
A.A.A. Fernandes et al. (Eds.): BNCOD 2011, LNCS 7051, pp. 154–166, 2011.
© Springer-Verlag Berlin Heidelberg 2011

Updates on Grammar-Compressed XML Data

Alexander Bätz, Stefan Böttcher, and Rita Hartel

University of Paderborn, Computer Science, Fürstenallee 11, 33102 Paderborn, Germany
{laures,stb,rst}@uni-paderborn.de

Abstract. In this paper, we present updates on CluX, a grammar-based XML
compression approach based on clustering XML sub-trees. We show that
updates on CluX-compressed data can be performed faster than decompressing
the data, loading it into main memory and compressing it. Furthermore, we
show how to support fast multiple updates, e.g. performing 100 updates in
parallel is more than 70 times faster than 100 single updates.

Keywords: updating compressed XML data, grammar-based compression.

1 Introduction

Motivation: XML is widely used in business applications and is the de facto standard
for information exchange among different enterprise information systems. Whenever
the amount of processed XML data is a bottleneck, it is desirable that applications can
directly query and update compressed XML data without having to decompress the
data before accessing it.

There have been different contributions to the field of XML compressors
generating queryable XML representations, that range from encoding-based [1] to
schema-based [2], [3] to DAG-based [4] to grammar-based [5] compressed repre-
sentations. We follow the grammar-based XML compression techniques, and we
discuss how an XML compression technique, called CluX, can be extended by
updates. Like the big majority of the XML compression techniques (e.g.[1],[2],[3],
[5],[6],[7],[8],[9],[10],[11]), we assume that textual content of text nodes and of
attribute nodes is compressed and stored separately and focus here on the
compression of the structural part of an XML document.

Contributions: This paper proposes an approach to perform updates on grammar-
compressed XML data directly, i.e., without prior decompression of the compressed
data. Furthermore, our approach allows to perform several updates in parallel in such
a way that e.g. performing 100 updates in parallel is more than 70 times faster than
performing 100 updates sequentially.

We have implemented and evaluated updates on the compressed data. Our results
show that it is not only possible to perform parallel updates on the CluX compressed
data directly, but furthermore that in many cases, these updates can be performed in
less time than it would take to decompress the compressed data, load the XML
document, and compress the data again.

For simplicity of this presentation, we restrict it to XML documents containing
only element nodes, i.e., attributes are regarded as special element types. Note

however that our implem
attributes, text values, etc..

Paper Organization: The
describes the basic concep
can be stored in a more sp
how these shared structur
grammars, and it describes
tree grammars. Section 3 de
data directly and discusses
paths to an update DAG,
isolated nodes, and sharing
of the presented update met
Finally, Section 6 summariz

2 Sharing Similar Tr

2.1 The Paper’s Example

To simplify the following p
and its label. The following
compression and to give a
compressed data.

Fig. 1. Document tree o

Fig. 1 shows an example
r’s first-child is k1 whose
generated by the following
the symbol ε as the empty
term representing the pre-or

S  r(k1(c(d(j(m(ε,ε),b
 k3(c(d(j(o (ε,ε),b(

Grammar 1: G

Updates on Grammar-Compressed XML Data

mentation can handle full XML documents includ

remainder of this paper is organized as follows. Sectio
pt of grammar-based compression, i.e., how an XML t
pace saving way by sharing similar structures, it expla
res can be represented by patterns being used in t
how paths in XML document trees correspond to path

escribes how updates can be performed on the compres
 the phases of performing updates: combining the upd
isolating the update DAG from the grammar, updat

g of identical sub-trees. Section 4 describes the evaluat
thod. Section 5 compares our contribution to related wo
zes our contribution.

rees

e Document

presentation, we do not distinguish between an XML n
g example is used for explaining the idea of grammar-ba

visual representation of our idea of direct updates on

of an XML document D with repeated matches of patterns

e XML document D represented as a binary tree, where
e next-sibling is k2. This XML document tree can
grammar using the non-terminal S as the start symbol
sub-tree, i.e., the right hand side of the grammar rule
rder notation of the binary tree given in Fig. 1:

b(ε,ε)),e(ε,ε)),ε), k2(h(g(j(n (ε,ε),b(ε,ε)),e(ε,ε)),ε),
(ε,ε)),e(ε,ε)),ε), k4(h(g(j(p (ε,ε),b(ε,ε)),e(ε,ε)),ε),ε)))),ε

Grammar corresponding to the binary tree of Fig. 1

155

ding

on 2
tree
ains
tree

hs in
ssed
date
ting
tion
ork.

node
ased

the

e.g.
be

and
is a

ε)

156 A. Bätz, S. Böttcher, and R. Hartel

2.2 The Idea Behind Sharing Similar Trees

The simplest grammar-based XML compressors are those compressors that share
identical sub-tree structures, such that the compressed grammar represents the
minimal DAG of the XML tree [4].

