
Contract-Based Verification of Simulink Models�

Pontus Boström

Department of Information Technologies, Åbo Akademi University,
Joukahaisenkatu 3-5, 20520 Turku, Finland

pontus.bostrom@abo.fi

Abstract. This paper presents an approach to compositional contract-
based verification of Simulink models. The verification approach uses
Synchronous Data Flow (SDF) graphs as a formalism to obtain sequen-
tial program statements that can then be analysed using traditional
refinement-based verification techniques. Automatic generation of the
proof obligations needed for verification of correctness with respect to
contracts, as well as automatic proofs are also discussed.

1 Introduction

Model-based design has become a widely used design method to create embedded
control software. In this approach, the controller is developed together with
a simulation model of the plant to be controlled. This enables simulation of
the complete system and thereby some degree of evaluation and testing of the
controller without using a prototype. One of the most popular tools for model-
based design of control systems is Simulink [17].

Simulink has a user-friendly graphical modelling notation based on data flow
diagrams, as well as good simulation tools for testing and validating controllers
together with models of the controlled plant. The complexity of control systems
is increasing rapidly as more functionality in many applications, such as anti-
locking brakes and fuel-injection systems, is implemented in software. As the
systems become more complex, the size of the Simulink models used in their
design also quickly grows. Hence, there is a continuing need to better manage
the complexity of models. Since control systems also often have high reliability
requirements, there is also a need to analyse the models for correctness. One
approach that we have explored to address the problems above is to use contracts
to aid the decomposition of models into smaller parts with well defined interfaces
and to aid the analysis of those parts and their interaction for correctness.

The aim of this paper is to propose a new compositional technique for veri-
fying functional correctness of Simulink models with respect to contracts. Con-
tracts here refer to pre- and postconditions for programs or program fragments.
Contract-based design has become a popular method for object-oriented soft-
ware development [18,11,6]. This suggests contracts could be useful for Simulink
data flow diagrams also. Furthermore, the interaction between components in

� Work done in the EFFIMA program coordinated by Fimecc.

S. Qin and Z. Qiu (Eds.): ICFEM 2011, LNCS 6991, pp. 291–306, 2011.
c© Springer-Verlag Berlin Heidelberg 2011

292 P. Boström

Simulink data flow diagrams is simpler than between objects in object-oriented
systems, which means that automated formal verification can potentially be eas-
ier to do.

We have earlier developed contracts and contract-based verification methods
for Simulink models [9,10,7]. Here we give more expressive contracts, similar
in expressiveness to the contracts for reactive components in [16]. In addition
features in [9,10,7], the contracts here can model internal state of components
and relate it to the concrete state used in the Simulink diagrams. A new com-
positional method to verify correctness of Simulink models with respect to these
contracts is also given. The formal analysis methods for Simulink models with
contracts are based on translating the models to functionally equivalent sequen-
tial statements that can be analysed by traditional, refinement-based, techniques
[1,3,4]. To obtain the sequential program statements, Simulink diagrams are
viewed as synchronous data flow (SDF) graphs [15,14]. The benefit of using SDF
graphs compared to the more ad-hoc approach in [9,10,7] is that the mapping of
these data flow graphs to the sequential programs used in the analysis has been
thoroughly studied. The approach is supported by a tool [8] that can automati-
cally verify that Simulink models satisfy their contracts. Contract-based design
in Simulink has been applied to larger examples [9,7]. The contracts were found
to be useful both when structuring the system and for verification.

The paper starts with an overview of Simulink, as well as the proposed con-
tract format. Then SDF graphs are presented with the translation procedure to
the sequential programming notation used for analysis. This is followed by dis-
cussion of translation correctness. Representation of Simulink diagrams as SDF
graphs is then discussed, followed by a presentation of methods for analysis of
correctness with respect to contracts, as well as tool support. To illustrate the
approach, contract-based verification is used on a small example.

2 Simulink

The language used to create models in Simulink is based on hierarchical data flow
diagrams [17]. A Simulink diagram consists of functional blocks connected by
signals (wires). The blocks represent transformations of data, while the signals
give the flow of data between blocks. The blocks have in- and out-ports that
act as connection points for signals. The in-ports provide data to the blocks,
while the out-ports provide the results computed by the blocks. Blocks can be
parameterised with parameters that are set before model execution and remain
constant during the execution. Blocks can also contain memory. Hence, their
behaviour does not only depend on the current values on the in-ports and the
parameter values, but also on previous in-port values.

Here only discrete Simulink models with one rate are considered. This means
that a model is evaluated periodically with a given sampling rate. At each sam-
pling instant, all blocks in the diagram are evaluated in the order given by the
signals between them. The models are also assumed to be non-terminating, which
is a common assumption for control systems.

