

Lecture Notes in Computer Science 7051
Commenced Publication in 1973
Founding and Former Series Editors:
Gerhard Goos, Juris Hartmanis, and Jan van Leeuwen

Editorial Board

David Hutchison
Lancaster University, UK

Takeo Kanade
Carnegie Mellon University, Pittsburgh, PA, USA

Josef Kittler
University of Surrey, Guildford, UK

Jon M. Kleinberg
Cornell University, Ithaca, NY, USA

Alfred Kobsa
University of California, Irvine, CA, USA

Friedemann Mattern
ETH Zurich, Switzerland

John C. Mitchell
Stanford University, CA, USA

Moni Naor
Weizmann Institute of Science, Rehovot, Israel

Oscar Nierstrasz
University of Bern, Switzerland

C. Pandu Rangan
Indian Institute of Technology, Madras, India

Bernhard Steffen
TU Dortmund University, Germany

Madhu Sudan
Microsoft Research, Cambridge, MA, USA

Demetri Terzopoulos
University of California, Los Angeles, CA, USA

Doug Tygar
University of California, Berkeley, CA, USA

Gerhard Weikum
Max Planck Institute for Informatics, Saarbruecken, Germany

Alvaro A.A. Fernandes
Alasdair J.G. Gray
Khalid Belhajjame (Eds.)

Advances
in Databases

28th British National Conference on Databases, BNCOD 28
Manchester, UK, July 12-14, 2011
Revised Selected Papers

13

Volume Editors

Alvaro A.A. Fernandes
Alasdair J.G. Gray
Khalid Belhajjame
University of Manchester
Manchester M13 9PL, UK
E-mail: a.fernandes@manchester.ac.uk
{a.gray, khalid.belhajjame}@cs.man.ac.uk

ISSN 0302-9743 e-ISSN 1611-3349
ISBN 978-3-642-24576-3 e-ISBN 978-3-642-24577-0
DOI 10.1007/978-3-642-24577-0
Springer Heidelberg Dordrecht London New York

Library of Congress Control Number: 2011939304

CR Subject Classification (1998): H.4, H.3, H.2, H.2.8, I.2.4, I.2.6

LNCS Sublibrary: SL 3 – Information Systems and Application, incl. Internet/Web
and HCI

© Springer-Verlag Berlin Heidelberg 2011
This work is subject to copyright. All rights are reserved, whether the whole or part of the material is
concerned, specifically the rights of translation, reprinting, re-use of illustrations, recitation, broadcasting,
reproduction on microfilms or in any other way, and storage in data banks. Duplication of this publication
or parts thereof is permitted only under the provisions of the German Copyright Law of September 9, 1965,
in its current version, and permission for use must always be obtained from Springer. Violations are liable
to prosecution under the German Copyright Law.
The use of general descriptive names, registered names, trademarks, etc. in this publication does not imply,
even in the absence of a specific statement, that such names are exempt from the relevant protective laws
and regulations and therefore free for general use.

Typesetting: Camera-ready by author, data conversion by Scientific Publishing Services, Chennai, India

Printed on acid-free paper

Springer is part of Springer Science+Business Media (www.springer.com)

Preface

The 28th British National Conference on Databases (BNCOD 2011) was held
during July 2011 in the School of Computer Science at the University of Manch-
ester. This volume contains the proceedings of the conference and consists of
revised versions of presented contributions.

Following a recent tradition in the long history of BNCOD, the conference
was given a theme, Linked Data, a topic that has gained attention as a concrete
aspect of the Semantic Web. The linked data approach focusses on moving from a
Web of documents to a Web of richly annotated data. This vision is being actively
pursued by many groups from both the Web and the information management
research communities. Prominent among these is Christian Bizer’s group at the
Free University, Berlin. We were extremely grateful that Prof. Bizer attended the
conference and gave the opening keynote speech. He spoke with great passion of
the vast landscapes opened up by the principled combination of novel techniques
in database research, such as the dataspace approach to semantic integration,
and this brave new world of linked data, founded on standards such as RDF and
SPARQL.

Stressing the crucial role of semantics in information management, partic-
ularly in peer-to-peer contexts, the closing keynote speech was given by Karl
Aberer, from the École Polytechnique Fédérale de Lausanne, to whom we were
extremely grateful for a deep and entertaining talk. Prof. Aberer’s distinguished
work is now reaching out to exciting new developments whose significance the
BNCOD audience greatly appreciated.

BNCOD 2001 hosted one tutorial on Mining Image Databases by Content
given by Gerald Schaefer, from Loughborough University, UK. Dr. Schaefer en-
lightened the audience with a sweeping pass through the latest advances in the
area of image retrieval by content, focussing in particular on the role of color
and texture.

Once again, the 9th International Workshop in Teaching, Learning,and As-
sessment of Databases (TLAD) was co-located with BNCOD. Nine papers were
presented, one of which, voted the best by the workshop delegates,was selected
for publication in these proceedings.

The PhD Forum is a regular event at BNCOD and this year was a particular
exciting one, with six students presenting the current state of their work to an
expert panel and an audience of their peers who were able to offer helpful advice
and guidance.

The main body of the conference consisted of four full-length research pa-
per sessions, one short-paper session, and a poster/demo session. These ranged
over many of the hottest topics in information management at the time of
writing: XML compression, XML updates, column-oriented stores, provenance,

VI Preface

warehousing, streamed data, data mashups, dataspaces, sensor network query
processing and pattern-oriented search.

There were 44 submissions to BNCOD 2011 from 18 countries. Each submis-
sion was blind reviewed by at least three Program Committee members. The
Program Committee decided to accept 18 contributions (13 full, 2 short papers,
2 demo papers and 1 poster paper). The short papers, the demos and posters
were submitted as such, i.e., with that intention from the start. The text of
these contributions plus the best paper from TLAD are printed in full in this
volume. The two keynote speeches and the tutorial are recorded here in the form
of abstracts.

As Program Committee Chair, I would like to thank, first and foremost, my
co-editors, Alasdair J.G. Gray and Khalid Belhajjame for their sterling work in
several facets of BNCOD 2011. I would also like to thank the keynote and tutorial
speakers for their contributions, the authors for choosing BNCOD as the venue
for reporting their groundbreaking work, the Program Committee members for
their thorough reviewing, and the BNCOD Steering Committee members for
the opportunity given to us in Manchester to, once more, organize an edition of
BNCOD.

Thanks are also due to our colleagues in Manchester who are behind the Easy-
Chair conference management system, whose usefulness is now well recognized
by so many in the world of science.

Finally, I would like to thank the delegates to the conference, whose involve-
ment and participation helped make the event a memorable and rewarding one
for all involved.

July 2011 Alvaro A.A. Fernandes

Organization

Program Committee

David Bell Queen’s University Belfast, UK
Sharma Chakravarthy The University of Texas at Arlington, USA
Richard Cooper University of Glasgow, UK
Alfredo Cuzzocrea University of Calabria, Italy
Barry Eaglestone University of Sheffield, UK
Suzanne Embury University of Manchester, UK
Leonidas Fegaras University of Texas at Arlington, USA
Ixent Galpin University of Manchester, UK
Mary Garvey University of Wolverhampton, UK
Georg Gottlob Oxford University, UK
Anastasios Gounaris Aristotle University of Thessaloniki, Greece
Alex Gray Cardiff University, UK
Giovanna Guerrini DISI- University of Genoa, Italy
Jun Hong Queen’s University Belfast, UK
Anne James Coventry University, UK
Keith Jeffery STFC, UK
Graham Kemp Chalmers University of Technology, Sweden
Jessie Kennedy Napier University, UK
Lachlan Mackinnon University of Greenwich, UK
Nigel Martin Birkbeck, University of London, UK
Marta Mattoso COPPE- Federal University of Rio de Janeiro, Brazil
Peter Mcbrien Imperial College London, UK
Marco Mesiti DICO - University of Milan, Italy
Ken Moody University of Cambridge, UK
David Nelson University of Sunderland, UK
Werner Nutt Free University of Bozen-Bolzano, Italy
Norman Paton University of Manchester, UK
Alexandra Poulovassilis Birkbeck College, University of London, UK
Mark Roantree Dublin City University, Ireland
Sandra Sampaio The University of Manchester, UK
Alan Sexton Birmingham University, UK
Jianhua Shao Cardiff University, UK
Stratis Viglas University of Edinburgh, UK
John N. Wilson University of Strathclyde, UK

VIII Organization

Additional Reviewers

Cappellari, Paolo
Cavalieri, Federico
Oliveira, Daniel
Peng, Taoxin
Razniewski, Simon
Valtolina, Stefano

Table of Contents

Evolving the Web into a Global Data Space (Abstract) 1
Christian Bizer

Data Integration in a Networked World (Abstract) 2
Karl Aberer

Reliable Provenance Information for Multimedia Data Using Invertible
Fragile Watermarks . 3

Martin Schäler, Sandro Schulze, Ronny Merkel, Gunter Saake, and
Jana Dittmann

ECOS: Evolutionary Column-Oriented Storage . 18
Syed Saif ur Rahman, Eike Schallehn, and Gunter Saake

X-HYBRIDJOIN for Near-Real-Time Data Warehousing 33
Muhammad Asif Naeem, Gillian Dobbie, and Gerald Weber

Achieving High Freshness and Optimal Throughput in CPU-Limited
Execution of Multi-join Continuous Queries . 48

Abhishek Mukherji, Elke A. Rundensteiner, and Matthew O. Ward

Mining Image Databases by Content . 66
Gerald Schaefer

Searching for Complex Patterns over Large Stored Information
Repositories . 68

Nikhil Deshpande, Sharma Chakravarthy, and Raman Adaikkalavan

Using the Euclidean Distance for Retrieval Evaluation 83
Shengli Wu, Yaxin Bi, and Xiaoqin Zeng

Expanding Sensor Networks to Automate Knowledge Acquisition 97
Kenneth Conroy, Gregory C. May, Mark Roantree, and
Giles Warrington

Utilising the MISM Model Independent Schema Management Platform
for Query Evaluation . 108

Cornelia Hedeler and Norman W. Paton

Mining Sequential Patterns from Probabilistic Databases by
Pattern-Growth . 118

Muhammad Muzammal

X Table of Contents

Smile: Enabling Easy and Fast Development of Domain-Specific
Scheduling Protocols . 128

Christian Tilgner, Boris Glavic, Michael Böhlen, and
Carl-Christian Kanne

On Integrating Data Services Using Data Mashups 132
Muhammad Intizar Ali, Reinhard Pichler, Hong-Linh Truong, and
Schahram Dustdar

Executing In-network Queries Using SNEE . 136
Ixent Galpin, Robert Taylor, Alasdair J.G. Gray,
Christian Y.A. Brenninkmeijer, Alvaro A.A. Fernandes, and
Norman W. Paton

Extracting Data Records from Query Result Pages Based on Visual
Features . 140

Daiyue Weng, Jun Hong, and David A. Bell

Updates on Grammar-Compressed XML Data . 154
Alexander Bätz, Stefan Böttcher, and Rita Hartel

Reverting the Effects of XQuery Update Expressions 167
Federico Cavalieri, Giovanna Guerrini, and Marco Mesiti

TraCX: Transformation of Compressed XML . 182
Stefan Böttcher, Rita Hartel, and Sebastian Stey

Satisfiability of Simple XPath Fragments under Fixed DTDs 194
Nobutaka Suzuki

Computing Compressed XML Data from Relational Databases 209
Stefan Böttcher, Dennis Bokermann, and Rita Hartel

Data Mining Project: A Critical Element in Teaching, Learning and
Assessment of a Data Mining Module . 221

Hongbo Du

Author Index . 237

Evolving the Web into a Global Data Space

Christian Bizer

Freie Universität Berlin
Germany

chris@bizer.de

Abstract. Linked Data technologies provide for setting links between
records in distinct databases and thus to connect these databases into
a global data space. Over the last years, Linked Data technologies have
been adopted by an increasing number of data providers, including the
US and UK governments as well as mayor players in the media and
pharmaceutical industry, leading to the creation of a global Web of Data.
In his talk, Prof. Christian Bizer will give an overview of the Web of Data
as well as the architecture of Linked Data applications that work on top
of this data space. Afterwards, he will discuss how the openness and
self-descriptiveness of Linked Data provide for splitting data integration
costs between data publishers, data consumers and third parties and thus
might enable global-scale data integration in an evolutionary, pay-as-you-
go fashion. He will close with an overview of the research challenges that
the Linked Data community currently faces.

A.A.A. Fernandes et al. (Eds.): BNCOD 2011, LNCS 7051, p. 1, 2011.
c© Springer-Verlag Berlin Heidelberg 2011

Data Integration in a Networked World

Karl Aberer

School of Computer and Communication Sciences
Ecole Polytechnique Fédérale de Lausanne (EPFL)

karl.aberer@epfl.ch

Abstract. Traditionally, data integration techniques involve central
components, e.g., global schemas or ontologies, to overcome semantic het-
erogeneity for enabling transparent access to heterogeneous data sources.
Today, however, with the explosion of machine processable formats in the
Data Web, one cannot rely on global, centralized schemas anymore, as
knowledge creation and consumption are getting more and more dynamic
and decentralized.

Peer-to-peer data integration systems are a good example of this new
breed of systems eliminating central semantic components and replac-
ing them through decentralized processes of local schema alignment and
query processing. As a result semantic interoperability becomes an emer-
gent property of the system.

In this talk we will first survey recent developments in peer-to-peer
data integration, illustrating which novel challenges and opportunities
these systems introduce. We then illustrate of how semantic integra-
tion can be modeled as a self-organizing agreement process and present
a probabilistic technique for distributed reasoning about semantic rela-
tionships. We show how to extend these methods from the problem of
schema mapping to entity matching and how to consider trustworthi-
ness of autonomous participants in this process. Finally we present some
recent work on applying these principles in business applications.

A.A.A. Fernandes et al. (Eds.): BNCOD 2011, LNCS 7051, p. 2, 2011.
c© Springer-Verlag Berlin Heidelberg 2011

Reliable Provenance Information for Multimedia Data
Using Invertible Fragile Watermarks�

Martin Schäler, Sandro Schulze, Ronny Merkel, Gunter Saake, and Jana Dittmann

School of Computer Science
University of Magdeburg, Germany

{schaeler,sanschul,ronny.merkel,saake,
jana.dittmann}@iti.cs.uni-magdeburg.de

Abstract. Today, more and more data is available in digital form, ranging from
normal text to multimedia data such as image or video data. Since some data
is of high sensitivity or undergoes legal restrictions, it is important to obtain
more reliable information about the data origin and its transformations, known
as data provenance. Unfortunately, current approaches for data provenance nei-
ther support multimedia data nor provide mechanisms to ensure reliability of the
provenance information. In this paper, we present an approach based on exist-
ing watermarking schemes evaluated by a database system. Hence, this approach
ensures the reliability of multi media data (e.g., fingerprint data) and its corre-
sponding provenance information. Furthermore, we show how this approach can
be applied within a specific database, used for fingerprint verification.

Keywords: Data Provenance, Multi Media Data, Invertible Watermarking.

1 Introduction

In the last decade, data provenance (a.k.a. data lineage), that is tracking the source and
transformation of data in a predefined way [18], gained much attention in data-intensive
systems. The reasons are twofold: On the one hand, more and more data is available
from decentralised data sources such as the Internet or cloud computing. On the other
hand, this data is liable to legal restriction or is of high sensitivity at all (e.g., biometric
data). Hence, there is a growing interest on information about the origin of data and
how it was created. According to the notion introduced by Glavic et al., we refer to the
first as source provenance and to the latter as transformation provenance of data [16].

There are different application domains that have different requirements to the type
of data provenance and the querying and manipulation facilities of provenance informa-
tion. Prominent application domains that are covered by data provenance research are
curated databases, data warehouses, geo information systems, workflow management
systems or copyright identification [3,11]. Depending on the domain, data provenance
therefore provides valuable information about the integrity or derivation/transformation
process of the data.

However, current data provenance approaches have some limitations. Firstly, they are
mostly applicable to structured or semi-structured data such as in relational databases.

� This work has been funded by the German Federal Ministry of Education and Science (BMBF)
through the Research Programme under Contract No. FKZ:13N10817 and FKZ:13N10818.

A.A.A. Fernandes et al. (Eds.): BNCOD 2011, LNCS 7051, pp. 3–17, 2011.
c© Springer-Verlag Berlin Heidelberg 2011

4 M. Schäler et al.

Secondly, most approaches do not care about the reliability of provenance information.
For instance, information on the original source(s) or transformation of a data item1

may be tampered, e.g., through manipulation by an unauthorised instance. As a result,
the authenticity (i.e., the data is what it claims to be) and integrity (i.e., no unauthorised
changes) of the provenance information as well as of the corresponding data is not
guaranteed anymore.

In this paper, we address both of these limitations. Therefore, we introduce a moti-
vating example by considering fingerprint data. Then, we present an approach that uses
watermarking schemes, such as as the scheme of Merkel et al. [22], to provide reliable
provenance information for multimedia data. Furthermore, we show how to extend an
existing database system to analyze the watermark. In particular, we make the following
contributions:
• A new use case that goes beyond the traditional application of data provenance.
• We introduce an approach, that uses well-known invertible digital watermarking

schemes in the context of databases, to gather and store provenance information for
multimedia data. This approach ensures that the data as well as the corresponding
provenance information holds integrity and authenticity.

• We initiate discussion on the usage of watermarking for reliable data provenance.

2 Background

Subsequently, we give background information regarding data provenance, watermark-
ing in general and invertible watermarking techniques.

2.1 Data Provenance

In data provenance, we distinguish between provenance model and provenance man-
agement system. The first describes the conceptual model for provenance while the lat-
ter describes a system for the management of provenance information. The provenance
model is fundamental to all data provenance systems, because it defines all aspects of
how provenance information is recorded and processed. There are different provenance
management systems that are mostly tailored to their application domain. For a more
detailed overview, we refer to the work of Simmhan et al. [23]. In the following, we
introduce some aspects of data provenance that are important for the work, proposed
in this paper. For a detailed overview of data provenance aspects, we refer to several
surveys [16,27,7].

Provenance information can be recorded for data items with different granularity. In
this context, a data item is any structural unit of data, e.g., a tuple or a relation regarding
a relational database. Furthermore, there are two general views on data provenance.
The first describes provenance of a certain data item as the process of its creation. The
second view put the focus on the source data, which is the origin of a derived data item.
In the remainder of this paper we refer to the first as transformation provenance and the
latter as source provenance, according to the terminology of Glavic et al. [16].

1 A data item is a piece of data whose provenance information is of interest to a certain stake-
holder.

Reliable Provenance Information for Multimedia Data 5

Another aspect is when provenance information is computed. One possibility is to
compute the provenance information when it is needed (i.e., when data is created),
which is called the lazy approach [26]. The opposite direction is the eager approach,
where the provenance information is computed for each transformation of the data [26].

Finally, there is an important aspect, that is the distinction between Why- and Where-
provenance [4]. With Why-provenance, all data items that participated in the creation of
a data item are captured [11]. By contrast, Where-Provenance focuses on the origin of
the data source, which means that we can trace back a result of a transformation chain
to the original data.

2.2 Watermarking

Watermarking is an active security approach that alters a work (image, program, etc.)
to embed a message [9]. Fragile watermarks are an important technique for the pro-
tection of authenticity and integrity of data. In contrast, robust watermarks are related
to copyright protection. For our purposes, two kinds of watermarking are of interest:
Firstly, database watermarking, because we want to ensure trustworthiness of prove-
nance data in databases. Second, digital watermarking, because the data that is subject
to our watermarking approach are multimedia data items. Although the basic processes
of both approaches are similar, they differ in the underlying data that is subject to the
watermarking process.

In database watermarking, the whole database is subject to the watermarking pro-
cess. As a result, the process has to deal with a heterogeneous data basis, because the
different relations (of a database) consist of independent objects and tuples. In general,
database watermarking consists of two steps, watermark insertion and watermark de-
tection. We depict the general database watermarking process in Figure 1. For insertion,
a generated key (e.g., based on a tuples primary key) is used to embed watermark infor-
mation in the respective database. This produces a watermark DB that can be published.
In general, the information, embedded into the watermark, is independent of the content
of the DB. Rather, the applied watermark schemes are chosen with respect to certain
characteristics, the watermark should have. Examples for such characteristics are the
underlying data type [1], sensitivity to database attacks [17], the watermark informa-
tion (single-bit vs. multiple-bit) or the verifiability of the watermark. For detection, an
appropriate key and also the watermark information is needed. Based on this input, the
detection process can determine whether a certain database contains a valid watermark
or not. Generally, this approach is not invertible.

In digital watermarking, a single (digital) data item such as an image or other mul-
timedia data item is subject to the watermarking process. Usually other algorithms and

Fig. 1. General Database Watermarking Process

6 M. Schäler et al.

Fig. 2. General Digital Watermarking Process

concepts are used to watermark the data in digital watermarking (compared to database
watermarking). We depict the general watermarking process in Figure 2. In general, a
digital watermark system consists of two components: First, the embedder, which is
responsible for embedding the watermark in the multimedia data. Second, the detector,
which determines whether a watermark is present or not [9]. In the case that an invert-
ible watermark is used, the system is extended by a watermark extractor that restores
the original data. For embedding a watermark, the embedder needs three inputs: The
original, unwatermarked work (i.e., the digital data) the information (data) to embed
and a key. As a result, we create the watermarked data that serves as input for the de-
tector. As with database watermarking, a digital watermark system can have different
characteristics such as visibility, robustness, fragility, transparency, capacity and invert-
ibility. The characteristics of a specific watermark system depends on the application
the watermark is used for and can be chosen according to the system requirements.
Amongst others, proof of ownership and content authentication are common applica-
tions of watermarking. For a detailed overview of watermark application areas we refer
to Dittmann et al. [12].

2.3 Invertible Watermarking Techniques

A major problem of watermarking techniques is that watermarked data always con-
tains a particular amount of noise (i.e., the watermark) depending on the watermarking
scheme [14] . Consequently, watermarked data used in complex transformations (e.g.,
image quality enhancement) may lead to incorrect or at least biased results. To over-
come theses limitations, invertible watermark approaches that can extract the watermark
and restore the original data have been recently proposed in the literature. According to
Feng et al., there are three major approaches to embed invertible watermarks: (1) Com-
pression based approaches, (2) Difference expansion, and (3) Histogram shifting [14].

Compression based approaches. These approaches compress some parts of the image
and use the gained space to embed the watermark message.

Difference expansion. These techniques either use pixel pairs or blocks of pixels. The
difference of colour values among the used pixels is expanded to create space for
the embedding procedure. This procedure is invertible. Subsequently, we will ex-
plain one of these techniques in more detail.

Histogram shifting. A histogram shifting scheme first segments an image into several
blocks. Then, it computes the histogram of pixel colour values for each block. To
embed an a one, theses techniques change the sequence of histogram bins according
to a certain algorithm.

Reliable Provenance Information for Multimedia Data 7

Fig. 3. Original image (left side) and applied watermarking scheme of Merkel et al. (right side) [22]

Watermarking Scheme of Merkel et al. As we implemented a variant of the water-
marking scheme of Merkel et al. [22] for our motivating example, we will introduce
the techniques of this scheme in more detail. Basically, this scheme uses compression
and difference expansion. In Figure 3, we depict an original (on the left side) and a
watermarked image of a finger print (right side) on a hard disk platter. Because this
scheme was developed to ensure the privacy of a fingerprint as well as the authenticity,
and integrity of the image and of the embedded data, it compresses and encrypts the
pixels in the area containing the fingerprint. Furthermore, this visible2 compression is
used to embed parts of the watermark message. To ensure the integrity of the image and
the embedded data, the scheme uses signatures and hashes (H). Particularly, the signa-
ture S is computed as S = E(H(Image)|Message) and embedded into the image as
well, where E is some cryptographic function. To restore the image, the retrieval phase
of the scheme has to know which parts of the image are compressed and encrypted.
This information (location map) is embedded into the image as well using the invisible
difference expansion technique of Coltuc [8].

Difference expansion. Techniques, such as Tian’s [28] and Coltuc’s scheme [8] in-
crease the difference of the colour values of pixel pairs or blocks of pixels. Since we
implemented the scheme of Merkel et al. that uses Coltuc’s fast embedding technique to
show the feasibility of our idea, we will briefly explain this technique. To apply Coltuc’s
scheme, the algorithm initially splits the image into a set of pixel pairs (x, y), accord-
ing to rows, columns or any space-filling curve. Second, the algorithm performs the
difference expansion of each pair using Equation 1 to compute the new pair (x′, y′).

t(x, y) = (x′, y′) as x′ = 2x − y y′ = 2y − x (1)

To embed a bit of the watermark message, Colutc’s scheme modifies the transformation
t of Equation 1 as shown in Equation 2. The bit of the watermark is embedded into the
least significant bit (LSB) of y′. Furthermore, the scheme sets the LSB of x′ to one if
x and y are even; else the LSB of x′ is set to zero. The marking of the LSB of the x′

values is important for the inverse transformation.

t(x, y, w) = (x′, y′), w ∈ {0, 1} as x′ = u(2x − y, x, y) y′ = 2y − x + w

x′ = u(xtemp, x, y) =

{
xtemp ∨ 1, if x and y even,

xtemp ∧ ¬1 else.

(2)

2 For invisible compression based schemes refer to Celik et al. [6]

8 M. Schäler et al.

Restoring the Original Image. The algorithm restores the watermark message (wm)
as follows: (1) If the LSB of x′ = 1 add the LSB of y′ to wm and set the LSB of x′

and y′ to 0, (2) If the LSB of x′ = 0 add the LSB of y′ to wm and set the LSB of x′

and y′ to 1. For restoring the original image, Coltuc’s scheme then performs the inverse
transformation depicted in Equation 3.

x = �2
3
x′ +

1
3
y′�, y = �1

3
x′ +

2
3
y′� (3)

3 Fingerprint Pattern Data – A Motivating Example

Fingerprints, that are traces of an impression from the friction ridges of any part of a
human hand, have a long tradition in crime detection [15]. In general, the latent fin-
gerprints detected at a crime scene are used for fingerprint pattern identification (a.k.a.
dactyloscopy) in order to find the criminal [2].

As with today, new approaches for contactless latent fingerprint detection are subject
to intensive research, especially in the field of signal or image processing [21,13,20].
As a result, the detected fingerprints are available in digital rather than physical form.
This, in turn, leads to problems that are common for digital data, especially regarding
IT security aspects like authenticity, integrity or confidentiality.

Furthermore, for the legal usage of digital fingerprints, we have to ensure another im-
portant aspect: the chain-of-custody. To this end, it is necessary to guarantee the trace-
ability of fingerprint data throughout all transformation steps, and as a result, that each
derived data item can be tracked back to the original data items. This is especially nec-
essary if the digital fingerprint data is used as a proof at court. Here, two questions have
to be answered without a doubt: Firstly, does any derived data item (used as proof) stem
from the original digital fingerprint? And secondly, can we ensure the trustworthiness
of the source provenance information? Unfortunately, neither standard DB mechanisms
such as access control nor current data provenance approaches support us in answer-
ing these questions. Hence, we must introduce an appropriate approach, which we will
sketch in the following section.

4 Using Watermarking for Data Provenance

In this section, we present an approach that allows a database system to use existing
invertible watermarking schemes to a) gather provenance information for digital fin-
gerprint data and b) ensure the trustworthiness of the provenance information. First, we
present the database infrastructure in which the presented approach should be used. Sec-
ond, we explain our approach and how it ensures reliability of provenance data. Finally,
we show parts of the implementation with help of a simplified running example.

4.1 Architecture and General Data Flow

In Figure 4, we present an abstract overview of our DB architecture and how it is em-
bedded in an infrastructure for fingerprint verification. The original data results from

Reliable Provenance Information for Multimedia Data 9

Fig. 4. Architecture

different sensors that create an image of a latent fingerprint. These images and sensor-
specific meta data (such as resolution, sensor ID, etc.) are sent to our Fingerprint Ver-
ification Database (FiVe DB). Note, that a sensor itself has no insert privileges on the
table containing the original sensor images. Instead, a sensor calls a user defined func-
tion (UDF), which tests whether the image and the embedded provenance information
hold integrity and authenticity (i.e., contains a valid watermark). If this is the case, the
UDF stores the image and inserts the sensor-specific meta data into a separate meta data
table.

Furthermore, we have a fine-grained management of meta data in FiVe DB. Meta
data that is accessed frequently by different user roles such as image resolution or
provenance-related meta data is stored in a dedicated schema (Meta Data). By con-
trast, meta data that is not intended for general purpose (e.g., uploader, upload time,
etc.) is inserted in meta data tables in schema Original Sensor Images. Additionally, we
collect meta data such as environmental parameters that the sensors cannot provide and
store these data within schema Meta Data as well.

After the initial capturing of a fingerprint image, typically several transformations
are performed to improve its quality or to extract some feature vectors. This is usually
done by external tools or functions. To identify a certain data item (i.e., original sensor
data or intermediate result due to transformation executed on the data), an external tool
first queries the available meta data of this data item to get its database id. Next, the
tool performs its transformation(s) on the data. Finally, the data item is sent back to
FiVe DB together with the information on the transformation. For this new data item
we have to know about the following two aspects:

• Where does it stem from, that is, which previous intermediate results possibly exist
and what is the original image data (i.e., foreign keys to these data items),

• How was the new data item created (i.e., the sequence of transformations).

Since every transformation (and even initial data creation) is accompanied with a
unique id of the executing unit (e.g., sensor, or tool), we can determine who changed the
data. Furthermore, we obtain information regarding the source provenance by

10 M. Schäler et al.

connecting an original image and all of its subsequent transformation using the
respective foreign keys. Additionally, we compute provenance information for each
transformation step (eager approach) and thus have knowledge about transformation
provenance. However, with the described architecture, it is still possible to manipulate
provenance information in an unauthorised way. Hence, we introduce an approach that
ensures integrity and authenticity of provenance information as well as image data in
the next section.

4.2 A Hybrid Watermarking Approach

Because of our specific requirements and system infrastructure (i.e., external transfor-
mation of data), we need a watermark system that is a combination of both, database and
digital watermarking. Using only a digital watermarking system would imply that the
DB has neither the control nor any information on the transformation of data. Further-
more, we would not be able to perform queries to obtain (provenance) information that
is possibly encoded in the watermark. By contrast, only using a database watermarking
system means that the whole database has to be watermarked, which is not useful for
our purposes and thus implies an overhead. Furthermore, to the best of our knowledge,
no approach exists for database watermarking on unstructured or multimedia data. In
the remaining section, we introduce our approach and explain, how it can be used in
our secure database infrastructure.

The Hybrid Approach. To understand what makes our approach hybrid, we illustrate
the insertion of a new sensor image into FiVe DB in Figure 5. The process starts with a
new digital fingerprint image including embedded meta data (containing provenance in-
formation) from a sensor as visualised in Figure 5.1. Immediately after image creation,
a digital watermark is embedded into the image. Therefore, the watermark is generated
with a key that allows the verification of the watermark. We illustrate the watermarked
sensor image by a sealed envelope.

In the second step (cf. Figure 5.2), FiVe DB uses the key to check, whether the water-
mark exists. For instance, if the data was tampered during transportation, the (fragile)
watermark will be destroyed. Hence, the database can identify data items that do not
hold integrity and deny their storage. After the verification of the watermark, FiVe DB

Fig. 5. Initial storage of image data

Reliable Provenance Information for Multimedia Data 11

extracts the included meta data (Figure 5.3) and stores them in the database as explained
in Section 4.1, so that it is accessible with common SQL. In step four (Figure 5.4), the
meta data already present in FiVe DB such as environmental data are embedded into the
digital image, additionally to the sensor-specific meta data. Due to limited and varying
embedding capacity, (see Section 2.2) we cannot embed the whole meta data into the
image. Consequently, we do not embed the data itself, but a cryptographic hash of the
byte values (e.g., for strings it is just the concatenation) of each meta data item. Finally,
FiVe DB seals the image data using its own key and stores it in the database.

4.3 Verifying the Watermark Information

Besides embedding the watermark, the verification of the watermark (i.e., the presence
and integrity of a watermark in a data item) is an important issue. In Figure 6, we present
three possible approaches for this verification step. The first possibility is that only the
client application checks the watermark. In this case, the database can contain data that
does not hold integrity (i.e., is not watermarked). The advantage of this solution is that
the whole computation effort for verifying and embedding the watermark can be done
on client site and thus does not affect the database performance. However, in our sce-
nario, this approach is not suitable since there is no guarantee for the integrity of the
fingerprint data and the embedded provenance information. In contrast to this approach,
with the two remaining alternatives the database additionally checks the embedded wa-
termark.

Fig. 6. Alternatives for watermark verification

The second approach uses a modified query engine. Such an engine verifies the wa-
termark within the image data whenever a query on these data is performed, even when
some user tries to access image meta data. The advantage of this solution is that this
process is totally transparent and that the circumvention of this methodology is quite
hard, because you need to tamper with the query engine itself. Despite this, we see seri-
ous disadvantages of this approach. First, it will take a great effort to modify an existing
query engine to fulfill our requirements and verify its correct functionality. Second, we
see serious performance problems when verifying the watermark in each query that
addresses an image data item or corresponding meta (provenance) data.

Due to these drawbacks, we prefer the third approach. With this approach, the inser-
tion and reading of image data, including the watermark verification, is done by user

12 M. Schäler et al.

defined functions (UDF). Except for the UDFs, no access via insert, update, or delete
operations is granted on tables of the original sensor image schema, which contains the
image as well as the provenance data. As a result, we prevent the contained data from
unauthorised modification and thus, can ensure integrity and reliability. Obviously, the
performance overhead of this approach is smaller compared to the modified query en-
gine approach. Unfortunately, this alternative is not as transparent as the approach above
and a user who gains unauthorised access to the underlying DB can (maliciously) mod-
ify the system behavior, e.g., by altering the UDFs. Currently, we use best practices to
prevent the circumvention of our system. Amongst others, we restricted the adminis-
trative access to FiVe DB to one virtual user. Furthermore, the password for this user
consists of two parts kept by two different person (four eyes principal). Additionally,
we plan to use periodic jobs that check the integrity of the data within FiVe DB when
there is little load on the system.

4.4 Extension of the Watermarking Scheme of Merkel et al.

In our infrastructure, we use the watermarking scheme of Merkel et. al. [22], which is a
combination of compression based techniques and difference expansion (see
Section 2.3). This scheme has two additional features that are advantageous for our
purposes. The first feature is relevant for our fine grained provenance data handling
(general purpose and confidential data). To this end, the watermarking scheme allows
to insert a private message that can be read only with an appropriate key. Moreover,
there can be an optional public part accessible without the key. Second, the scheme
optionally allows to preserve the privacy of the finger print(s) in the image [22].

Watermark message format. The watermark message is a sequence of n bits:
WM = {0, 1}n. Furthermore, the message is separated into several blocks that rep-
resent different parts of the message. We show the overall structure of the watermark
message in Figure 7.

Each message starts with a four byte integer showing the length of the private mes-
sage block (lpr). Particularly, (lpr + 1) is the first bit of another four byte integer repre-
senting the length of the public message block. The encrypted private message consists
of two sub blocks: (1) the Prove Set containing confidential provenance information
and (2) a signature (S) ensuring authenticity and integrity of the image itself and of the
confidential provenance information in the Prove Set. Moreover, the message consists
of another block containing the location map (see Section 2.3).

Fig. 7. Watermark message format

Reliable Provenance Information for Multimedia Data 13

Increasing the Performance of Provenance Queries with redundant Prove Set storage.
A Prove Set (PS) formally consists of n elements, where each element is a triple: PS =
{(name, type, size)n}. Each element consists of a name, a type (e.g., char or int), and
the size of this element (in bytes). We use this structure, because it is highly related
to the relational data model and can be easily extracted into (provenance) data tables.
These tables redundantly contain all Prove Sets of the same type and thus, these Prove
Sets are accessible with common SQL. Consequently, we can increase the performance
of provenance queries, because the Prove Set does not have to be extracted in every
query again, which is extremely costly in range queries. Note, that we can check the
redundant information in the tables with help of the watermarked image at any time.

4.5 Implementation of the Hybrid Approach with Postgres 8.4

We implemented a first version of the reliable provenance approach that is based on
Postgres 8.4. Although this version is yet in a premature state, we will explain the main
characteristics of this approach by means of the running example.

Rights extension. Basically, we have to create a possibility that checks the presence
of the watermark in an image and inserts this image, created by a sensor, initially in the
database. However, since there is no write access to the image data table for the sensor,
the respective user rights have to be extended temporarily while executing the UDF.
Permanent insert privileges are not applicable, because this could lead to circumvention
of the watermark checking.

Generally, two variants exist for defining the security level of an UDF in Post-
gres3. First, we can define the privileges of the user invoking an UDF (SECURITY
INVOKER). Second, we can define (and change) the privileges of the current user to
those of the user who defined an UDF (SECURITY DEFINER). However, redefining
SECURITY DEFINER to extend the users privileges temporarily fits best to our needs
(see Figure 8 line 22). As a result, the user associated with the sensor, can insert data
into the sensor image table.

Internal Access and external Provenance Library. The UDF we use for image data
insertion consists of two parts so that we can separate the access and provenance func-
tionality. The first part contains only functions that are part of our access library and
that are responsible for data insertion only. By contrast, the second part of the UDF con-
tains several functions that realise meta data extraction and insertion. These functions
belong to the provenance library and are called from access functions.

For instance, the function insert_sensor_image in Figure 8 is part of the access li-
brary. This function is called by a client program and executes the insertion of a new
fingerprint image into FiVe DB. At the same time, it performs the privilege extension
(Figure 8 line 22). Furthermore, this access function calls several functions from the
provenance library, listed below:

• validate_watermark() - This function determines whether the data provided as argu-
ment contains a valid watermark.

3 http://www.postgresql.org/docs/8.4/static/sql-createfunction.html

14 M. Schäler et al.

Fig. 8. Example definition of access procedure (written in pgsql)

• extract_meta_data() - Extracts the meta data from the image data and returns the
hash sum of the additional meta data (e.g., environmental data).

• insert_image_into_repository() - Inserts the sensor image data with the embedded
hash sum into the sensor image table.

Unfortunately, it is not possible to embed transactions into a Postgres UDF, because
the whole function is encapsulated into a transaction itself. Hence, we have to undo all
modification manually in cases of failure instead of simply calling rollback.

5 Discussion

Although the presented approach is prototypically implemented, it is worth to shed light
on main characteristics and open issues. Hence, we want to discuss advantages and
disadvantages that such an approach may have, independent of its specific realisation.

5.1 Advantages

Reliable Provenance Information. The approach addresses authenticity and integrity of
provenance data with a certain residual risk. Nevertheless, by any means we can detect
provenance data that does not hold integrity due to unauthorised modifications (e.g
during transportation). Additionally, it is possible to identify data that is not authentic
(i.e. does not contain a valid watermark).

Resource consumption: The watermark payload is embedded directly into the image-
data, raising the entropy of the data while leaving the size of the object constant. There-
fore, there is no storage overhead for the watermarked data object in comparison to
the unwatermarked object and the watermark is tightly coupled with the original data
(see [9]). Hence, the proposed approach is efficient regarding storage requirements.
Additionally, there is no additional effort for querying the embedded provenance data
directly, since with our approach, this data is stored in separate meta data tables.

Reliable Provenance Information for Multimedia Data 15

Extensibility/Adaptability: Initially, the embedded watermark contains information such
as source provenance. However, in future there may be requirements for additional in-
formation regarding provenance or other issues. With our approach, the extension of the
embedded watermark information is no problem. If we intend to embed additional in-
formation in our watermark message, the (watermark) system is easy to adapt so that
the watermark contains the required information. We only have to take care that the wa-
termark still fits into the original image data.

5.2 Disadvantages

Effort for infrastructure: As already mentioned, we need a holistic security infrastruc-
ture including a predefined tool chain to make our approach work. This, in turn, implies
a high effort to establish such infrastructure and as a result, leads to a proprietary, over-
all system. However, because of the high sensitivity of the managed data such a closed
system is inevitable from our point of view.

Residual risk: There exists a residual risk of circumventing the reliable provenance
system. For instance, the keys for watermark generation may get lost. As a result, an
unauthorised user can create data with valid watermarks and insert them into FiVe DB.
Additionally, the proposed architecture also inherits some residual risks. For instance,
an attacker could maliciously change the UDF definitions if he gets the password of
the defining user or identify some weaknesses in Postgres itself (or the administration
of the DBMS). Consequently, we intend to integrate the watermarking process into the
DBMS itself, so that a DB user cannot change this behavior.

Insert and Update Performance: As we mentioned, we intend to update the watermark
after each transformation. Since the update of the watermark includes its detection and
(re-)insertion it may lead to a decrease of the performance overall system. Since this is
not useful, we must find countermeasures to mitigate this effect. One possibility could
be that result computation and update provenance information are performed in an asyn-
chronous manner. For instance, the result could be computed and presented prior to the
update of the provenance information.

6 Related Work

Data Provenance is an active field of research. With respect to databases, different ap-
proaches for data provenance exist such as annotation or inversion [3,5,10]. However,
all approaches are applicable to (semi)-structured data only and beyond that, do not
consider the reliability of provenance information. In other domains such as service-
oriented architectures, research is already focused on reliability of provenance informa-
tion [29]. However, the proposed concepts are often tailored to the specific domain and
thus different to our approach and not applicable to the database domain.

Furthermore, a huge amount of research has been done in watermarking. For
databases, different approaches have been presented, that differ in the underlying data
types, subject to watermarking [1,24]. Furthermore, Sion proposes to use DB water-
marking for copyright protection [25]. However, all approaches have in common that

16 M. Schäler et al.

they work on structured or at most semi-structured data and that the whole database has
to be watermarked. By contrast, our approach aims at watermarking unstructured data
sets that are only a subset of the whole database. In the same way as with database wa-
termarking, digital watermarking is an active field of research that aims at information
hiding in digital data such as image or audio data. Numerous watermark systems exist
for embedding the watermark in subject data, depending on different requirements to
the watermarked data (e.g., capacity, robustness or confidentiality) [9,19]. Furthermore,
different applications can be supported by different watermarking approaches such as
proof of ownership or content authentication. However, to the best of our knowledge, no
approach exists where digital watermarking is integrated in a database system, neither
for data protection nor provenance reliability issues.

7 Conclusion

Data Provenance gained more and more attention in the recent past and is expected to do
so in future. In this paper, we proposed to apply data provenance even for unstructured
data, which represents a new field of research. Moreover, we suggest to put the focus
on the trustworthiness of provenance information. We presented a real-world scenario
where trustworthy source provenance information is an important aspect. Subsequently,
we proposed an approach how watermarking could be used to achieve both, provenance
of unstructured data and its trustworthiness. Finally, we pointed out possible advantages
and disadvantages of such an approach.

In the near future, we focus on finding solutions for some of the mentioned dis-
advantages. In detail, we search for mechanisms that increase performance for insert-
ing/updating the watermark. Furthermore, alternative approaches (w.r.t. the current so-
lution) for making the provenance information accessible via SQL are subject to future
research.

References

1. Agrawal, R., Kiernan, J.: Watermarking relational databases. In: Proc. Int. Conf. on Very
Large Data Bases, pp. 155–166 (2002)

2. Ashbaugh, D.: Ridgeology – modern evaluative friction ridge identification. Journal of
Forensic Identification 41(1), 16–64 (1991)

3. Buneman, P., Chapman, A., Cheney, J.: Provenance management in curated databases. In:
Proc. Int. Conf. on Management of Data, pp. 539–550. ACM, New York (2006)

4. Buneman, P., Khanna, S., Tan, W.C.: Why and where: A characterization of data prove-
nance. In: Van den Bussche, J., Vianu, V. (eds.) ICDT 2001. LNCS, vol. 1973, pp. 316–330.
Springer, Heidelberg (2000)

5. Buneman, P., Khanna, S., Tan, W.C.: On propagation of deletions and annotations through
views. In: Proc. Symp. on Principles of Database Systems, pp. 150–158. ACM, New York
(2002)

6. Celik, M., Sharma, G., Tekalp, A., Saber, E.: Lossless generalized-lsb data embedding. IEEE
Transactions on Image Processing 14(2), 253–266 (2005)

7. Cheney, J., Chiticariu, L., Tan, W.C.: Provenance in databases: Why, how, and where. Foun-
dations and Trends in Databases 1(4), 379–474 (2009)

Reliable Provenance Information for Multimedia Data 17

8. Coltuc, D., Chassery, J.M.: Very fast watermarking by reversible contrast mapping. Signal
Processing Letters 14(4), 255–258 (2007)

9. Cox, I., Miller, M., Bloom, J.: Digital Watermarking: Principles and Practice. Morgan Kauf-
mann, San Francisco (2001)

10. Cui, Y., Widom, J.: Practical lineage tracing in data warehouses. In: Proc. Int. Conf. on Data
Engineering, pp. 367–378. IEEE, Los Alamitos (2000)

11. Cui, Y., Widom, J., Wiener, J.: Tracing the lineage of view data in a data warehousing envi-
ronment. ACM Trans. on Database Systems 25(2), 179–227 (2000)

12. Dittmann, J., Wohlmacher, P., Nahrstedt, K.: Using cryptografic and watermarking algo-
rithms. IEEE Multimedia 8(4), 54–65 (2001)

13. Dubey, S., Anna, T., Shakher, C., Mehta, D.: Fingerprint detection using full-field swept-
source optical coherence tomography. Applied Physics Letters 91(18), 1–3 (2007)

14. Feng, J., Lin, I., Tsai, C., Chu, Y.: Reversible watermarking: Current status and key issues.
International Journal of Network Security 2(3), 161–171 (2006)

15. Galton, F.: Fingerprints. MacMillan and Co., NYC (1892)
16. Glavic, B., Dittrich, K.: Data provenance: A categorization of existing approaches. In:

GI-Fachtagung für Datenbanksysteme (BTW), pp. 227–241 (2007)
17. Guo, H., Li, Y., Jajodia, S.: Chaining watermarks for detecting malicious modifications to

streaming data. Inf. Sci. 177(1), 281–298 (2007)
18. Gupta, A.: Data provenance. In: Encyclopedia of Database Systems, p. 608. Springer,

Heidelberg (2009)
19. Hartung, F., Kutter, M.: Multimedia watermarking techniques. Proc. of IEEE 87(7), 1079–

1107 (2002)
20. Kuivalainen, K., Peiponen, K.E., Myller, K.: Application of a diffractive element-based sen-

sor for detection of latent fingerprints from a curved smooth surface. Measurement Sci. and
Tech. 20(7), 207–211 (2009)

21. Lin, S., Engheta, N., Pugh Jr., E., Yemelyanov, K.: Polarization- and specular-reflection-
based, non-contact latent fingerprint imaging and lifting. Journal of Opt. Soc. of Amer-
ica 23(9), 2137–2153 (2006)

22. Merkel, R., Kraetzer, C., Dittmann, J., Vielhauer, C.: Reversible watermarking with digital
signature chaining for privacy protection of optical contactless captured biometric finger-
prints - a capacity study for forensic approaches. To Appear in Int’l. Conf. on Digital Signal
Processing (2011)

23. Simmhan, Y., Plale, B., Gannon, D.: A survey of data provenance techniques. Tech. Rep.
IUB-CS-TR618, Department of Computer Science, Indiana University, Bloomington (2005)

24. Sion, R.: Proving ownership over categorical data. In: Proc. Int. Conf. on Data Engineering,
pp. 584–595 (2004)

25. Sion, R.: Database watermarking for copyright protection. In: Gertz, M., Jajodia, S. (eds.)
Handbook of Database Security, pp. 297–328. Springer, US (2008)

26. Tan, W.C.: Research problems in data provenance. IEEE Data Eng. Bull. 27(4), 42–52 (2004)
27. Tan, W.C.: Provenance in databases: Past, current, and future. IEEE Data Eng. Bull. 32(4),

3–12 (2007)
28. Tian, J.: Reversible data embedding using a difference expansion. Circuits and Systems for

Video Technology 13(8), 890–896 (2003)
29. Tsai, W., Wei, X., Chen, Y., Paul, R., Chung, J.Y., Zhang, D.: Data provenance in soa: Se-

curity, reliability, and integrity. Service Oriented Computing and Applications 1, 223–247
(2007)

ECOS: Evolutionary Column-Oriented Storage

Syed Saif ur Rahman, Eike Schallehn, and Gunter Saake

Faculty of Computer Science,
Otto-von-Guericke University, Magdeburg, Germany

{srahman,eike,saake}@ovgu.de

Abstract. As DBMS has grown more powerful over the last decades,
they have also become more complex to manage. To achieve efficiency
by DBMS tuning is nowadays a hard task carried out by experts. This
development inspired the ongoing research on self-tuning to make DBMS
more easily manageable. We present a customizable self-tuning storage
manager, we termed as Evolutionary Column-Oriented Storage (ECOS).
The capability of self-tuning data management with minimal human in-
tervention, which is the main design goal for ECOS, is achieved by dy-
namically adjusting the storage structures of a column-oriented storage
manager according to data size and access characteristics. ECOS is based
on the Decomposed Storage Model (DSM). It supports customization at
the table-level using five different variations of DSM. ECOS also proposes
fine-grained customization of storage structures at the column-level. It
uses hierarchically-organized storage structures for each column, which
enables autonomic selection of the suitable storage structure along the
hierarchy using an evolution mechanism (as hierarchy-level increases).
Moreover, for ECOS, we proposed the concept of an evolution path that
provides a reduction of human intervention for database maintenance.
We evaluated ECOS empirically using a custom micro benchmark show-
ing performance improvement.

Keywords: column-oriented storage, evolving hierarchically-organized
storage structures, customization, autonomy.

1 Introduction

Efficient data management demands continuous tuning of a database and a
DBMS. The need for tuning a DBMS is driven by changes, such as database
size, workloads, schema design, hardware, and application specific data man-
agement needs. Existing DBMS need extensive human intervention for tuning,
which contributes to a major portion of the total cost of ownership for data
management [7]. Self-tuning is the solution to reduce the tuning cost through
minimizing the human intervention [22]. However, researchers are united on one
conclusion that the self-tuning based solutions are the biggest challenge in the
database domain because of the inherent complexity of existing DBMS architec-
tures. Their functionalities are tightly integrated into their monolithic engines,
and it is difficult to assess the impact of tuning of one knob on another [6].

In this paper, we present a customizable and online self-tuning storage man-
ager. As a key design concept, we propose the selection of an appropriate storage

A.A.A. Fernandes et al. (Eds.): BNCOD 2011, LNCS 7051, pp. 18–32, 2011.
c© Springer-Verlag Berlin Heidelberg 2011

ECOS: Evolutionary Column-Oriented Storage 19

model and data/index storage structure through customization. This design de-
cision is according to the suggestion from the work of Chaudhuri and Weikum [6].
ECOS supports fine-grained customization at the table-level and column-level
according to the recommendations/results from [2,10,12]. We also identified the
need to autonomically change the existing data and index storage structure to
more appropriate ones with the changing data management needs according to
our previously published results in [18]. We named our solution Evolutionary
Column-Oriented Storage (ECOS), which is based on the existing Decomposed
Storage Model (DSM) [10]. It uses hierarchically-organized storage structures
for each column with an innovative evolution mechanism, which enables auto-
nomic selection of the most suitable storage structure along the hierarchy (as the
levels of a hierarchy increase). Furthermore, we present four possible variations
to standard 2-copy DSM to reduce its high storage requirement. We evaluated
ECOS empirically using the custom micro benchmark and our results show that
ECOS self-tunes the storage structure while maintaining the required perfor-
mance. Additionally, it also gives minor performance gains. Furthermore, we
propose a mechanism called evolution path to define the storage structure evo-
lution, which reduces the need for human intervention for long-term database
maintenance.

This paper is organized as follows. Section 2 defines the problem and justi-
fies the motivation for the proposed design. Section 3 explains the concepts of
ECOS and evolution path in detail. Section 4 introduces the prototype imple-
mentation and gives details of the empirical evaluation of the proposed concepts
using a custom micro benchmark. Section 5 outlines the related work. Section 6
concludes the paper with hints for the future work.

2 Problem Statement and Motivation

Specific storage structures have characteristics suitable for certain data sizes and
access patterns. As both of these aspects may change over the course of data
usage, there is no single storage solution that provides optimal performance in
every situation. Therefore, we propose an autonomic adjustment of the storage
structures. In this section, we explain the motivation for some critical design
decisions in ECOS. To explain the problem in detail, we take the LINEITEM
table of the TPC BenchmarkTMH (TPC-H) [17] schema as an example. We
generated the benchmark data with the scale factor of one and gathered statistics
for the LINEITEM table as shown in Table 1.

Why column-oriented storage model? The column-oriented storage model
is derived from earlier work of DSM [10]. DSM is a transposed storage model [4]
that stores all values of the same attribute of the relational conceptual schema
relation together [10]. Copeland and Khoshafian in [10,20] concluded many ad-
vantages of DSM including simplicity (Copeland and Khoshafian related it to
RISC [16]), less user involvement, less performance tuning requirement, reli-
ability, increased physical data independence and availability, and support of

20 S.S.u. Rahman, E. Schallehn, and G. Saake

heterogeneous records. These advantages give strong motivation for the use of
the DSM in a self-tuning storage manager.

Why customization at the column-level? Table 1 includes some character-
istics of the LINEITEM table. We can observe that distinct data count (cardi-
nality) for all columns is different. We further looked into the TPC-H queries
that access the LINEITEM table (general observation) and predicted (using
a layman-approach) the workload and data access patterns for columns. We
identified that four columns involve read-intensive workload and three columns
involve ordered data access as shown in Table 1. The differences in distinct data
count, workload, and data access pattern for different columns raise the need for
the support of storage structure customization at the column-level. If a storage
manager supports the column-level customization of storage structures, we can
hypothetically customize the LINEITEM table columns as shown in Table 1.

Fig. 1. Evolving hierarchically-organized
storage structures

Fig. 2. Evolutionary column-oriented
storage

Why hierarchically-organized storage structures? A hierarchical orga-
nization of storage structures is a composition of similar or different storage
structures in a hierarchy as depicted in Figure 1. Hierarchically-organized stor-
age structures provide an opportunity for autonomic selection of appropriate
storage structures along the hierarchy. We suggest that a new storage struc-
ture will be appropriate because we can use the existing data and gathered
statistics during previous operations on existing storage structures to make bet-
ter decisions for the next appropriate storage structure selection. The usage of
hierarchically-organized storage structures is also motivated by the possible op-
timization of the storage structure hierarchy according to a hardware hierarchy
and data management needs. For example, consider the memory hierarchy in
the modern hardware. We optimize storage structures for cache, main memory,
and persistent storage in the specified order. As shown in Figure 1, the lowest
level of hierarchy is using arrays, which are optimized for cache. On the second
level above, T-Trees are used, which are optimized for main memory. At the
third level, B+-Tree is used, which is optimal for persistent storage. Previously
published results from Bender et al. [5], Chen et al. [8], and Morzy et al. [14] also
influenced our decision for the use of hierarchically-organized storage structures.

ECOS: Evolutionary Column-Oriented Storage 21

Table 1. TPC-H LINEITEM table observed statistics, possible customization, and
anticipated evolution

Column Distinct Workload Data Storage Structure Storage Structure Storage Structure

Name Count Access Initial 1st Evolution 2nd Evolution

L ORDERKEY 1500000 Sorted Array Sorted List B+-Tree

L COMMENT 4501941 Sorted Array Sorted List Hash Table

L DISCOUNT 11 Read-Intensive Sorted Array

L SHIPMODE 7 Heap Array

L SHIPINSTRUCT 4 Heap Array

L RECEIPTDATE 2554 Heap Array Heap List

L COMMITDATE 2466 Ordered Sorted Array Sorted List

L SHIPDATE 2526 Ordered Sorted Array Sorted List

L LINESTATUS 2 Heap Array

L RETURNFLAG 3 Heap Array

L TAX 9 Read-Intensive Sorted Array

L EXTENDEDPRICE 933900 Read-Intensive Sorted Array Sorted List B+-Tree

L QUANTITY 50 Read-Intensive Ordered Sorted Array

L LINENUMBER 7 Heap Array

L SUPPKEY 10000 Heap Array Heap List

L PARTKEY 200000 Sorted Array Sorted List Hash Table

3 Evolutionary Column-Oriented Storage

In this section, we explain the concepts of ECOS in detail. We introduce and
explain four DSM based schemes proposed to reduce the high storage require-
ment of standard 2-copy DSM. We also discuss the concepts of the table and
the column customization, hierarchical organization and evolution of the storage
structures, and the evolution path.

3.1 Table-Level Customization

ECOS is a customizable and online self-tuning storage manager. We use the
term storage manager in its standard meaning for DBMS, i.e., a component
to physically store and retrieve data. Data storage efficiency is assumed to be
the main goal for a storage manager. By storage structure, we mean the data
structure used by the storage manager to physically store data and indexes.
ECOS stores data according to the column-oriented storage model, where each
column stores a key/value pair of data. ECOS suggests two customizations for
each table in a database, i.e., at the table-level and at the column-level. At the
table-level, we customize, how columns are stored physically for a logical schema
design. We use five variations of DSM for table customization, i.e., Standard 2-
copy DSM [10], Key-copy DSM (KDSM), Minimal DSM (MDSM), Dictionary
based Minimal DSM (DMDSM), and Vectorized Dictionary based Minimal DSM
(VDMDSM). The motivation for proposing and testing different variations of

22 S.S.u. Rahman, E. Schallehn, and G. Saake

Table 2. DSM

Columnk0

Key Value

k1 731

k2 137

k3 173

k4 371

k5 317

k6 713

Columnk1

Key Value

k1 20090327

k2 20071201

k3 20010925

k4 20090327

k5 20090327

k6 20010925

Columnk2

Key Value

k1 Jana

k2 Tobias

k3 Christian

k4 Tobias

k5 Tobias

k6 Jana

(a) Columns clustered on key

Columnv0

Key Value

k2 137

k3 173

k5 317

k4 371

k6 713

k1 731

Columnv1

Key Value

k3 20010925

k6 20010925

k2 20071201

k1 20090327

k4 20090327

k5 20090327

Columnv2

Key Value

k3 Christian

k1 Jana

k6 Jana

k2 Tobias

k4 Tobias

k5 Tobias

(b) Columns clustered on value

Table 3. MDSM

Columnk1

Key Value

k1 20090327

k2 20071201

k3 20010925

k4 20090327

k5 20090327

k6 20010925

Columnk2

Key Value

k1 Jana

k2 Tobias

k3 Christian

k4 Tobias

k5 Tobias

k6 Jana

(a) Columns clustered on key

Columnv0

Key Value

k2 137

k3 173

k5 317

k4 371

k6 713

k1 731

(b) Primary key
columns clustered
on value

DSM arise from high storage requirement of standard 2-copy DSM. The details
for the five variations of DSM are as follows:

Standard 2-copy DSM. DSM is a transposed storage model [4], which pairs
each value of a column with the surrogate of its conceptual schema record as
key [10]. It suggests storing two copies of each column, one copy clustered on
values, whereas another copy is clustered on keys. DSM is depicted in Table 2.
We argue that for a self-tuning storage manager, 2-copy DSM is the most suitable
storage model. It is easy to implement and easy to use, moreover, it does not
require human intervention to identify which column to cluster or index, instead
it is done in a uniform way [20]. To justify our argument, we evaluated standard
2-copy DSM with four other variations and found it the most appropriate one.
The results are presented in Section 4.

Key-copy DSM (KDSM). KDSM is the first variation of DSM that we pro-
pose to reduce the high storage requirement of the standard 2-copy DSM. KDSM
stores the data similar to DSM, i.e., for each column, data is stored in values,
whereas keys are unique numeric values that relate attributes of a row together.
All columns are clustered on the keys. However, unlike DSM, we store an extra
copy of only key columns (primary key or composite primary key) clustered on
values. This design alteration reduces the storage requirement of KDSM, but it
increases the access time for read operations that involve non-key columns in
search criteria. However, for read operations with the key column in the search
criteria it performs similar to DSM with less storage requirement as shown in
Section 4. We propose the use of KDSM for tables that only require querying
data using key columns.

Minimal DSM (MDSM). MDSM stores the data similar to DSM except that
we do not store any extra copy for any columns thus reducing the high storage
requirement of DSM to a minimum. Instead, the design idea of MDSM is to store
primary key columns clustered on values, whereas non-primary key columns are
clustered on key as depicted in Table 3. MDSM performs similar to DSM and
KDSM for the read operations with search criteria on key column attributes,
but it performs worse for the read operations with non-key column attributes

ECOS: Evolutionary Column-Oriented Storage 23

Table 4. Dictionary columns for
DMDSM and VDMDSM

Dict. Column 0

Keyd0 Valued0

d02 137

d03 173

d05 317

d04 371

d06 713

d01 731

Dict. Column 1

Keyd1 Valued1

d11 20090327

d12 20071201

d13 20010925

Dict. Column 2

Keyd2 Valued2

d23 Christian

d21 Jana

d22 Tobias

(a) Dictionary columns

Table 5. DMDSM

Columnv0

Keyv0 Valuev0

k2 d02

k3 d03

k5 d05

k4 d04

k6 d06

k1 d01

(a) Primary key columns
clustered on value

Columnk1

Key Value

k1 d11

k2 d12

k3 d13

k4 d11

k5 d11

k6 d13

Columnk2

Key Value

k1 d21

k2 d22

k3 d23

k4 d22

k5 d22

k6 d21

(b) Columns clustered on key

Table 6. VD-
MDSM

Vector Column

Key Value

v1 d01,d11,d21

v2 d02,d12,d22

v3 d03,d13,d23

v4 d04,d11,d22

v5 d05,d11,d22

v6 d06,d13,d21

(a) Vector column

in search criteria as shown in Section 4. Our results in Section 4 suggest that
if we do not have any space constraint and we do need access using non-key
attributes, this scheme is not appropriate.

Dictionary based Minimal DSM (DMDSM). To improve the performance
of MDSM, we introduced DMDSM, which stores the unique data for each col-
umn separately as the dictionary column. DMDSM is inspired from the concept
of the dictionary encoding scheme, which is frequently used as light-weight com-
pression technique in many column-oriented data management systems [1]. In
DMDSM, for each main column, values are the keys for the data from dictionary
column as depicted in Table 5. All dictionary columns are clustered on value. All
other concepts for the DMDSM are similar to MDSM. This scheme gives us the
provision to exploit our innovative concept of evolving hierarchically-organized
storage structures to its maximum potential for dictionary columns.

VectorizedDictionary basedMinimalDSM(VDMDSM). VDMDSM is an
extension of DMDSM, such that it stores the values (i.e., dictionary column keys)
for all columns together as the vector column, i.e., instead of saving each column
separately, it generates the vector of all attributes in the row and stores it as a value
for vector column as depicted in Table 6. Similar to DMDSM, VDMDSM provides
the opportunity to exploit the benefit of evolving hierarchically-organized storage
structures to their full potential for dictionary columns.

3.2 Column-Level Customization and Storage Structure Hierarchies

Once we select the appropriate storage model scheme from above-mentioned
schemes at the table-level, we move forward to customize the columns as ex-
plained next. At the column-level, we customize the storage structure for each
column. Each column is initially customized as either ordered read-optimized or
unordered write-optimized storage structure. For ordered read-optimized storage
structures, we store data in sorted order with respect to key or value, whereas
for unordered write-optimized storage structure, we store data according to in-
sertion order. In the above-mentioned schemes, dictionary columns are always
stored as ordered read-optimized storage structures.

24 S.S.u. Rahman, E. Schallehn, and G. Saake

Evolving hierarchically-organized storage structures. ECOS utilizes the
hierarchically-organized storage structure for data and index storage, such that
a storage structure at each new level of hierarchy is composed of multiple lower
level storage structures as depicted in Figure 1. The storage structures that
we discuss in this paper include heap array, sorted array, heap list, sorted list,
B+-Tree, T-Tree, and hash table. Before we continue our discussion, we out-
line the hierarchically-organized storage structures, which we use further in our
discussion. At the lowest level of hierarchy, we used:

Sorted array: Optimized for read-access with minimal space overhead. No
need to instantiate a buffer manager or an index manager to manage an
array.

Heap array: Optimized for write-access with minimal space overhead.

At the next level, we used composite storage structures:

Sorted list: Sorted list is composed of multiple sorted arrays. It requires the
instantiation of a buffer manager for managing multiple sorted arrays.

Heap list: Heap list is composed of multiple heap arrays. It also requires the
instantiation of a buffer manager for managing multiple heap arrays.

B+-Tree: B+-Tree is composed of multiple arrays as leaf nodes. It requires the
instantiation of a buffer manager for managing multiple arrays as well as an
index manager to manage the multiple index nodes.

On the higher levels, we used high-level composite (HLC) storage structures:

HLC SL: HLC SL is a B+-Tree based structure, where each leaf node is a
sorted list. HLC SL instantiates a buffer manager to manage multiple sorted
lists and an index manager to manage multiple index nodes. Each sorted list
manages its own buffer manager, which ensures the high locality of data for
each sorted list.

HLC B+-Tree: HLC B+-Tree is a B+-Tree based structure, where each leaf
node is also a B+-Tree. HLC B+-Tree instantiates a buffer manager to man-
age multiple B+-Trees and an index manager to manage multiple index
nodes. Each B+-Tree at leaf nodes has its own buffer manager and index
manager, which ensures the high locality of data and index nodes for each
B+-Tree.

Once a column is customized as either ordered read-optimized or unordered
write optimized storage structure, ECOS initializes each column to the smallest
possible storage structure, i.e., an ordered read-optimized column is initialized
as a sorted array, whereas an unordered write-optimized column is initialized as
a heap array. ECOS enforces that each storage structure should be atomic and
should be directly accessible using an access API. The reason for this approach
is that small storage structures consume less memory and generate reduced bi-
nary size for small data management [18]. If we can use them directly, then
there is no reason to use them as part of complex storage structures1, such as
1 We use storage structure as a common term for both data storage structure and

index storage structure.

ECOS: Evolutionary Column-Oriented Storage 25

B+-Tree or T-Tree; avoiding the overheads of complexity associated with these
storage structures. This approach ensures that using smallest suitable storage
structures, desired performance is achieved using minimal hardware resources
for small database management.

Storage capacity limitations for predictable performance. ECOS im-
poses data storage capacity limitations for each storage structure. We enforce
this for more predictable performance and to ensure that storage structure per-
formance does not degrade because of unlimited data growth. In ECOS, once the
limited storage capacity of a storage structure is consumed, it evolves to a larger
more complex storage structure composed of multiple existing ones considering
the important factors, such as hardware, the data growth, and the workload.
For ordered read-optimized data storage, a sorted array is evolved into a sorted
list. For unordered write-optimized data storage, a heap array is evolved into the
heap list. The evolution of storage structure is an important event for assess-
ing the next suitable storage structure by analyzing the existing data and the
previously monitored workload. Similarly, each new storage structure also has
a definite data storage capacity limitation and, once again, as it is consumed,
ECOS further evolves and increases the hierarchy of the hierarchically-organized
storage structures.

API consistency to hide complexity and ensure ease of use. To hide the
complexity of different storage structures over different levels of hierarchy, ECOS
keeps the interface for all storage structures consistent. We provide a standard
interface to access columns with simple, Put(), Get(), and Delete() functionality
with record as argument. It is invisible to an end-user, which storage structure
is currently in use for each column.

Automatic partitioning. ECOS separates physical storage for each column
to reduce the I/O contention for storing large databases. For large columns,
it also separates the data for a column into multiple separate physical storage
units, which is similar to horizontal partitioning. In Figure 2, at a minimum
each column has its own separate physical storage. With the growth of data,
each column may spread over multiple physical storage units. For example, for
storage structures of Table 1, each sorted list or heap list will be stored in a
separate data file, whereas each B+-Tree or T-Tree will be stored in a separate
index file. These physical storage units may be stored on the single hard disk,
or they may spread across the network.

3.3 Evolution and Evolution Paths

By evolution, we mean the transformation of a storage structure from an exist-
ing form into another form such that the previous form becomes an integral and
atomic unit of the new form autonomically. Evolution path is the mechanism to
define how ECOS evolves a smallest simple storage structure into a large com-
plex storage structure. It consists of many storage structure/mutation rules pair
entries that ECOS uses to identify, how to evolve the storage structures. Each

26 S.S.u. Rahman, E. Schallehn, and G. Saake

Table 7. Example for evolution paths

Storage Struc-
ture: Initial

Mutation Rules
Storage Struc-
ture: 1st Evolu-
tion

Mutation Rules
Storage Struc-
ture: 2nd Evolu-
tion

Sorted array

Event:
Sorted array=Full
Heredity based selection:
Workload=Read intensive
Data access=Unordered
Mutation:
=> Evolve (Sorted array − >Sorted
list)

Sorted list of sorted
arrays

Event:
Sorted list=Full
Heredity based selection:
Workload=Read intensive
Data access=Ordered
Mutation:
=> Evolve (Sorted list
− >B+-Tree)

B+-Tree of sorted
lists(As leaf nodes
for data storage)

Sorted array

Event:
Sorted array=Full
Heredity based selection:
Workload=Read intensive
Data access=Ordered
Mutation:
=> Evolve (Sorted array
− >B+-Tree)

B+-Tree of sorted
arrays(As leaf
nodes for data
storage)

Event:
B+-Tree=Full
Heredity based selection:
Workload=Read intensive
Data access=Ordered
Mutation:
=> Evolve (B+-Tree − >HLC
(B+-Tree based))

HLC of B+-
Tree(As leaf nodes)

Sorted array

Event:
Sorted array=Full
Heredity based selection:
Workload=Write intensive
Data access=Unordered
Mutation:
=> Evolve (Sorted array − >Heap
array)

Heap list based on
heap array muta-
tion rules

Heap array

Event:
Heap array=Full
Heredity based selection:
Workload=Write intensive
Data access=Ordered
Mutation:
=> Evolve (Heap array − >Heap list)
&
Generate (Secondary index = Sorted
list)

Heap list

Event:
Heap list=Full
Heredity based selection:
Workload=Write intensive
Data access=Ordered
Mutation:
=> Evolve (Heap list− >Hash
table) &
Evolve (Secondary index = Sorted
list − >B+-Tree)

Hash table

Heap array

Event:
Heap array=Full
Heredity based selection:
Workload=Write intensive
Data access=Unordered
Mutation:
=> Evolve (Heap array − >Heap list)

Heap list

Event:
Heap list=Full
Heredity based selection:
Workload=Write intensive
Data access=Unordered
Mutation: => Evolve (Heap list
− >Hash table)

Hash table

storage structure can have multiple mutation rules mapped to it. These muta-
tion rules consist of three information elements: Event, Heredity based selection,
and Mutation. The event identifies, when this mutation rule should be executed.
Different mutation rules can have the same event, but not all of them execute
the mutation. The heredity based selection identifies precisely, when evolution
should occur based on the heredity information gathered for the existing storage
structure. Heredity information means the gathered statistics about the storage
structure, e.g., workload type, data access pattern, previous evolution details,
etc. The mutation defines the actions that should be executed to evolve the stor-
age structure. Example of an evolution path is shown in Table 7. We envision
that common DBMS maintenance best practices can be documented using the
evolution path mechanism. ECOS assumes that DBMS vendors provide the evo-
lution paths that best suit their DBMS internals, with the provision of alteration
for a database administrator. The only liability for configuration that lies with
database designers and administrator is to have a look at the evolution path
for the DBMS and if needed, alter it with desired changes. Evolution process in

ECOS: Evolutionary Column-Oriented Storage 27

ECOS is autonomic, and it exploits evolution path to automatically evolve the
storage structures, i.e., our approach for self-tuning is online.

Consider the L ORDERKEY column of the LINEITEM table as shown in
Table 1. Suppose, as a database designer, we design this table. According to our
application design, we select the L ORDERKEY column as a part of the primary
key. As we already discussed in Section 3, we have to customize each column
as either ordered read-optimized or unordered write-optimized. Therefore, we
customize the L ORDERKEY column as ordered read-optimized. At the initial
design time, we design according to the domain knowledge, our experiences, and
predictions. As a designer, it is difficult to guarantee, how much this column
grows, and how long it takes to reach that size. When we customize the column
as ordered read-optimized, it is internally initialized as a sorted array. Now for
the L ORDERKEY column, three initial rows of the sample evolution path of
Table 7 are relevant.

As we mentioned in Section 3, ECOS limits the storage capacity for each
storage structure. Therefore, the initial sorted array has a certain data storage
capacity limit. For example, consider it as 4KB. As long as data is within the 4KB
limits, sorted array is the storage structure for the L ORDERKEY column, and
we gather the heredity information for the column, such as the number of Get(),
the number of Put(), the number of Delete(), the number of range Get() (for
range queries), the number of Get() for all records (for scan queries), etc. What
heredity information should be gathered may vary from one implementation to
another. Here, we simplify our discussion by assuming that a system can identify
using heredity information that the workload is either read-intensive or write-
intensive and the access to data is either ordered (range queries) or unordered
(point or scan queries).

The moment the storage limit of the sorted array is consumed, an event is
raised for notification. This event triggers all three initial mutation rules of Ta-
ble 7. Now heredity based selection identifies, which one of them to execute. We
suppose that for the L ORDERKEY column, the workload is read-intensive and
the data access is unordered, this scenario executes the first mutation rule of
Table 7, which evolves the existing sorted array into a sorted list. Now sorted
list is the new storage structure, and it is also constrained with the storage limit
according to the design principle of ECOS. As long as the L ORDERKEY col-
umn data is within the storage limit of the sorted list, heredity information is
gathered, and it is used for the next evolution.

It is observed from Table 1 that only half of the LINEITEM columns, i.e.,
eight out of sixteen with high data growth evolve during the first evolution. The
rest of the columns can be stored within an array (either heap array or sorted
array). Furthermore, only half of the columns with high data growth, i.e., four
out of eight, which are evolved during the first evolution evolve again during the
second evolution (i.e., L ORDERKEY, L COMMENT, L EXTENDEDPRICE,
and L PARTKEY). The final state of the table presented in Table 1 shows that
each column is using the appropriate storage structure (we assume for expla-
nation) according to the stored data size and observed workload. We can add
more parameters for evolution decisions, but we only used limited parameters

28 S.S.u. Rahman, E. Schallehn, and G. Saake

(i.e., data size, workload, and data access) to keep our discussion simple and
understandable. Table 1 shows only the evolution for dictionary columns for the
LINEITEM table as they utilizes the benefits of evolving hierarchically-organized
storage structures to their full potential. Before we conclude this section, to avoid
any confusion, we want to disclaim that the terms and concepts of evolution,
evolution path, mutation rules, and heredity information used in this paper have
no relevance with their counterpart in evolutionary algorithms or any other non-
relevant domain.

