
ECOS: Evolutionary Column-Oriented Storage

Syed Saif ur Rahman, Eike Schallehn, and Gunter Saake

Faculty of Computer Science,
Otto-von-Guericke University, Magdeburg, Germany

{srahman,eike,saake}@ovgu.de

Abstract. As DBMS has grown more powerful over the last decades,
they have also become more complex to manage. To achieve efficiency
by DBMS tuning is nowadays a hard task carried out by experts. This
development inspired the ongoing research on self-tuning to make DBMS
more easily manageable. We present a customizable self-tuning storage
manager, we termed as Evolutionary Column-Oriented Storage (ECOS).
The capability of self-tuning data management with minimal human in-
tervention, which is the main design goal for ECOS, is achieved by dy-
namically adjusting the storage structures of a column-oriented storage
manager according to data size and access characteristics. ECOS is based
on the Decomposed Storage Model (DSM). It supports customization at
the table-level using five different variations of DSM. ECOS also proposes
fine-grained customization of storage structures at the column-level. It
uses hierarchically-organized storage structures for each column, which
enables autonomic selection of the suitable storage structure along the
hierarchy using an evolution mechanism (as hierarchy-level increases).
Moreover, for ECOS, we proposed the concept of an evolution path that
provides a reduction of human intervention for database maintenance.
We evaluated ECOS empirically using a custom micro benchmark show-
ing performance improvement.

Keywords: column-oriented storage, evolving hierarchically-organized
storage structures, customization, autonomy.

1 Introduction

Efficient data management demands continuous tuning of a database and a
DBMS. The need for tuning a DBMS is driven by changes, such as database
size, workloads, schema design, hardware, and application specific data man-
agement needs. Existing DBMS need extensive human intervention for tuning,
which contributes to a major portion of the total cost of ownership for data
management [7]. Self-tuning is the solution to reduce the tuning cost through
minimizing the human intervention [22]. However, researchers are united on one
conclusion that the self-tuning based solutions are the biggest challenge in the
database domain because of the inherent complexity of existing DBMS architec-
tures. Their functionalities are tightly integrated into their monolithic engines,
and it is difficult to assess the impact of tuning of one knob on another [6].

In this paper, we present a customizable and online self-tuning storage man-
ager. As a key design concept, we propose the selection of an appropriate storage

A.A.A. Fernandes et al. (Eds.): BNCOD 2011, LNCS 7051, pp. 18–32, 2011.
c© Springer-Verlag Berlin Heidelberg 2011



ECOS: Evolutionary Column-Oriented Storage 19

model and data/index storage structure through customization. This design de-
cision is according to the suggestion from the work of Chaudhuri and Weikum [6].
ECOS supports fine-grained customization at the table-level and column-level
according to the recommendations/results from [2,10,12]. We also identified the
need to autonomically change the existing data and index storage structure to
more appropriate ones with the changing data management needs according to
our previously published results in [18]. We named our solution Evolutionary
Column-Oriented Storage (ECOS), which is based on the existing Decomposed
Storage Model (DSM) [10]. It uses hierarchically-organized storage structures
for each column with an innovative evolution mechanism, which enables auto-
nomic selection of the most suitable storage structure along the hierarchy (as the
levels of a hierarchy increase). Furthermore, we present four possible variations
to standard 2-copy DSM to reduce its high storage requirement. We evaluated
ECOS empirically using the custom micro benchmark and our results show that
ECOS self-tunes the storage structure while maintaining the required perfor-
mance. Additionally, it also gives minor performance gains. Furthermore, we
propose a mechanism called evolution path to define the storage structure evo-
lution, which reduces the need for human intervention for long-term database
maintenance.

This paper is organized as follows. Section 2 defines the problem and justi-
fies the motivation for the proposed design. Section 3 explains the concepts of
ECOS and evolution path in detail. Section 4 introduces the prototype imple-
mentation and gives details of the empirical evaluation of the proposed concepts
using a custom micro benchmark. Section 5 outlines the related work. Section 6
concludes the paper with hints for the future work.

2 Problem Statement and Motivation

Specific storage structures have characteristics suitable for certain data sizes and
access patterns. As both of these aspects may change over the course of data
usage, there is no single storage solution that provides optimal performance in
every situation. Therefore, we propose an autonomic adjustment of the storage
structures. In this section, we explain the motivation for some critical design
decisions in ECOS. To explain the problem in detail, we take the LINEITEM
table of the TPC BenchmarkTMH (TPC-H) [17] schema as an example. We
generated the benchmark data with the scale factor of one and gathered statistics
for the LINEITEM table as shown in Table 1.

Why column-oriented storage model? The column-oriented storage model
is derived from earlier work of DSM [10]. DSM is a transposed storage model [4]
that stores all values of the same attribute of the relational conceptual schema
relation together [10]. Copeland and Khoshafian in [10,20] concluded many ad-
vantages of DSM including simplicity (Copeland and Khoshafian related it to
RISC [16]), less user involvement, less performance tuning requirement, reli-
ability, increased physical data independence and availability, and support of



20 S.S.u. Rahman, E. Schallehn, and G. Saake

heterogeneous records. These advantages give strong motivation for the use of
the DSM in a self-tuning storage manager.

