
Mining Sequential Patterns from Probabilistic

Databases by Pattern-Growth

Muhammad Muzammal

Department of Computer Science, University of Leicester, UK
mm386@mcs.le.ac.uk

Abstract. We propose a pattern-growth approach for mining sequential
patterns from probabilistic databases. Our considered model of uncer-
tainty is about the situations where there is uncertainty in associating
an event with a source; and consider the problem of enumerating all
sequences whose expected support satisfies a user-defined threshold θ.
In an earlier work [Muzammal and Raman, PAKDD’11], adapted rep-
resentative candidate generate-and-test approaches, GSP (breadth-first
sequence lattice traversal) and SPADE/SPAM (depth-first sequence lat-
tice traversal) to the probabilistic case. The authors also noted the dif-
ficulties in generalizing PrefixSpan to the probabilistic case (PrefixSpan
is a pattern-growth algorithm, considered to be the best performer for
deterministic sequential pattern mining). We overcome these difficulties
in this note and adapt PrefixSpan to work under probabilistic settings.
We then report on an experimental evaluation of the candidate generate-
and-test approaches against the pattern-growth approach.

Keywords: Mining Uncertain Data, Mining complex sequential data,
Probabilistic Databases, Novel models and algorithms.

1 Introduction

Agrawal and Srikant [14,2] defined the problem of Sequential Pattern Mining
(SPM), which involves discovery of frequent sequences of events in data with
a temporal component; SPM has become a classical and well-studied problem
in data mining [17,13,3]. In classical SPM, the database to be mined consists
of tuples 〈eid, e, σ〉, where e is an event, σ is a source and eid is an event-
id which incorporates a time-stamp. A tuple may record a retail transaction
(event) by a customer (source), or an observation of an object/person (event)
by a sensor/camera (source). All of the components of the tuple are assumed to
be certain, or completely determined.

However, it is recognized that data obtained from a wide range of data sources
is inherently uncertain [1]. This paper is concerned with SPM in probabilistic
databases [15], a popular framework for modelling uncertainty. Recently sev-
eral data mining and ranking problems have been studied in this framework,
including top-k [18,5], frequent itemset mining (FIM) [1,4] and sequential pat-
tern mining [11,12]. In [11] two kinds of uncertainty in SPM were formalized:

A.A.A. Fernandes et al. (Eds.): BNCOD 2011, LNCS 7051, pp. 118–127, 2011.
c© Springer-Verlag Berlin Heidelberg 2011

Mining Sequential Patterns from Probabilistic Databases by Pattern-Growth 119

source-level uncertainty (SLU) and event-level uncertainty (ELU). In SLU, the
“source” attribute of each tuple is uncertain: each tuple contains a probability
distribution over possible sources (attribute-level uncertainty [15]). As noted in
[11], this formulation applies to scenarios where it is known that some customer
made a specific retail transaction, but the identity of the customer who made
that transaction is uncertain. This could happen because of incomplete cus-
tomer details, or because the customer database itself is probabilistic as a result
of “deduplication” or cleaning [7]. In ELU, the source of the tuple is certain,
but the events are uncertain. This applies to several scenarios involving sensors
in fixed locations detecting events using noisy techniques. In this case, either
the existence of an event is uncertain (for example tracking endangered animals
using sensors [8] or aggregating unreliable observations into events [9]) or the
event’s existence is essentially certain, but its content is uncertain (for example,
reading a numberplate using automated numberplate recognition or sequences
of search terms that may have ambiguous meanings [11]).

Our contributions. In [12], efficient algorithms were proposed for the SPM prob-
lem in SLU probabilistic databases, under the expected support measure. These
algorithms were based on the candidate generate-and-test approach, which is
known to be relatively inefficient for classical SPM. In [12], it was noted that it
is not straightforward to adapt the pattern-growth approach [13], which is usually
the best for classical SPM, to the probabilistic case. In this paper, we overcome
the obstacles mentioned in [12], and propose a pattern-growth method for the
SPM problem in probabilistic databases. In classical SPM, pattern-growth works
by performing L1 computation on a projected database. The key contributions of
this work are to formulate the analogue of a projected database in probabilistic
settings, and to identify the appropriate L1 computation to perform on the pro-
jected database. Unlike the deterministic case, it appears that pattern-growth for
probabilistic SPM appears to require additional memory. We have implemented
the new pattern-growth algorithm and present an experimental evaluation of
the pattern-growth algorithm against the ones presented in [12]; this evaluation
shows that although pattern-growth is superior to candidate generation in the
deterministic settings, the picture is not as clear as for the probabilistic case.

