similarity search in many
modern database applications [2]. Similarity search in metric spaces focuses on
retrieving objects which are similar to a query point, with a metric distance
function measuring the objects’ similarity. By representing the retrieved docu-
ments as m-dimensional vectors in a metric space, we can exploit the triangle
inequality property of such spaces to dramatically reduce the number of similar-
ity computations required to diversify these documents.

A number of metric space search algorithms have been proposed in the litera-
ture (e.g., [3, 16–18]). In this paper, we show that effective and efficient diversifi-
cation can be obtained using a sparse spatial selection approach [3], which selects
pivot documents from the result set at running time, in order to reduce the num-
ber of required similarity computations. Although metric spaces have been used
for image search diversification [14], to the best of our knowledge, our approach
is the first attempt to leverage the properties of such spaces for diversifying tex-
tual documents. Moreover, while the data structure used in [14] has a O(n2)
construction time [15], the one used in this paper can be built in linear time.

The contributions of this paper are two-fold: (1) we propose to model novelty-
based diversification as a sparse spatial selection over a metric space; (2) we
thoroughly investigate the effectiveness and efficiency of our proposed approach,
using three standard TREC test collections for diversity evaluation. Our exper-
imental results attest both the effectiveness and the efficiency of our approach
compared to existing novelty-based diversification approaches.

In Section 2, we review existing approaches for search result diversification
and similarity search in metric spaces. Section 3 shows how novelty-based di-
versification can be modelled in a metric space. Sections 4 and 5 detail our
experimental setup and evaluation, respectively. Conclusions follow in Section 6.

2 Background and Related Work

In this section, we review existing approaches to search result diversification
(Section 2.1) and similarity search in metric spaces (Section 2.2).

2.1 Search Result Diversification

Diversification approaches can be broadly classified as implicit or explicit. Im-
plicit approaches assume that different documents will cover different query as-
pects. As a result, these approaches promote novel documents as a means to
indirectly cover multiple aspects. The definition of a ‘novel’ document is pre-
cisely what distinguishes the approaches in this family. For instance, Carbonell
and Goldstein [4] proposed to compare documents based on their cosine similar-
ity. Zhai et al. [23] proposed an extension of this idea, by comparing documents
with respect to the divergence of their language models. More recently, Wang
and Zhu [22] proposed to use the correlation of documents’ relevance scores.

346 V. Gil-Costa et al.

Instead of assuming that different documents cover different aspects, explicit
diversification approaches directly model these aspects as part of their strategy.
For instance, Agrawal et al. [1] proposed a diversification approach based on an
explicit representation of query aspects as taxonomy classes, in order to promote
documents that cover classes also covered by the query. A similar approach was
proposed by Carterette and Chandar [5], but with query aspects represented as
topic models built from the top retrieved results for the query. Finally, Santos et
al. [20] proposed to represent the aspects underlying a query as ‘sub-queries’. In
their approach, documents are promoted according to their estimated relevance
to multiple sub-queries, as well as to the estimated importance of each sub-query.

Although having the same goal, these two families of approaches deploy rather
distinct strategies. While implicit diversification approaches are driven by nov-
elty, explicit ones usually target coverage. Since coverage can be estimated in-
dependently for different documents, explicit approaches are generally more ef-
ficient than implicit ones. In this paper, we propose to reduce the overhead
incurred by document-document comparisons in novelty-based diversification
approaches. In particular, we model novelty seeking within a metric space, and
exploit the properties of this space to efficiently identify novel documents.

2.2 Search in Metric Spaces

Metric spaces are useful to represent complex data objects, such as documents
or images, in a searchable collection. Search queries are represented as objects of
the same type as the objects in the collection wherein, for example, one is inter-
ested in retrieving the most similar objects to the query. Formally, a metric space
(U , δ) comprises a universe of objects U and a distance function δ : U×U → R+,
which determines the similarity between any pair of objects [7]. The definition of
the distance function depends on the type of the objects being compared. In an
m-dimensional vector space—a particular case of metric spaces in which every
object is represented by a vector of m real coordinates—δ could be a distance
function of the family Ls(x, y) = (

∑
1≤i≤m |xi − yi|s)

1
s . For example, s = 2 yields

the Euclidean distance. For any x, y, z ∈ U , the function δ holds several prop-
erties: non-negativity (δ(x, y) ≥ 0), reflexivity (δ(x, y) = 0 iff x = y), symmetry
(δ(x, y) = δ(y, x)), and the triangle inequality (δ(x, z) ≤ δ(x, y) + δ(y, z)). The
latter property is of particular interest, as it can be used to improve efficiency
by avoiding unnecessary similarity computations, as will be shown in Section 3.

The finite subset X ⊆ U , with n = |X |, denotes the working set of objects
where searches are performed (e.g., the top-n documents retrieved for a query).
A type of similarity search of particular interest to this work involves range
queries [15]. In this search type, the goal is to retrieve all objects within dis-
tance r to a query object q, where r denotes the search range. Fig. 1 shows
how the triangle inequality property of metric spaces can be exploited to avoid
unnecessary similarity computations for range queries. In particular, given the
distance δ(x, y) between the objects x and y and the distance δ(q, x) between x
and a query object q with search range r, we can avoid computing δ(q, y).

Sparse Spatial Selection for Novelty-Based Search Result Diversification 347

Pre-Computed

 q
 ry

x

Can be avoided

Fig. 1. The triangle inequality property. Once the distances δ(x, y) and δ(q, x) are
computed, computing δ(q, y) for a query q with range r is unnecessary.

Most algorithms for similarity search in metric spaces fall into one of two
categories: clustering and pivoting. Clustering techniques divide the working
set of objects into groups (called clusters), such that similar objects fall into
the same group [7]. Pivoting techniques select some objects as pivots, calculate
the distance between every other object and each pivot, and apply the triangle
inequality to avoid unnecessary similarity computations between objects. A key
challenge for pivoting techniques is to determine the number of pivots needed
to cover all objects in the working set. Moreover, the number of pivots tends to
increase with the size of the working set. In the next section, we show how to
adapt a pivot technique that avoids these problems in order to effectively and
efficiently promote novel search results in the ranking.

3 Sparse Spatial Selection Diversification

LetD contain the documents initially retrieved for a query q. Existing diversifica-
tion approaches typically re-score a document di ∈ D in light of the query q and
the documents in S ⊆ D \ {di}, according to the following abstract model [21]:

score(q, di) = (1− λ) rel(q, di) + λdiv(q, di,S), (1)

where relevance (rel(q, di)) and diversity (div(q, di,S)), as estimated by a given
diversification approach, are traded off through the interpolation parameter λ.

In Equation (1), the relevance component rel(q, di) can be estimated using any
standard retrieval model. In a novelty-based diversification approach, the diver-
sity component div(q, di,S) is typically estimated in a greedy, iterative fashion.
In particular, at any given iteration, every document di ∈ D \ S is compared to
every document dj ∈ S, where S comprises the documents selected in the pre-
vious iterations. This way, the document di that differs most from the already
selected documents in S is itself included in S. Such document-document com-
parisons are usually performed as distance computations in an m-dimensional
term-frequency space, where m is the number of unique terms in the underlying
document collection. As discussed in Section 2.1, these approaches differ mainly
in their choice of a distance function (e.g., cosine [4], divergence [23], or correla-
tion [22]). Regardless of the chosen distance function, these approaches require
O(n2) distance computations to diversify a list of n documents. In particular,
they perform an O(n) similarity search across n iterations.

348 V. Gil-Costa et al.

p1

p2p3

Fig. 2. Objects in the range of pivots p1,
p2, and p3 are considered redundant

SSSD1[q,D = {d1, . . . , dn}, δ, M, φ]

1 P ⇐ {d1}
2 for all di ∈ D \ {d1} do
3 if δ(di, pj) ≥ φM ∀pj ∈ P then
4 P ⇐ P ∪ {di}
5 end if
6 end for
7 P ⇐ P ∪ (D \ P)

Alg. 1. Single-Step Sparse Spatial Selec-
tion Diversification (SSSD1)

In order to reduce the quadratic number of distance computations incurred
by the existing greedy novelty-based diversification approaches, we propose to
exploit a key property of metric spaces, namely, the triangle inequality. Our
approach is based on an efficient pivoting similarity search algorithm. As illus-
trated in Fig. 2, the Sparse Spatial Selection (SSS) algorithm [3] identifies a set
of k “pivots” among the n objects in the search space. By pre-computing the
distances between the k pivots and the n objects, the number of subsequent dis-
tance computations can be drastically reduced. For instance, suppose we want
to find all objects similar to an object x within a range r. If, for some pivot p,
it holds that |δ(x, p) − δ(y, p)| > r, then we know, from the triangle inequality,
that δ(x, y) > r. Therefore, we do not need to explicitly evaluate δ(x, y).

In this paper, we propose a novelty-based diversification approach inspired by
the SSS pivoting search algorithm. Our novel Sparse Spatial Selection Diversifi-
cation (SSSD) approach incorporates the notion of pivots to reduce the number
of distance computations required to diversify a set of documents. In particular,
we develop two variants of SSSD. Our first variant, SSSD1, builds upon the SSS
algorithm to skip redundant documents in the ranking. As described in Alg. 1,
SSSD1 takes as input a query q, an initial set of documents D retrieved for this
query, a distance function δ with upper-bound M , and the search radius φ, with
0 ≤ φ ≤ 1, such that r = φM determines the search range of each pivot.

The core of SSSD1 is the selection of pivots (lines 1-6 in Alg. 1). To this end,
let (U , δ) be a metric space, with D ⊆ U comprising the documents retrieved
for the query q. The pivot set P is initialised with the first retrieved document,
i.e., d1 ∈ D. For each remaining document di ∈ D \ {d1}, di is chosen as a new
pivot if its distance to every pivot in P is greater than or equal to the search
range φM . Hence, a retrieved document becomes a new pivot if and only if it
is located outside the search range of all current pivots. Moreover, documents
within the search range of an already selected pivot are considered redundant
and skipped, and are later added to the bottom of the ranking (line 7), in the
same order as they were originally retrieved in the initial ranking D.

Importantly, during the selection of pivots, it is not necessary that all docu-
ments in D be compared against all pivots. When a document di is compared
against a pivot pj and does not satisfy the condition δ(di, pj) ≥ φM , this docu-
ment is discarded and no additional comparisons are required. In the best case

Sparse Spatial Selection for Novelty-Based Search Result Diversification 349

scenario, documents are compared only with the first pivot when they are within
the range of this pivot. Assuming that an unseen document di has a constant
probability ν = f(U , δ, M, φ) of lying outside the range of all pivots pj ∈ P
given the metric space (U , δ) and the search range φM , it can easily be shown
that Alg. 1 requires

∑n−1
i=1 νi−1(n− i) document-pivot comparisons to diversify

n documents. In the worst case, when ν = 1 (i.e., all documents are outside the
range of all pivots and become themselves pivots), this algorithm exhibits the
same quadratic complexity as the greedy novelty seeking approach. However, in
practical deployments, ν < 1, which results in a drastic reduction in the number
of required document-pivot comparisons, as we will show in Section 5.

SSSD1 promotes novelty in an iterative fashion, by prospecting new pivots
from the ranking D. Although respecting the order that the documents were
originally retrieved for the query q, this variant does not perform any explicit
re-scoring of these documents, and in fact treats the non-pivot documents indis-
tinctly. To investigate whether a more fine-grained re-ranking could be beneficial,
we propose a second variant of our approach. In particular, the SSSD2 variant
extends SSSD1, by performing a second step over the retrieved documents, in
order to assign each document di a score with respect to the query, in light of the
abstract diversification model defined in Equation (1). This variant is described
in Alg. 2. SSSD2 is essentially equivalent to SSSD1, except for the introduced
scoring step (lines 7-9 in Alg. 2), and the additional parameter β. In particular,
this introduced step scores a document di as a linear combination of its estimated
relevance to the query and its estimated novelty, as given by the inverse of the dis-
tance between di and its most similar pivot pj ∈ P . A balance between relevance
and novelty is achieved through an appropriate setting of β. In a naive implemen-
tation, this step takes additional O(kn) document-document comparisons, which
is already substantially more efficient than existing novelty-based diversification
approaches, if k � n. However, even when this is not the case—particularly
for high-dimensional spaces—the second step can reuse all the comparisons per-
formed for the pivot selection in the first step. Therefore, as we will show in
Section 5, in contrast to SSSD1, SSSD2 can deploy a traditional diversification
scoring scheme, at the cost of typically only a few additional comparisons.

SSSD2[q,D = {d1, . . . , dn}, δ, M, φ, β]

1 P ⇐ {d1}
2 for all di ∈ D \ {d1} do
3 if δ(di, pj) ≥ φM ∀pj ∈ P then
4 P ⇐ P ∪ {di}
5 end if
6 end for
7 for all di ∈ D do
8 score(q, di) = (1 − β) rel(q, di) + β

[
1 − maxpj∈P δ(di, pj)

]
9 end for

Alg. 2. Two-Step Sparse Spatial Selection Diversification (SSSD2)

350 V. Gil-Costa et al.

4 Experimental Setup

Our investigation aims to answer two major research questions:

1. How do SSSD and existing approaches compare in terms of effectiveness?
2. How do SSSD and existing approaches compare in terms of efficiency?

To evaluate our approach in different metric spaces, we experiment with three
test collections for diversity evaluation, comprising both web and newswire doc-
uments. The first two are from the diversity task of the TREC 2009 and 2010
Web tracks [8, 9]—henceforth WT09 and WT10, respectively. WT09 includes 50
topics, while WT10 comprises 48 topics. Our third collection includes 20 topics
from the Interactive track of TREC-6, TREC-7, and TREC-8 [12]—henceforth
IT678. For WT09 and WT10, we index the TREC ClueWeb09 (cat. B) corpus,
with 50 million web documents. For IT678, we index the Financial Times portion
of TREC Disks 4&5, with 210,000 newswire documents. Both corpora are in-
dexed using Terrier [19], with Porter’s stemmer and standard stopword removal.

To retrieve an initial pool of documents to be diversified, we apply either BM25
or the Divergence from Randomness DPH model, as implemented in Terrier. On
top of these adhoc retrieval baselines, we deploy two well-known novelty-based
diversification approaches as diversification baselines: Maximal Marginal Rele-
vance (MMR [4]) and Mean-Variance Analysis (MVA [22]). As these approaches
compute novelty based on cosine or correlation estimations, respectively, we de-
ploy both variants of our approach using both cosine and Pearson’s correlation as
instantiations of the distance function δ. To cope with the quadratic complexity
of MMR and MVA while keeping a uniform setting across all approaches, both
of these baselines as well as our SSSD variants are applied to diversify the top
100 documents retrieved by BM25 or DPH.

Effectiveness is assessed using the primary metrics in the diversity task of
the TREC 2010 Web track, namely, ERR-IA [6] and α-nDCG [10]. To train the
parameters of our approach (φ for SSSD1 and both φ and β for SSSD2), as
well as the parameters for MMR (λ [4]) and MVA (σ and b [22]), we perform
a simulated annealing [13] through a 5-fold cross validation. In particular, we
train the parameters of all approaches to maximise α-nDCG@100 on the training
folds, and report the results as an average across the corresponding separate test
folds. As for efficiency, we report the number of document-document comparisons
performed, as well as the time spent in performing such comparisons.

5 Experimental Results

In this section, we investigate whether novelty-based diversification approaches
can be made efficient without compromising their effectiveness. Before investigat-
ing the efficiency of SSSD, we evaluate its effectiveness compared to MMR [4]
and MVA [22] as baselines. Table 1 shows the diversification performance of
both SSSD variants as well as these two baselines across the WT09, WT10, and
IT678 settings. As the distance function δ, we consider both cosine (denoted c)

Sparse Spatial Selection for Novelty-Based Search Result Diversification 351

Table 1. Diversification performance across the WT09, WT10, and IT678 topics

WT09 WT10 IT678
ERR-IA α-nDCG ERR-IA α-nDCG ERR-IA α-nDCG
@20 @20 @20 @20 @20 @20

BM25 0.1304 0.2290 0.1628 0.2349 0.1541 0.4703
+MMR 0.1341 0.2366 0.1652 0.2379 0.1573 0.4806
+MVA 0.1336 0.2369 0.1654 0.2343 0.1547 0.4708
+SSSD1(c) 0.1429� 0.2526� 0.1688� 0.2447 0.1600 0.4764
+SSSD1(ρ) 0.1242 0.2234 0.1585 0.2324 0.1500 0.4577
+SSSD2(c) 0.1237 0.2178 0.1628 0.2356 0.1483 0.4481
+SSSD2(ρ) 0.1279 0.2248 0.1695 0.2402 0.1532 0.4662

DPH 0.1430 0.2426 0.1952 0.2977 0.1658 0.4833
+MMR 0.1378 0.2363 0.1963 0.2889 0.1652 0.4842
+MVA 0.1314 0.2203 0.1908 0.2841 0.1636 0.4674
+SSSD1(c) 0.1474� 0.2608� 0.1952 0.2981 0.1620 0.4689
+SSSD1(ρ) 0.1333 0.2266 0.1973 0.2977 0.1678 0.4831
+SSSD2(c) 0.1344 0.2367 0.1944 0.2945 0.1639 0.4807
+SSSD2(ρ) 0.1637 0.2646� 0.1847 0.2796 0.1518 0.4692

and Pearson’s correlation (denoted ρ). All approaches are applied on top of both
BM25 and DPH. Significance between both SSSD1 and SSSD2 and the best
between MMR and MVA is verified with the Wilcoxon matched-pairs test. In
particular, the symbols � and � denote a significant increase or decrease with
p < 0.05, while 	 and
 denote significant increases or decreases with p < 0.01.

From Table 1, we note that both SSSD1 and SSSD2 can improve over MMR
and MVA across several settings. Such improvements are significant for SSSD1(c)
using BM25 (for WT09 and WT10) and DPH (for WT09), and for SSSD2(ρ) us-
ing DPH (for WT09). In all other cases, there is no significant difference between
these approaches. This answers our first question, by showing that SSSD per-
forms at least as effectively as existing novelty-based approaches. As for distance
functions, when the initial ranking is given by BM25, cosine gives superior results
for SSSD1, while Pearson’s correlation is the most effective function for SSSD2.
When DPH provides the initial ranking, there is no consistently best choice of
function. As for the two SSSD variants themselves, SSSD1 performs generally
better than SSSD2 (except for IT678 using DPH) when cosine is fixed as the dis-
tance function. For Pearson’s correlation, SSSD2 is generally the best of the two
variants for BM25, while SSSD1 is generally best for DPH. Overall, these results
show that the choice of an SSSD variant depends on the considered metric space,
as determined by the target test collection and the chosen distance function.

To answer our second question, we investigate how the pivot selection impacts
the efficiency of our approach. In particular, the number of selected pivots is a
function of both the dimensionality of the search space and the search radius
φ. Hence, we analyse the efficiency of SSSD1 and SSSD2 over a range of φ val-
ues, as well as over the search spaces of the three considered test collections.
For the WT09, WT10, and IT678 collections, Fig. 3 shows how the number of
selected pivots (Figs. 3(a)-(c)), the number of document-document comparisons

352 V. Gil-Costa et al.

(Figs. 3(d)-(f)), and the running time1 (Figs. 3(g)-(i)) of our approach are af-
fected by the parameter φ. Additionally, to enable the analysis of efficiency in
context, Figs. 3(j)-(l) show how φ impacts the effectiveness of our approach.

From Figs. 3(a)-(c), we first observe, as expected, that the number of piv-
ots selected by SSSD12 decreases as φ increases, since the area covered by each
pivot increases. However, while the number of selected pivots decreases smoothly
for SSSD1(c), a more abrupt drop is observed for SSSD1(ρ), with an inflection
around φ = 0.5 for WT09 and WT10, and φ = 0.6 for IT678. This suggests that
correlation is more sensitive than cosine as a distance function. In particular, in
such sparse spaces as those considered here, documents which share only a few
but highly informative terms can exhibit negligible correlations, while still having
a noticeable cosine. Next, we assess how φ (and consequently, the number pivots)
impacts the number of comparisons and the running time of our approach.

Contrasting Figs. 3(a)-(c) and (d)-(f), we observe a similar shape between the
number of selected pivots and that of performed comparisons. Indeed, there is
an almost perfect linear correlation between the number of comparisons and of
selected pivots (WT09: 0.993 for SSSD1(c), 0.998 for SSSD1(ρ); WT10: 0.993 for
SSSD1(c), 0.999 for SSSD1(ρ); IT678: 0.992 for SSSD1(c), 0.997 for SSSD1(ρ)).
This provides empirical evidence that SSSD1 has an average-case complexity of
O(k), where k = O(n) is the number of selected pivots. Moreover, when SSSD2
is considered, only a constant number of additional comparisons is performed,
hence leaving the asymptotic cost unchanged. In practice, this shows that our
approach is an order of magnitude faster compared to the quadratic number of
comparisons performed by both MMR and MVA (precisely, n(n− 1)/2 compar-
isons), hence answering our second research question. This observation is further
confirmed by Figs. 3(g)-(i), which show the running time of our approach, com-
pared to both MMR and MVA, for a range of φ values, and averaged across the
WT09, WT10, and IT678 topics, respectively. Although dominated by the num-
ber of comparisons, these figures exemplify another facet of the time complexity
of all novelty-based approaches, namely, the unitary cost of a comparison. Indeed,
computing the cosine between two documents is cheaper than computing their
correlation, even though both are optimised to exploit the sparsity of the con-
sidered spaces. Nonetheless, the variants of SSSD using these distance functions
are faster than MMR (which uses cosine) and MVA (which uses correlation),
respectively, across the entire range of φ values, and for the three considered col-
lections. To further test these approaches over a representative query stream, we
select the first 1,000 queries from the MSN 2006 query log [11], after removing
empty queries and queries with no results in the ClueWeb09 corpus. Figs. 4(a)
and (b) show the results of this investigation in terms of number of compar-
isons and running time, respectively. These results closely match those shown in
Figs. 3(d)-(f) and (g)-(i), hence further attesting the efficiency of our approach.

1 Running times are based on a Linux Quad-Core Intel Xeon 2.4GHz 8GB, and denote
the time spent to compare documents, as the cost to retrieve the initial documents
and represent these documents in a vector space is the same for all approaches.

2 SSSD2 uses the same pivot selection as SSSD1, and is hence omitted from the figures.

Sparse Spatial Selection for Novelty-Based Search Result Diversification 353

 0

 20

 40

 60

 80

 100

 0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

A
vg

. N
um

be
r

of
 P

iv
ot

s
(k

)

Search Radius (φ)

MMR/MVA
SSSD1(c)
SSSD1(ρ)

(a) WT09: Pivots

 0

 20

 40

 60

 80

 100

 0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

Search Radius (φ)

MMR/MVA
SSSD1(c)
SSSD1(ρ)

(b) WT10: Pivots

 0

 20

 40

 60

 80

 100

 0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

Search Radius (φ)

MMR/MVA
SSSD1(c)
SSSD1(ρ)

(c) IT678: Pivots

 0

 1000

 2000

 3000

 4000

 5000

 0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

A
vg

. N
um

be
r

of
 C

om
pa

ris
on

s

Search Radius (φ)

MMR/MVA
SSSD1(c)
SSSD1(ρ)
SSSD2(c)
SSSD2(ρ)

(d) WT09: Comparisons

 0

 1000

 2000

 3000

 4000

 5000

 0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

Search Radius (φ)

MMR/MVA
SSSD1(c)
SSSD1(ρ)
SSSD2(c)
SSSD2(ρ)

(e) WT10: Comparisons

 0

 1000

 2000

 3000

 4000

 5000

 0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

Search Radius (φ)

MMR/MVA
SSSD1(c)
SSSD1(ρ)
SSSD2(c)
SSSD2(ρ)

(f) IT678: Comparisons

 0

 0.2

 0.4

 0.6

 0.8

 1

 1.2

 1.4

 0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

A
vg

. R
un

ni
ng

 T
im

e
(in

 s
ec

.)

Search Radius (φ)

MMR
MVA

SSSD1(c)
SSSD1(ρ)
SSSD2(c)
SSSD2(ρ)

(g) WT09: Running time

 0

 0.2

 0.4

 0.6

 0.8

 1

 1.2

 1.4

 0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

Search Radius (φ)

MMR
MVA

SSSD1(c)
SSSD1(ρ)
SSSD2(c)
SSSD2(ρ)

(h) WT10: Running time

 0

 0.2

 0.4

 0.6

 0.8

 1

 1.2

 1.4

 0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

Search Radius (φ)

MMR
MVA

SSSD1(c)
SSSD1(ρ)
SSSD2(c)
SSSD2(ρ)

(i) IT678: Running time

 0.05

 0.06

 0.07

 0.08

 0.09

 0.1

 0.11

 0.12

 0.13

 0.14

 0.15

 0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

E
R

R
-I

A
@

20

Search Radius (φ)

MMR
MVA

SSSD1(c)
SSSD1(ρ)
SSSD2(c)
SSSD2(ρ)

(j) WT09: Effectiveness

 0.02

 0.04

 0.06

 0.08

 0.1

 0.12

 0.14

 0.16

 0.18

 0.2

 0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

Search Radius (φ)

MMR
MVA

SSSD1(c)
SSSD1(ρ)
SSSD2(c)
SSSD2(ρ)

(k) WT10: Effectiveness

 0.1

 0.11

 0.12

 0.13

 0.14

 0.15

 0.16

 0.17

 0.18

 0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

Search Radius (φ)

MMR
MVA

SSSD1(c)
SSSD1(ρ)
SSSD2(c)
SSSD2(ρ)

(l) IT678: Effectiveness

Fig. 3. Number of pivots, number of document-document comparisons, running time,
and diversification performance for the WT09, WT10, and IT678 test collections (left,
middle, and right columns, respectively), across a range of φ values. All figures are
averages across the topics of the corresponding collection (50, 48, and 20, respectively).

Lastly, Figs. 3(j)-(l) bridge our two research questions, by showing the im-
pact of increasing the search radius φ on the effectiveness of both variants of
SSSD, in terms of ERR-IA@20. In general, we observe two distinct behaviours.
Firstly, a steady improvement is observed for SSSD1(c) for WT09 (up to φ ≈ 0.8)
and SSSD2(c) for both WT09 and WT10. With a higher search radius φ, these
variants perform a more aggressive diversification, by creating fewer pivots and
considering more documents as redundant. Secondly, a dual impact is observed

354 V. Gil-Costa et al.

 0

 1000

 2000

 3000

 4000

 5000

 0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

A
vg

. N
um

be
r

of
 C

om
pa

ris
on

s

Search Radius (φ)

MMR/MVA
SSSD1(c)
SSSD1(ρ)
SSSD2(c)
SSSD2(ρ)

(a) MSN06: Comparisons

 0

 0.2

 0.4

 0.6

 0.8

 1

 1.2

 0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

A
vg

. R
un

ni
ng

 T
im

e
(in

 s
ec

.)

Search Radius (φ)

MMR
MVA

SSSD1(c)
SSSD1(ρ)
SSSD2(c)
SSSD2(ρ)

(b) MSN06: Running time

Fig. 4. Number of document-document comparisons and running time across a range
of φ values. All figures are averages over 1000 queries from the MSN 2006 query log.

for the SSSD2(ρ) variant for φ > 0.5, which coincides with the inflection point in
Figs. 3(a)-(c). In particular, while the effectiveness of SSSD2(ρ) decreases after
this point for WT09, it increases for WT10. Likewise, a region of instability is
observed for other variants after the inflection point (i.e., 0.5 ≤ φ ≤ 0.9. This is
the case for SSSD1(ρ) for WT09 and IT678, and for SSSD1(c), SSSD2(c), and
SSSD2(ρ) for IT678. Overall, these results show that even documents of a similar
nature (e.g., web pages) can result in rather different spaces. Hence, carefully
choosing a search radius for the test collection at hand is key for attaining a
suitable trade-off between an effective and efficient diversification.

6 Conclusions

We have introduced a new approach for novelty-based search result diversifica-
tion, by exploiting the properties of metric spaces. Our Sparse Spatial Selection
Diversification (SSSD) approach selects a set of pivots from the space of docu-
ments retrieved for a query, and leverages the triangle inequality property of met-
ric spaces to regard documents covered by a pivot as redundant. As an extended
variant, we further score the retrieved documents with respect to their distance
to the selected pivots, in order to perform a more fine-grained re-ranking.

In a thorough investigation across three standard TREC test collections for
diversity evaluation, we have shown that both variants of our approach (SSSD1
and SSSD2) perform at least as effectively as well-known novelty-based diversifi-
cation approaches in the literature, while improving their efficiency by an order of
magnitude. Moreover, by evaluating our approach across metric spaces induced
by different document collections and distance functions, we have shown that a
careful selection of pivots is paramount for appropriately trading-off effectiveness
and efficient in novelty-based search result diversification.

Acknowledgements. The work has been performed under the HPC-EUROPA2
project (project number: 228398) with the support of the European Commission–
Capacities Area–Research Infrastructures.

Sparse Spatial Selection for Novelty-Based Search Result Diversification 355

References

1. Agrawal, R., Gollapudi, S., Halverson, A., Ieong, S.: Diversifying search results.
In: WSDM, pp. 5–14 (2009)

2. Barrios, J.M., Diaz-Espinoza, D., Bustos, B.: Text-based and content-based image
retrieval on Flickr: DEMO. In: SISAP, pp. 156–157 (2009)

3. Brisaboa, N.R., Farina, A., Pedreira, O., Reyes, N.: Similarity search using sparse
pivots for efficient multimedia information retrieval. In: ISM, pp. 881–888 (2006)

4. Carbonell, J., Goldstein, J.: The use of MMR, diversity-based reranking for re-
ordering documents and producing summaries. In: SIGIR, pp. 335–336 (1998)

5. Carterette, B., Chandar, P.: Probabilistic models of ranking novel documents for
faceted topic retrieval. In: CIKM, pp. 1287–1296 (2009)

6. Chapelle, O., Metlzer, D., Zhang, Y., Grinspan, P.: Expected reciprocal rank for
graded relevance. In: CIKM, pp. 621–630 (2009)

7. Chávez, E., Navarro, G., Baeza-Yates, R., Marroqúın, J.L.: Searching in metric
spaces. ACM Comput. Surv. 33(3), 273–321 (2001)

8. Clarke, C.L.A., Craswell, N., Soboroff, I.: Overview of the TREC 2009 Web track.
In: TREC (2009)

9. Clarke, C.L.A., Craswell, N., Soboroff, I., Cormack, G.V.: Preliminary overview of
the TREC 2010 Web track. In: TREC (2010)

10. Clarke, C.L.A., Kolla, M., Cormack, G.V., Vechtomova, O., Ashkan, A., Büttcher,
S., MacKinnon, I.: Novelty and diversity in information retrieval evaluation. In:
SIGIR, pp. 659–666 (2008)

11. Craswell, N., Jones, R., Dupret, G., Viegas, E. (eds.): Proceedings of the 2009
Workshop on Web Search Click Data (2009)

12. Hersh, W., Over, P.: TREC-8 Interactive track report. In: TREC (2000)
13. Kirkpatrick, S., Gelatt, C.D., Vecchi, M.P.: Optimization by simulated annealing.