4 Implementation and Empirical Evaluation

In this section, we provide the details of our micro benchmark and the evalu-
ation results for ECOS2. The data and index storage structures that we have
implemented in the existing ECOS prototype implementation are the same as we
have discussed in Section 3.2. To simplify our discussion, we present the results
involving sorted array, sorted list, and HLC SL.

4.1 Micro Benchmark Details

For ECOS evaluation, we set up a micro benchmark with repeated insertion,
selection, and deletion of data using API based access methods. The data contain
keys in ascending, descending, and random order, which also represents their
insertion, selection, and deletion order in the database. For different columns, the
number of records (cardinality) is kept different. We defined seven columns with
two unique non-null columns, one of them used as a primary key. We used three
different widths for columns, i.e., 16, 85, and 4096 bytes to assess the impact of
tuple width on performance of different storage schemes. All storage structures
used in a micro benchmark operate in main-memory. For ECOS evaluation,
we used CPU cycles and heap memory as resources. We used OpenSuse 11.2
operating on Intel(R) Core(TM)2 Duo CPU E6750 @ 2.66GHz with four GB
of RAM. We measured execution speed by taking the average of CPU cycles
observed over multiple iterations of the micro benchmark. We used Valgrind
tools suite [21] to measure the heap usage.

4.2 ECOS Performance Improvement

To demonstrate the performance gain using ECOS, we presented our observa-
tion of the effect of an increase in data size on performance of different storage
structures in [18,19]. According to our observation in [18,19], we suggest the
performance gain and reduced resource consumption using the evolving storage
structures because evolving storage structures attempt to use minimal/simple
storage structures (such as sorted array for small data management) as long as
possible using the definitions from evolution paths. To demonstrate the evolv-
ing storage structures evolution, we present the evaluation results for evolving
2 Please refer to the web link for all related publications and prototype evaluation bi-

naries: http://wwwiti.cs.uni-magdeburg.de/~srahman/CellularDBMS/index.php

http://wwwiti.cs.uni-magdeburg.de/~srahman/CellularDBMS/index.php

ECOS: Evolutionary Column-Oriented Storage 29

Fig. 3. Evolving HLC SL storage structure evolution

HLC SL storage structure in Figure 3 (due to space constraint the evaluation
results for evolving HLC B+-Tree can be found in [19]). It can be observed
in Figure 3 that the evolving storage structure HLC SL evolves with the data
growth. It can be observed that the HLC SL storage structure consume more
CPU cycles in comparison with sorted list and sorted array. This behavior is
due to the complexity of the storage structure, which is meant to be used for
extremely large data sizes. The HLC SL storage structure automatically parti-
tions the data and uses separate buffer and index managers for each partition,
which is not the requirement for presented 500K records storage. However, we
forced storage structures to evolve to HLC SL for 500K records for the purpose
of demonstration of the evolution concept.

In Figure 4 and 5, we present the performance comparison of different DSM
based schemes that we explained in Section 3. The results in Figure 4 and 5 show
that DSM and KDSM perform better for evaluation with search criteria on key-
attributes, whereas for evaluation with search criteria on non-key attributes DSM
outperforms the other schemes. It is observed that storage requirement for DSM
is highest, whereas the storage requirement is the lowest for VDMDSM. It is

Fig. 4. Performance comparison of differ-
ent DSM based schemes in ECOS with pri-
mary key based search criteria

Fig. 5. Performance comparison of differ-
ent DSM based schemes in ECOS with
non-key based search criteria

30 S.S.u. Rahman, E. Schallehn, and G. Saake

Fig. 6. Performance improvement for dic-
tionary based DSM schemes for large col-
umn width

Fig. 7. Performance comparison of differ-
ent DSM based schemes in ECOS for read
and write intensive workloadsf

also observed that evolving storage structures perform better than fixed storage
structures with minor performance gains. As we have discussed in Section 1, our
work is based on the ideology from Chaudhuri and Weikum presented in [6]. They
used the notion of “gain/pain ratio” to discuss the overall gain of their proposed
approach. They advocate the ideology of less complex, more predictable, and
self-tuning RISC-style components with minor compromise on performance to
achieve overall improvement in “gain/pain ratio”. Our results show the minor
performance gain, which should be a good achievement considering the overall
benefits we achieve in terms of simplicity, predictability, and self-tuning.

It can be observed in Figure 6 that dictionary based schemes performance
is improved and becomes comparable with standard 2-copy DSM scheme for
large tuple width. However, KDSM and MDSM still perform poor. We also
analyzed the performance difference for different DSM schemes on both the
read-intensive and write-intensive workloads. It is observed in Figure 7 that
for write-intensive workload DSM outperforms other schemes; however, for the
read-intensive workload differences in performance between the 2-copy DSM
and the dictionary based DSM schemes is minimum. This is a promising result
for dictionary based schemes, and it shows their potential to act as a better
alternative to 2-copy DSM after overcoming their short comings.

5 Related Work

Hierarchically-organized storage structures have already been in use in the data
warehousing domain. Morzy et al. in [14] proposed a hierarchical bitmap index
for indexing set-valued attributes. Later, Chmiel et al. in [9] extended that con-
cept to present hierarchically-organized bitmap indexes for indexing dimensional
data. Bender et al. proposed cache-oblivious B-Trees [5] that perform the optimal
search across different hierarchical memories with varying memory levels, cache
size, and cache line size. Fractal prefetching B+-Trees [8] proposed by Chen et
al. are the most relevant work for the ECOS and is similar in concept to cache-
oblivious B-Trees with an additional concept of prefetching. Fractal prefetching

ECOS: Evolutionary Column-Oriented Storage 31

B+-Trees are optimized for both cache and disk performance, which is also a
goal for the ECOS. However, the ECOS concepts do not restrict the use of any
fixed structure; instead it suggests the use of different storage structures in the
hierarchy to support an efficient use of underlying hardware.

An automated tuning system (ATS) [11] is a feedback control mechanism that
automatically adjusts the tuning knobs using the defined tuning policies accord-
ing to the monitoring statistics. ECOS also works in similar fashion as suggested
in ATS. ECOS also monitors and adjust storage structures with changing data
management needs. Malik et al. in [13] suggested the benefit of online phys-
ical design techniques and proposed an online vertical partitioning technique
for physical design tuning. Similarly, ECOS also operates in online fashion. Au-
tomated physical design research focuses on finding the best physical design
structure for a running workload, e.g., indexes, materialized views, partitioning,
clustering, and views [3]. Existing automated physical design tools assume the
workload as a set of SQL statements [3]. These tools use the query optimizer
to identify the appropriate physical design selection from various proposed can-
didate designs [15]. ECOS also performs automated physical design, but at the
different level, i.e., at the storage manager level. It does not rely on a query
optimizer. Furthermore, ECOS is designed with the motivation of exploring new
architectures for developing self-tuning DBMS instead of developing techniques
to self-tune existing ones.

6 Conclusion and Future Work

In this paper, we presented ECOS, a customizable and online self-tuning storage
manager. ECOS and evolution paths enable and use the fine-grained customiza-
tion of storage structures at the table-level and column-level. In addition, ECOS
and evolution paths allow storage structures to autonomically evolve (to more
suitable storage structures) with the change in the data management needs, to
maintain the desirable performance while keeping the human intervention at a
minimum. We also presented a detailed evaluation and discussion of ECOS and
evaluation paths showing the performance improvement and reduced resource
consumption. As future work, we plan to enhance the presented dictionary based
DSM schemes for better performance. ECOS self-tuning design makes it a suit-
able candidate for emerging cloud computing platforms for data services. We
also intend to investigate the efficient utilization of multi-core and many-core
parallel processors using the presented evolution mechanism. Once query pro-
cessing is implemented, we want to integrate the presented evolution mechanism
with query processing, and then we will be able to evaluate the ECOS using
the full TPC-H benchmark. Transaction management is also an implementation
specific future work for our ECOS prototype.

Acknowledgments. Syed Saif ur Rahman is a HEC-DAAD Scholar funded by
Higher Education Commission of Pakistan and NESCOM, Pakistan.

32 S.S.u. Rahman, E. Schallehn, and G. Saake

References

1. Abadi, D.J., Madden, S.R., Ferreira, M.C.: Integrating compression and execution
in column-oriented database systems. In: SIGMOD, pp. 671–682 (2006)

2. Abadi, D.J., Madden, S.R., Hachem, N.: Column-stores vs. row-stores: how differ-
ent are they really? In: VLDB, pp. 967–980 (2008)

3. Agrawal, S., Chu, E., Narasayya, V.: Automatic physical design tuning: workload
as a sequence. In: SIGMOD, pp. 683–694 (2006)

4. Batory, D.S.: On searching transposed files. ACM Trans. Database Syst. 4(4),
531–544 (1979)

5. Bender, M.A., Demaine, E.D., Farach-Colton, M.: Cache-oblivious B-trees. In:
FOCS, pp. 399–409 (2000)

6. Chaudhuri, S., Weikum, G.: Rethinking Database System Architecture: Towards
a Self-Tuning RISC-Style Database System. In: VLDB, pp. 1–10 (2000)

7. Chaudhuri, S., Weikum, G.: Foundations of automated database tuning. In:
SIGMOD, pp. 964–965 (2005)

8. Chen, S., Gibbons, P.B., Mowry, T.C., Valentin, G.: Fractal prefetching B+-Trees:
optimizing both cache and disk performance. In: SIGMOD, pp. 157–168 (2002)

9. Chmiel, J., Morzy, T., Wrembel, R.: HOBI: Hierarchically Organized Bitmap Index
for Indexing Dimensional Data. In: Pedersen, T.B., Mohania, M.K., Tjoa, A.M.
(eds.) DaWaK 2009. LNCS, vol. 5691, pp. 87–98. Springer, Heidelberg (2009)

10. Copeland, G.P., Khoshafian, S.N.: A decomposition storage model. SIGMOD
Rec. 14, 268–279 (1985)

11. Hellerstein, J.L.: Automated tuning systems: Beyond decision support. In: CMG,
Computer Measurement Group, pp. 263–270 (1997)

12. Holloway, A.L., DeWitt, D.J.: Read-optimized databases, in depth. Proc. VLDB
Endow. 1, 502–513 (2008)

13. Malik, T., Wang, X., Burns, R., Dash, D., Ailamaki, A.: Automated physical design
in database caches. In: ICDE Workshop, pp. 27–34 (2008)

14. Morzy, M., Morzy, T., Nanopoulos, A., Manolopoulos, Y.: Hierarchical Bitmap
Index: An Efficient and Scalable Indexing Technique for Set-Valued Attributes.
In: Kalinichenko, L.A., Manthey, R., Thalheim, B., Wloka, U. (eds.) ADBIS 2003.
LNCS, vol. 2798, pp. 236–252. Springer, Heidelberg (2003)

15. Papadomanolakis, S., Dash, D., Ailamaki, A.: Efficient use of the query optimizer
for automated physical design. In: VLDB, pp. 1093–1104 (2007)

16. Patterson, D.A., Ditzel, D.R.: The case for the reduced instruction set computer.
SIGARCH Comput. Archit. News 8, 25–33 (1980)

17. TPC-H, http://www.tpc.org/tpch/
18. ur Rahman, S.S.: Using Evolving Storage Structures for Data Storage. In: FIT, pp.

30:1–30:6 (2010)
19. ur Rahman, S.S., Schallehn, E., Saake, G.: ECOS: Evolutionary Column-Oriented

Storage. Tech. Rep. FIN-03-2011, Department of Technical and Business Informa-
tion Systems, Faculty of Computer Science, University of Magdeburg (2011)

20. Valduriez, P., Khoshafian, S.N., Copeland, G.P.: Implementation Techniques of
Complex Objects. VLDB, 101–110 (1986)

21. Valgrind, http://www.valgrind.org
22. Weikum, G., Moenkeberg, A., Hasse, C., Zabback, P.: Self-tuning database tech-

nology and information services: from wishful thinking to viable engineering. In:
VLDB, pp. 20–31 (2002)

http://www.tpc.org/tpch/
http://www.valgrind.org

X-HYBRIDJOIN for Near-Real-Time Data

Warehousing

Muhammad Asif Naeem, Gillian Dobbie, and Gerald Weber

Department of Computer Science, The University of Auckland,
Private Bag 92019, Auckland, New Zealand

mnae006@aucklanduni.ac.nz,
{gill,gerald}@cs.auckland.ac.nz

Abstract. In order to make timely and effective decisions, businesses
need the latest information from data warehouse repositories. To keep
these repositories up-to-date with respect to end user updates, near-real-
time data integration is required. An important phase in near-real-time
data integration is data transformation where the stream of updates is
joined with disk-based master data. The stream-based algorithm Mesh
Join (MESHJOIN) has been proposed to amortize disk access over fast
stream. MESHJOIN makes no assumptions about the data distribution.
In real world applications, however, skewed distributions can be found,
e.g, certain products are sold more frequently than the remainder of
the products. The question arises, how much does MESHJOIN loose in
terms of performance by not adapting to data skew. In this paper we per-
form a rigorous experimental study analyzing the possible performance
improvements while considering typical data distributions. For this pur-
pose we design an algorithm Extended Hybrid Join (X-HYBRIDJOIN)
that is complementary to MESHJOIN in that it can adapt to data skew
and stores parts of the master data in memory permanently, reducing
the disk access overhead significantly. We compare the performance of
X-HYBRIDJOIN against the performance of MESHJOIN. We take sev-
eral precautions to make sure the comparison is adequate and focuses
on the utilization of data skew. The experiments show that considering
data skew offers substantial room for performance gains that cannot be
used by non-adaptive approaches such as MESHJOIN.

Keywords: Near-real-time data warehousing, stream-based join, data
transformation, performance and tuning.

1 Introduction

Near-real-time data warehouse deployments are driving an evolution to more
aggressive data freshness levels. The tools and techniques for delivering these new
service levels are evolving rapidly [1] [2]. In the beginning, most data warehouses
refreshed all content fully during each load cycle. However, due to an increasing
demand for information freshness, it became infeasible to meet business needs.
Therefore the data acquisition mechanism in warehouses was changed from full

A.A.A. Fernandes et al. (Eds.): BNCOD 2011, LNCS 7051, pp. 33–47, 2011.
c© Springer-Verlag Berlin Heidelberg 2011

34 M.A. Naeem, G. Dobbie, and G. Weber

refreshment to an incremental refresh strategy, in which new data is added to
the warehouse without requiring a complete reload [3] [4]. Although this strategy
is more efficient than the traditional one, it is still batch-oriented as a fraction of
the data is propagated towards the warehouse after a particular timestamp. In
order to overcome update delays, these batch-oriented and incremental refresh
strategies are being replaced with a continuous refresh strategy [5] [6]; that is,
sales data are being captured and propagated to the data warehouse in near-
real-time fashion in order to support high levels of data freshness.

An important operation in data integration is the transformation of the source
data to a required format. Content enrichment is an example of such a trans-
formations. In content enrichment master data attributes are added to source
data [7]. A related example, or a special case of content enrichment, is the re-
placement of a source data key with a warehouse key. We consider an example
of an inventory sales system, as shown in Figure 1. The data source is in this
example shown as a source table and it contains attributes product id, quantity
and date with the primary key on attribute product id. The look-up table that
stores master data contains attributes product id, surrogate key, product name,
sale price and supplier id with an index on attribute product id. The attribute
surrogate key is the primary key for the data warehouse. Let’s assume, before
loading the source table records into the data warehouse, they need to be en-
riched with certain information from the look-up table. In our example, the
enriched attributes are supplier id and total, and the surrogate key has to be
added as well. A join operator is required to perform these enrichment and key
adding tasks. In the context of near-real-time data warehousing one of the sig-
nificant factors for choosing the join operator is that both the inputs for the join
come from different sources and arrive at different rates. The source data is not
a table but a high volume stream and it has a bursty nature while the look-up
table is disk-based. The access rate of the look-up table is comparatively slow
due to disk I/O cost; therefore a bottleneck is created during the join execution.
The challenge in this case is to eliminate this bottleneck by amortizing disk I/O
cost over a fast stream of updates. An alternative approach would be to try to
put the whole disk-based relation into memory. In some cases this alternative
can be feasible. But still there are a number of scenarios where this alternative is
not applicable e.g. if the join is to be performed on a single computer where the
bulk of memory is used for other purposes. Similarly, for intermittent streams, a
main memory approach would keep the memory occupied even when no stream
data is incoming. In the limited-memory approaches here, in contrast there is
no such waste of resources.

A novel algorithm Mesh Join (MESHJOIN) [8] [9] has been designed especially
for joining a continuous stream with a disk-based relation, such as the scenario in
active data warehouses. The algorithm makes no assumptions about data distri-
bution or the organization of the master data. Experiments by the MESHJOIN
authors have shown that the algorithm performs worse with skewed data. The
MESHJOIN algorithm is a hash join, where the stream serves as the build input
and the disk-based relation serves as the probe input. The algorithm performs

X-HYBRIDJOIN for Near-Real-Time Data Warehousing 35

Join
operator

Data
Source

Master
Data

Data
Warehouse

Look-up table

(Product_id, Quantity, Date) (Surrogate_key, Suplier_id,
Quantity, Total, Date)

Fact table

(Surrogate_key,
Sale_price, Suplier_id)

Product_id Quantity Date
11 5 13-07-2010
22 3 13-07-2010
33 10 13-07-2010

Source table

Product_id Surrogate_key Product_name Sale_price Suplier_id
11 1001 Pepsi $2.00 P101
22 1002 Orange Juice $3.00 O111
33 1003 Ice cream $5.00 I222

Surrogate_key Suplier_id Quantity Total Date
1001 P101 5 $10.00 13-07-2010
1002 O111 3 $9.00 13-07-2010
1003 I222 10 $50.00 13-07-2010

Fig. 1. An example of stream-based join

a staggered execution of the hash table build in order to load in stream tuples
more steadily. However there are some issues such as suboptimal distribution of
memory among the join components and an inefficient strategy for accessing the
disk-based relation [12].

Although the MESHJOIN algorithm efficiently amortizes the disk I/O cost
over fast input streams, the question remains how much potential for improve-
ment remains untapped due to the algorithm not being able to adapt to common
characteristics of real-world applications. In this paper we focus on one of the
most common characteristics, a skewed distribution. Such distributions arise in
practice, for example current economic models show that in many markets a se-
lect few products are bought with higher frequency [11]. Therefore, in the input
stream, the sales transactions related to those products are the most frequent. In
MESHJOIN, the algorithm does not consider the frequency of stream tuples, and
does not need an index structure on the master data. This can be useful in some
circumstances, but still in many other cases one obviously wants to use an index
to gain maximum performance. We propose an adaptive algorithm called Ex-
tended Hybrid Join (X-HYBRIDJOIN). The key feature of X-HYBRIDJOIN is
that the algorithm stores the most used portion of the disk-based relation, which
matches the frequent items in the stream, in memory. As a result, this reduces
the I/O cost substantially, which improves the performance of the algorithm.

X-HYBRIDJOIN has two major modifications compared with MESHJOIN.
Firstly, the hash join component of X-HYBRIDJOIN is modified so that it can
make use of an index. Secondly, X-HYBRIDJOIN caches frequently used master
data. Since we want to compare MESHJOIN and X-HYBRIDJOIN, it is impor-
tant to clarify, which change leads to the performance improvement. Therefore
we also present an intermediate step, HYBRIDJOIN, which implements only
the first modification, and we compare all three algorithms. Since our purpose
is primarily to gauge the potential of skewed distributions, we consider a very
clean, artificial dataset that exactly exhibits a well-understood type of skew, a
power law.

36 M.A. Naeem, G. Dobbie, and G. Weber

The remainder of the paper is structured as follows. A review of the related
work is presented in Section 2. In section 3 we describe the intermediate algo-
rithm HYBRIDJOIN that already uses an index in the join process. In Section 4,
we present the difference between HYBRIDJOIN and X-HYBRIDJOIN, and also
derive the cost model for X-HYBRIDJOIN. The experimental study is discussed
in Section 5 and finally Section 6 concludes the paper.

2 Related Work

In this section, we present an overview of the previous work that has been done
in this area, focusing on that which is closely related to our problem domain.

A novel algorithm Mesh Join (MESHJOIN) [8] [9] has been designed espe-
cially for joining a continuous stream with a disk-based relation, such as the
scenario in active data warehouses. Although it is an adaptive approach, there
are some research issues such as suboptimal distribution of memory among the
join components and an inefficient strategy for accessing the disk-based relation.
The algorithm makes no assumptions about data distribution or the organiza-
tion of the master data. However, the problem that we are addressing is that
MESHJOIN’s performance is directly coupled to the size of the master data ta-
ble, and its performance is inversely proportional to the size of the master data
table. This is an undesired behavior if the master data becomes very large, and
our analysis will show that it is indeed an unnecessary behavior. The problem
becomes obvious if we consider that the master data table contains a large part
that is never joined with the stream data.

A revised version of MESHJOIN called R-MESHJOIN (reduced Mesh Join)
[12] has been presented by us. It addresses the issue of optimal distribution
of memory among the join components. In this algorithm a new strategy for
memory distribution among the join components is introduced capturing real
constraints. However the issue of an inefficient strategy for accessing the disk-
based relation still exists in R-MESHJOIN.

One approach for improving MESHJOIN has been a partition-based join al-
gorithm [10] which can also deal with stream intermittence. It uses a two-level
hash table in order to attempt to join stream tuples as soon as they arrive, and
uses a partition-based waiting area for other stream tuples. For the algorithm in
[10], however, the time that a tuple waits for execution is not bounded. We are,
however, interested in a join approach where the time in which a stream tuple
is joined is guaranteed.

3 Index-Based Hash Join Architecture: HYBRIDJOIN

In this section we introduce the HYBRIDJOIN algorithm, which implements our
first modification of MESHJOIN in order to make use of a non-clustered index.
We introduce the join architecture for HYBRIDJOIN. This will be used, with a
single modification, for the algorithm X-HYBRIDJOIN as well.

X-HYBRIDJOIN for Near-Real-Time Data Warehousing 37

HYBRIDJOIN joins a disk-based relation R with a stream S. We assume a
non-clustered index on R for the join attribute, and we assume that the join
attribute is unique within the master data. This is a very natural set of as-
sumptions and matches with common application domains, for example in key
exchange applications. By only requiring a non-clustered index, we keep our
assumptions as minimal as possible.

The memory architecture used in HYBRIDJOIN and in X-HYBRIDJOIN is
shown in Figure 2. The main memory components are a disk buffer, a hash table,
a queue and a stream buffer while the disk-based relation R and stream S are the
inputs. In our algorithm, we assume that R has an index with the join attribute
as the key.

The stream is used as the build input. This means that the algorithm keeps
stream tuples in a hash table which occupies the largest share of the memory, and
the hash table is filled with the next pending stream tuples to its full capacity.
Additionally we keep identifiers of the stream tuples in a queue which allows
random deletion, the simplest implementation is a doubly linked list.

HYBRIDJOIN is an iterative algorithm, and in each iteration it uses a parti-
tion of the disk-based relation R as a probe input. For that purpose, the partition
is loaded into the disk buffer. In HYBRIDJOIN, the disk buffer contains only
this partition, later in X-HYBRIDJOIN the partition will only occupy one part
of the disk buffer. After that, the algorithm performs the typical operation of a
hash join, i.e., it loops over all the tuples of the disk buffer and looks them up
in the hash table. In the case of a match, the algorithm generates that stream
tuple as an output.

Also, in each iteration, HYBRIDJOIN evicts stream tuples that have been
matched. This is justified through the assumption that the join attribute is
unique in R. Evicting a tuple means it is deleted from the hash table and the
queue. The algorithm also keeps a counter w of the evicted tuples. After pro-
cessing the whole disk buffer, the algorithm reads w new tuples from the stream
buffer, loads them in the hash table along with entering their identifiers in the
queue.

For choosing the next partition of R, HYBRIDJOIN looks at the join attribute
of the oldest stream tuple in the queue. Using the index, it loads the partition
of R with that join attribute value into the disk buffer. It is this last step which
makes HYBRIDJOIN adaptive, because in HYBRIDJOIN, every loaded parti-
tion matches at least one stream tuple. As a simple example, consider R has a
section that is not referred to in the stream, for example an obsolete group of
products. In MESHJOIN, this section would still be loaded, while in HYBRID-
JOIN it would not be loaded, because no stream tuple will trigger the loading
of that section.

HYBRIDJOIN works for any data distribution, as MESHJOIN does. How-
ever, in practice, certain distributions are common. Current research has shown
that sales data typically follows a power law, or Zipfian distribution [11]. The
power law is characterized by its exponent. For an exponent <1 the distribu-
tion is said to have a long tail, for an exponent >1 the distribution has a short

38 M.A. Naeem, G. Dobbie, and G. Weber

Disk buffer

………...

………...

………...

Stream buffer

Hash

function

t2 t1
Hash table

Stream
S

Join

output

. . . . t3tm

Queue

Non-
swappable

Swappable

p1
p2
…..
pn

Disk-based relation
R

Join window

Fig. 2. Architecture of HYBRIDJOIN and X-HYBRIDJOIN. The only difference be-
tween the two algorithms is that in X-HYBRIDJOIN the disk buffer is split and its
two parts are treated differently, as explained in the text.

tail. For exponent 1 we get the distribution of Zipf’s law, which gave rise to the
general term Zipfian distribution. In sales, the 80/20 rule is used to model the
scenario where the frequency of selling a small number of products is signifi-
cantly higher compared to the rest of the product, often simplified in the 80/20
rule [13]. The 80/20 rule of thumb has commonly been observed in commercial
applications [13] [14]. The 80/20 rule corresponds to an exponent slightly smaller
than 1 [13].

Our aim is to describe an algorithm that takes advantage of the likely dis-
tribution of the data. Therefore we created a dataset generator that can create
artificial data sets following a power law with an exponent that can be chosen
freely. In all our experiments, the master data is sorted with respect to the access
frequency.

4 X-HYBRIDJOIN

In this section, we describe our second algorithm, X-HYBRIDJOIN which is an
extension of HYBRIDJOIN.

4.1 Difference between X-HYBRIDJOIN and HYBRIDJOIN

As we will see later, the service rate (number of tuples processed per second)
of HYBRIDJOIN increases as the exponent of the distribution goes above 1
i.e. as the distribution gets closer to a short-tailed distribution. However, if a
distribution is fairly short-tailed, then many matches are with the most frequent
tuples. So the question arises, how much can be gained in terms of performance
by buffering the most frequent tuples permanently, and this gives rise to X-
HYBRIDJOIN.

X-HYBRIDJOIN for Near-Real-Time Data Warehousing 39

Algorithm 1. Pseudo-code for X-HYBRIDJOIN
Input: A disk-based relation R with an index on join attribute and a stream of updates
S
Output: S �� R
Parameters: w tuples of S and a partition pi of R
Method:

1: LOAD first partition p1 of R into the non-swappable part of the disk buffer.
2: w ← hS

3: while (true) do
4: if (available stream tuples≥ w) then
5: READ w tuples from the stream buffer, load them into H and enqueue their

join attribute values into Q.
6: w ← 0
7: end if
8: for each tuple r in p1 do
9: if r ∈ H then

10: OUTPUT r �� H
11: w ← w+number of matching tuples found in H
12: DELETE all matched tuples from H and the corresponding nodes from Q.
13: end if
14: end for
15: READ the oldest join attribute value from Q.
16: LOAD a disk partition pi (where 2 ≤ i ≤ n)of R into the swappable part of the

disk buffer using the join attribute value as an index.
17: for each tuple r in pi do
18: if r ∈ H then
19: OUTPUT r �� H
20: w ← w+number of matching tuples found in H
21: DELETE all matched tuples from H and the corresponding nodes from Q.
22: end if
23: end for
24: end while

The difference between the two algorithms is that in X-HYBRIDJOIN we di-
vide the disk buffer into two parts. One part stores the most popular pages
of disk-based relation R in memory permanently, and we call this the non-
swappable part of the disk buffer. The other part of the disk buffer is swappable
and is used to load partitions from the remainder of relation R into memory in
the same way as in the HYBRIDJOIN algorithm. As a natural default setting,
we assign the same amount of memory to both parts.

4.2 Algorithm

Once the available memory is distributed among the join components, the algo-
rithm is ready to execute according to the procedure described in Algorithm 1.
Before starting the actual join execution, the algorithm reads a particular por-
tion of the disk-based relation R into the non-swappable part of the disk buffer

40 M.A. Naeem, G. Dobbie, and G. Weber

(line 1). In the beginning all slots in the hash table H are empty; therefore,
hS is assigned to w (line 2). In the abstract level description, the algorithm
contains two kind of loops. One is called the outer loop, which is an endless
loop (line 3). The key objective of the outer loop is to build the stream in the
hash table. Within the outer loop, the algorithm runs two independent inner
loops. One loop implements the probing module for the non-swappable part of
the disk buffer, while the other inner loop implements the probing of the swap-
pable part of the disk buffer. As the outer loop begins, the algorithm observes
the status of the stream buffer. If stream is available the algorithm reads the
w tuples from the stream buffer and loads them into the hash table, while also
enqueuing their attribute values into the queue. After completing the stream
input the algorithm resets w to 0 (lines 4 to 7). The algorithm then executes the
first inner loop, in which it reads all tuples one-by-one from the non-swappable
part of the disk buffer and looks them up into the hash table. In the case of
a match, the algorithm generates the join output. Due to the multi-hash-map,
there can be more than one match against one disk tuple. After generating the
join output the algorithm deletes all matched tuples from the hash table, along
with the corresponding nodes from the queue. The algorithm also increments w
with the number of vacated slots in the hash table (lines 8 to 14). Before starting
the second inner loop, the algorithm reads the oldest value of the join attribute
from the queue (line 3) and loads a disk partition pi (where 2≤ i ≤ n) into the
swappable part of the disk buffer, using that join attribute value as an index
(lines 15 and 16). As the specified disk partition is loaded into the swappable
part of the disk buffer, the algorithm starts the second inner loop and repeats
all the steps described in the first inner loop (lines 17 to 23).

Note: If we switch-off the first inner loop (lines 8 to 14), the algorithm works
as HYBRIDJOIN.

4.3 Cost Model

In this section we derive the general formulae for calculating the cost for our
proposed X-HYBRIDJOIN. We derive equations for memory and processing time
of X-HYBRIDJOIN. Equation 1 describes the total memory used to implement
the algorithm except for the stream buffer; whereas Equation 2 calculates the
processing cost for w tuples. The symbols used to measure the costs are specified
in Table 1.

Memory cost. In X-HYBRIDJOIN, the disk buffer is divided into two equal
parts. One is swappable, the other is non-swappable. As said before, the largest
share of the total memory is used for the hash table; a much smaller portion is
used for the disk buffer. The queue size is a constant fraction of the hash table
size. The memory for each component of X-HYBRIDJOIN can be calculated as
shown below.

Memory reserved for the swappable and non-swappable parts= vP +vP = 2vP

(in the case of HYBRIDJOIN it is vP only).
Memory for the hash table = α(M − 2vP).

X-HYBRIDJOIN for Near-Real-Time Data Warehousing 41

Table 1. Notations used in cost estimation of X-HYBRIDJOIN

Parameter name Symbol

Total allocated memory (bytes) M
Service rate (processed tuples/sec) μ
Input size (=number of matching tuples in previous iteration) w
Stream tuple size (bytes) vS

Size of each swappable and non-swappable part (bytes) (=size of
1 disk partition) vP

Size of disk tuple (bytes) vR

Size of each swappable and non-swappable part (tuples) dT = vP
vR

Memory weight for the hash table α
Memory weight for the queue 1-α
Cost to read one disk partition into the disk buffer (nanosecs) cI/O(vP)
Cost to lookup one tuple in the hash table (nanosecs) cH

Cost to generate the output for one tuple (nanosecs) cO

Cost to remove one tuple from the hash table and the queue (nanosecs) cE

Cost to read one stream tuple into the stream buffer (nanosecs) cS

Cost to append one tuple into hash table and the queue (nanosecs) cA

Total cost for one loop iteration of X-HYBRIDJOIN (secs) cloop

Memory for the queue = (1 − α)(M − 2vP).
The total memory used by X-HYBRIDJOIN can be determined by aggregat-

ing all of the above.

M = 2vP + α(M − 2vP) + (1 − α)(M − 2vP) (1)

Currently we do not include the memory reserved by the stream buffer because
of its small size (0.05 MB has been sufficient in all our experiments).

Processing cost. In this section, we calculate the processing cost for the pro-
posed X-HYBRIDJOIN. We denote the cost for one loop iteration of the algo-
rithm as cloop and express it as the sum of the costs for the individual operations.
We first calculate the processing cost for each component separately.
Cost to read swappable or non-swappable parts of the disk buffer= cI/O(vP).
Cost to look-up swappable and non-swappable parts of the disk buffer in the
hash table = dT .cH + dT .cH = 2dT .cH (in the case of HYBRIDJOIN it is dT .cH

only).
Cost to generate the output for w matching tuples = w.cO .
Cost to remove w tuples from the hash table and the queue = w.cE .
Cost to read w tuples from stream S into the stream buffer = w.cS .
Cost to append w tuples in the hash table and the queue = w.cA.
As the non-swappable part of the disk buffer is read only once before the execu-
tion starts we exclude it. By aggregating the terms, the total cost for one loop
iteration is:

cloop(secs) = 10−9[cI/O(vP) + 2dT .cH + w(cO + cE + cS + cA)] (2)

42 M.A. Naeem, G. Dobbie, and G. Weber

Table 2. Data specification

Parameter value

Disk-based data

Size of disk-based relation R 0.5 million to 8 million tu-
ples

Size of each tuple 120 bytes

Stream data

Size of each tuple 20 bytes

Size of each node in queue 12 bytes

Benchmark

Based on Zipf’s law

Characteristics Bursty and self-similar

For all cloop seconds the algorithm processes w tuples of stream S; therefore, the
service rate μ can be calculated by dividing w by the cost for one loop iteration
as shown in Equation 3.

μ =
w

cloop
(3)

5 Experiments

We performed experiments to compare the performance of our algorithms with
MESHJOIN. We also validate the measured cost by comparing it with the cal-
culated cost for each algorithm. As mentioned before, we use synthetic data sets
with a known skew.

5.1 Experimental Setup

Hardware Specifications: We carried out our experiments on a Pentium-IV
2X2.13GHz machine under WindowsXP. The maximum memory we allocated for
our experiments is 250MB. We implemented the algorithm in Java. To measure
the memory and processing time, we used built-in plugins provided by Apache
and Java API respectively.

Data specifications: The synthetic workload that we used to test the algo-
rithms was generated using Zipf’s Law with exponent 1. The generated stream
has two additional characteristics known as burstyness and self similarity. The
detailed specifications of the data set that we used for analysis are shown in
Table 2. The relation R is stored on disk using MySQL 5.0 databases. To mea-
sure the cost for each I/O operation accurately we set the fetch size for the
ResultSet equal to the size of one partition on disk. X-HYBRIDJOIN needs
to store multiple values in the hash table against one key value. However, the
hash table provided by the standard Java API does not support this feature;

X-HYBRIDJOIN for Near-Real-Time Data Warehousing 43

therefore, we have used the Multi-Hash-Map from Apache as the hash table in
our experiments.

Measurement strategy: We define the performance of the algorithms as ser-
vice rate, with a higher service rate being better. The service rate has been mea-
sured by calculating the number of tuples processed in a unit second. In each
experiment, the algorithm is executed for one hour. We started our measure-
ments after 20 minutes and keep measuring for 20 minutes. For added accuracy,
we took three readings for each specification and then calculated the average.
Where required we also calculated the confidence interval by considering 95%
accuracy. The calculation of confidence interval is based on 4000 measurements
for one setting. Moreover, during the execution of the algorithm no other appli-
cation was running in parallel.

5.2 Experimental Results

In our experimental study, we analyzed the results from three different per-
spectives. Firstly, we compare the performance of both HYBRIDJOIN and X-
HYBRIDJOIN with the other related algorithms. Secondly, we examine the role
of the non-swappable part of the disk buffer in stream processing. Finally, we
validate our predicted cost model through experiment.

Performance comparisons: The two possible parameters that can vary and
directly affect the performance of the algorithms under test are the total avail-
able memory for the algorithm and the size of the disk-based relation. In our
experiments, we tested the algorithms for different values of these parameters
and compared their performance.

Performance comparisons for varying size of the disk-based relation: In
the experiment shown in Figure 3(a), we assumed the total allocated memory for
the join was fixed while the size of the disk-based relation R was grown exponen-
tially. Figure 3(a) shows that for all sizes of R performance of X-HYBRIDJOIN
is substantially better than all the other approaches. Another key observation
from the figure is that when R is 0.5 million the performance of HYBRIDJOIN
is almost 70% of X-HYBRIDJOIN and when R is equal to 8 million this percent-
age decreases to 50%. This means that the performance of the other algorithms
decreases more sharply compared to X-HYBRIDJOIN when R increases.

Performance comparisons when the size of available memory varies:
In our second experiment, we analysed the performance of X-HYBRIDJOIN
using different memory budgets while the size of R is fixed (2 million tuples).
Figure 3(b) presents the results of our experiment. The figure indicates that, for
all memory budgets, the performance of X-HYBRIDJOIN is again significantly
better than all the other algorithms. The reason behind this improvement is
our intuition about X-HYBRIDJOIN. In our calculations, introducing the non-
swappable part in X-HYBRIDJOIN can save about 33% of the disk I/O cost.
Although keeping the non-swappable part in memory increases the look-up cost

44 M.A. Naeem, G. Dobbie, and G. Weber

0.5 1 2 4 8
0

0.5

1

1.5

2

2.5

3

3.5

4
x 10

4

Size of disk relation R on log scale (million tuples)

S
e
rv

ic
e
 r

a
te

 (
tu

p
le

s/
se

c)

X−HYBRIDJOIN
HYBRIDJOIN
R−MESHJOIN
MESHJOIN

(a) Performance comparison with 95% confidence interval
while M= 50MB and R varies

50 100 150 200 250
0.5

1

1.5

2

2.5

3

3.5
x 10

4

Total allocated memory (MB)

S
er

vi
ce

 ra
te

 (t
up

le
s/

se
c)

X−HYBRIDJOIN
HYBRIDJOIN
R−MESHJOIN
MESHJOIN

(b) Performance comparison with 95% confidence interval
while R= 2 million tuples and M varies

Fig. 3. Performance comparisons

and reduces the memory for the hash table, both these factors are very small
compared to the disk I/O cost.

From the experiments we can see that HYBRIDJOIN performs consistently
slightly better that MESHJOIN and R-MESHJOIN. However, the improvement
is rather modest. Our experiments show that the main performance gain of

X-HYBRIDJOIN for Near-Real-Time Data Warehousing 45

50 100 150 200 250
0

0.5

1

1.5

2

2.5
x 10

6

Total memory (MB)

S
tr

ea
m

 tu
pl

es
 p

ro
ce

ss
ed

 b
y

 n
on

−s
w

ap
pa

bl
e

pa
rt

Fig. 4. Total number of stream tuples processed with non-swappable part of disk buffer
in 4000 iteration

X-HYBRIDJOIN is due to the second improvement, the introduction of a non-
swappable part in the disk-buffer.

Role of the non-swappable part in stream processing. To get a better un-
derstanding of the role of the non-swappable part of the disk buffer, we performed

50 100 150 200 250
0.012

0.014

0.016

0.018

0.02

0.022

0.024

0.026

0.028

Total memory (MB)

P
ro

ce
ss

in
g

co
st

 (
se

co
nd

s)

X−HYBRIDJOIN calculated
X−HYBRIDJOIN measured
HYBRIDJOIN calculated
HYBRIDJOIN measured

Fig. 5. Cost validation

46 M.A. Naeem, G. Dobbie, and G. Weber

an experiment where we counted the stream tuples which are processed using only
the non-swappable part of disk buffer. The results of this experiment are shown
in Figure 4. As before, we set the size of the non-swappable part to be equal to
the size of the swappable part. It is clear from the figure that in 4000 iterations
when the memory budget is 50 MB and the size of R is 2 million tuples, about 0.4
million stream tuples are processed through the non-swappable part of the disk
buffer and this number increases if we increase the total allocated memory. For 250
MB memory with the same size of R (2 million tuples), this amount reaches more
than 2 million. In the other algorithms, since this non-swappable part is loaded
from the disk each time, the I/O cost increases significantly.

Cost validation. We validate our results by comparing the predicted cost with
the measured cost. Figure 5 presents the comparisons of both costs for each
algorithm. In the figure, it can be seen that for each algorithm the predicted
cost closely matches the measured cost, which is evidence of the consistency of
our study.

6 Conclusions and Future Work

In this paper, we explored the potential improvement for stream-based joins if
characteristics of the data such as skew are taken into account. MESHJOIN
performs worse with skewed distributions, which is a problem since these distri-
butions are common in real world applications. We presented a robust algorithm
called X-HYBRIDJOIN (Extended Hybrid Join) with two major modifications
over MESHJOIN. The first modification is the use of an index on disk-based
master data. The second modification is that X-HYBRIDJOIN caches the most
frequent tuples of master data. As a result it reduces the disk access and improves
the performance substantially. To validate our arguments we implemented the
prototypes for both modifications and carried out experiments comparing the dif-
ferent algorithms. We provided open source implementations of our algorithms.

In the future we plan to tune the X-HYBRIDJOIN algorithm in order to
utilize the available memory resources optimally.

Source URL: The source of our implementations and pseudo-codes can be
downloaded using the given URL:
https://www.cs.auckland.ac.nz/research/groups/serg/src/

References

1. Karakasidis, A., Vassiliadis, P., Pitoura, E.: ETL queues for active data warehous-
ing. In: IQIS 2005: Proceedings of the 2nd International Workshop on Information
Quality in Information Systems, pp. 28–39. ACM, New York (2005)

2. Naeem, M.A., Dobbie, G., Weber, G.: An Event-Based Near Real-Time Data In-
tegration Architecture. In: Enterprise Distributed Object Computing Conference
Workshops, pp. 401–404. IEEE, Munich (2008)

https://www.cs.auckland.ac.nz/research/groups/serg/src/

X-HYBRIDJOIN for Near-Real-Time Data Warehousing 47

3. Labio, W., Yang, J., Cui, Y., Garcia-Molina, H., Widom, J.: Performance Issues
in Incremental Warehouse Maintenance. In: VLDB 2000: Proceedings of the 26th
International Conference on Very Large Data Bases, San Francisco, CA, USA, pp.
461–472 (2000)

4. Labio, W.J., Wiener, J.L., Garcia-Molina, H., Gorelik, V.: Efficient resumption of
interrupted warehouse loads. SIGMOD Rec. 29(2), 46–57 (2000)

5. Nguyen, A., Tjoa, A.: Zero-Latency data warehousing for hetrogeneous data sources
and continuous data streams. In: iiWAS 2003 - The Fifth International Conference
on Information Integration and Web-based Applications Services, pp. 55–64. Aus-
trian Computer Society, OCG (2003)

6. Golab, L., Johnson, T., Seidel, J.S., Shkapenyuk, V.: Stream warehousing with
DataDepot. In: Proceedings of the 35th SIGMOD International Conference on
Management of Data, Providence, Rhode Island, USA, pp. 847–854 (2009)

7. Hohpe, G., Woolf, B.: Enterprise Integration Patterns: Designing, Building, and
Deploying Messaging Solutions. Addison-Wesley Longman Publishing Co., Boston
(2003)

8. Polyzotis, N., Skiadopoulos, S., Vassiliadis, P., Simitsis, A., Frantzell, N.E.:
Supporting Streaming Updates in an Active Data Warehouse. In: IEEE 23rd In-
ternational Conference on Data Engineering, ICDE 2007, Istanbul, Turkey, pp.
476–485 (2007)

9. Polyzotis, N., Skiadopoulos, S., Vassiliadis, P., Simitsis, A., Frantzell, N.:
Meshing Streaming Updates with Persistent Data in an Active Data Warehouse.
IEEE Trans. on Knowl. and Data Eng. 20(7), 976–991 (2008)

10. Chakraborty, A., Singh, A.: A partition-based approach to support streaming up-
dates over persistent data in an active datawarehouse. In: IPDPS 2009: Proceedings
of the 2009 IEEE International Symposium on Parallel & Distributed Processing,
pp. 1–11. IEEE Computer Society, Washington, DC, USA (2009)

11. Anderson, C.: The Long Tail: Why the Future of Business is Selling Less of More
(2006), Hyperion

12. Naeem, M.A., Dobbie, G., Weber, G.: R-MESHJOIN for Near-real-time Data
Warehousing. In: DOLAP 2010: Proceedings of the ACM 13th International Work-
shop on Data Warehousing and OLAP. ACM, Toronto (2010)

13. Knuth, D.E.: The art of computer programming, pp. 400–401. Addison-Wiley,
Reading, Mass (1968)

14. Heising, W.P.: Note on random addressing techniques. IBM Systems Journal 2(2),
976–991, 114–115 (1963)

Achieving High Freshness and Optimal Throughput in
CPU-Limited Execution of Multi-join Continuous

Queries�

Abhishek Mukherji, Elke A. Rundensteiner, and Matthew O. Ward

Computer Science Department, Worcester Polytechnic Institute, Worcester MA, USA
{mukherab,rundenst,matt}@wpi.edu

Abstract. Due to high data volumes and unpredictable arrival rates, continuous
query systems processing expensive queries in real-time may fail to keep up with
the input data streams - resulting in buffer overflow and uncontrolled data loss.
We explore join direction adaptation (JDA) to tackle CPU-limited processing of
multi-join stream queries. The existing JDA solutions allocate the scarce CPU re-
sources to the most productive half-way join within a single operator. We instead
leverage the operator interdependencies to optimize the overall query through-
put. We identify result staleness, typically ignored by most state-of-the-art tech-
niques, as a critical issue in CPU-limited processing. It gets further aggravated
if throughput optimizing techniques are employed. We establish the novel path-
productivity model and the Freshness predicate. Our proposed JAQPOT approach
is the first integrated solution to achieve near optimal query throughput while
also guaranteeing freshness satisfiability. JAQPOT runs in quadratic time of the
number of streams irrespective of the query plan shape. Our experimental study
demonstrates the superiority of JAQPOT in achieving higher throughput than the
state-of-the-art JDA strategy while also fulfilling freshness predicates.

1 Introduction

Motivation. Data Stream Management Systems (DSMS) [2, 5, 15] are in high demand
for real-time decision support as they transform huge amounts of streaming data into
usable knowledge. Due to rapid expansions in the diversity of data sources and the vol-
ume of data these sources deliver, DSMS are faced with the challenge of processing user
queries demanding real-time responsiveness even under conditions of unpredictability,
high and bursty data volumes.

Windowed joins across streams, while among the most common queries in DSMS
applications, are more costly compared to other operations such as selection, aggrega-
tion and projection [8, 9, 11]. When processing complex join queries, either the pro-
cessor may fail to keep up with the arrival rates of the streams (the CPU-limited case)
or the available main memory may become insufficient to hold all relevant tuples (the
memory-limited case). For queries composed of joins with large states across multiple
high-speed data streams, the system is even more prone to such resource deficiencies.

� This work was supported by NSF grants IS-0812027, CCF-0811510, IIS-0917017 and IIS-
1018443.

A.A.A. Fernandes et al. (Eds.): BNCOD 2011, LNCS 7051, pp. 48–65, 2011.
c© Springer-Verlag Berlin Heidelberg 2011

Achieving High Freshness and Optimal Throughput in CPU-Limited Execution 49

SELECT B.symbol, B.price
FROM stocksNYC A [WIN 10 mins], stocksTokyo B [WIN 10 mins]
WHERE A.symbol = “GOOG” AND B.Volume > A.Volume

Fig. 1. Example Query

i j

…

… …

Maximizing the output of ? j

Fig. 2. A pipeline of join operators

Gedik et al. [8] observe that with increasing stream arrival rates and large join states,
the CPU typically becomes strained before the memory does. Temporary data flushing
[11] and compressed data representations further counteract the chances of a memory-
limited scenario. If under duress complete results can no longer be produced at run-time,
then the DSMS must employ the available resources to ensure the production of max-
imal run-time throughput (output rate). Therefore, in this work, we aim at optimizing
the throughput of multi-join queries in CPU-limited cases.

When resources are limited, yet another pressing issue, namely, result staleness
arises. In Query Q1 (Fig. 1) a stock trader is interested in the companies whose stocks
got traded at Tokyo in higher volumes than Google stocks traded in NYC. He wants
the comparable transactions to happen within 10 minutes of each other. For real-time
decision making, the DSMS may be required to produce results continuously (say, once
every minute). However, if the system faces high workloads and backlogs in process-
ing, result tuples may get delayed. For example, the trader may receive results about
transactions that took place 15 minutes before the current time. Such results, despite
satisfying the 10-minute window predicate, would be considered stale and useless by
the trader. Clearly, high throughput results with no freshness guarantees are unaccept-
able in real-time applications as they may be producing results already deemed useless.

In addition to the WINDOW predicate, the trader may want to specify a freshness
predicate to indicate his tolerance to staleness. A freshness predicate may be defined
on each stream, i.e., 12 mins for stocksNYC whereas 15 mins for stocksTokyo. To the
best of our knowledge, our work is the first to identify the result staleness problem in the
context of resource-limited execution of multi-join plans and tackles the dual problems
of achieving optimal throughput while satisfying freshness of the join results.

The State-of-the-art. Two directions for tackling join queries under computing limita-
tions are load shedding [4, 9, 16] and join direction adaptation (JDA) [8, 10]. The main
focus of load shedding is to reduce the input rates by directly dropping tuples from the
source streams [4]. This makes the plan incapable of recuperating with the production
of accurate results in moments of low workloads as data is permanently lost.

Unlike load shedding, JDA preserves in-memory tuples as per the join semantics for
opportunities of joining with future incoming tuples. Existing JDA techniques [8, 10]
exploit the asymmetry in the productivities of half-way join directions within a join
operator. However, JDA techniques have so far been explored only in the context of
a single join operator. We demonstrate in this work that new challenges arise in the
multi-join case. A detailed review of the related work is provided in Sec. 6.

Research Challenges. In general, the ability of multi-join queries to achieve high result
throughput and to maintain result freshness under heavy workloads relies on resolving
the following aspects of the problem:

50 A. Mukherji, E.A. Rundensteiner, and M.O. Ward

• While operator scheduling [6, 7] tends to allocate resources at the coarse granular-
ity of query operators, adaptation at a finer granularity within the operators is
required to produce optimal throughput.

• The existing JDA technique [10] optimizes every join operator individually. In a
pipeline of join operators (Fig. 2), an uncoordinated attempt to optimize opera-
tors �i and � j individually may jeopardize the real goal of optimizing the overall
query throughput. The join operators within a multi-join plan are interdependent,
namely, an operator depends on the output of its upstream1 operator(s) for input.
Consideration of operator interdependency is crucial for a successful plan-level
join direction adaptation.

• We identify result staleness2 as a critical issue for CPU-limited processing of
multi-join queries. The biased resource allocation by JDA may potentially aggra-
vate this problem.

Proposed Approach. Unlike load shedding that discards data once the system is on
the verge of crashing from overload, we propose to preemptively allocate the available
CPU resources with the goal to achieve maximal throughput. We design, develop and
evaluate a synchronized join adaptation strategy at the plan level that tackles the result
staleness problem while maximizing the overall throughput of the query. We summa-
rize our contributions as follows:

1. We demonstrate that the state-of-the-art JDA [10] technique fails to achieve optimal
throughput for the CPU-limited processing of multi-join plans (Sec. 3).

2. We establish the path productivity metric as the plan-level throughput contribution
of each input stream (Sec. 4.1).

3. We formulate the query throughput maximization as a knapsack problem and pro-
pose a Greedy Path Productivity-based Adaptation (GrePP) to solve it (Sec.
4.2).

4. We identify result staleness as a key challenge under CPU-limited scenarios and
formulate the freshness satisfiability as a weighted set-cover problem (Sec. 4.3).

5. We integrated the above two strategies into the JAQPOT algorithm (Sec. 4.4). To
the best of our knowledge, this is the first solution that guarantees fulfillment of
result freshness predicates while achieving near optimal query throughput. We
further note that JAQPOT achieves this effective adaptation in quadratic time in
the number of input streams.

6. Our experimental study (Sec. 5) demonstrates the superiority of JAQPOT over the
state-of-the-art JDA solution in a large set of tested cases.

2 Preliminaries

2.1 Background

In this paper we focus on multi-join plans composed of sliding window binary join
operators. We assume standard semantics as in CQL [3]. We use the unit-time basis

1 Operators closer to the stream input are upstream and those closer to the query output are
downstream.

2 This challenge is not identified by prior work [4, 9, 16].

Achieving High Freshness and Optimal Throughput in CPU-Limited Execution 51

Symbol Meaning
tI Tuple of stream I

tI .ts Timestamp of tuple tI

λi Arrival rate of stream I
|SI | Window size of state I
σi Selectivity of join on state SI
λ′i Probe allowance of stream I, (≤ λi).

Fig. 3. List of notation

λa = 500 λb =700

|SA|

= 5000

σB= 0.005

|SB|

= 500

σA= 0.001

λa = 500 λb =700

|SA|

= 5000

σ1 = 0.001

|SB|

= 500
1

λc =600

|SAB|

= 200

σ2 = 0.005

|SC|

= 1000
2

λab = r
1

(a) Single Join (b) 2-Join Plan

Fig. 4. Join plans with parameter settings

λc =600

λa = 500 λb =700

|SA|

= 5000

σ1 = 0.001

|SB|

= 500
1

|SAB|

= 200

σ2 = 0.005

|SC|

= 1000
2

λa' = 0

r = 750/sec1

λb' = 150

r = 750/sec2

λab' = 150 λc' = 0

Fig. 5. JDA over a 2-join plan

cost model proposed by Kang et al. [10] that computes the join cost in terms of the
three sub-tasks, namely, probe, insert and purge operations. For simplicity, the model
assumes count-based windows. The key idea is that the cost of probe dominates the
total join cost while insert and purge operations are relatively inexpensive. For
details on the model and its extension to time-based windows refer to [10]. Fig. 3 lists
the notation.

Throughput. The run-time throughput (Eq. 1) of a join operator A�B (Fig. 4.a) con-
sists of two contributing half-way join components, namely, r� = (a � SB) and r� = (b
� SA). Throughput is also called the output rate and is defined as the number of joined
tuples produced per time unit. For tuple tA, SA is the own state whereas SB is the partner
state.

r�=r� + r�=λa × σB × |SB| + λb × σA × |SA| (1)

CPU Limitation in a Join. When CPU is limited, the throughput of A�B can be re-
written as in Eq. 2. The total available computing resources, denoted as μ, may be
determined from the system. Terms available resources and service rate are used inter-
changeably.

r�=r� + r�=λ′a × σB × |SB| + λ′b × σA × |SA|,
λ′a + λ′b ≤ μ.

(2)

In Eq. 2, the μ resources allocated to a join is divided between the two half-way joins.
Stream A is assigned a probe allowance, denoted by λ′a, which is a portion μa of μ
not exceeding the input rate λa, i.e., λ′a = min(μa, λa). Similarly, λ′b = min((μ-μa),
λb). As the probe cost dominates the total join cost, the resource restriction only affects

52 A. Mukherji, E.A. Rundensteiner, and M.O. Ward

the probe. All input tuples undergo the insert and purge operations. In Fig. 4.a A�B
have input rates λa = 500 and λb = 700 tuples/sec. Assume μ = 300 tuples/sec as the
available resources. Therefore, a subset3 of 300 tuples out of the 1200 (= 500 + 700)
tuples from either of the input streams is used for the probe operation. However, all
1200 arriving tuples undergo insert and purge operations every time unit. Thus, the μ
resources (here 300 tuples/sec) must be divided among the probe allowances (here λ′a
and λ′b) for throughput maximization.

2.2 Problem Definition

Now, we define our two target problems, namely, achieving optimal throughput and
tackling result staleness in CPU-limited execution of multi-join.

CPU-limited Execution of Multi-Join Plans. In the 2-join plan of Fig. 4.b4 composed
of �1 and �2, the throughput optimization problem is quite different from the single
operator case. Now, the goal is to maximize the throughput r�root of the root operator
(here �2).

r�1 =λ′a × σB × |SB| + λ′b × σA × |SA|; r�2=λ
′
ab × σC × |SC| + λ′c × σAB × |SAB|,

λ′a + λ′b + λ
′
ab + λ

′
c ≤ μ . (3)

Equation 3 depicts the CPU-limited case in a multi-join plan, where μ needs to be
divided among four half-way joins, namely, λ′a, λ′b, λ′ab and λ′c. In general, μ gets split
at two levels. First, among the n join operators (say μ�1 , μ�2 ,. . .,μ� j ,. . .,μ�n). Then, for
each join � j, μ� j is divided among each of its respective half-way joins μ� j and μ� j .

Freshness of Multi-Join Results. When the resources become limited, the produced
query results may no longer be perfectly fresh, as in Query Q1 (Fig. 1). The result fresh-
ness is further compromised by throughput optimizing resource allocation to highly
productive half-way joins. Consequently, little or no resources are left for the less pro-
ductive components of the plan. Therefore, under a throughput optimizing scheme, in-
sufficient scheduling of certain operators may lead to their starvation. Moreover, when
a starved upstream operator does not produce sufficient intermediate results, the de-
pendent join state in the downstream operator tends to become stale. The join results
produced using such stale states are also stale, thus further deteriorating the result fresh-
ness. In Fig. 4.b, if (c � SAB) is most productive, the assignment of complete μ to λ′c
would starve �1, leading to the staleness of the state SAB and eventually also to that of
the final query results.

Definition 1. The freshness predicate, namely, FI for a stream I, requires that joined
tuples produced beyond time T must not contain stream I tuples with arrival times older
than |T - FI |.
Under CPU-limited execution, the user can supply a freshness predicate FI for each
stream I (Def. 1). The type of the freshness and the window predicate must be the same,

3 A fine-grained time correlation-awareness [9] can be used for subset selection along with JDA.
4 For simplicity σi denotes overall selectivity of �i; in reality each half-way join has an associ-

ated selectivity as in Fig. 4.a.

Achieving High Freshness and Optimal Throughput in CPU-Limited Execution 53

i.e., time or count-based. By default the freshness predicate FI equals the WINDOW
predicate when the users require the results to be 100 % fresh. Query results not fulfill-
ing the freshness predicate are considered stale and thus useless. In this work we focus on
achieving maximal throughput while satisfying the user-defined freshness specification.

3 The JDA Technique

The state-of-the-art JDA technique uses a half-way join productivity-based optimiza-
tion. Here, we define the half-way join productivity ρh metric (Def. 2) and present the
JDA policy.

Definition 2. The productivity of the half-way join�i ≡ (i� SJ), denoted by ρh(i� SJ),
is the throughput contribution (r�i) of �i per input tuple processed by �i.

ρh(i � SJ)=
r�i

λ′i
=σJ × |SJ | (4)

JDA Policy: Allocate available resources μ starting with the most productive half-
way join until μ gets exhausted.

In a single join operator (Fig. 4.a), the μ resources (= 300 tuples/sec) must be divided
among the probe allowances (here λ′a and λ′b). such that the throughput r� of A�B is
maximized. By Equation 4, the ρh of half-way joins are: ρh(a � SB) = σB × |SB| = 0.005
× 500 = 2.5 and ρh(b� SA) = σA×|SA| = 0.001× 5000 = 5 joined tuples/input tuple/sec.
For μ = 300 tuples/sec, JDA achieves a throughput of r� = 300 × 5 = 1500 by assigning
all of μ to λ′b and none to λ′a.

Applying JDA to a Multi-Join Plan. Now, we derive a variant of the JDA policy, called
JDAM, to make it applicable to the multi-join plans. It is defined as follows:

JDA-MultiJoin Policy: Allocate μ in two levels, namely,

1. Divideμ equally among all n join operators, so for join� j (∀ j = 1,2,. . .,n),μ� j =
μ
n .

2. Within each operator � j, apply BestHJP to assign all μ� j towards the most pro-
ductive half-way join component of � j.

In Figure 5, JDAM first splits the μ equally among the two joins �1 and �2, i.e.,
150 tuples per second are allocated to each join. In the next step, JDA is applied locally
within each operator. In �1, ρh(b � SA) > ρh(a � Sb), so (b � SA) is assigned the
150 tuples per second. Similarly, in �2, ρh(ab � SC) > ρh(c � SAB), thus (ab � SC) is
assigned the 150 tuples per second. An estimated query throughput of 750 joined tuples
per second is achieved (Equation 3). We observe here that while�1 produces 750 tuples
per second, only 150 out of those can actually be used to probe the partner join state in
�2. Hence, there is an over-utilization of resources in �1.

The local nature of the JDA technique and its failure in producing optimal throughput
in a multi-join plan motivates us to explore operator interdependencies for solving the
identified problems as described next in Section 4. In our experiments (Section 5) we
compare the JDAM strategy against our proposed approach.

54 A. Mukherji, E.A. Rundensteiner, and M.O. Ward

4 The Proposed JAQPOT Approach

4.1 Optimizing Throughput in Multi-join Queries

Throughput optimization in a multi-join plan requires producer-consumer matches
between every successive join pair where all intermediate tuples produced by a producer
join must get consumed by the downstream consumer join for probing the partner join
state. Based on this insight, we propose a synchronized plan level resource allocation
strategy.

Input Paths. We introduce the notion of input paths in Def. 3.

Definition 3. Given a multi-join plan Q with k input streams5 (I = 1, . . . , k); each
pipeline of half-way joins from the leaf to the root operator forms an input path denoted
by PathI. A path having n join operators between input stream I and the output of query
is called an n-hop path.
In our example plan (Fig. 4.b), we identify three input paths, namely, PathA, PathB and
PathC. PathA, a 2-hop path, is composed of two sequential half-way joins, namely, (a �
SB) followed by (ab � SC), also written as (a � SB � SC). Along an n-hop PathI, every
input tuple joins and propagates through n half-way joins upto the root. Similar to the
half-way join productivity (ρh), we now define the cardinality of intermediate joined
tuples, denoted as φI

j, produced by the jth half-way join along PathI. As in Eq. 5, φI
j is

computed by multiplying the productivities (ρh) along PathI upto j. Here, superscript p
denotes the partner join state. φI

j forms an important component of the core formulae
that we define next.

X1
X

X2 … Xj

…… … …

1 2 nj

… Xn
I I I I

I

Fig. 6. Division of XI resources within PathI

φI
j=
∏

j
g=1(σp

g × |Sp
g|). (5)

XI
j=XI

1 × φI
j−1=(

XI × φI
j−1

1 + φI
1 + . . . + φ

I
n−1

). (6)

Division of Resources within an Input Path. XI of the total μ resources are allocated
to an n-hop path PathI. Figure 6 depicts the division of XI among the half-way joins
of PathI as probe allowances XI

1, XI
2, . . . , XI

j, . . . , XI
n. For an effective division of XI

producer-consumer matches must be established between every pair of successive
half-way joins, such that the output of a producer equals the probe allowance of the
consumer join. Each such probe allowance for the jth half-way join, denoted as XI

j, is

expressed in terms of XI as in Eq. 6. Here, by Eq. 5, φI
j−1 denotes the cardinality of the

(j-1)th intermediate joined tuples.

Path Productivity. We now establish a novel metric that measures the contribution
of an input path to the overall query throughput (Def. 4).

5 If stream I is used multiple times as input to the plan (self-joins), then separate copies of I will
used as separate inputs.

Achieving High Freshness and Optimal Throughput in CPU-Limited Execution 55

λa = 500 λb =700

|SA|

= 100

σ1 = 0.0045

|SB|

= 80
1

λc =600

|SAB|

= 100

σ2 = 0.001

|SC|

= 1000
2

λab = r
1

10

14 5

4 5

|SA|

σ1

|SB|1

|SAB|

σ2

|SC|2

λab = r
1

11 11

(a) Parameter assignment (b) Path-wise throughput

Fig. 7. Example 2-join plan

PathI PathA PathB PathC

Resources used (XI) 15 16 10
Output rate rI

�root
4 5 1

Path Productivity ρp(PathI) 0.266 0.312 0.1

Fig. 8. Path productivity table

Definition 4. The path productivity of PathI, denoted by ρp(PathI), is its contribution
to the query throughput per tuple t processed6 within PathI.

ρp(PathI) = (σp
n × |Sp

n|) × (
φI

n−1

1 + φI
1 + . . . + φ

I
n−1

) = (
φI

n

1 + φI
1 + . . . + φ

I
n−1

). (7)

If XI resources are assigned to PathI, the component XI
n assigned to the root half-way

join may be computed using Eq. 6. The throughput contribution by processing the XI

resources along PathI, denoted as (rI
�root

) = (σp
n × |Sp

n|) × XI
n. Therefore, by Def. 4, the

productivity of PathI can be computed as ρp(PathI) =
rI
�root
XI , as given in Eq. 7.

In our example plan (Fig. 4.b), XB resources allocated to PathB will be divided among
λ′b and λ′ab. By Eq. 6, an effective division of XB over PathB will be λ′b = (XB/6) and λ′ab
= (5×XB/6). Using Eq. 7, the total throughput contribution (rB

�root
) achieved is estimated

as (5 × XB/6) × (σC × |SC|). Thus, if XB = 600 tuples/sec, λ′b gets 100, then producing
r�1 = 500 tuples/sec as intermediate output. λ′ab gets 500 tuples/sec (= XB - λ′b) and a
producer-consumer match is achieved between �1 and �2.

Discussion. The path productivity ρp metric defaults to the notion of half-way join
productivity ρh (Sec. 3) when applied to a single operator. ρh is a local operator level
metric whereas ρp metric establishes the contribution of a complete input path to the
query throughput r�root . The former takes only the tuples directly input into the half-way
join into consideration, whereas the ρp metric instead considers all the tuples processed
anywhere along the path, be it at the leaf, the intermediate and the root operators.

4.2 Path Productivity-Based Join Adaptation

Given plan Q with k input paths, namely, PathA, PathB, . . . , and Pathk, their path produc-
tivities can be computed using Formula 7. The 2-join plan in Fig. 7 may be translated
into a path productivity table (Fig. 8). This translation is based on the input rates, the
selectivities and the state sizes along each path within the plan. For each input path
PathI, the path productivity table lists (a.) the resources used (XI), (b.) the query output
rate (rI

�root
) achieved using XI resources, and (c.) the path productivity (ρp(PathI).

In Fig. 7.b) for PathA, the resources XA = 15 tuples/sec may be divided across the
two half-way joins such that λ′a = 11 and λ′ab = 4. The throughput contribution of PathA,

6 Tuple t refers to either a leaf or an intermediate tuple in PathI.

56 A. Mukherji, E.A. Rundensteiner, and M.O. Ward

denoted as rA
�root

= 4 as σC = 1. Thus, for every 15 tuples consumed by PathA in a
second, it will produce 4 tABC joined tuples. The values in Fig. 8 may be fractional.
Once a multi-join plan has been translated into a productivity table, our join adaptation
problem can be formulated as a variant of the knapsack problem [14], as given below.

Problem 1. Join adaptation knapsack problem: Given a plan Q with k paths Path1,
Path2,. . . , Pathk, when PathI is assigned resources in multiple MI of XI, then its through-
put rI

�root
= MI × ρp(PathI). By defining aI to be 1 if PathI is chosen in a solution and 0

otherwise, we can formulate this JDA-Knapsack problem as:
Maximize Σk

I=1aI × rI
�root

subject to: Σk
I=1aI ×MI × XI ≤ μ.

JAQPOT Policy: Allocate μ iteratively to the next most productive path until μ gets
completely consumed.

Assume μ = 30 tuples/sec. Using the JAQPOT Policy for the productivity table listed
in Fig. 8, the most productive path PathB will be assigned 16 tuples (out of 30). The
remaining 14 resources fall short of XA=15, the minimum resources required by the
second most productive path PathA. Thus, PathC will be chosen and assigned 10 re-
sources, wasting the remaining 4 resources. The total throughput thus achieved is 6
tuples/cycle (assume each cycle runs for 1 second). A more effective assignment would
be to instead give the complete 30 (=15 × 2) tuples/cycle to PathA and achieve 8 (=4 ×
2) tuples/cycle as throughput. This illustrates that a greedy application of the JAQPOT
Policy fails to achieve optimal throughput.

Above, we find ourselves working under rigid constraints. First, each execution cy-
cle runs independently of its predecessor and successor execution cycles. Second, we
assume a discrete execution model where XI, rI

�root
and μ must be whole numbers. Un-

der this model the throughput optimization problem does not exhibit the greedy choice
property ([14]). Thus, a dynamic programming knapsack solver must be employed to
achieve an assignment yielding optimal throughput which runs in©(k × μ), for k input
streams and μ available computing resources. For higher values of μ, this solver would
be extremely compute-intensive. Therefore, we now explore alternate greedy strategies
for solving this problem.

The Greedy Knapsack Solver. We now relax the above restrictions. First, instead of in-
dependent execution cycles, each being assigned distinct μ resources, we now consider
the coordinated execution across successive cycles. For example, two successive cycles
producing 3 and 2 join tuples respectively will result in the overall path productivity
ρp(PathI) to be 2.5 tuples/cycle. As we will see shortly, this achieves even higher output
rates than produced under the discrete execution model. Once such a group of succes-
sive cycles is identified, we can view their combination as a mega cycle. Secondly, XI,
rI
�root

and μ values can now be fractional. Thus, for PathB (Fig. 7), XB = 16 tuples/sec
and rB

�root
= 5 tuples/sec may be re-phrased as PathB using XB = 8 tuples/sec to pro-

duce rB
�root

= 2.5 tuples/sec. While fractional tuples cannot be consumed (or produced)
in a single cycle, over the span of multiple successive cycles a virtual consumption (or
production) of fractional tuples per cycle may arise.

Achieving High Freshness and Optimal Throughput in CPU-Limited Execution 57

These relaxations are mutually complementary and their benefit is twofold. First,
multiple cycles may be scheduled together. Second, as fractional resource assignment
is allowed, high productivity paths consuming resources XI greater than μ, that would
otherwise be eliminated in the discrete model, may now be assigned resources. Also
in a real-world CPU-limited scenario, the resources are more likely to be an esti-
mated μ value available over a duration spanning multiple cycles rather than being a
distinct μ value available to each cycle. Under this continuous execution model, our
JDA-Knapsack Problem 1 now exhibits both the greedy choice property and the op-
timal substructure property [14]. This implies that we can now use a greedy knapsack
solver, henceforth referred to as Greedy Path Productivity-based Multi-Join Adaptation
(GrePP), to tackle our problem.

For our running example in Fig. 7, GrePP selects the most productive path, PathB

(Fig. 8), and allocates all of μ (=30 tuples/sec) such that λ′b gets 20.62 tuples/sec and
λ′ab gets 9.38 tuples/sec. The estimated query throughput rGrePP

�root
is 9.38 tuples/sec and is

greater than that in the discrete model. It is guaranteed to be optimal [14]. GrePP runs
in©(k log(k)) time [14] for a plan joining k streams and thus is independent of μ.

4.3 Satisfying Freshness in Multi-join Queries

The throughput optimizing allocation by GrePP may still suffer from result staleness.
We allow users to supply the freshness predicates (Def. 1) for each input stream. Now,
we extend our path-productivity based model to incorporate this notion of freshness.

The key idea here is that the freshness predicates defined over streams are fulfilled
by translating them into refresh rates for the join states inside the plan. By Def. 1,
tuple tI from stream I must not be part of the joined results beyond time (tI.ts + FI),
where tI.ts denotes the arrival time of tI. To enforce this constraint, every tuple tI from
stream I and all its intermediate joined tuples must be purged from the plan by (tI.ts
+ FI) time (or tuple for count-based freshness). In Fig. 9.a, stream C contributes the
singleton tC, the intermediate tCD and tCDE tuples, get stored in own states SC, SCD and
SCDE, respectively. State SC gets refreshed by incoming tuples at λc tuples/sec, whereas
the intermediate states intermediate states SCD and SCDE get refreshed with tuples tCD

and tCDE at a rate dependent on the portion of μ allocated to λ′cd and λ′cde, respectively.
Such intermediate states, such as SCD and SCDE, are called staleness susceptible states
(highlighted in Fig. 9.a). In a steady stream, SC

λc
, SCD
λ′cd

and SCDE
λ′cde

denote the time duration

for which a singleton tC and its corresponding tCD and tCDE tuples will remain in their
respective own states SC, SCD, SCDE. To satisfy the predicate FC for stream C, FC ≥ (SC

λc

+ SCD
λ′cd

+ SCDE
λ′cde

).

Lemma 1. To fulfill the freshness predicate FI for stream I, FI ≥ Σn
j=1

So
j

λ′j
, where λ′j and

So
j denote the probe allowance and the own join state, respectively, at jth operator along

PathI, storing intermediate tuples having tI tuples.

Using Lemma 1, the freshness predicate FI on any stream I can only be fulfilled by al-
locating sufficient resources λ′j to each operator j along PathI so that its own join states

58 A. Mukherji, E.A. Rundensteiner, and M.O. Ward

get refreshed at sufficient rates. Our model of input paths enables us to gain further
insights into the result staleness problem. We observe that each input path contains one
or more of these staleness susceptible states. Moreover, each susceptible state, say SCD,
may receive input from multiple paths. For example, SCD gets input from (c � SD) and
(d� SC). Also SCDE gets input from (cd� SE) and (e � SCD). Thus, staleness suscepti-
ble states may be refreshed synchronously by allocating resources to the paths covering
those states. The freshness predicates can be satisfied by fulfilling the corresponding
refresh rates of a half-way join (Def. 5) of each staleness susceptible state, i.e, if the
input rate λ′j (λ j for leaf) at each half-way join exceeds the desired RSj .