Approaches like binary DAG compression, that share identical sub-trees T in an
XML document D replace repeated occurrences of T in D by replacing each
occurrence of T in D with a non-terminal N and adding a grammar rule that defines N
to be a non-terminal that represents T.

In Grammar 1, there are four matches for each of the two patterns b(ε,ε) and e(ε,ε).
Therefore, these matches can be replaced by the non-terminals B and E respectively,
such that we get the following grammar:

S  r(k1(c(d(j(m(ε,ε),B),E),ε), k2(h(g(j(n (ε,ε),B),E),ε),
 k3(c(d(j(o(ε,ε),B),E),ε), k4(h(g(j(p (ε,ε),B),E),ε),ε)))),ε)
B  b(ε,ε)
E  e(ε,ε)

Grammar 2: Grammar corresponding to the binary DAG of the XML tree of Fig. 1

Our approach goes beyond the idea of DAG compression and uses a parameterized
grammar for sharing not only identical sub-trees, but even similar sub-trees. It follows
the idea of grammar-based compression as it was introduced in BPLEX [5].

When looking for similar sub-trees having small differences, we find the three
different patterns shown in Fig. 2(b) in the document tree D of Fig. 1: one pattern
consisting of the nodes c, d, and e, another pattern consisting of the nodes h, g, and e,
and a third pattern consisting of the nodes j and b respectively. For each of these
patterns, there exist several matches in D which are highlighted in Fig. 2(a). Although
the matches of the patterns have identical inner nodes, they cannot be shared in a
DAG because the leaf nodes with labels m, n, o, or p respectively differ from each
other.

Fig. 2 (b) shows the patterns JB(X), CDE(X) and HGE(X), which consist of the
nodes (j and b), (c, d, and e), and (h, g, and e) respectively. The nodes j, d, and g have
a parameter ‘X’ as first-child.

The compression achieved by replacing the repeated patterns with a non-terminal
can be seen when comparing Grammar 2 with Grammar 3 shown below. We express
the pattern JB(X) of Fig. 2(b) by one grammar rule with the left hand side JB(X),
where the parameter ‘X’ is being used for referencing the different child nodes m, n,
o, and p of the j-nodes. This grammar rule is being used, e.g. when the term
j(m(ε,ε),B) occurring in the rule S of Grammar 2 is replaced with the term JB(m(ε,ε))
occurring in the rule S of Grammar 3. Here, j(m(ε,ε),B) is called a match, and
JB(m(ε,ε)) is called a corresponding instantiation of the pattern JB(X).

Fig. 2. (a) Example document
Repeated patterns

By replacing each match
grammar, Grammar 3, whic

S  r(k1(CDE(m(ε,ε)), k2(H
CDE(X) c(d(JB(X),e(ε,ε))
HGE(X) h(g(JB(X),e(ε,ε))
JB(X) j(X,b(ε,ε))

Grammar 3: A gr

All terminal nodes excep
sibling. However, non-term

2.3 Node Selection by Gr

The grammar path (GP):
D corresponds to exactly on
Intuitively, GP describes no
node, but also from where
For this purpose, GP conta
index positions within thes
calling the next grammar ru
terminal symbol correspond
by GP.

For example, if we appl
contains only the start rule
rule has been used, thus G
continues via k2’s first-chi
called, and GP now is [S,
grammar rule for HGE(X),
the grammar rule for JB(X
complete GP. This gramma
the b-node selected by the q

A formal definition of g
in [12].

