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Abstract. In this paper, we present updates on CluX, a grammar-based XML 
compression approach based on clustering XML sub-trees. We show that 
updates on CluX-compressed data can be performed faster than decompressing 
the data, loading it into main memory and compressing it. Furthermore, we 
show how to support fast multiple updates, e.g. performing 100 updates in 
parallel is more than 70 times faster than 100 single updates.  
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1   Introduction 

Motivation: XML is widely used in business applications and is the de facto standard 
for information exchange among different enterprise information systems.  Whenever 
the amount of processed XML data is a bottleneck, it is desirable that applications can 
directly query and update compressed XML data without having to decompress the 
data before accessing it. 

There have been different contributions to the field of XML compressors 
generating queryable XML representations, that range from encoding-based [1] to 
schema-based [2], [3] to DAG-based [4] to grammar-based [5] compressed repre-
sentations. We follow the grammar-based XML compression techniques, and we 
discuss how an XML compression technique, called CluX, can be extended by 
updates. Like the big majority of the XML compression techniques (e.g.[1],[2],[3], 
[5],[6],[7],[8],[9],[10],[11]), we assume that textual content of text nodes and of 
attribute nodes is compressed and stored separately and focus here on the 
compression of the structural part of an XML document.  

Contributions: This paper proposes an approach to perform updates on grammar-
compressed XML data directly, i.e., without prior decompression of the compressed 
data. Furthermore, our approach allows to perform several updates in parallel in such 
a way that e.g. performing 100 updates in parallel is more than 70 times faster than 
performing 100 updates sequentially. 

We have implemented and evaluated updates on the compressed data. Our results 
show that it is not only possible to perform parallel updates on the CluX compressed 
data directly, but furthermore that in many cases, these updates can be performed in 
less time than it would take to decompress the compressed data, load the XML 
document, and compress the data again. 

For simplicity of this presentation, we restrict it to XML documents containing 
only element nodes, i.e., attributes are regarded as special element types. Note 



 

however that our implem
attributes, text values, etc.. 

Paper Organization: The 
describes the basic concep
can be stored in a more sp
how these shared structur
grammars, and it describes 
tree grammars. Section 3 de
data directly and discusses
paths to an update DAG, 
isolated nodes, and sharing
of the presented update met
Finally, Section 6 summariz

2   Sharing Similar Tr

2.1   The Paper’s Example

To simplify the following p
and its label. The following
compression and to give a 
compressed data. 

Fig. 1. Document tree o

Fig. 1 shows an example
r’s first-child is k1 whose
generated by the following 
the symbol ε as the empty 
term representing the pre-or

 
S   r(k1(c(d(j(m(ε,ε),b
           k3(c(d(j(o (ε,ε),b(

Grammar 1: G

Updates on Grammar-Compressed XML Data 

mentation can handle full XML documents includ

remainder of this paper is organized as follows. Sectio
pt of grammar-based compression, i.e., how an XML t
pace saving way by sharing similar structures, it expla
res can be represented by patterns being used in t
how paths in XML document trees correspond to path

escribes how updates can be performed on the compres
 the phases of performing updates: combining the upd
isolating the update DAG from the grammar, updat

g of identical sub-trees. Section 4 describes the evaluat
thod. Section 5 compares our contribution to related wo
zes our contribution.  

rees  

e Document 

presentation, we do not distinguish between an XML n
g example is used for explaining the idea of grammar-ba

visual representation of our idea of direct updates on 

 

of an XML document D with repeated matches of patterns 

e XML document D represented as a binary tree, where 
e next-sibling is k2. This XML document tree can 
grammar using the non-terminal S as the start symbol 
sub-tree, i.e., the right hand side of the grammar rule 
rder notation of the binary tree given in Fig. 1: 

b(ε,ε)),e(ε,ε)),ε),  k2(h(g(j(n (ε,ε),b(ε,ε)),e(ε,ε)),ε), 
(ε,ε)),e(ε,ε)),ε),   k4(h(g(j(p (ε,ε),b(ε,ε)),e(ε,ε)),ε),ε)))),ε

Grammar corresponding to the binary tree of Fig. 1 

155 

ding 

on 2 
tree 
ains 
tree 

hs in 
ssed 
date 
ting 
tion 
ork. 

node 
ased 

the 

e.g. 
be 

and 
is a 

ε) 



156 A. Bätz, S. Böttcher, and R. Hartel 

2.2   The Idea Behind Sharing Similar Trees 

The simplest grammar-based XML compressors are those compressors that share 
identical sub-tree structures, such that the compressed grammar represents the 
minimal DAG of the XML tree [4].  

