
Searching for Complex Patterns over Large Stored
Information Repositories�

Nikhil Deshpande1, Sharma Chakravarthy1, and Raman Adaikkalavan2

1 CSE Department, The University of Texas at Arlington
2 CIS Department, Indiana University South Bend

{sharma,raman}@cs.iusb.edu

Abstract. Although Information Retrieval (IR) systems, including search en-
gines, have been effective in locating documents that contain specified patterns
from large repositories, they support only keyword searches and queries/patterns
that use Boolean operators. Expressive search for complex text patterns is im-
portant in many domains such as patent search, search on incoming news, and
web repositories. In this paper, we first present the operators and their semantics
for specifying an expressive search. We then investigate the detection of complex
patterns – currently not supported by search engines – using a pre-computed in-
dex, and the type of information needed as part of the index to efficiently detect
such complex patterns. We use an expressive pattern specification language and a
pattern detection graph mechanism that allows sharing of common sub-patterns.
Algorithms have been developed for all the pattern operators using the index to
detect complex patterns efficiently. Experiments have been performed to illus-
trate the scalability of the proposed approach, and its efficiency as compared to a
streaming approach.

Keywords: Information retrieval, Complex patterns, Document search.

1 Introduction

Although current IR systems [1,2,3,4] are convenient for doing keyword searches, in
domains such as federal intelligence, fugitive tracking and searching full-text patent in-
formation, there is a need to detect (or search1) more complex patterns in data sources.
Users in these domains may have more precise requirements in terms of what they are
searching for. They may be searching for patterns that involve term frequency (e.g.,
at least 5 occurrences of the phrase “protein clustering”), proximity with sub-patterns
(e.g., “peptide” near “saccharide”, in any order, within 5 words of each other), sequence
of sub-patterns (e.g., “DNA” followed by “modification”) and so on. Further, the pat-
terns that need to be detected may be arbitrarily complex; that is, they may need to be
specified in terms of other patterns (e.g., (“militant” followed by “bomb”) near “Iraq”,
separated by 5 positions or less). The expressiveness of search/query specification pro-
vided by current IR systems, although satisfactory for general searches, is not adequate
for the above application domains.
� This work was supported, in part, by the following NSF grants: IIS-0326505, EIA 0216500,

and IIS 0534611.
1 We use the terms “search” and “detect” interchangeably in this paper.

A.A.A. Fernandes et al. (Eds.): BNCOD 2011, LNCS 7051, pp. 68–82, 2011.
c© Springer-Verlag Berlin Heidelberg 2011

Searching for Complex Patterns over Large Stored Information Repositories 69

Detecting complex patterns over text streams has been studied and shown to be pos-
sible in [5], in which a suite of complex operators and their algorithms were developed
that detect complex patterns over stream data. Detecting patterns over a dynamic text
source (e.g., news feeds, IP packets) essentially entails streaming the data to detect the
required patterns. In other words, to detect a pattern, the entire data source must be read
(or parsed) every time. This is inefficient, but unavoidable, because of the fast-changing
nature of the data source. Also, if freshness of the search results are important to the
user, it becomes necessary to read the data source every time while processing a query.
However, if the data source is relatively static (e.g., Web repositories), it is unnecessary
to read the entire source each time a pattern is to be detected. The inefficiency will
be exacerbated as the data source grows larger. A better approach would be to build
and leverage an index on the data, as is done by search engines, and the information
in the index could be used for answering queries. Since the index would be computed
off-line, this approach may result in an occasional out-of-date search result. However,
considering that the data source is not frequently updated, we can assume this is accept-
able to the user. For such relatively static data sources, the gains in terms of efficiency
of retrieval that leveraging an index will bring outweigh the slight disadvantage of an
occasional out-of-date result.

The techniques developed for searching complex patterns over streams (as in XML
streams, news feed, stock prices) in [5] makes use of the sequential inflow of patterns by
reading the entire data source to detect a pattern. However, if the same patterns need to
be detected in stored data (as in web repositories) then streaming is very inefficient. It is
more efficient to index the repository (or use an already existing index) to detect the pat-
terns. Indexing will lose the sequence of occurrence of patterns in the data. This order
of occurrence of patterns is the key to detecting patterns based on proximity, contain-
ment, sequence, etc. The main contributions of this paper are to: (i) Identify information
that is needed as part of the index to correctly and efficiently detect complex patterns
as compared to the streaming approach, (ii) Explore the extent of the complexity of
the patterns that can be detected using indexed information, and (iii) Develop efficient
algorithms for index-based pattern detection.