Updates on Grammar-Compressed XML Data

t of Fig. 1 with repeated patterns replaced by non-terminals.

h with a corresponding instantiation, we get the follow
ch is more compact than Grammar 2:

HGE(n(ε,ε)), k3(CDE(o(ε,ε)), k4(HGE(p(ε,ε)),ε)))),ε)
,ε)
),ε)

rammar sharing patterns by using parameterized rules

pt ε have two parameters, i.e. the first-child and the ne
minal nodes may have an arbitrary number of parameters

rammar Paths

Each path to a selected node in any given XML docum
ne grammar path (GP) in the compressed grammar G of
ot only which grammar rules are called to find the selec
in a given grammar rule, the next grammar rule is cal
ains an alternating sequence of grammar rule names
se grammar rules of the occurrences of non-terminals
ule. Additionally, the last number in GP is the index of
ding to the selected node in the last grammar rule collec

ly the query /k2//b to Grammar 3, GP is initially [S],
e. When k2 is found in the start rule S, no other gramm
GP is still [S]. When the search for a descendant b of
ild, the 2nd non-terminal in the rule for S, i.e. HGE(X)
,2,HGE(X)]. Later, to find the first-child of g within
, the 1st non-terminal, i.e. JB(X), is called. Finally, wit

X), we pick the 2nd terminal symbol, i.e. the symbol b
ar path (GP), i.e. [S,2,HGE(X),1,JB(X) : 2], correspond
query /k2//b.
grammar paths however omitting the rule names is gi

157

. (b)

wing

ext-
.

ment
f D.
cted
led.
and

s Ni
the

cted

i.e.
mar
f k2
), is
the

thin
b, to
ds to

iven

158 A. Bätz, S. Böttcher,

3 Parallel Updates on

3.1 Basic Update Concep

The grammar DAG (GD
terminal position within wh
grammar DAG (GD), there
edge (N1,I,N2) from node N
rule G2 within the gramm
outgoing edge of N1 refers
hand side of G1. For examp

Fig.

Each prefix P of a g
corresponds to one path in
updates on G.

For any given current c
following elementary upda
complex update operation
operations: delete ccn (de
SubTree as first-child of cc
(newNS(SubTree)).

The Update Path (UP): Fo
newFC(SubTree), newNS(S
document node being repre
define a corresponding upda
The update path contains a
we represent edges in the u
edge (Nk’,t,U) from the copy
the terminal symbol in the
operation U shall be applied
update operation U applied t

For example, let the up
//h//b to z. Then, we get
(JB(X)’,2,reLTo(z))]
(JB(X)’’,2,reLTo(z))].

and R. Hartel

n the Compressed Data

pts and Parallel Update Problem Definition

D): The grammar DAG (GD) visualizes from which n
hich grammar rule other grammar rules are called. In

e is one node Ni for each grammar rule Gi, and there is
N1 to node N2 for each occurrence of a call of the gramm

mar rule G1, such that (counted from left to right) the
to N2, if G2 is the Ith non-terminal occurring in the rig

ple, the GD of Grammar 3 is shown in Figure 3.

 3. Grammar DAG (GD) of Grammar 3

rammar path GP=[P:t] through the given grammar
the GD. Based on this observation, we use GD for para

context node ccn of the XML document, we simulate
ate operations on the compressed grammar G, as m
ns can be constructed from these elementary upd

el), re-label ccn with the new label y (reLTo(y)), in
n (newFC(SubTree)), insert SubTree as next-sibling of

or each elementary update operation U ∈ { reLTo(z), del
SubTree)) } that is applied to a single selected XM
sented by a grammar path GP=[N1,I1,…,Nk-1,Ik-1,Nk : t],
ate path UP = [(N1’,I1,N2’), …, (Nk-1’,Ik-1’,Nk’) , (Nk’,t,U
new copy Ni’ of each grammar path node Ni. Furthermo

update path as triples (Start,Index,End). Finally, we add
y Nk’ of the last non-terminal Nk with the index position
e grammar rule represented by Nk’ to which the upd
d. As a result, the final node of the update path contains
to the tth terminal of Nk’.
pdate operations be re-labeling all the nodes selected
the update paths [(S’,2,HGE(X)’), (HGE(X)’,1,JB(X
and [(S’’,4,HGE(X)’’), (HGE(X)’’,1,JB(X)’’)

non-
the
one
mar
e Ith
ght-

r G
allel

the
more
date

nsert
ccn

lete,
ML
 we

U)] .
ore,

d an
t of

date
the

d by
X)’),

,

 Updates on Grammar-Compressed XML Data 159

The Parallel Update Problem Definition: Given a set of update operations, the
parallel update problem is to compute a DAG of update paths and to isolate the DAG
of update paths from the grammar G in parallel in order to keep the compressed
grammar small and in order to keep the update process fast.

3.2 First Step of the Parallel Update Process: Constructing an Update DAG
(UD)

Updating the grammar-compressed data is done by a two-step approach on the given
grammar G.