2 Problem Statement

Classical SPM [14,2]. Let I = {i1, i2, . . . , iq} be a set of items and S =
{1, . . . , m} be a set of sources. An event e ⊆ I is a collection of items. A database
D = 〈r1, r2, . . . , rn〉 is an ordered list of records such that each ri ∈ D is of the
form (eid i, ei, σi), where eid i is a unique event-id, including a time-stamp (events
are ordered by this time-stamp), ei is an event and σi is a source.

A sequence s = 〈s1, s2, . . . , sa〉 is an ordered list of events. The events si in the
sequence are called its elements. The length of a sequence s is the total number of
items in it, i.e.

∑a
j=1 |sj |; for any integer k, a k-sequence is a sequence of length k.

Let s = 〈s1, s2, . . . , sq〉 and t = 〈t1, t2, . . . , tr〉 be two sequences. We say that s is a
subsequence of t, denoted s � t, if there exist integers 1 ≤ i1 < i2 < · · · < iq ≤ r

120 M. Muzammal

such that sk ⊆ tij , for k = 1, . . . , q. The source sequence Di corresponding to a
source i is just the multiset {e|(eid, e, i) ∈ D}, ordered by eid. For any sequence
s, define its support in D, denoted Sup(s, D) is the number of sources i such
that s � Di. The objective is to find all sequences s such that Sup(s, D) ≥ θm
for some user-defined threshold 0 < θ ≤ 1.

Probabilistic Databases. We define an SLU probabilistic database Dp to be an
ordered list 〈r1, . . . , rn〉 of records of the form (eid , e,W) where eid is an event-id,
e is an event and W is a probability distribution over S; the list is ordered by eid.
The distribution W contains pairs of the form (σ, c), where σ ∈ S and 0 < c ≤ 1
is the confidence that the event e is associated with source σ and

∑
(σ,c)∈W c = 1.

An example can be found in Table 1(L). The possible worlds semantics of Dp

is as follows. A possible world D∗ of Dp is generated by taking each event ei in
turn, and assigning it to one of the possible sources σi ∈ Wi. Thus every record
ri = (eidi, ei, Wi) ∈ Dp takes the form r′i = (eidi, ei, σi), for some σi ∈ S in D∗.
The complete set of possible worlds is obtained by enumerating all such possible
combinations. We assume that the distributions Wi associated with each record
ri in Dp are stochastically independent; the probability of a possible world D∗

is therefore Pr[D∗] =
∏n

i=1 PrWi [σi]. For example, a possible world D∗ for the
database of Table 1 can be generated by assigning event e1 to Z with probability
0.3, events e2 and e4 to X with probabilities 0.7 and 0.6 respectively, and event
e3 to Y with probability 0.3, and Pr[D∗] = 0.3 × 0.7 × 0.3 × 0.6 = 0.0378.

Table 1. An SLU event database (L) transformed to p-sequences (R). Note that the
events like e1 (marked with † on (R)) can only be associated with one of the sources
X, Y and Z in any possible world

eid event W

e1 (a, c, e) (X : 0.1)(Y : 0.6)(Z : 0.3)

e2 (b, c, d) (X : 0.7)(Y : 0.3)

e3 (a, d, e) (X : 0.2)(Y : 0.3)(Z : 0.5)

e4 (b, c, e) (X : 0.6)(Z : 0.4)

p-sequence

Dp
X (a, c, e : 0.1)†(b, c, d : 0.7)(a, d, e : 0.2)

(b, c, e : 0.6)

Dp
Y (a, c, e : 0.6)†(b, c, d : 0.3)(a, d, e : 0.3)

Dp
Z (a, c, e : 0.3)†(a, d, e : 0.5)(b, c, e : 0.4)

As a possible world is a deterministic instance of a given probabilistic database,
concepts like the support of a sequence in a possible world do apply. The expected
support of a sequence s in Dp is computed as follows:

ES(s, Dp) =
∑

D∗∈PW (Dp)

Pr[D∗] ∗ Sup(s, D∗), (1)

The problem we consider is:

Given an SLU probabilistic database Dp, determine all sequences s such
that ES(s, Dp) ≥ θm, for some user-specified threshold θ, 0 < θ ≤ 1.

