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Abstract. Model Management, and its associated operators, provides
generic means for dealing with multiple schemas and the mappings be-
tween them, for example, in the context of multiple heterogeneous data
sources that need to be integrated. One example of a Model Management
framework is the ‘Model Independent Schema Management’(MISM) plat-
form. In the context of MISM, algorithms and implementations of various
operators have been proposed that act on a source-model independent
metamodel. However, although the results on MISM indicate how to im-
port and manipulate data from heterogeneous source types, to date no
approach has been proposed to utilise MISM for querying across the mul-
tiple data sources. This paper presents SMql, a query language over the
source-model independent supermodel, presents an algebra into which
the query is translated and presents an approach for rewriting SMql
queries into source-model-specific queries posed over the corresponding
relational or XSD models of the data source to be queried. Thus this pa-
per helps to complete the collection of problems that need to be addressed
to allow source model-independent model management using universal
models in the context of MISM.
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1 Introduction

The vision of model management [5,6] was proposed to address the recurring is-
sues that arise when dealing with data sources, whether multiple heterogeneous
data sources that need to be integrated or a single data source with a continually
evolving schema. In the case of multiple heterogeneous data sources, these could
also be represented using different data models, e.g., relational or XSD. Model
Management aims to provide generic operators that make it easier to manipulate
schemas, that may be associated with, e.g., relational, object-relational or XML
data sources, and the relationships between the schemas. With a view to ob-
taining data model independence, an approach has been proposed to represent
models expressed in various different data models, within the same universal
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Table 1. Model-generic and model-specific constructs

Metaconstructs Relational XSD
Abstract Root Element
Aggregation Table
StructOfAttributes ComplexElement
Lexical Column Simple Element
Foreign Key Foreign Key Foreign Key

model, referred to as a supermodel. Utilising the benefits of data model inde-
pendence, it has been suggested recently that dataspace management systems
could utilise model management systems, e.g., for the integration of heteroge-
neous schemas or for dealing with evolving schemas [9]. This, however, requires
model management systems to provide support for query evaluation across the
various heterogeneous data sources.

A prominent example of a source-model independent approach is the ‘Model
Independent Schema Management’(MISM) [1,4] framework. In MISM, imple-
mentations of various of the model management operators have been proposed,
e.g., an extended version of ModelGen [3], which in addition to translating
schemas from a representation in one model into an equivalent representation in
another model is also able to translate the corresponding data. This, however,
required the whole database to be loaded, making it only suitable as an off-line
approach. This was addressed for relational data sources in a later proposal [2]
in which the data translation rules presented previously are translated into exe-
cutable SQL statements. The framework was later extended further by proposing
definitions and implementations for Diff and Merge [1] over the supermodel.

However, even though MISM now provides support for managing and inte-
grating schemas represented in various models, it still does not provide sup-
port for querying across the various data sources associated with the integrated
schemas, whereas other model management platforms have been extended to
provide support for query answering (e.g., [17,13]). This paper addresses this
gap by presenting an approach for processing queries in the MISM framework.
To do this we define a query language (SMql) and an algebra over the MISM
supermodel and present an approach to evaluating SMql queries over relational
and XML sources.

The remainder of the paper is organised as follows. Section 2 introduces the
relevant components of the supermodel of the MISM platform, and Section 3
introduces the query language over the supermodel and the algebra. Section 4
describes the approach for query rewriting. Related work is presented in Section
5 and Section 6 concludes the paper.