Approaches like binary DAG compression, that share identical sub-trees T in an 
XML document D replace repeated occurrences of T in D by replacing each 
occurrence of T in D with a non-terminal N and adding a grammar rule that defines N 
to be a non-terminal that represents T. 

In Grammar 1, there are four matches for each of the two patterns b(ε,ε) and e(ε,ε). 
Therefore, these matches can be replaced by the non-terminals B and E respectively, 
such that we get the following grammar: 

 
S   r(k1(c(d(j(m(ε,ε),B),E),ε), k2(h(g(j(n (ε,ε),B),E),ε), 
           k3(c(d(j(o(ε,ε),B),E),ε),   k4(h(g(j(p (ε,ε),B),E),ε),ε)))),ε) 
B  b(ε,ε) 
E  e(ε,ε) 

Grammar 2: Grammar corresponding to the binary DAG of the XML tree of Fig. 1 

Our approach goes beyond the idea of DAG compression and uses a parameterized 
grammar for sharing not only identical sub-trees, but even similar sub-trees. It follows 
the idea of grammar-based compression as it was introduced in BPLEX [5]. 

When looking for similar sub-trees having small differences, we find the three 
different patterns shown in Fig. 2(b) in the document tree D of Fig. 1: one pattern 
consisting of the nodes c, d, and e, another pattern consisting of the nodes h, g, and e, 
and a third pattern consisting of the nodes j and b respectively. For each of these 
patterns, there exist several matches in D which are highlighted in Fig. 2(a). Although 
the matches of the patterns have identical inner nodes, they cannot be shared in a 
DAG because the leaf nodes with labels m, n, o, or p respectively differ from each 
other. 

Fig. 2 (b) shows the patterns JB(X), CDE(X) and HGE(X), which consist of the 
nodes (j and b), (c, d, and e), and (h, g, and e) respectively. The nodes j, d, and g have 
a parameter ‘X’ as first-child. 

The compression achieved by replacing the repeated patterns with a non-terminal 
can be seen when comparing Grammar 2 with Grammar 3 shown below. We express 
the pattern JB(X) of Fig. 2(b) by one grammar rule with the left hand side JB(X), 
where the parameter ‘X’ is being used for referencing the different child nodes m, n, 
o, and p of the j-nodes. This grammar rule is being used, e.g. when the term 
j(m(ε,ε),B) occurring in the rule S of Grammar 2 is replaced with the term JB(m(ε,ε)) 
occurring in the rule S of Grammar 3. Here, j(m(ε,ε),B) is called a match, and 
JB(m(ε,ε)) is called a corresponding instantiation of the pattern JB(X).  
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The Parallel Update Problem Definition: Given a set of update operations, the 
parallel update problem is to compute a DAG of update paths and to isolate the DAG 
of update paths from the grammar G in parallel in order to keep the compressed 
grammar small and in order to keep the update process fast.  

3.2   First Step of the Parallel Update Process: Constructing an Update DAG 
(UD) 

Updating the grammar-compressed data is done by a two-step approach on the given 
grammar G.  

In a first step, we navigate through G and identify the paths that have to be updated 
and combine them to an update DAG. Instead of collecting all the update paths 
individually while navigating through G, we combine all the update paths having a 
common prefix to construct an update tree.  

To combine a collection of update paths into an update tree, first, all copies of the 
start node, i.e. S’ and S’’ in the previous example, are renamed to a single copy S’ of 
the start node. This reflects the fact that all update paths that are combined into an 
update tree start at the same root node S’.  

Thereafter, each set of common prefixes of multiple update paths is combined to a 
common prefix in the update tree as follows. Whenever the update tree contains two 
edges (Ni,I,Nj) and (Ni,I,Nk) where neither Nj nor Nk contains an update operation, the 
node Nk is renamed to Nj. This reflects the fact that both edges represent the unique Ith 
occurrence of a non-terminal in the grammar rule represented by Ni.  

Continuing the previous example, the update tree has a common start node S’, but 
has no common edge of its two update paths.  

In addition to combining updates with common prefixes within the update tree, we 
transform the update tree into an update DAG (UD). The UD is constructed bottom up 
from the update tree by sharing equal sub-trees. Two leaf nodes within the update tree 
are equal, if they have the same label, i.e. they contain the same update operation. Two 
inner nodes U1 and U2 of the update DAG are equal if they are copies of the same 
grammar rule and have similar outgoing edges, where two outgoing edges (U1, I1, U3) 
and (U2, I2, U4) from nodes U1 and U2 respectively are similar if I1=I2 and U3=U4.  