The rest of this paper is organized as follows: Section 2 discusses the semantics of
the InfoSearch operators and Section 3 explains the algorithms used by the operators.
Section 4 explains the design of the InfoSearch System. Section 4.1 explains the imple-
mentation aspects of the system. Section 5 shows detailed experimental results. Section
6 reviews the related work, and Section 7 concludes the paper.

2 Pattern Specification and Detection

The InfoSearch framework discussed in this paper consists of an expressive query lan-
guage (introduced in [5]) through which the user can specify patterns and a pattern
detection engine capable of using the index to retrieve documents. InfoSearch detailed
in this paper has been briefly summarized in [6]. InfoSearch adopts the Pattern Spec-
ification Language (PSL) and its associated parser and pattern validator used in In-
foFilter [5]. The focus of this paper is on the detection of complex patterns over large
document repositories.

70 N. Deshpande, S. Chakravarthy, and R. Adaikkalavan

2.1 Pattern Specification

An occurrence of a pattern P is the presence of the pattern P in a given document.
There is an offset (multiple ones if the pattern occurs multiple times in the document)
at which the pattern occurs in the document. Os is the start offset, and Oe is the end
offset of the pattern, where offset is the position of words relative to the beginning of
the document.

Simple patterns are the basic building blocks and can be either System-defined (i.e.,
pre-defined in the system), or User-defined. Begin para, Begin document are examples
of system-defined patterns. Examples of simple user-defined patterns are: keywords or
phrases.

Complex patterns are composed of simple patterns, complex patterns, and pattern
operators (listed below). Any arbitrary complex pattern can be composed using the
pattern operators. Current operators supported are summarized below:

OR: Disjunction of two simple or complex patterns P1 and P2, denoted by (P1 OR
P2), occurs when either P1 or P2 occurs. For example, “information” OR “filtering”
will be detected when either one of the keywords occurs.

NEAR: Proximity of two simple or complex patterns P1 and P2, denoted by (P1

NEAR [/D] P2), occurs when both P1 and P2 occur, irrespective of their order of
occurrence. “D” is the maximum distance allowed between the patterns P1 and P2.
Default value of “D” is the scope of the operator (which can be the entire document).

FOLLOWED BY: Sequence of two simple or complex patterns P1 and P2, denoted
by (P1 FOLLOWED BY [/D] P2), occurs when the occurrence of P1 is followed by
the occurrence of P2 in a non-overlapping manner. The end offset of P1 is less than the
start offset of P2; “D” is the maximum distance allowed between the two patterns P1

and P2. If the value of “D” is 1 (minimum value), this indicates that the patterns P1 and
P2 form a phrase.

WITHIN: Occurrence of a simple or complex pattern P in the range formed by the
start offset of the pattern PS and the end offset of PE , denoted by (P WITHIN (PS ,
PE)). The pattern is detected each time pattern P occurs in the range defined by patterns
PS and PE . For example, “information filtering” WITHIN (BeginPara, EndPara) will
be detected whenever the phrase “information filtering” occurs within a paragraph.
When an expression is specified without a system-defined pattern, the default structure
(e.g., a document) is used as the default. User defined PS and PE can be used.

NOT: Non-occurrence of a simple or complex pattern P in the range formed by
the start offset of PS and the end offset of PE . The general specification is (NOT
[/F](P)(PS, PE)), where P , PS , and PE can be arbitrary patterns. “F” indicates the
minimum number of occurrences and its default value is 1. For example, NOT (“filter-
ing”)(“information”, “retrieval”) will be detected whenever “information” is followed
by “retrieval” without the word “filtering” occurring at least once in between them.

FREQUENCY: Multiple occurrences of a simple or complex pattern that exceed or
equal to F, denoted by (FREQUENCY /[F] (P)). A pattern P is detected each time P
occurs at least F times, where “F” is the minimum number of occurrences specified by
the user. The default value of F is 1. All the occurrences that are used for detection
should be disjoint (i.e., the end offset of each pattern occurrence should precede the

Searching for Complex Patterns over Large Stored Information Repositories 71

start offset of the subsequent pattern occurrence). The same set of occurrences will not
be used for detecting multiple instances of the same pattern.