In a first step, we navigate through G and identify the paths that have to be updated
and combine them to an update DAG. Instead of collecting all the update paths
individually while navigating through G, we combine all the update paths having a
common prefix to construct an update tree.

To combine a collection of update paths into an update tree, first, all copies of the
start node, i.e. S’ and S’’ in the previous example, are renamed to a single copy S’ of
the start node. This reflects the fact that all update paths that are combined into an
update tree start at the same root node S’.

Thereafter, each set of common prefixes of multiple update paths is combined to a
common prefix in the update tree as follows. Whenever the update tree contains two
edges (Ni,I,Nj) and (Ni,I,Nk) where neither Nj nor Nk contains an update operation, the
node Nk is renamed to Nj. This reflects the fact that both edges represent the unique Ith
occurrence of a non-terminal in the grammar rule represented by Ni.

Continuing the previous example, the update tree has a common start node S’, but
has no common edge of its two update paths.

In addition to combining updates with common prefixes within the update tree, we
transform the update tree into an update DAG (UD). The UD is constructed bottom up
from the update tree by sharing equal sub-trees. Two leaf nodes within the update tree
are equal, if they have the same label, i.e. they contain the same update operation. Two
inner nodes U1 and U2 of the update DAG are equal if they are copies of the same
grammar rule and have similar outgoing edges, where two outgoing edges (U1, I1, U3)
and (U2, I2, U4) from nodes U1 and U2 respectively are similar if I1=I2 and U3=U4.

Continuing the previous example, the sub-DAG rooted in HGE(X)’ is equal to the
sub-DAG rooted in HGE(X)’’. As similar edges are stored only once in the update
DAG (UD), UD contains the edges { (S’,2,HGE(X)’), (S’,4,HGE(X)’), (HGE(X)’, 1,
JB(X)’), (JB(X)’,2,reLTo(z)) } and is shown in Figure 4.

3.3 Second Step of the Parallel Update Process: Isolating UD from GD

The second step of the parallel update process is to isolate the update DAG (UD) from
the grammar DAG (GD) by isolating all the update paths contained in UD from GD in
parallel. UD isolation is done by combining UD and GD into single DAG, called the
extended update DAG (EUD), which is done by adding edges from certain UD nodes
to certain GD nodes, such that after the extension, the EUD represents the result of
isolating the original UD from GD. The UD isolation and update execution procedure
is summarized in Algorithm 1 and is described in the following.

160 A. Bätz, S. Böttcher,

Fig. 4. Update DAG for re-la
selected by the query //h//b to

(1) for each non-leaf no
(2) { Ni = correspondin
(3) for each edge (Ni

(4) if (no edge (Ui, I
(5) }
(6) EUD = UD ;
(7) Perform updates on E
(8) Share identical node
(9) Top-down for each n
(10) if (Ni has no inco
(11) return EUD ;

Algorithm 1. Upd

For each non-leaf node U
the grammar DAG, i.e., Ui
that different nodes of the u
outgoing edge (Ni, I, Nk) of
add an edge (Ui, I, Nk) to t
from Ui to the GD node N
node Ui for which an edge
not yet exist, such that fina
as the GD. On the UD wi
sharing operations describe
the EUD and performing a
GD edges are reachable by
reachable GD nodes and G
(10)). The remaining and r
result of isolating the origi
resulting EUD.

and R. Hartel

abeling all the nodes of the document shown in Fig.1 that
z

de Ui in UD do
ng_GD_node(Ui) ;
i, I, Nk) in GD
I, Uk) to any node Uk exists in UD) add (Ui, I, Nk) to UD

EUD as described in Section 3.4.
es on EUD as described in Section 3.5.
node Ni in GD do
oming edges) delete Ni and all outgoing edges of Ni

date DAG (UD) isolation from a grammar DAG (GD)

Ui in the update DAG, let Ni be the corresponding node
and Ni belong to the same grammar rule Gi (line (2)). N

update DAG may correspond to the same node Ni. For e
f Ni for which no edge (Ui, I, Uk) exists in the update DA
the update DAG (lines (3)-(4)). That is, an outgoing e

Nk representing Gi’s Ith non-terminal is added to each
e to a UD node Uk representing Gi’s Ith non-terminal d
ally the UD represents the same number of grammar pa
ith this extensions, called EUD (line (6)), the update
d in the following sections are performed. After comput

all the update and sharing operations, some GD nodes
y a path from the UD root and others are not. As the n

GD edges are useless, they are deleted from GD (lines (
returned extended update DAG (line (11)) represents
inal UD from the GD and performing the updates on

 are

D

e in
Note
each
AG,
edge
UD

does
aths
and
ting
and

non-
(9)-
the
the

Fig. 5 shows the contin
nodes selected by the XPat
is the grammar DAG (as sh
and containing the follow
(HGE(X)’, 1, JB(X)’), (JB(

For the root node S’ of
additional outgoing edges
Therefore, within lines (
(S’,1,CDE(X)) and (S’,3,CD

For the UD node HGE
additional outgoing edge, i
also applies to the UD node

Now, the isolation phase
within the copied grammar
set of paths selected by the
the node reLTo(z) from the

Finally, the nodes S and
as they are not reachable fr
Fig. 5(b).