Definition 5. The refresh rate RSj of a state S j, denotes the minimum number of new
tuples required to be inserted per time unit into state S j to prevent it from becoming
stale. A staleness susceptible state S j is said to be covered if its refresh rate RSj is
fulfilled.

Given the foundation, in Problem 2 we translate the freshness satisfiability problem into
a weighted multiple set cover problem (WMSCP) [18] over the staleness susceptible
states. Given the set of all staleness susceptible states and the input paths that include
those states, the goal is to identify the set of paths, called the minimal coverage paths,
that cover all the staleness susceptible states utilizing the minimum computing resources
Δμ out of the total μ resources. The remaining (μ - Δμ) resources are used by GrePP
for throughput optimization. In Fig. 9.a, PathA and PathC are such minimal coverage
paths covering all staleness susceptible states in �3 and �4.

Problem 2. Coverage of staleness susceptible states as a weighted multiple set cover
problem (WMSCP): The Universe U consists of m staleness susceptible states = S1,
S2,. . . , Sm with required refresh rates = RS1 , RS2 ,. . . , RSm , respectively. The k input paths
P = Path1, Path2,. . . , Pathk cover all the staleness susceptible states where ∪k

I=1 PathI

= U such that each path PathI has a positive real cost (resources used) XI. If a n-hop
PathI contains state S j, then the resources used for S j in PathI are denoted as XI

j, such

that for the n states of PathI Σn
j=1 XI

j = XI.
A k-tuple M = M1, M2,. . . , Mk constitutes a multiple cover for U in which the number

of times state S j is covered is defined to be the sum of MI’s for those PathI’s which
contain S j. Total weight of the multiple cover is defined as Σk

I=1 XI ×MI. WMSCP seeks
the minimum weight multiple cover for U such that every state S j is covered for at least
its refresh rate RSj . By defining bI

j to be 1 if S j ε PathI and 0 otherwise, we can now
write our WMSCP problem as:

Δμ = Minimize Σk
I=1XI ×MI

subject to:
Σk

I=1bI
j × XI

j ×MI ≥ RSj , ∀j = 1,2,. . . ,m.

Complexity and Optimality Analysis. WMSCP is strongly NP-Hard and the cost of
an optimal solution may be too high for our dynamically scenario. Thus, we use a
greedy algorithm called GH-WMSCP [18]. We use GH-WMSCP to satisfy the refresh
rates and in turn to fulfil freshness predicates. The time complexity TC(GH-WMSCP)

Achieving High Freshness and Optimal Throughput in CPU-Limited Execution 59

A B E

4

3

1

2

C D

D

C

2

A B

1

3

A B C D

21

3

(a) Staleness (b) Linear (c) Bushy

Fig. 9. Multi-join plans

Input: Path productivity table τp[] [1,. . . ,k] for plan Q,
refresh rates RS1,..., j ∀ j states, available resources μ

Output: Assignment of μ to plan Q PathAssign[][]

1: PathAssign[][] ← GH-WMSCP(τp[][1,. . . ,k],
RS1,...,J)

2: Δμ← ∑k
i−>1 PathAssign[i][]

3: PathAssign[][]← GrePP(μ − Δμ, τp[][1,. . . ,k])
4: return PathAssign[][]

Fig. 10. The JAQPOT Algorithm

=©(m × k + m2) for m staleness susceptible states and k input paths. The cover found
by GH-WMSCP will atmost differ from the optimal cover for WMSCP, denoted as
OPT(WMSCP), by a factor of ln(m) [18].

Lemma 2. For k input streams in a join query Q, there are exactly (k-2) staleness
susceptible states irrespective of the query shape, be it linear, semi-bushy or bushy.

Lemma 2 relates the counts of the input paths (k) and the susceptible states (m) in a
query. For example, in both the plans, namely, linear (Fig. 9.b) and bushy (Fig. 9.c), k=4
and m=2. Therefore, substituting m with (k-2) in the expression for the time complexity
of GH-WMSCP, TC(GH-WMSCP) =©(k2).

4.4 The Integrated JAQPOT Algorithm

We now present our algorithm called Join Adaptation at Query plan-level using Path-
productivity for Optimizing Throughput, in short, JAQPOT (Fig. 10). JAQPOT first as-
signs a fractionΔμ7 out of μ available resources towards fulfilling the freshness require-
ments using the GH-WMSCP. Further, the greedy knapsack solver GrePP achieves an
optimal query throughput using the remaining resources (μ - Δμ). JAQPOT returns the
join adaptation assignment in PathAssign[][], where PathAssign[I][j] denotes the
resources assigned to the jth half-way join of PathI. The overall time complexity of
our solution TC(JAQPOT) = TC(GH-WMSCP) + TC(GrePP) = ©(k2 + k × log(k))

©(k2). Thus, JAQPOT runs in quadratic time of k irrespective of the plan shape.

Run-time Query Adaptation. An initially optimal resource allocation by JAQPOT
may become sub-optimal due to the dynamic nature of the streams. Thus, we adopt a
simple yet effective strategy for runtime adaptation (details in [13]). We measured the
runtime overheads of JAQPOT and found that GH-WMSCP incurs the highest cost.
Performance of GH-WMSCP for different parameters, such as sizes of input and sets,
has been thoroughly studied in [18]. Thus, we instead focus our experimental study on
throughput and freshness.

7 We chose to satisfy the freshness predicates while optimizing throughput as this adaptation
is sufficient for real world applications. We found in our experimental study (Sec. 5) that in
practice realistic freshness predicates are indeed fulfillable using only a small share of the
resources.

60 A. Mukherji, E.A. Rundensteiner, and M.O. Ward

5 Experimental Evaluation

We now examine the effectiveness of JAQPOT compared against the state-of-the-art
JDA technique (described in Section 3). We implemented JAQPOT and JDAM within
the CAPE stream engine [15].

Parameter Value
Arrival rates (λi) 300 ∼ 1200 tuples/sec

Window sizes of states (|SI |) 200 ∼ 5000 tuples
Join selectivities (σi) 0.01 ∼ 0.1

Available Resources (μ) 0 ∼ 100 % of saturation
Freshness predicates (FI) 1.5× ∼ 5× of |SI |

Fig. 11. Experimental parameters with values

Objectives. The goal of our experimental study is to substantiate the observations of our
analytical study (Sec. 4) that JAQPOT is capable of producing near optimal through-
put together with maintaining result freshness. We evaluate JAQPOT and its competitor
JDAM policy by measuring their performance in (a) producing query throughput, and
(b) fulfilling the freshness predicates. We examine the following critical questions with
focus on the two performance measures:

• What is the impact of stream and query parameters, such as λi, σi, and SI as well as
the query shape on the throughput produced by the JDA techniques?
• How does the throughput produced by JAQPOT and JDAM techniques compare with
the saturation throughput8 with change in μ?
• In the absence of the set-coverage solver (GH-WMSCP), how badly do the throughput
optimization techniques perform in terms of the result freshness?
• In JAQPOT, what fraction of resources get assigned for fulfilling freshness as opposed
to achieving high throughput?

Experimental Setup. All experiments are run on a machine with Java 1.6 runtime,
Windows 7 with Intel(R) Core(TM)2 Duo CPU@2.13 GHz processor and 4 GB RAM.
All techniques are tested rigorously using synthetic streams and distinct query shapes
with arbitrary parameter settings (Table 11). Further, the applicability to a real-world
application is also verified using the Weatherboards data set [1]. The results for the
experiments with the real data set are not included in this paper. Please refer to technical
report [12] for details.

5.1 Throughput Production in Synthetic Data

The goal of our experiments is to compare the throughput produced by both the JDA
techniques under (a) fluctuating streams, and (b) changing resource availabilities. We

8 The minimum total resources required to process the full query workload with no CPU limita-
tion are called the saturation resources. The corresponding throughput produced is called the
saturation throughput.

Achieving High Freshness and Optimal Throughput in CPU-Limited Execution 61

 0

 20000

 40000

 60000

 80000

 100000

 120000

 140000

 160000

 0 2 4 6 8 10

C
um

ul
at

iv
e

O
ut

pu
t S

iz
e

(N
um

be
r

of
 T

up
le

s)

Time (in Minutes)

JDA_M
JAQPOT

 0

 10000

 20000

 30000

 40000

 50000

 60000

 70000

 0 2 4 6 8 10

C
um

ul
at

iv
e

O
ut

pu
t S

iz
e

(N
um

be
r

of
 T

up
le

s)

Time (in Minutes)

JDA_M
JAQPOT

(a) Linear Plan (b) Bushy Plan

Fig. 12. Impact of fluctuations in streams

 0

 0.2

 0.4

 0.6

 0.8

 1

 0 20 40 60 80 100

A
vg

. T
hr

ou
gh

pu
t P

ro
du

ce
d

(\
m

in
)

 a
s

a
F

ra
ct

io
n

of
 S

at
ur

at
io

n
T

hr
ou

gh
pu

t

Available Resources as % of
 Saturation Resources

JDA_M
JAQPOT

 0

 0.2

 0.4

 0.6

 0.8

 1

 0 20 40 60 80 100

A
vg

. T
hr

ou
gh

pu
t P

ro
du

ce
d

(\
m

in
)

 a
s

a
F

ra
ct

io
n

of
 S

at
ur

at
io

n
T

hr
ou

gh
pu

t

Available Resources as % of
 Saturation Resources

JDA_M
JAQPOT

(a) Linear Plan (b) Bushy Plan

Fig. 13. Impact of resource availability

measure throughput as the cumulative join output tuples produced over time. We use
an equi-join of 4 streams, namely, A, B, C and D with two different query shapes,
namely, linear (Fig. 9.b) and bushy (Fig. 9.c). While the join order of the linear plan
is (((A�B)�C)�D), that of the bushy plan is ((A�B)�(C�D)). The data streams are
generated according to the Poisson distribution that models the arrival pattern of several
real-world stream applications. Overall, a variety of scenarios are evaluated by changing
the λi, σi and SI parameters for each query shape (Fig. 11).

Impact of Fluctuating Stream Parameters. The fluctuating input streams are simu-
lated by changing operator selectivities. The window sizes and arrival rates were ob-
served to have similar effects on the workload as that of the selectivities, thus we omit
them here. Query workloads can be adjusted by generating streams such that the join
selectivities become high (or low) as desired. Here, we fixed the μ to 30% of saturation
whereas FI is set to 1.5×WINDOW predicates on each stream I.

In Fig. 12, we measure the cumulative throughput (y-axis) as time progresses (x-
axis) for a total of 10 mins of steady state query execution. In the linear plan (Fig.
12.a), the selectivities first change at 3 mins. from SEL1 (�1 = 0.01 | �2 = 0.01 | �3

= 0.05) to SEL2 (�1 = 0.03 | �2 = 0.03 | �3 = 0.05) and further at 7 minutes from
SEL2 to SEL3 (�1 = 0.03 | �2 = 0.03 | �3 = 0.1). From SEL1 to SEL2, the selectivities
of �1 and �2 triple while keeping �3 constant. From SEL2 to SEL3, the selectivity
of the root �3 doubles while the selectivities of �1 and �2 remain unchanged. This
change in the root operator �3 improves the throughput production by JAQPOT even

62 A. Mukherji, E.A. Rundensteiner, and M.O. Ward

 0

 0.2

 0.4

 0.6

 0.8

 1

A
vg

. #
 o

f S
ta

le
 T

up
le

s
(/

m
in

)
(a

s
a

F
ra

ct
io

n
of

 T
up

le
s

P
ro

du
ce

d)

Freshness Predicate
(as a Multiple of Window Predicate)

1.5x 3x 5x

JDAM
GrePP

 0

 0.2

 0.4

 0.6

 0.8

 1

A
vg

. #
 o

f S
ta

le
 T

up
le

s
(/

m
in

)
(a

s
a

F
ra

ct
io

n
of

 T
up

le
s

P
ro

du
ce

d)

Freshness Predicate
(as a Multiple of Window Predicate)

1.5x 3x 5x

JDAM
GrePP

 0

 0.2

 0.4

 0.6

 0.8

 1

F
ra

ct
io

n
of

 R
es

ou
rc

es
 U

se
d

fo
r

S
at

is
fy

in
g

F
re

sh
ne

ss
.

Freshness Predicate
(as a Multiple of Window Predicate)

1.5x 3x 5x

Linear Plan
Bushy Plan

(a) Linear (b) Bushy (c) Resources Used for freshness

Fig. 14. Evaluation of freshness predicates

more significantly than the change in non-root operators. The performance of the JDAM

strategy is significantly lower than JAQPOT. Figure 12.b illustrates the results for the
bushy plan with changes in the selectivities at 3 and 7 mins, just like the linear plan. Here
JAQPOT again produces high throughput while JDAM continues to produce output at a
very low rate.

Impact of Changing Available Resources. These charts (Fig. 13) summarize the per-
formance of the techniques over the complete range of μ values from 0% to 100% of
saturation. A variety of parameter settings are used, as in Table 11. The charts depict μ
as a percentage of the saturation resources. On the y-axis, the throughput produced by
JAQPOT and JDAM strategies, averaged over several runs, is shown as a percentage of
the saturation throughput.

For the linear plan (Fig. 13.a) JAQPOT outperforms the JDAM strategy producing
more than 80% of the saturation throughput while using only 60% of the resources.
Averaged over the different μ values, JAQPOT consistently beats the JDAM strategy
by producing 3× as many tuples/min on average, with a maximum of 6.5× at 40% of
saturation resources.

For the bushy plan (Fig. 13.b), the trends are similar. Overall, JAQPOT performs
much better for the linear plan than the bushy plan. In the linear plan, all the staleness
susceptible states can be synchronously refreshed as they are covered by fewer (pos-
sibly single) path, whereas, for the bushy plan, atleast two paths require resources for
freshness fulfillment, thus leaving fewer resources for throughput optimization.

5.2 Evaluating Result Freshness

The purpose of these experiments is twofold, namely, (a) to establish that result stale-
ness is aggravated by the JDA approaches, and (b) to analyse how much of the resources
are spent in satisfying freshness. The staleness of results is measured by counting the
number of tuples produced that violate a given freshness predicate FI as per Def. 1.

Result Staleness in Join Adaptation. Next, we substantiate our hypothesis that the
throughput optimizing schemes aggravate the result staleness problem. We compare
the JDAM and the GrePP knapsack solver omitting the GH-WMSCP component such
that GrePP produces stale tuples in the absence of GH-WMSCP. We perform these
experiments on the linear and bushy plans (Figs. 9.b and c). For each plan, we create
many scenarios by varying the parameter settings (Table 11). Here, μ is fixed at 300.

Achieving High Freshness and Optimal Throughput in CPU-Limited Execution 63

We evaluate three distinct settings of the freshness predicate, namely, 1.5×, 3×, and 5×
of the window size. The higher the freshness predicate, the more tolerant the user query
is to staleness. For each freshness value, we count the number of stale tuples produced
by each technique. The three freshness predicate values (x-axis) are plotted against the
average fraction of stale tuples/min (y-axis).

For the linear plan (Fig. 14.a), as the freshness predicate is relaxed from 1.5× to 5×,
there is a marked drop in number of stale tuples. The JDAM strategy produces high
amounts of stale tuples. In absence of GH-WMSCP, even GrePP produces a substantial
amount of stale tuples. The trend is similar in the bushy plan (Fig. 14.b). However, an
even larger number of stale results are produced in the bushy plan as compared to the
linear plan.

Resource Utilization for Satisfying Freshness. We aim to evaluate the fraction of
the available resources allocated by JAQPOT towards freshness fulfillment. For these
experiments, we run JAQPOT (GH-WMSCP + GrePP) for several settings of the linear
and the bushy plans by changing the query parameters, including different μ values. We
again evaluate three distinct freshness settings, namely, 1.5×, 3×, and 5× of the window
predicates.

In Fig. 14.c, the freshness predicate (x-axis) is plotted against the fraction of re-
sources used for satisfying freshness. We find that as the freshness predicate is relaxed,
the demand for resources requirement also reduces drastically. For freshness tolerance
of 5×, the linear plan utilizes only 3% and 5% resources for freshness, respectively. Fur-
ther, as the bushy plan faces higher risk for staleness, the bushy plan uses significantly
larger portions of resources for freshness (35% for 1.5×). Thus, most reasonable fresh-
ness predicates may be fulfilled by allocating less than 10% of μ on average. Moreover,
our proposed solution is guaranteed to find the best solution, if one exists. The proof can
be easily implied from optimality of the set-cover [18] and the knapsack [14] solvers.

Infeasible plans. Among the plans we evaluated, we periodically found some infeasible
plans, i.e., whose freshness predicates were not achievable under existing conditions. In
particular, about 8% of the evaluated plans were infeasible, 85% of which were for the
rigid freshness predicate 1.5× and 65% were for the bushy plans.

Experimental Conclusions. The findings of our experimental study are:

1. JAQPOT continuously produces near-optimal throughput even in bursty streams.
2. JAQPOT consistently outperforms the state-of-the-art ρh-based JDAM policy by

producing 2∼6 times higher throughput for all tested cases.
3. JAQPOT performs better in linear plans compared to bushy plans, as bushy plans

utilize more resources for freshness fulfillment.
4. In CPU-limited processing, result staleness problem is further aggravated if through-

put optimizing techniques are employed.
5. For all satisfiable cases, JAQPOT guarantees a throughput optimizing allocation.

6 Related Work

Load shedding [4, 16] is popular in CPU-limited scenarios. Shedding directly drops
the tuples from the streams and the data is permanently lost. Shedding solutions, with

64 A. Mukherji, E.A. Rundensteiner, and M.O. Ward

an exception of [4, 16] focus on optimizing a single join operator or a single MJoin
operator [9]. Tatbul et al. [16] first applied load shedding to streaming databases. As
indicated in [16], they do not address the additional issues related to processing win-
dowed joins over streams. Ayad et al. [4] propose static optimization and in the absence
of a feasible plan they pick a plan augmented with shedding operators placed on the
input streams to make it feasible. GrubJoin [9] targets the MJoin operator by leveraging
time correlation-awareness. It focuses on a single MJoin operator, whereas our work
tackles an orthogonal problem of operator interdependencies within a plan. Although
MJoins utilize less memory, they are typically computationally expensive [17] and are
less likely to be selectd by the query optimizer in a CPU-limited scenario.

Closest to our work, join direction adaptation (JDA) [8, 10] explores the half-way
join productivity to selectively allocate computing resources to maximize the output
rate. They focus on a single join operator only. In this work, we establish that such
traditional JDA technique becomes ineffective for multi-join queries. Further, all these
approaches typically address a single optimizing function. None of these approaches
focus on leveraging the inter-operator dependency to adapt to run-time fluctuations nor
do they consider result staleness. Whenever a query with interconnected join operators
is used, our solution leveraging operator interdependency can be applied in conjunction
with the existing approaches [9, 17].

While operator scheduling [6, 7] tends to allocate resources at the coarse granu-
larity of a query operators, we focus on adaptation at a finer granularity of half-way
joins within an operator for optimizing throughput. Our work utilizes an adaptive query
processing [13] framework for adjusting the join direction of the query plan at run-time.

7 Conclusion

This paper addresses the CPU-limited execution of multi-join queries using join direc-
tion adaptation. We propose the path productivity metric that leverages the operator
interdependencies instead of localized operator-centric optimization. We identify result
staleness as a pressing issue under CPU limitations, and throughput optimizing tech-
niques further aggravate it. Our key contribution is the integrated JAQPOT algorithm
that tackles the result staleness problem while producing optimal query throughput. We
validate our analytical findings using experimental studies with both synthetic and real
data.

Acknowledgements. We are grateful to Song Wang, Luping Ding and other DSRG
members for their efforts in building the CAPE system. We thank Prof. Murali Mani
and the anonymous reviewers for their insightful comments.

References

1. Weatherboards dataset from intel berkeley research lab,
http://db.csail.mit.edu/labdata/labdata.html

2. Abadi, D.J., Carney, D., et al.: Aurora: a new model and architecture for data stream man-
agement. VLDB 12(2) (2003)

http://db.csail.mit.edu/labdata/labdata.html

Achieving High Freshness and Optimal Throughput in CPU-Limited Execution 65

3. Arasu, A., et al.: The cql continuous query language: semantic foundations and query exe-
cution. VLDB 15(2) (2006)

4. Ayad, A., Naughton, J.F.: Static optimization of conjunctive queries with sliding windows
over infinite streams. In: SIGMOD (2004)

5. Babcock, B., Babu, S., et al.: Models and issues in data stream systems. In: PODS (2002)
6. Babcock, B., Babu, S., et al.: Chain: operator scheduling for memory minimization in data

stream systems. In: SIGMOD (2003)
7. Carney, D., et al.: Operator scheduling in a data stream manager. In: VLDB (2003)
8. Gedik, B., et al.: Adaptive load shedding for windowed stream joins. In: CIKM (2005)
9. Gedik, B., Wu, K.-L., et al.: Grubjoin: An adaptive, multi-way, windowed stream join with

time correlation-aware cpu load shedding. IEEE TKDE 19 (2007)
10. Kang, J., Naughton, J., et al.: Evaluating window joins over unbounded streams. In: ICDE

(2003)
11. Liu, B., Zhu, Y., Rundensteiner, E.: Run-time operator state spilling for memory intensive

long-running queries. In: SIGMOD (2006)
12. Mukherji, A., Rundensteiner, E.A.: Tr-wpi-cs-11-01: Achieving high freshness and optimal

throughput in resource-limited execution of multi-join continuous queries: The jaqpot ap-
proach. Technical report, WPI (2011)

13. Nehme, R.V., Rundensteiner, E.A., Bertino, E.: Self-tuning query mesh for adaptive multi-
route query processing. In: EDBT (2009)

14. Pisinger, D.: Where are the hard knapsack problems? Comput. Oper. Res. 32(9) (2005)
15. Rundensteiner, E.A., et al.: Cape: Continuous query engine with heterogeneous-grained

adaptivity. In: VLDB (2004)
16. Tatbul, N., et al.: Load shedding in a data stream manager. In: VLDB (2003)
17. Viglas, S., Naughton, J., et al.: Maximizing the output rate of multi-way join queries over

streaming information sources. In: VLDB (2003)
18. Yang, J., Leung, J.Y.-T.: A generalization of the weighted set covering problem. Naval Re-

search Logistics (2005)

Mining Image Databases by Content

Gerald Schaefer

Department of Computer Science, Loughborough University, Loughborough, U.K.

Abstract. Visual information is becoming more important and at a
rapid rate. However, creators and users are reluctant to annotate visual
content making it difficult to search these collections. Content-based im-
age retrieval (CBIR) techniques extract visual descriptors directly from
image data and can hence be used in situations where textual informa-
tion is not available. In this paper, we give a brief introduction on some
of the basic colour descriptors that are employed in CBIR.

1 Introduction

While personal image collections may contains thousands of images, commercial
image repositories can comprise several million images [1]. Effective and efficient
methods for querying these collections are highly sought after. While images
are rarely annotated [2], content-based image retrieval (CBIR) techniques [3],
which extract image features describing colour, texture, shape etc. attributes to
formulate a query, can be successfully employed. In this paper, we give a brief
introduction on some of the basic colour descriptors that are used for CBIR.

2 Content-Based Image Retrieval by Colour

Colour has been shown to be one of the most effective feature types for CBIR.
The simplest colour descriptor for CBIR are colour moments [4] which are de-
fined by central normalised moments of the colour distribution of an image
(usually mean, standard deviation and kurtosis in each colour channel). Visual
(dis)similarity between two images can be described by the L1 norm between
their moment vectors.

Swain and Ballard [5] introduced the use of colour histograms, which record
the frequencies of colours in the image, to describe images in order to perform
object recognition and image retrieval. As similarity measure they introduced
histogram intersection which quantifies the overlap between two histograms and
can be shown to be equivalent to an L1 norm.

Rather than using colour histograms, a more compact descriptor for encoding
the colour distribution of images is a colour signature. Colour signatures are a
set {(c1, ω1), (c2, ω2), . . . , (cm, ωm)} where ci define colour co-ordinates and ωi

their associated weights (i.e., their frequencies in the image). A common way of
deriving colour signatures for images is through a clustering process. Once colour
signatures for images are determined, these signatures can be compared by a

A.A.A. Fernandes et al. (Eds.): BNCOD 2011, LNCS 7051, pp. 66–67, 2011.
c© Springer-Verlag Berlin Heidelberg 2011

Mining Image Databases by Content 67

metric known as the earth mover’s distance [6] which is a flow-based measure and
effectively describes the work that is required to transform the colour signature
of one image into that of another.

Simple colour features such as colour histograms are fast to compute, and are
invariant to rotation and translation as well as robust to scaling and occlusions.
On the other hand, they do not carry any information about the spatial distri-
bution of the colours. Colour coherence vectors [7] were introduced as a method
of introducing spatial information into the retrieval process. Colour coherence
vectors consist of two histograms: one histogram of coherent and one of non-
coherent pixels. The L1 norm is used as the distance metric between two colour
coherence vectors.

3 Conclusions

Content-based image retrieval has been a very active research area for the past
two decades, and colour features have been shown to be very useful in this
context. In this paper, we have given a brief summary of some colour features
that are commonly employed for CBIR. While space limitations don’t allow us
to go into detail here, it should be noted that for efficiency many descriptors
(or near equivalents) can also be derived in the compressed domain [8], while
colour features are also very useful for image browsing systems which provide
an interactive alternative to retrieval-based approaches [9].

References

1. Osman, T., Thakker, D., Schaefer, G., Lakin, P.: An integrative semantic framework
for image annotation and retrieval. In: IEEE/WIC/ACM International Conference
on Web Intelligence, pp. 366–373 (2007)

2. Rodden, K.: Evaluating Similarity-Based Visualisations as Interfaces for Image
Browsing. PhD thesis, University of Cambridge Computer Laboratory (2001)

3. Smeulders, A., Worring, M., Santini, S., Gupta, A., Jain, R.: Content-based image
retrieval at the end of the early years. IEEE Trans. Pattern Analysis and Machine
Intelligence 22, 1249–1380 (2000)

4. Stricker, M., Orengo, M.: Similarity of color images. In: Conf. on Storage and Re-
trieval for Image and Video Databases III. Proceedings of SPIE, vol. 2420, pp.
381–392 (1995)

5. Swain, M., Ballard, D.: Color indexing. Int. Journal of Computer Vision 7, 11–32
(1991)

6. Rubner, Y., Tomasi, C., Guibas, L.: The earth mover’s distance as a metric for
image retrieval. Int. Journal of Computer Vision 40, 99–121 (2000)

7. Pass, G., Zabih, R.: Histogram refinement for content-based image retrieval. In: 3rd
IEEE Workshop on Applications of Computer Vision, pp. 96–102 (1996)

8. Schaefer, G.: Content-based retrieval of compressed images. In: International Work-
shop on DAtabases, TExts, Specifications and Objects, pp. 175–185 (2010)

9. Plant, W., Schaefer, G.: Visualisation and browsing of image databases. In: Lin,
W., Tao, D., Kacprzyk, J., Li, Z., Izquierdo, E., Wang, H. (eds.) Multimedia Anal-
ysis, Processing and Communications. SCI, vol. 346, pp. 3–57. Springer, Heidelberg
(2011)

Searching for Complex Patterns over Large Stored
Information Repositories�

Nikhil Deshpande1, Sharma Chakravarthy1, and Raman Adaikkalavan2

1 CSE Department, The University of Texas at Arlington
2 CIS Department, Indiana University South Bend

{sharma,raman}@cs.iusb.edu

Abstract. Although Information Retrieval (IR) systems, including search en-
gines, have been effective in locating documents that contain specified patterns
from large repositories, they support only keyword searches and queries/patterns
that use Boolean operators. Expressive search for complex text patterns is im-
portant in many domains such as patent search, search on incoming news, and
web repositories. In this paper, we first present the operators and their semantics
for specifying an expressive search. We then investigate the detection of complex
patterns – currently not supported by search engines – using a pre-computed in-
dex, and the type of information needed as part of the index to efficiently detect
such complex patterns. We use an expressive pattern specification language and a
pattern detection graph mechanism that allows sharing of common sub-patterns.
Algorithms have been developed for all the pattern operators using the index to
detect complex patterns efficiently. Experiments have been performed to illus-
trate the scalability of the proposed approach, and its efficiency as compared to a
streaming approach.

Keywords: Information retrieval, Complex patterns, Document search.

1 Introduction

Although current IR systems [1,2,3,4] are convenient for doing keyword searches, in
domains such as federal intelligence, fugitive tracking and searching full-text patent in-
formation, there is a need to detect (or search1) more complex patterns in data sources.
Users in these domains may have more precise requirements in terms of what they are
searching for. They may be searching for patterns that involve term frequency (e.g.,
at least 5 occurrences of the phrase “protein clustering”), proximity with sub-patterns
(e.g., “peptide” near “saccharide”, in any order, within 5 words of each other), sequence
of sub-patterns (e.g., “DNA” followed by “modification”) and so on. Further, the pat-
terns that need to be detected may be arbitrarily complex; that is, they may need to be
specified in terms of other patterns (e.g., (“militant” followed by “bomb”) near “Iraq”,
separated by 5 positions or less). The expressiveness of search/query specification pro-
vided by current IR systems, although satisfactory for general searches, is not adequate
for the above application domains.
� This work was supported, in part, by the following NSF grants: IIS-0326505, EIA 0216500,

and IIS 0534611.
1 We use the terms “search” and “detect” interchangeably in this paper.

A.A.A. Fernandes et al. (Eds.): BNCOD 2011, LNCS 7051, pp. 68–82, 2011.
c© Springer-Verlag Berlin Heidelberg 2011

Searching for Complex Patterns over Large Stored Information Repositories 69

Detecting complex patterns over text streams has been studied and shown to be pos-
sible in [5], in which a suite of complex operators and their algorithms were developed
that detect complex patterns over stream data. Detecting patterns over a dynamic text
source (e.g., news feeds, IP packets) essentially entails streaming the data to detect the
required patterns. In other words, to detect a pattern, the entire data source must be read
(or parsed) every time. This is inefficient, but unavoidable, because of the fast-changing
nature of the data source. Also, if freshness of the search results are important to the
user, it becomes necessary to read the data source every time while processing a query.
However, if the data source is relatively static (e.g., Web repositories), it is unnecessary
to read the entire source each time a pattern is to be detected. The inefficiency will
be exacerbated as the data source grows larger. A better approach would be to build
and leverage an index on the data, as is done by search engines, and the information
in the index could be used for answering queries. Since the index would be computed
off-line, this approach may result in an occasional out-of-date search result. However,
considering that the data source is not frequently updated, we can assume this is accept-
able to the user. For such relatively static data sources, the gains in terms of efficiency
of retrieval that leveraging an index will bring outweigh the slight disadvantage of an
occasional out-of-date result.

The techniques developed for searching complex patterns over streams (as in XML
streams, news feed, stock prices) in [5] makes use of the sequential inflow of patterns by
reading the entire data source to detect a pattern. However, if the same patterns need to
be detected in stored data (as in web repositories) then streaming is very inefficient. It is
more efficient to index the repository (or use an already existing index) to detect the pat-
terns. Indexing will lose the sequence of occurrence of patterns in the data. This order
of occurrence of patterns is the key to detecting patterns based on proximity, contain-
ment, sequence, etc. The main contributions of this paper are to: (i) Identify information
that is needed as part of the index to correctly and efficiently detect complex patterns
as compared to the streaming approach, (ii) Explore the extent of the complexity of
the patterns that can be detected using indexed information, and (iii) Develop efficient
algorithms for index-based pattern detection.

The rest of this paper is organized as follows: Section 2 discusses the semantics of
the InfoSearch operators and Section 3 explains the algorithms used by the operators.
Section 4 explains the design of the InfoSearch System. Section 4.1 explains the imple-
mentation aspects of the system. Section 5 shows detailed experimental results. Section
6 reviews the related work, and Section 7 concludes the paper.

2 Pattern Specification and Detection

The InfoSearch framework discussed in this paper consists of an expressive query lan-
guage (introduced in [5]) through which the user can specify patterns and a pattern
detection engine capable of using the index to retrieve documents. InfoSearch detailed
in this paper has been briefly summarized in [6]. InfoSearch adopts the Pattern Spec-
ification Language (PSL) and its associated parser and pattern validator used in In-
foFilter [5]. The focus of this paper is on the detection of complex patterns over large
document repositories.

70 N. Deshpande, S. Chakravarthy, and R. Adaikkalavan

2.1 Pattern Specification

An occurrence of a pattern P is the presence of the pattern P in a given document.
There is an offset (multiple ones if the pattern occurs multiple times in the document)
at which the pattern occurs in the document. Os is the start offset, and Oe is the end
offset of the pattern, where offset is the position of words relative to the beginning of
the document.

Simple patterns are the basic building blocks and can be either System-defined (i.e.,
pre-defined in the system), or User-defined. Begin para, Begin document are examples
of system-defined patterns. Examples of simple user-defined patterns are: keywords or
phrases.

Complex patterns are composed of simple patterns, complex patterns, and pattern
operators (listed below). Any arbitrary complex pattern can be composed using the
pattern operators. Current operators supported are summarized below:

OR: Disjunction of two simple or complex patterns P1 and P2, denoted by (P1 OR
P2), occurs when either P1 or P2 occurs. For example, “information” OR “filtering”
will be detected when either one of the keywords occurs.

NEAR: Proximity of two simple or complex patterns P1 and P2, denoted by (P1

NEAR [/D] P2), occurs when both P1 and P2 occur, irrespective of their order of
occurrence. “D” is the maximum distance allowed between the patterns P1 and P2.
Default value of “D” is the scope of the operator (which can be the entire document).

FOLLOWED BY: Sequence of two simple or complex patterns P1 and P2, denoted
by (P1 FOLLOWED BY [/D] P2), occurs when the occurrence of P1 is followed by
the occurrence of P2 in a non-overlapping manner. The end offset of P1 is less than the
start offset of P2; “D” is the maximum distance allowed between the two patterns P1

and P2. If the value of “D” is 1 (minimum value), this indicates that the patterns P1 and
P2 form a phrase.

WITHIN: Occurrence of a simple or complex pattern P in the range formed by the
start offset of the pattern PS and the end offset of PE , denoted by (P WITHIN (PS ,
PE)). The pattern is detected each time pattern P occurs in the range defined by patterns
PS and PE . For example, “information filtering” WITHIN (BeginPara, EndPara) will
be detected whenever the phrase “information filtering” occurs within a paragraph.
When an expression is specified without a system-defined pattern, the default structure
(e.g., a document) is used as the default. User defined PS and PE can be used.

NOT: Non-occurrence of a simple or complex pattern P in the range formed by
the start offset of PS and the end offset of PE . The general specification is (NOT
[/F](P)(PS, PE)), where P , PS , and PE can be arbitrary patterns. “F” indicates the
minimum number of occurrences and its default value is 1. For example, NOT (“filter-
ing”)(“information”, “retrieval”) will be detected whenever “information” is followed
by “retrieval” without the word “filtering” occurring at least once in between them.

FREQUENCY: Multiple occurrences of a simple or complex pattern that exceed or
equal to F, denoted by (FREQUENCY /[F] (P)). A pattern P is detected each time P
occurs at least F times, where “F” is the minimum number of occurrences specified by
the user. The default value of F is 1. All the occurrences that are used for detection
should be disjoint (i.e., the end offset of each pattern occurrence should precede the

Searching for Complex Patterns over Large Stored Information Repositories 71

start offset of the subsequent pattern occurrence). The same set of occurrences will not
be used for detecting multiple instances of the same pattern.

SYN: This is an option and is specified along with a single-word pattern (currently),
denoted by (P [SYN]), to indicate multiple single-word patterns that have the same
meaning, in a succinct manner. Specifying a single-word pattern with SYN option is
equivalent to specifying N simple patterns that carry the same meaning (synonyms)
as the original pattern. For example, if you specify the word “bomb”[SYN] is equiv-
alent to specifying “bomb” OR “explosive device” OR “weaponry” OR “arms” OR
“implements of war” OR “weapons system” OR “munition” . If any of these words
or phrases appears in the text, the pattern “bomb”[SYN] is detected. This option adds
simplicity and flexibility to the specification of single-word patterns. The same is true
for complex patterns with embedded synonym specification, e.g. “Bomb”[SYN] NEAR
“Ground Zero”.

Sample Query: Using the above operators, users can specify complex and meaning-
ful patterns. A complex pattern (“bomb” occurring prior to “ground zero” occurring
twice, with a single occurrence of “automotive” or its synonyms), can be specified as:

Pattern P1 = “bomb” FOLLOWED BY “groundzero”
Pattern P2 = FREQUENCY/2 (P1)
Pattern P3 = P2 NEAR “automotive”[SYN]

2.2 Pattern Detection

Pattern detection semantics are needed for detecting meaningful patterns, since in an
unrestricted semantics (where none of the pattern occurrences are discarded after par-
ticipating in pattern detection) not all the detected patterns are meaningful for an appli-
cation. Detection semantics essentially delimit the patterns detected and accommodate
a wide range of application requirements.

We want to emphasize that we have chosen to define proximal-unique semantics in
this paper based on the intuition of proximity and disjoint pattern detection. It is cer-
tainly possible to define other meaningful constraints leading to other useful semantics.
However, the framework remains the same and the algorithms change depending upon
the semantics used. It is indeed possible to include semantics of detection as an addi-
tional parameter when several of them are defined and supported.

Consider a document containing occurrences of words as shown in Figure 1. Suppose
we want to find occurrences of “cell” FOLLOWED BY “nucleic” within this document.
As shown in the figure, there are two occurrences of “cell”, one occurring at position
10, say cell1 and the other at position 15, say cell2. The occurrences of nucleic are at
position 28 and 41, say nucleic1 and nucleic2 respectively. We could combine either

10 15 20 28 34

cell cell protein nucleic clustering nucleic

41

Fig. 1. Pattern Occurrences (Example)

72 N. Deshpande, S. Chakravarthy, and R. Adaikkalavan

cell1 with nucleic1, or cell2 with nucleic1, or cell1 and cell2 both with nucleic1 as
occurrences of the combined pattern “cell” FOLLOWED BY “nucleic”.

However, it makes more intuitive sense to combine only the closest occurrences,
because closely occurring patterns are more likely to be of interest for a search as the
correlation here is measured in terms of proximity. Hence, we discard the occurrence
of cell1 and combine cell2 with nucleic1. In the above example, cell2 is called the
initiator because it initiates the pattern detection, and nucleic1 is called the terminator,
because its occurrence results in the pattern being detected.

Second, sub-patterns once used are not used for detecting another instance of the
same pattern, i.e., patterns need to be unique. For example, it does not make intuitive
sense to combine cell2 with nucleic2, because cell2 has already been used in a combi-
nation. Combining it again with nucleic2 will result in the detection of another instance
of the same pattern using a previously used sub-pattern. Of course, the above takes the
distance into consideration where specified.

The Proximal-Unique semantics has been defined to take this intuitive sense of
proximity and uniqueness into consideration when detecting a pattern by applying re-
strictions on the usage of sub-patterns. It is less complicated to detect patterns with
unrestricted semantics although a large number of them are likely to be generated.

Non-overlap or disjoint aspect is also assumed. For example, suppose we want to find
the occurrence of (“cell” FOLLOWED BY ‘nucleic”) NEAR (“protein” FOLLOWED
BY “clustering”). According to the semantics discussed above, “cell” FOLLOWED BY
‘nucleic” occurs in the interval (15, 28) and “protein” FOLLOWED BY “clustering”
occurs in the interval (20, 34). The sub-patterns satisfy the condition of being proximal,
and of being the most recent un-combined occurrence of their type. However, they
overlap and are not disjoint. Under the disjoint constraint, the combined pattern is not
detected. It is also possible to relax the disjoint constraint in which case the NEAR
operator will detect the above pattern.

2.3 Inverted Index

The inverted index (also called an inverted list) is the most common mechanism used
in Search Engines [2,7] to maintain a mapping from a keyword to the documents that
contain the keyword. Given a collection of documents, IDs are assigned to each docu-
ment. A document ID uniquely identifies a document. The basic information stored in
the inverted index is just a keyword - document ID mapping. For example, a sample
set of documents is shown in Table 1 and the corresponding inverted index is shown in
Table 2. This information is sufficient to answer simple keyword queries and queries
involving Boolean operators. In other words, given a keyword, we can return document
IDs of documents that contain at least one occurrence of that keyword. For example,
in the given example, if the user is searching for “information” AND “retrieval”, the
intersection of the document IDs corresponding to the keywords “information” and
“retrieval” gives us the desired result (documents 1 and 3 in this example).

However, to answer queries involving proximity, sequences, frequency and contain-
ment, this information is not sufficient. First, the above scheme does not store infor-
mation about every occurrence of a keyword. It only provides information about the
presence or absence of a term within a document. Second, to answer such complex

Searching for Complex Patterns over Large Stored Information Repositories 73

Table 1. A sample set of documents

Document ID Document contents
1 information retrieval
2 Specifying complex queries
3 information on information retrieval

Table 2. Inverted index on documents in
Table 1

Keyword Documents
information 1,3

retrieval 1,3
Specifying 2
complex 2
queries 2

on 3

Table 3. Inverted index with position
information

Keyword Documents with position
information 1<1>, 3<1,3>

retrieval 1<2>, 3<4>

Specifying 2<1>

complex 2<2>

queries 2<3>

queries, we need to compute the distance between two given patterns, and also the rela-
tive order of occurrence of these patterns. For example, a query such as “information”
NEAR/2 “retrieval” cannot be answered using information from such an index, because
the distance between occurrences of “information” and “retrieval” within a given doc-
ument needs to be computed. This distance cannot be computed given just the document
which the patterns belong to. The position of every occurrence of the keyword within
a document must also be provided by the index [8]. Table 3 shows an inverted index
generated on the documents in Table 1 with the position information stored.

Hence, InfoSearch needs at least the document ID and the position of a given key-
word from the index with which it is integrated, in order to detect complex patterns.
One of the main goals of this work was to assess whether this information is sufficient
to enable complex pattern detection over an index, if the same patterns can be detected
by reading the data source in sequence.

2.4 Pattern Detection Graphs

Patterns are detected using a data structure called Pattern Detection Graph (PDG). A
query submitted to InfoSearch is converted into a PDG. Leaf nodes of the PDG corre-
spond to simple patterns such as keywords, phrases or system defined patterns. Internal
nodes correspond to complex patterns and encapsulate the logic of the corresponding
operator. For example, the PDG corresponding to the pattern “Protein” FOLLOWED
BY “clustering” is shown in Figure 2. The input to a leaf node is a set corresponding to
the index lookup for the term or phrase represented by the leaf node. This set consists
of <docID, start offset, end offset> tuples. As shown in the figure, “protein” occurs
once at offset 10 in document 1 and “clustering” occurs once at offset 12 in document
1. As another example, the set of tuples for the keyword “information” from the index
shown in Table 3 is: 1<1,1>, 3<1,1>and 3<3,3>.

74 N. Deshpande, S. Chakravarthy, and R. Adaikkalavan

Every node in a PDG has one or more parent nodes (also called as subscriber nodes),
except the root node. Leaf nodes propagate their input sets to their parent nodes. A
parent node, which corresponds to one of the operators such as OR or NEAR, thus gets
one or more sets of tuples as its input. The operator merges its input sets according
to the Proximal-Unique semantics for that operator to create an output set. After the
merged set is created, it is propagated to the parent node of the operator. This process of
propagating merged sets continues all the way up to the root. The merged output of the
root operator corresponds to the result set for the query. For example, in figure 2, the
input sets from leaf nodes are propagated to the “followed by” node, where the complex
pattern is detected over the interval < 10, 12 >.

to parent

Clustering

FOLLOWED
BY

ProteinD1 <10, 10> D1 <12, 12>

D1 <10, 12>

Fig. 2. PDG corresponding to “Protein” FOLLOWED BY “Clustering”

3 Pattern Operator Processing

InfoSearch computations are different from that of the algorithms used in a streaming
system. In a streaming system [5], the operators work by reading the data source se-
quentially, and passing simple pattern occurrences to the respective PDG nodes as and
when they occur while the data is being read. In other words, the input to a leaf node
will be a tuple and not a set of tuples. Because the data is read sequentially, simple
patterns are detected in their order of occurrence in the data source. As a re-
sult, at any operator, the initiator is always available when the terminator arrives. The
occurrences can then be combined and propagated, or discarded, as per the semantics
of the operator.

However, in InfoSearch the entire result set corresponding to a pattern is propagated
at once because of the stored text. This means that the relative order of occurrence of the
operands is lost, because each operand is a set containing all occurrences of the pattern
corresponding to that operand in the document collection. Hence, to generate correct
results, the InfoSearch operators need to restore the order of occurrence of patterns as
in the original document. This is crucial in order to determine which operand is the
initiator and which one is the terminator. Only when the relative order of occurrence

Searching for Complex Patterns over Large Stored Information Repositories 75

and position of sub-patterns is known, can a decision be made whether they can be
combined or not.

The inputs to the operators are sets of tuples containing the document ID, start offset,
and end offset of the corresponding pattern. Each tuple represents a single occurrence
of the corresponding pattern in the document collection. It is assumed that these sets
of tuples are sorted in ascending order of document ID and by start offset within each
document ID. The operators have to process the input sets tuple by tuple. First, they
have to ensure that the tuples to be merged have the same document ID. Second, they
have to determine which tuple is the initiator and which one is the terminator. Tuples
satisfying the criteria of the operator are combined and added to an output set. After the
operator is done processing the input sets, the output set is propagated to its parent.

Due to space limitations, we discuss only the NEAR operator. Please refer to [9] for
other operator and algorithm discussions.

3.1 The NEAR Operator

When the NEAR operator is processing two tuples from the input sets, it has to make a
decision whether the tuples are eligible for combination, and if not, decide which one
to keep and which one to discard. As mentioned earlier, the input tuples may either
be point tuples or interval tuples. To keep the forthcoming discussion generalized, we
assume that the input tuples have both start and end offsets. We now discuss the different
cases possible when we consider two input tuples, and the corresponding actions taken
in each case.

Merging strategy in NEAR: The inputs to the NEAR operator are two sets of tuples
corresponding to the left child and the right child, and an optional distance. Let the left
set be denoted by L and the right set by R. Let the distance be denoted by d. We arbitrar-
ily assign the first tuple from L as initiator, and the first tuple from R as terminator.
Let is and ie denote the start offset and end offset of the initiator, and ts and te denote
the start offset and end offset of the terminator. Let i+1 be the next tuple from the set
which initiator belongs to, and t + 1 be the next tuple from the set which terminator
belongs to.

If initiator and terminator do not belong to the same docID, we advance the
pointer which is pointing to a smaller docID. Since the sets are sorted by docID, this
is similar to a sort-merge operation. When initiator and terminator point to tuples
belonging to the same docID, three cases are possible.

Case 1 (ie < te): This means that the assumed initiator ends before the assumed
terminator. The different possibilities are shown in Figure 3. We perform the follow-
ing sequence of actions:

if initiator and terminator overlap then
lookahead2 to determine new initiator and terminator
go to the beginning of this operation and re-process the new initiator and
terminator

2 The Lookahead algorithm is explained below.

76 N. Deshpande, S. Chakravarthy, and R. Adaikkalavan

is ie

ts te

is ie i+1ei+1s ts te is ie ts te

overlap i+1 precedes t i and t form closest pair

Fig. 3. Some possibilities when ie < te

if i + 1e ≤ te then
make i + 1 the new initiator, and re-process the new initiator and terminator

else
this means initiator completely precedes terminator, without any overlap, and
there is no other tuple from the initiator set occurring before terminator. Now,
check if the distance criterion is satisfied.
if (ts - ie) ≤ d then

combine initiator and terminator
advance initiator and terminator

else
does not satisfy distance
lookahead to determine new initiator and terminator, re-process them

Case 2 (ie == te): This means initiator and terminator overlap (they have the same
end offset). Perform a lookahead, and re-process.
Case 3 (ie > te): This means our assumption of initiator and terminator is wrong.
The terminator precedes the initiator, either in an overlapping fashion, or a non-
overlapping fashion as shown in Figure 4. In this case, we swap the initiator and
terminator pointers, and re-process.

ts te

is ie

overlap

ts te

is ie

no overlap

Fig. 4. Some possibilities when te < ie

Lookahead algorithm: A lookahead is done when the current initiator and
terminator cannot be combined due to an overlap, or because the distance criterion
is not satisfied. At this point, we cannot determine which one from initiator and
terminator to keep, and which one to discard. We look ahead one tuple from both
sets, and assign the one that occurs first as the new terminator. The older tuple from the

Searching for Complex Patterns over Large Stored Information Repositories 77

opposite set becomes the new initiator. Three possibilities exist when we consider the
lookahead tuples:
Case I (i+1e < t+1e): This means the next tuple in the initiator set occurs before the
next tuple in the terminator set. (We assume they belong to the same docID).

Make old terminator the new initiator
Make i + 1 the new terminator
Case II (i + 1e == t + 1e): This means the next tuples have the same end offset. In this
case, we look at the older pair, and keep the one that occurs later as the new initiator.

if ie < te then
Make old terminator the new initiator
Make i + 1 the new terminator

else
This means initiator and terminator have the same end offset
Keep the initiator
Make t + 1 the new terminator

Case III (i + 1e > t + 1e):
Keep the initiator
Make t + 1 the new terminator

NEAR/
30

D1 <10, 18>
D1 <21, 25>
D2 <12, 18>
D2 <30, 35>
D3 <40, 47>
D4 <60, 80>

.

.

D1 <28, 40>
D2 <15, 20>
D2 <21, 24>
D3 <12, 19>
D4 <12, 20>

.

.

D1 <21, 40>
D2 <12, 24>
D3 <12, 47>

Fig. 5. Example of the NEAR operator algorithm

Figure 5 shows an example of the working of the NEAR operator. To begin, initia-
tor points to D1 <10, 18> in the left set, and terminator points to D1 <28, 40> in the
right set. Since the next tuple in the initiator set lies completely before terminator, it is
assigned as the new initiator (initiator is advanced). Now, initiator and terminator point
to a proximal pair of tuples, and hence they are merged and added to the output set as the
tuple D1 <21, 40>. When initiator and terminator point to D2 <12, 18> and D2 <15,

78 N. Deshpande, S. Chakravarthy, and R. Adaikkalavan

20> respectively, an overlap is detected, and hence a lookahead is done in both sets. The
lookahead determines that the next tuple from the right set (D2 <21, 24>) ends before
the next tuple from the left set (D2 <30, 35>). Hence, D2 <21, 24> is made the new
terminator and D2 <12, 18> is retained as the initiator. They are combined to form the
output tuple D2 <12, 24>. Now, initiator points to a D2 tuple while terminator points
to a D3 tuple. Hence, initiator is advanced. Now, initiator (D3 <40, 47>) lies com-
pletely after terminator (D3 <12, 19>). Hence, initiator and terminator are swapped.
This makes initiator point to D3 <12, 19> and terminator point to D3 <40, 47>, which
form a proximal pair and are merged to give D3 <12, 47> in the output set. Finally, ini-
tiator points to D4 <12, 20>, and terminator points to D4 <60, 80>. In this case, the
distance between them is 40, which is greater than the maximum allowed distance, i.e.,
30. Hence, they are not combined, and a lookahead needs to be done to determine which
one of them should be discarded, and which one kept.

Pattern
Validator

Pattern
Processor

Graph
Generator

Index Interface

Inverted index

Keyword buffer

{keyword1,
keyword2,...}

PSL query

Results

<keyword1, URL1,
position>

.

.

.
<keywordn, URLn,

position>

tuples (hits)

Document
collection

WordNet
database

InfoSearch
User

PDG

Pattern Detector

Fig. 6. InfoSearch architecture

4 Design and Implementation of InfoSearch

The InfoSearch architecture is shown in Figure 6. The user query specified in Pattern
Specification Language is converted into a Pattern detection graph (or PDG). Leaf nodes
of the PDG represent simple patterns such as keywords, phrases or system defined pat-
terns. Higher level nodes represent composite operators on these leaf nodes, or on other
composite nodes. To detect and optimize common computations, the graph generator
shares PDG nodes (and sub-graphs) wherever possible. This is achieved by generating

Searching for Complex Patterns over Large Stored Information Repositories 79

a single, common PDG or sub-PDG for a common expression or sub-expression. While
generating the graph, the graph generator stores the keywords specified in the query in
a keyword buffer. Once the PDG is generated, the graph generator queries the index for
each of the keywords it has stored in its buffer. This is done through the index interface
module, which is responsible for retrieving the “hits” for each keyword from the index.
The detection engine of InfoSearch is designed to be generic and capable of working
with any kind of index. The “hits” are then wrapped into a set of <docID, start offset,
end offset> tuples “tuples” and passed on to the leaf node that represents the keyword.
Leaf nodes propagate their input to their parent nodes. The parent nodes, which cor-
respond to one of the operators, merge their input sets according to the appropriate
semantics.

4.1 Implementation

Whenever the graph generator comes across a token which is a keyword or a phrase,
it stores this token in a Vector object called the keyword buffer. The keywords in the
buffer are passed to the index interface after the PDG construction is complete, whereas
the phrases are passed to the phrase processor. The reason for having a keyword buffer
is that it is essential that the PDG is completely constructed before the index can be
queried for the keywords. If the keywords are passed to the index interface or phrase
processor by the graph generator as and when it pops them off the stack, they will re-
turn the results from the index to the PDG possibly before it is completely constructed.
Thus, the keyword buffer is essential to avoid triggering of PDG nodes by the index
interface while the PDG is being constructed. If the synonyms option is chosen for
any keyword in the query, the graph generator queries the WordNet synonym database
to get synonyms for the keyword. This is done through an API called the Java Word-
Net Library (JWNL) [10]. For each synonym, a leaf node is constructed, and finally a
SYN operator node is constructed which subscribes to the original keyword and all its
synonyms.

The index interface has to provide standard methods to access data from the inte-
grated index, and deliver the results to the pattern detector in a specific format. As
such, it does not matter if the index being integrated is an inverted index, or any other
kind of index, say a B-tree index, as long as an index interface for it is developed. In
other words, if a new index has to be integrated with InfoSearch, an index interface for
that index has to be created which will support the required calls from InfoSearch, and
return data to it in the expected format.

The pattern detection engine is responsible for processing the result sets from the
index. The index interface passes a reference to a Vector of Tuples corresponding to
a keyword to the leaf node corresponding to the keyword. Internal nodes of the PDG
correspond to one of the operators. They get references to one or more Vectors from
their children and merge them to produce an output Vector. This merging is done as per
the operator semantics described earlier.

For the first release of this system, we built a simple inverted index using Berkeley
DB Java Edition [11], and integrated it with InfoSearch. Since the Berkeley DB API
is in Java, it was convenient to develop an index interface for it, because the rest of
the InfoSearch system was also developed in Java. To create the inverted index, we

80 N. Deshpande, S. Chakravarthy, and R. Adaikkalavan

Performance of Stream based detection vs. Index-based
detection

0
100
200
300
400
500
600
700

ke
yw

or
d

O
R

F
R

E
Q

U
E

N
C

Y

N
E

A
R

F
O

LL
O

W
E

D
B

Y

N
O

T

ph
ra

se

sy
no

ny
m

P
D

G
 w

ith
he

ig
ht

 4

Query type

R
es

p
o

n
se

 t
im

e
(m

ill
is

ec
.)

InfoFilter

InfoSearch

Fig. 7. Comparison of system performance over 2600 words

Fig. 8. Response Time of InfoSearch (IS) and InfoFilter (IF) Systems in milliseconds for each
Operator

have created a Java program called DocumentIndexer which takes a given folder of
documents, reads the documents, and builds an inverted index over those documents.
For every keyword in each document, it stores a “hit” in the inverted index, which
contains the path of the document the keyword is from, and the position of the keyword
in that document.

5 Experimental Results

The primary reason for developing operators and algorithms to detect complex patterns
over indexed data was to support efficient searching of stored documents for complex
patterns. It does not make sense to stream already stored documents and use InfoFil-
ter [5] for detecting patterns. Since InfoSearch uses an index-based approach, it is ex-
pected to be efficient for large volumes of data. A set of 20 documents of around 1.5 KB
each were selected from the Reuters-21578 dataset3 and the documents were artificially

3 Available at http://www.daviddlewis.com/resources/testcollections/reuters21578

Searching for Complex Patterns over Large Stored Information Repositories 81

converted into a stream, fed to InfoFilter [5] and patterns involving all the operators
were detected over this document stream. The time taken to process the stream was
noted in milliseconds. Subsequently, the same documents were indexed for testing the
efficiency of InfoSearch and the time taken for the result set to reach the root node was
noted in milliseconds. For each of the operators, the performance of these systems are
noted and are shown in Figure 7. The experiments were again repeated with document
sets of sizes 1MB, 2MB, 5MB, 10MB, 20MB and 50MB and the results are shown in
Figure 8. The last row of the table indicates a pattern whose PDG is height 4 (has 4
operators and at least 5 leaf nodes). From that row it is clear that the improvement for
data sizes as little as 1MB is more than a factor of 100. This is even better with the
improvement being more than a factor of 1000 for data volumes of 50MB. As can be
seen, the detection for index-based algorithm grows sub-linearly whereas the detection
time for the streaming approach grows super-linearly. The time taken to index the doc-
uments is not considered in the above comparison (which is negligible as compared to
the improvements in detection time), since it is a pre-processing step, and is amortized
over multiple searches on the repository.

6 Related Work

Most search engines use a variation of the vector space model [1] to select documents
against a query from a document collection. In addition, search engines try to add other
factors to the ranking process for documents including external (meta) information about
the documents, references to documents from other documents, etc. Google [2] stores
the pages fetched by the crawler in compressed form in a repository. It has a document
index, which is a fixed width ISAM index, to keep information about each document.
It also has a lexicon, forward index and an inverted index to facilitate rapid access to
document lists. However, it support queries only in the form of keywords and Boolean
compositions of keywords. INQUERY [3] is based on a form of the probabilistic re-
trieval model called the inference net. Inference nets [4] provide the capability to spec-
ify complex information needs, and compare them to document representations. The
operators supported by INQUERY include and, or, not, a phrase operator and also an
operator that handles proximity between patterns. In addition, specification of a partic-
ular argument as being more important that the others can be done. However, there are
no operators for sequence of patterns, pattern frequency, synonyms and containment.

7 Conclusions

It was observed that current search systems are somewhat restrictive in the expressive-
ness of patterns that can be specified by the user. InfoSearch facilitates searching of
complex patterns involving proximity, frequency, containment and sequences over a
given document collection. The use of pattern operators and its modified semantics to
provide an expressive pattern specification mechanism and to develop algorithms for an
index-based approach are the main contributions of the paper. We have demonstrated
that there is no loss of detection capability from stream mode to index mode for the
pattern specification language. The overhead of additional information is quite small

82 N. Deshpande, S. Chakravarthy, and R. Adaikkalavan

in the form of offsets which can be readily obtained while indexing. The index-based
algorithms are quite different from their counterparts in stream processing.

We are currently working on incremental algorithms where the computation can be
stopped after detecting k patterns efficiently without having to use and compute all
patterns. With this it is also possible to consider ranking the results for their utility from
a users’ viewpoint.

References

1. Salton, G., Wong, A., Yang, C.: A vector space model for automatic indexing. Communica-
tions of the ACM 18, 613–620 (1975)

2. Brin, S., Page, L.: The anatomy of a large-scale hypertextual web search engine. In: Proc. of
the WWW, Brisbane, Australia, pp. 107–117 (April 1998)

3. Callan, J., Croft, B., Harding, S.: The inquery retrieval system. In: Proc. of the DEXA, pp.
78–83 (1992)

4. Turtle, H., Croft, B.: Evaluation of an inference network-based retrieval model. ACM Trans-
actions on Information Systems 9, 187–222 (1991)

5. Elkhalifa, L., Adaikkalavan, R., Chakravarthy, S.: Infofilter: A system for expressive pattern
specification and detection over text streams. In: Proc. of the ACM SAC, Santa Fe, NM
(March 13-17, 2005)

6. Chakravarthy, S., Elkhalifa, L., Deshpande, N., Adaikkalavan, R., Liuzzi, R.A.: How To
Search for Complex Patterns Over Streaming and Stored Data. In: IC-AI, pp. 17–22 (2006)

7. Mauldin, M.L.: Lycos : Design choices in an internet search service. IEEE Expert (1997),
http://lazytoad.com/lti/pub/ieee97.html

8. Witten, I., Moffat, A., Bell, T.: Managing Gigabytes: Compressing and Indexing Documents
and Images. Morgan Kauffman, San Francisco (1999)

9. Deshpande, N.: Infosearch : A system for searching and retrieving documents using complex
queries, Master’s thesis, University of Texas at Arlington, Arlington (2005),
http://itlab.uta.edu/ITLABWEB/Students/sharma/
theses/Des05MS.pdf

10. Java wordnet library, http://sourceforge.net/projects/jwordnet
11. Berkeley db java edition,

http://www.oracle.com/us/products/database/berkeley-db/
je/index.html

http://lazytoad.com/lti/pub/ieee97.html
http://itlab.uta.edu/ITLABWEB/Students/sharma/theses/Des05MS.pdf
http://itlab.uta.edu/ITLABWEB/Students/sharma/theses/Des05MS.pdf
http://sourceforge.net/projects/jwordnet
http://www.oracle.com/us/products/database/berkeley-db/je/index.html
http://www.oracle.com/us/products/database/berkeley-db/je/index.html

Using the Euclidean Distance for

Retrieval Evaluation

Shengli Wu1, Yaxin Bi1, and Xiaoqin Zeng2

1 School of Computing and Mathematics,
University of Ulster, Northern Ireland, UK

{s.wu1,y.bi}@ulster.ac.uk
2 College of Computer and Information Engineering

Hehai University, Nanjing, China
xzeng@hhu.edu.cn

Abstract. In information retrieval systems and digital libraries, re-
trieval result evaluation is a very important aspect. Up to now, almost all
commonly used metrics such as average precision and recall level preci-
sion are ranking based metrics. In this work, we investigate if it is a good
option to use a score based method, the Euclidean distance, for retrieval
evaluation. Two variations of it are discussed: one uses the linear model
to estimate the relation between rank and relevance in resultant lists, and
the other uses a more sophisticated cubic regression model for this. Our
experiments with two groups of submitted results to TREC demonstrate
that the introduced new metrics have strong correlation with ranking
based metrics when we consider the average of all 50 queries. On the
other hand, our experiments also show that one of the variations (the
linear model) has better overall quality than all those ranking based met-
rics involved. Another surprising finding is that a commonly used metric,
average precision, may not be as good as previously thought.

1 The Euclidean Distance

In information retrieval, how to evaluate results is an important problem. A lot of
effort has been taken on this and some related issues. Many metrics for retrieval
effectiveness have been proposed. Average precision (AP), recall level precision
(RP), normalized discount cumulative gain (NDCG) [4], and average precision
at 10 document level (P10) are four of the most commonly used metrics. One
major characteristic of these metrics is: they only concern the ranking positions
of relevant/irrelevant documents. They are referred to as ranking based metrics
later in this paper.

In fact, apart from a ranked list of documents, some information retrieval
systems also provide relevance scores for all retrieved documents. For example,
for all those submitted runs to TREC 1, most of them provide such score in-
formation. Suppose for a collection D of documents {d1, d2, ..., dn} and a given
1 TREC stands for Text REtrieval Conference. It is an annual information retrieval

evaluation event held by the National Institute of Standards and Technology of the
USA. Its web site is located at http://trec.nist.gov/.

A.A.A. Fernandes et al. (Eds.): BNCOD 2011, LNCS 7051, pp. 83–96, 2011.
c© Springer-Verlag Berlin Heidelberg 2011

84 S. Wu, Y. Bi, and X. Zeng

query Q, a result R from an information retrieval system IR is {s1, s2, ..., sn},
here si is the score assigned to document di by IR. On the other hand, for every
document di, it has an ideal relevance score oi. If binary relevance judgment is
used, then the ideal score for any judged relevant document is 1 and that for
any judged irrelevant document is 0. If 3 graded relevance judgment is used,
then 0, 0.5, and 1 can be used as ideal scores of irrelevant, modestly relevant,
and highly relevant documents, respectively. In such a situation, the Euclidean
distance between the scores in R and the ideal scores O = {o1, o2, ..., on} can be
calculated by

distance(R, O) =

√√√√ n∑
i=1

(si − oi)2 (1)

distance(R, O) can be used as a metric to evaluate the effectiveness of R. If all
documents’ scores are estimated accurately, then we can expect a low Euclidean
distance value; otherwise, we can expect a high one. The Euclidean distance has
been widely used as a metric in many areas such as data mining, neural net-
works, etc. However, to our knowledge, it has never been explored in information
retrieval. Different from those ranking based metrics, the Euclidean distance can
be regarded as a relevance score based metric. It is an interesting thing to find
out if the Euclidean distance is a good choice for the evaluation of information
retrieval results.

At first glance, one may think that the condition for using this metric is
very rigorous since relevance scores for all the documents in the whole collection
need to be provided. This is only true theoretically. In practice, we may use some
reasonable approximation methods. In TREC, only a certain number (say, 1000)
of documents are included in a result for a query. It is not known what the scores
are for those documents that do not occur in the result. Since those documents
are very likely irrelevant, we can reasonably assign a default score of 0 to all of
them. Another situation is: although some retrieval systems provide scores for
all retrieved documents, those scores may be in various ranges (say, one is in the
range of 1 to 1000 and another in the range of 0 to 10) and cannot be used directly
as relevance scores. In such a situation, we may use score normalization methods
to normalize all the scores to the desired range [0,1]. Several such methods have
been investigated before [5,6,11]. Finally, some retrieval systems may not provide
scores at all for the retrieved documents. Then we may assign different scores
to documents at different ranks in a systematic manner. One straightforward
method for this is the linear model: for a ranked list of m documents, the top
ranked document is given a score of 1, the 2nd document in the list is assigned
a score of (m− 1)/m,..., the last document in the list is assigned a score of 1/m.
This is the method used in Borda voting. It has been used for data fusion [1]
in information retrieval as well. Alternatively, we may use nonlinear models to
estimate scores for documents at different ranks. For example, we may use the
cubic model [9] or other models (e.g., the logistic model [3]) to do this. The cubic
model can be expressed by the following equation

Using the Euclidean Distance for Retrieval Evaluation 85

s(i) = a0 + a1 ∗ ln(i) + a2 ∗ ln(i)2 + a3 ∗ ln(i)3 (2)

In Equation 2, s(i) is the relevance score of the document at rank i. a0, a1, a2,
and a3 are 4 parameters.

Therefore, for any result, we can always evaluate it using the Euclidean dis-
tance after appropriate pre-processing. Some variations of the Euclidean distance
can also be defined, see [10] for detailed discussion.

2 Investigation Objectives and Methodologies

The aims of the study are twofold: one is to evaluate the Euclidean distance,
which is introduced in this paper; the other is to evaluate those ranking based
metrics in the environment that 3 graded relevance judgment is used. There have
been quite a few empirical investigations for those metrics when binary relevance
judgment is used (e.g., in [2,7,8,13]). However, up to now very little has been
done for them when relevant judgment methods other than binary relevance
judgment are used.

Apart fromtheEuclideandistance,wealso consider 4 rankingbasedmetrics:AP,
RP, NDCG, and P10, because they are four of the most commonly used metrics for
retrieval evaluation. Making a comparison of these two types of metrics is helpful
for us to have a better understanding of the characteristics of them.

For readers’ convenience, we discuss how these metrics are defined. First let
us see how to define these metrics involved when binary relevance judgement is
used. Suppose for a query Q, an information retrieval system returns a list of
documents R. There are total r relevant documents in the whole collection. AP
is defined as

AP =
1

total r

total r∑
i=1

i

pi

Here pi is the ranking position of the i-th relevant documents in the resultant
list R. One thing needs to be noticed is: usually a very small percentage of
documents in the whole collection are retrieved and included in any result, thus
it is very likely that less than total r relevant documents will appear in such a
result. Then we just assume that those missing relevant documents will never
appear and their contribution to the value of AP is ignored. For example, if t
relevant documents appear in R, then AP can be defined as

AP =
1

total r

t∑
i=1

i

pi

For example, if there are 4 relevant documents in the whole collection and 2
of them are retrieved in the ranking positions of 2 and 4 in R, then AP =
1/4*(1/2+2/10) = 0.175.

RP is defined as the percentage of relevant documents in the top total r
documents in R.

86 S. Wu, Y. Bi, and X. Zeng

P10 is defined as the percentage of relevant documents in the top 10 documents
in R.

NDCG is introduced in [4]. Each ranking position in a resultant document list
is assigned a given weight. The top ranked documents are assigned the highest
weights since they are the most convenient ones for users to read. A logarithmic
function-based weighting schema was proposed in [4], which needs to take a
particular whole number c. The first c documents are assigned a weight of 1;
then for any document ranked i which is greater than c, its weight is w(i) =
ln(c)/ln(i). Considering a resultant document list up to t documents, its discount
cumulated gain (DCG) is defined as

DCG =
t∑

i=1

(w(i) ∗ r(i))

if the i-th document is relevant, then r(i) = 1; if the i-th document is irrelevant,
then r(i) = 0.DCG canbenormalizedusing anormalization coefficientDCG best,
which is the DCG value of the best resultant lists. Therefore, we have:

NDCG =
1

DCG best

t∑
i=1

(w(i) ∗ r(i))

Now let us see a way of extending AP, RP, and P10 for graded relevance judge-
ment [12]. Note that NDCG can be used in the condition of graded relevance
judgement directly, so no extension is needed for it.

Suppose there are n relevance grades ranging from 1 to n (n means the most
relevant state and 0 means the irrelevant state), then each document di can be
assigned a grade g(di) according to its degree of relevance to the given query. One
primary assumption taken for these documents in various grades is: a document
in grade n is regarded as 100% relevant and 100% useful to users, and a document
in grade i (i < n) is regarded as i/n% relevant and i/n% useful to users. Suppose
there are total n documents whose grades are above 0 and total n = |r1|+ |r2|+
... + |rn|. Here |ri| denotes the number of documents in grade i. First let us see
the concept of the best resultant list. For the given query Q, a resultant list L
is best if it satisfies the following two conditions:

* all the documents whose grades are above 0 appear in the list;
* for any document pair di and dj , if di is ranked in front of dj , then g(di) ≥

g(dj).

Many resultant lists can be the best at the same time, since more than one
document can be in the same grade and the documents in the same grade can
be arranged in different orders, but the relative ranking positions of documents
in different grades cannot be changed. Therefore, we can use g best(dj) to refer
to the grade of the document in ranking position j in one of these best resultant
lists. We may also sum up the grades of the documents in top |rn|, top (|rn|+|rn−
1|),... , top ((|rn|+|rn−1|+...+|r1|) for any of the best resultant lists (these sums
are the same for all the best resultant lists):

Using the Euclidean Distance for Retrieval Evaluation 87

bn =
|rn|∑
i=1

g(di),

bn−1 =
|rn+rn−1|∑

i=1

g(di)...,

b = b1 =
|rn+rn−1+r...+r1|∑

i=1

g(di)

AP can be defined as

AP =
1
b

total n∑
i=1

g(dpi)
i∑

j=1

g(dpj)
pi

Here pj is the ranking position of the j-th document whose grade is above 0, and∑i
j=1 g(dpj) is the total sum of grades for documents up to rank pi. Considering

all these total n documents in the whole collection whose grades are above 0, AP
needs to calculate the precision at all these document levels (p1, p2,..., ptotal n).
At any pi, precision is calculated as

∑i
j=1 g(dpj)/pi, and then a weight of g(dpi)

is applied. In this way the documents in higher grades have a bigger contribution
to the final value of AP.

For RP, First we only consider the top |rn| documents, 1
bn

∑|rn|
j=1 g(dj) can

be to evaluate their precision; next we consider the top |rn|+ |rn−1| documents,
1

bn−1

∑|rn|+|rn−1|
j=1 g(dj) can be used to evaluate their precision, continue this pro-

cess until finally we consider all top total n documents using 1
b

∑|rn|+...+|r1|
j=1 g(dj).

Combining all these, we have

RP =
1
n
{ 1
bn

|rn|∑
j=1

g(dj)+
1

bn−1

|rn|+|rn−1|∑
j=1

g(d(j)+ ...+
1
b1

|rn|+|rn−1|+...+|r1|∑
j=1

g(d(j)}

With binary relevance judgment or graded relevance judgement, all these defined
metrics are in the range of [0,1]. 0 is used to represent the least effective result
and 1 is used to represent the most effective result.

For the investigation, we use two groups of runs submitted to TREC: 9 and
2001 Web tracks. One major reason for choosing these two groups is because
three category relevance judgement is used for both; while in many other groups,
binary relevance judgement is commonly used. From all 105 runs submitted to
the TREC 9 Web track and 97 runs submitted to the TREC 2001 Web track,
we select those that include 1000 documents for each of the queries. Thus we
obtained 53 in TREC 9 and 34 runs in TREC 2001 2. Removing those runs with
fewer documents provides us a homogeneous environment for the investigation,
and it should be helpful for us to obtain more reliable experimental results.
2 See the appendix for the list of runs selected in each group.

88 S. Wu, Y. Bi, and X. Zeng

NDCG needs to set a parameter c, which we set to 2 as in [4]. As to AP, RP,
and P10, we use their expanded form [12] described above for 3 graded relevance
judgment. Two variations of the Euclidean distances were involved. They are the
linear model and the cubic model for the estimation of relation between rank and
relevance in resultant lists.Note that the raw scores of retrieveddocuments from in-
formation retrieval systems are not used in both variations. From this perspective,
they are somewhat like ranking based metrics. This is the interesting part.

We applied the cubic model to all the selected runs in each year group and ob-
tained the values of 4 parameters by regression analysis: For TREC 9, the values
of the four parameters are: a0=0.2474, a1=-0.0639, a2=0.0036, and a3=0.0001.
For TREC 2001, the values of the four parameters are: a0=0.3267, a1=-0.0761,
a2=0.0032, and a3=0.0002. Thus, we can assign proper relevance scores to doc-
uments at different ranks. However, note that those parameter values are only
reasonably good for the estimation of rank-relevance of each individual result.
We avoided using the best possible parameter values for every individual result,
so as to be fair to the other metrics.

3 Experiments

A few different aspects of these metrics are compared through three groups of
experiments. Let us discuss them one by one.