Contract-Based Verification of Simulink Models 293

TLC

timeout

light1

light2

(a) light2
2

light1
1

LS2

timeout light

LS1

timeout light

timeout
1

(b)

light

1

ls

z

1

Switch1 Logical
Operator

NOT
timeout

1

(c)

Fig. 1. (a) A subsystem that contains a simple traffic light controller, (b) its contents
consisting of two individual light controllers and (c) the individual light controllers

In its most general form, a discrete Simulink block b contains a list of in-ports
u, a list of out-ports y, parameters c and a state vector (internal memory) x [17].
The behaviour of the block is given by the difference equation in (1).

y.k = f.c.(x.k).(u.k)
x.(k + 1) = g.c.(x.k).(u.k)

(1)

Here f denotes the function that updates the out-ports y at sample k and g
the function that updates the state x. Consider, e.g., the Logical Operator-block
and the Unit Delay-block (marked by 1/z) in Fig. 1 (c). In this case the Logical
Operator-block negates the input, while a Unit Delay-block delays the input
with one sampling time. The behaviour of the Logical Operator-block is then
given by the equation y.k = ¬u.k. Note that this block has no internal state. A
Unit Delay-block then has the behaviour given as y.k = x.k ∧ x.(k + 1) = u.k.
Information about other blocks can be found in the Simulink documentation [17].
The diagrams can also be hierarchically structured using the notion of subsystem
blocks, which are blocks that themselves contain diagrams.

To illustrate the use of Simulink, a small example that consists of a controller
for a simplified traffic light system is given. The system consists of two lights that
can be either green (true) or red (false). However, both lights should not be green
at the same time. When a timeout signal has the value true, the lights change.
The subsystem block TLC in Fig. 1 (a) contains the traffic light controller. A
new light configuration is computed separately for each light by the subsystems
LS1 and LS2 (Fig. 1 (b)) at each sampling instant. Both lights are switched in
case timeout is true otherwise they retain their values (Fig. 1 (c)).

3 Contracts in Simulink

Simulink diagrams for advanced control systems can contain thousands of blocks.
For example, in the system discussed in [9], the controller contains more than
4000 blocks. To effectively manage the complexity of such large models, there is
a need to better make explicit the division of responsibility between subsystems.
To make verification scalable, it is also useful to reason about the interaction
between subsystems at a higher level of abstraction than their detailed content,
which often consist of deep hierarchies of diagrams containing hundreds of blocks.

294 P. Boström

contract :
parameters : (c : t)+
inports : (u : t)+
outports : (y : t)+
memory : (x : t)+
paramcondition : Qparam

precondition : Qpre

postcondition : Qpost

initicondition : Qinit

postconditionm : Qpostm

refrel : Qrefrel

end

contract :
inports :
timeout : boolean
outports :
light1 : boolean ;
light2 : boolean
memory :
s : boolean

postcondition :
∼ light1 || ∼ light2

postconditionm :
s′ == if timeout then ∼s

else s end
initcondition :
s == false
refrel :
s == v.(LS1/ls) &&
v.(LS2/ls) ∼= v.(LS1/ls)
end

(a) (b)

Fig. 2. (a) The abstract syntax of contracts and (b) an example contract that describes
the traffic light controller subsystem

Our proposed solution to the problems above is to use contracts to describe
subsystems. This enables verifying subsystem hierarchies one layer at the time,
where each layer relies on the contract descriptions of the subsystems in the layer
below. The contracts are mainly intended for expressing properties of control
logic. System level properties such as, e.g. stability and performance, are best
handled by other means.

An (atomic) subsystem can essentially be considered to be a block of the
form in (1), where the internal diagram implements f and g and the state x is
provided by the memories of the blocks inside the subsystem. A contract contains
conditions to describe this type of behaviour. Our proposed contracts have the
abstract syntax given in Fig. 2 (a). There c, u, y and x are identifiers, t is a type
in the set {double, int, boolean}, z+ denotes one or more occurrences of z and Q
denotes a predicate. The contract first declares the parameters, in- and out-ports
of the subsystem, as well as internal state (specification) variables. These are all
given as lists of identifier-type pairs. The behaviour of the subsystem is described
by a set of conditions. Here Qparam describes the block parameters used in
the subsystem, Qinit describes the initial values of the variables x, Qpre is the
precondition, Qpost is the postcondition constricting the out-ports and Qpostm

the postcondition constricting the new values x′ of x. The specification variables
in the contracts give an abstract view of the block memories inside the subsystem.
The block memories in turn represent the concrete state of the Simulink model.
The condition Qrefrel is then used to describe how the specification variables
relate to block memories. In order to refer to block memories in the internal
diagram, we use a naming scheme based on block naming policy in Simulink
[8]. The contracts here have a similar structure and describe the same type of
behaviour as the ones for reactive components in [16].

To give an idea of how contracts can be used, a contract describing the
functionality of the traffic light system from Section 2 is given in Fig. 2 (b).
A specification variable s is used to model the state of the first light. The

Contract-Based Verification of Simulink Models 295

initialisation of this light is here assumed to be red (false). The postconditions
then encode the desired behaviour of the controller. Both lights should not be
green (true) at the same time. Note that for brevity the postcondition does not
consider that the output depends on s. The refinement relation then describes
how the memory in the Unit delay-blocks in the subsystems LS1 and LS2 relate
to s. Here a function v is used to map block memories to variable identifiers.
This mapping is discussed more in Section 6. The concrete syntax used in the
contract conditions is inspired by the syntax of Matlab expressions [8].

4 Synchronous Data Flow Graphs

The goal is to verify functional correctness of Simulink models with respect
to contracts. Program analysis for sequential programs have been studied ex-
tensively, e.g., [3,4]. To reuse this work, we translate the Simulink diagrams
to functionally equivalent sequential programs. Furthermore, this allows us to
also handle imperative constructs from Matlab, which are often used in con-
junction with Simulink. To obtain such sequential programs from Simulink dia-
grams, we represent the diagrams as synchronous data flow (SDF) graphs [15,14]
since compilation of such graphs to sequential or parallel code has been studied
extensively.