SYN: This is an option and is specified along with a single-word pattern (currently),
denoted by (P [SYN]), to indicate multiple single-word patterns that have the same
meaning, in a succinct manner. Specifying a single-word pattern with SYN option is
equivalent to specifying N simple patterns that carry the same meaning (synonyms)
as the original pattern. For example, if you specify the word “bomb”[SYN] is equiv-
alent to specifying “bomb” OR “explosive device” OR “weaponry” OR “arms” OR
“implements of war” OR “weapons system” OR “munition” . If any of these words
or phrases appears in the text, the pattern “bomb”[SYN] is detected. This option adds
simplicity and flexibility to the specification of single-word patterns. The same is true
for complex patterns with embedded synonym specification, e.g. “Bomb”[SYN] NEAR
“Ground Zero”.

Sample Query: Using the above operators, users can specify complex and meaning-
ful patterns. A complex pattern (“bomb” occurring prior to “ground zero” occurring
twice, with a single occurrence of “automotive” or its synonyms), can be specified as:

Pattern P1 = “bomb” FOLLOWED BY “groundzero”
Pattern P2 = FREQUENCY/2 (P1)
Pattern P3 = P2 NEAR “automotive”[SYN]

2.2 Pattern Detection

Pattern detection semantics are needed for detecting meaningful patterns, since in an
unrestricted semantics (where none of the pattern occurrences are discarded after par-
ticipating in pattern detection) not all the detected patterns are meaningful for an appli-
cation. Detection semantics essentially delimit the patterns detected and accommodate
a wide range of application requirements.

We want to emphasize that we have chosen to define proximal-unique semantics in
this paper based on the intuition of proximity and disjoint pattern detection. It is cer-
tainly possible to define other meaningful constraints leading to other useful semantics.
However, the framework remains the same and the algorithms change depending upon
the semantics used. It is indeed possible to include semantics of detection as an addi-
tional parameter when several of them are defined and supported.

Consider a document containing occurrences of words as shown in Figure 1. Suppose
we want to find occurrences of “cell” FOLLOWED BY “nucleic” within this document.
As shown in the figure, there are two occurrences of “cell”, one occurring at position
10, say cell1 and the other at position 15, say cell2. The occurrences of nucleic are at
position 28 and 41, say nucleic1 and nucleic2 respectively. We could combine either

10 15 20 28 34

cell cell protein nucleic clustering nucleic

41

Fig. 1. Pattern Occurrences (Example)

72 N. Deshpande, S. Chakravarthy, and R. Adaikkalavan

cell1 with nucleic1, or cell2 with nucleic1, or cell1 and cell2 both with nucleic1 as
occurrences of the combined pattern “cell” FOLLOWED BY “nucleic”.

However, it makes more intuitive sense to combine only the closest occurrences,
because closely occurring patterns are more likely to be of interest for a search as the
correlation here is measured in terms of proximity. Hence, we discard the occurrence
of cell1 and combine cell2 with nucleic1. In the above example, cell2 is called the
initiator because it initiates the pattern detection, and nucleic1 is called the terminator,
because its occurrence results in the pattern being detected.

Second, sub-patterns once used are not used for detecting another instance of the
same pattern, i.e., patterns need to be unique. For example, it does not make intuitive
sense to combine cell2 with nucleic2, because cell2 has already been used in a combi-
nation. Combining it again with nucleic2 will result in the detection of another instance
of the same pattern using a previously used sub-pattern. Of course, the above takes the
distance into consideration where specified.

The Proximal-Unique semantics has been defined to take this intuitive sense of
proximity and uniqueness into consideration when detecting a pattern by applying re-
strictions on the usage of sub-patterns. It is less complicated to detect patterns with
unrestricted semantics although a large number of them are likely to be generated.

Non-overlap or disjoint aspect is also assumed. For example, suppose we want to find
the occurrence of (“cell” FOLLOWED BY ‘nucleic”) NEAR (“protein” FOLLOWED
BY “clustering”). According to the semantics discussed above, “cell” FOLLOWED BY
‘nucleic” occurs in the interval (15, 28) and “protein” FOLLOWED BY “clustering”
occurs in the interval (20, 34). The sub-patterns satisfy the condition of being proximal,
and of being the most recent un-combined occurrence of their type. However, they
overlap and are not disjoint. Under the disjoint constraint, the combined pattern is not
detected. It is also possible to relax the disjoint constraint in which case the NEAR
operator will detect the above pattern.

2.3 Inverted Index

The inverted index (also called an inverted list) is the most common mechanism used
in Search Engines [2,7] to maintain a mapping from a keyword to the documents that
contain the keyword. Given a collection of documents, IDs are assigned to each docu-
ment. A document ID uniquely identifies a document. The basic information stored in
the inverted index is just a keyword - document ID mapping. For example, a sample
set of documents is shown in Table 1 and the corresponding inverted index is shown in
Table 2. This information is sufficient to answer simple keyword queries and queries
involving Boolean operators. In other words, given a keyword, we can return document
IDs of documents that contain at least one occurrence of that keyword. For example,
in the given example, if the user is searching for “information” AND “retrieval”, the
intersection of the document IDs corresponding to the keywords “information” and
“retrieval” gives us the desired result (documents 1 and 3 in this example).