Science 220(4598), 671–680 (1983)
14. van Leuken, R.H., Garcia, L., Olivares, X., van Zwol, R.: Visual diversification of

image search results. In: WWW, pp. 341–350 (2009)
15. Mamede, M., Barbosa, F.: Range queries in natural language dictionaries with

recursive lists of clusters. In: ISCIS (2007)
16. Micó, L., Oncina, J., Carrasco, R.C.: A fast branch & bound nearest neighbour

classifier in metric spaces. Pattern Recogn. Lett. 17(7), 731–739 (1996)
17. Navarro, G., Reyes, N.: Fully dynamic spatial approximation trees. In: Laender,

A.H.F., Oliveira, A.L. (eds.) SPIRE 2002. LNCS, vol. 2476, pp. 254–270. Springer,
Heidelberg (2002)

18. Navarro, G., Reyes, N.: Dynamic spatial approximation trees for massive data. In:
SISAP, pp. 81–88 (2009)

19. Ounis, I., Amati, G., Plachouras, V., He, B., Macdonald, C., Lioma, C.: Terrier: a
high performance and scalable information retrieval platform. In: OSIR (2006)

20. Santos, R.L.T., Macdonald, C., Ounis, I.: Exploiting query reformulations for Web
search result diversification. In: WWW, pp. 881–890 (2010)

21. Santos, R.L.T., Macdonald, C., Ounis, I.: Selectively diversifying Web search re-
sults. In: CIKM (2010)

22. Wang, J., Zhu, J.: Portfolio theory of information retrieval. In: SIGIR, pp. 115–122
(2009)

23. Zhai, C., Cohen, W.W., Lafferty, J.: Beyond independent relevance: Methods and
evaluation metrics for subtopic retrieval. In: SIGIR, pp. 10–17 (2003)

Candidate Document Retrieval for
Web-Scale Text Reuse Detection�

Matthias Hagen and Benno Stein

Faculty of Media
Bauhaus-Universität Weimar, Germany

firstname.lastname@uni-weimar.de

Abstract. Given a document d, the task of text reuse detection is to find those
passages in d which in identical or paraphrased form also appear in other docu-
ments. To solve this problem at web-scale, keywords representing d’s topics have
to be combined to web queries. The retrieved web documents can then be deliv-
ered to a text reuse detection system for an in-depth analysis. We focus on the
query formulation problem as the crucial first step in the detection process and
present a new query formulation strategy that achieves convincing results: com-
pared to a maximal termset query formulation strategy [10, 14], which is the most
sensible non-heuristic baseline, we save on average 70% of the queries in realis-
tic experiments. With respect to the candidate documents’ quality, our heuristic
retrieves documents that are, on average, more similar to the given document than
the results of previously published query formulation strategies [4, 8].

1 Introduction

The problem considered in this paper appears as an important sub-task of automatic text
reuse detection. A text reuse detection system aims at finding passages within a given
document which, in a similar form, are also contained in another document. The goal is
not only to identify simple one-to-one copies but also cases of paraphrased text reuse.
Note that plagiarism detection represents a special case whereas text reuse detection
addresses a broader spectrum that also covers problems like information spread analysis
(e.g., where are news stories reused?).

Usually, automatic detection systems find potential reuse passages via face-to-face
comparisons of the given document against a set of “promising” documents. While for
small document collections it is feasible to perform a complete comparison against ev-
ery document, this is obviously not possible when the collection is large. The idea then
is to compare only against documents that cover a topic similar to the given document,
with the rationale that such documents are more likely to be the source (or “sink”) of
text reuse. A straightforward approach to find documents on similar topics is to extract
keywords or longer components like head noun phrases from the given document and
to retrieve other documents also containing these keywords.

Our contribution to this problem is a strategy of how to query a web search engine
using the extracted keywords. However, we do not deal with the complete task of text

� Extended version of an ECDL 2010 poster paper [10].

R. Grossi et al. (Eds.): SPIRE 2011, LNCS 7024, pp. 356–367, 2011.
c© Springer-Verlag Berlin Heidelberg 2011

Candidate Document Retrieval for Web-Scale Text Reuse Detection 357

reuse detection. We tackle the essential pre-computation step that finds promising can-
didate documents for the in-depth analysis (for which we in turn assume that state-of-
the-art text reuse or plagiarism detection techniques are used [4, 9, 13, 16]). We focus
on web querying to identify potential candidates since the web became the typical place
of text reuse. However, a detection system usually is not given arbitrary access to a web
search engine’s index; moreover it has incomplete or even no knowledge about the en-
gine’s underlying retrieval model, implementation details, and the like. A web search
engine appears as a black box and queries are not for free but entail costs—at the very
least some non-negligible amount of time is consumed, and monetary charges come
into play for larger contingents of queries.1

1.1 User over Ranking

The number of documents a detection system can consider for an in-depth text reuse
analysis is constrained by a processing capacity k, which in turn depends on the de-
sired answer time, the processing time per document, and machine usage cost. If the
entire set of extracted keywords (typically about 10) from a given document is submit-
ted as a single web query, this query will probably be overspecific (i.e., hardly returning
more than a handful of documents) and thus wasting processing capacity. On the other
hand, queries containing only few of the extracted keywords are likely to be underspe-
cific (i.e., having very long result lists) and discard valuable information: from overlong
result lists only a fraction, typically the top-ranked results, can be processed by the
detection system. Notice that such queries put the burden of selecting the most promis-
ing text reuse candidates on the search engine’s ranking algorithm; potential text reuse
cases that are not among the top results will be missed. Hence, a set of promising web
queries should avoid underspecificity and, combined, cover all extracted keywords in
order to ensure a high similarity to the given document’s topic. Altogether, we argue
that the probability to find potential text reuse cases by exploring k results becomes
maximum if the combined result list length of the set of promising queries is in the
order of magnitude of the processing capacity k of the detection system. This is an im-
plication of the recent User-over-Ranking hypothesis, which states that queries have a
higher probability of satisfying a user’s information need if they return about as many
results as the user can consider [17]. Figure 1 illustrates the outlined connections.

Under the User-over-Ranking hypothesis the treated query formulation sub-problem
of text reuse detection is defined as follows:

CAPACITY CONSTRAINED QUERY FORMULATION

Given: (1) Set W of keywords.
(2) Query interface for web search engine S.
(3) Upper bound k on the number of desired documents.

Task: Find a familyQ ⊆ 2W of queries together returning at most k documents,
while containing all keywords from W .

1 E.g., $0.40–$0.80 per 1000 Yahoo! BOSS queries, http://www.ysearchblog.com/

2011/02/08/latest-on-boss/ (accessed April 16th, 2011).

http://www.ysearchblog.com/2011/02/08/latest-on-boss/
http://www.ysearchblog.com/2011/02/08/latest-on-boss/

358 M. Hagen and B. Stein

probability for successful
detection is maximum

⇔
result list length = k

Result
list length

Processing capacity k

100 1000 104 105

1

0
1 10 20

0
Query
length

106

R
es

ul
t

lis
tl

en
gt

h

overspecific

underspecific

Specificity of queries Detection probability

Fig. 1. Left: a query with few terms or many results is likely to be underspecific, queries with
many terms or few results tend to be overspecific. Right: under the User-over-Ranking hypothesis
a combined result list length of the detection system’s capacity k maximizes the probability of
finding potential text reuse cases [17].

1.2 Related Work

One of the earliest approaches on formulating queries respecting a bound on the number
of returned results is the maximal termset query formulation of Pôssas et al. [14]. We use
an adapted version of maximal termset query formulation as our baseline. With respect
to runtime, our new system clearly improves upon the maximal termset baseline while
retrieving basically the same candidate documents.

A recent paper by Bendersky and Croft also deals with the scenario of text reuse
detection on the web [4]. However, Bendersky and Croft’s problem setting is different
from ours: they focus on single sentences and not on complete documents as input, and
hence their querying strategy is quite elementary. Our setting is also more general in
another respect: the passages from the document for which a reuse analysis is requested
have not to be known a priori. Nevertheless, in our experiments we compare our query
formulation strategy to Bendersky and Croft’s querying approach.

In our setting it would be desirable to use the given document as a query itself (“query
by document”). Yang et al. [19] focus on such a scenario in the context of analyzing blog
posts. But, similar to us, they also try to derive a keyword query that reflects the doc-
ument’s (blog post’s) content. Their approach extracts keyphrases from the document,
but formulates only a single query from them. Since this would waste capacity in our
setting and since their approach of manually selecting the number of “good” keywords
for each document is not applicable in a fully automatic system, we do to not include
Yang et al.’s approach in the experimental comparison.

A more applicable setting which is also related to ours is Dasdan et al.’s work
on finding similar documents by using only a search engine interface [8]. Although
Dasdan et al. focus on a search engine coverage problem (resolve whether a search
engine’s index contains a given document or some variant of it), their approach of
finding similar documents using keyword interfaces is basically equivalent to our set-
ting. Dasdan et al. propose two querying strategies and experimentally show that their
approaches indeed find similar documents. In our experiments we also compare their
strategies to our heuristic.

Candidate Document Retrieval for Web-Scale Text Reuse Detection 359

A very promising idea for our setting would be to predict a given query’s perfor-
mance before submitting it to a search engine [6, 7, 11, 12]. However, the evaluation
of the best performing predictors needs access to knowledge that is not available at
user site in a standard web search scenario. For example, the simplified query clarity
predictor [12] needs the total keyword frequencies for the whole corpus—web search
engines just return an estimation of the number of documents in the corpus that contain
the keyword. The query scope predictor [12] needs the number of documents in the
index—most web search providers stopped publishing it. Furthermore, there are stud-
ies suggesting to take care when interpreting the published evaluations of established
predictors [15] such that we decided not to use quality prediction in our approaches.

2 Notation and Basic Definitions

Starting point of the query formulation process is a set W = {w1, . . . , wn} of key-
words; allowing the wi to be longer components like head noun phrases makes no dif-
ference. Subsets Q ⊆ W can be submitted as web queries, with the notion that phrases
are included in quotation marks. An engine’s reply to a query consists of the beginning
of an exhaustive, ranked list LQ of snippets and URLs of documents relevant for Q, and
an estimation 	Q for the result list length |LQ|. The task of CAPACITY CONSTRAINED

QUERY FORMULATION is to find a family Q = {Q1, . . . , Qm} of queries Qi ⊆ W
having the following properties:

1. Q is simple in the sense that Qi �⊆ Qj for any Qi, Qj ∈ Q, with i �= j. This avoids
redundancy in the queries and the results.

2. Combined,Q’s queries don’t return more than k results. This respects the detection
system’s processing capacity.

3. Combined, Q’s queries cover W ’s keywords if possible: ideally
⋃

Q∈Q Q = W .
This ensures that the resulting documents cover all the topics contained in W .

With respect to the capacity k, we introduce a per-query upper bound 	max with the
notion that a query Q is promising iff 	Q ≤ 	max (i.e., it returns at most 	max results).
How exactly this upper bound is derived will be explained in Section 3. A per-query
lower bound 	min serves convenience purposes of ruling out queries with very few re-
sults (e.g., 	min = 1 means that queries returning an empty result list are not tolerated).
Applying both bounds, a query Q ∈ Q has to satisfy 	min ≤ 	Q ≤ 	max. Adopting
notation from Bar-Yossef and Gurevich [2], we say that for 	Q < 	min the query Q is
underflowing, whereas for 	Q > 	max it is overflowing. Queries that are neither under-
nor overflowing are valid. A valid query Q is minimal iff dropping some keyword from
Q results in an overflowing query.

As a solution to CAPACITY CONSTRAINED QUERY FORMULATION we suggest the
familyQlo of all minimal valid queries for an appropriate value of 	max. Obviously,Qlo

is simple and depends on the value of 	max. Our approach will adaptively determine
values for 	max, derive the correspondingQlo and, according to the combined number
of Qlo’s results (more or less than k), output this Qlo or re-iterate by setting 	max to a
more appropriate value. Hence, an appropriate Qlo respects the first two constraints of
being simple and not returning more than k results.

360 M. Hagen and B. Stein

That Qlo also is a good choice with respect to the third constraint of covering as
many keywords of W as possible can be seen as follows. We say that a query Q covers
all its keywords. Analogously, a family Q of queries covers all keywords in

⋃
Q∈Q Q.

Note that there are situations where it is not possible to cover W with a family of valid
queries (e.g., when a single keyword itself is underflowing). A keyword w ∈ W is
coverable iff there is a valid query Q ⊆W with w ∈ Q.

Lemma 1. Let Q be a family of valid queries covering the coverable keywords from a
keyword set W for given 	min and 	max. For every Q ∈ Q we have: there is a sub-family
Q′

lo ⊆ Qlo such that Q =
⋃

Q′∈Q′
lo

Q′.

Proof. Assume we have Q ∈ Q but Q �=
⋃

Q′∈Q′
lo

Q′ for any Q′
lo ⊆ Qlo. Since Q is a

family of valid queries, Q must be valid. Assume that Q contains only coverable key-
words from W . Now consider the family Q′ of the 2|Q| − 1 subqueries of Q excluding
the empty query. Let Q′′ ⊆ Q′ be the sub-family of valid queries. Note that Q′′ is not
empty since it contains Q. From Q′′ we remove all queries that are proper supersets of
queries in Q′′ and obtain the family Q̃ of minimal valid subqueries of Q. Note that Q̃
is not empty since Q′′ is not empty and that Q =

⋃
Q̃∈Q̃ Q̃. Since Q̃ contains minimal

valid queries only, we have Q̃ ⊆ Qlo; a contradiction to our assumption. Hence, Q
contains a non-coverable keyword w ∈ W . Since w is not coverable by a valid query,
Q cannot be valid. A contradiction again. ��
Corollary 1. For a given set W of keywords and given 	min and 	max, the respective
family Qlo covers the coverable keywords. Furthermore, Qlo contains the with respect
to set inclusion minimal queries covering the coverable keywords.

In the process of finding an appropriateQlo on input W , we count the overall number
cost of queries that are submitted to the search engine. The underlying assumption is
that a system is faster when it submits less queries.

3 Baseline: Maximal Termset Query Formulation

As a baseline query formulation process, we adapt the maximal termset approach by
Pôssas et al. [14]. We refrain from using GENMAX as a subroutine to enlarge promising
keyword subsets (as proposed in [14]) but choose the classic Apriori algorithm instead,
which also comes from the field of frequent itemset mining [1]. Apriori is considered
as one of the top 10 data mining algorithms [18]; it traverses the search space of all
possible queries in a level-wise manner. A basic pseudo-code listing of Apriori for fixed
lower and upper bounds 	min and 	max is given as Algorithm 1. How the algorithm
handles the adaptive adjustment to detect a reasonable 	max is explained below, after
introducing the basic Apriori framework.

Apriori first checks which of the initial keywords itself are overflowing or valid. The
overflowing keywords form the first level of candidate queries (variable C1 in line 2)
that can be further expanded. A second pre-check ensures that these remaining key-
words from the first candidate level altogether are not overflowing (line 3). Otherwise
no valid queries can be formulated from them. After the pre-checks, Apriori combines
candidate queries (lines 5 to 11) in a level-wise manner. It is straightforward to show
that Algorithm 1 finally outputs the desired Qlo for given 	min and 	max; just notice

Candidate Document Retrieval for Web-Scale Text Reuse Detection 361

Algorithm 1. The Apriori algorithm for query formulation

Input: a set W of keywords, �min, and �max

Output: the family Qlo

1: Q ← {{w} : w ∈ W and {w} is valid}
2: C1 ← {{w} : w ∈ W and {w} overflows}
3: if

⋃
{w}∈C1

{w} overflows then stop and output Q
4: i ← 1
5: while Ci �= ∅ do
6: for all Q,Q′ ∈ Ci, |Q ∩ Q′| = i − 1 do
7: Qcand ← Q ∪ Q′

8: if Qcand \ {w} ∈ Ci for all w ∈ Qcand then
9: if Qcand overflows then Ci+1 ← Ci+1 ∪ {Qcand}

10: if Qcand is valid then Q ← Q∪ {Qcand}
11: i ← i + 1

12: output Q

that whenever a query becomes valid it is directly added to the output (thus being min-
imal) and that, due to the exhaustive search character, no minimal valid query will be
missed. A query’s validity (lines 1, 2, 3, 9, and 10) is checked via submission to the
web search engine. We use the engine’s estimations 	Q, although they often overesti-
mate the correct result list lengths. However, they usually respect monotony (queries
containing additional keywords have smaller 	-value) and the shorter the result list, the
more accurate the estimations.

We adopt Algorithm 1 as our baseline—and even tighten this baseline by applying
the following Lemma as a means to reduce the number of web queries Apriori submits.

Lemma 2. Let Q1, Q2, Q3 ⊆ W be queries. Assuming the 	-estimations to be reason-
able we have 	Q1∪Q2∪Q3 ≥ 	Q1∪Q2 + 	Q1∪Q3 − 	Q1 .

Proof. 	Q1∪Q2∪Q3 = |LQ1∪Q2 ∩ LQ1∪Q3 | = |LQ1∪Q2 \ (LQ1∪Q2 \ LQ1∪Q3)|
≥ |LQ1∪Q2 \ (LQ1 \ LQ1∪Q3)| ≥ |LQ1∪Q2 | − |LQ1 \ LQ1∪Q3 |
= |LQ1∪Q2 | − (|LQ1 | − |LQ1∪Q3 |) = 	Q1∪Q2 + 	Q1∪Q3 − 	Q1 ��

Let Q and Q′ be the queries that are merged to get Qcand (line 7 of Apriori). Lemma 2
then is applied as follows: Q1 ∪ Q2 = Q, Q1 ∪ Q3 = Q′, and Q1 = Q ∩ Q′. The
rationale is: if the Lemma 2 estimation 	Qcand ≥ 	Q + 	Q′ − 	Q∩Q′ is larger than 	max,
we do not have to submit Qcand to an engine but can add it to the current candidate set
Ci+1 immediately.

A remaining problem is to adaptively set 	max. The algorithm starts with 	max = k,
computesQlo using Apriori and checks the number of results returned byQlo. Usually
this will be too many since Qlo contains more than one query. The algorithm then sets
	max = �	max/2� and computes the correspondingQlo. A naïve approach would restart
the entire Apriori computation from scratch and repeat all steps from the previous run,
resulting in a bad overall practical performance. However, a nice feature of Apriori
is that it can be easily modified to continue computation on the reached state of the
previous 	max setting such that re-computations and re-submissions of web queries are

362 M. Hagen and B. Stein

avoided. If at one intermediate step the algorithm notices that the current Qlo returns
not more but approximately k results (we set the bound to at least 90%), it stops and
outputs the current Qlo. If eventually too few results are returned, the algorithm sets
	max = �3/2 · 	max�. Altogether, this implements a kind of binary search for a good
value of 	max. Note that whenever the algorithm enlarges 	max for the first time, all of
the currently needed queries have already been examined during the previous step such
that no further queries have to be submitted.

4 Heuristic Search Strategy

Preliminary tests revealed that the savings due to Lemma 2 in the Apriori algorithm are
often negligible: the sum 	Q + 	Q′ usually is too small compared to 	Q∩Q′ and hence
the query Qcand = Q ∪ Q′ has to be submitted. Nevertheless, the performance of the
baseline Apriori framework can be significantly improved. We propose a heuristic that
mimics Apriori’s workflow in the second of the following two phases. The first phase of
our heuristic can be seen as a pre-processing step although it submits exactly the same
queries as Apriori does on the first two levels (while i < 2). However, for a keyword
set W co-occurrence information obtained from the estimations of the first and sec-
ond Apriori levels are stored in a matrix M in form of the—here called—yield factors
γ(w, w′) = 	{w,w′}/	{w}. A yield factor γ(w, w′) multiplied by 	{w} gives the yield of
web results when the keyword w′ is added to the query {w}. Note that the yield factors
are not symmetric (i.e., usually γ(w′, w) �= γ(w, w′)) such that M also is not symmetric.

The second phase of our heuristic then starts an Apriori-like candidate generation on
the third level (queries containing three keywords). Hence, our technique does not save
queries on the first two levels compared to our baseline Algorithm 1 but from Level 3
on the heuristic uses the yield factors to internally estimate a query and only submit it
as a web query if necessary. Assume we are on some level i ≥ 3 and that all processed
queries Q from lower levels have a stored value estQ, indicating an estimation of the
length of their result lists, and a value ageQ, indicating the elapsed Apriori levels from
the last time a subset of Q was submitted as a web query. Hence, for ageQ = 0 we
have estQ = 	Q. Let the current candidate query Qcand be obtained by merging Q
and Q′ (line 7 of Apriori). Before submitting a web query, we now internally compute
estQcand as follows. Let ageQ ≤ ageQ′ and Q′ \ Q = {w′}. We set estQcand =
estQ ·avg{γ(w, w′) : w ∈ Q}, where avg denotes the mean value. Submitting Qcand as
a web query and storing the engine’s 	Qcand as estQcand is done iff estQcand < adj ·	max

for a given adjustment factor adj . If however estQcand ≥ adj · 	max we do not submit
a web query but store the internally derived estQcand and set ageQcand

= ageQ + 1.
The rationale for using the factor adj in the above inequalities is as follows. An

experimental in-depth analysis revealed that 	Q ≥ estQ holds for most queries Q,
though there are rare cases where Q is valid or underflowing while estQ > 	max (i.e.,
even the tendency of the internal estimation is wrong). For this reason, the informed
heuristic does not blindly follow the internal estimations but only trusts them when
estQcand ≥ adj · 	max for an adjustment factor adj . The rationale is that as long as the
internal estimations are sufficiently above the validity bound 	max, the probability for
a wrong validity check based on the internal estimation is negligible. Only when the
internal estimation estQcand is close to or below the validity bound 	max, the current

Candidate Document Retrieval for Web-Scale Text Reuse Detection 363

query is submitted to the search engine in order to “adjust” the internal estimation with
the search engine’s 	Qcand . Larger values of adj enlarge the adjustment range and thus
guarantee to catch more of the rare cases where Q is valid but estQ > 	max. However,
this comes with a larger amount of submitted web queries. Moreover, only huge values
of adj can guarantee the heuristic to return the same family Qlo as the baseline. We
compare different realistic settings of adj , and the fine-tuning shows good conformity
of the output with the baseline’sQlo while saving lots of queries (cf. Section 5).

5 Experimental Analysis

In a first experiment, we compare the uninformed Apriori baseline to our yield factor
informed heuristic with respect to the number of submitted queries. In a second experi-
ment, we then compare our heuristic to Bendersky and Croft’s and Dasdan et al.’s query
formulation strategies [4, 8] with respect to the quality of the retrieved documents. The
experimental setting for both experiments is inspired by the observation that scientific
publications often follow an evolutionary process from a technical report / workshop /
poster / or short paper level to a full conference paper and sometimes to a journal pa-
per. Although the different versions of the same publication have a potentially different
and more complete presentation at more mature levels, they still deal with the same
topic—such that we assume a significant amount of text reuse among them. To model
the described scenario, we crawled computer science papers from major conferences
and journals available on the web and tried to find a previous version for each. The
document pairs were manually checked to ensure that they really are different versions
of the same paper; we obtain 257 such verified pairs, all written in English. We verified
that both versions are retrievable using the Bing API that we use in our experiments.

5.1 Number of Submitted Queries

For each of the 257 document pairs we extract a number of keywords from the more
mature paper (e.g., conference vs. workshop) and then formulate queries using these
keywords. For the keyword extraction we use an implementation of the head noun ex-
tractor [3]. We set 	min = 1 to foreclose queries with no results. Furthermore, we
set k = 1000 since current state-of-the-art automatic plagiarism detection techniques
against a collection of 1000 potential source documents run in about 10 minutes [9],
which we consider as a reasonable answer time for most text reuse detection scenarios.
For each keyword set extracted from a document of our test collection, we run the Apri-
ori baseline and our heuristic with the first 4, 5, . . . , 10 extracted keywords against the
Bing API during November 07–20, 2010.

Table 1 contains the results of this experiment. Different settings of the heuristic’s
adjustment factor correspond to different rows. Note that especially for small numbers
of extracted keywords even the complete query containing all keywords is often over-
flowing. Because Qlo cannot be computed in such cases and the first 1000 results of
the complete query should be used instead, we filter out the corresponding documents
and derive the statistics just for the remaining ones. For those inputs where the compu-
tation of Qlo is possible, all four approaches always find a Qlo. We report the average
number cost of web queries the approaches submitted to obtain the outputQlo and the

364 M. Hagen and B. Stein

Table 1. Results of the number-of-queries experiment

Number of extracted keywords
3 4 5 6 7 8 9 10

Number of documents where
Complete query overflows 238 207 177 146 124 102 93 81
Qlo computation possible 19 50 80 111 133 155 164 176

Average cost (number of submitted queries)
Heuristic, adj = 1 4.91 6.69 9.35 13.30 20.20 32.58 53.13 95.86
Heuristic, adj = 3 5.81 7.88 10.85 16.48 26.16 43.44 70.77 125.56
Heuristic, adj = 5 5.91 8.73 13.55 20.41 33.30 53.13 87.70 159.16
Uninformed baseline 6.09 10.65 19.08 34.60 61.66 106.19 178.98 302.87

Average cost ratio (basis: uninformed baseline)
Heuristic, adj = 1 0.80 0.63 0.49 0.38 0.33 0.31 0.30 0.32
Heuristic, adj = 3 0.95 0.74 0.57 0.48 0.42 0.41 0.40 0.41
Heuristic, adj = 5 0.97 0.82 0.71 0.59 0.54 0.50 0.49 0.53

Average |Qlo|
Heuristic, adj = 1 1.33 1.85 2.69 3.76 5.25 7.44 10.65 14.72
Heuristic, adj = 3 1.32 1.84 2.69 3.75 5.28 7.50 10.88 14.85
Heuristic, adj = 5 1.33 1.85 2.72 3.83 5.38 7.61 11.01 14.97
Uninformed baseline 1.33 1.87 2.75 3.88 5.49 7.78 11.12 15.18

Average number of retrievable result URLs (without duplicates)
Heuristic, adj = 1 71 104 157 221 315 428 555 679
Heuristic, adj = 3 68 101 158 223 314 422 553 682
Heuristic, adj = 5 70 99 161 228 325 439 562 686
Uninformed baseline 69 98 162 231 328 445 569 690

Average ratio of common result URLs with baseline
Heuristic, adj = 1 0.95 0.92 0.92 0.93 0.93 0.94 0.94 0.95
Heuristic, adj = 3 0.92 0.97 0.98 0.98 0.97 0.98 0.95 0.97
Heuristic, adj = 5 0.98 0.98 0.99 0.99 0.98 0.99 0.98 0.98

average ratio of submitted queries compared to the baseline (smaller cost and smaller
ratio indicate better approaches). Note that using very few keywords results in fewer
retrievable documents using the Qlo queries. We also observed that we needed at least
6 keywords to guarantee the retrieval of the original document and its previous version
among Qlo’s web results. Hence, we suggest to use about 10 extracted keywords to
obtain a meaningful set of documents from our approaches.

With respect to the runtime, the possible savings in the number of submitted queries
are substantial compared to the baseline. For 7 or more keywords our heuristics save
70% of the queries. For all approaches the internal computation time to formulate the
queries is never larger than several hundred milliseconds, while a typical web query
against the API takes about 300ms–550ms. Hence, the fastest algorithm always is the
one that submits the fewest queries. With respect to the quality of the heuristics’ Qlo,
we compare the average size of the generatedQlo and the ratio of retrieved result URLs
common with the baseline’s results. The small differences are due to some rare overesti-
mations using the internal expectations that hide some of the queries the baseline finds.
It can be observed that larger values of the adjustment factor adj are able to compensate

Candidate Document Retrieval for Web-Scale Text Reuse Detection 365

for more of these overestimations. Additional spot checks show that the difference of the
baseline’s results to the heuristic with adj = 1 is rather small, such that for larger key-
word sets the by far better running time should be favored. For keyword sets of size 10
the fastest heuristic with adj = 1 computesQlo in about 38 seconds compared to 50 sec-
onds for adj = 3, 64 seconds for adj = 5, and about 2 minutes for the baseline. This is
a saving of 70%. Hence, a near real time text reuse detection service can safely extract
10 keywords.

5.2 Candidate Document Quality

The first experiment shows the heuristic with adj = 1 to outperform the other ap-
proaches with respect to runtime (while retrieving basically the same set of documents).
On the same corpus, we now compare this variant to other previously published query
formulation strategies with respect to the quality of the retrieved documents. Important
competitors in this regard are Bendersky and Croft’s and Dasdan et al.’s query formu-
lation approaches [4, 8].

Bendersky and Croft submit 2n − 1 queries for a set of n keywords [4]; the first
n queries are submitted to obtain the search engine estimations 	w for each keyword w.
The keywords are ordered by descending 	-value and submitted as a single query con-
taining all n keywords. The approach then iteratively drops the last keyword and sub-
mits the resulting queries until 1000 documents are retrieved.

Dasdan et al. describe two approaches [8] that are slightly different right from the
keyword extraction. Their first approach (LFT) extracts from a document the terms that
are least frequent on the web, using a dictionary with web frequencies like 1-grams
from the Google 5-gram corpus [5]. The strategy submits 10 queries: the first one con-
tains the 10 least frequent keywords, the second one contains the next 10 least frequent
keywords, and so forth. Dasdan et al.’s second approach (RST) builds 10 queries each of
which containing a random sequence of 10 words from the given document. Note that
this approach aims to their original problem setting of search engine coverage analysis,
where the task is to find near-duplicates of a document in a search engine index. How-
ever, such strategies of using a random string from a document are also often suggested
as an “intelligent” strategy to manually detect plagiarism. Hence, we decided to employ
RST in our candidate document quality experiment. We adjust LFT and RST to only
retrieve the top 100 results of each of the constructed queries to ensure for k = 1000.

Bendersky and Croft’s approach uses the same 10 extracted keywords as our heuris-
tic. Note that for the 81 documents from our collection, where the 10 keywords as one
query already overflow, our heuristic and Bendersky and Croft’s approach retrieve the
same result documents, since both use the first 1000 documents from the all-keywords
query. To detect the keywords for LFT, we indexed the Google 1-grams in a big hash
table and for our 257 documents in a pre-processing detected the 100 keywords with
lowest frequencies. As for the RST approach, a pre-processing sampled 10 random se-
quences of 10 consecutive words from the documents. Our heuristic obviously submits
more queries (65.96 on average: just one query for the 81 documents where Qlo is not
possible and an average of 95.86 for the other 176 documents) than Bendersky and
Croft’s approach (10.45 queries on average; note that 19 is the worst case but often
1000 results are retrieved earlier, for 81 documents even with the first query) or LFT

366 M. Hagen and B. Stein

Table 2. Average cosine similarity (tf weights) of the retrieved documents to the given document

Measure Approach
Our heuristic [4] LFT RST

10 most similar documents 0.55 0.55 0.56 0.56
100 most similar documents 0.39 0.37 0.35 0.29

all retrieved documents 0.29 0.25 0.22 0.21

and RST (10 queries). With respect to the quality of the retrieved documents, we first
check whether the different approaches have the two paper versions among their results.
For our heuristic, for Bendersky and Croft’s approach as well as for LFT this is always
the case. However, RST missed the previous version 8 times. This is probably due to
the fact that random sequences help to find nearly-identical versions of a document but
that scientists also often rewrite a paper in different versions. Since RST was primarily
developed to find near-duplicates, the few misses are no surprise.

