

Lecture Notes in Computer Science 6991
Commenced Publication in 1973
Founding and Former Series Editors:
Gerhard Goos, Juris Hartmanis, and Jan van Leeuwen

Editorial Board

David Hutchison
Lancaster University, UK

Takeo Kanade
Carnegie Mellon University, Pittsburgh, PA, USA

Josef Kittler
University of Surrey, Guildford, UK

Jon M. Kleinberg
Cornell University, Ithaca, NY, USA

Alfred Kobsa
University of California, Irvine, CA, USA

Friedemann Mattern
ETH Zurich, Switzerland

John C. Mitchell
Stanford University, CA, USA

Moni Naor
Weizmann Institute of Science, Rehovot, Israel

Oscar Nierstrasz
University of Bern, Switzerland

C. Pandu Rangan
Indian Institute of Technology, Madras, India

Bernhard Steffen
TU Dortmund University, Germany

Madhu Sudan
Microsoft Research, Cambridge, MA, USA

Demetri Terzopoulos
University of California, Los Angeles, CA, USA

Doug Tygar
University of California, Berkeley, CA, USA

Gerhard Weikum
Max Planck Institute for Informatics, Saarbruecken, Germany

Shengchao Qin Zongyan Qiu (Eds.)

Formal Methods
and Software Engineering

13th International Conference
on Formal Engineering Methods, ICFEM 2011
Durham, UK, October 26-28, 2011
Proceedings

13

Volume Editors

Shengchao Qin
Teesside University
School of Computing
Borough Road
Middlesbrough
Tees Valley TS1 3BA, UK
E-mail: s.qin@tees.ac.uk

Zongyan Qiu
Peking University
School of Mathematical Sciences
Beijing, 100871, China
E-mail: zyqiu@pku.edu.cn

ISSN 0302-9743 e-ISSN 1611-3349
ISBN 978-3-642-24558-9 e-ISBN 978-3-642-24559-6
DOI 10.1007/978-3-642-24559-6
Springer Heidelberg Dordrecht London New York

Library of Congress Control Number: 2011937705

CR Subject Classification (1998): D.2.4, D.2, D.3, F.3, F.4.1, C.2

LNCS Sublibrary: SL 2 – Programming and Software Engineering

© Springer-Verlag Berlin Heidelberg 2011

This work is subject to copyright. All rights are reserved, whether the whole or part of the material is
concerned, specifically the rights of translation, reprinting, re-use of illustrations, recitation, broadcasting,
reproduction on microfilms or in any other way, and storage in data banks. Duplication of this publication
or parts thereof is permitted only under the provisions of the German Copyright Law of September 9, 1965,
in its current version, and permission for use must always be obtained from Springer. Violations are liable
to prosecution under the German Copyright Law.
The use of general descriptive names, registered names, trademarks, etc. in this publication does not imply,
even in the absence of a specific statement, that such names are exempt from the relevant protective laws
and regulations and therefore free for general use.

Typesetting: Camera-ready by author, data conversion by Scientific Publishing Services, Chennai, India

Printed on acid-free paper

Springer is part of Springer Science+Business Media (www.springer.com)

Preface

Formal engineering methods have been extensively studied over decades. Various
theories, techniques, and tools have been proposed, developed, and applied in
the specification, design, verification, and validation of software systems or in the
construction of such systems. The challenge now is how to integrate them to ef-
fectively deal with large-scale and complex systems, e.g., cyber-physical systems,
for their sound and efficient construction and maintenance. This requires us to
improve the state of the art by researching effective approaches and techniques
for integration of formal methods into industrial engineering practice.

The now long-established series of International Conferences on Formal En-
gineering Methods has provided a forum for those interested in the application
of formal methods to computer systems. This volume contains the papers pre-
sented at ICFEM 2011, the 13th International Conference on Formal Engineering
Methods, held during October 26–28, 2011 in Durham, UK.

There were 103 submissions from 28 countries. Each paper was reviewed by
at least three Program Committee members. After extensive discussion, the Pro-
gram Committee decided to accept 40 papers. The program also included three
invited talks by Jifeng He, from East China Normal University, Peter O’Hearn,
from Queen Mary, University of London, and Shaz Qadeer, from Microsoft Re-
search. One invited paper and two abstracts are also included here.

ICFEM 2011 was organized mainly by the School of Computing, Teesside
University. We acknowledge the financial support from our main sponsors, in-
cluding Teesside University, Microsoft Research, and Formal Methods Europe.
We thank our honorary chairs Cliff Hardcastle and Marc Cavazza for their sup-
port and our conference chairs Cliff Jones and Phil Brooke for their hard work
during the organization of ICFEM 2011. Special thanks should be given to An-
gela Ackerley and Mandie Hall for their help on logistics including finance and
registration.

We are grateful to all members of the Program Committee and external
reviewers for their hard work. We would also like to thank all the authors of
the invited and submitted papers, and all the participants of the conference.
They are the main focus of the whole event. The EasyChair system was used to
manage the submissions, reviewing, and proceedings production. We would like
to thank the EasyChair team for a very useful tool.

August 2011 Shengchao Qin
Zongyan Qiu

Organization

Honorary Chairs

Marc Cavazza Teesside University
Cliff Hardcastle Teesside University

General Chairs

Phil Brooke Teesside University
Cliff Jones Newcastle University

Program Chairs

Shengchao Qin Teesside University
Zongyan Qiu Peking University

Program Committee

Bernhard K. Aichernig TU Graz
Keijiro Araki Kyushu University
Farhad Arbab CWI and Leiden University
Richard Banach University of Manchester
Nikolaj Bjorner Microsoft Research
Jonathan P. Bowen Museophile Limited
Michael Butler University of Southampton
Andrew Butterfield University of Dublin
Ana Cavalcanti University of York
Aziem Chawdhary University of Edinburgh
Wei-Ngan Chin National University of Singapore
Florin Craciun National University of Singapore
Thao Dang VERIMAG
Jim Davies University of Oxford
Dino Distefano Queen Mary, University of London
Jin-Song Dong National University of Singapore
Zhenhua Duan Xidian University
Colin Fidge Queensland University of Technology
J.S. Fitzgerald Newcastle University
Leo Freitas Newcastle University
Joaquim Gabarro Universitat Politecnica de Catalunya
Stefania Gnesi ISTI-CNR
Anthony Hall Independent Consultant

VIII Organization

Ian J. Hayes University of Queensland
Mike Hinchey Lero
Zhenjiang Hu NII
Michael Jackson Independent Consultant
Thierry Jéron Inria Rennes - Bretagne Atlantique
Gerwin Klein NICTA and UNSW
Laura Kovacs TU Vienna
Kim G. Larsen Aalborg University
Peter Gorm Larsen Aarhus School of Engineering
Michael Leuschel University of Düsseldorf
Xuandong Li Nanjing University
Shaoying Liu Hosei University
Zhiming Liu UNU/IIST
Tiziana Margaria University of Potsdam
Dominique Mery Université Henri Poincaré Nancy 1 and LORIA
Stephan Merz INRIA Lorraine
Huaikou Miao Shanghai University
Peter Müller ETH Zurich
Jun Pang University of Luxembourg
Matthew Parkinson Micrsosoft Research
Geguang Pu East China Normal University
Shengchao Qin Teesside University
Zongyan Qiu Peking University
Augusto Sampaio Federal University of Pernambuco
Thomas Santen European Microsoft Innovation Center
Wuwei Shen Western Michigan University
Marjan Sirjani Reykjavik University
Bill Stoddart Teesside University
Jing Sun The University of Auckland
Jun Sun Singapore University of Technology and Design
Meng Sun Peking University
Kenji Taguchi AIST
Tetsuo Tamai University of Tokyo
Yih-Kuen Tsay National Taiwan University
T.H. Tse The University of Hong Kong
Viktor Vafeiadis MPI-SWS
Miroslav Velev Aries Design Automation
Laurent Voisin Systerel
Hai H. Wang University of Aston
Ji Wang NUTD
Linzhang Wang Nanjing University
Heike Wehrheim University of Paderborn
Jim Woodcock University of York
Hongli Yang Beijng University of Technology
Wang Yi Uppsala University

Organization IX

Naijun Zhan Institute of Software, Chinese Academy
of Sciences

Jian Zhang Institute of Software, Chinese Academy
of Sciences

Hong Zhu Oxford Brookes University
Huibiao Zhu East China Normal University

Publicity Chairs

Jonathan P. Bowen Museophile Limited
Jun Sun Singapore University of Technology and Design
Huibiao Zhu East China Normal University

Local Organization Committee

Angela Ackerley Teesside University
Phil Brooke Teesside University
Steve Dunne Teesside University
Mandie Hall Teesside University
Shengchao Qin Teesside University

Steering Committee

Keijiro Araki, Japan
Jin Song Dong, Singapore
Chris George, Canada
Jifeng He, China
Mike Hinchey, Ireland
Shaoying Liu (Chair), Japan
John McDermid, UK
Tetsuo Tamai, Japan
Jim Woodcock, UK

Sponsors

Formal Methods Europe (FME)
Microsoft Research Limited
Teesside University

X Organization

Additional Reviewers
Aboulsamh, Mohammed
Andriamiarina, Manamiary Bruno
Andronick, June
Anh Tuan, Luu
Bauer, Sebastian
Bertolini, Cristiano
Bertrand, Nathalie
Besova, Galina
Blanchette, Jasmin Christian
Bodeveix, Jean-Paul
Bu, Lei
Carmona, Josep
Chen, Chunqing
Chen, Liqian
Chen, Xin
Chen, Zhenbang
Colley, John
Cong-Vinh, Phan
Cos, Andreea Costea
Costea, Andreea
Daum, Matthias
Dongol, Brijesh
Du, Yuyue
Edmunds, Andrew
Falcone, Ylies
Ferrari, Alessio
Ferreira, Joao F.
Gao, Ping
Gherghina, Cristian
Gotsman, Alexey
Greenaway, David
Hallerstede, Stefan
Hallestede, Stefan
Hayes, Ian
Hayman, Jonathan
He, Guanhua
Heisel, Maritta
Jaghoori, Mohammad Mahdi
Khakpour, Narges
Khamespanah, Ehsan
Kong, Weiqiang
Kreitz, Christoph
Kumazawa, Tsutomu
Kusakabe, Shigeru
Le, Quang Loc

Legay, Axel
Li, Yuan Fang
Liu, Yang
Mazzanti, Franco
Mcneile, Ashley
Meinicke, Larissa
Mochio, Hiroshi
Morisset, Charles
Moscato, Mariano
Nakajima, Shin
Nogueira, Sidney
Nyman, Ulrik
Olsen, Petur
Omori, Yoichi
Orejas, Fernando
Petersen, Rasmus Lerchedahl
Plagge, Daniel
Sabouri, Hamideh
Sewell, Thomas
Singh, Neeraj
Snook, Colin
Song, Songzheng
Stainer, Amelie
Stewart, Alan
Struth, Georg
Tiezzi, Francesco
Timm, Nils
Tounsi, Mohamed
Tsai, Ming-Hsien
Walther, Sven
Wang, Jackie
Wang, Shuling
Wang, Zheng
Welch, James
Wijs, Anton
Wu, Bin
Yamagata, Yoriyuki
Yatsu, Hirokazu
Zhang, Chenyi
Zhang, Pengcheng
Zhao, Yongxin
Zheng, Man Chun
Zheng, Manchun
Zhu, Jiaqi

Table of Contents

Invited Talks

Towards a Signal Calculus for Event-Based Synchronous Languages 1
Yongxin Zhao and He Jifeng

Reasoning about Programs Using a Scientific Method 14
Peter W. O’Hearn

Poirot—A Concurrency Sleuth . 15
Shaz Qadeer

Formal Models

Context-Based Behavioral Equivalence of Components in Self-Adaptive
Systems . 16

Narges Khakpour, Marjan Sirjani, and Ursula Goltz

Towards a Practical Approach to Check UML/fUML Models
Consistency Using CSP . 33

Islam Abdelhalim, Steve Schneider, and Helen Treharne

The Safety-Critical Java Mission Model: A Formal Account 49
Frank Zeyda, Ana Cavalcanti, and Andy Wellings

Is There Evolution Before Birth? Deterioration Effects of Formal
Z Specifications . 66

Andreas Bollin

Asynchronous Communication in MSVL . 82
Dapeng Mo, Xiaobing Wang, and Zhenhua Duan

Model Checking and Probability

Verification of Orchestration Systems Using Compositional Partial
Order Reduction . 98

Tian Huat Tan, Yang Liu, Jun Sun, and Jin Song Dong

Domain-Driven Probabilistic Analysis of Programmable Logic
Controllers . 115

Hehua Zhang, Yu Jiang, William N.N. Hung, Xiaoyu Song, and
Ming Gu

XII Table of Contents

Statistical Model Checking for Distributed Probabilistic-Control
Hybrid Automata with Smart Grid Applications . 131

João G. Martins, André Platzer, and João Leite

PRTS: An Approach for Model Checking Probabilistic Real-Time
Hierarchical Systems . 147

Jun Sun, Yang Liu, Songzheng Song, Jin Song Dong, and
Xiaohong Li

Specification and Development

Integrating Prototyping into the SOFL Three-Step Modeling
Approach . 163

Fauziah binti Zainuddin and Shaoying Liu

A Deterministic Interpreter Simulating a Distributed Real Time System
Using VDM . 179

Kenneth Lausdahl, Peter Gorm Larsen, and Nick Battle

On Fitting a Formal Method Into Practice . 195
Rainer Gmehlich, Katrin Grau, Stefan Hallerstede,
Michael Leuschel, Felix Lösch, and Daniel Plagge

A Formal Engineering Approach to High-Level Design of Situation
Analysis Decision Support Systems . 211

Roozbeh Farahbod, Vladimir Avram, Uwe Glässer, and Adel Guitouni

Security

Conformance Checking of Dynamic Access Control Policies 227
David Power, Mark Slaymaker, and Andrew Simpson

A Knowledge-Based Verification Method for Dynamic Access Control
Policies . 243

Masoud Koleini and Mark Ryan

Validation of Security-Design Models Using Z . 259
Nafees Qamar, Yves Ledru, and Akram Idani

Formal Verification

Mutation in Linked Data Structures . 275
Ewen Maclean and Andrew Ireland

Contract-Based Verification of Simulink Models . 291
Pontus Boström

Table of Contents XIII

Exploiting Abstraction for Efficient Formal Verification of DSPs with
Arrays of Reconfigurable Functional Units . 307

Miroslav N. Velev and Ping Gao

Architectural Verification of Control Systems Using CSP 323
Joabe Jesus, Alexandre Mota, Augusto Sampaio, and Luiz Grijo