Mining Sequential Patterns from Probabilistic Databases by Pattern-Growth 121

Observe that it is not feasible to use Eq. 1 directly due to the exponential number
of possible worlds. Consider for example, we want to compute the probability
with which source X supports a sequence s = (a)(b) in the sample database
of Table 1. There can be two ways in which s can be supported by source X
i.e. either e1 does support (a) and at least one of the events e2 or e4 support
(b) or alternatively, e1 does not support (a) but e3 does support (a), and e4

supports (b). The probability that X supports s is calculated as 0.196. Clearly,
computing the source support probability this way is an expensive operation. In
[12], a dynamic programming (DP) based algorithm was proposed to compute
the source support probability Pr[s � Dp

i], and it was shown that the ES of a
sequence could be computed as follows:

ES(s, Dp) =
m∑

i=1

Pr[s � Dp
i] (2)

3 Pattern-Growth Approach

We now describe our Pattern-Growth-Approach (PGA) that uses in essence
the already proposed sub-routines, Dynamic Programming (DP) and fast L1

computation [12]; and integrates it with the pattern-growth mechanism [13]. We
first review some concepts:

p-Sequences. A p-sequence is analogous to a source sequence in classical SPM,
and is a sequence of the form 〈(e1, c1) . . . (ek, ck)〉, where ej is an event and cj

is a confidence value. An SLU database Dp can be viewed as a collection of
p-sequences Dp

1 , . . . , D
p
m, where Dp

i is the p-sequence of source i, and contains a
list of those events in Dp that have non-zero confidence of being associated with
source i, ordered by eid, together with the associated confidence (see Table 1(R)).
Further, given a sequence s = 〈s1, . . . , sq〉 and an item x, s can either be extended
by adding x as a separate element in s, s ·{x} (S-extension) or by appending x to
the last element in s, 〈s1, . . . , sq ∪{x}〉 (I-extension). For example, for s = (a)(b)
and x = c, S- and I-extensions of s are (a)(b)(c) and (a)(b, c) respectively.

Dynamic Programming. Let i be a source, Dp
i = 〈(e1, c1), . . . , (er, cr)〉, and

s = 〈s1, . . . , sq〉 be any sequence. Now let Ai,s be the (q × r) DP matrix used to
compute Pr[s � Dp

i], and let Bi,s denote the last row of Ai,s, that is, Bi,s[�] =
Ai,s[q, �] for � = 1, . . . , r. For 1 ≤ k ≤ q and 1 ≤ � ≤ r, A[k, �] will contain
Pr[〈s1, . . . , sk〉 � 〈(e1, c1), . . . , (e�, c�)〉], so A[q, r] is the value Pr[s � Dp

i]. We
set A[1, �] = 1 for all �, 1 ≤ � ≤ r and A[k, 1] = 0 for all 1 ≤ k ≤ q, and compute
the other values row-by-row. For 1 ≤ k ≤ q and 1 ≤ � ≤ r, define:

c∗k� =
{

c� if sk ⊆ e�

0 otherwise ,
(3)

where c∗k� is the probability that the element sk is contained in the event e� in
source i; If sk ⊆ e�, c∗k� is equal to the probability that e� is associated with
source i, and 0 otherwise. Next, use the following recurrence:

122 M. Muzammal

A[k, �] = (1 − c∗k�) ∗ A[k, � − 1] + c∗k� ∗ A[k − 1, � − 1]. (4)

Lemma 1. Given a p-sequence Dp
i and a sequence s, by applying Eq. 4 repeat-

edly, we correctly compute Pr[s � Dp
i].

Fast L1 Computation. It was shown by [12] that it was possible to compute all
frequent 1-sequences in a single pass over the database. The procedure for this is
as follows: Initialize two arrays F and G, each of size q = |I|, to zero and consider
each source i in turn. If Dp

i = 〈(e1, c1), . . . , (er, cr)〉, for k = 1, . . . , r take the pair
(ek, ck) and iterate through each x ∈ ek, setting F [x] := (F [x] ∗ (1 − ck)) + ck.
Once finished with source i, if F [x] is non-zero, update G[x] := G[x] + F [x] and
reset F [x] to zero (for each source i use a list structure to keep track of all the
non-zero entries in F). Finally, for any item x ∈ I, G[x] = ES(〈x〉, Dp).