Why customization at the column-level? Table 1 includes some character-
istics of the LINEITEM table. We can observe that distinct data count (cardi-
nality) for all columns is different. We further looked into the TPC-H queries
that access the LINEITEM table (general observation) and predicted (using
a layman-approach) the workload and data access patterns for columns. We
identified that four columns involve read-intensive workload and three columns
involve ordered data access as shown in Table 1. The differences in distinct data
count, workload, and data access pattern for different columns raise the need for
the support of storage structure customization at the column-level. If a storage
manager supports the column-level customization of storage structures, we can
hypothetically customize the LINEITEM table columns as shown in Table 1.

Fig. 1. Evolving hierarchically-organized
storage structures

Fig. 2. Evolutionary column-oriented
storage

Why hierarchically-organized storage structures? A hierarchical orga-
nization of storage structures is a composition of similar or different storage
structures in a hierarchy as depicted in Figure 1. Hierarchically-organized stor-
age structures provide an opportunity for autonomic selection of appropriate
storage structures along the hierarchy. We suggest that a new storage struc-
ture will be appropriate because we can use the existing data and gathered
statistics during previous operations on existing storage structures to make bet-
ter decisions for the next appropriate storage structure selection. The usage of
hierarchically-organized storage structures is also motivated by the possible op-
timization of the storage structure hierarchy according to a hardware hierarchy
and data management needs. For example, consider the memory hierarchy in
the modern hardware. We optimize storage structures for cache, main memory,
and persistent storage in the specified order. As shown in Figure 1, the lowest
level of hierarchy is using arrays, which are optimized for cache. On the second
level above, T-Trees are used, which are optimized for main memory. At the
third level, B+-Tree is used, which is optimal for persistent storage. Previously
published results from Bender et al. [5], Chen et al. [8], and Morzy et al. [14] also
influenced our decision for the use of hierarchically-organized storage structures.



ECOS: Evolutionary Column-Oriented Storage 21

Table 1. TPC-H LINEITEM table observed statistics, possible customization, and
anticipated evolution

Column Distinct Workload Data Storage Structure Storage Structure Storage Structure

Name Count Access Initial 1st Evolution 2nd Evolution

L ORDERKEY 1500000 Sorted Array Sorted List B+-Tree

L COMMENT 4501941 Sorted Array Sorted List Hash Table

L DISCOUNT 11 Read-Intensive Sorted Array

L SHIPMODE 7 Heap Array

L SHIPINSTRUCT 4 Heap Array

L RECEIPTDATE 2554 Heap Array Heap List

L COMMITDATE 2466 Ordered Sorted Array Sorted List

L SHIPDATE 2526 Ordered Sorted Array Sorted List

L LINESTATUS 2 Heap Array

L RETURNFLAG 3 Heap Array

L TAX 9 Read-Intensive Sorted Array

L EXTENDEDPRICE 933900 Read-Intensive Sorted Array Sorted List B+-Tree

L QUANTITY 50 Read-Intensive Ordered Sorted Array

L LINENUMBER 7 Heap Array

L SUPPKEY 10000 Heap Array Heap List

L PARTKEY 200000 Sorted Array Sorted List Hash Table

3 Evolutionary Column-Oriented Storage

In this section, we explain the concepts of ECOS in detail. We introduce and
explain four DSM based schemes proposed to reduce the high storage require-
ment of standard 2-copy DSM. We also discuss the concepts of the table and
the column customization, hierarchical organization and evolution of the storage
structures, and the evolution path.

3.1 Table-Level Customization

ECOS is a customizable and online self-tuning storage manager. We use the
term storage manager in its standard meaning for DBMS, i.e., a component
to physically store and retrieve data. Data storage efficiency is assumed to be
the main goal for a storage manager. By storage structure, we mean the data
structure used by the storage manager to physically store data and indexes.
ECOS stores data according to the column-oriented storage model, where each
column stores a key/value pair of data. ECOS suggests two customizations for
each table in a database, i.e., at the table-level and at the column-level. At the
table-level, we customize, how columns are stored physically for a logical schema
design. We use five variations of DSM for table customization, i.e., Standard 2-
copy DSM [10], Key-copy DSM (KDSM), Minimal DSM (MDSM), Dictionary
based Minimal DSM (DMDSM), and Vectorized Dictionary based Minimal DSM
(VDMDSM). The motivation for proposing and testing different variations of