However, to answer queries involving proximity, sequences, frequency and contain-
ment, this information is not sufficient. First, the above scheme does not store infor-
mation about every occurrence of a keyword. It only provides information about the
presence or absence of a term within a document. Second, to answer such complex

Searching for Complex Patterns over Large Stored Information Repositories 73

Table 1. A sample set of documents

Document ID Document contents
1 information retrieval
2 Specifying complex queries
3 information on information retrieval

Table 2. Inverted index on documents in
Table 1

Keyword Documents
information 1,3

retrieval 1,3
Specifying 2
complex 2
queries 2

on 3

Table 3. Inverted index with position
information

Keyword Documents with position
information 1<1>, 3<1,3>

retrieval 1<2>, 3<4>

Specifying 2<1>

complex 2<2>

queries 2<3>

queries, we need to compute the distance between two given patterns, and also the rela-
tive order of occurrence of these patterns. For example, a query such as “information”
NEAR/2 “retrieval” cannot be answered using information from such an index, because
the distance between occurrences of “information” and “retrieval” within a given doc-
ument needs to be computed. This distance cannot be computed given just the document
which the patterns belong to. The position of every occurrence of the keyword within
a document must also be provided by the index [8]. Table 3 shows an inverted index
generated on the documents in Table 1 with the position information stored.

Hence, InfoSearch needs at least the document ID and the position of a given key-
word from the index with which it is integrated, in order to detect complex patterns.
One of the main goals of this work was to assess whether this information is sufficient
to enable complex pattern detection over an index, if the same patterns can be detected
by reading the data source in sequence.

2.4 Pattern Detection Graphs

Patterns are detected using a data structure called Pattern Detection Graph (PDG). A
query submitted to InfoSearch is converted into a PDG. Leaf nodes of the PDG corre-
spond to simple patterns such as keywords, phrases or system defined patterns. Internal
nodes correspond to complex patterns and encapsulate the logic of the corresponding
operator. For example, the PDG corresponding to the pattern “Protein” FOLLOWED
BY “clustering” is shown in Figure 2. The input to a leaf node is a set corresponding to
the index lookup for the term or phrase represented by the leaf node. This set consists
of <docID, start offset, end offset> tuples. As shown in the figure, “protein” occurs
once at offset 10 in document 1 and “clustering” occurs once at offset 12 in document
1. As another example, the set of tuples for the keyword “information” from the index
shown in Table 3 is: 1<1,1>, 3<1,1>and 3<3,3>.

74 N. Deshpande, S. Chakravarthy, and R. Adaikkalavan

Every node in a PDG has one or more parent nodes (also called as subscriber nodes),
except the root node. Leaf nodes propagate their input sets to their parent nodes. A
parent node, which corresponds to one of the operators such as OR or NEAR, thus gets
one or more sets of tuples as its input. The operator merges its input sets according
to the Proximal-Unique semantics for that operator to create an output set. After the
merged set is created, it is propagated to the parent node of the operator. This process of
propagating merged sets continues all the way up to the root. The merged output of the
root operator corresponds to the result set for the query. For example, in figure 2, the
input sets from leaf nodes are propagated to the “followed by” node, where the complex
pattern is detected over the interval < 10, 12 >.

to parent

Clustering

FOLLOWED
BY

ProteinD1 <10, 10> D1 <12, 12>

D1 <10, 12>

Fig. 2. PDG corresponding to “Protein” FOLLOWED BY “Clustering”

3 Pattern Operator Processing

InfoSearch computations are different from that of the algorithms used in a streaming
system. In a streaming system [5], the operators work by reading the data source se-
quentially, and passing simple pattern occurrences to the respective PDG nodes as and
when they occur while the data is being read. In other words, the input to a leaf node
will be a tuple and not a set of tuples. Because the data is read sequentially, simple
patterns are detected in their order of occurrence in the data source. As a re-
sult, at any operator, the initiator is always available when the terminator arrives. The
occurrences can then be combined and propagated, or discarded, as per the semantics
of the operator.