PrefixSpan. PrefixSpan is based on the idea of pattern-growth, and works as
follows: First, all frequent 1-sequences are discovered. It is argued that any of the
frequent 2-sequences must begin with a frequent 1-sequence and therefore, the
complete set of sequential patterns can be partitioned into as many subsets as
the number of frequent 1-sequences where each 1-sequence is taken as a prefix.
A projected database is a smaller databased based on some prefix (sequence).
For example, in the sample database of Table 1(R), a (d)-projected database is
{〈(a, d, e : 0.2)(b, c, e : 0.6)〉, 〈(a, d, e : 0.3)〉, 〈(, e : 0.5)(b, c, e : 0.4)〉}. The sub-
set of sequential patterns is mined by constructing the set of projected databases
based on frequent 1-sequences and mining each recursively. For example, if (e)
is a frequent 1-sequence in the above (d)-projected database, a (d)(e)-projected
database looks like {〈(b, c, e : 0.6)〉, 〈〉, 〈〉}. This recursive mining process con-
tinues until no more sequential patterns could be found. For details see [13].

It was noted in [12] that it is not correct to simply perform the fast L1

computation on a projected database. For example, if an (a)-projected database
contained two p-sequences (b : 0.5)(b : 0.5)(a : 0.5) and (b : 0.5)(a : 0.5)(b : 0.5),
then when considering whether (a)(b) is frequent, it is not correct to compute
the expected support of (b) in the projected database (for example, both p-
sequences above would give the same contribution – 0.75 – to the support of
(b) in the projected database, but clearly their support for (a)(b) is different).
In this work, we show how these sub-routines could be put together to find all
frequent sequential patterns using PGA.

3.1 Pattern-Growth Step

Pre-conditions

1. s is a previously discovered frequent sequence.
2. The list of sources i, where Pr[s � Dp

i] > 0 is available.
3. The Bi,s arrays for all such sources i are also available.

Mining Sequential Patterns from Probabilistic Databases by Pattern-Growth 123

Table 2. An example of computing the ES of all S-extensions of s = (a) for source
X in the sample database of Table 1. The gray row is the BX,s array. In the bottom
half, the cells that changed in F ′ after processing the corresponding event are marked
as gray. After processing source X, values in the final column are updated to G′.

Dp
X (a, c, e : 0.1) (b, c, d : 0.7) (a, d, e : 0.2) (b, c, e : 0.6)

(a) 0.1 0.1 0.28 0.28

(a) 0.0 0.0 0.02 0.020
(b) 0.0 0.07 0.07 0.196
(c) 0.0 0.07 0.07 0.196
(d) 0.0 0.07 0.076 0.076
(e) 0.0 0.0 0.02 0.176

(i) (ii) (iii) (iv)

Objective: To compute the ES of all the S- or I-extensions of s in one pass
over the database, and thus discover all frequent extensions of s.

Steps: We consider the two cases of finding the S- and I-extensions of s in turn.
We compute the frequent S-extensions of s as follows: Let i be a source, Dp

i =
〈(e1, c1), . . . , (er, cr)〉, and s = 〈s1, . . . , sq〉 be any sequence. Initialize two arrays
F ′ and G′, each of size q = |I| to zero and consider each source i in turn. Then
scan Bi,s up-to the first non-zero entry ek, and for every item x in e�, k < � ≤ r,
update F ′[x] as follows:

F ′[x] := ((1 − c�) ∗ F ′[x]) + (c� ∗ Bi,s[� − 1]) (5)

We keep track of all the non-zero entries in F ′[x], and once finished with source
i, update G′[x] := G′[x] + F ′[x] and reset F ′[x] to zero. After all the sources i
are processed, all the entries in G′[x] ≥ θm are frequent S-extensions of s. An
example of this computation is shown in Table 2.

For the I-extensions case, the initializations are the same as for the S-extensions
case. For a sequence s = 〈s1, . . . , sq〉 and source i, when scanning Bi,s up-to the
first non-zero entry e� which means sq ⊆ e�, for every item x in e� that is not in
sq and is lexicographically greater than all items in sq, update F ′[x] as follows:

F ′[x] := (1 − c�) ∗ F ′[x] + (Bi,s[�] − Bi,s[� − 1] ∗ (1 − c�)), (6)

and apply Eq. 6 to all the events e�, � ≤ r, where sq ⊆ e� (or alternatively where
the Bi,s values change). After all the sources i are processed, all the entries in
G′[x] ≥ θm are frequent I-extensions of s.