A data flow program is described by a directed graph where data flows be-
tween nodes along the edges. Synchronous data flow programs are a special case
where the communication between nodes is synchronous, i.e., the size of the
communication buffers is known in advance. The paradigm in [15,14] is intended
for heterogenous systems where the nodes can be implemented either by other
data flow graphs or in some other programming notation. A node can produce a
new value on its outgoing edges when data is available on all incoming edges. A
node with no incoming edges can fire at any time. Nodes have to be side-effect
free. The data flow graphs presented here are used for sampled signal processing
systems, i.e., the nodes in the diagrams are executed periodically with a fixed
sampling rate. Furthermore, the SDF programs are never supposed to terminate.

We use a similar notation as in [15,14] to describe our synchronous data flow
graphs. An example is given in Fig. 3. The program computes the (exponential)
moving average v of the input u over time, v.k = aw.k + (1 − a)D.v.k. Here
D.v.k denotes the delay of v with one sampling time, D.v.k = v.(k − 1).

Each node is labelled with the in- and out-port names, as well as the update
statement inside the node that describes how the out-ports are modified each
time the node is executed. The triangle shaped nodes are input or output nodes.
They are used to model input and output of data from outside of the graph.
The input blocks are assumed to always have data available [15]. The number
n on an edge adjacent to the source node denotes that the node will output n
pieces of data, while the number m near the destination node denotes that the
block will read m pieces of data when it fires. This gives a convenient way to also
handle multi-rate data flow networks. Since we only consider single-rate graphs
here, n and m are always 1. The D on an edge denotes that the edge delays the
data by one sampling time. Each delay also has an identifier, here d.

296 P. Boström

u y1 1
u1

u2
y:=u1+u2 y

1

y:=(1−a)*u
y

11 1
u

1

1

1
u

y

source sinksumgain1

gain2

y:=w v:=u

D − d

y:=a*u

Fig. 3. Example of a simple SDF program

The nodes in the SDF graph can be statically scheduled to obtain sequential
or parallel programs [15]. Here we will only present the algorithm [15] for obtain-
ing a minimal periodic admissible sequential schedule (PASS), which represents
the shortest repeating sequential program. To describe the scheduling, we first
construct a topology matrix for the SDF graph. This matrix describes how the
data availability on the edges change during the execution of the graph. As an
example, consider the graph G in Fig. 3. We first number the nodes using a
function nn and edges using ne according to:

nn.source = 1
nn.gain1 = 2
nn.sum = 3
nn.gain2 = 4
nn.sink = 5

and

ne.(source, gain1) = 1
ne.(gain1, sum) = 2
ne.(gain2, sum) = 3
ne.(sum, gain2) = 4
ne.(sum, sink) = 5

The element (ne.e, nn.n) of the topology matrix Γ for G in Fig. 3 then describes
how many data items node n produces on edge e when it fires.

Γ =

⎡
⎢⎢⎢⎣

1 −1 0 0 0
0 1 −1 0 0
0 0 −1 1 0
0 0 1 −1 0
0 0 1 0 −1

⎤
⎥⎥⎥⎦ (2)

The node n run at step k is specified with a vector v.k that contains 1 in the
position given by the number nn.n and 0 elsewhere. For example, if the node
source is run then v.k is v.k =

[
1 0 0 0 0

]T . Using the vector v.k for the node
executed at step k, the amount of data on the edges at step k + 1, b.(k + 1), is
now given as:

b.(k + 1) = b.k + Γv.k (3)

The change to the buffers is given as the product of the topology matrix and the
current v.k. The initial amount of data on an edge is given by the number of de-
lays on the edge. For the graph G, the initial state is given by b.0 =

[
0 0 0 1 0

]T .
The vectors q in the null-space1 of Γ then give the number of times the nodes
can be executed in order to return the buffers to the initial state.

b.0 = b.0 + Γq (4)
1 The null-space of a matrix A is the set of all vectors q, such that Aq = 0.

Contract-Based Verification of Simulink Models 297

In case the graph is schedulable, the least [15], non-zero, integer vector in the
null-space of Γ gives the number of times each node is executed in the minimal
PASS. This gives an algorithm for scheduling the nodes.

1. Find the smallest integer vector q in the null-space of Γ
2. Construct a set S of all nodes in the graph
3. For each α ∈ S, schedule α if it is runnable and then update the state b.(k+1)

in (3) according to v for α. A node is runnable if it has not yet been run qα

times and if execution of α does not make any bi.(k + 1) in (3) negative.
4. If each node α is scheduled qα times, then stop
5. If no node in S can be scheduled, return error else go to step 3.

5 The Sequential Language

The computation inside nodes is described with a simple imperative program-
ming language. This language is also the target language when translating the
SDF graph to a sequential program. The focus is here on verification and a
language designed for this purpose is therefore used [3].