3.1 Experiment 1

First, for all the selected runs in a year group (TREC 9 or TREC 2001), we
evaluated the effectiveness of them over 50 queries using all 6 metrics. Then
Pearson’s correlation coefficients were calculated for the different rankings of
the information retrieval systems obtained by using different metrics. The cor-
relation coefficients are shown in Tables 1 and 2, for TREC 9 and TREC 2001,
respectively.

In all the cases, the correlations are significant at the 0.01 level (2-tailed).
Tables 1 and 2 shows that, generally speaking, there is a strong correlation
between any of the two variations of the Euclidean distance and any of the four
ranking based metrics. However, the strength of correlation varies across the
two year groups and the two variations of the Euclidean distance. The smallest
is .624 (between ED(L) and P10 in TREC 9) and the biggest is .981 (between
ED(C) and NDCG in TREC 2001).

We also carried out the linear regression analysis for those values of different
metrics. Tables 3-6 shows the coefficients and significance of the analysis. The
Euclidean distance can be well or reasonably well expressed linearly using any
of the four metrics. Among them, NDCG is always the best (R2=0.946, 0.664,
0.799, and 0.962; if R2 = x, then it means that NDCG can explain x% of the
variation in the Euclidean distance and vice versa) and P10 (R2=0.782, 0.389,
0.484, and 0.754) is always the least able to express the Euclidean distance, while
AP and RP are in the second and third places, respectively.

Using the Euclidean Distance for Retrieval Evaluation 89

Table 1. Pearson’s correlation coefficients for rankings of retrieval systems in TREC
9 by different metrics (ED(L): Euclidean Distance with the linear model; ED(C):
Euclidean Distance with the cubic model)

Metric AP RP NDCG P10

ED(L) .928 .905 .973 .884
ED(C) .702 .663 .815 .624
AP .992 .976 .962
RP .969 .973
NDCG .941

Table 2. Pearson’s correlation coefficients for rankings of retrieval systems in TREC
2001 by different metrics (ED(L): Euclidean Distance with the linear model; ED(C):
Euclidean Distance with the cubic model)

Metric AP RP NDCG P10

ED(L) .872 .799 .894 .696
ED(C) .952 .932 .981 .869
AP .952 .975 .872
RP .955 .918
NDCG .897

Table 3. Linear regression of different metric values in TREC 9 (dependent variable
is ED(L))

Metric Constant Linear R2 Significance
coefficient level

AP 18.597 -3.313 0.862 .000
RP 18.616 -2.785 0.820 .000
NDCG 18.724 -1.771 0.946 .000
P10 18.593 -3.377 0.782 .000

3.2 Experiment 2

Next we carried out an experiment to compare the overall quality of all metrics.
In [2,8], the stability of several metrics was investigated. Here we took a slightly
different approach, which we think is more reliable. Using a certain metric, we
compare the average effectiveness of two runs A and B over 50 queries to see if
the difference between them is above a given threshold (T). If it is true, or e(A) >
e(B) and (e(A)−e(B))/e(A) > T , then we look at every query to see how many
of them will contradict the above conclusion, or (e(B) − e(A))/e(B) > T . Thus
error rate can be calculated as the percentage of queries which are contradicted
to the overall conclusion. On the other hand, for a given threshold (T), we
calculate how many pairs of runs can be distinguished from all possible pairs.
The percentage of these (differentiation rates) is used to represent the sensitivity
of a metric. Since the Euclidean distance and all ranking based measures are very
different, It is not a good idea to use the same thresholds for them. Instead, we

90 S. Wu, Y. Bi, and X. Zeng

Table 4. Linear regression of different metric values in TREC 9 (dependent variable
is ED(C))

Metric Constant Linear R2 Significance
coefficient level

AP 9.013 -.675 0.493 .000
RP 9.013 -.548 0.439 .000
NDCG 8.972 -.399 0.664 .000
P10 9.021 -.641 0.389 .000

Table 5. Linear regression of different metric values in TREC 2001 (dependent variable
is ED(L))

Metric Constant Linear R2 Significance
coefficient level

AP 18.412 -2.682 0.760 .000
RP 17.749 -2.403 0.639 .000
NDCG 18.736 -1.840 0.799 .000
P10 18.243 -1.500 0.484 .000

Table 6. Linear regression of different metric values in TREC 2001 (dependent variable
is ED(C))

Metric Constant Linear R2 Significance
coefficient level

AP 4.688 -1.227 0.906 .000
RP 4.726 -1.173 0.868 .000
NDCG 4.838 -0.845 0.962 .000
P10 4.633 -0.784 0.754 .000

used different thresholds for them so as to let the differentiation rate be in the
range that we are interested. For the Euclidean distance, we used 10 thresholds
(0.1%, 0.2%, ..., 1%); while for ranking based metrics, we used 10 thresholds
(6%, 9%, ..., 33%). In TREC 9, there are 53 runs and the number of all possible
pairs of runs is 1431. In TREC 2001, there are 34 runs and the number of all
possible pairs of runs is 561. Let us take TREC 2001 as an example. Assuming
for a given threshold T and a given metric there are n pairs of runs whose
performance difference is above T from all possible 561 pairs. In this situation,
the differentiation rate of the metric m is n/561, for the given threshold T .

Tables 7-10 show the experimental results. It is obvious that a good metric
should have high differentiation rates and low error rates at the same time,
though these two aspects are somewhat conflicting. Therefore, we define the
“overall quality” of a metric as D rate/E rate for any given threshold. Here
D rate is the differentiation rate and E rate is the error rate.

Let us compare the two variations of the Euclidean distance and then the
four ranking based metrics separately. From the angle of differentiation rate, the
cubic model performed better than the linear model in TREC 9 but worse than
the linear model in TREC 2001; as for error rate, the cubic model performed not

Using the Euclidean Distance for Retrieval Evaluation 91

Table 7. Evaluation of the Euclidean distance (TREC 9, 1431 pairs in total; Overall
quality(Q)=D rate/R rate; T: Threshold)

ED(L) ED(C)
T

D rate E rate Q D rate E rate Q

0.1% 89.2% 17.0% 5.2 82.8% 29.4% 2.8
0.2% 83.0% 13.1% 6.3 71.7% 23.9% 3.0
0.3% 78.8% 10.7% 7.4 62.0% 18.9% 3.3
0.4% 74.5% 8.6% 8.7 52.8% 15.2% 3.5
0.5% 70.7% 7.2% 9.9 44.9% 11.7% 3.8
0.6% 65.9% 5.9% 11.1 38.9% 8.5% 4.6
0.7% 61.7% 4.9% 12.6 34.1% 6.1% 5.6
0.8% 57.9% 4.0% 14.5 29.0% 4.6% 6.4
0.9% 52.9% 3.0% 17.7 26.8% 3.6% 7.5
1.0% 49.6% 2.5% 19.9 25.4% 1.8% 13.4

Table 8. Evaluation of the Euclidean distance (TREC 9, 1431 pairs in total; Overall
quality(Q)=D rate/R rate; T: Threshold)

AP RP NDCG P10
T

D rate E rate Q D rate E rate Q D rate E rate Q D rate E rate Q

6% 82.5% 22.7% 3.6 83.9% 18.9% 4.4 80.2% 19.0% 4.2 81.5% 17.5% 4.7
9% 75.3% 20.2% 3.7 76.9% 17.0% 4.5 71.1% 15.4% 4.6 74.6% 16.1% 4.6
12% 70.2% 18.2% 3.9 69.8% 15.0% 4.6 64.3% 12.7% 5.1 69.3% 14.8% 4.7
15% 64.1% 16.0% 4.0 63.8% 13.0% 4.9 57.8% 10.5% 5.5 65.7% 13.6% 4.6
18% 59.2% 14.3% 4.1 58.7% 11.6% 5.1 51.9% 8.7% 6.0 61.9% 12.6% 4.9
21% 54.6% 12.7% 4.3 53.2% 10.3% 5.2 46.4% 6.9% 6.8 59.6% 11.7% 5.1
24% 50.2% 11.3% 4.4 49.8% 9.4% 5.3 42.1% 5.9% 7.1 57.1% 11.2% 5.1
27% 50.0% 10.2% 4.6 46.3% 8.2% 5.6 39.2% 4.9% 8.1 53.7% 9.9% 5.4
30% 45.0% 9.5% 4.7 43.9% 7.6% 5.8 35.8% 3.9% 9.2 49.6% 9.1% 5.4
33% 42.8% 8.9% 4.8 41.7% 7.2% 5.8 32.9% 3.3% 10.1 46.0% 8.6% 5.4

Table 9. Evaluation of the Euclidean distance (TREC 2001, 561 pairs in total; Overall
quality(Q)=D rate/R rate; T: Threshold)

ED(L) ED(C)
T

D rate E rate Q D rate E rate Q

0.1% 88.9% 30.5% 2.9 92.3% 36.3% 2.5
0.2% 80.0% 26.2% 3.1 87.0% 34.5% 2.5
0.3% 68.1% 22.9% 2.9 81.5% 32.7% 2.5
0.4% 59.9% 20.2% 3.0 75.9% 31.2% 2.4
0.5% 51.2% 17.7% 2.9 71.3% 29.6% 2.4
0.6% 44.9% 15.8% 2.8 66.1% 27.8% 2.4
0.7% 40.3% 14.5% 2.8 59.9% 26.0% 2.3
0.8% 34.8% 13.2% 2.6 52.9% 24.2% 2.2
0.9% 29.8% 11.7% 2.6 47.1% 22.7% 2.1
1.0% 25.0% 10.2% 2.5 43.5% 21.4% 2.0

92 S. Wu, Y. Bi, and X. Zeng

Table 10. Evaluation of the Euclidean distance (TREC 2001, 561 pairs in total; Overall
quality(Q)=D rate/R rate; T: Threshold)

AP RP NDCG P10
T

D rate E rate Q D rate E rate Q D rate E rate Q D rate E rate Q

6% 78.4% 33.0% 2.4 75.4% 29.0% 2.6 66.1% 28.1% 2.4 73.3% 25.1% 2.9
9% 67.0% 30.2% 2.2 59.4% 25.6% 2.3 50.1% 23.1% 2.2 64.3% 23.4% 2.7
12% 56.1% 27.9% 2.0 51.1% 23.0% 2.2 36.5% 18.4% 2.0 56.0% 21.4% 2.6
15% 46.7% 24.9% 1.9 42.8% 20.5% 2.1 27.3% 14.3% 1.9 49.4% 18.7% 2.6
18% 37.8% 21.9% 1.7 33.2% 17.7% 1.9 20.3% 11.3% 1.8 43.5% 17.3% 2.5
21% 30.1% 19.1% 1.6 26.6% 15.4% 1.7 14.8% 8.7% 1.7 38.5% 15.3% 2.5
24% 23.9% 16.8% 1.4 20.7% 13.5% 1.5 10.7% 7.8% 1.4 35.1% 14.5% 2.4
27% 20.0% 15.6% 1.3 14.8% 12.7% 1.2 8.7% 7.8% 1.1 29.1% 13.1% 2.2
30% 16.0% 14.1% 1.1 11.2% 11.6% 1.0 6.0% 7.2% 0.8 23.5% 12.2% 1.9
33% 12.1% 12.3% 1.0 8.2% 11.5% 0.7 4.5% 6.5% 0.7 18.9% 11.1% 1.7

as good as the cubic model in both year groups. Therefore, the “overall quality”
of the cubic model is not as good as the linear model.

Now let us look at the four ranking based metrics. For differentiation rate,
P10 performed best and AP performed second to the best in both year groups.
However, for error rate, AP was the worst in both year groups (see Figure 1).
That is why its “overall performance ” is the worst among the four metrics. On
the other hand, NDCG has the lowest differentiation rate and error rate in both
year groups, and has the best “overall quality”. AP is in the second place, and
very close to NDCG in “overall quality”.

If we consider the “overall quality” of all the metrics, then the averages are:
ED(L): 7.1; NDCG: 4.1; ED(C): 3.8; P10: 3.7; RP; 3.4; AP: 2.9. The Euclidean
distance with the linear model is the best, which has a much higher average score
than all the others. It is quite surprising to see that average precision (AP) is
the worst, with an average score of 2.9. In the information retrieval community,
AP is commonly used and regarded as a very good system-oriented metric for
retrieval evaluation [2,8].

3.3 Experiment 3

The above experiment should be reliable for the comparison of the two variations
of the Euclidean distance, or the comparison of all those ranking based metrics
separately. However, since the threshold settings of performance difference are
different for the Euclidean distance and ranking based metrics, the conclusions
may not be very convincing for the comparison of the Euclidean distance and
ranking based metrics. In order to evaluate all these metrics in a more compara-
ble style, we carried out another experiment. This time we set up a fixed group of
differentiation rates (0.2, 0.25, ..., 0.6), and then find the corresponding thresh-
old for each of them. Note that the differentiation rate decreases monotonously
when the threshold increases. Using a threshold as such for a given differentiation
rate, we find its corresponding error rate. Figures 2-3 shows the results.

Using the Euclidean Distance for Retrieval Evaluation 93

 0

 0.05

 0.1

 0.15

 0.2

 0.25

 0.3

 6 9 12 15 18 21 24 27 30 33

E
rr

or
 r

at
e

Threadshold of performance difference(%)

AP
RP

NDCG
P10

Fig. 1. Average error rates of four ranking based metrics when a given performance
difference threshold is used

 0

 0.04

 0.08

 0.12

 0.16

 0.2

 0.2 0.25 0.3 0.35 0.4 0.45 0.5 0.55 0.6

E
rr

or
 r

at
e

Differentiation rate

ED_linear
ED_cobic

AP
RP

NDCG
P10

Fig. 2. Average error rates of the TREC 9 group in the condition of fixed differentiation
rates

94 S. Wu, Y. Bi, and X. Zeng

 0

 0.05

 0.1

 0.15

 0.2

 0.25

 0.3

 0.2 0.25 0.3 0.35 0.4 0.45 0.5 0.55 0.6

E
rr

or
 r

at
e

Differentiaation rate

ED_linear
ED_cobic

AP
RP

NDCG
P10

Fig. 3. Average error rates of the TREC 2001 in the condition of fixed differentiation
rates

Form this experiment, we confirm that the Euclidean distance with the linear
model is the best among all the metrics involved. However, this time the Eu-
clidean distance with the cubic model becomes the worst. Those ranking based
metrics are close. However, in TREC 9, NDCG is better than the three others;
in TREC 2001, P10 is better than the three others. If considering the average of
the two year groups, the order from best to worst is P10, NDCG, RP, and AP.
It is exactly the same as that in the above experiment.

4 Conclusions

From our experiments, we demonstrate that the Euclidean distance with the
linear model is a very good metric. It has the ability of keeping good balance
between sensitivity and reliability. On the other hand, its cousin, the Euclidean
distance with the cubic model, does not seem to be as good as it. It suggests
that the Euclidean distance can be a good metric if relevance scores are properly
estimated. In addition, the linear model is easy to apply and does not need any
training data as the cubic model. As a matter of fact, it can be used in exactly
the same way as those ranking based metrics. We believe it is an attractive
option for retrieval evaluation. However, for the Euclidean distance, there is one
problem: though the cubic model is a more sophisticated model than the linear
model, why the linear model is better than the cubic model ? This is not clear
and remains to be our future investigation problem.

Using the Euclidean Distance for Retrieval Evaluation 95

Another finding is that average precision may not be as good as people thought
before, though our experimental results in this paper do not necessarily conflict
with that from previous research due to two reasons as follows: first, the method-
ologies we have taken are slightly different from those in previous research. Sec-
ond, the four metrics AP, RP, NDCG, and P10 used in our investigation are the
expanded forms for graded relevance judgment, while in previous research their
original form was used with binary relevance judgment. However, the experimen-
tal results reported in this paper provide some new evidence for the evaluation
and comparison of these commonly used metrics.

References

1. Aslam, J.A., Montague, M.: Models for metasearch. In: Proceedings of the 24th
Annual International ACM SIGIR Conference, New Orleans, Louisiana, USA, pp.
276–284 (September 2001)

2. Buckley, C., Voorhees, E.M.: Evaluating evaluation measure stability. In:
Proceedings of ACM SIGIR Conference, Athens, Greece, pp. 33–40 (July 2000)

3. Calvé, A.L., Savoy, J.: Database merging strategy based on logistic regression.
Information Processing & Management 36(3), 341–359 (2000)

4. Järvelin, K., Kekäläinen, J.: Cumulated gain-based evaluation of IR techniques.
ACM Transactions on Information Systems 20(4), 442–446 (2002)

5. Lee, J.H.: Analysis of multiple evidence combination. In: Proceedings of the 20th
Annual International ACM SIGIR Conference, Philadelphia, Pennsylvania, USA,
pp. 267–275 (July 1997)

6. Montague, M., Aslam, J.A.: Relevance score normalization for metasearch. In:
Proceedings of ACM CIKM Conference, Berkeley, USA, pp. 427–433 (November
2001)

7. Sakai, T.: Evaluating evaluation metrics based on the bootstrap. In: Proceedings
of ACM SIGIR Conference, Seattle, USA, pp. 525–532 (August 2006)

8. Sanderson, M., Zobel, J.: Information retrieval system evaluation: Effort, sensitiv-
ity, and reliability. In: Proceedings of ACM SIGIR Conference, Salvador, Brazil,
pp. 162–169 (August 2005)

9. Wu, S., Bi, Y., McClean, S.: Regression relevance models for data fusion. In:
Proceedings of the 18th International Workshop on Database and Expert Systems
Applications, Regensburg, Germany, pp. 264–268 (September 2007)

10. Wu, S., Bi, Y., Zeng, X.: Retrieval result presentation and evaluation. In: Bi, Y.,
Williams, M.-A. (eds.) KSEM 2010. LNCS, vol. 6291, pp. 125–136. Springer, Hei-
delberg (2010)

11. Wu, S., Crestani, F., Bi, Y.: Evaluating score normalization methods in data fusion.
In: Ng, H.T., Leong, M.-K., Kan, M.-Y., Ji, D. (eds.) AIRS 2006. LNCS, vol. 4182,
pp. 642–648. Springer, Heidelberg (2006)

12. Wu, S., McClean, S.: Evaluation of system measures for incomplete relevance judg-
ment in IR. In: Larsen, H.L., Pasi, G., Ortiz-Arroyo, D., Andreasen, T., Chris-
tiansen, H. (eds.) FQAS 2006. LNCS (LNAI), vol. 4027, pp. 245–256. Springer,
Heidelberg (2006)

13. Zobel, J.: How reliable are the results of large-scale information retrieval exper-
iments. In: Proceedings of ACM SIGIR Conference, Melbourne, Australia, pp.
307–314 (August 1998)

96 S. Wu, Y. Bi, and X. Zeng

5 Appendix

A. List of 53 runs selected in the TREC 9 Web track

01. apl9all; 02. apl9lt; 03. apl9ltdn; 04. apl9t;
05. apl9td; 06. apl9tdn; 07. CWI0002; 08. Flab9atd2N;
09. Flab9atdN; 10. Flab9atdnN; 11. Flab9atN; 12. hum9td4;
13. hum9tde; 14. hum9tdn; 15. hum9te; 16. iit00t;
17. iit00td; 18: iit00tde; 19. iswtd; 20. iswtdn;
21. jscbt9wcl1; 22. jscbt9wcs1; 23. jscbt9wll1; 24. jscbt9wll2;
25. jscbt9wls1; 26. jscbt9wls2; 27. Mer9Wt1; 28. Mer9Wtnd;
29. NEnm; 30. NEnmLpas; 31. NEnmLsa; 32. NENRtm;
33. NENRtmLpas; 34. NEtm; 35. pir0Watd; 36. pir0Wt1;
37. pir0Wtd2; 38. pir0Wttd; 39. pir0WTTD1; 40. ric9dpx;
41. ric9dpxL; 42. ric9dsx; 43. Sab9web2; 44. Sab9web3;
45. Sab9web4; 46. Sab9web5; 47. Scai9Web1; 48. Scai9Web2;
49. Scai9Web4; 50. tnout9f1; 51. tnout9t2lk50; 52. UCCS3;
53. UCCS4

B. List of 34 runs selected in the TREC 2001 Web track

01. apl10wc; 02. apl10wd; 03. flabxt; 04. flabxtd;
05. flabxtdn; 06. flabxtl; 07. fub01be2; 08. fub01idf;
09. fub01ne; 10. fub01ne2; 11. hum01tdlx; 12. iit01tde;
13. jscbtawtl1; 14. jscbtawtl2; 15. jscbtawtl3; 16. jscbtawtl4;
17. kuadhoc2001; 18. Merxtd; 19. msrcn2; 20. msrcn3;
21. msrcn4; 22. ok10wtnd0; 23. ok10wtnd1; 24. pir1Wa;
25. pir1Wt1; 26. pir1Wt2; 27. posnir01ptd; 28. ricAP;
29. ricMM; 30. ricMS; 31. ricST; 32. uncfslm;
33. uncvsmm; 34. UniNEn7d

Expanding Sensor Networks to Automate

Knowledge Acquisition�

Kenneth Conroy1, Gregory C. May1, Mark Roantree2, and Giles Warrington1

1 CLARITY: Centre for Sensor Web Technologies, Dublin City University
2 Interoperable Systems Group, School of Computing, Dublin City University,

Glasnevin, Dublin 9, Ireland

Abstract. The availability of accurate, low-cost sensors to scientists has
resulted in widespread deployment in a variety of sporting and health
environments. The sensor data output is often in a raw, proprietary or
unstructured format. As a result, it is often difficult to query multiple
sensors for complex properties or actions. In our research, we deploy a
heterogeneous sensor network to detect the various biological and phys-
iological properties in athletes during training activities. The goal for
exercise physiologists is to quickly identify key intervals in exercise such
as moments of stress or fatigue. This is not currently possible because
of low level sensors and a lack of query language support. Thus, our
motivation is to expand the sensor network with a contextual layer that
enriches raw sensor data, so that it can be exploited by a high level query
language. To achieve this, the domain expert specifies events in a tradi-
ational event-condition-action format to deliver the required contextual
enrichment.

1 Introduction

Many new applications employ sensors or networks of sensors to automatically
monitor and generate reports and analysis across domains. Increasingly, elite
sports men and women are monitored to determine the effects of various train-
ing sessions on their bodies. Multiple hetrogeneous sensors are often deployed
to discover physiological or biological information generated during the activity.
As these sensors generate output in unstandardised and proprietary formats,
examining it to identify key events or properties involves time consuming exam-
ination of multiple files. Manual alignment, integration and the application of
context from which this data was gathered is required to aid with querying the
information.

These issues can be demonstrated by examining a sport such as cycling. Lab-
oratory based cycling experiments attempt to quantify certain aspects of the
effect of cycling on the participant. This is facilitated by gathering data such
as power output (a measure of work created by the cyclist in order to overcome
the forces against them, such as gradient, drag, etc.), cadence (a measure of the

� This work is supported by Science Foundation Ireland under grant 07/CE/I1147.

A.A.A. Fernandes et al. (Eds.): BNCOD 2011, LNCS 7051, pp. 97–107, 2011.
c© Springer-Verlag Berlin Heidelberg 2011

98 K. Conroy et al.

number of times a pedal revolution is performed per minute) and heart rate,
among other factors. By measuring these in a laboratory based environment, it
is possible to generate a dataset that can be specific to the question being asked
by researchers and free of external artefacts. Many different systems exist to test
cyclists under laboratory conditions while attempting to recreate the specific de-
mands of cycling, with each cycling ergometer (a machine designed to replicate
cycling in a measurable and repeatable manner) generating and measuring its
resistive force in a different manner. However, this can lead to significant differ-
ences between ergometers. For the purpose of reliability in testing, an athlete
must repeat tests on the same ergometer, under the same environmental con-
ditions, and in the same training state. This will not eliminate all the changes
from test to test, but will reduce the error from testing on dissimilar systems.

Scientists tend to prefer field-testing rather than laboratory testing, as it pro-
vides additional environmental factors which can effect performance. However,
field tests for absolute physiological values tend to be less exact than labora-
tory based tests and are logistically more difficult to perform. Depending on
the activity, there are many different factors that can predict eventual perfor-
mance during the event. These predictors can be physiological, environmental,
or equipment specific. Measurement of physiological factors is generally done
via heart rate monitoring, power output measurement, respiration, and psycho-
logical scales. The information gained on physiological performance factors can
give insight into how an athlete is performing during the training session, race,
or event in which they are partaking. Over repeat measures it can be possible
to track changes in performance and fitness of the athlete. By sensing physio-
logical, environmental, and equipment changes and how they affect each other
we are able to get a greater understanding of the changes that are occurring in
both racing and training. This can potentially allow the development of targeted
training sessions to investigate aspects of race performance.

1.1 Motivation

Over the past decade cycling has undergone a surge in technology aimed at
the measurement and analysis of training and racing. Due to its repetitive and
prolonged nature, it is possible to measure many factors during cycling once a
sensor is available to monitor the variable required. Technological advances have
allowed sensors and computers to reduce in size and weight dramatically bringing
previously laboratory based tools to the general market. Technologies such as
power measuring and GPS systems are now light enough for competitive cyclists
to apply them on their bicycles. Although some of these systems integrate several
sensors with one unit, many do not. This generates a problem when several
different sensor sets are needed to determine the information needs described
above. As cyclists are ever concerned with gaining a competitive edge, a system
that will allow them to combine and investigate the data gathered from several
sources is crucial to cyclists, their coach, and the scientists who can interpret
the data. Thus, the goal is to provide a means of facilitating high level queries
across all of these low level devices.

Expanding Sensor Networks to Automate Knowledge Acquisition 99

1.2 Contribution

In simple terms, data can be queried if we develop a protocol to transfer it into
a relational database or encode the data in XML. However, through working
with both exercise physiologists and cyclists, we discovered that their informa-
tion needs could not be met (queries could not be expressed) with a process
of supplying structure and low level semantics to sensor data. Instead, a more
complex layer of contextual enrichment was required to prepare sensor data for
high level query languages. Furthermore, this contextual enrichment must be
specified by end users and not by computer scientists. In this paper, we present
a framework and methodology for automated processing of sensor data so that
it can be queried using a standard query language. While this method uses XML
to provide the structre for sensor data, it is the end user (domain expert) who
can add semantics to the data through the specification of data mining rules. By
working closely with end user scientists, we evalute our system by meeting the
information needs of the end user, allowing them to specify how data repositories
are enriched with context data, and by reducing the query execution times as a
result of the contextual enrichment process.

1.3 Structure

The structure of the paper is as follows: §2 introduces cycling, the domain in
which our system was deployed and provides an overview of the EventSense
system architecture, with the Context Profiles explored in detail in §3. §4 details
our experimental evaluation and results, and in §5 we present related research.
§6 details our conclusion and our current work.

2 User Requirements and Operating Architecture

In this section, we present the user requirements in the form of a query set,
defined by the end users. Queries 1 to 5 in Table 1 can be expressed using
XQuery but the remaining queries are more complex, difficult to express and
may require long calculation times. We will then describe the architecture used
enable the exercise physiologists to extract the required information.

In general, the system must collect data from several independent sources, syn-
chronise the data, and structure the data in some manner. It must also provide
a facility for defining and applying event rules specific to a particular domain. In
Table 1, this includes the hill classification, and complex accelerometer based al-
gorithms for pedal cadence/vector/force and braking activity. The system needs
to work in a context driven environment where the user can specify if the data
comes from a training session, race, or the laboratory.

2.1 The EventSense Architecture

Figure 1 illustrates the architecture of our proposed solution to sensor data
management. The remainder of this section details the individual processors

100 K. Conroy et al.

Table 1. Sample Query Set

Queries

1. Find total amount of time spent above 250W (Power-measuring)
2. Find Heart Rate for each occurrence above 250W (Power-measuring)
3. Find total amount of time spent above 165BPM (Heart rate-measuring)
4. Calculate average heart rate spent above 200W
5. Find the total amount of time where pedal pivot = ’pivot range 1’
6. Find ’best intervals’ for highest ’1minute’ heart rate and return values

for distance covered
7. Find the average performance factors (Power/Heart Rate/Speed) for each

gradient of type=’hill’
8. Find the average Power value when pedal vector magnitude =’peak’
9. Find the average speed when braking activity = ’none’
10. Find all occurences where gradient profile = ’flat’ and cycle

cadence =’cadence range 1’

Enablement

Contextual
Enrichment

Integrate

Hardware Component

Data Management
Component

Query Processing
Component

Query/Event
API

C
En
C t

Q

Context
Repository

MetadataComponent

rate

Cont
Reposi

Sensor
Data

Integrated
Data

Fig. 1. EventSense System Architecture

involved to close the gap between the requirements of the domain expert and
the initial format of the sensors output. These processors are discussed briefly
and in the following section, we discuss Contextual Enrichment in greater detail
- as this is the main focus of the paper.

Sensor Enablement. Sensors output data in a simple plaintext format. The
common approach to analysing data requires considerable manual effort using
spreadsheet tools to compare results across multiple sensor files. The common
approach to automation is to build proprietary wrappers for every sensor to
store data in a database format. This requires new wrappers for new sensors
and database reengineering each time the structure of the output differs. Sensor
Enablement is a form of structural enrichment whereby we convert all sensor data
to a standard XML format using simple user defined templates. One can define
how sensor output should be interpreted and structured using sensor profiles,

Expanding Sensor Networks to Automate Knowledge Acquisition 101

and automatically apply data transformations based on this information. The
role of the Sensor Enablement processor is to generate machine queryable XML
files.

Contextual Enrichment. Following Sensor Enablement, basic queries can be
performed using XQuery. However, many of the queries listed in Table 1 cannot
be expressed at this point as the data lacks the necessary semantics. To reduce
this semantic gap, the system uses Participant and Activity Profiles to under-
stand the deployment domain (or activity), the sensors, participants, and key
events. Essentially, these are metadata constructs used to describe any object
or person measured by the sensor. In the following section, we describe how the
specification of event detection definitions can mine for the information necessary
to end user queries.

Integration. The querying needs of the coaches and sports scientists are exten-
sive, ranging from basic sensor analysis and comparison to anthropometric based
analysis of participants with multiple sensors deployed while engaged in some
activity. Some information such as sensor data is extensive and specific to a cer-
tain time span, or geographic location whereas much physiological or biological
data rarely changes. In general, a single sensor cannot meet information needs
and multiple sources of evidence must be integrated to provide both results and
highs levels of accuracy. For the current experiments used in this paper, sensors
were manually synchronised and this processor was not used. However, analysis
of sporting events is often chaotic and synchronisation of inexpensive sensors
devices cannot be guaranteed. Thus, integration is an important part of current
work.

Query Interface. As all the sensor data is converted to XML during sensor
enrichment, queries can be expressed in XQuery or XPath. As neither of these
languages are intuitive to non-computing users, a view based system is currently
employed [5] which also offers optimisation features for high volume datasets.
However, Contextual Enrichment is an important enabler for query processing
as will be shown in the next section.

3 Context Profiles and Event Mining

Context Profiles provide genericity to the system and thus, facilitate hetero-
geneity. Individuals will have different physiological characteristics, activities
will have different timings, layouts and formats, and sensors will come and go,
bringing new information and heterogenous structures. The activity in which
participants are being measured provides the widest range of heterogeneities.
For this reason, it receives a more detailed discussion here, including how it can
be used to extract new knoweldge from the sensor database, that can later be ex-
ploited by the query processor. All profiles and function descriptions (discussed
later) are stored in the System Repository.

102 K. Conroy et al.

3.1 Sensor, Activity and Participant Profiles

These three profiles are similar in nature. The sensor Profile allows for different
sensors to be introducted at any point, providing their output is described using
a template. The Activity Profile defines the activity or domain in which a set
of sensors were deployed. Some of this information is standard for each activity,
such as the start time, the sport involved and the list of sensors deployed. In
addition, the Activity Profile defines the key elements of a deployment that
are relevant for that sport and particular deployment. The Participant Profile
provides the anthropometric data valid for a user at the time of deployment.
There can be many participants, each with their own profile, in an activity.

3.2 Event Definition

The key componant of contextual enrichment are the Event Definitions. These
enable the end user to highlight important events during exercise activity given
the domain algorithms required for a certain set of sensor data. These algorithms
are defined by the end users. The Event Definition uses the traditional event-
condition-action format with a sample event is shown in Example 1. The key
elements are the Event, which has Condition and Action sub-elements. There
may be multiple Condition elements joined by logical operators and any number
of update Action elements.

Example 1. Terrain Classification
<Cycling_Events>

<Event_Terrain_Classification_steep_climb>
<Condition>

<GarminGPS>
<long ge 53.12714779087178>
<long le 53.13754992640523>
<lat le -6.29089645593262>
<lat ge -6.31175331323243>

</GarminGPS>
<Logical_Operator= "OR" />
<GarminGPS>

<long ge 53.12714779087178>
<long le 53.12714879587177>
<lat le -6.28553256846468>
<lat ge -6.31175331323243>

</GarminGPS>
</Condition>
<Action>

UPDATE <GarminGPS><Terrain> WITH <steep_climb>
</Action>

</Event_Terrain_Classification_steep_climb>
<Event_Terrain_Classification_long_climb>

<Condition>
<GarminGPS>

<long ge 53.09035966189816>
<long le 53.13765290525642>
<lat le -6.22017196862793>
<lat ge -6.31192497460938>

</GarminGPS>
</Condition>
<Action>

UPDATE <GarminGPS><Terrain> WITH <long_climb>
</Action>

Expanding Sensor Networks to Automate Knowledge Acquisition 103

</Event_Terrain_Classification_long_climb>
<Event_Terrain_Classification_long_descent>

<Condition>
<GarminGPS>

<long ge 53.16354424912001>
<long le 53.18638566546003>
<lat le -6.29347137658692>
<lat ge -6.29510215966797>

</GarminGPS>
</Condition>
<Action>

UPDATE <GarminGPS><Terrain> WITH <long_descent>
</Action>

</Event_Terrain_Classification_long_descent>
...

</Cycling_Events>

In Example 1, the terrain corresponding to the GPS ranges are known to be steep
climb sections of a race or training session. A logical OR operator ties two ranges
of GPS values satisfying the steep climb criteria. There are two ranges because
the race or training session has taken place where the steep climb is not always
in the same direction geographically, and the GPS values do not uniformally
increase or decrease. It is standard practise for cycling based domain experts to
split the climb into two or more segments to allow this definition. If the GPS
sensor values for latitude and longitude match the criteria in the condition, a
<steep climb> element is encoded within the <terrain> element of the sensor
data file, as specified by the action.

Example 2. Vector Magnitude Classification
<Cycling_Events>

<Event_VectorMagnitude_Classification_low>
<Condition>

<FnVectorMagnitude>
<result le 500>

</FnVectorMagnitude>
</Condition>
<Action>

UPDATE <GT3XAccelerometer><VectorMagnitude> WITH <low>
UPDATE <GT3XAccelerometer><VectorMagnitude> WITH <value>&result</value>

</Action>
</Event_VectorMagnitude_Classification_low>
<Event_VectorMagnitude_Classification_average>

<Condition>
<FnVectorMagnitude>

<result gt 500>
<result le 1500>

</FnVectorMagnitude>
</Condition>
<Action>

UPDATE <GT3XAccelerometer><VectorMagnitude> WITH <average>
UPDATE <GT3XAccelerometer><VectorMagnitude> WITH <value>&result</value>

</Action>
</Event_VectorMagnitude_Classification_average>
<Event_VectorMagnitude_Classification_high>

<Condition>
<FnVectorMagnitude>

<result gt 1500>
</FnVectorMagnitude>

</Condition>
<Action>

UPDATE <GT3XAccelerometer><VectorMagnitude> WITH <high>
UPDATE <GT3XAccelerometer><VectorMagnitude> WITH <value>&result</value>

104 K. Conroy et al.

</Action>
</Event_VectorMagnitude_Classification_high>

</Cycling_Events>

It is also necessary to support the use of functions to explicitly define complex
algorithms, the results of which can be used as part of the condition. Example 2
shows the result of a function FnVectorMagnitude (which detects the direction
and force of the power produced by the cyclist, allowing for the detection of
the part of the pedal stroke at a given point in time) being used as part of
the condition. In effect, we treat the output from the sensor and function in an
identical manner. We support operators EQ, LT (less-than), GT, GE (greater-
than-or-equal-to) and GT. The action is always an update of a sensor data file.

A simple user interface to define events means that the user is only required is
to select from the list of sensors or functions; the relevant properties, decide on
the criteria for satisfying an occurance of an event, and define what to update.
Functions allow advanced algorithms to be applied which could not have been
applied using XQuery alone.

4 Experiments and Evaluation

Experiments were run on identical servers with a 2.66GHz Intel Core2 Duo CPU
and 4GB of RAM. The aim of the experiments is to compare query times on
the contextually enriched data with equivalent queries on data which is only
structurally enriched. We also measure the time taken for the once-off contex-
tual enrichment, and illustrate the comparitive ease of querying for the encoded
domain events.

Table 2. Sample Event Detection Execution times

Filename (Event) Size Values Enabled Enriched Result Size

1 wickm.xml (Strong Cadence) 3MB 17,798 178ms 82ms 2,111

2 raim.xml (Strong Cadence) 30MB 65,536 399ms 150ms 7,631

3 wickm.xml (Low Vector Magnitude) 3MB 17,798 n/a 104ms 5,652

4 raim.xml (Low Vector Magnitude) 30MB 65,536 n/a 374ms 29,490

5 wickgps.xml (Steep Climb Terrain) 150kb 655 77ms 75ms 49

A summary of the experiments is presented in Table 2. Two accelerometer
sensor data files were queried to detect all occurences of a low vector magnitude,
and all occurences of a strong cadence. This was performed twice to detect the
cadence, once on the enabled data, where the cadence requirement is included
as part of an XQuery expression, and secondly the query is performed following
contextual enrichment, using a simple XQuery expression to detect occurences
of a strong cadence.

Due to its complex nature, the algorithm for Vector Magnitude cannot be
queried using XQuery and thus, the query for low vector magnitude was per-
formed on the contextually enriched data only. We chose two files to query, one

Expanding Sensor Networks to Automate Knowledge Acquisition 105

hour-long file representing the accelerometer deployed in an hour long moun-
tainous time trial (wickm), the second has values from an 18-hour long ultra
endurance race. As shown in the table, the query time for detecting cadence is
significantly reduced for the contextually enriched data. Of the 17,798 entries in
wickm.xml, 2,111 matched the criteria of a strong cadence. In the larger raim.xml
file, 7,631 of 65,536 entries correspond to a strong cadence. Following contextual
enrichment, we can detect vector magnitude of type = Low. Due to the incresed
number of results matching the criteria, the query time is longer than the query
for strong cadence.

The GPS based query is also performed both before and after contextual en-
richment. The time taken to evaluate is similar in both cases due to the reletively
small size of the input file, wickgps.xml. The main benefit of including GPS based
ranges as event definitions is that it allows the end user to specify the important
segments of the session which is applied directly to the data and made simple to
query. GPS coordinates are bulky and having to pass them as part of a complex
query to detect relevant segments of a session increases the potential for error.
As GPS coordinates differ for every environment, it is necessary for the end user
to have access to defining these boundaries efficiently.

Table 3. Sample Enrichment Times

Event Filename Sensor Time

1 Cadence Classification wickm.xml GT3X Accelerometer 1,195ms

2 Cadence Classification raim.xml GT3X Accelerometer 12,245ms

3 Vector Magnitude Classification wickm.xml GT3X Accelerometer 1,074ms

4 Vector Magnitude Classification raim.xml GT3X Accelerometer 11,309ms

5 Terrain Classification wickgps.xml Garmin GPS 114ms

The time taken to contextually enrich the rules into the sensor files is dis-
played in Table 3, where times for vector magnitude classification and cadence
classification are proportional to the input filesize. While times can require up
to 12,245ms for the 30MB file, the process needs only to be performed once.

In summary, the experiments demonstrate that enablement and enrichment,
with their XML and semantic overheads, can be queried using high level query
languages without signifciant overhead. The main evaluation comes from our
collaborators, the exercise physiologists, who provide the datasets, specify the
queries, and can now extract information independently, using events and an
XQuery interface.

5 Related Research

[6] describes the approach to building OntoSensor, a prototype sensor knowledge
repository compatible with evolving Sensor Web infrastructure. OntoSensor in-
cludes definitions of concepts and properties adopted in part from SensorML, the
Web Ontology Language (OWL)[11] and extensions to IEEE Suggested Upper

106 K. Conroy et al.

Merged Ontology (SUMO)[8]. Sensor ontologies are used to establish a termi-
nology for sensors, their properties, capabilities and services. OntoSensor has
a number of advantages, including self-descriptive metadata embedded in the
descriptions, which can be used in various sensor discovery and reasoning ap-
plications. OntoSensor illustrates a semantic approach to sensor description and
provides an extensive knowledge model. However, this approach lacks a distinc-
tive data description model to facilitate interoperable data representation for
sensor observation and measurement data. Additionally, it does not facilitate
the specification or inclusion of context by the end user.

In [1], the authors describe a semantic model for heterogeneous sensor data
representation. A sensor data ontology is created based on the Sensor web En-
ablement (SWE)[7] and SensorML data component models. Semantic relation-
ships and operational constraints are deployed in a uniform structure to describe
the sensor data. The ontology based model allows machines to process and in-
terpret the emerging semantics to create intelligent sensor network applications.
However, this work is in an early stage of development, with many of its aims
and goals yet to be implemented, whereas we have a working prototype system
which facilitates interaction with domain experts and full query interface.

In [12], the authors represent context with varying granularity with a tuple con-
sisting of an RDF triple defining the relationship, a lifespan and a conditional con-
fidence value. This project aims to reduce uncertainty in context integration. The
method used to achieve this is combining multiple sources of information and us-
ing a Bayesian approach to calculate conditional confidence values. This is useful
for the target ubiquitous computing environment but is not suitable for an ever-
changing set of events to be detected using multiple sensors in multiple locations.

In the core target domain of analysing sensor data corresponding to cyclists,
there are a number of tools available which allow a limited analysis for sensor data.
The most successful commercial application for analysing power meter data in the
cycling domain is TrainingPeaks WKO+ [9]. An open source application, Golden
Cheetah [4] can also be used to analyse cycling sensor data. Querying in WKO+ is
limited to identifying the minimum/maximum/average data value for each stream
for a lap-by-lap or specific time period defined by the user. Apart from the wattage
analysis, no additional variables such as speed or current position can be applied
as a filter. Querying is not supported by Golden Cheetah. In addition, Neither of
these applications can support user defined events or context.

6 Conclusions

Sensor technology is used in many application areas now as a means of automated
data generation and collection. However, the low level nature of these devices and
the often complex query requirements of end users and specialists, means that a
considerable gap exists between the information generation and end user queries.
In this research, our goal was to minimse or even close that gap by allowing users
to specify events that would lead to contextual enrichement of the data sources.
Our system begins with an automatic process of basic enrichment which we refer

Expanding Sensor Networks to Automate Knowledge Acquisition 107

to as sensor enablement. At the next point in the architecture, the end users can
influence the level and type of context by specifying a series of events. Before we
introduced this step many queries were difficult to express and in some cases,
it was not possible to express the more complex queries. As is typical in data
warehouse systems, this also leads to an improvement in query processing times
as the knowledge acquisition step provides partially executed queries.

Our current efforts are focused on the Integration Processor as we are cur-
rently limited to situations where each sensor can be synchronised against a
common clock. As we begin to introduce sensors from outside our direct con-
trol, we must be able to auto-synchronise based on a set of algorithms we are
currently developing. However, the delivery of a high-level interface for sensor
data analysis provides a significant step forward for exercise physiologists where
previous efforts required a manual analysis of spreadsheet data.

References

1. Barnaghi, P.M., Meissner, S., Presser, M., Moessner, K.: Sense and sens’ability:
Semantic data modelling for sensor networks. In: Proceedings of the ICT Mobile
Summit 2009 (2009)

2. Botts, M., Percivall, G., Reed, C., Davidson, J.: OGC Sensor Web Enablement:
Overview and High Level Architecture. In: Nittel, S., Labrinidis, A., Stefanidis, A.
(eds.) GSN 2006. LNCS, vol. 4540, pp. 175–190. Springer, Heidelberg (2008)

3. Dey, A.K.: Understanding and Using Context. Personal Ubiquitous Comput-
ing 5(1), 4–7 (2001)

4. GoldenCheetah (2011), http://goldencheetah.org/
5. Liu, J., Roantree, M., Bellahsene, Z.: A SchemaGuide for Accelerating the View

Adaptation Process. In: Parsons, J., Saeki, M., Shoval, P., Woo, C., Wand, Y.
(eds.) ER 2010. LNCS, vol. 6412, pp. 160–173. Springer, Heidelberg (2010)

6. Russomanno, D.J., Kothari, C., Thomas, O.: Building a sensor ontology: A prac-
tical approach leveraging ISO and OGC models. In: The 2005 International Con-
ference on Artificial Intelligence, pp. 637–643. CSREA Press (2005)

7. Sensor Web Enablement (SWE) (2011),
http://www.opengeospatial.org/projects/groups/sensorweb

8. Suggested Upper Merged Ontology (2011),
http://suo.ieee.org/SUO/SUMO/index.html

9. TrainingPeaks WKO (2011),
http://www.peaksware.com/trainingpeaks-wko.aspx

10. Wang, X., Dong, J.S., Chin, C., Hettiarachchi, S., Zhang, D.: Semantic Space: An
Infrastructure for Smart Spaces. IEEE Pervasive Computing 3(3), 32–39 (2004)

11. Web Ontology Language (2011), http://www.w3.org/TR/owl-features/
12. Ye, J., McKeever, S., Coyle, L., Neely, S., Dobson, S.: Resolving uncertainty in

context integration and abstraction: context integration and abstraction. In: ICPS
2008: Proceedings of the 5th International Conference on Pervasive Services, pp.
131–140. ACM, New York (2008)

http://goldencheetah.org/
http://www.opengeospatial.org/projects/groups/sensorweb
http://suo.ieee.org/SUO/SUMO/index.html
http://www.peaksware.com/trainingpeaks-wko.aspx
http://www.w3.org/TR/owl-features/

Utilising the MISM Model Independent Schema

Management Platform for Query Evaluation�

Cornelia Hedeler and Norman W. Paton

School of Computer Science, The University of Manchester
Oxford Road, Manchester M13 9PL, UK
{chedeler,norm}@cs.manchester.ac.uk

Abstract. Model Management, and its associated operators, provides
generic means for dealing with multiple schemas and the mappings be-
tween them, for example, in the context of multiple heterogeneous data
sources that need to be integrated. One example of a Model Management
framework is the ‘Model Independent Schema Management’(MISM) plat-
form. In the context of MISM, algorithms and implementations of various
operators have been proposed that act on a source-model independent
metamodel. However, although the results on MISM indicate how to im-
port and manipulate data from heterogeneous source types, to date no
approach has been proposed to utilise MISM for querying across the mul-
tiple data sources. This paper presents SMql, a query language over the
source-model independent supermodel, presents an algebra into which
the query is translated and presents an approach for rewriting SMql
queries into source-model-specific queries posed over the corresponding
relational or XSD models of the data source to be queried. Thus this pa-
per helps to complete the collection of problems that need to be addressed
to allow source model-independent model management using universal
models in the context of MISM.

Keywords: Model Management, Query Rewriting, Query Language.

1 Introduction

The vision of model management [5,6] was proposed to address the recurring is-
sues that arise when dealing with data sources, whether multiple heterogeneous
data sources that need to be integrated or a single data source with a continually
evolving schema. In the case of multiple heterogeneous data sources, these could
also be represented using different data models, e.g., relational or XSD. Model
Management aims to provide generic operators that make it easier to manipulate
schemas, that may be associated with, e.g., relational, object-relational or XML
data sources, and the relationships between the schemas. With a view to ob-
taining data model independence, an approach has been proposed to represent
models expressed in various different data models, within the same universal

� The work reported in this paper was supported by a grant from the EPSRC.

A.A.A. Fernandes et al. (Eds.): BNCOD 2011, LNCS 7051, pp. 108–117, 2011.
c© Springer-Verlag Berlin Heidelberg 2011

Utilising the MISM Model Independent Schema Management Platform 109

Table 1. Model-generic and model-specific constructs

Metaconstructs Relational XSD
Abstract Root Element
Aggregation Table
StructOfAttributes ComplexElement
Lexical Column Simple Element
Foreign Key Foreign Key Foreign Key

model, referred to as a supermodel. Utilising the benefits of data model inde-
pendence, it has been suggested recently that dataspace management systems
could utilise model management systems, e.g., for the integration of heteroge-
neous schemas or for dealing with evolving schemas [9]. This, however, requires
model management systems to provide support for query evaluation across the
various heterogeneous data sources.

A prominent example of a source-model independent approach is the ‘Model
Independent Schema Management’(MISM) [1,4] framework. In MISM, imple-
mentations of various of the model management operators have been proposed,
e.g., an extended version of ModelGen [3], which in addition to translating
schemas from a representation in one model into an equivalent representation in
another model is also able to translate the corresponding data. This, however,
required the whole database to be loaded, making it only suitable as an off-line
approach. This was addressed for relational data sources in a later proposal [2]
in which the data translation rules presented previously are translated into exe-
cutable SQL statements. The framework was later extended further by proposing
definitions and implementations for Diff and Merge [1] over the supermodel.

However, even though MISM now provides support for managing and inte-
grating schemas represented in various models, it still does not provide sup-
port for querying across the various data sources associated with the integrated
schemas, whereas other model management platforms have been extended to
provide support for query answering (e.g., [17,13]). This paper addresses this
gap by presenting an approach for processing queries in the MISM framework.
To do this we define a query language (SMql) and an algebra over the MISM
supermodel and present an approach to evaluating SMql queries over relational
and XML sources.

The remainder of the paper is organised as follows. Section 2 introduces the
relevant components of the supermodel of the MISM platform, and Section 3
introduces the query language over the supermodel and the algebra. Section 4
describes the approach for query rewriting. Related work is presented in Section
5 and Section 6 concludes the paper.

2 Background

This section introduces the two levels of schema descriptions of MISM as pro-
posed by Atzeni et al. [1,4]. The two levels are the model-specific description,
which contains all the constructs required to represent schemas in a particular
model (see the two UML diagrams in the bottom half of Figure 1 for relational

110 C. Hedeler and N.W. Paton

Fig. 1. Constructs in source-model independent supermodel and model specific models
as well as the correspondences between them

and XSD, respectively) and the source-model independent supermodel, which
uses a small set of model-generic constructs, so called metaconstructs [1] to rep-
resent model-specific constructs by aggregating over their similarities (see the
UML diagram in the top half of Figure 1). Model management operators are
defined over the constructs in the supermodel, which is depicted by the arrow
in the top right corner of Figure 1. The UML diagrams in Figure 1 also include
additional constructs that are required to represent all the information present
in the models, e.g., ComponentOfForeignKey and Nest. By capturing both, the
model-specific constructs and the model-generic representations of a schema,
this approach is both model-independent and model-aware. Table 1 lists the
model-generic metaconstructs and their corresponding model-specific constructs
for relational and for XSD models. The dashed lines in Figure 1 from the model
specific constructs to the model generic metaconstructs depict the correspond-
ing constructs in the different models. The correspondences between the model
specific and the model generic constructs are utilised during import of models,
information that we later utilise in the opposite direction for query translation
(depicted in Figure 1 by the dashed lines from the model generic constructs to
the model specific constructs). As this paper focusses on relational and XSD
models only, the remaining models that can be represented by the universal
model have been omitted here, but are described in [4].

3 Query Language

This section introduces the query language SMql, a declarative query language
inspired by SQL but defined over the constructs of the supermodel. A SMql
query is of the form SELECT l1, ..., ln FROM c1, ..., cm WHERE p, where l1, ..., ln is a
project list of Lexicals, c1, ..., cm ∈ {Abstract|Aggregation|StructOfAttributes}

Utilising the MISM Model Independent Schema Management Platform 111

Fig. 2. Example schemas and queries in SMql

Table 2. SMql algebra

Operator
SCAN(Abstract|Aggregation|StructOfAttributes) → Collection
REDUCE(Collection, {Lexical}) → Collection
FILTER(Collection, Predicate) → Collection
JOIN(Left Collection, Right Collection, Predicate) → Collection
UNION(Left Collection, Right Collection) → Collection
EvaluateSQL(SQLqueryString, Predicate, {tuple})→ {tuple}
EvaluateXQuery(XqueryString, Predicate, {tuple})→ {tuple}

and p is a conjunctive predicate. Figure 2 shows two simplified schemas, S1 of a
relational data source and S2 of an XSD data source and some example queries
in SMql. The figure also shows the corresponding constructs in the supermodel
for the two relational tables in S1, as well as the root element (country) and
the complex elements (capital_city, other_city, city) in S2. The columns
in S1 and the simple elements in S2 all correspond to Lexical, but for clarity not
all those correspondences are shown in Figure 2.

SMql queries are translated into the algebra from Table 2 following standard
translation schemes [10]. For example, query Q1 in Figure 2 is translated into RE-
DUCE(FILTER(SCAN(country), population> 5000000), {name, code, capital})
and query Q2 is translated into REDUCE(JOIN(SCAN(country o), FILTER(
SCAN(city c), c.name = ‘Manchester’), o.code = c.country), {o.name, c.name}).
The UNION operator will be used later in the context of query unfolding whereas
EvaluateSQL and EvaluateXQuery will be used later in the context of evaluation
of the rewritten source-specific subqueries (see Section 4 for an example).

4 Query Rewriting

This section introduces the approach to rewriting a SMql query posed over con-
structs of the supermodel and expressed in the algebra shown in Table 2 into
potentially multiple SQL or XQuery queries, respectively, depending on the con-
structs which are queried and their respective sources. For example, if a SMql

112 C. Hedeler and N.W. Paton

query is posed over a model that was generated using the model management
operator Merge on two models, the query is expanded into a SMql query over
constructs from potentially multiple source models using query unfolding [11]
and associations between the source models and the merged model. The ex-
panded SMql query is compiled into the algebra and optimised, and subqueries
of the logically optimised plan that are associated with specific sources are then
translated to the source specific query languages as described in Sections 4.1
and 4.2, whereby the left hand side input and the right hand side input of the
UNION operator are treated as separate subqueries that are processed sepa-
rately even if they are to be evaluated over the same source. The translated
subqueries are passed to the operators EvaluateSQL and EvaluateXQuery, re-
spectively, which can be parameterised with tuples and a Predicate, e.g., in the
case of joins between different sources. Assume, for simplicity, that query Q2 is
posed over the merged schema of S1 and S2 (not shown) and that constructs
with the same names in the three schemas are associated. The expanded algebra
with the translated subqueries of Q2 resulting from the use of these associations,
query unfolding and the translation algorithms introduced in Sections 4.1 and
4.2 is shown in Figure 3.

Query rewriting is a two step process applied both for translating (portions of)
a query into SQL and into XQuery. The first step is a recursive algorithm that
traverses all operators in the query posed over the supermodel, and gathers all
the information required for query rewriting in the corresponding data structures
appropriate for the type of target query. In the second step, this information is
utilised to generate a string representation of the target query. The process is
described in more detail in the following.

The approach presented here only deals with syntax; dealing with semantics
is beyond the scope of this paper. Once access has been provided to a source,
the other model management operators provide techniques for manipulating the
resulting integration model in ways that reflect semantic issues.

4.1 SMql Query over Supermodel into XQuery over XML

Based on the parts of an XQuery, namely the Let, For, Where and Return
clauses, the following data structure is introduced to gather the information
that is needed for each of the clauses.

An XQuery is a quadruple <let, for, where, return>, where let is a map of
variable names and references to source documents, for is a list of abstract/root
element or structOfAttributes/complex elements, where is a list of conjunctive
predicates and return is a list of fully qualified lexical/simple element names,
either qualified with the name of the abstract|structOfAttributes / root|complex
element the lexical belongs to or with the corresponding variable name. Both
lists and maps support the operators add and contains. We assume here that
the data source, or the source document of each instance i of a construct in the
supermodel can be obtained by i.source.

We follow the two step process described briefly above, which consists of
gathering the information for the various clauses of the XQuery by recursively

Utilising the MISM Model Independent Schema Management Platform 113

UNION(
UNION(

EvaluateXQuery(
‘for $o in $s/country
for $c in $o/capital_city/city
where $o/code = $c/country
and $c/name = "Manchester"’,
null, null),

EvaluateXQuery(
‘for $o in $s/country
for $c in $o/other_city/city
where $o/code = $c/country
and $c/name = "Manchester"’,
null, null)),

EvaluateSQL(
‘Select o.name, c.name
from country o, city c
where o.code = c.country
and c.name = "Manchester"’,
null, null))

Fig. 3. Expanded and rewritten query Q2

Require: s = query (fragment) to be translated, expressed in algebra introduced above
1: if s instance of SCAN(abstract c) | s instance of SCAN(structOfAttributes c) then
2: if !s.let.contains(c.source) then
3: s.let.add(c, c.source)
4: end if
5: s.for.add(c)
6: else if s instance of REDUCE(Collection c, {Lexical}) then
7: for all Lexical l ∈ {Lexical} do
8: s.return.add(l)
9: end for
10: Translate2XQuery(c)
11: else if s instance of FILTER(Collection c, Predicate) then
12: s.where.add(p)
13: Translate2XQuery(c)
14: else if s instance of JOIN(Left Collection lc, Right Collection rc, Predicate) then
15: s.where.add(p)
16: Translate2XQuery(lc)
17: Translate2XQuery(rc)
18: end if

Fig. 4. Translate2XQuery(s)

traversing the SMql -algebra (Algorithm shown in Figure 4) followed by the gener-
ation of a string representation of the XQuery utilising the gathered information
(Algorithm shown in Figure 5). The algorithms presented are not the only way
to organise the information and generate the corresponding XQuery, as there are
several ways of expressing the same XQuery. For example, an equivalent XQuery
to query Q1 in Figure 2 posed over S2 could be written as one of the two versions
v1 or v2:

v1:for $c in doc("...")//country[population>"5000000"]
v2:let $s := doc("...") for $c in $s//country where $c/population > 5000000

We have decided to follow the structuring of the information and consequently
of the XQuery that is somewhat related to the structure of a SQL query, i.e.,
for corresponds to from, return corresponds to select, where corresponds to
where, and to capture only the reference to the source document in let, which
results in queries structured as exemplified in v2.

114 C. Hedeler and N.W. Paton

To generate an XQuery that reflects the relationship between the structure of
the supermodel and the structure of the document, we order all the (root and
complex) elements that are gathered in s.for according to their hierarchical
structure in the source document (line 5 of the algorithm shown in Figure 5).
We differentiate between rootElements and complexElements, which correspond
to different constructs in the supermodel (lines 7-12) when generating the path
expression in the for clause. We assume in Figure 5 that the (variable) name of
a construct c queried can be obtained through c.name.

Using the algorithms presented, the XQueries posed over S2 that correspond
to the example queries Q1, Q2 and Q3 are shown in Figure 6. The let and
return clauses are omitted for XQueries Q2 and Q3. As there are two alter-
natives for mapping city in the integration schema to city in S2, namely,
capital_city/city or other_city/city, two subqueries are to be evaluated
over the respective data source with schema S2 and their results unioned. Both
subqueries are shown in Figure 6.

4.2 SMql Query over Supermodel into SQL Query over Relational
Model

Based on the three parts of an SQL query, namely the Select, From and Where
clauses, the following data structure is introduced to gather the information that
is needed for each of the three clauses.

A SQL query is a triple <select, from, where>, where select is a list of fully
qualified lexical/column names, either qualified with the name of the aggrega-
tion/table the lexical belongs to or with the corresponding variable name, from
is a list of aggregations/tables, and where is a list of conjunctive predicates.
Lists support the operator add. As the correspondences between model specific
constructs and model generic constructs are trivial for relational data sources,
the rewriting algorithm is straightforward.

In the first step, a recursive algorithm (omitted here due to space constraints;
for the corresponding algorithm for XQuery see Algorithm 4) traverses the SMql
algebra and places the appropriate information into the data structures corre-
sponding to each part of the SQL query, e.g., predicates of FILTER and JOIN
operators are added to s.where, and all lexicals in REDUCE are added to s.select.

In the second step of the query rewriting, the gathered information is trans-
lated into a string for evaluation. As this step is straightforward for SQL, the
algorithm is omitted here.

5 Related Work

Various contributions on query rewriting for data integration have been made
over the years (e.g., [11,14]). In addition, some of the model management plat-
forms have been extended to support query evaluation (e.g., Automed [7] and
GeRoMe [12]).

GeRoMe, utilises a role based metamodel in which multiple model-independent
roles can be attached to each model-specific schema element thereby specifying

Utilising the MISM Model Independent Schema Management Platform 115

Require: s = query (fragment) to be translated with all information gathered in s.let, s.for, s.where,
and s.return

1: String qs = new String(”<result>”)
2: for all 〈variableName v, document d〉 ∈ s.let do
3: qs += ”let $” + v + ”:=doc(” + d + ”)
4: end for
5: order all c’s in s.for according to their hierarchical structure in the source document utilising

the information captured in the supermodel
6: for all element c ∈ ordered s.for starting from top do
7: if c instance of root element then
8: qs += ” for $” + c.name + ” in $” + v + ”/” + c.name
9: else if s.c instance of complex element then
10: qs += ” for $” + c.name + ” in $” + p.name + ”/” + c.name
11: where p = parent complex element of c
12: end if
13: end for
14: if !s.where.isEmpty() then
15: qs += ” where ”
16: for all predicate p in s.where do
17: if p of kind 〈simple element l1〉 〈op〉 〈simple element l2〉 then
18: qs += ”$” + c1.name + ”/” + l1.name + op + ”$” + c2.name + ”/” + l2.name
19: where c1 and c2 are the corresponding parent complex elements of simple elements l1

and l2, respectively
20: else if p of kind 〈simple element l〉 〈op〉 〈constant〉 then
21: qs += ”$” + c.name + ”/” + l.name + op + constant
22: where c is the corresponding parent complex element of simple element l
23: end if
24: if s.where.hasNext() then
25: qs += ” AND ”
26: end if
27: end for
28: end if
29: qs += ”return <tuple>”
30: for all simple element l in s.return do
31: qs += ”<” + c.name + ”.” + l.name + ”>”
32: qs += ” fn:data($” + c.name + ”/” + l.name + ”)”
33: qs += ”< /” + c.name + ”.” + l.name + ”>”
34: where c is the corresponding parent complex element of simple element l
35: end for
36: qs += ”</tuple>”
37: qs +=”</result>”
38: return queryString

Fig. 5. toXQueryString(s)

XQuery Q
1
:

<result>
let $s := doc("...")
for $o in $s/country
where $o/population > 5000000
return

<tuple>
<o.name>{fn:data($o/name)}</o.name>
<o.code>{fn:data($o/code)}</o.code>
<o.capital>{fn:data($o/capital)}</o.capital>

</tuple>
</result>

XQuery Q
2
:

for $o in $s/country
for $c in $o/capital_city/city
where $o/code = $c/country
and $c/name = “Manchester”

for $o in $s/country
for $c in $o/other_city/city
where $o/code = $c/country
and $c/name = “Manchester”

XQuery Q
3
:

for $o in $s/country
for $c in $o/capital_city/city
where $o/code = $c/country
and $c/capital = $c/name

for $o in $s/country
for $c in $o/other_city/city
where $o/code = $c/country
and $c/capital = $c/name

Fig. 6. (Partial) XQueries corresponding to Q1, Q2 and Q3

116 C. Hedeler and N.W. Paton

its properties in detail [12]. At the language level, GeRoMe uses source-to-target
extensional mappings which are based on second-order tuple generating depen-
dencies (SO tgs) [8] that are specified over the schema elements and their roles
[13] to express the relationships between heterogeneous schemas represented us-
ing different data models. A conjunctive query posed over an integration schema
expressed using the same formalism as the extensional mappings, is rewritten
into a query over the sources using composition of the conjunction of source-
to-target mappings between the source schemas and the integration schema and
the query itself. The predicates of the resulting query, which is expressed over all
the source schemas, are partitioned according to the corresponding sources and
are then translated into the corresponding source-specific query language (SQL
or XQuery) to be evaluated [13]. In contrast, rather than using composition we
have illustrated an approach for expansion of a query posed over an integration
schema using query unfolding [11] and presented in detail the rewriting of SMql
(sub-) queries that are associated with specific sources into the source-specific
query languages (SQL and XQuery).

In contrast, Automed utilises a lower-level hypergraph data model consisting
of edges, nodes and constraints to represent schemas expressed in heterogeneous
data models including XML [15]. Relationships between different schemas are
expressed by a number of low level transformations between them, e.g., removing
a node or an edge, that can be combined to form more complex transformations.
The approach is called both as view (BAV) and the transformations are specified
in such a way that they are reversible and that both local as view (LAV) and
global as view (GAV) mappings can be derived between an integration schema
and source schemas from the BAV transformations [16,7]. A query over an in-
tegration schema or any of the source schemas can be expressed in Automed’s
IQL query language, a comprehension-based functional query language, that is
reformulated into a query over the (other) sources schemas using a combination
of LAV and GAV query processing techniques over the BAV transformations
[17]. However, no detail is provided on how the IQL query posed over the source
schemas is rewritten into the source-specific query languages, which is the main
contribution of our approach presented here.

6 Conclusions

Complementing the model management platform MISM we have presented SMql,
a query language and its algebra over the MISM supermodel. We have illus-
trated an approach for expanding queries over multiple sources and presented
an approach for rewriting SMql queries into the corresponding source specific
queries posed over the sources to be queried. To add query rewriting capabilities
for other data models for which MISM already provides support, such as, the
object-relational model, the same approach as presented here for XSD and the
relational model can be followed, i.e., gather the information according to the
structure of the corresponding query language and use the information on the
correspondences between the model-specific model and the source-model inde-
pendent supermodel to create the specific target query. To include other models

Utilising the MISM Model Independent Schema Management Platform 117

that are not yet supported by MISM, e.g. RDF, the MISM model will have to
be extended first and then the approach described here followed.

References

1. Atzeni, P., Bellomarini, L., Bugiotti, F., Gianforme, G.: Mism: A platform for
model-independent solutions to model management problems. J. Data Seman-
tics 14, 133–161 (2009)

2. Atzeni, P., Bellomarini, L., Bugiotti, F., Gianforme, G.: A runtime approach to
model-independent schema and data translation. In: EDBT, pp. 275–286 (2009)

3. Atzeni, P., Cappellari, P., Bernstein, P.A.: Model-independent schema and
data translation. In: Ioannidis, Y., Scholl, M.H., Schmidt, J.W., Matthes, F.,
Hatzopoulos, M., Böhm, K., Kemper, A., Grust, T., Böhm, C. (eds.) EDBT 2006.
LNCS, vol. 3896, pp. 368–385. Springer, Heidelberg (2006)

4. Atzeni, P., Gianforme, G., Cappellari, P.: A universal metamodel and its dictionary.
T. Large-Scale Data- and Knowledge-Centered Systems 1, 38–62 (2009)

5. Bernstein, P.A., Halevy, A.Y., Pottinger, R.A.: A vision for management of complex
models. SIGMOD Record 29(4), 55–63 (2000)

6. Bernstein, P.A., Melnik, S.: Model management 2.0: manipulating richer mappings.
In: SIGMOD Conference, pp. 1–12 (2007)

7. Boyd, M., Kittivoravitkul, S., Lazanitis, C., McBrien, P., Rizopoulos, N.: Automed:
A bav data integration system for heterogeneous data sources. In: Persson, A.,
Stirna, J. (eds.) CAiSE 2004. LNCS, vol. 3084, pp. 82–97. Springer, Heidelberg
(2004)

8. Fagin, R., Kolaitis, P.G., Popa, L., Tan, W.C.: Composing schema mappings:
Second-order dependencies to the rescue. ACM Trans. Database Syst. 30(4), 994–
1055 (2005)

9. Franklin, M.J., Halevy, A.Y., Maier, D.: From databases to dataspaces: a new
abstraction for information management. SIGMOD Record 34(4), 27–33 (2005)

10. Garcia-Molina, H., Ullman, J.D., Widom, J.: Database Systems The Complete
Book, 2nd edn. Pearson International Edition, London (2009)

11. Halevy, A.Y.: Answering queries using views: A survey. The VLDB Journal 10(4),
270–294 (2001)

12. Kensche, D., Quix, C., Chatti, M.A., Jarke, M.: Gerome: A generic role based
metamodel for model management. Journal on Data Semantics 8, 82–117 (2007)

13. Kensche, D., Quix, C., Li, X., Li, Y., Jarke, M.: Generic schema mappings for
composition and query answering. Data & Knowledge Engineering (DKE) 68(7),
599–621 (2009)

14. Lenzerini, M.: Data integration: A theoretical perspective. In: PODS, pp. 233–246
(2002)

15. McBrien, P., Poulovassilis, A.: A semantic approach to integrating xml and struc-
tured data sources. In: Dittrich, K.R., Geppert, A., Norrie, M.C. (eds.) CAiSE
2001. LNCS, vol. 2068, pp. 330–345. Springer, Heidelberg (2001)

16. McBrien, P., Poulovassilis, A.: Data integration by bi-directional schema transfor-
mation rules. In: ICDE, pp. 227–238 (2003)

17. McBrien, P., Poulovassilis, A.: P2p query reformulation over both-as-view data
transformation rules. In: Moro, G., Bergamaschi, S., Joseph, S., Morin, J.-H., Ouk-
sel, A.M. (eds.) DBISP2P 2005 and DBISP2P 2006. LNCS, vol. 4125, pp. 310–322.
Springer, Heidelberg (2007)

Mining Sequential Patterns from Probabilistic

Databases by Pattern-Growth

Muhammad Muzammal

Department of Computer Science, University of Leicester, UK
mm386@mcs.le.ac.uk

Abstract. We propose a pattern-growth approach for mining sequential
patterns from probabilistic databases. Our considered model of uncer-
tainty is about the situations where there is uncertainty in associating
an event with a source; and consider the problem of enumerating all
sequences whose expected support satisfies a user-defined threshold θ.
In an earlier work [Muzammal and Raman, PAKDD’11], adapted rep-
resentative candidate generate-and-test approaches, GSP (breadth-first
sequence lattice traversal) and SPADE/SPAM (depth-first sequence lat-
tice traversal) to the probabilistic case. The authors also noted the dif-
ficulties in generalizing PrefixSpan to the probabilistic case (PrefixSpan
is a pattern-growth algorithm, considered to be the best performer for
deterministic sequential pattern mining). We overcome these difficulties
in this note and adapt PrefixSpan to work under probabilistic settings.
We then report on an experimental evaluation of the candidate generate-
and-test approaches against the pattern-growth approach.

Keywords: Mining Uncertain Data, Mining complex sequential data,
Probabilistic Databases, Novel models and algorithms.

1 Introduction

Agrawal and Srikant [14,2] defined the problem of Sequential Pattern Mining
(SPM), which involves discovery of frequent sequences of events in data with
a temporal component; SPM has become a classical and well-studied problem
in data mining [17,13,3]. In classical SPM, the database to be mined consists
of tuples 〈eid, e, σ〉, where e is an event, σ is a source and eid is an event-
id which incorporates a time-stamp. A tuple may record a retail transaction
(event) by a customer (source), or an observation of an object/person (event)
by a sensor/camera (source). All of the components of the tuple are assumed to
be certain, or completely determined.

However, it is recognized that data obtained from a wide range of data sources
is inherently uncertain [1]. This paper is concerned with SPM in probabilistic
databases [15], a popular framework for modelling uncertainty. Recently sev-
eral data mining and ranking problems have been studied in this framework,
including top-k [18,5], frequent itemset mining (FIM) [1,4] and sequential pat-
tern mining [11,12]. In [11] two kinds of uncertainty in SPM were formalized:

A.A.A. Fernandes et al. (Eds.): BNCOD 2011, LNCS 7051, pp. 118–127, 2011.
c© Springer-Verlag Berlin Heidelberg 2011

Mining Sequential Patterns from Probabilistic Databases by Pattern-Growth 119

source-level uncertainty (SLU) and event-level uncertainty (ELU). In SLU, the
“source” attribute of each tuple is uncertain: each tuple contains a probability
distribution over possible sources (attribute-level uncertainty [15]). As noted in
[11], this formulation applies to scenarios where it is known that some customer
made a specific retail transaction, but the identity of the customer who made
that transaction is uncertain. This could happen because of incomplete cus-
tomer details, or because the customer database itself is probabilistic as a result
of “deduplication” or cleaning [7]. In ELU, the source of the tuple is certain,
but the events are uncertain. This applies to several scenarios involving sensors
in fixed locations detecting events using noisy techniques. In this case, either
the existence of an event is uncertain (for example tracking endangered animals
using sensors [8] or aggregating unreliable observations into events [9]) or the
event’s existence is essentially certain, but its content is uncertain (for example,
reading a numberplate using automated numberplate recognition or sequences
of search terms that may have ambiguous meanings [11]).

Our contributions. In [12], efficient algorithms were proposed for the SPM prob-
lem in SLU probabilistic databases, under the expected support measure. These
algorithms were based on the candidate generate-and-test approach, which is
known to be relatively inefficient for classical SPM. In [12], it was noted that it
is not straightforward to adapt the pattern-growth approach [13], which is usually
the best for classical SPM, to the probabilistic case. In this paper, we overcome
the obstacles mentioned in [12], and propose a pattern-growth method for the
SPM problem in probabilistic databases. In classical SPM, pattern-growth works
by performing L1 computation on a projected database. The key contributions of
this work are to formulate the analogue of a projected database in probabilistic
settings, and to identify the appropriate L1 computation to perform on the pro-
jected database. Unlike the deterministic case, it appears that pattern-growth for
probabilistic SPM appears to require additional memory. We have implemented
the new pattern-growth algorithm and present an experimental evaluation of
the pattern-growth algorithm against the ones presented in [12]; this evaluation
shows that although pattern-growth is superior to candidate generation in the
deterministic settings, the picture is not as clear as for the probabilistic case.

2 Problem Statement

Classical SPM [14,2]. Let I = {i1, i2, . . . , iq} be a set of items and S =
{1, . . . , m} be a set of sources. An event e ⊆ I is a collection of items. A database
D = 〈r1, r2, . . . , rn〉 is an ordered list of records such that each ri ∈ D is of the
form (eid i, ei, σi), where eid i is a unique event-id, including a time-stamp (events
are ordered by this time-stamp), ei is an event and σi is a source.