2 Background

This section introduces the two levels of schema descriptions of MISM as pro-
posed by Atzeni et al. [1,4]. The two levels are the model-specific description,
which contains all the constructs required to represent schemas in a particular
model (see the two UML diagrams in the bottom half of Figure 1 for relational
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Fig. 1. Constructs in source-model independent supermodel and model specific models
as well as the correspondences between them

and XSD, respectively) and the source-model independent supermodel, which
uses a small set of model-generic constructs, so called metaconstructs [1] to rep-
resent model-specific constructs by aggregating over their similarities (see the
UML diagram in the top half of Figure 1). Model management operators are
defined over the constructs in the supermodel, which is depicted by the arrow
in the top right corner of Figure 1. The UML diagrams in Figure 1 also include
additional constructs that are required to represent all the information present
in the models, e.g., ComponentOfForeignKey and Nest. By capturing both, the
model-specific constructs and the model-generic representations of a schema,
this approach is both model-independent and model-aware. Table 1 lists the
model-generic metaconstructs and their corresponding model-specific constructs
for relational and for XSD models. The dashed lines in Figure 1 from the model
specific constructs to the model generic metaconstructs depict the correspond-
ing constructs in the different models. The correspondences between the model
specific and the model generic constructs are utilised during import of models,
information that we later utilise in the opposite direction for query translation
(depicted in Figure 1 by the dashed lines from the model generic constructs to
the model specific constructs). As this paper focusses on relational and XSD
models only, the remaining models that can be represented by the universal
model have been omitted here, but are described in [4].

3 Query Language

This section introduces the query language SMql, a declarative query language
inspired by SQL but defined over the constructs of the supermodel. A SMql
query is of the form SELECT l1, ..., ln FROM c1, ..., cm WHERE p, where l1, ..., ln is a
project list of Lexicals, c1, ..., cm ∈ {Abstract|Aggregation|StructOfAttributes}
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Fig. 2. Example schemas and queries in SMql

Table 2. SMql algebra

Operator
SCAN(Abstract|Aggregation|StructOfAttributes) → Collection
REDUCE(Collection, {Lexical}) → Collection
FILTER(Collection, Predicate) → Collection
JOIN(Left Collection, Right Collection, Predicate) → Collection
UNION(Left Collection, Right Collection) → Collection
EvaluateSQL(SQLqueryString, Predicate, {tuple})→ {tuple}
EvaluateXQuery(XqueryString, Predicate, {tuple})→ {tuple}

and p is a conjunctive predicate. Figure 2 shows two simplified schemas, S1 of a
relational data source and S2 of an XSD data source and some example queries
in SMql. The figure also shows the corresponding constructs in the supermodel
for the two relational tables in S1, as well as the root element (country) and
the complex elements (capital_city, other_city, city) in S2. The columns
in S1 and the simple elements in S2 all correspond to Lexical, but for clarity not
all those correspondences are shown in Figure 2.

SMql queries are translated into the algebra from Table 2 following standard
translation schemes [10]. For example, query Q1 in Figure 2 is translated into RE-
DUCE(FILTER( SCAN(country), population> 5000000), {name, code, capital})
and query Q2 is translated into REDUCE( JOIN( SCAN(country o), FILTER(
SCAN(city c), c.name = ‘Manchester’), o.code = c.country), {o.name, c.name}).
The UNION operator will be used later in the context of query unfolding whereas
EvaluateSQL and EvaluateXQuery will be used later in the context of evaluation
of the rewritten source-specific subqueries (see Section 4 for an example).

4 Query Rewriting

This section introduces the approach to rewriting a SMql query posed over con-
structs of the supermodel and expressed in the algebra shown in Table 2 into
potentially multiple SQL or XQuery queries, respectively, depending on the con-
structs which are queried and their respective sources. For example, if a SMql
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query is posed over a model that was generated using the model management
operator Merge on two models, the query is expanded into a SMql query over
constructs from potentially multiple source models using query unfolding [11]
and associations between the source models and the merged model. The ex-
panded SMql query is compiled into the algebra and optimised, and subqueries
of the logically optimised plan that are associated with specific sources are then
translated to the source specific query languages as described in Sections 4.1
and 4.2, whereby the left hand side input and the right hand side input of the
UNION operator are treated as separate subqueries that are processed sepa-
rately even if they are to be evaluated over the same source. The translated
subqueries are passed to the operators EvaluateSQL and EvaluateXQuery, re-
spectively, which can be parameterised with tuples and a Predicate, e.g., in the
case of joins between different sources. Assume, for simplicity, that query Q2 is
posed over the merged schema of S1 and S2 (not shown) and that constructs
with the same names in the three schemas are associated. The expanded algebra
with the translated subqueries of Q2 resulting from the use of these associations,
query unfolding and the translation algorithms introduced in Sections 4.1 and
4.2 is shown in Figure 3.