Since the analysis methods are based on the refinement calculus [3], a short
introduction is needed. Each program statement is a predicate transformer from
predicates on the output state space to predicates on the input state space. A
predicate transformer S applied to a predicate q gives the weakest predicate
describing the states from where S is guaranteed to establish q. The syntax of
the statement language is given as:

S ::= x := E (Assignment) |
[g] (Assumption) |
{g} (Assertion) |

x : |P (Non − deterministic assignment) |
S1; S2 (Sequential composition) |
S1 � S2 (Non − deterministic choice)

(5)

Here x is a list of variables, E a list of expressions, while g and P are predicates.
For an arbitrary postcondition q we have that:

(x := E).q = q[x/E]
[g] .q = g ⇒ q
{g}.q = g ∧ q

x : |P (x, x′).q = ∀x′ · P (x, x′) ⇒ q[x/x′]
(S1; S2).q = S1.(S2.q)
(S1 � S2).q = S1.q ∧ S2.q

(6)

Each statement is thus a predicate transformer that transforms a post-condition
q into the weakest precondition for the statement to establish condition q. A
statement S terminates properly, if it is executed in a state where it can reach the
weakest post-condition true. These states are described by the condition S.true,
which is referred to as the termination guard of S, t.S =̂ S.true. In states where
S.true does not hold the statement is said to abort. A statement S is said to
behave miraculously, if executed in a state where S.false holds. The statement
S can then establish any post-condition. The condition that describes the states
where S will not behave miraculously is called the guard of S, g.S =̂ ¬S.false . All
statements in (5) are monotonic [3]. A statement S is monotonic, if it preserves
the ordering given by implication: S.q ⇒ S.p, if q ⇒ p.

298 P. Boström

A refinement relation � can be defined for the predicate transformers: S �
R =̂ ∀q ·S.q ⇒ R.q. This relation states that if S can establish a postcondition
q, then q can also be established by R. Since all statements are monotonic,
refinement of an individual statement in a program leads to the refinement of
the whole program [3]. We can also introduce the concept of data refinement.
Data refinement is used when two programs do not necessarily work on the
same state-space and we like to prove that one refines the other. To prove the
refinement, we use a decoding statement Δ that maps the concrete state space
to the abstract state space [1,4]. Data refinement of S by R under decoding Δ,
S �Δ R, is defined as: S �Δ R =̂ Δ; S � R; Δ. The decoding Δ is normally
assumed to have the form Δ =̂ {+a− c|Q} [1], where {+a− c|Q} denotes non-
deterministic angelic assignment that removes the concrete variables c from the
state space and adds the abstract variables a to the state space in manner such
that Q relates a and c [1]. An angelic relational assignment statement has the
semantics: {+a− c|Q}.q = ∃a′ · Q[a/a′] ∧ q[a/a′] (see [1,4]).

Due to the quantification over predicates, the formulation of refinement above
is not very convenient to use. We here use a condition that allows generation of
proof obligations for refinement in first order logic when the abstract statement
has a specific format, S = {g}; a, z : |P . Using Δ = {+a− c|Q}, rule (7) can be
used to prove S �Δ R, see [1].

Q ∧ g ∧ z, a = z0, a0 ⇒ R.(∃a′ · Q[a/a′] ∧ P [a, a′, z, z′/a0, a
′, z0, z]) (7)

Here a again denotes the abstract variables, c denotes the concrete variables and
z common variables. The intuition is that if the precondition g holds in the ab-
stract initial state then the concrete statement R will reach a state corresponding
to an abstract state reachable by a, z : |P .

Simulink is used to develop control systems, where the interaction of pro-
grams with their environment rather than their input-output behaviour is im-
portant. Hence, we are here interested in reactive systems. Consider two sys-
tems constructed from iteration of statements S and S′, init;do S od and
init′;do S′ do . The behaviour of the systems can then be defined by the traces
of the observable states generated during execution [2]. Data refinement can be
used to show trace refinement [2], init;do S od �tr init′;do S′ do , between
the two systems if they have the same observable state. Hence, that all traces
generated by the concrete system can also be generated by the abstract system.
Assume we have a decoding statement Δ that states how the unobservable state
of the two systems relate. It is then sufficient to prove [2]: Δ; init � init′; Δ
and Δ; S � S′; Δ if S′ is strict, g.S = true. This provides a mechanism to prove
correctness of the system over all executions by only analysing the iterated state-
ments. Note also that the decoding statement can be used to provide essentially
a loop invariant on the observable and concrete state, see (7).

6 Translation of SDF Graphs

An SDF graph can be translated to a functionally equivalent sequential program
by utilising the scheduling in Section 4. Here we will only consider single-rate

Contract-Based Verification of Simulink Models 299

Simulink models. Hence, in the systems we consider all data-rates are one and
there is also at most one delay on each edge. First we need to introduce the
buffers needed for the communication between the nodes. In principle the com-
munication is handled through FIFO-buffers [14]. However, to make the proof
obligations simpler, we would like to have static buffers (shared variables). Due
to the restrictions on delays and data rates, static buffering is straightforward
to implement. All ports and delays are first translated as variables.

Definition 1. Let the function v be an injective function from node and port or
delay to variable identifier. Then v.n.p maps a node n and port p to a unique
identifier, while v.d then maps a delay d to a unique variable identifier.

Using the unique variable identifiers, an SDF graph can be translated to a state-
ment in the imperative programming language in (5).

Definition 2. Let trans be a function from an SDF graph to a sequential state-
ment. The translation trans.G of SDF graph G is obtained as follows:

1. For each node n in G: Each out-port p in n is translated to a unique variable
v.n.p. Each unconnected in-port p in n is also translated to a unique variable
v.n.p.