The aim of our approach is not only to retrieve the documents from our corpus but
also to retrieve similar documents as good candidates: the assumption for text reuse
detection is that more similar documents are more likely to contain the assumed text
reuse. Hence, we downloaded the results the different approaches retrieve and com-
pare the approaches with respect to similarity of the retrieved documents. As similarity
measure we use cosine similarity with tf weights. Table 2 contains the results of this
experiment. With respect to the retrieved 10 most similar documents, all approaches
are somehow on par. However, this behavior changes significantly when one checks the
average similarity for the 100 most similar or even all retrieved documents: then our ap-
proach outperforms the other approaches. The gap to Bendersky and Croft’s approach
is only due to the given documents for which Qlo could be computed, since on the
other documents our heuristic and Bendersky and Croft’s approach return exactly the
same documents (the top 1000 results of the query containing all keywords). The gap
to LFT and RST is probably due to the slightly different use case as LFT and RST were
mainly designed to retrieve a few near-duplicate instances of a given document. That
goal is achieved as shown by Dasdan et al.’s experiments [8] and the slightly worse
performance in our experiments is probably mainly due to the different scenario that
our experiments address.

6 Conclusion and Outlook

We developed a new strategy to formulate promising queries from a given set of key-
words. In our scenario a text reuse detection system “plays” against a retrieval system
(the web search engine) in order to find promising queries that help to detect text reuse
in or from a given document. Our formalization forms the ground for both to define the
problem CAPACITY CONSTRAINED QUERY FORMULATION and to develop a heuris-
tic search strategy that tackles a query-cost-oriented optimization variant. The analysis
of our heuristic shows (1) that it drastically outperforms a maximal termset query for-
mulation baseline system, and (2) that it finds candidate documents which are more
similar to the original document than other approaches for related problems. If, how-
ever, a method is needed that returns few very similar web results for a given document
(like it is the case in Dasdan et al.’s scenario), using our heuristic would probably be an

Candidate Document Retrieval for Web-Scale Text Reuse Detection 367

overhead since it requires more queries. But, if the aim is to retrieve a larger collection
of documents all of which are similar to a given document (like it is the case in the text
reuse detection scenario), the rather small 20 second overhead of our method can be
regarded as a worthwhile investment for a better average similarity. A straightforward
extension of the above similarity experiment is an analysis of the retrieved documents
with state-of-the-art text reuse or plagiarism detection techniques [4, 9, 13, 16], and to
compare the candidate document sets with respect to the number of found text reuse
cases (and not just the similarity). However, this is beyond the scope of this paper: hav-
ing shown the potential of our heuristic for the retrieval step, we leave the examination
of text reuse cases as an interesting task for future work.

References

[1] Agrawal, R., Srikant, R.: Fast algorithms for mining association rules in large databases. In:
Proc. of VLDB 1994, pp. 487–499 (1994)

[2] Bar-Yossef, Z., Gurevich, M.: Random sampling from a search engine’s index. JACM 55(5)
(2008)

[3] Barker, K., Cornacchia, N.: Using noun phrase heads to extract document keyphrases. In:
Proc. AI 2000, pp. 40–52 (2000)

[4] Bendersky, M., Croft, W.B.: Finding text reuse on the web. In: Proc. of WSDM 2009, pp.
262–271 (2009)

[5] Brants, T., Franz, A.: Web 1T 5-gram Version 1. LDC2006T13 (2006)
[6] Carmel, D., Yom-Tov, E., Darlow, A., Pelleg, D.: What makes a query difficult? In: Proc. of

SIGIR 2006, pp. 390–397 (2006)
[7] Cronen-Townsend, S., Zhou, Y., Croft, W.B.: Predicting query performance. In: Proc. of

SIGIR 2002, pp. 299–306 (2002)
[8] Dasdan, A., D’Alberto, P., Kolay, S., Drome, C.: Automatic retrieval of similar content

using search engine query interface. In: Proc. of CIKM 2009, pp. 701–710 (2009)
[9] Grozea, C., Gehl, C., Popescu, M.: ENCOPLOT: Pairwise Sequence Matching in Linear

Time Applied to Plagiarism Detection. In: Proc. of PAN 2009, pp. 10–18 (2009)
[10] Hagen, M., Stein, B.M.: Capacity-constrained query formulation. In: Lalmas, M., Jose, J.,

Rauber, A., Sebastiani, F., Frommholz, I. (eds.) ECDL 2010. LNCS, vol. 6273, pp. 384–
388. Springer, Heidelberg (2010)

[11] Hauff, C., Hiemstra, D., de Jong, F.: A survey of pre-retrieval query performance predictors.
In: Proc. of CIKM 2008, pp. 1419–1420 (2008)

[12] He, B., Ounis, I.: Inferring query performance using pre-retrieval predictors. In: Apostolico,
A., Melucci, M. (eds.) SPIRE 2004. LNCS, vol. 3246, pp. 43–54. Springer, Heidelberg
(2004)

[13] Kasprzak, J., Brandejs, M.: Improving the Reliability of the Plagiarism Detection System:
Lab Report for PAN at CLEF 2010. In: Proc. of PAN 2010 (2010)

[14] Pôssas, B., Ziviani, N., Ribeiro-Neto, B.A., Meira Jr., W.: Maximal termsets as a query
structuring mechanism. In: Proc. of CIKM 2005, pp. 287–288 (2005)

[15] Scholer, F., Garcia, S.: A case for improved evaluation of query difficulty prediction. In:
Proc. of SIGIR 2009, pp. 640–641 (2009)

[16] Seo, J., Croft, W.B.: Local text reuse detection. In: Proc.of SIGIR 2008, pp. 571–578 (2008)
[17] Stein, B., Hagen, M.: Introducing the user-over-ranking hypothesis. In: Clough, P., Foley,

C., Gurrin, C., Jones, G.J.F., Kraaij, W., Lee, H., Mudoch, V. (eds.) ECIR 2011. LNCS,
vol. 6611, pp. 503–509. Springer, Heidelberg (2011)

[18] Wu, X., Kumar, V.: The Top Ten Algorithms in Data Mining. CRC Press, Boca Raton (2009)
[19] Yang, Y., Bansal, N., Dakka, W., Ipeirotis, P.G., Koudas, N., Papadias, D.: Query by docu-

ment. In: Proc. of WSDM 2009, pp. 34–43 (2009)

A Multi-faceted Approach to

Query Intent Classification�

Cristina González-Caro1,3 and Ricardo Baeza-Yates2,3

1 Universidad Autónoma de Bucaramanga
Avenida 42 No. 48, Bucaramanga, Colombia

cgonzalc@unab.edu.co
2 Yahoo! Research Barcelona

Barcelona, Spain
rbaeza@acm.org

3 Web Research Group
Dept. of Information and Communication Technologies

Universitat Pompeu Fabra, Barcelona

Abstract. In this paper we report results for automatic classification
of queries in a wide set of facets that are useful to the identification of
query intent. Our hypothesis is that the performance of single-faceted
classification of queries can be improved by introducing information of
multi-faceted training samples into the learning process. We test our
hypothesis by performing a multi-faceted classification of queries based
on the combination of correlated facets. Our experimental results show
that this idea can significantly improve the quality of the classification.
Since most of previous works in query intent classification are oriented
to the study of single facets, these results are a first step to an integrated
query intent classification model.

1 Introduction

As the Web continues to increase both in size and complexity, Web search is a
ubiquitous service that allows users to find information, resources, and activi-
ties. However, as the Web evolves so do the needs of the users. Nowadays, users
have more complex interests that go beyond to the traditional informational
queries. For example, many users may want to perform a particular commercial
transaction, locate a special service, etc. Thus, it is important for Web-search en-
gines, not only to continue answering effectively informational and navigational
queries, but also to be able to identify and provide accurate results for new types
of queries.

Based on the premise above, Web-search engines try to improve the quality
of their results by adopting a number of different strategies. For instance, di-
versification of search results aims at providing a list of diversified results that

� This research was partially funded by the Coordinated Research Grant TIN2009-
15536-C02-1 of the Spanish Ministry of Science and Technology.

R. Grossi et al. (Eds.): SPIRE 2011, LNCS 7024, pp. 368–379, 2011.
c© Springer-Verlag Berlin Heidelberg 2011

A Multi-faceted Approach to Query Intent Classification 369

cover different interpretations of ambiguous queries [15]. The objective of diver-
sification is to identify ambiguous queries and present the best results for each
meaning of those queries. The first step towards this goal, is to identify the type
of the query. In this respect, all the recent efforts to describe and identify the
intent of the user’s query are of great value [1,7,6]. Although there is a lot of
work in the topic of identifying query intent, most of it is based on the analysis
of only one possible facet of the query. The most common of these facets are
the topic category and the type of query intent ; mainly based on Broder’s tax-
onomy [3]. However, one can argue that classifying a query with respect to one
facet may improve the classification with respect to another facet. For example,
knowing that a query topic is art increases the prior that the query intent is
informational. Similarly, knowing that a query topic is electronics increases the
prior that the query intent is transactional. Hence, we argue that identification
of the query intent is a multi-faceted problem. We show that by treating the
problem as such we can significantly improve the accuracy of the classification
problem.

In this paper, we explore the automatic classification of queries in a wide set
of facets that are useful to the identification of query intent. We also investigate
whether combining multiple facets can improve the predictability of the facets.
As result, our contributions to query-intent classification include:

– We show the feasibility automatic faceted-classification of a large set of queries
with a comprehensive set of facets, for the prediction of query intent.

– We propose a multi-faceted classification of queries based on the combination
of correlated facets. We evaluate the performance of each combination of
facets and its impact on each individual facet.

– We compare the results of multi-faceted classification with the conventional
faceted classification to determine if the combination of related facets can
improve the identification of the intent of the user queries.

– We provide an extensive experimental evaluation showing that the combi-
nation of facets proposed in this paper can significantly improve the quality
of the classification results.

To the best of our knowledge, this is the first work that explores automatic
multi-faceted classification of user’s query intent. Previous work has considered
the multi-faceted classification of the query intent an open research problem [7].

2 Related Work

According to Cool and Belkin [5], users engage in multiple information seeking
behavior within the context of accomplishing a single task. Therefore, it is im-
portant to have Web-search systems able to support multiple information seek-
ing behaviors, and multiple interactions with the information. In this direction,
many efforts have been devoted in trying to understand the intent of user queries.
The understanding of user queries has been conducted from different facets. The
first approaches to identify query intent include classifying queries based on the

370 C. González-Caro and R. Baeza-Yates

topic [2,17,10]. Topical associations of queries are important because they allow
to place the queries in a particular context. A second line of work has focused on
the classification of queries regarding the type of intent. In this case, the intent
of the query refers to the type of resource associated with the query. The first
taxonomy of query intent, proposed by Broder [3], defines three types of query
intent: informational, navigational and transactional. Rose and Levinson [16]
extended Broder’s taxonomy by adding hierarchical sub-categories for informa-
tional and transactional queries. Based on these early taxonomies many works
have attempted automatic classification of queries [9,11,7,6]. Other approaches
to identifying query intent consider facets like geographic locality [8], time sensi-
tivity [12], ambiguity [19] and specificity through ambiguity levels [18]. However,
each of these works has been restricted to the analysis of only one facet. Mean-
while, there have been few works attempting to classify query intent in more than
one facet. Baeza-Yates et al. [1] presented an approach for automatic classifica-
tion of queries into topic and query intent (informational, not informational and
ambiguous). Nguyen and Kan [13] analyzed a set of four facets (ambiguity, au-
thority sensitivity, temporal sensitivity and spatial sensitivity). However, despite
that they presented a query log analysis of the four facets, they only provided
automatic classification results for one of the facets: authority sensitivity.

In summary, none of studies mentioned implements multi-faceted classification
of query intent. They only implement automatic classification of query intent
based on the information of individual facets.

3 Experimental Design

In this work, we use a data set composed of 4,726 unique queries extracted from
a query-log of a vertical search engine. The queries were randomly in a way that
allowed us to work with queries with different level of popularity according to
the Zipf’s law distribution, considering a sample of popular, normal and long tail
queries. Each query was represented as a weighted term vector restricted to the
terms appearing in the most popular Web pages for that query. The queries were
manually classified into a set of nine facets, that can be used for the identification
the query intent. These facets are:

Genre{News, Business, Reference, Community}: this facet provides a generic
context to the user’s query intent, and can be thought as a meta-facet.

Topic {Adult, Arts & Culture, Beauty & Style, Cars & Transportation, Charity,
Computers & Internet, Education, Entertainment, Music & Games, Finance,
Food & Drink, Health, Home & Garden, Industrial Goods & Services, Poli-
tics & Government, Religion & belief systems, Science & Mathematics, Social
Science, Sports, Technology & Electronic, Travel, Undefined, Work}: a list of
topics built from the first level of categories offered by ODP (www.dmoz.org),
Yahoo! (www.yahoo.com), and Wikipedia (en.wikipedia.org).

Task {Informational, Not Informational, Ambiguous}[1]: this facet is related
with the type of resource associated with the query.

A Multi-faceted Approach to Query Intent Classification 371

Table 1. Performance evaluation of automatic prediction for Task

Training/Testing 50%/50% 70%/30%

Task Precision Recall F-measure Precision Recall F-measure

Informational 0.7037 0.9889 0.8223 0.7227 0.9915 0.8360
Not Informational 0.8408 0.2670 0.4053 0.8917 0.2948 0.4431
Ambiguous 0.9167 0.0550 0.1038 0.8571 0.0526 0.0992

Average 0.8204 0.4370 0.4438 0.8238 0.4463 0.4594

Table 2. Performance evaluation of automatic prediction for Objective

Training/Testing 50%/50% 70%/30%

Objective Precision Recall F-measure Precision Recall F-measure

Action 0.9451 0.1673 0.2843 0.9375 0.2007 0.3306
Resource 0.8116 0.9973 0.8949 0.8235 0.9964 0.9017

Average 0.8783 0.5823 0.5896 0.8805 0.5985 0.6162

Objective {Resource, Action}: represents if the query is aimed to do some action
or to obtain a resource.

Specificity {Specific, Medium, Broad}: this facet describes how specialized is a
query.

Scope {Yes, No}: the scope aims at capturing whether the query contains pol-
ysemic words or not.

Authority Sensitivity {Yes, No}: through this facet it is possible to determining
whether the query is designed to retrieve authoritative and trusted answers
[13]

Spatial Sensitivity {Yes, No}: this facet reflects the interest of the user to get a
resource related to an explicit spatial location.

Time Sensitivity {Yes, No}: this facet captures the fact that some queries require
different results when posed at different times [13].

The facets genre, objective, specificity and scope are considered for first time for
query intent classification. The rest of the facets have been considered in previous
works for query intent classification (see Section 2).

4 Predicting Individual Facets

In this section we use the labeled data-set described in Section 3 to train user
intent prediction models. We trained a single support vector machine (SVM)
classifier for each facet. The software used to implement SVM was LIBSVM [4].
We selected the one-against-one multi-class strategy using majority voting to
decide the final output. We used the radial basis function kernel for the SVM
algorithm. For the experiments, three metrics were considered: recall, precision
and the F-measure.

The results for the automatic prediction of the facets are reported in Tables 1
to 5. As we can see from these tables, in general we obtain good results for esti-
mating the facets. There is not too much difference between the results obtained

372 C. González-Caro and R. Baeza-Yates

with the automatic classifiers based on training-sets of 50% of queries and those
classifiers based on training-sets with 70% of queries. That is, the prediction’s
performance is good for different quantities of training data.

The best results are for the facets task and objective (see Tables 1 and 2). The
average precision for these facets is 0.822 and 0.879 respectively. In the case of
task, the classifier was most useful for predicting Informational and Not Informa-
tional queries, where we can observe a good balance of precision and recall (see
F-measure values). For queries in the Ambiguous category, we maintain high pre-
cision (0.88 on average) at the expense of recall. In the case of objective, the classi-
fier is very effective, specially to distinguish Resource queries (F-measure is 0.89
on average). For Action queries the precision is also very good (0.94 on average),
although the F-measure is not as high as for Resource queries. In general, the
automatic classification results for task and objective show the feasibility of the
prediction of these facets. This is important, as being able to correctly identify
the task and the objective of queries give us insight into the query intent and
the type of resource associated to it. In Figure 1 (left) we show the distribution
of queries along the task and the objective. As we can observe, Informational
queries have a clear orientation towards Resource-objective and Not Informa-
tional queries are more oriented towards Action-objective. An interesting point
is that Ambiguous queries are also oriented towards Resource-objective. This
finding suggest that Action-objective queries are less ambiguous than Resource-
objective queries. Since most of the queries with an Action-objective belong to
the Not Informational - task we can say that the ambiguity of Not Informational
queries is low.

90%
100%

70%
80%

50%
60%

30%
40%

10%
20%

0%

Ambiguous Informational Not InformationalAmbiguous Informational Not Informational

Action Resource

400 f l f l b

300

350

400 Informational Not Informational Ambiguous

250

300

150

200

50

100

0

ct
io
n

ur
ce

ct
io
n

ur
ce

ct
io
n

ur
ce

ct
io
n

ur
ce

ct
io
n

ur
ce

ct
io
n

ur
ce

ct
io
n

ur
ce

A
c

Re
so A
c

Re
so A
c

Re
so A
c

Re
so A
c

Re
so A
c

Re
so A
c

Re
so

Adult Cars &
Trans.

Computers
& Internet

Education Food &
Drink

Health Travel

Fig. 1. Distribution of queries into facets Task and Objective (left) and distribution of
queries into facets Topic, Task and Objective (right)

Table 3 shows the performance results for the facet genre. We obtain good
genre identification performance for Business, Community and Reference, as
SVM classifiers yielded overall precision around 0.76 (F-measure is 0.46 on aver-
age). These three genre categories are the most representative categories of the
facet; they group together 97.4% of the total of queries. For the category News
the classifier obtains a F-measure of zero, which may be caused by the small
number of queries belonging to this category (56 queries in the training set, 122

A Multi-faceted Approach to Query Intent Classification 373

Table 3. Performance evaluation of automatic prediction for Genre

Training/Testing 50%/50% 70%/30%

Genre Precision Recall F-measure Precision Recall F-measure

Business 0.9146 0.2884 0.4386 0.8984 0.3159 0.4675
Community 0.5649 0.9867 0.7185 0.5765 0.9836 0.7269
Reference 0.8033 0.1038 0.1839 0.8537 0.1203 0.2108

Average 0.7609 0.4597 0.4470 0.7762 0.4733 0.4684

Table 4. Performance evaluation of automatic prediction for Topic (values above 0.8
are highlighted)

Training/Testing 50%/50% 70%/30%

Topic Precision Recall F-measure Precision Recall F-measure

Adult 0.7692 0.2000 0.3175 0.7000 0.2414 0.3590
Arts & Culture 0.5769 0.0938 0.1613 0.5556 0.1020 0.1724
Cars & Transportation 0.9107 0.3778 0.5340 0.8800 0.2857 0.4314
Computers & Internet 0.8600 0.3308 0.4778 0.8261 0.3167 0.4578
Education 0.8043 0.2483 0.3795 0.8529 0.3222 0.4677
Entertainment 0.1502 0.8743 0.2564 0.5474 0.4685 0.5049
Finance 0.6622 0.3858 0.4876 0.2149 0.8052 0.3393
Food & Drink 0.8667 0.2364 0.3714 0.9500 0.2923 0.4471
Health 0.6383 0.6667 0.6522 0.7347 0.4800 0.5806
Home & Garden 0.7692 0.1538 0.2564 0.5600 0.1667 0.2569
Politics & Government 0.4483 0.4437 0.4460 0.4903 0.5549 0.5206
Religion & Belief Systems 1 0.1224 0.2182 1 0.1515 0.2632
Science & Mathematics 0.4279 0.6394 0.5127 0.3846 0.6765 0.4904
Social Science 0.4375 0.0753 0.1284 0.3636 0.0690 0.1159
Travel 0.7083 0.2252 0.3417 0.7333 0.2472 0.3697

Average 0.6687 0.3382 0.3694 0.6529 0.3453 0.3851

in total). Apart of the news category, the performance of prediction for the facet
genre is good. For the facet topic, the classifier provides predictions for fifteen of
the twenty topics that were considered for the classification, as shown in Table
4. Overall, the precision is good, and over 0.6 for most of the topics. The best
precision values are for the topics: Adult, Cars & Transportation, Computers &
Internet, Education, Food & Drink and Health. These topics group an impor-
tant number of queries and have interesting connections with the other facets
(see Figure 1 right).

Table 5 shows the performance of the prediction for the facets authority sensi-
tivity, spatial sensitivity, time sensitivity, scope and specificity. The results for this
group of facets is good. Some of the facets obtain better results than the others,
but the overall results are balanced. The facets spatial sensitivity and authority
sensitivity show the best precision results. To be able to identify correctly these
two facets is important because the search results for spatially-sensitive and
authority-sensitive queries, must be both relevant to the query and valid for the

374 C. González-Caro and R. Baeza-Yates

Table 5. Performance evaluation of automatic prediction for Authority Sensitivity,
Spatial Sensitivity, Time Sensitivity, Scope and Specificity

Training/Testing 50%/50% 70%/30%

Facet Precision Recall F-measure Precision Recall F-measure

Authority Sen. 0.8570 0.5193 0.4865 0.8441 0.5245 0.4961
Spatial Sen. 0.7526 0.6140 0.5471 0.7618 0.6494 0.5913
Time Sen. 0.4884 0.50 0.4941 0.4873 0.50 0.4936
Scope 0.4945 0.50 0.4972 0.4958 0.50 0.4979
Specificity 0.5126 0.3412 0.3101 0.5060 0.3444 0.3160

associated location and for the authoritative requirement. This is the typical case
while searching in a mobile device. The performance for time sensitivity, scope
and specificity is similar in average.

5 Combining Multiple Facets

Although the set of facets that we are studying here are different dimensions of
the user’s intent and not all of them are necessarily correlated, we are interested
to study how the combination of multiple facets in the classification process can
improve the prediction performance. We selected two groups of correlated facets
and performed a multi-faceted classification of the queries with these facets.

We address the problem of classifying a query into a set of relevant facets
as a multi-label classification problem. The traditional single-label classification,
also known as multi-class classification, is the common machine learning task
where an instance is assigned a single label 	, that is chosen from a previously
known finite set of labels L. A data-set D of n instances is composed of instance-
classification pairs (x0, 	0), (x1, 	1), ..., (xn, 	n). The multi-label classification task
is an extension of this problem, where each instance is associated with a subset
of labels S ⊆ L. A multi-label data-set D of n instances is composed of instance-
classification pairs (x0, S0), (x1, S1), ..., (xn, Sn). Learning a multi-label model
can be achieved through one of two approaches: problem transformation meth-
ods, and algorithm adaptation methods. The problem-transformation methods,
transform the multi-label classification problem into one or more single-label
classification or regression problems. The adaptation methods, extend specific
learning algorithms in order to handle multi-label data directly [20]. In this
work we explore a problem-transformation method, which reduces the multi-
label classification problem to a multi-class classification problem by treating
each distinct label set as a unique multi-class label. This transformation explic-
itly captures overlaps between facets, which is one of our goals. Since SVMs
have shown good generalization ability in different single-label multi-class prob-
lems, is also one of the most used techniques to resolve multi-label classification
problem [14]. We used the multi-label classification tool of LIBSVM (available at
http://www.csie.ntu.edu.tw/˜cjlin/libsvmtools/multilabel/) to build multi-label
classifiers for our group of facets. We selected the label combination option as
the transformation method.

A Multi-faceted Approach to Query Intent Classification 375

Table 6. Multi-label classification results based on the combination genre-objective for
the facet genre (50% training and 50% testing)

Genre Precision Recall F-measure

Business 0.7620 0.7052 0.7325
Community 0.7204 0.7874 0.7524
News 0.2727 0.2143 0.2400
Reference 0.5561 0.4936 0.5230

Average 0.5778 0.5501 0.5620

Table 7. Multi-label classification results based on the combination genre-objective for
the facet objective (50% training and 50% testing)

Objective Precision Recall F-measure

Action 0.6762 0.6420 0.6587
Resource 0.9019 0.9145 0.9082

Average 0.7890 0.7783 0.7834

0 8

0,7

0,8
Single label Multi label

0,6

0 4

0,5

as
ur
e

0,3

0,4

F
M
e

0,2

0

0,1

News Reference Business Community

1

0,9

1
Single label Multi label

0,7

0,8

0,5

0,6

ea
su
re

0 3

0,4

,

F
M
e

0 1

0,2

0,3

0

0,1

Action Resource

Fig. 2. Comparison of single-label and multi-label F-measure results for the facets
genre (left) and objective (right)

5.1 Genre-Objective Combination

Two of the most descriptive and correlated facets are genre and objective; for
this reason we selected this combination of facets to test multi-label classifi-
cation. In order to obtain comparable results, the training and test sets used
for multi-label classification are the same data-sets used to perform single-label
classification. That is, we used the same group of queries and the only variation
are the training-set labels. In this case, each query was marked with two values,
genre and objective, respectively.

Table 6 shows the multi-label classification results for the facet genre. Overall,
multi-label classification outperforms the single-label classification for all cate-
gories of genre. Specially, we note important improvements in recall for small
categories (i.e., categories with less representation of queries in the sample data)
like News and Reference. For Reference, single-label classification yielded good

376 C. González-Caro and R. Baeza-Yates

precision result (0.82 on average) but the recall value is low (0.11 on average).
With the multi-label classification the results for Reference are more balanced,
the recall improves to near 0.5 and the precision is still good (above 0.55). In
the case of News, the overall performance is not so good, but it is noticeable
that the multi-label classifier provides predictions for this category, given that
the single-label classifier did not report any results for this case, because was
too small. When we use multi-label classification, the additional information
provided with the multi-label training set allows the classifier to predict small
categories. For the large categories the multi-label classification also improved
the results. In Figure 2 (left) we can see the comparison of the performance (F-
measure values) of single-label and multi-label classification for the facet genre.
The results of the multi-label classification for the facet objective are shown in
Table 7, being the results for objective even better. With respect to the single-
label classification results, the major improvements are for the category Action,
as seen in Figure 2 (right), where recall improves dramatically from 0.18 to 0.64.
For the category Resource the multi-label classifier maintains the high recall and
precision obtained with the single-label classification (F-measure is 0.908).

Overall, the combination genre-objective is positive for multi-label classifica-
tion, obtaining better performance than the traditional single-label classification.

5.2 Genre-Task-Topic Combination

Three of the most important facets we are evaluating are genre, task and topic.
The combination of these facets might influence the prediction results of the
queries. Analyzing the data set used, we find that there are some topics that
are oriented to specific genre categories. For instance, the topic Cars & Trans-
portation is related with the genre-category Business and the topic Politic &
Government is related with the genre-category Community. These relations sug-
gest that knowing that a query belongs to a particular topic, could also indicate
that the query belongs to a particular genre-category. Hence, we test this hy-
pothesis through performing multi-label classification with these facets.

0,8

0,9 Single label Multi label

0 6

0,7

0,5

0,6

as
ur
e

0,3

0,4

F
m
e

0,2

,

0

0,1

Informational Not Informational Ambiguous

0,7

0,8 Single label Multi label

0,5

0,6

0 2

0,3

0,4

0

0,1

0,2

0

St
yl
e

or
ts

W
or
k

od
s.

lo
gy

tu
re

en
ce

gi
on

rd
en

du
lt

m
en
t

at
h.

av
el

an
ce

tio
n

an
s.

ut
er
s

ea
lth iti
cs

D
ri
nk

ut
y
&
S

Sp W
us
t.
G
oo

Te
ch
no

s
&
Cu

lt
ci
al
Sc
ie

Re
lig

e
&
G
ar A

er
ta
in
m

ce
&
M Tr

Fi
na

Ed
uc
a

ar
s
&
Tr

Co
m
pu H
e

Po
l

oo
d
&
D

Be
a

In
du T

A
rt
s

So
c

H
om

e

En
te

Sc
ie
nc Ca Fo

Fig. 3. Comparison of single-label and multi-label F-measure results for the facets task
(left) and topic (right)

A Multi-faceted Approach to Query Intent Classification 377

Table 8. Multi-label classification results based on the combination genre-task-topic
for the facet genre (50% training and 50% testing)

Genre Precision Recall F-measure

Business 0.7170 0.7068 0.7119
Community 0.7116 0.7807 0.7446
News 0.1538 0.3214 0.2081
Reference 0.5908 0.3792 0.4619

Average 0.5433 0.5471 0.5316

Table 9. Multi-label classification results based on the combination genre-task-topic
for the facet task (50% training and 50% testing)

Task Precision Recall F-measure

Informational 0.8235 0.8170 0.8202
Not Informational 0.6923 0.6682 0.6801
Ambiguous 0.2692 0.3150 0.2903

Average 0.5950 0.6001 0.5969

Table 8 shows the performance evaluation of the multi-label classification for
the facet genre. In general, we obtain very similar results to the multi-label clas-
sification based on the combination genre-objective (see Table 6). The difference
between the results of the two multi-label classifications is not high, the com-
bination genre-objective has slightly better results, but the improvements are
similar in both cases. Since genre is the facet that has more positive correlations
with other facets, it could be combined in different ways with several facets. The
results of the multi-label classification for the facet task are shown in Table 9.
The multi-label classification maintain the good results of the large categories
and improve the results of the small categories. In this case, the large category is
Informational. For this category, the multi-label classifier yields similar results
with the single label classifier (F-measure is 0.82). For the other two categories,
Not Informational and Ambiguous, the multi-label classifier yields much better
results than the single-label classifier. In Figure 3 (left) we can see a comparison
between the overall results (F-measure values) of the multi-label classification
and the single-label classification for the facet task.

Finally, in Table 10 we show the multi-label classification results for the
facet topic. The multi-label classifier provides predictions for eighteen of the
twenty considered topics, while with the single-label classification, five topics
obtained F-measure values of zero. Hence, when we use combinations of facets
to train automatic classifiers, the probability to predict small categories in-
creases. We observe this effect of multi-label classification in facets like topic
and genre. In general, the coverage (recall) of topics is substantially increased.
The results of the multi-label classification are more balanced (precision-recall)
than the results of the single-label classification. Figure 3 (right) shows the F-
measure values for the two types of classifications. As we can observe, multi-label

378 C. González-Caro and R. Baeza-Yates

Table 10. Multi-label classification results based on the combination genre-task-topic
for the facet topic (50% training and 50% testing)

Topic Single-Label Multi-Label

Precision Recall F-measure Precision Recall F-measure

Adult 0.7692 0.2000 0.3175 0.5500 0.4400 0.4889
Arts & Culture 0.5769 0.0938 0.1613 0.2313 0.4625 0.3083
Cars & Transportation 0.9107 0.3778 0.5340 0.7333 0.5704 0.6417
Computers & Internet 0.8600 0.3308 0.4778 0.6214 0.6692 0.6444
Education 0.8043 0.2483 0.3795 0.6560 0.5503 0.5985
Entertainment 0.1502 0.8743 0.2564 0.4944 0.4863 0.4904
Finance 0.6622 0.3858 0.4876 0.5927 0.5787 0.5857
Food & Drink 0.8667 0.2364 0.3714 0.7742 0.6545 0.7094
Health 0.6383 0.6667 0.6522 0.6194 0.7111 0.6621
Home & Garden 0.7692 0.1538 0.2564 0.5455 0.4154 0.4716
Industrial Goods and Services – – – 0.5000 0.0870 0.1481
Politics & Government 0.4483 0.4437 0.4460 0.7245 0.6553 0.6882
Religion & Belief Systems 1 0.1224 0.2182 0.5455 0.3673 0.4390
Science & Mathematics 0.4279 0.6394 0.5127 0.6293 0.4796 0.5443
Social Science 0.4375 0.0753 0.1284 0.3431 0.5054 0.4087
Technology and Electronic – – – 0.2000 0.1333 0.1600
Travel 0.7083 0.2252 0.3417 0.6074 0.5430 0.5734
Work – – – 0.0606 0.5714 0.1096

classification outperforms the single classification in all the topics. In some of
them with remarkable improvements, like Food & Drink and Politics & Govern-
ment categories.