Query rewriting is a two step process applied both for translating (portions of)
a query into SQL and into XQuery. The first step is a recursive algorithm that
traverses all operators in the query posed over the supermodel, and gathers all
the information required for query rewriting in the corresponding data structures
appropriate for the type of target query. In the second step, this information is
utilised to generate a string representation of the target query. The process is
described in more detail in the following.

The approach presented here only deals with syntax; dealing with semantics
is beyond the scope of this paper. Once access has been provided to a source,
the other model management operators provide techniques for manipulating the
resulting integration model in ways that reflect semantic issues.

4.1 SMql Query over Supermodel into XQuery over XML

Based on the parts of an XQuery, namely the Let, For, Where and Return
clauses, the following data structure is introduced to gather the information
that is needed for each of the clauses.

An XQuery is a quadruple <let, for, where, return>, where let is a map of
variable names and references to source documents, for is a list of abstract/root
element or structOfAttributes/complex elements, where is a list of conjunctive
predicates and return is a list of fully qualified lexical/simple element names,
either qualified with the name of the abstract|structOfAttributes / root|complex
element the lexical belongs to or with the corresponding variable name. Both
lists and maps support the operators add and contains. We assume here that
the data source, or the source document of each instance i of a construct in the
supermodel can be obtained by i.source.

We follow the two step process described briefly above, which consists of
gathering the information for the various clauses of the XQuery by recursively
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UNION(
UNION(

EvaluateXQuery(
‘for $o in $s/country
for $c in $o/capital_city/city
where $o/code = $c/country
and $c/name = "Manchester"’,
null, null),

EvaluateXQuery(
‘for $o in $s/country
for $c in $o/other_city/city
where $o/code = $c/country
and $c/name = "Manchester"’,
null, null)),

EvaluateSQL(
‘Select o.name, c.name
from country o, city c
where o.code = c.country
and c.name = "Manchester"’,
null, null))

Fig. 3. Expanded and rewritten query Q2

Require: s = query (fragment) to be translated, expressed in algebra introduced above
1: if s instance of SCAN(abstract c) | s instance of SCAN(structOfAttributes c) then
2: if !s.let.contains(c.source) then
3: s.let.add(c, c.source)
4: end if
5: s.for.add(c)
6: else if s instance of REDUCE(Collection c, {Lexical}) then
7: for all Lexical l ∈ {Lexical} do
8: s.return.add(l)
9: end for
10: Translate2XQuery(c)
11: else if s instance of FILTER(Collection c, Predicate) then
12: s.where.add(p)
13: Translate2XQuery(c)
14: else if s instance of JOIN(Left Collection lc, Right Collection rc, Predicate) then
15: s.where.add(p)
16: Translate2XQuery(lc)
17: Translate2XQuery(rc)
18: end if

Fig. 4. Translate2XQuery(s)

traversing the SMql -algebra (Algorithm shown in Figure 4) followed by the gener-
ation of a string representation of the XQuery utilising the gathered information
(Algorithm shown in Figure 5). The algorithms presented are not the only way
to organise the information and generate the corresponding XQuery, as there are
several ways of expressing the same XQuery. For example, an equivalent XQuery
to query Q1 in Figure 2 posed over S2 could be written as one of the two versions
v1 or v2:

v1:for $c in doc("...")//country[population>"5000000"]
v2:let $s := doc("...") for $c in $s//country where $c/population > 5000000

We have decided to follow the structuring of the information and consequently
of the XQuery that is somewhat related to the structure of a SQL query, i.e.,
for corresponds to from, return corresponds to select, where corresponds to
where, and to capture only the reference to the source document in let, which
results in queries structured as exemplified in v2.
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To generate an XQuery that reflects the relationship between the structure of
the supermodel and the structure of the document, we order all the (root and
complex) elements that are gathered in s.for according to their hierarchical
structure in the source document (line 5 of the algorithm shown in Figure 5).
We differentiate between rootElements and complexElements, which correspond
to different constructs in the supermodel (lines 7-12) when generating the path
expression in the for clause. We assume in Figure 5 that the (variable) name of
a construct c queried can be obtained through c.name.