Symbolic Execution of Alloy Models . 340
Junaid Haroon Siddiqui and Sarfraz Khurshid

Cyber Physical Systems

Distributed Theorem Proving for Distributed Hybrid Systems 356
David W. Renshaw, Sarah M. Loos, and André Platzer

Towards a Model Checker for NesC and Wireless Sensor Networks 372
Manchun Zheng, Jun Sun, Yang Liu, Jin Song Dong, and Yu Gu

Formal Analysis of a Scheduling Algorithm for Wireless Sensor
Networks . 388

Maissa Elleuch, Osman Hasan, Sofiène Tahar, and Mohamed Abid

An Abstract Model for Proving Safety of Multi-lane Traffic
Manoeuvres . 404

Martin Hilscher, Sven Linker, Ernst-Rüdiger Olderog, and
Anders P. Ravn

Event-B

Formal Derivation of a Distributed Program in Event B 420
Alexei Iliasov, Linas Laibinis, Elena Troubitsyna, and
Alexander Romanovsky

From Requirements to Development: Methodology and Example 437
Wen Su, Jean-Raymond Abrial, Runlei Huang, and Huibiao Zhu

Reasoning about Liveness Properties in Event-B . 456
Thai Son Hoang and Jean-Raymond Abrial

Verification, Analysis and Testing

Extracting Significant Specifications from Mining through Mutation
Testing . 472

Anh Cuong Nguyen and Siau-Cheng Khoo

Developer-Oriented Correctness Proofs: A Case Study of Cheneys
Algorithm . 489

Holger Gast

XIV Table of Contents

Static Analysis of String Values . 505
Giulia Costantini, Pietro Ferrara, and Agostino Cortesi

A Theory of Classes from the Theoretical Foundations of LePUS3 522
Jonathan Nicholson

Differencing Labeled Transition Systems . 537
Zhenchang Xing, Jun Sun, Yang Liu, and Jin Song Dong

Refinement

Developing a Consensus Algorithm Using Stepwise Refinement 553
Jeremy W. Bryans

Refining Nodes and Edges of State Machines . 569
Stefan Hallerstede and Colin Snook

Managing Complexity through Abstraction: A Refinement-Based
Approach to Formalize Instruction Set Architectures 585

Fangfang Yuan, Stephen Wright, Kerstin Eder, and David May

A Language for Test Case Refinement in the Test Template
Framework . 601

Maximiliano Cristiá, Diego Hollmann, Pablo Albertengo,
Claudia Frydman and Pablo Rodŕıguez Monetti

Theorem Proving and Rewriting

Automating Algebraic Methods in Isabelle . 617
Walter Guttmann, Georg Struth, and Tjark Weber

Term Rewriting in Logics of Partial Functions . 633
Matthias Schmalz

Synchronous AADL and Its Formal Analysis in Real-Time Maude 651
Kyungmin Bae, Peter Csaba Ölveczky, Abdullah Al-Nayeem, and
José Meseguer

Author Index . 669

Towards a Signal Calculus for
Event-Based Synchronous Languages

Yongxin Zhao and He Jifeng�

Shanghai Key Laboratory of Trustworthy Computing,
Software Engineer Institute,

East China Normal University, Shanghai, China
jifeng@sei.ecnu.edu.cn

Abstract. A theory of programming is intended to support the practice of pro-
gramming by relating each program to the specification of what it is intended to
achieve. Our intention is to develop a signal calculus for event-based synchronous
languages used for specification and programming of embedded systems. In this
paper, we mainly tackle conceptually instantaneous reactions, i.e., zero-time re-
actions. The delay-time reactions will be investigated in the follow-up work. To
explore the semantic definition of instantaneous reactions (I-calculus), a set of
algebraic laws is provided, which can be used to reduce all instantaneous reac-
tions to a normal form algebraically. The normal form, surprisingly, exposes the
internal implicit dependence explicitly. Consequently, that two differently written
reactions happen to mean the same thing can be proved from the equations of an
algebraic presentation.

1 Introduction

A theory of programming is intended to support the practice of programming by re-
lating each program to the specification of what it is intended to achieve. A similar
diversity of presentation is seen in a theory of programming, which has to explain the
meaning of the notations of a programming language. The methods of presenting such a
semantic definition may be classified under three headings, i.e., denotational, algebraic
and operational.

The great merit of algebraic method is as a powerful tool for exploiting family re-
lationships over a wide range of different theories. Algebra is well suited for direct
use by engineers in symbolic calculation of parameter and structure of an optimal de-
sign. Algebraic proofs by term rewriting are the most promising way in which comput-
ers can assist in the process of reliable design. As in previous years, many researchers
have applied algebraic method to investigate a large number of paradigms of computing
[1,2,3,4,5,9]. But it seems that no one deals with signal-centric synchronous calculus
from a algebraic perspective. Our intention is to develop a signal calculus for event-
based synchronous languages used for the specification and programming of embedded
systems.

� Corresponding author.

S. Qin and Z. Qiu (Eds.): ICFEM 2011, LNCS 6991, pp. 1–13, 2011.
c© Springer-Verlag Berlin Heidelberg 2011

2 Y. Zhao and H. Jifeng

In this paper, we mainly tackle conceptually instantaneous reactions, i.e., zero time
reactions. The delay-time reactions will be investigated in the follow-up work. Tech-
nically, signals are means of communications and synchronisations between different
parts of systems (agents) and between a agent and its environment. Our calculus adopts
the so-called synchronous hypothesis, i.e., instantaneous reaction to signals and im-
mediate propagation of signals in each time-instant. Note that the reaction here has to
be deterministic, i.e., in every reaction, for a given set of input signals, it generates a
unique set of output signals. Due to the synchronous hypothesis, each signal is consis-
tently seen as present or absent by all agents. Thus the logical coherence of signal status
leads to the semantic challenges. Further, agents can interact with each other since all
generated signals are immediate sensed by all agents. As a result, the internal implicit
dependence enhances the difficulty to search for an algebraic semantics.

To explore the semantic definition of the instantaneous reactions (I-calculus), a set
of algebraic laws is provided, which can be used to reduce all reactions to a normal
form algebraically. Consequently, that two differently written programs happen to mean
the same thing can be proved from the equations of an algebraic presentation. More
importantly, the internal implicitly dependence is exposed explicitly after transforming
all reactions into normal forms.

The remainder of the paper is organized as follows. Section 2 gives a brief introduc-
tion to pure signals and event guards. We present our I-calculus and informally interpret
the meanings of reactions in Section 3. A set of algebraic laws is provided in Section
4. The normal form for I-calculus is presented in Section 5. We prove that all reactions
can be algebraically reduced to a normal form. Section 6 refers to the related work and
discusses the future work.

2 Pure Signals and Event Guards

In this section, we investigate broadcast signals and introduce event guards for later
discussion. In our framework, we confine ourselves to pure signals which only carry
the present or absent information of signals for the purpose of precise definition and
mathematical treatment1.

Signals are means of communications and synchronisations between different agents
and between a agent and its environment. In general, a signal denoted by its name has
two types of statuses, i.e., either presence or absence. By default, signals are absent. A
signal is present if it is an input signal that appears in the input or it is emitted as the
result of an execution of the reaction. Given a signal s, we write s+, s− to indicate the
presence and absence respectively.

Here an event is modeled as a set of signals with status. The function sig(l) defines
the set of signals (just names) which the event l embodies, e.g., sig(l) = {s, t}, where
l = {s+, t−}. Note that the event in our calculus should be consistent, i.e., the status
of any signal referring to the same event should be unique, which is captured by the
formal definition: ∀s ∈ sig(l) • s+ �∈ l ∨ s− �∈ l. Hence we employ notation l(s) to
represent the status of signal s in event l. Finally, compatible events are defined below.

1 Actually, the restriction is not critical; those signals which carry values of arbitrary types can
be converted into our signal calculus.

Towards a Signal Calculus for Event-Based Synchronous Languages 3

Definition 1 (Compatible). Events l1 and l2 are compatible if they agree with on the
status of all common signals, i.e., ∀s ∈ sig(l1) ∩ sig(l2) • l1(s) = l2(s). We denote it
by compatible(l1, l2).

Further, we introduce event guards to synchronise the behaviors of agents and the nota-
tion of event guards is given as follow:

g ::= ε | ∅ | s+ | s− | g · g | g + g | g
Now we give the meanings of event guards in Table 1. In actual, an event guard is
identified as a set of events which can trigger the guard. Almost all event guards have
the usual meanings and the definitions are straightforward. Intuitively, g defines all
events which cannot give rise to the occurrence of any event in g.

Table 1. The Meanings of Event Guards

[[ε]] =df Event [[∅]] =df ∅ [[s+]] =df {l | s+ ∈ l ∧ l ∈ Event}
[[s−]] =df {l | s− ∈ l ∧ l ∈ Event} [[g1 + g2]] =df [[g1]] ∪ [[g2]]

[[g1 · g2]] =df {l1 ∪ l2 | l1 ∈ [[g1]] ∧ l2 ∈ [[g2]] ∧ compatible(l1, l2)}
[[g]] =df Event\[[g]]

In the sequel, we give a detailed discussion about event guards. Some algebraic laws
about guards are listed in the following and proofs that the laws are sound with respect
to semantics definition are straightforward.

Multiply · is idempotent, commutative, associative and distributes through addition
+. It has ∅ as its zero and ε as its unit.

(multi− 1) g · g = g (· idemp)
(multi− 2) g1 · g2 = g2 · g1 (· comm)
(multi− 3) g1 · (g2 · g3) = (g1 · g2) · g3 (· assoc)
(multi− 4) g · (h1 + h2) = g · h1 + g · h2 (· − + distrib)
(multi− 5) ∅ · g = ∅ (· − ∅ zero)
(multi− 6) ε · g = g (· − ε unit)

Addition + is idempotent, commutative, associative. It has ∅ as its unit and ε as its zero.

(add− 1) g + g = g (+ idemp)
(add− 2) g1 + g2 = g2 + g1 (+ comm)
(add− 3) g1 + (g2 + g3) = (g1 + g2) + g3 (+ assoc)
(add− 4) ∅+ g = g (+ − ∅ unit)
(add− 5) ε + g = ε (+ − ε zero)
(add− 6) g + l · g = g (+ up-closed)

Generally, we say event e1 can give rise to event e2 if e1 ⊇ e2. Thus event e can give
rise to guard g iff the event can give rise to an event in g. Recall from the definition that

4 Y. Zhao and H. Jifeng

if an event can give rise to a guard, a larger event can also give rise to the guard. Thus
the order relation over guards is given straightforward as follows:

Definition 2. g1 ⊇ g2 =df [[g1]] ⊇ [[g2]].

Here, we also give a syntactical relation over guards.

Definition 3. We write g1 	 g2 if there exists g such that g1 ≡ g2 + g, where h1 ≡ h2

indicates h1 and h2 are syntactically identical.

In the following part,we use s ∈ g, s �∈ g to indicate, in syntactical, s is present and
absent in g respectively. Thus the guard g can be expressed as g1 + g2 · s+ + g3 · s−,
where s �∈ g1, g2, g3. Further, we introduce the definition up-closed, which is crucial
for our definition of normal form and is inspired by the construction of Smyth power
domains [6,14].

Definition 4 (Up-Closed). An event guard g is (syntactically) up-closed if ∀g′ • g′ ⊆
g ⇒ g′
 g.

Definition 5. Given an event guard g, define ↑g =df

∑{g′ | g′ ⊆ g}.
Corollary 1. ↑ g is up-closed and if h is up-closed and g ⊆ h, we have ↑ g ⊆ h, i.e.,
↑g is the small up-closed guard containing g.

Corollary 2. g = ↑g
Finally, we define textual substitutions g[g′/s−] and g[g′/s+] to derive new guards.

Definition 6 (Textual Substitution). The textual substitutions g[g′/s+], g[g′/s−] are
defined as g1 + g2 · g′ + g3 · s− and g1 + g2 · s+ + g3 · g′ respectively if g ≡ g1 + g2 ·
s+ + g3 · s−, where s �∈ g1, g2, g3.

Lemma 1. For g ⊆ g1+g2, there exists a decomposition g = g′1+g′2 such that g′1 ⊆ g1

and g′2 ⊆ g2.

The proof may be easily validated by taking every event of guard into consideration.

3 Instantaneous Reactions: I-Calculus

In this section, we present the I-calculus for the event-based synchronous languages,
which mainly tackle conceptually instantaneous reactions, i.e., zero time reactions. The
syntax of I-calculus is given as follows:

I ::= !s | II | ⊥ | g&I | I\s | I ‖ I

Where, g is an event guard and !s is an emission of signal s. The function ems(I) defines
the set of the generated signals of reaction I .

The meanings of all reactions are accord with the common intuitions. Informally,
each reaction may sense the presence of input signals and generate output signals. The

Towards a Signal Calculus for Event-Based Synchronous Languages 5

reaction !s emits signal s and terminates immediately; II does nothing but terminates
successfully.⊥ represents the worst reaction which leads to a chaotic state. The reaction
g&I behaves like I when the guard g is fired, otherwise it behaves like the reaction II .
The reaction I\s declares signal s as a local signal and the emission of s becomes
invisible to outside. I1 ‖ I2 immediately starts I1 and I2 in parallel. Note that I1 and I2

can interact with each other.

Example 1. Let I1 = s+
1 &!s2 ‖ (s+

2 · s+
1)&!s3 ‖ s−2 &⊥.

Given an input signal s1, the guard s+
1 can be triggered; thus signal s2 is emitted imme-

diately; at the time, the guard s+
2 · s+

1 is also satisfied and then s3 is generated. Hence,
I would react to input signal s by emitting s2 and s3. For input signal s3, I becomes
chaotic since s2 is absent in input signals and no reaction can generate it.

Example 2. Let I2 = s+
1 &!s2 ‖ (s+

2 · s+
1)&!s3 ‖ s+

3 &⊥.

Given an input signal s1, intuitively both signals s2 and s3 will be generated according
to the above computation. However the reaction actually enters into chaos state since
s+
3 activates the reaction ⊥.

As can be seen from these examples, the computation of an reaction is proceeded step
by step. When input signals are given, we first inspect which guards are triggered. If the
guard is fired, the involved reaction will generate the corresponding signals. Then with
the generated signals, we repeat the computation until no new guard can be fired.

Indeed, the computation is tedious and subtle, which is mainly caused by the internal
implicit dependence. We intend to search for a method of exposing the dependence
explicitly. The algebra is obviously well suited to reveal the dependence since term
rewriting (algebraic laws) preserves the equivalence of reactions.