In summary, the combination of the facets genre, task and topic is good for
the automatic prediction of each facet. Specially, we show that the coverage of
the facets increases considerably and the precision is more balanced.

6 Conclusions

In this paper we explored the feasibility of multi-faceted query intent prediction.
We first perform individual classification processes for nine facets and then we
perform multi-label classification based on the combination of correlated facets.
Our experimental evaluation show that the combination of correlated facets can
effectively improve the prediction of the query intent. Some previous works have
analyzed several facets, but they have not shown how these facets can be com-
bined to automatically identify the intent of the query. As we can see from the
results of our experiments, the best performance is obtained with multi-label
classification (multi-faceted classification). There are several potential areas for
future work, including the study of the optimal combination of facets that could
be implemented through multi-faceted classification.

A Multi-faceted Approach to Query Intent Classification 379

References

1. Baeza-Yates, R., Calderón-Benavides, L., González-Caro, C.N.: The Intention Be-
hind Web Queries. In: Crestani, F., Ferragina, P., Sanderson, M. (eds.) SPIRE
2006. LNCS, vol. 4209, pp. 98–109. Springer, Heidelberg (2006)

2. Beitzel, S.M., Jensen, E.C., Frieder, O., Lewis, D.D., Chowdhury, A., Kolcz, A.:
Improving automatic query classification via semi-supervised learning. In: ICDM
2005, pp. 42–49. IEEE, Los Alamitos (2005)

3. Broder, A.: A taxonomy of web search. SIGIR Forum 36, 3–10 (2002)
4. chung Chang, C., Lin, C.J.: Libsvm: a library for support vector machines (2001)
5. Cool, C., Belkin, N.J.: A classification of interactions with information. In: Pro-

ceedings of the Fourth International Conference on Conceptions of Library and
Information Science, pp. 1–15. Libraries Unlimited, Greenwood Village (2002)

6. Herrera, M.R., de Moura, E.S., Cristo, M., Silva, T.P., da Silva, A.S.: Exploring
features for the automatic identification of user goals in web search. Inf. Process.
Manage. 46, 131–142 (2010)

7. Jansen, B.J., Booth, D.L., Spink, A.: Determining the informational, navigational,
and transactional intent of web queries. Inf. Process. Manage. 44(3), 1251–1266
(2008)

8. Jones, R., Zhang, W.V., Rey, B., Jhala, P., Stipp, E.: Geographic intention and
modification in web search. Int. J. Geogr. Inf. Sci. 22, 229–246 (2008)

9. Lee, U., Liu, Z., Cho, J.: Automatic identification of user goals in web search. In:
WWW 2005, pp. 391–400. ACM, New York (2005)

10. Li, X., Wang, Y.Y., Shen, D., Acero, A.: Learning with click graph for query intent
classification. ACM Trans. Inf. Syst. 28, 12:1–12:20 (2010)

11. Liu, Y., Zhang, M., Ru, L., Ma, S.: Automatic query type identification based on
click through information. In: Ng, H.T., Leong, M.-K., Kan, M.-Y., Ji, D. (eds.)
AIRS 2006. LNCS, vol. 4182, pp. 593–600. Springer, Heidelberg (2006)

12. Metzler, D., Jones, R., Peng, F., Zhang, R.: Improving search relevance for implic-
itly temporal queries. In: SIGIR 2009, pp. 700–701. ACM, New York (2009)

13. Nguyen, V.B., Kan, M.Y.: Functional faceted web query analysis. In: Amitay, E.,
Murray, C.G., Teevan, J. (eds.) Query Log Analysis: Social And Technological
Challenges. A Workshop at WWW 2007 (2007)

14. Qin, Y.-p., Wang, X.-k.: Study on multi-label text classification based on svm. In:
FSKD 2009, vol. 01, pp. 300–304. IEEE Computer Society, Los Alamitos (2009)

15. Rafiei, D., Bharat, K., Shukla, A.: Diversifying web search results. In: WWW 2010,
pp. 781–790. ACM, New York (2010)

16. Rose, D.E., Levinson, D.: Understanding user goals in web search. In: WWW 2004,
pp. 13–19. ACM, New York (2004)

17. Shen, D., Sun, J.T., Yang, Q., Chen, Z.: Building bridges for web query classifica-
tion. In: SIGIR 2006, pp. 131–138. ACM, New York (2006)

18. Song, R., Luo, Z., Nie, J.Y., Yu, Y., Hon, H.W.: Identification of ambiguous queries
in web search. Inf. Process. Manage. 45, 216–229 (2009)

19. Teevan, J., Dumais, S.T., Liebling, D.J.: To personalize or not to personalize:
modeling queries with variation in user intent. In: SIGIR 2008, pp. 163–170. ACM,
New York (2008)

20. Tsoumakas, G., Katakis, I.: Multi-label classification: An overview. Int. J. Data
Warehousing and Mining 2007, 1–13 (2007)

Navigating the User Query Space

Ronan Cummins1, Mounia Lalmas2, Colm O’Riordan3, and Joemon M. Jose1

1 School of Computing Science, University of Glasgow, UK
2 Yahoo! Research, Barcelona, Spain

3 Dept. of Information Technology, National University of Ireland, Galway, Ireland
ronan.cummins@nuigalway.ie

Abstract. Query performance prediction (QPP) aims to automatically
estimate the performance of a query. Recently there have been many at-
tempts to use these predictors to estimate whether a perturbed version of
a query will outperform the original version. In essence, these approaches
attempt to navigate the space of queries in a guided manner.

In this paper, we perform an analysis of the query space over a sub-
stantial number of queries and show that (1) users tend to be able to
extract queries that perform in the top 5% of all possible user queries
for a specific topic, (2) that post-retrieval predictors outperform pre-
retrieval predictors at the high end of the query space. And, finally (3),
we show that some post retrieval predictors are better able to select high
performing queries from a group of user queries for the same topic.

1 Introduction

Query performance prediction (QPP) (or estimating query difficulty) has be-
come a vibrant research area in the last decade. Predicting the performance of
a query is a useful task for many reasons. For example, search engines may wish
to augment queries in different ways depending on their estimated performance.
In fact, if query performance prediction becomes good enough [6], the space of
all possible queries for a given topic may be able to be navigated efficiently, so
that an initial query can be perturbed effectively. Furthermore, such techniques
might be effective for creating good queries when a large number of terms are
available. Query performance predictors can be used in conjunction with in-
formation extraction techniques to be able to extract good queries from these
longer information needs. These approaches may ultimately help in shifting the
cognitive load of query creation from the user to the system.

In this paper, we analyse the space of possible user queries (under some as-
sumptions) over a range of topics and collections. In particular, we show that
(1) while there are a number of queries which are extremely effective, humans
create queries which peform within the top 5% of all possible user queries that
can be extracted from a given information need (IN) under certain assumptions.
Furthermore, (2) we show that post retrieval predictors are more effective than
pre-retrieval predictors for predicting the performance of user queries (i.e. high

R. Grossi et al. (Eds.): SPIRE 2011, LNCS 7024, pp. 380–385, 2011.
c© Springer-Verlag Berlin Heidelberg 2011

Navigating the User Query Space 381

performing queries for a topic). Finally, (3) we demonstrate that some post-
retrieval predictors are very successful at selecting high performing queries from
a set of user queries (for the same topic).

The remainder of the paper is organised as follows: Section 2 presents back-
ground and related research that is relevant to this work. Section 3 comprises
three parts. In section 3.1, we perform an analysis of the query space for a num-
ber of topics and collections. In section 3.2, we conduct a study which outlines the
correlation of numerous pre- and post-retrieval predictors on sets of user queries
for the same topic. Section 3.3 demonstrates a practical application of using pre-
dictors to select good user queries. Finally, section 4 outlines our conclusions.

2 Background and Related Research

Fundamentally, retrieval predictors can be divided into two classes: pre-retrieval
[7,6,12] and post-retrieval [3,10,11] predictors. Pre-retrieval predictors use fea-
tures from the query, document and collection before a query has been processed
in order to ascertain its performance. Conversely, post-retrieval predictors anal-
yse the result list, scores and complex features to create predictors that have a
higher overhead in terms of computation [2]. One of the earliest approaches to
QPP has been that of the clarity score [3], which measures the KL-divergence be-
tween the query and collection model in a language modelling framework. Recent
research has shown that the standard deviation (σ) of scores in a ranked list is
a good predictor of query performance [10,11] for the traditional QPP task. It
has also been shown [10] that even better prediction can be obtained if a variable
cut-off point is used (i.e. different cut-off points for different queries). A relatively
new predictor has also been introduced where the standard deviation of the first
N documents is calculated, where N is the number of documents in the head of
the list that are within a certain a percentage (i.e. 50%) of the top score [5].

Recently work has been conducted into combining retrieval predictors with the
aim of improving performance by reducing queries that may contain noisy terms
(e.g. noisy terms in the description field of topics) [9,1]. Some work similar to the
research outlined herein has been conducted [8]. However, we place the problem
of selecting user queries in a query prediction framework, and review a substan-
tial number of high performing pre-retrieval and post-retrieval methods. We also
conduct an analysis of how effective users are at the task of query extraction.

3 Experimental Analysis

In this section, we conduct and analysis of the query space. Firstly, we show that
the ranked performance of queries follows a power law distribution, and that user
create queries that lie within the fifth percentile of such a distribution. Then,
we perform an analysis of a number of pre-retrieval and post-retrieval predictors
and show that post-retrieval predictors can more easily predict high performing
queries.

382 R. Cummins et al.

 0

 0.05

 0.1

 0.15

 0.2

 0.25

 0.3

 0.35

 0.4

 0.45

 0 5 10 15 20 25 30

P
e

rf
o

rm
a

n
c
e

 (
M

e
a

n
 A

v
e

ra
g

e
 P

re
c
is

io
n

)

Percentage of All Possible User Queries

Ranked Performances of Queries

(a) FT collection

 0

 0.05

 0.1

 0.15

 0.2

 0.25

 0.3

 0.35

 0.4

 0.45

 0 5 10 15 20 25 30

P
e

rf
o

rm
a

n
c
e

 (
M

e
a

n
 A

v
e

ra
g

e
 P

re
c
is

io
n

)

Percentage of All Possible User Queries

Ranked Performances of Queries

(b) WSJ collection

Fig. 1. Performance of All Queries

3.1 Sampling the User Query Space

First we outline two assumptions that constrain this work; (1) We assume user
queries consist of queries of not longer than six terms (research has indicated
that the vast majority of user queries are indeed less that this). And (2) we
assume that user queries comprise terms that appear somewhere in the TREC
topic statement (i.e. title, desc, and narrative), as these topic statements model
actual information needs).

Now, to analyse the user query space in a thorough manner, we wish to sample
a large number of the high performing queries that a user might possibly generate
(when prompted with an information need). Given that there are 2N possible
queries for an information need of N terms, we cannot exhaustively evaluate
and analyse all possible queries. Therefore, we create a sample of queries for a
topic in the following manner; (1) We extract the top 20 (i.e. N = 20) most
discriminative terms (idf) from the topic (this is all the terms for some topics)
to be used in our sample user queries. (2) We submit all queries of length one
and two terms, and record their performance (average precision). Then (3), for
all other queries from length three to six terms (in that order), if a query has
an estimated1 performance within 66% of the best query found thus far for
that information need, we submit it to the system and record its performance.
Therefore, we are quite confident that by the end of the process we have a large
selection of queries within the high end of the query space. Figure 1 shows that
the distribution of queries when ranked by performance (mean average precision)
follows a power law (i.e. there are few high performing queries and many poorly
performing ones).
1 When estimating a query of length Q, we find the performance of one of its sub-

queries of length Q− 1 and aggregate this with the performance of the single query
term remaining. This is very generous estimation of a query and is likely to over-
estimate the performance of a query.

Navigating the User Query Space 383

Table 1. Percentile Report (and Standard Deviation) for User Queries

Collection Topic Range # Topics User1 User2 User3 User4
AP 051-200 149 4.0 (4.0) 3.4 (3.5) 3.0 (3.1) 3.3 (3.5)
FBIS 301-450 116 4.8 (7.8) 4.8 (7.8) 5.3 (7.6) 4.8 (7.6)
FT 250-450 188 5.2 (8.6) 5.3 (8.5) 5.7 (8.4) 5.7 (9.3)
WSJ 051-200 150 5.7 (7.8) 4.6 (6.6) 5.0 (7.6) 4.1 (6.0)

We asked human annotators to extract keyword type queries from the desc
and narr fields in a topic (similarly to previous research [4]). This resulted in four
sets of short keyword type queries for each topic. Table 1 shows the percentage of
queries found in our sampling approach that outperform the actual user queries2.
The analysis shows that users perform around the fifth percentile of all possible
queries for the query extraction task. Another important point to note is that
users do not simply extract the same good queries. We analysed all possible
pairs of user queries (within each topic) and found that 89% of all possible
query pairs are unique. This indicates that user queries for the same topic (even
when prompted with the actual desc and narr) are quite varied.

3.2 Correlation of User Extracted Queries

In this section, we report the performance of a number of representative pre-
retrieval and post-retrieval performance predictors from the literature3 on the
task of query performance prediction within each topic. We increase the number
of queries per topics to five by including the original desc field. Although, we
have only five queries for each topic, we have a large amount of topics across
which to average the correlation coefficients. Furthermore, we know that the five
queries for each topic are high performing queries, and we can confirm that for
over 75% of the topics the full five queries are unique.

The best pre-retrieval predictors from the literature are the simplified clarity
score (scs), the average idf of query terms (idfavg), the maximum idf of the query
terms (idfmax), the scq score, the normalised scq (nscq) score, and the maximum
contributing term to the scq score (scqmax) [12]. Some of the highest performing
post-retrieval predictors from the literature are query clarity (clarity), standard
deviation at 100 documents (σ100), a normalised version of standard deviation at
100 documents (i.e. the NQC predictor [11]), the maximum standard deviation
in the ranked-list (σmax) [10]. We also use two new predictors that calculate
the standard deviation using a variable cut-off point (σ50%), and a query length
normalised version of that predictor (n(σ50%)) [5].

Table 2 shows the average correlation between the output of each predictor
and the performance of the user queries (i.e. those at the high performing end of
the query space). Firstly, we can see that the post-retrieval predictors (bottom

2 We created another sample of the query space by exhaustively evaluating all queries
of length one, two and three, and obtained nearly identical statistics.

3 While we have not included, nor conducted experiments on, an exhaustive list of
pre-retrieval and post-retrieval predictors, we have included the highest performing
predictors from the literature.

384 R. Cummins et al.

Table 2. Correlations (ρ and r) for User Queries Averaged Over All Topics

Coll. AP FBIS FT WSJ
Predictor r ρ r ρ r ρ r ρ
scs 0.073 0.086 0.069 0.108 0.133 0.142 0.000 0.035
idfavg 0.063 0.067 0.086 0.109 0.163 0.153 0.035 0.051
idfmax -0.022 -0.040 0.015 0.123 0.107 0.131 0.045 -0.042
scq -0.033 0.017 -0.06 -0.018 -0.013 0.005 -0.015 0.001
scqmax 0.043 0.024 0.024 0.155 0.107 0.131 0.101 0.008
nscq 0.122 0.093 0.128 0.193 0.139 0.159 0.073 0.106

clarity 0.118 0.135 0.216 0.259 0.208 0.217 0.103 0.138
σ100 0.185 0.157 0.196 0.237 0.265 0.211 0.263 0.253
σmax 0.134 0.162 0.178 0.227 0.227 0.225 0.173 0.208
NQC 0.115 0.136 0.235 0.283 0.247 0.232 0.267 0.246
σ50% 0.250 0.238 0.188 0.211 0.215 0.214 0.271 0.260
n(σ50%) 0.368 0.328 0.280 0.340 0.255 0.269 0.405 0.398

Table 3. MAP for Each Set of Topics Using Predictors to Select Queries

Collection AP FBIS FT WSJ
Avg. Qry per Topic 0.1698 0.2183 0.2294 0.2394
Best Set of User Qrys 0.1846 0.2325 0.2482 0.2669

idfavg 0.1759 0.2353 0.2485 0.2371
nscq 0.1794 0.2338 0.2336 0.2427

clarity 0.1785 0.2311 0.2506† 0.2383
σ100 0.1846 † 0.2463 † 0.2388† 0.2682†
NQC 0.1808 0.2483 † 0.2632† 0.2613†
σ50% 0.1881 † 0.2403 † 0.2511† 0.2679 ‡
n(σ50%) 0.1940‡ 0.2523 † 0.2623† 0.2859 ‡

half of the table) outperform the pre-retrieval predictors (top half of the table)
for this part of the query space. For example, idfmax, a high performing predictor
in other studies [6], performs poorly at the high end of the query space. This is
because users will often choose the same highly discriminating term when creat-
ing a query for the same topic. Therefore, it should be noted that many proposed
predictors (especially pre-retrieval predictors), may not be able to distinguish
between high performing queries. The highest correlated pre- and post-retrieval
predictors are outlined in bold.

3.3 Usability of Predictors for Query Selection

We now conduct an experiment to investigate the usefulness of the query perfor-
mance predictors at selecting the best query among a group of high performing
queries4. Within each topic, we use each predictor in turn to select the best
query (as predicted by the predictor) and then measure the MAP of the set of
queries chosen (i.e. the predictor selects one of five queries for each topic). Table
3 shows the performance (MAP) of each predictor for such a task. We deem
a predictor to be useful when it consistently5 outperforms the performance of
the best single user. The best predictors tend to be the ones based on standard

4 Such a scenario may have applications in an collaborative search scenario.
5 † and ‡ denotes a significant increase over the average and best set of queries respec-

tively, using a Wilcoxon test at the 0.05 level on the topics.

Navigating the User Query Space 385

deviations (i.e. NQC, σ50%, and n(σ50%)). Many of these predictors significantly
outperform the average query for a topic. Overall, the best predictor for selecting
good user queries are the n(σ50%) predictor [5]. The predictor can outperform
the best single performing set of queries.

4 Conclusion

In this paper, we have shown that user queries lie in the top 5% of queries that a
user could extract from an information need. We have shown that post retrieval
predictors outperform pre-retrieval for actual user queries. Furthermore, we have
shown that post retrieval predictors can be used to effectively choose between high
performing queries. This has applications to systems that aim to automatically
choose between queries of the same topic (e.g. collaborative IR systems).

References

1. Balasubramanian, N., Kumaran, G., Carvalho, V.R.: Exploring reductions for long
web queries. In: SIGIR, pp. 571–578 (2010)

2. Carmel, D., Yom-Tov, E.: Estimating the Query Difficulty for Information Re-
trieval, 1st edn. Morgan and Claypool Publishers, San Francisco (2010)

3. Cronen-Townsend, S., Zhou, Y., Bruce Croft, W.: Predicting query performance.
In: SIGIR, pp. 299–306 (2002)

4. Cummins, R., Lalmas, M., Jose, J.: The limits of retrieval effectiveness. In: Clough,
P., Foley, C., Gurrin, C., Jones, G.J.F., Kraaij, W., Lee, H., Mudoch, V. (eds.)
ECIR 2011. LNCS, vol. 6611, pp. 277–282. Springer, Heidelberg (2011)

5. Cummins, R., O’Riordan, C., Jose, J.: Improved query performance prediction
using standard deviation. In: SIGIR 2011, ACM, New York (2011)

6. Hauff, C., Hiemstra, D., de Jong, F.: A survey of pre-retrieval query performance
predictors. In: CIKM 2008, pp. 1419–1420. ACM, New York (2008)

7. He, B., Ounis, I.: Inferring query performance using pre-retrieval predictors. In:
Apostolico, A., Melucci, M. (eds.) SPIRE 2004. LNCS, vol. 3246, pp. 43–54.
Springer, Heidelberg (2004)

8. Kumaran, G., Allan, J.: Selective user interaction. In: CIKM 2007, pp. 923–926.
ACM, New York (2007)

9. Kumaran, G., Carvalho, V.R.: Reducing long queries using query quality predic-
tors. In: SIGIR, pp. 564–571 (2009)

10. Pérez-Iglesias, J., Araujo, L.: Standard deviation as a query hardness estimator. In:
Chavez, E., Lonardi, S. (eds.) SPIRE 2010. LNCS, vol. 6393, pp. 207–212. Springer,
Heidelberg (2010)

11. Shtok, A., Kurland, O., Carmel, D.: Predicting query performance by query-drift
estimation. In: Azzopardi, L., Kazai, G., Robertson, S., Rüger, S., Shokouhi, M.,
Song, D., Yilmaz, E. (eds.) ICTIR 2009. LNCS, vol. 5766, pp. 305–312. Springer,
Heidelberg (2009)

12. Zhao, Y., Scholer, F., Tsegay, Y.: Effective pre-retrieval query performance predic-
tion using similarity and variability evidence. In: Macdonald, C., Ounis, I., Pla-
chouras, V., Ruthven, I., White, R.W. (eds.) ECIR 2008. LNCS, vol. 4956, pp.
52–64. Springer, Heidelberg (2008)

Improved Compressed Indexes

for Full-Text Document Retrieval�

Djamal Belazzougui1 and Gonzalo Navarro2

1 LIAFA, Univ. Paris Diderot - Paris 7, France
dbelaz@liafa.jussieu.fr

2 Department of Computer Science, University of Chile
gnavarro@dcc.uchile.cl

Abstract. We give new space/time tradeoffs for compressed indexes
that answer document retrieval queries on general sequences. On a col-
lection of D documents of total length n, current approaches require at
least |CSA| + O(n lg D

lg lg D
) or 2|CSA| + o(n) bits of space, where CSA is

a full-text index. Using monotone minimum perfect hash functions, we
give new algorithms for document listing with frequencies and top-k doc-
ument retrieval using just |CSA| + O(n lg lg lg D) bits. We also improve
current solutions that use 2|CSA| + o(n) bits, and consider other prob-
lems such as colored range listing, top-k most important documents, and
computing arbitrary frequencies.

1 Introduction and Related Work

Full-text document retrieval is the problem of, given a collection of D documents
(i.e., general sequences over alphabet [1, σ]), concatenated into a text T [1, n],
preprocess T so as to later answer various queries of significance in IR. The
problem has received much attention recently [16,22,24,11,8,7,4,12] as a natural
evolution over plain full-text indexing (which just counts and locates all the
individual occurrences of a pattern P [1, m] in T) and for its applications in
IR on Oriental languages, software repositories, and bioinformatic databases. As
space is a serious problem in classical solutions [16,11], most of the focus has been
on extending compressed full-text indexes to answer various document retrieval
queries. The most studied queries, among several others, are the following.

Document listing: List the distinct documents where P appears.
Document listing with frequencies: List the distinct documents where P appears,

and the frequency (number of occurrences) of P in each.
Top-k retrieval: List the k documents where P appears most times.

A compressed full-text index [17] is used as the base data structure. This is
usually a compressed suffix array of T (we call this structure CSA and its bit
space |CSA|). The CSA simulates the suffix array A[1, n] [13], where A[i] points
� Partially funded by Fondecyt Grant 1-110066, Chile. First author also partially sup-

ported by the French ANR-2010-COSI-004 MAPPI Project.

R. Grossi et al. (Eds.): SPIRE 2011, LNCS 7024, pp. 386–397, 2011.
c© Springer-Verlag Berlin Heidelberg 2011

Improved Compressed Indexes for Full-Text Document Retrieval 387

to the ith lexicographically smallest suffix in T . The CSA finds the interval
A[sp, ep] of occurrences of P in time tsearch, usually O(m lg σ) or less [9,5]. It can
also compute any cell A[i], and even A−1[i], in time O(tSA), usually O(lg1+ε n)
for any constant ε > 0. These indexes represent the text and the suffix array
within as little as nHh(T) + o(n lg σ) bits, for any h ≤ α lgσ n and constant
α < 1. Here Hh(T) is the empirical h-th order entropy of T [14], a lower bound
on the bits-per-symbol a statistical order-h compressor may achieve on T .

In the rest of the section we describe our contributions in context. We intro-
duce at this point the concepts of binary rank, select, and of a monotone min-
imum perfect hash function (mmphf). Given a bitmap B[1, n] with m bits set,
operation rankb(B, i) counts the number of occurrences of bit b ∈ {0, 1} in
B[1, i], whereas selectb(B, j) is the position of the jth occurrence of bit b in B.
There exists a representation for B using lg

(
n
m

)
+ O(lg lg m) + o(n) = m lg n

m +
O(m)+ o(n) bits [21], solving both operations in constant time. As B can be re-
constructed using operation rank, this space is asymptotically optimal. A mmphf
can be seen as a weaker structure on B, able to answer only rank1(B, i) when-
ever B[i] = 1 and giving an arbitrary value otherwise (the mmphf is unable to
tell whether B[i] = 1 or 0). As it cannot reconstruct B, the mmphf can be repre-
sented within less space than the previous lower bound: within O(m lg lg n

m) bits
it answers the limited rank query in constant time, and using O(m lg lg lg n

m)
bits it takes time O(lg lg n

m) [2].

1.1 Document Listing with Frequencies

The pioneering work in this area [16] defines a document array E[1, n], where
E[i] tells the document to which suffix A[i] belongs. As noted by Sadakane [22],
a bitmap B[1, n] marking the document boundaries in T is enough to find E[i] =
rank1(B, A[i]) in time O(tSA). The extra space for B is just D lg n

D +O(D)+o(n)
bits [21]. This permits simulating Muthukrishnan’s optimal document listing
algorithm [16] within time O(tSA) per document reported, in addition to the time
tsearch. The total space is |CSA|+ O(n), the latter coming from range minimum
query (RMQ) data structures [6]. The space was made succinct by Hon et al. [11],
by sparsifying the RMQ structures over array blocks of size lgε n, so that the time
raises to O(tSA lgε n) and the space decreases to |CSA|+ o(n) + D lg n

D + O(D).
We do not innovate on the plain document listing problem, but on the variant

that computes frequencies. The solutions build over plain document listing and
add extra data structures using two main approaches. A first one stores, in addi-
tion to the CSA of the whole collection, one CSAd for each individual document
d, for a total space of 2|CSA| + O(n) [22] or 2|CSA| + o(n) + D lg n

D + O(D)
[11]. This extra |CSA| space is used to compute document frequencies along the
document listing. The times are as for document listing without frequencies.

A second approach [24,8] represents the document array directly, in the form
of a wavelet tree [9]. This data structure makes the document listing times
independent of tSA and enables algorithms that do not derive from Muthukrish-
nan’s [8], listing each document in O(lg D) time. The space, however, is at least
n lg D + o(n) (by using a recent encoding of the redundancy [20]).

388 D. Belazzougui and G. Navarro

Gagie et al. [7] abstracted this problem in terms of representing a sequence
E providing support for accessing any element of E, enumerating each distinct
element in a range of E, and computing sequence rankd(E, i) (the number of
occurrences of document d in E[1, i]), so that each document can be listed within
the sum of these three times. The abstraction enabled new space/time tradeoffs
for document listing with frequencies, achieving times as good as O(lg lg D).

An interesting observation of Gagie et al. was that one could use succinct
indexes over a given sequence representation, for example in order to support
the rankd operation on top of just the B bitmap. These “weaker” representations
that need an auxiliary mechanism to compute the cells of E are able to reduce
space. For example, they achieved O(n lg D

lg lg D) bits with O(tSA lg lg D) time by
using a succinct index by Grossi et al. [10]. The very same lower bounds on
sequence rank given by Grossi et al. show that this tradeoff is optimal.

Our first major contribution improves upon this apparent lower bound. We
obtain a succinct index on top of the B bitmap that enables us to carry out
document listing with frequencies within less time and space than the best pre-
vious succinct index. We achieve O(n lg lg D) bits extra space and O(tSA) time,
or O(n lg lg lg D) bits space and O(tSA + lg lg D) time per reported document.

Our solution is based on mmphfs. As we can solve only a limited case of rank,
we cannot follow Gagie et al.’s framework [7]. Instead, we simulate Sadakane’s
method [22] using mmphfs instead of a second CSA. Our space/time results are
incomparable with those of Sadakane. Compared to the methods that represent
directly the document array, we obtain the least space, while the time comparison
depends on tSA (e.g., there are full-text indexes where tSA = O(lgε n lg1−ε σ) for
any ε > 0, yet they require O((1 + 1

ε)nHh(T)) bits [9]).
Actually our solution is general enough to solve the colored range listing prob-

lem, that is, finding the distinct colors (and their frequencies) of any range
in an array E[1, n] of D possible colors. Our solution is the first in achiev-
ing optimal time (i.e., O(1) time per color reported) within succinct space (i.e.,
n lg D + n o(lg D) bits). Achieving this optimal time involves solving in linear
time a particular sorting problem, which can be of independent interest.

Table 1 summarizes our results on this part.

1.2 Top-k Document Retrieval

The pioneering work of Hon et al. [11] uses a sampled suffix tree [1] of o(n) extra
bits to reduce this problem to that of accessing E[i] and computing arbitrary fre-
quencies (document listing with frequencies turns out to be a simpler problem).
They achieve time O(tsearch + k lg4+ε n) using 2|CSA|+ o(n) bits.

Our second major contribution is the reduction of their time to O(tsearch +
k lg k lg2+ε n). First, we show that by choosing better the block sizes one can
reduce one lg n to lg k (in practice k is much smaller than n, and this improve-
ment applies to many previous solutions). The other lg n is removed thanks to
an improved algorithm to compute arbitrary frequencies, that reduces the time
from their O(tSA lg n) to O(tSA lg lg n). While both ideas are simple, their impact
on performance is large and general.

Improved Compressed Indexes for Full-Text Document Retrieval 389

Table 1. Current and new results on document listing with frequencies (left side) and
colored range listing with frequencies (right side). On the left, the extra space is on top
of the |CSA| bits of the full-text index. The time complexities are in addition to tsearch,
and per each of the ndoc elements returned. They are valid for any constant ε > 0. On
the right we give total space, and total time per each of the ncol results reported.

Source Extra space Extra Time Space (colors) Time (colors)

[16] O(n lg n) O(1) O(n lg n) O(1)
[22] |CSA| + O(n) O(tSA) n/a n/a
[11] |CSA| + o(n) O(tSA lgε n) n/a n/a

+D lg n
D

+ O(D)
[8,4] n lg D + o(n) O(lg D

ndoc
) n lg D + o(n) O(lg D

ncol
)

[7] n lg D + O(n) O(lg D
lg lg n

) n lg D + O(n) O(lg D
lg lg n

)

[7] n lg D + O(n) O(lg lg D) n lg D + O(n) O(lg lg D)

[7] O(n lg D
lg lg D

) O(tSA lg lg D) n lg D + O(n lg D
lg lg D

) O(lg lg D)

Ours O(n lg lg D) O(tSA) n lg D + O(n lg lg D) O(1)
Ours O(n lg lg lg D) O(tSA + lg lg D) n lg D + O(n lg lg lg D) O(lg lg D)

When representing the document array with support for rank operations,
arbitrary document counting is easy. Gagie et al. [7], apart from improving the
time achieved by Hon et al., gave several new space/time tradeoffs by replacing
the second |CSA|-bit space by rank-capable representations of E.

Replacing the document array by a weak representation based on mmphfs is
not straightforward, as mmphfs do not support general ranks. Our third main
contribution is a technique that modifies Hon et al.’s sampled suffix tree [11] so
as to achieve the least space among the methods that represent the document
array, while increasing their time by an O(lg n) factor with respect to the most
space-consuming variant. The solution owes in part to the observation that there
are not too many candidates around a sampled suffix tree node to replace its
precomputed top-k documents. This observation can be useful in other scenarios.