However, in InfoSearch the entire result set corresponding to a pattern is propagated
at once because of the stored text. This means that the relative order of occurrence of the
operands is lost, because each operand is a set containing all occurrences of the pattern
corresponding to that operand in the document collection. Hence, to generate correct
results, the InfoSearch operators need to restore the order of occurrence of patterns as
in the original document. This is crucial in order to determine which operand is the
initiator and which one is the terminator. Only when the relative order of occurrence

Searching for Complex Patterns over Large Stored Information Repositories 75

and position of sub-patterns is known, can a decision be made whether they can be
combined or not.

The inputs to the operators are sets of tuples containing the document ID, start offset,
and end offset of the corresponding pattern. Each tuple represents a single occurrence
of the corresponding pattern in the document collection. It is assumed that these sets
of tuples are sorted in ascending order of document ID and by start offset within each
document ID. The operators have to process the input sets tuple by tuple. First, they
have to ensure that the tuples to be merged have the same document ID. Second, they
have to determine which tuple is the initiator and which one is the terminator. Tuples
satisfying the criteria of the operator are combined and added to an output set. After the
operator is done processing the input sets, the output set is propagated to its parent.

Due to space limitations, we discuss only the NEAR operator. Please refer to [9] for
other operator and algorithm discussions.

3.1 The NEAR Operator

When the NEAR operator is processing two tuples from the input sets, it has to make a
decision whether the tuples are eligible for combination, and if not, decide which one
to keep and which one to discard. As mentioned earlier, the input tuples may either
be point tuples or interval tuples. To keep the forthcoming discussion generalized, we
assume that the input tuples have both start and end offsets. We now discuss the different
cases possible when we consider two input tuples, and the corresponding actions taken
in each case.

Merging strategy in NEAR: The inputs to the NEAR operator are two sets of tuples
corresponding to the left child and the right child, and an optional distance. Let the left
set be denoted by L and the right set by R. Let the distance be denoted by d. We arbitrar-
ily assign the first tuple from L as initiator, and the first tuple from R as terminator.
Let is and ie denote the start offset and end offset of the initiator, and ts and te denote
the start offset and end offset of the terminator. Let i+1 be the next tuple from the set
which initiator belongs to, and t + 1 be the next tuple from the set which terminator
belongs to.

If initiator and terminator do not belong to the same docID, we advance the
pointer which is pointing to a smaller docID. Since the sets are sorted by docID, this
is similar to a sort-merge operation. When initiator and terminator point to tuples
belonging to the same docID, three cases are possible.

Case 1 (ie < te): This means that the assumed initiator ends before the assumed
terminator. The different possibilities are shown in Figure 3. We perform the follow-
ing sequence of actions:

if initiator and terminator overlap then
lookahead2 to determine new initiator and terminator
go to the beginning of this operation and re-process the new initiator and
terminator

2 The Lookahead algorithm is explained below.

76 N. Deshpande, S. Chakravarthy, and R. Adaikkalavan

is ie

ts te

is ie i+1ei+1s ts te is ie ts te

overlap i+1 precedes t i and t form closest pair

Fig. 3. Some possibilities when ie < te

if i + 1e ≤ te then
make i + 1 the new initiator, and re-process the new initiator and terminator

else
this means initiator completely precedes terminator, without any overlap, and
there is no other tuple from the initiator set occurring before terminator. Now,
check if the distance criterion is satisfied.
if (ts - ie) ≤ d then

combine initiator and terminator
advance initiator and terminator

else
does not satisfy distance
lookahead to determine new initiator and terminator, re-process them

Case 2 (ie == te): This means initiator and terminator overlap (they have the same
end offset). Perform a lookahead, and re-process.
Case 3 (ie > te): This means our assumption of initiator and terminator is wrong.
The terminator precedes the initiator, either in an overlapping fashion, or a non-
overlapping fashion as shown in Figure 4. In this case, we swap the initiator and
terminator pointers, and re-process.

ts te

is ie

overlap

ts te

is ie

no overlap

Fig. 4. Some possibilities when te < ie

Lookahead algorithm: A lookahead is done when the current initiator and
terminator cannot be combined due to an overlap, or because the distance criterion
is not satisfied. At this point, we cannot determine which one from initiator and
terminator to keep, and which one to discard. We look ahead one tuple from both
sets, and assign the one that occurs first as the new terminator. The older tuple from the

Searching for Complex Patterns over Large Stored Information Repositories 77

opposite set becomes the new initiator. Three possibilities exist when we consider the
lookahead tuples:
Case I (i+1e < t+1e): This means the next tuple in the initiator set occurs before the
next tuple in the terminator set. (We assume they belong to the same docID).