Pattern-Growth Algorithm. An overview of our pattern-growth algorithm
is in Fig. 1. We first compute the set of frequent 1-sequences, L1 (Line 3) (as-
sume L1 is in ascending order). For each 1-sequence x, first we compute the Bi,x

124 M. Muzammal

Algorithm 1. Pattern-Growth Approach
1: Input: SLU probabilistic database Dp and support threshold θ.
2: Output: All sequences s with ES(s, Dp) ≥ θm.

3: L1 ← ComputeFrequent-1-sequences(Dp)
4: for all sequences x ∈ L1 do
5: Compute Bi,x arrays
6: Call ProjectedDB(x)

7: function ProjectedDB(s)
8: LS ← Compute Frequent S-extensions {fast L1 computation}
9: LI ← Compute Frequent I-extensions {fast L1 computation}

10: Output all Frequent Sequences {s extended with x, for all x in LS and LI}
11: for all x ∈ LS do
12: t← 〈s · {x}〉 {S-extension}
13: Compute Bi,t arrays
14: ProjectedDB(t)
15: for all x ∈ LI do
16: t← 〈s1, . . . , sq ∪ {x}〉 {I-extension}
17: Compute Bi,t arrays
18: ProjectedDB(t)
19: end function

arrays for each source (Line 5) and also keep track of all the sources where
Pr[x � Dp

i] > 0 (projected database) and then, call the ProjectedDB(x) sub-
routine (Line 6).

In the ProjectedDB sub-routine, we first compute all the frequent S- and
I-extensions of s using the fast L1 computation by applying Eq. 5 and Eq. 6
accordingly (Line 8 and 9). In step 10, output all the frequent S- and I-extensions
of s computed in the previous steps. In steps 11-18, for every sequence t which
is a frequent S- or I-extension of s, compute Bi,t arrays and also keep track of
all the sources where Pr[t � Dp

i] > 0, and call the ProjectedDB sub-routine
recursively to mine all frequent sequential patterns.

Table 3. Number of DP computations (in millions) performed by each algorithm, for
the set of experiments in Fig. 1 (L) and in Fig. 2 (R)

C10D10K BFS+P DFS+P PGA
θ = 0.5 % 3.141 3.199 1.494
θ = 1 % 1.711 1.465 0.886
θ = 2 % 0.879 0.781 0.487
θ = 4 % 0.505 0.487 0.281
gazelle

θ = 0.01 % 0.777 0.375 0.261
θ = 0.02 % 0.149 0.172 0.152
θ = 0.03 % 0.073 0.129 0.122
θ = 0.04 % 0.045 0.110 0.107

C = 10, θ = 1% BFS+P DFS+P PGA
D = 10K 1.465 1.711 0.886
D = 20K 2.890 3.370 1.735
D = 40K 5.716 6.718 3.464
D = 80K 11.460 13.423 6.936

D = 10K, θ = 25%
C = 10 0.100 0.111 0.081
C = 20 0.690 0.694 0.314
C = 40 13.044 13.891 4.868
C = 80 2353.677 2782.807 881.480

Mining Sequential Patterns from Probabilistic Databases by Pattern-Growth 125

 0

 50

 100

 150

 200

 250

0 2 4 6 8

R
un

ni
ng

 ti
m

e
(i

n
se

c)

θ values (in %age)

C10D10K

BFS+P
DFS+P

PGA

 0

 50

 100

 150

 200

 250

 300

 350

 400

0 0.01 0.02 0.03 0.04 0.05

R
un

ni
ng

 ti
m

e
(i

n
se

c)

θ values (in %age)

Gazelle

BFS+P
DFS+P

PGA

Fig. 1. Scalability of the three algorithms for decreasing values of θ, for synthetic
dataset (C10D10K) (L) and for real dataset Gazelle (R)

 0

 200

 400

 600

 800

 1000

 1200

 1400

 1600

0 40 80 120 160

R
un

ni
ng

 ti
m

e
(i

n
se

c)

No. of sources (in thousands)

C = 10, θ = 1%

BFS+P
DFS+P

PGA

0

1

10

100

1000

0 20 40 60 80

R
un

ni
ng

 ti
m

e
(i

n
se

c)