Table 2 summarizes the state of the art and our contribution to the top-k
problem. As noted by Hon et al. [11], the bounds apply to the frequency mining
problem (list all documents with frequency over f), by running top-k queries
with k = 2j for consecutive j values. Our final contribution is to reduce the time
to report the k most important documents (i.e., they have a fixed priority) where
P appears, from O(tsearch + k lg3+ε n) [11] to O(tsearch + k lg k lg1+ε n).

2 Range Color Listing with Frequencies

We solve the following abstract problem: preprocess an array E[1, n] over D
colors so as to answer queries of the form: given i and j, list all the ncol dis-
tinct colors in E[i, j] and their number of occurrences. The connection with the
document listing problem with frequencies is obvious.

Muthukrishnan [16] solved this problem without reporting frequencies. He
builds an array F [1, n] where F [i] = max{j < i, E[j] = E[i]}. Then, using a
data structure that answers RMQ queries on F (rmq(i, j) = arg mini≤r≤j F [r])

390 D. Belazzougui and G. Navarro

Table 2. Current and new results on top-k retrieval, using the same conventions of
Table 1. The last column assumes tSA = O(lg1+ε n), as in optimal-space CSAs [5].

Source Extra space Extra Time Simplified time

[11] |CSA| + o(n) + D lg n
D

+ O(D) O(tSA lg3+ε n) O(lg4+ε n)
[7] |CSA| + o(n) + D lg n

D
+ O(D) O(tSA lg D lg(D/k) lg1+ε n) O(lg4+ε n)

Ours |CSA| + o(n) + D lg n
D

+ O(D) O(tSA lg k lg(D/k) lgε n) O(lg k lg2+ε n)

[7] n lg D + o(n) O(lg D lg(D/k) lgε n) O(lg2+ε n)

[7] O(n lg D
lg lg D

) O(tSA lg D lg(D/k) lgε n) O(lg3+ε n)

Ours n lg D + o(n) O(lg k lg(D/k) lgε n) O(lg k lg1+ε n)

Ours O(n lg D
lg lg D

) O(tSA lg k lg(D/k) lgε n) O(lg k lg2+ε n)

Ours O(n lg lg lg D) O(tSA lg k lg1+ε n) O(lg k lg2+ε n)

in constant time (e.g., Fischer’s [6] takes 2n + o(n) bits and does not access F),
he finds the leftmost occurrences of all distinct colors in E[i, j] in time O(ncol).

For computing frequencies, Sadakane [22] finds also the rightmost occurrences
of the colors by building another RMQ structure on the array F built on the
reverse sequence E. The colors could be reported in different order when listing
their rightmost or leftmost occurrences. He does not represent F nor F , and as
a consequence needs to mark the colors found in an array V [1, D]. The rest of
Sadakane’s solution is particular of document retrieval; we instead build on it to
obtain an improved solution to the general problem.

Theorem 1. We can augment a sequence of n colors in [1, D] with a structure
using O(n lg lg D) bits, so that range color listing with frequencies can be solved
in O(1) time per color reported, or using O(n lg lg lg D) bits and O(lg lg D) time.

The theorem assumes D = O(n); otherwise a mapping to the colors actually
occurring in the sequence, using O(n lg D

n) + o(D) bits [21], must be added.
To achieve the result, for each color c we store in a mmphf fc the positions i

such that E[i] = c (i.e., fc(i) = rankc(E, i) if E[i] = c). Let nc be the frequency
of color c in E, then this structure occupies

∑
c O(nc lg lg n

nc
) bits, which by the

log-sum inequality is O(n(lg H0(E)+1)) = O(n lg lg D) bits. The two RMQ data
structures will add just O(n) bits. Then a query proceeds in four steps:

1. Use the RMQ on (virtual array) F to get the leftmost occurrences of the
ncol colors appearing in the interval. This step takes time O(ncol).

2. Use the RMQ on (virtual array) F to get the rightmost occurrences of the
ncol colors appearing in the interval. This step also takes time O(ncol).

3. Match the left and right occurrences of the ncol colors. This can be done via
sorting, but we show how to do it in time O(ncol).

4. For each color with leftmost and rightmost occurrences li and ri, report the
color and its frequency fc(ri)− fc(li) + 1 in constant time.

To avoid the sorting in step 3, we will slightly modify steps 1 and 2. We will
store V and the following additional structures:

Improved Compressed Indexes for Full-Text Document Retrieval 391

1. A vector R[1, D
lg n], where each cell occupies lg D bits; R uses at most D bits.

2. A dynamic vector Q storing triplets (ci, li, ri) and taking O(ncol lg n) bits.
3. A dynamic vector S storing leftmost positions (ci, li), in O(ncol lg n) bits.
4. A counter C.

Initially the bits in V and R are set to zero1, Q and S are empty, and C is set
to 1. We then run step 1, setting the bits in V as we progress, and appending
the unique colors and their leftmost positions (ci, li) in array S.

We now traverse S and, for each color ci, compute g = �ci/ lg n�. Then, if
R[g] = 0, we set R[g] = C and c = rank1(V [g lg n + 1, (g + 1) lg n], lg n), which
can be computed in constant time in the RAM model [15]. Then we append c
copies of the dummy triplet (#, #, #) at the end of vector Q and finally update
counter C = C + c. At the end of this process array Q will be of size ncol and
each distinct color in E[i, j] will have an allocated position into Q.

We now retraverse S and write each pair (ci, li) in the triplet Q[R[g] + p],
where p = rank1(V [g lg n+1, g lg n+ r], r), g = �ci/ lg n�, and r = ci− g lg n. So
V and R simulate pointers to array Q, where we have already the information
on leftmost positions, and now are prepared to write the rightmost positions.

Now we run step 2, but instead of using V to check if we have already reported
a color ci, we compute g and p as before and check whether Q[R[g] + p] =
(ci, li, #). If the third component is a #, then we had not seen the color before
and can set the component to ri. Otherwise we have already seen it.

Now Q has the input to step 4, and step 3 is avoided. Note our working space
O(ndoc lg n) bits of the query is of the same order needed to store the output.

Let us now consider the case where our mmphfs use O(nc lg lg lg n
nc

) bits. By
the log-sum inequality these add up to O(n lg lg lg D) bits. The time to query
fc is O(lg lg n

nc
). To achieve O(lg lg D) worst case, we use constant-time mmphfs

when n
nc

> D lg lg D. This implies that on those arrays we spend O(nc lg lg n
nc

) =
O(n

D lg lg D lg lg D) = O(n/D) bits, as it is increasing with nc and nc < n
D lg lg D .

Adding over all the possible colors c, we have at most O(n) bits.
By applying the algorithm to document retrieval, where accesses to E are

through the CSA, we have the following result.

Theorem 2. We can augment a CSA on T [1, n] containing D documents with
a data structure using O(n lg lg D) bits, so that document listing with frequencies
can be solved in time O(tSA) per document reported, or one using O(n lg lg lg D)
bits and time O(tSA +lg lg D). The lg D in the space complexities can be replaced
by lg(H) + 1, where H =

∑ nd

n lg n
nd

and nd is the length of document d.

3 Faster Top-k Retrieval

In this section we considerably improve the time complexities of Hon et al.’s
scheme [11] for top-k retrieval. Their solution partitions the suffix array into

1 This is done at indexing time. After a query returns the ncol results and sets those
ncol bits, we reset them to 0 one by one, leaving V and R ready for the next query.

392 D. Belazzougui and G. Navarro

chunks of b = k	 bits. A suffix tree [1] on T is built and all the suffix tree
nodes that are lowest common ancestors (lca) of consecutive chunk endpoints
are represented in a sampled suffix tree, which contains O(n/b) nodes. At each
sampled node they store the top-k solution of its subtree.

When a pattern is mapped to the suffix array interval A[sp, ep], it is shown
that there exists a sampled node covering an area A[sp′, ep′], where both sp′−sp
and ep− ep′ are less than b. Therefore one can simply collect the k precomputed
candidates and the (at most 2b) distinct documents mentioned in these remain-
ing intervals, compute their frequencies in A[sp, ep], and take the k highest fre-
quencies. By using y-fast tries [25] on the identifiers and on the frequencies, the
process takes time O(topb), where top = tSA + tcount +lg lg n and tcount is the time
to count an arbitrary frequency (the lg lg n will be absorbed by a lgε n later).

Since k is unknown at indexing time, this structure is built for all k powers
of 2 (i.e., lg D sampled trees), and at query time the next power of 2 is used. By
storing the top-k identifiers in increasing order [7] a node uses O(k lg(D/k)) bits,
and the total space is O((n/b)k lg D lg(D/k)) = O((n/) lg D lg(D/k)) bits. This
allows using b = k	 = k lg D lg(D/k) lgε n, which determines the query time.

Something that is not properly considered by Gagie et al. [7] is that if the
trees are stored using pointers, then there is a component of O((n/b) lg n) bits
for k = 1, and thus 	 must be at least lg1+ε n.

To avoid this we store the sampled tree in succinct form [23] using just 2 +
o(1) bits per node and supporting in O(1) time many operations, including lca,
preorder (whose consecutive values are used to index an array storing the top-
k candidate data on each node), and preorder−1. For each pair of consecutive
chunk endpoints pi and pi+1 we store the preorder xi of the sampled tree node
lca(pi, pi+1). As xi ≥ xi−1, values xi + i are increasing, and thus can be stored
in a structure of (n/b) lg 2n

n/b +O(n/b) bits that retrieves any xi in constant time

[19]2. This space is O((n/b) lg b) = O(n lg k+lg lg n
k lg D lg(D/k) lgε n) = o(n). Now we can

find in constant time the lowest sampled node covering chunk interval [L, R] as
lca(preorder−1(xL), preorder−1(xR−1)). We will omit preorder−1 for simplicity.

3.1 Lowering the lg D Factor to lg k

The fact that we wish to answer queries for any k ≤ D translates into a lg D
factor in 	, and into the time complexities. If we set a limit k∗ on the maximum
k allowed at queries, this lg D becomes lg k∗. We show now that, by carefully
choosing 	, we can convert the time to lg k.

Instead of choosing 	 = lg D lg(D/k) lgε n so that all the sampled suffix trees
have the same size, we reduce it to the slightly increasing 	 = lg k lg(D/k) lgε n.
Then the space for a given k is (n/b)k lg(D/k) = (n/) lg(D/k) = n

lg k lgε n .

Added over all the k = 2j values this gives
∑lg D

j=1
n

j lgε n = O(n lg lg D
lgε n) = o(n).

Therefore we obtain times O(topb) = O(topk lg k lg(D/k) lgε n). Note this ap-
plies also to previous solutions [7], as shown in Table 2.

2 Using a constant-time rank/select implementation on their internal bitmap H [15].

Improved Compressed Indexes for Full-Text Document Retrieval 393

3.2 Computing Arbitrary Frequencies

We additionally remove an O(lg n) factor from Hon et al.’s top-k retrieval query
time [11], while using the same asymptotic space. The following theorem states
the result building on the improved variant of Gagie et al. [7] and on Section 3.1.

Theorem 3. Given a concatenation T [1, n] of D documents, the top-k retrieval
problem can be solved in time O(tsearch + tSAk lg k lg(D/k) lgε n) while using
2|CSA| + o(n) + D lg n

D + O(D) bits of space, where tsearch is the time to find
the suffix array interval of pattern P in the CSA of T , tSA is the time to compute
a position of the suffix array or its inverse, and ε > 0 is any constant.

The theorem is obtained just by noting that time tcount = O(tSA lg n) in Hon
et al.’s algorithm comes from a binary search for the epd such that an interval
[spd, epd] inside a local CSAd is mapped to a given interval [sp, ep] in the global
CSA. This binary search can be sped up by sampling every lg2 n positions in
CSAd and storing their corresponding position in the global CSA. This sampled
array stores �nd/ lg2 n� entries and thus takes O(nd/ lg n) bits of space for each
document d of length nd. The overall space is thus O(n/ lg n) = o(n).

We store that array of increasing values in a y-fast trie [25] so that a prede-
cessor query takes O(lg lg n) time. Then the binary search for ep can be done
by first querying the y-fast trie in time O(lg lg n), which will delimit an in-
terval of size lg2 n, and then with a binary search within that interval in time
tcount = O(tSA lg lg n). They also need to find spd given epd, which is similar. With
the optimum-space CSA used by Hon et al. [11] this time is O(lg1+ε n), and the
overall time reduces from O(lg4+ε n) per element returned, to O(lg k lg2+ε n).

4 Using Mmphfs for Top-k Retrieval

We now use mmphfs fc as in Section 2, instead of the local CSAd’s. This would
give tcount = lg lg D using O(n lg lg lg D) bits. Then the time would be O((tSA +
lg lg D + lg lg n)k) = O(tSAk), as the lg lg n term is absorbed by the lgε n in 	.

The problem is that mmphfs do not give a way to compute arbitrary frequen-
cies. We could only do so if the document appeared both in A[sp, sp′ − 1] and
A[ep′ + 1, ep]. In such a case we could easily find its leftmost (li) and rightmost
(ri) occurrence in A[sp, ep] and compute the frequency as fc(ri)− fc(li) + 1.

The candidates can be divided into four groups: (1) Appearing only inside
A[sp′, ep′]; (2) appearing both in A[sp, sp′ − 1] and A[ep′ + 1, ep]; (3) appearing
only in A[sp, sp′ − 1]; and (4) appearing only in A[ep′ + 1, ep].

The only interesting candidates of group (1) are those in the precomputed
top-k list, for which we must store the frequencies, as we will have no other way
to compute them. This raises the lg(D/k) time of Section 3 to lg n. Candidates
of group (2) are found by scanning both subintervals, finding the documents that
appear in both, and their leftmost and rightmost positions. This is easily done in
time O(b lg lg n) with y-fast tries. Then we compute their frequencies using the
corresponding mmphf. How to handle the other two groups is considered next.

394 D. Belazzougui and G. Navarro

4.1 Bounding the Number of Valid Candidates

We show that the number of documents that can make it to the top-k list if
they appear only to the left (or, similarly, to the right) chunk of the precom-
puted interval, is O(k

√
). This allows us to store all those potentially relevant

documents within the nodes. By storing their frequency in A[sp′, ep′], we can
complete the frequency computation in A[sp, ep′] by just traversing the area
A[sp, sp′ − 1] and increasing the frequencies of the documents found (we omit
this step on documents that have already been found in both tails, as explained).

In order for a document to be out of the top-k list, but able to make it to
the list by scanning the chunk to the left of the sampled node, its frequency
must be betwen f − b + 1 and f , where f is the frequency of the kth most
frequent candidate stored. Therefore its frequency can be stored using O(lg b) =
O(lg k + lg lg n) bits. Moreover each document with frequency under f − 	 + 1
must appear at least 	 times in the chunk in order to have a chance, thus there
are at most b/k = 	 such nodes. The rest need only O(lg) bits. Therefore the
total space per node will be O(k lg n+k lg b+k

√
	 lg)) = O(k lg n+k

√
	 lg lg n)

(note we are not storing the document identifiers of these extra candidates), and
the overall space for a given k = 2j will be O((n/b)k(lg n +

√
	 lg lg n)). For the

sum of spaces over j to be o(n) we need that 	 = lg k lg1+ε n for some ε > 0.
To know which documents are indeed candidates (i.e., can make it to the top-

k list so we have stored their frequency inside the node) we set up a bitmap of
length b marking the rightmost occurrence of such candidates, and their position
in the array of frequencies is obtained with rank1 on that bitmap (a second
bitmap distinguishes lg b-bit from lg 	-bit candidates). As it has at most k

√
	

bits set, the bitmap can be stored within O(k
√

	 lg
√

) = O(k
√

	 lg lg n) bits.
Thus we traverse A[sp, sp′ − 1] right to left. When we find a 1 in this bitmap,
this is the first time we see a relevant candidate. We compute its identity in
O(tSA) time and find its A[sp′, ep′] frequency using rank1 as explained. Now we
have the data to insert it (increasing its frequency by 1) into the y-fast trie. The
next occurrences (when the bitmap has value 0) correspond to candidates that
either have already been found (and thus are already inserted in the y-fast trie)
or candidates that cannot make it to the top-k list (and thus are not present in
the y-fast trie and we must not care about them).

The missing piece is to prove that there are sufficiently few candidates.

Lemma 1. Let topk(s, e) be k most frequent colors in an array E[s, e]. Then
there is a choice of topk(·, ·) sets in case of frequency ties such that, for any b,
C(b) = | ∪b

r=0 topk(s− r, e)| < k +
√

2bk.

Proof. Let us call st < s the position where k · t new elements have made it in
topk at some point, i.e., C(s − st) = C(0) + kt = k + kt. Let us call fr the kth
highest frequency in E[r, e]. Since all elements not in topk(s, e) have frequency
at most f = fs in E[s, e], a new element must appear at least once in E[r, s− 1]
to reach frequency f + 1 and force us choose it for topk(r, e). Hence s1 ≤ s− k.

Now, as k distinct elements have entered in topk(s1, e), it must hold that
fs1 ≥ f + 1, as we have seen k distinct elements reaching frequency f + 1. Thus
the (k + 1)th distinct element appearing in topk(r, e) must appear at least twice

Improved Compressed Indexes for Full-Text Document Retrieval 395

in E[r, s−1], to jump from frequency at most f to at least f +2. Thus we need 2k
occurrences of elements that are incompatible with the previous k occurrences
in order to have k new distinct elements, thus s2 ≤ s− 3k.

Once these new k distinct elements enter in topk(s2, e), it holds that fs2 ≥
f +2, and thus we need 3k incompatible occurrences for the next k occurrences,
and so on. Iterating the argument, it holds st ≤ s− t(t+1)

2 k for all t ≥ 1.
Thus as long as st ≥ s − b we have t(t+1)

2 k ≤ b, and thus t <
√

2b/k. Hence
the number of new elements entering into some topk(s − r, e) for 1 ≤ b ≤ r is
C(b) < k(t + 1) < k +

√
2bk. ��

In our case b = k	 so the bound is C(b) = O(k
√

). We have proved the main
result. The time simplifies to O(tsearch + k lg k lg2+ε n) when tSA = lg1+ε n.

Theorem 4. Given a concatenation T [1, n] of D documents, the top-k retrieval
problem can be solved in time O(tsearch + tSAk lg k lg1+ε n) using O(n lg lg lg D)
extra bits, where tsearch is the time to find the suffix array interval of pattern P
in the CSA of T , tSA is the time to compute a position of the suffix array or its
inverse, and ε > 0 is any constant.

5 Top-k Most Important Document Retrieval

A particular variant of top-k document retrieval, somewhat easier than the one
that seeks for the highest frequencies, is one where the documents have a fixed
importance or priority. An example would be the PageRank value of Web pages.
A way to handle this problem is to sort the documents by importance, so that
document i is the ith most important in the collection. Then the problem be-
comes that of finding the k smallest distinct values in E[sp, ep]. While methods
based on range quantile queries on wavelet trees [8] naturally report the doc-
uments in sorted order and thus automatically solve this problem in O(k lg D)
time by pruning the process after reporting k results, the situation is not that
easy for the other approaches that use potentially less space.

A solution comes from the same top-k retrieval technique of Hon et al. [11].
This time one stores the k smallest document values within each sampled node,
and traverses the tails of the interval looking for smaller document identifiers. No
frequencies need to be computed, which allows for an O(tSAk lg k lg(D/k) lgε n)
time solution, e.g., O(k lg k lg2+ε n). This seems unimportant now that we have
reduced the complexity of the more difficult top-k retrieval problem to the same
level. Yet, we show that this particular problem can be solved faster, removing
the lg(D/k) factor. When tSA = lg1+ε n, this gives time O(tsearch +k lg k lg1+ε n).

Theorem 5. Given a concatenation T [1, n] of D documents, the top-k most
important retrieval problem can be solved in time O(tsearch + tSAk lg k lgε n) while
using |CSA|+ o(n)+D lg n

D +O(D) bits of space, where tsearch is the time to find
the suffix array interval of pattern P in the CSA of T , tSA is the time to compute
a position of the suffix array or its inverse, and ε > 0 is any constant.

The result of Hon et al. [11] is achieved by using chunks of b = k	 positions for
	 = lg2+ε n (for the more refined complexity we use 	 = lg k lg(D/k) lgε n). Our
idea is to further divide those chunks into lg(D/k) buckets of size b′ = k lg k lgε n.

396 D. Belazzougui and G. Navarro

For each chunk we build a small local sampled suffix tree. A query will then span
at most one global node, two local nodes, and two tail buckets.

Consider the endpoints p1 . . . pr of the buckets inside a given chunk, and call
v = lca(p1, pr) the lowest sampled global suffix tree node that covers the chunk.
Just as for the global scheme, find in the suffix tree the lca nodes of each pair
of consecutive endpoints, lca(pi, pi+1). All those lca nodes are below v or are v.

There are overall O(n/b′) local sampled nodes. Moreover, if some node u =
lca(pi, pi+1) covers the whole chunk [p1, pr], then it must be an ancestor of
v = lca(p1, pr), but since it is also a descendant of v, we have u = v. That is,
the local sampled suffix tree nodes (that are not already global sampled suffix
tree nodes) cannot cover a chunk and hence span less than 2b positions.

Instead of storing the top-k document identifiers using O(k lg(D/k)) bits,
for these local sampled nodes we will store the positions of some occurrence of
those identifiers within the local sampled node, sorted by increasing position.
The identifier must be obtained with an access to that position, which will
not change the complexity. Since local positions span less than 2b, they require
O(k lg(b/k)) = O(k lg) = O(k lg lg n) bits. The tree topology itself will require
2+o(1) bits per node, as for the global tree. The total space for a given k = 2j is
O((n/b′)k lg lg n) = O(n lg lg n

lg k lgε n), which added over all k = 2j values gives o(n)
bits overall. We also must store a local node identifier yi = preorder (lca(pi, pi+1))
for each bucket, which requires O((n/b′) lg b) = O(n lg k+lg lg n

k lg k lgε n) = O(n lg lg n
k lgε n),

which added over all k = 2j values gives o(n) bits as well.
To query, we determine the interval A[sp, ep] of P and the covered chunk

[L, R], the covered bucket [l1, r1 = Lb′/b] to the left of chunk L, and the covered
bucket [l2 = Rb′/b, r2] to the right of chunk R. Then we find the global sampled
node v = lca(xL, xR−1), and the local sampled nodes u1 = lca(yl1 , yr1−1) and
u2 = lca(yl2, yr2−1). If u1 or u2 are equal to v we discard them. Now we take
the at most 3k candidates from v, u1 and u2, and also consider the elements in
E[sp, r1b

′ − 1] and E[b′l2 + 1, ep]. The time is O(tSA(k + b′)) to extract all the
candidate identifiers, plus O(k lg lg n) to maintain a heap of the smallest k values
seen in the process using a y-fast trie [25]. The time adds up to O(tSAk lg k lgε n).

6 Final Remarks

A natural next step is to implement these solutions. Many of our improvements
are easy to implement, and practical implementations of mmphfs exist [3]. A
recent empirical work [18] shows that the individual CSAd’s pose much space
overhead, at least if implemented naively. Instead, they compress wavelet trees
to 7-17 bpc (bits per text character), compared to the 4.5-6.0 bpc of the global
CSA. Over their same collections, our mmphf implementation takes 3-5 bpc and
gives sub-microsecond times. This shows that the alternative of using mmphfs
is very appealing compared to both using CSAd’s or wavelet trees.

References

1. Apostolico, A.: The myriad virtues of subword trees. In: Combinatorial Algorithms
on Words. NATO ISI Series, pp. 85–96. Springer, Heidelberg (1985)

Improved Compressed Indexes for Full-Text Document Retrieval 397

2. Belazzougui, D., Boldi, P., Pagh, R., Vigna, S.: Monotone minimal perfect hashing:
searching a sorted table with o(1) accesses. In: SODA, pp. 785–794 (2009)

3. Belazzougui, D., Boldi, P., Pagh, R., Vigna, S.: Theory and practise of monotone
minimal perfect hashing. In: ALENEX (2009)

4. Culpepper, J.S., Navarro, G., Puglisi, S.J., Turpin, A.: Top-k ranked document
search in general text databases. In: de Berg, M., Meyer, U. (eds.) ESA 2010.
LNCS, vol. 6347, pp. 194–205. Springer, Heidelberg (2010)

5. Ferragina, P., Manzini, G., Mäkinen, V., Navarro, G.: Compressed representations
of sequences and full-text indexes. ACM Trans. Alg. 3(2), art. 20 (2007)

6. Fischer, J.: Optimal succinctness for range minimum queries. In: López-Ortiz, A.
(ed.) LATIN 2010. LNCS, vol. 6034, pp. 158–169. Springer, Heidelberg (2010)

7. Gagie, T., Navarro, G., Puglisi, S.J.: Colored range queries and document re-
trieval. In: Chavez, E., Lonardi, S. (eds.) SPIRE 2010. LNCS, vol. 6393, pp. 67–81.
Springer, Heidelberg (2010)

8. Gagie, T., Puglisi, S.J., Turpin, A.: Range quantile queries: Another virtue of
wavelet trees. In: Karlgren, J., Tarhio, J., Hyyrö, H. (eds.) SPIRE 2009. LNCS,
vol. 5721, pp. 1–6. Springer, Heidelberg (2009)

9. Grossi, R., Gupta, A., Vitter, J.: High-order entropy-compressed text indexes. In:
SODA, pp. 841–850 (2003)

10. Grossi, R., Orlandi, A., Raman, R.: Optimal trade-offs for succinct string indexes.
In: Abramsky, S., Gavoille, C., Kirchner, C., Meyer auf der Heide, F., Spirakis, P.G.
(eds.) ICALP 2010. LNCS, vol. 6198, pp. 678–689. Springer, Heidelberg (2010)

11. Hon, W.-K., Shah, R., Vitter, J.S.: Space-efficient framework for top-k string re-
trieval problems. In: FOCS, pp. 713–722 (2009)

12. Karpinski, M., Nekrich, Y.: Top-k color queries for document retrieval. In: SODA,
pp. 401–411 (2011)

13. Manber, U., Myers, G.: Suffix arrays: a new method for on-line string searches.
SIAM J. Comp. 22(5), 935–948 (1993)

14. Manzini, G.: An analysis of the Burrows-Wheeler transform. J. ACM 48(3), 407–
430 (2001)

15. Munro, I.: Tables. In: Chandru, V., Vinay, V. (eds.) FSTTCS 1996. LNCS,
vol. 1180, pp. 37–42. Springer, Heidelberg (1996)

16. Muthukrishnan, S.: Efficient algorithms for document retrieval problems. In:
SODA, pp. 657–666 (2002)

17. Navarro, G., Mäkinen, V.: Compressed full-text indexes. ACM Comp. Surv. 39(1),
art. 2 (2007)

18. Navarro, G., Puglisi, S.J., Valenzuela, D.: Practical compressed document retrieval.
In: Pardalos, P.M., Rebennack, S. (eds.) SEA 2011. LNCS, vol. 6630, pp. 193–205.
Springer, Heidelberg (2011)

19. Okanohara, D., Sadakane, K.: Practical entropy-compressed rank/ select dictio-
nary. In: ALENEX (2007)

20. Pǎtraşcu, M.: Succincter. In: FOCS, pp. 305–313 (2008)
21. Raman, R., Raman, V., Rao, S.: Succinct indexable dictionaries with applications

to encoding k-ary trees and multisets. In: SODA, pp. 233–242 (2002)
22. Sadakane, K.: Succinct data structures for flexible text retrieval systems. J. Discr.

Alg. 5(1), 12–22 (2007)
23. Sadakane, K., Navarro, G.: Fully-functional succinct trees. In: SODA, pp. 134–149

(2010)
24. Välimäki, N., Mäkinen, V.: Space-efficient algorithms for document retrieval. In:

Ma, B., Zhang, K. (eds.) CPM 2007. LNCS, vol. 4580, pp. 205–215. Springer,
Heidelberg (2007)

25. Willard, D.E.: Log-logarithmic worst-case range queries are possible in space θ(n).
Inf. Process. Lett. 17(2), 81–84 (1983)

ESP-Index: A Compressed Index Based on

Edit-Sensitive Parsing

Shirou Maruyama1, Masaya Nakahara2,
Naoya Kishiue2,�, and Hiroshi Sakamoto2,3,��

1 Kyushu University, 744 Motooka, Nishi-ku, Fukuoka-shi, Fukuoka 819-0395
2 Kyushu Institute of Technology, 680-4 Kawazu, Iizuka-shi, Fukuoka, 820-8502

3 PRESTO JST, 4-1-8 Honcho Kawaguchi, Saitama 332-0012, Japan
shiro.maruyama@i.kyushu-u.ac.jp, m nakahara@donald.ai.kyutech.ac.jp,

kishiue.n@gmail.com, hiroshi@ai.kyutech.ac.jp

Abstract. We propose a compressed self-index based the edit-sensitive
parsing (ESP). Given a string S, its ESP tree is equivalent to a context-
free grammar deriving just S, which can be represented as a DAG G.
Finding pattern P in S is reduced to embedding P into G. Succinct
data structures are adopted and G is then decomposed into two LOUDS
bit strings and a single array for permutation, requiring (1 + ε)n log n +
4n + o(n) bits for any 0 < ε < 1 where n corresponds to the number of
different symbols in the grammar. The time to count the occurrences of
P in S is in O(log∗u

ε
(m log n+occc(log m log u))), where m = |P |, u = |S|,

and occc is the number of occurrences of a maximal common subtree in
ESP trees of P and S. Using an additional array in n log u bits of space,
our index supports locating P and displaying substring of S. Locating
time is the same as counting time and displaying time for a substring of
length m is O(m + log u).

1 Introduction

We propose a compressed index based on the edit-sensitive parsing (ESP), which
was introduced to approximate a variant of string edit distance where a moving
operation for any substring with unit cost is permitted. For instance, anbn is
transformed to bnan by a single operation. This problem called edit distance with
move is NP-hard, and the distance was proved to be O(log u)-approximable [9]
for strings of length u. Moreover, the harder problem, edit distance matching
with move, was also proved to be approximable within almost O(log u) ratio by
embedding of string into L1 vector space using ESP [3].

When we consider tighter embedding, i.e. a string is embedded into another
one as a substring, this problem becomes the pattern matching. In this work we
use ESP to represent a grammar which is transformed to a compressed index
based on our theoretical results for efficient pattern matching and data structures

� He moved to Hitachi Solutions, Ltd.
�� This work was partially supported by JST PRESTO program.

R. Grossi et al. (Eds.): SPIRE 2011, LNCS 7024, pp. 398–409, 2011.
c© Springer-Verlag Berlin Heidelberg 2011

ESP-Index: A Compressed Index Based on Edit-Sensitive Parsing 399

on ESP. The following outlines the proposed data structures and its operations.
We first preprocess the text S and build ESP tree TS. Given a pattern P , we
construct TP and decomposes it into a sequence of subtrees, whose roots are
labeled by x1, . . . , xk. This sequence is an evidence of occurrence of P in T : S
contains an occurrence of P iff there is a sequence v1, . . . , vk of nodes in TS

such that the label of vi is xi and the subtrees rooted by vi, vi+1 are adjacent
in this order. We should note that P itself is always evidence of P . We design
algorithms to extract as short evidence as possible by analysis of ESP, and to
embed the evidence in TS .