Make old terminator the new initiator
Make i + 1 the new terminator
Case II (i + 1e == t + 1e): This means the next tuples have the same end offset. In this
case, we look at the older pair, and keep the one that occurs later as the new initiator.

if ie < te then
Make old terminator the new initiator
Make i + 1 the new terminator

else
This means initiator and terminator have the same end offset
Keep the initiator
Make t + 1 the new terminator

Case III (i + 1e > t + 1e):
Keep the initiator
Make t + 1 the new terminator

NEAR/
30

D1 <10, 18>
D1 <21, 25>
D2 <12, 18>
D2 <30, 35>
D3 <40, 47>
D4 <60, 80>

.

.

D1 <28, 40>
D2 <15, 20>
D2 <21, 24>
D3 <12, 19>
D4 <12, 20>

.

.

D1 <21, 40>
D2 <12, 24>
D3 <12, 47>

Fig. 5. Example of the NEAR operator algorithm

Figure 5 shows an example of the working of the NEAR operator. To begin, initia-
tor points to D1 <10, 18> in the left set, and terminator points to D1 <28, 40> in the
right set. Since the next tuple in the initiator set lies completely before terminator, it is
assigned as the new initiator (initiator is advanced). Now, initiator and terminator point
to a proximal pair of tuples, and hence they are merged and added to the output set as the
tuple D1 <21, 40>. When initiator and terminator point to D2 <12, 18> and D2 <15,

78 N. Deshpande, S. Chakravarthy, and R. Adaikkalavan

20> respectively, an overlap is detected, and hence a lookahead is done in both sets. The
lookahead determines that the next tuple from the right set (D2 <21, 24>) ends before
the next tuple from the left set (D2 <30, 35>). Hence, D2 <21, 24> is made the new
terminator and D2 <12, 18> is retained as the initiator. They are combined to form the
output tuple D2 <12, 24>. Now, initiator points to a D2 tuple while terminator points
to a D3 tuple. Hence, initiator is advanced. Now, initiator (D3 <40, 47>) lies com-
pletely after terminator (D3 <12, 19>). Hence, initiator and terminator are swapped.
This makes initiator point to D3 <12, 19> and terminator point to D3 <40, 47>, which
form a proximal pair and are merged to give D3 <12, 47> in the output set. Finally, ini-
tiator points to D4 <12, 20>, and terminator points to D4 <60, 80>. In this case, the
distance between them is 40, which is greater than the maximum allowed distance, i.e.,
30. Hence, they are not combined, and a lookahead needs to be done to determine which
one of them should be discarded, and which one kept.

Pattern
Validator

Pattern
Processor

Graph
Generator

Index Interface

Inverted index

Keyword buffer

{keyword1,
keyword2,...}

PSL query

Results

<keyword1, URL1,
position>

.

.

.
<keywordn, URLn,

position>

tuples (hits)

Document
collection

WordNet
database

InfoSearch
User

PDG

Pattern Detector

Fig. 6. InfoSearch architecture

4 Design and Implementation of InfoSearch

The InfoSearch architecture is shown in Figure 6. The user query specified in Pattern
Specification Language is converted into a Pattern detection graph (or PDG). Leaf nodes
of the PDG represent simple patterns such as keywords, phrases or system defined pat-
terns. Higher level nodes represent composite operators on these leaf nodes, or on other
composite nodes. To detect and optimize common computations, the graph generator
shares PDG nodes (and sub-graphs) wherever possible. This is achieved by generating

Searching for Complex Patterns over Large Stored Information Repositories 79

a single, common PDG or sub-PDG for a common expression or sub-expression. While
generating the graph, the graph generator stores the keywords specified in the query in
a keyword buffer. Once the PDG is generated, the graph generator queries the index for
each of the keywords it has stored in its buffer. This is done through the index interface
module, which is responsible for retrieving the “hits” for each keyword from the index.
The detection engine of InfoSearch is designed to be generic and capable of working
with any kind of index. The “hits” are then wrapped into a set of <docID, start offset,
end offset> tuples “tuples” and passed on to the leaf node that represents the keyword.
Leaf nodes propagate their input to their parent nodes. The parent nodes, which cor-
respond to one of the operators, merge their input sets according to the appropriate
semantics.