4 Algebraic Semantics

In the section, we explore the algebraic semantics for I-calculus whose foundation is
based on abstract algebras. The basic idea of the algebraic approach to semantics is to
use algebraic axioms to describe the characteristic properties of the primitives and the
combinators. Algebra is well-suited for direct use by engineers in symbolic calculation
of parameters and the structure of an optimal design. Algebraic proof by term rewriting
is the most promising way in which computers can assist in the process of reliable
design [10]. From the point of view of language utility it is desirable to develop as
much laws as possible, and make the laws as widely applicable as possible. Hence we
state the laws in such a way.

4.1 Parallel

The parallel is commutative and associative. Consequently, the order of parallel com-
position is irrelevant.

6 Y. Zhao and H. Jifeng

par - 1 I1 ‖ I2 = I2 ‖ I1 (‖ comm)

par - 2 (I1 ‖ I2) ‖ I3 = I1 ‖ (I2 ‖ I3) (‖ assoc)

The parallel is idempotent, due to deterministic behavior of reactions.

par - 3 I ‖ I = I (‖ idemp)

Reactions ⊥ and II are the zero and the unit of parallel composition respectively.

par - 4 ⊥‖ I = ⊥ (‖−⊥ zero)

par - 5 II ‖ I = I (‖ − II unit)

4.2 Guard

The following law enables us to eliminate nested guards.

guard - 1 g1&(g2&I) = (g1 ·g2)&I (& multi)

Event guards with same reaction can be combined.

guard - 2 g1&I ‖ g2&I = (g1 +g2)&I (& add)

The event guard distributes through the parallel.

guard - 3 g&(I1 ‖ I2) = g&I1 ‖ g&I2 (&− ‖ distrib)

Reaction ∅&I behaves like II because its guard can never be fired.

guard - 4 ∅&I = II (& − ∅ top)

Reaction ε&I always activates the reaction I .

guard - 5 ε&I = I (& − ε buttom)

Reaction g&II never emits signals.

guard - 6 g&II = II (& − II void)

4.3 Concealment

The concealment is commutative and the order is not critical.

conc - 1 (I\s)\t = (I\t)\s (\ comm)

\s distributes backward over ‖ when one component does not mention signal s.

conc - 2 (I1 ‖ I2)\s = (I1\s) ‖ I2 provided that s �∈ I2 (\ − ‖ quasi-distrib)

\s distributes backward over guarded reaction if s does not appear in the guard g.

conc - 3 (g&I)\s = g&(I\s) provided that s �∈ g (\ − & quasi-distrib)

Towards a Signal Calculus for Event-Based Synchronous Languages 7

4.4 Primitives

When reaction s−&!s is triggered it behaves like ⊥ since it violates the logical coher-
ence between the environment assumptions (i.e., absence of signal s) and the effect of
emission of signal s

prim - 1 s−&!s = s−&⊥ (logical coherence)

Reaction s+&!s behaves like II because emission of s does not change the statues of s.

prim - 2 s+&!s = s+&II (axiom unit)

4.5 Dependence

A guard g also triggers the reaction s+&I if it can generate signal s. The following law
is crucial for our algebraic approach since it expose the internal dependence explicitly.

depend-axiom g&!s ‖ s+&I = g&!s ‖ (s+ + g)&I

4.6 Additional Laws

The following law illustrates how to eliminate the concealment.

conc - 4 (g&!s ‖ I)\s = I[g/s+, g/s−] provided that s �∈ g and s �∈ ems(I)

Where, the textual substitutions I[g/s+] and I[g/s−] can only proceed on guards.
The laws are listed above capture the properties of all primitives and the combinators.

Definitely, on one hand, all the laws are consistent, i.e., no conflict can be deduced
in terms of the laws. On the other hand, we advocate the laws are complete, i.e., all
reactions can be reduced to a normal form defined below with the help of the laws.

Example 3. Let I = ((s+
1 + s+

2 · s+
3)&!s2 ‖ s+

2 &!s4)\s2.

We illustrate how to eliminate the concealment.

I = ((s+
1 + s+

2 · s+
3)&!s2 ‖ s+

2 &!s4)\s2 {guard-2}
= (s+

1 &!s2 ‖ s+
2 · s+

3 &!s2 ‖ s+
2 &!s4)\s2 {prim-2}

= (s+
1 &!s2 ‖ s+

2 &!s4)\s2 {conc-4}
= s1&!s4

5 Normal Form for I-Calculus

In the section, we investigate the normal form (unified and restricted form) for I-calculus
and we prove all reactions can be algebraically reduced to normal forms. Thus addi-
tional properties of I-calculus can be simply deduced by showing them to be valid just
for normal forms. The behavior equivalence of two reactions depends on the equiva-
lence of their corresponding normal forms. More importantly, the normal form of an
reaction actually exposes the internal dependency explicitly and captures the interfer-
ences in advance. Intuitively, all parallel sub-reactions in a normal form can react to
environment input signals simultaneously if the input would not lead to chaos.

8 Y. Zhao and H. Jifeng

Definition 7 (Normal Form). The reaction ‖m∈Mgm&!sm ‖ h&⊥ is a norm form for
I-calculus if it satisfies the two conditions below, where all gi and h are up-closed
guards, the index set M is finite and all signals si (i ∈M) are different.

(1). ∀m, n ∈M, g • (g · s+
n ⊆ gm ⇒ g · gn ⊆ gm) ∧ (g · s+

n ⊆ h⇒ g · gn ⊆ h).
(2). ∀m ∈M, gm · s−m ⊆ h ⊆ gm.

Theorem 1. g&I ‖ h&⊥ = (g + h)&I ‖ h&⊥

Proof
(g + h)&I ‖ h&⊥ (guard-2 and 3)

= g&I ‖ h&(I ‖ ⊥) (par-4)
= g&I ‖ h&⊥

Theorem 2. g&!s = g&!s ‖ (g · s−)&⊥

Proof
g&!s

= (g + g · s−)&!s (guard-2)
= g&!s ‖ g · s−&⊥

The two theorems ensure the satisfiability of condition (2). Thus, for any m, we can
always add guard gm ·s−m into h and h into gm respectively without affecting the equiv-
alence of reactions.

The objective of the following part is to show that all reactions in I-calculus can be
reduced to normal forms. Our first step is to show that all primitives can be reduced to
normal forms.

Theorem 3. The primitive reactions⊥, II and !s can be reduced to normal forms.

Proof: Easily, the following computations are validated by algebraic laws.
⊥ = ε&⊥ = ‖m∈M ↑ε&!sm ‖ ↑ε&⊥,
II = ∅&⊥ = ‖m∈M∅&!sm ‖ ∅&⊥ and
!s = ε&!s = ε&!s ‖ s−&⊥=↑ε&!s ‖ ↑s−&⊥ �

Consequently, all primitives can be reduced to normal forms. Now we are going to
prove that normal forms are closed under the combinators, i.e., g&I , I\s and I ‖ I
since all primitive commands are already normal forms.

Lemma 2. The reaction I = ‖m∈Mgm&!sm ‖ h&⊥ can be reduced to normal form
if condition (1) is already satisfied, i.e., ∀m, n ∈ M, g • (g · s+

n ⊆ gm ⇒ g · gn ⊆
gm) ∧ (g · s+

n ⊆ h ⇒ g · gn ⊆ h), where all si (i ∈ M) are different, all gi (i ∈ M)
and h are up-closed guards.

Proof: We directly construct the normal form I ′ which is equivalent with I .
Let h′ = h +

∑
n∈M gn · s−n , g′m = gm + h′ and I ′ = ‖m∈Mg′m&!sm ‖ h′&⊥.

Firstly, we show that I and I ′ are algebraically equivalent. Easily,

Towards a Signal Calculus for Event-Based Synchronous Languages 9

I = ‖m∈Mgm&!sm ‖ h&⊥ {thm 2 and guard-2}
= ‖m∈Mgm&!sm ‖ (h +

∑
n∈M gn · s−n)&⊥ {thm 1 and guard-2}

= ‖m∈M (gm + h′)&!sm ‖ h′&⊥
= ‖m∈Mg′m&!sm ‖ h′&⊥
= I ′

Next we prove that I ′ is a norm form, i.e., I ′ satisfies the conditions of normal form.
Obviously, we have ∀m ∈ M, g′m · s−m ⊆ h′ ⊆ g′m since gm · s−m ⊆ h′. i.e., reaction
I ′ satisfies condition (2). Then we only need to prove I ′ also satisfies condition (1)
∀m, n ∈ M, g • (g · s+

n ⊆ g′m ⇒ g · g′n ⊆ g′m) ∧ (g · s+
n ⊆ h′ ⇒ g · g′n ⊆ h′).

Equivalently, we show the construction from I to I ′ conserves the condition (1).
Suppose that g ·s+

n ⊆ h′ for given n, there exists a decomposition g = h1+
∑

i∈M g′i
such that h1 · s+

n ⊆ h and for any i in M , g′i · s+
n ⊆ gi · s−i . Thus we get g′i · s+

n ⊆ gi

and g′i ⊆ s−i . Hence h1 · gn ⊆ h ⊆ h′ and g′i · gn ⊆ gi are obtained by the premise.
Obviously, g′i · gn ⊆ gi · s−i ⊆ h′ is validated; that is g · gn ⊆ h′. Consequently,
g · g′n = g · gn + g · h′ ⊆ h′.

Similarly, given m and n, suppose that g · s+
n ⊆ g′m, there exists a decomposition

g = g1 +g2 such that g1 ·s+
n ⊆ gm and g2 ·s+

n ⊆ h′. Consequently, g1 ·gn ⊆ gm ⊆ g′m
and g2 · gn ⊆ h′ ⊆ g′m are obtained. Thus we have g · g′n = g1 · gn + g2 · gn + g · h′ ⊆
g′m + h′ = g′m.

In a word, I ′ is a normal form since I ′ satisfies all the conditions of normal forms,
i.e., I can be reduced to normal form. �
Lemma 3. The reaction I = ‖n∈Npn&!sn ‖ q&⊥ can be equivalently reduced to the
form I = ‖m∈Mg′m&!sm ‖ h′&⊥which satisfies condition (1) ∀m, n ∈M, g•(g·s+

m ⊆
g′n ⇒ g · g′m ⊆ g′n) ∧ (g · s+

m ⊆ h′ ⇒ g · g′m ⊆ h′), where all si (i ∈M) are different,
all g′ (i ∈M) and h′ are up-closed guards.

Proof: see appendix. �
Theorem 4. The statement g&I can be reduced to a normal form if I is a normal form.

Proof: Let I = ‖m∈Mgm&!sm ‖ h&⊥
Then,

g&I = g&(‖m∈Mgm&!sm ‖ h&⊥) {guard-3}
= ‖m∈Mg&(gm&!sm) ‖ g&(h&⊥) {guard-1}
= ‖m∈M (g · sm)&!sm ‖ (g · h)&⊥

According to Lemma 4 and 3, g&I can be reduced to normal form. �
Theorem 5. The statement I\s can be reduced to a normal form if I is a normal form.

Proof: Let I = ‖i∈Kgi&!si ‖ h&!⊥
Then,
I\s = (‖i∈Kgi&!si ‖ g&⊥)\s {guard-2}

= (g1&!s ‖ g2&!s ‖ g3&!s ‖i∈K′gi&!si ‖ h&⊥)\s {prim-1 and prim-2}
= (g1&!s ‖ (h + g3)&⊥ ‖ i∈K′gi&!si)\s {conc-4}
= (h + g3)[g1/s+, g1/s−]&⊥
‖ ‖i∈K′gi[g1/s+, g1/s−]&si

10 Y. Zhao and H. Jifeng

Where, K ′ = K − {i | si = s}, s �∈ g1, g2 = g2 · s+, and g3 = g3 · s−. According to
Lemma 4 and 3, I\s can be reduced to normal form. �
Theorem 6. The statement I1 ‖ I2 can be reduced to a normal form if both I1 and I2

are normal forms.

Proof: Let I1 = ‖i∈Ngi&!si ‖ h&⊥, I2 = ‖j∈Jg′j&!s′j ‖ h′&⊥. Without loss of gen-
erality, we assume that N ∩ J = ∅.

Then,
I1 ‖ I2 = (‖i∈Ngi&!si ‖ h&⊥) ‖ (‖j∈Jg′j&!s′j ‖ h′&⊥)

= ‖k∈Kgk&!sk ‖ (h + h′)&⊥
Where, K = N � J , gk = gi, sk = si if k ∈ N and gk = g′j , sk = s′j if k ∈ J .
According to Lemma 4 and 3, I1‖I2 can be reduced to normal form. �
Theorem 7. All reactions can be reduced to normal forms.

Proof: From Theorem 1-4.

In actual, the proof not only demonstrates that all reactions can be reduced to normal
forms, but also shows how to translate a reaction into normal form using a unifying
approach.

Example 4. Let I = s−1 &!s2 ‖ s+
2 &!s3 ‖ s+

3 &!s1

We illustrate how to reduce I into normal form.

I = s−1 &!s2 ‖ s+
2 &!s3 ‖ s+

3 &!s1 {depend-1}
= s−1 &!s2 ‖ (s−1 + s+

2)&!s3 ‖ s+
3 &!s1 {depend-1}

= s−1 &!s2 ‖ (s−1 + s+
2)&!s3 ‖ (s−1 + s+

2 + s+
3)&!s1 {thm-2}

= s−1 &!s2 ‖ (s−1 + s+
2)&!s3 ‖ (s−1 + s+

2 + s+
3)&!s1

‖ (s−1 + s+
2 · s−3)&⊥ {thm-1}

= (s−1 + s+
2 + s+

3)&!s1 ‖ (s−1 + s+
2 · s−3)&!s2

‖ (s−1 + s+
2)&!s3 ‖ (s−1 + s+

2 · s−3)&⊥ {corollary-1}
= (↑s−1 + ↑s+

2 + ↑s+
3)&!s1 ‖ (↑s−1 + ↑s+

2 · ↑s−3)&!s2

‖ (↑s−1 + ↑s+
2)&!s3 ‖ (↑s−1 + ↑s+

2 · ↑s−3)&⊥
Thus the behavior equivalence of two differently written reactions depends on the equiv-
alence of their corresponding normal forms since we have prove that all reactions, how-
ever deeply structured, can be reduced to a normal form. Obviously, two reactions in
normal form are behaviorally equivalent if they have the same algebraic form. The fol-
lowing definition captures the intuition.

Definition 8. NF1 = NF2 iff h ≡ h′ and ∀i ∈ M • g′i ≡ gi, where NF1 =
‖i∈Mgi&!si ‖ h&⊥ and NF2 = ‖i∈Mg′i&!si ‖ h′&⊥ are normal forms.

