
An Eclipse Plugin for Validating Names

in UML Conceptual Schemas

David Aguilera, Raúl Garćıa-Ranea, Cristina Gómez, and Antoni Olivé

Department of Service and Information System Engineering
BarcelonaTech – Universitat Politècnica de Catalunya

Barcelona, Spain
{daguilera,cristina,olive}@essi.upc.edu,

raul.garcia-ranea@est.fib.upc.edu

Abstract. Many authors agree on the importance of choosing good
names for conceptual schema elements. Several proposals of naming guide-
lines are available in the literature, but the support offered by current
CASE tools is very limited and, in many cases, insufficient. In this demon-
stration we present an Eclipse plugin that implements a specific proposal
of naming guidelines. The implemented proposal provides a guideline for
every kind of named element in UML. By using this plugin, the modelers
can automatically check whether the names they gave to UML elements
are grammatically correct and generate a verbalization that can be anal-
ysed by domain experts.

Keywords: Naming Guidelines, Eclipse, Conceptual Schemas.

1 Introduction

Names play a very important role on the understandability of a conceptual
schema. Many authors agree that choosing good names for schema elements make
conceptual schemas easier to understand for requirements engineers, conceptual
modelers, system developers and users [5,6].

Choosing good names is one of the most complicated activities related to
conceptual modeling [8, p.46]. There have been several proposals of naming
guidelines for some conceptual schema elements in the literature [3,7] but, as
far as we know, few CASE tools support this activity. One example is [2], which
controls that the capitalization of some elements is “correct”, like “classes should
start with a capital letter”.

In this demonstration, we present an Eclipse plugin that adds naming valida-
tion capabilities to the UML2Tools framework. This plugin can assist modelers
during the naming validation process of named elements in UML, following the
complete naming guidelines presented in [1].

2 Overview of the Naming Guidelines

There are several naming guidelines available in the literature on how to name
conceptual schema elements. We implemented the proposal presented in [1]

O. De Troyer et al. (Eds.): ER 2011 Workshops, LNCS 6999, pp. 323–327, 2011.
c© Springer-Verlag Berlin Heidelberg 2011

324 D. Aguilera et al.

because it is complete: for each kind of element to which a modeler may give a
name in UML, it provides a guideline on how to name it. As an example, two
guidelines are summarized in the following:

Guideline for Entity Types

G1f The name of an entity type should be a noun phrase whose head is a countable
noun in singular form. The name should be written in the Pascal case.

G1s If N is the name of an entity type, then the following sentence must be gram-
matically well-formed and semantically meaningful:

An instance of this entity type is [a|an] lower1(N)

Guideline for Boolean Attributes

G2f The name A should be a verb phrase in third-person singular number, in the
Camel case.

G2s The following sentence must be grammatically well-formed and semantically
meaningful:

[A|An] lower(E) lower(withOrNeg2(A)) [, or it may be unknown].

where the last optional fragment is included only if min is equal to zero.

As stated in [1], a name given by a conceptual modeler complies with the guide-
line if: a) it has the corresponding grammatical form Gf , and b) the sentence
generated from the pattern sentence Gs and the given name is grammatically
well-formed and semantically meaningful.

 « datatype »

Money

value: Real

currency: String

Sales

isComplete: Boolean = False

date: Date

time: Time

SaleLineItem

quantity: Integer

ProductItem

price: Money

quantityOnHand: Integer

Shop

name: String

opensAllDay: Boolean[0..1]

Product

name: String

description: String

perishable: Boolean

 « event »

NewSale

 « event »

EndOfSale

 « event »

NewSaleLineItem

quantity: Integer

GENERAL CONSTRAINTS
 context Product inv identifiedByItsName:
 Product.allInstances()->isUnique(name)
 context Shop inv isIdentifiedByItsName: ...
 context Sales inv is identified by its shop and date and
 time: ...
 context SaleLineItem inv is identified by the sale that
 contains it and the bought product item: ...
 context Sales inv contains only product items available
 at its shop: ...
 context ProductItem inv has a positive price: ...
 context SaleLineItem inv hasAPositiveQuantity: ...
 context NewSaleLineItem inv has a positive quantity: ...