A sequence s = 〈s1, s2, . . . , sa〉 is an ordered list of events. The events si in the
sequence are called its elements. The length of a sequence s is the total number of
items in it, i.e.

∑a
j=1 |sj |; for any integer k, a k-sequence is a sequence of length k.

Let s = 〈s1, s2, . . . , sq〉 and t = 〈t1, t2, . . . , tr〉 be two sequences. We say that s is a
subsequence of t, denoted s � t, if there exist integers 1 ≤ i1 < i2 < · · · < iq ≤ r

120 M. Muzammal

such that sk ⊆ tij , for k = 1, . . . , q. The source sequence Di corresponding to a
source i is just the multiset {e|(eid, e, i) ∈ D}, ordered by eid. For any sequence
s, define its support in D, denoted Sup(s, D) is the number of sources i such
that s � Di. The objective is to find all sequences s such that Sup(s, D) ≥ θm
for some user-defined threshold 0 < θ ≤ 1.

Probabilistic Databases. We define an SLU probabilistic database Dp to be an
ordered list 〈r1, . . . , rn〉 of records of the form (eid , e,W) where eid is an event-id,
e is an event and W is a probability distribution over S; the list is ordered by eid.
The distribution W contains pairs of the form (σ, c), where σ ∈ S and 0 < c ≤ 1
is the confidence that the event e is associated with source σ and

∑
(σ,c)∈W c = 1.

An example can be found in Table 1(L). The possible worlds semantics of Dp

is as follows. A possible world D∗ of Dp is generated by taking each event ei in
turn, and assigning it to one of the possible sources σi ∈ Wi. Thus every record
ri = (eidi, ei, Wi) ∈ Dp takes the form r′i = (eidi, ei, σi), for some σi ∈ S in D∗.
The complete set of possible worlds is obtained by enumerating all such possible
combinations. We assume that the distributions Wi associated with each record
ri in Dp are stochastically independent; the probability of a possible world D∗

is therefore Pr[D∗] =
∏n

i=1 PrWi [σi]. For example, a possible world D∗ for the
database of Table 1 can be generated by assigning event e1 to Z with probability
0.3, events e2 and e4 to X with probabilities 0.7 and 0.6 respectively, and event
e3 to Y with probability 0.3, and Pr[D∗] = 0.3 × 0.7 × 0.3 × 0.6 = 0.0378.

Table 1. An SLU event database (L) transformed to p-sequences (R). Note that the
events like e1 (marked with † on (R)) can only be associated with one of the sources
X, Y and Z in any possible world

eid event W

e1 (a, c, e) (X : 0.1)(Y : 0.6)(Z : 0.3)

e2 (b, c, d) (X : 0.7)(Y : 0.3)

e3 (a, d, e) (X : 0.2)(Y : 0.3)(Z : 0.5)

e4 (b, c, e) (X : 0.6)(Z : 0.4)

p-sequence

Dp
X (a, c, e : 0.1)†(b, c, d : 0.7)(a, d, e : 0.2)

(b, c, e : 0.6)

Dp
Y (a, c, e : 0.6)†(b, c, d : 0.3)(a, d, e : 0.3)

Dp
Z (a, c, e : 0.3)†(a, d, e : 0.5)(b, c, e : 0.4)

As a possible world is a deterministic instance of a given probabilistic database,
concepts like the support of a sequence in a possible world do apply. The expected
support of a sequence s in Dp is computed as follows:

ES(s, Dp) =
∑

D∗∈PW (Dp)

Pr[D∗] ∗ Sup(s, D∗), (1)

The problem we consider is:

Given an SLU probabilistic database Dp, determine all sequences s such
that ES(s, Dp) ≥ θm, for some user-specified threshold θ, 0 < θ ≤ 1.

Mining Sequential Patterns from Probabilistic Databases by Pattern-Growth 121

Observe that it is not feasible to use Eq. 1 directly due to the exponential number
of possible worlds. Consider for example, we want to compute the probability
with which source X supports a sequence s = (a)(b) in the sample database
of Table 1. There can be two ways in which s can be supported by source X
i.e. either e1 does support (a) and at least one of the events e2 or e4 support
(b) or alternatively, e1 does not support (a) but e3 does support (a), and e4

supports (b). The probability that X supports s is calculated as 0.196. Clearly,
computing the source support probability this way is an expensive operation. In
[12], a dynamic programming (DP) based algorithm was proposed to compute
the source support probability Pr[s � Dp

i], and it was shown that the ES of a
sequence could be computed as follows:

ES(s, Dp) =
m∑

i=1

Pr[s � Dp
i] (2)

3 Pattern-Growth Approach

We now describe our Pattern-Growth-Approach (PGA) that uses in essence
the already proposed sub-routines, Dynamic Programming (DP) and fast L1

computation [12]; and integrates it with the pattern-growth mechanism [13]. We
first review some concepts:

p-Sequences. A p-sequence is analogous to a source sequence in classical SPM,
and is a sequence of the form 〈(e1, c1) . . . (ek, ck)〉, where ej is an event and cj

is a confidence value. An SLU database Dp can be viewed as a collection of
p-sequences Dp

1 , . . . , D
p
m, where Dp

i is the p-sequence of source i, and contains a
list of those events in Dp that have non-zero confidence of being associated with
source i, ordered by eid, together with the associated confidence (see Table 1(R)).
Further, given a sequence s = 〈s1, . . . , sq〉 and an item x, s can either be extended
by adding x as a separate element in s, s ·{x} (S-extension) or by appending x to
the last element in s, 〈s1, . . . , sq ∪{x}〉 (I-extension). For example, for s = (a)(b)
and x = c, S- and I-extensions of s are (a)(b)(c) and (a)(b, c) respectively.

Dynamic Programming. Let i be a source, Dp
i = 〈(e1, c1), . . . , (er, cr)〉, and

s = 〈s1, . . . , sq〉 be any sequence. Now let Ai,s be the (q × r) DP matrix used to
compute Pr[s � Dp

i], and let Bi,s denote the last row of Ai,s, that is, Bi,s[�] =
Ai,s[q, �] for � = 1, . . . , r. For 1 ≤ k ≤ q and 1 ≤ � ≤ r, A[k, �] will contain
Pr[〈s1, . . . , sk〉 � 〈(e1, c1), . . . , (e�, c�)〉], so A[q, r] is the value Pr[s � Dp

i]. We
set A[1, �] = 1 for all �, 1 ≤ � ≤ r and A[k, 1] = 0 for all 1 ≤ k ≤ q, and compute
the other values row-by-row. For 1 ≤ k ≤ q and 1 ≤ � ≤ r, define:

c∗k� =
{

c� if sk ⊆ e�

0 otherwise ,
(3)

where c∗k� is the probability that the element sk is contained in the event e� in
source i; If sk ⊆ e�, c∗k� is equal to the probability that e� is associated with
source i, and 0 otherwise. Next, use the following recurrence:

122 M. Muzammal

A[k, �] = (1 − c∗k�) ∗ A[k, � − 1] + c∗k� ∗ A[k − 1, � − 1]. (4)

Lemma 1. Given a p-sequence Dp
i and a sequence s, by applying Eq. 4 repeat-

edly, we correctly compute Pr[s � Dp
i].

Fast L1 Computation. It was shown by [12] that it was possible to compute all
frequent 1-sequences in a single pass over the database. The procedure for this is
as follows: Initialize two arrays F and G, each of size q = |I|, to zero and consider
each source i in turn. If Dp

i = 〈(e1, c1), . . . , (er, cr)〉, for k = 1, . . . , r take the pair
(ek, ck) and iterate through each x ∈ ek, setting F [x] := (F [x] ∗ (1 − ck)) + ck.
Once finished with source i, if F [x] is non-zero, update G[x] := G[x] + F [x] and
reset F [x] to zero (for each source i use a list structure to keep track of all the
non-zero entries in F). Finally, for any item x ∈ I, G[x] = ES(〈x〉, Dp).

PrefixSpan. PrefixSpan is based on the idea of pattern-growth, and works as
follows: First, all frequent 1-sequences are discovered. It is argued that any of the
frequent 2-sequences must begin with a frequent 1-sequence and therefore, the
complete set of sequential patterns can be partitioned into as many subsets as
the number of frequent 1-sequences where each 1-sequence is taken as a prefix.
A projected database is a smaller databased based on some prefix (sequence).
For example, in the sample database of Table 1(R), a (d)-projected database is
{〈(a, d, e : 0.2)(b, c, e : 0.6)〉, 〈(a, d, e : 0.3)〉, 〈(, e : 0.5)(b, c, e : 0.4)〉}. The sub-
set of sequential patterns is mined by constructing the set of projected databases
based on frequent 1-sequences and mining each recursively. For example, if (e)
is a frequent 1-sequence in the above (d)-projected database, a (d)(e)-projected
database looks like {〈(b, c, e : 0.6)〉, 〈〉, 〈〉}. This recursive mining process con-
tinues until no more sequential patterns could be found. For details see [13].

It was noted in [12] that it is not correct to simply perform the fast L1

computation on a projected database. For example, if an (a)-projected database
contained two p-sequences (b : 0.5)(b : 0.5)(a : 0.5) and (b : 0.5)(a : 0.5)(b : 0.5),
then when considering whether (a)(b) is frequent, it is not correct to compute
the expected support of (b) in the projected database (for example, both p-
sequences above would give the same contribution – 0.75 – to the support of
(b) in the projected database, but clearly their support for (a)(b) is different).
In this work, we show how these sub-routines could be put together to find all
frequent sequential patterns using PGA.

3.1 Pattern-Growth Step

Pre-conditions

1. s is a previously discovered frequent sequence.
2. The list of sources i, where Pr[s � Dp

i] > 0 is available.
3. The Bi,s arrays for all such sources i are also available.

Mining Sequential Patterns from Probabilistic Databases by Pattern-Growth 123

Table 2. An example of computing the ES of all S-extensions of s = (a) for source
X in the sample database of Table 1. The gray row is the BX,s array. In the bottom
half, the cells that changed in F ′ after processing the corresponding event are marked
as gray. After processing source X, values in the final column are updated to G′.

Dp
X (a, c, e : 0.1) (b, c, d : 0.7) (a, d, e : 0.2) (b, c, e : 0.6)

(a) 0.1 0.1 0.28 0.28

(a) 0.0 0.0 0.02 0.020
(b) 0.0 0.07 0.07 0.196
(c) 0.0 0.07 0.07 0.196
(d) 0.0 0.07 0.076 0.076
(e) 0.0 0.0 0.02 0.176

(i) (ii) (iii) (iv)

Objective: To compute the ES of all the S- or I-extensions of s in one pass
over the database, and thus discover all frequent extensions of s.

Steps: We consider the two cases of finding the S- and I-extensions of s in turn.
We compute the frequent S-extensions of s as follows: Let i be a source, Dp

i =
〈(e1, c1), . . . , (er, cr)〉, and s = 〈s1, . . . , sq〉 be any sequence. Initialize two arrays
F ′ and G′, each of size q = |I| to zero and consider each source i in turn. Then
scan Bi,s up-to the first non-zero entry ek, and for every item x in e�, k < � ≤ r,
update F ′[x] as follows:

F ′[x] := ((1 − c�) ∗ F ′[x]) + (c� ∗ Bi,s[� − 1]) (5)

We keep track of all the non-zero entries in F ′[x], and once finished with source
i, update G′[x] := G′[x] + F ′[x] and reset F ′[x] to zero. After all the sources i
are processed, all the entries in G′[x] ≥ θm are frequent S-extensions of s. An
example of this computation is shown in Table 2.

For the I-extensions case, the initializations are the same as for the S-extensions
case. For a sequence s = 〈s1, . . . , sq〉 and source i, when scanning Bi,s up-to the
first non-zero entry e� which means sq ⊆ e�, for every item x in e� that is not in
sq and is lexicographically greater than all items in sq, update F ′[x] as follows:

F ′[x] := (1 − c�) ∗ F ′[x] + (Bi,s[�] − Bi,s[� − 1] ∗ (1 − c�)), (6)

and apply Eq. 6 to all the events e�, � ≤ r, where sq ⊆ e� (or alternatively where
the Bi,s values change). After all the sources i are processed, all the entries in
G′[x] ≥ θm are frequent I-extensions of s.

Pattern-Growth Algorithm. An overview of our pattern-growth algorithm
is in Fig. 1. We first compute the set of frequent 1-sequences, L1 (Line 3) (as-
sume L1 is in ascending order). For each 1-sequence x, first we compute the Bi,x

124 M. Muzammal

Algorithm 1. Pattern-Growth Approach
1: Input: SLU probabilistic database Dp and support threshold θ.
2: Output: All sequences s with ES(s, Dp) ≥ θm.

3: L1 ← ComputeFrequent-1-sequences(Dp)
4: for all sequences x ∈ L1 do
5: Compute Bi,x arrays
6: Call ProjectedDB(x)

7: function ProjectedDB(s)
8: LS ← Compute Frequent S-extensions {fast L1 computation}
9: LI ← Compute Frequent I-extensions {fast L1 computation}

10: Output all Frequent Sequences {s extended with x, for all x in LS and LI}
11: for all x ∈ LS do
12: t ← 〈s · {x}〉 {S-extension}
13: Compute Bi,t arrays
14: ProjectedDB(t)
15: for all x ∈ LI do
16: t ← 〈s1, . . . , sq ∪ {x}〉 {I-extension}
17: Compute Bi,t arrays
18: ProjectedDB(t)
19: end function

arrays for each source (Line 5) and also keep track of all the sources where
Pr[x � Dp

i] > 0 (projected database) and then, call the ProjectedDB(x) sub-
routine (Line 6).

In the ProjectedDB sub-routine, we first compute all the frequent S- and
I-extensions of s using the fast L1 computation by applying Eq. 5 and Eq. 6
accordingly (Line 8 and 9). In step 10, output all the frequent S- and I-extensions
of s computed in the previous steps. In steps 11-18, for every sequence t which
is a frequent S- or I-extension of s, compute Bi,t arrays and also keep track of
all the sources where Pr[t � Dp

i] > 0, and call the ProjectedDB sub-routine
recursively to mine all frequent sequential patterns.

Table 3. Number of DP computations (in millions) performed by each algorithm, for
the set of experiments in Fig. 1 (L) and in Fig. 2 (R)

C10D10K BFS+P DFS+P PGA
θ = 0.5 % 3.141 3.199 1.494
θ = 1 % 1.711 1.465 0.886
θ = 2 % 0.879 0.781 0.487
θ = 4 % 0.505 0.487 0.281
gazelle

θ = 0.01 % 0.777 0.375 0.261
θ = 0.02 % 0.149 0.172 0.152
θ = 0.03 % 0.073 0.129 0.122
θ = 0.04 % 0.045 0.110 0.107

C = 10, θ = 1% BFS+P DFS+P PGA
D = 10K 1.465 1.711 0.886
D = 20K 2.890 3.370 1.735
D = 40K 5.716 6.718 3.464
D = 80K 11.460 13.423 6.936

D = 10K, θ = 25%
C = 10 0.100 0.111 0.081
C = 20 0.690 0.694 0.314
C = 40 13.044 13.891 4.868
C = 80 2353.677 2782.807 881.480

Mining Sequential Patterns from Probabilistic Databases by Pattern-Growth 125

 0

 50

 100

 150

 200

 250

0 2 4 6 8

R
un

ni
ng

 ti
m

e
(i

n
se

c)

θ values (in %age)

C10D10K

BFS+P
DFS+P

PGA

 0

 50

 100

 150

 200

 250

 300

 350

 400

0 0.01 0.02 0.03 0.04 0.05

R
un

ni
ng

 ti
m

e
(i

n
se

c)

θ values (in %age)

Gazelle

BFS+P
DFS+P

PGA

Fig. 1. Scalability of the three algorithms for decreasing values of θ, for synthetic
dataset (C10D10K) (L) and for real dataset Gazelle (R)

 0

 200

 400

 600

 800

 1000

 1200

 1400

 1600

0 40 80 120 160

R
un

ni
ng

 ti
m

e
(i

n
se

c)

No. of sources (in thousands)

C = 10, θ = 1%

BFS+P
DFS+P

PGA

0

1

10

100

1000

0 20 40 60 80

R
un

ni
ng

 ti
m

e
(i

n
se

c)

No. of events per source

D = 10K, θ = 25%

BFS+P
DFS+P

PGA

Fig. 2. Scalability for increasing number of sources D, with average number of events
per source C = 10 and ES = 1% (L), and for increasing number of events per sources
C with number of sources D = 10K and ES = 25% (R)

4 Experimental Evaluation

In [12], the authors adapt GSP and SPADE/SPAM to yield a breadth-first (BFS)
and a depth-first (DFS) algorithm, respectively. In addition, they also propose
a probabilistic pruning technique to eliminate potential infrequent candidates
without support computation, achieving an overall speedup. We therefore, choose
two of the faster candidate generation variants from [12] i.e. BFS+P (breadth-
first search with pruning) and DFS+P (depth-first search with pruning), and
compare these with the Pattern-Growth Approach (PGA) proposed in this work.

Our implementations are in C# (Visual Studio .Net 2005), executed on a ma-
chine with a 3.2GHz Intel CPU and 3GB RAM running XP (SP3). We begin by
describing the datasets used for experiments. Then, we demonstrate the scalabil-
ity of the three algorithms. Our reported running times are averages from multiple
runs. In our experiments, we use both real (gazelle from Blue Martini [10]) and
synthetic (IBM Quest [2]) datasets. We transform these deterministic datasets to
probabilistic form in a way similar to [1,4,18,12]; we assign probabilities to each

126 M. Muzammal

event in a source sequence using a uniform distribution over (0, 1], thus obtaining
a collection of p-sequences.

The real dataset Gazelle has 29369 sequences and 35722 events. For synthetic
datasets, we follow the naming convention of [17]: a dataset named CiDjK means
that the average number of events per source is i and the number of sources is j
(in thousands). Alphabet size is 2K and all other parameters are set to default.
For example, the dataset C10D20K has on average 10 events per source and 20K
sources. We consider following three parameters in our experiments: number of
sources D, average number of events per source C, and support threshold θ. We
test our algorithms for increasing D, increasing C, and decreasing θ values by
keeping the other two parameters fixed.

Scalability Testing. In the first set of experiments, we fix C = 10 and θ = 1%,
and test the scalability of these algorithms for decreasing θ values. We report
our results for synthetic dataset (C10D10K) in Fig. 1(L), and for real dataset
(Gazelle) in Fig. 1(R). It can be seen that PGA performs better than both the
candidate generate-and-test approaches for real as well as for synthetic dataset.
The performace difference is more obvious for harder instances (at low θ values).

In another set of experiments, we test the scalability of these algorithms for
increasing values of D by fixing C = 10 and θ = 1% (Fig. 2(L)), and by fixing
D = 10K and θ = 25%, for increasing values of C (Fig. 2(R)). It can be seen that
PGA performs better than the other two algorithms for increasing D (Fig. 2(L)).
However, we do not see improvements for increasing C (Fig. 2(R)). We are cur-
rently investigating the reasons for this behaviour. Note that DFS+P processes
only one S- or I-extension of s at a time, whereas in PGA all the extensions of
s are processed simultaneously.

We also kept statistics about the number of DP computations for each algo-
rithm (Table. 3). The datasets and support thresholds are the same as in Fig. 1
and Fig. 2. We observe that PGA performs the least number of DP computa-
tions consistently, as in PGA the Bi,s arrays are computed only for the frequent
sequences. As noted in [13] that candidate generation approaches suffer from an
exponential number of candidates at low θ values, this cost is even higher in
probabilistic case because of the Bi,s arrays. Further, note that there is no need
for keeping Bi,s arrays for BFS in contrast with the PGA and therefore, PGA
has additional memory needs.

5 Conclusions and Future Work

We have considered the problem of finding all frequent sequences by pattern-
growth in SLU databases. We have evaluated PGA in contrast with the candidate
generate-and-test approaches, and we observe that the PGA performs better
than the candidate generation approaches in general. The speedup in running
time can be seen for the real dataset, in particular at low θ values, and for the
synthetic datasets as well when the source sequences are not very long or for low
θ values. The statistics about the number of DP computations also show that the
PGA performs the least number of DP computations consistently. We conclude

Mining Sequential Patterns from Probabilistic Databases by Pattern-Growth 127

that PGA is generally efficient than the candidate generation algorithms. In
future, we intend to investigate that why the performance difference is not so
obvious when the source sequences are very long or for higher θ values, and
whether PGA has similar behaviour for other real datasets.

References

1. Aggarwal, C.C. (ed.): Managing and Mining Uncertain Data. Springer, Heidelberg
(2009)

2. Agrawal, R., Srikant, R.: Mining sequential patterns. In: Yu, P.S., Chen, A.L.P.
(eds.) ICDE, pp. 3–14. IEEE Computer Society, Los Alamitos (1995)

3. Ayres, J., Flannick, J., Gehrke, J., Yiu, T.: Sequential pattern mining using a
bitmap representation. In: KDD, pp. 429–435. ACM, New York (2002)

4. Bernecker, T., Kriegel, H.P., Renz, M., Verhein, F., Züfle, A.: Probabilistic frequent
itemset mining in uncertain databases. In: Elder, et al [6], pp. 119–128

5. Cormode, G., Li, F., Yi, K.: Semantics of ranking queries for probabilistic data
and expected ranks. In: ICDE, pp. 305–316. IEEE, Los Alamitos (2009)

6. Elder, J.F., Fogelman-Soulié, F., Flach, P.A., Zaki, M.J. (eds.): Proceedings of the
15th ACM SIGKDD International Conference on Knowledge Discovery and Data
Mining, Paris, France, June 28-July 1. ACM, New York (2009)

7. Hassanzadeh, O., Miller, R.J.: Creating probabilistic databases from duplicated
data. The VLDB Journal 18(5), 1141–1166 (2009)

8. Hua, M., Pei, J., Zhang, W., Lin, X.: Ranking queries on uncertain data: a proba-
bilistic threshold approach. In: Wang [16], pp. 673–686

9. Khoussainova, N., Balazinska, M., Suciu, D.: Probabilistic event extraction from
RFID data. In: ICDE, pp. 1480–1482. IEEE, Los Alamitos (2008)

10. Kohavi, R., Brodley, C., Frasca, B., Mason, L., Zheng, Z.: KDD-Cup 2000 orga-
nizers’ report: Peeling the onion. SIGKDD Explorations 2(2), 86–98 (2000)

11. Muzammal, M., Raman, R.: On probabilistic models for uncertain sequential pat-
tern mining. In: Cao, L., Feng, Y., Zhong, J. (eds.) ADMA 2010, Part I. LNCS,
vol. 6440, pp. 60–72. Springer, Heidelberg (2010)

12. Muzammal, M., Raman, R.: Mining sequential patterns from probabilistic
databases. In: Huang, J.Z., Cao, L., Srivastava, J. (eds.) PAKDD 2011, Part II.
LNCS (LNAI), vol. 6635, pp. 210–221. Springer, Heidelberg (2011)

13. Pei, J., Han, J., Mortazavi-Asl, B., Wang, J., Pinto, H., Chen, Q., Dayal, U., Hsu,
M.: Mining sequential patterns by pattern-growth: The PrefixSpan approach. IEEE
Trans. Knowl. Data Eng. 16(11), 1424–1440 (2004)

14. Srikant, R., Agrawal, R.: Mining sequential patterns: Generalizations and perfor-
mance improvements. In: Apers, P.M.G., Bouzeghoub, M., Gardarin, G. (eds.)
EDBT 1996. LNCS, vol. 1057, pp. 3–17. Springer, Heidelberg (1996)

15. Suciu, D., Dalvi, N.N.: Foundations of probabilistic answers to queries. In: Özcan,
F. (ed.) SIGMOD Conference, p. 963. ACM, New York (2005)

16. Wang, J.T.L. (ed.): Proceedings of the ACM SIGMOD International Conference
on Management of Data, SIGMOD 2008, Vancouver, BC, Canada, June 10-12.
ACM, New York (2008)

17. Zaki, M.J.: SPADE: An efficient algorithm for mining frequent sequences. Machine
Learning 42(1/2), 31–60 (2001)

18. Zhang, Q., Li, F., Yi, K.: Finding frequent items in probabilistic data. In: Wang
[16], pp. 819–832

Smile: Enabling Easy and Fast Development of

Domain-Specific Scheduling Protocols

Christian Tilgner1, Boris Glavic2, Michael Böhlen1, and Carl-Christian Kanne3

1 University of Zurich
2 University of Toronto

3 University of Mannheim
{tilgner,boehlen}@ifi.uzh.ch, glavic@cs.toronto.edu,

kanne@informatik.uni-mannheim.de

Abstract. Modern server systems schedule large amounts of concur-
rent requests constrained by, e.g., correctness criteria and service-level
agreements. Since standard database management systems provide only
limited consistency levels, the state of the art is to develop schedulers
imperatively which is time-consuming and error-prone. In this poster, we
present Smile (declarative Scheduling MIddLEware), a tool for develop-
ing domain-specific scheduling protocols declaratively. Smile decreases
the effort to implement and adapt such protocols because it abstracts
from low level scheduling details allowing developers to focus on the pro-
tocol implementation. We demonstrate the advantages of our approach
by implementing a domain-specific use case protocol.

1 Introduction

Modern application servers handle large numbers of concurrent requests which
have to be scheduled according to, e.g., correctness criteria like classical serializ-
ability or service-level agreements (SLAs). Standard database management sys-
tems (DBMSs) offer a limited amount of fixed consistency levels, do not provide
sophisticated support for SLAs and, thus, often cannot be used to satisfy domain-
specific scheduling requirements. The state of the art is to develop schedulers
imperatively for applications like Amazon, Ebay or Yahoo [2,5] which yields fine-
tuned schedulers satisfying the application’s scheduling constraints. But proce-
dural implementations of schedulers can be complex and difficult to understand,
especially if the request types and correctness criteria are less well studied than,
e.g., classic serializability. Adapting schedulers to evolving requirements results
in expensive and error-prone re-implementations. With our approach we address
these issues by leveraging a declarative language to implement schedulers which
has been shown to be beneficial in previous work [1,3].

1.1 Banking Scenario

We use the following simplified banking scenario to illustrate the shortcom-
ings of standard DBMSs with regard to non-standard scheduling requirements.
A bank institute serves normal and premium customers holding bank accounts.

A.A.A. Fernandes et al. (Eds.): BNCOD 2011, LNCS 7051, pp. 128–131, 2011.
c© Springer-Verlag Berlin Heidelberg 2011

Smile: Enabling Easy and Fast Development 129

A domain expert defines the following constraints: (C1) Account data has to be
accessed under strong consistency to obviate inconsistent states and (C2) Do not
schedule requests for normal customers, if there are pending requests from pre-
mium customers. How can a scheduler developer implement these constraints?
Constraint C1 can be realized with standard DBMSs by applying a high isola-
tion level, but C2 is not supported by standard DBMSs. The alternative is to
develop a new scheduler from scratch which is expensive and error-prone.

2 Smile: Declarative Scheduling Middleware

Smile, our declarative scheduling middleware prototype, allows the implemen-
tation of domain-specific scheduling constraints. Executable scheduling proto-
cols are specified with few lines of code, paving the way for sophisticated and
easy-to-reason-about scheduling protocols. Our approach is based on a generic
formal framework called Oshiya1 that models the scheduling state as a set of
so-called scheduling relations, e.g., one relation stores the schedule produced so
far. Scheduling logic is encapsulated in a set of declarative queries called schedul-
ing queries. To produce a schedule (sequence of scheduling relation states), Smile
schedules multiple requests at the same time by repeatedly executing the schedul-
ing queries over the scheduling relations.

This approach has several advantages: (1) Smile abstracts from low level
scheduling details that are independent of the scheduling constraints such as
parallelism in the scheduler code, queueing of incoming requests, or managing
(network) connections. Developers can focus on the protocol implementation
(the scheduling queries) itself, which decreases the amount of code and the ef-
fort needed to implement or adapt schedulers. We developed scheduling queries
for the strong two-phase locking (SS2PL) protocol [4] as well as for a data depen-
dent, relaxed consistency protocol. (2) Smile’s underlying model allows to specify
scheduling protocols close to their formal definition, facilitating reasoning over
properties of protocol implementations such as verifying their correctness. For
instance, we have proven the correctness of the scheduling queries implementing
SS2PL [4]. (3) The separation of scheduling logic and scheduler implementation
opens up interesting optimization opportunities that we plan to investigate in fu-
ture work. E.g., using specialized execution engines to execute scheduling queries
and controlling the trade-off between the time spent for scheduling requests and
the time spent to execute them. (4) Scheduling sets of requests at the same time
can improve the performance for large numbers of concurrent requests [3].

2.1 Oshiya Scheduling Model

In Oshiya [3], the scheduling state (requests to schedule and history information
needed for scheduling decisions) is stored in three scheduling relations: Pendin-
gRequests (R) buffers requests that have to be scheduled for execution. Relevan-
tHistory (H) stores prior executed requests in their execution order, modelling
1 Oshiya refers to the passenger arrangement staff at Japanese train stations who help

to fill a train by pushing people onto the train or guiding people to free railway cars.

130 C. Tilgner et al.

the schedule generated so far. Executable (E) buffers requests chosen for exe-
cution. Scheduling protocols are realized as three scheduling queries: QSchedule,
QRevoked, QIrrelevant. Given previously executed requests, these queries deter-
mine in which order to execute pending requests. The scheduler state is advanced
in iterative steps by applying a generic scheduling algorithm (shown in Fig. 2)
that evaluates the scheduling queries over the current instances of the schedul-
ing relations. The algorithm is the same for every protocol, but is parameterized
by the protocol specific scheduling relations schemata and scheduling queries.
Each scheduler iteration (while loop) performs the following steps: (1) Requests
scheduled in the previous iteration are removed from R. (2) Newly arrived client
requests (N) are added to R. (3) QRevoked determines transactions that have
to be aborted since the requests cannot be executed due to constraint viola-
tions or blocking. (4) QSchedule implements the scheduling protocol. It selects
all requests from R that can be executed in this iteration without violating the
protocol constraints. (5) Requests in E are executed and (6) added to H. (7)
QIrrelevant identifies those requests from H that are irrelevant for future schedul-
ing decisions, and is used to prune H so that it does not grow continuously.

2.2 Smile Architecture

The Smile prototype implements the Oshiya scheduling model outlined in the
last subsection using three threads (ClientWorker, Declarative Scheduler and
Executor), all running independently and continuously. The Smile architecture
is shown in Figure 1 with arrows denoting data flow.

Clients

Smile
ClientWorker

Executor

Return
request
replies

DBMS

Insert new
requests

Select
next

statement

Declarative Scheduler

Execute()

Revoked

Irrelevant

Schedule

Protocol
Library

Runtime
Statistics
Collection

Q

Q

Q
R

H

E

Fig. 1. Smile Architecture

H = E = R = ∅
while t rue do begin

1 R = R− E ;
2 R = R ∪ N ;
3 R = R− QRevoked(H,R) ;
4 E = QSchedule(H,R) ;
5 Execute(E) ;
6 H = H∪ E ;
7 H = H− QIrrelevant(H) ;

end

Fig. 2. Smile Algorithm

ClientWorker. This thread manages client connections. The ClientWorker
thread receives new requests from clients, buffers these client requests in a queue
and periodically inserts them into R as batch job (Step 2).

Declarative Scheduler. This thread performs request scheduling by periodi-
cally executing QRevoked, QSchedule and QIrrelevant (Steps 3, 4, 7).

Executor. The Executor thread is executing the scheduled requests located in
E against the DBMS by repeating the following steps: Retrieve the request with
the smallest ID from E , execute it against the back-end DBMS, return the request
result to the client that has sent this request, and delete it from E (Step 5).

Smile: Enabling Easy and Fast Development 131

Protocol Library. Smile offers a protocol library providing the scheduler de-
veloper with pre-cooked scheduling queries (e.g., for SS2PL). These scheduling
queries can be used out of the box or as a starting point to develop domain-
specific protocols. We expect developers to extend this library over time with
their own protocol modules.

Runtime Statistics Collection. We let Smile gather statistics about the be-
haviour of its operations at runtime such as the cardinalities of R, H and E and
the execution times of the scheduling queries. In future work, we plan to expose
this information to the scheduler developer for the use in the scheduling queries
and let her provide policies for scheduling the execution of the Smile threads.

We developed strategies deciding when to pause a thread ensuring an efficient
resource usage. E.g., running the Executor while E is empty wastes resources.

2.3 Example: Use Case Implementation

We sketch the protocol implementation of the use case to illustrate the simplicity
and conciseness of our approach. Scheduling queries are given as domain rela-
tional calculus (DRC) expressions. A simplified DRC formulation of QSchedule

implementing the use case constraints is:

QSchedule = {S, C | is2PL(S, C)∧
∃C2(C2 =′ premium′ ∧ (is2PL(, C2) ⇒ C =′ premium′))}

We use a declarative implementation of SS2PL to realize constraint C1. Predicate
is2PL(S, C) uses R to determine all requests S with their customer class C that
can be executed without violating the SS2PL constraints that have to hold for
the generated schedule (requests in relation H). We use S as a shorthand for
the request related attributes of is2PL (transaction ID etc.). Using Oshiya, we
can implement scheduling constraint C2 as follows: If there exists at least one
request of a premium customer (C2 =′ premium′ ∧ is2PL(, C2)), then only
premium requests are selected by QSchedule (C =′ premium′).

References

1. Alvaro, P., Condie, T., Conway, N., Elmeleegy, K., Hellerstein, J.M., Sears, R.:
Boom Analytics: Exploring Data-Centric, Declarative Programming for the Cloud.
In: EuroSys, pp. 223–236 (2010)

2. Cooper, B.F., Ramakrishnan, R., Srivastava, U., Silberstein, A., Bohannon, P.,
Jacobsen, H.-A., Puz, N., Weaver, D., Yerneni, R.: PNUTS: Yahoo!’s Hosted Data
Serving Platform. PVLDB 1(2), 1277–1288 (2008)

3. Tilgner, C.: Declarative Scheduling in Highly Scalable Systems. In: EDBT/ICDT
Workshops, pp. 41:1–41:6 (2010)

4. Tilgner, C., Glavic, B., Boehlen, M., Kanne, C.-C.: Correctness Proof of the Declar-
ative SS2PL Protocol Implementation. Technical Report IFI-2010.0008, University
of Zurich, Department of Informatics (2010)

5. Vogels, W.: Data Access Patterns in The Amazon.com Technology Platform. In:
VLDB, vol. 1 (2007)

On Integrating Data Services Using Data Mashups�

Muhammad Intizar Ali1, Reinhard Pichler1,
Hong-Linh Truong2, and Schahram Dustdar2

1 Database and Artificial Intelligence Group, Vienna University of Technology
{intizar,pichler}@dbai.tuwien.ac.at

2 Distributed Systems Group, Vienna University of Technology
{truong,dustdar}@infosys.tuwien.ac.at

Abstract. Mashups are applications that aggregate functionality, presentation,
and/or contents from existing sources to create a new application. Contents are
usually generated either using web feeds or an application programming interface
(API). Both approaches have limitations as web feeds do not provide powerful
data models for complex data structures and lack powerful features of database
systems. On the other hand, API’s are usually limited to a specific application thus
requiring different implementations for each of the sources used in the mashups.
We propose a query based aggregation of multiple heterogeneous data sources
by combining powerful querying features of XQuery and SPARQL with an easy
interface of a mashup tool for data sources in XML and RDF. Our mashup editor
allows for automatic generation of mashups with an easy to use visual interface.

1 Introduction

The amount of structured and semi-structured data available on the internet has been
steadily increasing and many companies are now providing their data publicly acces-
sible through API’s, querying interfaces, RESTful web services, or data services [1].
The rapid growth of Web 2.0 technologies has motivated many big companies to make
their contents reusable for the creation of new applications using existing data. Many
publicly accessible API’s such as Google Maps1, Amazon2 and DBPedia3 are available
for the users to generate their own new applications using their existing contents. A
typical example of such a scenario is the combination of the list of hotels in a particular
city with Google Maps to generate an interactive map of hotels or data collected from
several news sites and merged together to provide a single access point to the user.

Mashups are web applications that consume the available data from third parties and
combine/reuse them to build a new application. Mostly the contents are in the form of
web feeds or API’s. All the contents are combined either on client side using client-
side scripts or on server-side using some available server-side technology such as ASP,

� This work was supported by the Vienna Science and Technology Fund (WWTF), project
ICT08-032.

1 http://maps.google.com
2 http://www.amazon.com
3 http://www.dbpedia.org

A.A.A. Fernandes et al. (Eds.): BNCOD 2011, LNCS 7051, pp. 132–135, 2011.
c© Springer-Verlag Berlin Heidelberg 2011

On Integrating Data Services Using Data Mashups 133

JSP, etc. Mashups are different from traditional web applications because they are usu-
ally dynamically created to serve a very specific and short lived task. Several mashup
editors have been launched to encourage people to build new applications using the
massive amount of publicly available contents. Yahoo Pipes4, Google Mashups5 and
IBM Mashup Center6 are a few examples of the popular mashup editors. However, the
limitation of existing mashup editors is that they focus only on web feeds or API’s.
These web feeds can represent simple information but lack the capability to represent
or query data items provided by querying interfaces or data services [2]. On the other
hand, API’s are usually limited to a specific application thus requiring different imple-
mentations for each of the sources used in the mashups. Currently, the development of
data mashups to deal with complex data structures requires strong programming skills,
making mashups hard to create for novice users.

We utilize the concept of data mashups and use it to dynamically integrate hetero-
geneous web data sources by using the extension of XQuery proposed in [3]. All the
available data sources over the internet are considered as a huge database and each data
source is considered as a table. Data mashups can generate queries in extended XQuery
syntax and can execute the sub-queries on any available data source contributing to
the mashup. XML and RDF are the prevailing data formats for web data sources. To
query these data sources, one can use XQuery and SPARQL – their respective query
languages. The novelty of our tool is that it integrates the powerful features of database
querying into a data mashup tool. It provides an easy to use interface of a mashup edi-
tor to generate complex queries visually for the integration of a multitude of distributed,
autonomous, and heterogeneous data sources.

2 Database Oriented Mashups

A mashup application comprises three major components, which are (1) data level, (2)
process level, and (3) presentation level [4]. The data level is mainly concerned with
accessing and integrating heterogeneous web data sources. These sources can provide
structured, semi-structured or unstructured data. Existing data mashup tools cannot deal
with structural and semantic diversities of heterogeneous data sources. Recently, the
importance of using data mashups for data integration using database oriented mashups
has been realized [2]. Inspired by Yahoo pipes, there are a few attempts such as MashQL
[5] and Deri Pipes [6] to generate semantic queries from data mashups. However, to
the best of our knowledge, there exists no data mashup tool which allows the user to
formulate queries over web data sources using their respective query languages and at
the same time deals with the heterogeneity of the data sources. Our tool is similar to
MashQL and Deri Pipes, but we focus on the XQuery extension of [3] with additional
support of the SPARQL query language. Using our approach, existing data integration
support for mashups is further enhanced to formulate a single query containing inside
sub-queries of different query languages to deal with heterogeneous data integration.

4 http://pipes.yahoo.com/pipes
5 http://code.google/com/gme
6 www.ibm.com/software/info/mashup-center/

134 M.I. Ali et al.

Fig. 1. Mashup Editor

3 Data Mashups Using XQuery

Figure 1 shows the interface of our system. The main window is divided into three
panels, namely data source selection, mashup editor, and query results.

Data Source Selection. All available/registered data services are shown in the left panel
of Figure 1. Each data service describes its available data source, its functionality and
schema (if provided) which help the user to select the most suitable data service. Data
services can be arranged in different categories based on metadata provided while regis-
tering a data source. Alternatively, data services can be grouped according to their data
format (i.e., XML or RDF) by choosing the “data type” option in the left panel.

Mashup Editor. The central panel in Figure 1 is the mashup editor. The user can select
any data service from the left panel and can easily drag and drop it into the mashup
editor. These data services can be combined via several data operations, which are also
selected by drag and drop from the left panel. The mashup is implemented by generating
an extended XQuery expression with sub-queries in SPARQL or XQuery following the
syntax in [3]. Figure 2 shows a sample extended XQuery expression generated by the
mashup editor after integrating XML and RDF data sources. This query contains a
SPARQL query as a sub-query inside XQuery. The mashup editor has both a design
view (by choosing the “mashup editor” option in the central panel) and a command line
interface (via the “source” option in the central panel). The design view provides an
easy graphical interface while the command line interface is used by an expert user to
write queries in the extended XQuery syntax described in [3]. For the creation of the
queries from the graphical interface we use a similar approach as described in [7] for
XQuery generation and [8] for SPARQL query generation.

Query Results. In the right panel of Figure 1, the result of executing the query from the
mashup editor is displayed. The data format of the result is always XML. The user can

On Integrating Data Services Using Data Mashups 135

f o r $a i n
doc (” h t t p : / / WISIRISFuzzySearch / L i c e n s e . xml ”) / agreement ,
$b i n SPARQLQuery (” SELECT ? A v a i l a b i l i t y ? Execu t ionTime
WHERE {
? x <h t t p : / / www. w3 . org / 2 0 0 1 / sub # a v a i l > ? A v a i l a b i l i t y .
? x <h t t p : / / www. w3 . org / 2 0 0 1 / sub #QoS> ? Execu t ionTime ”

} , h t t p : / / WISIRISFuzzySearch / QoS . r d f) / r e s u l t
RETURN

<R e s u l t>
<S e r v i c e T i t l e >{$a / t i t l e }</ S e r v i c e T i t l e >
<Requi rement>{$a / r e q u i r e m e n t }</ Requi rement>
<A v a i l a b i l i t y >{$b / a v a i l a b i l i t y }</ A v a i l a b i l i t y >

<Execut ionTime>{$b / Execu t ionTime }</ Execut ionTime>
</ R e s u l t>

Fig. 2. A Sample query in extended XQuery – generated from the Mashup visual interface [3]

choose between two different views of the XML result: either in tree form (as shown in
Figure 1) or in table form (by choosing the “list view” option in the right panel).

4 Conclusion

We provide a database oriented mashup tool for integrating heterogeneous data sources
with a visual interface which allows for an easy definition of complex data mashups.
This tool can be used as plug-in for web applications to generate powerful and efficient
data integration mashups.

References

1. Dan, A., Johnson, R., Arsanjani, A.: Information as a service: Modeling and realization. In:
Proc. SDSOA 2007. IEEE Computer Society, Los Alamitos (2007)

2. Vancea, A., Grossniklaus, M., Norrie, M.C.: Database-driven web mashups. In: Proc. ICWE,
pp. 162–174. IEEE, Los Alamitos (2008)

3. Ali, M.I., Pichler, R., Truong, H.L., Dustdar, S.: DeXIN: An extensible framework for dis-
tributed XQuery over heterogeneous data sources. In: Filipe, J., Cordeiro, J. (eds.) ICEIS
2009. LNBIP, vol. 24, pp. 172–183. Springer, Heidelberg (2009)

4. Lorenzo, G.D., Hacid, H., Paik, H.-Y., Benatallah, B.: Data integration in mashups. SIGMOD
Record 38(1), 59–66 (2009)

5. Jarrar, M., Dikaiakos, M.D.: Querying the data web: The MashQL approach. IEEE Internet
Computing 14(3), 58–67 (2010)

6. Morbidoni, C., Tummarello, G., Polleres, A.: Who the FOAF knows Alice? a needed
step toward semantic web pipes. In: Proc. SWAP. CEUR Workshop Proceedings, vol. 314.
CEUR-WS.org (2008)

7. Li Xiang, J.F.B., Gennari, J.H.: XGI: A graphical interface for XQuery creation. In: Proc.
AMIA Symposium 2007, pp. 453–457. American Medical Informatics Association (2007)

8. Russell, A., Smart, P.R.: NITELIGHT: A graphical editor for SPARQL queries. In: Interna-
tional Semantic Web Conference (Posters & Demos). CEUR Workshop Proceedings, vol. 401.
CEUR-WS.org (2008)

Executing In-network Queries Using SNEE

Ixent Galpin, Robert Taylor,
Alasdair J.G. Gray, Christian Y.A. Brenninkmeijer,

Alvaro A.A. Fernandes, and Norman W. Paton

School of Computer Science, University of Manchester, UK
{ixent,a.gray,brenninkmeijer,alvaro,norm}@cs.man.ac.uk

http://snee.cs.manchester.ac.uk

Keywords: Wireless Sensor Networks, In-network Processing, Distributed
Query Processing, Stream Query Languages.

The SNEE query optimizer enables users to characterize data requests against
wireless sensor networks (WSNs), using a declarative query language called
SNEEql (SNEE for Sensor NEtwork Engine, described in [GBG+11], and publicly
available at http://code.google.com/p/snee). Queries are compiled into im-
perative query execution plans, which are translated into executable nesC source
code1. In this paper, we illustrate the lifecycle of a SNEEql query Q for in-network
execution. This lifecycle encompasses the steps of preparatory metadata collec-
tion, followed by the compilation of Q into a query execution plan QEP , the
dissemination of binary images implementing QEP throughout the WSN, and
the generation of query results.

To demonstrate our approach, we monitor light in a building using a simple
3-node WSN, depicted in Fig. 1, comprising of TelosB motes2. In our WSN,
node 1 is the gateway node (i.e., the node from which commands and query
execution plans are disseminated to the WSN, and also where query results are
collected), and nodes 2 and 3 monitor light levels for the upstairs and down-
stairs areas of the building respectively. The schema comprises three logical
streams, building, upstairs and downstairs, of type (id:int, time:int,
light:int). The building stream is the union of the upstairs and downstairs
streams.

The example queries that we use to illustrate our approach are shown in
Fig. 2. Query (a) requests all the light readings in the building; (b) requests the
average value of the light readings in the building; and (c) requests light readings
when the light level upstairs is higher than downstairs (i.e., it may indicate that
someone has forgotten to switch off a light). The QoS expectations are both
an acquisition interval and delivery time of 10s (i.e., query results need to be
delivered before the next tuple is acquired).

1 See http://www.tinyos.net.
2 This hardware has the following specification: CPU = MSP430 8MHz, RAM =

10 kB, Program Memory = 48 kB, Data Flash = 1 MB, Radio = CC2420. Detailed
specifications can be found at http://www.willow.co.uk/TelosB_Datasheet.pdf .

A.A.A. Fernandes et al. (Eds.): BNCOD 2011, LNCS 7051, pp. 136–139, 2011.
c© Springer-Verlag Berlin Heidelberg 2011

http://snee.cs.manchester.ac.uk
http://code.google.com/p/snee
http://www.tinyos.net
http://www.willow.co.uk/TelosB_Datasheet.pdf

Executing In-network Queries Using SNEE 137

building(id:int, time:int, light:int)

downstairs(id:int, time:int, light:int) upstairs(id:int, time:int, light:int)

Fig. 1. Network assumed and sources for each stream

SELECT RSTREAM id, light

FROM building[NOW];

(a) All light readings

SELECT RSTREAM avg(light)

FROM building[NOW];

(b) Average light readings

SELECT RSTREAM u.time, u.light, d.light

FROM upstairs[NOW] u, downstairs[NOW] d

WHERE u.light > d.light;

(c) Correlating Light Readings with Filtering Condition

Fig. 2. Example SNEEql Queries

1 2 3

Fig. 3. SNEE components

Fig. 3 presents the interactions between components of the system. The Sen-
sor Network Connectivity Bridge is responsible for interfacing with the WSN.
On WSN nodes, a boot loader is used to switch between 3 program images in
flash memory, depicted in Fig. 4. This is necessary due to the limited size of
the program memory. Images in slots 1 and 2 are preinstalled prior to WSN

138 I. Galpin et al.

Metadata Collector 1

Over-the-Air Programmer 2

Query Execution Plan 3

Fig. 4. Node Images in Flash Memory

Fig. 5. Lifecycle Steps

deployment. The lifecycle of a query involves the steps depicted in Fig. 5 and
described below:

Metadata Collection. Nodes run the Metadata Collector program which gen-
erates a description of the WSN topology (e.g., expected energy transmission
energy between nodes, based on average package loss) for use by the SNEE
compiler. This program is based on the Collection Tree Protocol3, and works
by sending routing table entries of each node to the gateway. When this com-
pletes, the nodes reboot into the Over-the-Air Programmer (OTAP).

Query Compilation. The user poses a query and Quality-of-Service expec-
tations, which is compiled using the SNEE Query Compiler into a query
execution plan based on the metadata that was collected in the previous
step. Query compilation is described in detail in [GBG+11].

Code Generation/Compilation. The Sensor Network Connectivity Bridge
translates the query execution plan into a nesC program for each node, each
of which is compiled into a binary image.

3 This is an implementation of the tree formation protocol described in
http://www.tinyos.net/tinyos-2.x/doc/html/tep123.html.

http://www.tinyos.net/tinyos-2.x/doc/html/tep123.html

Executing In-network Queries Using SNEE 139

Network Reprogramming. The OTAP is used to transmit an executable im-
age to slot 3 of each node. The OTAP is based on Deluge [HC04] but has
been extended to enable different executable images to be sent to each node
in the WSN. This is necessary because SNEE generates query execution plans
with distinct tasks for each node in the WSN, rather than sending the same
query execution plan to nodes in the WSN. This enables SNEE to be more
economical with respect to memory consumption4.

Start Query. Nodes reboot into the query execution plan, which starts running
when the Sensor Network Connectivity Bridge issues a start command. Com-
mands are disseminated using Drip [TC05] a mechanism used to propagate
small values across all nodes in a WSN5.

Evaluate Query. The nodes evaluate the query execution plan, sending results
back to gateway node.

Stop Query. Query results are produced until a stop command is issued.

This paper has outlined the lifecycle for SNEE queries. An experimental eval-
uation measuring metrics including energy consumption and lifetime of SNEE
queries, using simulation and real hardware, is presented in [GBG+11]. The de-
velopment of a query compiler/evaluator for WSNs leaves open a collection of
query lifecycle management issues; this paper describes an approach in which
support tasks such as OTAP and metadata collection are represented as sepa-
rate programs that work together with query executables to support declarative,
energy efficient environment monitoring.

Acknowledgements. This work is part of the SemSorGrid4Env project funded
by the European Commission’s Seventh Framework Programme.

References

[GBG+11] Galpin, I., Brenninkmeijer, C.Y.A., Gray, A.J.G., Jabeen, F., Fernan-
des, A.A.A., Paton, N.W.: SNEE: a query processor for wireless sensor
networks. DAPD 29(1-2), 31–85 (2011)

[HC04] Hui, J.W., Culler, D.E.: The dynamic behavior of a data dissemination
protocol for network programming at scale. In: SenSys, pp. 81–94 (2004)

[TC05] Tolle, G., Culler, D.E.: Design of an application-cooperative management
system for wireless sensor networks. In: EWSN, pp. 121–132 (2005)

4 See [GBG+11] for memory consumption figures of SNEE for the query execution
plan image, excluding management functionality.

5 This is an implementation of the dissemination framework described in
http://www.tinyos.net/tinyos-2.x/doc/html/tep118.html.

http://www.tinyos.net/tinyos-2.x/doc/html/tep118.html

Extracting Data Records from Query Result

Pages Based on Visual Features

Daiyue Weng, Jun Hong, and David A. Bell

School of Electronics, Electrical Engineering and Computer Science,
Queen’s University Belfast, Belfast BT7 1NN, UK

{dweng01,j.hong,da.bell}@qub.ac.uk

Abstract. Web databases contain a large amount of structured data
which are accessible via their query interfaces only. Query results are
presented in dynamically generated web pages, usually in the form of
data records, for human use. The problem of automatically extracting
data records from query result pages is critical for web data integration
applications, such as comparison shopping sites, meta-search engines, etc.
A number of approaches to query result extraction have been proposed.
As the structures of web pages become more complex, these approaches
start to fail. Query result pages usually also contain other types of in-
formation in addition to query results, e.g., advertisements, navigation
bar, etc. Most of the existing approaches do not remove such irrelevant
contents which may affect the accuracy of data record extraction. We
have observed that query results are usually displayed in regular visual
patterns and terms used in a query often re-appear in query results. We
propose a novel approach that makes use of visual features and query
terms to identify the data section and extract data records from it. We
also use several content and visual features of visual blocks in a data sec-
tion to filter out noisy blocks. The results of our experiments on a large
set of query result pages in different domains show that our proposed
approach is highly effective.

1 Introduction

The volume of structured data on the Web has been increasing enormously. Such
data are usually returned from back-end databases in response to specific user
queries, and presented in the form of data records in query result pages. Access
to web databases is via their query interfaces (usually HTML query forms) only.
In literature, the contents of web databases are usually referred to as the Deep
Web. A recent study [20] estimates that the number of web databases that are
‘hidden’ on the Web is well in the order of 105 and continues expanding rapidly.
Many e-commerce sites are supported by web databases.

In general, the majority of query result pages are list pages, each of which
contains a number of data records in columns with each row on each column
representing a data record. For example, Figure 1 shows a list page from cook-
ing.com, which has a single column containing 10 data records about plates.

A.A.A. Fernandes et al. (Eds.): BNCOD 2011, LNCS 7051, pp. 140–153, 2011.
c© Springer-Verlag Berlin Heidelberg 2011

Extracting Data Records from Query Result Pages Based on Visual Features 141

Fig. 1. An example query result page

142 D. Weng, J. Hong, and D.A. Bell

Extracting data records from query result pages enables integrating data from
a magnitude of web databases to generate value-added web applications, such
as price comparison sites and meta-search engines, etc. Query result pages are
dynamically generated from back-end databases in response to user queries and
encoded in HTML using pre-defined templates or script programs. These pages
are semi-structured and displayed for human use, rather than for processing by
programs. How to automatically extract data records into a structured form that
is machine processable is a very challenging problem.

There has been a lot of research on fully-automatic approaches [3–16] for
extracting data from query result pages. Those in [3–10] represent the current
technical trend of query result extraction. First, they identify a data section,
which contains a set of data records. Second, they identify data records from the
data section. Finally, they extract data by aligning the corresponding attributes
of different records, producing a relational table [4, 5, 8, 10].

However, the existing approaches to query result extraction have some inher-
ent limitations. First, web pages are becoming more complex; their tag structures
are ever-growing complex since HTML itself is evolving constantly, and other
technologies like JavaScript and CSS are widely deployed to make result pages
more dynamic. This may make the layouts of result pages different from their
tag tree or token string representations, and thus the existing approaches that
rely on such representations may fail. Second, some of the existing approaches
employ a similarity measure on page segments to identify data records. However,
data records may not be extracted correctly if the sibling tree segments of the
same root are not similar to each other. This also makes it impossible to extract a
single data record in the data section. Third, most of the existing approaches do
not filter out noisy contents. Noisy contents refer to any parts of a query result
page that are not part of any data record, e.g. banner advertisements, navigation
bar, copyright notice, record statistical information etc. We are most interested
in the part of a result page which contains all the data records with few noisy
contents which often affect the accuracy of data record extraction. Thus it is
very important to remove any noisy contents before data record extraction.

In this paper, we focus on the problem of data record extraction, that is, given
a query result page that contains a single column of data records, automatically
identify the data section and data records. We propose a novel approach to over-
come the limitations of the existing approaches. First, our approach transforms
a query result page into a Visual Block tree using the VIPS algorithm [17], which
represents a visual partition of the web page. Such a representation reflects the
content structure of the page enforced by visual cues so that content related data
items are represented in the same branch of the Visual Block tree. For example,
Figure 2 shows a visual partition of the result page shown in Figure 1; Figure 3
shows part of the visual block tree for visual block b1 1 2 2 3 4. We can also get
visual features (e.g., positions, width, height etc) of each block on the Visual
Block tree.

Second, our approach identifies the data section by exploiting the sizes of the
visual blocks of the result page, and counting the occurrences of query terms

Extracting Data Records from Query Result Pages Based on Visual Features 143

Fig. 2. The visual block layout of the query result page shown in Fig. 1

144 D. Weng, J. Hong, and D.A. Bell

Fig. 3. Part of the Visual Block tree for b1 1 2 2 3 4

in them. This is based on the following two observations: the data section in a
result page, which contains all the data records, usually occupies a significant
area of the result page; query terms often re-appear in the data records. We use
these two observations to identify the data section. For example, block b1 1 2 2 3 4

in Figure 2 is likely to the data section since it occupies a large portion of the
result page in Figure 1 and contains a number of occurrences of query terms
(e.g., “Accent Plates”). To get query terms, we make use of the query interface
and assume that the result pages are generated in response to the queries made
via the interface.

The identified data section often contains noisy blocks. Data records are ob-
viously more vivid in content than noisy blocks, have one or more links or some
images. To filter out noisy blocks, we use a vector of content and visual fea-
tures to characterize each block within the data section. These features provide
statistical information about texts, block area, links and images in the block.
The overall importance of a block for a data record should be higher than noisy
blocks. We set up a threshold of importance to ensure that any blocks that have
less importance than the threshold are identified as noisy blocks and removed.
For example, as shown in Figure 1 there are ten data record blocks while the
block containing information about the data records (“Items (1 - 15) of 15”) is
identified as a noisy block and removed.

Third, we observe that each data record contains semantically related data
units of a data object, which reside in the leaf nodes of the Visual Block trees,
and are visually aligned with and adjacent to each other. Our approach identifies
data records by purely using the rendering boxes of the leaf nodes in the data
section to infer their alignment and proximity. For example, the data units of
each data record shown in Figure 1 are aligned with each other, in close proximity
and relatively far away from the data units of the other data records. Thus we
can group data units based on their positional information with each group
representing a data record.

In summary, we make the following contributions. First, we propose an ap-
proach for identifying data sections based on the visual features of the blocks and
re-occurrences of query terms in them. Based on the content and visual features
of visual blocks, our approach for removing noisy blocks can eliminate most of

Extracting Data Records from Query Result Pages Based on Visual Features 145

the noisy blocks. Second, we propose an approach for identifying data records
based on an observation that the data units of a data record are visually aligned
with and close to each other, and that they are distant from the data units of
the other data records. By grouping data units in such a way, our approach does
not miss any data record that is not similar to the other data records, and our
approach can extract a single data record from a query result page.

The rest of this paper is organized as follows. Section 2 presents web page
representation, the problem definition and an overview of our approach. Sections
3 - 5 describe our approaches for identifying data sections, removing noisy blocks
and identifying data records. Experimental results are given in section 6. Section
7 discusses related work. Section 8 concludes the paper.

2 Fundamentals and Overview

In this section, we first introduce Visual Block trees and give a formal definition
of the rendering box model of web pages based on the Visual Block tree, which is
the basis of our approach. We then define the problem of data record extraction
and present an overview of our approach.

2.1 Visual Representation of Query Result Pages

The content of a query result page is typically organized into different regions to
make it easy for human use, e.g., advertisements, menu bar, sponsor links, query
results and so on. Each region contains semantically related content. Visual cues
(e.g. lines, spaces, font sizes, background colours etc) can be used to distinguish
regions from each other. To make use of visual features for data record extrac-
tion, we employ the VIPS [17] algorithm to represent a query result page as a
Visual Block tree. The root of the tree represents the entire page and each node
represents a rendering box (a visual block) on the page. A leaf node represents a
block containing a basic semantic unit that cannot be further decomposed, e.g.,
a text or image. Node a is an ancestor of node b if the block that a represents
contains the block that b represents on the page. The blocks represented by
nodes at the same level of the tree do not overlap. The order of the child nodes
with the same parent follows the order of the blocks they represent on the page,
i.e., top-down, left-right. For example, Figure 2 shows the visual block layout
produced by the VIPS algorithm for the query result page shown in Figure 1.
For example, b1 represents the body of the page, b1 1 2 1 represents the block
containing the category links on the page, b1 2 contains the website information
and b1 1 2 2 3 4 contains all data records denoted as b1 1 2 2 3 4 1 to b1 1 2 2 3 4 10.
Figure 3 shows part of the Visual Block tree for b1 1 2 2 3 4.

2.2 Overview of Our Approach

Given the Visual Block tree of a query result page, first we identify a visual block
that contains all the data records and treat it as the data section. Second, we

146 D. Weng, J. Hong, and D.A. Bell

remove any noisy blocks in the data section. Third, we group leaf nodes of the
Visual Block tree into data records based on the positions of their corresponding
visual blocks. The approach takes as input a query result page from a specific
web database, and produces as output a set of data records.

3 Identifying Data Sections

We identify a data section as a node in the Visual Block tree, which represents
a rectangular box in the result page that contains all the data record blocks and
as few noisy blocks as possible.

We observe that the size of a data section is usually large relative to the size
of the whole page. For example, as shown in Figure 1, the data section that
contains all the plate products occupies a relatively large area. To utilize the
observation, we first select those blocks, each of which satisfies a constraint that
the ratio between the sizes of the block and the whole page is greater than a
threshold Tdr ([16]), which can be trained from sample result pages.

The method for identifying data sections first takes the root node of the Visual
Block tree as input. It returns a set of candidate data section blocks. The blocks
at higher levels of the Visual Block tree occupy bigger portions of the result page
so that their area ratios are much higher than the threshold and will certainly
contain more noisy blocks than the ones at lower levels of the Visual Block tree.
The algorithm selects candidate data section blocks in a depth-first fashion. It
traverses the Visual Block tree from the root, and identifies those blocks that
satisfy the area ratio constraint but none of their child blocks changes it that.
These blocks thus contain less noisy blocks. For example, after applying the
area constraint, we can identify b1 1, b1 1 2, b1 1 2 2, b1 1 2 2 3 and b1 1 2 2 3 4 as
candidate data sections.

Candidate data sections are further considered to determine the real data
section. To do this we make use of query terms that are used in queries over query
interfaces. A query interface exposes the attributes of the web database schema
to the user and usually consists of a set of input elements, e.g., text boxes, radio
buttons, check boxes and selection lists. Each input element is associated with
an attribute ([18]). For example “Dinnerware” “Plates” “Royal Doulton” and
“$25 to $50” are query terms used for input elements associated with attributes
“Category” “Product type”“Brand” and “Price” of the query interface, as shown
in Figure 4. We observe that query terms often re-appear in the data records.
For example, the data records shown in Figure 1 are in response to the query
shown in Figure 4. We can see that the text nodes of each data record contain
the occurrences of query terms “Plates” and “Royal Doulton”.

The frequency of each query term in a candidate block reflects the importance
of the candidate block. The more query terms occur in a block, the more likely
the block is the data section. Given a set of query terms qi for i = 1, 2, ..., n,
and a candidate block, the importance of the block is measured as R =

∑n
i=1 fi,

where fi represents the frequency of query term i in the candidate block. The
block that has the maximum number of occurrences of query terms among all the

Extracting Data Records from Query Result Pages Based on Visual Features 147

Fig. 4. The query interface of cooking.com

candidate blocks is identified as the data section. For example, after applying the
second constraint to the candidate data sections, b1 1 2 2 3 4, as shown in Figure
3, is identified as the data section .

4 Removing Noisy Blocks

The identified data section usually contains noisy blocks on the top and bottom
of the section, and data records in the middle of the section with no noisy blocks
on either the left or right of the records. Noisy blocks are the ones that are in a
data section but are not part of any data record [16], such as data record numbers
(e.g., “Items (1-15) of 15” in Figure 1). We observe that a data record typically
contains images, description of data, links, and occupies a significant area on
the page. For example, each of the data records shown in Figure 1 contains
the image, name, and model etc of the product, one or more links for detailed
information about a specific model and the rectangle of each data record is very
noticeable. Specifically, we evaluate the importance of each first-level child block
within the data section by using the five features about the content of the block:
ImgNum (the number of images in the block), LinkNum (the number of links
in the block), LinkTextLen (the anchor text length of the block), TextLen (the
text length of the block), and Area (the rendering area of the block).

These content features are provided by the Visual Block tree and are normalized
across the whole data section block. The importance of a child block is defined
as ImBlk = w1 × ImgNum + w2 × LinkNum + w3 × LinkTextLen + w4 ×

148 D. Weng, J. Hong, and D.A. Bell

TextLen + w5 × Area, where w1, w2, w3, w4 and w5 are real numbers so that
w1 +w2 +w3 +w4 +w5 = 1, and 0 ≤ ImBLk ≤ 1. LinkTextLen and TextLen are
considered as the most important features for differentiating data record blocks
from noisy blocks. When the ImBlk of a block is greater than the given threshold
θ, it is very likely that the block is a data record. Otherwise the block is taken as a
noisy block. The threshold can be trained using sample pages.

5 Grouping Data Units of Data Records

A data record represents a data object retrieved from a web database and consists
of multiple data units that are semantically related. Data units are represented
as leaf nodes on the Visual Block tree, and they are visually aligned with and
adjacent to each other on query result pages. For example, as shown in Figure
1, the data units of each record are the leaf nodes in the Visual Block tree, and
they are visually aligned with and adjacent to each other on the web page. To
identify data records, our approach first identifies leaf nodes that are part of a
data record and can be used as starting points for grouping other data units of
the record. Given a starting point, our approach first group data units that are
horizontally aligned with it to form a data unit group based on the positions of
the visual blocks of the corresponding leaf nodes. It then groups data units that
are horizontally aligned with each other to form leaf node groups. Finally, our
approach progressively expands each data unit group with other data unit groups
and leaf node groups that are vertically adjacent to it until there is no vertically
adjacent group. Each data unit group thus corresponds to a data record.

Definition 1. (Block and group positions) - We use the coordinate of the top-
left corner, height and width of the visual block of a data unit to determine its
left, right, top and bottom positions. Furthermore, we use the left position of the
leftmost node of a node group as the left position of the group, the top position
of the topmost node as the top position of the group, the right position of the
rightmost node of a node group as the right position of the group, and the bottom
position of the bottom node as the bottom of the group.

Definition 2. (Horizontal alignment) - We say that two leaf nodes, a and b,
are horizontally aligned with each other, if they have similar top positions. Fur-
thermore, we say that two node groups, a and b, are horizontally aligned with
each other, if they have similar top positions.

Definition 3. (Vertical adjacency) - We say that two leaf nodes, a and b, are
vertically adjacent, if the distance between the bottom position of a and the top
position of b, or the distance between the top position of a and the bottom position
of b (vertical distance) is less than a given number of pixels (in close proximity).
Furthermore, we say that two node groups, a and b, are vertically adjacent, if
the shortest vertical distance between the nodes in a and b is less than a given
number of pixels (in close proximity), and the nodes in the two groups are on
the same subtree.

Extracting Data Records from Query Result Pages Based on Visual Features 149

The algorithm, as shown in Algorithm 1, takes as input a set of query terms
(denoted as T) and a data section block (denoted as B), and identifies as output
a set of data records (denoted as R). The algorithm first identifies starting leaf
nodes (lines 2-6) by matching each query term with each text node in the Visual
Block tree of the data section. Second, the algorithm forms a data unit group
with each starting leaf node and tries to expand it with leaf nodes that are
horizontally aligned with it (lines 7-13). Third, the algorithm groups leaf nodes
that are not included in data unit groups, and horizontally aligned with each
other, into leaf node groups Gl (lines 14-22). Fourth, the algorithm expands each
data unit group with the other data unit group that are horizontally aligned with
it (lines 23-30). Fifth, the algorithm expands each data unit group with other
data unit group and leaf node groups that are vertically adjacent to it (lines
31-42). The algorithm ends when there is no more leaf node group or data unit
group that is vertically adjacent to the expanding data unit group.

To illustrate how the algorithm works, we take the first two data records
shown in Figure 1 as an example. “Plates” has been used as a query term. Two
leaf nodes representing text “Dinner Plates by” are identified as starting leaf
nodes. These two starting leaf nodes are used to initiate two data unit groups.
Those leaf nodes representing the second rows of these two data records form
two leaf node groups. Each data unit group is expanded with a leaf node group
which is vertically adjacent to it. Each extracted data unit group represents a
data record.

6 Experimental Results

We have implemented a prototype in Visual C++ based on our proposed ap-
proach. Every query result page is first parsed by the VIPS into a Visual Block
tree which the prototype takes as input. We have conducted experiments on
a data set of 200 query result pages that are returned from 20 web databases
in the UIUC Web Integration Repository [19]. These web databases are from
5 domains - Books, Jobs, Movies, Music and Hotels. 15 of these pages contain
a single data record. For each web database, 10 result pages are collected after
manually submitting 10 different queries via its query interface. We use two com-
mon measures, recall and precision, to evaluate the performance of our approach.
Recall is the percentage of the number of data records that have been correctly
extracted over the total number of data records on a result page. Precision is
the percentage of the number of data records that have been correctly extracted
over the total number of data records that have been extracted.

We compare our approach with MDR [3], which is a well known data record
extraction system. We set the similarity threshold for MDR at its recommended
value (60%). Table 1 shows the experimental results of both our approach and
MDR. As we can see from Table 1, our approach has much better experimental
results than MDR in total, and in almost every domain our approach significantly
outperforms MDR. The precision and recall of our approach are both high across
all domains, approaching 100%. Our approach can also extract query result pages

150 D. Weng, J. Hong, and D.A. Bell

Algorithm 1. Grouping Data Units
Input: a set of query terms T , a data section block B
Output: a set of data records R
1: Set R, a set of leaf nodes Nl, a set of starting leaf nodes Ns, a set of data unit

groups G, a set of leaf node groups Gl, and a set of horizontally expanded data
unit groups G′ all to {}

2: Add every text node in B to Nl

3: for every leaf node nl ∈ Nl do
4: if nl contains a query term t ∈ T then
5: Add nl to Ns

6: Remove nl from Nl

7: for every starting leaf node ns ∈ Ns do
8: Set a data unit group g to {ns}
9: for every leaf node nl ∈ Nl do

10: if nl is horizontally aligned with ns then
11: Add nl to g
12: Remove nl from Nl

13: Add g to G
14: repeat
15: Remove a leaf node nl from Nl

16: Set a leaf node group gl = {nl}
17: for each leaf node n′

l ∈ Nl do
18: if n′

l is horizontally aligned with nl then
19: Add n′

l to gl

20: Remove n′
l from Nl

21: Add gl to Gl

22: until Nl = {}
23: repeat
24: Remove a data unit group g from G
25: for each data unit group g′ ∈ G do
26: if g′ is horizontally aligned with g then
27: Set g to g ∪ g′

28: Remove g′ from G
29: Add g to G′

30: until G = {}
31: repeat
32: Remove a horizontally expanded data unit group g′ from G′

33: for each horizontally expanded data unit group g′′ ∈ G′ do
34: if g′′ is vertically adjacent to g′ then
35: Set g′ to g′ ∪ g′′

36: Remove g′′ from G′

37: for each leaf node group gl ∈ Gl do
38: if gl is vertically adjacent to g′ then
39: Set g′ to g′ ∪ gl

40: Remove gl from Gl

41: Add g′ to R
42: until G′ = {}
43: Return R

Extracting Data Records from Query Result Pages Based on Visual Features 151

with single data records, but MDR cannot. Table 1 shows that our approach
has slightly higher precision than recall. The main reasons for missing data
records are as follows. First, sometimes some data records do not contain any
query terms so our approach cannot identify the appropriate starting leaf nodes.
Second, sometimes the VIPS divides a data section into multiple sections, and
our approach only identifies the largest section as the data section. The main
reasons for extracting data records incorrectly are as follows. First, some noisy
blocks have not been removed from the data section because they may contain
query terms. Second, sometimes the VIPS parses result pages incorrectly so that
some data items are missing on the Visual Block tree. Third, sometimes the
VIPS fails to give correct block positions, which leads to data units missing
from some data records. The performance of MDR is inversely proportional to
the complexity of the result pages, and it performs relatively well on extracting
data records from tables.

Table 1. Comparison results between our approach and MDR

Our Approach MDR

Domain Precision Recall Precision Recall

Books 97.86% 96.76% 40.38% 82.01%

Hotel 99.20% 98.30% 18.21% 32.68%

Jobs 99.48% 98.37% 99.62% 67.60%

Movies&Music 100% 98.54% 28.05% 72.46%

Single Record Page 100% 100% 0% 0%

Total 99.26% 98.11% 38.68% 74.86%

7 Related Work

Automatic extraction of web query results has attracted a lot of attention over
the recent years. Several automatic extraction systems have been developed.
Earlier works mainly focus on finding repetitive patterns and templates in result
pages, e.g., IEPAD [13], RoadRunner [12], DeLa [14] and EXALG [15]. Recent
techniques have focused on exploiting tag structures and visual features, e.g.,
MDR [3], DEPTA [4, 5], MSE [7], ViNTs [6], ViPER [8], ViDE [16] and [9].

The works that use visual features include ViPER [8], ViNTs [6], MSE [7] and
ViDE [16]. ViDE, is the most related to our approach. It is the first work that
is primarily based on visual features. There are several main differences between
ViDE and our approach. ViDE first clusters data units of the same semantics
based on similarity between their appearances, and then groups appropriate data
units from each of the clusters into data records. Our approach uses a proximity-
based technique to directly group data units in the same data records. ViDE
may cluster data units with different semantics because sometimes neighboring
data units in the same data record may not have distinguishable appearances,
resulting in them being clustered together and then grouped into different data
records. Second, ViDE uses the positions and sizes of visual blocks to determine
if a block is the data section. If multiple blocks are identified as candidate data

152 D. Weng, J. Hong, and D.A. Bell

sections, it chooses the one with smallest size as the data section. Our approach
counts the occurrences of query terms in candidate blocks to select the real
data section that makes our approach more robust. Third, ViDE identifies noisy
blocks by deciding whether the blocks are aligned to the left of a data section but
it may not remove all the noisy blocks. Our approach evaluates the importance
of blocks within the section based on content and visual features which improve
the effect of removing noisy blocks.

Our algorithm for grouping data units of a data record is inspired by the work
of Gatterbauer and Bohunsky [1, 2] on extracting web tables. Our approach
instead extracts data records from query result pages that have more complex
content structures. Though our approach also uses the alignment and adjacency
techniques, our alignment definition is much simpler than the one in [1, 2]. Our
approach uses also query terms in the process of grouping data units.