As advocated in the above, normal form exposes the internal dependence explicitly.
Consequently, the computation is straightforward for reactions in normal form rather
than tedious computations for general algebraic forms. In particular, the computation
for emission set of reaction is surprisedly simple, as shown in theorem 8.

Theorem 8. For input signals S and reaction NF = ‖i∈Mgi&!si ‖ h&⊥ in normal
form, we have ems(NF) = {si | e �∈ h ∧ e ∈ gi ∧ e = {t+ | t ∈ S}}.

Towards a Signal Calculus for Event-Based Synchronous Languages 11

6 Discussion

Here we give a discussion on the related work with our study on the signal calculus.
Edward et al. presented the tagged signal model [11] to explore the design of computa-
tional framework, where each signal represents a collection of value-tag pair. The set of
tags is usually partially ordered set (poset). Thus the tagged signal model maintains the
strict causality, which ensure determinacy under certain essential technical conditions.

Esterel [12,15] is an imperative synchronous language having a textual syntax some-
what along the lines of Pascal. Its distinguishing feature is the rich set of signal handing
constructs for reactive programming [16]. The main semantic challenges addressed in
[7,13,17] is the issue of causality. To solve the challenge, many research efforts are ad-
dressed to develop a diversity of constructive semantics for Esterel [12], e.g., construc-
tive behavioral semantics, constructive operational semantics and constructive circuits.

Essentially, our signal calculus is inspired by the Esteral language. We intend to
translate all Esteral statements into our calculus. For example, present s+ then emit t1
else emit t2 can be expressed as s+&!t1 ‖ s−&!t2 in our calculus. Further, the sequential
operator is, intentionally, not involved in this paper. In fact, all sequential instantaneous
reactions can be embraced in our calculus. For instance, the sequential g&!t ; h&!s is
equivalent to g&!t ‖ (g · (h[ε/t+, ∅/t−])+g ·h)&!s . In other words, the extension with
the sequential compositional would not enhance the expressiveness of the calculus.

In future, we will complete the signal calculus by introducing delay-time reactions.
We believe that the zero-time reactions and delay-time reactions are orthogonal. Thus
the extension is straightforward. The head normal form for signal calculus has the form:

NF = NF1 ‖ ‖i∈N gi&(pause; NF)

Where NF1 is the normal form of I-calculus. The reaction pause means it pauses in
the current instant and terminates in the next instant. The head norm form indicates that
in every instant, the reaction first instantaneously reacts to the input signals and then
selects the appropriate delay-time branch in the light of the guards.

Acknowledgement. This work was supported by National High Technology Research
and Development Program of China (No. 2011AA010101), National Basic Research
Program of China (No. 2011CB302904), National Natural Science Foundation of China
(No. 61021004), Doctoral Program Foundation of Institutions of Higher Education of
China (No. 200802690018). The authors also gratefully acknowledge support from the
Danish National Research Foundation and the National Natural Science Foundation
of China (Grant No. 61061130541) for the Danish-Chinese Center for Cyber Physical
Systems. Yongxin ZHAO is also supported by ECNU Reward for Excellent Doctors in
Academics (XRZZ2010027).

References

1. Goguen, J., Thatcher, J., Wagner, E., Wright, J.: Initial algebra semantics and continuous
algebra. Journal of the ACM 24(1), 68–95 (1977)

2. Bergstra, J.A., Klop, J.W.: Algebra of communicating processes with abstraction. Theoretical
Computer Science 37(1), 77–121 (1985)

12 Y. Zhao and H. Jifeng

3. Hennessy, M.C.: Algebraic Theory of Processes. MIT Press, Cambridge (1988)
4. Roscoe, A.W., Hoare, C.A.R.: The Laws of OCCAM Programming. Theoretical Computer

Science 60, 229–316 (1977/1988)
5. Baeten, J.C.M., Weijland, W.P.: Process Algebra. Cambridge Tracts in Theoretical Computer

Science. Cambridge University Press, Cambridge (1990)
6. Libkin, L.: An elementary proof that upper and lower powerdomain constructions commute.

Bulletin EATCS 48, 175–177 (1992)
7. Berry, G., Gonthier, G.: The Esterel synchronous programming language: Design, semantics,

implementation. Science of Computer Programming (SCP) 19(2), 87–152 (1992)
8. He, J., Hoare, C.A.R.: From Algebra to operational semantics. Information Processing Let-

ter 46 (1993)
9. Maddux, R.D.: Fundamental study Relation-algebraic semantics. Theoretical Computer Sci-

ence 160, 1–85 (1996)
10. Hoare, C.A.R., He, J.: Unifying Theories of Programming. Prentice Hall International Series

in Computer Science. Prentice-Hall, Englewood Cliffs (1998)
11. Lee, E.A., Sangiovanni-Vincentelli, A.: A framework for comparing models of computation.

IEEE Transactions on Computer-Aided Design of Integraed Circuits and Systems 17(12),
1217–1229 (1998)

12. Berry, G.: The Constructive Semantics of Pure Esterel (1999) Draft version, ftp://
ftp-sop.inria.fr/meije/esterel/papers/constructiveness3.ps.gz

13. Tini, S: Structural Operational Semantics for Synchronous Languages. PhD thesis, Diparti-
mento di Informatica, Universitá degli Studi di Pisa, Pisa, Italy (2000)

14. McIver, A.K., Morgan, C.C.: Probabilistic power domains (in preparation)
15. Potop-Butucaru, D., Edwards, S.A., Berry, G.: Compiling Esterel. Springer, Heidelberg

(2007)
16. Shyamasundar, R.K., Ramesh, S.: Real Time Programming: Languages, Specification and

Verifcations. World Scientific Publishing, Singapore (2009)
17. Mousavi, M.: Causality in the Semantics of Esterel: Revisited. Electronic Proceedings in

Theoretical Computer Science 18, 32–45 (2010)

Appendix

Proof of Lemma 4
Here we equivalently construct the expected form. Naturally, we can always demand

that all signals si (i ∈ N) are different, i.e., ∀m, n ∈ N • (m �= n ⇒ sm �= sn) and
all gi (i ∈M) and h are up-closed guards since reactions are equivalent with respect to
up-closed guards. Otherwise we can equivalently transform I by removing pn&!sn and
substituting (pm + pn)&!sm and N\{n} for pm&!sm and N respectively. Thus we get
I = ‖i∈Mgi&!si ‖ h&⊥, where all si (i ∈ M) are different, all gi (i ∈ M) and h are
up-closed guards.

Define G =df {(gi, si) | i ∈ M}. For any k from M , let g0
k = gk and Gk =

G\{(gk, sk)}, we build H1
k = {g · gi | ∃(gi, si) ∈ Gk • g · s+

i ⊆ g0
k} and g1

k =
g0

k +
∑

g∈H1
k
g. In general, if gr

k �= gr−1
k (1 ≤ r), construct Hr+1

k = {g · gi | ∃(gi, si) ∈
Gk • g · s+

i ⊆ gr
k} and gr+1

k = gr
k +

∑
g∈Hr+1

k
g. Obviously, the construction must

terminate after at most |M | times construction, i.e., there exists 1 ≤ jk ≤ |M | such that
gjk

k = gjk−1
k . Thus we have ∀i ∈M, g • g · s+

i ⊆ gjk

k ⇒ g · gi ⊆ gjk

k and gm
k ⊆ gn

k for
0 ≤ m ≤ n ≤ jk.

ftp://ftp-sop.inria.fr/meije/esterel/papers/constructiveness3.ps.gz
ftp://ftp-sop.inria.fr/meije/esterel/papers/constructiveness3.ps.gz

Towards a Signal Calculus for Event-Based Synchronous Languages 13

We also build hjh in a similar way. Let h0 = h and Gh = G, we construct H1
h =

{g · gi | ∃(gi, si) ∈ Gh • g · s+
i ⊆ g0

h} and g1
h = g0

h +
∑

g∈H1
h

g. In general, if

gr
h �= gr−1

h (1 ≤ r), we construct Hr+1
h = {g · gi | ∃(gi, si) ∈ Gh • g · s+

i ⊆ gr
h}

and gr+1
h = gr

h +
∑

g∈Hr+1
h

g. In the same reason, there exists 1 ≤ jh ≤ |M | such that

gjh

h = gjh−1
h . Thus we have ∀i ∈M, g • g · s+

i ⊆ gjh

h ⇒ g · gi ⊆ gjh

h and gm
h ⊆ gn

h for
0 ≤ m ≤ n ≤ jh.

Firstly, we show that the construction conserves the equivalence of reactions. For
any k ∈ M and 0 ≤ rk ≤ jk, define Irk

k = grk

k &!sk ‖ I . We state that ∀k ∈ M, 0 ≤
rk < jk • Irk

k = Irk+1
k .

Irk

k = grk

k &!sk ‖ I {depend-1 and guard-2}
= (grk

k +
∑

g∈H
rk+1
k

g)&!sk ‖ I {Def of Hrk+1
k and grk+1

k }
= grk+1

k &!sk ‖ I = Irk+1
k .

Consequently, ∀0 ≤ rk, r′k ≤ jk, Irk

k = I
r′

k

k . Similarly, define Irh = hrh&⊥ ‖ I and
∀0 ≤ rh, r′h ≤ jh, Irh = Ir′

h is validated.
Let I ′ = ‖i∈Mgji

i &!si ‖ hjh&⊥. We state that I = I ′ by the following proof,

I ′ = ‖i∈Mgji

i &!si ‖ hjh&⊥ {guard-4}
= ‖i∈M (gji

i + gi)&!si ‖(hjh + h)&⊥ {guard-2}
= ‖i∈Mgji

i &!si ‖ hjh&⊥ ‖ I {P-3}
= ‖i∈M (gji

i &!si ‖ I) ‖ (hjh&⊥ ‖ I) {proved}
= ‖i∈M (gi&!si ‖ I) ‖ (h&⊥ ‖ I)
= ‖i∈Mgi&!si ‖ h&⊥ ‖ I
= I ‖ I = I

Finally, we prove I ′ satisfies the condition (1) ∀m, n ∈ M, g • (g · s+
m ⊆ gjn

n ⇒
g · gjm

m ⊆ gjn
n) ∧ (g · s+

m ⊆ hjh ⇒ g · gjm
m ⊆ hjh). We first prove the statement

∀0 ≤ r ≤ jm, g • g · s+
m ⊆ gjn

n ⇒ g · gr
m ⊆ gjn

n for given m and n by mathematical
induction.

Basis When r = 0, obviously ∀g • g · s+
m ⊆ gjn

n ⊆ g · gm ⊆ gjn
n .

Induction Step Assume that r = l (0 ≤ l < jm), ∀g • g · s+
m ⊆ gjn

n ⇒ g · gl
m ⊆ gjn

n .
When r = l+1, suppose g·s+

m ⊆ gjn
n , we have H l+1

m = {g·gi | ∃(gi, si) ∈ Gm•g·s+
i ⊆

gl
m} and gl+1

m = gl
m +

∑
g∈Hl+1

m
g. Recall that ∀g′ · gi ∈ H l+1

m , g′ · si ⊆ gl
m. Thus

g · g′ · gi ⊆ gjn
n is validated since g · g′ · si ⊆ g · gl

m ⊆ gjn
n . Hence, g · gl+1

m =
g · gl

m + g ·∑g′∈Hl+1
m

g′ ⊆ gjn
n . According to the principle of mathematical induction,

∀0 ≤ r ≤ jm, ∀g • (g · s+
m ⊆ gjn

n ⇒ g · gr
m ⊆ gjn

n). In particular, ∀g • (g · s+
m ⊆ gjn

n ⇒
g · gjm

m ⊆ gjn
n).

Similarly, we can prove ∀g • g · s+
m ⊆ hjh ⇒ g · gjm

m ⊆ hjh .
The proof is done and I ′ = ‖i∈Mgji

i &!si ‖ hjh&⊥ satisfies the conditions. �

Reasoning about Programs Using a Scientific

Method

Peter W. O’Hearn

Queen Mary University of London

Abstract. Reasoning about programs has traditionally been done us-
ing deductive reasoning, where mathematical logic is used to make proofs
that connect programs with specifications. In this talk I describe an ap-
proach where an automated reasoning tool approaches program code as
a scientist would in the natural world. Instead of just deductive logic,
versions of abductive reasoning (generation of new hypotheses) and in-
ductive generalization are used in an iterative fashion to discover specifi-
cations that partly describe what programs do, starting from bare code.
The resulting specifications are partial or conservative, but the infer-
ence/discovery aspect makes it much easier to approach large code bases,
quickly, than with the traditional deductive-only approach.

The underlying program logic in this work is separation logic, a logic
for reasoning about the way that programs use computer memory, and
the inference method attempts to discover a logical assertion describing
the program’s footprint: the collection of cells that it touches. Aiming
for the footprint provides a strategy to select compact specifications,
amongst the enormity of all potential specifications (which would be too
many to consider). After describing the inference techniques, I report on
experience using a software tool that automates the method, which has
been applied to large code bases.

This talk is based on joint work with Cristiano Calcagno, Dino Dis-
tefano and Hongseok Yang.

S. Qin and Z. Qiu (Eds.): ICFEM 2011, LNCS 6991, p. 14, 2011.
c© Springer-Verlag Berlin Heidelberg 2011

Poirot—A Concurrency Sleuth

Shaz Qadeer

Microsoft Research
qadeer@microsoft.com

Abstract. Concurrent programming is difficult. The challenges are
foundational: unlike sequential control flow, asynchronous control flow is
difficult to understand and reason about. Not surprisingly, even expert
programmers find it difficult to write concurrent software. We desper-
ately need software engineering techniques and tools to move concurrent
programming from black art to a rigorous engineering discipline. I believe
that automated tools that reduce the cognitive burden of reasoning about
concurrency can help tremendously in improving the productivity of con-
current programmers. In collaboration with my colleagues at Microsoft
Research, I have developed Poirot (http://research.microsoft.com/
en-us/projects/poirot/), a tool for answering semantic queries about a
concurrent program by statically searching over its executions. Poirot
exploits sequential encodings of concurrent semantics, structural under-
and over-approximations for sequential control flow, and advances in
automated theorem proving to search concurrent program executions
efficiently. Poirot is being used in many different applications—bug de-
tection, program understanding, and symbolic debugging. This lecture
will present both a demonstration and an explanation of the techniques
underlying the search engine inside Poirot.

Poirot is joint work with Akash Lal and Shuvendu Lahiri.