Using the algorithms presented, the XQueries posed over S2 that correspond
to the example queries Q1, Q2 and Q3 are shown in Figure 6. The let and
return clauses are omitted for XQueries Q2 and Q3. As there are two alter-
natives for mapping city in the integration schema to city in S2, namely,
capital_city/city or other_city/city, two subqueries are to be evaluated
over the respective data source with schema S2 and their results unioned. Both
subqueries are shown in Figure 6.

4.2 SMql Query over Supermodel into SQL Query over Relational
Model

Based on the three parts of an SQL query, namely the Select, From and Where
clauses, the following data structure is introduced to gather the information that
is needed for each of the three clauses.

A SQL query is a triple <select, from, where>, where select is a list of fully
qualified lexical/column names, either qualified with the name of the aggrega-
tion/table the lexical belongs to or with the corresponding variable name, from
is a list of aggregations/tables, and where is a list of conjunctive predicates.
Lists support the operator add. As the correspondences between model specific
constructs and model generic constructs are trivial for relational data sources,
the rewriting algorithm is straightforward.

In the first step, a recursive algorithm (omitted here due to space constraints;
for the corresponding algorithm for XQuery see Algorithm 4) traverses the SMql
algebra and places the appropriate information into the data structures corre-
sponding to each part of the SQL query, e.g., predicates of FILTER and JOIN
operators are added to s.where, and all lexicals in REDUCE are added to s.select.

In the second step of the query rewriting, the gathered information is trans-
lated into a string for evaluation. As this step is straightforward for SQL, the
algorithm is omitted here.

5 Related Work

Various contributions on query rewriting for data integration have been made
over the years (e.g., [11,14]). In addition, some of the model management plat-
forms have been extended to support query evaluation (e.g., Automed [7] and
GeRoMe [12]).

GeRoMe, utilises a role based metamodel in which multiple model-independent
roles can be attached to each model-specific schema element thereby specifying



Utilising the MISM Model Independent Schema Management Platform 115

Require: s = query (fragment) to be translated with all information gathered in s.let, s.for, s.where,
and s.return

1: String qs = new String(”<result>”)
2: for all 〈variableName v, document d〉 ∈ s.let do
3: qs += ”let $” + v + ”:=doc(” + d + ”)
4: end for
5: order all c’s in s.for according to their hierarchical structure in the source document utilising

the information captured in the supermodel
6: for all element c ∈ ordered s.for starting from top do
7: if c instance of root element then
8: qs += ” for $” + c.name + ” in $” + v + ”/” + c.name
9: else if s.c instance of complex element then
10: qs += ” for $” + c.name + ” in $” + p.name + ”/” + c.name
11: where p = parent complex element of c
12: end if
13: end for
14: if !s.where.isEmpty() then
15: qs += ” where ”
16: for all predicate p in s.where do
17: if p of kind 〈simple element l1〉 〈op〉 〈simple element l2〉 then
18: qs += ”$” + c1.name + ”/” + l1.name + op + ”$” + c2.name + ”/” + l2.name
19: where c1 and c2 are the corresponding parent complex elements of simple elements l1

and l2, respectively
20: else if p of kind 〈simple element l〉 〈op〉 〈constant〉 then
21: qs += ”$” + c.name + ”/” + l.name + op + constant
22: where c is the corresponding parent complex element of simple element l
23: end if
24: if s.where.hasNext() then
25: qs += ” AND ”
26: end if
27: end for
28: end if
29: qs += ”return <tuple>”
30: for all simple element l in s.return do
31: qs += ”<” + c.name + ”.” + l.name + ”>”
32: qs += ” fn:data($” + c.name + ”/” + l.name + ”)”
33: qs += ”< /” + c.name + ”.” + l.name + ”>”
34: where c is the corresponding parent complex element of simple element l
35: end for
36: qs += ”</tuple>”
37: qs +=”</result>”
38: return queryString