Fig. 5. Isolation

Note that we implement
represented by GD. For exa
S’, HGE(X)’, and JB(X)’ a
and HGE(X)’ instead of H
JB(X) is called from the H
JB’(X) rule in the following

3.4 Performing the Upda

After UD isolation by exte
each edge (Ui, I, U) in EUD

Updates on Grammar-Compressed XML Data

nued example of the isolation process for re-labeling
th expression //h//b to z. The input of the isolation proc
hown in Fig. 3) and the update DAG (UD) shown in Fig
wing set of edges: { (S’,2,HGE(X)’), (S’,4,HGE(X
X)’,1,reLTo(z)) }.
f the UD, the corresponding node S of the GD has t

at the index positions 1 and 3 to the node CDE(
(2)-(4), Algorithm 1 extends the UD with the ed
DE(X)) from S’ to CDE(X).
E(X)’, the corresponding node HGE(X) in GD has
.e. no outgoing edge from HGE(X)’ has to be added. T

e JB(X)’.
e is completed, and replacing the terminal symbol b wit
 rule represented by the node JB (X)’ modifies exactly

e XPath query //h//b to have the new label z, and remo
 EUD.
HGE(X) and their outgoing edges can be deleted from

rom any path starting in S’. The resulting UD is shown

of nodes selected by //h//b for re-labeling them to z

t UD nodes by copying grammar rules from the gramm
ample, Grammar 3 is modified in such a way that the ru
are copied from the rules S, HGE, and JB(X) respectiv
HGE(X) is called from the S’ rule, and JB(X)’ instead
HGE(X)’ rule. Then, b can be replaced with z within
g update step.

ates

ending the UD to a EUD in lines (1)-(6) of Algorithm
D to an update leaf node U, i.e. a leaf node of EUD wh

161

the
cess
g. 4

X)’),

two
(X).
dges

no
That

th z
the

oves

GD
n in

mar
ules
ely,
d of
the

m 1,
here

162 A. Bätz, S. Böttcher, and R. Hartel

U is an update operation, is used for modifying the grammar rule Gi represented by
Ui. The update operation U is applied to the Ith terminal symbol T of Gi, e.g., for the
edge (JB(X)’, 2, reLTo(z)), the grammar rule JB(X)’ is updated by replacing the 2nd
terminal symbol, i.e. b, with z. Depending on the particular update operation U
described by the edge (Ui, I, U), we do the following.

If U= reLTo(z)) , we substitute the Ith terminal symbol of Gi, i.e. T, with z.
If U=newFC(cst) or U=newNS(cst), i.e., if the update requires inserting a

compressed sub-tree cst as a first-child or as a next-sibling of T respectively, we have
to set the current first-child or next-sibling of T as the new next-sibling of the root of
cst. As we might insert the same sub-tree cst at several places within the original
XML document, the most efficient way to do this is to set the next-sibling of the root
rule of cst (which is a null pointer, i.e. ε, before the insertion) to a parameter, and to
replace the first-child fc or the next-sibling ns of T by a call of the root rule of cst with
the parameter value fc or ns respectively.

If we consider for example the node ‘k1’ as selected node in Grammar 3 and want
to insert a node z(ε,ε) as the first-child of /k1, i.e., cst consists of the single rule Z(X)
 z(ε,X), we would insert a new rule Z(X)  z(ε,X) into Grammar 3 and replace the
current first-child cfc of k1 in Grammar 3 with a call Z(cfc) of this new rule. Thereby,
cfc becomes the next-sibling of z. This means, that the call ‘k1(CDE(m(ε,ε)),...)’ within
the start rule S of Grammar 3 is replaced with the call ‘k1(Z(CDE(m(ε,ε))),...)’.