4.1 Implementation

Whenever the graph generator comes across a token which is a keyword or a phrase,
it stores this token in a Vector object called the keyword buffer. The keywords in the
buffer are passed to the index interface after the PDG construction is complete, whereas
the phrases are passed to the phrase processor. The reason for having a keyword buffer
is that it is essential that the PDG is completely constructed before the index can be
queried for the keywords. If the keywords are passed to the index interface or phrase
processor by the graph generator as and when it pops them off the stack, they will re-
turn the results from the index to the PDG possibly before it is completely constructed.
Thus, the keyword buffer is essential to avoid triggering of PDG nodes by the index
interface while the PDG is being constructed. If the synonyms option is chosen for
any keyword in the query, the graph generator queries the WordNet synonym database
to get synonyms for the keyword. This is done through an API called the Java Word-
Net Library (JWNL) [10]. For each synonym, a leaf node is constructed, and finally a
SYN operator node is constructed which subscribes to the original keyword and all its
synonyms.

The index interface has to provide standard methods to access data from the inte-
grated index, and deliver the results to the pattern detector in a specific format. As
such, it does not matter if the index being integrated is an inverted index, or any other
kind of index, say a B-tree index, as long as an index interface for it is developed. In
other words, if a new index has to be integrated with InfoSearch, an index interface for
that index has to be created which will support the required calls from InfoSearch, and
return data to it in the expected format.

The pattern detection engine is responsible for processing the result sets from the
index. The index interface passes a reference to a Vector of Tuples corresponding to
a keyword to the leaf node corresponding to the keyword. Internal nodes of the PDG
correspond to one of the operators. They get references to one or more Vectors from
their children and merge them to produce an output Vector. This merging is done as per
the operator semantics described earlier.

For the first release of this system, we built a simple inverted index using Berkeley
DB Java Edition [11], and integrated it with InfoSearch. Since the Berkeley DB API
is in Java, it was convenient to develop an index interface for it, because the rest of
the InfoSearch system was also developed in Java. To create the inverted index, we

80 N. Deshpande, S. Chakravarthy, and R. Adaikkalavan

Performance of Stream based detection vs. Index-based
detection

0
100
200
300
400
500
600
700

ke
yw

or
d

O
R

F
R

E
Q

U
E

N
C

Y

N
E

A
R

F
O

LL
O

W
E

D
B

Y

N
O

T

ph
ra

se

sy
no

ny
m

P
D

G
 w

ith
he

ig
ht

 4

Query type

R
es

p
o

n
se

 t
im

e
(m

ill
is

ec
.)

InfoFilter

InfoSearch

Fig. 7. Comparison of system performance over 2600 words

Fig. 8. Response Time of InfoSearch (IS) and InfoFilter (IF) Systems in milliseconds for each
Operator

have created a Java program called DocumentIndexer which takes a given folder of
documents, reads the documents, and builds an inverted index over those documents.
For every keyword in each document, it stores a “hit” in the inverted index, which
contains the path of the document the keyword is from, and the position of the keyword
in that document.

5 Experimental Results

The primary reason for developing operators and algorithms to detect complex patterns
over indexed data was to support efficient searching of stored documents for complex
patterns. It does not make sense to stream already stored documents and use InfoFil-
ter [5] for detecting patterns. Since InfoSearch uses an index-based approach, it is ex-
pected to be efficient for large volumes of data. A set of 20 documents of around 1.5 KB
each were selected from the Reuters-21578 dataset3 and the documents were artificially

3 Available at http://www.daviddlewis.com/resources/testcollections/reuters21578

Searching for Complex Patterns over Large Stored Information Repositories 81

converted into a stream, fed to InfoFilter [5] and patterns involving all the operators
were detected over this document stream. The time taken to process the stream was
noted in milliseconds. Subsequently, the same documents were indexed for testing the
efficiency of InfoSearch and the time taken for the result set to reach the root node was
noted in milliseconds. For each of the operators, the performance of these systems are
noted and are shown in Figure 7. The experiments were again repeated with document
sets of sizes 1MB, 2MB, 5MB, 10MB, 20MB and 50MB and the results are shown in
Figure 8. The last row of the table indicates a pattern whose PDG is height 4 (has 4
operators and at least 5 leaf nodes). From that row it is clear that the improvement for
data sizes as little as 1MB is more than a factor of 100. This is even better with the
improvement being more than a factor of 1000 for data volumes of 50MB. As can be
seen, the detection for index-based algorithm grows sub-linearly whereas the detection
time for the streaming approach grows super-linearly. The time taken to index the doc-
uments is not considered in the above comparison (which is negligible as compared to
the improvements in detection time), since it is a pre-processing step, and is amortized
over multiple searches on the repository.