S. Qin and Z. Qiu (Eds.): ICFEM 2011, LNCS 6991, p. 15, 2011.
c© Springer-Verlag Berlin Heidelberg 2011

Context-Based Behavioral Equivalence of

Components in Self-Adaptive Systems

Narges Khakpour1,2, Marjan Sirjani3, and Ursula Goltz1

1 IPS, Technical University of Braunschweig, Germany
2 Tarbiat Modares University, Iran

3 Reykjavik University, Iceland
khakpour@ips.cs.tu-bs.de

Abstract. An important challenge to realize dynamic adaptation is
finding suitable components for substitution or interaction according to
the current context. A possible solution is checking behavioral equiva-
lence of components in different contexts. Two components are equivalent
with respect to a context, if they behave equivalently in that context. In
this work, we deal with context-specific behavioral equivalence of Pob-
SAM components. PobSAM is a flexible formal model for developing and
modeling evolving self-adaptive systems. A PobSAM model is a collec-
tion of actors, views, and autonomous managers. Autonomous managers
govern the behavior of actors by enforcing suitable context-based poli-
cies. Views provide contextual information for managers to control and
adapt the actors behavior. Managers are the core components used to
realize adaptation by changing their policies. They are modeled as meta-
actors whose configurations are described using a multi-sorted algebra
called CA. The behavior of mangers depends on the context in which
they are executing. In this paper, we present an equational theory to
reason about context-specific behavioral equivalence of managers inde-
pendently from actors. To this end, we introduce and axiomatize a new
operator to consider the interaction of managers and the context. This
equational theory is based on the notion of statebased bisimilarity and
allows us to reason about the behavioral equivalence of managers as well
as the behavioral equivalence of the constitutes of managers (i.e., policies
and configurations). We illustrate our approach through an example.

1 Introduction

Today’s complex systems often need to operate in dynamic, open and heteroge-
neous environments, so they must be able to adapt themselves at run-time to
handle varying resources, user mobility, changing user needs, and system faults.
PobSAM (Policy-based Self-Adaptive Model) [8] is a flexible formal model to
develop, specify and verify self-adaptive systems which uses policies as the fun-
damental mechanism to govern the system behavior. A PobSAM model is com-
posed of a collection of autonomous managers, views and actors. Autonomous
managers are meta-actors responsible for monitoring and handling events by
enforcing suitable policies. Each manager has a set of configurations where one

S. Qin and Z. Qiu (Eds.): ICFEM 2011, LNCS 6991, pp. 16–32, 2011.
c© Springer-Verlag Berlin Heidelberg 2011

Context-Based Behavioral Equivalence of Components 17

of the configurations is active at a time. The manager changes its active con-
figuration dynamically in response to the changing circumstances according to
adaptation policies. The managers monitor actors through views, i.e. views pro-
vide contextual information for the managers. One of the distinguished advan-
tages of PobSAM is that it allows us to modify the configurations (or policies) of
managers at runtime. This feature makes PobSAM a suitable model to develop
evolving self-adaptive systems.

In dynamic environments such as ubiquitous computing world, many sys-
tems must cope with variable resources (bandwidth, server availability, etc.),
system faults (servers and networks going down, failure of external components,
etc.), and changing user priorities (high-fidelity video streams at one moment,
low-fidelity at another, etc.) [3]. In such environments, the system requires to
continue running with only minimal human intervention, and the component
assessment and integration process must be carried out automatically. We refer
to the component assessment as the problem of identifying a component with
desired behavior that can replace another component or can be used for interac-
tion in a specific context. A possible solution to this problem relies on detecting
the behavioral equivalence of a particular component with desired behavior and
a candidate component that could maintain that behavior. Generally, we cate-
gorize the behavioral equivalence of two components as context-independent or
context-specific. The context of a component is defined as the environment in
which the component is running. Two components that are context-independent
equivalent behave equivalently in any environment, while the equivalence of two
components that are context-specific equivalent, depends on the environments
in which they are running.

Managers are the main components to control and adapt the system behavior
in PobSAM. Thus, it is an important issue to analyze the behavioral equiva-
lence of managers when studying the dynamic replacement and interaction of
components for software adaptation. In order to ensure the correctness of the
whole system behavior, we have to provide approaches to analyze the behavioral
equivalence of the original manager and the adapted one.

Contribution. We previously proposed PobSAM in [8] which has a formal
foundation that employs an integration of algebraic formalisms and actor-based
models. The actors of PobSAM are modeled using actor-based models while the
algebra CA (Configuration Algebra) is proposed to specify the configurations
of managers. Due to the fact that the managers control and adapt the system
behavior using dynamic policies which are context-dependent rules, the behavior
of a manager depends on the context in which it is enforcing policies. We must
investigate context-specific behavioral equivalence of managers. Furthermore, we
can modify the policies and the configurations of a manager dynamically. Thus,
this equational theory should allow us to reason about context-specific behav-
ioral equivalence of policies and configurations as well. In this paper, we develop
an equational theory to analyze context-specific behavioral equivalence of man-
agers, based on a notion of behavioral equivalence called statebased bisimula-
tion. The context of managers is specified by a labeled state transition system.

18 N. Khakpour, M. Sirjani, and U. Goltz

The context interacts with the managers by synchronous message passing. We
extend CA with a new operator to consider the interaction of managers and
the context. Then, we present the axioms for this operator to check behav-
ioral equivalence of managers. In our equational theory, we can reason about
context-specific behavioral equivalence of policies, configurations and managers
separately. As the manager may evolve by changing its policies or configurations,
this theory allows us to only reason about the modified constitutes without the
need to check the whole model of the system. An important advantage of this
equational theory is that it analyzes the behavioral equivalence of the manager
layer independently from the actor layer using the context.

The remainder of this paper is organized as follows. In Section 2 we introduce
an example to illustrate our approach. In Section 3, we have a brief review on
PobSAM. Section 4 deals with modeling our case study in PobSAM. We intro-
duce the notion of statebased bisimulation in Section 5. An equational theory is
proposed to check context-specific behavioral equivalence of managers in Section
6. In Section 7, we give a summary of related work and Section 8 presents our
conclusions.

2 Illustrating Example

We use a simple example borrowed from [16] to illustrate our approach. In this
example, a team of collaborating unmanned autonomous vehicles (UAVs) are
used for a search and rescue operation. Assume a person with a body sensor
network (BSN) is wounded in an area and needs help. The BSN sends a help
message to a mission commander. A mission is defined by the commander to save
the wounded person: one or more UAVs with video cameras act as surveyors and
others perform a communication relay function. The UAVs are required to adapt
their behavior according to the changes of the environment. According to the
role of a UAV in the mission, a set of policies is used by that UAV to control its
behavior. However, the role of a UAV is not fixed, and subsequently, the policies
used to control the UAV behavior must change dynamically. For instance, the
video camera of a surveyor may break down and that surveyor would act as a
communication relay. Thus, various sets of policies are defined for a UAV and
one of those sets of policies is active at a time, i.e. adaptation is performed by
changing the set of policies used to control the UAV behavior.

3 PobSAM

A PobSAM model is composed of three layers:

– The actor layer is dedicated to the functional behavior of the system and
contains computational entities.

– The view layer consists of view variables that provide an abstraction of the
actors’ states for the managers. A view variable is an actual state variable,
or a function or a predicate applied to state variables of actors.

Context-Based Behavioral Equivalence of Components 19

– The main layer of PobSAM is the manager layer containing the autonomous
managers. Managers control the behavior of actors according to the prede-
fined policies. A manager may have different configurations and dynamic
adaptation is performed by switching among those configurations. A con-
figuration consists of two classes of policies: governing policies and adap-
tation policies. A manager directs the actor behavior by sending messages
to the actors according to governing policies. Adaptation policies are used
for dynamic adaptation by switching among configurations. However, the
adaptation cannot be done immediately and when the system reaches a safe
state, the manager switches to the new configuration. A new mode of oper-
ation called adaptation mode is introduced in which a manager runs before
switching to the new configuration. There are two kinds of adaptations called
loose adaptation and strict adaptation. Under loose adaptation, the manager
handles events in the adaptation mode by enforcing the governing policies
of old configuration, while in the strict adaptation mode all the events are
postponed until the system passes the adaptation mode safely.

A manager is defined as a tuple m = 〈Vm, Cm, cinit〉, with Cm the (finite) set
of configurations of m, cinit ∈ Cm its initial configuration, and Vm the (finite)
set of view variables observable by m. A configuration c ∈ Cm is defined as
c = 〈g, p〉, where g = {g1, ..., gn} and p indicate the governing policy set and the
adaptation policies of c, respectively. The constants � and ⊥ stand for “True”
and “False”, respectively.

Governing Policies. A simple governing policy gi=〈o, e, ψ〉•a, 1 ≤ i ≤ n con-
sists of priority o ∈ N, event e ∈ E where E is an assumed set of possible events,
condition ψ (a Boolean term) and an action a. The actions in the governing
policies are specified using an algebra CAa defined as follows. We let a, a′, a′′

denote action terms, while an (atomic) action α could be an internal action, an
output action (α!) in form of r.msg (i.e. sending the message msg to actor r),
or an input action (α?).

a
def= a; a′ | a ‖ a′ | a‖ a′ | a + a′ | φ :→ a | α | α! | α? | δa

Thus an action term can be a sequential composition (;), a parallel composi-
tion (‖), a left parallel composition (‖ which is as ‖ but the first action that is
performed comes from the left operand), a non-deterministic choice (+), or a
conditional choice (φ :→ a). Moreover, we have the special constant δa as the
deadlock action for governing policies. Operator precedences are assigned, from
highest precedence to the lowest, to the conditional choice, the parallel com-
position operators, the sequential composition and the non-deterministic choice
operators. Whenever a manager receives an event e, it identifies all simple gov-
erning policies that are triggered by that event , i.e. are of the form 〈o, e, ψ〉•a
for some o, ψ, and a. For each of these activated policies, if the policy condition
ψ evaluates to true and there is no other triggered governing policy with priority
higher than o, then action a is executed. Table 1 shows CAa axioms.

Adaptation Policies. Adaptation policies are specified using the algebra CAp

as follows:

20 N. Khakpour, M. Sirjani, and U. Goltz

Table 1. Action Algebra CAa

a + a′ = a′ + a A1 a ‖ a′ = a′ ‖ a AP1
(a + a′) + a′′ = a + (a′ + a′′) A2 (a ‖ a′) ‖ a′′ = a ‖ (a′ ‖ a′′) AP2
a + a = a A3 (a + a′)‖ a′′ = (a‖ a′′) + (a′‖ a′′) AP3
a + δg = a A4 a ‖ a′ = a‖ a′ + a′‖ a AP4
δg ; a = δg A5 α‖ a = α; a AP5
(a + a′); a′′ = a; a′′ + a′; a′′ A6 (α; a)‖ a′ = α; (a ‖ a′) AP6
(a; a′); a′′ = a; (a′; a′′) A7

� :→ a = a C1 ⊥ :→ a = δ C2
φ :→ (a + a′) = φ :→ a + φ :→ a′ C3 φ :→ (a;a′) = φ :→ a; a′ C4
φ :→ (ψ :→ a) = (φ ∧ ψ) :→ a C5 (φ ∨ ψ) :→ a = φ :→ a + ψ :→ a C6
φ :→ δ = δ C7 φ :→ a‖ a′ = φ :→ (a‖ a′) C8

p
def= 〈o, e, ψ, λ, φ〉•c | p⊕ p | δp

which consists of priority o ∈ N, event e ∈ E, and a condition ψ (a Boolean term)
for triggering the adaptation. Moreover, condition φ is a Boolean term indicating
the conditions for applying the adaptation, λ is the adaptation type (loose,
denoted ⊥, or strict, denoted �), and c is the new configuration. Informally,
simple adaptation policy 〈o, e, ψ, λ, φ〉•c indicates that when event e occurs and
the triggering condition ψ holds, if there is no other triggered adaptation policy
with priority higher than o, then the manager evolves to the strict or loose
adaptation mode as given by λ. When the condition φ is true, it will perform
adaptation and switch to the configuration c. The adaptation policy of a manager
is defined as composition(⊕) of the simple adaptation policies. Furthermore, δp

indicates the unit element for the composition operator.

4 Formal Modeling of Collaborating UAVs

Figure 1 shows the PobSAM model of a UAV partially. This model contains
actors motor, video camera, GSM and infrared sensors where Rebeca[15]
specification of motor is given in figure 1. Rebeca is an actor-based model used
to specify the actor layer in [8]. The view layer has a number of views denoting
the current location, speed, energy level etc of UAVs. As an example, the view
UAV1speed indicates the speed of UAV1 which reflects the value of the statevar
speed of actor UAV1motor.

A UAV has a manager named UAVCntrlr for controlling different compo-
nents of the UAV. A UAVCntrlr has three different configurations including
surveyorConf, idleConf and relayConf. It enforces different sets of policies
in each configuration to control the behavior of UAV. For instance, the configura-
tion surveyorConf contains the adaptation policies {p1,p2} and the governing
policy set {g1,g2,g3}. Assume a situation that the video camera of a surveyor
breaks down and we need to use this UAV as a relay. We define the adaptation
policy p1 which informally states that “when the video camera is broken down, if

Context-Based Behavioral Equivalence of Components 21

the wounded person has not been found and the UAV has required capability to
act as a relay, it should switch to the relayConf configuration”. We specify this
policy formally as follows in which brokencamera is an event. The view variable
canRelay indicates if the UAV has required capability to act as a relay, and the
view variable success denotes whether the wounded person has been found or
not.

p1
def
= 〈1, brokenCamera,¬success ∧ canRelay,�,�〉•relayConf

The simple governing policy g1 states that when the wounded person is
found, the UAV must request his health information from his BSN and send
a “success” message to the commander. The algebraic form of this policy
is g1

def= 〈1, found(x, y), �〉 • a1 where found(x,y) denotes an event that the
wounded person has been found at location (x, y), and

a1 = BSN .reqHealthinfo()? ‖
relay1.send(success(x, y), commander)!

5 Statebased Bisimulation

In PobSAM, the managers are running concurrently with the actors; the com-
putation at the actor layer is reflected at the view layer, the state changing of
the view layer leads to triggering and enforcing policies by the managers. Sub-
sequently, the enforcement of policies results in new computations to be done at
the actor layer. We specify the context based on specification of the view layer,
the actor interfaces and possibly the interfaces of other managers. Given the for-
mal specification of a context, we check the behavioral equivalence of managers
in that context. A context is defined as follows:

Definition 1. A context is defined as tuple Tc = 〈V, Sc, s
0
c ,AI

c ,AO
c ,AH

c ,→c〉
where

– V = {v1, ..., vn} is the set of view variables.
– Sc is the set of states where a state s ∈ Sc is of the form 〈v1, ..., vn〉.
– s0

c is the initial state.
– AI

c ,AO
c and AH

c are disjoint sets of input, output and internal actions where
Ac = AI

c ∪AO
c ∪AH

c .
– →c⊆ Sc ×Ac × Sc is the set of transitions.