If U=del, i.e., the update requires deleting the sub-tree having its root in T, we can
simply replace T(FC,NS) with T’s own next-sibling NS in the grammar rule
represented by Ui. If we remove a formal parameter from a rule during the deletion,
we have to delete the corresponding actual parameter within each call of the modified
rule as well. In the worst case, i.e., if the actual parameter of a rule is defined in the
rule represented by S’, we have to modify all the rules represented by nodes of EUD
that lay on paths from S’ to Ui within the EUD.

For example, if we delete the nodes of the sub-trees, the root of which is selected
by //d//j, i.e. is the j node with first child m or the j node with fist child o, UD contains
the edges (S’,1,CDE(X)’) , (S’,3,CDE(X)’) , (CDE(X)’,1,JB(X)’) , and (JB(X)’,1,del).
By applying the delete operation to the first non-terminal of the JB(X)’ rule, i.e. to j,
the right-hand side of this rule is replaced with b(ε,ε). As now the JB(X)’ rule does
not contain a parameter anymore, the parameter has to be removed from the CDE(X)’
rule calling it too. And finally, we have to delete the parameters used in the rule calls
of rule CDE(X)’ within the S’ rule too. By doing this, the first-child nodes of nodes
//d//j with labels m and o are deleted as well.

3.5 Sharing Identical Nodes

Although the initial grammar to be updated does not contain anymore sub-structures
that can be shared, during the update process new sub-structures are generated that
might be similar or identical to already existing sub-structures.

For example, if we re-label in our example the node /k2//g to ‘c’ and the node
/k2//h to ‘d’, after the UD isolation and the update process, the grammar would
contain a rule

HGE’(X)  c(d(JB(X),e(ε,ε)),ε)

which is identical to the
and replace each call of it
HGE’(X) is correct and c
replacing HGE’(X) with
compression ratio is optimi
updating phase.

In order to find redund
existing and modified rule
use the information given b
the same sequence of othe
have to compare these rules
This reduces the number of

4 Evaluation

All tests were performed on
RAM running our prototype

In a first series of measu
with two other approaches,

1998statistics (1998 – 6
(C1 – 10.4 MB) and dictio
XBench benchmark, hamle
35.5 MB) – data on the tu
23.0 MB) – data from the
(TB – 51.9 MB) –a parsed
that models auctions.

Usually, CluX compress
lowed by gzip.

In a second series of mea
the compressed data to the
uncompressed document as
performed) and recompress

Fig. 6. Compres

Updates on Grammar-Compressed XML Data

rule CDE(X). Therefore, we can delete the rule HGE’
t by a call of the rule CDE(X). The grammar using r
can be decompressed and processed correctly, but a

CDE(X), the grammar is more compact, i.e.,
zed. For this purpose, we perform a sharing phase after

dant rules, we could compare the modified rule with
s. But this comparison becomes more efficient, when
by the EUD. Two rules can only be identical, if they
er grammar rules. For the EUD, this means that we o
s that have the same sequence of children within the EU
f comparisons within the sharing phase.

n an Intel Core2 Duo CPU P870 @ 2,53 GHz with 4 GB
e on Java 1.6.
urements, we compared the compression strength of Cl
gzip and bzip2, based on the following XML datasets:

656 kB) – Baseball statistics of the year 1998, catalog
onary-01 (D1 – 10.4 MB) – documents generated by

et (H – 273 kB) – the Shakespeare play, JST_snp.chr (J
umor suppressor gene JST, and NCBI_gene.chr (NCB
e National Center for Biotechnical Information, Treeb

text corpus, and XMark (XM – 111.1 MB) – a docum

ses best (c.f. Fig. 6), followed by bzip2, and finally

asurements, we have compared the time for direct updates
e sum of the times needed for decompression, loading
s a DOM tree into main memory (i.e., no updates w
sion when using CluX, bzip2 or gzip as compression to

ssion ratios of CluX compared with bzip2 and gzip

163

(X)
rule

after
the
the

h all
we

call
only
UD.

B of

luX

g-01
the

ST-
BI –
ank

ment

fol-

s on
the

were
ool.