6 Related Work

Most search engines use a variation of the vector space model [1] to select documents
against a query from a document collection. In addition, search engines try to add other
factors to the ranking process for documents including external (meta) information about
the documents, references to documents from other documents, etc. Google [2] stores
the pages fetched by the crawler in compressed form in a repository. It has a document
index, which is a fixed width ISAM index, to keep information about each document.
It also has a lexicon, forward index and an inverted index to facilitate rapid access to
document lists. However, it support queries only in the form of keywords and Boolean
compositions of keywords. INQUERY [3] is based on a form of the probabilistic re-
trieval model called the inference net. Inference nets [4] provide the capability to spec-
ify complex information needs, and compare them to document representations. The
operators supported by INQUERY include and, or, not, a phrase operator and also an
operator that handles proximity between patterns. In addition, specification of a partic-
ular argument as being more important that the others can be done. However, there are
no operators for sequence of patterns, pattern frequency, synonyms and containment.

7 Conclusions

It was observed that current search systems are somewhat restrictive in the expressive-
ness of patterns that can be specified by the user. InfoSearch facilitates searching of
complex patterns involving proximity, frequency, containment and sequences over a
given document collection. The use of pattern operators and its modified semantics to
provide an expressive pattern specification mechanism and to develop algorithms for an
index-based approach are the main contributions of the paper. We have demonstrated
that there is no loss of detection capability from stream mode to index mode for the
pattern specification language. The overhead of additional information is quite small

82 N. Deshpande, S. Chakravarthy, and R. Adaikkalavan

in the form of offsets which can be readily obtained while indexing. The index-based
algorithms are quite different from their counterparts in stream processing.

We are currently working on incremental algorithms where the computation can be
stopped after detecting k patterns efficiently without having to use and compute all
patterns. With this it is also possible to consider ranking the results for their utility from
a users’ viewpoint.

References

1. Salton, G., Wong, A., Yang, C.: A vector space model for automatic indexing. Communica-
tions of the ACM 18, 613–620 (1975)

2. Brin, S., Page, L.: The anatomy of a large-scale hypertextual web search engine. In: Proc. of
the WWW, Brisbane, Australia, pp. 107–117 (April 1998)

3. Callan, J., Croft, B., Harding, S.: The inquery retrieval system. In: Proc. of the DEXA, pp.
78–83 (1992)

4. Turtle, H., Croft, B.: Evaluation of an inference network-based retrieval model. ACM Trans-
actions on Information Systems 9, 187–222 (1991)

5. Elkhalifa, L., Adaikkalavan, R., Chakravarthy, S.: Infofilter: A system for expressive pattern
specification and detection over text streams. In: Proc. of the ACM SAC, Santa Fe, NM
(March 13-17, 2005)

6. Chakravarthy, S., Elkhalifa, L., Deshpande, N., Adaikkalavan, R., Liuzzi, R.A.: How To
Search for Complex Patterns Over Streaming and Stored Data. In: IC-AI, pp. 17–22 (2006)

7. Mauldin, M.L.: Lycos : Design choices in an internet search service. IEEE Expert (1997),
http://lazytoad.com/lti/pub/ieee97.html

8. Witten, I., Moffat, A., Bell, T.: Managing Gigabytes: Compressing and Indexing Documents
and Images. Morgan Kauffman, San Francisco (1999)

9. Deshpande, N.: Infosearch : A system for searching and retrieving documents using complex
queries, Master’s thesis, University of Texas at Arlington, Arlington (2005),
http://itlab.uta.edu/ITLABWEB/Students/sharma/
theses/Des05MS.pdf

10. Java wordnet library, http://sourceforge.net/projects/jwordnet
11. Berkeley db java edition,

http://www.oracle.com/us/products/database/berkeley-db/
je/index.html

http://lazytoad.com/lti/pub/ieee97.html
http://itlab.uta.edu/ITLABWEB/Students/sharma/theses/Des05MS.pdf
http://itlab.uta.edu/ITLABWEB/Students/sharma/theses/Des05MS.pdf
http://sourceforge.net/projects/jwordnet
http://www.oracle.com/us/products/database/berkeley-db/je/index.html
http://www.oracle.com/us/products/database/berkeley-db/je/index.html

	Searching for Complex Patterns over Large Stored Information Repositories
	Introduction
	Pattern Specification and Detection
	Pattern Specification
	Pattern Detection
	Inverted Index
	Pattern Detection Graphs

	Pattern Operator Processing
	The NEAR Operator

	Design and Implementation of InfoSearch
	Implementation

	Experimental Results
	Related Work
	Conclusions
	References