Continuing the previous example, the sub-DAG rooted in HGE(X)’ is equal to the 
sub-DAG rooted in HGE(X)’’. As similar edges are stored only once in the update 
DAG (UD), UD contains the edges { (S’,2,HGE(X)’), (S’,4,HGE(X)’), (HGE(X)’, 1, 
JB(X)’), (JB(X)’,2,reLTo(z)) } and is shown in Figure 4.  

3.3   Second Step of the Parallel Update Process: Isolating UD from GD 

The second step of the parallel update process is to isolate the update DAG (UD) from 
the grammar DAG (GD) by isolating all the update paths contained in UD from GD in 
parallel. UD isolation is done by combining UD and GD into single DAG, called the 
extended update DAG (EUD), which is done by adding edges from certain UD nodes 
to certain GD nodes, such that after the extension, the EUD represents the result of 
isolating the original UD from GD. The UD isolation and update execution procedure 
is summarized in Algorithm 1 and is described in the following. 
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U is an update operation, is used for modifying the grammar rule Gi represented by 
Ui. The update operation U is applied to the Ith terminal symbol T of Gi, e.g., for the 
edge (JB(X)’, 2, reLTo(z) ), the grammar rule JB(X)’ is updated by replacing the 2nd 
terminal symbol, i.e. b, with z. Depending on the particular update operation U 
described by the edge (Ui, I, U), we do the following.  

If U= reLTo(z)) , we substitute the Ith terminal symbol of Gi, i.e. T, with z. 
If U=newFC(cst) or U=newNS(cst), i.e., if the update requires inserting a 

compressed sub-tree cst as a first-child or as a next-sibling of T respectively, we have 
to set the current first-child or next-sibling of T as the new next-sibling of the root of 
cst. As we might insert the same sub-tree cst at several places within the original 
XML document, the most efficient way to do this is to set the next-sibling of the root 
rule of cst (which is a null pointer, i.e. ε, before the insertion) to a parameter, and to 
replace the first-child fc or the next-sibling ns of T by a call of the root rule of cst with 
the parameter value fc or ns respectively. 

If we consider for example the node ‘k1’ as selected node in Grammar 3 and want 
to insert a node z(ε,ε) as the first-child of /k1, i.e., cst consists of the single rule Z(X) 
 z(ε,X), we would insert a new rule Z(X)  z(ε,X) into Grammar 3 and replace the 
current first-child cfc of k1 in Grammar 3 with a call Z(cfc) of this new rule. Thereby, 
cfc becomes the next-sibling of z. This means, that the call ‘k1(CDE(m(ε,ε)),...)’ within 
the start rule S of Grammar 3 is replaced with the call ‘k1(Z(CDE(m(ε,ε))),...)’. 

If U=del, i.e., the update requires deleting the sub-tree having its root in T, we can 
simply replace T(FC,NS) with T’s own next-sibling NS in the grammar rule 
represented by Ui. If we remove a formal parameter from a rule during the deletion, 
we have to delete the corresponding actual parameter within each call of the modified 
rule as well. In the worst case, i.e., if the actual parameter of a rule is defined in the 
rule represented by S’, we have to modify all the rules represented by nodes of EUD 
that lay on paths from S’ to Ui within the EUD. 

For example, if we delete the nodes of the sub-trees, the root of which is selected 
by //d//j, i.e. is the j node with first child m or the j node with fist child o, UD contains 
the edges (S’,1,CDE(X)’) , (S’,3,CDE(X)’) , (CDE(X)’,1,JB(X)’) , and (JB(X)’,1,del). 
By applying the delete operation to the first non-terminal of the JB(X)’ rule, i.e. to j, 
the right-hand side of this rule is replaced with b(ε,ε). As now the JB(X)’ rule does 
not contain a parameter anymore, the parameter has to be removed from the CDE(X)’ 
rule calling it too. And finally, we have to delete the parameters used in the rule calls 
of rule CDE(X)’ within the S’ rule too. By doing this, the first-child nodes of nodes 
//d//j with labels m and o are deleted as well. 

3.5   Sharing Identical Nodes 

Although the initial grammar to be updated does not contain anymore sub-structures 
that can be shared, during the update process new sub-structures are generated that 
might be similar or identical to already existing sub-structures. 