In this paper, we extend CAa with a new operator, called CAa
Θ. We present a

context-specific behavioral equivalence theory for CAa
Θ. Then we use this basic

theory to reason about context-specific behavioral equivalence of policies, con-
figurations and managers. We define the operational meaning of CAa

Θ terms by a
transition system with data whose states are pairs of a CAa term and a context
state. Let A denote the set of CAa terms. The set of all pairs over A ×Sc is
denoted by SA×Sc . We define a state transition system with data as follows:

22 N. Khakpour, M. Sirjani, and U. Goltz

manager UAVCntrlr
{
statevars {
}
configurations{

surveyorConf=[p1,p2] [g1,g2,g3];
//definition of relayConf and idleConf configurations

}
policies{
p1[strict]:on brokenCamera if (!success && canRelay)

switchto relayConf when true priority 1 ;
g1 : on found(x,y) if true do

(BSN.reqhealthinfo() || relay.send(success(x,y),commander))
priority 1 ;

//definition of governing and adaptation policies
}

}
views {

byte UAV1speed as UAV1motor.speed;
//definition of other views

}
Actors {
reactiveclass motor() {

knownobjects {}
statevars{public byte speed; }
msgsrv forward() {
...
}
msgsrv stop() {
...
}

//definition of other message servers
}
//definition of other reactive classes
}

Fig. 1. The Partial PobSAM Model of a UAV

Definition 2. A state transition system with data defined over the context Tc,
is T (a, s0

c) = 〈SA×Sc ,→ ,AI ,AO,AH , (a, s0
c)〉 where SA×Sc is a set of states,

(a, s0
c) is the initial state, →⊆ SA×Sc ×A× SA×Sc and A = AI ∪ AO ∪ AH .

It worth mentioning that Ac ⊆ A, AI
c ⊆ AI , AO

c ⊆ AO and AH
c ⊆ AH . We use

a notion of bisimilarity called statebased bisimulation [5] for expressing context-
specific behavioral equivalence of CAa

Θ terms defined as follows:

Definition 3. Statebased Bisimulation A binary relation R ⊆ SA×Sc ×
SA×Sc is a statebased bisimulation iff for all (r, s), (q, s) ∈ SA×Sc with
((r, s), (q, s)) ∈ R:

– whenever (r, s) α−→ (r′, s′) for some α ∈ A and (r′, s′), then, for some q′, also
(q, s) α−→ (q′, s′) and ((r′, s′), (q′, s′)) ∈ R.

– Conversely, whenever (q, s) α−→ (q′, s′) for some α ∈ A and (q′, s′), then, for
some r′, also (r, s) α−→ (r′, s′) and ((r′, s′), (q′, s′)) ∈ R.

Context-Based Behavioral Equivalence of Components 23

A pair (r, s) ∈ SA×Sc is statebased bisimilar with a pair (r′, s′) ∈ SA×Sc with
respect to the context Tc, written by (r, s)⇔Tc

(r′, s′) iff s = s′ and there is a
statebased bisimulation containing the pair ((r, s), (r′, s′)).

A state transition system with data T (r, s) = 〈SA×Sc ,→ ,AI ,AO,AH , (r, s)〉
is statebased bisimilar with the transition system with data
T (q, s′) = 〈SA×Sc ,→′ ,A′I ,A′O,A′H , (q, s′)〉, written by T (r, s)⇔Tc

T (q, s′)
iff (r, s)⇔Tc

(q, s′). Furthermore, two closed terms r , q over CAa are
statebased bisimilar with respect to the context Tc, written by r⇔Tc

q, iff
T (r, s)⇔Tc

T (q, s) for all s ∈ Sc.

6 Context-Specific Behavioral Equivalence

In this section, we use the notion of statebased bisimulation to reason about
context-specific behavioral equivalence of managers and their constituents. We
introduce a new operator (Θ) to consider interactions of managers and the con-
text. The axiom system of CAa is extended to check statebased bisimulation of
CAa

Θ terms. Then, context-specific behavioral equivalence of policies, configura-
tions and managers are defined based on the proposed equational theory for CAa

Θ.

6.1 Context-Specific Behavioral Equivalence of Actions

In our model, the context and the managers run concurrently and interact by
synchronous message passing. Since the conditions of an action are evaluated
over the context state, therefore the concrete action carried out by the manager
depends on the context. There are three types of computation steps: (i) the
manager and the context synchronize on their shared input-output actions, (ii)
the context performs an internal action, or (iii) the manager performs an internal
action. In the cases (i) and (iii), the conditions of the action are evaluated over
the state of context. We introduce the operator Θ to compute the concrete action
done by a manager, regarding the interactions of the manager and a context.

Let a denote a term of CAa which must be performed by a manager, and
Tc = 〈V, Sc, s

0
c ,AI

c ,AO
c ,AH

c ,→c〉 denote an arbitrary context. Assume the cur-
rent state of context is s ∈ Sc and the manager starts the enforcement of action
a. The operator Θs(a) gives the concrete action performed by the manager as
the result of performing action a when the context starts its execution in state
sc ∈ Sc. The structural operational semantics of CAa

Θ extended is described by
the transition rules given in Figure 2 in addition to the transition rules proposed

in [8]. The transition a
[φ]α−−→ a′ means that a can evolve to a′ by performing

action α under condition φ.
Figure 3 presents the axioms for Θ in which α′ ∈ AH

c . This axiom system to-
gether with the axioms of Table 1 are used to check context-specific behavioral
equivalence of actions. We can formulate action a in form of a =

∑
i ai using

the axioms presented in Table 1 where term ai is the sequential composition
of conditional actions (i.e. of the form φ :→ α). Thus, we give the axioms for
conditional choice, non-deterministic choice and sequential composition opera-
tors. Due to the lack of space, we restrict ourselves to present axioms for output

24 N. Khakpour, M. Sirjani, and U. Goltz

a
[φ]α!−−−→ √ s

α?−→ s′

Θs(a)
α−→ √

σs(φ) = � LTR1
a

[φ]α?−−−→ √ s
α!−→ s′

Θs(a)
α−→ √

σs(φ) = � LTR2

a
[φ]α!−−−→ a′ s

α?−→ s′

Θs(a)
α−→ Θs′(a′)

σs(φ) = � LTR3
a

[φ]α?−−−→ a′ s
α!−→ s′

Θs(a)
α−→ Θs′(a′)

σs(φ) = � LTR4

s
α−→ s′ ¬((α = α′? ∧ a

α′!−−→ a′) ∨ (α = α′! ∧ a
α′?−−→ a′))

Θs(a)
α−→ Θs′(a)

LTR5

a
[φ]α−−→ a′

Θs(a)
α−→ Θs(a′)

σs(φ) = � LTR6

Fig. 2. Transition rules for the operator Θ

and internal actions. A number of axioms similar to TA3-4 are defined for input
actions. TA2 asserts that non-deterministic choice of two actions a and a′ from
state s is equivalent to either execution of a or execution of a′ from state s. In
axioms TA3-6, the fist term

∑
(s,α′,s′) Θs′(a) describes the case that an internal

action (α′) is executed by the context, and a will be evaluated from the next
state of the context (s′). If the condition of an action is evaluated to false (i.e.,
σs(ψ)), action δa is executed. Moreover, if ψ is evaluated to true in state s, (i)
execution of ψ :→ α! in state s can result in performing simple action α by syn-
chronization with α? of the context (TA3), (ii) execution of ψ :→ α!; a in state
s results in execution of simple action α synchronized with α? in the context,
followed by execution of a from next state s′ (TA4), (iii) execution of ψ :→ α in
state s can result in performing the internal action α by the manager (TA5), (iv)
execution of ψ :→ α; a in state s leads to execution of internal action α, followed
by execution of a from state s (TA6).

Proposition 1. (Congruence) Let a1, a2, a′
1 and a′

2 be terms of CAa, ψ
be an arbitrary boolean formula and Tc = 〈V, Sc, s

0
c ,AI

c ,AO
c ,AH

c ,→c〉 indi-
cate the context. If for all s ∈ Sc, Θs(a1)⇔Tc

Θs(a′
1) and Θs(a2)⇔Tc

Θs(a′
2),

then for all s ∈ Sc, Θs(a1+a2)⇔Tc
Θs(a′

1+a′
2), Θs(a1 ; a2)⇔Tc

Θs(a′
1 ; a′

2),
Θs(ψ :→ a1)⇔Tc

Θs(ψ :→ a′
1), and Θs(a1 ‖ a2)⇔Tc

Θs(a′
1 ‖ a′

2) .

Proof. See [7].

Theorem 1. (Soundness) Let Tc = 〈V, Sc, s
0
c ,AI

c ,AO
c ,AH

c ,→c〉 be a con-
text, and a and a′ indicate two arbitrary terms of CAa. If for all s ∈ Sc,
CAa + (TA1− TA6) � Θs(a) = Θs(a′) then Θs(a) and Θs(a′) are statebased
bisimilar with respect to Tc, i.e. Θs(a)⇔Tc

Θs(a′).

Proof. See [7].

6.2 Context-Specific Behavioral Equivalence of Governing Policies

We have presented an axiomatized operator to check context-specific behavioral
equivalence of actions in Section 6.1. We use this proposed equational theory

Context-Based Behavioral Equivalence of Components 25

Θs(δa) = δa TA1 Θs(a + a′) = Θs(a) + Θs(a
′) TA2

Θs(ψ :→ α!) =
∑

(s,α′,s′) Θs′(ψ :→ α!) +
∑

(s,α?,s′)

{
α σs(ψ) = �
δa σs(ψ) = ⊥ TA3

Θs(ψ :→ α! ; a) =
∑

(s,α′,s′) Θs′(ψ :→ α! ; a) +∑
(s,α?,s′)

{
α; Θs′(a) σs(ψ) = �
δa σs(ψ) = ⊥ TA4

Θs(ψ :→ α) =
∑

(s,α′,s′) Θs′(ψ :→ α) +

{
α σs(ψ) = �
δa σs(ψ) = ⊥ TA5

Θs(ψ :→ α ; a) =
∑

(s,α′,s′) Θs′(ψ :→ α ; a) +

{
α; Θs(a) σs(ψ) = �
δa σs(ψ) = ⊥ TA6

Fig. 3. Axioms of the operator Θs

to reason about context-specific behavioral equivalence of governing policies.
A simple governing policy is a set of actions performed by a manager. Two
simple governing policies are equivalent if and if they are activated by the same
transitions of the context and their enforcement results in the same sequences
of actions done by the manager.

Definition 4. Let Tc = 〈V, Sc, s
0
c ,AI

c ,AO
c ,AH

c ,→c〉 denote an arbitrary context.
Two simple governing policies g1 = 〈o1, e, ψ1〉•a1 and g2 = 〈o2, e, ψ2〉•a2 are

equivalent with respect to Tc, denoted by g1
Tc≡ g2, if for all t = (s1, α, s2) ∈→c,

(i) t |= τ(g1, g)⇔ t |= τ(g2, g) where τ(gi, g), i = 1, 2, indicates the triggering
conditions of gi and g denotes the governing policy set of manager [9].

(ii) Θs2(a1) = Θs2(a2)

To reason about the behavioral equivalence of governing policy sets, we formu-
late the behavior of a governing policy set as a CAa term. Then, we use the
axiom system of CAa

Θ to check the equivalence of corresponding action terms.
Therefore, context-specific behavioral equivalence of two governing policy sets is
reduced to checking context-specific behavioral equivalence of their correspond-
ing action terms.

Definition 5. Let g and g′ indicate two arbitrary governing policy sets and
Tc = 〈V, Sc, s

0
c ,AI

c ,AO
c ,AH

c ,→c〉 be an arbitrary context. The function Ψ(g, t)
returns the action term due to the enforcement of the governing policy set g,
when the transition t occurs [9]. We say g and g′ are equivalent with respect to

Tc, denoted by g
Tc≡ g′, iff for all t = (s1, α, s2) ∈→c, Θs2(Ψ(g, t)) = Θs2(Ψ(g′, t)).

Example 1. Suppose a situation that relay1 becomes overloaded. The messages
of a number of the surveyors which are transmitted by this relay should be trans-
mitted through the low-loaded relay2. To this end, first we have to find those

26 N. Khakpour, M. Sirjani, and U. Goltz

empty
discharge

charge?

full

charge?

discharge

event(found)!

med

BSN.reqHealthinfo()!

BSN.reqHealthinfo()!

relayer2.send(msg)?

relayer2.send(msg)?
event(found)!
event(missenend)!

event(missenend)!

relayer1.send(msg)?

relayer1.send(msg)?

event(brokencamera)!

event(brokencamera)!

Fig. 4. The context of surveyor1(Tsurv)

surveyors which transmit their messages through relay1. Assume that the sur-
veyors communicate with the relays only in the case that the wounded person is
found. In order to check if a surveyor transmits its messages through relay1, we
check context-specific behavioral equivalence of its governing policies for trans-
mitting data, and the simple governing policy g2

def= 〈1, found(x, y), �〉 • a2

where a2
def
= BSN .reqHealthinfo()? ‖ relay1.send(msg)!. This simple policy

states that when the wounded person is found, the information should be trans-
mitted through relay1.

Suppose surveyor1 has the simple governing policy g1
def=

〈1, found(x, y), �〉 • a1 where

a1
def
= BSN .reqHealthinfo()? ‖ (lowenergy :→ relay2.send(msg)!

+¬lowenergy :→ relay1.send(msg)!)

Figure 4 shows the abstract context of surveyor1 (Tsurv) which has three states
full (full energy), med (medium energy) and empty (no energy). Furthermore,
{found, brokencamera, missionend} ⊆ AO

c indicate the event set, charge is an
input action, and discharge is an internal action. We should check context-
specific behavioral equivalence of g1 and g2 with respect to Tsurv. Both policies
are triggered in the states full and med in which the condition lowenergy does
not hold and event found is activated. Hence, we must check the equations
Θfull(a1) = Θfull(a2) and Θmed(a1) = Θmed(a2) (Definition 4). For the sake of
readability, let’s denote relay1.send(msg) and relay2.send(msg) by α1 and α2

respectively. According to the axiom systems in Table 1 and Figure 3,

Θfull(¬lowenergy :→ α1! + lowenergy :→ α2!)
TA2=

Θfull(¬lowenergy :→ α1!) + Θfull(lowenergy :→ α2!)
TA3,A3

=
� :→ α1 +⊥ :→ α2 +

Θmed(¬lowenergy :→ α1! + lowenergy :→ α2!)
C1,C2=

α1 + Θmed(¬lowenergy :→ α1! + lowenergy :→ α2!) (1)

Context-Based Behavioral Equivalence of Components 27

and
Θfull(α1!) = α1 + Θmed(α1!) (2)

It is trivial to prove that

Θmed(¬lowenergy :→ α1! + lowenergy :→ α2!) = Θmed(α1!) (3)

and subsequently, the equation Θfull(a1) = Θfull(a2) is concluded from equa-
tions (1)-(3). According to Theorem 1, the actions of g1 and g2 are statebased
bisimilar with respect to the context Tsurv, if they are activated in state full.
Similarly, we can prove that the actions of g1 and g2 are statebased bisimilar
when they are activated in state med. We conclude that g1 and g2 are equiv-
alent according to Definition 4. Therefore, surveyor1 always transmits its data
through relay1.