164 A. Bätz, S. Böttcher, and R. Hartel

Fig. 7. (a) Update time of CluX compared to compression and decompression times of CluX,
bzip2 and gzip, (b) Update time required for a scaling number of parallel updates

With scaling the document size (c.f. Fig. 7(a)), the direct updates on CluX can be
performed faster than the compression and decompression of CluX and bzip2. For a
document with a size of 15 MB, the update on the compressed data is 3.5 times faster
than the decompression and recompression by CluX and 4.4 times faster than the
decompression and recompression by bzip2. Only gzip, that reaches a far weaker
compression ratio than CluX can be decompressed and recompressed in less time than
the update process directly on the compressed data requires. Finally, we have examined
the impact of parallel updates compared to sequential updates. For this purpose, we
randomly selected 100 paths of the grammar DAG and relabeled the XML node defined
by these paths. Fig. 7(b) shows that performing 100 updates in parallel as a multi-update
operation is more than 70 times faster than performing 100 updates sequentially.

5 Related Work

Besides generic compressors like gzip, bzip2 or 7zip (based on LZMA) all of which
do not allow direct query evaluation on the compressed data, there are several
approaches to XML structure compression. XML structure compression can be
mainly divided into three categories: encoding-based compressors, schema-based
compressors and grammar-based compressors.

The encoding-based compressors allow for a faster compression speed than the
other ones, as only local data has to be considered in the compression as opposed to
considering different sub-trees as in grammar-based compressors. Examples for
encoding-based approaches are the approaches [13], [6], and [7], XMill [8], XPRESS
[9], XGrind [14], and [1]. Whereas XMill is not queryable, i.e., it does not support the
navigation or the evaluation of XPath queries on the compressed document directly,
i.e., without prior decompression, all other approaches are queryable.

Schema-based compression comprises such approaches as XCQ [2], XAUST [15],
Xenia [3], and XSDS [10]. They subtract the given schema information from the
structural information. Instead of a complete XML structure stream or tree, they only

 Updates on Grammar-Compressed XML Data 165

generate and output information not already contained in the schema information
(e.g., the chosen alternative for a choice-operator or the number of repetitions for a *-
operator within the DTD). These approaches are queryable and applicable to XML
streams, but they can only be used if schema information is available.

XQzip [11] and the approaches presented in [16] and [4] belong to grammar-based
compression. They compress the data structure of an XML document by combining
identical sub-trees.

An extension of [4] and [11] is the BPLEX algorithm [5]. This approach not only
combines identical sub-trees, but recognizes similar patterns within the XML tree, and
therefore allows a higher degree of compression. The approach presented in this
paper, which is an extension of [17], follows the same idea. But instead of combining
similar structures bottom-up, our approach searches within a given window the most
promising pair to be combined while following one of three possible clustering
strategies. Furthermore, in contrast to [12] and [18], that performs updates by path
isolation only sequentially, our approach allows performing updates in parallel which
takes only a fraction of time.

6 Summary and Conclusions

We have shown how updates can be performed directly on CluX, a clustering-based
compression approach for XML trees, i.e., without the need to decompress the
compressed data in advance. As an XML file compressor, CluX compresses on
average 70% better than the generic compressor gzip and 5% better than the generic
compressor bzip2. CluX compression can be applied to infinite data streams – and in
contrast to gzip or bzip2, path queries and updates can be evaluated directly on the
compressed representation, i.e., without prior decompression. Beyond other clustering
or multiplexing based approaches like e.g. the BPLEX algorithm [12], [5], CluX
offers an update DAG isolation technique that allows to perform several updates in
parallel, and our evaluation has shown that performing 100 updates in parallel takes
significantly less time than performing 100 updates sequentially. Furthermore, our
evaluation on a file with a size of 15 MB has shown that performing the updates
directly on the compressed data with our update algorithm is more than 3 times faster
than decompressing the data first and recompressing it with CluX, and it is more than
4 times faster than the decompression and recompression with bzip2.

We furthermore believe that this technique of performing several updates in
parallel on the compressed data directly is not restricted to CluX, but can be extended
to DAG-based compressors like [5] and to other grammar-based compressors like e.g.
BPLEX [5], the main idea of which is to share similar sub-trees.

References

1. Zhang, N., Kacholia, V., Özsu, M.: A Succinct Physical Storage Scheme for Efficient
Evaluation of Path Queries in XML. In: Proceedings of the 20th International Conference
on Data Engineering, ICDE 2004, Boston, MA, USA, pp. 54–65 (2004)

2. Ng, W., Lam, W., Wood, P., Levene, M.: XCQ: A queriable XML compression system.
Knowl. Inf. Syst., 421–452 (2006)

166 A. Bätz, S. Böttcher, and R. Hartel

3. Werner, C., Buschmann, C., Brandt, Y., Fischer, S.: Compressing SOAP Messages by
using Pushdown Automata. In: 2006 IEEE International Conference on Web Services
(ICWS 2006), Chicago, Illinois, USA, pp.19–28 (2006)

