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Preface

Testing has steadily become more and more important within the development
of software and systems, motivating an increasing amount of research aimed at
trying to solve both new challenges imposed by the advancement in various areas
of computer science and long-standing problems. Testing has evolved during the
last decades from an ad-hoc and under-exposed area of systems development to
an important and active research area.

The 23rd International Conference on Testing Software and Systems (ICTSS)
involved the merger of two traditional and important events which have served
the testing community as important venues for discussing advancements in the
area. Those events, namely, TestCom (the IFIP TC 6/WG 6.1 International
Conference on Testing of Communicating Systems), and FATES (International
Workshop on Formal Approaches to Testing of Software), together form a
large event on testing, validation, and specification of software and systems.
They have a long history. TestCom is an IFIP-sponsored series of international
conferences, previously also called International Workshop on Protocol Test Sys-
tems (IWPTS) or International Workshop on Testing of Communicating Systems
(IWTCS). It is devoted to testing communicating systems, including testing
of communication protocols, services, distributed platforms, and middleware.
The previous events were held in Vancouver, Canada (1988); Berlin, Germany
(1989); McLean, USA (1990); Leidschendam, The Netherlands (1991); Montreal,
Canada (1992); Pau, France (1993); Tokyo, Japan (1994); Evry, France (1995);
Darmstadt, Germany (1996); Cheju Island, South Korea (1997); Tomsk, Russia
(1998); Budapest, Hungary (1999); Ottawa, Canada (2000); Berlin, Germany
(2002); Sophia Antipolis, France (2003); Oxford, UK (2004); Montreal, Canada
(2005); and New York, USA (2006). Fates, Formal Approaches to Testing of Soft-
ware, is a series of workshops devoted to the use of formal methods in software
testing. Previous events were held in Aalborg, Denmark (2001); Brno, Czech Re-
public (2002); Montreal, Canada (2003); Linz, Austria (2004); Edinburgh, UK
(2005); and Seattle, USA (2006). From 2007 on, TestCom and Fates have been
jointly held in Tallinn, Estonia (2007), Tokyo, Japan (2008), and Eindhoven,
The Netherlands (2009).

This book constitutes the refereed proceedings of the 23rd IFIP International
Conference on Testing Software and Systems (ICTSS 2011) held on November
7–10, 2011 in Paris. There were 40 submissions. Each submission was reviewed
by at least 3, and on the average 3.6, Program Committee members. After in-
tensive discussions, the committee decided to accept 13 papers, among them
2 papers from the industrial track. The program also included 2 invited talks:
Marie-Claude Gaudel with an overview of random-based test generation algo-
rithms and the latest applications to LTL model-checking, and Manuel Núñez on
problems in testing combinations of timed and probabilistic finite state machine
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formalisms. The conference was preceded by a tutorial day consisting of presen-
tations of industrial tools relevant for the field; the speakers were Bruno Legeard,
Jean-Pierre Schoch, and Nikolai Tillmann.

We would like to thank the numerous people who contributed to the suc-
cess of ICTSS 2011: the Steering Committee, the Program Committee, and the
additional reviewers for their support in selecting papers and composing the
conference program, and the authors and the invited speakers for their contribu-
tions without which, of course, these proceedings would not exist. The conference
would not have been possible without the contributions and the support of the
following organizations: Microsoft Research, the Institut Henri Poincaré (that
generously offered us the facilities for the conference location), INRIA, the LRI
of Université de Paris-Sud, the Digiteo Foundation, and the CNRS Scientific Re-
search Group GDR GPL. Moreover, all members of the ForTesSE team helped
with the local arrangements of the conference.

August 2011 Burkhart Wolff
Fatiha Zäıdi
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Manuel Núñez UCM, Madrid
Doron Peled Bar Ilan University
Alexandre Petrenko CRIM
Antoine Rollet ENSEIRB
Ina Schieferdecker TU Berlin/Fraunhofer FOKUS
Nicolai Tillmann Microsoft Research
Andreas Ulrich Siemens AG
Hasan Ural University of Ottawa
Mark Utting The University of Waikato
Umit Uyar City University of New York
Margus Veanes Microsoft Research
César Viho IRISA/University of Rennes 1
Gregor Von Bochmann University of Ottawa
Carsten Weise Embility GmbH
Burkhart Wolff University of Paris-Sud, LRI



VIII Organization

Nina Yevtushenko Tomsk State University
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Counting for Random Testing

Marie-Claude Gaudel

Université Paris-Sud 11, LRI, Orsay, F-91405,
and CNRS, Orsay, F-91405

mcg@lri.fr

http://www.lri.fr/~mcg

Abstract. The seminal works of Wilf and Nijenhuis in the late 70s
have led to efficient algorithms for counting and generating uniformly
at random a variety of combinatorial structures. In 1994, Flajolet, Zim-
mermann and Van Cutsem have widely generalised and systematised
the approach. This paper presents several applications of these powerful
results to software random testing, and random model exploration.

Keywords: Software testing, random walks, combinatorics.

1 Introduction

In the area of analytic combinatorics, the seminal works of Wilf and Nijenhuis
in the late 70s have led to efficient algorithms for counting and generating uni-
formly at random a variety of combinatorial structures [13,19]. In 1994, Flajolet,
Zimmermann and Van Cutsem have widely generalised and systematised the
approach [7]. The recent book by Flajolet and Sedgewick [8] presents a detailed
survey of this corpus of knowledge. These works constitute the basis of powerful
tools for uniform random generation of complex entities, such as graphs, trees,
words, paths, etc.

This paper summarises several applications of these powerful results to soft-
ware random testing, and random model exploration.

Random methods look attractive for testing large programs or checking large
models. However, designing random methods that have a good and assessable
fault detection power is not so easy: the underlying probability distribution of
inputs or paths must be carefully designed if one wants to ensure a good coverage
of the program or model, or of potential fault locations, and to quantify this
coverage.

This paper is organised as follows: Section 2 recalls some basic facts on soft-
ware random testing and random walks; Section 3 briefly presents methods for
uniform generation of bounded paths that are completely described in [17] and
[5]; Section 4 shows how to take into account other coverage criteria, and gives
a definition of randomised coverage satisfaction [5] ; finally Section 5 addresses
the uniform coverage of lassos, which are the basis of LTL model-checking [18].

B. Wolff and F. Zaidi (Eds.): ICTSS 2011, LNCS 7019, pp. 1–8, 2011.
c© IFIP International Federation for Information Processing 2011
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2 Some Preliminaries on Random Testing and Random
Walks

There are three main categories of methods for software random testing: those
based on the input domain of the system under test, those based on some knowl-
edge of its environment, and those based on some model of its behaviour.

We focus on the third case, where some graphical description of the behaviour
of the system under test is used. Random walks [1] are performed on the set
of paths of this description. Classical random walk methods, sometimes called
isotropic, progress from one state by drawing among its successors uniformly at
random. The big advantage of such methods is that they are easy to implement
and only requires local knowledge of the model. A serious drawback is that in
case of irregular topology of the underlying graph, uniform choice of the next
state is far from being optimal from a coverage point of view: some examples
are given in [4] and [5]. Similarly, getting an estimation of the coverage obtained
after one or several random walks would require some complex global analysis
of the topology of the model.

The works presented in this paper aim at improving the quality of random
walks with respect to various coverage criteria: bounded paths coverage, transi-
tions/branches coverage, states/statements coverage, lassos. There is a price to
pay: some non-local knowledge of the models is required, based on counting the
elements to be covered accessible from each successor of the current state. Thank
to the powerful results mentioned above, and to sophisticated implementation
methods, it is possible to get good compromises between memory requirement,
efficiency of drawing, and quality of the achieved coverage.

All the works below rely on combinatorial algorithms, based on the formali-
sation of models or programs as some automaton or as some product of several
automata, synchronised or not. The basic algorithms are implemented and avail-
able in the RUKIA C++ library (http://rukia.lri.fr/en/index.html).

3 Improvements of Recursive Uniform Path Generation

3.1 The Classical Recursive Method

This classical method was first presented in [19,7]. Let us consider a deterministic
finite automaton A with q states {1, 2, . . . , q} among which are distinguished an
initial state and some final states. For each state s, let ls(n) be the number of
paths of length n starting from s and ending at a terminal state. Such values
can be computed with the following recurrences on n (where F denotes the set
of final states in A): ⎧⎪⎪⎨

⎪⎪⎩
ls(0) = 1 if s ∈ F
ls(0) = 0 if s �∈ F
ls(i) =

∑
s→s′

ls′(i− 1) ∀i > 0
(1)
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We note Ln = 〈l1(n), l2(n), . . . , lq(n)〉. The principle of the recursive method is
in two steps:

– Compute and store vector Lk for all 1 ≤ k ≤ n. This calculation is done
starting from L0 and using equations (1).

– Generate a path of length n by choosing, when the current state is s and the
path has already n−m states, successor si with the probability:

P(si) =
lsi(m− 1)

ls(m)
. (2)

When using floating point arithmetic as in [6], the complexity of the algorithm is
in O(qn) space and time for the preprocessing stage and O(n) for the generation,
where n denotes the length of the path to be generated, and q denotes the number
of states.

For big models and long paths, this method does not scale up well. This was
the motivation for two pieces of work presented below.

3.2 A Dichotomic Algorithm for the Uniform Random Generation
of Paths

In [17] Oudinet et al. have presented the so-called dichopile method, which is
based on a divide-and-conquer approach, avoids numerical instability and offers
an excellent compromise in terms of space and time requirements.

Note that to choose the successor of the initial state, only Ln and Ln−1 are
needed. Then, Ln−1 and Ln−2 allow to choose the next state and so on. Thus, if
we had a method that compute efficiently Ln, Ln−1, . . . , L0 in descending order,
we could store the two last vectors only and reduce space complexity. This inverse
approach constitutes the principle of Goldwurm’s method [10]. However, in [16],
Oudinet showed that this method is numerically instable, thus forbidding the use
of floating-point arithmetics, which is essential given the big numbers involved.

The idea of the dichopile algorithm is as follows. Compute the number of
paths of length n from the number of paths of length 0 while saving in a stack a
logarithmic number of intermediate steps: the number of paths of length n/2, of
length 3n/4, of length 7n/8, etc. For computing the number of paths of length
n− i, it is computed again from the intermediate stage that is at the top of the
stack. Recall that Lj denotes the vector of q numbers of paths of length j, that
is the ls(j)’s for all states s.

Unlike the classical recursive method, there is no preprocessing phase. In [17]
it is proved that using floating-point numbers with a mantissa of size O(log n),
bit complexities of drawing are O(q log2 n) in space and O(dqn log2 n) in time,
where d stands for the maximal out-degree of the automaton.

The classical recursive method is much faster after the preprocessing stage,
but it is unusable for long paths and large models due to its space require-
ment. dichopile is an excellent compromise when considering both space and
time complexities. In our experiments with automata from the VLTS benchmark
suite (Very Large Transition Systems, http://tinyurl.com/yuroxx), examples of
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limits for the recursive method were 8879 states, 24411 transitions and paths
of length 64000, or 10849 states 56156 transitions and paths of length 16000,
where dichopile was able to generate paths of length 128000 and more. dichopile
was able to deal with 12323703 states, 27667803 transitions and paths of length
8000. Both methods are implemented in the RUKIA library.

3.3 Uniform Path Exploration in Very Large Composed Models

Fortunately, huge models are rarely stated from scratch. They are obtained by
composition of smaller ones, the main source of state number explosion being
parallel compositions.

When there is no synchronisation, the parallel composition of r models Mod1,
. . . , Modr is the product of the underlying automata [2]. A brute force method
to uniformly drawing paths is to build the product and to use the methods
above. Since it is possible for moderate sizes only we have developed an alter-
native method that avoids the construction of the global model. This method is
presented in detail in [4] [14] and [5]. We sketch it below.

– Given n the length of the global path to be drawn
– Choose some lengths n1, . . . , nr such that

∑
i=1,...,r ni = n, with adequate

probabilities (see below)
– For each Modi, draw uniformly at random some path wi of length ni

– Interleave the r wi in a randomised way that ensures uniformity among
interleavings.

Let �(n) be the number of global paths of length n, and �i(k), i = 1, . . . , r the
number of paths of length k in Modi. The choice of the n1, . . . , nr should be
done with the probability below:

Pr(n1, . . . , nr) =

(
n

n1,...,nr

)
�1(n1) . . . �r(nr)

�(n)
(3)

where the numerator is the number of interleavings of length n that can be built
with r local paths of lengths n1, . . . , nr. Since computing the exact value of �(n)
would require the construction of the global model and of the corresponding
tables, we use the following approximation from [8]:

�(n) ∼ Cωn. (4)

where C and ω are two constants. A sufficient, but not necessary, condition for
this approximation to hold is aperiodicity and strong connectivity of the automa-
ton, which is satisfied by any LTS with a reset. Details of weaker conditions can
be found in [8]. This approximation is precise enough even for small values of n
since Cωn/�(n) converges to 1 at exponential rate.

Using the same approximations for the �i(ni), i = 1, . . . , r, we get (see [4]):

�(n) ∼ C1 . . . Cr(ω1 + . . . + ωr)n (5)
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and then

Pr(n1, . . . , nr) ∼
(

n
n1,...,nr

)
ωn1

1 ωn2
2 . . . ωnr

r

(ω1 + ω2 + . . . + ωr)n
. (6)

This avoids the computation of �(n), C and ω. The constants ωi, i = 1, . . . , r are
computable in polynomial time with respect to the size of the Modi. It means
that the complexity is dependent on the size of the components only, and not of
the size of the global model.

In [4], we provide an algorithm for drawing n1, . . . , nr with this probability
without computing it: draw a random sequence of n integers in {1, . . . , r}, with
the probability to choose i equal to Pr(i) = ωi

ω1+ω2+...+ωr
; then take as ni the

number of occurrences of i in this sequence.
This concludes the issue of the choice of the n1, . . . , nr. Then a classical ran-

domised way of interleaving r wi of lengths ni that ensures uniformity is used.
This method is available in the RUKIA library. Experiments have been suc-

cessfully led on models with 1034 states, with performances that show that the
approach makes it possible to uniformly explore even larger models [14].

The generalisation to one synchronisation is given in [9]. The case of sev-
eral synchronisations is studied in Oudinet’s Ph.D. thesis [15] It turns out be
practicable in the case of a small number of synchronisations only. The num-
ber of synchonisations can be increased by considering partial order reduction,
i.e. by collapsing interleavings. Besides, in presence of many synchronisations,
the synchronised product is smaller and a brute-force method, where it is con-
structed and used for uniform drawings, may become feasible. Actually, practical
solutions are probably combinations of these two approaches depending on the
architecture of the global system.

4 Randomised Coverage of States, Transitions, and Other
Features

Path coverage is known to be too demanding, due to the path number explosion.
Thus it is of interest to consider other coverage criteria. In [11] [3] [5], we have
defined a notion of randomised coverage satisfaction for random testing methods.

What does it mean for a random exploration method to take into account a
coverage criterion? Let EC(G) be the set of elements characterising a coverage
criterion C for a given graph G, for instance the vertices or the arcs of G, or some
subset of them.. The satisfaction of this coverage criterion C by some random
exploration of the graph G can be characterised by the minimal probability
qC,N (G) of covering any element of EC(G) when drawing N paths. qC,N (G) can
be easily stated as soon as qC,1(G) is known.One has qC,N (G) = 1−(1−qC,1(G))N .

Given a coverage criteria and some given random testing method, the elements
to be covered have generally different probabilities to be reached by a test.
Some of them are covered by all the tests. Some of them may have a very weak
probability, due to the structure of the graph or to some specificity of the testing
method.
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Let EC(G) = {e1, e2, ..., em} and for any i ∈ (1..m), let pi the probability for
the element ei to be exercised during the execution of a test generated by the
considered random testing method. Then

qC,N (G) = 1− (1− pmin)N (7)

where pmin = min{pi|i ∈ (1..m)}. This definition corresponds to a notion of
randomised coverage satisfaction. It makes it possible to assess and compare
random exploration methods with respect to a coverage criterion.

Conversely, the number N of tests required to reach a given probability of
satisfaction qC(G) is

N ≥ log(1− qC(G))
log(1− pmin)

(8)

By definition pmin gives qC,1(G). Thus, from the formula above one immediately
deduces that for any given G, for any given N , maximising the quality of a ran-
dom testing method with respect to a coverage criteria C reduces to maximising
qC,1(G), i. e. pmin. Note that uniform drawing of bounded paths, as presented
in Section 3 maximises pmin on the set of paths to be covered.

A more developed discussion of these issues can be found in [5], together
with the treatment of state coverage and transition coverage: some methods for
computing their probabilities for a given model are given . These methods were
first developed, implemented and experimented for C programs in [11] [3].

5 Uniformly Randomised LTL Model-Checking

The big challenge of model-checking is the enormous sizes of the models. Even
when the best possible abstractions and restrictions methods have been applied,
it may be the case that the remaining size is still significantly too large to
perform exhaustive model explorations. Giving up the idea of exhaustivity for
model-checking leads to the idea of using test selection methods for limiting the
exploration of models.

One of these methods is randomisation of the search algorithm used for model
exploration. A first introduction of randomisation into model-checking has been
described and implemented in [12] as a Monte-Carlo algorithm for LTL model-
checking. The underlying random exploration is based on a classical uniform
drawing among the transitions starting from a given state. As said in Section
2 the drawback of such random explorations is that the resulting distribution
of the exploration paths is dependent on the topology of the model, and some
paths may have a very low probability to be traversed.

In [18], we have studied how to perform uniform random generation of lassos,
which are the kind of paths of interest for LTL model-checking. This implies
counting and drawing elementary circuits, which is known as a hard problem.
However, efficient solutions exist for specific graphs, such as reducible data flow
graphs which correspond to well-strucured programs and control-command sys-
tems. An immediate perspective is to embed this method in an existing model-
checker such as SPIN or CADP, with the aim of developing efficient randomised
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methods for LTL model-checking with as result a guaranted probability of sat-
isfaction of the checked formula.

The interest of this approach is that it maximises the minimal probability
to reach a counter-example, and makes it possible to state a lower bound of
this probability after N drawings, giving an assessment of the quality of the
approximation.

6 Conclusion

In this set of works, we study the combination of coverage criteria with random
walks. Namely, we develop some methods for selecting paths at random in a
model. The selection is biased toward a coverage criterion. We have introduced
a notion of randomised coverage satisfaction of elements of the model such as
states, transitions, or lassos which are of interest for checking or testing LTL
formulas.

We use methods for counting and generating combinatorial structures, pre-
senting several original applications of this rich corpus of knowledge. They open
numerous perspectives in the area of random testing, model checking, or simu-
lation of protocols and systems.

Acknowledgments. The works reported here have been led in the RASTA
working group (RAndom System Testing and Analysis), which involves mem-
bers of various research teams of LRI (Algorithms and Complexity, Bioinfor-
matics, Formal Testing and System Exploration) and of the Equipe de Logique
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Abstract. This talk reviews some of my contributions on formal testing
of timed and probabilistic systems, focusing on methodologies that allow
their users to decide whether these systems are correct with respect to
a formal specification. The consideration of time and probability com-
plicates the definition of these frameworks since there is not an obvious
way to define correctness. For example, in a specific situation it might be
desirable that a system is as fast as possible while in a different applica-
tion it might be required that the performance of the system is exactly
equal to the one given by the specification. All the methodologies have as
common assumption that the system under test is a black-box and that
the specification is described as a timed and/or probabilistic extension
of the finite state machines formalism.

1 Introduction

Testing was classically considered an informal discipline. Actually, it was as-
sumed that formal methods and testing were orthogonal lines of research. Quot-
ing from Edsger W. Dijkstra’s ACM Turing Lecture:

Program testing can be a very effective way to show the presence of bugs,
but is hopelessly inadequate for showing their absence. The only effective
way to raise the confidence level of a program significantly is to give a
convincing proof of its correctness.

However, early work already showed that it is possible to successfully combine
formal methods and testing [21,6] and during the last 20 years there has been
a vast amount of work on formal testing [9]. In particular, several workshops
are exclusively devoted to the topic and formal testing has a strong presence in
testing conferences, including this one, and in scientific journals.

Formal testing techniques provide systematic procedures to check systems in
such a way that the coverage of their critical parts/aspects depends less on the
intuition of the tester. While the relevant aspects of some systems only concern
� This research has been partially supported by the Spanish MICINN project TESIS

(TIN2009-14312-C02-01) and by the Santander-UCM Programme to fund research
groups (GR35/10-A-910606).
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what they do, in some other systems it is equally relevant how they do what
they do. Thus, after the initial consolidation stage, formal testing techniques
started to deal with properties such as the probability of an event to happen,
the time that it takes to perform a certain action, or the time when a certain
action happens.

The work on formal testing of timed systems has attracted a lot of attention
during the last years. Most work considers that time is deterministic, that is,
time requirements follow the form “after/before t time units...” Even though the
inclusion of time allows to give a more precise description of the system to be
implemented, there are frequent situations that cannot be accurately described
by using this notion of deterministic time. For example, in order to express that
a message will arrive at any point of time belonging to the interval [0, 1] we will
need, in general, infinite transitions, one for each possible value belonging to the
interval. In this case, it would be more appropriate to use time intervals to de-
scribe the system. Let us consider now that we have to simulate the performance
of a petrol station. Since the arrival of cars follows a Poisson distribution, we
would need again to use an infinite number of transitions. Moreover, if we have
to use a time interval we would be very imprecise since all that we could say is
that the next car will arrive in the interval [0,∞). Thus, it would be very useful
to have a mechanism allowing to express that a time constraint is given by using
a random variable that follows a precise probability distribution function.

In addition to consider the temporal behavior of systems, it is also interesting
to study their probabilistic behavior. The use of probabilities allows to quan-
tify the non-deterministic choices that a system may undertake. For example,
instead of just specifying that a dice can non-deterministically return a value
between 1 and 6, we can give more information by pointing out that the prob-
ability associated with each of these values is equal to 1

6 . In order to introduce
probabilities, we consider a variant of the reactive model [7]. A reactive model
imposes a probabilistic relation among transitions departing from a given state
and labeled by the same action but choices between different actions are not
quantified. In our setting, we express probabilistic relations between transitions
outgoing from a state and having the same input action (the output may vary).
Technically, for each input and state, the addition of the probabilities associated
with transitions departing from a given state and labeled with that input is equal
to either 0 (if there are no transitions) or to 1.

2 Outline of the Talk

The bulk of the talk is devoted to present formal testing methodologies where
the temporal behavior of systems is taken into account and it is based on a
joint work with Mercedes G. Merayo and Ismael Rodŕıguez [16]. The last part
of the talk shows how the timed framework can be extended with probabilistic
information. This part of the talk is based on a joint work with Ana Cavalli,
Iksoon Hwang and Mercedes G. Merayo [13].
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During this talk, the considered formalisms are always simple extensions of
the classical concept of Finite State Machine. Intuitively, transitions in finite
state machines indicate that if the machine is in a state s and receives an input i
then it will produce an output o and it will change its state to s′. An appropriate

notation for such a transition could be s
i/o−→ s′. If we consider a timed extension

of finite state machines, a transition such as s
i/o−−−−→ t s′ indicates that if the

machine is in state s and receives the input i, it will perform the output o
and reach the state s′ after t time units. Similarly, if we consider that time is

defined in stochastic terms, a transition as s
i/o−−−−→ ξ s′ indicates that if the

machine is in state s and receives the input i, it will perform the output o and
reach the state s′ after a certain time t with probability Fξ(t), where Fξ is the
probability distribution function associated with ξ. Finally, in a model where
non-determinism is probabilistically quantified and time is defined in stochastic

terms, a transition such as s
i/o−−−−→p,ξ s′ indicates that if the machine is in state

s and receives the input i then with probability p the machine emits the output
o and it moves to state s′ before time t with probability Fξ(t).

If time is expressed in stochastic terms, then the black-box assumption com-
plicates the work of the tester. In this case, testers cannot compare in a direct
way timed requirements of the real implementation with those established in
the model. The idea is that we can see the random variable associated with a
given transition in the model, but we cannot do the same with the correspond-
ing transition of the implementation, since we do not have access to it. Thus, in
contrast with approaches considering fix time values, to perform a transition of
the implementation once does not allow the tester to obtain all the information
about its temporal behavior. Therefore, the tester must induce the system to
perform the same transition several times to collect different time values.

Implementation relations are used to relate systems under test and specifica-
tions. It is very helpful to start by considering an implementation relation where
time is not taken into account. In this case, the idea is that the implementation I
does not invent anything for those inputs that are specified in the model. In order
to cope with time, we do not take into account only that a system may perform
a given action but we also record the amount of time that the system needs to
do so. Several timed conformance relations can be defined according to the inter-
pretation of good implementation and the different time domains. Time aspects
add extra complexity to the task of defining these relations. For example, even
though an implementation I had the same traces as a formal model S, we should
not consider that I conforms to S if I is always slower than S. Moreover, it can
be the case that a system performs the same sequence of actions for different
times. These facts motivate the definition of several conformance relations. For
example, it can be said that an implementation conforms to a formal model if
the implementation is always faster, or if the implementation is at least as fast
as the worst case of the model.

With respect to the application of tests to implementations, the above men-
tioned non-deterministic temporal behavior requires that tests work in a specific
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manner. For example, if we apply a test and we observe that the implementa-
tion takes less time than the one required by the formal model, then this single
application of the test allows us to know that the implementation may be faster
than the model, but not that it must be so.

3 Other Work on Testing of Timed and Probabilistic
Systems

In addition to the work presented in this talk, I have also participated in the
development of other frameworks to test timed and probabilistic systems that
I would like to briefly review. First, it is worth mentioning that the presented
framework is general enough so that it can be easily modified to deal with other
formalisms such as timed variants of stream X-machines [14]. The timed frame-
work presented in this talk allows their users to express temporal requirements
concerning the time elapsed between the reception of an input and the produc-
tion of an output but it does not deal with timeouts. Therefore, this work [16]
was extended to add timeouts: if after a certain amount of time the system does
not receive and input, then a timeout will be invoked and the system will change
its state [15]. Another interesting line of work consists in considering that the
time information might not exactly reflect reality (e.g. due to bad equipment
to measure time). Therefore, the tester might assume that small errors can be
acceptable [17].

The previous approaches consider active testing, that is, the tester provides
inputs to the system under test and analyzes the received outputs. However,
in certain circumstances the tester cannot interact with the system and has to
analyze observations of this system that are not controlled by him: he becomes
a passive tester. During the last years, I was interested on the definition of a
passive testing methodology for timed systems [3] and in the application of the
methodology to real systems [2,1].

A different line of research in testing of timed systems consists in using genetic
algorithms to select better test cases among the (possibly infinite) test cases that
can be derived from a given specification [4,5].

Concerning testing of probabilistic systems, it is interesting to test the prob-
abilistic behavior of systems with distributed ports since it is challenging to
establish probabilistic relations between ports and between actions in the same
port [10].

In some situations it is difficult to precisely specify the probabilities governing
the behavior of the system. Therefore, instead of specifying that a certain event
will happen with probability p, it is more appropriate to say that it will happen
with a probability belonging to the interval [p − ε, p + δ]. The definition of a
testing methodology for this kind of systems was quite interesting [12].

The previous approaches considered extensions of the ioco implementation
relation [22]. A more theoretical line of work consists in defining timed and
probabilistic extensions [19,20,11] of the classical de Nicola & Hennessy testing
framework [18,8].
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4 Future Work

I continue working on probabilistic and/or timed extensions of formal testing
frameworks. Currently, I am very interested on testing systems with distributed
ports. One line of work consists in using (probabilistic and distributed) schedulers
to solve some of the problems detected on previous work [10]. Another line of
work considers the analysis of time while testing systems with distributed ports.
Using this additional information can help to fix the order in which events at
different ports were performed. I am also working on applying our frameworks
to test real systems. Specifically, the timed framework presented in this talk [16]
is being use to test the temporal behavior of major household appliances while
the probabilistic and timed framework presented during the talk [13] is being
applied to analyze wireless communication protocols.
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Zäıdi, Chairs of the conference, for their kind invitation to be an invited speaker
in ICTSS 2011. I would also like to thank all my colleagues with whom I have had
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Abstract. Testing the reliability of an application usually requires a good usage 
model that accurately captures the likely sequences of inputs that the 
application will receive from the environment. The models being used in the 
literature are mostly based on Markov chains. They are used to generate test 
cases that are statistically close to what the application is expected to receive 
when in production. In this paper, we study the specific case of web 
applications. We present a model that is created directly from the log file of the 
application. This model is also based on Markov chains and has two 
components: one component, based on a modified tree, captures the most 
frequent behavior, while the other component is another Markov chain that 
captures infrequent behaviors. The result is a statistically correct model that 
exhibits clearly what most users do on the site. We present an experimental 
study on the log of a real web site and discuss strength and weakness of the 
model for reliability testing. 

Keywords: Web applications, Usage models, Reliability testing, Markov chains. 

1   Introduction 

Many formal testing techniques are directed towards what is sometimes called “debug 
techniques”: the goal is to fulfill some given criteria (branch coverage, all-uses 
coverage, all paths, all code and many others), or uncover every fault1 using some 
restricted fault models (checking experiments). However, in practice, non-trivial 
applications are simply not expected to ever be failure-free, thus the purpose of a 
realistic testing campaign cannot be to find all the faults. Given that only some of the 
failures will be uncovered, it only makes sense to question which ones will be found 
by a testing method. Note that in a realistic setting, failures are always ranked by 
importance.  

In this paper, we are interested in testing the reliability of an application. For a 
material system, reliability is usually defined by the expected time of operation after 
                                                           
1 In this document, a “fault” in the application source code leads to a “failure” at execution 

time. A “test sequence” is a sequence of interactions between the testing environment (e.g. 
the tester) and the tested application. “Test input data” is the data that is input during the 
execution of the test sequence. A test sequence, valued with test input data, is a “test case”. A 
test case may uncover a failure, due to one (or more) fault. 
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which the system will fail. In the case of a software system, it can be defined by the 
expected number of usages before it will fail. A usage, in this context, may be a 
request provided by the environment, or a complete usage session, for instance in the 
case of an application with an interface to a human user.  Clearly, the occurrence of a 
failure of a software system is dependent on the input provided. In order to test the 
reliability of an application, it is therefore important to apply inputs that reflect the 
behavior of the environment of the application in the normal operating conditions. 
This is sometimes called “operational testing”. In this context, it is important to test 
first those behavior patterns that occur most frequently under normal operating 
conditions. This idea has been applied with great success on certain large software 
projects: Google was for example able to deliver an internet browser, Chrome, that 
was remarkably reliable from its first release, not necessarily because it was tested 
against more web pages than the other browsers, but because it was tested against the 
web pages that Google knew people were most looking at2.  

There are essentially two methods for obtaining a realistic model of the behavior of 
the environment of the application to be tested for reliability: 

1. Environment model based on the application model: If the functional behavior 
requirements of the application are given in the form of an abstract model, for 
instance in the form of a UML state machine model, this model can be easily 
transformed into a model of the environment by exchanging input and output 
interactions. However, for obtaining an environment model useful for reliability 
testing, this functional model must be enhanced with statistical performance 
information about the frequency of the different inputs applied to the application 
in the different states of the environment. This may be formalized in terms of a 
Markov model based on the states of the abstract functional application model.  

2. Environment model extracted from observed execution traces in a realistic 
environment: Independently of any model of the application that may be 
available, a model of the dynamic behavior of the environment may be extracted 
from the observation of a large number of execution traces that have occurred in 
a realistic setting.  

In this paper, we pursue the second approach. We assume that the application to be 
tested is a Web application. We make the assumption that after each input by the user, 
the response from the web server provides information about the functional state of 
the application. In the case of traditional web applications, the state information is 
given by the URL of the page that is returned. In the case of Rich Internet 
Applications (RIA), we consider that the content of the returned web page, that is the 
DOM of this page, represents the application state, assuming that there is no hidden 
state information stored in the server.  

In previous work on reliability testing, the user model is usually either given in the 
form of a tree of possible execution sequences with associated probabilities for each 
branching point [1][2], or in the form of a Markov model [3],[4],[5],[6]. We show in 
this paper how one can extract, from a given set of execution sequences, a user model 
that is a combination of an execution tree and a traditional Markov model. We first 

                                                           
2  See http://www.google.com/googlebooks/chrome/, page 10 for a graphical  
  illustration. 
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construct the execution tree from the given set of execution sequences. The upper 
branches of the tree have usually been executed a large number of times which means 
that good statistical information is available for the branching probabilities. This part of 
our model is called the “upper tree”. For the lower branches of the tree, however, there 
are usually only one or a few executions that have been observed; therefore the 
statistical information about branching probabilities is very weak. We therefore remove 
these lower branches and combine them into a Markov model for which the branching 
probabilities are obtained from the union of all the lower branches. This part of our 
model is called “lower Markov model”. Our resulting user model is therefore a Markov 
model which contains two parts, the “upper tree” and the “lower Markov model”.  

The “lower Markov model” is a traditional (first-order) Markov model where each 
state of the model corresponds to a state of the application. However, the “upper tree” 
is a higher-order Markov model which may contain several different Markov states 
corresponding to the same application state; this is the case when the behavior of the 
user does not only depend on the current application state, but also on the path which 
was taken to get to this state. In contrast to other statistical modeling methods starting 
out with observed execution sequences that can only model dependencies on previous 
states up to a limited number of interactions [7],[8] our “upper tree” can model 
dependencies on previous application state for arbitrarily long state sequences. 

This paper is structured as follows. Section 2 presents an overview of Markov 
usage models and their application in reliability testing, followed by a brief review of 
previous work on Markov usage models in Web applications.  Section 3 presents a 
detailed description of our hybrid Markov usage model. In Section 4, we present the 
results of experiments conducted with real data. In Section 5, we give our conclusions 
and present our plans for future research. 

2   Review Markov Usage Model 

Markov models are commonly used to model usage patterns and to establish 
reliability estimations because they are compact, simple to understand and based on 
well-established theory. K. Goseva-Popstojanova and K. S. Trivedi used Markov 
renewal processes to estimate software reliability [9],[10], but they did not use the 
usage model. Markov chains have been used extensively over the past two decades in 
the domain of statistical usage testing for software. In 1994, Whittaker and Thomason 
[3] explained how to use a Markov-chain-based model of software usage to perform 
statistical testing. Random walks on the model are performed to generate test 
sequences. These test sequences are applied to the implementation and the test 
experiment is run until enough data is gathered for the implementation under test. 
More recently, MaTeLo, an industrial tool also used Markov chains to model usage 
profiles, generate test cases, debug and estimate software reliability [4], [5], [11].  

In Web applications reliability testing, a Markov chain model can be constructed 
from log files. When users visit a Web site, Web servers record their interactions with 
the Web site in a log file. The log file usually contains data such as the user’s IP 
address, viewing time, required page URL, status, and browser agent. After some 
massaging of the data, it is possible to infer from the log files a reliable set of user 
sessions (see e.g. [12],[13],[14] for detailed explanations of how to obtain sessions 
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from Web log files). Figure 1(a) illustrates the principle of building a Markov chain 
from log files. In this example, the Web pages being visited (identified in practice by 
their URLs) belong to the set {1, 2, 3, 4, 5}. In the following, we call such pages 
“application states”. From the log files, visiting sessions have been reconstructed. 
Artificial starting state S and terminating state T are added to theses sessions for 
simplicity. Some of the reconstructed sessions may be identical if several users have 
followed the same sequence of pages on the Web site. We combine such sessions 
going through the same sequence of application states, to obtain what we call 
“application state sequences”. In the figure, the column Nb shows how many times 
each application state sequence was followed. Figure 1.b presents the traditional 
Markov chain model for these sessions. In the Markov chain, the edges are labeled 
with probabilities representing the distribution of the user’s choice for the next state 
from the current one.  

 

Fig. 1. An example of a traditional Markov Chain model: (a) a collection of application state 
sequences and (b) the corresponding traditional Markov chain model  

Traditional Markov models are simple and compact, but they have also limitations 
when used to model usage profiles. In Web applications, a traditional Markov model, 
sometimes called first-order Markov model, captures the page-to-page transition 
probabilities: p(x2|x1) where x1 denotes the current page and x2 denotes one of pages 
reachable from x1. Such low order Markov models cannot capture behavior where the 
choice of the next page to be visited depends on “history”, that is, on how the current 
application state was reached. For example, in an e-commerce site, after adding an 
item to the shopping card, the user would typically either “proceed to checkout” or 
“continue shopping”. The probability of doing one or the other is certainly not 
identical after adding one item, after adding two items etc. Another example is shown 
in Figure 1: In the snippet of a traditional Markov usage model (b), we see that there 
are three ways to reach state 3 (from state 1, from state 2 and from state S), and that 
from state 3, there is 30% chance to go to state 4, and 70% chances to go the state 5. 
However, looking at the provided application state sequences, we can see that users 
reaching state 3 from state 1 never go to state 4 afterwards. What is shown in the 
traditional Markov chain is misleading. Since it is reasonable that most Web 
applications involve such history-dependent behavior, accurate models of user 
behavior cannot be obtained with first order Markov chains [15]. The same problem is 
also discussed by Deshpande and Karypis [16]. Thus, a good usage model requires 
higher-order Markov chains.  

A higher-order Markov model has already been explored by Borges and Levene in 
2000 to extract user navigation patterns by using a Hypertext Probabilistic Grammar 
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model structure (HPG) and N-grams [7]. In their work, an N-gram captures user 
behavior over a subset of N consecutive pages. They assume that only the N-1 
previous pages have a direct effect on the probability of the next page selected. To 
capture this, they reuse the concept of “gram” taken from the domain of probability 
language learning [17]. Consider, for example, a web site composed of six states {A1, 
A2, A3, A4, A5, A6}. The observed application state sequences are given in Table 1 
(Nb denotes the number of occurrences of each sequence). 

Table 1. A collection of application state sequences 

Application State Sequences Nb 
A1-A2-A3 3 
A1-A2-A4 1 
A5-A2-A4 3 
A5-A2-A6 1 

 
A bigram model is established using first-order probabilities. That is, the 

probability of the next choice depends only on the current position and is given by the 
frequency of the bigram divided by the overall frequency of all bigrams with the same 
current position. In the example of Table 1, if we are interested in the probabilities of 
choices from application state A2, we have to consider bigrams (sequences including 
two application states) that start with state A2. This includes the following: 
Segment A2-A3 has a frequency of 3, and other bigrams with A2 in their current 
position include the segments A2-A4 and A2-A6 whose frequency are 4 and 1, 
respectively; therefore, p(A3|A2)=3/(3+4+1)=3/8. It is not difficult to see that the 2-
gram model is a first-order Markov chain, the traditional Markov usage model. The 
second-order model is obtained by computing the relative frequencies of all trigrams, 
and higher orders can be computed in a similar way. Figure 2 shows the 3-gram 
model corresponding the sessions in Table 1. 

 

Fig. 2. 3-gram model corresponding to the sessions given in Table 1 

Subsequently, the same authors showed in 2004 how to use higher-order Markov 
models in order to infer web usage from log files [8]. In this paper, they propose to 
duplicate states for which the first-order probabilities induced by their out-links diverge 
significantly from the corresponding second-order probabilities. Take Table 1 again as 
example. Consider state 2 and its one-order probability p(A3|A2)=3/8, and its two-order 
probability p(A3|A1A2)=3/4. The large difference between p(A3|A2) and p(A3|A1A2) 
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indicates that coming from state A1 to state A2 is a significant factor on the decision to 
visit A3 immediately afterwards. To capture this significant effect, they split state A2 as 
illustrated in figure 3. A user-defined threshold defines how much the first and second 
order probabilities must differ to force a state splitting. A k-means clustering algorithm 
is used to decide how to distribute a state’s in-links between the split states.  

 

Fig. 3. An example of the cloning operation in dynamic clustering modeling 

All these approaches focus on the last N-1 pages and will thus ignore effects 
involving earlier pages visited. In addition, the fixed-order Markov model also has some 
limitations in accuracy as pointed out by Jespersen, Pedersen and Thorhauge [18].  

3   Hybrid Tree-Like Markov Usage Model 

In this section, we introduce a new method to infer a probabilistic behavioral model 
from a collection of sessions extracted from the logs of a Web application. The model 
draws from both a traditional Markov chain usage model and a tree of application 
state sequences which is introduced in the next Section. The new usage model 
contains a modified tree of state sequences that captures the most frequent behaviors, 
and a traditional Markov chain model recording infrequent behavior.  

Table 2. A collections of Application state sequences 

Application State Sequence Nb 
S-1-1-3-5-T 1 
S-1-3-2-1-2-4-T 4 
S-1-3-2-2-4-T 9 
S-2-3-4-2-2-4-T 
S-2-3-4-4-T 
S-2-3-4-2-3-4-T 
S-3-3-4-2-4-T 
S-3-3-4-2-T 
S-3-3-4-4-T 
S-3-2-2-3-4-T 
S-3-2-2-5-T 
S-3-2-4-5-T 
S-3-2-4-3-5-T 
S-3-T 

4 
21 
14 
23 
4 
33 
4 
4 
4 
4 
2 
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The usage model is built from a collection of user sessions, to which we add a 
common starting and terminating state. Again, different users can go over the same 
application states during their sessions. We group sessions in “application state 
sequences”, as discussed above. Table 2 shows an example, along with the number of 
times each state sequence occurs in the log files. 

3.1   Building the Tree of Sequences 

The tree of sequences (TS for short) is constructed from the given state sequences by 
combining their longest prefix. Each node in the tree, called model state, corresponds 
to an application state (e.g. the URL of the current page), but each application state 
has in general several corresponding model states. The tree captures the application 
state sequence that was followed to reach a given model state; this “history” 
corresponds to the path from the root of the tree to the model state. This is unlike the 
traditional Markov chain usage model where there is a one-to-one mapping between 
application states and model states. In addition, each edge of the tree is labeled with 
the number of application state sequences that go over this particular branch. Figure 4 
shows the TS model built from the state sequences listed in Table 2. One major 
advantage of the TS model is that it can be used to see the conditional distribution of 
the next state choice based on the full history. For example, the probability of 
choosing state 2 from state 4 after the state sequence 2-3-4 is p(2|2-3-4)=18/39 while 
the probability of choosing state 4 under the same circumstances is p(4|2-3-4)=21/39. 

 

Fig. 4. The tree of sequences captured from Table 2 

Despite its strengths, the TS model has many weaknesses. One major disadvantage 
is the fact that the probabilities calculated for each transition might not be reliable if 
the state sequences have not been followed very often. Since the tree tends to be very 
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wide there are many such sequences. And long sequences tend to be less and less 
representative the longer they go (that is, many users may have followed a prefix of 
the sequence, but few have followed it to the end). In addition, we mention that (a) it 
tends to be fairly large, (b) it is not adequate for creating new test cases, and (c) it 
does not pinpoint common user behavior across different leading state sequences.  

3.2   Frequency-Pruned TS Model  

To overcome some of the problems of the TS model, we first apply a simple 
technique that we call “frequency pruning”. This is based on the observation that 
model states that occur with low frequency in the application state sequences do not 
carry reliable information from a statistical point of view. We note that, for such 
states, the estimation of the conditional probabilities will not be reliable [16]. 
Consequently, these low frequency branches can be eliminated from the tree without 
affecting much the accuracy of the model. However, just applying such pruning 
would impact the coverage that can be inferred from the model, since it removes some 
low frequency but still very real branches. To avoid this problem, we do not discard 
these pruned branches, instead we include the corresponding state sequences in the 
“lower Markov model” (introduced below), which is a traditional Markov usage 
model.  

The amount of pruning in the TS model is controlled by a parameter, called 
“frequency threshold” θ. When the calculated conditional probability of a branch is 
lower than the frequency threshold, the branch is cut. Figure 5 shows the result of 
pruning of the TS model of figure 4, with θ set at 10%. For example, we have 
p(1|1)=1/14 < θ , therefore the branch 1-3-5-T is cut from the tree and will be used 
when building the “lower Markov model”. The grey nodes in figure 5 represent 
access point from the TS model to this Markov model.  

 

Fig. 5. Frequency-pruned TS Model 
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3.3   Hybrid Markov Usage Model  

Our goal is to strike the right balance between the traditional Markov chain model and 
the TS model. We want to have separate model states for the instances of applications 
states when the user behavior is statistically different, and we want to merge them into 
a single model state when the user behavior cannot be statistically distinguished (be it 
that the users behaves identically or that we do not have enough information to make 
the difference). Working from the two previous models, one could start from the 
traditional Markov usage model and “split” states for which a statistically different 
behavior can be found depending on the history, or one could start from the TS model 
and “merge” states that are instances of the same application state for which no 
significant behavior difference can be found (or even iterate on merges and splits). 

In this paper, we work from the frequency-pruned TS model and merge states. The 
goal is thus to look at different model states which represent the same application 
state and decide whether the recorded user behavior is statistically significantly 
different. If so, the states must be kept apart, and otherwise the states are candidates to 
be merged.  

3.4   Independence Testing and State Merging  

As shown in the example of Figure 7, the TS model contains in general many model 
states that correspond to the same application state. For instance, the states 4.a, 4.b 
and 4.c all correspond to the application state 4. To simplify the user behavior model, 
we would like to combine such states in order to reduce the number of states in the 
model. However, this should only be done if the user behavior is the same (or very 
similar) in the different merged states. We therefore have to answer the following 
question for any pair of model states corresponding to the same application state:  Is 
the recorded user behavior statistically significantly different on these two states? In 
other words, is the users’ behavior dependant on how they have reached this 
application state? – If the answer is yes, then the model states should be kept 
separated, otherwise they should be merged. An example is shown Figure 6 (a) where 
the statistical user behavior is nearly identical in the two states 1.a and 1.b, and these 
two states could therefore be merged leading to Figure 6 (b). 

 

Fig. 6. An example of merging two model states 

We note that the model states that are the successors of the states to be  
merged must be identical for the two states to be merged, as shown by the example of 
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Figure 6. This implies that the merging operations must be applied from the bottom-
up through the original tree-like TS model. We note that the terminal states labeled T 
can be merged (because they have the same user behavior). However, the model states 
that precede the final state, and many of the other preceding states, have only few 
occurrences in the application state sequences inferred from the log files. Therefore 
the statistical significance of these occurrences is not so strong; therefore a decision 
for merging is difficult to make.  

There are a number of statistical methods to answer to these questions. We will use 
in the following the so-called “test of independence”, itself based on the chi-square 
test (see for instance [19]). However, we note that the test of independence gives only 
reliable answers when there is enough statistical information. The so-called “Cochran 
criterion” states that in order to apply the test of independence, at most 20% of the 
possible alternatives should have fewer than six instances in the sample set. As 
discussed above, many of the model states in the lower part of the TS model will fail 
the Cochran criterion and thus cannot be used for the test of independence since they 
do not carry enough information to be statistically significant. 

We therefore propose to merge into a single model state all TS model states that 
correspond to a given application state and do not satisfy the Cochran criterion. These 
merged states form what we called “lower Markov model” in the Introduction. For 
our running example of Figure 5, we obtain after the application of the Cochran 
criterion the model of Figure 7. The grey nodes form the “lower Markov model”. For 
example, the model states 2.a, 2.b, 2.c, etc of Figure 5 were merged into the state 2.e 
of Figure 7. For state 2.d in Figure 5, for instance, there are two choices to go to state 
2.e or to state 4.e with the frequencies of 8 and 8 respectively. They are represented in 
Figure 7 as state 2.d to state 2.e or state 4.e with frequencies 8 and 8, respectively. 

 

Fig. 7. The model after pruning based on Cochran criterion 
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We note that the final “lower Markov model” will also include the application state 
sequences of the tree branches that were pruned during the frequency-pruning phase 
described in Section 3.2. The frequency-pruning steps is applied first to avoid running 
into situations in which a model state traversed by a large number of application state 
transitions still fails the Cochran criterion because a few very infrequent behavior 
have been observed there (for example because of sessions created by web crawler). 

After applying the Cochran criterion and constructing the “lower Markov model”, 
we check the remaining model states in the “upper tree” for the possibility of merging 
by applying the chi-square-based independence test in a bottom-to-top order. We 
apply this test pairwise, even if there are more than two model states corresponding to 
the same application state.   

The value of chi-square indicates how good a fit we have between the frequency of 
occurrence of observations in an observation sample and the expected frequencies 
obtained from the hypothesized distribution. Assuming that we have k possible 
observations and have observed   1, …   occurrences of observation i while 
the expected frequencies are   1, …   , the value of chi-square is obtained by 
Formula (1)  χ ∑                                    (1) 

χ2 is a value of a random variable whose sampling distribution is approximated very 
closely by the chi-square distribution for (k-1) degrees of freedom [19].  

Let us consider the example shown in Table 3 below. It shows the observed 
choices to application states 2 and 4 from the model states 4.a and 4.b (see Figure 7). 
If we assume that these two model states can be merged, that is, the branching 
probabilities to states 2.c and 4.c is almost identical, we can calculate these branching 
probabilities by considering the union of all observed sessions going through states 
4.a and 4.b (see last row in the table). This leads to the expected number of choices 
indicated in the last two columns of the table. For instance, the probability of 
choosing application state 2 is 45/99, and therefore the expected number of choices of 
state 2 from model state 4.a is 45/99 * 39 = 17.73. 

Table 3. Example of chi-square calculation 

 Observed occurrences  Expected occurrences 
Next State  4.a 4.b  total  4.a 4.b 

2  18 27  45  17.73 27.27 
4  21 33  54  21.27 32.73 
total  39 60  99  39 60 

 
Then we use the numbers in the table to calculate χ2 according to formula (1) for 

model states 4.a and 4.b and take the average. The result is the χ2 value that we can 
use to determine whether our hypothesis is valid for a given confidence level, using a 
table of the chi-square distribution for one degree of freedom. In the case of our 
example, we get a χ2 value of 0.0124. Since this value is smaller than χ . = 3.841 we 
can say with confidence level of 95% that the model states 4.a and 4.b represent the 
same user behavior, and the states can be merged, as shown in Figure 8.  
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Fig. 8. Hybrid Markov model constructed by sessions in table 2 

We apply such merging tests to all pairs of model states that correspond to the 
same application state and that have outgoing transitions to the same set of model 
states3. This is done from the bottom of the “upper tree” towards its root. The states at 
the bottom have transitions that lead to states of the “lower Markov model”, which are 
already merged, thus the test can always be applied to these bottom states. If these 
bottom states are merged, then the test can be applied to their parents and this keeps 
going until the test fails. As already explained, one example of two states that can be 
merged is states 4.a and 4.b (see Figure 7 and Figure 8). Once they are merged, some 
states higher in the tree may become candidates for merging. In this example, the 
parent nodes of 4.a and 4.b, namely nodes 3.a and 3.b, respectively, can also be 
merged (because they have only one successor which is the same).  Once all 
candidates for merging have either been merged or are determined not to satisfy the 
merging condition, then we obtain our final performance model, as shown for our 
example in Figure 8. 

4   Experiment  

We experimented our approach on a web site called Bigenet (http://www.bigenet.org). 
Bigenet is a genealogy web site allowing access to numerous registers – birth, 
baptism, marriage, death and burials – in France. Two international exchange 
students, Christophe Günst and Marie-Aurélie Fund, developed a tool which is able to 
generate a list of visiting sessions from the access log files of the web server and the 
functional model of the application. The tool follows the approach presented in [12]. 

                                                           
3 If some model states are reached by only one of the two states being tested, we assume that 

the other state also reaches to the same states but with a probability 0. 
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We had at our disposal the access log files for the period from September 2009 to 
September 2010.  Table 4 presents a summary of the characteristics of the visiting 
sessions during this period. 

Table 4. Summary Statstic for the data set from Bigenet 

Characteristics Bigenet 
Num. of Application States 
Num. of Request 
Num. of Sessions 
Num. of Application State Sequences 
Ave. Session length 
Max. Session length 

30 
900689 
108346 
27778 
8.3132 
301 

 
We have developed a second tool that implements the model construction approach 

described in Section 3. It creates the TS model from the list of application state 
sequences inferred from the reconstructed sessions, and then performs the pruning, 
Cochran merging and state merging based on independence tests. The TS model 
constructed from the whole year of visiting sessions is very large, containing 348391 
nodes in the tree. Figure 9 shows the TS model based on 1000 visiting sessions. 

Table 5 shows the results of our analysis of these 108346 user sessions (see column 
labeled “All”). The following parameters were used during our analysis: (a) the 
pruning threshold was 5%; (b) the confidence level for the independence test was 
95%.  

Table 5. Summary of experimental results 

 All Set-1 Set-2 Set-3 Set-4 
Num. of states in TS 348391 38652 38463 38336 42039 
Num. of states after 
frequency pruning 

81364 12493 11796 12438 13066 

Num. of states in “lower 
Markov model” 

30 30 29 30 29 

Num. of states in “upper 
tree” before merging 

426 78 79 76 82 

Num. of states in “upper 
tree” after merging 

337 65 68 65 68 

Num. of independence 
tests applied 

108 17 15 15 18 

Num. of mergings 
performed 

89 13 11 11 14 

Execution time without 
optimization4 

3937ms 313ms 328ms 297ms 328ms 

                                                           
4 We coded all algorithms in NetBeans 6.9.1 and performed experiments on a 2.53GHz Intel 

Core 2 P8700 laptop computer with 2.93 GB RAM. 
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We note that frequency-pruning and Cochran criteria leads to a user performance 
model that has a very much reduced “upper tree” and a “lower Markov model” that 
corresponds to the states of the application which in this case contains 30 states. The 
merging of non-independent states in the “upper tree” leads in our case to a further 
reduction of 20% of the model states. Most of the applied tests for merging succeeded. 
The “upper tree” is shown Figure 10. 

Table 5 also shows similar results for several smaller sets of user sessions that were 
selected randomly from the original visiting sessions. Each subset has 10000 sessions. 
The results obtained for the different subsets of sessions are very similar to one 
another. The number of model states in the “upper tree” is smaller than in the case of 
all sessions, since the Cochran criterion removes more states from the TS model 
because of the lower number of observations. As can be seen, the model that we 
obtain is quite stable with different sets of sessions. The number of states in the 
obtained user models varies little for the different subsets of sessions. Since the 
“upper tree” part of the model is the most interesting, we show in Figure 11 the 
“upper trees” for the sets of sessions Set-1 and Set-2. One can also see that these trees 
closely resemble the upper part of the “upper tree” for all sessions, as shown in Figure 
10. Due to the difficulty of defining a feature space and measurement method, we do 
not discuss the similarity between the re-constructed web sessions and the real data in 
this paper. 

 

Fig. 9. The TS model created by 1000 visiting sessions 

 

Fig. 10. The upper tree part of usage model, down from originally 348,391 states 
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Fig. 11. Upper-tree part of usage models generated from Set-1 and Set-2 

5   Conclusion and Future Work 

In this paper, we have presented a method that can be used to create an accurate 
statistical usage model for Web applications. This model is created from the 
application log file, and can be used for reliability testing. Our method uses a tree 
structure to preserve statistically significant information on user behavior, as gathered 
from the log files. The initially very large tree is reduced in three steps: first, 
frequency pruning removes the branches that are almost never followed. Then, a test 
called Cochran criterion is used to remove states that do not carry reliable statistical 
information. States removed during these two steps are merged into a traditional 
Markov chain model (the “lower Markov chain”) that captures infrequent behaviors. 
The pruned tree is further reduced through merging of model states corresponding to 
the same application states and on which user behavior is statistically similar. The test 
for similarity is a classical test of independence, and the resulting “tree”, which we 
call the “upper tree”, contains the most frequent behaviors, which are statistically 
significant. In our experiments, the resulting hybrid Markov usage model is 
drastically smaller than the original tree of sequences, but still contains all the 
significant behavioral and coverage information. 

This improves on lower-order Markov usage models that contain usually all the 
application states but cannot capture the user behavior accurately since they have no 
concept of history. In our model, in the upper tree the entire history is preserved. 
Other history-preserving higher-order Markov models, such as N-grams, exist but 
come with their own set of limitations. For N-Grams, they do retain history of length 
N-1, but cannot capture sessions of length less than N [16]. 