Another contribution is to develop compact data structures for the proposed
algorithms. An ESP is represented by a restricted CFG, and is equivalent to a
DAG G where every internal node has its left and right children. G is then decom-
posed into two in-branching spanning trees. The one called the left tree is con-
structed by the left edges, whereas the other, called the right tree, is constructed
by the right edges. Both the left and right trees are encoded by LOUDS [4], one
of the succinct data structures for ordered trees. Further, correspondence among
the nodes of the trees is stored in a single array. Adding the data structure for
the permutation [5] over the array makes it possible to traverse G. The size of
such data structures is at most (1+ε)n logn+4n+o(n) bits of space for arbitrary
0 < ε < 1, where n is the number of variables in G.

On the other hand, the compression algorithm should refer to a function,
called reverse dictionary to get a name of the variable associated with a digram.
For example, if a production rule Z → XY exists, any occurrence of the digram
XY in P , which is determined to be replaced, should be replaced by the same
Z. Taking up the hash function H(XY) = Z for preprocessing P compels that
index size be increased. Thus our algorithm obtains the names of variables for
P directly from the compressed G using binary search.

The time to count all occurrences of a pattern P in S is O(log∗u
ε (m log n +

occc(log m log u))) time, where m = |P |, u = |S|, and occc is the number of
occurrences of a core in TS , which is the maximal common subtrees of TS and
TP . The other two operations to locate/display are supported by an additional
array requiring n log u bits of space to store the length of the substring encoded
by each variable. This array can be reduced by level-wise sampling because the
ESP tree is balanced. The time to display S[i, j] is O(j − i + log u).

We compare the performance of ESP-index with other practical self-indexes
[6–8] under several reasonable parameters. Beyond that, we give an experimental
result for maximal common substring detection. These common substrings are
obtained to find common variables in compressed TS and TP . In these experi-
ments, we conclude that the proposed index is efficient enough for cases where
the pattern is long.

2 Pattern Matching on ESP

The set of all strings over an alphabet Σ is denoted by Σ∗. The length of a string
w ∈ Σ∗ is denoted by |w|. A string ak (k ≥ 1) is also denoted by a+, and is called

400 S. Maruyama et al.

a repetition, denoted by a++, if k ≥ 2. S[i] and S[i, j] denote the i-th symbol
of S and the substring from S[i] to S[j], respectively. We let log(1) u = log u,
log(i+1) u = log log(i) u, and log∗u = min{i | log(i) u ≤ 1}, i.e. log∗u ≤ 5 for
u ≤ 265536. Thus We can treat any log∗u as constant in a practical sense.

We assume that any context-free grammar G is admissible, i.e., G derives just
one string and for each variable X , exactly one production rule X → α exists.
The set of variables is denoted by V (G), and the set of production rules, called
dictionary, is denoted by D(G). We also assume that for any α ∈ (Σ ∪ V (G))∗

at most one X → α ∈ D(G) exists. We use V and D instead of V (G) and D(G)
when G is omissible. The string derived by D from a string S ∈ (Σ ∪ V)∗ is
denoted by S(D). For example, when S = aY Y and D = {X → bc, Y → Xa},
we obtain S(D) = abcabca.

2.1 Edit-Sensitive Parsing (ESP)

We start with the outline of ESP. For any string, it is uniquely partitioned to
w1a

++
1 w2a

++
2 · · ·wka++

k wk+1 by maximal repetitions, where each ai is a symbol
and wi is a string containing no repetition. Each a++

i is called Type1 metablock,
wi is called Type2 metablock if |wi| ≥ log∗ n, and other short wi is called Type3
metablock, where if |wi| = 1, this is attached to a++

i−1 or a++
i , with preference

a++
i−1 when both are possible. Any metablock is longer than or equal to two.
Let S be a metablock and D be a current dictionary starting with D = ∅. We

set ESP (S, D) = (S′, D ∪D′) for S′(D′) = S and S′ described as follows:

1. In case S is Type1 or Type3 of length k ≥ 2,
(a) If k is even, let S′ = t1t2 · · · tk/2, and make ti → S[2i− 1, 2i] ∈ D′.
(b) If k is odd, let S′ = t1t2 · · · t(k−3)/2 t, and make ti → S[2i− 1, 2i] ∈ D′,

t → S[k − 2]t′, and t′ → S[k − 1, k] ∈ D′, where t0 denotes the empty
string for k = 3.

2. In case S is Type2,
(c) for the partitioned S = s1s2 · · · sk (2 ≤ |si| ≤ 3) by alphabet reduction,

let S′ = t1t2 · · · tk, and make ti → XY ∈ D′ if si = XY and make
ti → XY ′, Y ′ → Y Z ∈ D′ if si = XY Z.

Case (a) and (b) denote a typical left aligned parsing. For example, in case
S = a6, S′ = x3 and x → a2 ∈ D′, and in case S = a9, S′ = x3y and x →
a2, y → ay′, y′ → aa ∈ D′. In Case (c), we omit the description of alphabet
reduction [3] because the details are unnecessary in this paper.

Finally, we define ESP for any string S ∈ (Σ ∪ V)∗ that is partitioned to
S1S2 · · ·Sk by k metablocks; ESP (S, D) = (S′, D ∪ D′) = (S′

1 · · ·S′
k, D ∪ D′),

where D′ and each S′
i satisfying S′

i(D
′) = Si are defined in the above.

Iteration of ESP is defined by ESP i(S, D) = ESP i−1(ESP (S, D)). In partic-
ular, ESP ∗(S, D) denotes the iterations of ESP until |S| = 1. After computing
ESP ∗(S, D), the final dictionary represents a rooted ordered binary tree deriv-
ing S, which is denoted by ET (S). We refer to several characteristics of ESP,
which are bases of our study.

ESP-Index: A Compressed Index Based on Edit-Sensitive Parsing 401

Lemma 1. (Cormode and Muthukrishnan [3]) The height of ET (S) is O(log |S|)
and ET (S) can be computed in time O(|S| log∗|S|) time.

Lemma 2. (Cormode and Muthukrishnan [3]) Let S = s1s2 · · · sk be the par-
tition of a Type2 metablock S by alphabet reduction. For any 1 ≤ j ≤ |S|, the
block si containing S[j] is determined by at most S[j − log∗|S| − 5, j + 5].

2.2 Pattern Embedding Problem

We focus on the problem to find occurrences of P by embedding of P into a pars-
ing tree. Given a parsing tree TS = ET (S) by DS and a pattern P , the key idea is
to compute ESP (P, DS) and find an embedding of resulting tree TP into TS . The
label of node v is denoted by L(v) ∈ Σ ∪ V , and L(v1 · · · vk) = L(v1) · · ·L(vk).
Let yield(v) denote a substring of S derived by L(v), and yield(v1 · · · vk) =
yield(v1) · · · yield(vk). We note that TS and TP are ordered binary trees.

Let us define some notations for ordered binary tree. The parent and left/right
child of node v are denoted by parent(v) and left(v)/right(v), respectively. For
an internal node v, edges (v, left(v)) and (v, right(v)) are called left edge and
right edge. Node v is called the lowest right ancestor of x, denoted by lra(x), if v
is the lowest ancestor satisfying that the path from v to x contains at least one
left edge. If x is a rightmost descendant, lra(x) is undefined. Otherwise, lra(x)
uniquely exists. The lowest left ancestor of x, denoted by lla(x), is similarly
defined. Let v1, v2 be different nodes. If lra(v1) = lla(v2), we call that v1, v2 are
adjacent in this order, and we also call that v1 is left adjacent to v2 (or v2 is
right adjacent to v1). We can derive the following characterization immediately.

fact 1. v1 is left adjacent to v2 iff v2 is a leftmost descendant of right(lra(v1)),
and v2 is right adjacent to v1 iff v1 is a rightmost descendant of left(lla(v2)).

Using this adjacency, we define an embedding of sequence of nodes, v1, . . . , vk

(k ≥ 2), as follows: if vi, vi+1 are adjacent in this order (1 ≤ i ≤ k − 1) and z
is the lowest common ancestor of v1 and vk denoted by z = lca(v1, vk), we state
that the sequence is embedded in z and it is denoted by (v1, . . . , vk) ≺ z. For
such z, if yield(v1 · · · vk) = P , z is called an occurrence node of P . We introduce
a special type of strings to guarantee occurrences of P in S.

Definition 1. A string Q ∈ (Σ ∪ V)∗ of length k satisfying the following con-
dition is called an evidence of P : node z in TS is an occurrence node of P iff
there is a sequence v1, . . . , vk such that (v1, . . . , vk) ≺ z, yield (v1 · · · vk) = P ,
and L(v1 · · · vk) = Q.

For any TS and P , at least one evidence of P exists because P itself is an evidence
of P . We propose an algorithm to find as short evidence as possible for given
TS and P ; we also propose another algorithm to find all occurrences of P in S
using obtained evidence.

402 S. Maruyama et al.

Find evidence(P,DS)
let D′ ← ∅, Qp = Qs be the empty string;
while(|P | > 1){ /* appending prefix and suffix of P to Q */

let P = αβγ for the first/last metablock α/γ; /* possibly |βγ| = 0 */
(P ′, DS ∪ D′) ← ESP (P, DS), where

P ′ = α′β′γ′, α′(D′) = α, β′(D′) = β, γ′(D′) = γ;

if(α is Type1 or 3) {Qp ← Qpα, remove the prefix α′ of P ′;}
else{

let α = α1 · · ·α�, α′ = p1 · · · p�, where pi → αi ∈ D′;
Qp ← Qpα1 · · ·αj , remove the prefix p1 · · · pj of P ′ for j = min(log∗u + 5, �);

}/* the bound j for prefix is guaranteed by Lemma 2 */

if(γ is Type1 or 3) {Qs ← γQs, remove the suffix γ′ of P ′;}
else{

let γ = γ1 · · · γr, γ′ = q1 · · · qr, where qi → γi ∈ D′;
Qs ← γr−j · · · γrQs, remove the suffix qr−j · · · qr of P ′ for j = min(5, r);

}/* the bound j for suffix is also from Lemma 2 */
P ← P ′, DS ← DS ∪ D′, D′ ← ∅; /* update */

} if(|QpQs| > 0) return Q ← QpQs; else return P ;

Fig. 1. Algorithm to find evidence of pattern P using dictionary DS from ESP ∗(S,D)

3 Algorithms and Data Structures

We propose two algorithms: one generates an evidence Q of pattern P from pre-
processed ESP ∗(S, D) = (S′, DS), and the other algorithm finds the occurrence
node z of P such that (v, v1 . . . , vk) ≺ z for given Q and v in TS satisfying
L(v) = Q[1]. Finally, we propose data structures to access the next node v′ sat-
isfying L(v′) = L(v) for each v in TS . By this, all occurrences of P are found to
check if (v, v1 . . . , vk) ≺ z for all candidates v satisfying L(v) = Q[1].

3.1 Finding Evidence of Pattern

The algorithm to generate evidence Q of pattern P is described in Fig. 1.
An outline follows. Input is a pair of pattern P and final dictionary DS from
ESP ∗(S, D). P is partitioned to P = αβγ for the first metablock α and the
last metablock γ. Depending on the type of metablocks, P is further parti-
tioned to P = αpαsβγpγs. The algorithm then updates current Q = QpQs by
Qp ← Qpαp and Qs ← γsQs, and P ← P ′ such that P ′ is the string produced
by ESP (αsβγp, DS). This is continued until P is entirely deleted.

Lemma 3. Let Q be an output string of Find evidence(P, DS) and let Q =
Q1 · · ·Qk, Qi ∈ {q+

i } for some symbol qi and qi �= qi−1, qi+1. Then Q is an
evidence of P satisfying k = O(log m log∗u) for m = |P |.

ESP-Index: A Compressed Index Based on Edit-Sensitive Parsing 403

Proof. For P = αβγ by the first/last metablock α/γ, if α, γ are Type1 or 3, αβγ
is clearly an evidence of P . In this case, any occurrence of β inside S[n, m] = αβγ
is transformed to a same β′ in this while loop. Thus, αβ′γ is an evidence of P .

If α, γ are Type2, by alphabet reduction, the prefix α of P is partitioned to
α = α1 · · ·α� (2 ≤ |αi| ≤ 3). Then j = min(log∗u + 5,) is determined and
α1 · · ·αj is appended to current Q, and a short suffix of γ is similarly appended
to Q. By Lemma 2, for any S = xβy (|x| ≥ log∗u + 5, |y| ≥ 5), any occurrence
of β inside S[n, m] = xβy is transformed to a same β′ in this while loop. The
selected j for α satisfies either |α1 · · ·αj | ≥ log∗u + 5 or α1 · · ·αj = α and the
selected j for β similarly satisfies either |γr−j · · · γr| ≥ 3 or γr−j · · · γr = γ. Thus
we can obtain an evidence α1 · · ·αjβ

′γr−j · · ·γr of P , and the other cases, one
of α, γ is Type1 or 3 and the other is Type2, are similarly proved.

Applying the above analysis to β′ until its length becomes one, we can finally
obtain Q as an evidence of P . The number of iterations of ESP (P, D) = (P ′, D∪
D′) is O(log m) because |P ′| ≤ |P |/2. In i-th iteration, if current Q = QpQs is
updated to QpαpγsQs, αpγs contains O(log∗u) different symbols. Therefore we
conclude k = O(log m log∗u). �

3.2 Finding Pattern Occurrence

The algorithm to find an occurrence node of P is described in Fig. 2. Using
Find evidence(P, DS) as subroutine, the algorithm Find pattern(Q, DS, v, TS)
finds an embedding (v, v1, . . . , v�) ≺ z satisfying yield(vv1 · · · v�) = P for fixed v
having the label Q[1]. By Lemma 3, such z exists iff z is an occurrence node of
P . We show the correctness of this algorithm and the time complexity.

Lemma 4. Find pattern(Q, DS , v, TS) outputs node z in TS iff z is an occur-
rence node of P satisfying (v, v1, . . . , v�) ≺ z for some v1, . . . , v� and fixed v in
TS. The time complexity is O(log m log u log∗u) for m = |P | and u = |S|.

Proof. We outline the proof. For any node v in TS and q ∈ Σ ∪ V , we can check
if (v, v′) ≺ z and L(v′) = q for some nodes v′, z in O(log u) time because such v′

must be a leftmost descendant of right(lra(v)) and the height of TS is O(log u).
Let Q = Q1 · · ·Qk and Qi ∈ {q++

i } for some qi ∈ Σ ∪ V . If Q contains no
repetition and we assume that (v1, . . . , vj) ≺ z is found for Q1 · · ·Qj = q1 · · · qj .
From (vj , vj+1) ≺ z′ and L(vj+1) = qj+1, we obtain (v1, . . . , vj+1) ≺ lca(z, z′)
in O(log u) time because z, z′ must be in a same path. Thus an embedding of
length at most O(log m log∗u) from v is computed in O(log m log u log∗u) time.

Let Qj = q� for some symbol q and 	 ≥ 2. In ESP, any repetition is trans-
formed to a shorter string by the left aligned parsing, and this transformation
is continued as long as the resulting string contains a repetition. Thus, by TS ,
an occurrence S[s, t] = q� is partitioned to S[s, t] = S[s1, t1]S[s2, t2] · · ·S[sk, tk]
such that |S[si, ti]| = 2�i ≥ 1, vi in TS is the root of the complete binary tree
deriving S[si, ti], and k = O(log). Let S[si, ti] be the longest segment. We note
that all symbols in current string are replaced by the next iteration of ESP. By
this characteristic, when S[si, ti] is transformed to S′[j], the adjacent digram

404 S. Maruyama et al.

Find pattern(Q,DS , v, TS) /* L(v) = Q[1] */
let Q = Q1 · · ·Qk, Qi ∈ {q+

i }, qi ∈ Σ ∪ V , qi �= qi−1, qi+1;
initialize j ← 1, z ← v; /* current block Qj and embedding in z */
if(|Q| = 1) return z;
while(j ≤ k){

if(|Qj | = 1){ /* block Qj is just one symbol */
if((v, v′) ≺ z′, L(v′) = qj+1 for some v′, z′ in TS)

v ← v′, z ← lca(z, z′), j ← j + 1;
else return 0;

}
else{ /* block Qj is a repetition */

� ← |Qj |;
while(� > 0){ /* find maximal complete binary tree parsing q++

j */
if((v, v′) ≺ z′, L(v′) = qj for some v′, z′ in TS){

let va be the highest ancestor of v′ satisfying X0 = L(va), Xd = qj ,
X0 → X2

1 , . . . , Xd−1 → X2
d ∈ DS , 1 ≤ 2d ≤ �;

v ← va, z ← lca(z, z′), � ← � − 2d;
}/* next complete binary tree until whole q++

j is covered */
else return 0;

}j ← j + 1;
}

}return z;

Fig. 2. Algorithm to find occurrence node of P starting with a given node v

S′[j − 2, j − 1] derives a string containing S[s1, t1] · · ·S[si−1, ti−1] as its suffix.
Thus, we can check if (v1, . . . , vi−1) ≺ vp for some vp in O(log 	 + log u) =
O(log m + log u) time. The time to check if (vp, vi) ≺ z is O(log u). Hence, the
time to embed q� is O(log m + log u). Therefore, we find the occurrence of P in
O(log m log∗u(logm + log u)) = O(log m logu log∗u) time. �

3.3 Data Structures

We develop compact data structures for Find pattern(Q, DS , v, TS) to access a
next occurrence of v satisfying L(v) = q for any q ∈ Σ∪V . These improvements
are achieved by two techniques: one is decomposition of DAG into left tree and
right tree; the other is simulation of the reverse dictionary for pattern compres-
sion. First we treat decomposition of DAG G, which is a graph representation
of DS . Introducing a super sink v0 together with left and right edges from any
sink of G to v0, G can be modified to have the unique source/sink.

fact 2. Let G be a DAG with single source/sink such that any node except the
sink has exactly two children. For any in-branching spanning tree of G, the graph
defined by the remaining edges is also an in-branching spanning tree of G.

ESP-Index: A Compressed Index Based on Edit-Sensitive Parsing 405

x2 → x0, x1

x3 → x0, x2

x4 → x0, x5

x5 → x1, x0

x6 → x2, x5

x7 → x3, x4

x8 → x6, x5

x9 → x7, x8

CFG G DAG representation of G
with a super sink

x3

x2

x4

x5

x7

x6

x9
x8

x3

x2

x4

x5

x7

x6

x9
x8

0 1

3

4

8

9
6

5

2
7

TL TR

y7

y3

y4

y2

y8

y5

y9
y6

y0 y1

node in TL

node in TR

x0 x1 x2 x3 x4 x5 x6 x7 x8 x9

y0 y1 y3 y7 y4 y2 y5 y8 y6 y9

Correspondence of nodes

1011010101110101001000010110111010101000101000
LOUDS(TL) LOUDS(TR)

x0 x1 x0 x1

Fig. 3. Succinct representation of a CFG by left tree and right tree in LOUDS bit-string
with a permutation array

In-branching spanning tree of G constructed by left edges only is called left
tree of G and denoted by TL. Thus the complementary tree is called right tree of
G and denoted by TR. An example of G and its left/right tree is shown in Fig. 3
with its succinct representation proposed hereafter.

When a DAG is decomposed into TL and TR, the two are represented by
succinct data structures for ordered trees and permutations. The bit-string by
LOUDS in [4] for an ordered tree is defined as shown below. We visit any node
in level-order from the root. As we visit a node v with d ≥ 0 children, we append
1d0 to the bit-string beginning with the empty string. Finally, we add 10 as the
prefix corresponding to an imaginary root, which is the parent of the root of the
tree. For the n-node tree, LOUDS uses 2n + o(n) bits to support constant time
access to the parent, the i-th child, and the number of children of a node.

To traverse G equivalent to TS , we also need the correspondence of nodes in
one tree to the other. For this purpose, we employ the succinct data structure
for permutation in [5]. For a given permutation π of N = (0, . . . , n − 1), using
(1 + ε)n log n + o(n) bits of space, this data structure supports access to π[i]
in O(1) time and π−1[i] in O(1/ε) time. For instance, if π = (2, 3, 0, 4, 1), then
π[2] = 0 and π−1[4] = 3; that is, π[i] is the i-th member of π and π−1[i] is the
position of the member i. For each node i in LOUDS(TL) and the corresponding
node j in LOUDS(TR), we can get the relation by π[i] = j and π−1[j] = i.

We introduce another preprocess for G. For each iteration ESP (S, D) =
(S′, D ∪ D′), we rename new variables in D′ and S′ by sorting1 all production
rules X → XiXj ∈ D′ by (i, j): If the rank of X → XiXj is k, all occur-
rences of X in D′ and S′ are renamed to Xk. For example, D′ = {X1 → ab,

1 A similar technique was proposed in [2] but variables are sorted by encoded strings.

406 S. Maruyama et al.

X2 → bc, X3 → ac, X4 → aX2} and S′ = X1X2X3X4 are renamed to D′ =
{X1 → ab, X2 → ac, X3 → aX4, X4 → bc} and S′ = X1X4X2X3. Thus, variable
Xi in G coincides with node i in LOUDS of TL because they are both named in
level-order. The G in Fig. 3 is already renamed. By this improvement, the size
of the array required for node correspondence is reduced to n log n bits of space.

Finally we simulate the reverse dictionary using G for pattern compression.
When ESP ∗(S, D) is computed, the naming function HS(XY) = Z defined by
Z → XY ∈ D is realized by a hash function. However, because our index does
not contain this data structure, we must simulate HS by only G to obtain an
evidence of P . By preprocessing, variable Xk corresponds to the rank of its left
hand side XiXj for Xk → XiXj . Conversely, given Xi, the children of Xi in TL

are already sorted by the ranks of their parents in TR. Because LOUDS supports
referring to the number of children and i-th child, HS(XiXj) = Xk is obtained
by binary search in the following time complexity.

Lemma 5. The function HS(XY) = Z is computable in O(1
ε log k) = O(1

ε log n)
time, where k is the maximum degree and n is the number of nodes of TL.

Theorem 1. The size of ESP-index for string S is (1+ε)n logn+4n+o(n) bits
of space, where n is the number of variables in TS . With pattern P , the number
of its occurrence in S is computable in O(log∗u

ε (m log n+occc(log m log u))) time
for any 0 < ε < 1, where u = |S|, m = |P |, and occc is the number of occurrences
of a maximal common subtree in TS and TP .

Proof. We can modify Find pattern to find (v1, . . . , vk) ≺ z from vk to v1. Thus,
starting with v� labeled by q which encodes a longest string, we can find z by
(v1, . . . , v�) ≺ z1, (v�, . . . , vk) ≺ z2, and (v1, . . . , vk) ≺ lca(z1, z2) = z. This
derives the time bound. �

Locating and displaying are realized by an additional array to store the length
of each variable. Since ESP tree is balanced, we obtain the bound below.

Corollary 1. With additional n log u + o(n) bits of space, ESP-index supports
locating P and displaying S[i, j]. The time to locate is the same as the case of
counting, and the time to display a substring of length m is O(m + log u).

4 Experiments

The environment is OS:CentOS 5.5 (64-bit), CPU:Intel Xeon E5504 2.0GHz
(Quad)×2, Memory:144GBRAM, HDD:140GB, and Compiler:gcc 4.1.2. Datasets
of English texts and DNA sequences of 200MB each are obtained from the text
collection in Pizza&Chili Corpus.2

We first show how a long string is encoded by evidence of pattern in Fig. 4.
This figure shows the maximum length of a string encoded by a symbol in ev-
idence Q according to the pattern length. We call this symbol in Q a core. By
2 http://pizzachili.dcc.uchile.cl/texts.html

http://pizzachili.dcc.uchile.cl/texts.html

ESP-Index: A Compressed Index Based on Edit-Sensitive Parsing 407

0

10

20

30

40

50

60

ENGLISH

DNA

Encoded Length by Core / Pattern Length[%]

Pattern Length

Fig. 4. Encoded String Length by Core / Pattern Length

0

50

100

150

200

250

300
[MBytes] Index Size

ENGLISH DNA

ESP (1/ε=1)

ESP (1/ε=4)

LZI-1

CSA (-P1:64)

CSA (-P1:256)

FMI (-P4:512)

FMI (-P7:128)

Fig. 5. Index Size

0

50

100

150

200

250

300
ESP (1/ε=1)

ESP (1/ε=4)

LZI-1

CSA (-P1:64,
-P1:256)
FMI (-P4:512)

FMI (-P7:128)

ENGLISH DNA

Construc�on Time[sec]

Fig. 6. Construction Time

this result, sufficiently long common substrings in S1 and S2 are extracted as
common variables in ET (S1) and ET (S2).

We next compare our ESP-index with other compressed indexes referred to
as LZ-index (LZI)3, Compressed Suffix Array, and FM-index (CSA and FMI)4.
These implementations are based on [6–8]. Due to the trade-off between con-
struction time and index size, the indexes referred to above are examined with
respect to reasonable parameters.

For ESP-index, we set ε = 1, 1/4 for permutation. In CSA, the option (-P1:L)
means that the ψ function is encoded by the gamma function and L specifies
the block size for storing ψ. In FMI, (-P4:L) means that BW-text is represented
by a Huffman-shaped wavelet tree with compressed bit-vectors and L specifies
the sampling rate for storing rank values; (-P7:L) is the uncompressed version.
In addition, these CSA and FMI do not make indexes for occurrence position.

The result of index size is shown in Fig. 5, where the space for locating is
removed in all indexes except LZI; total index size including the space for lo-
cating/displaying is shown in the last two tables. Fig. 5 reveals that ESP-index
is compact enough and comparable to CSA(-P1:64). The result of construc-
tion time is shown in Fig. 6. It is deduced from this result that ESP-index is

3 http://pizzachili.dcc.uchile.cl/indexes/LZ-index/LZ-index-1
4 http://code.google.com/p/csalib/

http://pizzachili.dcc.uchile.cl/indexes/LZ-index/LZ-index-1
http://code.google.com/p/csalib/

408 S. Maruyama et al.

search time (DNA)

0.001

0.01

0.1

1

10

100

1000

5
2
0

6
0

1
0
0

4
0
0

8
0
0

2
0
0
0

6
0
0
0

1
0
0
0
0

4
0
0
0
0

8
0
0
0
0

2
0
0
0
0
0

pattern [Byte]

s
e
a
r
c
h

t
im

e

[
m

s
e
c
]

search time (ENGLISH)

0.01

0.1

1

10

100

1000

5
2
0

6
0

1
0
0

4
0
0

8
0
0

2
0
0
0

6
0
0
0

1
0
0
0
0

4
0
0
0
0

8
0
0
0
0

2
0
0
0
0
0

pattern [Byte]

s
e
a
r
c
h

t
im

e

[
m

s
e
c
]

ESP(ε=1)

ESP(ε=1/4)

LZI

CSA (-P1:64)

CSA (-P1:256)

FMI (-P4:512)

FMI (-P7:128)

Fig. 7. Counting Time

comparable with FMI and CSA in the parameters in construction time, and
slower than LZI. Further, a conspicuous difference is not seen in construction
time.

Fig. 7 shows the time to count the occurrences of pattern for both types of
English and DNA. Random5 selection of pattern from the text was made 1000
times for each fixed pattern length; the search time indicates the average time.
In this implementation, we modified our search algorithm so that the core q is
extracted by preprocessing a short prefix of P . And an occurrence of P in S
is examined by finding q and the exact match of the remaining substrings by
partial decoding of the compressed S. By preliminary experiments, we determine
the length of preprocessed prefix to be 1% of u = |P | in practice. In DNA and
ENGLISH, our method is faster than LZI and CSA in case of long patterns.

Finally, we show the results of locating and displaying in Table 1 and Table 2
respectively. Locating is achieved with an additional array to store the length
of the encoded string for each variable. Because ESP tree is balanced, the size
of this array is reduced by level-wise sampling; in this experiment, the array is
developed only for variables produced in odd level of ESP. In CSA/FMI, option
-I:{D}:{D2} indicates sampling parameter D for suffix array and D2 for the
reverse array. We get better results for m = 100 than for m = 1000. This is
because the frequency of longer pattern becomes one and the search time is thus
proportional to m. For comparison of theoretical time/space bound, see e.g. [2].

5 Discussion

We have another motivation to apply our data structures to practical use. Origi-
nally, ESP was proposed to solve a difficult variant of the edit distance by finding
the maximal common substrings of two strings. Thus, our method will exhibit
its ability if both strings are sufficiently long. Such situations are found in the
framework of normalized compression distance [1] to compare two long strings
directly. Improving log m logu in time complexity is also an important work.
5 The result for random generated pattern is omitted because the search time immedi-

ately converges under milliseconds in ESP, CSA, and FMI due to its rare occurrence.

ESP-Index: A Compressed Index Based on Edit-Sensitive Parsing 409

Table 1. Locating Time

ENGLISH
index size locating time [sec]
[Kbytes] m = 10 m = 100 m = 1000

ESP (1/ε = 4) 223292 84.27 0.93 2.44

ESP (1/ε = 1) 282646 60.76 0.67 1.81

ESP sparse (1/ε = 4) 181756 88.91 0.97 2.47

ESP sparse (1/ε = 1) 241110 73.09 0.67 1.81

LZI-1 290915 0.61 2.00 30.12

CSA (-P1:64 -I:4:0) 308927 0.81 0.67 3.36

CSA (-P1:64 -I:256:0) 107327 53.65 0.96 3.76

CSA (-P1:256 -I:4:0) 288307 1.21 1.32 8.35

CSA (-P1:256 -I:256:0) 86707 82.41 1.94 7.81

FMI (-P4:512 -I:4:0) 265706 2.24 0.55 3.46

FMI (-P4:512 -I:256:0) 64106 180.51 1.22 4.26

FMI (-P7:128 -I:4:0) 336193 0.80 0.33 1.43

FMI (-P7:128 -I:256:0) 134593 55.48 0.78 1.77

DNA

index size locating time [sec]
[Kbytes] m = 10 m = 100 m = 1000

212847 1923.45 0.63 1.73

269424 1271.55 0.46 1.33

170954 1701.10 0.77 1.78

227532 1400.90 0.46 1.32

214161 7.23 0.77 16.34

314529 1.79 0.66 3.56

112929 168.83 1.02 3.17

293865 3.02 1.41 8.67

92265 314.05 1.43 8.81

255483 3.94 0.36 2.54

53883 412.22 0.64 2.59

268264 1.17 0.19 0.67

66664 96.22 0.25 0.59

Table 2. Displaying Time

ENGLISH
index size displaying time [sec]
[Kbytes] m = 10 m = 100 m = 1000

ESP (1/ε = 4) 223292 0.09 0.37 1.63

ESP (1/ε = 1) 282646 0.07 0.25 1.18

ESP sparse (1/ε = 4) 181756 0.16 0.47 2.58

ESP sparse (1/ε = 1) 241110 0.10 0.37 1.99

LZI-1 290915 0.01 0.04 0.27

CSA (-P1:64 -I:0:4) 308927 0.04 0.28 1.20

CSA (-P1:64 -I:0:256) 107327 0.30 0.47 1.22

CSA (-P1:256 -I:0:4) 288307 0.04 0.31 1.83

CSA (-P1:256 -I:0:256) 86707 0.25 0.53 2.17

FMI (-P4:512 -I:0:4) 265706 0.09 0.39 2.52

FMI (-P4:512 -I:0:256) 64106 0.09 0.41 2.27

FMI (-P7:128 -I:0:4) 336193 0.05 0.30 0.94

FMI (-P7:128 -I:0:256) 134593 0.08 0.37 1.10

DNA

index size displaying time [sec]
[Kbytes] m = 10 m = 100 m = 1000

212847 0.12 0.21 1.08

269424 0.05 0.16 0.80

170954 0.14 0.34 2.20

227532 0.09 0.30 1.80

227532 0.01 0.03 0.20

314529 0.03 0.27 1.16

112929 0.31 0.34 1.28

293865 0.05 0.21 1.69

92265 0.22 0.60 2.01

255483 0.05 0.27 1.41

53883 0.04 0.27 1.67

268264 0.05 0.18 0.58

66664 0.05 0.16 0.44

References

1. Cilibrasi, R., Vitanyi, P.M.B.: Clustering by compression. IEEE Transactions on
Information Theory 51(4), 1523–1545 (2005)

2. Claude, F., Navarro, G.: Self-indexed text compression using straight-line programs.
In: Královič, R., Niwiński, D. (eds.) MFCS 2009. LNCS, vol. 5734, pp. 235–246.
Springer, Heidelberg (2009)

3. Cormode, G., Muthukrishnan, S.: The string edit distance matching problem with
moves. ACM Trans. Algor. 3(1), Article 2 (2007)

4. Delpratt, O., Rahman, N., Raman, R.: Engineering the LOUDS succinct tree rep-
resentation. In: Àlvarez, C., Serna, M. (eds.) WEA 2006. LNCS, vol. 4007, pp.
134–145. Springer, Heidelberg (2006)

5. Munro, J.I., Raman, R., Raman, V., Rao, S.S.: Succinct representations of permuta-
tions. In: Baeten, J.C.M., Lenstra, J.K., Parrow, J., Woeginger, G.J. (eds.) ICALP
2003. LNCS, vol. 2719, pp. 345–356. Springer, Heidelberg (2003)

6. Navarro, G.: Indexing text using the ziv-lempel tire. Journal of Discrete Algo-
rithms 2(1), 87–114 (2004)

7. Navarro, G., Makinen, V.: Compressed full-text indexes. ACM Computing Sur-
veys 39(1), Article 2 (2007)

8. Sadakane, K.: New text indexing functionalities of the compressed suffix arrays. J.
Algorithms 48(2), 294–313 (2003)

9. Shapira, D., Storer, J.A.: Edit distance with move operations. J. Discrete Algo-
rithms 5(2), 380–392 (2007)

Compressed Indexes for

Aligned Pattern Matching�

Sharma V. Thankachan

Department of CS, Louisiana State University, USA
thanks@csc.lsu.edu

Abstract. In many situations like protein sequences, the primary pro-
tein sequence is associated with secondary structure labels [6]. This can
be treated as two sequences aligned character by character. Many other
DNA and RNA sequences involve linkages which are aligned across or in
the same or different strands. In this paper, we consider the most natural
characterization of aligned string data.