22 S.S.u. Rahman, E. Schallehn, and G. Saake

Table 2. DSM

Columnk0

Key Value

k1 731

k2 137

k3 173

k4 371

k5 317

k6 713

Columnk1

Key Value

k1 20090327

k2 20071201

k3 20010925

k4 20090327

k5 20090327

k6 20010925

Columnk2

Key Value

k1 Jana

k2 Tobias

k3 Christian

k4 Tobias

k5 Tobias

k6 Jana

(a) Columns clustered on key

Columnv0

Key Value

k2 137

k3 173

k5 317

k4 371

k6 713

k1 731

Columnv1

Key Value

k3 20010925

k6 20010925

k2 20071201

k1 20090327

k4 20090327

k5 20090327

Columnv2

Key Value

k3 Christian

k1 Jana

k6 Jana

k2 Tobias

k4 Tobias

k5 Tobias

(b) Columns clustered on value

Table 3. MDSM

Columnk1

Key Value

k1 20090327

k2 20071201

k3 20010925

k4 20090327

k5 20090327

k6 20010925

Columnk2

Key Value

k1 Jana

k2 Tobias

k3 Christian

k4 Tobias

k5 Tobias

k6 Jana

(a) Columns clustered on key

Columnv0

Key Value

k2 137

k3 173

k5 317

k4 371

k6 713

k1 731

(b) Primary key
columns clustered
on value

DSM arise from high storage requirement of standard 2-copy DSM. The details
for the five variations of DSM are as follows:

Standard 2-copy DSM. DSM is a transposed storage model [4], which pairs
each value of a column with the surrogate of its conceptual schema record as
key [10]. It suggests storing two copies of each column, one copy clustered on
values, whereas another copy is clustered on keys. DSM is depicted in Table 2.
We argue that for a self-tuning storage manager, 2-copy DSM is the most suitable
storage model. It is easy to implement and easy to use, moreover, it does not
require human intervention to identify which column to cluster or index, instead
it is done in a uniform way [20]. To justify our argument, we evaluated standard
2-copy DSM with four other variations and found it the most appropriate one.
The results are presented in Section 4.

Key-copy DSM (KDSM). KDSM is the first variation of DSM that we pro-
pose to reduce the high storage requirement of the standard 2-copy DSM. KDSM
stores the data similar to DSM, i.e., for each column, data is stored in values,
whereas keys are unique numeric values that relate attributes of a row together.
All columns are clustered on the keys. However, unlike DSM, we store an extra
copy of only key columns (primary key or composite primary key) clustered on
values. This design alteration reduces the storage requirement of KDSM, but it
increases the access time for read operations that involve non-key columns in
search criteria. However, for read operations with the key column in the search
criteria it performs similar to DSM with less storage requirement as shown in
Section 4. We propose the use of KDSM for tables that only require querying
data using key columns.

Minimal DSM (MDSM). MDSM stores the data similar to DSM except that
we do not store any extra copy for any columns thus reducing the high storage
requirement of DSM to a minimum. Instead, the design idea of MDSM is to store
primary key columns clustered on values, whereas non-primary key columns are
clustered on key as depicted in Table 3. MDSM performs similar to DSM and
KDSM for the read operations with search criteria on key column attributes,
but it performs worse for the read operations with non-key column attributes



ECOS: Evolutionary Column-Oriented Storage 23

Table 4. Dictionary columns for
DMDSM and VDMDSM

Dict. Column 0

Keyd0 Valued0

d02 137

d03 173

d05 317

d04 371

d06 713

d01 731

Dict. Column 1

Keyd1 Valued1

d11 20090327

d12 20071201

d13 20010925

Dict. Column 2

Keyd2 Valued2

d23 Christian

d21 Jana

d22 Tobias

(a) Dictionary columns

Table 5. DMDSM

Columnv0

Keyv0 Valuev0

k2 d02

k3 d03

k5 d05

k4 d04

k6 d06

k1 d01

(a) Primary key columns
clustered on value

Columnk1

Key Value

k1 d11

k2 d12

k3 d13

k4 d11

k5 d11

k6 d13

Columnk2

Key Value

k1 d21

k2 d22

k3 d23

k4 d22

k5 d22

k6 d21

(b) Columns clustered on key

Table 6. VD-
MDSM

Vector Column

Key Value

v1 d01,d11,d21

v2 d02,d12,d22

v3 d03,d13,d23

v4 d04,d11,d22

v5 d05,d11,d22

v6 d06,d13,d21

(a) Vector column

in search criteria as shown in Section 4. Our results in Section 4 suggest that
if we do not have any space constraint and we do need access using non-key
attributes, this scheme is not appropriate.

Dictionary based Minimal DSM (DMDSM). To improve the performance
of MDSM, we introduced DMDSM, which stores the unique data for each col-
umn separately as the dictionary column. DMDSM is inspired from the concept
of the dictionary encoding scheme, which is frequently used as light-weight com-
pression technique in many column-oriented data management systems [1]. In
DMDSM, for each main column, values are the keys for the data from dictionary
column as depicted in Table 5. All dictionary columns are clustered on value. All
other concepts for the DMDSM are similar to MDSM. This scheme gives us the
provision to exploit our innovative concept of evolving hierarchically-organized
storage structures to its maximum potential for dictionary columns.

VectorizedDictionary basedMinimalDSM(VDMDSM). VDMDSM is an
extension of DMDSM, such that it stores the values (i.e., dictionary column keys)
for all columns together as the vector column, i.e., instead of saving each column
separately, it generates the vector of all attributes in the row and stores it as a value
for vector column as depicted in Table 6. Similar to DMDSM, VDMDSM provides
the opportunity to exploit the benefit of evolving hierarchically-organized storage
structures to their full potential for dictionary columns.