6.3 Context-Specific Behavioral Equivalence of Adaptation Policies

Informally, two simple adaptation policies are equivalent if and only if (a) they
are activated by the same transitions of the context, (b) their enforcement leads
to switching to the identical adaptation modes and configurations, and (c) the
manager switches to the new configuration in the same set of context states:

Definition 6. Suppose Tc = 〈V, Sc, s
0
c ,AI

c ,AO
c ,AH

c ,→c〉 be an arbitrary context.
Two adaptation policies p1 = 〈o1, e1, ψ1, λ1, φ1〉•c1 and p2 = 〈o2, e2, ψ2, λ2, φ2〉•
c2 are equivalent with respect to Tc, denoted by p1

Tc≡ p2, if for all transitions
t = (s1, α, s2) ∈→c,

(i) t |= τ(p1, p)⇔ t |= τ(p2, p) where τ(pi, p), i = 1, 2, gives the triggering con-
ditions of pi and p is the adaptation policy of the manager,

(ii) c1 = c2 and λ1 = λ2,
(iii) s′ |= φ1 ⇔ s′ |= φ2 for all reachable states s′ ∈ Sc from s2, where there is a

path such as σ between s2 and s′, and for all s′′ ∈ σ, s′′ � φ1 ∨ φ2 .

Similar to governing policies, enforcement of adaptation policies leads to a se-
quence of actions carried out by the manager. We say two adaptation policies
are equivalent with respect to context Tc, if their enforcement in a system with
context Tc leads to the same sequence of actions carried out by the manager.
We introduce the operator Ω which gives the actions done by the manager to
apply an adaptation policy. Let p indicate an adaptation policy of a manager,
and pi = 〈o, e, ψ, λ, φ〉 • c denote an arbitrary simple adaptation policy of p, i.e.
p = pi⊕p′. The function Ω(pi, p) returns a CAa term due to enforcing pi, where
τ(pi, p) denotes the triggering conditions of pi:

Ω(pi, p) =

⎧⎨⎩
τ(pi, p) :→ event(e)?; tostrict(); φ :→ switch(c) λ = �
τ(pi, p) :→ event(e)?; toloose(); φ :→ switch(c) λ = ⊥
δa pi = δp

The action tostrict() denotes an internal action performed by the manager
to evolve to the strict adaptation mode, toloose() denotes an internal action

28 N. Khakpour, M. Sirjani, and U. Goltz

for evolving to loose adaptation mode, and switch(c) is an internal action for
switching to configuration c. Furthermore, the behavior of an adaptation policy
p = p1 ⊕ ...⊕ pn is defined as follows:

Ω(p) =
∑

1≤i≤n

Ω(pi, p)

Given the behavior of adaptation policies as CAa terms, we use context-
specific behavioral equivalence theory of CAa

Θ to reason about their behavioral
equivalence.

Definition 7. Let p and p′ indicate two arbitrary adaptation policy and
Tc = 〈V, Sc, s

0
c ,AI

c ,AO
c ,AH

c ,→c〉 be an arbitrary context. We say p and p′

are equivalent with respect to Tc, denoted by p
Tc= p′, iff for all s ∈ Sc,

Θs(Ω(p)) Tc= Θs(Ω(p′)).

6.4 Context-Specific Behavioral Equivalence of Configurations and
Managers

A configuration consists of a set of governing policies and a set of adaptation
policies. As mentioned above, we can change the configurations of a manager
dynamically. Therefore, we require a theory to assure that the behavior of a
configuration is equivalent to the behavior of a desired configuration, with re-
spect to a context. In order to reason about the behavioral equivalence of two
configurations, we reason about the behavioral equivalence of their governing
policies as well as the behavioral equivalence of their adaptation policies:

Definition 8. Let c = 〈g, p〉 and c′ = 〈g′, p′〉 be two arbitrary configurations,
and Tc = 〈V, Sc, s

0
c ,AI

c ,AO
c ,AH

c ,→c〉 denote an arbitrary context. We say c
Tc= c′

iff g
Tc= g′ and p

Tc= p′.

Example 2. Consider a situation that surveyor1 breaks down, and should be
replaced by another UAV with surveying capabilities, named UAV2. Hence, we
should check if the current configuration of UAV2 (c′) is equivalent to the config-
uration of surveyor1(c) with respect to context Tsurv shown in Figure 4. Suppose
both surveyor1 and UAV2 have the same set of governing policies, i.e. g

Tsurv= g′

where g indicates the governing policy set of surveyor1 and g′ denotes the gov-
erning policy set of UAV2. Thus, we need to check the behavioral equivalence
of their adaptation policies with respect to Tsurv. Let p and p′ indicate the
adaptation policies of surveyor1 and UAV2, respectively, defined as follows:

p = 〈1, brokencamera,¬lowenergy,�,�〉•relayConf ⊕
〈1, missionend,�,⊥,�〉•idle⊕
〈1, found, lowenergy,⊥,�〉•idle

p′ = 〈1, brokencamera,�,�,�〉•relayConf ⊕
〈1, missionend,�,⊥,�〉•idle

Context-Based Behavioral Equivalence of Components 29

We formulate p and p′ in terms of CAa terms as follows:

Ω(p) = ¬lowenergy :→ event(brokencamera)?; tostrict(); switch(relayConf) +
� :→ event(missionend)?; toloose(); switch(idleConf) +
⊥ :→ event(found)?; toloose(); switch(idleConf)

Ω(p′) = � :→ event(brokencamera)?; tostrict(); switch(relayConf) +
� :→ event(missionend)?; toloose(); switch(idleConf)

For the sake of readability, we show Ω(p) and Ω(p′) by a and a′, respectively.
When the context is in state “full”, if the events “discharge” and “found”
are raised, non of the policies p and p′ are triggered, however both policies are
activated when the events “brokencamera” and “missionend” are raised:

Θfull(a)=Θfull(a
′)=event(brokencamera);Θmed(tostrict(); switch(relayConf)) +

event(missionend);Θmed(toloose(); switch(idleConf))

It is trivial to prove that Θmed(Ω(p)) = Θmed(Ω(p′)) and
Θempty(Ω(p)) = Θempty(Ω(p′)). Consequently, according to definition 7, it

is concluded that p
Tc= p′. According to definition 8, we conclude that surveyor1

and UAV2 are substitutable,

p
Tc= p′

g
Tc= g′

}
⇒ c

Tc= c′

Checking context-specific behavioral equivalence of two managers is the most
important part of our behavioral equivalence theory. As mentioned above, a
manager runs one of its configurations at a time, and switches between the con-
figurations to perform dynamic adaptation. Informally, two managers are be-
havioral equivalent with respect to Tc iff (i) the managers have equivalent initial
configurations with respect to Tc, and (ii) switching from equivalent configura-
tions leads to the equivalent configurations in both managers. We reason about
the equivalence of managers in terms of behavioral equivalence of their simple
configurations:

Definition 9. Let m = 〈Vm, C, cinit〉 and m′ = 〈Vm′ , C′, c′init〉 be two managers
with configuration sets C = {c1, ..., ck} and C′ = {c′1, ..., c′k′}, initial config-
urations cinit ∈ C and c′init ∈ C′, and set of views Vm and Vm′ , respectively.
Furthermore, Tc = 〈V, Sc, s

0
c ,AI

c ,AO
c ,AH

c ,→c〉 indicates an arbitrary context.
We say m and m′ are equivalent with respect to context Tc, written by m

Tc= m′,
(i) cinit

Tc= c′init, (ii) for each equivalent configurations ci ∈ C and c′j ∈ C′, if
the manager m switches from ci to ck, the manager m′ must switch from c′j to

c′l ∈ C′ where ck
Tc= c′l and vice versa.

30 N. Khakpour, M. Sirjani, and U. Goltz

Example 3. Let surveyor1 has the capability to search areas
with chemical hazards. The manager of this UAV is defined as
survCntrlr = 〈V, {survconf, hazardconf, relayconf}, survconf〉 where con-
figuration survconf is used to search areas without hazardous chemicals,
hazardconf is used to search areas with hazards, and relayconf is used for
acting as a relay. Let the situation that surveyor1 has to be replaced by a
UAV with the manager survCntrlr′ = 〈V, {survconf ′, relayconf ′}, survconf ′〉.
Let Ts denote the context of survCntrlr and survCntrlr′. Assume we have
survconf

Ts= survconf ′ and relayconf
Ts= relayconf ′, if the surveying area is

not contaminated with hazardous chemicals. This is due to the fact that the
adaptation policies of survconf and relayconf for switching to hazardconf
are not triggered, and switching is done between survconf and relayconf .
Therefore, according to Definition 9, we conclude survCntrlr

Ts= survCntrlr′.
It worth mentioning that if we use theses two UAVs in another context, they
might not behave equivalently.

7 Related Work

Although process algebra is used for structural adaptation (e.g. see [2], [12]),
however to the best of our knowledge process algebraic approaches have not
been used for behavioral adaptation. Zhang et al. [19] proposed a model-driven
approach using Petri Nets for developing adaptive systems. They also presented
a model-checking approach for verification of adaptive system [20,18] in which
an extension of LTL with ”adapt” operator was used to specify the adaptation
requirements. Furthermore, authors in [14,1] used labeled transition systems to
model and verify embedded adaptive systems. In [10], a generic classification of
the policy conflicts are presented for PobSAM models and temporal patterns
expressed in LTL are provided to detect each class of conflicts. We studied the
comparison of existing work in the area of formal verification of adaptive systems
and PobSAM in [8].

The issue of component substitutability has already been addressed in lit-
erature with the purpose of checking compatibility of a new component with
other components (e.g. [11]), substituting a component with another component
with the equivalent behavior (e.g. [17]), replacing a component such that the
reconfigured system preserves a specific property etc. Some approaches specify
the components behavior by modeling the components interfaces while a few
approaches are concerned with specifying the internal behavior of components,
as we have done in this work. We use specification of components interfaces to
build and specify the context of managers. Among the existing approaches, [17]
uses a formalism named component-interaction automata to specify the behavior
of components interfaces. They define a notion of equivalence on these automata
in addition to a composition operator to prove substitutability and indepen-
dent implementability properties. In a similar work, [6] specifies the components
behavior using max/plus automata and defines four kinds of substitutivity con-
sidering QoS aspects. However, the main difference compared to our work is

Context-Based Behavioral Equivalence of Components 31

that they do not consider data states of components. Furthermore, to the best
of our knowledge, none of the approaches for checking behavioral equivalence of
components are based on a process algebraic formalism. The existing approaches
model the components behavior using automata-based or LTS formalisms. Due
to the fact that PobSAM has a different formal foundation, it requires special
analysis techniques such as the equational theory presented in this paper which
is not provided by other existing work.

Schaeffer-Filho et al. [13] use Alloy Analyzer [2] for formal specification and
verification of policy-based systems, however they are not concerned with be-
havioral equivalence of components. Moreover, Georgas et al [4] uses policies as
a mechanism for structural adaptation in robotic domain, but this work has no
formal foundation.

8 Conclusions

In this paper, we presented an equational theory to analyze context-specific be-
havioral equivalence of policies, configurations and managers in PobSAM models
based on the notion of statebased bisimilarity. Given the context as a labeled
state transition system, we analyze context-specific behavioral equivalence of the
manager layer independently from the actor layer. To this aim, we introduced
and axiomatized an operator to consider interactions of the managers and the
context. We demonstrated the approach using an example for search and rescue
operations.

Acknowledgments. This work was funded by the NTH School for IT
Ecosystems. NTH (Niedersachsische Technische Hochschule) is a joint univer-
sity consisting of Technische Universitat Braunschweig, Technische Universitat
Clausthal, and Leibniz Universitat Hannover.