2. Each delay d is also translated to a unique variable v.d.
3. The sequential statements from the nodes in G are scheduled according to

the algorithm in Section 4.
4. For each delay d on an edge e an update statement v.d := v.n.p, where v.d is

the variable obtained from d and port p in n is the source port of e, is added
after the statements from the source and destination nodes of e.

Since we only consider a special case in this paper, the data is handled as if FIFO-
buffers were used. If there is no delay on an edge, then the required buffer size
is one, since for each data element produced on the edge one will be consumed.
The variable obtained from the out-port then corresponds directly to a buffer
with one element. In case there is one delay on an edge the required buffer size
is two, since both the delayed value and the value produced by the source node
have to fit into the buffer. In this case the delay variable corresponds to the
head of the buffer and the variable obtained from the out-port in the source
node corresponds to the tail element. Fig. 4 illustrates this situation.

Consider the SDF graph G in Fig. 3. This graph is translated to the sequential
statement trans.G given below:

trans.G =̂ v.source.y := v.G.w;
v.gain1.y := a ∗ v.source.y;
v.gain2.y := (1 − a) ∗ v.d;
v.sum.y := v.gain1.y + v.gain2.y;
v.d := v.sum.y;
v.G.v := v.sum.y

(8)

The statements are obtained from the nodes and scheduled according to Defini-
tion 2. Here we assume that w and v in the in and out nodes are ports of a node

300 P. Boström

n m

u uy y

D − d

v.n.y v.d

n m

v.n.y

(a) (b)

Fig. 4. (a) The buffer of an edge from n to m without a delay and (b) the buffer of an
edge with one delay d

G that contains the graph. Note that we have directly replaced every in-port
with the out-port variable or delay variable it is connected to.

We can now give a semantics to complete SDF graphs [8], i.e., graphs with
no unconnected inputs. The semantics of a complete SDF graph G is here given
by the traces of observable behaviour of the system obtained from the minimal
PASS, init;do trans.G od . Hence, we can observe the state between repetitions
of shortest repeating program statement. This semantics has been chosen to
match the semantics of discrete single-rate Simulink, where at each sampling
instant the entire model is evaluated.

6.1 Correctness of the Translation

A minimal PASS obtained with the algorithm in Section 4 is not necessarily
unique. In order for the translation from SDF graph to sequential statement to be
correct, all minimal PASS for the same graph should yield functionally equivalent
statements. Different schedules can only be created during scheduling if several
nodes are runnable at the same time, i.e., the nodes are independent. Changing
the order in which the nodes are chosen then corresponds to swapping the nodes
in the resulting schedule. We can thus generate all possible minimal schedules
by repeated pairwise swapping of independent nodes. In order to transform a
minimal PASS into any other, we then have to show that for any two statements
S1 and S2 obtained from two independent nodes, S1; S2 = S2; S1. This does not
hold in general even though statements from independent nodes use disjoint sets
of variables. Consider for example S1 = {false} and S2 = [false]. However,
we have that {g.(S1; S2)}; S1; S2 = {g.(S2; S1)}; S2; S1. Thus for two statements
T1 and T2 obtained from two different PASS for the same SDF graph we have:
{g.T1}; T1 = {g.T2}; T2. Note that when we have a deterministic program T then
it is non-miraculous [3], i.e., g.T = true

7 SDF Graph Representation of Simulink Models

To give a semantics to Simulink models, they are mapped to SDF graphs. Dis-
crete Simulink models consist of graphical data flow diagrams, which are similar
to SDF graphs. However, a Simulink block is not exactly the same as a node in
the SDF notation. In this section we present how to map the most fundamental
blocks to their corresponding SDF representation.

Contract-Based Verification of Simulink Models 301

Simulink: y(k)=f(x(k),u(k))

x(k+1)=g(x(k),u(k))
z

1

SDF:

1

1

1

D

u
x’

x’:=g(u,x)

y
x

x

y:=f(u,x)u

1

1

x:=u

y:=x

x

x
y

u

D
u2
u1

y:=u1+u2 y

(a) (b) (c)

Fig. 5. The SDF representation of (a) a general Simulink block, (b) a Unit delay-block
and (c) a Sum-block

7.1 Mapping Simulink Blocks to Nodes

We can differentiate between the following important Simulink blocks: Func-
tional blocks, In and out blocks and Subsystem blocks.

Functional blocks. These blocks in the Simulink library directly encapsulates a
difference equation. Consider again a Simulink block with the general form in
(1). The implementation of the block as an SDF graph is shown in Fig. 5 (a). The
behaviour of the block is described by two equations, which are not necessarily
executed together. All Simulink functional blocks are then special cases of this
general pattern: consider, e.g., the Unit delay-block and the Sum-block shown
with their SDF representations in Fig. 5 (b) and (c), respectively. Note that we
here only consider Simulink blocks that do not have side effects.

In and out blocks. These blocks are used to obtain inputs from in-ports of the
containing subsystem, as well as export values to the out-ports. In and out blocks
correspond to in and out nodes in the SDF graphs.