Our model still has shortcomings. A main one is its inability to identify some of the 
common behavior, if the behavior occurs on branches that must be kept apart because 
they lead to statistically different behavior lower down in the tree. Indeed, our state 
merging process tends to merge states that are mostly toward the bottom of the tree. 
To overcome this, we are planning to use either extended Finite State Machine 
models or hierarchical models, in order to merge parts that are statistically identical 
but are included inside larger sequences that are not. One may also improve the model 
by introducing some history dependence in the “lower Markov model” by using, for 
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instance, the N-gram approach. The other major shortcoming of our current model is 
that user inputs are not captured. The model must be enhanced to accommodate for a 
statistically accurate representation of the inputs and their relation with the followed 
path. 
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Abstract. We propose in the paper a test property specification lan-
guage, dedicated to UML/OCL models. This language is intended to
express temporal properties on the executions of the system, that one
wants to test. It is based on patterns, specifying the behaviours one
wants to exhibit/avoid, and scopes, defining the piece of execution trace
on which a given pattern applies. Each property is a combination of a
scope and a pattern, providing a means for a validation engineer to easily
express temporal properties on a system, without using complex formal
notations. Properties have the semantics of an event-based transition
system whose coverage can be measured so as to evaluate the relevance
of a given test suite. These principles aim at being used in the context of
a research project, in which the security properties are expressed on an
industrial case study of a smart card operating system. This approach
makes it possible to assist the Common Criteria evaluation of the testing
phase, that requires evidences of the extensiveness of the testing phase
of a security product.

Keywords: Model-Based Testing, UML/OCL, temporal property, cov-
erage, model animation.

1 Introduction and Motivations

Critical software validation is a challenge in software engineering and a convenient
context for Model-Based Testing [4]. Indeed, the cost of writing a formal model to
support the test case generation phase is made profitable by the necessity of in-
creasing the confidence in the safety and the security of the system. MBT is well-
suited to conformance testing, as the model describes the expected behavior of a
system. The system under test is then checked against the model on specific exe-
cution traces called test cases. A conformance relationship, usually based on the
observation points provided by the SUT, is then used to establish the test verdict.

This work is done in the context of the ANR TASCCC project1, we are inter-
ested in the validation of smart card products security by means of model based
1 Funded by the French National Research Agency ANR-09-SEGI-014 –
http://lifc.univ-fcomte.fr/TASCCC

B. Wolff and F. Zaidi (Eds.): ICTSS 2011, LNCS 7019, pp. 32–47, 2011.
c© IFIP International Federation for Information Processing 2011

http://lifc.univ-fcomte.fr/TASCCC
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tests. The tests are produced by the CertifyIt tool, provided by the Smartesting
company2. This test generator takes as input model based tests in UML/OCL
and generated tests aiming at the structural coverage of the OCL code describing
the behaviors of the class operations. CertifyIt is an automated test generator,
in the sense that, apart from the model, no further information is required to
generate the tests.

We propose to consider user-defined test properties to express test patterns
associated to the requirements of the software. The contribution is twofold. First,
we propose a test property language based on Dwyer’s property patterns [9] and
applied to UML/OCL models. In this context, the considered events are either
controllable (the invocation of an operation) or observable (a state predicate be-
comes satisfied at a given state). The properties describe the apparition of these
events, in given scopes. Second, we propose to assist the validation engineer,
by measuring the coverage of the property. Indeed, a property exhibits a set of
model executions that are authorized, expressed as an automaton. In order to
evaluate the exhaustiveness of the testing phase, we measure and report the cov-
erage of the underlying automaton. In addition, uncovered parts of the property
indicate which part has not been tested and, as a consequence, on which part
the tester should focus his efforts.

The remainder of the paper is organized as follows. Section 2 presents the test
generation process of the CertifyIt tool based on the structural coverage of the
OCL code. Then, the property language is defined in Sec. 3 and its semantics is
provided in Sec. 4. Section 5 defines the notion of property coverage and explains
how this action is processed. Finally, we conclude and present the related and
future works in Sec. 6.

2 Test Generation from UML/OCL Models

We present here the test generation principles of the CertifyIt test generation
tool. First, we introduce the subset of UML/OCL that is considered and we
illustrate it with a simple running example. Then, we present the test generation
strategy of CertifyIt.

2.1 Considered Subset of UML/OCL

The model aims at being used by the CertifyIt tool, commercialized by the
Smartesting company. This tool generates automatically model-based tests from
a UML model [5] with OCL code describing the behaviors of the operations.
CertifyIt does not consider the whole UML notation as input, it relies on a
subset named UML4ST (UML for Smartesting) which considers class diagrams,
to represent the data model, augmented with OCL constraints, to describe the
dynamics of the system. It also requires the initial state of the system to be
represented by an object diagram. Finally, a statechart diagram can be used to
complete the description of the system dynamics.
2 www.smartesting.com

www.smartesting.com
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Fig. 1. Class Diagram of the eCinema Model

Concerning modelling, some restrictions apply on the class diagram model
and OCL constraints that can be written. The system under test (SUT) has to
be modelled by a class, which carries all the operations representing the API
provided by the SUT. CertifyIt does not allow inheritance, nor stereotypes like
abstract or interface on the classes. Objects can not be created when executing
the model. As a consequence, the object diagram, representing the initial state,
has to provide all the possible class instances, possibly isolated (i.e., not associ-
ated to the SUT object or any other object) if they are not supposed to exist at
the initial state.

OCL provides the ability to navigate the model, select collections of objects
and manipulate them with universal/existential quantifiers to build boolean ex-
pressions. Regarding the OCL semantics, UML4ST does not consider the third
logical value undefined that is part of the classical OCL semantics. All expres-
sions have to be defined at run time in order to be evaluated. CertifyIt interprets
OCL expressions with a strict semantics, and raises execution errors when en-
countering null pointers. The overall objective is to dispose of an executable
UML/OCL model. Indeed, the test cases are produced by animating the model
in order to satisfy a given coverage criterion. Before describing this process, we
first introduce a simple running example.

2.2 Running Example

We illustrate the UML/OCL models that are considered using a simple model
of a web application named eCinema. This application provides a means for
registered users to book tickets for movies that are screened in a cinema.

The UML class diagram, depicted in Fig. 1 contains the classes of the applica-
tion: ECinema, Movie, Ticket and User. The ECinema class models the system
under test (SUT) and contains the API operations offered by the application.
Several requirements are associated to the system, for example: the user must be
registered and connected to access the proposed services, the registration is valid
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only if the user’s name and password are valid and if the user is not already
registered, the user must be connected in order to buy tickets, etc.

The initial state contains a single instance of the system under test class
eCinema, identified by sut, two instances of movies linked with the sut instance
(instanciating the offers association), twenty-five isolated instances of tickets,
and two users, one registered (i.e. linked to the SUT using the knows association)
and one not registered (isolated instance).

This model contains several operations whose meaning are straightforward:
unregister, showBoughtTickets,registration,logout, login, deleteTicket,
deleteAllTickets, closeApplication, buyTicket.

Figure 2 shows the OCL code of the buyTicket operation used by an authen-
ticated user to buy a ticket. This operation can only be invoked with a valid
movie title and if all the tickets are not already assigned to users. To be suc-
cessful, the user has to be authenticated, and at least one tickets for the movie
should be available. Otherwise, error messages report the cause of the failure.
Upon successful execution, an available ticket is chosen and assigned to the user
for the corresponding movie, and the number of available seats is decremented.

In the OCL code, there are non-OCL annotations, inserted as comments, such
as ---@AIM: id and ---@REQ: id. The ---@AIM:id tags denotes test targets
while the ---@REQ: id tags mark requirements from the informal specifications.
These tags are used by CertifyIt to know which tags were covered during the
execution of the model, and, consequently, inside the test cases.

2.3 CertifyIt Test Selection Criterion

Smartesting CertifyIt is a functional test generator that aims at exercising the
atomic transitions of the model, provided by the class operations. The CertifyIt

context ECinema::buyTicket(in_title : ECinema::TITLES): oclVoid
pre:

self.all_listed_movies->exists(m : Movie | m.title = in_title) and
Ticket.allInstances()->exists(t : ticket | t.owner_ticket.oclIsUndefined())

post :
---@REQ: BASKET_MNGT/BUY_TICKETS
if self.current_user.oclIsUndefined() then

message = MSG::LOGIN_FIRST ---@AIM: BUY_Login_Mandatory
else

let target_movie: Movie = self.all_listed_movies->any(m: Movie | m.title = in_title) in
if target_movie.available_tickets = 0 then

message= MSG::NO_MORE_TICKET ---@AIM: BUY_Sold_Out
else

let avail_ticket: Ticket =
(Ticket.allInstances())->any(owner_ticket.oclIsUndefined()) in

self.current_user.all_tickets_in_basket->includes(avail_ticket) and
target_movie.all_sold_tickets->includes(avail_ticket) and
target_movie.available_tickets = target_movie.available_tickets - 1 and
message= MSG::NONE ---@AIM: BUY_Success

endif
endif

Fig. 2. OCL code of the buyTicket operation
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test generation strategy works in two steps. First, it identifies test targets and,
second, it builds a test case that is a trace, composed of successive operation
calls, reaching the considered target.

In the first part of the test generation process, the test targets are computed
by applying a structural test selection criterion on the OCL code of the class
operations (Decision Coverage criterion). Each test target is thus associated to
a predicate that describes the set of possible concrete states from which the
operation can be invoked. Each test aims at covering a specific target (possi-
bly characterized by a set of @AIM tags). There are three test targets for the
buyTicket operation, one for each available @AIM tags.

The second part of the test generation process consists in performing an au-
tomated state exploration, from the initial state, in order to reach a state sat-
isfying the state predicate associated to the test target. This sequence is called
a preamble. The preamble computation is based on a Breadth First Search al-
gorithms that stops when the targeted state is reached. To obtain the test case,
the preamble is concatenated with the invocation of the targeted operation with
the appropriate parameter values.

The test selection criterion ensures that one test is built for each target.
Nevertheless, some targets may be covered several times, if they are found in the
preambles of others targets. Table 1 shows the tests generated for the operation
buyTicket displayed in Fig. 1.

Notice that the undetermined state of the test BTTest3 declared by CertifyIt
refers to internal limitations of the tool in terms of depth search bound. Indeed,
in our initial state, we specified that the two movies could deliver 20 tickets each,
which needs to build a test sequence in which all 20 tickets are already bought.
Since this configuration could be reached (the number of ticket instances is set
to 25), this message does not conclude on the general unreachability of the test
targets.

Since CertifyIt is a functional test generator, it is not intended to cover spe-
cific sequences of operations, or states. Nevertheless, the tool provides a means
to complete automatically generated tests with test scenarios, built using the
simulator (the internal model animator) and exported as test cases.

3 Test Property Language

The Object Constraint Language is quite similar to first-order predicate logic.
OCL expressions are used in invariants, pre- and postconditions. They describe
a single system state or a one-step transition from a previous state to a new
state upon the call of some operation.

Table 1. Generated tests for the buyTicket operation

Test name Test sequence Target

BTTest1 init ; sut.login(REGISTERED USER,REGISTERED PWD) ; @AIM: BUY_Success
sut.buyTicket(TITLE1) ;

BTTest2 init ; sut.buyTicket(TITLE1) ; @AIM: BUY_Login_Mandatory

BTTest3 declared as ‘‘Undetermined’’ @AIM: BUY_Sold_out
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Several OCL extensions already exist to support temporal constraints [8,11,16].
They only add to OCL unary and binary temporal operators (e.g., always, next
and until) in order to specify safety and liveness properties. Unfortunately, most
developers are not familiar with temporal logics and this is a serious obstacle to
the adoption of such OCL extensions. We propose to fill in this gap by adding
to OCL a pattern-based temporal layer to ease the specification of temporal
properties.

3.1 A Temporal Extension to UML/OCL

For specifying the temporal aspects of system properties, we adopt the work
of Dwyer et al. [9] on specification patterns for temporal properties. Although
formal methods are largely automated today, most engineers are not familiar
with formal languages such as linear temporal logic (e.g. LTL) or tree logic
(e.g. CTL). The effort required to acquire a sufficient level of expertise in writ-
ing these specifications represents a serious obstacle to the adoption of formal
methods. Therefore, Dwyer et al. have introduced a new property specification
language based on patterns in which a temporal property is a combination of
one pattern and one scope.

Patterns. There are 8 patterns organized under a semantic classification. We
distinguish occurrence patterns from order patterns.

Occurrence patterns are: (i) Absence: an event never occurs, (ii) Existence:
an event occurs at least once, (iii) Bounded Existence has 3 variants: an event
occurs k times, at least k times or at most k times, and (iv) Universality: an
event/state is permanent.

Order patterns are: (v) Precedence: an event P is always preceded by an event
Q, (vi) Response: an event P is always followed by an event Q, (vii) Chain
Precedence: a sequence of events P1, . . . , Pn is always preceded by a sequence
Q1, . . . , Qm (it is a generalization of the Precedence pattern), (viii) Chain Re-
sponse: a sequence of events P1, . . . , Pn is always followed by a sequence Q1, . . . ,
Qm (it is a generalization of the Response pattern).

Scopes. A scope is the discrete time interval over which the property holds.
There are five kinds of scopes, illustrated on Fig.3 (taken from [9]):

(a) globally covers the entire execution, (b) before Q covers the system’s
execution up to the first occurrence of Q, (c) after Q covers the system’s execu-
tion after the first occurrence of Q, (d) between Q and R covers time intervals of
the system’s execution from an occurrence of Q to the next occurrence of R, (e)
after Q until R is the same as the between scope in which R may not occur.
Dwyer et al. provide a complete library3 mapping each pattern/scope combina-
tion to the corresponding formula in many formalisms (LTL, CTL, μ-calculus,

3 http://patterns.projects.cis.ksu.edu

http://patterns.projects.cis.ksu.edu
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etc.). For example, one entry of this library that maps the Response pattern S
follows P to LTL formula for different scopes is given in Tab. 2.

The work of Dwyer et al. on such
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Fig. 3. Property scopes

patterns dramatically simplifies the
specification of temporal properties,
with a fairly complete coverage. In-
deed, they collected hundreds
of specifications and they observed
that 92% fall within this small set
of patterns/scopes [9]. For these rea-
sons, we adopt this pattern-based ap-
proach for the temporal part of our
OCL extension. We now present its
syntax.

Table 2. LTL mapping of the S follows P pattern

Scope LTL

globally �(P ⇒ ♦S)
before R ♦R ⇒ (P ⇒ (¬R U (S ∧ ¬R))) U R
after Q �(Q ⇒ �(P ⇒ ♦S))
between Q and R �((Q ∧ ¬R ∧ ♦R) ⇒ (P ⇒ (¬R U (S ∧ ¬R))) U R)
after Q until R �(Q ∧ ¬R ⇒ ((P ⇒ (¬R U (S ∧ ¬R))) W R)

3.2 Syntax

We extended the OCL concrete grammar defined within the OMG standard [15]
in order to express temporal properties that will provide our test properties.

The syntax of our language is summarized in Fig. 4. In this figure, non-
terminals are designated in italics, terminals are underlined and construct (. . .)?

TempExpr ::= TempPattern TempScope

TempPattern ::= always OclExpression

| never Event
| eventually Event (Times)?
| Event (directly)? precedes Event
| Event (directly)? follows Event

TempScope ::= globally
| before Event
| after Event
| between Event and Event
| after Event until Event

Event ::= ChangeEvent ( ‖ Event )?
| CallEvent ( ‖ Event )?

ChangeEvent ::= becomesTrue(OclExpression)

CallEvent ::= isCalled( (name::)? name
(, pre: OclExpression)?

(, post: OclExpression)?

(, TagList)? )

TagList ::= including: { Tags}
| excluding: { Tags}

Times ::= integer times

| at least integer times

| at most integer times

Tags ::= @REQ: name (, Tags)?
| @AIM: name (, Tags)?

Fig. 4. Syntax of our temporal property extension
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designates an optional part. Terminal name designates an identifier that repre-
sents the name of a temporal property, an instance name, an operation name
(when separated by ::) or tag names (REQ or AIM, as shown in Sec. 2.3). The
OCLExpression terminal designates an OCL predicate according to the sup-
ported syntax of UML4ST (as explained in Sec. 2.1).

As explained before, a temporal property TempExpr is a combination of a pat-
tern TempPattern and a scope TempScope whose respective meanings have been
informally described before. Events are of two kinds. A ChangeEvent is parameter-
ized by an OCL predicate P , and designates a step in which P now becomes true,
i.e. P was evaluated to false in the preceding step. This event represents an observ-
able event, that is triggered after the execution of an operation of the system (but it
is not possible to know a priori which operation will cause this event). A CallEvent
represents the invocation of an operation on a given instance. Optional field pre
provides a precondition, namely an OCL predicate that has to be true before the
invocation of the operation (or at the beginning of the invocation if the expression
refers to input parameter values).Optional fieldpostprovides a postcondition that
has to be true after the execution of the operation. Finally, optional fieldincluding
(resp. excluding) provides the set of tags for which at least one has to be cov-
ered (resp. none shall be covered) by the execution of the operation. For exam-
ple, event isCalled(sut::buyTicket, pre: in title=TITLES::Tron and not
self.current user.oclIsUndefined(),including:{@AIM:BUY Success}) is
triggered when operation buyTicket is invoked on the sut instance, with param-
eter in title representing a given movie title (provided as an enumeration class
TITLES), when a user is logged on the system and the operation terminates by a
successful buying of a ticket for this movie.

Example 1 (Temporal property). Let us consider the example of the eCinema
application described in Sec. 2.2. We can formalize the following test require-
ments of the application as temporal properties. Users can only buy tickets when
logged on the system. This statement can be expressed as a test property using
a between scope as follows:

eventually isCalled(buyTicket, including:{@AIM:BUY_Success})

at least 0 times

between becomesTrue(not(self.current_user.isOclUndefined()))

and becomesTrue(self.current_user.isOclUndefined()).

Even though the presence of at least 0 in the pattern may be strange, it
describes the optional occurrence of the event C. But, this statement may also
be expressed as a robustness test property:

never isCalled(buyTicket, including:{@AIM:BUY_Success})

after becomesTrue(self.current_user.isOclUndefined())

until isCalled(login, including:{@AIM:LOGIN_Success}).
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4 Semantics of the Test Property Language

In this section, we formally define substitution automata that are used to de-
scribe the semantics of the properties, and we give a definition of the substi-
tution process. The motivation behind the use of such automata is to have a
compositional semantics, so as to be able to build an automaton representing a
test property. The latter is thus a combination of a scope and a pattern. Each
of them is formalized using substitution automata defined in Def. 1. The re-
sulting automaton will capture all the executions of the system and highlight
specific transitions representing the events used in the property. We first define
the substitution automata modelling scopes and patterns. Then we present the
labels of the transitions representing the events in properties. Finally, we give
the definition of the substitution that applies.

4.1 Substitution Automata

Substitution automata are labelled automata where the labels are defined from
the events (see Event in Fig. 4). The states in S are substitution states that
represent a property provided with generic patterns. They will be replaced by
an automaton defining a particular pattern. For some property, such as Pattern
betweenE1 and E2, it is necessary to avoid that E2 is triggered in the automaton
of the pattern. For that, we formalise this restriction (R) labelling the substitu-
tion state by a set of labels. These labels are events that will not be triggered
by the internal transitions of the pattern automaton.

Definition 1 (Substitution automaton). Let Σ be the set of labels. A sub-
stitution automaton is a 6-tuple a = 〈Q, F, q0, S, R, T 〉 where: Q is a finite set
of states, F is a set of final states (F ⊆ Q), q0 is an initial states (q0 ∈ Q),
S is a set of substitution states (S ⊆ Q), R is a function that associates a set
of labels to any substitution state (R ∈ S → P(Σ)), T is a set of transitions
(T ∈ Q× P(Σ)×Q) labelled by a set of labels.

Graphically, substitution states will be depicted as squares (instead of regular
circles). If the substitution state presents a restriction on the alphabet, the re-
stricted elements are written as state labels.

Scopes and patterns will be formalized as substitution automata whose labels
are events that occur in the scopes and patterns. More precisely, a scope is
modelled as a substitution automaton with one substitution state, whereas a
pattern is modelled as a substitution automaton without substitution states.

Example 2 (Substitution Automaton for Scopes and Patterns). Figures 5 and 6
respectively give the graphical representation of the automata of the temporal
property TP between A and B in which the square state represents the generic
pattern TP and pattern eventually C at least 0 times. For the latter, the
automaton clearly identifies a reflexive transition that represents the occurrence
of C. Its presence originates from the motivation of coverage measure, and will
make it possible to see if C has been called, or not.
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Fig. 5. between A and B Fig. 6. eventually C at least 0 times

Before describing the substitution operation, we now present the alphabet of
labels that is used in our automata.

4.2 Events and Labels

The events triggered in a property description and described by the rules Cal-
lEvent and ChangeEvent in the grammar described in Fig. 4 are represented by
labels in automata.

The isCalled structure can be divided in four parts: the operation name, the
precondition for this call to happen, the postcondition that has to be satisfied
after the call, and a list of tags that may be activated. Thus, we will use the
following notation to denote the alphabet elements in our automata:

[operation name, precondition, postcondition, tags].

Note that there can be unspecified slots in this notation: for example, one can
specify the activation of a specific operation op provided with a precondition
pre, but leaves the postcondition and tags slots free, denoted by [op,pre, , ], in
which symbol “ ” designate a free slot, meaning that it can be any operation, the
predicate true and any tag. A such label represent a set of atomic events that
are triggered by the transition. For example, in example 3 the label C represent
one atomic event whereas the label A represent the set of atomic events for any
tag in any operation. Also, the tag list references the tags that may be activated.
If the isCalled specifies a list of excluded tags, we can extract the set of tags
that may be used (the complementary set of tags) as we know all the tags of a
specific operation from the model.

The ChangeEvent can be seen as a free operation call with a pre- and postcon-
dition without specifying the operation name nor the tags to be used. Notice that
any operation can be called. The precondition is the negation of the becomesTrue
predicate, illustrating the fact that, before the call, the execution of the opera-
tion has made the predicate become true. Therefore, all becomesTrue(P) events
can be denoted by the label [ ,¬P ,P , ].

Each scope and pattern are associated to a skeleton of substitution automata
whose transition labels are instantiated with the events appearing in the property
that they define.

Example 3 (Labels). Consider the first property given in Example 1. Accord-
ing to the label notation introduced in Sec. 4.2, the labels A, B and C in
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Fig. 5 and Fig. 6 are respectively [ , self.current user.isOclUndefined(),
not(self.current user.isOclUndefined()), ], [ , not(self.current
user. isOclUndefined()), self.current user.isOclUndefined(), ] and
[buyTicket, , , {@AIM:BUY Success}].
Notice that two labels can be the same set of events even if they are not written
with the same 4-uplet. It is also possible that the set of atomic events of a label
includes the set of atomic events of another label. In practice, these cases must
represent an ambiguous test property. Therefore, we assume that all the events
labelling the outgoing transitions of the automata states are mutually exclusive,
producing, in that, deterministic automata.

When the two automata, the scope and the pattern, have been defined, they
have to be combined to obtain a single automaton, that does not contain any
substitution state. We now describe how substitution works.

4.3 Substitution

The substitution operation defined in Def. 2 replaces the substitution state s,
representing a generic pattern, by an automaton as, representing an instance of
a pattern, in an automaton a, representing a test property. For an automaton a,
we denote by Xa the component X of a. For the definition, we assume that there
is only one substitution state in a and no substitution state in as, i.e. Sas = ∅
and Ras = ∅. We also assume that the label of transitions in a and in as are
different and that the set of states of a and as are disjoint.

The set of states of the resulting automaton c is the set of states of a without
its substitution states Sa union each state of the substituted automaton as.
When s is a final (resp. initial) state, the set of final (resp. initial) states of c is
the set of a without its final (resp. initial) substitution states union each final
(resp. initial) state of the substituted automaton as. Otherwise, the set of final
(resp. initial) states is this of a. c contain no substitution state and consequently
no restriction.

We denote by q a non-substitution state (q ∈ Q − S), s a substitution state
(s ∈ S) and E a set of labels, the transitions of c are defined in four cases:

1. any transition q
E→ q′ in a is a transition of c,

2. for a transition q
E→ s in a, there is a transition q

E→ q′ in c for the initial
state of as,

3. for a transition s
E→ q′ in a, there is a transition q

E→ q′ in c for any final
state q of as,

4. any transition q
E′→ q′ in as becomes a transition q

E→ q′ in c where E is the
set of labels E′ reduced by the labels R(s).

Definition 2 (Substitution Operation). Let a be an automaton such that
Sa = {s}. Let as be an automaton such that Sas = ∅. The substitution of the
state s by the automaton as in a is the automaton c defined as:
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– Qc = (Qa − Sa) ∪Qas,
– when s ∈ Fa, Fc = (Fa − {s}) ∪ Fas, otherwise Fc = Fa,
– when s = q0a , q0c = q0as , otherwise q0c = q0a ,
– Sc = ∅ and Rc = ∅,
– q

E→ q′ ∈ Tc if and only if:

1. q, q′ ∈ Qa − Sa and q
E→ q′ ∈ Ta,

2. q ∈ Qa − Sa and q
E→ s ∈ Ta and q′ = q0as ,

3. q′ ∈ Qa − Sa and s
E→ q′ ∈ Ta and q ∈ Fas,

4. ∃E′ ∈ P(Σ) such that q
E′→ q′ ∈ Tas and E = E′ −R(s).

Example 4 (Substitution Automata Composition). Consider again the scope and
the property substitution automata represented in Fig. 5 and Fig. 6. Figure 7
shows the flattened automaton obtained by applying the substitution operation.
This is the automaton of the property given in Example 1.

The resulting automaton represents the executions of the system allowed by the
property. We now measure the coverage of this automaton to establish a metrics
that will be used to evaluate the exhaustiveness of a test suite.

5 Property Coverage Measure

This section presents the technique used to measure the coverage of the prop-
erty. It is based on the semantics of the property language that was previously
introduced.

5.1 Automata Completion

Before performing the coverage measure, we need to complete our property au-
tomaton so as to match every possible event on our property automaton. In the
example given in Fig. 7, the automaton is complete in the sense that any event
will be matched from any state of the automaton. Nevertheless, in practice, the
automaton is not necessarily complete. Indeed, the substitution can result in an
incomplete automaton: it only represents all valid paths for the property. The
complete form of the automaton thus represents all possible paths, including all
faulty (with respect to the property) execution. The completion process simply

Fig. 7. Graphical representation of the composition for property eventually C at

least 0 times between A and B
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=⇒

Fig. 8. Completion with rejection states (automaton for never C between A and B)

creates a new state that can be seen as a rejection state while final states repre-
sent acceptance states. If a state does not allow the triggering of a transition for
an alphabet element, we create a transition from this state to the newly created
state. Figure 8 illustrates this completion where the rejection state is the circle
marked of one cross.

Remark. Ideally, in a Model-Based Testing process, the model describes faith-
fully the system, and it has no risk of violating a given (temporal) property that
is supposed to hold on the system. However, in reality, the model may contain
faults and thus, invalidate the property. The completion of the automaton is used
to capture events that lead to an invalidate state, which detects the violation of
the property. If the model satisfies the property, these additional transitions are
useless, since they will never be activated on the model. Nevertheless, we add
them to be able to detect possible violations of the property w.r.t. the model
execution, indicating a fault in the model or in the property. Thus, we are able to
partially verify (i.e. test) the model using existing test sequences, by monitoring
the absence of property violation.

5.2 Performing the Measure

The evaluation of the property coverage is based on the coverage of its underlying
automaton. Using the CertifyIt animation engine4, it is possible to replay a set of
existing test cases on a model. At each step (i.e. after each operation invocation),
the corresponding state can be used to evaluate a given OCL predicate.

The algorithm for measuring the coverage of the property is quite straightfor-
ward, and sketched in Fig. 9. This algorithm takes as input a model M , a test
suite TS and a completed substitution automaton A, supposed to represent a
property. For each test, the automaton exploration starts from its (single) ini-
tial state. At each step of the test, the corresponding event on the automaton is
matched. If it triggers an outgoing transition from the current state, then the ex-
ploration of the automaton progresses, and corresponding transition and states
are marked by the test, and the corresponding step. When an rejection state is
reached, the exploration stops and an error is returned. Once all the steps have
been performed, the algorithm moves to the next test. In the end, we have, for
each test, the states and transitions of the automaton reached by the test.
4 Provided in the context of the TASCCC project by the Smartesting company
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input Model M , Test Suite TS, Automaton a
begin

for each Test t ∈ TS do
cover ← false
currentState ← q0a
mark currentState as covered by 〈t, init〉
for each Step st of t do

tr ← find transition triggered by step st
next ← tr.destination
if next is a rejection state then

throw error(“Model does not respect the property”);
elseif next 
= q0a then cover ← true
end if
mark next state and tr as covered by 〈t, st〉
currentState ← next

done
if not cover or currentState /∈ F then remove marking of t end if

done
end

Fig. 9. Coverage Measure Algorithm

When the test is replayed and the coverage of the underlying automaton is
performed, three alternatives may happen: (i) the test leads to a rejection state,
then the model does not respect the property, (ii) the test explores at least one
transition of the automaton and reaches at least one final state (i.e. it should not
stay in a initial and final state), then we say that the test “covers” the property,
(iii) the test explores the automaton but does not reach any final state (except a
final state that is also an initial state), then the test does not cover the property.

Finally, we measure classical automata coverage criteria (all-nodes, all-edges,
etc.) and report the coverage of a test suite w.r.t. these criteria. Notice that only
the test covering the property are considered.

Example 5 (Measure of the CertifyIt test suite coverage). As explained before,
the CertifyIt test generation strategy aims at producing functional test suites.
Consider the three test cases dedicated to the buyTicket operation, for which
we want to evaluate their relevance w.r.t. the two test properties represented by
the two automata depicted in Fig. 7 and Fig. 8. None of these tests do cover the
property as defined in (ii) hereabove, as they never reach a final state (the only
final state covered is also initial) in which the user disconnects from the system.

A test suite that satisfies the all-nodes and all-edges coverage criterion for the
first property could be the following:

{ init; sut.login(REGISTERED USER,REGISTERED PWD); sut.showBoughtTickets();

sut.logout(), init; sut.login(REGISTERED USER,REGISTERED PWD);

sut.buyTicket(TITLE1); sut.logout(); }

6 Conclusion, Related and Future Works

We have presented in this paper a property language for UML/OCL models,
based on scopes and patterns, and aiming at expressing test properties. We have
proposed to evaluate the relevance of a given test suite by measuring the coverage
of an automaton representing the admissible traces of the model’s execution that
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cover the property. This approach is tool-supported (a tool prototype has been
made available for the members of the TASCCC project) and experimented on
the GlobalPlatform5 case study, a last generation smart card operating system,
provided by Gemalto6.

This approach has several interesting features. First, the evaluation of a test
suite is relevant w.r.t. a Common Criteria evaluation [7] of a security product
which requires specific security requirements to be covered by the test cases
during the validation phase. Second, the uncovered parts of the properties that
have been discovered indicate precisely on which part of the system the validation
engineer has to focus to complete the existing test suite. In addition, the existing
tests can be used to identify relevant pieces of model executions that make it
possible to reach a given state in the property automaton, helping the validation
engineer to design complementary test cases, that do not only rely on its own
interpretation of the property.

Related works. This approach is inspired from property monitoring approaches.
Many related works fall into the category of passive testing, in which properties
are monitored on a system under test [2,1]. This kind of approach is particularly
used in security testing, where the violation of security properties can be detected
at run-time and strengthen the test verdict [3]. The closest work is reported
in [10] which uses a similar approach, also based on Dwyer’s property patterns
and the classification of occurrence/precedence patterns, in order to monitor
test properties. Our approach differs in the sense that we aim at evaluating test
cases w.r.t. properties. Also, [14] proposes the generation approach of relevant
test sequences from UML statecharts guided by temporal properties. A test
relevance criterion is also defined. In [13], temporal properties written in Java
Temporal Pattern Language (also inspired by Dwyer’s patterns) are designed
and translated into JML annotations that are monitored during the execution
of Java classes.

Future works. We are currently investigating the way of building these missing
test cases automatically using a Scenario-Based Testing approach [6]. In addition,
we are also looking for the automated generation of robustness test cases, to be
extracted from these user-defined test properties, by using a mutation based
testing approach applied to the property, also coupled with a Scenario-Based
Testing approach. Another extension of this work will be to define dedicated
temporal property coverage criteria e.g. inspired from [12].
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Abstract. CSP is a well established process algebra that provides com-
prehensive theoretical and practical support for refinement-based design
and verification of systems. Recently, a testing theory for CSP has also
been presented. In this paper, we explore the problem of testing from
a CSP specification when observations are made by a set of distributed
testers. We build on previous work on input-output transition systems,
but the use of CSP leads to significant differences, since some of its
conformance (refinement) relations consider failures as well as traces. In
addition, we allow events to be observed by more than one tester. We
show how the CSP notions of refinement can be adapted to distributed
testing. We consider two contexts: when the testers are entirely indepen-
dent and when they can cooperate. Finally, we give some preliminary
results on test-case generation and the use of coordination messages.

1 Introduction

As a notation for refinement, CSP has well understood models and associated
model-checking techniques and tools [14]. Testing using CSP specifications, how-
ever, has not been widely studied yet. In [3], Cavalcanti and Gaudel present a
CSP framework for testing against refinement, with a unique tester that has vis-
ibility of all interactions with the system under test. In this paper, we investigate
the effect of having distributed testers with limited or no global observation.

Distributed and shared systems are increasingly common, but are difficult to
observe and control globally; this raises difficulties for testing them. Here, we
address these issues for testing based on CSP, in the line of works by Jard et
al. [12,13,11], Ural and Williams [16], and Hierons and Nunez [7,8].

To formalise the fact that multiple independent users have a weaker power
of observation than a centralised user, it is necessary to state adequate weaker
notions of refinement, as proposed for CSP by Jacob [10], or similarly weaker
conformance relations, as developed as alternatives for the well-known ioco re-
lation in [7,9]. This paper studies such refinements relations for CSP.

First, we consider cooperating refinement, where there is a possibility of col-
lectively checking the observations at some points (namely, after complete runs).
Second, we study independent refinement, where there is no way for synthesiz-
ing observations. The notions of cooperating and independent refinement have
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been introduced in [10] for a general unspecified notion of observation. Here, we
instantiate these relations to obtain CSP versions of the conformance relations
studied for Input/Output Transition Systems (IOTSs) in [7,8].

We relate the notion of independent refinement to that of lazy abstraction
in [14]. In this way, we reveal the natural instantiation of independent refinement
when the observations are failures; this is not covered in [7,8]. Via a number of
examples, we explore the properties of the relations introduced here. Finally, we
briefly consider test generation. The approach previously devised for CSP [3] can
be adapted, but the resulting test cases need not be sound. We then show how
the use of coordination messages suggested by Hierons in [5] can be adapted to
CSP to produce sound test cases that establish traces refinement.

The paper is organised as follows. In the next section, we give an overview of
CSP and the existing work on distributed testing for IOTSs. Section 3 introduces
and discusses our proposed definitions of cooperating, and independent traces
and failures refinement. In Section 4, we consider coordination messages. We
draw our conclusions, and discuss future work in our final Section 5.

2 Preliminaries

We cover aspects of CSP, and relevant results on distributed testing for IOTSs.

2.1 CSP

In CSP, systems (and their components) are modelled as processes that interact
synchronously with each other and their environment via events representing
communications over channels. The set of (external) events in which a process
P can engage is denoted αP . Sets of events are called alphabets.

The process STOP is deadlocked, SKIP terminates immediately, and a → P
can engage in the event a, and then behave like the process P . An external
choice P1 � P2 offers to its environment the behaviour of either P1 or P2; the
choice is determined by the first event on which the environment synchronises.
An internal choice P1 � P2 is nondeterministic; it can behave as either P1 or P2.

Processes can also be combined in parallel. We use the alphabetised paral-
lelism: P1 |[ A ]| P2, which executes P1 and P2 concurrently, requiring that they
synchronise on the events in the set A. We also use the replicated parallel op-
erator ‖ i : I • [A(i)]P(i), where the processes P(i) with alphabet A(i), for
i in the indexing set I , are run in parallel, synchronising on their common
channels.

Events can be external, that is, observable and controllable by the environ-
ment, or internal. Using the hiding operator, like in P \ A, we define a process
that behaves like P , but whose events in the set A are internal.

CSP has three standard semantic models: the traces, the (stable) failures,
and the failures-divergences models. In the traces model, a process P is charac-
terised by its set traces(P) of traces t of type seqΣ�. These are finite sequences
of events in which it can engage. The special event � records termination.
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The empty trace is 〈 〉. The set of all events, excluding �, is Σ; the set with
� is Σ�. The set traces(P), for process P , is prefix closed: if a process can
engage in a given sequence of events, then it can engage in all its prefixes.

For a trace t of a process P and a subset R of Σ�, the pair (t ,R) is a failure
for P if, and only if, after performing t , P may refuse all events of R. The set
failures(P) containing all failures of P is subset closed: if P may deadlock when
the choice among events in a set R is proposed by its environment after a trace
t , it may deadlock as well if only a subset of R is proposed.

The set divergences(P) contains the traces of P that lead to an infinite se-
quence of internal events. The canonical semantics of CSP is based on its failures-
divergences model N , where the set of traces is determined by the set of failures.
There are also CSP models that record the set infinites(P) of infinite traces of
P . They capture unbounded nondeterminism more accurately [14].

As usual, we assume that specifications and systems are divergence free. A
divergent specification is necessarily a mistake. Also, when testing, divergences
raise problems of observability. Therefore, we identify divergence with deadlock.

In the traces model, a process P is defined to be trace refined by a process
Q , that is, P �T Q , if, and only if, traces(Q) ⊆ traces(P). For divergence-free
processes, the notion of refinement in the canonical model N of CSP is failures
refinement P �F Q , which requires failures(Q) ⊆ failures(P). For the model of
infinite traces, we consider P �∞ Q , which, when P and Q are divergence-free,
also requires reverse containment of (both finite and infinite) traces.

All these models and notions of refinement are based on the possibility of
global observations of the system. Later, in Section 3, we consider distribution.

2.2 Distributed Testing for IOTS

Most work on formal distributed testing concerns testing from a Deterministic
Finite State Machines (DFSM). While DFSMs are suitable for specifying some
classes of systems, they require that the set of states is finite and that input and
output alternate. In addition, many distributed systems are nondeterministic.
There has been, thus, interest in distributed testing from an IOTS [1].

In this paper we build on recent work that defines conformance relations for
distributed testing from an IOTS [7,6]. It considers two scenarios. In the first, the
testers are independent in that no external agent can receive information from
more than one of them. Here, it is sufficient that the local behaviour observed
by a tester is consistent with a trace of the specification.

The implementation relation p-dioco is based on this idea; it requires that
for each finite trace σ of the implementation and tester p there is a trace σ′

of the specification such that the projections of σ and σ′ at p are identical. An
important characteristic of p-dioco is that given a trace σ of the implementation,
the trace σ′ that the specification uses to simulate it can vary with the tester.

In the second scenario, there is the possibility that information from two
or more testers can be received by an external agent. As a result, the local
behaviours observed by the testers could be brought together and so a stronger
implementation relation dioco is introduced.
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Work on DFSM has identified the controllability problem, which occurs when
a test leads to a situation where a tester does not know when to apply an
input [15]. As an example, we consider a test that starts with an input ?i1 that
is to be applied by a tester 1 and lead to an output !o1 for 1, after which the
input ?i2 should be applied by a tester 2. The problem is that 2 does not observe
?i1 or !o1, and so does not know when to apply ?i2.

The reduction in observational power also affects the ability of distinguishing
between a trace of the specification and a trace of the implementation during
testing. This has been called an observability problem [4].

Generating tests without controllability problems restricts testing. An alter-
native is to overcome these problems through the exchange of coordination mes-
sages between testers [2]. It has been shown that, when testing from an IOTS,
coordination messages can be used to allow global traces to be observed, but
this requires several coordination messages for each event [12]. Recent work has
shown how fewer messages can be added to a test sequence [5] to overcome
controllability problems. It is this approach that we adapt.

3 Distributed Testing for CSP

In this section, we define for CSP relations corresponding to dioco and p-dioco;
more precisely, we define notions of cooperating and independent refinement. We
consider observations of both traces and failures, but not divergences.

Our work builds on that presented in [10], which considers notions of re-
finement for CSP processes, when the environment consists of several users. It
proposes general notions of cooperating and independent refinement that we
instantiate here for the observations of interest in the scenarios studied in [7].
In [10] they are used to define traces-based refinement for transactions.

We characterise users U by non-empty sets of events. Unlike [10], we do not
assume that these sets are disjoint, and actually require that � can be observed
by all users. Additionally, to allow the use of synchronous coordination messages
in testing experiments, users need to have non-disjoint alphabets. We use A to
denote the finite set of all users and assume that

⋃A = Σ�. In examples we do
not explicitly list the event � when defining a user, since it is always included.

3.1 Cooperating Refinement

Like dioco, cooperating refinement caters for a scenario in which the observa-
tions of the various users are reconciled at some point. This means that the users
can compare their observations, and what is checked is that, collectively, their
observations can account for one single behaviour of the process.

If the users get together too soon, or compare their observation at different
stages of the interaction, then inappropriate distinctions can be made.

Example 1. We consider the specification P = a → b → STOP and users {a}
and {b}. If we have an accurate implementation, {a} observes the traces 〈 〉 and
〈a〉. The traces for {b} are 〈 〉 and 〈b〉. If {a} observes 〈a〉, and {b} observes 〈 〉,
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then in comparing their observations we have the global trace 〈a〉. We cannot,
however, compare all pairs of traces observed by {a} and {b}. There is, for
instance, no global trace corresponding to 〈 〉 from { a }, and 〈b〉 from {b}. �

Complete runs. There are various ways of identifying the observations that are
of interest for comparison. Here, we pursue the solution proposed by the dioco
relation, which is based on the notion of a complete run.

For CSP, we define the set C(P) of complete runs of a process P in the infinite-
traces model. Namely, the complete runs are those characterised by traces that
record a termination, lead to a deadlock, or are infinite. The need for infinite
traces is justified, for instance, by the process P = a → P , which does not
terminate or deadlock. If we consider the model N , P has no complete runs.

Definition 1 (Complete run)

C(P) =̂ { t : traces(P) | last t = � ∨ (t , Σ�) ∈ failures(P) } ∪ infinites(P)

For any finite sequence s , we use last s to denote its last element.

Local equivalence. Cooperating refinement is based on a notion of local equiv-
alence for traces. For traces s and t , we write s ∼T t if s and t are locally
trace equivalent (with respect to the set of users A). This means that the set of
individual observations of the users in A cannot distinguish s from t .

Definition 2 (Local trace equivalence)

s ∼T t =̂ (∀U : A • πU (s) = πU (t))

where, for every trace t and user U , πU (t) = t � U .

The sequence s � F is that obtained from s by removing all elements not in F .
It does not make sense to define a similar failure-based equivalence, since we

only consider complete runs. All sets of events are refused after termination or
a deadlock, and there are no failures for infinite traces.

Definition and properties. Using the notion of complete run, we define cooper-
ating traces refinement as a direct instantiation of the definition in [10].

Definition 3 (Cooperating traces refinement)

P �CT Q =̂ ∀ s : C(Q) • ∃ t : C(P) • s ∼T t

A process P is cooperating refined by Q if, for every complete run of Q there is
a complete run of P that is local trace equivalent to it.

Example 2. The only complete run of P = a → b → SKIP is 〈a, b, �〉. The
complete runs of Q = a → b → SKIP � b → a → SKIP are 〈a, b, �〉 and
〈b, a, �〉. If we consider users {a} and {b}, then 〈a, b, �〉 is locally equivalent to
〈b, a, �〉. Therefore, not only Q �CT P , but also P �CT Q . In other words, P
and Q are equal from the point of view of cooperating refinement. This reflects
the fact that the users do not have a record of the time in which their observations
are made, and so cannot compare their relative order. �
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It is not difficult to see that, in general, P �∞ Q implies P �CT Q , since in
this case all observations (traces, including the infinite ones, and failures) of Q
are also observations of P . This, of course, includes the complete runs of Q .

Traces refinement, however, does not entail cooperating refinement.

Example 3. The processes P = a → STOP � STOP and Q = a → STOP
are equal from the point of view of traces refinement. On the other hand,
C(P) = {〈 〉, 〈a〉} and C(Q) = {〈a〉}. Since 〈 〉 has no equivalent in C(Q) for
a user {a}, we have that P �CT Q , but not Q �CT P . �

Cooperating refinement, and all other relations presented here, are not compo-
sitional. They are, therefore, in general not amenable to compositional analysis.

Example 4. The processes P = a → b → STOP and Q = b → a → STOP are
equal (for users {a} and {b}) from the point of view of cooperating refinement.
Their complete runs C(P) = {〈a, b〉} and C(Q) = {〈b, a〉} are locally equivalent.
We consider, however, the context defined by the process function F below.

F (X ) = (X |[ {a, b} ]| b → STOP)

We have that F (P) = STOP and F (Q) = b → STOP . From the point of view
of a user {b}, these processes can be distinguished. �

Lack of compositionality restricts the opportunities of practical (and scalable)
use of our relations for development and analysis. For testing of complete sys-
tems, however, this is not an issue, and we expect that certain architectural
patterns ensure compositionality. This will be considered in our future work.

Since local equivalence is transitive, so is cooperating refinement.

3.2 Independent Refinement

The scenario considered in independent refinement is similar to that in p-dioco,
namely, a situation in which the users do not have a way of comparing their
observations. Here, we consider both observations of traces and failures.

Independent traces refinement. The p-dioco relation is the inspiration for
what we call here independent traces refinement, and define as follows.

Definition 4 (Independent traces refinement)

P �IT Q =̂ (∀U : A; s : traces(Q) • (∃ t : traces(P) • πU (s) = πU (t)))

For every user U and trace s of Q , we require there to be a trace t of P such
that U cannot distinguish between s and t . This is different from cooperating
traces refinement, where we require the existence of a single corresponding trace
t in P that cannot be distinguished from s from the point of view of all users.
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Example 5. The processes P = a.1 → b.1 → STOP � a.2 → b.2 → STOP and
Q = a.1 → b.2 → STOP � a.2 → b.1 → STOP are different under cooperat-
ing refinement with users {a.1, a.2} and {b.1, b.2}. For instance, the complete
run 〈a.1, b.2〉 of Q is not equivalent to any of the complete runs 〈a.1, b.1〉 and
〈a.2, b.2〉 of P . In the case of 〈a.1, b.1〉, the user {b.1, b.2} can make a distinction,
and for 〈a.2, b.2〉, the user {a.1, a.2} can detect a distinction.

Under independent (traces) refinement, however, P and Q cannot be distin-
guished, because there is no opportunity for the users to compare their obser-
vations. For example, for the trace 〈a.1, b.2〉 of Q , we have in P the trace 〈a.1〉
for the user {a.1, a.2}, and the trace 〈a.2, b.2〉 for the user {b.1, b.2}. �

The processes P and Q , and process function F in Example 4 also provide
an example to show that independent traces refinement is not compositional.
Namely P =IT Q , but not F (P) =IT F (Q); as before F (P) and F (Q) can be
distinguished by {b}, with no trace in F (P) corresponding to 〈b〉.

Lazy abstraction. The notion of independence is related to that of lazy abstrac-
tion [14, page 297]. In that work, it is discussed under the assumption that the
processes are divergence-free and nonterminating, that the nondeterminism is
bounded, and that users are disjoint. In what follows, we establish the relation-
ship between lazy abstraction and independent traces refinement. Afterwards,
we use that as inspiration to define independent failures refinement.

Following [14], we define the process P@U , which characterises the behaviour
of P for a user U . Below, we define the traces and stable failures of P@U .

In considering the independent behaviour of P from the point of view of U ,
we observe that the behaviour of other users might affect the perception that U
has of P . First of all, there is the possibility of the introduction of deadlock. If,
for example, U is waiting for an event b that is only available after P engages in
an event a that is not under the control of U , then U may experience a deadlock.
This is because the users that control a may not agree on that event.

A second aspect is related to divergences. Like in [14], we assume that di-
vergence is not introduced, even if P offers an infinite trace of events of a user
different from U , and therefore an infinite trace of events effectively hidden from
U . This means that we assume that no user is fast enough to block P , or that
P is fair. As a consequence, what we reproduce below is the canonical failures-
divergences model of P@U if P , and therefore, P@U are divergence-free [14].

Definition 5 (P@U )

traces(P@U ) =̂ { t : traces(P) • πU (t) }
failures(P@U ) =̂ {t : seq Σ�; A : P Σ� | (t ,A ∩ U ) ∈ failures(P) • (πU (t),A) }
The set traces(P@U ) contains the traces πU (t) obtained by removing from a
trace t of P all events not in U . The alphabet of refusals, on the other hand, is
Σ�. (This allows us to compare the views of the different users, and the view of
a user with that of the system.) Therefore, the failures (πU (t),A) of P@U are
obtained by considering the failures (t ,A∩U ) of P . For the trace t , we consider
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πU (t), as already explained. For the refusal A ∩ U , we observe that if A ∩ U is
refused by P , then A, which can contain events not in U , is refused by P@U .
Since an event not in U cannot be observed by U , it is refused by P@U .

Example 6. We consider the process P = a → b → STOP , and a user {b}. The
set traces(P@{b}) is {〈〉, 〈b〉}. The traces 〈a〉 and 〈a, b〉 of P are not (entirely)
visible to {b}. The failures of P@{b}, on the other hand, include (〈 〉, {a, b}) (and
so, all subsets of {a, b}). This indicates that, from the point of view of {b}, the
process can deadlock, since interaction with a may not go ahead. �

The following lemma states that independent trace refinement holds when all
independent users observe a traces refinement.

Lemma 1. P �IT Q ⇔ ∀U : A • (P@U ) �T (Q@U )

Proof.

∀U : A • (P@U ) �T (Q@U )

⇔ ∀U : A • traces(Q@U ) ⊆ traces(P@U ) [definition of �T ]

⇔ ∀U : A • (∀ s : traces(Q@U ) • (∃ t : traces(P@U ) • s = t)) [property of sets]

⇔
(∀U : A • (∀ s : seq Σ� | (∃ so : traces(Q) • s = πU (so)) •

(∃ t : seqΣ�; to : traces(P) • t = πU (to) ∧ s = t))

)
[definition of traces(P@U ) and traces(Q@U )]

⇔
(∀U : A • (∀ s : seq Σ� | (∃ so : traces(Q) • s = πU (so)) •

(∃ to : traces(P) • s = πU (to)))

)
[one-point rule]

⇔ ∀U : A; so : traces(Q) • (∃ to : traces(P) • πU (so) = πU (to))
[one-point rule]

⇔ P �IT Q [definition of P �IT Q ]

�

It is a straightforward consequence of the above lemma that independent traces
refinement is transitive, since traces refinement is transitive.
Example 7. We consider again P = a.1 → b.1 → STOP � a.2 → b.2 → STOP
and Q = a.1 → b.2 → STOP � a.2 → b.1 → STOP . So, traces(P@{a.1, a.2}) is
{〈〉, 〈a.1〉, 〈a.2〉} and traces(P@{b.1, b.2}) is {〈〉, 〈b.1〉, 〈b.2〉}. These are also the
traces of Q@{a.1, a.2} and Q@{b.1, b.2}, as expected from our earlier conclusion
that P and Q are indistinguishable under independent traces refinement. �

Example 8. The processes P = a → b → STOP and Q = b → a → STOP
are not related by traces refinement. As we have already seen, they cannot be
distinguished under cooperating refinement with users {a} and {b}. It turns out
that these processes are also equal under independent traces refinement. This
is because traces(P@{a}) = { 〈 〉, 〈 a〉 } and traces(P@{b}) = { 〈 〉, 〈 b〉 }, and the
same holds if we consider Q instead of P . This again reflects the fact that, in
isolation, {a} and {b} cannot decide in which order the events occur. �
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Independent failures refinement. The definition of P �IT Q is inspired
by [10], and it is interesting that it is similar to the definition of p-dioco [7].
Lemma 1 indicates the way for considering also independent failures refinement.

Definition 6 (Independent failures refinement)

P �IF Q =̂ ∀U : A • (P@U ) �F (Q@U )

Example 9. Independent failures refinement does not hold (in either direction)
for the processes P and Q in Example 8. Intuitively, this is because, from the
point of view of {a}, P is immediately available for interaction, and then dead-
locks. On the other hand, Q may deadlock immediately, if b does not happen.
Similarly, from the point of view of {b}, P may deadlock immediately, but not
Q . Accordingly, the failures of P and Q for these users are as sketched below.

failures(P@{a}) = { (〈 〉, {b, �}), . . . , (〈a〉, {a, b, �}), . . .}
failures(P@{b}) = { (〈 〉, {a, b, �}), . . . , (〈b〉, {a, b, �}), . . .}
failures(Q@{a}) = { (〈 〉, {a, b, �}), . . . , (〈a〉, {a, b, �}), . . .}
failures(Q@{b}) = { (〈 〉, {a, �}), . . . , (〈b〉, {a, b, �}), . . .}

We omit the failures that can be deduced by the fact that these sets are subset
closed. Deadlock is characterised by a failure whose refusal has all events. �

Example 10. For an example where independent failures refinement holds, con-
sider users { {a}, {b}, {c.1, c.2} }, P = a → c.1 → STOP � b → c.2 → STOP ,
and Q = a → c.2 → STOP � b → c.1 → STOP . We have the following.

traces(P@{a}) = traces(Q@{a}) = { 〈 〉, 〈a〉 }
traces(P@{b}) = traces(Q@{b}) = { 〈 〉, 〈b〉 }
traces(P@{c.1, c.2}) = traces(Q@{c.1, c.2}) = { 〈 〉, 〈c.1〉, 〈c.2〉 }

Regarding refusals, for both P and Q , the view of {a} is that the process may
nondeterministically choose between deadlocking (if b reacts “more quickly”
and takes the choice) or doing an a. The situation for {b} is similar. Finally,
for {c.1, c.2}, there is a nondeterministic choice between a deadlock, if neither a
nor b happens, or carrying out a c.1 or a c.2 and then deadlocking. Accordingly,
the failures obtained from P and Q are the same; they are sketched below.

failures(P@{a}) = failures(Q@{a}) =
{ (〈 〉, {a, b, c.1, c.2, �}), . . . (〈a〉 , {a, b, c.1, c.2, �}), . . .}

failures(P@{b}) = failures(Q@{b}) =
{ (〈 〉, {a, b, c.1, c.2, �}), . . . (〈b〉, {a, b, c.1, c.2, �}), . . .}

failures(P@{c.1, c.2}) = failures(Q@{c.1, c.2}) =
{ (〈 〉, {a, b, c.1, c.2, �}), . . .

(〈c.1〉, {a, b, c.1, c.2, �}), . . . , (〈c.2〉, {a, b, c.1, c.2, �}), . . . }
This reflects the fact that no user can observe whether the communication on c
follows an a or a b. �
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Unlike the (standard) failures-refinement relation, independent failures refine-
ment cannot be used to reason about deadlock.

Example 11. The process P = a → STOP � b → STOP is independent failures
refined by STOP for users {a} and {b}, since for both of them an immediate
deadlock is possible. We have the following failures.

failures(P@{a}) = { (〈 〉, {a, b, �}), . . . , (〈a〉, {a, b, �}), . . .}
failures(P@{b}) = { (〈 〉, {a, b, �}), . . . , (〈b〉, {a, b, �}), . . .}

The set of failures of STOP , for both users, is { (〈 〉, {a, b, �}), . . .}, which is a
subset of the sets above. So, a deadlocked implementation is correct with respect
to P , under independent failures refinement. �

Using the above result, the example below establishes that, like the other rela-
tions defined previously, independent failures refinement is not compositional.

Example 12. We define the process function F (X ) = (X |[{a}]|a → b → STOP).
If P is as defined in Example 11, then F (P) = a → b → STOP � b → STOP
and F (STOP) = STOP . Now, failures of F (P)@{b} includes just (〈 〉, ∅) for the
empty trace. So, it is not the case that F (P) �IF STOP . �

Additionally, in some cases, internal and external choice may be perceived by
individual users in the same way. An example is provided below.

Example 13. Process P = a → STOP � b → STOP is equal, under independent
failures refinement, to Q = a → STOP � b → STOP if the users are {a} and
{b}. This is because, for P or Q , it is possible for {a} or {b} to observe a
deadlock. For {a}, for instance, in the case of P , deadlock can happen if {b} is
quicker in making its choice, and in the case of Q , if the internal choice is made
in favour of b → STOP . A similar situation arises for the user {b}. �

This does not mean, however, that internal and external choice are indistinguish-
able using independent failures refinement.