3.2 Column-Level Customization and Storage Structure Hierarchies

Once we select the appropriate storage model scheme from above-mentioned
schemes at the table-level, we move forward to customize the columns as ex-
plained next. At the column-level, we customize the storage structure for each
column. Each column is initially customized as either ordered read-optimized or
unordered write-optimized storage structure. For ordered read-optimized storage
structures, we store data in sorted order with respect to key or value, whereas
for unordered write-optimized storage structure, we store data according to in-
sertion order. In the above-mentioned schemes, dictionary columns are always
stored as ordered read-optimized storage structures.



24 S.S.u. Rahman, E. Schallehn, and G. Saake

Evolving hierarchically-organized storage structures. ECOS utilizes the
hierarchically-organized storage structure for data and index storage, such that
a storage structure at each new level of hierarchy is composed of multiple lower
level storage structures as depicted in Figure 1. The storage structures that
we discuss in this paper include heap array, sorted array, heap list, sorted list,
B+-Tree, T-Tree, and hash table. Before we continue our discussion, we out-
line the hierarchically-organized storage structures, which we use further in our
discussion. At the lowest level of hierarchy, we used:

Sorted array: Optimized for read-access with minimal space overhead. No
need to instantiate a buffer manager or an index manager to manage an
array.

Heap array: Optimized for write-access with minimal space overhead.

At the next level, we used composite storage structures:

Sorted list: Sorted list is composed of multiple sorted arrays. It requires the
instantiation of a buffer manager for managing multiple sorted arrays.

Heap list: Heap list is composed of multiple heap arrays. It also requires the
instantiation of a buffer manager for managing multiple heap arrays.

B+-Tree: B+-Tree is composed of multiple arrays as leaf nodes. It requires the
instantiation of a buffer manager for managing multiple arrays as well as an
index manager to manage the multiple index nodes.

On the higher levels, we used high-level composite (HLC) storage structures:

HLC SL: HLC SL is a B+-Tree based structure, where each leaf node is a
sorted list. HLC SL instantiates a buffer manager to manage multiple sorted
lists and an index manager to manage multiple index nodes. Each sorted list
manages its own buffer manager, which ensures the high locality of data for
each sorted list.

HLC B+-Tree: HLC B+-Tree is a B+-Tree based structure, where each leaf
node is also a B+-Tree. HLC B+-Tree instantiates a buffer manager to man-
age multiple B+-Trees and an index manager to manage multiple index
nodes. Each B+-Tree at leaf nodes has its own buffer manager and index
manager, which ensures the high locality of data and index nodes for each
B+-Tree.

Once a column is customized as either ordered read-optimized or unordered
write optimized storage structure, ECOS initializes each column to the smallest
possible storage structure, i.e., an ordered read-optimized column is initialized
as a sorted array, whereas an unordered write-optimized column is initialized as
a heap array. ECOS enforces that each storage structure should be atomic and
should be directly accessible using an access API. The reason for this approach
is that small storage structures consume less memory and generate reduced bi-
nary size for small data management [18]. If we can use them directly, then
there is no reason to use them as part of complex storage structures1, such as
1 We use storage structure as a common term for both data storage structure and

index storage structure.



ECOS: Evolutionary Column-Oriented Storage 25

B+-Tree or T-Tree; avoiding the overheads of complexity associated with these
storage structures. This approach ensures that using smallest suitable storage
structures, desired performance is achieved using minimal hardware resources
for small database management.

Storage capacity limitations for predictable performance. ECOS im-
poses data storage capacity limitations for each storage structure. We enforce
this for more predictable performance and to ensure that storage structure per-
formance does not degrade because of unlimited data growth. In ECOS, once the
limited storage capacity of a storage structure is consumed, it evolves to a larger
more complex storage structure composed of multiple existing ones considering
the important factors, such as hardware, the data growth, and the workload.
For ordered read-optimized data storage, a sorted array is evolved into a sorted
list. For unordered write-optimized data storage, a heap array is evolved into the
heap list. The evolution of storage structure is an important event for assess-
ing the next suitable storage structure by analyzing the existing data and the
previously monitored workload. Similarly, each new storage structure also has
a definite data storage capacity limitation and, once again, as it is consumed,
ECOS further evolves and increases the hierarchy of the hierarchically-organized
storage structures.

API consistency to hide complexity and ensure ease of use. To hide the
complexity of different storage structures over different levels of hierarchy, ECOS
keeps the interface for all storage structures consistent. We provide a standard
interface to access columns with simple, Put(), Get(), and Delete() functionality
with record as argument. It is invisible to an end-user, which storage structure
is currently in use for each column.