Subsystem blocks. Subsystem blocks that are used for structuring Simulink dia-
grams. The diagrams are structured using virtual and atomic subsystem blocks.
Virtual subsystems are only used to syntactically group different blocks together
and they do not have any affect on the behaviour of the Simulink models. Since
execution of blocks from two virtual subsystems might have to be interleaved,
we cannot translate virtual subsystem blocks individually and then compose
the result. To handle this problem, the virtual subsystem hierarchy is flattened
during the translation of the diagrams. This flattening might lead to scalability
problems in the verification, and atomic subsystems should be preferred instead.
The atomic subsystems are mapped to SDF nodes themselves. The content of an
atomic subsystem is translated recursively to an SDF graph, which then become
the content of the SDF node corresponding to the subsystem. Consider an atomic
subsystem S with in-ports u and out-ports y in Fig. 6. Its SDF representation
(denoted sdf.S) is obtained by recursively translating its content.

302 P. Boström

S

u y
y
1

R

v x
u
1

yu sdf.S x
111

v
1

sdf.R

u y

(a) (b)

Fig. 6. (a) A Simulink atomic subsystem S and the corresponding SDF node and (b)
the contents of S and its corresponding SDF representation

u y

D

1

1

1 1 1

1

1
1 1

x’ 1
u x

y

w N v

M

y:=w u v:=u

x′ : |Qpostm

y : |QpostQparam ∧ Qpre

Fig. 7. SDF graph obtained from the contract specification of an atomic subsystem

7.2 Mapping a Subsystem Contract Description to an SDF Graph

One goal of the method given in this paper is to use the contract descriptions of
(atomic) subsystems as abstractions of the subsystem behaviours when analysing
models. From the contract description we can directly obtain the most abstract
statement that satisfies the contract. The most abstract statement that satisfies
a specification concerning variables x with precondition Qpre and a postcondition
Qpost, is {Qpre}; x : |Qpost, see [3].

Assume we have subsystem S in Fig. 6 (a), which is described by the contract
C in Fig. 2 (a). We then get the SDF graph representation, sdf.C, shown in
Fig. 7 for the contract. This is the most abstract description of S that can be
used when analysing models where the subsystem is used. Note that this is very
similar to the translation of the general Simulink block in Fig. 5 (a). The reason
is that the contract gives an abstract description of the same type of behaviour.

A functionally equivalent sequential program statement trans.(sdf.C) can now
be obtained. This is again done using the translation procedure in Definition 2.

trans.(sdf.C)] =̂ v.w.y := v.S.w; {Qparam[u/v.w.y] ∧ Qpre[u/v.w.y]};
v.N.y : |Qpost[x, u, y/v.d, v.w.y, v.N.y]; v.S.v := v.N.y;
v.M.x′ : |Qpostm[x, u, x′/v.d, v.w.y, v.M.x′′]; v.d := v.M.x′

(9)

As in (8), references to the inports are directly substituted by the variable ob-
tained from the connected outport or delay. Note that again the variables w and
v in the in and out nodes are considered ports in the containing subsystem S.

Contract-Based Verification of Simulink Models 303

8 Verification with Respect to Contracts

In order to do compositional verification of Simulink models, we need to show
that the use of a subsystem implementation instead of its contract description
(Fig. 7) preserves the behaviour, i.e. refines, the complete system. Assume we
have a Simulink model M containing an atomic subsystem M with contract C.
The semantics of the Simulink model is given by the translation to sequential
statements. The abstract statement obtained from the model M where M is used
can be written as trans.(sdf.M) =̂ S1; trans.(sdf.C)[v.M.pi/v.(conn.pi)]; S2. The
concrete statement is then given as trans.(sdf.M′) =̂ S1; trans.(sdf.M)[v.M.pi/
v.(conn.pi)]; S2. In the complete translation all connected in-ports of M are re-
placed by the port or block memory they are connected to (see Section 6).
This is here denoted with the substitution [v.M.pi/v.(conn.pi)], where pi are in-
ports of subsystem M and conn.pi denotes the out-ports or delays those ports
are connected to. According to Section 5, in order to prove trace refinement
init;do trans.(sdf.M) od �tr init′;do trans.(sdf.M′) od it is sufficient to
prove data refinement of the initialisation and the statement inside the loop.
The observable state is considered to be all variables except the ones internal to
subsystem M and contract C. For the statement we thus need to prove:

Δ; S1; trans.(sdf.C)[v.M.pi/v.(conn.pi)]; S2

� S1; trans.(sdf.M)[v.M.pi/v.(conn.pi)]; S2; Δ
(10)

Since the refinement only concerns the internals of M , the decoding Δ refers only
to the internal variables of trans.(sdf.C) and trans.(sdf.M). Here it has the form
Δ =̂ {−v.bn.pn, v.dn + v.x, v.bo.po|Qrefrel}, where pn denotes the new out-ports,
po denotes old out-ports, dn denotes new delays obtained from Simulink block
memories and x denotes specification variables in contract C. Recall that Qrefrel

(see Fig. 2 (b)) is a predicate that relates the specification variables in contract
C with the block memories and specification variables in the diagram inside M .

Since the variables of Δ and S1, as well as Δ and S2 are disjoint, we have that
Δ; S1 � S1; Δ and Δ; S2 � S2; Δ. To prove (10) we then need to show that:

Δ; trans.(sdf.C) � trans.(sdf.M); Δ (11)

Proof.