The aligned pattern matching problem is to index two input texts
T1[1...n] and T2[1...n], each having n characters taken from an alphabet
set Σ of size σ = polylog(n), such that the following query can be an-
swered efficiently: given two query patterns P1 and P2, find all the text
positions i such that P1 matches with T1[i...(i+ |P1|−1)] and P2 matches
with T2[i...(i + |P2| − 1)]. Our objective is to design a compressed space
index for this problem and we obtained the following main results: when
the query patterns are sufficiently long (|P1|, |P2| > α = Θ(log2+2ε n),
where ε > 0), we can design an index which takes nH ′

k +nH ′′
k +o(n log σ)

bits space and O(|P1| + |P2| + log4+4ε n + t) query time, where H ′
k and

H ′′
k denotes the empirical kth-order entropy (k = o(logσ n)) of T1 and

T2 respectively, t represents the number of outputs and ε > 0. Further
we show that designing a compressed/succinct space index with poly-
logarithmic query time, which works for query patterns of all lengths is
at least as hard as designing a linear space index for 3-dimensional or-
thogonal range reporting with poly-logarithmic query time. However, we
introduce another compressed index of nH ′

k + nH ′′
k + O(n) + o(n log σ)

bits space requirement with a query time of O(|P1|+ |P2|+
√

nt log2+ε n)
which works without any restriction on the length of the patterns.

1 Introduction and Related Work

In many situations like protein sequences, the primary protein sequence is asso-
ciated with secondary structure labels [6]. This can be treated as two sequences
aligned character by character. Many other DNA and RNA sequences involve
linkages which are aligned across or in the same or different strands. In this
paper, we consider the most natural characterization of aligned string data.

Given two input texts T1[1...n] and T2[1...n], each having n characters taken
from an alphabet set Σ of size σ = polylog(n), the aligned pattern matching
� This work is supported in part by Taiwan NSC Grant 99-2221-E-007-123 (W. Hon)

and US NSF Grant CCF–1017623 (R. Shah).

R. Grossi et al. (Eds.): SPIRE 2011, LNCS 7024, pp. 410–419, 2011.
c© Springer-Verlag Berlin Heidelberg 2011

Compressed Indexes for Aligned Pattern Matching 411

problem is to index T1 and T2 such that the following query can be answered
efficiently: given two query patterns P1 and P2, find all the text positions i such
that P1 matches with T1[i...(i+|P1|−1)] and P2 matches with T2[i...(i+|P2|−1)].
That is, let L1 be the list of positions where P1 matches T1 and let L2 be the
list of positions where P2 matches T2, then the output is the intersection of L1

and L2. Hon et. al. [11] studied this problem and gave an algorithm based on
a heuristic for fast intersection of lists which requires to access the elements in
the lists in some order. However, intersection algorithms will not be efficient
when the size of output is much smaller when compared to the size of lists to be
intersected. Our objective is to design a compressed space index for this problem
and we obtain the following main results:

1. For sufficiently long query patterns (|P1|, |P2| > α = Θ(log2+2ε n), where
ε > 0), we can design an index which takes nH ′

k + nH ′′
k + o(n log σ) bits

space and O(|P1|+|P2|+log4+4ε n+t) query time, where H ′
k and H ′′

k denotes
the empirical kth-order entropy (k = o(logσ n)) of T1 and T2 respectively, t
represents the number of outputs and ε > 0.

2. Hardness of the problem: Designing a compressed/succinct space index
(O(n log σ) bits) with poly-logarithmic query time, which works for query
patterns of all lengths is at least as hard as designing a linear space index
(O(n log n) bits) for 3-dimensional orthogonal range reporting with poly-
logarithmic query time.

3. We propose a compressed index of nH ′
k +nH ′′

k +O(n)+o(n log σ) bits space
with a query time of O(|P1|+ |P2|+

√
nt log2+ε n) which works without any

restriction on the length of the patterns.

2 Preliminaries

2.1 Suffix Trees and Suffix Arrays

Suffix trees [19] and suffix arrays [14] are two classic data structures for online
pattern matching queries. For a text T [1...n], substring T [i..n], with i ∈ [1, n],
is called a suffix of T . The suffix tree for T is a lexicographic arrangement of all
these n suffixes in a compact trie structure, where the ith leftmost leaf represents
the ith lexicographically smallest suffix. For any node v, the string formed by
concatenating the edge labels from the root to v is called path(v). The locus
node v of a pattern P is defined as the node closest to the root, such that P is
a prefix of path(v).

Suffix array SA[1...n] is an array of length n, such that SA[i] is the starting
position of the ith lexicographically smallest suffix of T . The suffix range of a
pattern P in SA is defined as the the maximal range [L, R] such that for all
j ∈ [L, R], SA[j] is the starting point of a suffixes of T with P as a prefix. Both
suffix trees and suffix arrays take O(n log n) bits space and can perform pattern
matching in O(|P | + occ) and O(|P | + log n + occ) time respectively, where occ
is the number of occurrences of P in T .

412 S.V. Thankachan

A space efficient version of suffix tree is called compressed suffix tree (CST) [18]
and that of suffix array is called compressed suffix array (CSA) [9,8,7,16], which
takes space close to the size of text T . In version of CSA by Ferragina et al. [7]
for σ = polylog(n), SA[i] and SA−1[j] can be computed in O(log1+ε n) time,
and the suffix range of a pattern P can be computed in O(|P |) time for any
ε > 0. The total space is nHk + o(n log σ) bits, where Hk denotes the empirical
kth-order entropy (k = o(logσ n)) of T .

2.2 Sparse Suffix Trees

Let α be a sampling factor. For a text T [1..n], we call every substring T [(1 +
iα)...n] an α-sampled suffix of T , and every substring T [1...iα] an α-sampled
prefix of T . Let Δ be a compact trie (of size O(n/α) nodes = O((n/α) log n)
bits) of all α-sampled suffixes of T . Note that Δ is not a self index, hence we
need to maintain the original text T . For our purpose we maintain the text in
the form of CSA [7] in nHk + o(n log σ) bits, which is capable of retrieving any
substring of T of length 	 in O(+ log1+ε n) time (assuming σ =polylog(n)).

Lemma 1. Given the suffix range of a pattern in suffix tree (or CSA), its suf-
fix range in Δ can be obtained in constant time by maintaining an additional
structure of size n

α log(α) + 1.44n
α + o(n) bits.

Proof: Let B be a bit vector such that B[i] = 1, if SA[i] is an α-sampled suffix
of T , else B[i] = 0. For a given pattern P , this gives a mapping between the
suffix range [L, R] in CSA and the suffix range [L′, R′] in Δ as follows: L′ =
1 + rankB(L− 1) and R′ = rankB(R), where rankB(i) =

∑i
j=1 B[j]. Note that

B can be maintained in n
α log(α) + 1.44n

α + o(n) bits1 and can perform this
mapping in constant time [17]. ��

Lemma 2. The suffix ranges of all suffixes of P in Δ can be computed in O(|P |)
time by maintaining an index of size nHk + o(n log σ) + O((n/α) log n) bits.

Proof: The suffix ranges of all the suffixes of P in CSA (of size nHk + o(n log σ)
bits) can be computed in O(|P |) time using backward search [8,7]. Using lemma
1, each of this suffix range in CSA can be mapped to Δ in constant time. Here
O((n/α) log n) bits is the size of Δ. ��

2.3 Orthogonal Range Reporting

In [1], Alstrup et. al. showed that orthogonal range reporting of a set of n points
in an n × n grid can be performed in O(log log n + t) time by maintaining an
O(n log1+ε n) bits index, where t represents the number of outputs. They also
showed that for n points in an n × n × n grid, orthogonal range reporting can
be performed in O(log n + t) time using an O(n log2+ε n) bits index [1].
1 Let B[1...n] be a bit vector of length n with m 1’s. Then B can be maintained in
�log

(
n
m

)
�+o(n) bits, where �log

(
n
m

)
� ≤ mlog(n

m
)+1.44m and can perform rank/select

operations in constant time [17]. In our case m = n/α.

Compressed Indexes for Aligned Pattern Matching 413

2.4 A Simple Framework

In this subsection, we show a simple index for aligned pattern matching problem,
which consists of two suffix trees (ST1 and ST2) of T1 and T2 and a two dimen-
sional orthogonal range searching structure on n points of the form (x, y) such
that SA1[x] = SA2[y]. Now the aligned pattern matching query can be answered
by reporting those points (x, y) such that L1 ≤ x ≤ R1 and L2 ≤ y ≤ R2, where
[L1, R1] is the suffix range of P1 in ST1 and [L2, R2] is the suffix range of P2

in ST2. By using the two dimensional orthogonal range searching structure by
Alstrup et. al. [1], the space of this index can be bounded by O(n log1+ε n) bits
and the query time will be O(|P1|+ |P2|+ log log n + t), where t is the number
of outputs.

2.5 Interleaving Technique

When the query patterns are of equal length (|P1| = |P2|), we can easily de-
sign a compressed space index. Let T1 = T1[1...n] and T2 = T2[1...n], then
T ∗ = T1 ⊕ T2 = T1[1]T2[1]T1[2]T2[2]...T1[n]T2[n]. That is T ∗[2i − 1] = T1[i]
and T ∗[2i] = T2[i]. We call ⊕ as the interleaving function. Now, the query can
be answered by retrieving all those occurrences of P = P1 ⊕ P2 in odd po-
sitions of T . By maintaing the CSA [7] of T ∗ along with a bit vector (with
constant time rank/select structures) marking all odd-suffixes, we can design an
2nH∗

k + 2n + o(n log σ) bits index with O(|P1| + |P2| + t log1+ε n) query time,
where H∗

k is the kth-order empirical entropy (k = o(logσ n)) of T ∗ and t repre-
sents the number of outputs and the size of alphabet set σ is polylog(n). Even
though this index is derived for a very specialized case, we use this technique
as a building block for designing compressed index for general case of different
pattern lengths.

3 A Compressed Index for Long Query Patterns

In this section, we describe a compressed space solution, provided both the query
patterns are longer than a sampling factor α = Θ(log2+2ε n), ε > 0. The index
consists of the following components.

– CSA1: Compressed suffix array of T1

– CSA2: Compressed suffix array of T2

– Δ1 : Trie of α-sampled suffixes of T1

– Δ2 : Trie of α-sampled suffixes of T2

– ΔI : Trie of all strings S of the form S = S1⊕S2, where S1 and S2 represents
the reverse of α-sampled prefixes (of equal length) of T1 and T2 respectively
and ⊕ is the interleaving function.

– A three dimensional orthogonal range searching structure RS3D.

The RS3D consists of �n/α� points, such that a point (x, y, z) links the sub-
strings T1[1...iα], T1[iα + 1, ..., n], T2[1...iα] and T2[iα + 1, ..., n] as follows:

414 S.V. Thankachan

– T1[iα + 1, ..., n] = path(x), where 	x is the xth leaf in Δ1

– T2[iα + 1, ..., n] = path(y), where 	y is the yth leaf in Δ2

– S = S1 ⊕ S2 = path(z), where 	z is the zth leaf in ΔI , where S1 =
reverse of T1[1...iα] and S2 = reverse of T2[1...iα].

Now the given online query patterns P1 and P2 (|P1|, |P2| > α) have an occur-
rence at some position j (i.e. P1 = T1[j...j+ |P1|−1] and P2 = T2[j...j+ |P2|−1])
if the following conditions are satisfied for some m ≤ α,

– P1[1...m] is a suffix of an alpha sampled prefix T1[1...iα] of T1

– P2[1...m] is a suffix of an alpha sampled prefix T2[1...iα] of T2

– P1[m + 1...|P1|] is a prefix of an alpha sampled suffix T1[iα + 1...n]
– P2[m + 1...|P2|] is a prefix of an alpha sampled suffix T2[iα + 1...n]

Clearly j = 1 + iα − m. Using our RS3D, all such aligned pattern matching
occurrences can be obtained as follows: for m = 1, 2, 3, ..., α,

1. Find the suffix range [LX , RX] of P1[m + 1...|P1|] in Δ1

2. Find the suffix range [LY , RY] of P2[m + 1...|P2|] in Δ2

3. Find the suffix range [LZ , RZ] of Q = Q1⊕Q2 in ΔI , where Q1 = reverse of
P1[1...m] and Q2 = reverse of P2[1...m] and ⊕ is the interleaving function.

4. Perform the range reporting queries in RS3D with the boundary [LX , RX]×
[LY , RY]× [LZ , RZ].

Let (x, y, z) be a reported point, then i = SA1[x]− 1(or i = SA2[y]− 1) and j =
1+α(SA1[x]− 1)−m will be a valid output. Note that the suffix corresponding
to SA1[x] is an α-sampled suffix, whose value is directly stored in the trie Δ1,
hence we do not need to access CSA for computing SA1[x].

The space taken by CSA’s of T1 and T2 is nH ′
k +nH ′′

k +o(n log σ) bits, where
H ′

k and H ′′
k denotes the empirical kth-order entropy (k = o(logσ n)) of T1 and T2

respectively. By choosing α = Θ(log2+2ε n), (ε > 0), the size of Δ1 and Δ2 can
be bounded by o(n) bits. The RS3D structure takes Θ((n/α) log2+ε n) = o(n)
bits space. The time for performing step 1 and step 2 for m = 1, 2, 3, ..., α can
be bounded by O(|P1| + |P2|) (from lemma 2). Step 4 takes O(α log n + t) =
O(log3+2ε n + t) time (from Sec 2.3), where t represents the number of outputs.
However, a question which is still remains unanswered is the space requirement
of ΔI and the query time for performing step 3. We conclude the result in the
following lemma.

Lemma 3. Step 3 in our aligned pattern matching algorithm can be performed
in O(log4+4ε n) by maintaining an o(n) bits index.

Proof: The suffix range of the pattern Q in ΔI can be computed by performing
a binary search on the suffix array corresponding to ΔI . Since, the text is not
stored directly, retrieving a substring of length 	 takes O(+ log1+ε n) time.
Therefore we always retrieve log1+ε n characters from T1 and T2 and perform
matching of Q. Since this is a binary search, there can be at most O(log n)
mismatches (of log1+ε n characters). Thus the time for finding the suffix range

Compressed Indexes for Aligned Pattern Matching 415

is O((|Q| + log2+ε n)). Here we have α cases corresponding to each offset and
|Q| ≤ 2α, hence the total time is O(α(α + log2+ε n)) = O(log4+4ε n). The space
taken by the suffix array corresponding to ΔI is O((n/α) log n) = o(n) bits. ��
(We remark that this query time can be further improved to O(log3+3ε n) by
maintaining a trie of reverse of all β = log1+ε n sampled prefixes of T ∗ = T1⊕T2

and make use of β-suffix links (a pointer from a node u to a unique node v,
where path(v) can be obtained by deleting first β characters of path(u)). Now
the suffix range of a pattern in this trie can be mapped to the corresponding
suffix range in ΔI by maintaining an additional bit-vector.).

Thus by putting all together, we have the following theorem.

Theorem 1. For query patterns of length > α = Θ(log2+2ε n) with ε > 0, an
index of size nH ′

k +nH ′′
k +o(n log σ) bits can be maintained such that the aligned

pattern matching queries can be answered in O(|P1|+ |P2|+ log4+4ε n + t) time,
where H ′

k and H ′′
k denote the empirical kth-order entropy (k = o(logσ n)) of T1

and T2 respectively and t represents the number of outputs.

4 Hardness of the Problem

For all the compressed indexes derived so far, we assumed some conditions on
the length of the query patterns (equal length, longer than α). It is interest-
ing to know, if a compressed space index for aligned pattern matching without
any constraints on query patterns can be derived. In [5] Chien et. al. showed a
framework for proving lower bounds in pattern matching problems by reducing
them to geometrical problems. We follow this technique to study the hardness
of aligned pattern matching problems in compressed/succinct (O(n log σ) bits)
space.

We first show the following reduction: a three dimensional orthogonal range
reporting query on n points in an n× n× n grid can be answered in O(log3 n)
aligned pattern matching queries. Note that each point of the form (x, y, z) can
be represented using h = O(log n) bits. Let 〈s〉 be the binary representation of
a string s and

←−
〈s〉 be the reverse of 〈s〉. Now we define two strings T1 and T2 as

follows:

T1 =
←−−
〈y1〉#〈x1〉 �

←−−
〈y2〉#〈x2〉 � ...

←−−
〈yn〉#〈xn〉�

T2 = 〈w〉#〈z1〉 � 〈w〉#〈z2〉 � ...〈w〉#〈zn〉�

Here 〈w〉 is a string of length h with all characters as 0. We show that, a succinct
index ((n log σ) bits) on T1 and T2 for aligned pattern matching can be used as a
linear index (O(n log n) bits) for three dimensional orthogonal range reporting.
Note that the alphabet set is Σ = {0, 1, #, �}. Now from the orthogonal range
query boundaries, our task is to generate the query patterns which can be fed
to the aligned pattern matching index.

416 S.V. Thankachan

Lemma 4. A given range [, r] can be represented by a set S = {s1, s2, ..., sk}
of k ≤ 2 logn binary strings, such that none of these string is a prefix of another
and any binary string of length h with prefix si ∈ S is contained in [, r].

Proof: Let Λ be a trie of binary representations of all integers ∈ [1, n]. Now any
range [, r] can be split into k ≤ 2 logn non-overlapping sub-ranges such that
each of these sub-range represents the complete sub-tree of some internal node
u in Λ. Then S represents the set of paths from the root to all such nodes. ��
Let SX , SY and SZ represents the set of binary strings (constructed using lemma
4) corresponding to the given ranges in each dimension. Then the set of query
patterns P1 and P2 can be generated as follows: P1 = ←−sy#sx and P2 = wy#sz ,
where sx ∈ SX , sy ∈ SY , sz ∈ SZ and wy is a bit string of all 0′s and of
length |sy|. Note that we can have O(log3 n) combinations of sx, sy and sz, hence
O(log3 n) aligned pattern matching queries and the length of each query pattern
is O(log n). Therefore the total time for all aligned pattern matching query can
be bounded by O((t + 1)polylog(n)), where t is the number of outputs. Now a
point (xi, yi, zi) is a valid answer to the range reporting query, if and only if
there is an aligned pattern matching across the ith # symbol.

Theorem 2. Given an O(n log σ) bits index for aligned pattern matching prob-
lem with poly-logarithmic query time, we can design an O(n log n) bits index for
3-dimensional orthogonal range reporting problem (of n points in an n × n × n
grid) with poly-logarithmic query time.

5 A Compressed Index for All Query Patterns

In this section, we propose a compressed index which works for all patterns,
and the query answering time becomes O(|P1| + |P2| +

√
nt log2+ε n). We first

show a sampling scheme over the suffix tree (ST) nodes. Let g be a parameter
called group size. Starting from the left most leaf in ST, we combine every g
contiguous leaves to form a group. Thus the first group consists of 	1, ..., 	g,
the next group consists of 	g+1, ..., 	2g, and so on, where 	j denotes the jth leaf
from left. The total number of groups is O(n/g). Now for each group we mark
the lowest common ancestor (LCA) of the whole group of leaves. The marking
continues as follows: if two nodes are marked, we mark their LCA also. It can
be easily shown that the total number of marked nodes is O(n/g) [12,13]. Now,
suppose for a node u, the sub-tree rooted at u contains the leaves 	x, 	x+1, . . . , 	y,
we refer [x, y] as the suffix range corresponding to u.

Lemma 5. The suffix range [L, R] of any pattern P can be split into a suffix
range [L′, R′] corresponding to some marked node u∗, and two other suffix ranges
[L, L′−1] and [R′ +1, R] with L′−L < g and R−R′ < g. We call u∗ the highest
marked descendent (HMD) of u and those leaves 	i, such that i ∈ [L, L′ − 1] or
i ∈ [R′ + 1, R], the fringe leaves of u.

Proof: By setting L′ = g�L/g�+ 1 and R′ = g�R/g�, the LCA of (L′ and 	R′)
gives the desired marked node u∗, and we also have L′ − L < g and R−R′ < g

Compressed Indexes for Aligned Pattern Matching 417

(i.e. the number of fringe leaves < 2g). Note that the existence of such a marked
node is not necessary (in the case when suffix range is smaller than g). ��
Let CST1 and CST2 be the compressed suffix trees (as described in Section 2.1)
of T1 and T2 respectively. For any node u1 in CST1, let L(u1) represent the
set of occurrences in the subtree of u1. Similarly, for a node u2 in CST2, L(u2)
represents the set of occurrences in the subtree of u2 and L(u1, u2) represent
the intersection of L(u1) and L(u2). Based on the above notations, for any two
patterns P1 and P2 with locus nodes u1 and u2 in CST1 and CST2 respectively,
L(u1, u2) represents the answer to the aligned pattern matching query. However,
it is not space efficient to store L(u1, u2) for all possible pairs of nodes, therefore
we use the above described sampling scheme as follows:

– choose the group size g =
√

nk log1+ε n
– Mark the nodes in CST1 and CST2 with the grouping factor g
– Between all pairs of marked nodes u∗

1 and u∗
2 in CST1 and CST2 respectively,

if |L(u∗
1, u

∗
2)| ≤ k, then we store |L(u∗

1, u
∗
2)| explicitly, where |L| is the number

of elements in the list L.
– Maintain these information for k = 1, 2, 4, 8, ..., n/ log2+2ε n (Note that g =√

nk log1+ε n ≤ n, hence k can be at most n/ log2+2ε n).

For a particular k, the number of pairs of marked nodes is O(n/g)×O(n/g) and
the amount of information stored is O(n/(k log2+2ε n)×k log n)=O(n/ log1+2ε n).
Since k takes log n (1, 2, 4, ...) different values, the total space for storing these
precomputed answers is o(n) bits. Hence the total index space is bounded by
nH ′

k + nH ′′
k + O(n) + o(n log σ) bits, where H ′

k and H ′′
k denotes the empirical

kth-order entropy (k = o(logσ n)) of T1 and T2 respectively.

5.1 Query Answering

The query answering can be performed as follows: first find the locus nodes u1

and u2 of P1 and P2 in CST1 and CST2 respectively. Let t represent the number
of outputs and tk be the number of entries in L(u∗

1, u
∗
2), where u∗

1 and u∗
2 are

the highest marked descendants of u1 and u2 respectively corresponding to the
group size g =

√
nk log1+ε n. Note that tk for any k can be found in constant

time (from lemma 4) using constant time LCA operations and tk ≤ t for all
values of k.

Now our task is simple: for k = 1, 2, 4, .. check tk and find the smallest k(= k′)
such that tk′ ≤ k′. Therefore we can safely write k′ = O(t). Note that L(u∗

1, u
∗
2) is

a subset of L(u1, u2), and those answers in L(u∗
1, u

∗
2) can be retrieved in O(tk′) =

O(t) time. The remaining answers in L(u1, u2) can come from only those suffixes
corresponding to the fringe leaves. Therefore, by checking at most 2g fringe leaves
in each CST , the remaining valid outputs can be retrieved as follows: let 	x be a
fringe leaf of u1, then SA1[x] is a valid output if SA−1

2 [SA1[x]] ∈ [L2, R2], where
[L2, R2] is the suffix range of P2. Similarly, if 	y is a fringe leaf of u2, then SA2[y] is
a valid output if SA−1

1 [SA2[y]] ∈ [L1, R1], where [L1, R1] is the suffix range of P1.

418 S.V. Thankachan

Each of this checking takes O(log1+ε n) time (from Section 2.1), hence the to-
tal time for checking all fringe leaves is O(g log1+ε n) = O(

√
nk′ log2+2ε n) =

O(
√

nt log2+2ε n) (which is the main bottleneck in query time).

Theorem 3. By maintaining an index of size nH ′
k + nH ′′

k + O(n) + o(n log σ)
bits, aligned pattern matching can be performed in O(|P1|+ |P2|+

√
nt log2+2ε n)

time, where H ′
k and H ′′

k denotes the empirical kth-order entropy (k = o(logσ n))
of T1 and T2 respectively and σ =polylog(n).

6 Concluding Remarks

In this paper, we studied the aligned pattern matching problem and proposed
different indexes. An interesting open problem in this research direction is to
design an index for aligned pattern matching with shift δ (which comes as an
online parameter). That is, a position i is reported if and only if P1 occurs at
position i in T1 and P2 occurs at position i + δ in T2.

References

1. Alstrup, S., Bordal, G.S., Rauhe, T.: New data structure for orthogonal range
searching. In: FOCS, pp. 198–207 (2000)

2. Chazelle, B.: Lower bounds for orthogonal range searching: I. the reporting case.
JACM 37, 200–212, 1990 (2005)

3. Bender, M.A., Farach-Colton, M.: The LCA Problem Revisited. In: Gonnet, G.H.,
Viola, A. (eds.) LATIN 2000. LNCS, vol. 1776, pp. 88–94. Springer, Heidelberg
(2000)

4. Burrows, M., Wheeler, D.J.: A Block-Sorting Lossless Data Compression Algo-
rithm. Technical Report 124, Digital Equipment Corporation, Paolo Alto, CA,
USA (1994)

5. Chien, Y.F., Hon, W.-K., Shah, R., Vitter, J.S.: Geometric Burrows-Wheeler
Transform: Linking Range Searching and Text Indexing. In: DCC 2008, pp. 252–
261 (2008)

6. Eltabakh, M.Y., Hon, W.-K., Shah, R., Aref, W.G., Vitte, J.S.: The SBC-tree: an
index for run-length compressed sequences. In: EDBT, pp. 523–534 (2008)

7. Ferragina, P., Manzini, G., Mäkinen, V., Navarro, G.: Compressed representations
of sequences and full-text indexes. TALG 3(2) (2007)

8. Ferragina, P., Manzini, G.: Indexing Compressed Text. JACM 52(4), 552–581
(2005); A preliminary version appears in FOCS 2000

9. Grossi, R., Vitter, J.S.: Compressed Suffix Arrays and Suffix Trees with Applica-
tions to Text Indexing and String Matching. SIAM Journal on Computing 35(2),
378–407 (2005); A preliminary version appears in STOC 2000

10. Grossi, R., Gupta, A., Vitter, J.S.: High-Order Entropy-Compressed Text Indexes.
In: SODA, pp. 841–850 (2003)

11. Hon, W.-K., Shah, R., Vitter, J.S.: Ordered Pattern Matching: Towards Full-Text
Retrieval. Technical Report TR-06-008, Purdue University (March 2006)

12. Hon, W.-K., Shah, R., Vitter, J.S.: Space-Efficient Framework for Top-k String
Retrieval Problems. In: FOCS 2009, pp. 713–722 (2009)

Compressed Indexes for Aligned Pattern Matching 419

13. Hon, W.-K., Shah, R., Thankachan, S.V., Vitter, J.S.: String Retrieval for Multi-
pattern Queries. In: Chavez, E., Lonardi, S. (eds.) SPIRE 2010. LNCS, vol. 6393,
pp. 55–66. Springer, Heidelberg (2010)

14. Manber, U., Myers, G.: Suffix Arrays: A New Method for On-Line String Searches.
SIAM Journal on Computing 22(5), 935–948 (1993)

15. Munro, J.I., Raman, V.: Succinct Representation of Balanced Parentheses and
Static Trees. SICOMP 31(3), 762–776 (2001)

16. Navarro, G., Mäkinen, V.: Compressed Full-Text Indexes. ACM Computing Sur-
veys 39(1) (2007)

17. Raman, R., Raman, V., Rao, S.S.: Succinct Indexable Dictionaries with Applica-
tions to Encoding k-ary Trees, Prefix Sums and Multisets. TALG 3(4) (2007)

18. Sadakane, K.: Compressed Suffix Trees with Full Functionality. In: TCS, pp. 589–
607 (2007)

19. Weiner, P.: Linear Pattern Matching Algorithms. In: Proc. Switching and Au-
tomata Theory, pp. 1–11 (1973)

Reference Sequence Construction for Relative

Compression of Genomes�

Shanika Kuruppu1, Simon J. Puglisi2, and Justin Zobel1

1 National ICT Australia
Department of Computer Science & Software Engineering,

University of Melbourne, Australia
{kuruppu,jz}@csse.unimelb.edu.au

2 Department of Informatics
King’s College London, United Kingdom

simon.puglisi@rmit.edu.au

Abstract. Relative compression, where a set of similar strings are com-
pressed with respect to a reference string, is an effective method of com-
pressing DNA datasets containing multiple similar sequences. Moreover,
it supports rapid random access to the underlying data. The main dif-
ficulty of relative compression is in selecting an appropriate reference
sequence. In this paper, we explore using the dictionary of repeats gener-
ated by COMRAD, RE-PAIR and DNA-X algorithms as reference sequences for
relative compression. We show that this technique allows for better com-
pression, and allows more general repetitive datasets to be compressed
using relative compression.

1 Introduction

Rapid advancements in the field of high-throughput sequencing have led to a large
number of whole genome DNA sequencing projects. Some of these projects, like
the Genome 10K project (www.genome10k.org) seek to obtain genomes of unse-
quenced species. Others, like the 1000 Genomes project (www.1000genomes.org)
for humans and the 1001 Genomes project (www.1001genomes.org) for Arabidop-
sis thaliana plants, focus on resequencing, where individual genomes from a given
species are sequenced to understand variation between individuals. The assem-
bled sequences from these projects can range from terabytes to petabytes in size.
Therefore, algorithms and data structures to efficiently store, access and search
these large datasets are necessary. Some progress has already been made [2,7,12],
but significant challenges remain.