Fig. 5. toXQueryString(s)

XQuery Q
1
:

<result>
let $s := doc("...") 
for $o in $s/country 
where $o/population > 5000000
return

<tuple>
<o.name>{fn:data($o/name)}</o.name>
<o.code>{fn:data($o/code)}</o.code>
<o.capital>{fn:data($o/capital)}</o.capital>

</tuple>
</result>

XQuery Q
2
:

for $o in $s/country
for $c in $o/capital_city/city
where $o/code = $c/country
and $c/name = “Manchester”

for $o in $s/country
for $c in $o/other_city/city
where $o/code = $c/country
and $c/name = “Manchester”

XQuery Q
3
:

for $o in $s/country
for $c in $o/capital_city/city
where $o/code = $c/country
and $c/capital = $c/name

for $o in $s/country
for $c in $o/other_city/city
where $o/code = $c/country
and $c/capital = $c/name

Fig. 6. (Partial) XQueries corresponding to Q1, Q2 and Q3
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its properties in detail [12]. At the language level, GeRoMe uses source-to-target
extensional mappings which are based on second-order tuple generating depen-
dencies (SO tgs) [8] that are specified over the schema elements and their roles
[13] to express the relationships between heterogeneous schemas represented us-
ing different data models. A conjunctive query posed over an integration schema
expressed using the same formalism as the extensional mappings, is rewritten
into a query over the sources using composition of the conjunction of source-
to-target mappings between the source schemas and the integration schema and
the query itself. The predicates of the resulting query, which is expressed over all
the source schemas, are partitioned according to the corresponding sources and
are then translated into the corresponding source-specific query language (SQL
or XQuery) to be evaluated [13]. In contrast, rather than using composition we
have illustrated an approach for expansion of a query posed over an integration
schema using query unfolding [11] and presented in detail the rewriting of SMql
(sub-) queries that are associated with specific sources into the source-specific
query languages (SQL and XQuery).

In contrast, Automed utilises a lower-level hypergraph data model consisting
of edges, nodes and constraints to represent schemas expressed in heterogeneous
data models including XML [15]. Relationships between different schemas are
expressed by a number of low level transformations between them, e.g., removing
a node or an edge, that can be combined to form more complex transformations.
The approach is called both as view (BAV) and the transformations are specified
in such a way that they are reversible and that both local as view (LAV) and
global as view (GAV) mappings can be derived between an integration schema
and source schemas from the BAV transformations [16,7]. A query over an in-
tegration schema or any of the source schemas can be expressed in Automed’s
IQL query language, a comprehension-based functional query language, that is
reformulated into a query over the (other) sources schemas using a combination
of LAV and GAV query processing techniques over the BAV transformations
[17]. However, no detail is provided on how the IQL query posed over the source
schemas is rewritten into the source-specific query languages, which is the main
contribution of our approach presented here.

6 Conclusions

Complementing the model management platform MISM we have presented SMql,
a query language and its algebra over the MISM supermodel. We have illus-
trated an approach for expanding queries over multiple sources and presented
an approach for rewriting SMql queries into the corresponding source specific
queries posed over the sources to be queried. To add query rewriting capabilities
for other data models for which MISM already provides support, such as, the
object-relational model, the same approach as presented here for XSD and the
relational model can be followed, i.e., gather the information according to the
structure of the corresponding query language and use the information on the
correspondences between the model-specific model and the source-model inde-
pendent supermodel to create the specific target query. To include other models
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that are not yet supported by MISM, e.g. RDF, the MISM model will have to
be extended first and then the approach described here followed.
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