OPERATION CONTRACTS
 context NewSaleLineItem::effect()
 pre the sale is not complete:
 not sales.isComplete
 pre there is enough stock:
 quantity >= productItem.quantityOnHand
 post a sale line item has been created:
 sli.oclIsNew() and sli.oclIsTypeOf(SaleLineItem)
 and sli.quantity := quantity
 post the quantity on hand has decreased in quantity:
 productItem.quantityOnHand :=
 productItem.quantityOnHand@pre - quantity

*

*

1

References*

1
Has

*

*

0..1

1
 Ends

*

1
Involves

*

1

 Buys

Fig. 1. Example of a conceptual schema with some names violating their guidelines

1 lower(N) is a function that gives N in lower case and using blanks as delimiters.
2 withOrNeg(A) extends A with the insertion of the negative form of the verb of A.

Eclipse Plugin for Validating Names in UML Schemas 325

Figure 1 shows an example where some names, which are highlighted, violate
their naming guidelines. The next section describes how to use the developed
Eclipse plugin to detect those errors.

3 Naming Validation Plugin for Eclipse

Eclipse is an open, extensible development environment (IDE) written in Java.
It is a small kernel with a plugin loader surrounded by hundreds of plugins [4].
Eclipse, in combination with the UML2Tools plugin, can manage UML files and
permits modelers to define conceptual schemas.

We conceived our tool as an Eclipse plugin that extends the UML2Tools
framework by adding two main functionalities. The first one checks if the names
of the schema follow the grammatical form defined in their corresponding guide-
lines. The second functionality verbalizes the schema in a document.

Fig. 2. Screenshot of Eclipse showing those names that violate their guidelines

Figure 2 shows a screenshot of the first functionality in action. By selecting
the Package and then clicking on menu Verbalize � Check Names, our tool
checks the whole conceptual schema looking for errors. If the modeler selected a
few elements instead of the package, only those elements are checked instead of

Fig. 3. Screenshot of the configuration window

326 D. Aguilera et al.

the whole schema. If one or more names are incorrect, the errors are shown in a
new Eclipse view.

The second functionality introduces schema verbalization. Our tool generates
a PDF file containing the pattern sentences defined in the naming guidelines
and the names of the selected elements. Some aspects of the resulting document
can be configured by using the configuration window shown in Fig. 3. In order
to generate the document, the modeler has to click on Verbalize � Verbalize.
Figure 4 shows the verbalization of the schema of Fig. 1 after correcting the
errors previously detected. Then, the modeler or a domain expert may check
the document and detect whether the generated sentences are grammatically
well-formed and semantically meaningful.

Fig. 4. Screenshot of the resulting document with the schema verbalization

Acknowledgements. Our thanks to the people in the GMC research group. This

work has been partly supported by the Ministerio de Ciencia y Tecnoloǵıa un-

der TIN2008-00444 project, Grupo Consolidado, and by BarcelonaTech – Universitat

Politècnica de Catalunya, under FPI-UPC program.

References

1. Aguilera, D., Gómez, C., Olivé, A.: A complete set of guidelines for naming UML
conceptual schema elements (submitted for publication, 2011)

2. ArgoUML: ArgoUML, http://argouml.tigris.org
3. Chen, P.: English sentence structure and entity-relationship diagrams. Inf. Sci.

29(2-3), 127–149 (1983)
4. Clayberg, E., Rubel, D.: Eclipse Plug-ins. Addison-Wesley, Reading (2008)
5. Deissenboeck, F., Pizka, M.: Concise and consistent naming. Softw. Qual. Con-

trol 14, 261–282 (2006)

http://argouml.tigris.org

Eclipse Plugin for Validating Names in UML Schemas 327

6. Meyer, B.: Reusable Software: the Base object-oriented component libraries.
Prentice-Hall, Englewood Cliffs (1994)

7. Meziane, F., Athanasakis, N., Ananiadou, S.: Generating natural language specifi-
cations from UML class diagrams. Requir. Eng. 13(1), 1–18 (2008)

8. Rumbaugh, J., Blaha, M., Premerlani, W., Eddy, F., Lorensen, W.: Object-oriented
modeling and design. Prentice-Hall, Englewood Cliffs (1991)

	An Eclipse Plugin for Validating Names in UML Conceptual Schemas
	Introduction
	Overview of the Naming Guidelines
	Naming Validation Plugin for Eclipse
	References