Example 14. We now consider P = a → b → STOP � b → a → STOP and
Q = a → b → STOP � b → a → STOP , then we do not have an equality. In
the case of P , the user {a}, for example, never experiences a deadlock, but in
the case of Q , if b → a → STOP is chosen, then a deadlock may occur for {a},
if {b} is not ready for interaction. Accordingly, we have the following failures.

failures(P@{a}) = { (〈 〉, {b, �}), . . . , (〈a〉 , {a, b, �}), . . .}
failures(Q@{a}) = { (〈 〉, {a, b, �}), . . . , (〈a〉, {a, b, �}), . . .}

With the empty trace, there is no refusal of P@{a} including a. �

As already discussed, in CSP, a process is in charge of the internal choices,
and the environment, as a user, has no control over how they are made. With
multiple users, we have the possibility of introducing more nondeterminism (from
the point of view of a particular user), as there are more players who may be in
sole control of choices that the process itself leaves to the environment.
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The proof of the following is trivial. It considers the standard case in which
the environment is a single user U that can observe every event: A = {Σ�}.
Lemma 2. P@Σ� = P

From this result, Lemma 1 and Definition 3, we conclude that independent refine-
ment amounts to the traditional refinement relations if there is a single observer
with a global view. Thus, existing exhaustive test sets for CSP apply in this case.

We give below another characterisation of independent failures refinement.

Lemma 3

P �IF Q ⇔
(∀U : A; s : seqΣ�; A : P Σ� | (s ,A ∩ U ) ∈ failures⊥(Q) •

∃ t : seq Σ� • (t ,A ∩ U ) ∈ failures⊥(P) ∧ πU (s) = πU (t)

)

Proof

P �IF Q

⇔ ∀U : A • (P@U ) �F (Q@U ) [definition of �IF ]

⇔ ∀U : A • failures(Q@U ) ⊆ failures(P@U ) [definition of �F ]

⇔
(∀U : A; su : seqΣ�; A : P Σ� | (su,A) ∈ failures(Q@U ) •

(su,A) ∈ failures(P@U )

)
[property of sets]

⇔
⎛
⎝∀U : A; su : seqΣ�; A : P Σ� |

(∃ s : seqΣ� • (s ,A ∩ U ) ∈ failures(Q) ∧ su = πU (s)) •
(∃ t : seq Σ� • (t ,A ∩ U ) ∈ failures(P) ∧ su = πU (t))

⎞
⎠

[definition of failures(Q@U ) and failures(P@U )]

⇔
⎛
⎝∀U : A; su : seqΣ�; A : P Σ�; s : seqΣ� |

(s ,A ∩ U ) ∈ failures(Q) ∧ su = πU (s) •
(∃ t : seq Σ� • (t ,A ∩ U ) ∈ failures(P) ∧ su = πU (t))

⎞
⎠

[predicate calculus]

⇔
(∀U : A; s : seq Σ�; A : P Σ� | (s ,A ∩ U ) ∈ failures(Q) •

(∃ t : seqΣ� • (t ,A ∩U ) ∈ failures(P) ∧ πU (s) = πU (t))

)
[one-point rule]

�

This states that P �IF Q requires that, for every user U , every failure of Q
whose refusal includes only events visible to U , has a corresponding failure in
P . The failures can have different traces s and t , as long as they are the same
from the point of view of U . The refusals must be the same.
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Revisiting divergences. To remove the assumption that the behaviour of other
users cannot cause user U to experience divergence, we need a different ab-
straction P@dU of P for U . If we assume that P cannot terminate, we can
use P@dU = (P |[ U ]| Chaos(U )) \ U , where U = Σ \ U is the set of events
under the control of other users. They are hidden in P@dU , where the paral-
lelism captures the fact that the behaviour of other users is arbitrary. Process
Chaos(A) = STOP � (� e : A • e → Chaos(A)) can deadlock or perform
any event in A at any time. Divergence arises in P@dU if P offers an infinite
sequence of events in U . This abstraction is suggested in [14], but there the
introduction of divergence is considered inadequate. In testing, it is best not to
make assumptions about the possible behaviours of a user.

In the traces model P@U = P@dU , so using P@dU makes no difference
for independent traces refinement. Additionally, to take into account the pos-
sibility that P may terminate, we need only to ensure that the parallelism
in P@dU terminates when P does. To provide a more general definition that
considers terminating P , we can, therefore, consider, for example, a (syntac-
tic) function that changes P to indicate its imminent termination using a fresh
event ok . With this modified version OK(P) of P , to define P@dU we can use
(OK(P) |[ U ]| (Chaos(U ) � ok → SKIP)) \ (U ∪ {ok}). The failures of P@dU
include those of P@U plus those that can arise from divergence.

4 Distributed Testing and Traces Refinement

In this section we discuss distributed testing from CSP.

4.1 Global Testing for Traces Refinement

Since traces refinement P �T Q prescribes traces(Q) ⊆ traces(P), but not the
reverse, there is no need to test that Q can execute the traces of P . It is sufficient
to test Q against those traces of events in the alphabet of P that are not traces
of P , and to check that they are refused. Moreover, it is sufficient to consider
the minimal prefixes of forbidden traces that are forbidden themselves. Formally,
testing for traces refinement is performed by proposing to the system under test
the traces s � 〈 a 〉, where s is in traces(P), and a is a forbidden continuation.

For one test execution, the verdict is as follows. If s is followed by a deadlock,
then the test execution is said to be a success. If s � 〈a〉 is observed, the result
is a failure. If a strict prefix of s followed by a deadlock is observed, then the
execution is inconclusive. In this case, the trace s of P has not been executed by
the system under test. As explained above, according to traces refinement, we
do not have a failure, but the test does not produce conclusive information.

In [3], the three special events in the set V = {pass , fail , inc} are introduced
to perform on-the-fly verdict. For a finite trace s = a1, a2, . . . , an and a forbidden
continuation event a, the CSP test process TT (s , a) is defined as follows.

TT (s , a) = inc → a1 → inc → a2 → inc . . . an → pass → a → fail → STOP

As explained above, the last event before a deadlock gives the verdict.

@
@
@
@
@
@
@
@
@
@
@


60 A. Cavalcanti, M.-C. Gaudel, and R.M. Hierons

Formally, we can define TT (s , a) inductively as shown below.

TT (〈 〉, a) = pass → a → fail → STOP
TT (〈� 〉, a) = pass → a → fail → STOP
TT (〈 b 〉 � s , a) = inc → b → TT (s , a)

Execution ExecutionP
Q (T ) of a test for Q , against a specification P , is described

by the CSP process (Q |[ αP ]|T )\αP . The exhaustive test set ExhaustT (P) for
trace refinement of P contains all TT (s , a) formed from a trace s ∈ traces(P),
and forbidden continuation a. Proof of exhaustivity is in [3].

4.2 Local Distributed Testing

For simplicity we identify users by numbers, and index their events by these
numbers. Since users need not have disjoint alphabets, an event may be indexed
by several numbers. Moreover, we augment the set of events U of every user,
with the set VU = {passU , failU , incU } of events for local verdicts.

Given TT (s , a) and a user U , we derive a local test TT (s , a)|U by removing
from TT (s , a) all events unobservable by U and associated verdicts.

Example 15. We consider users 1 and 2 defined by {a1, b1} and {a2, b2}, and
a specification P = a1 → a2 → b1 → b2 → STOP . We have a global test
TT (〈a1, a2〉, a1) = inc → a1 → inc → a2 → pass → a1 → fail → STOP . The
local tests are TT (〈a1, a2〉, a1)|1 = inc1 → a1 → inc1 → a1 → fail1 → STOP
and TT (〈a1, a2〉, a1)|2 = inc2 → a2 → pass2 → STOP , in this case. �

For every traces-refinement test T , that is, a CSP process in the range of the
function TT , and a user U , we define T |U inductively as follows.

(inc → T )|U = incU → T |U
(a → v → T )|U = a → vU → T |U , if a ∈ U \VU , v ∈ V
(a → v → T )|U = T |U , if a �∈ U , v ∈ V
STOP |U = STOP

The global tests for the empty trace start already with a pass event. The corre-
sponding local tests are defined as follows.

(pass → a → fail → STOP)|U = passU → a → failU → STOP , if a ∈ U
(pass → a → fail → STOP)|U = incU → STOP , if a /∈ U

The distributed execution ExecutionP
Q (T ,A) of local tests corresponding to a

global test T , with set of users A, for implementation Q , against a specification
P , is described by the CSP process (Q |[ αP ]| ( ‖U : A • [U ]T |U ))\αP . The
test ( ‖U : A • [U ]T |U ) runs the local tests T |U for users U in A in parallel,
with synchronisation only on common (original) events. Since the verdict events
VU of each user are different, each test produces its own verdict. The overall
verdict arising from the experiment is failure if any user U observes a failU . If
not, it is a success if any user observes a passU , and inconclusive otherwise.

We need to observe, however, that the local tests are not necessarily sound.
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Example 16. We consider again users {a1, b1} and {a2, b2}. For the specification
P = a1 → a2 → STOP � a2 → STOP , we have a trace 〈a2〉, with forbidden con-
tinuation a1. We have a global test inc → a2 → pass → a1 → fail → STOP . The
local tests are inc1 → a1 → fail1 → STOP and inc2 → a2 → pass2 → STOP . If
the system performs the trace 〈a1, a2〉, the verdict of these tests is failure, even
though 〈a1, a2〉 is a trace of the specification P . �

Here we have a controllability problem: the second local test should not start
until after event a2. Under certain conditions, soundness is guaranteed: for in-
stance, if for every component a → v → b → T of the test, where a and b are
not verdict events, but v is, at least one user can observe both a and b. In the
next section we explore the use of coordination messages to address this issue.

4.3 Coordination Messages and Traces Refinement

The approach presented here is inspired by that in Hierons [5]. First, we introduce
coordination messages as events coord .i .j observable by users i and j . The role
of such an event is to allow the tester i to warn the tester j that the event ai

has just been performed and j is entitled to propose the event aj .
For a global test TT (s , a), defined from a trace s and a forbidden event a

observable by a user k , coordination messages are inserted in the local tests as
follows. For every pair ai and aj of consecutive events of s observed by differ-
ent users i and j , the event coord .i .j is inserted in TT (s , a)|i after ai and in
TT (s , a)|j before aj . If the user i that observes the last event ai of s is not k ,
then coord .i .k is inserted in TT (s , a)|i after ai and in TT (s , a)|k before a.

Example 17. We consider the global test TT (〈a1, a2〉, a1) from Example 15. We
get inc1 → a1 → coord .1.2 → inc1 → coord .2.1 → a1 → fail1 → STOP as the
coordinated version of the local test TT (〈a1, a2〉, a1)|1. That of TT (〈a1, a2〉, a1)|2
is inc2 → coord .1.2 → a2 → coord .2.1→ pass2 → STOP . �

The function C i(T ) that defines the annotated local test for user i from a global
test T can be defined inductively as follows.

C i(inc → T ) = inci → C i(T )
C i(ai → v → bi → T ) = ai → vi → C i(bi → T )
C i(ai → v → ak → T ) = ai → coord .i .k → vi → C i(ak → T ), if k �= i
C i(aj → v → ai → T ) = coord .j .i → C i(ai → T ), if j �= i
C i(aj → v → ak → T ) = C i(ak → T ), if j �= i , k �= i
C i(ai → fail → STOP) = ai → faili → STOP
C i(aj → fail → STOP) = STOP , if j �= i
C i(pass → ai → fail → STOP) = passi → ai → faili → STOP
C i(pass → aj → fail → STOP) = inci → STOP , if j �= i

The distributed test is defined by ( ‖U : A • [AC (U )]CU (T )) \ {|coord |}. As
before, we have a parallel composition of the local tests. AC (U ) is the alphabet
of CU (T ), including U , and the events coord .U .i and coord .i .U , for every user
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i in A. The set {|coord |} of all coordination events is hidden, as they are used
for interaction among the tests, but not with the system under test.

The role of the coordination messages as defined above is to preserve the global
order of events when using local tests. Since the synchronisation constraints
they introduce force the local tests to follow the order of the global tests, which
have been defined to exhaustively test for traces refinement, they introduce a
distributed coordinated way to test for such refinement. It is at the price of
their proliferation, which seems unavoidable in general, if traces refinement is
required and if there is no way of performing global testing. It is likely, however,
that there are some types of systems where the coordination of distributed tests
is less costly, for instance when global traces have some locality properties, like
long local subtraces, and few switches between users.

5 Conclusions

This paper has explored distributed testing from a CSP specification. While
there has been much work on distributed testing from an IOTS or a finite state
machine, the use of CSP introduces new challenges. For example, since some
refinement relations for CSP assume that we can observe failures in addition to
traces, there is a need to incorporate failures into the framework. The distinction
between internal choice and external choice also introduces interesting issues.

We have considered two situations. In the first, the testers are distributed, but
their observations can be brought together. This leads to the notion of cooper-
ating refinement. In this case, it is necessary to decide when the observations
can be brought together, since the testers need to know that they are reporting
observations regarding the same trace. We have, therefore, defined the notion
of a complete run, which is either infinite or a trace that terminates. Since the
failure sets are the same after all complete runs, there is no value in observing
them, and so we only observe projections of traces.

In the alternative situation, the testers act entirely independently. Here it
is sufficient for the observations made by each tester to be consistent with the
specification, even if the set of observations is not. A single tester can observe
traces and failures, and as a result we have defined independent traces refinement,
under which only traces are observed, and independent failures refinement, under
which traces and failures are observed. We have also considered test generation
and showed how coordination messages might be used to make tests sound.

There are several avenues for future work. First, under cooperating refine-
ment the testers do not observe failures and it would be interesting to find ways
of incorporating information regarding failures. In addition, CSP does not dis-
tinguish between inputs and outputs. It is, however, possible to include such a
distinction through the notion of non-delayable events to model outputs. This is
certainly a crucial step to enable the study of more elaborate concerns regarding
observability and control. Recent work has shown how the notion of a scenario,
which is a sequence of events after which the testers might synchronise, can be
used in distributed testing from an IOTS and it should be possible to introduce
scenarios into CSP. Additionally, the work in [3] considers conf as well as traces
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refinement; distributed testing for conf might raise interesting issues for coordi-
nation. Finally, tools for test generation and case studies are needed to explore
the applications of the theory presented here.
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test synthesis from UML models of distributed software. In: Peled, D.A., Vardi,
M.Y. (eds.) FORTE 2002. LNCS, vol. 2529, pp. 97–113. Springer, Heidelberg (2002)

14. Roscoe, A.W.: The Theory and Practice of Concurrency. Prentice-Hall, Englewood
Cliffs (1998)

15. Sarikaya, B., Bochmann, G.v.: Synchronization and specification issues in protocol
testing. IEEE Transactions on Communications 32, 389–395 (1984)

16. Ural, H., Williams, C.: Constructing checking sequences for distributed testing.
FAC 18(1), 84–101 (2006)

people.brunel.ac.uk/~csstrmh/coord.pdf


Praspel: A Specification Language for

Contract-Based Testing in PHP

Ivan Enderlin, Frédéric Dadeau, Alain Giorgetti, and Abdallah Ben Othman

LIFC / INRIA CASSIS Project – 16 route de Gray - 25030 Besançon cedex, France
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Abstract. We introduce in this paper a new specification language
named Praspel, for PHP Realistic Annotation and SPEcification Lan-
guage. This language is based on the Design-by-Contract paradigm.
Praspel clauses annotate methods of a PHP class in order to both spec-
ify their contracts, using pre- and postconditions, and assign realistic
domains to the method parameters. A realistic domain describes a set
of concrete, and hopefully relevant, values that can be assigned to the
data of a program (class attributes and method parameters). Praspel is
implemented into a unit test generator for PHP that offers a random test
data generator, which computes test data, coupled with a runtime asser-
tion checker, which decides whether a test passes or fails by checking the
satisfaction of the contracts at run-time.

Keywords: PHP, Design-by-Contract, annotation language, unit test-
ing, formal specifications.

1 Introduction

Over the years, testing has become the main way to validate software. A chal-
lenge is the automation of test generation that aims to unburden the developers
from writing their tests manually. Recent development techniques, such as Agile
methods, consider tests as first-class citizens, that are written prior to the code.
Model-based testing [5] is an efficient paradigm for automating test generation.
It considers a model of the system that is used for generating conformance test
cases (w.r.t. the model) and computing the oracle (i.e. the expected result) that
is used to decide whether a test passes or fails.

In order to ease the model description, annotation languages have been de-
signed, firstly introduced by B. Meyer [19], creating the Design-by-Contract
paradigm. These languages make it possible to express formal properties (invari-
ants, preconditions and postconditions) that directly annotate program entities
(class attributes, methods parameters, etc.) in the source code. Many annota-
tion languages exist, such as the Java Modeling Language (JML) [15] for Java,
Spec# [3] for C#, or the ANSI-C Specification Language (ACSL) [4] for C.
Design-by-Contract considers that a system has to be used in a contractual way:
to invoke a method the caller has to fulfil its precondition; in return, the method
establishes its postcondition.

B. Wolff and F. Zaidi (Eds.): ICTSS 2011, LNCS 7019, pp. 64–79, 2011.
c© IFIP International Federation for Information Processing 2011
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Contract-Driven Testing. Annotations can be checked at run time to make
sure that the system behaves as specified, and does not break any contract. Con-
tracts are thus well-suited to testing, and especially to unit testing [16]. The idea
of Contract-Driven Testing [1] is to rely on contracts for both producing tests, by
computing test data satisfying the contract described by the precondition, and
for test verdict assessment, by checking that the contract described by the post-
condition is ensured after execution. On one hand, method preconditions can
be used to generate test data, as they characterize the states and parameters
for which the method call is licit. For example, the Jartege tool [20] generates
random test data, in accordance with the domain of the inputs of a given Java
method, and rejects the values that falsify the precondition. The JML-Testing-
Tools toolset [6] uses the JML precondition of a method to identify boundary
states from which the Java method under test will be invoked. The JMLUnit [9]
approach considers systematic test data for method input parameters, and fil-
ters irrelevant ones by removing those falsifying the method precondition. On the
other hand, postconditions are employed similarly in all the approaches [6,8,9].
By runtime assertion checking, the postcondition is verified after each method
execution, to provide the test verdict.

Contributions. In this paper, we present a new language named Praspel, for
PHP Realistic Annotation and SPEcification Language. Praspel is a specification
language for PHP [21] which illustrates the concept of realistic domains. Praspel
introduces Design-by-Contract in PHP, by specifying realistic domains on class
attributes and methods. Consequently, Praspel is adapted to test generation:
contracts are used for unit test data generation and provide the test oracle by
checking the assertions at runtime.

Our second contribution is a test framework supporting this language. This
online test generation and execution tool works in three steps: (i) the tool gen-
erates values for variables according to the contract (possibly using different
data generators), (ii) it runs the PHP program with the generated values, and
(iii) the tool checks the contract postcondition to assign the test verdict.

Paper outline. The paper is organized as follows. Section 2 briefly introduces
the concept of realistic domains. Section 3 presents an implementation of re-
alistic domains in the Praspel language, a new annotation language for PHP.
Section 4 describes the mechanism of automated generation of unit tests from
PHP files annotated with Praspel specifications. The implementation of Praspel
is described in Section 5. Section 6 compares our approach with related works.
Finally, Section 7 concludes and presents our future work.

2 Realistic Domains

When a method precondition is any logical predicate, say from first-order logic,
it can be arbitrarily difficult to generate input data satisfying the precondition.
One could argue that the problem does not appear in practice because usual
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preconditions are only simple logical predicates. But defining what is a “simple”
predicate w.r.t. the problem of generating values satisfying it (its models) is a
difficult question, still partly open. We plan to address this question and to put
its positive answers at the disposal of the test community. In order to reach this
goal we introduce the concept of realistic domains.

Realistic domains are intended to be used for test generation purposes. They
specify the set of values that can be assigned to a data in a given program. Realistic
domains are well-suited to PHP, since this language is dynamically typed. There-
fore, realistic domains introduce a specification of data types that are mandatory
for test data generation. We introduce associated features to realistic domains,
and we then present the declination of realistic domains for PHP.

2.1 Features of Realistic Domains

Realistic domains are structures that come with necessary properties for the val-
idation and generation of data values. Realistic domains can represent all kinds
of data; they are intended to specify relevant data domains for a specific con-
text. Realistic domains are more subtle than usual data types (integer, string,
array, etc.) and are actually refinement of those latters. For example, if a re-
alistic domain specifies an email address, we can validate and generate strings
representing syntactically correct email addresses, as shown in Fig. 1.

Realistic domains display two features, which are now described and illus-
trated.

Predicability. The first feature of a realistic domain is to carry a characteristic
predicate. This predicate makes it possible to check if a value belongs to the
possible set of values described by the realistic domain.

Samplability. The second feature of a realistic domain is to propose a value
generator, called the sampler, that makes it possible to generate values in the
realistic domain. The data value generator can be of many kinds: a random
generator, a walk in the domain, an incrementation of values, etc.

We now present our implementation of realistic domains in PHP and show
some interesting additional principles they obey.

2.2 Realistic Domains in PHP

In PHP, we have implemented realistic domains as classes providing at least two
methods, corresponding to the two features of realistic domains. The first method
is named predicate($q) and takes a value $q as input: it returns a boolean in-
dicating the membership of the value to the realistic domain. The second method
is named sample() and generates values that belong to the realistic domain. An
example of realistic domain implementation in a PHP class is given in Fig. 1. This
class represents the EmailAddress realistic domain already mentioned. Our im-
plementation of realistic domains in PHP exploit the PHP object programming
paradigm and benefit from the following two additional principles.
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class EmailAddress extends String {

public function predicate($q) {
// regular expression for email addresses
// see. RFC 2822, 3.4.1. address specs.
$regexp = ’. . .’;
if(false === parent::predicate($q))

return false;

return preg_match($regexp,$q);
}

public function sample() {
// string of authorized chars
$chars = ’ABCDEFGHIJKL. . .’;
// array of possible domain extensions
$doms = array(’net’,’org’,’edu’,’com’);
$q = ’’;

$nbparts = rand(2, 4);

for($i = 0; $i < $nbparts; ++$i) {
if($i > 0)
// add separator or arobase
$q .= ($i == $nbparts - 1)

? ’@’ : ’.’;

$len = rand(1,10);
for($j=0; $j < $len; ++$j) {
$index = rand(0, strlen($chars) - 1);
$q .= $chars[$index];

}
}
$q .= ’.’ .

$doms[rand(0, count($doms) - 1)];
return $q;

}
}

Fig. 1. PHP code of the EmailAddress realistic domain

Hierarchical inheritance. PHP realistic domains can inherit from each other.
A realistic domain child inherits the two features of its parent and is able to
redefine them. Consequently, all the realistic domains constitute an universe.

Parameterizable realistic domains. Realistic domains may have parameters.
They can receive arguments of many kinds. In particular, it is possible to use
realistic domains as arguments of realistic domains. This notion is very impor-
tant for the generation of recursive structures, such as arrays, objects, graphs,
automata, etc.

Example 1 (Realistic domains with arguments). The realistic domain bound-
integer(X, Y ) contains all the integers between X and Y . The realistic do-
main string(L, X, Y ) is intended to contain all the strings of length L con-
stituted of characters from X to Y Unicode code-points. In the realistic domain
string(boundinteger(4, 12), 0x20, 0x7E), the string length is defined by
another realistic domain.

3 PHP Realistic Annotation and Specification Language

Realistic domains are implemented for PHP in Praspel, a dedicated annotation
language based on the Design-by-Contract paradigm [19]. In this section, we
present the syntax and semantics of the language.

Praspel specifications are written in API documentation comments as shown
in Fig. 3, 4, 5 and 6.

Praspel makes it possible to mix informal documentations and formal con-
straints, called clauses and described hereafter. Praspel clauses are ignored by
PHP interpreters and integrated development environments. Moreover, since
each Praspel clause begins with the standard @ symbol for API keywords, it
is usually well-handled by pretty printers and API documentation generators.
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annotation ::= (clause)∗

clause ::= requires-clause;
| ensures-clause;
| throwable-clause;
| predicate-clause;
| invariant-clause;
| behavior-clause

requires-clause ::= @requires expressions
ensures-clause ::= @ensures expressions

throwable-clause ::= @throwable (identifier)+,
invariant-clause ::= @invariant expressions
behavior-clause ::= @behavior identifier {

(requires-clause;
| ensures-clause;

| throwable-clause;)+ }
expressions ::= (expression)+and
expression ::= real-dom-spec

| \pred(predicate)
real-dom-spec ::= variable (: real-doms

| domainof variable)

variable ::= constructors | identifier
constructors ::= \old(identifier) | \result

real-doms ::= real-dom+
or

real-dom ::= identifier (arguments)
| built-in

built-in ::= void()
| integer()
| float()
| boolean()
| string(arguments)
| array(arguments)
| class(arguments)

arguments ::= (argument)∗,
argument ::= number | string

| real-dom | array
array ::= [pairs]
pairs ::= (pair)∗,
pair ::= (from real-doms )?to real-doms

Fig. 2. Grammar of the concrete syntax

The grammar of Praspel annotations is given in Fig. 2. Notation (σ)? means
that σ is optional. (σ)rs represents finite sequences of elements matching σ, in
which r is either + for one or more matches, or * for zero or more matches, and
s is the separator for the elements in the sequence.

Underlined words are PHP entities. They are exactly the same as in PHP.
A predicate is a valid logical PHP expression that returns a boolean. An identifier
is the name of a PHP class or the name of a method or method parameter. It
cannot be the name of a global variable or an attribute, which are respectively
prohibited (as bad programming) and defined as invariants in Praspel. The syn-
tax of identifiers strictly follows the syntax of PHP variables.

The other syntactic entities in this grammar are explained in the PHP man-
ual [21]. Praspel expressions are conjunctions of realistic domain assignments
and of relations between realistic domains, explained in Section 3.1. The spe-
cial case of array descriptions is explained in Section 3.2. Finally, clauses are
described in Section 3.3.

3.1 Assigning Realistic Domains to Data

We now explain how to declare the realistic domains of method parameters and
we give the semantics of these declarations w.r.t. the method inputs and output.

The syntactic construction:

i: t1(. . . ) or . . . or tn(. . . )

associates at least one realistic domain (among t1(. . . ), . . . , tn(. . . )) to an iden-
tifier (here, i). We use the expression “domains disjunction” when speaking
about syntax, and the expression “domains union” when speaking about seman-
tics. The left-hand side represents the name of some method argument, whereas
the right-hand side is a list of realistic domains, separated by the “or” keyword.
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The semantics of such a declaration is that the realistic domain of the identifier
i may be t1(. . .) or . . . or tn(. . .), i.e. it is the union (as in the C language) of
the realistic domains t1(. . .) to tn(. . .). These realistic domains are (preferably)
mutually exclusive.

Example 2 (An identifier with many realistic domains). The declaration:

y: integer() or float() or boolean()

means that y can either be an integer, a floating-point number or a boolean.

The domainof operator describes a dependency between the realistic domains
of two identifiers. The syntactic construction: identifier domainof identifier cre-
ates this relation. The semantics of i domainof j is that the realistic domain
chosen at runtime for j is the same as for i.

When an object is expected as a parameter, it can be specified using the
class(C) construct, in which C is a string designating the class name.

Example 3 (Use of a class as a realistic domain). The following declaration:

o: class(’LimitIterator’) or class(’RegexIterator’)

specifies that o is either an instance of LimitIterator or RegexIterator.

3.2 Array Description

A realistic domain can also be an array description. An array description has
the following form:

[from T 1
1 ( . . . ) or . . . or T 1

i ( . . . ) to T 1
i+1( . . .) or . . . or T 1

n( . . . ),
. . .
from T k

1 ( . . . ) or . . . or T k
j ( . . .) to T k

j+1( . . . ) or . . . or T k
m( . . .)]

It is a sequence between square brackets “[” and “]” of pairs separated by symbol
“,”. Each pair is composed of a domain introduced by the keyword “from”, and
a co-domain introduced by the keyword “to”. Each domain and co-domain is a
disjunction of realistic domains separated by the keyword “or”. The domain is
optional.

The semantics of an array description depends of the realistic domain where
it is used. We detail this semantics in the most significant case, when the array
description is a parameter of the realistic domain array. Notice that an array
description and the realistic domain array are different. The realistic domain
array has two arguments: the array description and the array size.

Example 4 (Array specification). Consider the following declarations:

a1: array([from integer() to boolean()], boundinteger(7, 42))

a2: array([to boolean(), to float()], 7)

a3: array([from integer() to boolean() or float()], 7)

a4: array([from string(11) to boolean(), to float() or integer()], 7)
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a1 describes an homogeneous array of integers to booleans. The size of the yielded
array is an integer between 7 and 42. In order to produce a fixed-size array, one
must use an explicit constant, as in the subsequent examples. a2 describes two
homogeneous arrays: either an array of booleans, or an array of floats, but not
both. In all cases, the yielded array will have a size of 7. If no realistic domain
is given as domain (i.e. if the keyword “from” is not present), then an auto-
incremented integer (an integer that is incremented at each sampling) will be
yielded. a2 is strictly equivalent to array([to boolean()], 7) or array([to
float()], 7). a3 describes an heterogeneous array of booleans and floats alto-
gether. Finally, a4 describes either an homogeneous array of strings to booleans
or an heterogeneous array of floats and integers.

3.3 Designing Contracts in Praspel

This section describes the syntax and semantics of the part of Praspel that
defines contracts for PHP classes and methods. Basically, a contract clause is
either the assignment of a realistic domain to a given data, or it is a PHP
predicate that provides additional constraints over variables values (denoted by
the \pred construct).

Invariants. In the object programming paradigm, class attributes may be con-
strained by properties called “invariants”. These properties must hold before
and after any method call and have the following syntax.

@invariant I1 and . . . and Ip;

Classically, invariants have to be
class C {
/**

* @invariant a: boolean();

*/

protected $a;

}

Fig. 3. Example of invariant clause

satisfied after the creation of the
object, and preserved through each
method execution (i.e. assuming the
invariant holds before the method,
then it has to hold once the method
has terminated). Invariants are also
used to provide a realistic domain
to the attributes of an object.

Example 5 (Simple invariant). The invariant in Fig. 3 specifies that the attribute
a is a boolean before and after any method call.

Method contracts. Praspel makes it possible to express contracts on the meth-
ods in a class. The contract specifies a precondition that has to be fulfilled for
the method to be executed. In return, the method has to establish the specified
postcondition. The contract also specifies a set of possible exceptions that can be
raised by the method. The syntax of a basic method contract is given in Fig. 4.
The semantics of this contract is as follows.
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Each Rx (1 ≤ x ≤ n) represents either the assignment of a realistic domain
to a data, or a PHP predicate that provides a precondition. The caller of the
method must guarantee that the method is called in a state where the properties
conjunction R1 ∧ . . . ∧ Rn holds (meaning that the PHP predicate is true, and
the value of the data should match their assigned realistic domains). By default,
if no @requires clause is declared, the parameter is implicitly declared with the
undefined realistic domain (which has an always-true predicate and sample an
integer by default).

Each Ez (1 ≤ z ≤ m) is either the as-
/**

* @requires R1 and ... and Rn;

* @ensures E1 and ... and Em;

* @throwable T1, ..., Tp;

*/

function foo ( ... ) { ... }

Fig. 4. Syntax of Method Contracts

signment of a realistic domain to a data
(possibly the result of the method) af-
ter the execution of the method, or an
assertion specified using a PHP predi-
cate that specifies the postcondition of
the method. The method, if it terminates
normally, should return a value such that
the conjunction E1 ∧ . . . ∧Em holds.

Each Ty (1 ≤ y ≤ p) is an exception
name. The method may throw one of the specified exceptions T1 ∨ . . . ∨ Tp or a
child of these ones. By default, the specification does not authorize any exception
to be thrown by the method.

Postconditions (@ensures clauses)
/**

* @requires x: boundinteger(0,42);

* @ensures \result: eveninteger()

* and \pred(x >= \old(x));
* @throwable FooBarException;

*/

function foo ( $x ) {
if($x === 42)

throw new FooBarException();

return $x * 2;

}

Fig. 5. Example of Simple Contract

usually have to refer to the method
result and to the variables in the pre-
state (before calling the function).
Thus, PHP expressions are extended
with two new constructs: \old(e) de-
notes the value of expression e in the
pre-state of the function, and \result
denotes the value returned by the func-
tion. Notice that our language does
not include first-order logic operators
such as universal or existential quanti-
fiers. Nevertheless, one can easily sim-
ulate such operators using a dedicated
boolean function, that would be called
in the PHP predicate.

Example 6 (Simple contract). Consider the example provided in Fig. 5. This
function foo doubles the value of its parameter $x and returns it. In a special
case, the function throws an exception.

Behavorial clauses. In addition, Praspel makes it possible to describe explicit
behaviors inside contracts.

A behavior is defined by a name and local @requires, @ensures, and @thro-
wable clauses (see Fig. 6(a)). The semantics of behavioral contracts is as follows.
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/**
* @requires R1 and ... and Rn;
* @behavior α {
* @requires A1 and ... and Ak;
* @ensures E1 and ... and Ej;
* @throwable T1, ..., Tt;
* }
* @ensures Ej+1 and ... and Em;
* @throwable Tt+1, ..., Tl;
*/

function foo ( $x1... ) { body }

(a)

/**
* @requires x: integer();
* @behavior foo {
* @requires y: positiveinteger()
* and z: boolean();
* }
* @behavior bar {
* @requires y: negativeinteger()
* and z: float();
* @throwable BarException;
* }
* @ensures \result: boolean();
*/

function foo ( $x, $y, $z ) { ... }

(b)

Fig. 6. Behavioral Contracts

The caller of the method must guarantee that the call is performed in a state
where the property R1 ∧ . . . ∧ Rn holds. Nevertheless, property A1 ∧ . . . ∧ Ak

should also hold. The called method establishes a state where the property (A1∧
. . .∧Ak ⇒ E1∧ . . .∧Ej)∧Ej+1∧ . . .∧Em holds, meaning that the postcondition
of the specified behavior only has to hold if the precondition of the behavior is
satisfied. Exceptions Ti (1 ≤ i ≤ t) can only be thrown if the preconditions
R1 ∧ . . . ∧Rn and A1 ∧ . . . ∧Ak hold.

The @behavior clause only contains @requires, @ensures and @throwable
clauses. If a clause is declared or used outside a behavior, it will automatically
be set into a default/global behavior. If a clause is missing in a behavior, the
clause in the default behavior will be chosen.

Example 7 (Behavior with default clauses). The specification in Fig. 6(b) is an
example of a complete behavioral clause. This contract means: the first argument
$x is always an integer and the result is always a boolean, but if the second
argument $y is a positive integer, then the third argument $z is a boolean
(behavior foo), else if $y is a negative integer, and the $z is a float and then the
method may throw an exception (behavior bar).

4 Automated Unit Test Generator

The unit test generator works with the two features provided by the realistic
domains. First, the sampler is implemented as a random data generator, that
satisfies the precondition of the method. Second, the predicate makes it possible
to check the postcondition (possibly specifying realistic domains too) at runtime
after the execution of the method.

4.1 Test Verdict Assignment Using Runtime Assertion Checking

The test verdict assignment is based on the runtime assertion checking of the
contracts specified in the source code. When the verification of an assertion
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public function foo ($x1 ...) {

$this->foo pre(...);

// evaluation of \old(e)

try {

$result = $this->foo body($x1 ... );

}
catch ( Exception $exc ) {
$this->foo exception($exc);
throw $exc;

}

$this->foo post($result, ...);

return $result;
}

public function foo pre(...) {

return verifyInvariants(...)
&& verifyPreCondition(...);

}

public function foo post(...) {

return verifyPostCondition(...)
&& verifyInvariants(...);

}

public function foo exception($e) {

return verifyException($e)
&& verifyInvariants(...);

}

public function foo body($x1 ... ) ...

Fig. 7. PHP Instrumentation for Runtime Assertion Checking

fails, a specific error is logged. The runtime assertion checking errors (a.k.a.
Praspel failures) can be of five kinds. (i) precondition failure, when a precon-
dition is not satisfied at the invocation of a method, (ii) postcondition failure,
when a postcondition is not satisfied at the end of the execution of the method,
(iii) throwable failure, when the method execution throws an unexpected ex-
ception, (iv) invariant failure, when the class invariant is broken, or (v) internal
precondition failure, which corresponds to the propagation of the precondition
failure at the upper level.

The runtime assertion checking is performed by instrumenting the initial PHP
code with additional code which checks the contract clauses. The result of the
code instrumentation of a given method foo is shown in Fig. 7. It corresponds to
the treatment of a behavioral contract, as shown in Fig. 6. The original method
foo is duplicated, renamed (as foo body) and substituted by a new foo method
which goes through the following steps:

– First, the method checks that the precondition is satisfied at its beginning,
using the auxiliary method foo pre.

– Second, the \old expressions appearing in the postconditions are evaluated
and stored for being used later.

– Third, the replication of the original method body is called. Notice that this
invocation is surrounded by a try-catch block that is in charge of catching
the exception that may be thrown in the original method.

– Fourth, when the method terminates with an exception, this exception is
checked against the expected ones, using the auxiliary method foo excep-
tion. Then the exception is propagated so as to preserve the original behav-
ior of the method.
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– Fifth, when the method terminates normally, the postconditions and the
invariants are checked, using the auxiliary method foo post.

– Sixth, and finally, the method returns the value resulting of the execution of
foo body.

Test cases are generated and executed online: the random test generator pro-
duces test data, and the instrumented version of the initial PHP file checks the
conformance of the code w.r.t. specifications for the given inputs. The test suc-
ceeds if no Praspel failure (listed previously) is detected. Otherwise, it fails, and
the log indicates where the failure has been detected.

4.2 Random Test Data Generation

To generate test data, we rely on a randomizer, a sampling method that is in
charge of generating a random value for a given realistic domain. The randomizer
works with the realistic domain assignments provided in the @requires clauses
of the contracts.

Assume that the precondition of a method specifies the realistic domain of
parameter i as follows: @requires i: t1(. . .) or . . . or tn(. . .);. When this
method is randomly tested, a random value for i is generated in the domain of
one of its n declared realistic domains. If n ≥ 2, then a realistic domain tc(. . .)
is first selected among t1(. . .), . . . , tn(. . .) by uniform random generation of c
between 1 and n. Then, the randomizer generates a value of domain tc(. . .) for
i using the sampling method provided by this realistic domain.

When the data to be generated is an object of class C, the invariant of class
C is analyzed in order to recover the realistic domains associated to the class
attributes, and it recursively generates a data value for each class attribute. An
instance of class C is created and the generated data values are assigned to the
class attributes.

By default, the test case generation works by rejection of irrelevant values,
as described in the simplified algorithm in Fig. 8. This algorithm has three pa-
rameters. The first one, nbTests, represents the number of tests the user wants
to generate. The second parameter, maxTries, is introduced in order to ensure
that the generator stops if all the yielded values are rejected. Indeed, the gen-
erator may fail to yield a valid value because the preconditions lay down too
strong constraints. The third and last parameter, methods, represents the set of
methods to test.

For many realistic domains this default test generation method can be over-
loaded by more efficient methods. We have already implemented the following
enhancements:

– Generation by rejection is more efficient when the rejection probability is
low. Therefore, the hierarchy of realistic domains presented in Section 2.2 is
constructed so that each class restricts the domain of its superclass as little
as possible, and rejection always operates w.r.t. this direct superclass for
more efficiency.



Praspel: A Specification Language for Contract-Based Testing in PHP 75

function generateTests(nbTests, maxTries, methods)
begin

tests ← 0
do

tries ← 0
f ← select method under test amongst methods
do

tries ← tries + 1
for each parameter p of f do

t ← select realistic domain of p
i ← generate random value ∈ [1..card(t)]

v ← ith value of realistic domain t
assign value v to parameter p

done
while f precondition fails ∧ tries ≤ maxTries
if tries ≤ maxTries then

run test case / keep test case
tests ← tests + 1

end if
while tests ≤ nbTests

end

Fig. 8. Test Cases Generation Algorithm

– Realistic domains representing intervals are sampled without rejection by a
direct call to a uniform random generator, in fact two generators: a discrete
and a continuous one.

The users are free to add their own enhancements and we plan to work in this
direction in a near future.

5 Tool Support and Experimentation

The Praspel tool implements the principles described in this paper. Praspel
is freely available at http://hoa-project.net/. It is developed in Hoa [12]
(since release 0.5.5b), a framework and a collection of libraries developed in
PHP. Hoa combines a modular library system, a unified streams system, generic
solutions, etc. Hoa also aims at bridging the gap between research and industry,
and tends to propose new solutions from academic research, as simple as possible,
to all users. Praspel is a native library of Hoa (by opposition to user libraries).
This deep integration ensures the durability and maintenance of Praspel. It is
provided with an API documentation, a reference manual, a dedicated forum,
etc. Moreover, we get feedbacks about the present research activity through Hoa
user community.

A demonstration video of the Praspel tool is also available at the following
address: http://hoa-project.net/Video/Praspel.html. As shown in this de-
monstration, the Praspel language is easy to learn and to use for developers. The
tool support makes it possible to produce test data and run test cases in a dedi-
cated framework with little effort. Praspel has been presented and demonstrated
at the ForumPHP’10 conference, which gathers the PHP community, and was
received very favourably.

http://hoa-project.net/
http://hoa-project.net/Video/Praspel.html
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We applied Praspel to web application validation. In such applications, PHP
functions are used to produce pieces of HTML code from simple inputs. Be-
ing also teachers, we have decided to test the (buggy!) code of our students of
the “Web Languages” course. Using a dedicated library of Hoa to build LL(k)
parsers, we easily designed the realistic domains associated with the expected
output HTML code, that had to be well-structured, and respecting some struc-
tural constraints (e.g. exactly one <option> of a <select> has to be set by
default). We analysed their functions using this mechanism.

To save space, we have reported this experimentation on a web page at the fol-
lowing address: http://lifc.univ-fcomte.fr/home/~fdadeau/praspel.html,
along with the links to download the Hoa framework (implementing Praspel),
and some samples of the possibilities of Praspel.

6 Related Works

Various works consider Design-by-Contract for unit test generation [6,9,10,14,17].
Our approach is inspired by the numerous works on JML [15]. Especially, our test
verdict assignment process relies on Runtime Assertion Checking, which is also
considered in JMLUnit [9], although the semantics on exceptions handling differs.
Recently, JSConTest [14] uses Contract-Driven Testing for JavaScript. We share
a common idea of adding types to weakly typed scripting languages (JavaScript
vs PHP). Nevertheless our approach differs, by considering flexible contracts,
with type inheritance, whereas JSConTest considers basic typing informations
on the function profile and additional functions that must be user-defined. As
a consequence, due to a more expressive specification language, Praspel per-
forms more general runtime assertion checks. ARTOO [10] (Adaptative Random
Testing for Object-Oriented software) uses a similar approach based on ran-
dom generation involving contracts written in Eiffel [18], using the AutoTest
tool. ARTOO defines the notion of distance between existing objects to select
relevant input test data among the existing objects created during the execu-
tion of a program. Our approach differs in the sense that object parameters are
created on-the-fly using the class invariant to determine relevant attributes val-
ues, in addition to the function precondition. Praspel presents some similarities
with Eiffel’s types, especially regarding inheritance between realistic domains.
Nevertheless, realistic domains display the two properties of predicability and
samplability that do not exist in Eiffel. Moreover, Praspel adds clauses that Eif-
fel contracts do not support, as @throwable and @behavior, which are inspired
from JML.

Our test generation process, based on random testing, is similar to Jartege [20]
for JML. Jartege is able to generate a given number of tests sequences of a given
length, for Java programs with JML specifications. Jartege uses the type of input
parameters to compute random values for method parameters, that are then
checked against the precondition of the method, using an online test generation
approach.

Also for JML, Korat [7] uses a user-defined boolean Java function that defines
a valid data structure to be used as input for unit testing. A constraint solving

http://lifc.univ-fcomte.fr/home/~fdadeau/praspel.html
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approach is then used to generate data values satisfying the constraints given by
this function, without producing isomorphic data structures (such as trees). Our
approach also uses a similar way to define acceptable data (the predicate feature
of the realistic domains). Contrary to Korat, which automates the test data gen-
eration, our approach also requires the user to provide a dedicated function that
generates data. Nevertheless, our realistic domains are reusable, and Praspel
provides a set of basic realistic domains that can be used for designing other
realistic domains. Java PathFinder [23] uses a model-checking approach to build
complex data structures using method invocations. Although this technique can
be viewed as an automation of our realistic domain samplers, its application
implies an exhausive exploration of a system state space. Recently, the UDITA
language [13] makes it possible to combine the last two approaches, by pro-
viding a test generation language and a method to generate complex test data
efficiently. UDITA is an extension of Java, including non-deterministic choices
and assumptions, and the possibility for the users to control the patterns em-
ployed in the generated structures. UDITA combines generator- and filter-based
approaches (respectively similar to the sampler and characteristic predicate of a
realistic domain).

Finally, in the domain of web application testing, the Apollo [2] tool makes it
possible to generate test data for PHP applications by code analysis. The tests
mainly aim at detecting malformed HTML code, checked by an common HTML
validator. Our approach goes further as illustrated by the experimentation, as
it makes it possible not only to validate a piece of HTML code (produced by a
Praspel-annotated function/method), but also to express and check structural
constraints on the resulting HTML code. On the other hand, the test data gen-
eration technique proposed by Apollo is of interest and we are now investigating
similar techniques in our test data generators.

7 Conclusion and Future Works

In this paper, we have introduced the concept of realistic domain in order to
specify test data for program variables. Realistic domains are not types but
may replace them in weakly-typed languages, such as Web languages like PHP,
our implementation choice. Realistic domains are a (realistic) trade-off between
two extreme ways to specify preconditions: a too coarse one with types and
a too fine one with first-order formulas. They provide two useful features for
automated test generation: predicability and samplability. Predicability is the
ability to check the realistic domain of a data at run time, whereas samplability
provides a means to automatically generate data values matching a given real-
istic domain. Realistic domains are specified as annotations in the code of the
language. We have implemented these principles on PHP, in a dedicated spec-
ification language named Praspel, based on the Design-by-Contract paradigm.
This approach is implemented into a test generator that is able to (i) generate
automatically unit test data for PHP methods, using a random data generator
that produces input parameter values that satisfy the precondition, (ii) run the
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tests and (iii) check the postcondition to assign the test verdict. Praspel imple-
ments the two features of runtime assertion checking and test data generation
independently. As a consequence, the user is not restricted to use a random test
data generator and can write his own test data generator.

We are currently investigating the improvement of our data generator, to
replace randomly generated values by a constraint-based approach [11] for which
the realistic domains of input parameters would be used to define data domains.
Constraint solving techniques will then be employed to produce test data that
satisfy the precondition of the method, as in Pex [22]. We are also planning to
consider a grey-box testing approach that would combine a structural analysis of
the code of PHP methods, coupled with the definition of the realistic domains of
their input parameters. Finally, we are interested in extending (and generalizing)
the concept of realistic domains to other programming languages, especially
those already providing a type system, to illustrate the benefits of this concept.
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Abstract. This paper presents a technique for vulnerability detection in C pro-
grams. It is based on a vulnerability formal model called “Vulnerability Detection
Conditions" (VDCs). This model is used together with passive testing techniques
for the automatic detection of vulnerabilities. The proposed technique has been
implemented in a dynamic code analysis tool, TestInv-Code, which detects the
presence of vulnerabilities on a given code, by checking dynamically the VDCs
on the execution traces of the given program. The tool has been applied to several
C applications containing some well known vulnerabilities to illustrate its effec-
tiveness. It has also been compared with existing tools in the market, showing
promising performances.

Keywords: Dynamic Code Analysis, Vulnerabilities Detection, Passive Testing.

1 Introduction

1.1 Context and Motivations

The detection of vulnerabilities1 in software has become a major concern in the soft-
ware industry. Although efforts are being made to reduce security vulnerabilities in
software, according to published statistics, the number of vulnerabilities and the num-
ber of computer security incidents resulting from exploiting these vulnerabilities are
growing [7].

One of the reasons for this is that information on known vulnerabilities is not eas-
ily available to software developers, or integrated into the tools they use. Thus many
activities are designed to support secure software development like security educa-
tion on vulnerability causes, security goal and vulnerability class identification, goal
and vulnerability driven inspections etc. Vulnerability cause presence testing is one of

� The research leading to these results has received funding from the European ITEA-2 project
DIAMONDS.

1 In this paper, a vulnerability is defined as a specific instance of not intended functionality in
a certain product/environment leading to degradation of security properties or violation of the
security policy. It can be exploited by malicious code or misuse.

B. Wolff and F. Zaidi (Eds.): ICTSS 2011, LNCS 7019, pp. 80–96, 2011.
c© IFIP International Federation for Information Processing 2011
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the main activities that support the validation of secure software. It is used to detect
vulnerabilities in software products in order to remove/mitigate them. Several testing
techniques can be used to perform this detection based on different models and ap-
proaches (static/dynamic code analysis, fuzz testing, active/passive testing, etc.). In this
paper, we present a systematic approach to increase software security by bridging the
gap between security experts and software practitioners. Indeed, we provide providing
software developers with the means to effectively prevent and remove occurrences of
known vulnerabilities when building software. To achieve this goal, we will rely on a
formal method for dynamic code analysis technique based on vulnerability detection
conditions (VDCs) models.

Currently, there are a large number of techniques and related tools that help devel-
opers improve software security quality. Among these techniques, we can cite formal
verification and validation (V&V)[11] and also the static and dynamic code analyzers
[20,16]. However, existing approaches are often limited and do not present rigorous
descriptions of vulnerabilities they deal with [9,12,15]. It is quite difficult for a user to
know which vulnerabilities are detected by each tool since they are poorly documented.
A more detailed description of the related work is provided in section 2.

1.2 Contribution

Our approach combines a new formalism called Vulnerability Detection Conditions
(VDCs) and formal passive testing in order to implement a new method to detect vul-
nerabilities in C programs. These two concepts are detailed respectively in sections 3
and 4.

A VDC allows to formally describe a vulnerability without ambiguity. This task
is performed by a security expert that needs to study vulnerabilities then determine its
causes. Each cause needs to be extracted and translated into a logical predicate on which
it becomes possible to reason. In a second step, VDCs descriptions are instantiated by
a dynamic analysis tool to allow the automatic detection of this vulnerability in any C
program. The tool is based on passive testing technique, which has proven to be very
effective for detecting faults in communication protocols [4]. In summary, the main
contributions introduced by this paper are:

– A new formalism, called Vulnerability Detection Conditions (VDCs), is designed
to describe vulnerability causes in a rigorous way without ambiguity. This formal-
ism also constitutes a good way to have a good understanding of each software
vulnerability and its causes. It bridges the gap between security experts, developers
and testers.

– An editor tool to build new VDCs based on a set of know vulnerability causes
described in the the SHIELDS SVRS2.

2 The SHIELDS SVRS is a centralized repository that allows the storage and sharing security
models in order to reduce known security vulnerabilities during software development.
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– A model-based dynamic analysis tool TestInv-Code3 that automatically detects vul-
nerabilities in C programs based on VDCs;

– An end-to-end methodology that allows to detect vulnerabilities and provides for
each detection information about the vulnerability, the different ways to avoid it
and the C code line where the vulnerability occurs (if the code is available).

– Application of the approach and the obtained results on an open source application
XINE that contains a known vulnerability.

The approach proposed in this paper is original since it covers all the steps of vulnera-
bility detection, from the modelling phase relying on VDCs, to their automatic detection
on the executable traces using the TestInv-Code tool.

The rest of the paper is organized as follows. The section 2 presents different ap-
proaches used in literature for dynamic detection of vulnerabilities. Section 3 introduces
the VDC model, its basics and use. Section 4 introduces the dynamic code analysis
technique based on these models and its tool TestInv-Code. Section 5 introduces the
experimentation and results and Section 6 summarizes our work and describes future
work.

2 Related Work

Different techniques have been proposed to perform dynamic detection of vulnerabil-
ities [3]. Fuzz testing is an approach that has been proposed to improve the security
and reliability of system implementations [14]. Fuzz testing consists in stimulating the
system under test, using random inputs or mutated ones, in order to detect unwanted be-
havior as crashing or confidentiality violation. Penetration testing is another technique
that consists in executing a predefined test scenario with the objective to detect design
vulnerabilities or implementation vulnerabilities [22]. Fault injection is a similar tech-
nique that injects different types of faults in order to test the behavior of the system [10].
Following a fault injection the system behavior is observed. The failure to tolerate faults
is an indicator of a potential security flaw in the system. These techniques have been
applied in industry and shown to be useful. However, most of the current detection tech-
niques based on these approaches are ad hoc and require a previous knowledge of the
target systems or existing exploits.

Model checking techniques have also been revisited for vulnerability detection. Had-
jidj et al.[13] present a security verification framework that uses a conventional push
down system model checker for reachability properties to verify software security prop-
erties. Wang et al. [23] have developed a constraint analysis combined with model
checking in order to detect buffer overflow vulnerabilities. The memory size of buffer-
related variables is traced and the code is instrumented with constraints assertions
before the potential vulnerable points. The vulnerability is then detected with the reach-
ability of the assertion using model checking. All model checking works are based on
the design of a model of the system, which can be complex and subject to the combina-
torial explosion of the number of states.

3 TestInv-Code testing tool is one of Montimage tools (http://www.montimage.com). It is a
dynamic code analysis tool that aims at detecting vulnerabilities by analyzing the traces of the
code while it is executing.
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In the dynamic taint approach proposed by Chess and West [8], tainted data are
monitored during the execution of the program to determine its proper validation be-
fore entering sensitive functions. It enables the discovery of possible input validation
problems which are reported as vulnerabilities. The sanitization technique to detect vul-
nerabilities due to the use of user supplied data is based on the implementation of new
functions or custom routines. The main idea is to validate or sanitize any input from
the users before using it inside a function. Balzarotti et al. [2] present an approach us-
ing static and dynamic analysis to detect the correctness of sanitization process in web
applications that could be bypassed by an attacker.

3 Vulnerability Modelling

In order to describe the presence of a vulnerability in a program, we rely in this paper
on Vulnerability Detection Conditions (VDCs) formalism. VDCs basically indicate that
the execution of an action under certain conditions could be dangerous or risky for
the program. They permit to express in a logical predicate the different causes that
lead to the considered vulnerability. The main idea behind the definition of the VDC
formalism is to point out the use of a dangerous action under some particular conditions,
for instance “it is dangerous to use unallocated memory”. Thus, if we evaluate a piece
of code where we find such VDC we know that it is vulnerable.

3.1 Definitions

Definition 1. (Vulnerability Detection Condition). Let Act be a set of action names, Var
be a set of variables, and P be a set of predicates on (Var∪Act). We say that Vdc is a
vulnerability detection condition if Vdc is of the form (long brackets denote an optional
element):

Vdc ::= a/P(Var,Act)|a[/P(Var,Act)];P′(Var,Act)

where a denotes an action, P(Var,Act) and P′(Var,Act) represent any predicates on
variables Var and actions Act. A vulnerability detection condition a/P(Var,Act) means
that action a occurs when specific conditions denoted by predicate P(Var,Act) hold.

Similarly, a vulnerability detection condition a[/P(Var,Act)];P′(Var,Act)) means
that action a used under the optional conditions P(Var,Act) is followed by a state-
ment whose execution satisfies P′(Var,Act). Naturally, if action a is not followed by an
action, the predicate P′(Var,Act) is assumed to be true.

More complex vulnerability detection conditions can be built inductively using the dif-
ferent logical operators according to the following definition.

Definition 2. (General Vulnerability Detection Conditions). If Vdc1 and Vdc2 are vul-
nerability detection conditions, then (Vdc1∨Vdc2) and (Vdc1∧Vdc2) are also vulner-
ability detection conditions.
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3.2 Some Examples

Let us define a vulnerability detection condition Vdc1 that can be used to detect possible
accesses to a free or an unallocated memory. If we denote by Assign(x,y) the assignment
of value y to the memory variable x and IsNot_Allocated a condition to check if memory
x is unallocated then the VDC is given by the expression:

Vdc1 = Assign(x,y)/IsNot_Allocated(x)

In programming languages like C/C++, there are some functions that might lead to a
vulnerability if they are applied on out-of-bounds arguments. The use of a tainted vari-
able as an argument to a memory allocation function (e.g. malloc) is a well-known
example of such a vulnerability, which is expressed by the vulnerability detection con-
dition Vdc2 below. A variable is tainted if its value is obtained from a non-secure source,
or in other words, produced by reading from a file, getting input from a user or the net-
work, etc.