No. of events per source

D = 10K, θ = 25%

BFS+P
DFS+P

PGA

Fig. 2. Scalability for increasing number of sources D, with average number of events
per source C = 10 and ES = 1% (L), and for increasing number of events per sources
C with number of sources D = 10K and ES = 25% (R)

4 Experimental Evaluation

In [12], the authors adapt GSP and SPADE/SPAM to yield a breadth-first (BFS)
and a depth-first (DFS) algorithm, respectively. In addition, they also propose
a probabilistic pruning technique to eliminate potential infrequent candidates
without support computation, achieving an overall speedup. We therefore, choose
two of the faster candidate generation variants from [12] i.e. BFS+P (breadth-
first search with pruning) and DFS+P (depth-first search with pruning), and
compare these with the Pattern-Growth Approach (PGA) proposed in this work.

Our implementations are in C# (Visual Studio .Net 2005), executed on a ma-
chine with a 3.2GHz Intel CPU and 3GB RAM running XP (SP3). We begin by
describing the datasets used for experiments. Then, we demonstrate the scalabil-
ity of the three algorithms. Our reported running times are averages from multiple
runs. In our experiments, we use both real (gazelle from Blue Martini [10]) and
synthetic (IBM Quest [2]) datasets. We transform these deterministic datasets to
probabilistic form in a way similar to [1,4,18,12]; we assign probabilities to each

126 M. Muzammal

event in a source sequence using a uniform distribution over (0, 1], thus obtaining
a collection of p-sequences.

The real dataset Gazelle has 29369 sequences and 35722 events. For synthetic
datasets, we follow the naming convention of [17]: a dataset named CiDjK means
that the average number of events per source is i and the number of sources is j
(in thousands). Alphabet size is 2K and all other parameters are set to default.
For example, the dataset C10D20K has on average 10 events per source and 20K
sources. We consider following three parameters in our experiments: number of
sources D, average number of events per source C, and support threshold θ. We
test our algorithms for increasing D, increasing C, and decreasing θ values by
keeping the other two parameters fixed.

Scalability Testing. In the first set of experiments, we fix C = 10 and θ = 1%,
and test the scalability of these algorithms for decreasing θ values. We report
our results for synthetic dataset (C10D10K) in Fig. 1(L), and for real dataset
(Gazelle) in Fig. 1(R). It can be seen that PGA performs better than both the
candidate generate-and-test approaches for real as well as for synthetic dataset.
The performace difference is more obvious for harder instances (at low θ values).

In another set of experiments, we test the scalability of these algorithms for
increasing values of D by fixing C = 10 and θ = 1% (Fig. 2(L)), and by fixing
D = 10K and θ = 25%, for increasing values of C (Fig. 2(R)). It can be seen that
PGA performs better than the other two algorithms for increasing D (Fig. 2(L)).
However, we do not see improvements for increasing C (Fig. 2(R)). We are cur-
rently investigating the reasons for this behaviour. Note that DFS+P processes
only one S- or I-extension of s at a time, whereas in PGA all the extensions of
s are processed simultaneously.

We also kept statistics about the number of DP computations for each algo-
rithm (Table. 3). The datasets and support thresholds are the same as in Fig. 1
and Fig. 2. We observe that PGA performs the least number of DP computa-
tions consistently, as in PGA the Bi,s arrays are computed only for the frequent
sequences. As noted in [13] that candidate generation approaches suffer from an
exponential number of candidates at low θ values, this cost is even higher in
probabilistic case because of the Bi,s arrays. Further, note that there is no need
for keeping Bi,s arrays for BFS in contrast with the PGA and therefore, PGA
has additional memory needs.

5 Conclusions and Future Work

We have considered the problem of finding all frequent sequences by pattern-
growth in SLU databases. We have evaluated PGA in contrast with the candidate
generate-and-test approaches, and we observe that the PGA performs better
than the candidate generation approaches in general. The speedup in running
time can be seen for the real dataset, in particular at low θ values, and for the
synthetic datasets as well when the source sequences are not very long or for low
θ values. The statistics about the number of DP computations also show that the
PGA performs the least number of DP computations consistently. We conclude

Mining Sequential Patterns from Probabilistic Databases by Pattern-Growth 127

that PGA is generally efficient than the candidate generation algorithms. In
future, we intend to investigate that why the performance difference is not so
obvious when the source sequences are very long or for higher θ values, and
whether PGA has similar behaviour for other real datasets.