Automatic partitioning. ECOS separates physical storage for each column
to reduce the I/O contention for storing large databases. For large columns,
it also separates the data for a column into multiple separate physical storage
units, which is similar to horizontal partitioning. In Figure 2, at a minimum
each column has its own separate physical storage. With the growth of data,
each column may spread over multiple physical storage units. For example, for
storage structures of Table 1, each sorted list or heap list will be stored in a
separate data file, whereas each B+-Tree or T-Tree will be stored in a separate
index file. These physical storage units may be stored on the single hard disk,
or they may spread across the network.

3.3 Evolution and Evolution Paths

By evolution, we mean the transformation of a storage structure from an exist-
ing form into another form such that the previous form becomes an integral and
atomic unit of the new form autonomically. Evolution path is the mechanism to
define how ECOS evolves a smallest simple storage structure into a large com-
plex storage structure. It consists of many storage structure/mutation rules pair
entries that ECOS uses to identify, how to evolve the storage structures. Each



26 S.S.u. Rahman, E. Schallehn, and G. Saake

Table 7. Example for evolution paths

Storage Struc-
ture: Initial

Mutation Rules
Storage Struc-
ture: 1st Evolu-
tion

Mutation Rules
Storage Struc-
ture: 2nd Evolu-
tion

Sorted array

Event:
Sorted array=Full
Heredity based selection:
Workload=Read intensive
Data access=Unordered
Mutation:
=> Evolve (Sorted array − >Sorted
list)

Sorted list of sorted
arrays

Event:
Sorted list=Full
Heredity based selection:
Workload=Read intensive
Data access=Ordered
Mutation:
=> Evolve (Sorted list
− >B+-Tree)

B+-Tree of sorted
lists(As leaf nodes
for data storage)

Sorted array

Event:
Sorted array=Full
Heredity based selection:
Workload=Read intensive
Data access=Ordered
Mutation:
=> Evolve (Sorted array
− >B+-Tree)

B+-Tree of sorted
arrays(As leaf
nodes for data
storage)

Event:
B+-Tree=Full
Heredity based selection:
Workload=Read intensive
Data access=Ordered
Mutation:
=> Evolve (B+-Tree − >HLC
(B+-Tree based))

HLC of B+-
Tree(As leaf nodes)

Sorted array

Event:
Sorted array=Full
Heredity based selection:
Workload=Write intensive
Data access=Unordered
Mutation:
=> Evolve (Sorted array − >Heap
array)

Heap list based on
heap array muta-
tion rules

Heap array

Event:
Heap array=Full
Heredity based selection:
Workload=Write intensive
Data access=Ordered
Mutation:
=> Evolve (Heap array − >Heap list)
&
Generate (Secondary index = Sorted
list)

Heap list

Event:
Heap list=Full
Heredity based selection:
Workload=Write intensive
Data access=Ordered
Mutation:
=> Evolve (Heap list− >Hash
table) &
Evolve (Secondary index = Sorted
list − >B+-Tree)

Hash table

Heap array

Event:
Heap array=Full
Heredity based selection:
Workload=Write intensive
Data access=Unordered
Mutation:
=> Evolve (Heap array − >Heap list)

Heap list

Event:
Heap list=Full
Heredity based selection:
Workload=Write intensive
Data access=Unordered
Mutation: => Evolve (Heap list
− >Hash table)

Hash table

storage structure can have multiple mutation rules mapped to it. These muta-
tion rules consist of three information elements: Event, Heredity based selection,
and Mutation. The event identifies, when this mutation rule should be executed.
Different mutation rules can have the same event, but not all of them execute
the mutation. The heredity based selection identifies precisely, when evolution
should occur based on the heredity information gathered for the existing storage
structure. Heredity information means the gathered statistics about the storage
structure, e.g., workload type, data access pattern, previous evolution details,
etc. The mutation defines the actions that should be executed to evolve the stor-
age structure. Example of an evolution path is shown in Table 7. We envision
that common DBMS maintenance best practices can be documented using the
evolution path mechanism. ECOS assumes that DBMS vendors provide the evo-
lution paths that best suit their DBMS internals, with the provision of alteration
for a database administrator. The only liability for configuration that lies with
database designers and administrator is to have a look at the evolution path
for the DBMS and if needed, alter it with desired changes. Evolution process in



ECOS: Evolutionary Column-Oriented Storage 27

ECOS is autonomic, and it exploits evolution path to automatically evolve the
storage structures, i.e., our approach for self-tuning is online.

Consider the L ORDERKEY column of the LINEITEM table as shown in
Table 1. Suppose, as a database designer, we design this table. According to our
application design, we select the L ORDERKEY column as a part of the primary
key. As we already discussed in Section 3, we have to customize each column
as either ordered read-optimized or unordered write-optimized. Therefore, we
customize the L ORDERKEY column as ordered read-optimized. At the initial
design time, we design according to the domain knowledge, our experiences, and
predictions. As a designer, it is difficult to guarantee, how much this column
grows, and how long it takes to reach that size. When we customize the column
as ordered read-optimized, it is internally initialized as a sorted array. Now for
the L ORDERKEY column, three initial rows of the sample evolution path of
Table 7 are relevant.