Vdc2 = memoryAllocation(S)/tainted(S).

3.3 Describing Vulnerabilities with Formal Vulnerability Detection Conditions

An informal description of a vulnerability states the conditions under which the execu-
tion of a dangerous action leads to a possible security breach. So, it should include the
following elements:

1. A master action: an action denotes a particular point in a program where a task or
an instruction that modifies the value of a given object is executed. Some examples
of actions are variable assignments, copying memory or opening a file. A master
action Act_Master is a particular action that produces the related vulnerability.

2. A set of conditions: a condition denotes a particular state of a program defined by
the value and the status of each variable. For a buffer, for instance, we can find out
if it has been allocated or not. Once the master action is identified for a scenario,
all the other facts are conditions {C1, . . . ,Cn} under which the master action is exe-
cuted. Among these conditions, a particular condition Ck may exist, called missing
condition, which must be satisfied by an action following Act_Master.

Let {P1, . . . ,Pk, . . . ,Pn} be the predicates describing conditions {C1, . . . ,Ck, . . . ,Cn}. The
formal vulnerability detection condition expressing this dangerous scenario is defined
by:

Act/(P1∧ . . .∧Pk−1∧Pk+1 . . .∧Pn);Pk

Finally, the vulnerability detection condition representing the entire vulnerability is de-
fined as the disjunction of the all sub-vulnerability detection conditions for each sce-
nario (Vdci denotes the VDC associated with each scenario i):

Vdc1∨ . . .∨Vdcn
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For example, consider the vulnerability CVE-2009-1274, a buffer overflow in XINE
media player. According to the description, the vulnerability is the result of computing
a buffer size by multiplying two user-supplied integers without previously checking the
operands or without checking the result of the allocation. An attacker may cause the ex-
ecution of arbitrary code by providing a specially crafted media file to the user running
the XINE application. A scenario associated to this vulnerability can be expressed as:

1. An allocation function is used to allocate a buffer
2. The allocated buffer is not adaptive
3. The size used for that allocation is calculated using tainted data (data read from the

media file)
4. The result returned by the allocation function is not checked

To define the VDC associated with this scenario, we have to express each of these
conditions with a predicate:

Use of malloc/calloc/realloc the program uses C-style memory management functions,
such as malloc, calloc or realloc to allocate memory. For each memory function
allocation f , applied on value V to allocate a buffer B, the following predicate holds:

memoryAllocation( f ,B,V )

Use of nonadaptive buffers the program uses buffers whose sizes are fixed when they
are allocated (allocation may take place at run-time, e.g. malloc, or at compile-time).
Non-adaptive buffers can only hold a specific amount of data; attempting to write be-
yond their capacity results in a buffer overflow. Adaptive buffers, in contrast, can adapt
themselves to the amount of data written to them. For each declared nonadaptive buffer
B, the following predicate holds:

nonAdaptiveBuffer(B)

User supplied data influences buffer size the size of a dynamically allocated buffer is
computed, at least in part, from user-supplied data. This allows external manipulation
of the buffer size. If a buffer is made too large, this may result in a denial of service
condition; if it is too small, then it may later result in a buffer overflow. For each variable
V whose value is produced from an insecure source, the following predicate holds:

tainted(V )

Note that a tainted variable will be untainted if it is bound checked by the program.

Failed to check return value from calloc the program does not contain mechanisms to
deal with low memory conditions in a safe manner (i.e. deal with NULL return values
from calloc). Running out of memory in programs that are not written to handle such
a situation may result in unpredictable behavior that can possibly be exploited. This
cause is detected when the return value B of an allocation function is not followed by
a check statement. For each value B returned from an allocation memory function, the
following formula is defined:
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notChecked(B,null)

The vulnerability detection condition expressing this scenario is then defined by:

memoryAllocation( f ,B,V )/

⎛
⎝ nonAdaptiveBuffer(B)

∧
tainted(V )

⎞
⎠ ;notChecked(B,null)

This last vulnerability detection condition expresses a potential vulnerability when a
given allocation function f is used with a non-adaptive buffer B whose size V is pro-
duced from an insecure source and its return value is not checked with respect to NULL.

3.4 VDC Editor

The VDC editor is a GOAT4 plug-in, which offers security experts the possibility to
create vulnerability detection conditions (VDCs). These VDCs will be used to detect
the presence of vulnerabilities by checking software execution traces using Montimage
TestInv-Code testing tool. The VDC editor user interface includes some features that
allow simplifying the construction and composition of VDCs. The VDC editor has the
following functionalities:

– The creation of new VDCs corresponding to vulnerability causes from scratch and
their storage in an XML format.

– The visualization of already conceived VDCs.
– The editing (modification) of existing VDCs in order to create new ones.

Fig. 1. Vulnerability detection condition for “Use of tainted value to malloc" in GOAT

The VDCs are stored in an XML file that constitutes one of the inputs for the Mon-
timage TestInv-Code tool. A vulnerability is discovered if a VDC signature is de-
tected on the execution trace. A VDC is composed within the editor of at most 3
parts:

1. Master condition: The triggering condition called also master action (denoted a).
When analysing the execution trace, if this condition is detected, we should verify
if the state and post conditions of the VDC hold as well. If this is the case, then a
vulnerability has been detected. The master condition is mandatory in a VDC.

4 http://www.ida.liu.se/divisions/adit/security/goat/
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2. State condition: A set of conditions related to the system state (denoted P(Var,Act)).
The state condition describes the states of the specified variables at the occurrence
of the master action. The state condition is mandatory in a VDC.

3. Post condition: A set of conditions related to the system future state (denoted
P′(Var,Act)). If a master action is detected in the state condition context, then we
should verify if the post condition holds in the execution that follows. If this is the
case, a vulnerability has been detected. This post condition is not mandatory in a
VDC.

4 Dynamic Code Analysis for Vulnerability Detection

4.1 Basics: Passive Testing

Our approch for dynamic code analysis is inspired from the classical passive testing
technique [1,19,17] designed for telecommunication traffic analysis. Passive testing al-
lows to detect faults and security flaws by examining captured trafic packets (live trafic
or log files) according to a set of events-based properties that denote either:

– a set of functional or security rules that the trafic has to fulfill[4,5,18], or
– a set behavioral attacks like those used in classical intrusion and detection systems.

In the case of executable code analysis, events are assimilated to the disassembled in-
structions that are being executed in the processor. They are produced by executing the
program under the control of the TestInv-Code tool, similar to what a debugger does.

For dynamic program analysis to be effective, the target program must be executed
with sufficient test inputs to cover different program behaviours. Use of classical testing
techniques for code coverage helps to ensure that an adequate part of the program’s set
of possible behaviours has been observed. Also, care must be taken to minimize the
effect that instrumentation has on the execution (including temporal properties) of the
target program.

While static analysis collects information based on source code, dynamic analysis is
based on the system execution (binary code), often using instrumentation. The advan-
tages that can be expected from using dynamic analysis are:

– Has the ability to detect dependencies that are not detectable in static analysis. Ex.:
dynamic dependencies using reflection, dependency injection etc.

– Allows the collection of temporal information.
– Allows the possibility of dealing with runtime values.
– Allows the identification of vulnerabilities in a runtime environment.
– Allows the use of automated tools to provide flexibility on what to scan for.
– Allows the analysis of applications for which you do not have access to the actual

code.
– Allows identifying vulnerabilities that might be false negatives in the static code

analysis.
– Permits validating static code analysis findings.
– It can be conducted on any application.
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4.2 Using VDCs in TestInv-Code

In order to use the TestInv-Code tool, the main step consists in defining the vulnerabili-
ties causes that are of interest. Starting from informal descriptions of the vulnerabilities
and VDCs models, a set of conditions that lead to a vulnerability are derived. These
conditions are formally specified as regular expressions that constitute the first input
for TestInv-Code tool.

Thus, end-to-end code analysis using TestInv-Code proceeds along the following
steps:

1. Informal definition of vulnerable scenarios. A security expert describes the differ-
ent scenarios under which a vulnerability may appear. A scenario denotes a set of
causes that produces the vulnerability.

2. Definition of VDC. A VDC, expressing formally the occurrence of the related vul-
nerability, is created for each possible situation that leads to the vulnerability using
the VDC editor.

3. Vulnerability checking. Finally, TestInv-Code checks for evidence of the vulnera-
bilities during the execution of the program. Using the VDCs, it will analyze the
execution traces to produce messages identifying the vulnerabilities found, if any,
indicating where they are located in the code.

Fig. 2. Passive testing for vulnerability detection

Figure 2 depicts the passive testing architecture for vulnerability detection. As shown,
the TestInv-Code tool takes as input:

1. The vulnerability causes. The file containing the vulnerabilities causes formally
specified using VDCs.
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2. The executable. The Executable Linked Format (ELF) file for the application that
is to be tested. This file contains the binary code of the application and it should
include debug information if we want the tool to be able to determine the line
of code where the vulnerability occurs and provide this information in the final
verdicts.

In order to detect the presence of a VDC in an execution trace, it needs to be processed
in such a way that it is detected when and if it occurs during the execution of the pro-
gram. In the case of TestInv-Code, predicates and actions in the VDCs correspond to
functions that allow analysing the executed instructions and determining it they are sat-
isfied. The tool keeps information on the state of all the variables used by the program,
heap or stack memory addresses and registers. The states, are for instance, tainted or
not, bound checked or not, allocated or not etc. It also maintains information on the
potential VDCs. The tool is able to detect when a system call is made, the controls that
are made on variables or return values from function calls, when buffer allocations are
made, etc. Thus it can verify all the conditions that are used in the VDCs and generate
messages if the VDCs are satisfied. The symbolic tables are necessary to be able to
determine the line of code that provokes the vulnerability that is detected.

It must be noted that the functions used to detect the VDC conditions could vary de-
pending on the execution environment, the compiler and the compilation options used.
In this work we assume that the execution environment is Linux version 2.6, the com-
piler is gcc version 4.3.3 and that the compilation was performed for debugging (in-
cluding symbolic tables) and without any optimisations. Other variants could work but
this has not yet been tested on other platforms. Certain optimizations performed by the
compiler could make it necessary to adapt the algorithms of the functions to certain
particularities introduced by the compiler.

5 Experiment and Results

5.1 XINE Application

We demonstrate the application of our vulnerability detection method to an open source
application and free multimedia player that plays back audio and video, XINE5 written
in C. This application was selected as an example since it is a real world application,
open source (so the source files are available free of copyright), and contains a number
of known vulnerabilities which can be used to demonstrate the effectiveness of our
approach.

The application contains a set of modules and librairies. The one we are concentrated
on is xine-lib6 (xine core). This is a module developed in C language and which has
several vulnerabilities inside its files. We will select an obsolete version of xine-lib so
we can use the vulnerabilities found in them.

5 http://www.xine-project.org
6 Xine-lib source code can be downloaded from: http://sourceforge.net/projects/xine
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5.2 Xine Selected Vulnerability

The xine v1.1.15 application has a number of vulnerabilities. The one that we will deal
with is CVE-2009-1274.

– Summary: Integer overflow in the qt_error parse_trak_atom function in
de-muxers/demux_qt.c in xine-lib 1.1.16.2 and earlier allows remote attackers to
execute arbitrary code via a Quicktime movie file with a large count value in an
STTS atom, which triggers a heap-based buffer overflow.

– Published: 04/08/2009
– CVSS Severity: 5.0 (MEDIUM)

The exploitation occurs when someone is trying to play with xine a Quicktime encod-
ed video that an attacker has modified to make one of its building blocks (the “time to
sample" or STTS atom) have an incorrect value. The malformed STTS atom processing
by xine leads to an integer overflow that triggers a heap-based buffer overflow probably
resulting in arbitrary code execution. The patch to this Vulnerability is in v1.1.16.1 that
is also included in the v1.1.16.3.

CVE-2009-1274 is a vulnerability instance and can be considered as part of the fam-
ily or class of vulnerabilities named “Integer Overflow" has the ID CWE 190 in the
Common Weakness Enumeration database. The CWE 190 description is summarised
as follows “The software performs a calcu-lation that can produce an integer overflow
or wraparound, when the logic assumes that the resulting value will always be larger
than the original value. This can introduce other weaknesses when the calculation is
used for resource management or execution control" [21].

Fig. 3. VDC model of CVE-2009-1274 vulnerability

5.3 Vulnerability Modelling

Starting from the informal description of CVE-2009-1274 vulnerability, we have de-
signed the 3 VDCs and the corresponding regular expressions to be used for input to
the TestInv-Code tool.
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1. Calloc(buffer, buffer_size) / Fixed(buffer) ∧ Result(buffer_size, user_input)∧ Re-
sult(buffer_size, addition); Unchecked(buffer, NULL)

2. Calloc(buffer, buffer_size) / Fixed(buffer) ∧ Result(buffer_size, user_input) ∧ Re-
sult(buffer_size, addition) ∧ Unchecked(buffer_size, buffer_bounds)

3. CopyVar(loop_counter, user_input) / Fixed(buffer) ∧ Unchecked(loop_counter,
counter_bounds); CopyData(buffer, user_input, loop_counter)

Using the VDC editor, we can build the VDC models for each cause scenario. Figure 3
illustrates the VDC model for the first scenario.

5.4 Application of TestInv-Code

The created VDCs are one of the inputs needed by the TestInv-C testing tool. In or-
der to analyse the xine-lib it is necessary to use it. To be able to reach the plug-in that
contains the error (the quicktime file demuxer), the muxine application was run on a
quicktime file. The TestInv-Code tool allows performing the analysis on all the appli-
cation’s functions (including those of the library and the plug-ins). The user can also
identify a given function or set of functions that he wants to analyse. Using this feature
is necessary to avoid performance issues, particularly in applications that perform in-
tensive data manipulations (like video players). The complete list of available functions
can be obtained automatically. Another feature that helps improve the performance of
the tool is the possibility of limiting the number of times a piece of code in a loop is
analysed. The following XINE code is executed:

Code fragment from demux_qt.c
...
1907 trak->time_to_sample_table = calloc(
1908 trak->time_to_sample_count+1,

sizeof(time_to_sample_table_t));
1909 if (!trak->time_to_sample_table) {
1910 last_error = QT_NO_MEMORY;
1911 goto free_trak;
1912 }
1913
1914 /* load the time to sample table */
1915 for(j=0;j<trak->time_to_sample_count;j++)
...

where trak->time_to_sample_table is tainted since it is set from information taken
from the external QuickTime file.

The tool will detect the particular vulnerability used here (CVE-2009-1274) when
it is launched on the muxine application using a quicktime video file. This needs to be
done using the option to analyse all the functions (of the application, the library and the
plug-ins) or just the function parse_trak_atom in the quicktime plug-in. The result of
the vulnerability cause presence testing activity provided by TestInv-Code is shown in
figure 4.
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Fig. 4. Screenshot of TestInv-Code result for xine vulnerability
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5.5 Analysis

If we apply the same VDCs to other code under the same programming environment, we
will be able to detect the same types of vulnerabilities. For instance, we applied the same
VDCs on ppmunbox, a program developed by Linköpings university to remove borders
from portable pixmap image files (ppm) and we detected the same vulnerabilities.

This vulnerability is located in the ppmunbox.c file specifically in the following:

Code fragment from ppmunbox.c
...
76:/* Read the dimensions */
77:if(fscanf(fp_in,"%d%d%d",&cols,&rows &maxval)<3){
78: printf("unable to read dimensions from PPM file");
79: exit(1);
80 }
81:
82:/* Calculate some sizes */
83:pixBytes = (maxval > 255) ? 6 : 3;
84:rowBytes = pixBytes * cols;
85:rasterBytes=rows;rasterBytes=rowBytes*rows;
86:
87:/* Allocate the image */
88:img = malloc(sizeof(*img));
89:img->rows = rows;
90:img->cols = cols;
91:img->depth = (maxval > 255)?2:1;
92:p = (void*)malloc(rasterBytes);
93:img->raster = p;
94:
95:/* Read pixels into the buffer */
96:while (rows--) {
...

To illustrate the applicability and scalability of TestInv-Code, it has been applied to six
different open source programs to determine if known vulnerabilities can be detected
using a single model. The following paragraphs describe the vulnerabilities and give a
short explanation of the results obtained. The results are summarized in table 1.

Table 1. Summary of results running TestInv-Code with VDC codes

Vulnerability Software Detected ?
CVE-2009-1274 Xine Yes
Buffer overflow ppmunbox Yes
CVE-2004-0548 aspell Yes (two)
CVE-2004-0557 SoX Yes
CVE-2004-0559 libpng Yes
CVE-2008-0411 Ghostscript Yes
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Besides, the application of the tool to the case study gave good performances. We
did some experiments in order to check the scalability of the tool by the application of
a high number of VDCs (more than 100) to a software data intensive (as in the case of
video decoders). The tool performance remains good. We compared the performance of
our tool according to known dynamic code analysis tools in the market like Dmalloc7,
DynInst 8, and Valgrind9 and the results were comparable. Indeed, the detection based
on our tool does not insert a big overhead (the execution time is almost equal to the
programm execution time).

To optimize our analysis, the tool is being modified so that the user can select specific
functions to check in the program. But in this case all the input parameters for this
function are marked as tainted even if they are not. Another solution that is being studied
is to only check the first iteration of loops in the program, thus avoiding to check the
same code that is executed more than once.

At present, we have checked applications written in C, which do not have a complex
architecture. We are now starting to experiment more complex applications with archi-
tectures that integrate different modules, plugins, pointers to function, variable number
of parameters or mixing different programming languages.

6 Conclusions and Future Work

Security has become a critical part of nearly every software project, and the use of au-
tomated testing tools is recommended by best practices and guidelines. Our interest lies
in defining a formalism, called Vulnerability Detection Conditions, to describe vulner-
abilities so we can detect them using automated testing.

In this paper, we have also shown how a model-based dynamic code analysis tool,
TestInv-Code, is used to analyze execution traces and determine if they show evidence
of a vulnerability or not. VDCs can be very precise, we believe making it possible to
detect vulnerabilities with a low rate of false positives. This is planned to be studied and
demonstrated in future work.

Since the vulnerability models are separate from the tool, it is possible for any secu-
rity expert to keep them up-to-date and to add new models or variants. It also becomes
possible for the tool user to add e.g. product-specific vulnerabilities and using the tool to
detect them. This is very different from the normal state of affairs, where users have no
choice but to rely on the tool vendor to provide timely updates. Nevertheless, it should
be noted that if new predicates or actions are required, the function that will allow to
detect them needs to be added to the tool.

The work presented in this paper is part of the SHIELDS EU project [21], in which
we have developed a shared security repository through which security experts can

7 Dmalloc is a library for checking memory allocation and leaks. Software must be recompiled,
and all files must include the special C header file dmalloc.h.

8 DynInst is a runtime code-patching library that is useful in developing dynamic program anal-
ysis probes and applying them to compiled executables. Dyninst does not require source code
or recompilation in general, however non-stripped executables and executables with debugging
symbols present are easier to instrument.

9 Valgrind runs programs on a virtual processor and can detect memory errors (e.g. misuse of
malloc and free) and race conditions in multithread programs.
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share their knowledge with developers by using security models. Models in the
SHIELDS repository are available to a variety of development tools; TestInv-Code is
one such tool.

Looking to the future, we plan on applying the methods presented here to various
kinds of vulnerabilities in order to identify which predicates are required, and whether
the formalism needs to be extended.
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Abstract. We show how the paradigm of learning-based testing (LBT)
can be applied to automate specification-based black-box testing of re-
active systems using term rewriting technology. A general model for a
reactive system can be given by an extended Mealy automata (EMA)
over an abstract data type (ADT). A finite state EMA over an ADT
can be efficiently learned in polynomial time using the CGE regular in-
ference algorithm, which builds a compact representation as a complete
term rewriting system. We show how this rewriting system can be used
to model check the learned automaton against a temporal logic specifica-
tion by means of narrowing. Combining CGE learning with a narrowing
model checker we obtain a new and general architecture for learning-
based testing of reactive systems. We compare the performance of this
LBT architecture against random testing using a case study.

1 Introduction

Learning-based testing (LBT) is an emerging technology for specification-based
black-box testing that encompasses the three essential steps of : (1) test case
generation (TCG), (2) test execution, and (3) test verdict (the oracle step). It
has been successfully applied to testing procedural systems in [13] and [15], and
reactive systems in [16]. The basic idea of LBT is to automatically generate a
large number of high-quality test cases by combining a model checking algorithm
with an incremental model inference algorithm, and integrating these two with
the system under test (SUT) in an iterative loop. The use of incremental learning
is critical in making this technology both fast and scalable to large systems under
test (SUTs). Our previous research ([15] and [16]) has repeatedly shown that LBT
has the capability to significantly outperform random testing in the speed with
which it finds errors in an SUT.

For testing complex embedded software systems, there is a significant need
to generate test cases over infinite data types such as integer and floating point
types, and abstract data types (ADTs) such as strings, arrays, lists and various
symbolic data types. Specification-based TCG is essentially a constraint solving
problem. So this generalisation from finite to infinite and symbolic data types is
highly non-trivial since the satisfiability problem for many logics over abstract
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and infinite data types is undecidable. Thus a search for test cases is not guar-
anteed to terminate.

Model checking over abstract and infinite data types is therefore a state of
the art problem. Recently some success has been achieved with the use of sat-
isfiability modulo theories (SMT) solvers such as Z3 [5], which are based on
heuristic techniques. However, an alternative approach is to use constraint solv-
ing based on a narrowing algorithm. Narrowing is a flexible technology, based
on term rewriting, which is applicable to any data type for which we can find
a complete (confluent and terminating) term rewriting system (see e.g. [1]). It
has well understood theoretical properties such as completeness of solutions and
conditions for termination. Narrowing has been successfully applied to model
checking of infinite state systems in [6]. However, the use of narrowing for test
case generation has not yet been considered. In fact, our aim in this paper is
much wider. We will show that narrowing combines easily with symbolic learning
algorithms for automata such as CGE [14] to yield a new LBT architecture for
specification-based testing of reactive systems computing over abstract data types.
Initial case studies suggest that despite the significant increase in the problem
complexity, this new LBT architecture is also competitive with random testing.

The structure of this paper is as follows. In the remainder of Section 1 we
review related work. In Section 2, we recall some essential mathematical prelim-
inaries needed to discuss narrowing. In Section 3, we formalise a general model of
a reactive system as an extended Mealy automaton (EMA) over an abstract data
type (ADT). We introduce a linear time temporal logic (LTL) for such EMA,
and we show how an LTL formula can be translated into constraint sets con-
sisting of equations and negated equations. In Section 4, we present a model
checking algorithm based on narrowing applied to a constraint set. In Section
5, we combine this model checking method with a symbolic automata learning
algorithm (the CGE learning algorithm of [14]) to define a new LBT architecture
for specification-based testing of reactive systems. In Section 6, we present a case
study of this LBT architecture applied to testing the TCP protocol. Finally, in
Section 7 we draw some conclusions and discuss open questions to be addressed
by future work.

1.1 Related Work

In [16], LBT was applied to testing reactive systems modeled as Boolean Kripke
structures. Our work here extends this previous work to allow symbolic and
infinite data types. Even for finite data types, this approach simplifies the ex-
pression of control and data properties of an SUT. For this extension we use
a more powerful symbolic learning algorithm, new model checking technology
based on term rewriting theory, and a more powerful oracle construction for test
verdicts.

Several previous studies, (for example [19], [9] and [20]) have considered
a combination of learning and model checking to achieve testing and/or for-
mal verification of reactive systems. Within the model checking community the
verification approach known as counterexample guided abstraction refinement
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(CEGAR) also combines learning and model checking, (see e.g. [3] and [2]). The
LBT approach described here can be distinguished from these other approaches
by: (i) an emphasis on testing rather than verification, (ii) the focus on incre-
mental learning for efficient scalable testing, (iii) the use of narrowing as a model
checking technique, and (iv) the introduction of abstract data types.

There is of course an extensive literature on the use of model checkers (with-
out learning) to generate test cases for reactive systems. A recent survey is [8].
Generally this work emphasizes glass-box testing (so no learning is necessary),
and the use of structural coverage measures to constrain the search space for
test cases. Furthermore, behavioral requirements may or may not be present. By
contrast, the LBT approach concerns black-box testing. Furthermore, in LBT
behavioral requirements are always present, both to solve the oracle problem
and to constrain the search space and guide the search for effective test cases.

In [21], black-box reactive system testing using learning but without model
checking is considered. This is also shown to be more effective than random
testing. Thus we can conclude that learning and model checking are two mutu-
ally independent techniques that can be applied to systems testing separately
or together. In the long term we hope to show that the combination of both
techniques is ultimately more powerful than using either one alone.

2 Mathematical Preliminaries and Notation

It is helpful to have some familiarity with the theories of abstract data types and
term rewriting. Both use the notation and terminology of many-sorted algebra
(see e.g. [17]). Let S be a finite set of sorts or types. An S-sorted signature
Σ consists of an S∗ × S-indexed family of sets Σ = 〈Σw,s | w ∈ S∗, s ∈ S〉.
For the empty string ε ∈ S∗, c ∈ Σε,s is a constant symbol of sort s. For w =
s1, . . . , sn ∈ S+, f ∈ Σw,s is a function symbol of arity n, domain type w
and codomain type s. An S-sorted Σ-algebra A consists of sets, constants and
functions that interpret Σ by a particular semantics. Thus A has an S-indexed
family of sets A = 〈As | s ∈ S〉, where As is termed the carrier set of sort s.
For each s ∈ S and constant symbol c ∈ Σε,s, cA ∈ As is a constant, and for
each w = s1, . . . , sn ∈ S+ and each f ∈ Σw,s, fA : As1 × . . . × Asn → As

is a function. Let X = 〈Xs | s ∈ S〉 be an S-indexed family of disjoint sets
Xs of variables of sort s. We assume Xs ∩ Σε,s = ∅. The set T (Σ, X)s of all
terms of sort s ∈ S is defined inductively by: (i) c ∈ T (Σ, X)s for c ∈ Σε,s,
(ii) x ∈ T (Σ, X)s for x ∈ Xs, and (iii) f(t1, . . . , tn) ∈ T (Σ, X)s for f ∈ Σw,s

w = s1, . . . , sn and ti ∈ T (Σ, X)si for 1 ≤ i ≤ n. We use ≡ to denote syntactic
equality between terms. An equation e (respectively negated equation) over Σ and
X is a formula of the form (t = t′) (respectively ¬(t = t′)) for t, t′ ∈ T (Σ, X)s.
We let Vars(t) (respectively Vars(e), Vars(¬(e))) denote the set of all variables
from X occurring in t (respectively e, ¬e).

A variable assignment α : X → A is an S-indexed family of mappings αs :
Xs → As. A substitution σ is a variable assignment σ : X → T (Σ, X) such
that σs(x) �= x for just finitely many s ∈ S and variables x ∈ Xs, and this
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set of variables is the domain of σs. The result of applying a substitution σ to
a term t ∈ T (Σ, X)s′ is defined inductively in the usual way and denoted by
σ(t). If σ and σ′ are substitutions then their composition σ ◦ σ′ is defined by
σ ◦ σ′(x) = σ(σ′(x)). A variable renaming is a family of bijective substitutions
σs : Xs → Xs. A substitution σ is more general than a substitution τ , denoted
σ ≤ τ if there exists a substitution δ such that δ ◦ σ = τ .

A disunification problem S = { (ti Qi t′i) | i = 1, . . . , n, n ≥ 0, Qi ∈ { =
, �= } } is a finite (possibly empty) set of equations and negated equations over
Σ and X . A substitution σ : X → T (Σ, X) is a syntactic unifier of a set S if
for all 1 ≤ i ≤ n, if Qi is = then σ(ti) ≡ σ(t′i), and if Qi is �= then σ(ti) �≡ σ(t′i).
We let U (S) denote the set of all syntactic unifiers of S. A unifier σ ∈ U (S) is
a most general unifier (mgu) if σ ≤ τ for all τ ∈ U (S).

If t ∈ T (Σ, X)s is a term then O(t) denotes the set of all positions in t, i.e. all
nodes in the parse tree of t and is inductively defined by O(c) = O(x) = { ε }
and O(f(t1, . . . , tn)) = { ε, k.i | 1 ≤ k ≤ n, i ∈ O(tk) }. We write t|p for the
subterm of t found at position p ∈ O(t), and if t|p, u ∈ T (Σ, X)s then t[u]p
denotes the term obtained by replacing the subterm found at p in t by u. We
say that p ∈ O(t) is a non-variable position if t|p is not a variable, and let O(t)
denote the set of all such non-variable positions.

A term rewriting rule is an expression of the form l → r for l, r ∈ T (Σ, X)s

and s ∈ S such that Vars(r) ⊆ Vars(l) and a term rewriting system (TRS) R
is a set of rewriting rules. If σs : Xs → Xs is a family of variable renamings
then σ(l) → σ(r) is a variant of l → r. The rewrite relation R−→ associated
with a TRS R is a binary relation on terms defined by t

R−→ t′ if there exists
a rule l → r ∈ R, a position p ∈ O(t) and a substitution σ such that t|p ≡
σ(l) and t′ ≡ t[σ(r)]p. We call t

R−→ t′ a rewrite step. We let R∗−→ denote the
reflexive transitive closure of R−→ . A TRS R is strongly normalising if there is
no infinite sequence of rewrite steps t0

R−→ t1
R−→ t2

R−→ . . . and R is confluent
(or Church-Rosser) if for any terms t, t1, t2 ∈ T (Σ, X)s if t

R∗
−→ t1 and t

R∗
−→ t2

then there exists t′ ∈ T (Σ, X)s such that t1
R∗−→ t′ and t2

R∗−→ t′. A complete
TRS is confluent and strongly normalising.

3 Mealy Automata over Abstract Data Types

In this section we formalise a general model of a reactive system as an extended
Mealy automaton (EMA) over an abstract data type. We then introduce the
syntax and semantics of a linear time temporal logic (LTL) as a language for
expressing user requirements on EMA. Finally, we define a syntactic translation
of LTL into equations and negated equations, and establish the soundness and
completeness of this translation with respect to satisfiability.

We can model a Mealy automaton over an abstract data type as a many-sorted
algebraic structure by considering inputs, states and outputs as distinguished
data sorts (or types). The input and output types will be typically chosen from
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some well known data types such as int , string, array , list etc. that provide a
high level of data abstraction.

Definition 1. A signature (S, Σ, input , output) for an extended Mealy au-
tomaton is a four-tuple, where S = { state, s1, . . . , sn } is a sort set, Σ is an
S-sorted signature with distinguished constant and function symbols

q0 ∈ Σε,state , δ ∈ Σstate input,state , λ ∈ Σstate input,output ,

and input , output ∈ { s1, . . . , sn } are distinguished input and output types.

Definition 2. Let (S, Σ, input , output) be a signature for an EMA. An ex-
tended Mealy automaton A (of signature Σ) is an S-sorted Σ algebra A.

As usual q0
A is the initial state, δA : Astate×Ainput → Astate is the state transition

function, and λA : Astate ×Ainput → Aoutput is the output function.
We define the extended state transition and output functions

δ∗A : Astate ×A∗
input → Astate , λ∗

A : Astate ×A+
input → Aoutput

in the usual way for any q ∈ Astate , i ∈ Ainput and j ∈ Ainput by δ∗A(q, ε) = q
and δ∗A(q, i . j) = δA( δ∗A(q, i), j), also λ∗

A(q, i . j) = λA( δ∗A(q, i), j).
If Astate is finite then A is termed a finite state EMA , otherwise A is termed

an infinite state EMA.
Next we introduce a linear time temporal logic (LTL) that can be used to

express user requirements on EMA. For this it is necessary to integrate the
underlying data type signature Σ in an appropriate way. In the sequel we as-
sume that (S, Σ, input , output) is a given EMA signature. Let X = 〈Xs | s ∈
S − { state }〉 be any indexed family of sets Xs of variable symbols of sort s.
We assume that in ∈ Xinput and out ∈ Xoutput are two distinguished variable
symbols.

Definition 3. The set LTL(Σ, X) of all linear temporal logic formulas
over Σ and X is defined to be the smallest set of formulas containing the atomic
proposition true and all equations (t = t′) for each sort s ∈ S − { state } and
all terms t, t′ ∈ T (Σ, X)s, which is closed under negation ¬, conjunction ∧ ,
disjunction ∨ , and the next X, always future G, sometime future F, always
past G−1, and sometime past F−1 temporal operators.

As usual, X(φ) denotes that φ is true in the next time instant, while G(φ)
(respectively F(φ)) denotes that φ is always (respectively at some time) true in
the future of a run. On the other hand G−1(φ) (respectively F−1(φ)) denotes
that φ was always (respectively at some time) true in the past of a run. While not
strictly necessary, including these past operators makes this LTL exponentially
more succinct, as shown in [12]. This increases the efficiency of our narrowing
model checker. We let ( φ =⇒ ψ ) denote the formula ( ¬φ ∨ ψ ), and t �= t′

denotes ¬(t = t′). Then for example, the formula

G( (in = x) ∧ X( (in = y) =⇒ X(out = x + y) ) )
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is an LTL formula that expresses that at all times, if the current input is x and
next input is y then in two time steps from now the output will be the sum
x+y. So in this LTL we can express both control and data properties of reactive
systems.

Definition 4. Let A be an EMA, let n ∈ N, let i = i0, i1, . . . ∈ Aω
input be

an infinite sequence of inputs for A, and let ValA,α : T (Σ, X)s → As be the
valuation mapping on terms given a variable assignment α : X → A. We define
the satisfaction relation A, n, i, α |= φ for each formula φ ∈ LTL(Σ, X) by
induction.

(i) A, n, i, α |= true.

(ii) A, n, i, α |= t = t′ if, and only if, ValA,β(t) = ValA,β(t′), where

β = α[ in �→ in, out �→ λA(δ∗A(q0
A, i0, . . . , in−1), in)) ].

(iii) A, n, i, α |= ¬φ ⇔ A, n, i, α �|= φ.

(iv) A, n, i, α |= φ ∧ ψ if, and only if, A, n, i, α |= φ and A, n, i, α |= ψ.

(v) A, n, i, α |= φ ∨ ψ if, and only if, A, n, i, α |= φ or A, n, i, α |= ψ.

(vi) A, n, i, α |= Xφ if, and only if, A, n + 1, i, α |= φ.

(vii) A, n, i, α |= Gφ if, and only if, for all k ≥ n A, k, i, α |= φ.

(viii) A, n, i, α |= Fφ if, and only if, for some k ≥ n, A, k, i, α |= φ.
(ix) A, n, i, α |= G−1φ if, and only if, for all k ≤ n A, k, i, α |= φ .

(x) A, n, i, α |= F−1φ if, and only if, for some k ≤ n A, k, i, α |= φ.

A formula φ ∈ LTL(Σ, X) is satisfiable with respect to A if there exists
an infinite sequence i ∈ Aω

input and an assignment α : X → A such that
A, 0, i, α |= φ.

As is well known, for every formula φ ∈ LTL(Σ, X) there exists a logically equiv-
alent formula φ′ ∈ LTL(Σ, X) in negation normal form (NNF) where negations
only occur in front of atomic subformulas. To solve LTL formulas by narrowing
we translate an NNF formula φ into a finite set S = { S1, . . . , Sn } of constraint
sets, where a constraint set Si consists of equations and negated equations. This
translation requires an additional set X = { xi | xi ∈ Xinput } of fresh variable
symbols ranging over input sequence elements.

Definition 5. Let A be an EMA, and let loopbound be the length of the longest
loop-free path in A. For each NNF formula φ ∈ LTL(Σ, X) we define the sat-
isfiability set SatSetn(φ) as a finite collection of constraint sets by structural
induction on φ.

SatSetn(t Q t′) = { { (θn(t) Q θn(t′)) } }
where Q ∈ { =, �= } and θn is the substitution defined by

θn = { in → xn, out → λ(δ∗(q0, x0, . . . , xn−1), xn) }
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SatSetn( φ ∧ ψ ) = { Sφ ∪ Sψ | Sφ ∈ SatSetn(φ), Sψ ∈ SatSetn(φ) }

SatSetn( φ ∨ ψ ) = SatSetn(φ) ∪ SatSetn(¬φ ∧ ψ)

SatSetn( X(φ) ) = SatSetn+1(φ)

SatSetn( F(φ) ) =
loopbound⋃

k=0

SatSetn+k(φ)

SatSetn( F−1(φ) ) =
loopbound⋃

k=0

SatSetn−k(φ)

SatSetn( G(φ) ) =

loopbound⋃
h=0

loopbound⋃
l=1

{ { xn+h+k.l+i = xn+h+i | 1 ≤ k, 0 ≤ i ≤ l − 1 }

∪{ δ∗(q0, x0, . . . , xn+h+l−1) = δ∗(q0, x0, . . . , xn+h−1) }

∪
h+l−1⋃

i=0

Si | Si ∈ SatSetn+i(φ), 0 ≤ i ≤ h + l − 1 }

SatSetn( G−1(φ) ) = {
n⋃

i=0

Si | Si ∈ SatSet i(φ) for 0 ≤ i ≤ n }

The translation SatSetn(φ) preserves solutions of φ as follows.

Theorem 1. Let A be an EMA, and loopbound be the length of the longest
loop-free path in A. Let φ ∈ LTL(Σ, X) be in NNF, and let n ∈ N.

(i) (Soundness of Translation) For any assignment α : X → A and input se-
quence i = i0, i1, . . . ∈ Aω

input there exists S ∈ SatSetn(φ) such that

A, n, i, α |= φ =⇒ A, β(i), α |= S,

where the assignment β(i) : X → Ainput is given by β(i)(xn) = in.
(ii) (Completeness of Translation) For any assignments α : X → A and β :
X → Ainput if there exists S ∈ SatSetn(φ) such that A, β, α |= S then there
exists an input sequence β ∈ Aω

input such that

A, n, β, α |= φ.

Thus by Theorem 1, to solve an NNF formula φ it is necessary and sufficient
to solve one of the constraint sets S1, . . . , Sn ∈ SatSet0(φ). We will consider a
method to solve constraint sets by narrowing in the next section.



104 K. Meinke and F. Niu

4 Model Checking by Narrowing

The problem of finding solutions to a set { t1 = t′1, . . . , tn = t′n } of equations
is the well known unification problem about which much has been written (see
e.g. [1]). More generally, in the case that a set { t1 = t′1, . . . , tn = t′n, u1 �=
u′

1, . . . , un �= u′
n } of equations and negated equations must be solved, this

problem is known as the disunification problem (see e.g. [4]).
Let Σ be a many-sorted data type signature and E be an equational data

type specification having a complete rewrite system R. Then the disunification
problem is complicated by the fact that we seek solutions modulo R (and hence
E) in the following sense.

Definition 6. Let R be a term rewriting system. The relation of R-conversion
denote by =R is the reflexive symmetric and transitive closure of R−→ . Let
S = { (ti Qi t′i) | i = 1, . . . , n, n ≥ 0, Qi ∈ { =, �= } } be a disunification
problem. A substitution σ : X → T (Σ, X) is an R-unifier of S if for all 1 ≤
i ≤ n, if Qi is = then σ(ti) =R σ(t′i), and if Qi is �= then σ(ti) �=R σ(t′i). We let
UR(S) denote the set of all R-unifiers of S.

In the special case where E = R = ∅, these problems are known as syntactic
unification and syntactic disunification, and both problems are decidable. How-
ever in many important cases, both the unification and disunification problems
are undecidable. Nevertheless, these problems are semidecidable and one can
consider complete search algorithms which always terminate when a solution is
to be found. The method of narrowing gives such a complete search algorithm,
and can be used whenever the data type specification E can be represented by
a complete term rewriting system R.

The basic idea of narrowing is a systematic search of the space of possible
solutions using the rules of R. If some equation ti = t′i cannot be syntactically
unified then we can apply a substitution σ : X → T (Σ, X) to ti (or t′i) such
that the resulting term σ(ti) is not in R normal form and then reduce this in
one step. This requires unifying ti (or t′i) with the left hand side l of a rule
l → r in R, and replacing with a suitable instance of r so that a new equation
is obtained. A similar process can be applied to negated equations, and can
be iterated for all formulas until syntactic unification of the entire set becomes
possible, though the narrowing process may not terminate. If it terminates, the
resulting sequence of substitutions σk : X → T (Σ, X) can be composed together
with the final syntactic unifier θ to yield an R-unifier.

Definition 7. We say that a term t is R-narrowable into a term t′ if there
exists a non-variable position p ∈ O(t), a variant l → r of a rewrite rule in R
and a substitution σ such that:

(i) σ is a most general syntactic unifier of t|p and l, and
(ii) t′ ≡ σ(t[r]p).

We write t�[p,l→r,σ]t
′ or simply t�σt′. The relation � is called R-narrowing.
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The R-narrowing relation on terms can be extended to equations and negated
equations in an obvious way. A formula (t Q t′) (where Q is = or �=) is R-
narrowable into a formula (u Q u′) if there exists a variant l → r of a rewrite
rule in R and a substitution σ such that either t�[p,l→r,σ]u for some non-variable
occurrence p ∈ O(t) or t′�[q,l→r,σ]u

′ for some non-variable occurrence q ∈ O(t′).
We write (t Q t′)�[p,l→r,σ](u Q u′) or simply (t Q t′)�σ(u Q u′). Generalising
the R-narrowing relation still further to sets of equations and negated equations
we will write S�[p,l→r,σ]S

′ or S�σS′.
We can relativise the concept of a substitution σ being more general than

a substitution τ (c.f. Section 2) to R as follows. Let V be any S-indexed fam-
ily of sets Vs of variables. We define σ ≤R τ [V ] if for some substitution δ,
δ ◦ σ(x) =R τ(x) for all s ∈ S and x ∈ Vs. Now we can discuss the soundness
and completeness of narrowing.

Theorem 2. Let S = { (ti Qi t′i) | i = 1, . . . , n, n ≥ 0, Qi ∈ { =, �= } }
be a disunification problem.

(i) (Soundness of Narrowing) Let

S�σ1S1�σ2 , . . . , �σnSn

be a terminated R-narrowing derivation such that Sn is syntactically unifiable
by a substitution θ. Then θ ◦ σn ◦ . . . ◦ σ1 is an R-unifier of S.

(ii) (Completeness of Narrowing) If S is R-unifiable then let ρ be any R-unifier
and V be a finite set of variables containing Vars(S). There exists a terminated
R-narrowing derivation

S�σ1S1�σ2 , . . . , �σnSn

such that Sn is syntactically unifiable. Let μ be a most general syntactic unifier
of Sn then μ ◦ σn ◦ . . . ◦ σ1 ≤ ρ[V ].

The search space of narrowing is large and narrowing procedures frequently
fail to terminate. Many proposals have been made to increase the efficiency
of narrowing. One important restriction on the set of occurrences available for
narrowing, termed basic narrowing, was introduced in [11], and has since been
widely studied, e.g. [18].

A basic narrowing derivation is very similar to a narrowing derivation as
given in Definition 7 above. However, in a basic narrowing derivation, narrowing
is never applied to a subterm introduced by a previous narrowing substitution.
This condition is quite complex to define precisely, and the reader is referred
to [11].

Theorem 4 of [11] can be used to show that basic narrowing for equations and
negated equations is also sound and complete in the sense of Theorem 2. How-
ever, for basic narrowing [11] also establishes sufficient conditions to guarantee
termination. This property is important in test case generation, where we need
to know if a test case exists at all.
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Theorem 3. ([11]) Let R = { li → ri | i = 1, . . . , n } be a complete rewrite
system such that any basic R-narrowing derivation from any of the ri’s termi-
nates. Then every R-narrowing derivation terminates.

Many examples of TRS satisfying Theorem 3 are known, including TRS for all
finite ADTs. This general termination result can be applied to establish that
basic R-narrowing yields a decision procedure for LTL model checking (i.e. basic
R-narrowing is sound, complete and terminating) because of the following new
result about the CGE symbolic learning algorithm.

Theorem 4. Let (Rstate
n , Routput

n ) be the output of the CGE learning algorithm
after a sequence of n observations of the I/O behavior of an EMA A. Then
Rn = Rstate

n ∪ Routput
n is a complete rewrite system and every Rn-narrowing

derivation terminates.

Proof. Proposition 4.5 of [14] establishes that Rn is complete. To establish ter-
mination, consider that every rule l → r ∈ Rn is ground by Definitions 3.12
and 4.4 of [14]. Hence the result is a special instance of Theorem 3 above and
Example 3 in [11].

We have constructed an implementation of model checking by basic narrowing.
We explain how this is integrated into learning-based testing in Section 5.

5 An LBT Architecture for Testing Reactive Systems

Learning-based testing (LBT) is a general paradigm for black-box specification-
based testing that requires three basic components:

(1) a (black-box) system under test (SUT) S,

(2) a formal requirements specification Req for S, and

(3) a learned model M of S.

Given such components, the paradigm provides a heuristic iterative method to
search for and automatically generate a sequence of test cases. The basic idea is to
incrementally learn an approximating sequence of models Mi for i = 1, 2, . . . of
the unknown SUT S by using test cases as queries. During this learning process,
we model check each approximation Mi on-the-fly searching for counterexamples
to the validity of Req. Any such counterexample can be confirmed as a true
negative by taking it as the next test case. At step i, if model checking does not
produce any counterexamples then to proceed with the iteration, the next test
case is constructed by another method, e.g. randomly.

In [16], LBT was applied to testing reactive systems modeled as Boolean
Kripke structures. In this paper we consider the case where the SUT S is a
reactive system that can be modeled by an EMA over the appropriate abstract
data types, and Req is an LTL formula over the same data types. Thus we extend
the scope of our previous work to deal with both control and data by applying
new learning algorithms and model checking technology.
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For LBT to be effective at finding errors quickly, it is important to use an
incremental learning algorithm. In [16] this was empirically demonstrated by
using the IKL incremental learning algorithm for Boolean Kripke structures.
However, learning algorithms for finite data types such as IKL do not extend
to infinite data types. The CGE learning algorithm of [14] was designed to im-
plement learning EMA over abstract data types. Furthermore, this algorithm is
incremental since its output is a sequence of representations R1, R2, . . . of the
hypothesis EMA M1, M2, . . . which are the approximations to S. Each repre-
sentation Ri is a complete TRS that encodes Mi as the corresponding quotient
of the prefix tree automaton. Details of this representation can be found in [14].
Furthermore, CGE has many technical advantages over IKL. For example, the
number of queries (test cases) between construction of successive approximations
Rk and Rk+1 can be arbitrarily small and even just one query. By contrast, IKL
and other table based learning algorithms usually have intervals of tens or hun-
dreds of thousands of queries between successive approximations of large SUTs.
As a consequence, model checking can only be infrequently applied.

The input to CGE is a series of pairs (i1, o1), (i2, o2), . . . consisting of a
query string ik for S and the corresponding output string ok from S. In an LBT
setting, the query strings ik come from model checker counterexamples and ran-
dom queries. Finite convergence of the sequence R1, R2, . . . to some TRS Rn

can be guaranteed if S is a finite state EMA (see [14]) and the final hypothesis
automaton Mn is behaviorally equivalent with S. So with an increasing number
of queries, it becomes more likely that model checking will produce a true nega-
tive if one exists, as the unknown part of S decreases to nothing. By combining
CGE with the narrowing model checker of Section 4, we arrive at a new LBT
architecture for reactive systems shown in Figure 1.

Figure 1 illustrates the basic iterative loop of the LBT architecture between:
(i) learning, (ii) model checking, (iii) test execution, and (iv) test verdict by an
oracle. This iterative loop is terminated by an equivalence checker. This compo-
nent can be used to detect that testing is complete when the SUT is sufficiently
small to be completely learned. Obviously testing must be complete by the time
we have learned the entire SUT, since model checking by narrowing is solution
complete. The equivalence checker compares the current model representation
Rk with S for behavioural (rather than structural) equivalence. A positive re-
sult from this equivalence test stops all further learning, after one final model
check of Rk searches for any residual errors. In practical applications of LBT
technology, real world SUTs are usually too large to be completely learned. It
is this pragmatic constraint that makes incremental learning algorithms nec-
essary for scalable LBT. In such cases the iterative loop must ultimately be
terminated by some other method such as a time constraint or a coverage
measure.

Figure 1 shows that the current model Rk is also passed from the CGE algo-
rithm to the basic narrowing model checker, together with a user requirement
represented as an LTL formula φ. This formula is fixed for a particular testing
session. The model checker uses Rk to identify at least one counterexample to φ
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as an input sequence ik+1 over the underlying input data type. If φ is a safety
formula then this input sequence will usually be finite

ik+1 = ( i1, . . . , ij ) ∈ T (Σ)∗input .

If φ is a liveness formula then the input sequence ik+1 may be finite or infinite.
Since infinite counterexamples to liveness formulas can be represented as infinite
strings of the form x yω, in this case ik+1 is truncated to a finite initial segment
that would normally include at least one execution of the infinite loop yω, such
as ik+1 = x y. Observing the failure of infinite test cases is of course impossible,
and the LBT architecture implements a compromise solution that executes the
truncated input sequence only, and issues a warning rather than a definite test
failure.

BN Model Checker

Oracle

Random Input
Generator

Pass / (i
k+1

, o
k+1

)
 

R
k

Input/Output Pair: 
(i

k+1
, o

k+1
)

R
k

CGE
Learning Algorithm

SUT
Input : i

k+1

Equivalence Checker
SUT =? R

k

True / Stop

Warning 
or

Fail / Stop

LTL Requirement Formula
 ϕ 

Fig. 1. A Learning-based Testing Architecture for Reactive Systems

If the next test case ik+1 cannot be constructed by model checking then in
order to proceed with iterative testing a random input string generator (see
Figure 1) is used to generate ik+1. During this random generation process, any
random string that has been used as a previous test case is discarded to avoid
redundant replicate tests.

Thus from one of two possible sources (model checking or random generation)
a new test case ik+1 is constructed. Figure 1 shows that this new test case
ik+1 is then executed on the SUT S to yield an actual output sequence ok+1 =
o1, . . . , oj . The pair ( ik+1, ok+1 ) is then passed to an oracle to compute the
k + 1-th test verdict.

The oracle we have developed for this LBT architecture is more powerful than
the one described in [16], and is based on the following two step process.
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Step 1. A test verdict can often be derived quickly and simply by computing
a predicted output pk+1 = p1, . . . , pj obtained by simulating the behavior of
Mk on ik+1. This is easily derived by applying the TRS Rk to rewrite the input
string ik+1 into its normal form, i.e. ik+1

Rk−→
∗

pk+1 . Recall that Rk is a complete
TRS, so this normal form is always well defined. We then implement a simple
Boolean test ok+1 = pk+1. If this equality test returns true and the test case ik+1

was originally a finite test case then we can conclude that the test case ik+1 is
definately failed, since the behaviour pk+1 is by construction a counterexample
to the correctness of φ. In this case we can decide to stop testing. If the equality
test returns true and the test case ik+1 was finitely truncated from an infinite test
case (a counterexample to a liveness requirement) then the verdict is weakened to
a warning (but testing is not stopped). This is because the most we can conclude
is that we have not yet seen any difference between the observed behaviour ok+1

and the incorrect behaviour pk+1.

Step 2. If the Boolean test ok+1 = pk+1 in Step 1 returns false then more
work is needed to determine a verdict. We must decide whether the observed
output ok+1 is some other counterexample to the correctness of φ than pk+1.
This situation easily occurs when the requirement φ is a loose specification of
the SUT behavior, such as a constraint or value interval. In this case we can
evaluate the requirement formula φ instantiated by the input and actual output
sequences ik+1 and ok+1 to determine whether φ is true or false. For this we
perform a translation similar to SatSet0(φ) but with the variables xn and out
instantiated by the appropriate components of ik+1 and ok+1 respectively. We
then evaluate all resulting sets of variable free equations and negated equations
by rewriting. By Theorem 1, this approach will produce a correct verdict if ok+1

is a counterexample to φ.
Note that while Step 1 was already described in [16], Step 2 is an additional

and more powerful step made possible by the translation of LTL into equational
logic, and the use of term rewriting to implement the latter.

When the conditions of Theorem 3 are satisfied by the underlying data type
then the LBT architecture of Figure 1 can be proven to terminate since the CGE
algorithm correctly learns in the limit and basic narrowing is terminating and
solution complete. A detailed analysis of this property will be published in an
extended version of this paper. The argument is similar to that presented in [16].

6 A Case Study of LBT for Reactive Systems

Since the overhead of model checking an EMA by narrowing is high, it is im-
portant to study the performance of our LBT architecture in practice using case
studies. Now many communication protocols can be modeled as EMA computing
over (freely generated) symbolic data types. Thus the LTL decidability results
of Section 4 apply to this class of examples.

The Transmission Control Protocol (TCP) is a widely used transport pro-
tocol over the Internet. We present here a performance evaluation of our LBT
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Fig. 2. TCP Mealy Machine Model

architecture applied to testing a simplified model of the TCP/IP protocol as the
11 state EMA shown in Figure 2.

In this performance evaluation, we considered the fault detection capability of
LBT compared with random testing. A coverage comparison of learning-based
testing with random testing is for example [21], which even considers the same
TCP case study. The methodology for comparison was to start from the concrete
model of TCP in Figure 2 and consider a variety of correctness requirements as
LTL formulas (including use cases). We then injected transition mutations into
the SUT which falsified each individual requirement separately. In this way,
several different kinds of bugs were introduced into the protocol model, such
as mutating the input/output on transitions, adding extraneous transitions or
states and so on. Some of these artificial mutations reflect realistic defects that
have been discovered in several TCP/IP implementations [10].

Below we informally define five requirements on the TCP/IP protocol and
give an LTL formalization of each.
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1. Use case. Whenever the entity receives an active_open and sends out a SYN,
the entity will send out a SYNACK if it receives a SYN, or send out an ACK
if it receives a SYNACK, and send nothing when receiving other inputs.

G( (in = active_open ∧ out = syn)→

X((in = syn→ out = synack) ∧ (in = synack→ out = ack)) )

2. Use case. Whenever the entity receives an active_open and sends out a SYN
and then receives a SYNACK, the entity will send out an ACK and then
will send out an ACK if it receives a FIN.

G( (in = active_open ∧ out = syn ∧X in = synack) →

(X out = ack ∧X2 (in = fin → out = ack)) )

3. Use case. Whenever the entity performs the IO (active_open, SYN ) and
receives SYNACK followed by FIN it will send out ACK followed by ACK
and then send out FIN if it receives CLOSE.

G( (in = active_open ∧ out = syn ∧X in = synack ∧X2 in = fin) →

(X out = ack ∧X2 out = ack ∧X3 (in = close→ out = fin)) )

4. Whenever the entity receives a close and sends out a FIN, or receives a FIN
and sends out an ACK, the entity has either sent a passive_open or received
an active_open before, and either sent or received a SYN before.

G( ((in = close ∧ out = fin) ∨ (in = fin ∧ out = ack)) →

(F−1 (in = pass_open∨ in = active_open)∧F−1 (in = syn∨ out = syn)) )

5. Whenever the entity performs the IO (FINACK, ACK ) it must have received
or sent SYN in the past and performed the IO (close, FIN ) in the past.

G( (in = finack ∧ out = ack)→

(F−1 (in = syn ∨ out = syn) ∧ F−1 (in = close ∧ out = fin)) ).