8 Conclusions

In this paper, we present an automatic approach for extracting data records
from query result pages. Our approach first uses the sizes of visual blocks and
the occurrences of query terms in visual blocks to identify the data section. It
then groups data units in the data section, which are in close proximity, into data
records. It also uses content and visual features of visual blocks to evaluate their
importance and to filter out noisy blocks. Our work can be part of a web data
integration system which interacts with multiple web databases, e.g. e-commerce
web sites. Our experimental results show that our proposed approach is highly
effective. In future work, we will develop algorithms for aligning data units in the
extracted data records so that data units of the same attribute can be aligned
into the same column of the query result table.

References

1. Gatterbauer, W., Bohunsky, P., Herzog, M., Krupl, B., Pollak, B.: Towards
Domain-Independent Information Extraction from Web Tables. In: WWW 2007,
pp. 71–80 (2007)

2. Gatterbauer, W., Bohunsky, P.: Table Extraction Using Spatial Reasoning on the
CSS2 Visual Box Model. In: AAAI 2006, pp. 1313–1318 (2006)

3. Liu, B., Grossman, R., Zhai, Y.: Mining Data Records in Web Pages. In: KDD
2003, pp. 601–606 (2003)

4. Zhai, Y., Liu, B.: Web Data Extraction Based on Partial Tree Alignment. In:
WWW 2005, pp. 76–85 (2005)

5. Zhai, Y., Liu, B.: Structured Data Extraction from the Web Based on Partial Tree
Alignment. IEEE Trans. on Knowl. and Data Eng. 18(12), 1614–1628 (2006)

6. Zhao, H., Meng, W., Wu, Z., Raghavan, V., Yu, C.: Fully automatic wrapper
generation for search engines. In: WWW 2005, pp. 66–75 (2005)

7. Zhao, H., Meng, W., Yu, C.: Automatic Extraction of Dynamic Record Sections
from Search Engine Result Pages. In: VLDB 2006, pp. 989–1000 (2006)

Extracting Data Records from Query Result Pages Based on Visual Features 153

8. Simon, K., Lausen, G.: ViPER: Augmenting Automatic Information Extraction
with Visual Perceptions. In: CIKM 2005, pp. 381–388 (2005)

9. Miao, G., Tatemura, J., Hsiung, W., Sawires, A., Moser, L.E.: Extracting Data
Records from the Web Using Tag Path Clustering. In: WWW 2009, pp. 981–990
(2009)

10. Liu, B., Zhai, Y.: NET - A System for Extracting Web Data from Flat and Nested
Data Records. In: Ngu, A.H.H., Kitsuregawa, M., Neuhold, E.J., Chung, J.-Y.,
Sheng, Q.Z. (eds.) WISE 2005. LNCS, vol. 3806, pp. 487–495. Springer, Heidelberg
(2005)

11. Zhu, J., Nie, Z., Wen, J., Zhang, B., Ma, W.: Simultaneous Record Detection and
Attribute Labeling in Web Data Extraction. In: KDD 2006, pp. 494–503 (2006)

12. Crescenzi, V., Mecca, G., Merialdo, P.: RoadRunner: Towards Automatic Data
Extraction from Large Web Sites. In: VLDB 2001, pp. 109–118 (2001)

13. Chang, C.-H., Lui, S.-C.: IEPAD: Information Extraction Based on Pattern Dis-
covery. In: 10th International Conference on World Wide Web, pp. 681–688. ACM,
New York (2001)

14. Wang, J., Lochovsky, F.H.: Data Extraction and Label Assignment for Web
Databases. In: WWW 2003, pp. 187–196 (2003)

15. Arasu, A., Garcia-Molina, H.: Extracting Structured Data from Web Pages. In:
SIGMOD 2003, pp. 337–348 (2003)

16. Liu, W., Meng, X.F., Meng, W.Y.: ViDE: A Vision-Based Approach for Deep Web
Data Extraction. IEEE Trans. on Knowl. and Data Eng. 22(3), 447–460 (2010)

17. Cai, D., Yu, S., Wen, J., Ma, W.: Extracting Content Structure for Web Pages
Based on Visual Representation. In: Zhou, X., Zhang, Y., Orlowska, M.E. (eds.)
APWeb 2003. LNCS, vol. 2642, pp. 406–417. Springer, Heidelberg (2003)

18. Wang, J., Wen, J., Lochovsky, F., Ma, W.: Instance-based schema matching for
web databases by domain-specific query probing. In: VLDB 2004, pp. 408–419
(2004)

19. The UIUC Web Integration Repository,
http://metaquerier.cs.uiuc.edu/repository/

20. Madhavan, J., Jeffery, S.R., Cohen, S., Dong, X.L., Ko, D., Yu, C., Halevy, A.:
Web-scale Data Integration: You Can Only Aford to Pay as You Go. In: CIDR
2007, pp. 342–350 (2007)

http://metaquerier.cs.uiuc.edu/repository/

A.A.A. Fernandes et al. (Eds.): BNCOD 2011, LNCS 7051, pp. 154–166, 2011.
© Springer-Verlag Berlin Heidelberg 2011

Updates on Grammar-Compressed XML Data

Alexander Bätz, Stefan Böttcher, and Rita Hartel

University of Paderborn, Computer Science, Fürstenallee 11, 33102 Paderborn, Germany
{laures,stb,rst}@uni-paderborn.de

Abstract. In this paper, we present updates on CluX, a grammar-based XML
compression approach based on clustering XML sub-trees. We show that
updates on CluX-compressed data can be performed faster than decompressing
the data, loading it into main memory and compressing it. Furthermore, we
show how to support fast multiple updates, e.g. performing 100 updates in
parallel is more than 70 times faster than 100 single updates.

Keywords: updating compressed XML data, grammar-based compression.

1 Introduction

Motivation: XML is widely used in business applications and is the de facto standard
for information exchange among different enterprise information systems. Whenever
the amount of processed XML data is a bottleneck, it is desirable that applications can
directly query and update compressed XML data without having to decompress the
data before accessing it.

There have been different contributions to the field of XML compressors
generating queryable XML representations, that range from encoding-based [1] to
schema-based [2], [3] to DAG-based [4] to grammar-based [5] compressed repre-
sentations. We follow the grammar-based XML compression techniques, and we
discuss how an XML compression technique, called CluX, can be extended by
updates. Like the big majority of the XML compression techniques (e.g.[1],[2],[3],
[5],[6],[7],[8],[9],[10],[11]), we assume that textual content of text nodes and of
attribute nodes is compressed and stored separately and focus here on the
compression of the structural part of an XML document.

Contributions: This paper proposes an approach to perform updates on grammar-
compressed XML data directly, i.e., without prior decompression of the compressed
data. Furthermore, our approach allows to perform several updates in parallel in such
a way that e.g. performing 100 updates in parallel is more than 70 times faster than
performing 100 updates sequentially.

We have implemented and evaluated updates on the compressed data. Our results
show that it is not only possible to perform parallel updates on the CluX compressed
data directly, but furthermore that in many cases, these updates can be performed in
less time than it would take to decompress the compressed data, load the XML
document, and compress the data again.

For simplicity of this presentation, we restrict it to XML documents containing
only element nodes, i.e., attributes are regarded as special element types. Note

however that our implem
attributes, text values, etc..

Paper Organization: The
describes the basic concep
can be stored in a more sp
how these shared structur
grammars, and it describes
tree grammars. Section 3 de
data directly and discusses
paths to an update DAG,
isolated nodes, and sharing
of the presented update met
Finally, Section 6 summariz

2 Sharing Similar Tr

2.1 The Paper’s Example

To simplify the following p
and its label. The following
compression and to give a
compressed data.

Fig. 1. Document tree o

Fig. 1 shows an example
r’s first-child is k1 whose
generated by the following
the symbol ε as the empty
term representing the pre-or

S r(k1(c(d(j(m(ε,ε),b
 k3(c(d(j(o (ε,ε),b(

Grammar 1: G

Updates on Grammar-Compressed XML Data

mentation can handle full XML documents includ

remainder of this paper is organized as follows. Sectio
pt of grammar-based compression, i.e., how an XML t
pace saving way by sharing similar structures, it expla
res can be represented by patterns being used in t
how paths in XML document trees correspond to path

escribes how updates can be performed on the compres
 the phases of performing updates: combining the upd
isolating the update DAG from the grammar, updat

g of identical sub-trees. Section 4 describes the evaluat
thod. Section 5 compares our contribution to related wo
zes our contribution.

rees

e Document

presentation, we do not distinguish between an XML n
g example is used for explaining the idea of grammar-ba

visual representation of our idea of direct updates on

of an XML document D with repeated matches of patterns

e XML document D represented as a binary tree, where
e next-sibling is k2. This XML document tree can
grammar using the non-terminal S as the start symbol
sub-tree, i.e., the right hand side of the grammar rule
rder notation of the binary tree given in Fig. 1:

b(ε,ε)),e(ε,ε)),ε), k2(h(g(j(n (ε,ε),b(ε,ε)),e(ε,ε)),ε),
(ε,ε)),e(ε,ε)),ε), k4(h(g(j(p (ε,ε),b(ε,ε)),e(ε,ε)),ε),ε)))),ε

Grammar corresponding to the binary tree of Fig. 1

155

ding

on 2
tree
ains
tree

hs in
ssed
date
ting
tion
ork.

node
ased

the

e.g.
be

and
is a

ε)

156 A. Bätz, S. Böttcher, and R. Hartel

2.2 The Idea Behind Sharing Similar Trees

The simplest grammar-based XML compressors are those compressors that share
identical sub-tree structures, such that the compressed grammar represents the
minimal DAG of the XML tree [4].

Approaches like binary DAG compression, that share identical sub-trees T in an
XML document D replace repeated occurrences of T in D by replacing each
occurrence of T in D with a non-terminal N and adding a grammar rule that defines N
to be a non-terminal that represents T.

In Grammar 1, there are four matches for each of the two patterns b(ε,ε) and e(ε,ε).
Therefore, these matches can be replaced by the non-terminals B and E respectively,
such that we get the following grammar:

S r(k1(c(d(j(m(ε,ε),B),E),ε), k2(h(g(j(n (ε,ε),B),E),ε),
 k3(c(d(j(o(ε,ε),B),E),ε), k4(h(g(j(p (ε,ε),B),E),ε),ε)))),ε)
B b(ε,ε)
E e(ε,ε)

Grammar 2: Grammar corresponding to the binary DAG of the XML tree of Fig. 1

Our approach goes beyond the idea of DAG compression and uses a parameterized
grammar for sharing not only identical sub-trees, but even similar sub-trees. It follows
the idea of grammar-based compression as it was introduced in BPLEX [5].

When looking for similar sub-trees having small differences, we find the three
different patterns shown in Fig. 2(b) in the document tree D of Fig. 1: one pattern
consisting of the nodes c, d, and e, another pattern consisting of the nodes h, g, and e,
and a third pattern consisting of the nodes j and b respectively. For each of these
patterns, there exist several matches in D which are highlighted in Fig. 2(a). Although
the matches of the patterns have identical inner nodes, they cannot be shared in a
DAG because the leaf nodes with labels m, n, o, or p respectively differ from each
other.

Fig. 2 (b) shows the patterns JB(X), CDE(X) and HGE(X), which consist of the
nodes (j and b), (c, d, and e), and (h, g, and e) respectively. The nodes j, d, and g have
a parameter ‘X’ as first-child.

The compression achieved by replacing the repeated patterns with a non-terminal
can be seen when comparing Grammar 2 with Grammar 3 shown below. We express
the pattern JB(X) of Fig. 2(b) by one grammar rule with the left hand side JB(X),
where the parameter ‘X’ is being used for referencing the different child nodes m, n,
o, and p of the j-nodes. This grammar rule is being used, e.g. when the term
j(m(ε,ε),B) occurring in the rule S of Grammar 2 is replaced with the term JB(m(ε,ε))
occurring in the rule S of Grammar 3. Here, j(m(ε,ε),B) is called a match, and
JB(m(ε,ε)) is called a corresponding instantiation of the pattern JB(X).

Fig. 2. (a) Example document
Repeated patterns

By replacing each match
grammar, Grammar 3, whic

S r(k1(CDE(m(ε,ε)), k2(H
CDE(X) c(d(JB(X),e(ε,ε))
HGE(X) h(g(JB(X),e(ε,ε))
JB(X) j(X,b(ε,ε))

Grammar 3: A gr

All terminal nodes excep
sibling. However, non-term

2.3 Node Selection by Gr

The grammar path (GP):
D corresponds to exactly on
Intuitively, GP describes no
node, but also from where
For this purpose, GP conta
index positions within thes
calling the next grammar ru
terminal symbol correspond
by GP.

For example, if we appl
contains only the start rule
rule has been used, thus G
continues via k2’s first-chi
called, and GP now is [S,
grammar rule for HGE(X),
the grammar rule for JB(X
complete GP. This gramma
the b-node selected by the q

A formal definition of g
in [12].

Updates on Grammar-Compressed XML Data

t of Fig. 1 with repeated patterns replaced by non-terminals.

h with a corresponding instantiation, we get the follow
ch is more compact than Grammar 2:

HGE(n(ε,ε)), k3(CDE(o(ε,ε)), k4(HGE(p(ε,ε)),ε)))),ε)
,ε)
),ε)

rammar sharing patterns by using parameterized rules

pt ε have two parameters, i.e. the first-child and the ne
minal nodes may have an arbitrary number of parameters

rammar Paths

Each path to a selected node in any given XML docum
ne grammar path (GP) in the compressed grammar G of
ot only which grammar rules are called to find the selec
in a given grammar rule, the next grammar rule is cal
ains an alternating sequence of grammar rule names
se grammar rules of the occurrences of non-terminals
ule. Additionally, the last number in GP is the index of
ding to the selected node in the last grammar rule collec

ly the query /k2//b to Grammar 3, GP is initially [S],
e. When k2 is found in the start rule S, no other gramm
GP is still [S]. When the search for a descendant b of
ild, the 2nd non-terminal in the rule for S, i.e. HGE(X)
,2,HGE(X)]. Later, to find the first-child of g within
, the 1st non-terminal, i.e. JB(X), is called. Finally, wit

X), we pick the 2nd terminal symbol, i.e. the symbol b
ar path (GP), i.e. [S,2,HGE(X),1,JB(X) : 2], correspond
query /k2//b.
grammar paths however omitting the rule names is gi

157

. (b)

wing

ext-
.

ment
f D.
cted
led.
and

s Ni
the

cted

i.e.
mar
f k2
), is
the

thin
b, to
ds to

iven

158 A. Bätz, S. Böttcher,

3 Parallel Updates on

3.1 Basic Update Concep

The grammar DAG (GD
terminal position within wh
grammar DAG (GD), there
edge (N1,I,N2) from node N
rule G2 within the gramm
outgoing edge of N1 refers
hand side of G1. For examp

Fig.

Each prefix P of a g
corresponds to one path in
updates on G.

For any given current c
following elementary upda
complex update operation
operations: delete ccn (de
SubTree as first-child of cc
(newNS(SubTree)).

The Update Path (UP): Fo
newFC(SubTree), newNS(S
document node being repre
define a corresponding upda
The update path contains a
we represent edges in the u
edge (Nk’,t,U) from the copy
the terminal symbol in the
operation U shall be applied
update operation U applied t

For example, let the up
//h//b to z. Then, we get
(JB(X)’,2,reLTo(z))]
(JB(X)’’,2,reLTo(z))].

and R. Hartel

n the Compressed Data

pts and Parallel Update Problem Definition

D): The grammar DAG (GD) visualizes from which n
hich grammar rule other grammar rules are called. In

e is one node Ni for each grammar rule Gi, and there is
N1 to node N2 for each occurrence of a call of the gramm

mar rule G1, such that (counted from left to right) the
to N2, if G2 is the Ith non-terminal occurring in the rig

ple, the GD of Grammar 3 is shown in Figure 3.

 3. Grammar DAG (GD) of Grammar 3

rammar path GP=[P:t] through the given grammar
the GD. Based on this observation, we use GD for para

context node ccn of the XML document, we simulate
ate operations on the compressed grammar G, as m
ns can be constructed from these elementary upd

el), re-label ccn with the new label y (reLTo(y)), in
n (newFC(SubTree)), insert SubTree as next-sibling of

or each elementary update operation U ∈ { reLTo(z), del
SubTree)) } that is applied to a single selected XM
sented by a grammar path GP=[N1,I1,…,Nk-1,Ik-1,Nk : t],
ate path UP = [(N1’,I1,N2’), …, (Nk-1’,Ik-1’,Nk’) , (Nk’,t,U
new copy Ni’ of each grammar path node Ni. Furthermo

update path as triples (Start,Index,End). Finally, we add
y Nk’ of the last non-terminal Nk with the index position
e grammar rule represented by Nk’ to which the upd
d. As a result, the final node of the update path contains
to the tth terminal of Nk’.
pdate operations be re-labeling all the nodes selected
the update paths [(S’,2,HGE(X)’), (HGE(X)’,1,JB(X
and [(S’’,4,HGE(X)’’), (HGE(X)’’,1,JB(X)’’)

non-
the
one
mar
e Ith
ght-

r G
allel

the
more
date

nsert
ccn

lete,
ML
 we

U)] .
ore,

d an
t of

date
the

d by
X)’),

,

 Updates on Grammar-Compressed XML Data 159

The Parallel Update Problem Definition: Given a set of update operations, the
parallel update problem is to compute a DAG of update paths and to isolate the DAG
of update paths from the grammar G in parallel in order to keep the compressed
grammar small and in order to keep the update process fast.

3.2 First Step of the Parallel Update Process: Constructing an Update DAG
(UD)

Updating the grammar-compressed data is done by a two-step approach on the given
grammar G.

In a first step, we navigate through G and identify the paths that have to be updated
and combine them to an update DAG. Instead of collecting all the update paths
individually while navigating through G, we combine all the update paths having a
common prefix to construct an update tree.

To combine a collection of update paths into an update tree, first, all copies of the
start node, i.e. S’ and S’’ in the previous example, are renamed to a single copy S’ of
the start node. This reflects the fact that all update paths that are combined into an
update tree start at the same root node S’.

Thereafter, each set of common prefixes of multiple update paths is combined to a
common prefix in the update tree as follows. Whenever the update tree contains two
edges (Ni,I,Nj) and (Ni,I,Nk) where neither Nj nor Nk contains an update operation, the
node Nk is renamed to Nj. This reflects the fact that both edges represent the unique Ith
occurrence of a non-terminal in the grammar rule represented by Ni.

Continuing the previous example, the update tree has a common start node S’, but
has no common edge of its two update paths.

In addition to combining updates with common prefixes within the update tree, we
transform the update tree into an update DAG (UD). The UD is constructed bottom up
from the update tree by sharing equal sub-trees. Two leaf nodes within the update tree
are equal, if they have the same label, i.e. they contain the same update operation. Two
inner nodes U1 and U2 of the update DAG are equal if they are copies of the same
grammar rule and have similar outgoing edges, where two outgoing edges (U1, I1, U3)
and (U2, I2, U4) from nodes U1 and U2 respectively are similar if I1=I2 and U3=U4.

Continuing the previous example, the sub-DAG rooted in HGE(X)’ is equal to the
sub-DAG rooted in HGE(X)’’. As similar edges are stored only once in the update
DAG (UD), UD contains the edges { (S’,2,HGE(X)’), (S’,4,HGE(X)’), (HGE(X)’, 1,
JB(X)’), (JB(X)’,2,reLTo(z)) } and is shown in Figure 4.

3.3 Second Step of the Parallel Update Process: Isolating UD from GD

The second step of the parallel update process is to isolate the update DAG (UD) from
the grammar DAG (GD) by isolating all the update paths contained in UD from GD in
parallel. UD isolation is done by combining UD and GD into single DAG, called the
extended update DAG (EUD), which is done by adding edges from certain UD nodes
to certain GD nodes, such that after the extension, the EUD represents the result of
isolating the original UD from GD. The UD isolation and update execution procedure
is summarized in Algorithm 1 and is described in the following.

160 A. Bätz, S. Böttcher,

Fig. 4. Update DAG for re-la
selected by the query //h//b to

(1) for each non-leaf no
(2) { Ni = correspondin
(3) for each edge (Ni

(4) if (no edge (Ui, I
(5) }
(6) EUD = UD ;
(7) Perform updates on E
(8) Share identical node
(9) Top-down for each n
(10) if (Ni has no inco
(11) return EUD ;

Algorithm 1. Upd

For each non-leaf node U
the grammar DAG, i.e., Ui
that different nodes of the u
outgoing edge (Ni, I, Nk) of
add an edge (Ui, I, Nk) to t
from Ui to the GD node N
node Ui for which an edge
not yet exist, such that fina
as the GD. On the UD wi
sharing operations describe
the EUD and performing a
GD edges are reachable by
reachable GD nodes and G
(10)). The remaining and r
result of isolating the origi
resulting EUD.

and R. Hartel

abeling all the nodes of the document shown in Fig.1 that
z

de Ui in UD do
ng_GD_node(Ui) ;
i, I, Nk) in GD
I, Uk) to any node Uk exists in UD) add (Ui, I, Nk) to UD

EUD as described in Section 3.4.
es on EUD as described in Section 3.5.
node Ni in GD do
oming edges) delete Ni and all outgoing edges of Ni

date DAG (UD) isolation from a grammar DAG (GD)

Ui in the update DAG, let Ni be the corresponding node
and Ni belong to the same grammar rule Gi (line (2)). N

update DAG may correspond to the same node Ni. For e
f Ni for which no edge (Ui, I, Uk) exists in the update DA
the update DAG (lines (3)-(4)). That is, an outgoing e

Nk representing Gi’s Ith non-terminal is added to each
e to a UD node Uk representing Gi’s Ith non-terminal d
ally the UD represents the same number of grammar pa
ith this extensions, called EUD (line (6)), the update
d in the following sections are performed. After comput

all the update and sharing operations, some GD nodes
y a path from the UD root and others are not. As the n

GD edges are useless, they are deleted from GD (lines (
returned extended update DAG (line (11)) represents
inal UD from the GD and performing the updates on

 are

D

e in
Note
each
AG,
edge
UD

does
aths
and
ting
and

non-
(9)-
the
the

Fig. 5 shows the contin
nodes selected by the XPat
is the grammar DAG (as sh
and containing the follow
(HGE(X)’, 1, JB(X)’), (JB(

For the root node S’ of
additional outgoing edges
Therefore, within lines (
(S’,1,CDE(X)) and (S’,3,CD

For the UD node HGE
additional outgoing edge, i
also applies to the UD node

Now, the isolation phase
within the copied grammar
set of paths selected by the
the node reLTo(z) from the

Finally, the nodes S and
as they are not reachable fr
Fig. 5(b).

Fig. 5. Isolation

Note that we implement
represented by GD. For exa
S’, HGE(X)’, and JB(X)’ a
and HGE(X)’ instead of H
JB(X) is called from the H
JB’(X) rule in the following

3.4 Performing the Upda

After UD isolation by exte
each edge (Ui, I, U) in EUD

Updates on Grammar-Compressed XML Data

nued example of the isolation process for re-labeling
th expression //h//b to z. The input of the isolation proc
hown in Fig. 3) and the update DAG (UD) shown in Fig
wing set of edges: { (S’,2,HGE(X)’), (S’,4,HGE(X
X)’,1,reLTo(z)) }.
f the UD, the corresponding node S of the GD has t

at the index positions 1 and 3 to the node CDE(
(2)-(4), Algorithm 1 extends the UD with the ed
DE(X)) from S’ to CDE(X).
E(X)’, the corresponding node HGE(X) in GD has
.e. no outgoing edge from HGE(X)’ has to be added. T

e JB(X)’.
e is completed, and replacing the terminal symbol b wit
 rule represented by the node JB (X)’ modifies exactly

e XPath query //h//b to have the new label z, and remo
 EUD.
HGE(X) and their outgoing edges can be deleted from

rom any path starting in S’. The resulting UD is shown

of nodes selected by //h//b for re-labeling them to z

t UD nodes by copying grammar rules from the gramm
ample, Grammar 3 is modified in such a way that the ru
are copied from the rules S, HGE, and JB(X) respectiv
HGE(X) is called from the S’ rule, and JB(X)’ instead
HGE(X)’ rule. Then, b can be replaced with z within
g update step.

ates

ending the UD to a EUD in lines (1)-(6) of Algorithm
D to an update leaf node U, i.e. a leaf node of EUD wh

161

the
cess
g. 4

X)’),

two
(X).
dges

no
That

th z
the

oves

GD
n in

mar
ules
ely,
d of
the

m 1,
here

162 A. Bätz, S. Böttcher, and R. Hartel

U is an update operation, is used for modifying the grammar rule Gi represented by
Ui. The update operation U is applied to the Ith terminal symbol T of Gi, e.g., for the
edge (JB(X)’, 2, reLTo(z)), the grammar rule JB(X)’ is updated by replacing the 2nd
terminal symbol, i.e. b, with z. Depending on the particular update operation U
described by the edge (Ui, I, U), we do the following.

If U= reLTo(z)) , we substitute the Ith terminal symbol of Gi, i.e. T, with z.
If U=newFC(cst) or U=newNS(cst), i.e., if the update requires inserting a

compressed sub-tree cst as a first-child or as a next-sibling of T respectively, we have
to set the current first-child or next-sibling of T as the new next-sibling of the root of
cst. As we might insert the same sub-tree cst at several places within the original
XML document, the most efficient way to do this is to set the next-sibling of the root
rule of cst (which is a null pointer, i.e. ε, before the insertion) to a parameter, and to
replace the first-child fc or the next-sibling ns of T by a call of the root rule of cst with
the parameter value fc or ns respectively.

If we consider for example the node ‘k1’ as selected node in Grammar 3 and want
to insert a node z(ε,ε) as the first-child of /k1, i.e., cst consists of the single rule Z(X)
 z(ε,X), we would insert a new rule Z(X) z(ε,X) into Grammar 3 and replace the
current first-child cfc of k1 in Grammar 3 with a call Z(cfc) of this new rule. Thereby,
cfc becomes the next-sibling of z. This means, that the call ‘k1(CDE(m(ε,ε)),...)’ within
the start rule S of Grammar 3 is replaced with the call ‘k1(Z(CDE(m(ε,ε))),...)’.

If U=del, i.e., the update requires deleting the sub-tree having its root in T, we can
simply replace T(FC,NS) with T’s own next-sibling NS in the grammar rule
represented by Ui. If we remove a formal parameter from a rule during the deletion,
we have to delete the corresponding actual parameter within each call of the modified
rule as well. In the worst case, i.e., if the actual parameter of a rule is defined in the
rule represented by S’, we have to modify all the rules represented by nodes of EUD
that lay on paths from S’ to Ui within the EUD.

For example, if we delete the nodes of the sub-trees, the root of which is selected
by //d//j, i.e. is the j node with first child m or the j node with fist child o, UD contains
the edges (S’,1,CDE(X)’) , (S’,3,CDE(X)’) , (CDE(X)’,1,JB(X)’) , and (JB(X)’,1,del).
By applying the delete operation to the first non-terminal of the JB(X)’ rule, i.e. to j,
the right-hand side of this rule is replaced with b(ε,ε). As now the JB(X)’ rule does
not contain a parameter anymore, the parameter has to be removed from the CDE(X)’
rule calling it too. And finally, we have to delete the parameters used in the rule calls
of rule CDE(X)’ within the S’ rule too. By doing this, the first-child nodes of nodes
//d//j with labels m and o are deleted as well.

3.5 Sharing Identical Nodes

Although the initial grammar to be updated does not contain anymore sub-structures
that can be shared, during the update process new sub-structures are generated that
might be similar or identical to already existing sub-structures.

For example, if we re-label in our example the node /k2//g to ‘c’ and the node
/k2//h to ‘d’, after the UD isolation and the update process, the grammar would
contain a rule

HGE’(X) c(d(JB(X),e(ε,ε)),ε)

which is identical to the
and replace each call of it
HGE’(X) is correct and c
replacing HGE’(X) with
compression ratio is optimi
updating phase.

In order to find redund
existing and modified rule
use the information given b
the same sequence of othe
have to compare these rules
This reduces the number of

4 Evaluation

All tests were performed on
RAM running our prototype

In a first series of measu
with two other approaches,

1998statistics (1998 – 6
(C1 – 10.4 MB) and dictio
XBench benchmark, hamle
35.5 MB) – data on the tu
23.0 MB) – data from the
(TB – 51.9 MB) –a parsed
that models auctions.

Usually, CluX compress
lowed by gzip.

In a second series of mea
the compressed data to the
uncompressed document as
performed) and recompress

Fig. 6. Compres

Updates on Grammar-Compressed XML Data

rule CDE(X). Therefore, we can delete the rule HGE’
t by a call of the rule CDE(X). The grammar using r
can be decompressed and processed correctly, but a

CDE(X), the grammar is more compact, i.e.,
zed. For this purpose, we perform a sharing phase after

dant rules, we could compare the modified rule with
s. But this comparison becomes more efficient, when
by the EUD. Two rules can only be identical, if they
er grammar rules. For the EUD, this means that we o
s that have the same sequence of children within the EU
f comparisons within the sharing phase.

n an Intel Core2 Duo CPU P870 @ 2,53 GHz with 4 GB
e on Java 1.6.
urements, we compared the compression strength of Cl
gzip and bzip2, based on the following XML datasets:

656 kB) – Baseball statistics of the year 1998, catalog
onary-01 (D1 – 10.4 MB) – documents generated by

et (H – 273 kB) – the Shakespeare play, JST_snp.chr (J
umor suppressor gene JST, and NCBI_gene.chr (NCB
e National Center for Biotechnical Information, Treeb

text corpus, and XMark (XM – 111.1 MB) – a docum

ses best (c.f. Fig. 6), followed by bzip2, and finally

asurements, we have compared the time for direct updates
e sum of the times needed for decompression, loading
s a DOM tree into main memory (i.e., no updates w
sion when using CluX, bzip2 or gzip as compression to

ssion ratios of CluX compared with bzip2 and gzip

163

(X)
rule

after
the
the

h all
we

call
only
UD.

B of

luX

g-01
the

ST-
BI –
ank

ment

fol-

s on
the

were
ool.

164 A. Bätz, S. Böttcher, and R. Hartel

Fig. 7. (a) Update time of CluX compared to compression and decompression times of CluX,
bzip2 and gzip, (b) Update time required for a scaling number of parallel updates

With scaling the document size (c.f. Fig. 7(a)), the direct updates on CluX can be
performed faster than the compression and decompression of CluX and bzip2. For a
document with a size of 15 MB, the update on the compressed data is 3.5 times faster
than the decompression and recompression by CluX and 4.4 times faster than the
decompression and recompression by bzip2. Only gzip, that reaches a far weaker
compression ratio than CluX can be decompressed and recompressed in less time than
the update process directly on the compressed data requires. Finally, we have examined
the impact of parallel updates compared to sequential updates. For this purpose, we
randomly selected 100 paths of the grammar DAG and relabeled the XML node defined
by these paths. Fig. 7(b) shows that performing 100 updates in parallel as a multi-update
operation is more than 70 times faster than performing 100 updates sequentially.

5 Related Work

Besides generic compressors like gzip, bzip2 or 7zip (based on LZMA) all of which
do not allow direct query evaluation on the compressed data, there are several
approaches to XML structure compression. XML structure compression can be
mainly divided into three categories: encoding-based compressors, schema-based
compressors and grammar-based compressors.

The encoding-based compressors allow for a faster compression speed than the
other ones, as only local data has to be considered in the compression as opposed to
considering different sub-trees as in grammar-based compressors. Examples for
encoding-based approaches are the approaches [13], [6], and [7], XMill [8], XPRESS
[9], XGrind [14], and [1]. Whereas XMill is not queryable, i.e., it does not support the
navigation or the evaluation of XPath queries on the compressed document directly,
i.e., without prior decompression, all other approaches are queryable.

Schema-based compression comprises such approaches as XCQ [2], XAUST [15],
Xenia [3], and XSDS [10]. They subtract the given schema information from the
structural information. Instead of a complete XML structure stream or tree, they only

 Updates on Grammar-Compressed XML Data 165

generate and output information not already contained in the schema information
(e.g., the chosen alternative for a choice-operator or the number of repetitions for a *-
operator within the DTD). These approaches are queryable and applicable to XML
streams, but they can only be used if schema information is available.

XQzip [11] and the approaches presented in [16] and [4] belong to grammar-based
compression. They compress the data structure of an XML document by combining
identical sub-trees.

An extension of [4] and [11] is the BPLEX algorithm [5]. This approach not only
combines identical sub-trees, but recognizes similar patterns within the XML tree, and
therefore allows a higher degree of compression. The approach presented in this
paper, which is an extension of [17], follows the same idea. But instead of combining
similar structures bottom-up, our approach searches within a given window the most
promising pair to be combined while following one of three possible clustering
strategies. Furthermore, in contrast to [12] and [18], that performs updates by path
isolation only sequentially, our approach allows performing updates in parallel which
takes only a fraction of time.

6 Summary and Conclusions

We have shown how updates can be performed directly on CluX, a clustering-based
compression approach for XML trees, i.e., without the need to decompress the
compressed data in advance. As an XML file compressor, CluX compresses on
average 70% better than the generic compressor gzip and 5% better than the generic
compressor bzip2. CluX compression can be applied to infinite data streams – and in
contrast to gzip or bzip2, path queries and updates can be evaluated directly on the
compressed representation, i.e., without prior decompression. Beyond other clustering
or multiplexing based approaches like e.g. the BPLEX algorithm [12], [5], CluX
offers an update DAG isolation technique that allows to perform several updates in
parallel, and our evaluation has shown that performing 100 updates in parallel takes
significantly less time than performing 100 updates sequentially. Furthermore, our
evaluation on a file with a size of 15 MB has shown that performing the updates
directly on the compressed data with our update algorithm is more than 3 times faster
than decompressing the data first and recompressing it with CluX, and it is more than
4 times faster than the decompression and recompression with bzip2.

We furthermore believe that this technique of performing several updates in
parallel on the compressed data directly is not restricted to CluX, but can be extended
to DAG-based compressors like [5] and to other grammar-based compressors like e.g.
BPLEX [5], the main idea of which is to share similar sub-trees.

References

1. Zhang, N., Kacholia, V., Özsu, M.: A Succinct Physical Storage Scheme for Efficient
Evaluation of Path Queries in XML. In: Proceedings of the 20th International Conference
on Data Engineering, ICDE 2004, Boston, MA, USA, pp. 54–65 (2004)

2. Ng, W., Lam, W., Wood, P., Levene, M.: XCQ: A queriable XML compression system.
Knowl. Inf. Syst., 421–452 (2006)

166 A. Bätz, S. Böttcher, and R. Hartel

3. Werner, C., Buschmann, C., Brandt, Y., Fischer, S.: Compressing SOAP Messages by
using Pushdown Automata. In: 2006 IEEE International Conference on Web Services
(ICWS 2006), Chicago, Illinois, USA, pp.19–28 (2006)

4. Buneman, P., Grohe, M., Koch, C.: Path Queries on Compressed XML. In: Proceedings of
29th International Conference on Very Large Data Bases, Berlin, Germany, pp. 141–152
(2003)

5. Busatto, G., Lohrey, M., Maneth, S.: Efficient Memory Representation of XML
Documents. In: Bierman, G., Koch, C. (eds.) DBPL 2005. LNCS, vol. 3774, pp. 199–216.
Springer, Heidelberg (2005)

6. Cheney, J.: Compressing XML with Multiplexed Hierarchical PPM Models. In:
Proceedings of the IEEE Data Compression Conference (DCC 2001), Snowbird, Utah,
USA, p. 163 (2001)

7. Girardot, M., Sundaresan, N.: Millau: an encoding format for efficient representation and
exchange of XML over the Web. Computer Networks 33, 747–765 (2000)

8. Liefke, H., Suciu, D.: XMILL: An Efficient Compressor for XML Data. In: Proceedings
of the 2000 ACM SIGMOD International Conference on Management of Data, Dallas,
Texas, USA, pp. 153–164 (2000)

9. Min, J.-K., Park, M.-J., Chung, C.-W.: XPRESS: A Queriable Compression for XML
Data. In: Halevy, A., Ives, Z., Doan, A. (eds.) Proceedings of the 2003 ACM SIGMOD
International Conference on Management of Data, San Diego, California, USA, pp. 122–
133 (2003)

10. Böttcher, S., Hartel, R., Messinger, C.: XML Stream Data Reduction by Shared KST
Signatures. In: 42st Hawaii International International Conference on Systems Science
(HICSS-42 2009), Proceedings (CD-ROM and online), Waikoloa, Big Island, HI, USA,
pp. 1–10 (2009)

11. Cheng, J., Ng, W.: XQzip: Querying Compressed XML Using Structural Indexing. In:
Hwang, J., Christodoulakis, S., Plexousakis, D., Christophides, V., Koubarakis, M.,
Böhm, K. (eds.) EDBT 2004. LNCS, vol. 2992, pp. 219–236. Springer, Heidelberg (2004)

12. Fisher, D., Maneth, S.: Structural Selectivity Estimation for XML Documents. In:
Proceedings of the 23rd International Conference on Data Engineering, ICDE 2007,
Istanbul, Turkey, pp. 626–635 (2007)

13. Bayardo Jr., R., Gruhl, D., Josifovski, V., Myllymaki, J.: An evaluation of binary XML
encoding optimizations for fast stream based xml processing. In: Feldman, S., Uretsky,
M., Najork, M., Wills, C. (eds.) Proceedings of the 13th International Conference on
World Wide Web, New York, NY, USA, pp. 345–354 (2004)

14. Tolani, P., Haritsa, J.: XGRIND: A Query-Friendly XML Compressor. In: Proceedings of
the 18th International Conference on Data, ICDE, San Jose, CA, pp. 225–234 (2002)

15. Subramanian, H., Shankar, P.: Compressing XML Documents Using Recursive Finite
State Automata. In: Farré, J., Litovsky, I., Schmitz, S. (eds.) CIAA 2005. LNCS,
vol. 3845, pp. 282–293. Springer, Heidelberg (2006)

16. Adiego, J., Navarro, G., Fuente, P.: Lempel-Ziv Compression of Structured Text. In: Data
Compression Conference, Snowbird, UT, USA, pp. 112–121 (2004)

17. Böttcher, S., Hartel, R., Krislin, C.: CluX - Clustering XML Sub-trees. In: ICEIS 2010 -
Proceedings of the 12th International Conference on Enterprise Information Systems,
Funchal, Madeira, Portugal, pp. 142–150 (2010)

18. Damien, F., Maneth, S.: Selectivity Estimation. Patent WO 2007/134407 A1 (May 2007)

Reverting the Effects of XQuery Update Expressions

Federico Cavalieri1, Giovanna Guerrini1, and Marco Mesiti2

1 DISI – University of Genova
{cavalieri,guerrini}@disi.unige.it

2 DICo – University of Milano
mesiti@dico.unimi.it

Abstract. The need of reverting the effects of updates on the affected documents
arises in many contexts, ranging from undos in transactional applications to ver-
sioning systems. In this paper, we investigate this issue for XQuery Update ex-
pressions, relying on the Pending Update List (PUL) obtained from the evaluation
of an expression on a document. Specifically, we introduce an inversion opera-
tor, that, given a PUL to be applied on a document, allows to determine a cor-
responding inverted PUL that, applied on the modified document, produces the
original document. Moreover, an alternative approach for enriching a PUL with
additional information, so that it can be inversely applied, is proposed and the
two approaches are experimentally compared.

Keywords: XML, Updates, Dynamic reasoning, Update processing.

1 Introduction

The ability of reverting the effects of an update operation is useful in many situations.
Consider for instance a distributed transactional context, in which transactions can be
aborted and rolled back, and thus the corresponding operations need to be undone. More
flexible update processing approaches based on check-in/check-out policies, such as
those employed in collaborative document editing, may benefit as well of such ability.
It may also become crucial in versioning contexts, if versions are handled by recording
the updates that transformed a version into the following one (edit-based approaches
according to [4]) instead of the various data snapshots. In this context, update reversion
is the basis for moving across different versions.

In this paper, we investigate this problem in the context of updates on XML doc-
uments expressed as XQuery Update (XQU) expressions [15]. The evaluation of an
XQU expression on a document produces a set of atomic update requests, represented
as a Pending Update List (PUL), that is then applied on the document. In [3] we dis-
cussed the relevance of contexts (such as collaborative editing, disconnected execution,
data clouds) in which updates are not necessarily executed right after and on the same
server where the update expression requesting them is evaluated. Thus, the process of
expressing and requesting updates is decoupled from that of making them effective on
documents. PULs can be produced by a machine, sent over a network, saved to disks,
and later applied on the document, possibly by a different machine. Referring to up-
date reverting, this means that the effects of an update expression can be discarded on a
server different from the one on which they have been applied.

A.A.A. Fernandes et al. (Eds.): BNCOD 2011, LNCS 7051, pp. 167–181, 2011.
c© Springer-Verlag Berlin Heidelberg 2011

168 F. Cavalieri, G. Guerrini, and M. Mesiti

According to this processing model, there are two alternative approaches to revert
the effects of an update expression. The first one is to invert a PUL through a PUL
inversion operator. This operator, given a PUL Δ on a document D, produces another
PUL Δ−1, that, when executed on the document updated according to Δ, returns the
original document D, thus undoing the updates in Δ. This approach however requires
to access document D for producing the inverse. An important feature of the PUL op-
erators in [3], by contrast, is document independence: operators on PULs should not
require, whenever possible, to access the document. They rely on structural informa-
tion on the document that is incorporated in the PUL itself through a labeling scheme.
Thus, an alternative approach, to be exploited in contexts where the need of reverting
update effects is known to be likely to arise, is to modify the evaluation of XQU expres-
sions so that they produce completed PULs rather than PULs. A completed PUL Δ↔

contains the information for being applied either forward (to actually apply updates) or
backward (to revert their effects), and in both cases it can be applied in streaming.

The paper investigates both approaches, proposing a set of inversion rules and a PUL
inversion algorithm, defining completed PULs, and discussing their forward and back-
ward streaming application. Both approaches have been implemented, by modifying
the Qizx [14] library to produce PULs and completed PULs (both represented as XML
documents) and to accept them as input.

The paper is organised as follows. Section 2 introduces some preliminary notions
on XML documents and PULs. PUL inversion is discussed in Section 3, whereas Sec-
tion 4 introduces completed PULs and their backward and forward application. Sec-
tion 5 experimentally compares the two approaches. Section 6 contrasts our approach
with related work. Some concluding remarks are finally presented.

2 Preliminaries

In this section we introduce the adopted representations of XML documents, define
PULs of operations, their semantics, and discuss their streaming evaluation.

2.1 XML Document Representations

A document can be represented as a labeled tree. A document D is a tuple (V, γ, λ, ν)
where: V is a set of nodes representing elements, attributes or text nodes (for simplicity,
only these types among those in [15] are considered); γ is a function associating with
each node its children; λ and ν are labeling functions associating with each element
and attribute node a name in a set N and with each text and attribute node a value in a
set V , respectively. Auxiliary functions V and R denote the nodes and the root(s) of a
single tree D or of a collection of trees, respectively, and τ assigns to each node v in V
a value in the set {e, a, t} denoting its type. Moreover, auxiliary functions LS, P and
T assign to each node its adjacent left sibling, parent and subtree, respectively, when
they exists (⊥, otherwise). Coherently with the XDM model, the attribute value is seen
as a property of the attribute node, whereas textual contents of elements are modeled by
separate nodes. A unique and immutable identifier is associated with each node in V ,
and, wherever no confusion arises, we do not distinguish nodes from their identifiers.

Reverting the Effects of XQuery Update Expressions 169

sDoc()
sElem(1,"SigmodRecord")
sElem(2,"issue")
attr(9,"vol","33")
attr(10,"num","2")
sElem(3,"articles")
sElem(4,"article")
sElem(5,"name")
text(6,"EDBT04 W...")
eElem(5,"name")
sElem(7,"author")
text(8,"B. Catania")
eElem(7,"author")
eElem(4,"article")
eElem(3,"articles")
eElem(2,"issue")
...
eDoc()

Fig. 1. XML Document representation: tree-based (left), event-based (right)

Alternatively, a document can be represented as a stream of SAX-like events, which
describe the nodes encountered in a depth-first traversal of the document. A document
D is an ordered sequence of events: sDoc() and eDoc(), indicating the start/end of
the document; sElem(v,n) and eElem(v,n), indicating the start/end of element v
tagged n; attr(v,n,s) and text(v,s), indicating the attribute/text node vwith name
n and value s. Fig. 1 contrasts the tree/event-based representations of a fragment of
the SigmodRecord document to be updated. In the former, dotted lines are used to
represent edges leading to attribute nodes.

In handling PULs, we need to check whether some relationships (like parent-child,
element-attribute, left-right sibling) hold among two nodes in both representations. This
information is obtained without directly accessing the document through a labeling
scheme [12] associated with nodes through function l. In this scheme, the introduc-
tion/deletion of nodes does not require node re-labelling. Table 1 reports the predicates
that can be assessed through the adopted labeling scheme.

2.2 Update Operations and PULs

Table 2 reports the primitives defined in [15] that we consider, where v ∈ V is a node,
P = [T1, . . . , Tk], k ≥ 0, is a list (possibly empty in case of the repN or repC op-
eration) of trees, n ∈ N is a name, s ∈ V is a value. Given an operation op, t(op)
denotes its target node, o(op) denotes its name, and p(op) denotes its second parameter

Table 1. Structural relationships

Predicate Description

v1 � v2 v1 precedes v2 in document order
v1 �s v2 v1 is the (adjacent) left sibling of v2
v1 �s v2 v1 is a preceding sibling of v2
v1 /c v2 v1 is a child of v2
v1 /a v2 v1 is an attribute of v2
v1 //d v2 v1 is a descendant of v2
v1 //¬a

d v2 v1 is a descendant of v2 but not an attribute of v1

170 F. Cavalieri, G. Guerrini, and M. Mesiti

Table 2. Update operations

Operation Description Conditions Completed Operation

ins←(v, P)
ins→(v, P)

Insert the trees in P before/after
node v

τ(v) �=a, ∀r∈R(P) τ(r) �=a idem

ins↙(v, P)

ins↘(v, P)
Insert the trees in P as first/last chil-
dren of node v

τ(v) = e, ∀r∈R(P) τ(r) �=a idem

ins↓(v, P) Inserts the trees in P as children of
node v, in an implementation de-
fined position

τ(v) = e, ∀r∈R(P) τ(r) �=a idem

insA(v, P) Inserts the trees in P as attributes of
node v

τ(v) = e, ∀r∈R(P) τ(r) = a idem

del(v) Deletes node v del(v, T (v))
repN(v, P) Replaces node v with the trees in P

(possibly none)
∀r ∈ R(P) (τ(r) = τ(v) = a)
∨(τ(v) �=a∧τ(r) �=a)

repN(v, P, T (v))

repV(v, s) Replaces the value of node v with
s∈V

τ(v)∈{t, a} repV(v, s, ν(v))

repC(v, v′) Replaces the children of node v
with text node v′ or with nothing

τ(v) = e∧ (v′ = [] ∨ τ(v′) = t) repC(v, v′, T (γ(v)))

ren(v, n) Renames node v with n∈N τ(v)∈{e, a} ren(v, n, λ(v))

(undefined if o(op) = del). An operation op is applicable on a document D if its target
belongs to D and the applicability conditions (identified in [3]) of op hold. The meaning
of last column will be discussed in Section 4.

A pending update list (PUL) [15] is an unordered list of operations among those
in Table 2. Since the order of operations is irrelevant, some pairs of operations cannot
occur in the same PUL. Specifically, no pairs of replacement operations of the same
type with the same target (referred to as incompatible operations) can occur. For a PUL
to be applicable on a document (cf. function applyUpdates in [15]) it must contain
no incompatible operations and all its operations must be applicable on the document.

Operation semantics is specified in [1]. The semantics of operation ins↓ is non-
deterministic since the actual position of the inserted nodes group in the target node
is not univocally specified. Thus, the application of an operation op to a document D
produces one document in a set of obtainable documents, denoted as O(op, D).

The semantics of a PUL Δ on a document D is obtained by applying the operations
in Δ in five stages [1]. At each stage, a subset of the operations are applied to enforce
the precedence relation on operation types specified in [15]. The order of application of
operations within each stage is not prescribed by [15]. Thus, when multiple insertion
operations of the same type with the same target appear in the same PUL, the relative
order of the inserted groups of nodes is not fixed as well. Therefore, the cardinality
of O(Δ, D) is greater than one when ins↓ occurs in Δ or Δ contains more than one
insertion operation of the same type on the same target.

Example 1. Let D be the document in Fig. 1. Operation op1 = del(14) is deterministic
and thus O(op1, D) is a singleton. Operation op2 = ins↓(16, <author>G.Guerrini</author>),
by contrast, may lead to inserting the element as first, second, or last author of the sec-
ond paper, thus O(op2, D) contains three documents. Finally, |O(Δ, D)| = 6 for Δ =
{ins↓(16,<author>G.Guerrini</author>),ins↘(4,<initP>132</initP>), ins↘(4, <lastP>134</lastP>)}.

Reverting the Effects of XQuery Update Expressions 171

2.3 PUL Streaming Application

Given a document represented as a sequence of events E, a PUL is modeled as an event
transformer, which transforms E in a new sequence of events corresponding to one of
the obtainable documents. An empty PUL corresponds to an identity transformation.
Each operation in a non-empty PUL requires some event transformation. The order in
which transformations must be applied on the events of a node v is the same as in the
staged execution of an XQU expression.

Example 2. Consider the PUL Δ ={repC(2, []), ren(2, "issues")} and the document in Fig.
1. The first operation requires to remove any non-attribute event which occurs between
sElem(2,) and eElem(2,). The second one requires to alter these two events re-
placing the name. The transformed event sequence is: sDoc(), sElem(1, "SigmodRecord"),

sElem(2, "issues"), attr(9, volume, "33"), attr(10, number, "2"), eElem(2, "issues"), ..., eDoc().

3 PUL Inverse

In this section we discuss the inversion of operations and PULs.

3.1 Operation Inversion

The inversion of an operation op applicable on a document D produces one or more
operations that revert the modifications made by op on D. To revert the effects of a
single operation, multiple operations may be required. Consider the case of a list of
subtrees inserted through a single ins: each single subtree must be separatedly deleted.

Definition 1 (Operation Inverse). Let op be an operation applicable on a document
D. An inverse of op on D is a PUL Δ−1

op s.t: ∀D′ ∈ O(op, D) : O(Δ−1
op , D′) = {D}.

Different PULs can be identified to revert the effects of each operation. The following
approach has been devised: ins is reverted by removing all inserted subtrees, repV/ren
by restoring the original value/name of the target node, repC by restoring the origi-
nal node children. For node deletions and replacements the introduced nodes must be
deleted, while removed nodes must be placed back in their original position. Attribute
nodes are inserted by an insA, while other nodes through ins→, if an adjacent left
sibling exists in D, through an ins↙ otherwise. Table 3 defines inverse operations.

Example 3. Consider the document in Fig. 1 and the following operations (the node
identifier is reported as superscript of the node). op1 =ren(5, “title”), op2 =del(7), op3 =
ins(4,<author>X25</author>24,<author>Y27</author>26).The inverses are:Δ−1

op1
={ren(5, “name”)},

Δ−1
op2

={ins→(5, <author>B.Catania8</author>7)}, Δ−1
op3

={del(24), del(26)}, respectively.

Proposition 1 (Correctness of Operation Inversion). For any operation op applica-
ble on a document D, let Δ−1

op be the inverse PUL obtained according to Table 3. Then
Δ−1

op is an inverse of op on D, according to Definition 1.

Proof Sketch. This can be straightforwardly proved by individually considering the
semantics of each operation and of the corresponding inverse as defined in Table 3.

172 F. Cavalieri, G. Guerrini, and M. Mesiti

Table 3. Operation inverses

Operation Inverse Condition

insr(v, [T1, ..., Tn]) {del(R(T1)), ..., del(R(Tn))} r ∈ {←,→, ↓,↙,↘, A}
repV(v, s) {repV(v, ν(v))}
ren(v, l) {ren(v, λ(v))}
repC(v, v′)

{repN(v′, γ(v))}
{ins↓(v, γ(v))}

v′ �= []
v′ = []

del(v)/repN(v, [])
{insA(P (v), T (v))}
{ins→(LS(v), T (v))}
{ins↙(P (v), T (v))}

τ(v) = a
τ(v) �= a ∧ LS(v) �= ⊥
τ(v) �= a ∧ LS(v) = ⊥

repN(v, [T1, ..., Tn]) {repN(R(T1), T (v)), del(R(T2)), ..., del(R(Tn))}

3.2 PUL Inversion

Starting from the operation inverse, we define the PUL inverse.

Definition 2 (PUL Inverse). Let Δ be a PUL applicable on a document D. An inverse
of Δ on D is a PUL Δ−1 s.t. ∀D′ ∈ O(Δ, D) : O(Δ−1, D′) = {D}.

In inverting a PUL Δ, the following properties must be guaranteed: (i) each inverse
operation must be applicable in all the obtainable documents; (ii) in case an operation
in Δ is overridden (that is, it has no effect on the document), its inverse must have no
effect; and, finally, (iii) the relative order of the nodes removed by Δ must be restored by
its inverse. As shown by the following example, simply inverting each single operation
in Δ independently does not allow to guarantee these properties.

Example 4. Consider the PUL Δ = {del(5), repV(6, “VLDB04”), repN(7, <author>X25</author>24}
applicable on the document in Fig. 1. The inverse of Δ, obtained by inverting each sin-
gle operation independently is Δ−1 = {op1, op2, op3, op4} where op1 =ins↙(4, <name>

EDBT04 W...6</name>5), op2 =repV(6, “EDBT04 W...”), op3 =del(24), op4 =ins↙(4, <author>B.Catania8

</author>7)}. Δ−1 exhibits two problems: (i) the overridden operation repV(6, “VLDB04”)

has been inverted as op2, that is both unnecessary (the value of node 6 is restored by
op1) and not applicable, as node 6 does not belong to any document D′ ∈ O(Δ, D);
(ii) the order of the restored nodes 5 and 7 may not be the one in the original document.

To guarantee the first two properties, overridden operations in Δ should be removed.
For the last property, special treatment should be devoted to operations del and repN
when their targets are adjacent siblings. In this case, insertion operations of the same
kind with the same target might not preserve the insertion order. To obtain the correct
order, repN and del operations on adjacent siblings should be grouped together.

Definition 3 (Removal Group). Given a PUL Δ, we denote as a removal group of Δ
a non-empty ordered sublist S = [op1,..., opn] of Δ s.t.

– o(opi) ∈ {repN, del}, 1 ≤ i ≤ n and t(op1) �s t(op2) �s ... �s t(opn),
– {op1,.., opn} is maximal, that is, �S′⊃{op1,.., opn} s.t. S′ is a removal group of Δ.

Example 5. Consider the PUL Δ ={del(7), ren(5, “title”), repN(5, <a>X), del(11)} on
the document in Fig. 1. The removal groups are [repN(5, <a>X), del(7)] and [del(11)].

Reverting the Effects of XQuery Update Expressions 173

O1)
op1 =op(v,) op2 =op′(v,)

Δ ∪ {op1, op2} →1 Δ ∪ {op2}
op ∈ {ren, repV, repC, del, ins↙, ins↘, ins↓, insA}
op′ ∈ {repN, del}

O2)
op1 =op(v,) op2 =repC(v,)

Δ ∪ {op1, op2} →1 Δ ∪ {op2}
op ∈ {ins↙, ins↓, ins↘}

O3)
op1 =op(v,) op2 =op′(v′,)

Δ ∪ {op1, op2} →1 Δ ∪ {op2}
op′ ∈ {repN, del}, v //d v′

O4)
op1 =op(v,) op2 =repC(v′,)
Δ ∪ {op1, op2} →1 Δ ∪ {op2}

v //¬a
d v′

S5)
op = insr(v, [T1, ..., Tn]) Δ′ = {del(R(T1)), ..., del(R(Tn))}

Δ ∪ {op}, Δ−1 →2 Δ, Δ−1 ∪ Δ′ r ∈ {←,→, ↓,↙,↘, A}

S6)
op = repC(v, t) op′ =

{
repN(t, γ(v)) if t �= []

ins↓(v, γ(v)) otherwise

Δ ∪ {op}, Δ−1 →2 Δ, Δ−1 ∪ {op′}

S7)
op = repV(v, s) op′ = repV(v, ν(v))

Δ ∪ {op}, Δ−1 →2 Δ, Δ−1 ∪ {op′}

S8)
op = ren(v, n) op′ = ren(v, λ(v))

Δ ∪ {op}, Δ−1 →2 Δ, Δ−1 ∪ {op′}

S9)
Δ′ = {insA(P (v), T (v))} ∪ {del(R(u))| u ∈ p(op)}

Δ ∪ {op}, Δ−1 →2 Δ, Δ−1 ∪ Δ′ t(op) = v, τ(v) = a, o(op) ∈ {repN, del}

G10)

Δ′ = {ins→(LS(v1), [T (v1), ..., T (vn)]}∪
{del(u)| u ∈ ⋃

i=1..n R(p(opi))}
Δ ∪ {op1, ..., opn}, Δ−1 →2 Δ, Δ−1 ∪ Δ′

{v1, . . . , vn} are the operation targets,
[op1, . . . , opn] is a removal group,
τ(v1) �= a, LS(v1) �= ⊥

G11)

Δ′ = {ins↙(P (v1), [T (v1), ..., T (vn)]}∪
{del(u)| u ∈ ⋃

i=1..n R(p(opi))}
Δ ∪ {op1, ..., opn}, Δ−1 →2 Δ, Δ−1 ∪ Δ′

{v1, ..., vn}are the operation targets,
[op1, ..., opn] is a removal group,
τ(v1) �= a, LS(v1) = ⊥

Fig. 2. Inversion rules

The inversion of a PUL Δ is computed through the set of inversion rules in Fig. 2. Rules
are categorized in the following three classes:

O Rules that remove overridden operations. Specifically, rule O1 and O3 consider the
case in which a repN or a del operation on a node v overrides other operations
in the subtree rooted at v. Rules O2 and O4, are similar in purpose, but consider
the case in which a repC is the overriding operation. In all cases, rules in this class
maintain the repN, repC , or del operation and removes the overridden operation.

S Rules that compute the inverses of ins, repC, repV, ren, as specified in Table 3.
G Rules that compute the inverse of a removal group. Specifically, rules G10 and G11

produce a deletion for each introduced node and a single insertion for all removed
nodes ensuring the restoration of their original order.

A basic algorithm for computing the inversion consists in the application of the rules
in two stages. When rules in the first stage cannot be applied any more, rules of the
second stage are considered. The rules of class O are considered in the first stage to
remove overridden operations from Δ. The rules of classes S and G are considered in
the second stage on a pair of PULs, Δ and Δ−1, the PUL to invert and the inverted
PUL (initially empty). The application of a rule of classes S and G removes one or
more operations from Δ and introduces the corresponding inverse operation(s) in Δ−1.

Example 6. Consider the PUL Δ = {del(5), repV(6, “VLDB04”), repN(7, <author>X25</author>24}
of Example 4. Its inverse, obtained through the application of rules in Fig. 2 is Δ−1 =

174 F. Cavalieri, G. Guerrini, and M. Mesiti

{ins↙(4, <name>EDBT04 W...6</name>5<author>B.Catania8</author>7), del(24)}. In this case, differ-
ently from what happened in Example 4, the overridden operation repV(6, “VLDB04”) has
not been inverted and the order of the restored nodes 5 and 7 is preserved.

Proposition 2 (Correctness of the Inversion Rules). Let Δ be a PUL applicable on a
document D. The PUL Δ−1 obtained through the application of the inversion rules in
Fig. 2 is an inverse of Δ according to Definition 2. �

Proof Sketch. Consider a PUL Δ applicable on a document D and the inverse Δ−1

generated by the inversion rules. The proof of this proposition requires that: (i) Δ−1 is
applicable on each document in O(Δ, D), (ii) no pairs of incompatible operations are
generated, (iii) no partially overridden operation either in Δ or Δ−1 exists, (iv) nodes
removed by Δ are placed back in the correct positions by Δ−1, (v) Δ−1 is determin-
istic. The proof of (i) is a straightforward consequence of the removal of overridden
operations and of the operations definition. (ii) can be proved considering the algorithm
definition and the applicability of Δ on D, while (iii) considering the operations defini-
tion. The proof of the other points comes directly from the definition of the algorithm,
specifically (iv) is ensured by the class G rules, while (v) follows from the analysis of
the generated operations.

3.3 Inversion Algorithm

Algorithm 1 presents an efficient procedure for computing the inverse of a PUL Δ. The
following functions are exploited in the algorithm: applyLocalOverrideRules(Δ) to
apply the reduction rules O1 and O2 in Fig. 2 on Δ; applySInversionRules(Δ, D)
and applyGInversionRules(Δ, D) to apply the inversion rules of class S and G.

The inversion algorithm works as follows. An empty PUL Δ−1 is first initialized,
then operations in Δ are ordered according to the pre-order traversal of their target
nodes and grouped together. Note that, if an overriding operation op is present in a
group, the groups of the overridden operations immediately follow that of op. Then,
for each group of operations Δvi on a node vi, the algorithm performs the following
steps. (i) It checks whether the operations Δvi are overridden by operations specified
on an ancestor of vi, in this case they are discarded (this corresponds to the application
of rules O3 and O4), otherwise, the applyLocalOverrideRules function is applied on
the operations of vi. (ii) Whenever in Δvi there is an operation op that may override
operations in the subtree rooted at vi, vi is stored along with the relevant information
about op. (iii) The rules of class S are applied on the remaining operations on vi through
applySInversionRules, updating Δvi and adding the computed inverses to Δ−1.

When all the partitions have been processed, the remaining operations in Δ are all
and only those that belong to a removal group and each removal group is composed
of operations that are contiguous in Δ. Function applyGInversionRules can thus be
efficiently applied on Δ, adding the inverses to Δ−1.

Proposition 3 (Complexity). Let Δ be a PUL applicable on a document D, removing
r nodes. The complexity of the Algorithm 1 is O(n log(n)+ sn+ r) where n is the size
of Δ and s the cost of identifying the left sibling/parent of a node in D . �

Reverting the Effects of XQuery Update Expressions 175

Algorithm 1. Inversion
Require: A PUL Δ applicable on a document D
1. Δ−1 = ∅;
2. (o, vo) = (⊥,⊥);
3. let (Δv1 , ..., Δvn) be the partition of Δ according to the preorder of their target node;
4. for i = 1 to n do
5. if not ((o=pAttr∧vi //¬a

d vo) ∨ (o=rAttr∧vi //d vo)) then
6. Δvi = applyLocalOverrideRules(Δvi);
7. delOp = {o|o ∈ Δvi , τ (vi) = e, o(o) ∈ {repC, repN, del}};

8. (o, vo) =

{
(pAttr, vi) if repC ∈ delOp
(rAttr, vi) if repN ∈ delOp ∨ del ∈ delOp

9. Δ−1 = Δ−1 ∪ applySInversionRules(Δvi, D)
10. end if
11. end for
12. Δ−1 = Δ−1 ∪ applyGInversionRules(Δ,D)
Ensure: Δ−1 is an inverse of Δ on D according to Definition 2

Proof Sketch. The algorithm first requires to sort the PUL according to the pre-order
traversal of their target nodes, which can be performed in O(n log n), employing the
labeling information and standard algorithms. Overridden operation removal then re-
quires a single scan of the PUL, thus O(n). The application of inversion rules of class
S requires to consider each remaining operation and might identify up to n + r op-
erations, (O(n + r)). Finally, the application of the inversion rules of class G might
require, for each operation, to determine the left sibling/parent of the operation target
node in D. Assuming this cost s, the cost is O(sn), and, thus, the algorithm complexity
is O(n log(n) + sn + r).

4 Completed PULs

The approach discussed in the previous section, starting from a PUL Δ, identifies an-
other PUL Δ−1 which reverts the effects of Δ. An alternative approach is to extend the
operations presented in Table 2 with auxiliary information to allow their inverse (i.e.,
backward) application. These extended operations are reported in the last column of
Table 2 and are referred to as completed operations. The PUL obtained from Δ by re-
placing its operations with the corresponding completed operations is named completed
PUL and denoted by Δ↔. Completed PULs can be applied either forward (obtaining
the same effect of the original PUL Δ) or backward (obtaining the same effect of one
of its inverses). This approach does not require the explicit identification of an inverse
PUL and avoids to access the document. Indeed, all required data is already contained
in the completed PUL, which can be applied in streaming in both directions.

The forward application of a completed PUL simply consists in the streaming appli-
cation of the corresponding PUL, i.e., ignoring additional information included in com-
pleted operations. The definition of obtainable documents is trivially extended to com-
pleted PULs: O(Δ↔, D) = O(Δ, D). The backward application of a completed PUL
can be performed by applying a different set of transformations on event sequences.

176 F. Cavalieri, G. Guerrini, and M. Mesiti

Specifically: remove a node and its subtree from the sequence (for removing any in-
serted node); restore a subtree in its original position in the sequence (for restoring any
removed subtree); rename a node (for inverting ren operations); change value to a node
(for inverting repV operations). Consider a completed PUL Δ↔ applicable on a docu-
ment D, and a document D′ ∈ O(Δ↔, D). The algorithm for the backward application
of Δ↔ on D′ identifies a set of transformations for Δ↔ and applies them on the event
sequence corresponding to D′, obtaining the sequence of events corresponding to D.
Note that no transformation must be applied on a restored subtree, since it is already
restored as in the original document.

Example 7. Consider the completed PUL Δ↔ = {del(5, <name>EDBT04 W...6</name>5), repV(6,

”VLDB04”, ”EDBT04 W...”), repN(7, <author>X25</author>24, <author>B.Catania8</author>7} applicable
to the document in Fig. 1. To backward apply Δ↔, the inserted subtree (rooted at node
24) must be removed, while the removed subtrees (rooted at node 5 and 7) must be rein-
troduced. The inverse application of an overridden operation poses no problem, since
the corresponding transformation has no effect. For instance, the inversion repV re-
quires to change back the value of node 6, but node 6 will not be considered, as it is
restored by another transformation.

Algorithm 2 realize the backward application of a completed PUL Δ↔, applicable on
a document D, on a document D′ ∈ O(Δ↔, D), identifying the sequence of events
corresponding to D. Given Δ↔ and the sequence of events E′ corresponding to D′, the
algorithm produces the sequence of events E corresponding to D. The emit e1, ..., en

directive is employed to indicate that the events e1, ..., en are generated. For the sake of
conciseness, we denote the node, name, and value components of an event e, as e.v, e.n,
and e.s, respectively. Function Events is used to associate a set of subtrees, considered
according to the pre-order traversal of their roots in D, with the corresponding sequence
of events. The algorithm works as follows. First, the sets I and R of the nodes inserted
(that must be removed) and removed (that must be restored) by Δ↔ are identified. Then,
the algorithm processes the document. The sDoc event is simply emitted back when
encountered, while the other events are distinguished and the transformation applied.
When the eDoc event is encountered, in case the root of D is present in R (denoted
Rroot), it is restored before emitting back eDoc. For each other event e ∈ E′, the
original name and value of node e.v are determined (undefined if e.v does not have
a name/value property), then one of the following steps is performed: (i) In case e is
sElem or text: if the parent of e.v is not being removed, any removed preceding
siblings of e.v in R (denoted R←) is emitted. Afterwards, if node e.v should not be
removed e is emitted with the original name and value of e.v, (followed by the attributes
of e.v in R, denoted Rattr, if e is a sElem). (ii) In case e is eElem: if e.v should not
be removed, the children of node e.v in R (denoted R↘) are emitted, followed by e with
the original name and value of e.v. (iii) In case e is attr: e is emitted with the original
name and value of e.v, unless e.v has to be removed. To avoid restoring multiple times
the same subtree, subtrees are removed from R when restored.

Proposition 4 (Correctness). Let Δ↔ be a completed PUL applicable on a document
D, and let D′ be a document in O(Δ↔, D). The application of Algorithm 2 on Δ↔

and D′ produces D.

Reverting the Effects of XQuery Update Expressions 177

Algorithm 2. Completed PUL streaming backward application
Require: A completed PUL Δ↔ applicable on a document D, the sequence of events [e1, ..., en]

for a document D′ ∈ O(Δ↔, D)
1. I = {V (p(op))|o(op) ∈ {ins, repN, repC} ∧ op ∈ Δ↔} be the nodes inserted by Δ↔

2. R = {T (t(op))|o(op) ∈ {del, repN} ∧ op ∈ Δ↔} ∪ {T (γ(t(op))|o(op) = repC, op ∈
Δ↔} be the subtrees removed by Δ↔

3. for i = 1 to n do
4. if ei = sDoc() then
5. emit ei

6. else if ei = eDoc() then

7. Rroot =

{
T if ∃ T ∈ R s.t. T is the document root
∅ otherwise

8. emit Events(Rroot), ei

9. else

10. n̄ =

{
n′ if ∃ ren(ei.v, n, n′) ∈ Δ↔

ei.n otherwise
s̄ =

{
s′ if ∃ repV(ei.v, s, s′) ∈ Δ↔

ei.s otherwise
11. if ei = sElem(v, n) then

12. R← =

{ {T1, ..., Tn} if ∃ [T1, ..., Tn] removal group in R s.t. R(Tn) �s v
∅ otherwise

13. if �v′ ∈ I s.t. v /c v′ then emit Events(R←) end-if
14. Rattr = {T1, ..., Tn|∀i, 1 ≤ i ≤ n, Ti ∈ R,R(Ti) /a v}
15. if v /∈ I then emit sElem(v, l, n̄), Events(Rattr) end-if
16. R = R \ (R← ∪ Rattr)
17. else if ei = eElem(v, n) then

18. R↘ =

{ {T1, ..., Tn} if ∃ [T1, ..., Tn] removal group in R s.t. R(Tn) /c v
∅ otherwise

19. if v /∈ I then emit Events(R↘), eElem(v, n̄) end-if
20. R = R \ R↘
21. else if ei = attr(v, n, s) then
22. if v /∈ I then emit attr(v, n̄, s̄) end if
23. else if ei = text(v, s) then

24. R← =

{ {T1, ..., Tn} if ∃ [T1, ..., Tn] removal group in R s.t. R(Tn) �s v
∅ otherwise

25. if �v′ ∈ I s.t. v /c v′ then emit Events(R←) end-if
26. R = R \ R←
27. if v /∈ I then emit text(v, s̄) end if
28. end if
29. end if
30. end for
Ensure: The sequence of events emitted models the document D.

Proof Sketch. The inverse application of a completed PUL Δ↔ must (i) remove all
inserted nodes; (ii) restore the original value and name of nodes, and (iii) insert back in
the document any removed node in its original position. When the updated document
is processed any node that has been inserted by Δ↔ (the nodes in I) is not emitted
(removed). Otherwise the node is emitted back with its original value and name, which
is retrieved considering the ren and repV operations in Δ↔. In this process, the node
labels and the set of removed subtrees R are used to determine if any node must be

178 F. Cavalieri, G. Guerrini, and M. Mesiti

restored between two encountered nodes, ensuring that the original document nodes
are restored in their original position. Therefore, since the three properties are met by
Algorithm 2, we are guaranteed that the original document is produced.

Proposition 5 (Complexity). Let Δ↔ be a completed PUL of size n applicable on a
document D, let D′ be a document in O(Δ↔, D) composed of d nodes, and let i and
r be the number of nodes inserted and removed by Δ↔, respectively. The complexity of
Algorithm 2 is O(n log n + d + i + r).

Proof Sketch. The identification of the nodes to be removed and the original name
and value of updated nodes can rely on a hash-table, which requires O(n) for its ini-
tialization and O(1) for retrievals. For what concerns the restoration of nodes, a more
efficient representation of R is a list ordered according to the pre-order traversal of the
subtrees roots, with cost O(n log n). Moreover, since events are generated according to
a pre-order visit of the tree, identifying whether there is a subtree to restore, requires to
check only the first element in the list, with cost O(1), assuming that subtrees removed
multiple times are pruned during the inverse application. Assessing whether the parent
of a node has been removed requires constant time, provided that this information is
stored in a state variable. Thus, since all nodes in the updated document need to be
processed and up to r nodes need to be restored, the complexity of the algorithm is
O(n log n + d + i + r).

5 Evaluation

In this section we discuss some experiments we have conducted by means of the ex-
tended Qizx library that is able to generate and process both PULs and completed
PULs represented as XML documents containing the serialization of each operation
along with the identifiers and labels of the target nodes. Our test machine uses an Intel
I5 760 processor, 16GB of RAM, and runs the Sun JDK v.1.6.20.

To assess the computational costs of the inversion operator and contrast the pecu-
liar advantages of PULs and completed PULs, we exploit documents of various sizes,
ranging from 16MB to 256MB, produced by means of the XMark data generator. Node
identifiers and labeling have been stored within the corresponding documents through
an encoding of their XDM structure. On such documents, synthetic XQU expressions
and their corresponding PULs/completed PULs have been generated with a varying
number of operations that are equally distributed among the operation types.

Starting from an XQU expression the generation of a PUL Δ/completed PUL Δ↔

requires to load the whole document in memory before the actual evaluation of the
XQuery Update expression. When the expression is evaluated, generating a completed
PUL has the additional cost of retrieving and storing within the PUL itself all the mod-
ified values and removed nodes. Analogously, the generation of PUL inversion requires
to load the whole document in memory. The application of the so generated PULs, by
contrast, requires to load the whole PUL in memory and then update the corresponding
document through a single scan identifying a new document. While Δ and Δ−1 seri-
alizations contain only the strictly required information for their application, the serial-
ization of Δ↔ contains extra information that is discarded depending on the direction
(forward or backward) of application.