4. Buneman, P., Grohe, M., Koch, C.: Path Queries on Compressed XML. In: Proceedings of
29th International Conference on Very Large Data Bases, Berlin, Germany, pp. 141–152
(2003)

5. Busatto, G., Lohrey, M., Maneth, S.: Efficient Memory Representation of XML
Documents. In: Bierman, G., Koch, C. (eds.) DBPL 2005. LNCS, vol. 3774, pp. 199–216.
Springer, Heidelberg (2005)

6. Cheney, J.: Compressing XML with Multiplexed Hierarchical PPM Models. In:
Proceedings of the IEEE Data Compression Conference (DCC 2001), Snowbird, Utah,
USA, p. 163 (2001)

7. Girardot, M., Sundaresan, N.: Millau: an encoding format for efficient representation and
exchange of XML over the Web. Computer Networks 33, 747–765 (2000)

8. Liefke, H., Suciu, D.: XMILL: An Efficient Compressor for XML Data. In: Proceedings
of the 2000 ACM SIGMOD International Conference on Management of Data, Dallas,
Texas, USA, pp. 153–164 (2000)

9. Min, J.-K., Park, M.-J., Chung, C.-W.: XPRESS: A Queriable Compression for XML
Data. In: Halevy, A., Ives, Z., Doan, A. (eds.) Proceedings of the 2003 ACM SIGMOD
International Conference on Management of Data, San Diego, California, USA, pp. 122–
133 (2003)

10. Böttcher, S., Hartel, R., Messinger, C.: XML Stream Data Reduction by Shared KST
Signatures. In: 42st Hawaii International International Conference on Systems Science
(HICSS-42 2009), Proceedings (CD-ROM and online), Waikoloa, Big Island, HI, USA,
pp. 1–10 (2009)

11. Cheng, J., Ng, W.: XQzip: Querying Compressed XML Using Structural Indexing. In:
Hwang, J., Christodoulakis, S., Plexousakis, D., Christophides, V., Koubarakis, M.,
Böhm, K. (eds.) EDBT 2004. LNCS, vol. 2992, pp. 219–236. Springer, Heidelberg (2004)

12. Fisher, D., Maneth, S.: Structural Selectivity Estimation for XML Documents. In:
Proceedings of the 23rd International Conference on Data Engineering, ICDE 2007,
Istanbul, Turkey, pp. 626–635 (2007)

13. Bayardo Jr., R., Gruhl, D., Josifovski, V., Myllymaki, J.: An evaluation of binary XML
encoding optimizations for fast stream based xml processing. In: Feldman, S., Uretsky,
M., Najork, M., Wills, C. (eds.) Proceedings of the 13th International Conference on
World Wide Web, New York, NY, USA, pp. 345–354 (2004)

14. Tolani, P., Haritsa, J.: XGRIND: A Query-Friendly XML Compressor. In: Proceedings of
the 18th International Conference on Data, ICDE, San Jose, CA, pp. 225–234 (2002)

15. Subramanian, H., Shankar, P.: Compressing XML Documents Using Recursive Finite
State Automata. In: Farré, J., Litovsky, I., Schmitz, S. (eds.) CIAA 2005. LNCS,
vol. 3845, pp. 282–293. Springer, Heidelberg (2006)

16. Adiego, J., Navarro, G., Fuente, P.: Lempel-Ziv Compression of Structured Text. In: Data
Compression Conference, Snowbird, UT, USA, pp. 112–121 (2004)

17. Böttcher, S., Hartel, R., Krislin, C.: CluX - Clustering XML Sub-trees. In: ICEIS 2010 -
Proceedings of the 12th International Conference on Enterprise Information Systems,
Funchal, Madeira, Portugal, pp. 142–150 (2010)

18. Damien, F., Maneth, S.: Selectivity Estimation. Patent WO 2007/134407 A1 (May 2007)

	Updates on Grammar-Compressed XML Data
	Introduction
	Sharing Similar Trees

	The Paper’s Example Document

	The Idea Behind Sharing Similar Trees
	Node Selection by Grammer Paths

	Parallel Updates on the Compressed Data

	Basic Update Concepts and Parallel Update Problem Definition

	First Step of the Parallel Update Process: Constructing an Update DAG(UD)
	Second Step of the Parallel Update Process: Isolating UD from GD
	Performing the Updates

	Sharing Identical Nodes

	Evaluation
	Related Work
	Summary and Conclusions
	References