6.1 Results and Analysis

To compare LBT with random testing on the TCP/IP stack model, we measured
two related parameters, namely: (i) the time tfirst (in seconds), and (ii) the total
number of queries (i.e. test cases) Qfirst needed to first discover an injected error
in the SUT. To conduct random testing, we simply switched off the CGE and
model checker algorithms. The performance of LBT is non-deterministic due to
the presence of random queries. Therefore each value of tfirst and Qfirst is an
average obtained from over 1000 LBT runs using the same injected error.
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Table 1. Random testing versus LBT: a performance comparison

Requirement Random Testing LBT
Qfirst tfirst(sec) Qfirst tfirst(sec) MCQ RQ Hyp_size

Req 1 101.4 0.11 19.11 0.07 8.12 10.99 2.2
Req 2 1013.2 1.16 22.41 0.19 9.11 13.3 2.8
Req 3 11334.7 36.7 29.13 0.34 10.3 18.83 3.1
Req 4 582.82 1.54 88.14 2.45 23.1 65.04 3.3
Req 5 712.27 2.12 93.14 3.13 31.8 61.34 4.1

The results of testing the requirements Req1 to Req 5 are listed in Table 1.
Note that Qfirst is the combined sum of the number of model checking queries
MCQ and random queries RQ. These are also listed in columns 6 and 7 to
provide deeper insight into the strengths and weaknesses of our method. In
the final column, Hyp_size is the state space size of the learned hypothesis
automaton at time tfirst. Since Hyp_size is always considerably less than 11
(the state space size of our SUT), this confirms the advantages of using an
incremental learning algorithm such as CGE.

We wish to draw two main conclusions from Table 1.
(i) At the level of logical performance, (comparing Qfirst for LBT against

Qfirst for random testing) we see that LBT always finds errors with significantly
fewer test cases ranging between 0.25% and 18% of the number required by
random testing. Therefore, if the overheads of model checking and learning can
be reduced then LBT also has the potential to outperform random testing in
real-time performance.

(ii) At the level of real-time performance (comparing tfirst for LBT against
tfirst for random testing) we see that LBT is often but not always significantly
faster than random testing, ranging between 0.9% and 160% of the time required
by random testing. This reflects the actual real-time overhead of performing both
model checking and learning for the SUT and each requirement.

Looking more closely at the results for Reqs 4 and 5, where LBT is somewhat
slower than random testing, we can gain deeper insight into these real-time
performance issues. For Reqs 4 and 5 both the values MCQ and the ratios
RQ/MCQ are significantly higher than for Reqs 1, 2 and 3. In these cases,
basic narrowing is performing a large number of constraint solving tasks on
unsatisfiable sets of constraints. However, basic narrowing fails very slowly when
no solutions can be found. After this, random test cases are applied to proceed
with the task of learning the SUT, but these do not necessarily test the actual
requirements.

These preliminary results are nevertheless promising, and based on them we
make some suggestions for how to further improve narrowing in Section 7. Thus
we can improve the overall real-time performance of our current LBT archi-
tecture to achieve a real-time performance closer to the logical performance.
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It should also be pointed out that as real-time measurement involves factors such
as efficiency of implementation, there exists further scope for improvement on
the implementation level.

7 Conclusions

In this paper we have shown how a model checker based on narrowing can be
combined with a symbolic automaton learning algorithm such as CGE to give
a new architecture for black-box specification-based testing using the learning-
based testing (LBT) paradigm. We have benchmarked this LBT architecture
against random testing, and shown that it compares favorably, with the potential
for future improvement.

The results of Section 6.1 suggest that a pure narrowing procedure could
be significantly improved by interleaving it with theorem proving techniques to
detect unsatisfiability. This is because counterexamples to correctness may be
sparse, in which case narrowing fails very slowly. Term rewriting could be applied
to this problem too. Furthermore, it is known that basic narrowing modulo
theories is incomplete and suggestions such as the variant narrowing of [7] could
be considered. Finally, we observe that the CGE algorithm does not currently
learn infinite state Mealy automata, and this is another extension of our work
that must be considered for EMA.
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Abstract. We propose to combine timed automata and linear hybrid
automata model checkers for formal testing and monitoring of embedded
systems with a hybrid behavior, i.e., where the correctness of the system
depends on discrete as well as continuous dynamics. System level testing
is considered, where requirements capture abstract behavior and often
include non-determinism due to parallelism, internal counters and sub-
tle state of physical materials. The goal is achieved by integrating the
tools Uppaal [2] and PHAVer [3], where the discrete and hard real-time
aspects are driven and checked by Uppaal TRON and strict inclusion
of dynamical trajectories is verified by PHAVer. We present the frame-
work, the underlying theory, and our techniques for integrating the tools.
We demonstrate the applicability on an industrial case study.

1 Introduction

Timed automata (TA) is a convenient and expressive modelling language for
expressing state- and time-dependent discrete behavior such as time constraints
on event occurrences. In particular the Uppaal-language has proven useful and
expressive in a large number of case studies. The editing, simulation and anal-
ysis of Uppaal-TA models is supported by the Uppaal model-checking tool.
Similarly, (online) model-based testing is implemented in the Uppaal TRON
tool [7].

However, TA cannot directly capture and describe continous behavior, which
is normally abstracted away. When this cannot be done, a workaround may be to
model discrete approximations; these may however be cumbersome, inaccurate
and significantly degrade the performance of the analysis.

In contrast, (linear) hybrid automata ((L)HA) allows continuous evolutions
(trajectories) to be described directly through (linear) differential equations as-
sociated with the locations of the automata. PHAVer [3] is a model-checker
which provides exploration and analysis capabilities for a rich class of hybrid
automata through incrementally refined over-approximation of the trajectories.
However, for purely timed and sophisticated discrete behavior its performance
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cannot compete with timed automata tools like Uppaal. Furthermore, its lan-
guage contains none of the advanced feature of Uppaal (different types of com-
munication channels, committed locations, C-like instructions on transitions,
etc.), which are highly useful for effective modelling of control software.

Testing of hybrid systems is not new, e.g. Reactis Validator is based on a
hardware-in-the-loop simulation, where the requirements are expressed as as-
sertions on a Simulink model [9]. Osch provides a formal framework [11] and a
prototype tool based on TorX [10] architecture and hybrid χ simulator [12]. Both
frameworks are based on a simulation, thus only a deterministic behavior with
some relative deviation is allowed. Our framework is unique in a sense that it
allows imprecision in timed and dynamical behavior (clock drifts, measurement
imprecision, limited state observability, parallelism, abstract requirements) by
means of non-determinism in a specification model, i.e. the user can explicitly
specify ambiguity of any aspect: bounds on timing of events, dynamical vari-
able values, their derivatives, internal/unobservable transitions. This approach
is consistent in treating the imprecision in both time and continuous signals, so
the ideas from Uppaal TRON testing framework can be carried to PHAVer
with just a few modifications. Consequently, the conformance check is as easy
as inequality check of observed outputs with symbolic state bounds, the test is
sound (if the test fails then IUT definitely does not conform to specification),
but not necessarily exhaustive (some faults may escape detection due to discrete
sampling and measurement imprecision).

Our goal is therefore to combine the Uppaal TRON and PHAVer tools to
construct a tool environment that supports effective and efficient testing and
monitoring of control systems that contains both significant timed actions and
continuous trajectories.

Model-based monitoring is a passive observation of a (black-box) system exe-
cuting in its operating environment, and checking whether the observed behavior
is permitted by (conforms-to) the specified behavior in the model. Model-based
testing also uses the model to generate test input sequences to stimulate the
system, and replaces (part of) the system’s environment. Using online testing
the system is stimulated and evaluated interactively and in real-time. Our goal
is to extend the framework of online testing of real-time systems presented in
[7] to hybrid systems. Uppaal TRON simultaneously stimulates and evaluates
the system behavior, and can be configured to perform either or both tasks, e.g.,
work solely as a monitor, while PHAVer provides sound over-approximation of
continuous dynamics.

Fig. 1 shows a simple system setup where a plant is controlled by an embedded
system. The controller is a digital device running an embedded program which
inputs (samples) the sensor values and outputs actuations to the plant.

Controller
EmbeddedPlant Under

Control Actuator

Sensor

Fig. 1. Hybrid system setup
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The proposed framework will typically be used to monitor and test the be-
havior of the controller, but can in principle equally well be used to evaluate
whether the assumed behavior captured and represented by models of the plant
are correct, as only a black-box is assumed.

Fig. 2 shows an arrangement of tools from [6] we use in our test setup: the
emulator is a test generator that to the IUT plays the role of an environment
(plant under control), the monitor is a test oracle that monitors the observable
input/output interaction and decides whether the behavior of IUT is conforming.

Implementation

under test
Emulator

Monitor

Fig. 2. Test setup

The main solution idea is to run the two tools in parallel, i.e., Uppaal TRON
for test generation (environment emulation) and monitoring discrete and timed
behavior and PHAVer monitoring the continuous behavior. Thus each tool
evaluates a part of the overall model.

For this to work, the two tools must be synchronized with respect to real-time
and observed events. Moreover, as the behavior in most complex models depends
on both aspects, the sub-models also need to exchange information to trigger
behavior changes. For instance, when the timed automaton executes an action
or switches location the HA model may need to evaluate different trajectories.
Similarly, the values (or crossing of thresholds) may be of importance to the
possible actions of the TA.

Our contributions are as follows: monitoring dynamical behavior against non-
deterministic models, a modeling pattern to keep Uppaal TA models in syn-
chrony with LHA so that timed models would focus on discrete and timed aspects
and hybrid automata mostly on dynamics, a test adapter framework that allows
the tools to exchange synchronization events thus enabling the models to “com-
municate” during online testing, demonstration how our technique and tool can
be applied to an industrial case study [8].

Requirement Models. The interaction of discrete events and continuous, time-
driven dynamics can be efficiently modeled by a so-called hybrid automaton [1].
A hybrid automaton H = (Loc, V ar, Lab, Inv, F low, T rans, Init) consists of a
graph in which each vertex l ∈ Loc, also called location or mode, is associated
via Flow(l) with a set of differential equations (or inclusions) that defines the
time-driven evolution of the continuous variables. A state s ∈ Loc×R

Var consists
of a location and values for all the continuous variables V ar. The edges of the
graph, also called discrete transitions Trans, allow the system to jump between
locations, thus changing the dynamics, and instantaneously modify the values of
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continuous variables according to a jump relation μ. The jumps may only take
place when the values of the variables are within the domain of μ. The system
may only remain in a location l as long as the variable values are in a range called
invariant Inv(l) associated with the location. All behavior originates from one
initial state Init.

An execution or trajectory of the automaton is a sequence of discrete jumps
and pieces of continuous trajectories according to its dynamics, and originates
from the initial state. Linear Hybrid Automata are hybrid automata in which
invariants, guards and initial states are given by linear constraints over the vari-
ables, jump relations are given by linear constraints over the variables before and
after the jump, and the flow constraints are linear constraints over the deriva-
tives only (must not depend on the state variables). Fundamental properties
such as reachability are undecidable for (linear) hybrid automata in general.
Tools like PHAVer use polyhedra for symbolic state computations, and the
operators used in reachability are of exponential complexity in the number of
continuous variables.

A Timed Automaton is a hybrid automaton with the following restrictions:

– The continuous variables are clocks, i.e., their time-derivative is equal to one.
– Invariants and guards are conjunctions of constraints on a single clock, i.e.,

of the form
∧

i xi �� ci, where the xi are clock variables, ��∈ {≤, <, =, >,≥}
and the ci are integer constants.

– The jump relations are resets, i.e., each transition may set a subset of the
variables to an integer value.

Timed automata have the advantage over general hybrid automata that funda-
mental properties such as reachability are decidable, and efficient (polynomial
complexity) operators are known for symbolic state computation.

Conformance. The formal characterization of correctness is a natural extension
of rtioco conformance relation from [7]. We refer to [12] for formal details about
hybrid conformance and impact of discrete sampling.

Definition 1 specifies the relation between IUT p and a system specification s
represented by states 〈e, p〉 and 〈e, s〉 which are composed of IUT model state s
and environment model state e.

Definition 1. Relativized timed input/output conformance relation [7]. p, s ∈
S and e ∈ E are input-output compatible:

p rtiocoe s
def= ∀σ ∈ TTr

(
e
)
.Out

(〈e, p〉 after σ
) ⊆ Out

(〈e, s〉 after σ
)

(1)

where TTr
(
e
)

is a set of timed traces generated by e, operator after denotes
reachable states after a trace is executed, Out

(
T

)
denotes a set of possible outputs

from a set of states T ⊆ E × S.

Intuitively the definition says that in order to establish the conformance between
IUT state p and specification state s we have to do the following: generate a
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trace σ from the environment specification e, execute the trace σ on both IUT
composed with environment (〈p, e〉) and a complete system specification (〈s, e〉),
and then check whether the output produced by IUT is included in the outputs
of specification. Explicit treatment of the environment model e allows to test
the IUT in relation to specific environment.

For hybrid monitoring we adapt the hioco relation proposed by [11]:

Definition 2. Hybrid input/output conformance relation [12]. Let p, s ∈ S be
input-output compatible implementation and specification respectively, environ-
ment e ∈ E, then:

p hiocoe s
def= ∀σ ∈ traces(〈s, e〉) . Out

(〈p, e〉 after σ
) ⊆ Out

(〈s, e〉 after σ
) ∧(2)

traj(〈p, e〉 after σ) ⊆ traj(〈s, e〉 after σ) (3)

The definitions means that in order to establish the conformance relation, one
must consider all specification traces (discrete inputs and outputs intermingled
with continuous time trajectories) and check that resulting responses from im-
plementation (discrete outputs and trajectories) are included in the specification.
The first part of definition (2) can be checked by Uppaal TRON as it is con-
cerned with discrete I/O and is compatible with rtioco where trajectories are
replaced with time delays, and PHAVer is used to monitor the second part
(3). We check (monitor) only the output trajectories, while the original hioco
from [11] has additional operators for composing continuous input and output
trajectories.

Online Test Algorithm. Algorithm 1 is an abstract version of the timed online
testing algorithm which generates sound and exhaustive tests [7]. The algorithm
is based on maintaining a current estimate of system state S and consists of three
parts: generating an input action based on S, performing a time delay, checking
that the output is consistent with the current state estimate, and potentially
restarting the test.

2 Monitoring Trajectories

The monitoring of continuous dynamics is implemented by supplementing the
action and delay cases of Algorithm 1 with PHAVer symbolic computations in a
parallel process, where the continuous output signals are discretized by periodic
sampling and checked that the values are included in a model behavior.

We formally define the operators included in PHAVer for monitoring and
testing and discuss their implementation for linear hybrid automata. Let s, s′

be hybrid states, i.e., each a pair of a discrete location and a valuation of the
continuous variables. We consider the set of labels (actions) Lab of the automa-
ton to consist of two disjoint sets of observable actions ΣO and unobservable
actions ΣU .

We write s
a−→ s′ if there is a discrete transition with label a that leads from s

to s′. We write s
δ−→ s′ for δ ∈ R

≥0 if there is a continuous trajectory leading from
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Algorithm 1. Test generation and execution, OnlineTest(S ,E , IUT, T ).

S := {〈s0, e0〉}; // let the set contain an initial state1

while S �= ∅ ∧ �iterations ≤ T do2

switch Random
({action, delay, restart}) do3

case action // offer an input4

if EnvOutput(S) �= ∅ then5

randomly choose i ∈ EnvOutput(S);6

send i to IUT, S := S after i;7

case delay // wait for an output8

randomly choose d ∈ Delays(S);9

sleep for d time units or wake up on output o at d′ ≤ d;10

if o occurs then11

S := S after d′;12

if o /∈ ImpOutput(S) then return fail ;13

else S := S after o14

else S := S after d; // no output within d delay15

case restart // reset and restart16

S := {〈s0, e0〉};17

reset IUT18

if S = ∅ then return fail else return pass19

state s to s′ without taking any discrete transitions in between. The notation
extends to sets of states S, S′ in a straightforward manner.

Let Postc(S) = {s′ | ∃s ∈ S, δ ∈ R
≥0 : s

δ−→ s′}. Let Postd(S, a) = {s′ | ∃s ∈
S : s

a−→ s′}. For a given alphabet Σ ⊆ Lab, let ReachΣ(S) be the smallest fixed
point of the sequence P0 = Postc(S), Pk+1 = Pk ∪

⋃
a∈Σ Postc(Postd(Pk, a)).

Some of the operators required for testing make explicit use of the time at
which events occur. We extend the above operators to explicitly include time
by modifying the hybrid automaton: We include a clock variable κ, which has
derivative zero and does not change its value during transitions. For the sake
of simplicity, we shall abuse notation a little and write (s, κ) for a state of the
extended automaton where κ denotes the added clock variable. We annotate
the operators on the extended automaton by adding the superscript κ, e.g.,
Reachκ

Σ(S, κ0) denotes the reachable sets of states by taking only discrete tran-
sitions with a label in Σ, and starting from an extended state (s, κ) where s ∈ S
and κ = κ0. We have implemented the following operators:

– delayTop(S, Σ) = maxκReachκ
Lab\Σ(S, 0) computes an upper bound on the

time the automaton can execute without taking a transition with a label in Σ.
– delayBottom(S, Σ) = minκReachκ

Lab\Σ(S, 0) computes a lower bound on the
time the automaton can execute without taking a transition with a label in Σ.
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– transition(a, x = c) = Postd(S, a) ∩ {s | s(x) = c} computes the states the
automaton can be in after taking a transition with label a and having the
variable x have the constant value c.

– observation(x = c) = S ∩ {s | s(x) = c} computes the states the automaton
can be in if the variable x has the constant value c.

We will now briefly discuss the complexity of the above operations as they are
implemented in PHAVer. Recall that PHAVer represents sets of continuous
states as sets of convex polyhedra. The complexity of the above Post operators
is exponential in the number of continuous variables.

The above operators delayTop and delayBottom make use of the automaton
extended with an additional clock. This increases the number of continuous
variables in the system by one. Since the complexity of the post-operators grows
exponentially with the number of variables, this might significantly affect per-
formance. Once the Reach set of the extended system is computed, the upper
and lower bounds on κ are found efficiently using linear programming.

If the hybrid automaton has bounded invariants and affine dynamics of the
form ẋ = Ax + b, with A being a matrix and b a vector of rational coefficients,
PHAVer overapproximates the behavior by transforming it into a LHA. The
transformation splits each location into a number of equivalent locations whose
invariants cover the original invariant, and where each invariant is smaller than
a given size. For each of the ingoing and outgoing transitions of the original
location, equivalent copies are added to the generated locations. In each of the
generated locations li, the derivatives are overapproximated with the set ẋ ∈
{x′ | ∃x ∈ Inv(li) : x′ = Ax + b}, which brings the automaton to LHA form. By
splitting all locations into parts that are small enough, an overapproximation of
arbitrary accuracy can be achieved, albeit for the price of generating a potentially
very large number of locations and transitions.

3 Modelling Pattern

Our solution consists of running two tools in parallel: Uppaal TRON for test
generation and monitoring discrete and timed behavior and PHAVer monitor-
ing continuous behavior.

We set up both tools to keep track of the state estimate by using symbolic
operations on the corresponding requirement models and declare failure if the
state estimate of the IUT becomes empty, signaling that the observed behavior
is outside the specification.

We propose to split the dynamic and timed/discrete aspects into two models:

– A timed automata model responsible for discrete and timely behavior.
– A hybrid automata model handling the dynamic features and using as few

discrete aspects as possible.

The reason for the separation is that the model-checking tools are optimised to
analyze such aspects on their own. Moreover, performance wise, it is cheaper to
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HATA

global time
observable I/O

(a) Time and I/O.

HATA
[timing]

transition

global time
observable I/O

(b) Time, I/O and discrete feedback.

HAdynamics

[timing]

global time
observable I/O

[values]
Uppaal TA

(c) Time, I/O and dynamic values.

global time

HA

observable I/O
[bounds] samples

Uppaal TA

(d) Time, I/O and direct bounds.

Fig. 3. Various ways to synchronize TA and HA model state estimates

keep the two components separately in parallel than operate on a flat product
of them which can be exponentially large.

Depending on the concrete system setup there are various possibilities on how
to keep the models in synchrony as shown in Figure 3:

Time and I/O. Timed and dynamic aspects may be independent of each other
(e.g. two parallel processes without interaction in between), and hence no
special handling is needed. Fig. 3a shows that timed automata (TA) model
state estimate is calculated independently from hybrid automata (HA) model
but using the same input/output sequence synchronised on global time ref-
erence.

Event synchronization. When an important state change occurs in the HA
model it is communicated via a dedicated internal event to TA model. Fig. 3b
shows the same TA and HA model setup synchronised on the same timed
sequence of input/output events, but in addition it is possible to transfer
the information when certain discrete transitions (mode changes) in the HA
can and should occur, thus effectively TA and HA models are synchronised
on discrete transitions.

Data synchronization. In case of Uppaal TA models we may handle the
dynamic variable values from HA model state estimate as discrete integer
data. Fig. 3c shows that parts of HA dynamics is passed to TA model state
estimation as discrete data values. However, a special care must be taken to
ensure that the data is handled consistently between models.

Over-approximation. Finally, one can use methods from [5] to produce ab-
stractions of hybrid automata in a form of stop-watch timed automata (Up-
paal TRON can handle those too), thus we can use the resulting abstract
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model to handle timed and discrete aspects and use the hybrid model to
monitor the continuous behavior more precisely. In a similar fashion we pro-
pose to model each continuous variable v from HA by two integer bounds
vlow and vupper in the Uppaal TA model and update the bound variables.
Fig. 3d shows that both models are synchronised on continuous signals: the
HA model state estimate is updated with concrete sample values (measure-
ments from the IUT), while Uppaal TA is updated by bounds which ap-
proximate the sample values. In order to use this feature, the Uppaal TA
model needs to be adjusted to handle two boundary values for each con-
tinuous signal non-deterministically instead of a single concrete value. As a
result, Uppaal TA handles not just the timed automata aspects but also
dynamical behavior in an abstract way: the continuous signal is represented
by a rectangular region which is adjusted and synchronised with the rest of
the model at runtime.

The over-approximation approach requires only a few changes in the adapter
protocol but is general enough to support the other above techniques, thus we
focus only on over-approximation. Note that the abstract bounds need not to be
updated continuously with each sample if the new sample signal is still within
bounds.

4 Architecture

The tools are connected using the Uppaal TRON test adapter framework.
The adapter is a software layer that takes care of translating and delivering in-
put/output actions between tester and an implementation under test (IUT), thus
the major parts of it is IUT-specific. In addition, every input/output action is
translated into a script and fed into the PHAVer model-checker for monitoring
dynamical signals. Fig. 4 shows the setup of tools:

Under Test
Implementation

TRON
Uppaal

PHAVer
Monitor

Verdict
coverage

model
LHA

model
TA

Verdict
diagnostics

"output"

input

output

"input"

Hybrid
Adapter

Fig. 4. Framework for online testing of hybrid systems
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– Uppaal TRON reads a TA model, interacts by abstract representation of
discrete input/output action sequences and delivers a verdict at the end of
test. Some diagnostics are provided in case the test fails.

– A Hybrid Adapter translates the abstract discrete input and performs the
actual input, continuously observes concrete output and translates it into
abstract output. Both input and output are reported further to PHAVer
in the form of PHAVer script which contain digitised timed input/output
sequence.

– PHAVer reads a linear hybrid automata (LHA) model, computes the reach-
able set of states according to the script and produces a plot of reachable
symbolic states until the state set becomes empty and the test consequently
fails.

In Fig. 4 all entities in rounded rectangles contain a separate thread and commu-
nicates asynchronously so that input/output delivery would not block the test
progress.

Fig. 5 shows an example of the events happening during delivery of input and
processing of output. The Uppaal TRON and Hybrid Adapter time-stamp events
independently of each other and PHAVer is just processing a stream of com-
mands containing already time-stamped input/output events. Each input/output
event is time-stamped by a time interval [from; till], where from is the earliest pos-
sible moment in time an action has happened, and till is the latest1.

TA Tester

TRON

Adapter

Hybrid

HA Monitor

PHAVer

IUT

device

“input”

input

“input@[from,till]”

(done)

output

“output”

“output@[from,till]”

msc Example sequence of input/output events.

Fig. 5. Message sequence chart of input/output handling

1 Inputs are time-stamped before and after sending an event and it is also possible to
use communication latency when estimating the time-stamp of output.
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5 Application

We use electronic cooling controller EKC204A provided by Danfoss for case
study [8] as a hybrid implementation which contain discrete, timely and dynam-
ical aspects.

Temperature Controller. Fig. 6a shows how Danfoss EKC204A temperature con-
troller can be deployed at industrial refrigeration systems. The device can be
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(a) Sensor and actuator setup
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(b) Temperature regulation principles

Fig. 6. Danfoss EKC204A temperature controller deployment

applied in many sensor and actuator configurations, in particular the controller
supports the following connections shown in Figure 6a: sensor S3 for outside room
air temperature, a relay for controlling defrost heater (electric or gas burner),
sensor S5 for temperature on evaporator transferring the heat from air to evap-
oration of cooling liquid, a relay for fan motor to ensure air rotation around
evaporator and/or entire room, sensor S4 for inside room air temperature, actu-
ator relay for compressor used to push cooling liquid in the loop from evaporator
to condenser and back. The sensors provide fixed precision number reading and
actuators are binary relays having states of “on” and “off”.

The controller can be configured to specific strategy using a register database.
Fig. 6b shows the main principles behind temperature controller:

– The temperature can vary from −50◦C to +50◦C. The device reads the
temperature sensor data and calculates the displayed temperature.

– The objective is to control the temperature between SP and SP + r01.
– The compressor (relay C) is used to cool down the air temperature by turn-

ing it on (C = on) whenever temperature is higher than SP + r01 and
turning it off (C = off ) whenever temperature is below SP . Compressor has
a requirement to stay on or off for at least some time in order minimise wear
and tear of hardware.
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– The controller should ring a temperature alarm (A = on)whenever the tem-
perature is higher than register A13 or lower than register A14 for more
than A03 amount of time and turn it off (A = off ) when the temperature is
within acceptable bounds [A13; A14].

For our purposes we use only inside room air temperature sensor (S4). The
controller assumes that the temperature sensors are not perfect (readings usually
fluctuate), hence PID-like temperature algorithm is applied to filter and stabilize
the room temperature estimate. The temperature is estimated and displayed
using equation Tn = 4·Tn−1+Ts

5 , where Ts is a temperature reported by sensor
and Ti is temperature estimate at moment i. The temperature is recalculated
about once per each second and may vary slightly (the software is soft real-time).
The filter is applied only if the temperature change is within 1◦C and is adjusted
immediately otherwise. All other aspects (compressor, alarm and defrost control)
depend on the calculated temperature rather than raw sensor values, thus even
TA model needs to be aware of this temperature calculation.

Model Setup. The requirements are modelled by a combination of Uppaal timed
automata and PHAVer hybrid automata.

[8] and later work resulted in an almost complete model of EKC204A aspects.
In this paper we describe only the relevant part—temperature estimation—which
is described by hybrid automata.2 The Uppaal model consists of the following
processes modelling various aspects:

– The test is part of environment which controls how the temperature should
be (e.g. decreased until it is below −7◦C and then increased again).

– The tempGen generates a sequence of concrete temperatures that are sent as
raw temperature values injected into sensors.

– tempMonitor read the temperature sensor values and provides the calculated
temperature values to the rest of the TA instances.

– The lowTempAlarm monitors the calculated temperature and triggers an
alarm if the temperature is below the threshold for longer than allowed time
bound.

The hybrid model consists of just two hybrid automata: TempMonitor monitors
the calculated temperature values and TempRoom monitors whether the sensed
temperature is changing reasonably (e.g. not too rapidly). The latter is optional,
but it demonstrates that we can monitor the behavior of the tester as well as IUT.

Fig. 7 provides an overview on how the two models are synchronised together
with IUT:

– temp t(ENV Temp) is a signal generated from tempGen to tempMonitor
which results in concrete action inject temp(T ) sent to the IUT and a
set temp(room temp) synchronization in hybrid model between TempRoom
and TempMonitor.

2 The implementation of the adapter for PHAVer, a generated script instance and
requirement models can be downloaded at
http://www.cs.aau.dk/$^\sim$marius/phaver

http://www.cs.aau.dk/$^\sim $marius/phaver
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Fig. 7. Uppaal and PHAVer model setup for temperature controller

– sample(values) is an output from IUT which is translated into relay changes
(relay r(C, F, D, A, HA, LA)) to the Uppaal model and a calculated tem-
perature snapshots calctemp r(ENV CalcT emp) to the Uppaal model and
(temp) update in the PHAVer model.

The Abstract Timed Model. In Uppaal model the tempMonitor is responsible
for estimating and displaying the temperature value on the screen as well as
notifying all other processes. The calculated temperature is estimated by CalcTL
and CalcTU variables denoting lower and upper bounds.

Fig. 8 shows the temperature estimation abstraction when a new temperature
value is injected into the sensors and the resulting Uppaal timed automaton
which computes the abstract temperature bounds.
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Fig. 8. Temperature estimation and its abstract model as tempMonitor process

LowTempAlarm is modelled as a parallel process (Fig. 9) interpreting the calcu-
lated temperature bounds [CalcTL;CalcTU ] using non-deterministic edges with
guard comparisons to LowTempLimit .
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Hybrid Model. Fig. 10 shows a hybrid automaton for temperature calculation
which has four locations: idle – temperature is constant, decide – there is tem-
perature change and controller instantaneously decides whether it is going up
or down, adjustUp – the temperature is rising, adjustDown – the temperature
is dropping. The current temperature estimate is kept in variable temp and the
new sensor value is changed with set temp event in variable target.
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Fig. 10. Model of a controller temperature sensing and estimation

Results. Fig. 11 shows the temperature region computed from the model by an
over-approximation for each instance of time during testing:
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Fig. 11. Symbolic state evolution in PHAVer from test trace monitoring: time in
seconds on horizontal axis, temperature in ◦C on vertical axis

– Calculated temperature estimation starts from a single (known) point at
16.8◦C.

– Uppaal TRON then generates a new air temperature at 16.6◦C and feeds
it to IUT.

– PHAVer estimates that the calculated temp should fall withing first region.
– HybridAdapter samples a new calculated temperature reading and reports it

to PHAVerAdapter, but does not report it yet to Uppaal TRON.
– PHAVer finds the observed temperature point (an interval in time) in the

estimated region, updates it and recomputes future temperature region (sec-
ond region).

– The process continues in this way until the calculated temperature reaches
the injected temperature value (within 15s) where both Uppaal TRON and
PHAVer are notified.

– The calculated temperature estimate collapses to one point in the PHAVer
plot, until a new temperature injection is dictated by Uppaal TRON.

6 Conclusions

We have shown how timed automata and hybrid automata model-checkers can
be combined to achieve online testing and monitoring of embedded software con-
troller at different degrees of precision: timed/discrete and sampled continuous
signals.
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In the current setting, PHAVer can only function as a monitor, because it lags
behind Uppaal TRON (due to the high computation cost of computing state
set updates). However, ongoing work on improvements on the PHAVer engine,
and we are optimistic that it will be capable of also functioning as trajectory
stimulator. Alternatively a simulator tool can be used to generate dynamical
stimuli.

In the future we will implement the operators used in monitoring using reach-
ability algorithms that are based on time-discretization and bounded time hori-
zon, see [4].
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1 Introduction

Océ is a leading company in designing and producing professional printers. As
the complexity of these printers grows, both due to features added and due to
the requirement to support several input formats and backwards compatibility,
the task of effectively testing the printer controller becomes very difficult. In this
paper we present a model-based approach to improve the testing of the controller
software of Océ printers.

We consider the part of the controller which processes input job descriptions
and sends commands to the hardware. The system considered is in its abstract
form a simple function. It takes a set of parameter values as input and computes
a set of output parameter values. Input parameters are specific settings to a print
job (number or pages, duplex/simplex, etc.), and the output is the description,
in terms of output parameters, of the actually printed job. The dependencies be-
tween inputs and outputs are not trivial, and as the number of input parameters
is over 100 and the number of output parameters is 45, the size of the system
makes testing a difficult task.

The controller is modeled using a set of constraint clauses on the input param-
eter values, in the form of boolean formulas. Each clause relates a set of input
values to an expected output value. The approach that we take in this paper is
similar to that of QuickCheck [4] and Gast [9], both of which are automatic
testing tools for functional programming languages, that generate random test
cases. Both tools are less suited for use at Océ, since, being based on functional
programming languages, they are cumbersome to integrate into existing test
frameworks, whereas randomness makes structured generation of test cases and
coverage determination more challenging. This led us to implement an internal
prototype in Python to handle the testing.

Others have tried similar approaches to testing real world applications, such as
Lozano et al. [11], who model a financial trading system with constraint systems.
This leads us to believe that the approach is applicable to other types of systems
as well. To further evaluate this approach we analyze how it can be used to model
parts of the controller software for a ventilation system for livestock stables.

While the final goal is to detect faults in the SUT, this has not been the main
focus in this project. Rather the focus has been to take steps toward creating a
maintainable, large-scale model-based testing environment. It was not our aim
to compare numbers of bugs found in model-based and manual testing.

This paper presents the problem of testing printer controller software. We
present an approach to modeling the controller as a set of boolean formulas,
including a modeling trick to enable us to make relatively simple models for the
complex system. We present the testing process and how the desired coverage
can be achieved. Additionally we present some discussions on using model-based
testing in an industrial setting, and which benefits this approach has given Océ.
Finally, to illustrate the applicability of our approach, we show how it can be
adopted to model and test part of the controller software for a ventilation system
for livestock stables.
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Fig. 1. VarioPrint 6250. A) Input module with four trays. B) Printer module. C) High
capacity stacker output location. D) Finisher output location.

2 Problem Description

The problem is to test the controller of Océ printers. Océ produces professional
printers, an example of which is shown in Figure 1.

– A is the input module with four input trays.
– B is the actual printer module.
– C is an output location called the High Capacity Stacker (HCS).
– D is an output location which supports stapling, called the Finisher.

This example is a small configuration of a printer. Several input modules can
be attached and different output locations with different finishing options are
supported.

The controller in these printers basically has two tasks: (i) handling the
printing queues, and (ii) processing an input job description and sending the
corresponding commands to the printing hardware. The part of the controller
handling the printing queues can be seen as a reactive system, which continu-
ally monitors for job descriptions, sends them through the job processor to the
printing hardware, and allows the user to perform actions on a user interface,
for instance to cancel a job. This part can be modeled using some form of state
machine. The part handling job processing, however, does not operate reactively.
It accepts one job description at a time, and produces output for that job. Such a
system can be seen in its abstract form as a simple, stateless function, accepting
a set of input parameter values and returning a set of output parameter values.
This is the part of the controller which this project focuses on, and which will
be tested.

A job description consists of two parts: a document in a Printer Description
Language (PDL) format and an optional ticket describing how to print the doc-
ument. Several PDL and ticket formats are supported, each supporting different
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features and using different formats for expressing features. Some features are
supported in both the PDL and the ticket, requiring the job processor to handle
contradictions. Example input parameters include output location, stapling, and
punching.

As output the job processor presents a set of parameter values for each sheet
to be printed. These values are sent to the printer hardware which prints the job
as specified. Example output parameters also include output location, stapling
and punching, however the relationship between the inputs and outputs is not
as simple as it might seem.

First, there are the contradictions. Stapling, for instance, can be specified both
in the PDL and in the ticket, in which case the ticket will overrule the PDL.
While stapling is enabled, an output location can be selected which does not
support stapling, in which case the output location is overruled to one which does
support stapling. However, there might not be any output locations attached to
the printer which support stapling, in which case the stapling is disabled and the
output location is as specified. Just for these two simple parameters we already
have a lot of cases.

In addition to contradictions, there are different formats for specifying val-
ues. Specifying stapling in a ticket, for instance, has ten possible values: None,
Top, TopLeft, Left, . . . , and Saddle. The stapling output from the job processor
only has five: None, Portrait, Landscape, Booklet, and Saddle (the orientation
of the paper and the output location determine where the specific staple is lo-
cated). Similarly other PDLs and ticket formats might have different formats for
specifying stapling. Translating between these formats is not trivial.

On top of all these are the settings of the job processor. For instance the limit
for the number of pages which the printer can staple can vary. Several other
settings are available in the job processor.

It is clear that the job processor needs to handle all peculiarities in the input,
as well as any settings of the printer. The job processor needs to support all
configurations of printers, and needs to be able to print any job on any configu-
ration, albeit possibly with some functionalities disabled. The configuration and
settings of the printer can be seen as inputs to the job processor. Adding these
to the PDL and ticket, and looking at all available parameters, the number of
parameters for the job processor comes to well over 100. These facts make the
job processor a very complex system, and testing such a system is not trivial.

2.1 Testing at Océ

The current testing process at Océ involves running a job description on a simu-
lation of the hardware. When running the job processor on the simulated hard-
ware, the output is presented in the form of a so-called APV file. This APV file
contains all parameters for each printed sheet. Currently there are 45 parameters
in the APV file.

The resulting APV file is analyzed manually. If deemed correct it is saved as a
reference for future test runs. In subsequent automatic test runs the output can
be checked against the reference and the result of the test can be determined.
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There are several issues with this testing process. The first is maintainability
when updating the job processor to support more parameters. This requires all
test cases to be updated to support this parameter. Secondly, changing some
requirements, which lead to failing test cases, requires the new APV file to be
manually analyzed again. This manual analysis is very time consuming and error
prone. It occurs that errors survive through the development process because of
faulty analysis of the APV file.

The execution time of the test cases is also becoming an issue. Nightly runs,
executing the complete set of test cases, have to finish in the morning, to present
the results to the engineers. At the current number of test cases some of these
runs do not complete in time. Due to expansions and new developments the
number of test cases is expected to double, in the near future. This poses big
requirements to the computer farm running the nightly tests, and requires ex-
pensive expansions. Therefore it is desirable to reduce the number of test cases,
but the quality of the complete test set must not suffer.

Currently a test case is a Python script which sets up the printer, generates
one or more job descriptions, and sends them to the controller in a specified
order. These test cases are designed by test engineers who know the system
intimately. The test cases are designed to find likely errors, and are very specif-
ically designed, such that a failing test case gives some hint to where the error
occurs. For instance, a test case might focus on stapling by generating several
job descriptions with different stapling positions. If this test case fails the error
is most likely in the stapling module. This gives very specific test cases and to
get good coverage it requires a lot of test cases. This leads to the desire to have
structurally generated test cases which have some measure of coverage, while
minimizing the number of test cases.

In the current framework there is no uniform way of defining test cases. This
stems from the different formats for PDLs and tickets, and the fact that current
test cases are directly coded at a low level in Python. Since these are often gen-
erated in batches in for-loops, it can be difficult for other testers and developers
to understand exactly what a test case does. This leads to problems with un-
derstanding test cases, and once a test case fails, it can also be troublesome to
understand precisely what the parameters of the failing job were.

This presents four areas where Océ wants to improve their testing process:

– maintainability,
– execution time,
– coverage, and
– understanding of test cases.

We will improve on these aspects, by implementing a model-based approach to
testing.

3 Modeling the Controller

The job processor is in its abstract form a simple, stateless function. It takes a
number of input parameter values and computes a number of output parameter
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values. We modeled the job processor as a collection of Boolean formulas, where
each formula specifies the value for one output parameter through an implication
with on the left-hand side a conjunction of input parameter constraints, and on
the right-hand side an output parameter constraint:

i1 = v1 ∧ i2 = v2 ∧ · · · ∧ in = vn ⇒ up = vp (1)

This formula expresses that the expected output of parameter up is value vp if
input parameters ij have values vj for 1 ≤ j ≤ n, respectively. Each of these
formulas is called a clause in the model.

For integer parameters we also allow comparisons like ij ≤ vj , e.g., to refer
to equivalence classes of input parameters. As an example, a simplified clause of
the staple position could look like this:

(Staple = TopLeft ∧ SheetCount ≤ 100)⇒ (2)
StaplePos = Portrait

This specifies that the output parameter for Staple Position StaplePos has value
Portrait if the input parameter Staple is TopLeft and there are less than 101
sheets.

For integer output parameters we allow the expected output to be calculated
by a function on the input parameters. For instance if the Plexity is set to Duplex
(printing on both sides of the paper), SheetCount becomes half of the number
of printed pages: SheetCount = �Pages/2�.

The actual job processor model has many more parameters and also more
possible values for the parameters, resulting in many more clauses. A complete
job processor model consisting of such a collection of clauses must first be verified
for completeness and consistency, i.e., checked whether the collection indeed
specifies a function from input parameters to output parameters, but such a
verification is orthogonal to testing.

Satisfaction of the model has been used as oracle for our testing process. This
means that the model is instantiated with actual output parameter values of the
job processor implementation, together with the corresponding input parameter
values. (Section 4 will deal with choosing input values). If all clauses hold the
test passes; if a clause does not hold then the test fails and the output parameter
specified in the false clause is wrong.

3.1 Dependencies

As seen above the model for staple position depends on two input values, and
the complete model is even bigger. If we have a look at a simplified clause of the
output location OutputLoc:

(T icketOutputLoc = HCS ∧ Staple = TopLeft∧
SheetCount ≤ 100)⇒ (3)
OutputLoc = Finisher
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then we can see that it depends on the input parameters Staple and SheetCount.
This is because the output location should only be overridden if a staple was
requested, and the printer is actually able to staple. This causes a chain of
dependencies, where the output location clause must contain all – transitive –
dependencies in its clause. These chains clutter the clauses and make modeling
cumbersome, since there are a lot of these type of dependencies. To simplify the
clauses we can observe that a part of (3) can be substituted with (2). Substituting
(Staple = TopLeft ∧ SheetCount ≤ 100) for StaplePos = Portrait we get the
simpler clause:

(T icketOutputLoc = HCS ∧ StaplePos = Portrait) ⇒
OutputLoc = Finisher

We can see that the output location actually depends on the output parameter
StaplePos. Formally, we allow (ij = vj) from Equation 1 to refer to input- and
output parameters.

One potential problem arises with this approach. If there are circular depen-
dencies, we can not trust the results. To avoid circular dependencies we arrange
all clauses in a hierarchy, where the leaves have no dependencies and parents
depend on the parameters of their children. As long as this hierarchy is kept, it
is safe to use some output parameters to verify other output parameter values.
This approach simplifies the clauses significantly, and enables us to model these
complex systems.

4 Testing

Testing a job processor implementation involves three steps:

– Selecting input values,
– executing the SUT with the input values, and
– verifying output from the SUT using the model.

Executing the SUT is done using the existing framework for automatic testing at
Océ. Verifying the outputs is done using the model, as explained in the previous
section. To select input values we look at the complete set of input parameters
supported by the model, and the domains of these parameters. Instantiating each
parameter constitutes a single test case. This can be done randomly, to generate a
set of test cases, or it can be done structurally, based on some coverage criterion.

It has been shown in several projects [5, 6, 8, 2, 12] that most software errors
occur at the interaction of a few factors, i.e. most errors are triggered by par-
ticular values for only a few input parameters, whereas the error is independent
from the values of the other input parameter. Some projects report up to 70% of
bugs found with two or fewer factors and 90% with three or fewer [5, 10], others
show up to 97% of bugs found with only two factors [12]. This, combined with
the fact that the number of test cases needs to be minimized, leads to combinato-
rial testing techniques, such as pairwise (or more generally n-wise) testing. The
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number of test cases in n-wise testing for fixed n grows logarithmically compared
to exponential growth for testing all possible combinations.

The coverage of output parameters is not guaranteed by using the combina-
torial testing technique. Pairwise testing does, however, tend to cover most of
the unintended uses of the system, and many of the paths which lead to special
cases, whereas manually generated test cases tend to focus on normal operation
of the system. Once a test suite has been created, the output coverage can be
analyzed, and the test suite can be updated to add any required coverage.

Test cases are generated based on a set of input parameters and their domains.
A test case is an assignment of each input parameter to a single value from its
domain. A test specification is a set of relations between input parameter name
and the discrete domain of that parameter:
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Given such a test specification, algorithms can generate a set of test cases which
cover all pairs of values. That is, for every vi
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l for at least one test case.
For instance if we have three input parameters: T icketOutputLoc, Staple, and

SheetCount, the test specification could be:

(T icketOutputLoc, {Finisher, HCS})
(Staple, {None, T op, Left})

(SheetCount, {≤ 100, 101})
Each pairwise combination of values, e.g. T icketOutputLoc = Finisher and
Staple = Left, must be present in at least one test case. In this case six test
cases are needed. Generating complete coverage would require 12 test cases.

4.1 Diagnosis

The automatic test case generation based on a job specification can be used as
a tool in diagnosis. Reducing the domain of one or more parameter in the job
specification, can provide information about the fault. As an example consider
the job specification above, and consider a fault has been found with one of the
generated test cases. Reducing the domain of Staple to {None}, and re-running
test case generation and test case execution, can help locate the fault in the SUT.
If, for instance, none of these new test cases finds the fault, it tells us that the
fault only occurs when a staple is requested. This tells us that the error is either
in the staple module, or occurs at the interaction between the staple module
and some other part of the controller. Using this approach the test engineers can
easily generate new sets of test cases to help locate bugs in the SUT.



Model-Based Testing of Industrial Transformational Systems 139

5 Implementing the Test Tool

Other projects to improve the testing process, have previously been carried out
at Océ. Experiences from these projects have shown that integrating tooling with
existing frameworks can be difficult and cumbersome, and introducing new tools
and frameworks requires some learning effort from the engineers. This led us to
implement a prototype tool for this project by hand. The existing framework for
automated testing has a lot of tooling and libraries for testing the job processor,
therefore it was decided to integrate the prototype into this framework. The
existing framework is written in Python, so Python is the language of choice.

The clauses are implemented as if-then-else statements. To give a logical
grouping of clauses, all clauses pertaining to the same output parameter are
grouped into the same Python class. This way a class is said to check an output
parameter by implementing all clauses for that parameter. To ease implementa-
tion several output parameters can be checked by the same class.

The entire set of actual input values and output values is passed to each class.
This enables the class to access any values needed in the clauses to verify their
respective output value. The classes access the values they need and then go
through a series of if-then-else statements that implement the clauses in the
formal approach. Once an expected value is found, it is checked against the
actual output value, and an appropriate response is added to the return set.

The return set contains OK or Error responses from each class, and is re-
turned back to the test system. Here it can be analyzed and all errors found by
the model, can be returned to the engineer.

Once an output value has been verified, it is removed from the set of output
values, which is passed to subsequent classes. This feature has two effects. First,
it enables us to check whether all output values have been verified, by examining
if the set is empty when all classes have been invoked. Second, it enforces the
hierarchy required to detect circular dependencies as explained in Section 3.1.
This is enforced since a circular dependency would result in a missing value in
the latter class in the circle. This also means that classes with dependencies need
to be invoked first, and classes with no dependencies are invoked last.

5.1 Test Case Generation

N-wise testing has currently been implemented using the tool jenny1. jenny is
an executable which accepts as input, the domain size of each input parameter
and generates a set witnessing n-wise coverage of all input parameter values. Cur-
rently jenny is always executed for pairwise coverage. This could be extended, if
the coverage requirements increase. A wrapper has been written around jenny.
A test specification is passed to the wrapper, which generates a jenny query for
the domain sizes of the parameters. jenny returns a set of test cases which are
translated back into the specific values in the test specification. As an example
consider the test specification:

1 http://burtleburtle.net/bob/math/jenny.html
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(T icketOutputLoc, {Finisher, HCS})
(Staple, {None, T op, Left})

(SheetCount, {≤ 100, 101})

The wrapper generates a query for jenny with three parameters with domain
size two, three, and two respectively. jenny generates six test cases:

1a 2a 3b
1b 2c 3a
1b 2b 3b
1a 2b 3a
1b 2a 3a
1a 2c 3b

Each line represents a test case. The number represents the input parameter. The
letter represents the value of the parameter. The test case 1b 2c 3a is translated
into (T icketOutputLoc = HCS, Staple = Left, SheetCount =≤ 100).

This way test cases are generated based on the test specification as created
by the test engineer. In the case of diagnosis the engineer can reduce the domain
sizes in the test specification, and rerun the wrapper to get a new set of test
cases.

5.2 Run Time

The time required to execute a single test case is highly dependent on the num-
ber of pages printed in that test case; depending on the hardware running the
simulator, printing a single page can take up to half a second. This fact means
that test cases with a lower number of pages are preferred. In the model for
testing the stapling module the equivalence classes for the number of sheets are:

– 1 (too few sheets),
– 2 (too few sheets for duplex),
– 3− 100,
– >= 101 (too many sheets).

Including all these in the pairwise test case generation would include many jobs
with 100 pages or more. However, it can be observed that if the staple limit works
for a single test case, it most likely works for all test cases. This observation leads
us to implement the possibility to add manually generated jobs to the test set.
By adding two jobs with 100 and 101 sheets printed, we reduce the equivalence
classes for staple limit to three and by choosing a low value for the equivalence
class 3 − 100 the number of sheets printed can be kept low in all other jobs.
This dramatically reduces the time required to execute the test suite, while still
keeping acceptable coverage.
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5.3 Invalid Test Cases

Since the PDL and ticket formats support different features, it is possible to
generate invalid test cases. For instance, one ticket format supports accounting
options, so we need to have input parameters for accounting. However, if we
generate a test case with accounting activated, while using a ticket format which
does not support accounting, the test tool is unable to generate the job for the
controller, since activating accounting in this ticket format is not possible. This
is an invalid test case, since it can not be executed on the SUT.

These invalid combinations need to be removed from the pairwise coverage.
This is because the pairs covered by an invalid test case are not executed on the
system. Excluding simple combinations of parameter values is supported in the
current version. More complex exclusions, such as employed by e.g. AETG [5],
ATGT [3], or Godzilla [7] might be required in the future.

6 Status and Discussion

It was chosen to focus on modeling the stapling capabilities of the printers, as an
initial step. The currently implemented models support four parameters: PDL
format, page count, output location, and staple location. The four parameters
have domain sizes two, three, three, and eight respectively. This set is pairwise
covered in 27 test cases. To cover the upper page limits for stapling four test
cases are manually added, bringing the total number of test cases generated from
this project to 31.

It is difficult to say precisely how this coverage compares to the current set
of test cases, as a lot of test cases touch stapling, while testing other areas of
the controller as well. Of the manually generated test cases a total of 170 test
cases use stapling. Looking at all the parameters and parameter values used in
these 170 test cases, we observe 11 parameters with domains ranging from two
to nine. Getting pairwise coverage of all these input parameters can be achieved
with only 86 test cases. These parameters are not currently supported by the
model, so the test cases can not be executed at this time. This shows us that once
the models are extended, the number of test cases can be reduced. Determining
if the fewer number of test cases will locate as many or more errors will require
further work.

The choice of implementing a prototype in Python proved very useful. This
also supports previous experience in similar projects. Integrating with the exist-
ing Océ framework was very easy. In the current version of the tool, implementing
the models as Python classes is cumbersome and requires some copy-paste. With
further development and refactoring, we expect to build a viable environment
for developing models.

Using a model-based approach gives the engineers far better understanding
of the test cases and their outcome. The new framework gives better overview
of which parameter values are selected in each test case, and the models can be
used to give a hint as to where an error is located in the code. The controllable
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test case generation can also be used for analysis, to find the precise interactions
between parameters which cause the error.

The issues with maintenance are also improved, as making changes to the
requirements only requires updating the model, then all test cases should work.
Updating and implementing the models is not trivial, and errors in the model
could cause false positives and false negatives. However, since the same models
are used by all test cases, it is more likely that errors in the model will be found.

Currently only pairwise coverage is supported. As the usage of this approach
grows in Océ, it will be seen how effective this coverage is in locating faults.
It might be the case that the coverage needs to be supplemented by manually
generated test cases, or replaced by a different coverage measure. Currently no
analysis of output coverage is done. This requires engineers to manually examine
the test cases, and possibly supplement with additional cases.

Even though the focus in this project was not to detect faults in the SUT,
one unknown fault has been located. The unknown fault has not been located
by the old set of manual test cases. This also indicates that the coverage criteria
might be good.

Based on the advantages of the model-based approach, Océ has decided to
continue development of this prototype, and extend models to continue improv-
ing the testing process.

7 Modeling a Livestock Stable Controller

Since our approach shows promising results for modeling and testing printer
controllers, and the literature shows similar approaches used in other types of
systems, we wanted to examine if our approach could be applied in other compa-
nies. We have initiated contact with a company designing and producing venti-
lation systems for livestock stables, to examine how the approach applies there.
The controller for these systems is split into several components, each of which
monitors some input sensors and controls some output actuators. The inputs
are continuous measurements of e.g. temperature. The outputs are either on/off
values or a percentage value describing how much power should be given to,
for instance, a ventilator. Calculation of the two types of output are done in a
standard way.

For on/off -type of controllers there are two important parameters: t, and
Tδ. The value of t describes when the output should be activated. To avoid
oscillation between on and off, Tδ describes how far below t the input has to fall
before deactivating the output. It can be observed that between t−Tδ and t this
controller shows nondeterministic behavior. This nondeterminism can be seen as
an internal state in the controller, storing its previous output value. For inputs
between t and t − Tδ the controller outputs the same value as previously. For
inputs below t − Tδ the output is always off, and above t the output is always
on. Figure 2 illustrates the possible values.

For percentage-type of controllers the output value is a linear function of the
input. The function is described by two parameters: p and Pδ. The value of p
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describes when the output must start increasing. Pδ describes how far above p
the output must reach 100%. Below p the output is always 0%, above p+Pδ the
output is always 100%. In between the output grows linearly from 0% to 100%.
Figure 3 illustrates the function.

Components can have several inputs based on the same patterns, to form
more complex components. For instance, a component can have a temperature
reading and a humidity reading as input, and can activate a ventilation fan as
output. The ventilation fan should be activated when the temperature reaches
above some value while the humidity is below some value. Both inputs will have
Tδ values for when the fan should be deactivated again.

Currently test cases for the system are generated manually. A test engineer
examines the parameters of the component and generates a set of inputs gen-
erating an acceptable coverage, and generates corresponding expected outputs.
Subsequently the test cases are executed automatically and the expected outputs
are compared to the actual outputs.

This type of system can be modeled within our framework, with a single
modification. We need to handle the nondeterministic behavior. This can be
done by representing the model as a hybrid automaton[1] by handling the state
as an input. We make a fresh input parameter to represent the state of the
model. The domain of this parameter is the state space of the model. This
way the clauses in the model can depend on the state the system is in and
act accordingly. However, in this simple setting this seems like too complex a
solution. We only need a single state variable; a Boolean. We only need to know
the value of this variable one time step backward. This can be easily be handled
in the current setting of transformational systems. The problem with adding this
functionality is that pairwise test case generation will not work since test cases
become traces, where each step depends on the previous one. Some work needs
to be done to find a good way to generate test cases for this type of system. The
test case generation needs to generate valid test cases and provide coverage of
the data in input parameters as well as coverage of the state space of the model.
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With this modification a large set of manually generated test cases, can be
automatically generated from simple models. Future test cases can easily be
created by instantiating the model with the required values.

This shows that the approach is indeed applicable for different types of sys-
tems, even though it was developed for testing printer controllers. The diversity
of the SUTs shows that there are potentially several industrial areas where sim-
ilar approaches could be applied to improve the testing process.

8 Conclusion

This paper has presented the initial steps towards a model-based testing frame-
work for testing printer controllers at Océ. The approach has proved promising
in improving the testing process and the quality of test cases. Advantages of the
approach include: improved maintenance, reduced number of test cases, measur-
able coverage, and better understanding of the test results. While the approach
seems promising at improving the testing process, further work is needed to
state this for certain. While test cases can now be generated based on coverage
requirements, it is unclear if the generated test set will locate as many errors as
the old test cases. Also development of the model requires some significant effort,
but it is expected to prove valuable in the long run. Based on the outcome of this
project, Océ has decided to continue with the model-based approach. Finally, we
illustrated that the approach is useful for modeling and testing controller soft-
ware for ventilation systems in livestock stables. This diverse usefulness of our
approach indicates that several other industrial areas could benefit from similar
approaches.

The connection to the current way of working at Océ, and usability of the
methods by Océ in their current environment, were among the main require-
ments and starting points of this project. This did not always lead to the most
sophisticated, or theoretically new solutions, and sometimes even to ad-hoc solu-
tions, e.g. to establish the connection to the existing Python tooling. Future work
will include the use of more sophisticated approaches, such as using SAT-solvers
or SMT tooling to solve, check, and manipulate Boolean formulas.
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Abstract. In this paper we present a model for automotive system
tests of functionality related to turn indicator lights. The model cov-
ers the complete functionality available in Mercedes Benz vehicles, com-
prising turn indication, varieties of emergency flashing, crash flashing,
theft flashing and open/close flashing, as well as configuration-dependent
variants. It is represented in UML2 and associated with a synchronous
real-time systems semantics conforming to Harel’s original Statecharts
interpretation. We describe the underlying methodological concepts of
the tool used for automated model-based test generation, which was
developed by Verified Systems International GmbH in cooperation with
Daimler and the University of Bremen. A test suite is described as initial
reference for future competing solutions. The model is made available in
several file formats, so that it can be loaded into existing CASE tools or
test generators. It has been originally developed and applied by Daimler
for automatically deriving test cases, concrete test data and test proce-
dures executing these test cases in Daimler’s hardware-in-the-loop sys-
tem testing environment. In 2011 Daimler decided to allow publication
of this model with the objective to serve as a ”real-world” benchmark
supporting research of model based testing.