References

1. Aggarwal, C.C. (ed.): Managing and Mining Uncertain Data. Springer, Heidelberg
(2009)

2. Agrawal, R., Srikant, R.: Mining sequential patterns. In: Yu, P.S., Chen, A.L.P.
(eds.) ICDE, pp. 3–14. IEEE Computer Society, Los Alamitos (1995)

3. Ayres, J., Flannick, J., Gehrke, J., Yiu, T.: Sequential pattern mining using a
bitmap representation. In: KDD, pp. 429–435. ACM, New York (2002)

4. Bernecker, T., Kriegel, H.P., Renz, M., Verhein, F., Züfle, A.: Probabilistic frequent
itemset mining in uncertain databases. In: Elder, et al [6], pp. 119–128

5. Cormode, G., Li, F., Yi, K.: Semantics of ranking queries for probabilistic data
and expected ranks. In: ICDE, pp. 305–316. IEEE, Los Alamitos (2009)

6. Elder, J.F., Fogelman-Soulié, F., Flach, P.A., Zaki, M.J. (eds.): Proceedings of the
15th ACM SIGKDD International Conference on Knowledge Discovery and Data
Mining, Paris, France, June 28-July 1. ACM, New York (2009)

7. Hassanzadeh, O., Miller, R.J.: Creating probabilistic databases from duplicated
data. The VLDB Journal 18(5), 1141–1166 (2009)

8. Hua, M., Pei, J., Zhang, W., Lin, X.: Ranking queries on uncertain data: a proba-
bilistic threshold approach. In: Wang [16], pp. 673–686

9. Khoussainova, N., Balazinska, M., Suciu, D.: Probabilistic event extraction from
RFID data. In: ICDE, pp. 1480–1482. IEEE, Los Alamitos (2008)

10. Kohavi, R., Brodley, C., Frasca, B., Mason, L., Zheng, Z.: KDD-Cup 2000 orga-
nizers’ report: Peeling the onion. SIGKDD Explorations 2(2), 86–98 (2000)

11. Muzammal, M., Raman, R.: On probabilistic models for uncertain sequential pat-
tern mining. In: Cao, L., Feng, Y., Zhong, J. (eds.) ADMA 2010, Part I. LNCS,
vol. 6440, pp. 60–72. Springer, Heidelberg (2010)

12. Muzammal, M., Raman, R.: Mining sequential patterns from probabilistic
databases. In: Huang, J.Z., Cao, L., Srivastava, J. (eds.) PAKDD 2011, Part II.
LNCS (LNAI), vol. 6635, pp. 210–221. Springer, Heidelberg (2011)

13. Pei, J., Han, J., Mortazavi-Asl, B., Wang, J., Pinto, H., Chen, Q., Dayal, U., Hsu,
M.: Mining sequential patterns by pattern-growth: The PrefixSpan approach. IEEE
Trans. Knowl. Data Eng. 16(11), 1424–1440 (2004)

14. Srikant, R., Agrawal, R.: Mining sequential patterns: Generalizations and perfor-
mance improvements. In: Apers, P.M.G., Bouzeghoub, M., Gardarin, G. (eds.)
EDBT 1996. LNCS, vol. 1057, pp. 3–17. Springer, Heidelberg (1996)

15. Suciu, D., Dalvi, N.N.: Foundations of probabilistic answers to queries. In: Özcan,
F. (ed.) SIGMOD Conference, p. 963. ACM, New York (2005)

16. Wang, J.T.L. (ed.): Proceedings of the ACM SIGMOD International Conference
on Management of Data, SIGMOD 2008, Vancouver, BC, Canada, June 10-12.
ACM, New York (2008)

17. Zaki, M.J.: SPADE: An efficient algorithm for mining frequent sequences. Machine
Learning 42(1/2), 31–60 (2001)

18. Zhang, Q., Li, F., Yi, K.: Finding frequent items in probabilistic data. In: Wang
[16], pp. 819–832

	Mining Sequential Patterns from Probabilistic Databases by Pattern-Growth
	Introduction
	Problem Statement
	Pattern-Growth Approach
	Pattern-Growth Step

	Experimental Evaluation
	Conclusions and Future Work
	References