Δ; S1; trans.(sdf.C)[v.M.pi/v.(conn.pi)]; S2

� {Assumption above}
S1; Δ; trans.(sdf.C)[v.M.pi/v.(conn.pi)]; S2

= {v.M.pi, v.(conn.pi) not free in Δ}
S1; (Δ; trans.(sdf .C))[v.M.pi/v.(conn.pi)]; S2

� {Assumption (11) and v.(conn.pi) not free in trans.(sdf.M)}
S1; (trans.(sdf.M); Δ)[v.M.pi/v.(conn.pi)]; S2

= {v.M.pi, v.(conn.pi) not free in Δ}
S1; trans.(sdf .M); [v.M.pi/v.(conn.pi)]; Δ; S2

� {Assumption above}
S1; trans.(sdf .M)[v.M.pi/v.(conn.pi)]; S2; Δ

�	

304 P. Boström

Note also that if all subsystems are implemented as deterministic diagrams,
then the corresponding statements do not behave miraculously [3]. The SDF
graph obtained from the Simulink model is thus non-terminating, which is the
requirement for correct translation stated in Subsection 6.1.

8.1 Tool Support

Prototype tool support for this approach has been developed [8]. The tool takes a
Simulink model annotated by contracts written down as text in the Description-
field of the subsystems as argument. The tool then automatically checks that
each atomic subsystem (with a contract) satisfies its contract using the approach
described in this paper. Currently the tool supports virtual, atomic and enabled
subsystems, a wide variety of mathematical and logical blocks, delay and memory
blocks, as well as switch blocks. However, this list of handled Simulink constructs
is expanding. To prove (11), the final proof obligation is after simplifcations gen-
erated using formula (7). To increase scalability when verifying that a subsystem
conforms to its contract, the verification tool uses the abstractions given by the
contract descriptions of the subsystems at lower levels in the subsystem hierar-
chy as discussed earlier. We have used the SMT solver Z3 [13] to automate the
proofs. The constructs that are supported (e.g. the types of arithmetic) and the
scalability of the verification is thus largely dependent on this tool.

8.2 Example of Subsystem Refinement

To give an example of the translation of Simulink models and the analysis meth-
ods, the simple traffic light controller from Section 2 is used. The subsystem,
TLC, implementing the controller is shown in Fig. 1 (a). The contract C associ-
ated with the subsystem is given in Fig. 2 (b). The contract specification of the
subsystem is translated to a sequential program statement as described in (9):

trans.(sdf.C) =̂
v.Timeout .y := v.TLC.timeout;
v.N .light1, v.N .light2 : |¬v.N .light1′ ∨ ¬v.N .light2′;
v.TLC .light1 := v.N .light1; v.TLC .light2 := v.N .light2;
v.M.s′ : |v.M.s′′ = if v.Timeout .y then ¬v.s else v.s end; v.s := v.M.s′

The statement above should then be refined by the translation of the diagram
inside the subsystem TLC, which is shown in Fig. 1 (b). One possible translation
of the diagram is then given as:

trans.(sdf .TLC) =̂ trans.(sdf.LS1)[v.LS1 .timeout/v.TLC .timeout];
trans.(sdf.LS2)[v.LS2 .timeout/v.TLC .timeout];
v.TLC .light1 := v.LS1.light;
v.TLC .light2 := v.LS2.light;

The translation proceeds recursively through subsystems LS1 and LS2. In case
they would have contracts, their contract description would be used in the trans-
lation. The block memories from the unit delay blocks in LS1 and LS2 relate to
the specification variable s as described by Qrefrel in Fig. 2 (b). The refinement
rule (11) for subsystem refinement leads to the condition:

Contract-Based Verification of Simulink Models 305

{−v.(LS1/ls), v.(LS2/ls), . . . + v.s, . . . |Qrefrel}; trans.(sdf.C)

� trans.(sdf.TLC); {−v.(LS1/ls), v.(LS2/ls), . . . + v.s, . . . |Qrefrel}
The tool we have developed [8] has been used to verify this refinement. When-
ever subsystem TLC is used in a model we can now use the simpler contract
description when analysing the rest of the model. Since we have property (10)
and we proved property (11) above, the behaviour of the complete model when
the internal diagram of the subsystem is used will refine the behaviour of the
model when contract description is used.

9 Conclusions

This paper presents one approach to automatically verify that Simulink models
satisfy contracts stating functional properties. The method is based on repre-
senting Simulink diagrams as SDF graphs to obtain a functionally equivalent
sequential program statements that can be analysed using traditional refinement-
based methods. This gives an approach to compositionally verify large models.
As a by-product, we also obtain a method for contract-based verification for any
SDF-based notation. The approach has also been implemented in a tool [8].

Other formalisations of Simulink supported by verification tools exist in Lustre
[19] and Circus [12]. However, these approaches do not consider compositional,
contract-based, verification. Contracts could be analysed in those frameworks
also, but our approach gives a convenient way to separately reason about both
pre- and post-conditions, as well as refinement. Our method can also easily han-
dle the imperative constructs from Matlab that are often used in conjunction
with Simulink, which would problematic in Lustre. The tool with the goals closest
to ours is Simulink Design Verifier (SLDV) [17]. This tool can verify that dis-
crete Simulink models satisfy properties given as special blocks in the diagrams.
However, it does not provide a method to systematically build correctness argu-
ments for large models as we do with contracts. SLDV verifies that from a given
initial state a state violating the given properties cannot be reached, while our
approach is an inductive argument stating that if we start from a state satisfying
the refinement relation the model will again end up in such a state and behave
according to the contract description. Furthermore, SDLV cannot handle non-
linear arithmetic, which Z3 can handle to some degree. This makes it limited for
verification of complex properties involving arithmetic. Its main focus is perhaps
also more on verifying control logic that involves Stateflow [17].