1 Introduction

Model-based testing. Automated model-based testing (MBT) has received
much attention in recent years, both in academia and in industry. This interest
has been stimulated by the success of model-driven development in general, by
the improved understanding of testing and formal verification as complementary
activities, and by the availability of efficient tool support. Indeed, when compared
to conventional testing approaches, MBT has proven to increase both quality and
efficiency of test campaigns; we name [13] as one example where quantitative
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evaluation results have been given. In this paper the term model-based testing
is used in the following, most comprehensive, sense: the behavior of the system
under test (SUT) is specified by a model elaborated in the same style as a model
serving for development purposes. Optionally, the SUT model can be paired with
an environment model restricting the possible interactions of the environment
with the SUT. A symbolic test case generator analyzes the model and specifies
symbolic test cases as logical formulae identifying model computations suitable
for a certain test purpose (also called test objective). Symbolic test cases may
be represented as LTL formulas of the form Fφ, expressing that finally the
test execution should produce a computation fragment where the test purpose
specified by φ is fulfilled.

Constrained by the transition relations of SUT and environment model, a
solver computes concrete model computations which are witnesses of symbolic
test cases Fφ. More formally, solvers elaborate solutions of so-called bounded
model checking instances

tc(c, G) ≡def

c−1∧
i=0

Φ(σi, σi+1) ∧G(σ0, . . . , σc) (1)

In this formula σ0 represents the current model state and Φ the transition re-
lation associated with the given model, so any solution of (1) is a valid model
computation fragment of length c. Intuitively speaking, tc(c, G) tries to solve
LTL formula Fφ within c computation steps, starting in model pre-state σ0,
so that each step is a valid model transition, and test purpose φ is encoded in
G(σ0, . . . , σc).

The inputs to the SUT obtained from these computations are used in the test
execution to stimulate the SUT. The SUT behavior observed during the test ex-
ecution is compared against the expected SUT behavior specified in the original
model. Both stimulation sequences and test oracles, i. e., checkers of SUT be-
havior, are automatically transformed into test procedures executing the concrete
test cases in a software-in-the-loop or hardware-in-the-loop configuration.

Observe that this notion of MBT differs from “weaker” ones where MBT is
just associated with some technique of graphical test case descriptions. Accord-
ing to the MBT paradigm described here, the focus of test engineers is shifted
from test data elaboration and test procedure programming to modeling. The
effort invested into specifying the SUT model results in a return of investment,
because test procedures are generated automatically and debugging deviations
of observed against expected behavior is considerably facilitated because the
observed test executions can be “replayed” against the model.

Objectives and Main Contributions. The main objective of this article is to
present a “real-world” example of a model used in the automotive industry for
system test purposes. The authors have experienced the “validation powers” of
such models with respect to realistic assessment of efforts in model development,
and with respect to the tool capabilities required to construct concrete model
computations – i. e., test data – for given symbolic test cases. We hope to
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stimulate a competition of alternative methods and techniques which can be
applied to the same benchmark model in order to enable objective comparison of
different approaches. For starting such a competition we also give an overview of
the methods and algorithms applied in our tool and present performance values,
as well as test generation results to be compared with the results obtained using
other methods and tools.

To our best knowledge, comparable models of similar size, describing con-
current real-time behavior of automotive applications and directly derived from
industrial applications are currently not available to the public, at least not
for application in the MBT domain. As a consequence, no systematic approach
to benchmark definitions has been made so far. We therefore suggest a simple
classification schema for such benchmarks, together with a structuring approach
for the test suites to be generated. While this article can only give an overview
of the model, detailed information are publicly available on the website [17]
(www.mbt-benchmarks.org).

Overview. In Section 2 we present an introductory overview over the bench-
mark model. In Section 3 the methods applied in our test generator are sketched,
with the objective to stimulate discussions about the suitability of competing
methods. The representation of symbolic test cases as constraint solving prob-
lems (CSP) is described, and we sketch how these CSPs are solved by the test
generation engine in order to obtain concrete test stimulations to be passed from
the test environment to the SUT.

In Section 4 we propose a classification of benchmarks which are significant for
assessing the effectiveness and performance of model-based testing tools. This
classification induces a structure for reference test suites. In Section 5 a test
generation example is presented.

Since the complete model description and the detailed explanation of algorithms
used for test case generation and CSP solving is clearly beyond the page restric-
tion of this submission, interested readers are referred to [17], where the material is
presented in more comprehensive form, and the model can be downloaded in XMI
format and as a model file for the EnterpriseArchitect CASE tool [23] which was
used to create the model and its different export formats. Additionally an archive
may be downloaded whose files allow to browse through the model in HTML for-
mat. The symbolic test cases used in the performance results are also available,
so that the sequence of CSP solutions created by our test case generator can be
repeated by other tools. The current benchmark evaluation results, including test
generations performed with our tool are also published there.

Related Work. Benchmarking has been addressed in several testing domains.
For “classical” software testing the so-called Siemens benchmarks [9] provide
a collection of C programs with associated mutations rated as representative
for typical programming bugs. A more comprehensive discussion and review of
available software testing benchmarks is given in [14]. In [15] an initiative for
event-driven software testing benchmarks has been launched.
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In the field of model-based embedded systems testing only very few bench-
marks are currently available, and none of them appear to describe comprehen-
sive industrial control applications. In [10] a Matlab/Simulink model for a flight
control system has been published. According to our classification proposed in
Section 4 it addresses the benchmark category test strength benchmarks : A set
of test cases is published which have been generated using random generation
techniques inspired by Taguchi methods. To analyze the strength of test cases,
several mutants of the model have been provided which may either be executed
in Simulink simulation mode or as C programs generated from the mutant mod-
els. Since random test generation techniques on the input interface to the SUT
are used, the model coverage achieved is only analyzed after test suite execu-
tion. As a consequence, no test generation benchmarks suggested in Section 4
are discussed. All existing benchmarks we are aware of may be classified as test
strength benchmarks. Our proposition of test generation benchmarks seems to
be a novel concept.

While our test generation approach relies on constraint solvers to find test-
input-data, search-based testing techniques use randomized methods guided by
optimization goals. In [1] the use of random testing, adaptive random testing and
genetic algorithms for use in model-based black-box testing of real-time systems
is investigated. To this end, the test-environment is modeled in UML/MARTE
while the design of the SUT is not modeled at all, since all test data are derived
from the possible environment behavior. An environment simulator is derived
from the model that interacts with the SUT and provides the inputs selected by
one of the strategies. The environment model also serves as a test oracle that
reports errors as soon as unexpected reactions from the SUT are observed. This
and similar approaches are easier to implement than the methods described in
this paper, because there is no need to encode the transition relation of the
model and to provide a constraint solver, since concrete test data is found by
randomized model simulations. We expect, however, that the methods described
in [1] do not scale up to handle systems of the size presented here, where the
concurrent nature of the SUT requires to consider the interaction between several
components in real-time (the model would be too large to construct a single
large product automaton from the many smaller ones describing the component
behavior). To the best knowledge of the authors there is no work on using search
based testing on synchronous parallel real-time systems in order to achieve a high
degree of SUT coverage, let alone to find test input data to symbolic test-cases.

The solutions presented here have been implemented in the RT-Tester test
automation tool which provides an alternative to TRON [16,6] which supports
timed automata test models and is also fit for industrial-strength application.
TRON is complementary to RT-Tester, because it supports an interleaving se-
mantics and focuses on event-based systems, while RT-Tester supports a syn-
chronous semantics with shared variable interfaces. RT-Tester also competes
with the Conformiq Tool Suite [5], but focuses stronger on embedded systems
testing with hard real-time constraints.
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2 Model Overview

General. Our MBT benchmark model specifies the turn indicator functions
available in Mercedes Benz cars; this comprises left-/right turn indication, emer-
gency flashing, crash flashing, theft flashing and open/close flashing. The level of
detail given in the model corresponds to the observation level for system testing.
To provide the full functionality, several automotive controllers cooperate using
various communication busses (CAN and LIN). The signals exchanged between
controllers can be observed by the testing environment; additionally the envi-
ronment can stimulate and monitor discrete and analogue interfaces between
SUT and peripherals, such as switches, buttons, indicator lights and various
dashboard indications. Capturing this functionality in a formal way requires a
concurrent real-time system semantics.

System Interface. In Fig. 1 the interface between system under test (SUT)
and testing environment (TE) is shown. Due to the state-based nature of the
hardware interfaces (discretes, periodic CAN or LIN bus messages repeatedly
sending state information) the modeling formalism handles interfaces as shared
variables written to by the TE and read from by the SUT or vice versa.

The TE can stimulate the SUT via all interfaces affecting the turn indication
functionality in the operational environment: in CentralLockingRM ∈ {0, 1, 2}
denotes the remote control for opening and closing (i. e. unlocking and locking)
cars by means of the central locking system. Signal in CrashEvent ∈ {0, 1} acti-
vates a crash impact simulator which is part of the TE, and in EmSwitch ∈ {0, 1}
simulates the “not pressed”/“pressed” status of the emergency flash switch on
the dashboard. Signal in IgnSwitch ∈ {0, . . . , 6} denotes the current status of the
ignition switch, and in TurnIndLvr ∈ {0, 1, 2} the status of the turn indicator
lever (1 = left, 2 = right). In special-purpose vehicles (SPV), such as taxis or
police cars, additional redundant interfaces for activation of emergency flash-
ing and turn indicators exist (e. g., in EmSwitchSPV ∈ {0, 1}). Observe that
these redundant interfaces may be in conflicting states, so that the control soft-
ware has to perform a priority-dependent resolution of conflicts. Inputs to the
SUT marked by OPTION specify different variants of vehicle style and equip-
ments, each affecting the behavior of the turn indication functions. In contrast
to the other input interfaces to the SUT, options remain stable during execution
of a test procedure, since their change requires a reset of the automotive con-
trollers, accompanied by a procedure for loading new option parameters. If the
TE component does not contain any behavioral specifications, the test generator
will create arbitrary timed sequences of input vectors suitable to reach the test
goals, only observing the range specifications associated with each input signal.
This may lead to unrealistic tests. Therefore the TE may be decomposed into
concurrent components (typically called simulations) whose behavior describe
the admissible (potentially non-deterministic) interaction of the SUT environ-
ment on some or all interfaces. The test generator interprets these simulations as
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additional constraints, so that only sequences of input vectors are created, whose
restrictions to the input signals controlled by TE components comply with the
transition relations of these simulations.

SUT outputs are captured in the SignalsOut interface (Fig. 1 shows only a
subset of them). The indicator lights are powered by the SUT via interfaces
pwmRatio FL, pwmRatio FR, . . . ∈ {0, . . . , 120} where, for example, FL stands
for “forward left” and RR for “rear right”. The TE measures the percentage
of the observed power output generated by the lamp controllers, 100% denot-
ing identity with the nominal value. System integration testing is performed in
grey box style: apart from the SUT outputs observable by end users, the TE
also monitors bus messages produced by the cooperating controllers performing
the turn indication service. Message tim EFS ∈ {0, 1}, for example, denotes a
single bit in the CAN message sent from a central controller to the peripheral
controllers in order to indicate whether the emergency flash switch indicator on
the dashboard should be activated, and tim FL ∈ {0, 1} is the on/off command
to the controller managing the forward-left indicator light.

TestEnvironment SystemUnderTestSignalsOut SignalsOut

SignalsIn SignalsIn

<<interface,TE2SUT>>
SignalsIn

in_CentralLockingRM: int
in_CrashEvent: int
in_EmSwitch: int
in_EmSwitchHighPrio: int
in_EmSwitchLowPrio: int
in_EmSwitchSPV: int
in_IgnSwitch: int
in_TheftAlarm: int
in_TurnIndLvr: int
in_TurnIndLvrSPV: int
OPTION_Country: int
OPTION_Trailer: int
OPTION_VehicleStyle: int

<<interface,SUT2TE>>
SignalsOut

oc_FlashCmdLock: int
oc_FlashCmdUnlock: int
pwmRatio_FL: int
pwmRatio_FR: int
pwmRatio_RL: int
pwmRatio_RR: int
pwmRatio_SM_FL: int
pwmRatio_SM_FR: int
pwmRatio_SM_RL: int
pwmRatio_SM_RR: int
pwmRatio_EFS: int
pwmRatio_TL: int
pwmRatio_TR: int
tim_EFS: int
tim_FL: int
tim_FR: int
tim_RL: int
tim_RR: int
tim_SM_FL: int
tim_SM_FR: int
tm_SM_RL: int
...

Fig. 1. Interface between test environment and system under test

First-Level SUT Decomposition. Fig. 2 shows the functional decomposition
of the SUT functionality. Component NormalAndEmerFlashing controls left/right
turn indication, emergency flashing and the dependencies between both func-
tions (see below). Component OpenCloseFlashing models the indicator-related
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reactions to the locking and unlocking of vehicles with the central locking sys-
tem. CrashFlashing models indications triggered by the crash impact controller.
TheftFlashing controls reactions triggered by the theft alarm system. These func-
tions interact with each other, as shown in the interface dependencies depicted
in Fig. 2: the occurrence of a crash, for example, affects the emergency flash
function, and opening a car de-activates a theft alarm. The local decisions of the
above components are fed into the PriorityHandling component where conflicts
between indication-related commands are resolved: if, for example, the central
locking system is activated while emergency flashing is active, the open/close
flashing patterns (one time for open, 3 times for close) are not generated; instead,
emergency flashing continues. Similarly, switching off the emergency switch has
no effect if the high-priority emergency interface (in EmSwitchHighPrio ∈ {0, 1})
is still active. Priority handling identifies the function to be performed and
relays the left-hand/right-hand/both sides flashing information to the compo-
nents OnOffDuration and AffectedLamps. The former determines the durations
for switching lights on and off, respectively, during one flashing period. These
durations depend both on the status of the ignition switch and the function to
be performed. The latter specifies which lamps and dashboard indications have
to participate in the flashing cycles. This depends on the OPTION VehicleStyle
which determines, for example, the existence of side marker lamps (interfaces
pwmRatio SM FL, FR, RL, RR), and on the OPTION Trailer which indicates the
existence of a trailer coupling, so that the trailer turn indication lamps (pwmRa-
tio TL, TR) have to be activated. Moreover, the affected lamps and indications
depend on the function to be performed: open-close flashing, for example, affects
indication lamps on both sides, but the emergency flash switch indicator (pwm-
Ratio EFS) is not activated, while this indicator is affected by emergency, crash
and theft flashing. The MessageHandling component transmits duration and iden-
tification of affected lamps and indicators on a bus and synchronizes the flash
cycles by re-transmission of this message at the beginning of each flashing cy-
cle. Finally, component LampControl comprises all output control functions, each
function controlling the flashing cycles of a single lamp or dashboard indicator.

Behavioral Semantics. Model components behave and interact according to
a concurrent synchronous real-time semantics, which is close to Harel’s original
micro-step semantics of Statecharts [8]. Each leaf component of the model is
associated with a hierarchic state machine. At each step starting in some model
pre-state σ0, all components possessing enabled state machine transitions pro-
cess them in a synchronous manner, using σ0 as the pre-state. The writes of all
state machine transitions affect the post-state σ1 of the micro-step. Two con-
current components trying to write different values to the same variable in the
same micro-step cause a racing condition which is reflected by deadlock of the
transition relation and – in contrast to interleaving semantics – considered as
a modeling error. Micro-steps are discrete transitions performed in zero time.
Inputs to the SUT remain unchanged between discrete transitions. If the system
is in a stable state, that is, all state machine transitions are disabled, time passes
in a delay transition, while the system state remains stable. The delay must not
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IgnSwitchBusRouting

NormalAndEmerFlashing OpenCloseFlashing CrashFlashing TheftFlashing

PriorityHandling

OnOffDuration MessageHandling AffectedLamps

LampControl

Fig. 2. First-level decomposition of system under test

exceed the next point in time when a discrete transition becomes enabled, due
to a timeout condition. At the end of a delay transition, new inputs to the SUT
may be placed on each interface. The distinction between discrete and delay
transitions is quite common in concurrent real-time formalisms, and it is also
applied to interleaving semantics, as, for example, in Timed Automata [21]. The
detailed formal specification of the semantic interpretation of the model is also
published on the website given above [19].

3 Benchmark Reference Tool

Tool Components and Basic Concepts. The reference data for the bench-
marks have been created using our model-based testing tool RT-Tester. It con-
sists of a parser front-end transforming textual model representations (XMI ex-
port provided by the CASE tool) into internal representations of the abstract
model syntax.

A constraint generator derives all model coverage goals from the abstract
syntax tree and optionally inputs user-defined symbolic test cases. Users may
select which symbolic test cases should be discharged in the same test proce-
dure. A transition relation generator traverses the model’s abstract syntax tree
and generates the model transition relation Φ needed for expressing computa-
tion goals according to Equation (1). During the test data and test procedure
generation process, the constraints associated with these symbolic test cases are
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passed on to an abstract interpreter. The interpreter performs an abstract con-
servative approximation of the model states that are reachable from the current
model state within a pre-defined number n of steps. The goals which may be
covered within n steps according to the abstract interpretation are passed on
in disjunctive form to an SMT solver. The solver unrolls the transition relation
in a step-by-step manner and tries to solve at least one of the goals. If this
succeeds, a timed sequence of input vectors to the SUT is extracted from the
solution provided by the SMT solver. Starting from the current model state, a
concrete interpreter executes this sequence until a new stable state is reached
where further inputs may be generated to cover the remaining goals. If the solver
cannot discharge any goal within n steps, random simulations and/or backtrack-
ing to model states already visited can be performed in order to identify other
model states from where the next goal may be reached. Constraint generator,
interpreters and solver represent the core of the tool, called the test generation
engine. Its components only depend on the abstract syntax representation of the
model and its transition relation, but not on the concrete modeling syntax and
the syntax required by the test execution environment for the test procedures.

At the end of the generation process a multi-threaded test procedure is gener-
ated which stimulates the SUT according to the input sequences elaborated by
the solver and simultaneously checks SUT reactions with respect to consistency
with the model. In the sections below we highlight the most important features
of the tool; a detailed description is given in [19].

SMT-Solver. The constraint solving problems of type (1) may contain linear
and non-linear arithmetic expressions, bit-operations, array-references, compar-
ison predicates and the usual Boolean connectives. Data types are Booleans,
signed and unsigned integers, IEEE-754 floating-point numbers and arrays.

Our SMT-solver SONOLAR uses the classical bit-blasting approach that
transforms a formula to a propositional satisfiability problem and lets a SAT-
solver try to find a solution [11,2]. Variables in the formula are translated to
vectors of propositional variables (i. e., bit vectors). The lengths of these bit
vectors correspond to the bit width of the respective data types. Operations are
encoded as propositional constraints relating input to output bit vectors. Since
we reason on bit-level, this enables us to precisisely capture the actual seman-
tics of all operations. Integer arithmetic takes potential overflows into account
and each floating point operation is correctly rounded to the selected IEEE-754
rounding-mode.

To this end, the formula is first represented as an acyclic expression graph,
where each variable and each operation of the formula is represented as a node.
Using structural hashing on these nodes, identical terms are shared among ex-
pressions. This representation allows us to perform word-level simplifications,
normalization and substitutions. The expression graph is then bit-blasted to an
And-Inverter Graph (AIG). AIGs are used by several SMT solvers to synthesize
propositional formulas [11,2,12]. Each node of an AIG is either a propositional
variable or an and -node with two incoming edges that may optionally be in-
verted, i.e. negated. The AIG is structually hashed and enables us to perform
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bit-level simplifications. Readers are referred to [7,3] for more information on
logic synthesis using AIGs. The AIG is then translated to CNF using the stan-
dard Tseitin encoding and submitted to a SAT solver.

In order to handle the extensional theory of arrays we adopted the approach
described in [4]. Instead of bit-blasting all array expressions to SAT up-front,
array expressions that return bit-vectors associated with array-reads or checks for
array equality are replaced by fresh variables. This results in an over-abstraction
of the actual formula since the array axioms are left out. If the SAT solver is
able to find a solution to this formula the model is checked for possible array
inconsistencies. In this case, additional constraints are added on-demand to rule
out this inconsistency. This process is repeated until either the SAT solver finds
the refined formula to be unsatisfiable or no more array inconsistencies can
be found. While unrolling the transition relation constraints are incrementally
added to the SMT solver.

Abstract Interpretation. Our abstract interpreter has been developed to
compute over-approximations of possible model computations in a fast way. Its
main application is to determine lower bounds of the parameter c in Formula (1)
specifying the number of times the transition relation Φ must be unrolled before
getting a chance to solve tc(c, G). This considerably reduces generation time,
because (a) the SMT solver can skip solution trials for tc(c, G) with values of
c making a solution of tc(c, G) infeasible, and (b) the abstract interpretation
technique provides the means for non-chronological backtracking in situations
where it is tried to solve tc(c, G) from a former model state already visited
(see [18] for a more detailed description).

The abstract interpreter operates on abstract domains: interpretation of model
behavior is performed using an abstract state space ΣA instead of the concrete
one. ΣA is obtained by replacing each concrete data type D of the concrete
state space Σ with an adequate abstract counterpart L(D). Functions defined
over concrete data types D0, . . . , Dn are lifted to the associated abstract domains
L(D0), . . . , L(Dn). In order to be able to reason about concrete computations
while computing only the abstract ones, concrete and abstract states are related
to one another by Galois connections. A Galois connection is a tuple of mappings
(� : P(Σ) → ΣA, � : ΣA → P(Σ)) defining for any set of concrete states the
associated abstract state and vice versa, see [18] for additional details. Finally,
each abstract domain L(D) is equipped with a join operator � : L(D)×L(D)→
L(D) which establishes the basis for the join operator over two abstract states � :
ΣA×ΣA → ΣA. This operator is essential as it allows to reduce the complexity
usually arising when interpreting large models where the computation of all
reachable states would otherwise be infeasible, due to the number of states and
the number of control decisions.

The abstract interpreter uses the interval, Boolean and power set lattices as
abstract domains for numerical data types, Booleans and state machine loca-
tions, respectively. The interpretation of a given model is parametrized by an
initial abstract state σ0

A ∈ ΣA, an integer cmax denoting the maximal number
of transition steps to be interpreted and a test case goal G to be checked for
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satisfiability. Starting in the given initial state, the interpreter computes a se-
quence of up to cmax abstract states 〈σ1

A, σ2
A, . . .〉 where each state σi+1

A is guar-
anteed to “include”1 every concrete state σi+1 reachable from any of the concrete
states represented by σi

A. The interpretation stops as soon as either the maximal
number of steps has been reached or the test case goal G evaluates to true or
�2. In the latter case the actual step number is returned.

4 MBT Benchmark Classification

We propose to classify MBT benchmarks according to the following character-
istics, denoted by test strength benchmarks and test generation benchmarks.

Test strength benchmarks investigate the error detection capabilities of con-
crete test cases and test data generated by MBT tools: even if two MBT tools
produce test suites of equivalent model coverage, they will usually possess dif-
ferent strength, due to different choices of symbolic test cases, representatives of
equivalence classes, boundary values and timing of input vectors passed to the
SUT, or due to different precision of the test oracles generated from the model.
Mutation testing is an accepted approach to assessing test suite strength; there-
fore we suggest to generate model mutants and run test suites generated from
the unbiased model as model-in-the-loop tests against these mutants. The evalu-
ation criterion is the percentage of uncovered mutations for a fixed set of mutant
models.

Test generation benchmarks input symbolic test cases as introduced in Sec-
tion 3 and measure the time needed to generate concrete test data. We advocate
a standard procedure for providing these test objectives for a given model, struc-
turing symbolic test cases into several sets. The first sets should be related to
model coverage criteria [24], such as (1) control state coverage (every control
state of the SUT model is visited by at least one test), (2) state machine transi-
tion coverage (every transition of every state machine is taken at least once) and
(3) MC/DC coverage (conditions of the type φ1 ∧φ2 are tested at least once for
each of the valuations (φ1, φ2) = (false, true), (true, false), (true, true), and
conditions of the type φ1 ∨ φ2 are tested at least for (φ1, φ2) = (false, false),
(true, false), (false, true)).

Conventional model coverage criteria as the ones listed in (1 — 3) do not pos-
sess sufficient strength for concurrent real-time systems, because the dependen-
cies between state machines operating in parallel are not sufficiently addressed.
Since models as the one under consideration are too large to consider cover-
age of all state vector combinations, a pragmatic compromise is to maximize
the coverage of all basic control state pairs of interacting components C1, C2,
combined with pairs of input equivalence classes of signals influencing C1, C2.

1 In the sense that σi+1 ∈ (σi+1
A )�.

2 	 is the Boolean lattice value representing the concrete value set {false, true}.
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As a consequence we suggest symbolic test cases consisting of (a subset of) these
combinations as a forth set. As a fifth set of symbolic test cases it is proposed
to define application-specific test cases of specific interest.

Given these classes for a specific model, this induces 5 test suites to realize a
comprehensive test generation benchmark.

Evaluation criteria for test generation benchmarks. Apart from the time
needed to generate concrete test data, the number of SUT resets involved in the
resulting test procedures should be minimized as well: since SUT resets usually
consume significant time when testing embedded systems, hardware-in-the-loop
tests avoiding resets significantly reduce the test suite execution time. Moreover,
test executions covering many test cases drive the SUT into more internal states
than test executions resetting the SUT between two or only a small number of
test cases. As a consequence, the error detection capabilities of test procedures
are usually increased with the number of test cases they cover between resets.
Avoiding resets is adverse to the reduction of generation time: if some goal Fφ is
very time consuming to reach from a given model state σ0, backtracking to a for-
mer model state from where computation fragments fulfilling Fφ can be reached
more easily frequently helps to reduce the generation time in a significant way.
Since the SUT is usually unable to roll back into a previous state, backtracking
enforces a SUT reset, after which the new computation can be exercised. For
comparing the performance of tools we suggest to calculate Pareto frontiers of
pairs (generation time,number of resets) for each competing tool, and compare
the tool-dependent frontiers.

Significance of test generation benchmarks. According to standards appli-
cable to safety-critical systems verification [22,20] the error detection strength of
a test suite is just one aspect to be addressed when justifying the adequateness
of test cases. Complementary to that the standards require to account for suffi-
cient coverage on the levels of requirements, design and code. As a consequence,
the capability of test automation tools to generate sufficient test cases to achieve
such coverage has significant impact on verification and certification efforts.

5 Test Generation Example

The benchmark website [17] contains two classes of symbolic test cases: (1)
user-defined test cases reflect specific test purposes identified by test engineers.
They serve either to test more complex requirements which cannot be traced
in the model to simple sets of basic control states or transitions to be covered,
or they are used to explore SUT reactions in specific situations where a failure
is suspected. (2) Model-defined test cases aim at covering certain parts of the
model according to pre-defined strategies, such as basic control state coverage,
state machine transition coverage and MC/DC coverage. They are automatically
derived by our tool from the abstract syntax representation of the model.
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(a) Generated inputs and internal model
state oc CentralLockingStatus.

(b) Expected outputs and internal model
state ooo OnDuration.

Fig. 3. Generation results of theft alarm test procedure

In this section a test generation based on user-defined test cases from [17,
Test UD 003] is presented. The underlying test purpose is to investigate the
interaction between theft alarm and open/close flashing: theft alarm flashing is
only enabled when the doors are locked. As a reaction to alarm-sensor activation
the turn indicator lights shall start flashing on both sides. Pressing the remote
control key to unlock the doors automatically shuts off the alarm flashing.

Instead of explicitly determining the sequence of timed input vectors to the
SUT which is suitable for covering the test purpose described, we specify simpler
and shorter symbolic test cases that may also refer to internal model states and
leave it up to the tool’s generation engine to calculate the concrete test input
data and its timing. Symbolic test case3

TC-turn_indication-THEFT_ALARM-0001;
[ SystemUnderTest.TheftFlashing.TheftFlashing.THEFT_ALARM_ACTIVE.ALARM_OFF
&& ! in_TheftAlarm ]
Until
[ _timeTick >= 2000 && in_TheftAlarm ]

refers to SUT inputs (theft alarm-sensor in_TheftAlarm) the model execution
time (_timeTick) and basic control states of state machines which are part of
the SUT model (SystemUnderTest.TheftFlashing...ALARM_OFF). The LTL
formula is a directive to the test generation engine to find a computation which
finally reaches a model state where theft alarm flashing is enabled but not yet
active (this is the case when the basic control state ...ALARM_OFF is reached),
and the theft alarm-sensor should remain passive until 2000ms have passed since

3 The symbols used in the test cases below are taken from the turn indicator model
published in [17]. A detailed description of inputs, outputs and internal model vari-
ables can be found there.
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start of test (the leading finally operator is always omitted in our symbolic test
case specifications). The inputs derived by the generation engine to cover this
test case drive the SUT into a state where an alarm is signaled and the SUT
has to react by activating theft alarm flashing. The next symbolic test case to
be processed is

TC-turn_indication-THEFT_ALARM-0002;
[ SystemUnderTest.TheftFlashing.TheftFlashing.THEFT_ALARM_ACTIVE.ALARM_ON

&& in_TheftAlarm ]
Until
[ _timeTick >= 4000 && IMR.in_TheftAlarm &&

SystemUnderTest.oc_CentralLockingStatus == 1 ]

This formula is a directive to stay in the theft alarm state for at least another
2 seconds after which a model state is to be reached where the internal model
variable oc_CentralLockingStatus has value 1 (= “unlocked”), indicating that
an “unlock doors” command has been given via remote key control. Again, the
associated inputs and timing is calculated by the test generation engine. The
final symbolic test case to be processed by the generator is

TC-turn_indication-THEFT_ALARM-0003;
[ SystemUnderTest.TheftFlashing.TheftFlashing.THEFT_ALARM_OFF ]
Until
[ _timeTick >= 6000 &&
SystemUnderTest.TheftFlashing.TheftFlashing.THEFT_ALARM_OFF ]

It is a directive to stay in the “theft alarm disabled” state ...THEFT_ALARM_OFF
for at least another two seconds, so that it can be observed that after one flash
period signaling that the doors have been unlocked, no further alarm indica-
tions are made. The signal flow associated with this test (inputs and expected
SUT outputs) is depicted in Fig. 3. The generator created a sequence of in-
put vectors where first doors are closed by means of the remote key control
input in_CentralLockingRM (2 = lock, 1 = unlock). This triggers three flash-
ing periods for left and right indicator lamps (pwmRatio_FR, pwmRatio_FL, see
Fig. 3b). For open/close flashing the on-duration of a flashing period is 340ms;
this is captured in the internal model variable ood_OnDuration whose contents
will be transmitted by the SUT via CAN bus and can therefore be observed
and checked by the threads running on the test engine and acting as test ora-
cles. After two seconds an alarm is raised by setting in_TheftAlarm = 1. This
changes the on-duration of the flashing period to 220ms. Theft alarm flashing
is switched off at model execution time stamp 4000, approx. 500ms after the
unlock-doors signal has been given (in_CentralLockingRM=1); the change of
the internal oc_CentralLockingStatus from 0 to 1 indicates that the “doors
unlocked” status has now been realized (see Fig. 3a). One flashing period signals
“doors unlocked” (again with on-duration 340ms), after which no further alarm
indications occur.

6 Conclusion

We have presented a model of an automotive control application, covering the
full functionality related to turn indication, emergency flashing, crash, theft and
open/close flashing. The model is a 1-1-transcription of the one currently used
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by Daimler for system testing of automotive controllers. As the only adaptation
we have presented the model in pure UML 2.0 style, while Daimler uses a specific
UML profile optimized for their hardware-in-the-loop testing environment. The
model is made available to the public in complete form through the website [17],
together with benchmark test suites and performance values achieved with our
reference tool. Additionally, a classification of benchmarks for embedded systems
test tools has been suggested which takes into account both the test strength
and the performance for automated test suite generation.

The underlying methods of the MBT tool used by the authors for performing
embedded systems test have been described, in order to facilitate the comparison
of competing techniques applied to the benchmarks in the future. The tool is
currently applied in industrial projects in the automotive, railway and avionics
domains.
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Abstract. The paper addresses the problem of adaptive testing of a 
deterministic FSM which models an implementation under test using a 
nondeterministic FSM as its specification. It elaborates a method for deriving 
test fragments, combining and executing them in adaptive way such that the 
implementation passes the test if and only if it is a reduction of the 
specification. Compared to the existing methods, it uses adaptive test fragments 
needed to reach as well as to distinguish states.  

Keywords: nondeterministic FSM, conformance testing, test generation, 
adaptive testing. 

1   Introduction 

There exists a significant body of work devoted to the development of methods for 
test generation from a given FSM to guarantee the “full” fault coverage. Such 
coverage of resulting tests means the following. Given a specification machine with n 
states and a fault domain containing all FSMs with at most m states, m ≥ n, the full 
fault coverage is achieved by a so-called m-complete test suite, which detects all 
faults in any implementation that can be modelled by an FSM in the fault domain. An 
implementation has a fault if it does not respect a chosen conformance relation, 
typically trace equivalence or inclusion. To derive m-complete tests the existing 
methods (with reset operation) use the following three test fragments:  

• transfer sequences/strategies to reach states in the specification FSM; 
• traversal sequences to extend the transfer sequences; in case of m = n they ensure 

the transition coverage of the specification and implementation machines and in 
case of m > n additionally check for the existence of extra states in the 
implementation machines;  

• state identification or distinguishing sequences/strategies to check states reached 
by prefixes of the above sequences.  

In the case of deterministic specifications, several methods are elaborated, such as the 
W, Wp, HSI, H, and more recently the SPY method [10]. While differing in the types 
of state identifiers, they require the same traversal set of all input sequences of length 
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m – n + 1 be applied after each state of the specification. However, as the results of 
[9] show, different traversal sets should be used when the specification has 
undistinguishable states. Moreover, it is no longer required to reach with transfer 
sequences each and every state of such specifications.  

When the specification can be nondeterministic and a conforming implementation 
FSM is its reduction, it can have fewer traces than the specification, and not all the 
states of the specification can be matched with the states of the implementation. The 
implication for deriving m-complete test suites is that the value of m can even be 
smaller than that of n. This fact has to be taken into account in determining each of 
the three test fragments and the way they are composed to yield m-complete test for a 
nondeterministic FSM. State reachability and distinguishability can be achieved in 
testing more efficiently using adaptive execution of inputs, where the choice of a next 
input depends on a current output, as early work of [1, 8] indicates.  

The main contribution of this paper is a method for deriving test fragments, 
combining and executing them in an adaptive manner against a given deterministic 
implementation FSM with at most m states such that the resulting verdict is pass if 
and only if the implementation is a reduction of the specification. The method allows 
to avoid the derivation of preset m-complete tests, as they could be voluminous. At 
the same time, we prove that the latter is the union of the tests executed for each 
implementation with at most m states.  

The remaining of this paper is organized as follows. Section 2 defines the basic 
notions for state machines. Section 3 explains how the test fragments for reaching and 
distinguishing states as well as traversal sets can be derived for a given 
nondeterministic FSM and defines an m-complete test as an FSM. Section 4 details 
the method for adaptive testing. The proposed method is illustrated in details using an 
example. The related work is discussed in Section 5 and Section 6 concludes the 
paper. 

2   General Definitions 

A Finite State Machine (FSM) S is a 5-tuple (S, s0, I, O, hS), where S is a finite set of 
states with the initial state s0; I and O are finite non-empty disjoint sets of inputs and 
outputs, respectively; hS is a transition relation hS ⊆ S × I × O × S, where a 4-tuple (s, i, 
o, s′ ) ∈  hS is a transition. 

Sometimes we will consider instead of s0 another state s of S as the initial state; such 
FSM (S, s, I, O, hS) is denoted S/s.  

Input sequence α ∈ I* is a defined input sequence in state s of S if it labels a 
sequence of transitions starting in state s. A trace of S in state s is a string of input-
output pairs which label a sequence of transitions starting in state s. Let Tr(S/s) or 
TrS(s) denote the set of all traces of S in state s, while Tr(S) or TrS denote the set of 
traces of S in the initial state. Given a sequence β ∈ (IO)*, we use Pref(β) to denote 
the set of all prefixes of β which are in the set (IO)*, and let Pr(β) denote Pref(β) \ 
{ε}. Given sequence β ∈ (IO)*, the input (output) projection of β, denoted β↓I (β↓O), 
is a sequence obtained from β by erasing symbols in O (I). 
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We define various types of machines as follows.  

FSM S = (S, s0, I, O, hS) is  

• trivial if hS = ∅; 
• completely specified (a complete FSM) if for each pair (s, i) ∈  S  ×  I  there exists 

(o, s′ ) ∈  O  ×  S  such that (s, i, o, s′ ) ∈  hS; 
• partially specified (a partial FSM) if for some pair (s, i) ∈  S  ×  I , input i is 

undefined in state s,  i.e., (s, i, o, s′ ) ∉  hS for all (o, s′ ) ∈  O  ×  S ;  
• deterministic (DFSM) if for each pair (s ,  i)  ∈  S  ×  I  there exists at most one 

transition (s, i, o, s′ ) ∈  hS for some (o, s′ ) ∈  O  ×  S ;  
• nondeterministic (NFSM) if for some pair (s, i) ∈  S  ×  I , there exist at least two 

transitions (s, i, o1, s1), (s, i, o2, s2) ∈  hS, such that o1 ≠  o2 or s1 ≠  s2; 
• observable if for each two transitions (s, i, o, s1), (s, i, o, s2) ∈  hS it holds that s1 = 

s2; 
• single-input if in each state there is at most one defined input, i.e., if for each two 

transitions (s, i1, o1, s1), (s, i2, o2, s2) ∈  hS it holds that i 1  = i 2 ;  
• output-complete if for each pair (s ,  i)  ∈  S  ×  I  such that the input i is defined in 

the state s, there exists a transition from s with i for every output; 
• acyclic if TrS is finite.  

Given input sequence α defined in state s, let outS(s, α) denote the set of output 
sequences which can be produced by S in response to α at state s, that is outS(s, α) = 
{β↓O | β ∈ Tr(S/s) and β↓I = α}. Given an observable FSM S, for a trace β ∈ Tr(S/s), s-
after-β denotes the state reached by S when it executes the trace β from state s. If s is 
the initial state s0 then instead of s0-after-β we write S-after-β. The FSM S is initially 
connected, iff for any state s ∈ S there exists a trace β such that S-after-β = s. A state 
is a deadlock state if no input is defined in the state and trace β ∈ Tr(S) is a completed 
trace of S if S-after-β is a deadlock state. 

In this paper, we consider only complete initially connected observable 
specification machines; one could use a standard procedure for automata 
determinization to convert a given FSM into observable one. We define in terms of 
traces several relations between states of a complete FSM.  

Given states s1, s2 of a complete FSM S = (S, s0, I, O, hS),  

• s1 and s2 are (trace-) equivalent, if TrS(s1) = TrS(s2); 
• s2 is trace-included into (is a reduction of) s1, s2 ≤ s1, if TrS(s2) ⊆ TrS(s1); 

• s1 and s2 are r-compatible, s1 ≃  s2, if there exists a state of a complete FSM that is 
a reduction of both states s1 and s2; 

• s1 and s2 are r-distinguishable, s1 ≄  s2 if no state of any complete FSM can be a 
reduction of both states s1 and s2.  

We also use relations between machines. Given FSMs S = (S, s0, I, O, hS) and P = (P, 
p0, I, O, hP),  FSM P is a reduction of S if TrP(p0) ⊆ TrS(s0); FSM P is a submachine of S 
if P ⊆  S, p0 = s0 and hP ⊆  hS.  
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To characterize the common behavior of two machines (states) we use the 
operation of the intersection. The intersection S ∩ P of two machines S and P (also 
known as the product) is an FSM (Q, q0, I, O, h S∩P) with the state set Q ⊆ S × P, the 
initial state q0 = s0p0, and the transition relation h S∩P such that Q is the smallest state 
set obtained by using the rule (sp, i, o, s′p′) ∈  h S∩P ⇔ (s, i, o, s′ ) ∈  h S  & (p, i, o, p′)  
∈  h P. The intersection FSM S ∩ P preserves only common traces of the two machines, 
in other words, for each state sp of S ∩ P we have TrS∩P(sp) = TrS (s) ∩ TrP(p) and thus, 
TrS∩P = TrS  ∩ TrP. 

3   Deriving Test Fragments 

In this section, we first establish properties of states of a specification NFSM that can 
be reached in an adaptive way and present a method for deriving FSM models, called 
state preambles, for adaptive strategies needed to reach such states. Then we consider 
adaptive distinguishability of states and provide a precise characterization of all 
possible strategies by an FSM, called a canonical separator, obtained from a self-
product of the specification machine. State separators are submachines of a canonical 
separator. We also explain how traversal sets are derived for a given NFSM and 
conclude by defining a test as an FSM and its completeness. 

3.1   State Preambles 

All the existing test generation methods rely on tests which reach the states of the 
specification and match the states of the implementation and specification machines. 
Each such test for DFSM is completely defined by an input sequence. Once a 
specification is an NFSM and an implementation is allowed to have fewer traces than 
the specification not all the states of the specification can be matched with the states 
of the implementation. Indeed, a reduction of the specification FSM may have fewer 
states. This observation leads to the question which state of the specification FSM 
must be “implemented” in any correct implementation? Intuitively, it is a state such 
that any reduction of the specification FSM should have a trace which takes the 
specification FSM from the initial state to the state in question. This intuition is 
reflected in the following definition. 

Definition 1. Given an FSM S = (S, s0, I, O, hS), state s  ∈  S is definitely reachable if 
any reduction of S has a trace which takes S into the state s. 

This property can be established as follows. 

Proposition 1. State s  of an FSM S is definitely reachable if and only if S has a single-
input acyclic submachine S′ with the only deadlock state s  such that for each input 
defined in some state of S′, the state has all the transitions of S labeled with this input. 

Such a submachine can be used in testing to adaptively bring a given machine into a 
definitely reachable state and is called a preamble for that state. 
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Definition 2. Given a definitely reachable state s  ∈  S, a single-input acyclic 
submachine of S with the only deadlock state s  such that for each input defined in 
some state of the submachine, the state has all the outgoing transitions of S labeled 
with this input is a preamble for state s, denoted Ps = (R, r0, I, O, hPs). 

A state for which there exists a preamble with a single input projection for all 
completed traces was called deterministically reachable state in [8]. In a deterministic 
(initially connected) machine each state is deterministically reachable; any 
nondeterministic machine has at least one deterministically, thus definitely, reachable, 
state, namely, the initial state.  

We present a method to check whether state s is definitely reachable and, if it is, to 
derive a preamble Ps. 

Algorithm 1. for constructing a preamble for a given state 
Input: An FSM S and s  ∈  S, s ≠ s0. 
Output: a preamble if the state s is definitely reachable. 
Construct an FSM (R, r0, I, O, hRs) as follows 
R := {s}; 
hRs := ∅; 
While there exist a state s' ∉  R and a set of inputs Is', such that for each input i ∈  
Is', (s', i, o, s'') ∈ hS, s'' ∈ R for all o ∈ outS(s', i)  
 R := R ∪ {s'}; 

 hRs := hRs ∪ {(s', i, o, s'') | i ∈  Is' and o ∈ outS(s', i)};  
End While; 
If s0 ∉  R then return the message “the state s is not definitely reachable” and stop 
Else let (R, r0, I, O, hRs), where r0 := s0, be the obtained FSM; 
Starting from the initial state, remove from each state with several defined inputs 
all outgoing transitions with the same input until each state has a single defined 
input thus to obtain a single-input submachine with the only deadlock state s; 
Delete states which are unreachable from the initial state; 
Return the obtained machine as a preamble for the state s and stop.                       ♦ 

The idea is that analyzing the backward reachability, we first choose all inputs which 
may form a preamble, since at that stage we do not know those leading to the required 
state from the initial state and then analyzing the forward reachability, we retain just a 
single input at each state. Since any preamble is a submachine of the specification 
machine with n states, then the length of any trace in a preamble never exceeds the 
number of states of the specification; in other words, one needs at most n - 1 inputs to 
transfer to a definitely reachable state. 

Given a preamble Ps, let T(Ps) be the set of its completed traces. Given a set K of 
definitely reachable states of the specification FSM S such that the initial state s0 ∈ K, 
the union UK of all the completed traces over all the preambles of these states is a 
cover for K. The cover will be used in constructing another test fragment, traversal 
sets, as explained in Section 3.3. 

Example. Consider the FSM S in Figure 1(a). It has four states 1, 2, 3, and 4 with 
state 1 as the initial state; three inputs a, b, and c; and two outputs 0 and 1.  
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The initial state is deterministically reachable, it is reached with the empty input 
sequence, so its preamble is a trivial FSM. Each state is definitely reachable, thus the 
set K contains all the states. Figures 2 and 3 present preambles and intermediate 
machines constructed using the above given method. A cover for all the states is the 
union of all completed traces of the obtained preambles, UK = {ε, a1, a0c1b1, c0, 
c1a1, c1, c0c1}.                                                                                                              ♦ 

 
                    (a)                                                                     (b) 

Fig. 1. (a) FSM S and (b) FSM B (initial states are in bold) 

 

Fig. 2. Constructing a preamble for state 2 

 
                     (a)                                                                           (b) 

Fig. 3. Constructing preambles for state 3 (a) and state 4 (b) 

3.2   State Separators 

By the definition, if two states of a given machine are r-compatible, there exists a 
state of some complete FSM which is a reduction of both states. Such a state is the 
initial state of the intersection of two instances of a given machine initialized in 
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different states (a self-product), since the intersection represents all the common 
traces of the two states. On the other hand, if the two states are r-distinguishable, the 
intersection is not a complete FSM. This fact is stated in the following.     

Proposition 2. Given two states s1 and s2 of a complete FSM S = (S, s0, I, O, hS) and 
the intersection S/s1 ∩ S/s2 = (Q, s1s2, I, O, h S/s1∩S/s2

), states s1 and s2 are r-compatible if 
and only if the intersection has a complete submachine.  

Corollary 1. States s1 and s2 are r-distinguishable if and only if the intersection has 
no complete submachine, i.e., each submachine has an input undefined in some state.  

The existence of a complete submachine can be checked by iterative removal from the 
intersection each state that has undefined input along with its incoming transitions. If 
at the end, the initial state is also removed then the two given states are r-
distinguishable, otherwise they are r-compatible. The procedure is similar to the one 
for checking the existence of an adaptive (s1, s2)-distinguishing strategy considered in 
[1]. While that work focuses on the existence of such a strategy, it does not provide a 
means to characterize all the strategies and a method to obtain one. Such a method 
was first elaborated in [8], and now we offer an exact characterization of all state 
distinguishing strategies in the form of an FSM, called a canonical separator, which is 
obtained from the intersection as follows.  

Definition 3. Given r-distinguishable states s1 and s2 of an FSM S and the intersection 
S/s1 ∩ S/s2 = (Q, s1s2, I, O, h S/s1∩S/s2

), an FSM P = (P, s1s2, I, O, hP) such that P = Q ∪ 

{s1, s2} and hP = h S/s1∩S/s2
 ∪ {(ss′ , i, o, s1) | ss′  ∈ Q, o ∈  out(s, i) \ out(s′ , i)} ∪ {(ss′ , i, 

o, s2) | ss′  ∈ Q, o ∈  out(s′ , i) \ out(s, i)}, is a canonical separator of states s1 and s2. 

In other words, a canonical separator for two r-distinguishable states s1 and s2 of S is 
the intersection extended by including two designated deadlock states s1 and s2 such 
that the completed traces distinguish the two possible initial states of S. 

A canonical separator contains all the traces which separate r-distinguishable 
states. For testing, it is sufficient to use acyclic traces which do not branch on inputs. 
This leads to the following definition. 

Definition 4. Given r-distinguishable states s1 and s2 of an FSM S, a single-input 
acyclic submachine of the canonical separator, such that the only deadlock states are 
s1 and s2 and for each input defined in some state of the submachine, the state has all 
the outgoing transitions of the canonical separator labeled with this input is a 
separator of states s1 and s2, denoted R(s1, s2). 

By the definition, canonical separator for given states is unique, but it may contain 
several separators as its submachines. The procedure for determining a separator from 
a given canonical one is similar to Algorithm 1; it includes backward analysis and 
iterative removal of all defined inputs, but one for each state, as well as cycles such 
that the deadlock states of the submachine are reachable from all the other states and 
is omitted here. 

Example. Figure 4(a) shows a fragment of the canonical separator of states 1 and 3 
for the FSM S in Figure 1 (we do not show the part which starts in state 44, as states 1 
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and 3 cannot be reached from it). Figure 4(b) shows a separator obtained from the 
canonical one. The separators for other states are shown in Figure 4(c).                    ♦ 

Notice that the intersection S/s1 ∩ S/s2 has no more than n2 states, if S is an 
observable machine with n states. Then the length of any trace in a separator never 
exceeds this bound; in other words, one needs at most n2 inputs to adaptively 
distinguish two states. 

We can use separators of pairs of states to identify a given state among a set of 

possible states. Given a subset of states L ⊆ S, let Id(s, L) = {R(s, s′) | s′ ∈ L and s′ ≄  
s}. The set Id(s, L) is in some sense a generalization of a concept of a state identifier 
in a subset of states used in testing from deterministic FSMs. More precisely, the set 
Id(s, L) allows one to identify that a given state cannot be a reduction of any state in 
the set L but state s. Such sets will be used in the main algorithm in Section 4. 

 
                            (a)                                                           (b) 

 
                                                              (c) 

Fig. 4. (a) a fragment of the canonical separator of states 1 and 3, (b) the separator of states 1 
and 3, (c) the separators for other states 

3.3   Traversal Sets 

The construction of traversal sets is based on the approach elaborated in [6] and we refer 
the reader to that work for more detail. The basic idea is to count states of the specification 
FSM traversed by a trace and to terminate the trace as soon it becomes cyclic in any 
conforming implementation FSM with at most m states. The termination rule is 
formulated in terms of partial orders on the traces, defined by the reduction relation 
between the states. The improvement compared to [6] is the use of definitely reachable 
states instead of deterministically reachable states which shortens the traversal sets. 

Given a specification FSM S, a cover UK of the set K of all definitely reachable 
states, states s, s′ ∈ K, a preamble Ps, and a non-empty trace β ∈ TrS (s), we define a 
(strict) partial order ≤s′ on the set T(Ps)Pr(β) ∪ UK, where T(Ps)Pr(β) = {αγ| α ∈ T(Ps) 
& γ ∈ Pr(β)}, such that   

1) for ω, ω′ ∈ αPr(β), α ∈ T(Ps), ω ≤s′ ω′ if |ω| < |ω′| and S-after-ω ≤ S-after-ω′ ≤ s′; and 
2) for ω ∈ UK, ω′ ∈ T(Ps)Pr(β), ω ≤s′ ω′ if ω ≠ ω′ and S-after-ω ≤ S-after-ω′ ≤ s′. 
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Let C(T(Ps)Pr(β), UK, s′) be a longest chain of the poset (T(Ps)Pr(β) ∪ UK, ≤s′), and 
|C(T(Ps)Pr(β), UK, s′)| be its length. Given a state s ∈ K, trace β ∈ TrS(s) is a traversal 

trace for the preamble Ps if Σs′∈R|C(T(Ps)Pr(β), UK, s′)| = m + 1 for some set R ∈ RS, 

where RS denotes the set of all maximal sets of pairwise r-distinguishable states of S. 
For each traversal trace β we select one among such sets R in RS and denote it Rβ. 

The set of all possible traversal traces for the preamble Ps is a traversal set N(UK, 
Ps). We illustrate the construction of traversal sets using our running example. 

Example. We assume that any implementation machine has at most four states, i.e., m 

= 4. All the states of S are pairwise r-distinguishable, RS = {{1, 2, 3, 4}}.  

Consider state 1. The set of all completed traces of P1 contains just the empty word ε. 
To determine the traversal set for state 1, we start by considering all the traces of 
length one of this state and iteratively increasing their length until the above condition 
is satisfied. We have initially the traces a0, a1, b0, c0, c1 of state 1. For state s = 1 
and trace β = a0, we construct the set T(Ps)Pr(β) ∪ UK, where T(Ps)Pr(β) = {a0}, UK = 
{ε, a1, a0c1b1, c0, c1a1, c1, c0c1}, thus T(Ps)Pr(β) ∪ UK = {ε, a0, a1, a0c1b1, c0, 
c1a1, c1, c0c1}. The longest chain C(T(Ps)Pr(β), UK, 1) of the poset (T(Ps)Pr(β) ∪ UK, 
≤1), is {ε}, a longest chain C(T(Ps)Pr(β), UK, 2) of the poset (T(Ps)Pr(β) ∪ UK, ≤2) is a 
singleton, so is one for C(T(Ps)Pr(β), UK, 4). A longest chain C(T(Ps)Pr(β), UK, 3) is 

{a0, c0}, since S-after-a0 = S-after-c0 = 2, thus, |C(T(Ps)Pr(β), UK, 3)| = 2.  For the set 
R = {1, 2, 3, 4}, we obtain Σs′∈R|C(T(Ps)Pr(β), UK, s′)| = 1 + 2 + 1 + 1 = 5. Therefore, 
the trace a0 is a traversal trace for the preamble P1. Similarly, we conclude that the 
remaining traces of length one, b0, c0, c1 are also traversal traces for state 1. Thus, for 
the preamble P1, the traversal set N(UK, P1) becomes {a0, a1, b0, c0, c1}. 

The traversal sets for the remaining preambles are constructed as above. N(UK, P2) 
= {a0, b1, c1}, N(UK, P3) = {a0, a1, b0, c1} and N(UK, P4) = {a1, b1, c1}. 

Given a traversal trace β ∈ N(UK, Ps), s′ ∈ Rβ, the set Id(s′, Rβ) is used to identify 
that a given state cannot be a reduction of any state of the set Rβ but state s′. In our 
example, we have that Id(s, S) = Id(s, Rβ) for each state s, since Rβ = {1, 2, 3, 4} for 
each trace β in the traversal sets obtained above.                                                         ♦ 

3.4   FSM Tests 

We use FSMs to model tests from an implementation under test perspective: inputs 
(outputs) of the specification machine are also inputs (outputs) of a test. Thus, a tester, 
executing the test, applies inputs to an implementation FSM, observes its outputs and 
produces a corresponding verdict defined by a final state, pass or fail, reached by the 
test. 

Definition 5. An acyclic output-complete FSM U = (U ∪ {pass, fail}, u0, I, O, hU), 
where pass and fail are designated deadlock states, is a test if (u, i, o, fail) ∈ hU 
implies that u-after-io′β = pass for some o′ ≠ o and β ∈ TrU(u-after-io′).  
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Given a test U, we further refer to traces which take U from the initial state to the fail 
state as fail traces and denote TrU

fail the set of all fail traces. Pass traces are defined as 
follows, TrU

pass = TrUv \ TrU
fail. Note that while fail traces are completed traces, pass 

traces can be proper prefixes of other traces. Test U is a trivial test if it is a trivial FSM 
with the initial pass state. 

A test may have transitions with different inputs from a same state. In several 
work, this is not allowed in order to ensure the controllability of test execution. We 
leave the choice of inputs to the tester; assuming the following about the tester. If in a 
current state of the test, several inputs are defined, then executing such a test the tester 
simply selects one among alternative inputs during a particular test run. To execute 
another input defined in this state, the tester first uses a reset operation assumed to be 
available in any implementation to reset it to its initial state and then re-executes the 
preamble to this state. Test execution continues until no more unexecuted inputs in 
the test are left. Moreover, test execution is adaptive: depending on the observed 
output reaction to the previous input, the tester either chooses a next input to execute 
or just terminates the test run when an unexpected output is observed and it reaches 
the state fail.  

To characterize conformance in this paper, we use the reduction relation and 
assume that the specification can be nondeterministic while implementations are 
deterministic, but both are complete machines. Given a complete FSM S = (S, s0, I, O, 
hS), let ℑ(S) be a set of complete deterministic (implementation) machines over the 
input alphabet I and the output alphabet O, called a fault domain. FSM B ∈ ℑ(S) is a 
conforming implementation machine of S w.r.t. the reduction relation if B ≤ S.   