As we mentioned in Section 3, ECOS limits the storage capacity for each
storage structure. Therefore, the initial sorted array has a certain data storage
capacity limit. For example, consider it as 4KB. As long as data is within the 4KB
limits, sorted array is the storage structure for the L ORDERKEY column, and
we gather the heredity information for the column, such as the number of Get(),
the number of Put(), the number of Delete(), the number of range Get() (for
range queries), the number of Get() for all records (for scan queries), etc. What
heredity information should be gathered may vary from one implementation to
another. Here, we simplify our discussion by assuming that a system can identify
using heredity information that the workload is either read-intensive or write-
intensive and the access to data is either ordered (range queries) or unordered
(point or scan queries).

The moment the storage limit of the sorted array is consumed, an event is
raised for notification. This event triggers all three initial mutation rules of Ta-
ble 7. Now heredity based selection identifies, which one of them to execute. We
suppose that for the L ORDERKEY column, the workload is read-intensive and
the data access is unordered, this scenario executes the first mutation rule of
Table 7, which evolves the existing sorted array into a sorted list. Now sorted
list is the new storage structure, and it is also constrained with the storage limit
according to the design principle of ECOS. As long as the L ORDERKEY col-
umn data is within the storage limit of the sorted list, heredity information is
gathered, and it is used for the next evolution.

It is observed from Table 1 that only half of the LINEITEM columns, i.e.,
eight out of sixteen with high data growth evolve during the first evolution. The
rest of the columns can be stored within an array (either heap array or sorted
array). Furthermore, only half of the columns with high data growth, i.e., four
out of eight, which are evolved during the first evolution evolve again during the
second evolution (i.e., L ORDERKEY, L COMMENT, L EXTENDEDPRICE,
and L PARTKEY). The final state of the table presented in Table 1 shows that
each column is using the appropriate storage structure (we assume for expla-
nation) according to the stored data size and observed workload. We can add
more parameters for evolution decisions, but we only used limited parameters



28 S.S.u. Rahman, E. Schallehn, and G. Saake

(i.e., data size, workload, and data access) to keep our discussion simple and
understandable. Table 1 shows only the evolution for dictionary columns for the
LINEITEM table as they utilizes the benefits of evolving hierarchically-organized
storage structures to their full potential. Before we conclude this section, to avoid
any confusion, we want to disclaim that the terms and concepts of evolution,
evolution path, mutation rules, and heredity information used in this paper have
no relevance with their counterpart in evolutionary algorithms or any other non-
relevant domain.

4 Implementation and Empirical Evaluation

In this section, we provide the details of our micro benchmark and the evalu-
ation results for ECOS2. The data and index storage structures that we have
implemented in the existing ECOS prototype implementation are the same as we
have discussed in Section 3.2. To simplify our discussion, we present the results
involving sorted array, sorted list, and HLC SL.

4.1 Micro Benchmark Details

For ECOS evaluation, we set up a micro benchmark with repeated insertion,
selection, and deletion of data using API based access methods. The data contain
keys in ascending, descending, and random order, which also represents their
insertion, selection, and deletion order in the database. For different columns, the
number of records (cardinality) is kept different. We defined seven columns with
two unique non-null columns, one of them used as a primary key. We used three
different widths for columns, i.e., 16, 85, and 4096 bytes to assess the impact of
tuple width on performance of different storage schemes. All storage structures
used in a micro benchmark operate in main-memory. For ECOS evaluation,
we used CPU cycles and heap memory as resources. We used OpenSuse 11.2
operating on Intel(R) Core(TM)2 Duo CPU E6750 @ 2.66GHz with four GB
of RAM. We measured execution speed by taking the average of CPU cycles
observed over multiple iterations of the micro benchmark. We used Valgrind
tools suite [21] to measure the heap usage.

4.2 ECOS Performance Improvement

To demonstrate the performance gain using ECOS, we presented our observa-
tion of the effect of an increase in data size on performance of different storage
structures in [18,19]. According to our observation in [18,19], we suggest the
performance gain and reduced resource consumption using the evolving storage
structures because evolving storage structures attempt to use minimal/simple
storage structures (such as sorted array for small data management) as long as
possible using the definitions from evolution paths. To demonstrate the evolv-
ing storage structures evolution, we present the evaluation results for evolving
2 Please refer to the web link for all related publications and prototype evaluation bi-

naries: http://wwwiti.cs.uni-magdeburg.de/~srahman/CellularDBMS/index.php

http://wwwiti.cs.uni-magdeburg.de/~srahman/CellularDBMS/index.php


ECOS: Evolutionary Column-Oriented Storage 29

Fig. 3. Evolving HLC SL storage structure evolution

HLC SL storage structure in Figure 3 (due to space constraint the evaluation
results for evolving HLC B+-Tree can be found in [19]). It can be observed
in Figure 3 that the evolving storage structure HLC SL evolves with the data
growth. It can be observed that the HLC SL storage structure consume more
CPU cycles in comparison with sorted list and sorted array. This behavior is
due to the complexity of the storage structure, which is meant to be used for
extremely large data sizes. The HLC SL storage structure automatically parti-
tions the data and uses separate buffer and index managers for each partition,
which is not the requirement for presented 500K records storage. However, we
forced storage structures to evolve to HLC SL for 500K records for the purpose
of demonstration of the evolution concept.