Reverting the Effects of XQuery Update Expressions 179

Fig. 3. Experiments

Given a synthetic XQU expression, we first investigated the correlation between the
size of the document and the time required for: (i) generating the corresponding PUL
Δ/completed PUL Δ↔; (ii) computing the inverse Δ−1 of Δ; (iii) applying Δ, Δ↔,
Δ−1 and backward applying Δ↔. In all cases, the portion of the document being in-
serted or removed is approximately 1MB. Results for this experiment are reported on
the left side of Fig. 3. Moreover, we consider a 64MB document and we vary the amount
of information removed or replaced (ranging from 0% to 50%). Results of the second
experiment are reported in the right side of Fig. 3. The experiments indicate that the
cost of generating or applying a PUL Δ∗ (either Δ, Δ↔, or Δ−1) is dominated by the
number of nodes analysed. Specifically, when a PUL Δ or Δ↔ is applied, the number of
nodes in the original document, those in the updated document and those in the PUL it-
self contribute to the running time of PUL application. Analogously, for the application
of Δ−1, the number of nodes in the original document and those in Δ and Δ−1 affect
the running time. Thus, when the portion of the document being inserted or deleted is
not relevant, PULs generation and application time are not influenced by Δ∗, while ap-
plications require almost twice the time of generations. By contrast, when the size of the
deleted portions of the document increases, completed PULs become less efficient, as
the forward application time is unchanged and its generation time increases. Similarly,
when the number of nodes inserted by a PUL is high, PUL backward application time
remains unchanged, and its generation time increases, even if to a lesser extent.

6 Related Work

The paper relies on the approach to update execution proposed in [3] which proposes
the decoupling of PUL production from PUL evaluation as an execution model for
XML updates expressed through XQU expressions in distributed contexts. The need
of more flexible mechanisms for update handling entails the development of suitable
mechanisms for reasoning on updates before actually apply them, and specifically for
composing as well as reverting them. In [3], PUL operators for composing updates (in-
tegration and aggregation) as well as for devising a compact representation (reduction)
are investigated, but inversion is not addressed.

180 F. Cavalieri, G. Guerrini, and M. Mesiti

The notion of completed PULs is inspired by completed deltas proposed by [11] in
the context of XML versioning. The goal of the two notions is the same, in that they both
aim at having a compact representation of changes that can be applied either forward (to
actually apply them) or backward (to revert their effects). However, completed deltas
are obtained by comparing two document versions (through diff algorithms) and do not
represent the effects of XQU expressions. As a consequence, both the set of primitive
operations and the associated semantics are different. A peculiar aspect in inverting
updates expressed as PUL is indeed related to the XQU snapshot semantics by which a
PUL is a unordered list of operations, that have to be applied on documents according
to some precedence among operators prescribed by [15] and formalized in a five stage
semantics in [1]. The inversion mechanism proposed in the paper is designed according
to that semantics. By contrast, completed deltas refer to sequences of non-conflicting
operations.

Though our approach is not specifically targeted to a transactional context, the ability
of reverting the effects of XML updates could also be useful in that setting. The no-
tion of compensating transaction as a transaction that semantically undoes the partial
effects of a transaction without performing cascading aborts of dependent transactions,
restoring the system to a consistent state, has been proposed in the context of long-lived
transaction [6,7,10] and is particularly relevant in the context of workflows and web ser-
vices [13]. These types of compensation range from traditional undo, at one extreme, to
application-dependent, special-purpose compensating transactions, at the other extreme.
XML transactions have been investigated in [5,8,9] but the focus was on isolation levels
and lock mechanisms. An approach to atomicity for XML transactions relying on state-
ment undos is proposed in [2]. They consider the update operations in a PUL as separate
transactions and discuss how individual operations can be undone. However, interactions
among different operations in a PUL, e.g., overriding, neither on the same node nor on
nodes bound by hierarchical relationships in the tree, are considered.

7 Concluding Remarks

In this paper we considered updates on XML documents expressed through XQU ex-
pressions and the corresponding dynamic model of updates based on PULs. We in-
vestigated the issue of reverting the effects of an update expression, referring to the
case in which PUL production is decoupled from their application. Two alternative
approaches have been considered: the first one is the inversion of a PUL through an in-
version operator. The second one is the extension of the PUL model (completed PULs)
so that the required information for both a forward and a backward (inverse) applica-
tion are included. We presented, discussed, and implemented in the Qizx library the
algorithms for both inverting a PUL and for the streaming backward application of a
completed PUL. Finally, we contrasted the two proposed approaches through an exper-
imental evaluation. As future work we plan to investigate the correlation between the
inversion operators presented in this paper with the operations proposed in [3] in order
to identify an algebra on PULs. Moreover, we wish to tailor the developed operator in
specific contexts like versioning, transaction, and cloud. Finally, in the current setting,
labeling information is stored within the document. This has the effect of increasing

Reverting the Effects of XQuery Update Expressions 181

the document size of three times. This issue could be solved by considering a shredded
representation of the document and, as future work, we wish to explore this possibility.

References

1. Benedikt, M., Cheney, J.: Semantics, Types and Effects for XML Updates. In: Gardner, P.,
Geerts, F. (eds.) DBPL 2009. LNCS, vol. 5708, pp. 1–17. Springer, Heidelberg (2009)

2. Biswas, D., Jiwane, A., Genest, B.: Atomicity for XML Databases. In: Bellahsène, Z., Hunt,
E., Rys, M., Unland, R. (eds.) XSym 2009. LNCS, vol. 5679, pp. 180–187. Springer, Hei-
delberg (2009)

3. Cavalieri, F., Guerrini, G., Mesiti, M.: Dynamic Reasoning on XML Updates. In: EDBT, pp.
165–176. ACM Digital Library (2011)

4. Chien, S.-Y., Tsotras, V.J., Zaniolo, C.: Efficient Schemes for Managing Multiversion XML
Documents. VLDB J. 11(4), 332–353 (2002)

5. Dekeyser, S., Hidders, J., Paredaens, J.: A Transaction Model for XML Databases. World
Wide Web 7(1), 29–57 (2004)

6. Elmagarmid, A.K. (ed.): Database Transactional Models for Advanced Applications. Morgan
Kaufmann, San Francisco (1992)

7. Garcia-Molina, H., Salem, K.: Sagas. In: SIGMOD Conference, pp. 249–259. ACM Press,
New York (1987)

8. Grabs, T., Böhm, K., Schek, H.-J.: XMLTM: Efficient Transaction Management for XML
Documents. In: CIKM, pp. 142–152 (2002)

9. Helmer, S., Kanne, C.-C., Moerkotte, G.: Evaluating Lock-based Protocols for Cooperation
on XML Documents. SIGMOD Record 33(1), 58–63 (2004)

10. Korth, H.F., Levy, E., Silberschatz, A.: A Formal Approach to Recovery by Compensating
Transactions. In: VLDB, pp. 95–106 (1990)

11. Marian, A., Abiteboul, S., Cobena, G., Mignet, L.: Change-Centric Management of Versions
in an XML Warehouse. In: VLDB, pp. 581–590 (2001)

12. O’Connor, M.F., Roantree, M.: Desirable Properties for XML Update Mechanisms. In:
Updates in XML EDBT/ICDT Workshop (2010)

13. Peltz, C.: Web Services Orchestration and Choreography. Computer 3(10), 46–52 (2003)
14. PIXwere Ltd. QIZX. An Open-source XQuery Processor (2010)
15. W3C. XQuery Update Facility 1.0 (June 2009)

A.A.A. Fernandes et al. (Eds.): BNCOD 2011, LNCS 7051, pp. 182–193, 2011.
© Springer-Verlag Berlin Heidelberg 2011

TraCX: Transformation of Compressed XML

Stefan Böttcher, Rita Hartel, and Sebastian Stey

University of Paderborn, Computer Science, Fürstenallee 11, 33102 Paderborn, Germany
{stb@,rst@,sebstey@mail.}uni-paderborn.de

Abstract. While the volume of XML data and sometimes even the processing
time of XML data can be reduced by using XML compression and storing,
processing, and transferring compressed XML instead of uncompressed XML, a
transformation of the transferred XML data into the receiver’s XML format via
XQuery cannot be performed on the compressed XML data directly. Instead,
XQuery transformation of compressed XML data requires a prior decompres-
sion. In this paper, we present a generic approach to transform compressed or
uncompressed XML representations that support basic navigation and update as
well as optional copy functionalities. In a series of experiments, we have shown
that using our approach to transform compressed XML is not only faster than
the indirect approach via decompression, XQuery transformation, and recom-
pression, but also that our approach transforms compressed XML as efficient as
other XQuery evaluators transform uncompressed XML only.

Keywords: XML compression, XQuery, XML transformation.

1 Introduction

1.1 Motivation

Due to its flexible structure, XML enjoys increasing popularity as a data exchange
format and as an intermediate storage format, e.g. in production chains where XML
data is exchanged, transformed and eventually further processed sequentially by mul-
tiple participants. But the overhead caused by this flexible structure forms the biggest
disadvantage of using XML as a data exchange or storage format. Transferring and
storing a compressed XML representation instead of uncompressed XML might help
to solve this problem. However, when XML files have to be shared with other parties,
often the XML structure needs to be adapted to match the XML data structure on the
receiver’s side. A typical approach to adapt uncompressed XML files is to transform
them via XQuery [1] into the format that is required on the receiver’s side. But when
exchanging compressed XML, the decompression prior to the XQuery transformation
and, after the XQuery transformation, the recompression of transformed XML data
needed for compact storage and for further transferal of compressed XML data may
be a significant overhead. Instead, the XQuery transformation of compressed data
appears to be a promising alternative. However, up to now, XQuery transformation of
compressed XML data has been very limited, i.e., up to now, there has not been any
generic approach to XQuery evaluation applicable to all XML compression tech-
niques. Instead, most XML compression techniques do not support XQuery at all, and

 TraCX: Transformation of Compressed XML 183

the few exceptions have at least one of the following weaknesses. First, XQueC [2]
suffers from a weaker XML compression and is designed to output uncompressed
XML only. Second, for XQuery evaluation on top of Bisimulation [3], the transforma-
tion of XQuery is limited to a small XQuery subset that only supports XPath
expressions consisting of child-axis location steps only. In comparison, we propose a
generic approach to transform compressed XML documents that is applicable to vari-
ous XML compression techniques that support a basic set of navigation and update
operations on compressed XML data. Furthermore, our transformation on compressed
XML outperforms the indirect approach via decompression, XQuery transformation
and recompression and works as efficiently as other XQuery evaluators that transform
uncompressed XML.

1.2 Contributions

In this paper, we present a generic approach to transforming compressed or uncom-
pressed XML representations that supports a subset of XQuery (c.f. Section 1.3) and
that combines the following properties:

• It allows transforming each XML representation, and especially each compressed
XML representation, that supports the basic binary navigation operations ‘naviga-
tion to the first-child’, ‘navigation to the next-sibling’, and ‘navigation to the end-
tag of the parent’, and supports the basic update operations ‘appending a first-child
to the current end of the document’, ‘appending a next-sibling to the current end of
the document’ and ‘closing the current node’, i.e., adding an end tag and continu-
ing with the next-sibling or the end-tag of the parent node.

• Whenever an XML compression technique supports these basic functionalities
directly on a compressed representation c(X) of an XML document X, our ap-
proach allows transforming c(X) into another compressed XML file c(X’) corres-
ponding to the new XML structure X’ of the transformed XML document X.

• Whenever an XML representation not only supports these basic functionalities, but
supports, for example, evaluating XPath queries efficiently or copying compressed
sub-trees from a compressed source document into a compressed target document
without having to decompress the sub-tree, these capabilities are used by our ap-
proach instead. Unnecessary decompression and recompression of the compressed
document is avoided.

We have implemented and evaluated our transformation approach for uncompressed
XML in form of a SAX-based XML representation and for compressed XML in form
of Succinct compression [4]. These are examples of XML representations that can be
combined with our approach. All other XML representations that fulfill the above
given requirements can work with our approach as well.

1.3 Query Language

The transformation language used in our approach is a subset of XQuery [1]. It can
be defined by the following EBNF grammar, where XPATH is a relative
coreXPath expression containing only the forward axes self, attribute, text, child,
descendant, descendant-or-self, and following-sibling, and where NAME, VARIABLE,

184 S. Böttcher, R. Hartel, and S. Stey

COMPRESSIONTYPE, and FILEPATH are Strings, and SEQ is a sequence of Strings.
The terminal symbol ‘;’ represents a carriage return.

XMLTREE ::= ‘<‘ NAME ‘>‘; XML* ‘</‘ NAME ‘>‘
XML ::= XMLTREE; | FLR;
FLR ::= ‘{‘; (DEFINITION;)* OUTPUT; ‘}‘
DEFINITION ::= FOR | LET
FOR ::= ‘for $‘ NAME ‘in‘ EXPRESSION
LET ::= ‘let $‘ NAME ‘:=‘ EXPRESSION
EXPRESSION ::= DOC ‘/‘ XPATH | ‘$‘ VARIABLE ‘/‘ XPATH | SEQ
DOC ::= ‘doc(“‘ FILEPATH ‘“,”‘ COMPRESSIONTYPE ‘“)‘
OUTPUT ::= ‘return‘; XMLRET
XMLRET ::= XMLRETTREE; | ‘{$‘ VARIABLE ‘}‘;
XMLRETTREE ::= ‘<‘ NAME ‘>‘; XMLRET* ‘</‘ NAME ‘>‘

1.4 Example Being Used in This Paper

In this paper, we use a short example for illustrating the ideas. Fig. 1 (a) shows the
source document of our example that contains a list of countries and rivers for a con-
tinent and that contains a list of cities for each country. Fig. 1 (b) shows the target
document in which the root element is the element mainland (corresponding to the
element continent of Fig. 1 (a)). Furthermore, the country is renamed to nation and the
rivers are removed. Fig. 1 (c) shows the transformation instruction that allows trans-
forming the source document into the target document.

(1) <cont>
(2) <country>
(3) <city>C1</city>
(4) <city>C2</city>
(5) </country>
(6) <river>
(7) <name>R1</name>
(8) </river>
(9) <country>
(10) <city>C3</city>
(11) </country>
(12) </cont>

(a)

(1) <mainland>
(2) <nation>
(3) <city>C1</city>
(4) <city>C2</city>
(5) </nation>

(6) <nation>
(7) <city>C3</city>
(8) </nation>
(9) </mainland>

(b)

(1) <mainland>
(2) {
(3) for $country in
(4) doc(„file“)/cont/country
(5) let $city := $country/city
(6) return
(7) <nation>
(8) { $city }
(9) </nation>
(10) }
(11) </mainland>

(c)

Fig. 1. (a) source document, (b) target document, (c) transformation instructions

1.5 Paper Organization

This paper is organized as follows: Section 2 summarizes the basic idea and the fun-
damental concepts underlying our approach to transform compressed XML docu-
ments followed by a detailed discussion of the operations needed and how they can be
performed on compressed and on uncompressed XML. The third section outlines
some of the experiments that compare our approach with the existing XQuery evalua-
tor Zorba. Section 4 gives an overview of related work and is followed by the Sum-
mary and Conclusions.

 TraCX: Transformation of Compressed XML 185

2 Our Solution

2.1 Basic Idea

When evaluating XQuery queries over documents given in a compressed or uncom-
pressed XML representation, there are only few parts of the evaluation process that
are specific for the chosen XML representation, whereas most parts are generic and
can be implemented by our approach directly and independently of the chosen XML
representation.

The specific XML representation has to provide the evaluation of absolute and rel-
ative XPath expressions within the source document. Furthermore, the specific XML
representation has to provide inserting new elements as the first-child or as the next-
sibling of the current context node, and copying sub-trees from the source document
to the target document.

But even these tasks contain generic aspects. The evaluation of XPath expressions
can be reduced to navigation via the basic binary axes first-child, next-sibling, and
end-of-parent and the retrieval of the label of the current context node. Copying sub-
trees can be reduced to navigation via the same basic binary axes within the source
document and inserting new elements as first-child or next-sibling into the target
document. Nevertheless, our evaluation has shown that our approach runs faster, if
XPath evaluation and copying sub-trees is optimized according to the specific repre-
sentation instead of using the generic solution via navigation and updates.

To execute a transformation instruction, we parse the transformation instruction
line by line and interpret the lines as follows: Whenever there is a call to an element
constructor (as e.g. <mainland>), we add the constructed element to the target docu-
ment as first-child or as next-sibling of the current context element. Whenever there is
a for-statement FS, we evaluate the absolute or relative XPath expression of FS and
execute the content of FS for each result of the XPath expression. Whenever there is a
let-statement LS, we evaluate the absolute or relative XPath expression of LS, conca-
tenate the results of the XPath expression to a single sequence and bind the whole
sequence to the variable given within LS. In order to minimize the number of passes
through the source document, we do not evaluate the XPath expressions of the for-
and let-statements line by line as they appear in the transformation instruction, but we
first collect all XPath expressions and evaluate all of them in parallel considering the
interdependencies within the queries. Whenever there is a call to a variable $v within
the return-statement, i.e., whenever it is required to output the content of $v to the
target document, we copy the content of $v from the source document to the target
document.

Most tasks that have to be performed in order to transform a source document ac-
cording to an XQuery transformation into a target document are independent of the
XML representation used and can be solved generically. But in order to be transform-
able via our approach, an XML representation has to provide either the navigation via
first-child, next-sibling and end-of-parent, or – in order to be sure that the transforma-
tion requires 2 passes only – it has to provide the evaluation of several absolute and
relative XPath expressions in parallel. If an XML representation does only allow the
sequential evaluation of several XPath expressions, sequential evaluation can be used
as well, but then the transformation requires more than just 2 passes. Furthermore, the

186 S. Böttcher, R. Hartel, and S. Stey

representation has to provide the capability to insert a new element as the first-child
or the next-sibling of the current context element, and in addition it might optionally
provide the capability to copy whole sub-trees from a source to a target document.

In the remainder of this section, we first explain for each task, i.e. XPath evaluation
and copying sub-trees from the source document to the target document, how this task
is solved in the generic part, and then discuss for two XML representations – uncom-
pressed XML on the one hand and Succinct Compression [4] on the other hand – how
the representation specific part is solved for these XML representations.

2.2 XPath Evaluation

Generic XPath Evaluation. We follow the idea of [5] and use an automata-based
approach to XPath evaluation. We reduce the set of axes to the basic binary axes first-
child, next-sibling, end-of-parent, and self::label, where label is the label of any XML
element or ‘*’. We assume that each XML representation produces binary XML
events of the form first-child, next-sibling, end-of-parent or self::label when passing
through the XML representation. That is, when we navigate from the current context
node to its first-child that carries the label ‘lab’, this sends two events to the
automaton: a first-child::* event followed by the event self::lab.

For each XPath forward axis, we provide an atomic automaton using the basic bi-
nary axes. Fig. 2 shows the atomic XPath automata for the location steps (a) child::e
and (b) descendant::f and (c) a combined automaton for the XPath expression
/child::e/descendant::f .

Fig. 2. XPath automata for (a) child::e (b) descendant::f, and (c) /child::e/descendant::f

According to the order of the location steps within the XPath expression XP, the
atomic automata for all location steps are concatenated to form the XPath automaton
of the whole XPath expression XP. As these automata only contain forward axes, they
allow evaluating the XPath expression within a single pass through the document.
More details on the automata-based XPath evaluation are described in [5].

In contrast to [5], which handles the evaluation of absolute queries only, we have
to handle absolute and relative XPath expressions. In order to evaluate all XPath ex-
pressions XPA1, …, XPAn, XPR1, …, XPRm occurring in the given XQuery expres-
sion, where each XPAi is an absolute XPath expression and each XPRj is a relative
XPath expression, we generate one XPath automaton for each absolute or relative
XPath expression XP. When parsing of the XML representation starts, only the auto-
mata for the absolute expressions XPA1, …, XPAn are active and consume the navi-
gation events of the form first-child, next-sibling, self::label, and end-of-parent that

 TraCX: Transformation of Compressed XML 187

are created by navigating through the XML representation. Whenever a result of an
XPath expression is reached, the result is bound to the XQuery variable $v assigned to
this XPath expression in the transformation instruction, and the automata for all rela-
tive expressions that refer to the variable $v as context node are turned active. If we
consider for example the source document and the XQuery transformation given in
Fig. 1, we have the absolute XPath expression XPa=/cont/country, the results of
which are bound to the variable $country and the relative XPath expression
XPr=$country/city. So whenever whenever a result of XPa is found (e.g. in line (2) of
the source document), the automaton for XPr is started, and from that moment on, the
XML events are not only passed to the automaton of XPa, but also to the automaton
of XPr. Only when the end of the result is reached, i.e., the end-tag of the root of the
sub-tree that is the result of the query XPa is read (e.g. in line (5) of the source docu-
ment), XPr is stopped, and it does not receive any further XML events.

In order to avoid any unnecessary parsing and decompression, the automata send
feedback to the source, which navigation events are currently relevant, i.e., they report
the set of labels of outgoing transitions of all currently active states. If we consider
e.g. the absolute XPath expression /cont/country, and if the current node CN of any
given source document is at level 2 (i.e., CN is a grand-child of the document root),
navigating down to any level below via the first-child axis cannot lead to a result.
Therefore, the whole sub-tree having the parent CN can be skipped and does not need
to be decompressed.

This evaluation of absolute and relative XPath expressions describes a generic op-
timization for XQuery evaluation that can be applied to all XML representations sup-
porting the basic operations, but this generic optimization need not be applied. Note
that whenever an XML representation supports a more efficient XPath evaluation for
a given XML document, this evaluation can be used instead of the generic part.

Navigation in Uncompressed XML. In order to navigate via the binary axes within
an uncompressed XML document, we have to consider pairs of tags. Reading a
start-tag following another start-tag corresponds to a first-child event. Reading a start-
tag following an end-tag corresponds to a next-sibling event. Reading an end-tag
following another end-tag corresponds to an end-of-parent event. Reading an end-tag
following a start-tag does not generate an event at all. Finally, if the current tag is a
start-tag with label ‘a’, this corresponds to a self::a event.

To skip a sub-tree means ‘ignoring’ its tags, i.e. skipping as many tags, until the
number of the skipped start-tags is equal to the number of skipped end-tags.

Navigation in Succinct Compression. The Succinct Compression [6] stores the tree
structure of the XML document in a bit stream that contains a ‘1’-bit for each start-tag
and a ‘0’-bit for each end-tag within the document. The labels of the document tree
are stored in so called inverted element lists, that contain for each label L the list of
positions of ‘1’-bits within the bit stream that correspond to an element with label L.

For example, Fig. 3 shows the bit stream BS and the inverted element lists IES of
the source document of Fig. 1(a) and the bit stream BT and the inverted element lists
IET of the target document of Fig. 1(b). The data structure P is the index of positions
within BS and BT to which the entries in the inverted element lists refer. The inverted
element list with label “=T” represents positions of text values within the bit stream,
and each text node is represented as a bit sequence ‘10’ in the bit stream.

188 S. Böttcher, R. Hartel, and S. Stey

BS: 1 1 1 1 0 0 1 1 0 0 0 1 1 1 0 0 0 1 1 1 0 0 0 0
P: 0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23
BT: 1 1 1 1 0 0 1 1 0 0 0 1 1 1 0 0 0 0
IES:
continent: 0
country: 1, 17
city: 2, 6, 18
river: 11
name: 12
=T: 3, 7, 13, 19

IET:
mainland: 0
nation: 1, 11
city: 2, 6, 12
=T: 3, 7, 13

Fig. 3. Bit stream BS and inverted element lists IES of the source document given in Fig. 1(a),
and bit stream BT and inverted element lists IET of the target document given in Fig. 1(b)

In order to navigate within the Succinct compression, we have to consider two con-
secutive positions within the bit stream. Reading two ‘1’-bits corresponds to a first-
child event. Reading a ‘1’-bit following a ‘0’-bit corresponds to a next-sibling event.
Reading two ‘0’-bits corresponds to an end-of-parent event. If a self event is currently
relevant, we have to search the current index position within the inverted element list
in order to determine the label of the current node.

To skip a sub-tree means to proceed from the current position in the bit stream, un-
til we have read as many ‘1’-bits as ‘0’-bits.

2.3 Copying Compressed Sub-Trees

Generic Copying of Sub-Trees. The generic approach to copy a sub-tree navigates
through the sub-tree in the source document via the binary axes and inserts node by
node into the target document via the operations insertAsFirstChild or insertAsNext-
Sibling. As this corresponds to a decompression of the sub-tree to be copied, it is
more efficient to provide XML-representation specific implementations for copying a
sub-tree.

As the copying of sub-trees is only started after the XPath evaluation has stopped,
all root nodes of the sub-trees to be copied are known in advance. Therefore, the
whole copy-process can be performed within a (second) single pass through the
source and through the target document, assuming that we can use a cache that allows
us to store data that is read from the source document and will be appended to the
target document at a later point in time.

Copying Sub-Trees in Uncompressed XML. For each sub-tree to be copied, we
store the character index of the opening bracket ‘<’ of the start-tag during the XPath
evaluation. In order to copy the sub-tree, the characters are copied and occurrences of
start- and end-tags are counted until as many start-tags as end-tags have been copied.
As target documents are generated in document order, the copied sub-tree is inserted
‘as a whole’ to the end of the target document.

Copying Sub-Trees in Succinct Compression. For each sub-tree to be copied, we
store the position n of the ‘1’-bit that represents the start-tag of the sub-tree’s root
within the bit stream. In the bit stream, we copy as many bits, until the number of ‘1’-
bits that have been copied are equal to the number of ‘0’-bits that have been copied.
Furthermore, the elements found at these positions in the inverted element lists have
to be copied and their positions in the target bit stream have to be computed as
described below.

 TraCX: Transformation of Compressed XML 189

In order to illustrate the process of copying a sub-tree from the source Succinct re-
presentation into the target Succinct representation, we assume that we want to copy
the sub-tree BS’ of the source document that is represented by the positions 18 to 21
of the bit stream BS given in Fig. 3. The affected bits and inverted element list entries
are emphasized by bold letters. Furthermore, we assume that we want to append them
to the target document that up to now consists of the positions 0 to 11 of the bit
stream BT of the target document of Fig. 3, i.e., we want to insert the copied sub-tree
at position k=12.

Having copied the bits from position n (i.e. 18) to position m (i.e. 21) of BS to BT,
we run through the inverted element list and copy all positions x with n≤x≤m (i.e.
position 18 of the list “city” and position 19 of the list “=T”). As we only append new
nodes to the current end of the target document, we do not have to re-compute index
positions within the inverted element lists of nodes that have been previously added to
the target document. In order to insert the copied sub-tree at position k (i.e. 12), we
add k-n to each copied position (i.e., we add 12-18=-6 to the positions 18 and 19 and
yield the new positions 12 and 13). Then, we can insert the list of positions of the
copied sub-tree into the list of positions of the target document for each label (i.e., we
add positions 12 to the list “city” of BT and position 13 to the list “=T” of BT).

Even if we have to copy more than one sub-tree, we can copy the relevant parts of
the bit stream and the inverted element lists within a single pass. We first sort the
positions of the sub-trees to be copied in ascending order, process the bit stream and
copy all relevant bits, and determine the start and end positions of the copied sub-
trees. Then, we can run a single pass through the inverted element lists in which we
adapt the positions and insert the positions that were copied.

3 Evaluation of Our Prototype Implementation

To evaluate the performance of our Java prototype implementation, we conducted
several tests. We ran the tests on an Intel Core i5 450M with 2.4 GHz and 4 GB
memory using Linux and JRE 1.6.0. The tests compare our prototype implementation
to version 1.4.0 of the XQuery evaluator Zorba (http://www.zorba-xquery.com/),
started by zorba -f -q queryFile -o outputFile.

For each test, we compared five methods of transformation. Three methods use our
prototype implementation: (1) transforming uncompressed data, (2) indirectly trans-
forming data compressed via Succinct, i.e., first decompression, then uncompressed
transformation, and, finally, compression of the transformation’s result and (3) direct
transformation of data compressed via Succinct. Two methods use Zorba: (4) trans-
forming uncompressed data and (5) indirectly transforming data compressed via Suc-
cinct as explained above. With Zorba, it is not possible to transform compressed data
directly.

In the first test, we use an XML source file of variable size consisting of the root
node <Country> that itself consists of a single <Name> node and of N <City> nodes.
Based on that XML source file, we evaluate an XQuery that selects the root node
<Country>. Afterwards, using the root node as context node, it evaluates the two
relative XPath expressions $country/Name and $country/City. For each <City> node,
the selected nodes are copied to the transformation's target document.

190 S. Böttcher, R. Harte

Fig. 4. Duration

Fig.

Fig. 4 shows that our pr
Zorba. Furthermore, for lar
only faster than the indirec
but even faster than only tra

The second test uses an
low the root node <Countr
before each M'th <CityAt>
<MinDistance> nodes and
XPath expression $dis/foll
cities are selected that are
transformation's target docu

el, and S. Stey

for transformation of Test 1 (logarithmically scaled)

5. Duration for transformation of Test 2

rototype is able to perform the transformation faster t
rge source documents transforming compressed data is
t way via decompression, transformation and compress
ansforming uncompressed data.
XML source file which consists of N <CityAt> nodes

ry>. The source file also contains a <MinDistance> n
node. The XQuery evaluated for that source file selects
uses each of these nodes as a context node for the relat
owing-sibling::CityAt. Thus, for each <MinDistance>
more distant. Again, the selected nodes are copied to
ument. For a given N, reducing M leads to an increas

than
not

sion

be-
node
s all
tive
 all
the

sing

number of <MinDistance>
the relative XPath expressio

Fig. 5 illustrates that fo
compressed and compresse
type implementation appea
expressions for compresse
increase of transformation
relative XPath expressions.

The third test uses XML
documents. The transforma

─ A1=/site/closed_aucti
─ A2 =//closed_auction/
─ A3 =/site/closed_auct

For each query Q ∈ {A1 , A
formation result that return
with R as its content for eac

Fig. 6. Duration for transform
cally scaled)

For all the three queries
erage of which is shown in
small uncompressed docu
documents. However, if co
output, our prototype imp
in contrast to Zorba, our p
formation duration.

TraCX: Transformation of Compressed XML

nodes and, thus, an increasing number of context nodes
on.
r N=10,000 our prototype implementation transforms

ed data faster than Zorba. In contrast to Zorba, our pro
ars to benefit from the automata based evaluation of XP
ed and uncompressed documents, resulting in a smo
duration for an increasing number of context elements
Our tests for N=1,000 returned similar results.

L files of variable size generated by XMark [6] as sou
ations reflect the following XPathMark [7] queries

ions/closed_auction/annotation/description/text/keyword
//keyword
tions/closed_auction//keyword

A2 , A3} the result of Q is embedded into an XQuery tra
s a <results> node as its root that contains a <result> n
ch query result R of Q .

mation of Test 3, average of queries A1, A2, and A3 (logarith

of XPathMark, our tests yield very similar results, the
n Fig. 6. While our prototype implementation transfor

uments faster, Zorba is faster for large uncompres
ompressed documents are given as input and required
plementation is always faster than Zorba. Furthermo
prototype implementation reveals a linear growth of tra

191

s for

un-
oto-
Path
ooth

for

urce

d

ans-
node

hmi-

av-
rms
ssed
d as
ore,
ans-

192 S. Böttcher, R. Hartel, and S. Stey

4 Related Works

Most works that discuss the transformation of XML documents via XQuery focus on
an efficient evaluation that can handle uncompressed XML only. A first example is
[8][8] that discusses the unnesting of FLWOR expressions, while [9] introduces an
algebra for XQuery and shows, how unnesting can be performed within this algebra.
Further algebras for XQuery were introduced by [10] and [11]. The work of
Fernández and Siméon was realized in an XQuery processor called Galax [12]. With-
in Galax, the internal data model is implemented for three different kinds of XML
representations, but none of these is a compressed XML representation.

The evaluation of XQuery instructions on top of compressed XML data is
performed by the approaches XQueC [2] and Bisimulation [3]. A document that is
compressed via Bisimulation can be transformed with the help of XQuery into a com-
pressed target document. In this approach, the XQuery language is restricted – similar
as in our approach – to for, let and return expressions. In contrast to our approach,
Bisimulation [3] supports XPath expressions consisting of child axis steps only, whe-
reas our approach supports all forward axes except the following axis.

XQueC [2] proposes an XML representation that is optimized for an efficient
transformation via XQuery. The structure compression as well as the data compres-
sion is chosen in such a way that path queries can be evaluated efficiently on it, but in
return, the compression ratio reached by XQueC [2] is not as strong as by other com-
pressors. The approaches being used in XQueC [2] appear to be non-applicable to
other compression techniques.

Our approach contains parts that are generic, while other parts are specific for the
compressed XML representation being used. Whenever another compressed XML
representation supports the specific parts, our approach to transforming compressed
XML representations can be applied to the other compressed XML representation as
well.

To summarize, to the best of our knowledge, our approach is the only approach
that provides a generic XQuery transformation of compressed XML data which is
applicable to all compressed XML data formats that support the basic navigation steps
first-child, next-sibling, end-of-parent, self::label, and that support inserting nodes as
first-child or as next-sibling, and that optionally support a copy operation for com-
pressed data.

5 Summary and Conclusions

Whenever the data volume of XML files to be exchanged or stored and to be trans-
formed is a bottleneck of an application, transforming compressed XML is a promis-
ing alternative to decompressing compressed data back to XML prior to transforming
it, and eventually recompressing the transformed XML data afterwards.

In this paper, we have presented a generic XML transformation approach that al-
lows evaluating queries belonging to a subset of XQuery on all the compressed or
uncompressed XML representations that support at least a small set of basic opera-
tions like the navigation via the binary XML axes first-child, next-sibling and end-of-
parent, and like the insertion of nodes.

 TraCX: Transformation of Compressed XML 193

Our tests have shown that our XQuery processor is very efficient, such that it is not
only faster to transform the compressed document directly than to use the indirection
via decompression, XQuery transformation and recompression, but furthermore, that
our XQuery processor reaches an evaluation speed on compressed XML that is simi-
lar to and sometimes even outperforms the speed of other XQuery processors on un-
compressed XML.

As our approach is not limited to XQuery transformations of the Succinct XML re-
presentation [4], we consider it an interesting extension to integrate our approach to
XQuery evaluation on compressed XML formats with other queryable and updateable
XML compressors and to compare these XML compressors with plain XML regard-
ing the XQuery transformation speed.

References

1. Scott Boag, D.: XQuery 1.0: An XML Query Language (2007)
2. Arion, A., Bonifati, A., Manolescu, I., Pugliese, A.: XQueC: A query-conscious com-

pressed XML database. ACM Trans. Internet Techn. 7(2) (2007)
3. Buneman, P., Choi, B., Fan, W., Hutchison, R., Mann, R., Viglas, S.: Vectorizing and

Querying Large XML Repositories. In: ICDE 2005, Tokyo, Japan, pp. 261–272 (2005)
4. Böttcher, S., Hartel, R., Heinzemann, C.: Compressing XML data streams with

DAG+BSBC. In: Cordeiro, J., Hammoudi, S., Filipe, J. (eds.) WEBIST 2008. LNBIP,
vol. 18, pp. 65–79. Springer, Heidelberg (2009)

5. Böttcher, S., Steinmetz, R.: Evaluating XPath Queries on XML Data Streams. In: Cooper,
R., Kennedy, J. (eds.) BNCOD 2007. LNCS, vol. 4587, pp. 101–113. Springer, Heidel-
berg (2007)

6. Schmidt, A., Waas, F., Kersten, M., Carey, M., Manolescu, I., Busse, R.: XMark: A
Benchmark for XML Data Management. In: VLDB 2002, Hong Kong, China, pp. 974–
985 (2002)

7. Franceschet, M.: XPathMark: An XPath Benchmark for the XMark Generated Data. In:
Bressan, S., Ceri, S., Hunt, E., Ives, Z., Bellahsene, Z., Rys, M., Unland, R. (eds.) XSym
2005. LNCS, vol. 3671, pp. 129–143. Springer, Heidelberg (2005)

8. Deutsch, A., Papakonstantinou, Y., Xu, Y.: The NEXT Logical Framework for XQuery.
In: VLDB, Toronto, Canada, pp. 168–179 (2004)

9. Re, C., Siméon, J., Fernández, M.: A Complete and Efficient Algebraic Compiler for
XQuery. In: ICDE 2006, Atlanta, GA, USA, p.14 (2006)

10. Zhang, X., Pielech, B., Rundensteiner, E.: Honey, I shrunk the XQuery!: an XML algebra
optimization approach. In: WIDM 2002, LcLean, Virginia, USA, pp. 15–22 (2002)

11. Fernández, M., Michiels, P., Siméon, J., Stark, M.: XQuery Streaming à la Carte. In:
ICDE 2007, Istanbul, Turkey, pp. 256–265 (2007)

12. Fernández, M., Siméon, J., Choi, B., Marian, A., Sur, G.: Implementing Xquery 1.0: The
Galax Experience. In: VLDB, pp. 1077–1080 (2003)

Satisfiability of Simple XPath Fragments under

Fixed DTDs

Nobutaka Suzuki

University of Tsukuba
1-2, Kasuga, Tsukuba Ibaraki 305-8550, Japan

nsuzuki@slis.tsukuba.ac.jp

Abstract. The XPath satisfiability problem is to decide, for an XPath
expression q and a DTD D, if there exists an XML document t valid
against D such that the answer of q on t is nonempty. It is shown that the
satisfiability problem is intractable for many XPath fragments. In this
paper, we focus on fixed DTDs and consider the problem under fixed
DTDs. We first show that, for a very restricted XPath fragment, the
satisfiability problem is NP-complete under fixed DTDs. Then we show
several XPath fragments for which satisfiability is in PTIME under fixed
DTDs.

1 Introduction

XPath is a widely accepted query language for XML. For an XPath expression
q and a DTD D, q is satisfiable under D if there exists an XML document t
valid against D such that the answer of q on t is nonempty. Clearly, evaluat-
ing an unsatisfiable XPath expression is meaningless since such an expression
can always be replaced by an empty set without evaluating it. However, it is
shown that the satisfiability problem is intractable for a large number of XPath
fragments [1,4]. Therefore, it is important to find XPath fragments for which
the satisfiability problem is solvable efficiently. In this paper, we focus on fixed
DTDs and consider XPath fragments for which satisfiability can be determined
efficiently under fixed DTDs.

Let us show a simple example of an unsatisfiable XPath expression. Let us
consider the following DTD.

<!ELEMENT students (undergraduate|graduate)+>
<!ELEMENT undergraduate (name,email)>
<!ELEMENT graduate (name,email,supervisor?)>
<!ELEMENT name (#PCDATA)>
<!ELEMENT email (#PCDATA)>
<!ELEMENT supervisor (#PCDATA)>

Let q be an XPath expression //supervisor/parent::undergraduate/name,
which would return the names of undergraduate students that have a supervi-
sor. However, it is easy to see that q is unsatisfiable since an undergraduate

A.A.A. Fernandes et al. (Eds.): BNCOD 2011, LNCS 7051, pp. 194–208, 2011.
c© Springer-Verlag Berlin Heidelberg 2011

Satisfiability of Simple XPath Fragments under Fixed DTDs 195

element cannot have any supervisor element as a child. Clearly, we should de-
tect unsatisfiable XPath expressions prior to evaluating them. Actually, since
the sizes of a DTD D and a query q are much smaller than that of a database,
whether q is satisfiable under D can be checked much faster than evaluating q
on the database. Therefore, by checking the satisfiability of q before evaluat-
ing q, we can avoid evaluating q and thus save substantial time whenever q is
unsatisfiable.

There have been a number of studies on the XPath satisfiability problem,
and many of the studies are considered under “unfixed” DTDs so far, where
term unfixed (fixed) means that the complexity of the satisfiability problem
is measured by the sizes of a DTD and an XPath expression (resp., only the
size of an XPath expression). On the other hand, it also makes sense that the
satisfiability problem is considered under fixed DTDs. Actually, a schema is
usually much smaller than its underlying database, and a query issued to a
database varies almost every time but the schema of the database is stable and
hardly changes, i.e., schema is “fixed”. Thus, in this paper we consider XPath
fragments for which satisfiability is in PTIME under fixed DTDs.

In this paper, we use simple XPath fragments using child (↓), descendant-or-
self (↓∗), parent (↑), ancestor-or-self (↑∗), following-sibling (→+), and preceding-
sibling (←+) axes under two restrictions; (i) only a label can be specified as a node
test and (ii) operators such as qualifier ([]) and path union (∪) are not allowed. This
XPath fragment is rather simple butwe believe that the fragment covers a most im-
portant part of the full XPath since the fragment also covers descendant, ancestor,
following, and preceding axes (e.g., following axis can be simulated by ↑∗,→+, and
↓∗ axes) as well as the six axes mentioned above. Moreover, our fragment also sup-
ports a qualifier containing only child axes, since an XPath expression having such
a qualifier can be converted into an equivalent expression without qualifier, e.g.,
/a/b[c/d]/e is equivalent to /a/b/c/d/ ↑:: c/ ↑:: b/e.

In this paper, we first show that satisfiability for XP{↓,↑} is NP-complete under
fixed DTDs, where XP{↓,↑} denotes the XPath fragment using only ↓ and ↑ axes.
We next show that satisfiability for XP{↓,↓∗,→+,←+} is in PTIME under fixed
DTDs. This contrasts with the NP-hardness of satisfiability for XP{↓,→+,←+}

under unfixed DTDs [10]. Finally, we show sufficient conditions under which
satisfiability for XP{↓,↓∗,↑,↑∗,→+,←+} is in PTIME under fixed DTDs.

Benedikt, Fan, and Geerts extensively study the XPath satisfiability prob-
lem [1,4], in which many XPath fragments remain intractable even under fixed
DTDs. In this paper, we consider XPath fragments that are not considered
in their studies. There also have been many studies on the XPath satisfiabil-
ity problem without DTDs or under unfixed DTDs. Hidders considered the
XPath satisfiability problem without DTDs [5]. Figueira investigated satisfia-
bility for XP{↓,↓∗,=} without DTDs and showed that the problem is EXPTIME-
complete [3]. Lakshmanan et al. considered the satisfiability problem for tree
pattern queries (i.e., XP{↓,↓∗,[]}) without DTDs and under unfixed DTDs [7].
Their tree patten queries and the XPath fragments in this paper are incompa-
rable in the sense that their data model is based on an unordered tree model

196 N. Suzuki

but ours is based on an ordered tree model (sibling axes must be handled dif-
ferently). Several studies focused on restricted (unfixed) DTDs and XPath frag-
ments for which the problem is solvable efficiently. Montazerian et al. proposed
two subclasses of DTDs called duplicate-free DTDs and covering DTDs, and
showed that satisfiability for some subfragments of XP{↓,↓∗,[],∪,∗} can be solved
in PTIME under these DTDs [8]. Ishihara et al. proposed a subclasses of cov-
ering DTDs and investigated the tractability of XPath satisfiability under the
subclasses [6]. Suzuki et al. considered some XPath fragments for which satisfi-
ability is in PTIME under unfixed duplicate-free DTDs [10]. Their studies focus
on restricted unfixed DTDs, while this paper assumes that DTDs are fixed but
do not issues such restrictions.

The rest of this paper is organized as follows. Section 2 gives some preliminar-
ies. Section 3 shows the NP-completeness of satisfiability for XP{↓,↑} under fixed
DTDs. Section 4 presents a polynomial-time algorithm that solves satisfiability
for XP{↓,↓∗,→+,←+} under fixed DTDs. Section 5 shows a polynomial-time algo-
rithm that solves satisfiability for XP{↓,↓∗,↑,↑∗,→+,←+} under fixed nonrecursive
DTDs. Section 6 summarizes the paper.

2 Definitions

An XML document is modeled as a node-labeled ordered tree (attributes are
omitted). Each node in a tree represents an element. A text node is omitted,
in other words, we assume that each leaf node has a text node implicitly. For a
node n in a tree, by l(n) we mean the label (element name) of n. In what follows,
we use the term tree when we mean node-labeled ordered tree unless otherwise
stated.

Let Σ be a set of labels. A DTD is a tuple D = (d, s), where d is a mapping
from Σ to the set of regular expressions over Σ and s ∈ Σ is the start label. For
a label a ∈ Σ, d(a) is the content model of a. For example, the DTD in Sect. 1
is denoted as follows.

d(students) = (undergraduate|graduate)+

d(undergraduate) = name, email
d(graduate) = name email supervisor?

d(name) = ε

d(email) = ε

d(supervisor) = ε

A tree t is valid against D if (i) the root of t is labeled by s and (ii) for each
node n in t l(n1) · · · l(nm) ∈ L(d(l(n))), where n1 · · ·nm are the children of
n and L(d(l(n))) is the language of d(l(n)). D is no-star if for any content
model d(a) of D, d(a) contains no ‘∗’ operator. For labels a, b in D, we say that
b is reachable from a if b occurs in d(a) or there is a label c such that c is reachable

Satisfiability of Simple XPath Fragments under Fixed DTDs 197

from a and that b occurs in d(c). D is recursive if there are labels a, b in D such
that a is reachable from b and b is reachable from a.

A location step is of the form ax :: lb, where (i) ax is either ↓ (the child axis),
↓∗ (the descendant-or-self axis), ↑ (the parent axis), ↑∗ (the ancestor-or-self axis),
→+ (the following-sibling axis), or ←+ (the preceding-sibling axis), and (ii) lb
is a label. A query is of the form /ls1/ls2 · · · /lsn, where lsi is a location step.
For example, query /↓∗:: a/→+:: b/c stands for

/descendant-or-self :: a/following-sibling :: b/child :: c.

Let XP be the set of queries. We denote a fragment of XP by listing the axes
supported by the fragment. For example, XP{↓,↓∗} denotes the set of queries
using only child and descendant-or-self axes.

Let t be a tree and q be a query. We say that t satisfies q if the answer of q
on t is nonempty. If there is a tree t such that t is valid against a DTD D and
that t satisfies q, then q is satisfiable under D. For an XPath fragment XPS ,
the XPath satisfiability problem for XPS , denoted SAT(XPS), is to decide, for a
DTD D and a query q ∈ XPS , if q is satisfiable under D.

3 NP-Completeness

In this section, we consider the complexity of SAT(XP{↑,↓}) under fixed DTDs. It
is shown that SAT(XP{↑,↓}) is NP-complete under fixed DTDs if a wildcard is al-
lowed as a node test (Theorem 6.6 of Ref. [1]). It is also shown that SAT(XP{↑,↓})
is NP-complete under unfixed DTDs assuming that only a label is allowed as a
node test (Theorem 1 of Ref. [10]). In this section, we show a slightly more strong
result; SAT(XP{↑,↓}) is NP-complete under fixed DTDs even if only a label is
allowed as a node test. This implies that the XPath satisfiability problem is still
intractable under a very restricted setting.

Theorem 1. SAT(XP{↑,↓}) is NP-complete under fixed DTDs, even if only a
label is allowed as a node test.

Proof. For a query q, a DTD D, and a tree t valid against D, it is clear that
whether the answer of q on t is nonempty can be checked in polynomial time.
Thus SAT(XP{↑,↓}) is in NP.

To show the NP-hardness of the problem, we reduce 3SAT to this problem,
similarly to Theorem 6.6 of Ref. [1]. However, our reduction is much more com-
plicated since no wildcard node test is allowed. Let φ = C1 ∧ · · · ∧ Cn be an
instance of 3SAT, where C1, · · · , Cn are clauses. Let x1, · · · , xm be the variables
in φ. Without loss of generality, we assume that for any variable xi, positive
literal xi and negative literal ¬xi do not appear in the same clause. From this
instance, we construct an instance of the XPath satisfiability problem under
fixed DTDs, as follows.

198 N. Suzuki

First, DTD D = (d, r) is defined as follows.

d(r) = x,

d(x) = (E′
x|x)(x|Bc|Ex),

d(Bc) = c c,

d(c) = (Tc|Fc)(c|Ec),
d(Ex) = d(E′

x) = d(Ec) = d(Tc) = d(Fc) = ε.

Note that D is independent of φ since D is fixed. In contrast, D depends on φ
in the proof of Theorem 1 in Ref. [10].

Second, query q is defined as follows.

q = /r

m︷ ︸︸ ︷
/x/ · · · /x /Ex (1)

/ ↑:: x/Pm/ ↑:: x/Pm−1/ ↑:: x/ · · · / ↑:: x/P1/ ↑:: x/ ↑:: r (2)
/Q1/Q2/ · · · /Qn, (3)

where Pm, Pm−1, · · · , P1 in (2) and Q1, Q2, · · · , Qn in (3) are subqueries defined
later. In short, according to φ subqueries (1) and (2) plot a tree t shown in Fig. 1,
and then subquery (3) checks whether φ is satisfiable over t. Each subquery Pi

plots the “subtree” Pi in t, as shown in Fig. 1. Formally, Pi is defined as follows
(1 ≤ i ≤ m).

Pi =

m−i+1︷ ︸︸ ︷
/x/E′

x/ ↑:: x/ · · · /x/E′
x/ ↑:: x /Bc (4)

/c/Ti,1/ ↑:: c/c/Ti,2/ ↑:: c/ · · · /c/Ti,n−1/ ↑:: c/c/Ti,n/ ↑:: c (5)
n+1︷ ︸︸ ︷

/ ↑:: c/ · · · / ↑:: c /Bc (6)
/c/Fi,1/ ↑:: c/c/Fi,2/ ↑:: c/ · · · /c/Fi,n−1/ ↑:: c/c/Fi,n/ ↑:: c (7)

n+1︷ ︸︸ ︷
/ ↑:: c/ · · · / ↑:: c /Bc (8)

n+1︷ ︸︸ ︷
/c/ · · · /c /Tc/ ↑:: c/Ec

n+1︷ ︸︸ ︷
/ ↑:: c/ · · · / ↑:: c / ↑:: Bc (9)

n+1︷ ︸︸ ︷
/c/ · · · /c /Fc/ ↑:: c/Ec

n+1︷ ︸︸ ︷
/ ↑:: c/ · · · / ↑:: c / ↑:: Bc (10)

m−i+1︷ ︸︸ ︷
/ ↑:: x/ · · · / ↑:: x . (11)

Starting from the x-node at position xi in t (Fig. 1), the context node goes down
to Bc by (4). Then subquery (5) sets the value of Ti,j for 1 ≤ j ≤ n and subquery
(7) sets those of Fi,j for 1 ≤ j ≤ n, where

Satisfiability of Simple XPath Fragments under Fixed DTDs 199

r

B

c

c

c

c

c

c

x

x

c

c

EcTc

B

c

c1,1

c

c

c

c

c

c

EcTc

x

x

E’x

E’x

}
} m

c

cEFc

c

EcFc

x = falsem
x = true1

T 1,1F

1,nT 1,nF

m,1T m,1F

m,nT m,nF

}
x

. . .

Ex

n+1n+1

P

P

m

1

by subquery (1)

(x)1

(x)m

x

E’x

(x)2

Fig. 1. Tree t plotted by subqueries (1) and (2)

Ti,j =
{

Tc if positive literal xi occurs in Cj ,
Fc otherwise,

Fi,j =
{

Tc if negative literal ¬xi occurs in Cj ,
Fc otherwise.

Thus, if Ti,j = Tc, then clause Cj in φ becomes true by setting xi = true, and
if Fi,j = Tc, then Cj becomes true by setting xi = false. The value of xi is set
by subqueries (9) and (10), as follows. In t, the value of xi is identified by the
labels of two bottom leaf nodes of subtree Pi, where one is labeled by Tc and
the other is labeled by Fc. For example, x1 = true and xm = false in Fig. 1.
More precisely, let tTi and tFi be the subtrees plotted by subqueries (5) and (7),
respectively. If the left bottom leaf node of tTi (tFi) is labeled by Tc, then xi is
considered to be true (resp., false).

200 N. Suzuki

.

| *

a

2 5

3 4
b

.

c
7 8

b

6 q I

a3

b4

c7 b8

a

b

c

c

b

c
start

(a) (b)1

Fig. 2. (a) tree representation of r = (a|b)(cb)∗ and (b) the Glushkov automaton of r

Finally, let us define subquery Qi used in (3) (1 ≤ i ≤ n).

Qi =

m+1︷ ︸︸ ︷
/x/ · · · /x /Bc

i︷ ︸︸ ︷
/c/ · · ·/c /Tc/ ↑:: c

n−i+1︷ ︸︸ ︷
/c/ · · ·/c /Tc (12)

n+1︷ ︸︸ ︷
/ ↑:: c/ · · · / ↑:: c / ↑:: Bc

m+1︷ ︸︸ ︷
/ ↑:: x/ · · · / ↑:: x / ↑:: r (13)

Starting from the root r, subquery (12) checks if clause Ci is true. Then the
context node goes back to the root r by subquery (13).

Now it is easy show that φ is satisfiable iff q is satisfiable under D.

4 Satisfiability Problem without Upward Axis

As shown in the previous section, the satisfiability problem is intractable under
fixed DTDs if upward axes are allowed. In this section, we consider the satisfiabil-
ity problem without upward axes, i.e., SAT(XP{↓,↓∗,→+,←+}) under fixed DTDs.
It is shown that SAT(XP{↓,→+,←+}) is NP-complete under unfixed DTDs [10].
On the other hand, we show in this section that SAT(XP{↓,↓∗,→+,←+}) is in
PTIME under fixed DTDs.

In the following, we first show Glushkov automaton, which is used in the
algorithms proposed in this and the next sections. Then we show a polynomial-
time algorithm for solving SAT(XP{↓,↓∗,→+,←+}) under fixed DTDs.

4.1 Glushkov Automaton

Let r be a regular expression. We associate each label occurring in r with a unique
number to identify the label; we use the tree representation of r (Fig. 2(a)), and
assume that each node is numbered in prefix order, called position. By r# we
mean the superscripted regular expression of r obtained by superscripting each
label occurring in r by its corresponding position. By sym(r#) we mean the set
of superscripted labels occurring in r#. For example, if r = (a|b)(cb)∗, then r# =
(a3|b4)(c7b8)∗ and sym(r#) = {a3, b4, c7, b8}. Let ai be a superscripted label of
a. By (ai)
 we mean the label resulting from ai by dropping the superscript of
ai, that is, (ai)
 = a.

Satisfiability of Simple XPath Fragments under Fixed DTDs 201

The Glushkov automaton of a regular expression r is a 5-tuple Gr =
(Q, Σr, δ, q

I , F), where Q = sym(r#) ∪ {qI} is a set of states, Σr is the set of
labels occurring in r, δ is a transition function, qI /∈ sym(r#) is the start state
of Gr, and F is a set of final states . Because of space limitation, the definitions
of δ and F are skipped (detains can be found in [2,9]). Let us show an example
instead. Figure 2(b) shows the Glushkov automaton Gr = (Q, Σr, δ, q

I , F) of
r = (a|b)(cb)∗, where Q = {qI , a3, b4, c7, b8}, Σr = {a, b, c}, F = {a3, b4, b8}, and
δ is a transition function defined as follows.

δ(qI , a) = {a3},
δ(qI , b) = {b4},
δ(a3, c) = δ(b4, c) = δ(b8, c) = {c7},
δ(c7, b) = {b8}.

For any regular expression r, it holds that L(r) = L(Gr) and that there is a
one-to-one correspondence between sym(r#) \ {qI} and the set of states of Gr.
This property is essential to our algorithms shown below.

4.2 Polynomial-Time Algorithm

We show a polynomial-time algorithm for solving SAT(XP{↓,↓∗,→+,←+}) un-
der fixed DTDs. For a regular expression r, by E(r) we mean the set of ex-
tracted regular expressions obtained by extracting each ‘|’ operator that is
not under any ‘∗’ operator. For example, if r = (a|b)∗c(d|e|f), then E(r) =
{(a|b)∗cd, (a|b)∗ce, (a|b)∗cf}.

Let us first show the outline of the algorithm. Let q = /ax[1] ::
lb[1]/ · · ·/ax[m] :: lb[m] be a query and D = (d, s) be a fixed DTD. The al-
gorithm uses the Glushkov automaton of the content model of each label in D.
In short, for each i = 1, · · · , m, the algorithm computes the set of states of the
Glushkov automatons in D reachable from s via /ax[1] :: lb[1]/ · · ·/ax[i] :: lb[i]
under D, and returns “no” (i.e., q is unsatisfiable) if the set becomes empty. More
concretely, the algorithm computes a set Si for each i = 1, · · · , m, and returns
“no” if Si = ∅ for some i, returns “yes” otherwise. Here, Si is a set of pairs (r, St),
where r is an extracted regular expression of the “current” content model and
St is the set of states in Gr reachable from s via /ax[1] :: lb[1]/ · · ·/ax[i] :: lb[i]
under D.

Now let us show the “main” part of the algorithm. To obtain Si, according
to the current location step ax[i] :: lb[i] we use four subroutines in lines 2 to 9
(defined later).

Input: A query q = /ax[1] :: lb[1]/ · · · /ax[m] :: lb[m] and a fixed DTD D = (d, s).
Output: “yes” or “no”.

begin
1. for i = 1 to m do
2. if ax[i] = ‘↓’ then
3. Si ← do child(D, q, i);
4. else if ax[i] = ‘↓∗’ then

202 N. Suzuki

5. Si ← do descendant-or-self(D, q, i);
6. else if ax[i] = ‘→+’ then
7. Si ← do following-sibling(D, q, i);
8. else if ax[i] = ‘←+’ then
9. Si ← do preceding-sibling(D, q, i);
10. end
11. if Si = ∅ then
12. return “no”;
13. end
14. end
15. return “yes”;
end

Let us show the subroutines. We first show do descendant-or-self. Since
ax[i] =↓∗, there may be more than one labels that can be both the descen-
dant of lb[i − 1] and the parent of lb[i]. The set L of such labels is obtained in
line 2. Then the union E of E(d(l)) of every l ∈ L is obtained (line 3), and for
each r ∈ E a pair (r, St) is obtained and added to S (lines 4 to 9).

do descendant-or-self(D, q, i)
begin

1. S ← ∅;
2. L ← {l | l = lb[i − 1] or l is reachable from lb[i − 1] in D, d(l) contains lb[i]};
3. E ← ⋃

l∈L E(d(l));
4. for each r ∈ E do
5. St ← {ai | ai is a state in Gr such that (ai)� = lb[i]};
6. if St �= ∅ then
7. S ← S ∪ {(r, St)};
8. end
9. end
10. return S;
end

do child is defined similarly to do descendant-or-self. The only difference is that
in line 2 singleton {lb[i− 1]} is assigned to L instead of above.

We next show do following-sibling (do preceding-sibling is defined similarly).
Since ax[i] = ‘→+’, for each (r, St) ∈ Si−1 it suffices to find the states in Gr

reachable from a state in St.

do following-sibling(D, q, i)
begin

1. S ← ∅;
2. for each (r, St) ∈ Si−1 do
3. St′ ← {ai | (ai)� = lb[i], ai is reachable from a state in St in Gr};
4. if St′ �= ∅ then
5. S ← S ∪ (r, St′);
6. end
7. end
8. return S;
end

It is easy to show by induction on i that (r, St) ∈ Si iff there is a tree t valid
against D such that t contains a node reachable from /ax[1] :: lb[1]/ · · ·/ax[i] ::

Satisfiability of Simple XPath Fragments under Fixed DTDs 203

lb[i]. Moreover, since D is fixed, it is clear that the algorithm runs in O(m) time,
where m is the number of location steps in q. Thus we have the following.

Theorem 2. SAT(XP{↓,↓∗,→∗,←∗}) is solvable in linear time under fixed DTDs.

5 Using Upward Axes under Fixed DTDs

We have shown that under fixed DTDs SAT(XP{↓,↓∗,→+,←+}) is in PTIME but
SAT(XP{↓,↑}) is NP-complete. In this section, we show sufficient conditions un-
der which SAT(XP{↓,↓∗,↑,↑∗,→+,←+}) is in PTIME under fixed DTDs.

Suppose first that a DTD D is fixed, nonrecursive, and no-star. To check
whether q ∈ XP{↓,↓∗,↑,↑∗,→+,←+} is satisfiable under D, it suffices to construct
the set T of trees valid against D and check whether there is a tree t ∈ T on which
the result of q is nonempty. Since the size of T is fixed, SAT(XP{↓,↓∗,↑,↑∗,→+,←+})
is clearly in PTIME under fixed, nonrecursive, no-star DTDs.

We next show a polynomial-time algorithm for deciding if a query q ∈
XP{↓,↓∗,↑,↑∗,→+,←+} is satisfiable under a fixed nonrecursive DTD D. In this
case, there may be infinite trees valid against D since D may contain ‘∗’ opera-
tors. Thus we have to construct a set T of valid trees carefully so that T is finite
and contains valid trees enough to check the satisfiability of q under D.

Let D = (d, s) be a fixed nonrecursive DTD and q ∈ XP{↓,↓∗,↑,↑∗,→+,←+}

be a query. In short, our algorithm decides whether q is satisfiable under D, as
follows.

1. For a label a and an extracted regular expression r ∈ E(d(a)), we use a
set T (a, r) of trees valid against DTD (d, a) such that T (a, r) is finite but
covers valid trees enough to check the satisfiability of q under (d, a). For any
t ∈ T (a, r), each node n of t has a type denoted type(n), where type(n) ∈
E(d(l(n))) (in particular, type(n) = r if n is the root of t), and the children
of n match type(n). type(n) is used to handle →+ and ←+ axes. We assume
that every tree in T (a, r) is unordered; the order among sibling nodes of a
node n is managed by the Glushkov automaton of type(n).

2. Let T (s) =
⋃

r∈E(d(s)) T (s, r). If there is a tree t ∈ T (s) on which the result
of q is nonempty, then the algorithm returns “yes” (i.e., q is satisfiable),
otherwise it returns “no”.

Example 1. Let D = (d, s) be a DTD, where d(s) = a(b|c), d(b) = e|f , d(a) =
d(c) = d(e) = d(f) = ε. We have E(d(s)) = {ab, ac}, thus T (s) = T (s, ab) ∪
T (s, ac). T (s) consists of three trees (Fig. 3). In this case, T (s) covers all the
trees valid against D. As defined later, the label of each node is superscripted.

To define T (a, r) formally, we need some definitions. If a superscripted label ai

is a descendant of a ‘∗’ operator in the tree representation of r#, then we say
that ai is starred. By sym∗(r#), we mean the set of superscripted starred labels
in r#. For example, if r# = a3b4(c7|b8)∗, then sym∗(r#) = {c7, b8}. For a node
n and trees t1, · · · , tm, by n(t1, · · · , tm) we mean the tree rooted at n with m

204 N. Suzuki

T(s, ab) T(s, ac)

T(s) = T(s, ab) T(s, ac)U

s

a b

e

n 2

2

n 1

1

n 3

4

n 4

2

s

a b

f

n 2

2

n 1

1

n 3

4

n 4

3

s

a c
n 2

2

n 1

1

n 3

5

Fig. 3. An example of T (s)

T(s, ac*) T(s, bc*)

(a) T(s) = T(s, ac*) T(s, bc*)U

n 1

s1

n 2
a 3

n 4
c6

n 6
c6

n 3
e 2

n 5 n 7
g 2 h 3

n 1

s1

n 2
a 3

n 4
c6

n 6
c6

n 3
f 3

n 5 n 7
g 2 h 3

n 1

s1

n 2
b 4

n 3
c6

n 5
c6

n 4 n 6
g 2 h 3

t1 t2 t3

b4 c6q I b c

c

(b) Gbc*

Fig. 4. (a) T (s) and (b) Glushkov automaton Gbc∗

subtrees t1, · · · , tm. For a tree t, by t(ai) we mean the tree obtained from t by
replacing the label of the root of t by ai.

We now define T (a, r) formally. For a label a and r ∈ E(d(a)), T (a, r) is a set
of trees defines as follows. We assume that every tree in T (a, r) is unordered.

T (a, r) = {n(F, F ∗
a1 , · · · , F ∗

am) | n is a node satisfying (A),
F is a forest satisfying (B), F ∗

a1 , · · · , F ∗
am are forests satisfying (C)},

(A) l(n) = a1 and type(n) = r.
(B) Let sym(r#) \ sym∗(r#) = {a1, · · · , ak}. Then F = t1(a1), · · · , tk(ak),

where ti ∈ T ((ai)
, ri) and ri ∈ E(d((ai)
)) (1 ≤ i ≤ k).
(C) Let sym∗(r#) = {a1, · · · , am}. Then F ∗

ai = t1(ai), · · · , tki(ai) (1 ≤ i ≤ m),
where {t1, · · · , tki} = T ((ai)
) =

⋃
r∈E(d((ai)�)) T ((ai)
, r).

Example 2. Let D = (d, s) be a DTD, where d(s) = (a|b)c∗, d(a) = e|f , d(c) =
g|h, d(b) = d(g) = d(h) = ε. T (s) = T (s, ac∗) ∪ T (s, bc∗) is shown in Fig. 4(a).

We need one more definition. Let S be a set of nodes in a tree t. The s-partition
of S is a partition of S such that for any nodes n, n′ ∈ S, n and n′ belong to the
same subset iff n and n′ are siblings in t. Thus, for the s-partition P1, · · · , Pk

of S, every node in Pi has the same parent node, say np, for any 1 ≤ i ≤ k, and
np is called the parent of Pi.

Satisfiability of Simple XPath Fragments under Fixed DTDs 205

We now show an algorithm for deciding if a query q = /ax[1] ::
lb[1]/ · · ·/ax[m] :: lb[m] in XP{↓,↓∗,↑,↑∗,→+,←+} is satisfiable under a fixed
nonrecursive DTD D. The algorithm computes for each t ∈ T (s) and for
each i = 1 · · ·m, set Si of nodes reachable from the root of t via /ax[1] ::
lb[1]/ · · ·/ax[i] :: lb[i]. The algorithm returns “yes” if Sm �= ∅ for some t ∈ T (s),
returns “no” otherwise. If ax[i] ∈ {↓, ↓∗, ↑, ↑∗}, then Si is easily obtained from
Si−1 and ax[i] :: lb[i] (lines 6 to 13). Let us consider the case where ax[i] =→+.
The algorithm (i) computes the s-partition P1, · · · , Pk of Si−1 (line 15), (ii) finds
Si,j for each Pj (lines 16 to 21), where Si,j is the set of nodes in t reachable from a
node in Pj via location step ax[i] :: lb[i], and (iii) computes Si = Si,1 ∪ · · · ∪Si,k

(line 22). To obtain Si,j , the algorithm first computes the set St of states in
Gtype(np) that the nodes in Pj belong to (line 18) (by the definition of T (a, r),
for a node n and its parent np label l(n) must be a state in Gtype(np)). Then it
finds the set St′ of states reachable from a state in St in Gtype(np) via location
step →+:: lb[i] (line 19). Finally, the set Si,j of nodes belonging to a state in St′

is obtained (line 20).

Input: A query q = /ax[1] :: lb[1]/ · · · /ax[m] :: lb[m] in XP{↓,↓∗,↑,↑∗,→+,←+}

and a fixed nonrecursive DTD D = (d, s).
Output: “yes” or “no”.

begin
1. Compute T (s).
2. for each t′ ∈ T (s) do
3. t ← nroot(t

′) with l(nroot) = root; // nroot is the “dummy” root of t
4. S0 ← {nroot};
5. for i = 1 to m do
6. if ax[i] =↓ then
7. Si ← {n | n is a child of a node in Si−1, l(n)� = lb[i]};
8. else if ax[i] =↓∗ then
9. Si ← {n | n is a descendant of a node in Si−1, l(n)� = lb[i]};
10. else if ax[i] =↑ then
11. Si ← {n | n is the parent of a node in Si−1, l(n)� = lb[i]};
12. else if ax[i] =↑∗ then
13. Si ← {n | n is an ancestor of a node in Si−1, l(n)� = lb[i]};
14. else if ax[i] =→+ then
15. Find the s-partition of Si−1. Let P1, · · · , Pk be the result.
16. for j = 1 to k do
17. Let np be the parent of Pj ;
18. St ← {l(n) | n ∈ Pj};
19. St′←{qh | qh is reachable from a state in St in Gtype(np), (qh)� = lb[i]};
20. Si,j ← {n | n is a child of np in t, l(n) ∈ St′};
21. end
22. Si ← Si,1 ∪ · · · ∪ Si,k;
23. else if ax[i] =←+ then
24. Find the s-partition of Si−1. Let P1, · · · , Pk be the result.
25. for j = 1 to k do
26. Let np be the parent of Pj ;
27. St ← {l(n) | n ∈ Pj};
28. St′ ← {qh | St contains a state reachable from qh in Gtype(np),

(qh)� = lb[i]};
29. Si,j ← {n | n is a child of np in t, l(n) ∈ St′};

206 N. Suzuki

30. end
31. Si ← Si,1 ∪ · · · ∪ Si,k;
32. end
33. end
34. if Sm �= ∅ then return “yes”;
35. end
36. return “no”;
end

Example 3. Consider executing the algorithm for q = /↓:: s/↓:: b/→+:: c/↓:: e
and the DTD in Example 2. For t1 and t2 in Fig. 4(a), we have S0 = {nroot},
S1 = {n1}, and S3 = ∅. For t3, we have S0 = {nroot}, S1 = {n1}, and S2 = {n2}.
Consider S3. In lines 14 to 22, since the s-partition of S2 is P1 = {n2}, we
have St = {l(n2)} = {b4} and St′ = {c6} according to Gbc∗ (Fig. 4(b)). Thus
S3 = S3,1 = {n3, n5}, but S4 = ∅ by line 7 since l(n3) �= e and l(n5) �= e. Hence
q is unsatisfiable under D.

The correctness of the algorithm can be shown by induction on the nesting level
of ‘∗’ operators in D (the detail are omitted because of space limitation). As for
the time complexity of the algorithm, since D is a nonrecursive fixed DTD, it
is clear that the size of each tree t ∈ T (s) in line 2 is fixed and |T (s)| is a fixed
number. This implies that lines 5 to 33 can be done in O(m) time. Thus we have
the following.

Theorem 3. SAT(XP{↓,↓∗,↑,↑∗,→+,←+}) is solvable in linear time under fixed
nonrecursive DTDs.

Finally, let us consider relaxing the “nonrecursive” restriction in Theorem 3.
We focus on the fact that for a recursive DTD D = (d, s) and a query q ∈
XP{↓,↓∗,↑,↑∗,→+,←+}, q does not always visits recursive elements of D. Consider
the graph representation of a DTD (Fig. 5). For labels a, b, b is a descendant of a
in D if dist(s, a) < dist(s, b), where dist(s, a) is the (shortest) distance between
s and a in the graph of D. A pair (a, b) of labels is recursive if b is a descendant
of a and a occurs in d(b). For a recursive pair (a, b), let

R(a, b) = {a} ∪ {c | c is a descendant of a but not of b}.

We define that
R(D) =

⋃
(a, b) is a recursive pair of D

R(a, b).

For example, in Fig. 5(b) (b, e) is the only recursive pair of D and R(D) =
R(b, e) = {b, e, f}. By definition the subgraph consisting of the labels in Σ\R(D)
is acyclic.

Let D = (d, s) be a DTD and q = /ax[1] : lb[1]/ · · ·/ax[m] :: lb[m] be a
query such that every upward axis of q visits only labels in Σ \R(D). Then the
satisfiability of q under D can be checked as follows.

Satisfiability of Simple XPath Fragments under Fixed DTDs 207

s

a b

c e f

R(D)

d(s) = a b*
d(a) = c
d(c) =
d(b) = ef+
d(e) = b g
d(f) =
d(g) =

ε

ε

|

(a) (b)

\ R(D)Σ g
ε

|

Fig. 5. (a) DTD D = (d, s) and (b) A graph representation of D

1. If lb[1] ∈ Σ \ R(D), then goto step 2. Otherwise, goto step 3.
2. Run the algorithm in this section for input (q, D). While running the al-

gorithm, if the following two conditions hold, then the context node moves
from Σ \R(D) to R(D), thus set q = /ax[i + 1] : lb[i+ 1]/ · · · /ax[m] :: lb[m]
and D = (d, lb[i + 1]) and goto step 3.
– The current label lb[i] ∈ Σ \ R(D) but the next label lb[i + 1] ∈ R(D).
– If there is an index k ≥ 2 such that ax[i+2], · · · , ax[i+ k] are all sibling

axes but that ax[i + k + 1] is not a sibling axis, then lb[i + k] ∈ R(D).
3. Run the algorithm in the previous section for input (q, D). While running

the algorithm, if the current label lb[i] ∈ R(D) but the next label lb[i +
1] ∈ Σ \ R(D), then set q = /ax[i + 1] : lb[i + 1]/ · · · /ax[m] :: lb[m] and
D = (d, lb[i + 1]) and goto step 2.

It is clear that the above method runs in polynomial time. We have the following.

Theorem 4. Let D be a fixed DTD and q = /ax[1] :: lb[1]/ · · ·/ax[m] :: lb[m] ∈
XP{↓,↓∗,↑,↑∗,→+,←+} be a query. If one of the following conditions hold, then the
satisfiability of q under D can be determined in polynomial time.

– D is nonrecursive.
– For every location step ax[i] :: lb[i] of q, if ax[i] ∈ {↑, ↑∗}, then neither

lb[i − 1] nor lb[i] is in R(D).

6 Conclusion

In this paper, we have considered the XPath satisfiability problem under
fixed DTDs. We first have shown that SAT(XP{↓,↑}) is NP-complete under
fixed DTDs We have next shown that SAT(XP{↓,↓∗,→+,←+}) is in PTIME un-
der fixed DTDs. Finally, we have presented sufficient conditions under which
SAT(XP{↓,↓∗,↑,↑∗,→+,←+}) is in PTIME under fixed DTDs.

There are many things to do as future works. First, the XPath fragments
considered in this paper are restricted in the sense that only a label is allowed

208 N. Suzuki

as a node test and that neither union nor qualifier is supported. Therefore,
we have to explore more general XPath fragments for which satisfiability is
tractable under fixed DTDs. Second, we would like to consider more powerful
schema languages such as XML Schema and RELAX NG. In particular, the
algorithms in Sections 4 and 5 requires several modifications so that they handle
element types supported by such schema languages. On the other hand, the NP-
completeness shown in Sect. 3 still holds under such schema languages. Finally,
the algorithms shown in this paper has not been implemented yet. We need to
implement them and make experiments on the efficiency and the availability of
the algorithms.

Acknowledgement. The author would like to thank Prof. George H. L.
Fletcher for discussions on this topic.