Definition 6. Given the specification FSM S, a test U = (U, u0, I, O, hU), and an 
implementation FSM B ∈ ℑ(S),  

• B passes the test U, if the intersection B ∩ U has no state, where the test U is in the 
state fail. The test U is sound for FSM S in ℑ(S) w.r.t. the reduction relation, if any 
B ∈ ℑ(S), which is a reduction of S, passes the test U. 

• B fails U if the intersection B ∩ U has a state, where the test U is in the state fail. The 
test U is exhaustive for FSM S in ℑ(S) w.r.t. the reduction relation, if any B ∈ ℑ(S), 
which is not a reduction of S, fails the test U.  

• The test U is complete for FSM S in ℑ(S) w.r.t. the reduction relation, if it is sound 
and exhaustive in ℑ(S) w.r.t. the reduction relation. 

The set ℑ(S) that contains all complete deterministic FSMs with at most m states is 
denoted ℑm(S). A test is m-complete if it is complete in the fault domain ℑm(S).  

4   Adaptive Testing 

In this section, we propose an algorithm for adaptive testing of a complete 
deterministic implementation FSM B with at most m states; the algorithm yields the 
verdict pass if B is a reduction of a given specification FSM S and verdict fail if it is 
not a reduction of S.  
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Test fragments defined in previous sections are used in the proposed method as in 
all the existing methods; namely, we reach states with preambles, apply traversal sets 
after reached states and check states with separators. However, preambles have to be 
executed in an adaptive way to reach states of the implementation FSM which match 
definitely reachable states of the specification machine (and only they, as opposed to 
methods for DFSMs), while the execution of separators is in general also adaptive. 
The key differences are related to traversal sets. First, since a conforming FSM may 
not implement all the traversal traces, we need to determine those present in a given 
implementation FSM. This is achieved by executing the input projections of the 
traversal traces. Second, learning these traces during test execution allows 
determining separators to check r-distinguishable states, traversed by them. 

The algorithm includes also the construction of an FSM which represents all the 
traces observed during test execution. This machine is then used to show that an FSM 
which contains the observed traces for all implementation FSMs in ℑm(S) is an m-
complete test for the FSM S. 

    Algorithm 2. for adaptive testing of a deterministic implementation FSM 

Input. Complete FSM S, a set K of definitely reachable states, the set Id(s, S) and 
preamble Ps for each s ∈ K, traversal sets N(UK, Ps), sets Id(s′, Rβ) for each s′ ∈ Rβ 
and β ∈ N(UK, Ps), and an implementation (black box) which behaves as a 
deterministic FSM B.  
Output. Verdict pass if B is a reduction of S or verdict fail if B is not a reduction of 
S and the FSM GB that contains all the observed traces of B. 

Initialize the two sets Tpass and Tfail of traces as the empty sets;  
While there exists an unexecuted separator R(s, s′) in the set Id(s, S) for some s ∈ K  

Apply reset; 
Execute the preamble Ps until the observed trace is not in Ps or the designated 
state s of the preamble is reached, let α be the observed trace; 

If the trace α is not in Ps add α to the set Tfail and terminate with the verdict fail; 
Otherwise, let the observed completed trace of Ps be αs; add the trace αs to Tpass; 
Mark “executed” all the separators in Id(s, S) which have the same set of 
traces to the state s as R(s, s′) and execute the separator R(s, s′), let β be the 
observed trace; 

If the designated state s of the separator is not reached add the trace αsβ 
to Tfail and terminate with the verdict fail; 
Otherwise, add the trace αsβ to Tpass; 

End While; 
While there exists an unexplored state s ∈ K  

While there exists an unexecuted trace in the traversal set N(UK, Ps), let γ be 
the input projection of a longest unexecuted traversal trace  

Apply reset; 
Execute the preamble Ps (and observe the completed trace αs of Ps); 
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Apply the inputs of γ one by one until the observed trace is not in Tr(S/s) or the 
trace is in N(UK, Ps); let β be the observed trace with the input projection ν; 

If the trace β ∉ Tr(S/s) add the trace αsβ to Tfail and terminate with the 
verdict fail; 
Otherwise, i.e., if β ∈ N(UK, Ps) then mark ”executed” each trace in N(UK, Ps) 
whose input projection has the prefix ν;  
While for some prefix σ of β such that αsσ ∈ C(T(Ps)Pr(β), UK, s′), s′ ∈ Rβ, 
there exists an unexecuted separator R(s′, s′′) in the set Id(s′, Rβ)  

Apply reset; 
Execute the preamble Ps (and observe the completed trace αs of Ps); 
Apply the input projection of σ, let η be the observed trace; 
Add to Tpass the observed trace αsη; 
Mark “executed” all the separators in Id(s′, Rβ) which have the same set 
of traces to the designated state s′ as the unexecuted separator R(s′, s′′) 
and execute the separator, let κ be the observed trace; 
If the designated state s′ of the separator is not reached then add the 
trace αsηκ to Tfail and terminate with the verdict fail; 
Otherwise, add the trace αsηκ to Tpass; 

End While; 
End While; 

Mark the state s “explored”; 
End While; 
Terminate with the verdict pass; 

Derive an FSM GB with the set of traces pref(Tpass) ∪ Tfail, such that each completed 
trace in Tpass takes the FSM GB to the deadlock state pass and each trace in Tfail takes 
GB to the deadlock state fail.                                                                                      ♦ 

Theorem 1. Given a deterministic FSM B = (B, b0, I, O, hB) with at most m states, let 
Algorithm 2 be used for the adaptive testing of FSM B against a given specification 
FSM S. Then the verdict pass is produced if B is a reduction of S while the verdict fail 
is produced if B is not a reduction of S.  
Before proving Theorem 1 we first illustrate Algorithm 2 with our running example. 

Example. Assume we are given the deterministic implementation FSM B in Figure 
1(b). For simplicity the FSM B has the state labels as in the FSM S; it is then a 
submachine of that FSM, differing in the transitions (1, a, 0, 3) and (3, a, 1, 4) of S 
which are absent in the FSM B.  

We initialize the two sets Tpass and Tfail as the empty sets and consider state 1 in the 
set K. The preamble P1 is a trivial FSM, so we just add the trace ε to Tpass. Id(1, S) 
includes the separators: R(1, 2), R(1, 3), and R(1, 4) which we execute by applying first 
input b to the implementation machine, observing the completed trace b0 and then, 
after reset, input a which results in output 1, followed by input a observing the 
completed trace a1a0. We add the traces b0 and a1a0 to Tpass. Next, we execute the  
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preamble P2 and observe the completed trace a1 of this preamble, which we add to 
Tpass. Notice that from now on, executing the preamble P2 reduces to applying input a 
and observing trace a1. To execute the separators in Id(2, S), we apply input a 
followed by b, observing the trace a1b1; finally a followed by a, observing the trace 
a1a0, which we add to Tpass. Executing the preamble P3, we obtain the trace c1a1 and 
add it to Tpass. After the subsequent execution of three separators, we add to Tpass the 
traces c1a1a0b1 and c1a1b0. Executing the preamble P4 we obtain the trace c1 and 
add it to Tpass. After the subsequent execution of the three separators, we add to Tpass 
the traces c1a1 and c1b1. Completing the execution of the preambles along with the 
separators, we obtain the following pass traces Tpass = { ε, b0, a1a0, a1, a1b1, c1a1, 
c1a1a0b1, c1a1b0, c1b1}. 

Next, we have to execute traversal sets after their corresponding preambles 
followed by separators. Consider state 1 and N(UK, P1) = {a0, a1, b0, c0, c1}. We 
apply a and observe the trace a1; executing the separators in Id(2, S) we observe the 
traces which are already in Tpass, namely, a1b1 and a1a0. We apply b and observe the 
trace b0; executing the separators in Id(1, S) we observe the traces b0b0 and b0a1a0. 
Finally we apply c and observe the trace c1; executing the separators in Id(4, S) we 
observe the traces which are already in Tpass, namely, c1a1 and c1b1. 

Consider state 2 and N(UK, P2) = {a0, b1, c1}. We obtain the following 
observations: a1a0a0, a1a0b1, a1b1a0, a1b1b1, a1c1a1, and a1c1b1. For state 3 and 
N(UK, P3) = {a0, a1, b0, c1}, we have c1a1a0a0, c1a1a0b1, c1a1b0a0b1, c1a1b0b0, 
c1a1c1a1, c1a1c1b1. Finally, for state 4 and N(UK, P4) = {a1, b1, c1} we obtain the 
following observations: c1a1a0b1, c1a1b0, c1b1a0, c1b1b1, c1c1a1, c1c1b1.  

The resulting set of completed pass traces becomes {a1a0a0, a1a0b1, a1b1a0, 
a1b1b1, a1c1a1, a1c1b1, b0a1a0, b0b0, c1a1a0a0, c1a1a0b1, c1a1b0a0b1, 
c1a1b0b0, c1a1c1a1, c1a1c1b1, c1b1a0, c1b1b1, c1c1a1, c1c1b1}. The set of fail 
traces Tfail is empty, since the FSM B is a reduction of the FSM S. The algorithm 
terminates with the verdict pass. The obtained acyclic FSM GB has the set of traces 
Pref(Tpass) and each completed trace takes the FSM GB to the deadlock state pass.      ♦ 

Compare now the obtained result with a preset test suite returned by the method from 
[6]. That method constructs traversal sets only for deterministically reachable states. 
As a result the traces in these traversal sets are longer since each deterministically 
reachable state is also definitely reachable, but the converse is not true. Since there 
are only two deterministically reachable state in the specification FSM in Figure 1, 
the test suite will contain all the input sequences of length three appended with 
corresponding separators, i.e., the total length of a test suite is more than 5⋅33. Here 
we notice that the method for constructing a complete test suite in [2] also uses only 
deterministically reachable states. 

Now we return to the proof of the theorem. 

Proof of Theorem 1. By construction, if B is a reduction of the specification FSM S, 
then only the verdict pass can be produced by Algorithm 2. In fact, according to the 
algorithm, each observed trace is a trace of S and is a pass trace of the test, so the 
verdict fail cannot be produced.   
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Consider now FSM B ∈ ℑm(S) that is not a reduction of S and for an observed 
completed trace αs of the preamble Ps, s ∈ K, and for each observed trace αsσ ∈ 
C(T(Ps)Pr(β), UK, s′), β ∈ N(UK, Ps), s′ ∈ Rβ, no verdict fail was produced. We now 
show that in this case, there exist s ∈ K and β ∈ N(UK, Ps) ∩ Tr(B-after-αs) such that 
for the observed completed trace αs of the preamble Ps, there exists a set of sequences 

M = {μ1, ..., μm+1} ⊆ ∪s′∈RβC(T(Ps)Pr(β), UK, s′)} with the following property. The set 

{(S ∩ B)-after-μj | j = 1, …, m +1} contains states (s′, b) and (s′′, b) such that s′ ≤ s1 
and s′′ ≤ s2 for some states s1, s2 ∈ Rβ. 

Let Q′ be the set of states that are reachable in the intersection S ∩ B via observed 
completed traces of all preambles in the cover UK, i.e., Q′ = {(S ∩ B)-after-α | α ∈ 
UK}. Let also ν be a shortest trace from a state of the set Q′ to a state q = sb such that 
some input i is not defined in state q under i (Corollary 1), i.e., the output of B at state 
b under input i is not in the set of outputs at state s of the specification FSM S. The 
property of ν being a shortest such trace means that for each trace ρδ ∈ TrS, where ρ is 
a completed trace of a preamble Ps′, s′ ∈ K, and δ possessing the same property, i.e., 
such that the state (S ∩ B)-after-ρδ has an undefined input, it holds that |δ| ≥ |ν|. Since 
B is not a reduction of S, the intersection S ∩ B is initially connected, and the set K has 
the initial state, such a trace ν exists. By definition of traversal sets N(UK, Ps) and 
since no verdict fail was produced for observed traces of FSM B, there exist a 
preamble Ps and an observed trace αsβ, where αs ∈ T(Ps), and β is a prefix of ν, with 

the property that there exists Rβ ∈ RS, such that S-after-αsβ ∈ Rβ and 
Σs′∈Rβ|C(T(Ps)Pr(β), UK, s′)| = m + 1. 

For each state s′ ∈ Rβ, consider a longest chain of the poset (αsPr(β) ∪ UK, ≤ s′); let 
M = {μ1, …, μk, μk+1, ..., μm+1}. Without loss of generality, we assume that μ1, …, μk 
are the observed completed traces of the set UK while μk+1, ..., μm+1 are sequences of 
the set αsPr(β).  

Consider the corresponding m + 1 states of FSM B, B-after-μ1, …, B-after-μm+1. 

Since B has at most m states there exist 1 ≤ j < r ≤ m + 1 such that B-after-μj = B-after-

μr. By the definition of the poset, either S-after-μj ≤ S-after-μr or S-after-μj ≄ S-after-μr. 
Let S-after-μj ≤ S-after-μr. By definition of the poset (αsPr(β) ∪ UK, ≤ s′), two cases are 
possible, either μj ∈ UK and μr ∈ αsPr(β) or μj, μr ∈ αsPr(β).  

Consider the case when μj ∈ UK and μr ∈ αsPr(β). As Algorithm 2 produces the 
verdict pass when the implementation B is tested, the following holds. The trace β′ 
obtained from αsβ by deleting the prefix μr, is a trace of FSM B at state B-after-μr = B-
after-μj. If β′ is not a trace of FSM S at state S-after-μj then a proper prefix β′′ of the 
trace β′ takes the FSM S ∩ B from state (S-after-μj, B-after-μj) to a state (S-after-μjβ′′, 
B-after-μjβ′′) such that the state (S-after-μjβ′′, B-after-μjβ′′) of the intersection S ∩ B 
has an undefined input. If β′ is a trace of FSM S at state S-after-μj then β′ is a trace of S 
∩ B at state (S ∩ B)-after-μj and thus, a shorter trace νr  obtained from ν by deleting 
the prefix μr is a trace of FSM S ∩ B to a state (S-after-μjνr, B-after-μjνr) with an 
undefined input.  
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Consider now the case when μj, μr ∈ αsPr(β). Similar to the previous case, the 
trace β could also be shortened by deleting the part between two states S-after-μj and 
S-after-μr, as S-after-μj ≤ S-after-μr.  

Both cases contradict the fact that the trace ν that contains β as a prefix is a 
shortest trace from a state of the set Q′ to a state q = sb with an undefined input i. 

Thus, S-after-μj ≄ S-after-μr, i.e., the set {(S ∩ B)-after-γ | γ ∈ M} contains states (s, 

b) and (s′, b) such that s ≤ s1 and s′ ≤ s2 for some states s1, s2 ∈ Rβ, thus s ≄ s'. 
According to Algorithm 2, for the observed completed trace αs of the preamble Ps, s 
∈ K, after each γ ∈ C(T(Ps)Pr(β), UK, s′), s′∈ Rβ, there will be an identifier Id(s′, Rβ) 

executed. Correspondingly, an identifier Id(S-after-μj, Rβ) after the trace μj and an 

identifier Id(S-after-μr, Rβ) after the trace μr will be executed. Since S-after-μj ≄ S-
after-μr, B is deterministic and B-after-μj = B-after-μr, at least for one of the separators 
the designated state would not be reached, i.e., the verdict fail will be produced.       ♦ 

Finally, we demonstrate how the obtained result is related to the problem of m-
complete test generation. Suppose that all the deterministic FSMs with at most m 
states in the fault domain ℑm(S) can be explicitly enumerated and for each such FSM 
B, an FSM GB is derived by Algorithm 2. Let the FSM U be the union of all FSMs GB 
which, if it is not output-complete, is completed as follows. For each trace αio of U if 
there exists o′ ∈ O such that U has no trace αio′ then a completed pass trace αio′ is 
added if αio′ is a trace of the specification FSM S; otherwise, a fail trace αio′ is added. 
The reason is that such a trace αio′ does not belong to any machine in ℑm(S); it has to 
be added since a test is by definition output-complete. In fact, a test can be output-
completed in arbitrary way, since those traces will never be observed in testing 
deterministic FSMs with at most m states.  

Theorem 2. Given an FSM S and a test U derived by the above procedure, the test U is 
m-complete for S, i.e., it is complete in the fault domain ℑm(S) of complete 
deterministic FSMs. 

Proof. A trace of test U is a pass trace if and only if this trace is a trace of the 
specification FSM S. Consider FSM B ∈ ℑm(S) that is not a reduction of S; by 
construction, an FSM GB derived by the above algorithm has a fail trace that is a trace 
of B and thus, test U has a fail trace that is a trace of B.                                                 ♦ 

Such a characterization of the relationship between the executed test and m-complete 
tests is of a more theoretical than practical interest, as in testing one usually deals with 
a given implementation and not with an arbitrary collection of them. 

5   Related Work 

Most of the previous work in test generation from NFSMs relies on the execution of 
all test fragments forming the complete tests, see e.g., [4, 6]. The proposed method 
requires adaptive execution avoiding tests which are not related to a given 
implementation. It also differs in the way test fragments are treated. The construction 
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of traversal sets follows the most recent idea elaborated for deriving preset complete 
tests in our previous work [6], which improves previous proposals, (see [6] for more 
references) including those used for adaptive testing such as [2, 3, 7]. In all the 
previous work, the test fragment addressing state reachability includes transfer 
sequences only to deterministically reachable states, which is extended in this paper 
by considering definitely reachable states.  

The notions of preamble used in this paper and finite transfer tree considered in 
[11] serve the same purpose of modeling an adaptive process of transferring an NFSM 
into a desired state. Differently from that work, we use, instead of a tree, a state 
machine. Modeling preamble as NFSM allows us not only to establish a direct 
relation with a specification machine, namely, that a preamble is just a certain 
submachine of the specification FSM, moreover if it exists then any of its reductions 
possesses the preamble. This allows us to solve its existence and construction 
problems in a simple intuitive way.  

The notion of separator is similar to that of state distinguishing strategies 
considered in [1] and in [11]. Differently from that work, we not only use an FSM to 
describe a strategy, but also offer an exact characterization of all state distinguishing 
strategies in the form of an FSM, called a canonical separator, which is obtained from 
the self-product of the specification NFSM. A distinguishing strategy becomes then a 
certain submachine of the canonical separator. The method of [1] allows to test 
whether a given FSM is r-compatible with the specification FSM (but not that the 
former is a reduction of the latter, as we do), and [3] extends this result to a set of 
FSMs. The work in [5] also addresses adaptive testing of nondeterministic machines, 
but its results cannot be used to prove that a given DFSM is a reduction of the 
specification machine. Compared to [7], we pre-compute all the test fragments, 
simplifying the test generation process.  

6   Conclusion 

In this paper, we addressed the problem of adaptive testing of a deterministic 
implementation machine from its nondeterministic specification. We proposed a 
method for defining test fragments, combining and executing them in adaptive 
manner against a given implementation FSM such that the test execution terminates 
with the verdict pass if and only if it is a reduction of the specification. The novelty of 
the method lies in the use of definitely reachable states missed by the previous 
methods and selective execution of test fragments depending on observed traces in 
adaptive test execution.  

Our current work concerns the generalization of the obtained results to 
nondeterministic implementations. As a future work, it would be interesting to 
investigate a combination of the proposed method with the specification refinement 
approach.  

Acknowledgement. The authors want to thank a reviewer for useful comments. 
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Abstract. The fast growth in complexity of embedded and software en-
abled systems requires for automated testing strategies to achieve a high
system quality. This raise of complexity is often caused by the distribu-
tion of functionality over multiple control units and their connection via
a network. We define an extended symbolic transition system (ESTS)
and their compositional semantics to reflect these new requirements im-
posed on the test generation methods. The introduced ESTS incorporates
timed behavior by transition execution times and delay transitions. Their
timeout can be defined either by a constant value or an attribute valu-
ation. Moreover we introduce a communication scheme used to specify
the compositional behavior and define a conformance relation based on
alternating simulation. Furthermore we use the conformance relation as
the basis for a simple random test generation technique to verify the ap-
plicability of the presented approach. This formal framework builds the
foundation of our UML test case generator.

Keywords: Symbolic transition system, concurrent reactive behavior,
test case generation.

1 Introduction

Since testing is an important task to ensure a certain system quality, the used
techniques and approaches in this field strongly advanced in recent years. Nev-
ertheless testing still remains a laborious task and is – due to the high degree of
manual interaction – error prone. The steadily increasing complexity of embed-
ded systems requires a high degree of test automation to be able to execute and
analyze the large amount of needed test cases.

A further increase in automation can be achieved by the generation of test
cases from formal specifications, which has gained a lot of attention in research
in recent years and becomes more and more popular in the industry. However,
the currently available industrial- and scientific-tools based on unified modeling
language (UML) state machines or symbolic transition systems (STSs) [6] are
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limited to a single model. This situation does not meet the requirements of
modern embedded systems, which often consists of communicating components.

For this reason we have implemented a test case generation algorithm, which
works on the basis of an extended symbolic transition system (ESTS) composi-
tion presented in this work. This prototype supports a systematic and random-
ized test generation approach, which detailed description is beyond the focus of
this paper.

Our contribution in this work is the extension of the STS by delay- and
completion-transitions, timing groups, transition priorities and their execution
duration. In addition we provide a precise semantics and formally define the
model composition. Furthermore we show the applicability of the presented sym-
bolic framework by a randomized test generation approach and the conformance
relation to the system under test (SUT).

The remainder of the paper is structured as follows: Section 2 defines the struc-
ture of an ESTS and Section 3 precisely describes the compositional behavior.
In Section 4 a conformance relation based on alternation simulation is provided
and the applicability of the presented approach is demonstrated in Section 5.
Section 6 presents an overview of the related work and Section 7 concludes the
paper and gives a short outlook.

2 Extended Symbolic Transition System

In this section we define the structure of an ESTS and its semantics with respect
to its contained states and transitions. Based on this structure we explain the
creation of traces through the ESTS caused by external interactions.

Definition 1 (Extended Symbolic Transition System). An ESTS is a tu-
ple 〈S,Λ,A,P , T ,G, s0, ι0〉, where S is a set of states, Λ are the signals, A are
the attributes, P are the signal parameters, T is the transition relation and G
is a set of timing groups. Moreover s0 is the initial state and ι0 is the initial
attribute valuation. 1 �

We define the set of signals Λ = Λi ∪ Λo as the union of input Λi and out-
put Λo signals. The set Λ∗ = Λ ∪ {τ, γ, δ} is the complete set of all defined
signals, whereas the constants τ, γ, δ /∈ Λ represent the special unobservable-,
completion- and delay-signal types, respectively. The attributes A are the vari-
ables of an ESTS and the parameters P are variables attached to input- or
output-signals λ ∈ Λ. Further it holds that A ∩ P = ∅ and we use V = A ∪P .

The transition relation of an ESTS is defined as T ⊆ S ×Λ∗×F(V )×T(V )×
P × S, where F(V ) is a first order logic formula without quantifiers, T(V ) are
attribute value assignment statements given as mathematical terms over the
variables V and P are the priorities.

1 In [6] a different naming convention is used, where states are locations, transitions are
switches, attributes are location variables and parameters are interaction variables.
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We write a transition t ∈ T as s
λ,ϕ,ρ,pt−−−−−→ s′, where s ∈ S is its source state,

s′ ∈ S is the destination state, λ ∈ Λ∗ defines its type, ϕ ∈ F(V ) is the guard,
the action ρ = 〈ρ1, ρ2, .., ρn〉 is an ordered list of assignment terms ρj ∈ T(V )
with list index j and pt ∈ P is its priority, where pt ∈ N0. A transition t ∈ T has
a traversal probability αt ∈ R and an execution duration dt ∈ N0 in addition.
We omit the presentation of the priority pt in the remainder for simplicity if the
context allows it.

Definition 2 (Timing Group). A timing group g is a tupel 〈c, Sδ, Tδ, Tr〉,
where c is its clock, Sδ ⊆ S are the contained states, Tδ ⊆ T are the delay
transitions and Tr ⊆ T are the clock reset transitions. �
A timing group g ∈ G specifies a set of states Sδ where each of these states has an
outgoing delay transition tδ ∈ Tδ with the same timeout nδ ∈ N0. The states in
the timing group share a clock c, which is used to trigger the traversal of one of
these outgoing delay transitions. The timeout of a delay transition can either be
defined by a constant- or by an attribute-value like nδ = 100 or nδ = x if x ∈ A.
Our delay transitions should not be confused with the similar delay transitions in
timed automata semantics. In timed automata semantics, delay transitions serve
to express the possible waiting times in a state and hence are reflexive transitions
increasing time only. Our delay transitions increase time and change the state.

We require that every state s ∈ Sδ has an outgoing delay transition tδ ∈ Tδ to
the same destination state s′ ∈ S. This ensures that one of the delay transitions
is traversed after the defined amount of time – specified by the timeout of the
delay transitions – within the timing group has elapsed. The timing group clock
is set to zero if one of the clock reset transitions tr ∈ Tr is traversed.

We use ϑ = ι∪ς as variable valuation containing the values of attributes ι and
the current signal parameters ς. Accordingly we denote the update of a variable
valuation ϑ′ according to an action ρ as ϑ 
→ ϑ′(ρ). Given a valuation ϑ and a
guard ϕ we write ϑ |= ϕ if the valuation satisfies the guard ϕ, which is a first
order logical formula.

Example 1. Figure 1 shows an illustrative example of two communicating ESTS,
where we use ? to mark input- and ! for output-signals, the keyword delay(x)
to indicate delay transitions, the parameter x to denote the delay time and
show only the guard of the completion transition γ. Blocking states as given in
Definition 4 are shown with two border lines and states belonging to the same
timing group are filled gray. Since each of these ESTSs contains only one timing
group their presentation is unambiguous. Transition guards are shown within
squared brackets and actions follow a slash. �
Definition 3 (Configuration). A configuration q is a tuple 〈s, ι〉, where s ∈ S
is an explicit state and ι specifies the values of all attributes in A. �
A configuration fully defines the current state of an ESTS and accordingly we
define the initial state q0 = 〈s0, ι0〉, where s0 is the initial state and ι0 the
initial valuation. In the remainder we use Q to indicate the set of all possible
configurations.
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Fig. 1. Two communicating ESTSs A and B

For the following definitions we use t ∈ T , λ ∈ Λ, λ∗ ∈ Λ∗ and g ∈ G.
The function src(t) returns the transition source state, dest(t) its destination
state, signal(t) the signal of a transition, arity(λ) ∈ N0 the number of signal
parameters and dur(t) the execution duration dt.

In addition we use out(s, λ∗) = {t ∈ T | signal(t) = λ∗ ∧ source(t) = s} re-
turning all outgoing transitions of s having signal λ∗, delay(t) = n if signal(t) =
δ or n = 0 otherwise, providing the delay time of a transition and delaymin(t) =
min (

⋃
delay(tδ) | tδ ∈ out(src(t), δ)), which is is the minimum delay of cur-

rently active delay transition.
The function prio(t) returns the transition priority pt and priomax(s, λ) =

max (
⋃
{prio(t) | t ∈ out(s, λ)}) calculates the maximum priority of all outgo-

ing transitions from state s having signal λ.
clk(t) =

⋃
{c(g) | src(t), dest(t) ∈ states(g) ∧ t /∈ r(g)} returns the set of

all timing groups to which the given transition belongs.
The function reset(t) =

⋃
{c(g) | t ∈ r(g)} defines the clocks which are reset

by a traversal of t, where c(g) returns the clock c, r(g) the clock reset transitions
Tr and states(g) the contained states Sδ of the given timing group g.
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Example 2. Let the ESTS A shown in Figure 1 be initialized with the con-
figuration q0 = 〈A0, {x = 0, y = 0}〉. After the traversal of the transition

A0
?a[0≤p1≤200&0≤p2≤10]/x=p1;y=p2;−−−−−−−−−−−−−−−−−−−−−−−−→ A1 with the parameters p1 = 70 and p2 = 6

the ESTS A has the configuration q′ = 〈A1, {x = 70, y = 6}〉 as defined by the
transition action. �

2.1 Semantics

This section describes the behavior of every allowed transition type, which is
defined by the prerequisites of the transition traversal and the performed state
and attribute value changes.

We define the semantics of an ESTS in the Rules (1) to (6), where we require
ϑ |= ϕ if not stated differently, we use Q′ ⊆ Q as the set of configurations
after a transition traversal and 
→ denotes an assignment mapping. The shown
semantics is similar to the one presented by Frantzen et. al, but we only describe
the evaluation of the post state to highlight the extensions.

Rule Empty (1) states that the state and the valuation does not change if the
empty signal ε is executed, where � indicates that the guard is always satisfied
and id is the identity function.

s
ε,�,id−−−−→ s

Q′ 
→ {〈s, ϑ〉} (1)

In Input (2) the semantics of a signal reception λi ∈ Λi is defined, where a signal
reception can only be executed if it is sent before an active timeout. Rule Timed
(3) shows that a delay transition with the shortest delay is executed as soon as
the defined amount of time has elapsed. After the traversal the current state and
the attribute valuation are updated and the clocks of the timing groups where
t ∈ Tr are set to zero.

s
λi,ϕ,ρ,pt−−−−−−→ s′ ∧ pt = priomax(s, λi) ∧ ∀c ∈ clk(t) | c < delaymin(t)

Q′ 
→ {〈s′, ϑ′(ρ)〉}, ∀c ∈ clk(t) | c 
→ c + dur(t), ∀c ∈ reset(t) | c 
→ 0
(2)

s
δ,ϕ,ρ,pt−−−−−→ s′ ∧ pt = priomax(s, δ) ∧ c(t) ≥ delay(t) ∧ delay(t) = delaymin(t)

Q′ 
→ {〈s′, ϑ′(ρ)〉}, ∀c ∈ clk(t) | c 
→ c + delay(t) + dur(t), ∀c ∈ reset(t) | c 
→ 0
(3)

The rules Output (4) and Completion (5) have the same behavior in terms of
updating configurations and the handling of the clock updates as in (2), but are
executed as soon their guard is satisfied. They differ in the IO behavior, because
in (4) a signal is sent and (5) only allows for a deterministic configuration update.

s
λo,ϕ,ρ,pt−−−−−−→ s′ ∧ pt = priomax(s, λo)

Q′ 
→ {〈s′, ϑ′(ρ)〉}, ∀c ∈ clk(t) | c 
→ c + dur(t), ∀c ∈ reset(t) | c 
→ 0
(4)
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s
γ,ϕ,ρ,pt−−−−−→ s′ ∧ pt = priomax(s, γ)

Q′ 
→ {〈s′, ϑ′(ρ)〉}, ∀c ∈ clk(t) | c 
→ c + dur(t), ∀c ∈ reset(t) | c 
→ 0
(5)

Unobservable (6) defines the semantics of a non-deterministic configuration up-
date. The traversal of an τ transition is not observable and the resulting symbolic
states in Q′ are its source and destination state.

s
τ,ϕ,ρ,pt−−−−−→ s′ ∧ pt = priomax(s, τ)

Q′ 
→ {〈s, ϑ〉, 〈s′, ϑ′(ρ)〉}, ∀c ∈ clk(t) | c 
→ c + dur(t), ∀c ∈ reset(t) | c 
→ 0
(6)

2.2 Simulation

In this section the execution of an ESTS is explained by the creation of execution
traces caused by signal receptions or delays. Such execution traces are always
embedded between two blocking states described in Definition 4.

Definition 4 (Blocking State). A blocking state s̃ is a state s ∈ S for which
it holds that ∃λ ∈ λi ∪ δ | |out(s, λ)| �= 0 ∨ out(s, λ∗) = ∅. �
This means a blocking state is a state having at least one outgoing transition of
type λi or δ or no outgoing transition λ∗ ∈ Λ∗ at all. Accordingly we denote a
blocking configuration as q̃ = 〈s̃, ι〉. Note that a blocking state does not limit the
occurrence of outgoing τ, γ or λo ∈ Λo transitions, which makes a mixed state
possible. Since we allow outgoing output transitions, the state is not a quiescent
state as defined in [6] or [11].

Based on Definition 4 we can define an execution trace as shown in Defini-
tion 5, which connects two blocking states and must not be interrupted. It is a
sequence of transitions and consists of a triggering ηt and completion ηc part,
where ηt consists only of transitions with signals Λt = Λi∪δ and Λc = Λo∪γ∪τ .

Definition 5 (Execution Trace). An execution trace η = t1, t2, . . . , tn is a
sequence of transitions t1, . . . , tn, where ηt = t1, ηc = t2, . . . , tn and ∀ti ∈ η \ t1 |
dest(ti) = source(ti+1). �
The length of an execution trace is denoted as |η| and it holds that |η| ≥ 1,
where |ηt| = 1 and |ηc| ≥ 0. Due to the allowed non-deterministic behavior
of an ESTS a signal reception or a time lapse can cause multiple execution
traces leading to the resulting list E(q̃, λ). Its recursive generation is defined by
E ′(q̃, λ) =

⋃
{e(η) | η ∈ E(q̃, λ)}, where λ ∈ Λc is the triggering input, q̃ ∈ Q is

the current configuration and E ′(q̃, λ) is initialized with t ∈ out(q̃, λ) | ϑ |= ϕ.
The function e(η) is defined in Equation (7), where q̃′ is the destination state of
the last contained transition in η and ◦ is the concatenation of traces.

e(η)′ =

⎧⎪⎪⎪⎨
⎪⎪⎪⎩

⋃
tc

{e(η ◦ tc) | tc ∈ out(q̃′,Λc)} if out(q̃′,Λt) = ∅ ∧ out(q̃′,Λc) �= ∅

η ∪
⋃
tc

{e(η ◦ tc) | tc ∈ out(q̃′,Λc)} if out(q̃′,Λt) �= ∅ ∧ out(q̃′,Λc) �= ∅

η otherwise
(7)
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The recursive generation of the completion steps in (7) creates an infinite number
of traces if a loop of completion transitions exists, which actions do not falsify
one of its guards.

Example 3. Let ESTS A shown in Figure 1 again be initialized with q0 =
〈A0, ι0〉, where ι0 = {x = 0, y = 0}. Then we can build the list of initial ex-

ecution traces E(q̃0, λ) = A0
?a[0≤p1≤200&0≤p2≤10]/x=p1;y=p2;−−−−−−−−−−−−−−−−−−−−−−−−→ A1, because we

use λ = a, ϑ = ι0 ∪ ς and ς = {p1 = 30, p2 = 9}, which satisfies the transition
guard. If we would use ς = {p1 = 30, p2 = 15} instead, then E(q̃, λ) = ∅ because
p2 > 10. The recursive update of this list leads to the final trace list E(q̃0, λ) =

A0
?a[0≤p1≤200&0≤p2≤10]/x=p1;y=p2;−−−−−−−−−−−−−−−−−−−−−−−−→ A1

!b[p1=y]−−−−−→ A2
[x>50]−−−−→ A3, where the first

transition is the triggering- ηt and the last two transitions are the completion-
ηc part. The last transition has to be added, because ϑ = {x = 30, y = 9} |= ϕ
of the completion transition, which is executed immediately after its guard is
satisfied. �

3 Composition

In this section the model composition based on the signal communication be-
tween the involved ESTSs is explained. Furthermore we clearly define the obser-
vations and interactions, which can be made by the environment.

3.1 Model Communication

In this work we use a deterministic communication scheme using a global queue
Q to pass signals between ESTSs. Since we required that an execution trace must
not be interrupted, the system behavior can be described by an concatenation
of such traces. This concept is similar to the approach presented in the language
Creol [3], where only one thread is active at a time.

The reception of a signal λ or the lapse of time in the state q̃ leads to a list
of execution traces η ∈ E ′(q̃, λ). The needed execution time or the sent signals
by a trace η can cause reactions in other ESTSs or the environment. Therefore
a list of system execution traces EM (q̃, λ) has to be created, where M ⊆ M is
the set of all involved ESTSs. These traces contain the initial trace η and its
concatenated reaction traces of the other ESTSs.

Since not every signal needs to be sent or be observable by the environment –
e.g. communication within one component – we split the signals into two cate-
gories. The first category contains signals observed or created by the environment
Λ̄ = Λ̄i ∪ Λ̄o | Λ̄i ⊆ Λi ∧ Λ̄o ⊆ Λo to which we refer as external communication in
the remainder. The second category is the internal communication, which con-
tains the signals Λ̂ = Λ̂o ∪ Λ̂i | Λ̂o = Λo \ Λ̄o ∧ Λ̂i = Λi \ Λ̄i sent and received by
one of the ESTSs. Note that signals part of the external communication must
be and signals of the internal communication might be created or received by
the environment.

The trace output signals used for the communication are defined in Definition
6 and are independent of the observability by the environment.
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Definition 6 (Observables). Let obs(η) =
〈〈

λo, d1

〉
, . . . ,

〈
λo, dN

〉〉
be the out-

put signals of a trace η ∈ E ′(q̃, λ), where its result is a list of tuples, N is
the number of output signals on the trace, λo ∈ Λo are the signals and d is
the time period in which the signal has to be sent. We define the observable-
obs(η) = obs(η) | λo ∈ Λ̄o and unobservable ôbs(η) = obs(η) | λo ∈ Λ̂o output
signals of η. �

The required state updates in the other ESTSs are performed using the signals
in obs(η), which are passed via the global message queue Q. The execution
uses the same algorithm as described above and leads to the execution trace
ηm ∈ Em(q̃, λ) in the ESTS m ∈ M . We call a trace ηM ∈ EM (q̃, λ) containing
the initial execution trace η and all according reactions ηm system execution
trace in the remainder.

Definition 7 (System Execution Trace). A system execution trace ηM =
ηm1 ◦ · · · ◦ ηmN is the catenation of execution traces ηmi of an ESTS m ∈ M ,
where i = 1..N , N = |M | is the number of entries in M and M ⊆ M is the set
of involved ESTS. �

rt(η) =

⎧⎨
⎩

η if obs(η) = ∅⋃
η′
{η ◦ η′ | η′ ∈ rt (ηm ∈ Em(q̃m, λ) | λ ∈ obs(η))} otherwise (8)

The creation of system execution traces is defined recursively by the reception
trace function rt(η) shown in Equation (8), where q̃m is the current configuration
of m ∈ M . It shows that a system trace is a recursive concatenation of all
execution traces of other ESTSs caused by the output signals on the initial
path. Given the initial traces η ∈ E(q̃, λ), we can build a list of all possible
execution traces EM (q̃, λ) =

⋃
rt(η) | η ∈ E(q̃, λ).

This algorithm ensures that all signals stored in the queue are processed be-
fore the next execution step can begin. However, each execution trace can also
produce output signals, which are also enqueued as described above. This al-
lows for the creation of infinite loops between the involved ESTS, where a signal
reception causes an output signal received in another ESTS, which reception
causing the initial signal sending responsible for the initial stimuli.

Since the reception of signals has a higher priority than the traversal of delay
transitions, their influence was neglected during the finding of the system exe-
cution traces. Due to the fact that the traversal of a transition t needs the time
dur(t) to be completed, the execution time is calculated in the function time(η)
given in (9).

time(η) =
N∑

i=1

dur(ti) + delay(ti) − time(ηg(ti)) (9)

In (9) ηg is the connected sub-trace of η consisting of the transitions contained
in the timing group g to which the transition ti belongs. Since an execution
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trace can also contain transitions not belonging to the ESTS m, which is the
owner of the timing group g, these transitions still have to be included. A formal
definition of the sub-trace creation is given in (10), where i is the index of ti in
η. It uses (11) to extract the trace from η according to the given indices and
(12) to find the start index of the trace based on (13) returning the transitions
of the ESTS to which the transition ti belongs.

ηg(ti) = sub(η, i, k) | k = idxe(ti, Tm), Tm = gtrace(η, ti) (10)

Using Definition 5 a sub-trace of η is given by (11), which consists of the tran-
sitions in η lying in the range [i, j], which is defined by the given indices.

sub(η, i, j) = 〈ti, .., tj | ti, tj ∈ η ∧ 1 ≤ i, j ≤ |η| ∧ j ≥ i〉 (11)

In (12) the minimum index k of the of the given transition t in Tm is calculated,
which references to the first transition of the trace stored in Tm.

idxe(t, Tm) = k ∈ N | (∃tk ∈ Tm | k = minidx(Tm)) (12)

The function gtrace(η, ti), as defined in (13), returns all transitions and their
indices in η satisfying the following criteria, where g is the timing group belonging
to ti. The first term of the constraint tj ∈ η requires that the transition belongs
to η and the second term src(tj), dest(tj) ∈ states(g) that the transitions
are contained in the same timing group as ti. Term three dest(tj) = src(tj+1)
ensures that the transitions represent a trace without any structural holes. The
last term ∃tj = ti requires that the given transition ti is contained in that
connected trace to prevent an ambiguous result if ti is traversed multiple times
in trace η.

gtrace(η, ti) =
⋃

{tj |tj ∈ η ∧ src(tj), dest(tj) ∈ states(g)

∧ dest(tj) = src(tj+1) ∧ ∃tj = ti}
(13)

The elapsed time time(ηM ) is used to trigger active delay transitions after the
processing of the enqueued output signals has finished. This is done by finding the
transition with the smallest time overdue δdue = delay(t)− time(ηM ). If such a
transition exists it is executed using the same algorithm as described above. The
execution can again cause the sending of new output signals, which are processed
before the next delay transition is taken into account. This algorithm again allows
for the modeling of an infinite loop, if two traces exist with time(η1) ≥ delay(t2)
and time(η2) ≥ delay(t1) and which lead to their own source state, where η1

and η2 are the execution traces to the transitions t1 and t2, respectively. The
execution traces gained from the processing of the delayed transitions are then
concatenated to η being the final result.

In this approach we defined that the treatment of a signal reception has a
higher priority than the traversal of an delayed transition. These rules allow
that an active delay transition, whereas enough time has elapsed to trigger the
traversal, is not traversed in favor to the transition receiving a signal from Q,
even if the signal was enqueued after the timeout of a delayed transition.
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4 Conformance

In this section the correctness of an implementation under test (IUT) with re-
spect to a specification using alternating simulation [1] is explained. For sim-
plicity, we only discuss the conformance of deterministic ESTS here. In the non-
deterministic case the two ESTSs need to be determinized beforehand, similar to
[12]. Generally it is required that the IUT can follow all inputs generated from
and only produces outputs allowed by the specification. To provide a precise
understanding we introduce the function moves(q̃,Λ) shown in Equation (14)
first, where M ⊆ M is a set of ESTSs, q̃M =

⋃
q̃m | m ∈ M and q̃m is the

blocking configuration of an ESTS m ∈ M . This function returns the union of
all outgoing transitions of all m ∈ M at state q̃m, which guard is satisfied and
signals are contained in the given set Λ.

moves(q̃M , Λ) =
⋃

{t | src(t) = q̃M ∧ q̃M |= ϕt ∧ signal(t) ∈ Λ} (14)

The meaning of alternating simulation as defined in [12] is formalized in Equation
(15) and (16), where q̃1 ∈ Q1 and q̃2 ∈ Q2 are the sets of configurations of the
IUT and the specification, respectively. Accordingly λ1 = signal(t1) and λ2 =
signal(t2) are the signals of these transitions and q′1 and q′2 are the destination
configurations.

∀t2 ∈ moves(q̃2, Λ̄i ∪ δ) | (∃t1 ∈ moves(q̃1, Λ̄i ∪ δ) | λ2 = λ1 ∧ q̃′2 = q̃′1) (15)

Equation (15) states that all input or delay transition traversable in the speci-
fication in state q̃2 ∈ Q2, which has a certain attribute valuation must also be
executable on the IUT.

∀t1 ∈ moves(q̃1, Λ̄o) | (∃t2 ∈ moves(q̃2, Λ̄o) | λ1 = λ2 ∧ q̃′1 = q̃′2) (16)

The inverse is true for outputs as shown in Equation (16), where it is required
that every output produced by the IUT must be allowed by the specification.
If both equations hold, then the basic I/O behavior of the implementation is
correct with respect to the specification.

Since Equation (15) and (16) do not provide any information on the time
behavior, we require in addition that the obtained output of the IUT fulfills the
the timing constraints given in the ESTSs. Therefore we require that Equation
(17) holds, where η′ ∈ E2(q̃2, signal(t2)) and η ∈ E1(q̃1, signal(t2)) are the exe-
cution traces created for a given input on the IUT and specification respectively.

∀〈λo, d〉j ∈ obs(η) | (∃η′ | 〈λ′
o, d̄〉j ∈ obs(η′) ∧ λo = λ′

o ∧ min(d̄) ≤ d ≤ max(d̄))
(17)

Equation (17) requires that for every observable output λo at time d part of
the trace η produced by the IUT an according transition t′o ∈ η′ exists, which
contains the same outputs λ′

o within the time range d̄. In (17) j = 1..|η| is the
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index of the output occurrence in η. The time range d̄ is given in Equation (18),
which is the sum of the execution time elapsed up to the transition at position
k = idx(t′o, η′) and includes a transition time jitter εk.

d̄ = time(sub(η′, 1, k)) ± εk (18)

Since we have now defined the required outputs including the occurrence time
of the IUT after an input was provided by the specification, we can now check
the correctness of the IUT with respect to a given specification. Alternating
simulation has the advantage in comparison to ioco that the conformance check
is computational less intense and provides the same expressive power in the
deterministic case [12].

5 Application

We show the applicability of the presented approach on a simple random test
case generation example based on the ESTSs shown in Figure 1. In this example
the external communication consists of the signals Λ̄i = {a, c} and Λ̄o = {d}
and the internal communication is given by Λ̂i = {b} and Λ̂o = {b}.

In this random approach named random walk, we explicitly trigger the traver-
sal of outgoing transitions from the current state q̃. This is done by the generation
of feasible data for the transitions t ∈ moves(q̃, Λ̄i) and the lapse of time for de-
lay transitions. The input generation is done separately for each transition t by
a constraint solver e.g. provided by GNU Prolog as in our case, which tries to
find solutions satisfying the transition guards.

If multiple transitions are possible during this phase, meaning they leave the
current state and their guard can be satisfied, we normalize their probabilities
α and perform a random selection. Since we also want to generate sequences,
which vary in their temporal behavior, the random selection of an explicit wait
can also be chosen. In such a case the used wait time tw has to be 0 ≤ tw ≤ δmin,
where δmin is the smallest timeout of all active delay transitions.

In the case an input action has been selected it is sent to and executed on
the according ESTS. Wait actions in contrast are executed on the whole system,
because the smallest active delay can belong to any of the involved ESTSs. After
the input or wait action was performed the system execution traces EM (q̃, λ) are
generated.

Figure 2 shows three traces, which can be obtained if the inputs are applied
as given in Table 1 and Table 2. The inputs in Table 2 lead to the same trace
T 3, but in the second case no additional wait is necessary, because the execution
time is longer than the required delay. For these examples we assumed that ever
transition has the same execution duration td = 10.

Both tables also show the observable output generated by each trace, which
can be used during the execution of the test case on the SUT. Since it also
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Fig. 2. Three system execution traces T1, T2 and T3

includes the latest point in time of the real signal reception, it is possible to
check given timing constraints.

The random walk can be used for on-the-fly and offline test case generation.
During on-the-fly testing the SUT is executed in parallel to the model and the
input and outputs can be processed immediately. The advantage of this approach
is that the current state is always known, which limits the state space especially
in the presence of non-determinism. For offline test case generation all possible
traces have to be stored and extended with every step during the random walk.
Since non-determinism is allowed, the possible execution traces can be seen as a
tree. This requires that the random walk has to continue in one step from every
active leaf of this tree, to generate feasible test cases. Depending on the model
these trees can become quite big due to the high number of possibilities.
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Table 1. Inputs and outputs for traces T1 and T2

T1 T2

Inputs ?a(p1 ≤ 50, p2 ≥ 5) ?a(p1 > 100 + 4 ∗ td, p2 < 5)
wait(p1) wait(100)

wait(p1 − (100 + 4 ∗ td))

obs(η) {〈e, p1 + 4 ∗ td〉} {〈d(z + 3), 100 + 6 ∗ td〉, 〈e, p1 + 4 ∗ td〉}
ôbs(η) {〈b, 2 ∗ td〉} {〈b, 2 ∗ td〉}

Table 2. Two possible inputs and outputs for trace T3

T3-1 T3-2

Inputs ?a(td < p1 ≤ 50, p2 ≥ 5) ?a(p1 ≤ td, p2 ≥ 5)
?c ?c

wait(p1 − (100 + 2 ∗ td))

obs(η) {〈e, p1 + 4 ∗ td〉} {〈e, p1 + 4 ∗ td〉}
ôbs(η) {〈b, 2 ∗ td〉} {〈b, 2 ∗ td〉}

6 Related Work

Several approaches based on symbolic transition systems have been studied in
recent years. STG [4] is a symbolic extension of the test tool TGV and allows
the generation of test cases with respect to a given test purpose. The presented
framework extends the approach described in [6], by timed behavior, completion
transitions and model composition. The approach in [6] is implemented in the
STSimulator, which provides a framework for on-the-fly random testing and
is used in the Jambition Project [5] to automatically derive test cases for web
applications. It uses sioco as conformance relation, which is the symbolic variant
of ioco based on labeled transition systems (LTS).

Although the approaches described above were used successfully in various
applications, they do not incorporate time as part of the specification. For this
reason several extensions were introduced to lift the well understood approaches
to timed models. This lead in the case of an LTS to its timed version and the
according implementation relations like tioco and rtioco. A detailed discussion
is given in [8], where a survey about the similarities and differences between
these approaches and their variants is provided. However, these techniques still
rely on an enumerative treatment of data limiting the scalability in data intense
applications.

Also model checkers based on timed automata (TA) like UPPAAL [7,2] were
used for behavior specification and test case generation. The timing constraints
in a timed automata are given as time invariants on states and clock guards on
transitions. UPPAAL also allows the interaction of data and time, meaning that
attribute values can be used in the timing constraints. Their approach still relies
on an explicit modeling of data and therefore faces the same scalability problems
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as methods based on an LTS. For the generation of test cases UPPAAL requires
a deterministic specification, which limits the range of applicable use cases.

A symbolic variant based on timed automata is defined in [14], where the
symbolic timed automata (STA) is introduced. It is a combination of an STS
with the timing handling of TA and also allows the usage of attribute values as
bounds for timing constraints. On the basis of the STA the testing conformance
relation stioco being an symbolic extension of tioco is described. Although
an STA allows similar semantics, it does not include a formal description of a
composition and neglects unobservable events at the moment.

Spec Explorer [13], which can also use Spec# as specification language,
uses alternating simulation to define the conformance between the IUT and the
model. It was recently extended to work with UML sequence diagrams used for
testing and program slicing. It also supports model composition in a similar way
and allows the generation of test sequences based on a model composition. In
contrast to the presented work no timed behavior can be modeled, which is which
is one of the key features of the presented approach. Since Spec Explorer does
no full symbolic state space exploration it allows a wider range of supported data
types in contrast to this work, where we are limited to integer and boolean values.

7 Conclusion

We presented in this work an extended symbolic transition system based on the
STS defined in [6]. Our approach extends this framework by the incorporation of
delay- and completion-transitions for which we also provide a formal semantics.
On top of the ESTS we defined a communication scheme, which uniquely de-
fines the compositional behavior. In contrast to [6] we use alternating simulation
as testing relation instead of ioco, for which we used the distinction between
internal- and external-communication. This distinction allows for a clear sepa-
ration between observable or controllable signals by the environment and those
used internally.

We used this symbolic framework for a sample application allowing a random
test case generation, which can be performed on-the-fly and offline. The incor-
poration of delay transitions and transition execution times allows for timing
checks of the SUT like the verification of trace files containing time stamps.

The presented ESTS in this work contains similar elements as defined in UML
state machines and therefore allows for a straight forward model transformation.
For this reason it can be used as a formalization of the UML state machine
semantics, which is required for test case generation. This is the first time we
presented the formal framework on which basis we have implemented our test
case generation prototype from UML state machines. Parts of the tools chain
and its application on industrial use cases have been described in [9] and [10].

Future work includes the investigation of other communication schemata and
an extension of the transition attributes to allow uncertainties in the timed
behavior like td = 100 ± 5. This would allow for checks ensuring that a certain
signal did not arrive before a given point in time, which is required for modeling
real time networks.
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4. Clarke, D., Jéron, T., Rusu, V., Zinovieva, E.: STG: A symbolic test generation
tool. LNCS, pp. 151–173. Springer, Heidelberg (2002)

5. Frantzen, L., Las Nieves Huerta, M., Kiss, Z.G., Wallet, T.: On-the-fly model-
based testing of web services with Jambition. In: Bruni, R., Wolf, K. (eds.)
WS-FM 2008. LNCS, vol. 5387, pp. 143–157. Springer, Heidelberg (2009),
http://dx.doi.org/10.1007/978-3-642-01364-5_9

6. Frantzen, L., Tretmans, J., Willemse, T.A.C.: Test generation based on symbolic
specifications. In: Grabowski, J., Nielsen, B. (eds.) FATES 2004. LNCS, vol. 3395,
pp. 1–15. Springer, Heidelberg (2005)

7. Hessel, A., Larsen, K.G., Mikucionis, M., Nielsen, B., Pettersson, P., Skou, A.:
Testing real-time systems using UPPAAL. In: Hierons, R.M., Bowen, J.P., Harman,
M. (eds.) FORTEST. LNCS, vol. 4949, pp. 77–117. Springer, Heidelberg (2008),
http://portal.acm.org/citation.cfm?id=1806209.1806212

8. Schmaltz, J., Tretmans, J.: On conformance testing for timed systems. In: Cassez,
F., Jard, C. (eds.) FORMATS 2008. LNCS, vol. 5215, pp. 250–264. Springer, Hei-
delberg (2008), http://dx.doi.org/10.1007/978-3-540-85778-5_18

9. Schwarzl, C., Peischl, B.: Static- and dynamic consistency analysis of UML state
chart models. In: Petriu, D.C., Rouquette, N., Haugen, Ø. (eds.) MODELS 2010.
LNCS, vol. 6394, pp. 151–165. Springer, Heidelberg (2010)

10. Schwarzl, C., Peischl, B.: Test sequence generation from communicating UML
state charts: An industrial application of symbolic transition systems. In:
Proceedings of the 2010 10th International Conference on Quality Software,
QSIC 2010, pp. 122–131. IEEE Computer Society, Washington, DC (2010),
http://dx.doi.org/10.1109/QSIC.2010.22

11. Tretmans, J.: Test generation with inputs, outputs, and quiescence. LNCS,
pp. 127–146. Springer, Heidelberg (1996)

12. Veanes, M., Bjørner, N.: Alternating simulation and IOCO. In: Petrenko, A.,
Simão, A., Maldonado, J.C. (eds.) ICTSS 2010. LNCS, vol. 6435, pp. 47–62.
Springer, Heidelberg (2010),
http://portal.acm.org/citation.cfm?id=1928028.1928033

http://portal.acm.org/citation.cfm?id=646733.759544
http://dx.doi.org/10.1007/978-3-540-71316-6_22
http://dx.doi.org/10.1007/978-3-642-01364-5_9
http://portal.acm.org/citation.cfm?id=1806209.1806212
http://dx.doi.org/10.1007/978-3-540-85778-5_18
http://dx.doi.org/10.1109/QSIC.2010.22
http://portal.acm.org/citation.cfm?id=1928028.1928033


194 C. Schwarzl, B.K. Aichernig, and F. Wotawa

13. Veanes, M., Campbell, C., Grieskamp, W., Schulte, W., Tillmann, N., Nachmanson,
L.: Model-based testing of object-oriented reactive systems with Spec Explorer. In:
Hierons, R.M., Bowen, J.P., Harman, M. (eds.) FORTEST. LNCS, vol. 4949, pp.
39–76. Springer, Heidelberg (2008),
http://dx.doi.org/10.1007/978-3-540-78917-8_2

14. Von Styp, S., Bohnenkamp, H., Schmaltz, J.: A conformance testing relation for
symbolic timed automata. In: Chatterjee, K., Henzinger, T.A. (eds.) FORMATS
2010. LNCS, vol. 6246, pp. 243–255. Springer, Heidelberg (2010),
http://portal.acm.org/citation.cfm?id=1885174.1885193

http://dx.doi.org/10.1007/978-3-540-78917-8_2
http://portal.acm.org/citation.cfm?id=1885174.1885193


An Empirical Study on Applying Anomaly

Detection Technique to Detecting Software and
Communication Failures in Mobile Data

Communication Services

Hiroyuki Shinbo and Toru Hasegawa

KDDI R&D Laboratories Inc.,
2-1-15 Ohara, Fujimino-shi, Saitama 356-8502, Japan

{shinbo,hasegawa}@kddilabs.jp

Abstract. A mobile operator offers many mobile data communication
services to its users, such as e-mail, Web browsing, company proprietary
services. Although quick detection of communication and software fail-
ures are important to improve users’ satisfaction, such a quick detection
is difficult because the services are served by many servers, network nodes
and mobile terminals. Thus we developed the anomaly detection tech-
nique for the mobile operator’s network to detect anomalies caused by
communication failures such as server and network halts. Our technique
is based on the observation that users reconnect to servers many times
when a communication failure occurs. It is useful not only to detect such
communication failures, but also those which would be caused by soft-
ware failures of mobile terminals and servers. This means that a mobile
operator would be able to detect software failures missed at the testing
period. In this paper, we empirically study how our technique is used to
detect software failures of mobile terminals.