In Figure 4 and 5, we present the performance comparison of different DSM
based schemes that we explained in Section 3. The results in Figure 4 and 5 show
that DSM and KDSM perform better for evaluation with search criteria on key-
attributes, whereas for evaluation with search criteria on non-key attributes DSM
outperforms the other schemes. It is observed that storage requirement for DSM
is highest, whereas the storage requirement is the lowest for VDMDSM. It is

Fig. 4. Performance comparison of differ-
ent DSM based schemes in ECOS with pri-
mary key based search criteria

Fig. 5. Performance comparison of differ-
ent DSM based schemes in ECOS with
non-key based search criteria



30 S.S.u. Rahman, E. Schallehn, and G. Saake

Fig. 6. Performance improvement for dic-
tionary based DSM schemes for large col-
umn width

Fig. 7. Performance comparison of differ-
ent DSM based schemes in ECOS for read
and write intensive workloadsf

also observed that evolving storage structures perform better than fixed storage
structures with minor performance gains. As we have discussed in Section 1, our
work is based on the ideology from Chaudhuri and Weikum presented in [6]. They
used the notion of “gain/pain ratio” to discuss the overall gain of their proposed
approach. They advocate the ideology of less complex, more predictable, and
self-tuning RISC-style components with minor compromise on performance to
achieve overall improvement in “gain/pain ratio”. Our results show the minor
performance gain, which should be a good achievement considering the overall
benefits we achieve in terms of simplicity, predictability, and self-tuning.

It can be observed in Figure 6 that dictionary based schemes performance
is improved and becomes comparable with standard 2-copy DSM scheme for
large tuple width. However, KDSM and MDSM still perform poor. We also
analyzed the performance difference for different DSM schemes on both the
read-intensive and write-intensive workloads. It is observed in Figure 7 that
for write-intensive workload DSM outperforms other schemes; however, for the
read-intensive workload differences in performance between the 2-copy DSM
and the dictionary based DSM schemes is minimum. This is a promising result
for dictionary based schemes, and it shows their potential to act as a better
alternative to 2-copy DSM after overcoming their short comings.

5 Related Work

Hierarchically-organized storage structures have already been in use in the data
warehousing domain. Morzy et al. in [14] proposed a hierarchical bitmap index
for indexing set-valued attributes. Later, Chmiel et al. in [9] extended that con-
cept to present hierarchically-organized bitmap indexes for indexing dimensional
data. Bender et al. proposed cache-oblivious B-Trees [5] that perform the optimal
search across different hierarchical memories with varying memory levels, cache
size, and cache line size. Fractal prefetching B+-Trees [8] proposed by Chen et
al. are the most relevant work for the ECOS and is similar in concept to cache-
oblivious B-Trees with an additional concept of prefetching. Fractal prefetching



ECOS: Evolutionary Column-Oriented Storage 31

B+-Trees are optimized for both cache and disk performance, which is also a
goal for the ECOS. However, the ECOS concepts do not restrict the use of any
fixed structure; instead it suggests the use of different storage structures in the
hierarchy to support an efficient use of underlying hardware.

An automated tuning system (ATS) [11] is a feedback control mechanism that
automatically adjusts the tuning knobs using the defined tuning policies accord-
ing to the monitoring statistics. ECOS also works in similar fashion as suggested
in ATS. ECOS also monitors and adjust storage structures with changing data
management needs. Malik et al. in [13] suggested the benefit of online phys-
ical design techniques and proposed an online vertical partitioning technique
for physical design tuning. Similarly, ECOS also operates in online fashion. Au-
tomated physical design research focuses on finding the best physical design
structure for a running workload, e.g., indexes, materialized views, partitioning,
clustering, and views [3]. Existing automated physical design tools assume the
workload as a set of SQL statements [3]. These tools use the query optimizer
to identify the appropriate physical design selection from various proposed can-
didate designs [15]. ECOS also performs automated physical design, but at the
different level, i.e., at the storage manager level. It does not rely on a query
optimizer. Furthermore, ECOS is designed with the motivation of exploring new
architectures for developing self-tuning DBMS instead of developing techniques
to self-tune existing ones.

6 Conclusion and Future Work

In this paper, we presented ECOS, a customizable and online self-tuning storage
manager. ECOS and evolution paths enable and use the fine-grained customiza-
tion of storage structures at the table-level and column-level. In addition, ECOS
and evolution paths allow storage structures to autonomically evolve (to more
suitable storage structures) with the change in the data management needs, to
maintain the desirable performance while keeping the human intervention at a
minimum. We also presented a detailed evaluation and discussion of ECOS and
evaluation paths showing the performance improvement and reduced resource
consumption. As future work, we plan to enhance the presented dictionary based
DSM schemes for better performance. ECOS self-tuning design makes it a suit-
able candidate for emerging cloud computing platforms for data services. We
also intend to investigate the efficient utilization of multi-core and many-core
parallel processors using the presented evolution mechanism. Once query pro-
cessing is implemented, we want to integrate the presented evolution mechanism
with query processing, and then we will be able to evaluate the ECOS using
the full TPC-H benchmark. Transaction management is also an implementation
specific future work for our ECOS prototype.