For example, if we re-label in our example the node /k2//g to ‘c’ and the node 
/k2//h to ‘d’, after the UD isolation and the update process, the grammar would 
contain a rule  

HGE’(X)  c(d(JB(X),e(ε,ε)),ε) 
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Fig. 7. (a) Update time of CluX compared to compression and decompression times of CluX, 
bzip2 and gzip, (b) Update time required for a scaling number of parallel updates 

With scaling the document size (c.f. Fig. 7(a)), the direct updates on CluX can be 
performed faster than the compression and decompression of CluX and bzip2. For a 
document with a size of 15 MB, the update on the compressed data is 3.5 times faster 
than the decompression and recompression by CluX and 4.4 times faster than the 
decompression and recompression by bzip2. Only gzip, that reaches a far weaker 
compression ratio than CluX can be decompressed and recompressed in less time than 
the update process directly on the compressed data requires. Finally, we have examined 
the impact of parallel updates compared to sequential updates. For this purpose, we 
randomly selected 100 paths of the grammar DAG and relabeled the XML node defined 
by these paths. Fig. 7(b) shows that performing 100 updates in parallel as a multi-update 
operation is more than 70 times faster than performing 100 updates sequentially.  

5   Related Work 

Besides generic compressors like gzip, bzip2 or 7zip (based on LZMA) all of which 
do not allow direct query evaluation on the compressed data, there are several 
approaches to XML structure compression. XML structure compression can be 
mainly divided into three categories: encoding-based compressors, schema-based 
compressors and grammar-based compressors.  

The encoding-based compressors allow for a faster compression speed than the 
other ones, as only local data has to be considered in the compression as opposed to 
considering different sub-trees as in grammar-based compressors. Examples for 
encoding-based approaches are the approaches [13], [6], and [7], XMill [8], XPRESS 
[9], XGrind [14], and [1]. Whereas XMill is not queryable, i.e., it does not support the 
navigation or the evaluation of XPath queries on the compressed document directly, 
i.e., without prior decompression, all other approaches are queryable. 

Schema-based compression comprises such approaches as XCQ [2], XAUST [15], 
Xenia [3], and XSDS [10]. They subtract the given schema information from the 
structural information. Instead of a complete XML structure stream or tree, they only 
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generate and output information not already contained in the schema information 
(e.g., the chosen alternative for a choice-operator or the number of repetitions for a *-
operator within the DTD). These approaches are queryable and applicable to XML 
streams, but they can only be used if schema information is available. 

XQzip [11] and the approaches presented in [16] and [4] belong to grammar-based 
compression. They compress the data structure of an XML document by combining 
identical sub-trees.  

An extension of [4] and [11] is the BPLEX algorithm [5]. This approach not only 
combines identical sub-trees, but recognizes similar patterns within the XML tree, and 
therefore allows a higher degree of compression. The approach presented in this 
paper, which is an extension of [17], follows the same idea. But instead of combining 
similar structures bottom-up, our approach searches within a given window the most 
promising pair to be combined while following one of three possible clustering 
strategies. Furthermore, in contrast to [12] and [18], that performs updates by path 
isolation only sequentially, our approach allows performing updates in parallel which 
takes only a fraction of time.  

6   Summary and Conclusions 

We have shown how updates can be performed directly on CluX, a clustering-based 
compression approach for XML trees, i.e., without the need to decompress the 
compressed data in advance. As an XML file compressor, CluX compresses on 
average 70% better than the generic compressor gzip and 5% better than the generic 
compressor bzip2. CluX compression can be applied to infinite data streams – and in 
contrast to gzip or bzip2, path queries and updates can be evaluated directly on the 
compressed representation, i.e., without prior decompression. Beyond other clustering 
or multiplexing based approaches like e.g. the BPLEX algorithm [12], [5], CluX 
offers an update DAG isolation technique that allows to perform several updates in 
parallel, and our evaluation has shown that performing 100 updates in parallel takes 
significantly less time than performing 100 updates sequentially. Furthermore, our 
evaluation on a file with a size of 15 MB has shown that performing the updates 
directly on the compressed data with our update algorithm is more than 3 times faster 
than decompressing the data first and recompressing it with CluX, and it is more than 
4 times faster than the decompression and recompression with bzip2. 

We furthermore believe that this technique of performing several updates in 
parallel on the compressed data directly is not restricted to CluX, but can be extended 
to DAG-based compressors like [5] and to other grammar-based compressors like e.g. 
BPLEX [5], the main idea of which is to share similar sub-trees. 
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