The work can extended in several directions. Multi-rate systems and more
of the Simulink modelling language should be considered. SDF graphs already
support multi-rate systems. However, the SDF multi-rate notion does not di-
rectly correspond to the one in Simulink. Boogie [5] should also be investigated
as a tool for automatic verification of the sequential statements obtained by our
translation process, since it is already a very mature tool for this purpose. As
a conclusion, SDF graphs in conjunction with the theory of refinement seem
to give a good basis for contract-based verification of Simulink models, since
mature automatic verification tools and techniques can be used.

306 P. Boström

References

1. Back, R.-J.R., von Wright, J.: Refinement calculus, part I: Sequential nondeter-
ministic programs. In: de Bakker, J.W., de Roever, W.-P., Rozenberg, G. (eds.)
REX 1989. LNCS, vol. 430, pp. 42–66. Springer, Heidelberg (1990)

2. Back, R.-J.R., von Wright, J.: Trace refinement of action systems. In: Jonsson, B.,
Parrow, J. (eds.) CONCUR 1994. LNCS, vol. 836, pp. 367–384. Springer, Heidel-
berg (1994)

3. Back, R.-J.R., von Wright, J.: Refinement Calculus: A Systematic Introduction.
Springer, Heidelberg (1998)

4. Back, R.-J.R., von Wright, J.: Encoding, decoding and data refinement. Formal
Aspects of Computing 12, 313–349 (2000)

5. Barnett, M., Chang, B.Y.E., Deline, R., Jacobs, B., Leino, K.R.M.: Boogie: A mod-
ular reusable verifier for object-oriented programs. In: de Boer, F.S., Bonsangue,
M.M., Graf, S., de Roever, W.-P. (eds.) FMCO 2005. LNCS, vol. 4111, pp. 364–387.
Springer, Heidelberg (2006)

6. Barnett, M., Fähndrich, M., Leino, K.R.M., Müller, P., Schulte, W., Venter, H.:
Specification and verification: The Spec# experience. Communications of the
ACM 54(6) (2011)

7. Boström, P.: Formal design and verification of systems using domain-specific lan-
guages. Ph.D. thesis, Åbo Akademi University (TUCS) (2008)

8. Boström, P., Grönblom, R., Huotari, T., Wiik, J.: An approach to contract-based
verification of Simulink models. Tech. Rep. 985, TUCS (2010)

9. Boström, P., Linjama, M., Morel, L., Siivonen, L., Waldén, M.: Design and val-
idation of digital controllers for hydraulics systems. In: The 10th Scandinavian
International Conference on Fluid Power, pp. 227–241 (2007)

10. Boström, P., Morel, L., Waldén, M.: Stepwise Development of Simulink Models
Using the Refinement Calculus Framework. In: Jones, C.B., Liu, Z., Woodcock, J.
(eds.) ICTAC 2007. LNCS, vol. 4711, pp. 79–93. Springer, Heidelberg (2007)

11. Burdy, L., Cheon, Y., Cok, D., Ernst, M., Kiniry, J., Leavens, G.T., Leino, K.R.M.,
Poll, E.: An overview of JML tools and applications. International Journal on
Software Tools for Technology Transfer 7(3), 212–232 (2005)

12. Cavalcanti, A., Clayton, P., O’Halloran, C.: Control law diagrams in circus. In:
Fitzgerald, J.S., Hayes, I.J., Tarlecki, A. (eds.) FM 2005. LNCS, vol. 3582, pp.
253–268. Springer, Heidelberg (2005)

13. de Moura, L., Bjørner, N.: Z3: An efficient SMT solver. In: Ramakrishnan, C.R.,
Rehof, J. (eds.) TACAS 2008. LNCS, vol. 4963, pp. 337–340. Springer, Heidelberg
(2008)

14. Lee, E.A., Messerschmitt, D.G.: Static scheduling of synchronous data flow pro-
grams for digital signal processing. IEEE Trans. on Computers C-36(1) (1987)

15. Lee, E.A., Messerschmitt, D.G.: Synchronous data flow. Proceedings of the
IEEE 75(9) (1987)

16. Maraninchi, F., Morel, L.: Logical-time contracts for reactive embedded compo-
nents. In: EUROMICRO 2004. IEEE Computer Society, Los Alamitos (2004)

17. Mathworks Inc.: Simulink (2010), http://www.mathworks.com
18. Meyer, B.: Object-Oriented Software Construction, 2nd edn. Prentice-Hall, Engle-

wood Cliffs (1997)
19. Tripakis, S., Sofronis, C., Caspi, P., Curic, A.: Translating discrete-time Simulink

to Lustre. ACM Trans. on Embedded Computing Systems 4(4), 779–818 (2005)

http://www.mathworks.com

	Contract-Based Verification of Simulink Models
	Introduction
	Simulink
	Contracts in Simulink
	Synchronous Data Flow Graphs
	The Sequential Language
	Translation of SDF Graphs
	Correctness of the Translation

	SDF Graph Representation of Simulink Models
	Mapping Simulink Blocks to Nodes
	Mapping a Subsystem Contract Description to an SDF Graph

	Verification with Respect to Contracts
	Tool Support
	Example of Subsystem Refinement

	Conclusions
	References