Acknowledgments. Syed Saif ur Rahman is a HEC-DAAD Scholar funded by
Higher Education Commission of Pakistan and NESCOM, Pakistan.



32 S.S.u. Rahman, E. Schallehn, and G. Saake

References

1. Abadi, D.J., Madden, S.R., Ferreira, M.C.: Integrating compression and execution
in column-oriented database systems. In: SIGMOD, pp. 671–682 (2006)

2. Abadi, D.J., Madden, S.R., Hachem, N.: Column-stores vs. row-stores: how differ-
ent are they really? In: VLDB, pp. 967–980 (2008)

3. Agrawal, S., Chu, E., Narasayya, V.: Automatic physical design tuning: workload
as a sequence. In: SIGMOD, pp. 683–694 (2006)

4. Batory, D.S.: On searching transposed files. ACM Trans. Database Syst. 4(4),
531–544 (1979)

5. Bender, M.A., Demaine, E.D., Farach-Colton, M.: Cache-oblivious B-trees. In:
FOCS, pp. 399–409 (2000)

6. Chaudhuri, S., Weikum, G.: Rethinking Database System Architecture: Towards
a Self-Tuning RISC-Style Database System. In: VLDB, pp. 1–10 (2000)

7. Chaudhuri, S., Weikum, G.: Foundations of automated database tuning. In:
SIGMOD, pp. 964–965 (2005)

8. Chen, S., Gibbons, P.B., Mowry, T.C., Valentin, G.: Fractal prefetching B+-Trees:
optimizing both cache and disk performance. In: SIGMOD, pp. 157–168 (2002)

9. Chmiel, J., Morzy, T., Wrembel, R.: HOBI: Hierarchically Organized Bitmap Index
for Indexing Dimensional Data. In: Pedersen, T.B., Mohania, M.K., Tjoa, A.M.
(eds.) DaWaK 2009. LNCS, vol. 5691, pp. 87–98. Springer, Heidelberg (2009)

10. Copeland, G.P., Khoshafian, S.N.: A decomposition storage model. SIGMOD
Rec. 14, 268–279 (1985)

11. Hellerstein, J.L.: Automated tuning systems: Beyond decision support. In: CMG,
Computer Measurement Group, pp. 263–270 (1997)

12. Holloway, A.L., DeWitt, D.J.: Read-optimized databases, in depth. Proc. VLDB
Endow. 1, 502–513 (2008)

13. Malik, T., Wang, X., Burns, R., Dash, D., Ailamaki, A.: Automated physical design
in database caches. In: ICDE Workshop, pp. 27–34 (2008)

14. Morzy, M., Morzy, T., Nanopoulos, A., Manolopoulos, Y.: Hierarchical Bitmap
Index: An Efficient and Scalable Indexing Technique for Set-Valued Attributes.
In: Kalinichenko, L.A., Manthey, R., Thalheim, B., Wloka, U. (eds.) ADBIS 2003.
LNCS, vol. 2798, pp. 236–252. Springer, Heidelberg (2003)

15. Papadomanolakis, S., Dash, D., Ailamaki, A.: Efficient use of the query optimizer
for automated physical design. In: VLDB, pp. 1093–1104 (2007)

16. Patterson, D.A., Ditzel, D.R.: The case for the reduced instruction set computer.
SIGARCH Comput. Archit. News 8, 25–33 (1980)

17. TPC-H, http://www.tpc.org/tpch/
18. ur Rahman, S.S.: Using Evolving Storage Structures for Data Storage. In: FIT, pp.

30:1–30:6 (2010)
19. ur Rahman, S.S., Schallehn, E., Saake, G.: ECOS: Evolutionary Column-Oriented

Storage. Tech. Rep. FIN-03-2011, Department of Technical and Business Informa-
tion Systems, Faculty of Computer Science, University of Magdeburg (2011)

20. Valduriez, P., Khoshafian, S.N., Copeland, G.P.: Implementation Techniques of
Complex Objects. VLDB, 101–110 (1986)

21. Valgrind, http://www.valgrind.org
22. Weikum, G., Moenkeberg, A., Hasse, C., Zabback, P.: Self-tuning database tech-

nology and information services: from wishful thinking to viable engineering. In:
VLDB, pp. 20–31 (2002)

http://www.tpc.org/tpch/
http://www.valgrind.org

	ECOS: Evolutionary Column-Oriented Storage
	Introduction
	Problem Statement and Motivation
	Evolutionary Column-Oriented Storage 
	Table-Level Customization
	Column-Level Customization and Storage Structure Hierarchies
	Evolution and Evolution Paths

	Implementation and Empirical Evaluation
	Micro Benchmark Details
	ECOS Performance Improvement

	Related Work
	Conclusion and Future Work
	References