DNA sequences contain repeated substrings, but, in a database of sequences,
the most significant repeats occur between sequences, usually those of the same
� This work was supported by the Royal Society and the NICTA Victorian Research

Laboratory. NICTA is funded by the Australian Government as represented by the
Department of Broadband, Communications and the Digital Economy and the Aus-
tralian Research Council through the ICT Center of Excellence program.

R. Grossi et al. (Eds.): SPIRE 2011, LNCS 7024, pp. 420–425, 2011.
c© Springer-Verlag Berlin Heidelberg 2011

www.genome10k.org
www.1000genomes.org
www.1001genomes.org

Reference Sequence Construction for Relative Compression of Genomes 421

or similar species. Compression algorithms that capture and efficiently encode
this repeated information are employed to manage large genomic databases.
Many compression algorithms are specific to DNA sequence compression [3,4,6],
but most are unsuitable for compressing large multi-sequence datasets. More
recently, algorithms that compress large repetitive datasets, which also support
random access and search on the compressed dataset, known as self-indexes,
have emerged; some are specific to DNA compression and support random access
queries [8,9], while others can compress general datasets and allow search queries
on the compressed sequences [7,12].

An effective way to compress a repetitive dataset containing multiple se-
quences from the same or similar species, or sequences serving the same biological
function, is to compress each sequence with respect to a chosen reference [3,9,12].
Grumbach and Tahi [6] realised the need for such a compression method for DNA
sequences, and GenCompress [4] and XM [3] implement this feature. Mäkinen et
al. introduce more general methods to compress highly repetitive collections that
also support searching in the compressed data [12].

The RLZ algorithm compresses each sequence using an LZ77 parsing [14] with
respect to a reference sequence chosen from the dataset [9]. Relative compression
algorithms like RLZ produce good compression results with fast compression and
decompression speeds. The reference sequence acts as a static “dictionary” that
includes most of the repeats present in the input dataset. Once an index of
the reference sequence is built, the sequences can be compressed in a single
pass over the collection. The main drawback is the difficulty of selecting an
appropriate reference sequence. Selecting a random reference sequence from a
collection of similar sequences does not guarantee good compression. Figure 1
shows the compressed sizes produced by RLZ when each of 39 S. cerevisiae yeast
genomes is used as a reference sequence to compress the remaining genomes. As
can be seen, there is a significant variation in the compressed sizes.

Even if the best reference sequence for the dataset can be found, a single
reference sequence still may not be representative of the repetitions present in
the whole dataset. Sequences may form clusters, where a sequence is highly
similar to only a few other sequences in the dataset. To test this hypothesis,
we examined the position components of the factors that are generated by RLZ
for the S. cerevisiae dataset that form alignments to the reference sequence.
We found clusters of similar sequences, which could be partitioned according to
where factors commenced.

Moreover, for datasets containing sequences from different strains or different
species, selecting a reference sequence is not trivial. Grabowski and Deorow-
icz [5], in one of their many improvements to RLZ, address this issue. When
substrings of a certain minimum length, which do not occur in the reference
sequence, are encountered, they are appended to the reference sequence, so that
later occurrences of those substrings can be encoded as references. This method
provides a slight improvement to compression with no effects on the compression
or decompression speed. However, the method may add more substrings to the
reference sequence than necessary.

422 S. Kuruppu, S.J. Puglisi, and J. Zobel

D
B

V
P
G

6
7
6
5

D
B

V
P
G

1
7
8
8

L
_
1
3
7
4

D
B

V
P
G

1
3
7
3

B
C

1
8
7

D
B

V
P
G

1
1
0
6

L
_
1
5
2
8

Y
JM

9
8
1

Y
JM

9
7
8

R
M

1
1
_
1
A

Y
JM

9
7
5

3
2
2
1
3
4
S

N
C

Y
C

3
6
1

Y
S
2

S
2
8
8
c

R
E
F

Y
S
9

Y
II
c
1
7
_
E
5

2
7
3
6
1
4
N

W
3
0
3

3
7
8
6
0
4
X

D
B

V
P
G

6
0
4
0

D
B

V
P
G

1
8
5
3

Y
S
4

Y
JM

7
8
9

U
W

O
P
S
8
3
_
7
8
7
_
3

U
W

O
P
S
8
7
_
2
4
2
1

Y
5
5

K
1
1

Y
P
S
1
2
8

Y
P
S
6
0
6

Y
9

Y
1
2

S
K

1

N
C

Y
C

1
1
0

D
B

V
P
G

6
0
4
4

U
W

O
P
S
0
5
_
2
1
7
_
3

U
W

O
P
S
0
3
_
4
6
1
_
4

U
W

O
P
S
0
5
_
2
2
7
_
2

Reference sequence

16

17

18

19

20

21

22

23

24

25

C
o
m

p
re

s
s
e
d
 s

iz
e
 (

M
B

)

Compressed size vs reference sequence used

Fig. 1. The change in the compressed size of the S. cerevisiae dataset when the ref-
erence sequence is changed. The y-axis contains the compressed size, measured in
Megabytes and the x-axis contains the reference sequence used.

In this paper we explore the artificial construction of reference sequences from
the phrases built by popular dictionary compressors. Dictionary compressors find
the repeated substrings in the dataset being compressed and stores the repeats
in a dictionary. These dictionary entries can be used to construct a reference
sequence consisting of significant repeats of the entire dataset. We show that
reference sequences constructed in this manner produce superior compression
results, while retaining the principle advantage of relative compression: fast ran-
dom access to the collection.

2 Reference Sequence Construction

We choose three dictionary compression algorithms for generation of reference
sequences; RE-PAIR [11], a well-known dictionary compression algorithm; our
COMRAD [8]; and DNA-X [13], a DNA-specific implementation of the algorithm by
Bentley and McIlroy [1]. We compress our test datasets with RE-PAIR, COMRAD,
and DNA-X, and then use the dictionary of repeats to construct a reference se-
quence for relative compression as discussed below.

RE-PAIR compresses the input sequence in multiple iterations, where at each
iteration, a symbol pair with the highest frequency is replaced with a new non-
terminal symbol [11]. The algorithm outputs the input sequence with all its
repeated substrings replaced by non-terminal symbols, and a dictionary of rules
that map the non-terminals to the symbol pairs that they replaced. The sub-
strings represented by the non-terminals in the RE-PAIR dictionary contains the
repeated substrings of the input sequence, and these substrings can be concate-
nated to create a reference sequence. The RE-PAIR dictionary is hierarchical,

Reference Sequence Construction for Relative Compression of Genomes 423

since a non-terminal can substitute a symbol pair containing at least one other
non-terminal. For example, the substring for non-terminal Z in the set of rules
Z ← XY , X ← aA, Y ← CD, includes the substrings for the non-terminals
X , Y , A, C and D. Therefore, once the substring for Z is included in the ref-
erence sequence, it is redundant to include the substrings represented by each
of the non-terminals X , Y , A, C and D. To ensure that only non-redundant
substrings are included in the reference sequence, we start adding substrings to
the reference sequence from higher in the hierarchy of rules.

COMRAD is a dictionary compression algorithm, similar to RE-PAIR, that detects
repeated substrings in the input over multiple iterations, and encodes them effi-
ciently to achieve compression [8]. Instead of replacing pairs of frequent symbols,
COMRAD replaces repeated substrings of longer lengths to reduce the number of
iterations. The algorithm is disk-based to allow large DNA datasets to be com-
pressed. As with the RE-PAIR dictionary, we expand non-terminals and append
them to create a reference sequence, ensuring to omit redundant non-terminals.

DNA-X is a single-pass dictionary compression algorithm [13]. As the input is
read, the fingerprint of every B-th substring of length B is stored in a hash table.
To encode the next substring, all overlapping B-mers in the so far unencoded
part of the input are searched for in the hash table until there is a match. The
hash table gives the positions of the earlier occurrences of the B-mer. Each of
these occurrences is checked to find the longest possible match. Then the prefix
until the matching substring, followed by the reference for the matching substring
is encoded. Searching and encoding continues until no more symbols remain to
be encoded. The longest matching substrings encoded by the algorithm are the
repeated substrings we use to construct the reference sequence.

3 Experimental Results

To test the performance of the reference construction method, we use RLZ [10]
as the relative compressor and three test datasets containing repetitive genomes:
39 strains of S. cerevisiae and 36 strains of the S. paradoxus species of yeast,
and 33 strains of E. coli bacteria. We ran RE-PAIR, COMRAD and DNA-X on all
three datasets. For RE-PAIR, we used the default parameters, which do not place
any restrictions on the number or length of repeats that can be detected. For
COMRAD, we used a starting substring length L of 16 and a threshold frequency F
of 2. For DNA-X we set the substring length B to 16 to be consistent with COMRAD.
The repeated substrings resulting from the dictionaries were used to generate
the reference sequence as described above.

Compression results for the three datasets are presented in columns 2–4 of
Table 1. The first row contains the number of megabases in each dataset. The
second row contains the result produced by the optimised RLZ algorithm [10]
when using the reference sequence in the dataset that gives the best compres-
sion result. The remaining rows contain the compression results produced by RLZ
when using the reference sequences constructed by each of the dictionary com-
pression algorithms. For all three datasets, using a COMRAD, RE-PAIR or DNA-X

424 S. Kuruppu, S.J. Puglisi, and J. Zobel

Table 1. Compression results in Mbytes for using COMRAD, RE-PAIR and DNA-X gen-
erated reference sequences. The first line contains the dataset sizes in Mbases. The
standard compression results for RLZ includes all optimisations. In the last three lines,
RLZ was used with only the looking ahead and short factor encoding optimisations.

Dataset Scerevisiae Sparadoxus Ecoli Hemoglobin Influenza Mitochondria

Original 485.87 429.27 164.90 7.38 112.64 25.26
RLZ 9.33 13.23 18.69 2.97 38.93 8.36
RLZ(COMRAD) 6.77 8.10 8.06 1.17 3.00 6.05
RLZ(RE-PAIR) 6.48 7.70 7.72 1.19 2.82 6.20
RLZ(DNA-X) 7.51 8.80 9.14 1.21 3.63 6.05

Table 2. Compression times in seconds for COMRAD, RE-PAIR and DNA-X generated
reference sequences. Times include generation of reference sequences, where necessary.

Dataset Scerevisiae Sparadoxus Ecoli Hemoglobin Influenza Mitochondria

RLZ 300 276 200 3 42 11
RLZ(COMRAD) 1775 1779 600 20 242 110
RLZ(RE-PAIR) 1672 1554 622 17 296 90
RLZ(DNA-X) 1529 1499 566 17 336 77

generated reference sequence produced better results than using a single refer-
ence sequence. The biggest improvement (a factor of two) is for E. coli.

Overall, using the RE-PAIR generated reference sequences led to slightly bet-
ter compressed sizes than using the COMRAD generated reference sequences. The
DNA-X-generated reference sequences produced less promising results due to the
generated reference being somewhat large as a result of some redundant repeats
being included. Our best results for S. cerevisiae and S. paradoxus of 7.64 Mbyte
and 8.67 Mbyte, respectively, are comparable to those obtained by Grabowski
and Deorowicz [5]. It may be possible to combine our improvement with theirs
to acheive even better results.

Table 2 shows compression times. As expected, the compression time increases
significantly when using a generated reference sequence, as the time taken to
generate the reference is also part of the compression time. More importantly,
decompression times were not affected. In general, using a COMRAD generated
reference is slower than using a RE-PAIR generated reference. However, the main
memory usage of RE-PAIR is much higher, with S. cerevisiae and S. paradoxus
using approximately 12 Gb and 11 Gb, respectively, while COMRAD only requires
277 Mbyte and 554 Mbyte. DNA-X has the lowest memory usage.

Next we experiment with datasets which do not contain a specific reference.
These were a Hemoglobin dataset containing 15,199 DNA sequences of proteins
that are associated with Hemoglobin, an Influenza dataset containing 78,041
sequences of various strains of the Influenza virus and a Mitochondria dataset
containing 1,521 mitochondrial DNA sequences from various species. Results
are presented in the last three columns of Table 1. The second row contains the
compression results of standard RLZ when the first sequence in the dataset is
chosen to be the reference. Compression clearly improves for all three datasets.

Reference Sequence Construction for Relative Compression of Genomes 425

4 Concluding Remarks

Relative compression is a powerful technique for compressing collections of re-
lated genomes, which are now becoming commonplace. In this paper we have
shown that such collections can contain clusters of sequences which are more
highly related than others and that impressive gains in compression can be
achieved by exploiting these clusters. Our specific approach has been to detect
repetitions across the dataset and build an artificial “reference sequence”, rela-
tive to which the sequence is then compressed. This method retains the principle
advantage of relative compression: fast random access. The drawback is slower
compression time, as time must now be spent finding repeats with which to gen-
erate the reference. Future work will attempt to address this problem. It may
also be fruitful to apply clustering algorithms to genomes to isolate strains.

References

1. Bentley, J., McIlroy, D.: Data compression using long common strings. In: Proc.
Data Compression Conference (DCC 1999), pp. 287–295 (1999)

2. Brandon, M., Wallace, D., Baldi, P.: Data structures and compression algorithms
for genomic sequence data. Bioinformatics 25(14), 1731–1738 (2009)

3. Cao, M.D., Dix, T., Allison, L., Mears, C.: A simple statistical algorithm for bio-
logical sequence compression. In: Proc. Data Compression Conference (DCC 2007),
pp. 43–52 (2007)

4. Chen, X., Li, M., Ma, B., Tromp, J.: DNACompress: fast and effective DNA se-
quence compression. Bioinformatics 18(12), 1696–1698 (2002)

5. Grabowski, S., Deorowicz, S.: Engineering relative compression of genomes (2011),
http://arxiv.org/abs/1103.2351v1

6. Grumbach, S., Tahi, F.: A new challenge for compression algorithms: Genetic se-
quences. Information Processing & Management 30(6), 875–886 (1994)

7. Kreft, S., Navarro, G.: Self-indexing based on LZ77. In: Giancarlo, R., Manzini, G.
(eds.) CPM 2011. LNCS, vol. 6661, pp. 41–54. Springer, Heidelberg (to apppear,
2011)

8. Kuruppu, S., Beresford-Smith, B., Conway, T., Zobel, J.: Iterative dictionary con-
struction for compression of large DNA datasets. IEEE/ACM Transactions on
Computational Biology and Bioinformatics (to appear, 2011)

9. Kuruppu, S., Puglisi, S.J., Zobel, J.: Relative lempel-ziv compression of genomes
for large-scale storage and retrieval. In: Chavez, E., Lonardi, S. (eds.) SPIRE 2010.
LNCS, vol. 6393, pp. 201–206. Springer, Heidelberg (2010)

10. Kuruppu, S., Puglisi, S.J., Zobel, J.: Optimized relative Lempel-Ziv compression of
genomes. In: Proc. 34th Australasian Computer Science Conference (ACSC 2011),
pp. 91–98 (2011)

11. Larsson, N.J., Moffat, A.: Offline dictionary-based compression. In: Proc. Data
Compression Conference (DCC 1999), pp. 296–305 (1999)

12. Mäkinen, V., Navarro, G., Sirén, J., Välimäki, N.: Storage and retrieval of highly
repetitive sequence collections. J. Computational Biology 17(3), 281–308 (2010)

13. Manzini, G., Rastero, M.: A simple and fast DNA compressor. Software: Practice
and Experience 34(14), 1397–1411 (2004)

14. Ziv, J., Lempel, A.: A universal algorithm for sequential data compression. IEEE
Transactions on Information Theory 23(3), 337–343 (1977)

http://arxiv.org/abs/1103.2351v1

Author Index

Abdul Nasir, Jamal 261
Alonso, Omar 26
Amir, Amihood 44, 168

Baeza-Yates, Ricardo 26, 368
Bannai, Hideo 278
Belazzougui, Djamal 55, 386
Beller, Timo 197
Bernhard, Delphine 221
Bonzanini, Marco 14
Boughanem, Mohand 117
Brejová, Broňa 144
Breslauer, Dany 156, 301

Carvalho, Cristiano 237
Chen, Kuan-Yu 81
Christou, Michalis 338
Claude, Francisco 185
Cristo, Marco Antônio 237
Crochemore, Maxime 338
Cummins, Ronan 380
Cuzzocrea, Alfredo 87

da Silva, Altigran Soares 237
Demaine, Erik D. 1
de Moura, Edleno Silva 237
Denecke, Kerstin 87
Dinarelli, Marco 221
Dupret, Georges 2

Egidi, Lavinia 32

Fisichella, Marco 87
Flouri, Tomáš 338

Gagie, Travis 295
Garcia-Fernandez, Anne 221
Gertz, Michael 26
Ghodsnia, Pedram 313
Gil-Costa, Veronica 344
Gog, Simon 197
González-Caro, Cristina 368
Goto, Keisuke 278
Gotthilf, Zvi 44

Hagen, Matthias 356
He, Meng 295
Henrique, Wallace Favoreto 237
Hon, Wing-Kai 267

Iliopoulos, Costas S. 338
Inenaga, Shunsuke 278
Italiano, Giuseppe F. 156, 301

Janoušek, Jan 338
Jones, Gareth J.F. 249
Jose, Joemon M. 380

Karim, Asim 261
Kärkkäinen, Juha 174
Kishiue, Naoya 398
Kopelowitz, Tsvi 67
Kopliku, Arlind 117
Ku, Tsung-Han 267
Kucherov, Gregory 326
Kuruppu, Shanika 420

Lalmas, Mounia 380
Landau, Gad M. 144
Lewenstein, Moshe 67, 135
Ligozat, Anne-Laure 221
López-Ortiz, Alejandro 313

Macdonald, Craig 104, 344
Manzini, Giovanni 32
Maruyama, Shirou 398
McCreadie, Richard 104
Melichar, Bořivoj 338
Mendoza, Marcelo 129
Min, Jinming 249
Munro, J. Ian 295, 313

Nakahara, Masaya 398
Navarro, Gonzalo 386
Nicholson, Patrick K. 185, 295

Ohlebusch, Enno 197
O’Riordan, Colm 380
Ounis, Iadh 104, 344

428 Author Index

Paryenty, Haim 168
Pinel-Sauvagnat, Karen 117
Pissis, Solon P. 338
Poblete, Barbara 129
Porat, Ely 67
Puglisi, Simon J. 174, 420

Raffinot, Mathieu 55
Roditty, Liam 168
Roelleke, Thomas 14
Russo, Lúıs M.S. 290

Sakamoto, Hiroshi 398
Santos, Rodrygo L.T. 344
Schnattinger, Thomas 197
Seco, Diego 185
Shah, Rahul 267
Shalom, B. Riva 44
Spiliopoulou, Myra 129

Stein, Benno 356
Stewart, Avaré 87

Takeda, Masayuki 278
Thachuk, Chris 209
Thankachan, Sharma V. 267, 410
Tirdad, Kamran 313
Tischler, German 290
Tsatsaronis, George 261

Varlamis, Iraklis 261
Vinař, Tomáš 144
Vitter, Jeffrey Scott 267

Wang, Hung-Lung 81

Yahyaei, Sirvan 14

Ziviani, Nivio 237
Zobel, Justin 420

	Title page
	Preface
	Organization
	Table of Contents
	Constructing Strings at the Nano Scale via Staged Self-assembly
	Discounted Cumulative Gain and User Decision Models
	Introduction
	Discounted Cumulative Gain
	Deterministic Click User Model
	Probabilistic Click User Model
	Expected Utility
	Parameters Estimation

	NumericalExperiments
	Discussion
	References

	Cross-Lingual Text Fragment Alignment Using Divergence from Randomness
	Introduction
	Related Work
	Text Fragment Alignment
	Similarity Measures and Divergence from Randomness
	Extraction of Fragments

	Experimental Study
	Document-Summary Association
	Text Fragment Alignment Evaluation

	Conclusion and Future Work
	References

	Enhancing Document Snippets Using Temporal Information
	Introduction
	Temporal Order
	Enhancing Snippets with Temporal Information
	Experimental Results
	Conclusions and Outlook
	References

	Spaced Seeds Design Using Perfect Rulers
	Introduction
	Notation
	From Rulers to Spaced Seeds
	Lower Bounds on the Minimum Pattern Length m*P
	Wichmann Rulers
	Restricted vs. Unrestricted Rulers
	Conclusions
	References

	Weighted Shortest Common Supersequence
	Introduction
	Motivation
	Weighted Sequences

	Related Work
	Shortest Common Weighted Supersequence
	Shortest Common Weighted Supersequence with Two Thresholds
	Conclusions and Open Problems
	References

	Approximate Regular Expression Matching with Multi-strings
	Introduction
	Notations and Definitions
	Notation
	Definitions

	Thompson's Automaton
	Approximate Regular Expression Matching
	Incremental String Comparisons
	Bille and Thorup's Algorithm
	A New O(kdn) Algorithm
	Preprocessing
	Matching Algorithm

	References

	Persistency in Suffix Trees with Applications to String Interval Problems
	Introduction
	Definitions and Preliminaries
	Some Persistent Data Structures
	Problems

	The Persistent Suffix Tree
	Using Pointer Arrays
	Using Balanced Search Trees

	The General Framework
	Snapshots
	Using Persistent Arrays
	Renaming
	Renaming for Any Size Pattern

	Applications
	PRI-Report
	PRI-Count
	Substring Select

	References

	Approximate Point Set Pattern Matching with Lp-Norm
	Introduction
	Problem Definitions
	Lp-APSPM for Arbitrary p<
	Lp-APSPM for p Approaching Infinity
	Computing the DP-Table with RMQ
	Determining the Queried Intervals
	Proof of Lemma 3

	Concluding Remarks
	References

	Detecting Health Events on the Social Web to Enable Epidemic Intelligence
	Introduction
	Related Work
	Unsupervised Public Health Event Detection
	Named Entity Feature Representation
	Feature Analysis
	Detecting Public Health Events

	Experiments and Evaluations
	Experiment I: Feature Pruning
	Experiment II: Selection of k
	Experiment III: Cluster Quality
	Experiment IV: Detected Public Health Events
	Experiment V: Efficiency Comparison

	Conclusions and Future Work
	References

	A Learned Approach for Ranking News in Real-Time Using the Blogosphere
	Introduction
	News Story Ranking
	Learning to Rank News Stories
	Experimental Setup
	Results
	Story Ranking Performance
	Strongest Story Ranking Features
	Story Ranking Components
	Predictable vs. Unpredictable Events

	Conclusions
	References

	Attribute Retrieval from Relational Web Tables
	Introduction
	Related Work
	Attribute Retrieval
	Relational Tables and Headers
	Attribute Line Filter
	Relevance

	Experimental Setup
	Evaluation Results
	Filtering
	Attribute Retrieval

	Conclusions
	References

	Query-Sets++: A Scalable Approach for Modeling Web Sites
	Introduction
	Related Work
	General Concepts
	Generic Web Site Vectorization
	Query-Based Feature Spaces for Web Sites
	Model Evaluation and Results
	Conclusions
	References

	Indexing with Gaps
	Introduction
	Our Results

	Problem Definitions and Preliminaries
	Preliminary Definitions and Notations

	G-Bounded Queries with k Gaps
	Speeding Up the Search
	Better Tradeoffs
	Final Speedup of the Query

	References

	Fast Computation of a String Duplication History under No-Breakpoint-Reuse (Extended Abstract)
	Introduction
	Motivation and Related Work
	Relationship to Breakpoint Graphs

	Candidate Duplications
	Finding a Candidate Duplication in Linear Time
	Quasi-Linear Algorithm for History Reconstruction
	Conclusion and Open Problems
	References

	Near Real-Time Suffix Tree Construction via the Fringe Marked Ancestor Problem
	Introduction
	The Fringe Marked Ancestor Problem
	Suffix Trees and Suffix Links
	Right-to-Left Construction
	Left-to-Right and Bi-directional Construction
	References

	Approximations and Partial Solutions for the Consensus Sequence Problem
	Introduction and Related Work
	An Approximation Algorithm for the Consensus Problem
	Integer Programs
	Linear Program Relaxation

	Empirical Results
	References

	Fixed Block Compression Boosting in FM-Indexes
	Introduction
	Basic Algorithmic Machinery
	Compression Boosting
	Fixed Block Compression Boosting
	Experimental Results
	Concluding Remarks
	References

	Space Efficient Wavelet Tree Construction
	Introduction
	Encoding Scheme
	Partitioning
	Merging
	Extension to Generalized Wavelet Trees

	Construction by Permuting Bits
	Overview of Permutations
	Chopping the Most Significant Bits
	Partitioning the Truncated Letters
	Overall Requirements

	Experiments
	References

	Computing the Longest Common Prefix Array Based on the Burrows-Wheeler Transform
	Introduction
	Related Work
	Wavelet Tree
	A LACA Based on the BWT
	Experimental Results
	Other Applications
	References

	A Succinct Index for Hypertext
	Introduction
	Preliminaries
	Compressed Suffix Arrays
	Orthogonal Range Query Structures
	Hypertext

	Construction of the Hypertext Index
	Indexing Node Text
	Storing Graph Topology
	Auxiliary Data Structures

	Pattern Matching in the Hypertext Index
	Preprocessing the Pattern
	Matching within a Node
	Matching across a Single Edge
	Matching across Multiple Edges

	Considering Path Constraints in Hypertext
	Conclusions
	References

	When Was It Written? Automatically Determining Publication Dates
	Introduction
	State of the Art
	Methodology
	Corpus Description
	Corpus Pre-processing
	Evaluation Score
	Description of the Methods

	Chronological Methods
	Named Entities
	Neologisms and Archaisms
	French Spelling Reforms
	Intermediate Conclusion

	Classification Methods
	Cosine Similarity-Based Classification
	Support Vector Machines (SVM)

	Scoring Combination
	Results
	Results for Classification Methods

	Conclusions and Future Work
	References

	A New Approach for Verifying URL Uniqueness in Web Crawlers
	Introduction
	Related Work
	Crawler Architecture
	The Baseline Algorithm (DRUM)
	Algorithm VEUNIQ
	Comparison between Methods
	Computational Cost Model
	A Crawling Simulation

	Conclusions
	References

	External Query Reformulation for Text-Based Image Retrieval
	Introduction
	Background and Related Work
	Definition Documents Based Relevance Feedback
	Pseudo Relevance Feedback
	Identifying Definition Documents by Key-Term Title Matching
	Feedback Term Weighting

	Experimental Setup and Results
	Experimental Setup
	Evaluation on Definition Documents
	Parameters Setting
	Comparing DRF with PRF
	Comparing DRF with Feedback from DDs
	Discussion

	Conclusion and Future Work
	References

	A Knowledge-Based Semantic Kernel for Text Classification
	Introduction
	Semantics in Text Mining and Information Retrieval
	Semantic Relatedness and the Omiotis Measure
	Omiotis-Based Semantic Kernel
	Semantic Smoothing Matrix and Semantic Kernel Design
	Computational Aspects

	Empirical Evaluation
	Conclusions and Future Work
	References

	Compressed Text Indexing with Wildcards
	Introduction
	Preliminaries
	Bit Vectors with Rank/Select
	Suffix Trees and Suffix Arrays
	Compressed Text Indexes
	Compressed Index for Dictionary Matching
	Orthogonal Range Reporting
	Sparse Suffix Trees

	Matching with Wildcards in Compressed Text
	Type-1 Matching
	Type-2 Matching
	Type-3 Matching

	References

	Fast q-gram Mining on SLP Compressed Strings
	Introduction
	Preliminaries
	Straight Line Programs
	Suffix Arrays and LCP Arrays

	Algorithm
	Computing q-gram Frequencies on Uncompressed Strings
	Computing q-gram Frequencies on SLP

	Applications and Extensions
	q-gram Spectrum Kernel
	Optimal Substring Patterns of Length q
	Different Lengths

	Computational Experiments
	Fibonacci Strings
	Pizza and Chili Corpus

	Conclusion
	References

	Succinct Gapped Suffix Arrays
	Introduction
	Definitions
	Computing the Gapped LF Function in Succinct Space
	References

	Finding Frequent Elements in Compressed 2D Arrays and Strings
	Introduction
	Two-Dimensional Arrays
	Improvements for Strings
	References

	On Suffix Extensions in Suffix Trees
	Introduction
	Suffix Trees and Ukkonen's Algorithm
	The Locations of Implicit Nodes
	Maintaining Implicit Nodes Efficiently
	Conclusions
	References

	COCA Filters: Co-occurrence Aware Bloom Filters
	Introduction
	Previous Work and Background
	COCA Filters
	Experimental Results
	Conclusion and Future Work
	References

	On-Line Construction of Position Heaps
	Introduction
	Definition of Position Heap
	Properties of Position Heap
	On-Line Construction Algorithm
	Augmented Position Heap
	Concluding Remarks
	References

	Computing All Subtree Repeats in Ordered Ranked Trees
	Introduction
	Preliminaries
	Properties of Ranked Trees in Postfix Notation
	Algorithms
	Preprocessing
	Finding Subtree Repeats

	Conclusion
	References

	Sparse Spatial Selection for Novelty-Based Search Result Diversification
	Introduction
	Background and Related Work
	Search Result Diversification
	Search in Metric Spaces

	Sparse Spatial Selection Diversification
	Experimental Setup
	Experimental Results
	Conclusions
	References

	Candidate Document Retrieval for Web-Scale Text Reuse Detection
	Introduction
	User over Ranking
	Related Work

	Notation and Basic Definitions
	Baseline: Maximal Termset Query Formulation
	Heuristic Search Strategy
	Experimental Analysis
	Number of Submitted Queries
	Candidate Document Quality

	Conclusion and Outlook
	References

	A Multi-faceted Approach to Query Intent Classification
	Introduction
	Related Work
	Experimental Design
	Predicting Individual Facets
	Combining Multiple Facets
	Genre-Objective Combination
	Genre-Task-Topic Combination

	Conclusions
	References

	Navigating the User Query Space
	Introduction
	Background and Related Research
	Experimental Analysis
	Sampling the User Query Space
	Correlation of User Extracted Queries
	Usability of Predictors for Query Selection

	Conclusion
	References

	Improved Compressed Indexes for Full-Text Document Retrieval
	Introduction and Related Work
	Document Listing with Frequencies
	Top-k Document Retrieval

	Range Color Listing with Frequencies
	Faster Top-k Retrieval
	Lowering the lgD Factor to lgk
	Computing Arbitrary Frequencies

	Using Mmphfs for Top-k Retrieval
	Bounding the Number of Valid Candidates

	Top-k Most Important Document Retrieval
	Final Remarks
	References

	ESP-Index: A Compressed Index Based on Edit-Sensitive Parsing
	Introduction
	Pattern Matching on ESP
	Edit-Sensitive Parsing (ESP)
	Pattern Embedding Problem

	Algorithms and Data Structures
	Finding Evidence of Pattern
	Finding Pattern Occurrence
	Data Structures

	Experiments
	Discussion
	References

	Compressed Indexes for Aligned Pattern Matching
	Introduction and Related Work
	Preliminaries
	Suffix Trees and Suffix Arrays
	Sparse Suffix Trees
	Orthogonal Range Reporting
	A Simple Framework
	Interleaving Technique

	A Compressed Index for Long Query Patterns
	Hardness of the Problem
	A Compressed Index for All Query Patterns
	Query Answering

	Concluding Remarks
	References

	Reference Sequence Construction for Relative Compression of Genomes
	Introduction
	Reference Sequence Construction
	Experimental Results
	Concluding Remarks
	References

	Author Index