Keywords: Mobile data communication, anomaly detection, intero-
perability testing.

1 Introduction

Mobile terminals such as cellular and smart phones are owned by most people,
and mobile data communication services such as e-mail and Web browsing ser-
vices are becoming inevitable tools for social life. Since out-of-service has a seri-
ous impact on it, failures leading to out-of-service should occur as less frequently
as possible. However, complete prevention is difficult due to a complicated sys-
tem structure providing such a service. First, it is prone that software failures,
i.e. bugs, are overlooked even by intensive tests because the system consists of
various programs which run on various servers and mobile terminals. Especially,
due to the competition in the mobile communication market, the number of mo-
bile terminal models is becoming larger and a development period including a
testing period is becoming shorter. Second, a service request is not always com-
pleted because of insufficient resources of servers and a network. It means that
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some service requests are thrown away by a congested server and that some mes-
sages are lost at a congested link. Of course, such an incomplete service request
is also caused by hardware failures of servers and network equipments. Please
note that the failures caused by problems on wireless links are out of scope in
this paper. Our motivation is to detect failures that affect around a mobile data
communication service, and it does not include detections of failures caused by
each wireless environment of mobile terminal.

Quick detection of such failures in an operational network is a practical and
promising approach. This approach is called anomaly detection [1] assuming that
such a failure exhibits some unusual behavior (This unusual behavior is called
anomaly.). We have developed an anomaly detection tool to detect how users
abruptly change their behaviors [2] regarding a reconnect as the fact that a user’s
service request is not successfully completed due to some failure. The tool monitors
service request messages on the network and calculates how many users reconnect
to servers in every sample period, e.g., 180 seconds. Then, it detects an anomaly
when a reconnecting terminal ratio (the ratio of terminals reconnecting to a server
to all terminals) of current sample period abruptly changes from the previous one.

We applied this tool to a commercial mobile data communication system [2]
and the results show that it can detect failures which result in an abrupt increase
of reconnecting terminal ratio. Example failures are halts of components which
simultaneously handle many sessions such as servers and network equipments. (A
session is a communication path between a mobile terminal and an application
server. It corresponds to a single service request.) These failures make many users
simultaneously reconnect to servers. However, the tool may miss failures if only
a small portion of users reconnects. We think that software failures would fall
into this category of failures. (In this paper, we call a software failure as a “bug”,
and it does not mean problem locations within program codes in softwares.) For
example, some bugs may happen in limited conditions. Other bugs exist in only
software programs running on some specific model.

The goal of this paper is to empirically understand how such bugs are detected
using our anomaly detection technique. Our insight is that if we focus on only
mobile terminals or servers which have a bug, the reconnecting terminal ratio
of them abruptly changes. For example, if a new release of software programs
is affected by a bug, the reconnecting terminal ratio of mobile terminals which
downloaded it would increase. Thus we calculate the ratio with some group of
mobile terminals in order to know whether a bug which was overlooked in the
testing period is detected or not.

The contributions of the paper are three-fold. First, we actually found a bug
of mobile terminals as an anomaly by analyzing the log data of a mobile data
communication system. This implies that appropriate grouping of mobile termi-
nals enables to detect a bug of mobile terminals which have a common feature,
e.g., the same release and the same application. Second, a threshold used for
detecting anomaly is carefully determined. Third, our anomaly detection tool is
so scalable that a few PCs (Personal Computer) with the tool can monitor a
commercial mobile data communication system.
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Although this paper does not deal with software testing techniques, the
anomaly detection technique which this paper proposes is complementary to
these techniques and plays an important role to detect bugs as soon as possible.
This paper is organized as follows. Section 2 provides an overview of a mobile
data communication system. Section 3 describes our anomaly detection tool and
its algorithm. Section 4 describes how this tool is applied to detect anomalies
caused by mobile terminals’ bugs. Section 5 discusses the related work. Section 6
presents our conclusions.

2 Overview of Mobile Data Communication System

A mobile operator offers many mobile data communication services such as e-
mail, Web browsing and company proprietary applications as shown in Fig.1.
We call a mobile data communication service just as a “service” and a mobile
data communication system just as a “system” in the rest of this paper.
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Fig. 1. Overview of a mobile data communication system

A system consists of the following components:

– Applications are software programs which provide a service to a user and
they are running on a mobile terminal and an application server. A service
is provided to a user by combination of applications on both the mobile
terminal and server.

– Mobile Terminals are accommodated by a mobile operator’s Base Stations
and Radio Access Network.

– Session Management Nodes provide authorization and charging functions for
services. After a mobile terminal is authorized by a session management node
by sending a session creation request message, it can send a data request to
an application server.

– Application servers are operated by either the mobile operator or third party
application providers. The servers are accommodated by a Core Network.
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– Anomaly Detection Tool detects anomalies based on a traffic monitoring, and
it was developed by us. The detail will be described and discussed in Sect. 3
and later.

Figure 2 shows how a user gets a service in the following two steps.

(A) Session creation step
A session is a communication path between a mobile terminal and an application
server. Before a user gets a service, a mobile terminal should send a session
creation request message to a session management node. The mobile operator
authorizes the user (or the mobile terminal) by validating this message. After
the authorization succeeds, a session creation complete message is sent back and
a session is created at the session management node. The mobile operator can
charge user-data which is sent by the authorized mobile terminal based on the
created session. The session creation request message includes the information
of identifications of the mobile terminal and the requested service.

(B) Data communication step
After the session is created, data communication starts. The application on the
mobile terminal sends data request messages to an application server and it sends
back a data response message. This communication is a request-response style.
In the case of a Web browsing service, they correspond to a HTTP Get request
message and a HTTP Get reply message containing the data.
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Fig. 2. Steps to get a service

3 Methodology

3.1 Principles of Anomaly Detection

An anomaly is an unusual behavior of some component of the system which is
likely to be caused by a failure. Our motivation is to use the detected anomaly
to identify a failure causing it, thus we summarize failures before defining the
anomaly. Table 1 lists possible failures for individual components in the system,
such as mobile terminals and session management nodes. Please note that all
failures are not listed and that these failures are typical ones. Possible failures
are categorized to the steps in Fig.2:
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– (A) Session creation step: A failure of this step results in session not being
created.

– (B) Data communication step: A failure of this step results in data request
not being completed, even if a session is successfully created.

Table 1. Possible failures of the steps (A) and (B)

Step Component Possible failures

(A)
Mobile terminals

Hardware failure, Protocol software program bug

(B) Application software program bug

(A) Session management nodes Hardware failure, Node software program bug,
Overload

(B) Application servers Hardware failure, Application software program
bug, Overload

(A) Radio access network Network congestion, Network equipment (e.g.
Ethernet switches, Routers) failure, Link failure

(B) Core network

Usually, an abrupt change of the number of messages (packets) is defined as
an anomaly in the Internet [1]. Thus in order to identify which component is
in failure, all messages sent by all components such as mobile terminals, ses-
sion management nodes and application servers should be monitored. It means
that many tools (equipments with network interface cards) capturing messages
should be set at many links to which these components are connected. Although
the method of monitoring all messages is useful to precisely identify the failed
component, applying many tools is too expensive to be used commercially.

On the contrary, we use as small number of tools as possible. As described
in Sect. 3.2, a few anomaly detection tools are set at the link connected to ses-
sion management nodes as shown in Fig.1. The anomaly detection tool captures
session creation request messages. Apparently, failures at the session creation
step (A) are easily detected because the tool can monitor failed session creation
request messages. On the contrary, how anomalies caused by failed data requests
are detected is an important issue.

We focus on the observation that a user (a mobile terminal) reconnects to
an application server after a mobile data communication service is not success-
fully completed [3]. It means that since a user should create a session before
getting a service from an application server, the user re-sends a session creation
request message to a session management node again. Such a re-sent session
creation request message is regarded as the fact that a user reconnects to an ap-
plication server. Thus we define reconnections as mobile terminals which re-send
session creation request messages for reconnecting to an application server, and
an anomaly as an abrupt increase (change) of reconnections. (The anomaly is
precisely defined in Sect. 3.3.) This enables to detect a failure of a data request
to an application server at the data communication step (B) without capturing
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data request and response messages. As far as we know, only our tool uses such
reconnections to detect anomalies in other communication systems.

This definition has two advantages. First, capturing only session creation re-
quest messages requires less computing power. It is more scalable than capturing
all messages sent by all components such as mobile terminals, session manage-
ment nodes and application servers. Second, this apparently reflects customers’
satisfaction.

3.2 Anomaly Detection Tool

– The anomaly detection tool takes a traffic monitoring approach rather than
a probing approach [1].
• In a probing approach, a probing tool sends test messages to individ-

ual components in the system and thus it clearly pinpoints a failure of
each component. However, it is time-consuming because a mobile data
communication system consists a number of components, e.g., more than
hundreds of servers.

• A traffic monitoring approach enables to quickly detect anomalies be-
cause captured packets (messages) are immediately analyzed just after
capturing them. In addition, this traffic monitoring avoids imposing load
on servers and network nodes in the system.

– The anomaly detection tool is a software program running on a PC (Per-
sonal Computer) with a network interface card. The PC with the imple-
mented tool is set at a link of a session management node in a radio access
network (described in Fig.1), and it is used to capture only session creation
request messages transferred between mobile terminals and session manage-
ment nodes. The implemented tool running on a PC with Intel CoreDuo
2.0GHz CPU and 2G bytes memory can simultaneously process more than
60,000 session creation request messages per a minute. Thus a few anomaly
detection tools are enough to monitor all sessions in a commercial mobile
data communication system [2].

3.3 Anomaly Detection Algorithm

This section precisely defines the metric for the anomaly detection. We defined
the anomaly as an abrupt change of reconnections, the metric is based on how
many mobile terminals re-send session creation request message. Before defining
it, we define how many times a mobile terminal sends session creation request
messages in a sample period a “session count”. Since a session creation request
message does not explicitly specifies that it is a reconnection, we regard those
subsequent to the first request as reconnections. That is, if the session count is
2, the number of reconnections is 1.

An important issue is whether sending of these session creation request mes-
sages are really reconnections. Thus we carefully determine how long the sample
period is so that no new session creation request messages exist in the sample
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period. In addition, the sample period should be determined as a small value as
possible for quickly anomaly detections.

We collected the 2 month’s log of session creation request messages in the
system and investigated session intervals of each mobile terminal without fail-
ures. A session interval is defined as an interval of sending successive session
creation request messages. Then, a cumulative frequency distribution of session
intervals is created. We see that 90% of intervals are more than 180 seconds.
Then we determine 180 seconds as the sample period. Thus in a 180 seconds
sample period, about 90% of session creation request messages might not be re-
connections. In this case, about 10% of session creation request messages might
be reconnections. We investigated the number of reconnections in a 180 seconds
sample period and obtained that about 90% of the number of reconnections was
once. (i.e., the session count is 2.)

Another important issue is for what group of mobile terminals and servers
the metric is calculated. A mobile operator or a third-party application provider
is responsible for each service. Thus the metric is calculated from session cre-
ation request messages to the same server which corresponds to a service. Before
defining the metric, we calculate a distribution of how many terminals connects
to a server the “session count” times. We define vm[n] as the number of mobile
terminals which have the session count n at the sample period m. Figure 3 shows
how to get a session count for mobile terminals. In Fig.3, at the sample period
m, the five mobile terminals MT-A to MT-E send session creation request mes-
sages. 2 (MT-B and MT-E), 2 (MT-C and MT-D) and 1 (MT-A) terminals send
1, 2, 3 session creation request message(s), respectively. That is, the results of
vm[n] are vm[1] = 2, vm[2] = 2 and vm[3] = 1.

* MT: Mobile terminal
* Assumption: All MTs use the same service.

MT-A O O O 3
MT-B O O O 1
MT-C O O 2
MT-D O O 2
MT-E O O 1

sample period
m

session count
of each MT 

at sample period m

A MT sends a session 
creation request message.

m - 1 m + 1
vm[n] : the number of 
MTs which have 
session count n at 
sample period m
vm[1] = 2, vm[2] = 2, 
vm[3] = 1

Fig. 3. How to get a session count

The anomaly detection algorithm focuses on mobile terminals which reconnect
once and it means that values of vm[2] are used. Please note that since about
90% of the number of reconnections was once in a 180 seconds sample period as
described at the above, in the rest of paper, we use 2 as a session count n and
omit it from variable names. The other session counts or the sum of a several
session count values can be chosen.
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After this, we will explain how to detect an anomaly based on vm[2]. Precisely,
it uses how xm is changed from that of the previous sample period m−1. xm is the
normalized value of vm[2] with respect to sum of vm[n] as shown by Equation(1).
In Fig.3, xm is calculated as vm[2]/(vm[1] + vm[2] + vm[3]) = 0.4. We call xm as
the “reconnecting terminal ratio” and it is the metric for anomaly detection. A
reason why the normalized value used for the metric is that it is not sensitive to
a change of the number of total sessions.

Before explaining how to use xm for an anomaly detection, we defines two
values ym and y′

m. ym in Equation(2) is the exponential average [4] of xm, and
y′

m in Equation(3) is the square of exponential average of xm. The α is used for
calculating exponential average in Equation(2) and (3). To decide the α, we need
to decide the time-window tw and the sample period p. The time-window means
that xm values before tw get lost in oblivion, and we decide one day as tw (one
day equals to 86,400 seconds). p is defined as 180 seconds from the beginning of
this section, and thus α is calculated as around 0.002 (= p/tw).

Equation(4), (5), (6) and (7) are used for the anomaly detection based on xm.
We define the condition of an anomaly detection as that a difference gm is more
than a threshold tm shown as Equation(7).

– gm is a difference between the current xm and the exponential average of
ym−1.

– We choose the threshold tm based on the standard deviation σm. Equation(5)
shows that σm is calculated using the exponential average ym and y′

m calcu-
lated by Equation(2) and (3). The threshold tm is calculated by k times as
the standard deviation σm shown as Equation(6). The standard deviation
σm means a possible range of a difference between xm and the exponential
average ym−1 in normal case at the sample period m. Our algorithm detects
an anomaly when the difference gm is more than k times of the possible
range.

xm =
vm[2]∑

i=1,∞ vm[i]
(1)

ym = α× xm + (1− α)× ym−1 (2)
y′

m = α× x2
m + (1− α)× y′

m−1 (3)
where α = p/tw

gm = abs(xm − ym−1) (4)

σm =
√

(y′
m − y2

m) (5)
tm = k × σm−1 (6)
gm > tm (7)

Figure 4 shows how anomalies are detected by Equation(7). It shows a time
series of 600 samples of gm and each circle is gm in Equation(4) at each sample
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Fig. 4. Anomaly detection example

period. It also shows the curve which plots values of tm in Equation(6) where k
is 3. Samples which are over the curve are regarded as anomalies, and they are
marked by cross marks in Fig.4. We will discuss how k is determined in Sect. 4
based on the log data.

3.4 Applying Anomaly Detection Tool to Detecting Bugs

It is relatively easy to detect anomalies caused by failures of session management
nodes, servers, a radio access network and a core network because these failures
result in many session creation failures. However, we consider that detecting
anomalies caused by a bug (software failure) of mobile terminals is not easy
because all mobile terminals are not always affected by this bug. For example,
when some bug is injected to an application software program which is installed
in a new release of mobile terminals, only such mobile terminals have the bug.
Another example is that all users do not always use an application software
program with a bug. In these cases, only some portion of terminals exhibit
unusual behaviors. Monitoring all session creation request messages results in a
small change of the reconnecting terminal ratio, i.e., xm.

Thus it is necessary to group mobile terminals which are affected by the same
bug and then to calculate a change of the reconnecting terminal ratios for the
groups of mobile terminals. However, it is not clear how mobile terminals are
grouped. In Sect. 4, we will study empirically what kinds of the groups are useful
by analyzing 6 month log data of session creation request messages.

4 Detection Examples of Software Failures

We analyzed the 6 month log data of session creation request messages in a mo-
bile data communication system. The system which was targeted by our log data
analysis handled over 1.5 million mobile terminals and over 100 mobile terminal
models. A part of the mobile terminals were connected to the system at the same
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time, and the mobile data communication services were requested randomly. We
successfully detected anomalies caused by failures of session management nodes
and a radio access network. The details are described in [2]. In this section, we
show how a bug of an application software program by a third-party application
provider on a mobile terminal is detected by our algorithm. The bug makes a
mobile terminal re-send a session creation request message in some conditions.
This section describes how such a bug is detected using our anomaly detection
technique.

4.1 How k for Threshold tm Is Determined

To detect anomalies it is important how k for threshold tm in Equation(6) is
determined. If k is set to a large value, some anomalies may be missed. On the
contrary, if k is set to a small value, many fake anomalies which are not caused
by failures are erroneously detected. The anomaly detection tool is an operations
tool and thus anomalies are reported as “alarms” to operators. It is important
not to report many fake alarms. We set a goal that the number of fake alarms
is less than 0.2 percent. Since one day consists of 480 sample periods, about one
fake alarm would be reported in average per day.

To determine such k, we investigated the relationship between gm and tm
with various values of k. Figure 5 shows one-day result of gm and tm with
k=1.5, 2, 2.5, 3, 3.5 and 4 from the log data. The curves in Fig.5 correspond to
the thresholds tm at all sample periods with k=1.5, 2, 2.5, 3, 3.5 and 4. Each
circle gm in Equation(6) corresponds to the difference between the reconnecting
terminal ratio and its exponential average at each sample period. If a circle is
over the curve, it is an anomaly. By counting the number of such circles for the
6 month log data, we choose 3 as k such that anomalies are detected at about
one percent of total sample periods.
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4.2 How the Bug Is Detected Based on Reconnections

We apply our algorithm into the 6 month log data. We calculate the reconnecting
terminal ratio xm for all mobile terminals in the system. The anomaly detection
detected anomalies as shown in Fig.6(C). It shows the time-series of gm (calcu-
lated from xm by Equation(4)) and the curve of threshold tm with k=3 during
40 sample periods. At the sample periods 4 and 24 in Fig.6, values of gm are
over the threshold tm and these points are detected as anomalies.

However, it was not unknown which component’s failure caused these anoma-
lies because there were many candidates of failures causing these anomalies.
Although we checked logs of session management nodes, application servers and
equipments in the radio access and core networks, no failure was found. Thus
we suspected that mobile terminals would be affected by a bug of an application
software program on mobile terminals. At this time, since we heard a new release
provided by a third-party vendor for mobile terminals, we assumed that this re-
lease might have a bug. We validated this assumption in the following steps:
First, we found candidates of mobile terminals which might have downloaded
this release. Please note that some of these candidates have not downloaded it
yet. Second, mobile terminals are divided into two groups: (Group A) the group
of such candidate mobile terminals, and (Group B) the group of other mobile
terminals.

Figure 6(A) and (B) show the results for these two groups. Although anomalies
are detected in Group A, no anomaly is detected in Group B. As the result, we
consider that this anomaly would be affected by this release and then actually
found the bug in this release of application software program.
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This grouping was useful to identify the bug, but this fact implies that the
anomaly could be detected earlier if we monitored only mobile terminals of this
group. In this empirical study, some days passed since the new release of the
software program had been announced. It means that before starting to collect
the log data, the release was announced and many mobile terminals already
downloaded it. If we monitored this group of mobile terminals, this anomaly
would be detected earlier. We consider that the monitoring for anomaly detection
per such groups of mobile terminals is important to quickly detect it.

To validate the above hypothesis, since we do not have the log data before
the new release date, we investigated the relationship between gm and tm with
k=3 for all mobile terminals and the group of them with the bugs (Group A and
Total is the same as Fig.6) after several days of releasing the patch (the program
of fixing the bug) for the software program. Our assumption is that the number
of mobile terminals with the bug was decreased since some mobile terminals
downloaded the patch to fix the bug and that in this case, the anomaly is detected
in Group A, but it is not detected in Total. If this assumption is correct, we can
detect such an anomaly by focusing on a group of mobile terminals with a bug.
Figure 7 shows the graphs of the relationship after several days of releasing the
patch. Since the circle as gm over the curve as tm with k=3, anomalies occur at
the sample period of 8 and 24 in Group A of Fig.7(A). On the contrary, in Total
of Fig.7(B), there is no anomaly.
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5 Related Work

There are two approaches for anomaly detection in communication systems [1]:
traffic monitoring and probing approaches. Our anomaly detection tool takes the
traffic monitoring approach. In this section, we discuss about the major related
work [1].

5.1 Traffic Monitoring

Traffic monitoring is a passive scheme whereby messages (packets) are monitored
(observed) to detect anomalies.
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Statistics-based monitoring. Statistics-based monitoring means that a man-
agement node collects the statistics on packet transmission from nodes such as
layer2 switches and routers by communicating with the nodes (e.g., [5]). Such
communication overheads between the management node and the other nodes
are not negligible. Since the system consists of a number of nodes, i.e., applica-
tion servers, session management nodes and so on, the overhead would be too
heady and time-consuming.

Packet capturing-based monitoring. Packet capturing-based monitoring
means that some equipment captures transmitted packets and obtains packet
transmission statistics. However, since a huge number of packets (dozens of giga-
bits per day) are transmitted on a commercial mobile core network, this method
has a few disadvantages: Many capturing points are needed to collect transmit-
ted packets. Besides, the method of trajectory sampling [6] can decrease the
number of packets that need to be captured. However, such a sampling would
be prone to miss anomalies.

On the contrary, our tool only captures session creation request messages
(packets) which contain user’s requested services. This means that the number
of captured packets less than the number of all transmitted packets. All session
creation request messages can be obtained at a few (maybe one) capture points
with a few PCs.

5.2 Probing

Probing is an active scheme whereby probes which check whether equipments
are not in failure are sent to the equipments.

Internal probing. Probe programs are installed into equipments such as
communication nodes or application servers, and they check whether the equip-
ments are not in failure [7]. However, such probe programs are difficult to install
if the service nodes are not in networks administrated by operators. In our sys-
tem, they cannot be installed on third-party application providers’ servers.

External probing. A probe tool checks equipments by actually sending test
messages to servers [8,9]. This external probing is not scalable for a large-scale
network. Many hours would be needed to check all components such as applica-
tion servers, session management nodes and mobile terminals.

6 Conclusion

In this paper, we applied an anomaly detection technique to detect anomalies
caused by mobile terminal software failures (bugs). The anomaly detection tech-
nique focuses on user’s behavior to reconnect a service and it detects anomalies
based on how many mobile terminals re-send session creation request messages.
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Although this is a light-weight mechanism, it enables to quickly (within a few
minutes) detect anomalies caused by not only communication failures, but also
bugs. This empirical study shows that a bug of mobile terminal was actually de-
tected. We consider that anomaly detection techniques are useful to detect bugs
which were overlooked during a testing period. As far as we know, this paper is
one of the first papers which actually detected a bug in a commercial environ-
ment. Although this paper does not deal with software testing techniques, an
anomaly detection technique is complementary to these techniques and plays an
important role to detect bugs as soon as possible.

In the future, we try a remaining issue about how to find such a group of
mobile terminals which are affected by the same bug. We also consider how to
apply our anomaly detection algorithm to other systems. Since our algorithm
can be applied to session-request based system, for example, we may apply it
easily to the IP Multimedia Subsystem (IMS) [10].
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Abstract. Testing a black-box system without recourse to a specifica-
tion is difficult, because there is no basis for estimating how many tests
will be required, or to assess how complete a given test set is. Several
researchers have noted that there is a duality between these testing prob-
lems and the problem of inductive inference (learning a model of a hidden
system from a given set of examples). It is impossible to tell how many
examples will be required to infer an accurate model, and there is no
basis for telling how complete a given set of examples is. These issues
have been addressed in the domain of inductive inference by developing
statistical techniques, where the accuracy of an inferred model is subject
to a tolerable degree of error. This paper explores the application of these
techniques to assess test sets of black-box systems. It shows how they can
be used to reason in a statistically justified manner about the number
of tests required to fully exercise a system without a specification, and
how to provide a valid adequacy measure for black-box test sets in an
applied context.

1 Introduction

When do we know that a test set is adequate? How do we know that it is
sufficiently rigorous for its execution to highlight the presence of any faults? If
it is not adequate, how many more tests will we need to generate to achieve a
requisite level of adequacy? These questions are fundamental to software testing.

Although numerous approaches are routinely used to assess test adequacy (e.g.
code or model coverage), these have significant drawbacks. Code-based coverage
has been shown to be an unconvincing fault predictor (c.f. work by Nagappan
et al. [16]). Model-based coverage on the other hand makes the restrictive as-
sumption that there exists a complete and up-to-date model of the system in
question.

Over the past 30 years, a different approach to test adequacy has emerged
that attempts to circumvent the weaknesses of traditional techniques. This ap-
proach exploits an intuitive relationship between the seemingly unrelated fields
of inductive inference and software testing. The idea is to treat the two ap-
proaches as two sides of the same coin; both are dealing with a system that
is unknown; testing elicits behaviour, and inductive inference reasons about its
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behaviour by inferring models. From the perspective of test adequacy, there is a
direct link between the accuracy of an inferred model and the adequacy of the
test set that was used to infer it [32,31]. If a model can be shown to be accurate,
the underlying test set evidently exercises the system in a sufficiently extensive
manner.

There has been a recent resurgence in techniques that expolit this relation-
ship [3,5,6,8,12,17,19,22,23,26,28,29,30] by inferring models from test sets, and
in some cases using these models to elicit further test cases. However, these
techniques tend to suffer from two problems: (1) there is no means of predicting
how many tests would be required to arrive at an adequate test set and (2)
given a partial test set, there is no basis for gauging how close it is to being
adequate.

Problems that are analogous to these have been the subject of much research
in the context of inductive inference [4,9,24]. These techniques, which are largely
based on probabilistic reasoning, are especially interesting from a testing per-
spective because they offer potential solutions to these testing problems. This
was the subject of a reasonably concentrated amount of research in the eight-
ies and nineties [6,20,21,30,32,31], but has not been revisited in the light of the
aforementioned surge in popularity of learning-based testing techniques.

This paper investigates the application of these techniques in a realistic testing
context. The key contributions are as follows:

1. An implementation of Valiant’s PAC framework [24] in a testing context.
This enables the probabilistic specification of what would be considered to
be an adequate test set in terms of the accuracy of the model that is inferred
from it.

2. The application of PAC-based probabilistic techniques [9,4] to estimate lower
bounds on the number of tests required for a test set of a black-box SUT to
be adequate.
– An applied demonstration of how to apply these approaches to SUTs

that may be modelled by Finite State Machines.
3. A practical demonstration of the use of the PAC framework in an applied

setting to quantify the adequacy of test sets with respect to a small black-box
simulator of an SSH client. The entire infrastructure used for experimenta-
tion have been made openly available.

Section 2 will present the background to combining inductive inference with
testing. Section 3 will show how the PAC framework can be reinterpreted in a
testing context. Section 4 will show how this can be used to estimate the required
size of an adequate test set. Section 5 shows how the PAC framework can be
used in a practical context to estimate the adequacy of existing test sets. Section
6 will discuss related work, and section 7 will present the conclusions and discuss
future work.
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2 Background

2.1 The Setting

This paper considers a setting where the SUT is a black-box, but where there
is no usable specification to generate tests from. In this context, a test case is
simply an input to the SUT without an expected output. An adequate test set
[30,31,32] will exercise every essential element of functionality in the system, and
in doing so trigger any obvious faults such as a crash or an uncaught exception.
This setting is realistic. The source code of a system, even if it is available, is only
effective to a limited extent when as a basis for test set generation[16]. Although
there are several sophisticated model-based testing techniques [13], developers
rarely produce and maintain models that are sufficiently accurate and up-to-date
to serve as a suitable basis for test generation.

The task of generating an adequate test set in this setting is seemingly im-
possible. Without a specification or source code there is no means by which to
assess how complete the test set is. There is also no coverage-like metric to serve
as a basis for homing-in on an adequate test set.

2.2 Testing with Inductive Inference

Over the past thirty years one approach has emerged that can (at least in prin-
ciple) assess test sets in the above setting. Instead of generating a test set in
a single step and subsequently executing it, the idea is to generate test sets by
experimentation. The outputs produced by an initial test set are observed and
are used to infer a hypothetical model of system behaviour. Depending on the
approach, this may then be used to drive the generation of further test sets, or
to assess the adequacy of the original test set by somehow comparing the model
with the SUT.

Inductive inference is a means of reasoning about a black-box SUT in terms
of its observable behaviour. If a test set is comprehensive enough to enable the
inference of an accurate model, then it can be deemed to be adequate [30,31].
The relationship between inductive inference and software testing was first ex-
plored by Weyuker in 1983 [30]. Since then a large number of techniques have
been developed that adopt different types of model inference. Initially, Weyuker’s
work and subsequent work by Bergadano et al. [3,30] focussed on synthesised
programs. Since then however, similar approaches have been based upon Artifi-
cial Neural Nets [12,22], invariants [8], decision trees [5] and deterministic finite
state automata [2,19,23,26,28,29].

2.3 Practical Problems in Establishing Test Adequacy

The use of inductive inference provides a plausible method for assessing the
adequacy of test sets in a meaningful way (i.e. with respect to the behaviour
they elicit). However, from a practical point of view, there remain two important
barriers to its widespread use:
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1. Predicting expense: There is no reliable basis for estimating how expen-
sive the testing process will be, i.e. how many tests will be required to pro-
duce an adequate test set. This is a fundamental testing problem and is
not restricted to testing techniques that incorporate inductive inference. In
the context of testing techniques that use inductive inference, it is akin to
stating that it is not known how many examples will be required to infer an
accurate model.

2. Quantifying adequacy: Current testing approaches that revolve around
inductive inference implicitly assume that an inferred model must be accu-
rate before the test set can be considered adequate. Their feedback is binary:
adequate or inadequate. This is impractical for two reasons. Firstly, there is
no feedback to provide any insights about how close the test set is to be-
ing adequate, or determining whether one test set is better than an other.
Secondly, most inductive inference algorithms are prone to making mistakes
and can at best infer a model that is approximate even if the test set itself
is adequate. However, there is no way to account for this by allowing for a
given degree of error.

3 Inductive Inference and Testing in a Probably
Approximately Correct Setting

In the context of machine learning, the area that seeks to address such problems
is generally referred to as Computational Learning Theory (also Statistical Learn-
ing Theory). Given the widely acknowledged link between inductive inference
and testing, it seems intuitive that some of the Computational Learning Theory
principles that have been successfully applied in inductive inference should be
readily applicable in a testing context. This section sets the foundations for this
by recoding a framework by Valiant [24], which has become widely known as the
Probably Approximately Correct (PAC) framework, into the testing setting.

3.1 The PAC Framework

The PAC framework [24] describes a basic learning setting, where the key factors
that determine the success of a learning outcome are characterised in probabilis-
tic terms. As a consequence, if it can be shown that a specific type of learner
fits this setting, important characteristics such as its accuracy and expense with
respect to different sample sizes can be reasoned about probabilistically. The spe-
cific elements of the framework are illustrated here with respect to the example
problem of learning a deterministic finite state machine from sample sequences
(to save space, we presume the conventional definition and notation [27]). Much
of the notation used here to describe the key PAC concepts stems from Mitchell’s
introduction to PAC [14].

The PAC setting assumes that there is some instance space X . As an example,
if we are inferring a finite state machine with an alphabet Σ, X could be the
set of all words in Σ∗. A concept class C is a set of concepts over X , so in our
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case case it the set of all deterministic finite state machines that can accept and
reject words in X . A concept c ⊂ X corresponds to a specific target within C
to be inferred (in our case it is the finite state machine that accepts a specific
subset of words in Σ∗). Given some element x (in our case a word), c(x) = 0
or 1, depending on whether it belongs to the target concept. It is assumed that
there is some selection procedure EX(c,D) that randomly selects elements in X
following some static distribution D (we do not need to know this distribution,
but it must not change).

The basic learning scenario is that some learner is given a set of examples as
selected by EX(c, D). After a while it will produce a hypothesis h. The error
rate of h subject to distribution D (errorD(h)) can be established with respect
to a further ‘test’ sample from EX(c,D). This represents the probability that h
will misclassify one of the test samples, i.e. errorD(h) ≡ Prx∈D[c(x) �= h(x)].

In most practical circumstances, a learner that has to guess a model given
only a finite set of samples is susceptible to making a mistake. Furthermore,
given that the samples are selected randomly, its performance might not always
be consistent; certain input samples could happen to suffice for it to arrive at an
accurate model, whereas others could miss out the crucial information required
for it to do so. To account for this, the PAC framework enables us to explicitly
specify a limit on (a) the extent to which an inferred model is allowed to be
erroneous to still be considered approximately accurate, and (b) the probability
with which it will infer an approximate model. The error parameter ε that puts
an upper limit on the probability that an inferred model may mis-classify a given
input. The δ parameter denotes an upper bound on the probability of a failure
to infer a model (within the error bounds).

3.2 A PAC-Compatible Testing Framework

Figure 3.2 shows how the inductive inference and testing processes can fit into
the PAC framework [31,26]. The arcs are numbered to indicate the flow of events.
The test generator produces tests according to some fixed distribution D that
are executed on the SUT c. With respect to the conventional PAC framework
they combine to perform the function of EX(c,D).

The process starts with the generation of a test set A by the test generator
(this is what we are assessing for adequacy). These are executed on the SUT,
the executions are recorded and supplied to the inference tool. This infers a
hypothetical test oracle. Now, the test generator supplies a further test set B,
and the user supplies some acceptable error bounds ε and δ. The observations of
test set B are then compared against the expected observations from the model
to compute errorD(h). If this is smaller than ε, the model inferred by test set A
can be deemed to be approximately accurate (i.e. the test set can be deemed to
be approximately adequate).

The δ parameter is of use if we want to make broader statements about the
effectiveness of the combination of learner and test generator. By running mul-
tiple experiments, we can count the proportion of times that the test set is ap-
proximately adequate for the given SUT. If, over a number of experiments, this
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Fig. 1. Inductive testing with the PAC framework

proportion is greater than or equal to 1− δ, it becomes possible to state that, in
general, the test generator produces test sets that are probably approximately ade-
quate (to paraphrase the term ‘probably approximately correct’, that would apply
to the models inferred by the inference technique in a traditional PAC setting).

4 Estimating Test Set Size

Given that the SUT is a black-box, and that we can only reason about it by
experimenting with it, it is seemingly impossible to ascertain a-priori how many
test sets will be required to constitute an adequate test set. Surprisingly work
that builds on the PAC framework does enable us to obtain a bound on the
number of tests (if we make certain assumptions about the SUT, which are
discussed later). By assuming that the set of test cases is selected randomly from
some fixed distribution, it becomes possible to make a probabilistic argument
the number of test cases required to arrive at a point where any model that is
consistent with the test sets must be sufficiently accurate.

The approach relies on the ability to characterise the complexity of the learn-
ing task. In the context of PAC-learning Haussler [9] describes two approaches,
each of which is based on a different characterisation of complexity. One of them
assumes that it is possible to place an absolute bound the number of possible
hypotheses that could be produced by a learner (known as the Version Space),
whilst the other assumes that it is possible to place a bound on the internal
complexity of the hypothesis space (known as the VC Dimension). These two
approaches will be presented in this section, followed by a demonstration of how
each of them can be applied to reason about the size of an adequate test set for
a black-box SUT that could be modelled by a deterministic finite state machine.

4.1 Bounding Test Set Size with Version Spaces

The question of how many tests belong to an adequate test set is akin to the
question of how many tests would be required to ensure that an accurate (within
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the limits of ε and δ) model can be inferred. To establish this, Haussler’s Version-
Space based approach [9] estimates a lower bound on the number of tests that
would be required to ensure that all consistent hypotheses that could possibly
be inferred from the test set fall within the acceptable error bounds.

To reason about the possible range of hypotheses, Haussler uses Mitchell’s
notion of version spaces [15]. In the testing context, a test set D consists of
inputs x and their expected outputs c(x) . Version spaces are defined as follows
(using the definition from Mitchell’s book [14]):

V SH,D = {h ∈ H |(∀〈x, c(x)〉 ∈ D)(h(x) = c(x))}

Haussler defines the the version space as ε-exhausted if all of the hypotheses
that can be constructed from D have an error below ε, with respect to any
distribution D. More formally [14]:

(∀h ∈ V SH,D)errorD(h) < ε

The number of elements in D that is required to ε-exhaust V SH,D is exponential
or infinite in the worst case. However, given that we are using the PAC setting,
this is not the case, we know that the elements in D are selected independently
and at random, the number number of tests m that are required to ε-exhaust
V SH,D is considerably improved [9]. If V SH,D is finite, it becomes possible to
establish a lower bound on m. Assuming that set D is constructed by m ≥ 1
independent, random test cases, he shows that the probability that V SH,D is not
ε-exhausted is less than |H |e−εm (see Haussler’s paper for the proof [9]). Within
the PAC framework, this probability should be less than or equal to δ. This can
be factored in to the above probability, and rearranged to impose a lower bound
on m, the number of test cases that constitute D:

m ≥ (ln|V SH,D|+ ln(1/δ)
ε

(1)

The number of required tests m grows linearly in 1/ε, it grows logarithmically
with 1/δ, and it grows logarithmically in the size of V SH,D [9].

4.2 Bounding Test Set Size with the Vapnik-Chervonenkis
Dimension

Depending on the SUT, it may be impossible to easily impose an upper limit
on the size of V SH,D (e.g. the SUT could be a function that computes a real
number). For this case, Haussler proposed an alternative approach to bound
the test set size that does not rely on the size of V SH,D, but uses a measure
of complexity of H known as the Vapnik-Chervonenkis or VC dimension [25]
(though this is not necessarily finite either).

To define the notion of a VC dimension, it is necessary to first introduce the
notions of dichotomies, and shattering (see Haussler’s paper [9] for details). If
I is some subset of the instance space X , then an hypothesis h ∈ H induces
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a dichotomy on I by dividing I into those examples that are classified as be-
longing to h, and those that are not. ΠH(m) denotes the maximum number of
dichotomies that can be induced by H on any set of m instances.

If H induces all possible 2I dichotomies of I, then H shatters I. The VC
dimension of H V C(H) is the cardinality of the largest subset of X that is
shattered by H . Equivalently, it is the largest m such that ΠH(m) = 2m [9].

Using a proof that is analogous to the one used in the version space approach,
Haussler shows that the probability that V SH,D is not ε-exhausted is less than
2ΠH(2m)2−εm/2. From this, and by incorporating further results from Blumer
et al. [4], it can be rearranged to yield the lower bound on m:

m ≥ 4log2(2/δ) + 8V C(H)log2(13/ε)
ε

(2)

Mitchell [14] notes that this measure will often produce tighter bounds than the
equivalent estimation using the Version Space approach. The bound m grows
logarithmically in 1/δ, but grows log linear in 1/ε. As will be shown in section
4.3, the choice between the version space and the VC approach depends on the
ability of the tester to characterise the complexity hypothesis space for the SUT.

4.3 Bounding Test Sets for SUTs That Are Finite State Machines

This subsection demonstrates the two above techniques, showing how they can
estimate the number of tests that are required to test a black-box SUT. For the
purposes of illustration, it is assumed that H is the range of deterministic finite
state machines over some known alphabet. It is important to note that the use
of state machines is merely for the purpose of illustration – Haussler’s approach
can be applied to a broad range of other representations.

As mentioned previously, the choice between the Version Space approach and
the VC dimension approach depends upon the ability to characterise the com-
plexity of H in an appropriate way. In practice the size of V SH,D is infinite for
any DFA inference technique, because there are an infinite number of possible
DFAs that are consistent with a given test set. The VC dimension for DFAs
is also infinite; for any subset of words in X it is possible to produce an exact
hypothesis to shatter them, and the largest subset of X is infinite [10].

As a consequence, to ascertain a limit on the test set, it becomes necessary
to make some assumptions about the DFA, or the context in which it will be
tested. The remainder of this section shows how such assumptions can be used
to make the two techniques possible. Specifically, the Version Space approach
can be used by imposing a bound on the length of the test cases (implying a
bound on the depth of the DFA). Alternatively the VC dimension approach can
be used by imposing an upper limit on the number of states in the DFA.

Using the Version Space approach by bounding test case length. For
DFA inference, the relationship between the set of samples D and the version
space V SH,D was described by Dupont [7]. He showed how the version space can
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be interpreted as a lattice where the most specific element is a prefix tree au-
tomaton (PTA) (a tree-shaped minimal DFA that exactly represents the sample
D [7,28,29]), and the most general element is the universal DFA that accepts
every element in the DFA alphabet Σ. The size of this version space, which is
what we are interested here, is infinite if the depth of the PTA is unrestricted.

However, if the length of the test cases is limited to a chosen length n and the
size of the alphabet is denoted σ, the maximum size of a PTA can be computed
as:

∑n
i=0 σi.

In Dupont’s lattice version space, any hypothesis h ∈ H corresponds to a
particular partition of the set of states in the PTA (corresponding to the merging
of states into their respective equivalence classes). Thus, the size of V SH,D is
bounded by the number of possible set partitions of a set the size max – the
Bell number of max.

The extremely rapid growth of this number limits the use of the version space
approach in this finite state machine setting, and the example shown here is
restricted to a very simple SUT. We consider a setting where the length of a test
set is restricted to 7, and the size of the alphabet is 3. In this case, the maximum
size of the PTA is 3,280 states1. The upper bound on the number of DFAs that
can be generated from such a PTA as computed by the Bell number of 3280 is
approximately 1.5 ∗ 107722.

Now the task for the tester is to decide a realistic error margin for the as-
sessment of the test adequacy. To simply state that the test set should always
be sufficiently comprehensive to produce an exact model is unrealistic. In our
example the tester might consider it sufficient if the model inferred from the test
set has an error ≤ 0.1, and that this should happen with a probability of 90%.
In other words, ε = 0.1 and δ = 0.1 (calculated by 1− 0.9). This now allows us
to apply Haussler’s version-space estimation (see equation 1):

m ≥ (ln|V SH,D|+ ln(1/δ)
ε

≈ m ≥ (ln(1.5 ∗ 107722) + ln(1/0.1)
0.1

≈ m ≥ 17, 778.67977+ 2.303
0.1

≈ m ≥ 177, 809.8277 (3)

Taking these values at face value, the task of constructing an adequate test
set of this size for such a relatively simple scenario is unrealistic. It is however
important to bear in mind the proportions of the problem space. From a possible
1.5 ∗ 107722 hypotheses, it is possible to assert that a consistent learner will
produce an accurate hypothesis from a 177,810 tests – i.e. to statistically justify
this test set will be adequate.
1 A small Erlang module with all of the routines used to compute the results in this

paper is available
http://www.cs.le.ac.uk/people/nwalkinshaw/Files/ictss_code.zip

http://www.cs.le.ac.uk/people/nwalkinshaw/Files/ictss_code.zip
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Of course, considering the relative simplicity of the system in question, this is
very large number of tests (despite the vast size of the hypothesis space). There
are two things that one has to bear in mind when interpreting this number.
Firstly, it is a conservative worst-case estimate. It does not take any failed /
impossible tests into account (which would eliminate vast numbers of false hy-
potheses from an inference standpoint), and does not place any expectations on
the learner to do anything with the input data other than be consistent (i.e. not
to produce an hypothesis that contradicts the input data). In practice, negative
sequences merge out a vast number of invalid merges, and inference techniques
often use heuristics [11] to efficiently home-in on the correct merges. Ultimately
a justifiable upper bound, even if it is too large, is better than no bound at all,
because it provides at least a rough guide for the complexity of the SUT, and
the associated testing effort.

Using the VC dimension approach by bounding the number of states
in the SUT. In certain cases, it might not be possible to bound V SH,D. In the
previous setting, any larger alphabets or test lengths would become too large to
compute in a practical way, and it might simply be impossible to guess an upper
bound on the maximum length of a test case anyway. The VC dimension alterna-
tive is useful because it does not rely on a finite version space, but instead provides
an internal measure of the complexity of a potentially infinite hypothesis space.

Unfortunately, depending on the representation, it is not always possible to
calculate a finite VC dimension. For arbitrary DFAs the VC dimension is infinite
and can only be made finite by making assumptions about its maximum number
of states – if this is n states, the VC-dimension is bounded by n log2 n [10]. Thus,
in this case, the choice between version spaces and VC-dimension approaches is
determined by the nature of any additional knowledge of the DFA.

Estimating a suitable number of states n relies on the intuition of the tester,
from their prior knowledge of the SUT. For this example, let us guess that
the SUT contains at most 300 states. The VC dimension is thus bounded by
300 ∗ log2(300) = 2, 468.65.

This enables us to substitute for equation 2. As in the initial case for the
version space example, let us assume that ε = 0.1 and δ = 0.1:

m ≥ 4log2(2/δ) + 8V C(H)log2(13/ε)
ε

≈ m ≥ 4log2(2/0.1) + 8 ∗ 2, 468.65 ∗ log2(13/0.1)
0.1

≈ m ≥ 1, 387, 032 (4)

As in the previous version-space approach, this number is a conservative worst-
case estimation. It fails to take any heuristic capabilities of the inference tech-
nique into account. As previously, depending on the circumstances it might be
possible to take this added efficiency into account by increasing the value of ε.
If, using the same rationale, ε is increased to 0.4, the result is a much reduced
bound of m ≥ 248, 012.
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It is important to bear in mind that it does not make sense to compare the two
approaches as presented here with respect to their estimated test sizes, because
this would be comparing estimations for (potentially) completely different sys-
tems. Nonetheless, with respect to DFAs, if the number of states can be bounded
it is better to use the VC-dimension approach, because it is easier to compute an
estimate for more complex systems and tends to compute a much lower bound
than the version-space approach (this latter fact applies to all representations,
not just DFAs [9,14]).

5 Using the PAC Setting to Empirically Assess Test Sets

The ability to predict the sizes of test sets is only one side of the benefit of
using the PAC framework for testing, and has been already explored to some
extent in previous literature [31,21,20]. From an empirical aspect, the framework
is equally valuable, because it presents us with a basis for making statistically
justified measurements of test set adequacy for black-box SUTs, by assessing
the performance of the inferred models. This section presents a practical exam-
ple of this. It not only shows the value of being able to assess test sets, but
also highlights an important practical consideration that can lead to problems
of accuracy when computing the lower bounds for test size computed by the
techniques presented in the previous section.

Current techniques that combine testing with model inference make a binary
decision; a test set is adequate if it leads to an exactly accurate model (as as-
sessed within the limits of some model-based testing technique), and inadequate
otherwise. This is problematic because there is no basis for homing in on an
adequate test set. This section illustrates how the PAC testing framework (as
shown in Figure 3.2) can be applied in a practical context to provide feedback
about test set adequacy.

5.1 The SUT, and the Choice of Test Generation and Model
Inference Techniques

The SUT in question simulates the behaviour of an SSH client, in terms of the
FSM specification described by Poll et al. [18]. It accepts sequences of instruc-
tions as specified, but will throw an “unexpected input” exception if given a
sequence of inputs that is not part of the specification. The system is written
in Erlang (implemented using the gen fsm behavioural pattern – available with
the source code provided with this paper).

Let us assume that we have a small sample of 10 test scenarios that execute
some of the expected behaviour of the system. Because these only exercise a tiny
(albeit functionally significant) fraction of program behaviour, it is necessary to
substantially bulk up the test set if we want it to be adequate. Given that we
are presuming no further domain knowledge about the system, the rest of the
tests will have to be generated randomly. For this we use a random generator
that produces a set of unique random sequences from the given alphabet up to
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a certain length (for this example we choose 13 to be the maximum test case
length, and choose the length of each test case randomly).

The problem with any resulting test set, no matter how large, is that we
do not know how adequate it is.

This is where the PAC framework can offer a solution. By generating two non-
intersecting test sets, using one to infer a model, and the other to assess its
accuracy, it is possible to obtain an insight into how adequate the first test
set is.

To infer a model from the tests we choose Price’s EDSM blue-fringe state
merging algorithm [11] – until recently the most accurate algorithm for infer-
ring state machines from arbitrary examples. We use the openly available Ruby
implementation by Bernard Lambeau that was developed as a baseline for the
StaMInA inference competition [27].

5.2 Application of the PAC Framework

We start by generating test sets A and B (see Figure 3.2). The PAC framework
assumes that these are drawn randomly from the same distribution, but must
not overlap. To ensure that this is the case a large set of unique random test
cases is generated, and the contents of A and B are selected at random from this
superset. Set A will be used to train the model, and will be the test set that we
assess, and test set B will be the set with which we assess the accuracy of the
model (and so the adequacy of A).

Due to time constraints, we terminate the generation algorithm after an hour.
In that time sets A and B have been populated with 42,410 tests each. Now the
tests and their respective outcomes from set A are used to infer a model using
the StaMInA tool. The model is then used to predict the outcomes for test
set B. The error rate can then tell us how adequate test set A. If we use the
conventional definition of errorD(h) to compute the error, we end up with an
adequacy assessment of 99.99%.

Upon closer inspection, splitting the test cases up into true or false positives
and negatives shows that this figure has to be interpreted with care. Out of the
42,410 test cases, 42,397 tests are true negatives, five tests are true positives, five
tests are false positives and three are false negatives. Ultimately, the fact that
there is such a high overlap between sets A and B says more about distribution
from wich they were sampled than it does about the SUT. PAC-learning assumes
that the distributions A and B reflect the routine behaviour of the system in
question, in which case this measure of overlap is appropriate.

In a testing context, this measure is not particularly helpful. A randomly
generated test case will generate arbitrary distributions of test cases that do not
evenly represent the input domain of the SUT, and may lead to heavily skewed
error rates. To account for this, we use the Balanced Classification Rate (BCR)
[27]2, which balances the ability of the inferred model to reject false negatives
2 This measure is commonly used in machine learning, and should not be attributed

to the author, but is described in this paper with respect to DFA inference.
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against its ability to reject false positives: BCRD(h) = 1
2 (TP/(TP + FN)) +

(TN/(TN +FP )). If we apply this to calculate the adequacy of test set A above,
we obtain a more balanced test adequacy assessment of 0.8124.

5.3 Discussion

This section has demonstrated how to assess the adequacy of a test set for
a black-box system. However, in drawing the distinction between the different
measures for calculating classification error (errorD(h) and bcrD(h)), it high-
lights an important caveat for interpreting the test-size estimations produced by
the techniques in section 4. These predictions only apply when the test set can
be reliably assessed using the errorD(h) measure, i.e. when the distribution of
tests is roughly balanced between valid and invalid cases.

If this is not the case, the estimated lower bound on the number of required
test cases will probably be a significant underestimation. Given that the SSH
implementation has 19 distinct states [18], this can be illustrated with the VC-
dimension approach. For 19 states we obtain a VC-dimension of 80.71. We might
guess a conservative ε value of 0.1, and choose a δ value of 0.1. Substituting into
equation 2, this gives us an estimated lower bound of 45,515 test cases.

This happens to be relatively close to the number of tests we generated in
section 5.2. Had we used the conventional measure for errorD(h), this would
certainly be accurate. However, given that out of 42,410 random test-cases only
8 of these produce valid outputs from the SUT, it is clear that a much larger
number of random test cases would be required to fully exercise the SUT in
terms of its valid behaviour as well (and so reach a high level of adequacy with
respect to the BCR). Future work (see section 7) will elaborate the techniques
from section 4 to develop more accurate lower bounds that take into account the
the balance between valid and invalid test cases.

6 Related Work

As discussed in the Background section, there has been much work on relating
the fields of machine learning and software testing, and several relevant references
are included in this paper. Due to limited space, this section shall focus on the
more specific topic of the use of probabilistic techniques to reason about test
sets for black-box systems without specifications.

The idea of testing “to a confidence level” by joining the fields of Inductive
Inference and Testing was first raised by Cherniavsky and Smith in 1987 [6]
(although their work was primarily concerned with learning exact models). The
subject was subsequently explored by Zhu et al. [32,31]. They used the PAC
framework as a theoretical basis to reinterpret and justify a set of fundamental
test adequacy axioms they had proposed in earlier work. They also suggest using
an alternative to the VC-dimension and version-space estimation approaches to
predict the necessary size of a test set (Haussler’s Pseudo-dimension) though
given that the work is theoretical in nature, there is no suggestion of how this
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might be used in a practical context (e.g. how to compute the pseudo-dimension
for a given type of black box SUT).

The combination of PAC learning and testing was the subject of a substantial
amount of work by Romanik et al.. By adopting the PAC framework, they pro-
posed the notion of approximate testing [20]. They show how familiar machine
learning concepts such as the VC-dimension can be used to reason about the gen-
eral (approximate) testability of particular classes of program, with a particular
interest in reasoning about certain classes that are un-testable. In subsequent
work, Romanik [21] considers the relationship between the internal complexity
of a program (i.e. its source code branching) and its testability, and proposes an
extension of the VC-dimension (the VCP-dimension) to measure this.

Although Zhu and Romanik made pioneering theoretical contributions to the
research on combining the two fields, it was perhaps the relative primitiveness of
machine learning techniques at the time that prevented the practical application.
It is only recently that inference techniques have developed the capabilities to
infer (approximately) accurate models of software systems. To the best knowl-
edge of the author, this paper the first work that attempts to experiment with
the combination of PAC-learning and testing in a practical sense for the sake of
assessing test sets.

Many of the recent testing techniques to involve machine learning (c.f. work
by Raffelt et al. and Shahbaz et al. [19,23] are based on Angluin’s L∗ algorithm
[1]. In her paper, she discusses how her algorithm could be adapted to suit a PAC
setting. To the best of the author’s knowledge, this has not yet been implemented
in a testing context, but suggests that it would in principle be straightforward to
adapt these existing testing techniques to apply the PAC-based principles that
have been discussed in this paper.

7 Conclusions and Future Work

The challenge of producing a comprehensive test set for a black-box system with-
out recourse to a specification is seemingly impossible. There is no obvious basis
for determining whether a test set is adequate, and for identifying a candidate
set of test cases from a potentially infinite set of potentials.

Against this backdrop, machine learning is a particularly interesting discipline,
because it provides a wealth of techniques to reason in a systematic way about
hidden systems by way of experimentation. Valiant’s PAC framework provides
a useful formal basis for this, and has formed the basis for a limited amount of
theoretical work on software testing [31,21,20]. Specifically, the PAC framework
can be used to reason about the accuracy of the inferred model which, in turn,
provides feedback about the adequacy of the test set that was used to infer it.
Furthermore, the use of the PAC framework enables the estimation of how many
test sets might be required to produce an adequate test set.

In the light of the recent emergence of numerous testing techniques that are
founded on specific machine learning techniques [2,5,8,12,17,19,22,23,26,28,29],
this paper has sought to investigate the practical application use of the PAC
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framework. The paper shows how the PAC framework can be applied in practice.
it shows how test set sizes can be predicted, and how the framework can be used
to obtain a statistically valid assessment of test adequacy in practice.

The practical example in this paper has highlighted one problem of applying
the PAC framework in a testing context. It is assumed that there is a rough
balance between valid and invalid test cases, and the conventional measure of
error can be misleading when this is not the case (which is typical in a testing
context). Future work will attempt to adapt Haussler’s predictions [9], to produce
more accurate predictions for typical random testing situations, where the test
set is not balanced.

Acknowledgements. Much of the background material that relates inductive
inference to software testing was influenced by discussions with Gordon Fraser
at Saarland University in Saarbrücken.
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