References

1. Benedikt, M., Fan, W., Geerts, F.: Xpath satisfiability in the presence of dtds.
Journal of the ACM 55(2) (2008)

2. Brüggenmann-Klein, A., Wood, D.: One-unambiguous regular languages. Informa-
tion and Computation 142(2), 182–206 (1998)

3. Figueira, D.: Satisfiability of downward xpath with data equality tests. In: Proc.
PODS, pp. 197–206 (2009)

4. Geerts, F., Fan, W.: Satisfiability of xpath queries with sibling axes. In: Bierman,
G., Koch, C. (eds.) DBPL 2005. LNCS, vol. 3774, pp. 122–137. Springer, Heidelberg
(2005)

5. Hidders, J.: Satisfiability of xpath expressions. In: Lausen, G., Suciu, D. (eds.)
DBPL 2003. LNCS, vol. 2921, pp. 21–36. Springer, Heidelberg (2004)

6. Ishihara, Y., Shimizu, S., Fujiwara, T.: Extending the tractability results on xpath
satisfiability with sibling axes. In: Lee, M.L., Yu, J.X., Bellahsène, Z., Unland, R.
(eds.) XSym 2010. LNCS, vol. 6309, pp. 33–47. Springer, Heidelberg (2010)

7. Lakshmanan, L.V.S., Ramesh, G., Wang, H., Zhao, Z.J.: On testing satisfiability
of tree pattern queries. In: Proc. VLDB, pp. 120–131 (2004)

8. Montazerian, M., Wood, P.T., Mousavi, S.R.: Xpath query satisfiability is in ptime
for real-world dtds. In: Barbosa, D., Bonifati, A., Bellahsène, Z., Hunt, E., Unland,
R. (eds.) XSym 2007. LNCS, vol. 4704, pp. 17–30. Springer, Heidelberg (2007)

9. Suzuki, N.: An algorithm for inferring k optimum transformations of xml document
from update script to dtd. IEICE Trans. Inf. & Syst. E93-D(8), 2198–2212 (2010)

10. Suzuki, N., Fukushima, Y.: Satisfiability of simple xpath fragments in the presence
of dtds. In: Proc. WIDM, pp. 15–22 (2009)

A.A.A. Fernandes et al. (Eds.): BNCOD 2011, LNCS 7051, pp. 209–220, 2011.
© Springer-Verlag Berlin Heidelberg 2011

Computing Compressed XML Data from
Relational Databases

Stefan Böttcher, Dennis Bokermann, and Rita Hartel

University of Paderborn, Computer Science, Fürstenallee 11, 33102 Paderborn, Germany
{stb@,dbn@mail.,rst@}uni-paderborn.de

Abstract. SQL/XML allows generating an XML document as the result of a
query that is evaluated on relational data. This facilitates companies sharing
their relational data in form of XML documents with other companies or with a
marketplace, but significantly increases the exchanged data volume. To reduce
both the volume of the exchanged data by exchanging compressed XML and
the time needed for compression, we propose an approach that allows prepara-
tion of a compressed XML document as the answer to an SQL/XML query di-
rectly, i.e., without the need to create the XML document first and compress it
afterwards. Our evaluation has shown that generating the compressed document
directly is in most cases faster than generating the uncompressed XML docu-
ment and compressing it, and in some cases it is even faster than the generation
of the uncompressed XML document alone. As our approach of generating
compressed XML requires only SQL support from the underlying database sys-
tem, a second advantage is that it can be used for the generation of compressed
XML even for database systems that do not (yet) support SQL/XML (like
MySQL).

Keywords: XML compression, relational Databases, SQL/XML.

1 Introduction

1.1 Motivation

Since SQL:2003, SQL is extended by SQL/XML to allow use of XML in conjunction
with SQL. The SQL/XML specification includes functions to construct XML data.
These functions allow the user to construct new XML elements or attributes with text
values or attribute values taken for example from relational tables. Other functions
such as XMLCONCAT or XMLAGG can be used for combining small XML frag-
ments into larger ones. Therefore, SQL/XML makes it possible to create XML docu-
ments as the result of a query which is evaluated on a relational database.

Typical applications of SQL/XML are cross-company applications where compa-
nies transform parts of their relational data into XML and send the transformed XML
data to a second company, to a customer or to a marketplace. While the XML format
due to its flexibility is a popular data format, the overhead caused by this flexible
structure is the biggest disadvantage of using XML as data exchange format. Ex-
changing a compressed XML representation instead of uncompressed XML might

210 S. Böttcher, D. Bokermann, and R. Hartel

help to solve this problem. But while sending compressed XML will lead to less data
transfer and to lower data transfer time, taking the indirection from relational data to
XML and then to compressed XML might lead to additional computational effort on
the sender’s side. This additional effort can be avoided, when compressed XML is
directly generated from an SQL/XML statement.

1.2 Contributions

In this paper, we propose an approach to generate compressed XML data directly
from relational data as the result of an SQL/XML query. We describe a performance
evaluation that shows that this leads to faster data transfer (i.e., a speed-up by a factor
of 4 to 8 with our test data) and to less data volume without the additional computa-
tional effort caused by the indirection.

As we transform the SQL/XML query into an SQL query to retrieve the data from
the relational database which is used to compute the compressed XML result, a
second advantage of our approach is that we do not require the database system to
support SQL/XML queries. SQL support is sufficient for our approach, such that it
can be used with database systems that do not (yet) support SQL/XML (like MySQL).

1.3 Paper Organization

The paper is organized as follows: Section 2 describes the main idea of our approach,
introduces SQL/XML and the example being used in the remainder of this paper, and
explains the main idea of our approach. Section 3 gives an overview of how the XML
schema of the SQL/XML query result and the compressed data can be derived from
the given SQL/XML query and the relational database. Section 4 describes a perfor-
mance evaluation of the compression ratio, the computation time, and the transfer
time of our approach. Section 5 compares our approach to related work. Finally, Sec-
tion 6 summarizes our contributions.

2 The Concept

2.1 Considered Subset of SQL/XML

In this paper, we only consider the “raw” XML data and ignore additional XML con-
structs like comments or processing instructions. Therefore, we can restrict the XML
publishing functions of SQL/XML to the functions described in Table 1 in combina-
tion with the SQL commands SELECT, FROM, WHERE and ORDER BY. We allow
the Queries to be nested at any extend.

The example being used in this paper for explaining our approach involves a com-
pany database containing items, parts, orders, suppliers, and customers. On the left
hand side of Table 2, we can see an SQL/XML query that, applied to our database,
returns the XML document outlined on the right-hand side of Table 2.

 Computing Compressed XML Data from Relational Databases 211

Table 1. XML publishing functions of SQL/XML

XMLELEMENT Creates an XML element. The XMLELEMENT function has the element name
as first parameter, the attribute list, i.e. an XMLATTRIBUTES function call,
as an optional second parameter and the content as a list of optional further
parameters.

XMLATTRIBUTES Creates XML attributes. The XMLATTRIBUTES function has a list of
attributes as parameters, where the first part of each attribute is the column
name from where to read the attribute value and the second part is the attribute
name.

XMLFOREST Creates a forest of XML. The XMLFOREST function has a list of its contents
as parameters, where the first part of each content is the content definition and
the second part is the label of the tag by which the content is surrounded.

XMLCONCAT Combines a list of individual XML values to create a single value containing
an XML forest. The XMLCONCAT function has a list of its contents as
parameters and yields one result row per tuple to which it is applied.

XMLAGG Combines a collection of rows, each containing a single XML value, to create
a single value containing an XML forest. The XMLAGG function has a call to
an XML publishing function as first parameter and an ‘order by’ clause that
defines the order of its content as optional second parameter. The XMLAGG
function call results in a single result row containing the whole forest.

Table 2. SQL/XML query and query result of our example

(1) SELECT
(2) XMLFOREST(
(3) XMLAGG(
(4) XMLELEMENT(NAME nation,
(5) XMLATTRIBUTES(
(6) n.N_NAME AS name),
(7) (SELECT XMLAGG(
(8) XMLELEMENT(
(9) NAME customer,
(10) c.C_NAME)
(11) ORDER BY c.C_NAME
(12))FROM CUSTOMER c
(13) WHERE c.C_NATIONKEY =
(14) n.N_NATIONKEY)
(15))ORDER BY n.N_NATIONKEY
(16)) AS costumers
(17))
(18) FROM NATION n
(19) WHERE n.N_NATIONKEY < 5

<costumers>
 <nation name="Germany">
 <customer>C#007</customer>
 <customer>C#013</customer>
 </nation>
 <nation name="France">
 <customer>C#042</customer>
 </nation>
 <nation name="USA"></nation>
 <nation name="Spain">
 <customer>C#023</customer>
 <customer>C#101</customer>
 </nation>
</costumers>

2.2 This Paper’s Example

The XMLFOREST function call creates the customers element and the XMLAGG
function call nested inside aggregates the result of the query that is the parameter of
XMLAGG into an XML forest in the order given by the order by clause. The XMLE-
LEMENT and XMLATTRIBUTE function calls generate an XML element or an
XML attribute respectively with the given name and the specified content.

2.3 The Basic Idea

In order to generate compressed XML directly from an SQL/XML query and
the contents of a relational database, we extend the idea behind the compression
technique of XSDS [1] as follows. While XSDS removes those XML nodes, the

212 S. Böttcher, D. Bokermann, and R. Hartel

existence of which can be deduced from an XML schema, we do not even generate
these XML nodes of an SQL/XML query that would be removed later by XML com-
pression. In XSDS [1], these non-generated nodes are the XML nodes predefined by
an XML schema definition, whereas here, these non-generated nodes are the XML
nodes generated by the SQL/XML query. Omitting these nodes will significantly
reduce the overhead of the XML data generated by the SQL/XML query from the
relational data. Note that the compressed XML document can be decompressed to
XML on demand, and XPath queries can be answered directly on the compressed
document by the XSDS decompressor described in [1].

The result of an SQL/XML query is a single XML document consisting of the
XML structure (i.e. the element tags and attributes) on the one hand and the text data
(i.e. the text and attribute values) on the other hand. We store all text values in docu-
ment order in a single text container that is compressed via gzip.

Concerning the XML document structure, we store the ‘fixed’ part of the structure,
i.e., that part that can be derived from the query without any knowledge on the data,
within an XML schema. For the example given in Table 2, we know e.g. that each
element with label ‘nation’ has an attribute with attribute name ‘name’ and it contains
any number of elements with label ‘customer’. If the SQL/XML query is known at the
receiver’s side, the schema could even be generated there, i.e., there is no need to
transfer the schema. In addition to the fixed part of the document that is stored in the
XML schema, we need to store the variant parts of the XML document. Whenever
there is a nested query or whenever there is a call to the function XMLAGG, the
number of elements to be created depends on the data stored in the relational data-
base, i.e., the number varies. Therefore, we have to store the number of occurrences in
our compressed data format for the elements generated by a nested query or by the
function XMLAGG.

We use the following two steps to generate the compressed XML data as a result
for an SQL/XML query:

In the first step, we analyze the SQL/XML query to compute a set of templates that
are repeated substructures within the compressed document’s structure. Therefore, we
compute the set of templates in the form of an XML schema of the result document
based on the SQL/XML query alone.

In the second step, we query the relational data to examine, how the templates that
were generated in the first step have to be combined to form the complete structure of
the document. We do this by constructing an SQL query that retrieves the text values,
and from which the compressed document structure can be computed. At the same time,
we use the results of our query to compute the text values of the result document.

The output of these two steps is an XML schema on the one hand, and the com-
pressed XML document containing the document structure in compressed format and
the compressed text values on the other hand.

3 Retrieving Compressed XML Data from a Relational Database

3.1 Generating the XML Schema for the SQL/XML Query Result

In this first step, we analyze the SQL/XML query and compute the XML schema
according to which the resulting document will be valid. For the schema generation,

 Computing Compressed XML Data from Relational Databases 213

we can use a construction kit that provides a schema template for each SQL/XML
function. The nested structure of the functions within the SQL/XML query determines
the nested structure of the schema elements.

Fig. 1 shows the XML schema generated for the SQL/XML query of Table 2.

<xsd:schema xmlns:xsd="http://www.w3.org/2001/XMLSchema">
 <xsd:element name="costumers">
 <xsd:complexType>
 <xsd:sequence minOccurs="0" maxOccurs="unbounded">
 <xsd:element name="nation">
 <xsd:complexType>
 <xsd:sequence minOccurs="0" maxOccurs="unbounded">
 <xsd:element name="customer" type="xsd:string"/>
 </xsd:sequence>
 <xsd:attribute name="name" type="xsd:string“ use="required"/>
 </xsd:complexType>
 </xsd:element>
 </xsd:sequence>
 </xsd:complexType>
 </xsd:element>
</xsd:schema>

Fig. 1. Schema derived from the query of Table 2

For each call of the XMLELEMENT function, we generate an <xsd:element>-
element with the given name within the schema. If the XMLELEMENT function does
not define any element content, i.e., it defines an empty element, the <xsd:element>-
element has an empty <xsd:complexType>-element as single child node. If the con-
tent of the XMLELEMENT is the value of a database column, i.e., the content is a
text node, the <xsd:element>-element is empty and contains an attribute
type=”TYPE”, where TYPE is e.g. xsd:string or xsd:int, depending on the data type of
the given database column. Finally, if the XMLELEMENT function has a more com-
plex content CC as third parameter (e.g. other XML elements or attributes), the
<xsd:element>-element contains an <xsd:complexType>-element as child node that
itself contains data that follow an XML schema fragment that corresponds to CC.

For each parameter of an XMLATTRIBUTES function that itself is contained in
the second parameter of an XMLELEMENT function EL, we generate an
<xsd:attribute>-element with the given name and the attribute use=”required” and
embed it into the complexType that is the child node of the <xsd:element>-element
within the schema that corresponds to EL.

Similarly, for each call of the XMLFOREST function with parameters p1, …, pn,
we generate an <xsd:sequence>-element that contains an <xsd:element>-element with
the name label(pi) for each of the parameters pi, where label(p) represents the label
part of the parameter p of the XMLFOREST function.

For each call of the XMLCONCAT function, we generate an <xsd:sequence>-ele-
ment, the content of which corresponds to the content of the XMLCONCAT function.

For each call of the XMLAGG function, we generate an <xsd:sequence>-element
that has an attribute minOccurs=”0” and an attribute maxOccurs=”unbounded” and
that contains the content that corresponds to the content of the XMLAGG function.

Finally, for each embedded SQL/XML query that does not contain a call to an
XMLAGG function, we create an <xsd:sequence>-element that has attributes minOc-
curs=”0” and maxOccurs=”1”, as each SQL/XML query either returns an empty

214 S. Böttcher, D. Bokermann, and R. Hartel

result or a single XML document. The created element contains the content that cor-
responds to the content that is created as a result of the embedded SQL/XML query.

3.2 Computing the SQL Query for Generating the Compressed XML Document

After creating the XML schema based on the SQL/XML query, we have to look up
the data to create the compressed structure and the compressed text data. Therefore,
we transform the given SQL/XML query SX into an SQL query SQ that returns all
text values of the resulting XML document in document order. At the same time, we
enrich SQ such that it returns additional data that helps to assign the tuples TSQ of
SQ’s result to that sub-query of SQ which TSQ corresponds to.

For example, Fig. 2 shows the SQL query derived from the SQL/XML query given
in Table 2.

(1) SELECT
(2) 1 AS QueryID,
(3) "n"."N_NAME" AS COL_1_1,
(4) "n"."N_NATIONKEY"
 AS COL_1_2,
(5) null AS COL_2_1
(6) FROM "NATION" "n"
(7) WHERE "n"."N_NATIONKEY" < 5
(8) UNION ALL

(9) SELECT
(10) 2 AS QueryID,
(11) "n"."N_NAME" AS COL_1_1,
(12) "n"."N_NATIONKEY" AS COL_1_2,
(13) "c"."C_NAME" AS COL_2_1
(14) FROM "NATION" "n", "CUSTOMER" "c"
(15) WHERE "n"."N_NATIONKEY" < 5 AND
(16) "c"."C_NATIONKEY"="n"."N_NATIONKEY"
(17) ORDER BY COL_1_2, COL_1_1, COL_2_1

Fig. 2. SQL query derived from the SQL/XML query of Table 2

In the best case, the result of the computed SQL query SQ not only returns the text
values of the resulting XML document in document order, but it also reflects the nest-
ing of the XML elements, the text values refer to.

In order to derive this information, we compute the query given in Fig. 2 which has
the result shown in Table 3.

The query result in Table 3 is being used as follows. The first column is the query
ID to which the tuple belongs to. Query_ID 1 refers to the outer query (lines 3-16) of
the SQL/XML query shown in Table 2 and Query ID2 refers to the inner query (lines
7-14) of the SQL/XML query shown in Table 2. By splitting the results of Table 3 at
each tuple with query ID “1” and building m=4 groups of n tuples with query ID 2
where n ≥ 0, we can derive the required information on the nesting of the XML ele-
ments. The value in column COL_1_1 builds the N_NAME of each group, the value
in column COL_1_2 the N_NATIONKEY, the size n of each group is the value of
COUNT and the values in COL_2_1 build the values of the column C_NAME.

Given an SQL/XML query SX, we compute the corresponding SQL query Q as
follows:

Whenever SX does not contain embedded queries and only contains a call to the
XMLAGG function, we can simply concatenate columns that are referred to within
SX (as output columns or as columns within the ORDER BY-clause) to the SELECT-
clause of SQ. Furthermore, we can adopt the FROM- and the WHERE-clauses of SQ
from the FROM- and the WHERE-clauses of SX, and we can adopt the ORDER BY-
clause of SQ from the XMLAGG function.

 Computing Compressed XML Data from Relational Databases 215

Table 3. Result of the SQL query given in Fig. 2

Whenever SX does not contain embedded queries, but contains n>1 calls to the
XMLAGG function, we generate n queries as described above, where each query
considers only a single XMLAGG function and ignores all the others. These queries
are later combined to a single query by computing the union of all these queries.

For each embedded query QE that is embedded into an outer query QO of SX, we
generate a separate SQL query EQ. The SELECT-clause of EQ contains the concate-
nation of all columns referred to in QO followed by all columns referred to in QE.
Furthermore, we concatenate the FROM-clauses of QO and QE to the FROM-clause
of EQ, and we concatenate the WHERE-clauses WQO of QO and WQE of QE to the
WHERE-clause ‘WQO AND WQE’ of EQ. Finally, the ORDER BY-clause of EQ
contains the ORDER BY-clause of QO followed by the ORDER BY-clause of QE.
For example, let QE be the inner query given in lines (7)-(14) of Table 2, and let QO
be the complete query given in Table 2. Then, the query EQ that corresponds to QE is
given in lines (9)-(16) of Fig. 2, where COL_1_1 and COL_1_2 are the columns re-
ferred to in QO and COL_2_1 is the column referred to in QE, the FROM-clause
contains the tables NATION of QO and CUSTOMER of QE, and the WHERE-clause
is a conjunction of the WHERE-clauses of QO (line (19) of Table 2) and of QE (line
(13) of Table 2).

In order to allow the query optimizer to avoid querying the same sub-queries sev-
eral times, we combine all created queries into a single query by building the union of
all the queries. In order to avoid ambiguities within the combined query, we rename
the columns of the queries in such a way, that they all carry disjoint column names.
Only if a query QE was embedded into a query QO and therefore ‘inherits’ the join-
columns from QO, the names of the columns of QO occur in QO as well as in QE.
Furthermore, we insert empty columns to each query such that all query results con-
tain the same set of columns and we insert a constant column QueryID to each query
that helps to assign the result tuples to the original query which they stem from.

Finally, the ORDER BY-clauses of all queries are concatenated to the global OR-
DER BY-clause of the UNION-query, such that the ORDER BY-clause of the outer
query occurs before the ORDER BY-clause of the inner query and the ORDER BY-
clause of a query Q1 that occurs before a query Q2 occurs before the ORDER BY-
clause of Q2. Finally, the ORDER BY-clause that has been adopted from an
XMLAGG function call within a query occurs before all other columns of this query
within the global ORDER BY-clause. For example, the ORDER BY-clause of the
SQL query shown in Fig. 2 first contains the column COL_1_2, which corresponds to
the column N_NATIONKEY of the ORDER BY of line (15) of Table 2, followed by

Query_ID COL_1_1 COL_1_2 COL_2_1
2 Germany 1 C#007
2 Germany 1 C#013
1 Germany 1 (null)
2 France 2 C#042
1 France 2 (null)
1 USA 3 (null)
2 Spain 4 C#023
2 Spain 4 C#101
1 Spain 4 (null)

216 S. Böttcher, D. Bokermann, and R. Hartel

COL_1_1 (corresponding to N_NAME of the outer query) and finally followed by
COL_2_1 (corresponding to the columen C_NAME of the inner query).

3.3 Computing the Compressed Structure and the Text Data of the Compressed
XML Document

Example. Fig. 3 shows the resulting compressed document for the query of our ex-
ample. The structure starts with a ‘4’ (there are 4 nation tags) followed by a ‘2’ (there
are 2 customers in Germany), a ‘1’ (there is 1 customer in France), a ‘0’ (there are 0
customers in USA) and finally by a ‘2’ (there are 2 customers in Spain). The text data
contains the text nodes (and attribute values) of the result document shown in Table 2
in document order.

Structure: 4 2 1 0 2
Text data: Germany C#007 C#013 France C#042 USA Spain C#023 C#101

Fig. 3. Compressed document of our example

Overview. In order to compute the compressed document, first, the SQL query given
in Fig. 2 is evaluated and returns the results shown in Table 3.

The ORDER BY-clause of SQ is constructed in such a way that the text values of
the result to the SQL/XML query SX occur in the result to SQ in document order (c.f.
tables 3 and 4). Whenever the results of a sub-query SX1 of SX occur before the re-
sults of a sub-query SX2 of SX in the result document, the columns of the sub-query
Q1 of SQ that corresponds to SX1 occur before the columns of the sub-query Q2 of
SQ that corresponds to SX2 in the ORDER BY-clause of SQ, and both sub-queries
have disjoint sets of columns. Therefore, in the result set of SQ, all tuples of Q1 occur
before the tuples of Q2 (as the null value is considered as being the greatest value).
That means, that we can consider the tuples of Q1 independently of the tuples of Q2
and compute the text values and the compressed structure independently of each other
and concatenate them to the compressed result afterwards.

Whenever the result of a sub-query SX2 of SX is contained within the result of a
sub-query SX1 of SX in the result document, the tuples of the sub-query Q2 of SQ
that corresponds to SX2 as well as the tuples of the sub-query Q1 of SQ that corres-
ponds to SX1 contain the columns and values of Q1, but only the tuples of Q2 contain
the columns and values of Q2 and the tuples of Q1 contain null values in these col-
umns. The ORDER BY-clause of the query contains the columns of Q1 before the
columns of Q2. Therefore, for each value returned by sub-query Q1 for an XML ele-
ment, the result set contains each tuple returned by sub-query Q2 for a nested XML
element in the XML file, followed by the tuple of sub-query Q1 (c.f. Table 3).

Retrieving the Text Data. We can split each sub-sequence of tuples within the result
set belonging to two sub-queries Q1 and Q2, where Q1 contains Q2, into several sub-
sequences SSQ, whereas each sub-sequence SSQ ends with a line that has the
Query_ID of Q1 and contains the same values for the columns belonging to Q1.

For each such sub-sequence SSQ containing n tuples, we add the following to the
list of text values: First, the values of the columns of the first tuple belonging to out-
put columns of Q1 (i.e., the values of the outer query), followed by the values of the

 Computing Compressed XML Data from Relational Databases 217

columns of tuples 1 to n-1 belonging to the output columns of Q2 (i.e., the values of
all tuples of the inner query). If we consider the sub-sequence SSQ consisting of the
tuples 7-9 of Table 4, we first write the value ‘Spain’ (i.e., the value of tuple 7 – the
first tuple - belonging to the output columns of Q1) followed by the values C#023 and
C#101 (i.e., the value of tuples 7 and 8, which are the 1..n-1 values for size n=3 of
SSQ consisting of the tuples 7-9).

Retrieving the Compressed Document Structure. Let Q1 and Q2 be two nested
sub-queries, where Q1 contains Q2. At the beginning of each sub-sequence of tuples
within the result set belonging to Q1, we store a counter in the structure stream that is
initialized with 0 and that is incremented, whenever a tuple with the Query_ID of Q1
is read. Similarly, at the beginning of each nested sub-sequence of tuples within the
result set belonging to Q2, we add a new counter cQ2 in the structure stream that is
initialized with 0 and that is incremented, whenever a tuple with Query_ID of Q2 is
read. The counter cQ2 is closed (i.e., no more incrementation is possible), whenever a
tuple with Query_ID of Q1 is read.

If we apply this process to the query result shown in Table 3 of the query given in
Fig. 2, we get exactly the compressed XML document as given in Fig. 3.

Remember that decompression back to XML and querying the compressed docu-
ment can be done by the XSDS decompressor described in [1].

4 Evaluation

We have evaluated our approach using the database systems Oracle 10g Express and
IBM DB2 Express. As both have shown similar results, we concentrate on the DB2
results within this evaluation section.

We have used the TCP-H benchmark (http://www.tpc.org/tpch/) to create a rela-
tional database. We have tested 5 different kinds of queries, that select customers
sorted by nation (CN4 and CN16), customer data (C400 and C3200), article data (A4
and A16), supplier data (S4 and S16) and order data including customer and supplier
information (O2 and O4). Each of these queries contain a range clause within the
where clause, such that the result size can be scaled.

For the evaluation of the compression ratio reached by XSDS, please refer to [1].
Fig. 4 shows the query evaluation times for our set of queries for the indirect ap-

proach (i.e., evaluating SQL/XML query and then compressing the result) on the one
hand and for the direct approach (generating compressed XML directly from the
SQL/XML query and the relational data) on the other hand in relation to the
SQL/XML query evaluation time (100%). We can see that our approach not only
takes less time to compute the compressed data directly than the total time of the
indirect approach, but that for all queries tested, it can even directly compute the
compressed data in less time than the SQL/XML query evaluation alone takes. Fur-
thermore, we can see that our approach scales better for larger result sets, as for each
pair of queries that carry the same initial letters, where the result size was scaled up
(e.g. S4 and the 4 times larger S16), we can see that the performance gain compared
to the query evaluation time is better, when the result gets larger.

218 S. Böttcher, D. Boker

Fig. 4. Evalua

Fig. 5 shows a simulatio
sender’s side and then tran
indirect and the direct app
approach consists of SQL/
schema and the compresse
the direct approach consists
tion + transfer time of sch
tu consumed for the uncom
time of the uncompressed d
up for all documents. Fig. 5

Fig. 5. Total time (computatio
approach in comparison to unc

While the indirect appro
data transfer rates, the dire
that the uncompressed appr

rmann, and R. Hartel

ation times for the indirect and the direct approach

on of a scenario, where the query result is computed on
nsferred to a receiver. Fig. 5 shows the total time for
proach. Here, the total time ti, consumed for the indir
/XML query evaluation + compression + transfer time
ed document. Furthermore, the total time td consumed
s of schema generation + SQL query generation + eval

hema and the compressed document. Finally, the total ti
mpressed approach consists of query evaluation + tran
document. The times retrieved for all queries are summ

5 shows the values ti/tu and td/tu.

on plus transfer) consumed by the direct approach and the indi
compressed transfer of the results for different data rates

oach only outperforms the uncompressed approach for l
ect approach constantly needs only about 10% of the ti
roach needs.

the
the

rect
e of

for
lua-
ime
sfer
med

irect

low
ime

 Computing Compressed XML Data from Relational Databases 219

In client-server scenarios where the query is generated on the client side, it is not
even necessary to send the schema back to the client, as it can be derived from the
client’s query, i.e., we expect our approach to get an even higher data transfer rate.

5 Related Work

For a given SQL/XML query, our approach calculates the schema of the result docu-
ment as well as an SQL query that retrieves all the data that is needed to compute a
compressed representation of the result document. Then, both are used for computing
the compressed result document.

Approaches that also try to build a bridge from the relational world to the XML
world are the approaches [2], [3] that translate SQL queries into XQuery expressions
that query the same data or that provide SQL-based access to relational data via rela-
tional views over XML data [4]. The other direction of the bridge, i.e., XML views
over relational data is discussed in [5], [6], or storing XML data in form of relational
tables is discussed in [7], [8], [9].

The problem of deriving schema information not for a given query but for a collec-
tion of documents is discussed for DTDs in [10].

None of these approaches are being used for directly transforming SQL/XML que-
ries in such a way to SQL queries that the SQL query result can be used for generat-
ing compressed XML instead of generating XML. To the best of our knowledge, our
approach is the first that provides this property.

6 Conclusions

In this paper, we have presented an approach that allows generating a compressed
XML document directly as the result of an SQL/XML query that is applied to a rela-
tional database. In contrast to computing the uncompressed XML query result first
and compressing it as a second step, our approach yields the compressed data in less
time. In contrast to only creating the uncompressed XML document and sending it in
uncompressed format, creating the compressed XML data directly and sending it in
compressed format takes total times of 23% down to 12% of the time needed to create
and transfer the uncompressed XML depending on the available data rate.

As today only a few DBMSs (e.g. Oracle 11g and IBM DB2) support the evalua-
tion of SQL/XML queries, while the majority of DBMSs do not yet support
SQL/XML, a further advantage of our approach is that it requires only SQL support.
This means that in addition to DBMSs that support SQL/XML all other DBMSs that
only support SQL can be used to produce the compressed XML document as a result
to an SQL/XML query. Together with our XSDS decompressor, this technique can
even be used as a fairly fast substitute for an SQL/XML implementation that supports
a subset of SQL/XML, as our generation of compressed XML together with an addi-
tional decompression step using our XSDS decompressor at least for some SQL/XML
queries outperforms the DB2 and the Oracle SQL/XML implementation.

Our approach contains parts that are generic, while other parts are specific for the
XML compression approach being used. By changing the parts that are specific for

220 S. Böttcher, D. Bokermann, and R. Hartel

the XML compression approach being used, the approach could be applied to other
compression approaches as well. Therefore, it might be an interesting task to integrate
different XML compression techniques and to compare and to evaluate the times to
create the compressed data and to transfer the compressed data to the receiver.

References

1. Böttcher, S., Hartel, R., Messinger, C.: Searchable Compression of Office Documents by
XML Schema Subtraction. In: Lee, M.L., Yu, J.X., Bellahsène, Z., Unland, R. (eds.)
XSym 2010. LNCS, vol. 6309, pp. 103–112. Springer, Heidelberg (2010)

2. Jahnkuhn, H., Bruder, I., Balouch, A., Nelius, M., Heuer, A.: Query Transformation of
SQL into XQuery Within Federated Environments. In: Grust, T., Höpfner, H., Illarramen-
di, A., Jablonski, S., Fischer, F., Müller, S., Patranjan, P.-L., Sattler, K.-U., Spiliopoulou,
M., Wijsen, J. (eds.) EDBT 2006. LNCS, vol. 4254, pp. 577–588. Springer, Heidelberg
(2006)

3. Jigyasu, S., Banerjee, S., Borkar, V., Carey, M., Dixit, K., Malkani, A., Thatte, S.: SQL to
XQuery Translation in the AquaLogic Data Services Platform. In: Proceedings of the 22nd
International Conference on Data Engineering, ICDE 2006, Atlanta, GA, USA, p. 97
(2006)

4. Halverson, A., Josifovski, V., Lohman, G., Pirahesh, H., Märschel, M.: ROX: Relational
Over XML. In: (e)Proceedings of the Thirtieth International Conference on Very Large
Data Bases, Toronto, Canada, pp. 264–275 (2004)

5. Shanmugasundaram, J., Kiernan, J., Shekita, E., Fan, C., Funderburk, J.: Querying XML
Views of Relational Data. In: VLDB 2001, Proceedings of 27th International Conference
on Very Large Data Bases, Roma, Italy, pp. 261–270 (2001)

6. Shao, F., Novak, A., Shanmugasundaram, J.: Triggers over XML views of relational data.
In: Proceedings of the 21st International Conference on Data Engineering, ICDE 2005,
Tokyo, Japan, pp. 483–484 (2005)

7. Agichtein, E., Josifovski, V.: Extracting Relations from XML Documents. In: Conceptual
Modeling for Novel Application Domains, ER 2003 Workshops, Chicago, IL, USA, pp.
390–401 (2003)

8. Bohannon, P., Freire, J., Roy, P., Simeon, J.: From XML Schema to Relations: A Cost-
Based Approach to XML Storage. In: Proceedings of the 18th International Conference on
Data Engineering, San Jose, CA, USA, p. 64 (2002)

9. Tatarinov, I., Viglas, S., Beyer, K., Shanmugasundaram, J., Shekita, E., Zhang, C.: Storing
and querying ordered XML using a relational database system. In: Proceedings of the
2002 ACM SIGMOD International Conference on Management of Data, Madison, Wis-
consin, USA, pp. 204–215 (2002)

10. Garofalakis, M., Gionis, A., Rastogi, R., Seshadri, S., Shim, K.: XTRACT: A System for
Extracting Document Type Descriptors from XML Documents. In: Proceedings of the
2000 ACM SIGMOD International Conference on Management of Data, Dallas, Texas,
USA, pp. 165–176 (2000)

A.A.A. Fernandes et al. (Eds.): BNCOD 2011, LNCS 7051, pp. 221–235, 2011.
© Springer-Verlag Berlin Heidelberg 2011

Data Mining Project: A Critical Element in Teaching,
Learning and Assessment of a Data Mining Module

Hongbo Du

Department of Applied Computing, University of Buckingham,
Buckingham MK18 1EG, United Kingdom
hongbo.du@buckingham.ac.uk

Abstract. Data mining has been introduced into computing curricula. A data
mining module should emphasise not only the technical but also the practical
sides of the subject. This paper stresses the importance of using a data mining
project as a critical element of the coursework. The paper outlines the intended
learning outcomes and the expectations from students. The paper proposes a
framework for project administration and assessment. By using a number of
past projects as case studies, the paper demonstrates the project work involved
and summarises good and bad experiences in running the project. The paper
highlights the uncertain nature of data mining and consequent challenges and
difficulties. The paper is intended to contribute towards a wider debate over the
best practices in teaching, learning and assessment of data mining.

Keywords: Data mining, module project, learning, teaching, assessment.

1 Introduction

Data mining is a popular and interesting subject in computing, and has started to ap-
pear in undergraduate and postgraduate computing curricula, either in the form of a
full module or as a part of a module on business intelligence or advanced databases
([3], [7], [10]). Because of the diversity in student backgrounds and module inten-
sions, different approaches and methods in teaching, learning and assessment have
been practised.

Data mining involves not only theories and techniques of computation but also
processes, tasks and trade-offs of discovery concerns. Learning the subject is not only
about knowledge and understanding but also about experience and practical skills.
This balance should be reflected in the intended learning outcomes, the teaching and
learning strategies, and the assessment criteria for the module. The argument naturally
leads to using a data mining project as a major component of the coursework. It is felt
that a data mining project should play a critical role for a data mining module in the
same way as a database design project does for a database module. Although Rob and
Ellis briefly mentioned using two types of projects in data warehousing and data min-
ing [9], using data mining project for teaching, particularly in the UK, is still rare.

Similar attempts by this author before 2000 ran into various difficulties due to
lacks of useful software tools, relevant guidelines and good cases of reference. In
recent years, however, the teaching environment for data mining has been greatly

222 H. Du

improved. An increasing number of software tools have become available for tutors to
select. In 2000, the Cross Industry Standard Process for Data Mining (CRISP-DM)
was published [2]. For the first time, a rigorous step-by-step industrial standard meth-
odology has been introduced to and endorsed by many data mining practitioners. The
methodology provides students with a complete lifecycle to mimic and a guideline for
detailed actions and tasks to follow. Furthermore, an increasing number of successful
cases of data mining have been reported ([1], [5], [6]). These cases become good
references for students in preparation for their own projects.

A data mining project is harder than a database design project due to the uncertain
nature of data mining, and therefore faces its own difficulties and challenges. This
paper is intended to share the author’s experience in this regard. The paper is a fol-
low-up of an early work regarding the design of a data mining module for an under-
graduate computing programme [3]. A data mining project is intended as a major part
of the coursework for that module.

The rest of the paper is organised as follows. Section 2 outlines a specification of a
data mining mini-project. The paper then addresses related issues arising from the
specification, and proposes a framework for administrating and assessing various
aspects of the project. In section 3, the paper uses a number of selected projects from
the author’s own classes as case studies and measures their successes according to the
proposed framework. In section 4, the paper highlights the uncertain natures of data
mining as well as the challenges and the difficulties involved, and summarises some
useful lessons learnt.

2 Data Mining Mini-project: A Specification

2.1 Project Aim, Objectives and Scope

The data mining mini-project, referred to as the project hereafter, is concerned with
discovering possible hidden patterns from a given data set by using a data mining
software tool. The purpose of the project is to provide students with an opportunity to
experience the complete lifecycle of data mining. In particular, students are required
to follow the principles of the CRISP-DM methodology, define and undertake rele-
vant tasks, exercise judgement and make justifiable decisions over relevant issues
throughout the whole data mining process.

The key word here is experience. The project makes the students go through the
practical process and face real challenges of making decisions in uncertain situations.
It is unrealistic, however, to treat the project as real-life data mining and expect stu-
dents handling it as professionals. Data mining is an art that requires a lot of practice
to master. Consequently, the usefulness of the discovered patterns is much less impor-
tant than what the students learn through their experience. Again, an analogy to a
database design project can be drawn: we are more interested in the process of devel-
oping a database than the final database product.

Because of the discovery nature of data mining, the project scope must be con-
trolled carefully. First, the project should be a joint group work by 2 or 3 students
taken over a period of 5 to 6 weeks. The group project enables sharing of workload
and at the same time encourages debates over related issues. Second, the project

 Data Mining Project: A Critical Element in Teaching, Learning and Assessment 223

should normally involve one of three main types of data mining, i.e. classification,
cluster analysis and association discovery. In the cases when more than one type is
required for the intended business purpose, the number of mining tasks for each type
should be limited. Doing one thing properly is always more desirable than attempting
many superficially. Comparing to real-life data mining, this project is indeed a small
scale mini-project in every way.

The project suits a full module in the final year (FHEQ level 6) worth 15 to 20
units of credit. A specification for the module and its pre-requisite are presented in
[3]. Some elementary knowledge in probability and statistics is assumed.

2.2 Project Content and Deliverables

The project should concentrate on the following main stages of the data mining process:

1. Data understanding. This stage involves activities in studying the data and data
backgrounds, understanding related business activities from which the data are
collected, conducting exploratory summaries and outlining possible directions for
discovery.

2. Data preparation. The project work at this stage includes tasks in preparing and
formatting data, pre-processing the data (such as discretisation, transformation, at-
tribute selection, sampling, etc.) and if possible improving data quality.

3. Data modelling/mining. This stage is concerned with selecting suitable data min-
ing solutions, setting appropriate parameters for the solutions, observing results
and deciding if alternative mining solutions are needed, and whether any further
data preparation is required before another round of mining begins.

4. Post processing. This stage of the project involves collecting results, evaluating
the patterns for their significance and quality, attempting to interpret the patterns,
and evaluating their fitness to the purposes outlined in 1.

Two main phases of the CRISP-DM standard, i.e. business understanding and de-
ployment, have not been mentioned. This is because the true and complete business
context of a selected data set may not be available, and hence it is difficult to mock
the business reality. However, the tutor and students should seek maximal amount of
information about the data background from limited sources. Students should make
effort in considering possible deployments of useful patterns given the limited under-
standing of the application.

The deliverables for the project include a written report and an oral presentation
from each project group. The report documents details of the project work and ration-
ales behind them at each stage of the data mining process. The oral presentation aims
to outline main issues with the data set, highlight major project tasks and key find-
ings, justify any decisions taken, and defend the project work.

2.3 Related Issues

A number of issues regarding the project must be addressed. First, a suitable data set
should be located. Such data sets were hard to find in the early years. Since 2005,
increasing numbers of data sets from the public domain and commercial sources have
become available online [8]. The project may require a single data set for all project

224 H. Du

groups, or different data sets for different project groups. Given the time constraint
and the project complexity, only one data set should be used by a project group. It
should not be too large in size or too high in dimensionality. A data set with hundreds
or even thousands of records and tens of variables would be ideal.

One potential concern regarding data sets is permission for use. Most data sets
from the public domain or downloaded from the internet come with such permission.
Nonetheless, both students and the tutor must check if the permission has been
granted before using a data set.

Data mining software is another issue to be addressed. Existing software can be
categorised into commercial systems and free tools. The commercial systems, e.g.
Oracle Data Miner, are built to cope with the workload of real-life data sets of large
sizes and high dimensionality. However, these systems are often cumbersome to learn
and use with limited choices of solutions. On contrast, the free tools are often light-
weight, easy to learn and use. Although many free tools fail to cope with data sets of
extremely large sizes and high dimensionality, they should be sufficient for the kind
of data sets for the project. Weka [12] is a free downloadable tool that has been
widely used. Its Explorer module has a simple graphical user interface through which
small-scale data mining and data exploration can be performed. The Knowledge Flow
module can be used for a more serious piece of data mining through carefully de-
signed task flows. The Experimenter module enables comparison on performances of
classification methods. The free license overcomes the availability constraint.

A single data mining tool may not always meet all requirements of the project. For
example, some data pre-processing may be better done using another tool such as
Microsoft Excel before the data set is loaded into Weka. All practical knowledge of
the mining tool is acquired through purposely designed practical classes. Practical
knowledge of other software tools can be obtained either via added practical sessions
for the module or through transferable skills from early modules.

2.4 Administration of the Project

The administration of the project follows the data mining lifecycle as described in 2.2.
At the beginning, the tutor provides students with a specification document and even
a presentation. This is followed by a period for data selection and group formation by
students. Each group has a leader. The role may be taken by a specific member or
played in rotation by all members of a group. Each group should then arrange a start-
off meeting with the tutor to gain more understanding about the background of the
chosen data set and present a project plan. During the project period, each group
should hold regular meetings with the tutor to report the project progress and discuss
issues arising. The tutor should by no means intervene in project decisions and activi-
ties. The tutor should play the roles of a monitor, a critic and a fictional client. The
tutor monitors student progress through a sequence of small deliverables such as ver-
bal reports, demonstrations, etc. By the end of the project, the reports from all groups
may be compiled into a single proceeding and shared among all students of the class
before the oral presentation is held.

Ideally, the module progression on key topics of the subject should coincide with
the project lifecycle. At the beginning when the project specification is given out, the
module introduces data mining concepts, principles and methodologies. The module

 Data Mining Project: A Critical Element in Teaching, Learning and Assessment 225

then proceeds on topics about data exploration and pre-processing, followed by basic
mining and modelling techniques and evaluation of patterns. The basic techniques are
then followed by advanced and alternative techniques. The module covers application
issues towards the end. This approach of module delivery enables the students to gain
knowledge from classes and then apply it practically in the project.

2.5 Assessment Framework of the Project

The project is assessed according to the quality of work at each stage of the data min-
ing process. Correctness, completeness and soundness of judgement are the main
factors for determining marks. Table 1 presents a framework for project assessment.
The matrix highlights the assessment focuses by each factor at each stage. Further
details for assessment can be found in [2].

Table 1. Assessment Framework

 Phases

Factors

Data
Understanding
& Exploration

(20%)

Data
Preparation &
Pre-processing

(25%)

Data Modelling
& Mining of

Patterns (25%)

Evaluation of
Result Patterns

(20%)

Correctness

Correct
understanding
of data
characteristics
and features

Correct data
pre-processing
and preparation
operations

Correct mining
tasks, sensible
choices of
modelling
solutions.
Sensible setting
of parameters.

Correct
understanding of
evaluation
metrics and
interpretation of
patterns

Completeness

Coverage of
aspects of data
features such as
data types,
distributions,
missing values,
etc.

Sufficiency of
the operations
for the purpose
of discovery

Using
alternative
solutions.
Alternative
setting of
parameters.
Comparison of
solutions.

Complete
collection,
summarisation
and
categorisation of
patterns.
Evaluation of
both pros and
cons.

Soundness of
Judgement

Needs for data
pre-processing

Justification for
the operations
and their
relevance to
mining

Justification for
selection of
mining
operations and
parameter
settings

Need for further
mining.
Selec-
tion/Identificatio
n of interesting
patterns.

Project Planning, Execution, Management and Teamwork (10%)

Given the importance of all the stages, marks should be evenly divided. Because of

the complexity and amount of time required, the Data Preparation and Pre-processing
stage and the Data Modelling/Mining stage may take a marginally larger share of the
total mark than the other stages. A certain small percentage of the total mark may be
given to the successful planning, effective execution and management of the project,

226 H. Du

and collaborative teamwork. The distribution of percentage marks under the stage
headings in Table 1 is an example scheme practised by this author.

According to the framework, a project can be broadly classified into one of the fol-
lowing four categories:

1. Unsatisfactory. This kind of projects normally has major flaws in project activities
at certain stage(s). Without a clear discovery aim, random decisions are made and
random actions are taken. Data are not examined and well prepared before mining.
Certain solutions with default parameter settings are chosen without any good
reasons. Irrelevant patterns with little interpretation are collected as result. Little
attention is paid to evaluation of the result patterns. The poor quality of work re-
flects no serious attempt. The total mark awarded for this category should be
lower than the bare pass mark (e.g.40%).

2. Fair. This kind of projects normally produces some positive results in terms of
experience. However, the work is not well planned. It involves either too many
trial-and-error or limited project activities. Students show limited understanding of
knowledge and make decisions without full consideration of the issues concerned.
Some directly “copy-and-paste” style references to seen examples are made with-
out questioning the relevance. Limited understanding about evaluation of result
patterns is evident. The total percentage mark for this category is between the pass
and a lower 2.II (e.g. between 40% and 54%).

3. Good. This kind of projects shows sufficient understanding and good application
of knowledge. The objectives are clear. Project activities are planned and targeted
not randomly decided. Actions taken in preparing data are well thought with good
supporting arguments. The selection of mining methods is sensible, and so are set-
tings of relevant parameters. Alternative methods or alternative parameter settings
are tried with justification. There are clear evidences of appreciation of evaluation
of result patterns. Sensible interpretations and implications for course of actions
are drawn from the mining results. The total percentage mark for this category is
between a higher 2.II and a high 2.I (e.g. 55% and 69%).

4. Excellent. This kind of projects shows all the merits of the category above and fur-
thermore demonstrates excellent performance throughout the entire process. A sense
of critical analysis and critical evaluation is demonstrated at every stage. There is a
well-thought reasoning from a business objective to data mining tasks. All decisions
and actions in data preparation and pre-processing are supported by sensible argu-
ments. Data mining tasks are well defined and relevant to the aim. Each trial of data
mining serves a clear purpose. The evaluation of resulting patterns is thorough and
appropriate, and influences the selection of useful patterns for potential use. The to-
tal percentage mark for this category is a clear first (e.g. ≥70%).

In practice, the marking can be done in a top-down or a bottom-up fashion. In the
bottom-up approach, detailed percentage marks are first given to each stage of the
project according to the factors outlined in the assessment framework. The total mark
for the whole project should then reflect the appropriate category for the project. In
the top-down approach, the assessor first classifies the project into one of the catego-
ries according to the category descriptors, and then fine tune the percentage marks for
each stage to reflect the description of the category.

 Data Mining Project: A Critical Element in Teaching, Learning and Assessment 227

The report and the oral presentation should not be marked separately. It is sug-
gested that a provisional mark is first given to the work described in the report. This
mark is either confirmed or adjusted accordingly at the oral presentation.

3 Case Studies: The Good, the Bad and the Ugly

The project was first used in the author’s data mining module in 2001. The project has
become an established part of the coursework ever since. The weight for the project in
the coursework has increased from a mere 40% at the beginning to 60% later and to
the current 100% in 2010. In 2007, the author created a data mining module at Sara-
jevo School of Science and Technology. The project was and still is a significant part
(60%) of the coursework for that module.

Between 2001 and 2005, the author mainly relied on data sets from the UCI Ma-
chine Learning Repository [11] and a few real-life data sets from his consultancy
work. Since then, data source was no longer a major concern. Before 2006, IBM In-
telligent Miner for Data was used as the data mining tool. Since 2006, Weka has been
used for its rich solutions, simplicity and availability for students. Microsoft Excel has
also been used for assisting data exploration and data pre-processing.

Figure 1 shows the distribution of the project works in the four categories for the
35 project groups collected between 2002 and 2010 for the purpose of this paper. It is
true that most of the classes are fairly small in size, and the biggest class size is 34
students (11 groups). Majority of project results fall into Fair and Good categories
while Unsatisfactory and Excellent projects are in the minority. This seemingly good
result reflects the practice that we mark on the project experience and what students
learn from it. This paper selects three typical projects from the 35 group projects as
case studies. The purpose is to show the nature of the tasks involved, student works
produced and assessment of their works.

Fig. 1. Distribution of Project Categories

3.1 Project One: The Bad

The Data Set
The data set for this project is about insurance purchases. It has 14,845 recordings
about purchased product type, regional code, profession, age, first rate paid, contract-
ing sum and closing date. Potentially interesting patterns include a classification
model regarding which type of product is purchased by what kinds of customers.

4

10

15

6

Unsatisfactory Fair Good Excellent

228 H. Du

(a)

(b)

Fig. 2. Some Results from Project One

The Student Work
The project was undertaken by a group of two students in 2010. Details of their work
are listed as follows:

• Data understanding. Besides known facts about the attribute domains and the data

set size, virtually nothing more on data understanding was done. Some anomaly
records (farmers of age 3 and car insurance buyers under the legal minimum age
for driving) were spotted. No discovery objectives were mentioned.

• Data preparation and pre-processing. Regional codes were replaced with nominal
labels (A, B, C, D). The unknown regional code 999 was converted to the un-
known symbol recognisable by Weka. The anomaly records were removed from
the data set. The justification given was that 21 anomalies count only 0.14% of
the total number of records. The values for age attribute were discretized using an

 Data Mining Project: A Critical Element in Teaching, Learning and Assessment 229

unsupervised equal-length method with default parameter setting (10 bins). The
values for the contracting sum attribute were also discretized into 8 bins using the
same method. Figure 2(a) shows the result of the discretisation for the contracting
sum attribute.

• Data modelling/mining. One classification model using a decision tree method
was obtained. The tree has an overall accuracy of 75%. Figure 2(b) presents the
evaluation details of the tree. 8 quantitative association rules with support of 10%
and confidence of 91% were also discovered. No explanation was given about the
selection of the rules. Redundancy exists between two of the rules.

• Post-processing. Little attempt regarding evaluation of patterns was made. No
clear interpretation of the patterns was given.

The Assessment
The project does not outline any directions for the discovery. Understanding of data
characteristics is limited, which leads to the random decision of using an unsupervised
equal-length method for data discretisation. No reasons were given regarding why 10
and 8 bins are chosen for discretising the age and contracting sum attributes. A clear
sign of concern, as indicated by the circle in figure 2(a), was ignored. Some credits
should be given for the handling of the anomalies and the replacement of regional
codes. The project shows serious weaknesses in the data modelling/mining stage.
Only one trial of decision tree induction was attempted without justification. The
purpose of the association rules is not clear. The weakest point of the whole project is
post-processing. Little attention was paid to the performances of the patterns. The
students did not realise that the tree is almost useless for classifying who are paying
for the first rate (as indicated by the the confusion matrix in figure 2(b)). The break-
down of marks is as follows: 5 out of 20 to Data Understanding, 12 out of 25 to Data
Preparation and Pre-processing, 10 out of 25 to Modelling/Mining, and 4 out of 20 to
Post-processing. Because of the disorganised approach to work, only 3 out of 10
marks were given to the project management. With the total mark of 34%, the project
is unsatisfactory.

3.2 Project Two: The Good

The Data Set
This project uses a public domain data set about heart diseases donated by Cleveland
Clinic Foundation. The data set has 303 records and 14 attributes. The attributes
represent patient age, patient gender, and a range of clinic test results. The result
measurements include chest pain type, resting blood pressure, amount of cholesterol,
fasting blood sugar greater than 120, resting electrocardiographic result, maximum
heart rate, presence of exercise-induced angina, ST depression, slope of peak exercise
ST segment, number of major vessels coloured by fluoroscopy, thalassaemia, and
angiographic disease status. The number of data records is limited. Students are ex-
pected to show good use of the limited data. Potentially interesting patterns would be
classification models regarding the presence of heart disease.

230 H. Du

The Student Work
The project was undertaken by a group of three students in 2007. Details of the work
are listed as follows:

• Data understanding. From the start, the group outlined a clear business objective,

i.e. finding patterns relating to the presence or absence of the heart disease. The
group conducted operations such as collecting and formatting data, exploring
domain types and values, obtaining descriptive statistics for numerical attributes,
and assessing data quality. Separate reports for the purposes were also produced.

• Data preparation and pre-processing. The group focused on data cleaning by
removing outliers and filling missing values with sensible alternatives. For both
purposes, the ordinal and nominal values were first converted into discrete inte-
gers. To deal with missing values, the group decided to find the record’s nearest
neighbour and use the attribute value of the neighbour to fill the missing field. To
deal with outliers, the students first plotted the data records as points in a scatter
plot and manually located those anomaly values. An anomaly value was consid-
ered as being wrongly entered and hence also replaced by the value of its nearest
neighbour. After the data cleaning operations, the discrete integers for ordinal and
nominal attributes were converted back to the original labels.

• Data modelling/mining. The group conducted two main data mining tasks: to
build a model to classify if a patient is healthy or having the disease, and to pro-
file patients in both classes via clustering. For the first task, the group used J4.8
decision tree method with different parameter settings and 2/3-1/3 split of train-
ing-testing examples as the test option. A number of possible trees with overall
accuracy rates from 72% to 79% were obtained. The students realised that prun-
ing improves the tree accuracy. Figure 3 shows the performance summary of one
of the candidate trees. To consolidate the finding, a similar classification task was
also attempted by using the tree induction method of another tool (RDS). Some
similarities in the resulting trees were found. For the second task, the k-means
method was used with tweaking of different k values for good cluster quality, and
eventually the optimal value for k was set to 4.

• Post-processing. Both the decision trees and the clusters were evaluated when
different parameter settings for the tree induction and different values for k were
attempted. The group also converted the trees into rules to assist their understand-
ing. By consulting external medical experts, some of the rules made good medi-
cal sense, and supported recommendations for certain people to avoid having
heart disease. The interpretation of clustering results was attempted via cluster
summary and through visualising membership of the clusters.

The Assessment
This project has paid sufficient attention to every task at every stage of the data min-
ing process. The project adheres to the CRISP-DM guideline and the tasks are per-
formed in a systematic manner. The business objective of discovery is outlined and
related to the data mining goals. Data characteristics are studied carefully, but data
summary is done only for numeric data. The methods for cleaning the data are

 Data Mining Project: A Critical Element in Teaching, Learning and Assessment 231

sensible and can be justified. In order to perform data mining tasks thoroughly, the
group decided to limit data mining to classification and clustering only, which is
sensible. The project has shown repeated attempts for both mining tasks in order to
obtain the best results. Such controlled trial-and-error activities are appropriate.
However, the group did not attempt alternative classification techniques, and did not
conduct a comparative study among the alternative approaches. It is also questionable
whether using a 2/3-1/3 split is the most effective use of the limited data. The group
considered evaluation seriously and used the evaluation results to determine a better
model. However, the group did not give the presence of the heart disease higher prior-
ity and look for models with better true positive performance. Consequently, 15
marks were given to Data Understanding, 18 to Data Preparation and Pre-processing,
15 to Data Modelling/Mining, and 14 to Post-processing. Because of the good organi-
sation and documentation of work, 7 out of 10 marks were given to the project man-
agement. With the total mark of 69%, the project is standing at the border between
good and excellent. The project did not get a clear first due to the limitations in mod-
elling/mining and evaluation.

Fig. 3. Selected Results from Project Two

3.3 Project Three: The Ugly

The Data Set
The data set used for this project is the same insurance data set used for project one.

232 H. Du

The Student Work
The project was undertaken also in 2010, but by a single student against the tutor’s
advice. Key points of the project work are summarised as follows:

• Data understanding. The student decided to carry out a brute force bottom-up

discovery of any potential patterns. At this stage, the student used Weka and Ex-
cel to gain understanding about domain types, value distributions of attributes,
and unknown values. Unlike the group for project one, this student did not iden-
tify any anomalies, but spotted that values for the contracting sum attribute were
extremely skewed towards the lower end.

• Data preparation and pre-processing. Similar to project one, regional codes were
replaced with nominal labels (A, B, C, D and E, where E for unknown). The age
attribute was discretized into more natural age groups such as child, teenager,
young, adult and senior. Because of the skew of the contracting sum values, the
student decided to apply logarithm transformation on the original values so that
the levels of magnitude instead of the actual figures of contracting sums were
considered.

• Data modelling/mining. The student took the decision to do every data mining
task: classification, clustering and association mining. The student laboriously
tried 4 methods for clustering, 10 methods for classification, and 2 methods for
association rule discovery. For clustering, different values of k were attempted
for the k-means and the EM methods. For classification, the student attempted to
induce classification models for product types, and used the Weka Experimenter
to compare performances among the classification methods. Little explanation
was given regarding the setting of parameters. For association rule discovery,
confidence and accuracy were used for selecting top 10 rules.

• Post-processing. The student was conscious about the value for k and used the
evaluation of cluster quality to determine the optimal value. However, except the
performance analysis using Experimenter, very little attention was paid to the
detailed performance evaluation of different classification models shown in con-
fusion matrices. The student did not notice the strength of JRip method in classi-
fying life insurance buyers. The student did not pay attention to the meaning of
association rules at all.

The Assessment
The project is a showcase of trial-and-error gone to the extreme. Many trials were
made and many patterns were discovered, but these patterns are not carefully exam-
ined. There are gems of good ideas here and there in some individual tasks, such as
the logarithm transformation for the contracting sum attribute, the comparative study
of techniques for classification, etc., but the project as a whole is not a piece of coher-
ent work. The student did not realised the complexity of most decision trees, and
totally ignore the inappropriate associations (e.g. contracting sums with their
logarithm-transferred values). The project can only be classified as fair with a total
percentage mark of 48% (10 for Data Understanding, 15 for Data Preparation and
Pre-processing, 10 for Data Modelling/Mining, 8 for Post-processing and 5 for project
management).

 Data Mining Project: A Critical Element in Teaching, Learning and Assessment 233

4 Discussions

Uncertainty and Difficulty
Uncertainty is the most noticeable feature of data mining. Given the same data set and
the same objectives, there can be various ways of preparing and mining the data.
Because of the uncertainty, trials of alternatives are unavoidable. The exercise of
sound judgement is therefore essential. The sense of sound judgement depends on
levels of understanding of knowledge, analytic skills and experience. This means that
data mining projects can be seen as time consuming and difficult. However, the diffi-
culty should not come as a surprise, nor should it suggest that the project is unsuitable
for undergraduate students. Data mining should be taught to final year undergraduate
students upon whom a greater degree of academic maturity in terms of analytic skills,
logical reasoning and soundness of judgement is expected. With advices and direc-
tions from the tutor, the difficulty can be overcome.

There is a genuine difficulty, i.e. the absence of domain experts from the data min-
ing lifecycle. Domain experts are those who know the application domain well and
can judge which patterns are potentially useful and which are not. The experts are in
fact present throughout the data mining process in most, if not all, real-life data min-
ing projects [4]. It is not realistic to expect the tutor to play such a role for various
domains of application for all kinds of data sets. This particular difficulty could be
avoided by the tutor intervening in the data set selection and only allowing students to
select a data set where the tutor is familiar with the application domain. By doing so,
however, the motivation of the students may be affected.

Usefulness of Case Studies
Because of the uncertainty and difficulties, it is useful and beneficial to study cases of
reported data mining projects. These case studies bring the data mining process alive
and provide students an opportunity to observe how data mining is done before they
try it themselves. The value of case studies cannot be underestimated. Good case
studies were rare and difficult to get. Indeed, industry and commerce often consider
data mining as a closely guarded secret. However, the situation appears changing. It is
now possible to find successful commercial data mining projects ([4], [5]). It is rec-
ommended that a successful case be presented in teaching sessions so that every as-
pect of the case can be discussed thoroughly under the tutor’s supervision.

The author has used an assignment as a way of getting good case studies: students
are asked to search for a good case in a designated application area from the published
sources. They are then required to study the case, present it and comment on it. This
work has been proved very useful for students, and can be taken as a part of assess-
ment. Such an assignment may also be considered as a part of the coursework element
for modules that only briefly cover the topic of data mining.

Levels of Expectation and Project Scope
The level of expectation must reflect the aim of the project, i.e. to provide students
with an opportunity to experience data mining. It is necessary to emphasise again that
the success or failure of a project should not be judged on applicability of the result
patterns, but on the tasks and actions taken and their justifications.

234 H. Du

The amount of work must justify the amount of time allocated. The project specifi-
cation given in section 2 is meant for a full data mining module on a computing pro-
gramme. The scope of the project must be adjusted accordingly if the module has a
different emphasis or it is for a different programme. For instance, a module on ad-
vanced databases with a significant part on data mining may require a much smaller
scope. Everything within the project, such as the data set dimensionality, the amount
of data preparation work and the number of data mining tasks, should all be limited.
The project group size may even be increased to 4 students rather than 2 or 3 to fur-
ther spread workload.

Student Feedbacks
A thorough survey of student feedbacks on the project over years has not been con-
ducted yet mainly because of small class sizes. However, from the annual student
feedback questionnaires on the module in which a question about the coursework is
asked, comments on the use of the project are overall positive. Most students consider
the project experience useful, and it has helped enhancing the understanding of the
subject. At the same time, many students consider the project harder than practical
projects they have done for other subjects. Weka as a tool for supporting the project
has also received good feedback for its simplicity and ease of use.

Some cautious feedback comments are also received. Due to the lack of business
context and short of domain experts, some students cannot see how useful result pat-
terns can be, which in turn affect the level of their confidence towards the patterns
they have discovered. The biggest difficulty is how to deal with the uncertainty. This
could be a cultural shock for computing students who have worked largely towards
deterministic solutions. Some students also have difficulties in data understanding and
pattern evaluation due to lack of training and understanding of basic statistics.

A small minority of students have very little clues about the project. They tend to
make bad judgement and rely heavily on trial and error or hand-on guidance from the
tutor. Their comments towards the project are quite negative. Effort is certainly
needed to find out how to minimise the size of this group.

Resource Implications
Running the project may require additional resources in terms of tutor’s hours. En-
hancing student learning experience has cost. Indeed, no pain, no gain. In the author’s
experience, however, the extra hours spent on administrating/supervising the project
is only marginally more than that for a database design project, thanks to the aca-
demic maturity of the final-year students. The good students usually need very little
guidance. They can obtain the required knowledge from lectures and reference mate-
rials. Weak and fair students in fact take up most of the consultation time. Whether
the project idea can scale up to classes of hundreds of students is yet to be verified.

5 Concluding Remarks

This paper argues that a data mining mini-project should become a critical part of the
coursework for a data mining module. The project should benefit student learning
experience of this interesting subject in the same way as a database design project

 Data Mining Project: A Critical Element in Teaching, Learning and Assessment 235

does for databases. Data mining may be more challenging to do for students and
harder to manage for the tutor than a database design project, and hence might require
more resources in terms of tutor’s hours. Despite all kinds of difficulties, the paper
argues and demonstrates that such a project should be feasible for final year students
of computing major. With an ambition to practise data mining, the expectation must
be realistic: it is more about experience than discovery results.

The assessment framework proposed in this paper has been practised and refined
by this author. It undoubtedly needs the scrutiny of the teaching community. It is
hoped that the framework will be continuously refined to improve the administration
and assessment of such an important element.

Acknowledgement. The author wishes to thank all the students for using their works
as case studies in this paper. For obvious reasons, their names are kept anonymous.

References

1. Berry, M.J.A., Linoff, G.: Mastering Data Mining: the Art and Science of Customer Rela-
tionship Management. John Wiley & Sons, Chichester (2000)

2. Chapman, P., Clinton, J., Kerber, R., Khabaza, T., Reinartz, T., Shearer, C., Wirth, R.:
CRISP-DM 1.0: Step-by-Step Data Mining Guide, SPSS (2000)

3. Du, H.: Teaching Undergraduate Students Data Mining: Ideas, Experience and Chal-
lenges. In: 8th International Workshop in Teaching, Learning and Assessment of Databas-
es (TLAD), pp. 49–54. University of Abertay Dundee (2010)

4. Du, H.: Data Mining Techniques and Applications, An Introduction, Cengage Learning:
Andover (2010)

5. Kitts, B., Melli, G., Rexer, K. (eds.): Data Mining Case Studies, In: The First International
Workshop on Data Mining Case Studies, 2005 IEEE International Conference on Data
Mining, Huston, USA (2005)

6. Luan, J., Zhao, C.-M. (eds.): Data Mining in Action: Case Studies of Enrolment Manage-
ment. Wiley Periodicals Inc., Chichester (2006)

7. Mrdalj, S.: Teaching An Applied Business Intelligence Course, Issues in Information Sys-
tems. Issues in Information Systems VIII(1), 134–138 (2007)

8. Piatetsky-Shapiro, G.: http://www.kdnuggets.com/(accessed March 30, 2011)
9. Rob, M.A., Ellis, M.E.: Case Projects in Data Warehousing and Data Mining. Issues in In-

formation Systems VIII(1) (2007)
10. The Quality Assurance Agency for Higher Education: Subject Benchmark Statements,

Computing (2007)
11. The University of California at Irvine: UCI Machine Learning Repository,

http://archive.ics.uci.edu/ml/about.html (assessed on March 30, 2011)
12. Witten, I.H., Frank, E.: Data Mining: Practical Machine Learning Tools and Techniques,

3rd edn. Morgan Kaufmann Publishers, San Francisco (2011)

Author Index

Aberer, Karl 2
Adaikkalavan, Raman 68
Ali, Muhammad Intizar 132

Bätz, Alexander 154
Bell, David A. 140
Bi, Yaxin 83
Bizer, Christian 1
Böhlen, Michael 128
Bokermann, Dennis 209
Böttcher, Stefan 154, 182, 209
Brenninkmeijer, Christian Y.A. 136

Cavalieri, Federico 167
Chakravarthy, Sharma 68
Conroy, Kenneth 97

Deshpande, Nikhil 68
Dittmann, Jana 3
Dobbie, Gillian 33
Du, Hongbo 221
Dustdar, Schahram 132

Fernandes, Alvaro A.A. 136

Galpin, Ixent 136
Glavic, Boris 128
Gray, Alasdair J.G. 136
Guerrini, Giovanna 167

Hartel, Rita 154, 182, 209
Hedeler, Cornelia 108
Hong, Jun 140

Kanne, Carl-Christian 128

May, Gregory C. 97
Merkel, Ronny 3
Mesiti, Marco 167
Mukherji, Abhishek 48
Muzammal, Muhammad 118

Naeem, Muhammad Asif 33

Paton, Norman W. 108, 136
Pichler, Reinhard 132

Rahman, Syed Saif ur 18
Roantree, Mark 97
Rundensteiner, Elke A. 48

Saake, Gunter 3, 18
Schaefer, Gerald 66
Schäler, Martin 3
Schallehn, Eike 18
Schulze, Sandro 3
Stey, Sebastian 182
Suzuki, Nobutaka 194

Taylor, Robert 136
Tilgner, Christian 128
Truong, Hong-Linh 132

Ward, Matthew O. 48
Warrington, Giles 97
Weber, Gerald 33
Weng, Daiyue 140
Wu, Shengli 83

Zeng, Xiaoqin 83

	Title
	Preface
	Organization
	Table of Contents
	Evolving the Web into a Global Data Space
	Data Integration in a Networked World
	Reliable Provenance Information for Multimedia Data Using Invertible Fragile Watermarks
	Introduction
	Background
	Data Provenance
	Watermarking
	Invertible Watermarking Techniques

	Fingerprint Pattern Data – A Motivating Example
	Using Watermarking for Data Provenance
	Architecture and General Data Flow
	A Hybrid Watermarking Approach
	Verifying the Watermark Information
	Extension of the Watermarking Scheme of Merkel et al.
	Implementation of the Hybrid Approach with Postgres 8.4

	Discussion
	Advantages
	Disadvantages

	Related Work
	Conclusion
	References

	ECOS: Evolutionary Column-Oriented Storage
	Introduction
	Problem Statement and Motivation
	Evolutionary Column-Oriented Storage
	Table-Level Customization
	Column-Level Customization and Storage Structure Hierarchies
	Evolution and Evolution Paths

	Implementation and Empirical Evaluation
	Micro Benchmark Details
	ECOS Performance Improvement

	Related Work
	Conclusion and Future Work
	References

	X-HYBRIDJOIN for Near-Real-Time Data Warehousing
	Introduction
	Related Work
	Index-Based Hash Join Architecture: HYBRIDJOIN
	X-HYBRIDJOIN
	Difference between X-HYBRIDJOIN and HYBRIDJOIN
	Algorithm
	Cost Model
	Memory cost.
	Processing cost.

	Experiments
	Experimental Setup
	Experimental Results
	Performance comparisons:
	Role of the non-swappable part in stream processing.
	Cost validation.

	Conclusions and Future Work
	References

	Achieving High Freshness and Optimal Throughput in CPU-Limited Execution of Multi-join Continuous Queries
	Introduction
	Preliminaries
	Background
	Problem Definition

	The JDA Technique
	The Proposed JAQPOT Approach
	Optimizing Throughput in Multi-join Queries
	Path Productivity-Based Join Adaptation
	Satisfying Freshness in Multi-join Queries
	The Integrated JAQPOT Algorithm

	Experimental Evaluation
	Throughput Production in Synthetic Data
	Evaluating Result Freshness

	Related Work
	Conclusion
	References

	Mining Image Databases by Content
	Introduction
	Content-Based Image Retrieval by Colour
	Conclusions
	References

	Searching for Complex Patterns over Large Stored Information Repositories
	Introduction
	Pattern Specification and Detection
	Pattern Specification
	Pattern Detection
	Inverted Index
	Pattern Detection Graphs

	Pattern Operator Processing
	The NEAR Operator

	Design and Implementation of InfoSearch
	Implementation

	Experimental Results
	Related Work
	Conclusions
	References

	Using the Euclidean Distance for Retrieval Evaluation
	The Euclidean Distance
	Investigation Objectives and Methodologies
	Experiments
	Experiment 1
	Experiment 2
	Experiment 3

	Conclusions
	Appendix

	Expanding Sensor Networks to Automate Knowledge Acquisition
	Introduction
	Motivation
	Contribution
	Structure

	User Requirements and Operating Architecture
	The EventSense Architecture
	Sensor Enablement.
	Contextual Enrichment.
	Integration.
	Query Interface.

	Context Profiles and Event Mining
	Sensor, Activity and Participant Profiles
	Event Definition

	Experiments and Evaluation
	Related Research
	Conclusions
	References

	Utilising the MISM Model Independent Schema Management Platform for Query Evaluation
	Introduction
	Background
	Query Language
	Query Rewriting
	SMql Query over Supermodel into XQuery over XML
	SMql Query over Supermodel into SQL Query over Relational Model

	Related Work
	Conclusions
	References

	Mining Sequential Patterns from Probabilistic Databases by Pattern-Growth
	Introduction
	Problem Statement
	Pattern-Growth Approach
	Pattern-Growth Step

	Experimental Evaluation
	Conclusions and Future Work
	References

	Smile: Enabling Easy and Fast Development of Domain-Specific Scheduling Protocols
	Introduction
	Banking Scenario

	Smile: Declarative Scheduling Middleware
	Oshiya Scheduling Model
	Smile Architecture
	Example: Use Case Implementation

	References

	On Integrating Data Services Using Data Mashups
	Introduction
	Database Oriented Mashups
	Data Mashups Using XQuery
	Conclusion
	References

	Executing In-network Queries Using SNEE
	References

	Extracting Data Records from Query Result Pages Based on Visual Features
	Introduction
	Fundamentals and Overview
	Visual Representation of Query Result Pages
	Overview of Our Approach

	Identifying Data Sections
	Removing Noisy Blocks
	Grouping Data Units of Data Records
	Experimental Results
	Related Work
	Conclusions
	References

	Updates on Grammar-Compressed XML Data
	Introduction
	Sharing Similar Trees
	The Paper’s Example Document
	The Idea Behind Sharing Similar Trees
	Node Selection by Grammar Paths

	Parallel Updates on the Compressed Data
	Basic Update Concepts and Parallel Update Problem Definition
	First Step of the Parallel Update Process: Constructing an Update DAG(UD)
	Second Step of the Parallel Update Process: Isolating UD from GD
	Performing the Updates
	Sharing Identical Nodes

	Evaluation
	Related Work
	Summary and Conclusions
	References

	Reverting the Effects of XQuery Update Expressions
	Introduction
	Preliminaries
	XML Document Representations
	Update Operations and PULs
	PUL Streaming Application

	PUL Inverse
	Operation Inversion
	PUL Inversion
	Inversion Algorithm

	Completed PULs
	Evaluation
	Related Work
	Concluding Remarks
	References

	TraCX: Transformation of Compressed XML
	Introduction
	Motivation
	Contributions
	Query Language
	Example Being Used in This Paper
	Paper Organization

	Our Solution
	Basic Idea
	XPath Evaluation
	Copying Compressed Sub-Trees

	Evaluation of Our Prototype Implementation
	Related Works
	Summary and Conclusions
	References

	Satisfiability of Simple XPath Fragments under Fixed DTDs
	Introduction
	Definitions
	NP-Completeness
	Satisfiability Problem without Upward Axis
	Glushkov Automaton
	Polynomial-Time Algorithm

	Using Upward Axes under Fixed DTDs
	Conclusion
	References

	Computing Compressed XML Data from Relational Databases
	Introduction
	Motivation
	Contributions
	Paper Organization

	The Concept
	Considered Subset of SQL/XML
	This Paper’s Example
	The Basic Idea

	Retrieving Compressed XML Data from a Relational Database
	Generating the XML Schema for the SQL/XML Query Result
	Computing the SQL Query for Generating the Compressed XML Document
	Computing the Compressed Structure and the Text Data of the Compressed XML Document

	Evaluation
	Related Work
	Conclusions
	References

	Data Mining Project: A Critical Element in Teaching, Learning and Assessment of a Data Mining Module
	Introduction
	Data Mining Mini-project: A Specification
	Project Aim, Objectives and Scope
	Project Content and Deliverables
	Related Issues
	Administration of the Project
	Assessment Framework of the Project

	Case Studies: The Good, the Bad and the Ugly
	Project One: The Bad
	Project Two: The Good
	Project Three: The Ugly

	Discussions
	Concluding Remarks
	References

	Author Index