References

1. Adler, R., Schaefer, I., SchLule, T., Vecchie, E.: From model-based design to for-
mal verification of adaptive embedded systems. In: Butler, M., Hinchey, M.G.,
Larrondo-Petrie, M.M. (eds.) ICFEM 2007. LNCS, vol. 4789, pp. 76–95. Springer,
Heidelberg (2007)

2. Bradbury, J.S., Cordy, J.R., Dingel, J., Wermelinger, M.: A survey of self-
management in dynamic software architecture specifications. In: Proceedings of
1st ACM SIGSOFT Workshop on Self-managed Systems, pp. 28–33. ACM, New
York (2004)

3. Garlan, D., Cheng, S.-W., Schmerl, B.R.: Increasing system dependability through
architecture-based self-repair. In: WADS, pp. 61–89 (2002)

4. Georgas, J.C., Taylor, R.N.: Policy-based self-adaptive architectures: a feasibility
study in the robotics domain. In: Proceedings of the 2008 International Workshop
on Software Engineering for Adaptive and Self-managing Systems, SEAMS 2008,
pp. 105–112. ACM, New York (2008)

32 N. Khakpour, M. Sirjani, and U. Goltz

5. Groote, J.F., Ponse, A.: Process algebra with guards: Combining hoare logic with
process algebra. Formal Asp. Comput. 6(2), 115–164 (1994)

6. Heam, P.-C., Kouchnarenko, O., Voinot, J.: Component simulation-based substi-
tutivity managing qos aspects. Electron. Notes Theor. Comput. Sci. 260, 109–123
(2010)

7. Khakpour, N.: Context-based behavioral equivalence of components in self-
adaptive systems. Technical report, Technical Report of TU Bruanschweig (2011)

8. Khakpour, N., Jalili, S., Talcott, C.L., Sirjani, M., Mousavi, M.R.: Pobsam: Policy-
based managing of actors in self-adaptive systems. Electr. Notes Theor. Comput.
Sci. 263, 129–143 (2010)

9. Khakpour, N., Jalili, S., Talcott, C.L., Sirjani, M., Mousavi, M.R.: Formal modeling
of evolving adaptive systems (submitted, 2011)

10. Khakpour, N., Khosravi, R., Sirjani, M., Jalili, S.: Formal analysis of policy-based
self-adaptive systems. In: SAC, pp. 2536–2543 (2010)

11. Legond-Aubry, F., Enselme, D., Florin, G.: Assembling contracts for components.
In: Najm, E., Nestmann, U., Stevens, P. (eds.) FMOODS 2003. LNCS, vol. 2884,
pp. 35–43. Springer, Heidelberg (2003)

12. Mateescu, R., Poizat, P., Salaun, G.: Adaptation of service protocols using pro-
cess algebra and on-the-fly reduction techniques. IEEE Transactions on Software
Engineering 99(prePrints) (2011)

13. Schaeffer-Filho, A., Lupu, E., Sloman, M., Eisenbach, S.: Verification of policy-
based self-managed cell interactions using alloy. In: Proceedings of the 10th
IEEE International Conference on Policies for Distributed Systems and Networks,
POLICY 2009, pp. 37–40. IEEE Press, Los Alamitos (2009)

14. Schneider, K., Schuele, T., Trapp, M.: Verifying the adaptation behavior of em-
bedded systems. In: Proceedings of the 2006 International Workshop on Self-
adaptation and self-managing Systems, SEAMS 2006, pp. 16–22. ACM, New York
(2006)

15. Sirjani, M., Movaghar, A., Shali, A., de Boer, F.S.: Modeling and verification of
reactive systems using rebeca. Fundam. Inform. 63(4), 385–410 (2004)

16. Sloman, M., Lupu, E.C.: Engineering policy-based ubiquitous systems. Comput.
J. 53(7), 1113–1127 (2010)

17. Cerna, I., Varekova, P., Zimmerova, B.: Component substitutability via equivalen-
cies of component-interaction automata. Electron. Notes Theor. Comput. Sci. 182,
39–55 (2007)

18. Zhang, J., Cheng, B.H.C.: Specifying adaptation semantics. ACM SIGSOFT Soft-
ware Engineering Notes 30(4), 1–7 (2005)

19. Zhang, J., Cheng, B.H.C.: Model-based development of dynamically adaptive soft-
ware. In: Proceedings of the 28th International Conference on Software Engineer-
ing, ICSE 2006, pp. 371–380. ACM, New York (2006)

20. Zhang, J., Goldsby, H., Cheng, B.H.C.: Modular verification of dynamically adap-
tive systems. In: Proceedings of the 8th ACM International Conference on Aspect-
oriented Software Development, pp. 161–172 (2009)

Towards a Practical Approach to Check

UML/fUML Models Consistency Using CSP

Islam Abdelhalim, Steve Schneider, and Helen Treharne

Department of Computing, University of Surrey
{i.abdelhalim,s.schneider,h.treharne}@surrey.ac.uk

Abstract. This work provides an underpinning for a systems modelling
approach based on UML and fUML together. It uses UML state diagrams
as a starting point for modelling system object behaviour abstractly, then
refining each state diagram by adding the implementation decisions in a
form of a fUML activity diagram. Maintaining behavioural consistency
between each UML state diagram and its corresponding fUML activity
diagram is an important but difficult task. In this paper we introduce a
framework that automates checking such consistency in a practical way.

The framework is based on formalizing these diagrams into the pro-
cess algebra CSP to do trace refinement checking using FDR2. One of
the main contributions in this work is that we transform FDR2 out-
put (counter-example in case of inconsistency) back to the UML/fUML
model in a way that allows the modeller to debug the consistency prob-
lem. To be able to provide this kind of interactive feedback, the gener-
ated CSP model is augmented with traceability information. A case tool
plugin based on the Epsilon model management framework has been
developed to support our approach.

1 Introduction

The fUML (Foundational subset for Executable UML) standard [1] has been
developed by the OMG (Object Management Group) to allow for the execution
of models. This implies having more complete and precise models which in many
cases lead to complicated models that include implementation decisions. How-
ever, complicated models are hard to read, browse, understand and maintain.
Moreover, checking consistency between such models and their specifications
(modelled as abstract models) is a very difficult task. In contrast, abstract mod-
els are not complicated, but they cannot be used for model execution.

To get the benefits of both (abstract and concrete models), the modeller starts
with an abstract model and then refines it by adding more implementation detail
until reaching a concrete one. This concept in the UML/fUML domain can be
applied by initially modelling a system using UML in an abstract way and then
refining the model to reach a concrete fUML model.

In the formal methods domain it is a common task to check consistency be-
tween abstract and concrete models using model checkers or theorem provers.
However, this is not the case in the UML/fUML domain. Case tools that are

S. Qin and Z. Qiu (Eds.): ICFEM 2011, LNCS 6991, pp. 33–48, 2011.
c© Springer-Verlag Berlin Heidelberg 2011

34 I. Abdelhalim, S. Schneider, and H. Treharne

used to draw the diagrams are concerned mainly with syntactical checking (i.e.,
checks if the UML/fUML diagram meets the UML/fUML standard specifica-
tion). To import refinement into the UML/fUML domain, we are proposing a
framework that allows checking UML/fUML model consistency. This framework
is based on formalizing UML/fUML models into the CSP (Communicating Se-
quential Processes) [2] formal language, then performing formal model checking
using FDR2 (the Failures-Divergences Refinement tool) [3]. If FDR2 detects an
inconsistency it will generate a counter-example which shows a trace that led
to this inconsistency. To completely isolate the modeller from dealing with the
formal methods domain, our framework reflects this counter-example back to
the UML/fUML model (through a model debugger).

Although checking consistency between semi-formal models (e.g., UML) has
been addressed many times in the literature [4,5] using formal methods, to our
knowledge, this paper is the first attempt to check consistency between non-
executable and executable semi-formal models. Also the provision of a modeller
friendly consistency checking feedback resulting from the model checking is one
of the main contributions in this paper.

We differentiate between two types of model inconsistency based on the clas-
sification in [6]. First, intra-model inconsistency, which occurs if two (or more)
diagrams with different types are not consistent (e.g., a state diagram and a
related sequence diagram in the same UML model). Second, inter-model incon-
sistency, which occurs if two (or more) diagrams with the same type are not
consistent (e.g., a version of a state diagram and a refined version represented
as a state diagram as well). Our work is a combination of these two kinds of
inconsistency because we start by modelling the object behaviour as an UML
state diagram and refine it to a fUML activity diagram that represents the same
object behaviour augmented with more implementation detail. Hence, we will
refer to this as behavioral consistency.

The formalization is done automatically by transforming UML/fUML dia-
grams into CSP processes. We made use of Epsilon [7] as one of the avail-
able MDE (Model Drive Engineering) frameworks to support the transformation
based on available UML2 [8], fUML [1] and CSP [9] meta-models. Epsilon is one
of several components that build up our framework which has been implemented
as a MagicDraw1 [10] plugin to allow modellers to seamlessly use our approach
during the system modelling process.

The approach has been tested using the Tokeneer ID Station [11] case study.
A group of UML state and fUML activity diagrams have been developed and the
consistency between them has been verified using our approach. Our previous
paper [12] focused on checking deadlock between Tokeneer fUML communicated
objects, however; in this work we have checked refinement between Tokeneer
fUML activity and state diagrams. This work also considers the modeller-friendly
checking feedback which was not addressed in [12]. Due to limitations of space

1 MagicDraw is an (award-winning) architecture, software and system modeling case
tool. It also supports additional plugins to increase its functionalities.

Towards a Practical Approach to Check UML/fUML Models Consistency 35

we will include a simple example (Microwave Oven from [13]) to illustrate the
main concepts through the paper.

We assume the reader of this paper has an understanding of the UML2 stan-
dard, CSP and FDR2.

The rest of this paper is organised as follows. In Section 2, we give a background
to the fUML standard and the CSP syntax used in this paper. In Section 3, we give
an overview of our approach and its main components. In Section 4, we describe
the Model Formalizer component and how it works. In Section 5, we describe how
consistency is checked between particular UML and fUML diagrams. In Section 6,
we describe how we provide the modeller with helpful feedback through a Formal-
ization Report and the Model Debugger. In Section 7, we outline the implemen-
tation of the approach. Finally, we discuss related work and conclude in Sections
8 and 9 respectively.

2 Background

2.1 fUML

As defined by the OMG, fUML is a standard that acts as an intermediary be-
tween “surface subsets” of UML models and platform executable languages. The
fUML subset has been defined to allow the building of executable models. Code-
generators can then be used to automatically generate executable code (e.g., in
Java) from the models. Another option is to use model-interpreters that rely
on a virtual machine to directly read and run the model (e.g., fUML Reference
Implementation [14]).

The fUML standard includes class and activity diagrams to describe a system’s
structure and behaviour respectively. Some modifications have been applied to
the original class and activity diagrams in the UML2 specification [15] to meet
the computational completeness of fUML. The modifications have been done by
merging/excluding some packages in UML2, as well as adding new constraints,
such as:

– Variables are excluded from fUML because the passing of data between ac-
tions can be achieved using object flows.

– Opaque actions are excluded from fUML since, being opaque, they cannot
be executed.

– Value pins are excluded from fUML because they are redundant due to the
use of value specifications to specify values.

The operational semantics of fUML is an executable model with methods written
in Java, with a mapping to UML activity diagrams. The declarative semantics
of fUML is specified in first order logic and based on PSL (Process Specification
Language) [16].

UML/fUML Example
Throughout this paper we use a simple example of a microwave oven that con-
sists of two classes: Controller and Heater. Figure 1 shows the state machine

36 I. Abdelhalim, S. Schneider, and H. Treharne

(Controller SD) that represents the Controller active object behaviour. The ob-
ject can be in one of three different states (DoorOpen, ReadyToCook and Cook-
ing) based on the incoming events (doorClosed, buttonPressed, ...). For example,
if the object was in the ReadyToCook state and the buttonPressed event hap-
pened, it will enter the Cooking state.

Controller_SD

DoorOpen

ReadyToCook

Cooking

doorOpened

doorOpened timerTimesout

doorClosed buttonPressed

Fig. 1. UML State Diagram of the Microwave Controller

As a result of refining the Controller state digram by adding some imple-
mentation detail, we obtain the Controller fUML activity diagram depicted in
Figure 2. The added implementation detail include:

– Setting the value of the class attributes (e.g., setting isCooking attribute to
FALSE using the valueSpecification and addStructuralFeatureValue actions).

– Sending signals (equivalent to the state diagram events) to objects (e.g.,
sending stopHeaterSignal to the Heater object).

– Representing the object internal decisions (e.g., timer expiration).

Although we do not include all the implementation details for this object it is
obvious that the executable model is more complicated. Our experience with
modeling large systems showed that checking consistency between those two
kinds of models (abstract and concrete) manually is a challenging task.

2.2 CSP

CSP is a modelling language that allows the description of systems of interacting
processes using a few language primitives. Processes execute and interact by
means of performing events drawn from a universal set Σ. Some events are of
the form c.v , where c represents a channel and v represents a value being passed
along that channel. Our UML/fUML formalization considers the following subset
of the CSP syntax:

P ::= a → P | c?x → P(x) | d !v → P | P1 � P2

| P1 � P2 | P1 ‖
A B

P2 | P \ A

| let N1 = P1 , . . . , Nn = Pn within Ni

Towards a Practical Approach to Check UML/fUML Models Consistency 37

(selfObj : Controller, heaterObj : Heater) Controller_ADactivity

selfObj : Controller

selfObj : Controller

heaterObj : Heater

<<addStructuralFeatureValue>>

isCooking

<<addStructuralFeatureValue>>

isCooking

Accept
(timerTimesOut,

doorOpened)

Accept
(doorOpened,
buttonPressed)

Send
(timerTimesout)

<<valueSpecification>>

value(TRUE)

<<valueSpecification>>

Value(FALSE)

Accept
(doorClosed)

Send
(startHeater)

Send
(stopHeater)

timerTimesoutSignaldoorOpenedSignal

doorOpenedSignal buttonPressedSignal

timerNotExpiredtimerExpired

Fig. 2. fUML Activity Diagram of the Microwave Controller

The CSP process a → P initially allows event a to occur and then behaves
subsequently as P . The input process c?x → P(x) will accept a value x along
channel c and then behaves subsequently as P(x). The output process c!v → P
will output v along channel c and then behaves as P . Channels can have any
number of message fields, combination of input and output values.

The choice P1 � P2 offers an external choice between processes P1 and P2

whereby the choice is made by the environment. Conversely, P1 � P2 offers an
internal choice between the two processes.

The parallel combination P1 ‖
A B

P2 executes P1 and P2 in parallel. P1 can

perform only events in the set A, P2 can perform only events in the set B , and
they must simultaneously engage in events in the intersection of A and B .

The hiding operation P \ A describes the case where all participants of all
events in the set A are described in P . All these events are removed from the
interface of the process, since no other processes are required to engage in them.
The let . . .within statement defines P with local definitions Ni = Pi .

Traces Model
Processes in CSP interact with their environment (another process, user, or
combination of both) through events in their interface. A process P is refined
by a process Q if the set containing all the possible traces that can be generated

38 I. Abdelhalim, S. Schneider, and H. Treharne

from process Q is a subset (or equals) of those traces of P . This definition can
be expressed as: P �T Q .

3 Approach Overview

To automate the formalization and the feedback process, we have designed a
framework that facilitates this functionality and at the same time isolates the
modeller completely from the formal methods domain (CSP). Figure 3 shows
the architecture of this framework and the modeller interaction points.

Fig. 3. Approach Architecture

Initially the modeller uses a case tool (e.g., MagicDraw) to draw the UML
state diagrams and the corresponding fUML activity diagram for each active
class in the system. To check consistency between the UML/fUML diagrams,
the modeller should initiate the checking process. As a first step the diagrams
will be converted to the XMI (XML Metadata Interchange) [17] format, thus it
can be read by any MDE framework.

The Model Formalizer then processes the input diagrams and transforms them
to a CSP script based on a group of transformation rules and the input UML2
[8], fUML [1] and CSP [9] existing meta-models. In case there is a problem
in the formalization process, the Model Formalizer generates a Formalization
Report with the error cause(s). The Model Formalizer also generates a CSP-to-
UML/fUML mapping table which maps each CSP event ID to its corresponding
ID for the UML/fUML element.

The generated CSP script subsequently used as an input to FDR2 that per-
forms the consistency automatic checking. If there is a consistency problem
FDR2 generates a counter-example which includes the traces (sequence of events)
that led to the problem.

In case of inconsistency, the Model Debugger can be used by the modeller to
trace the consistency problem source. In order to do that, the Model Debugger

Towards a Practical Approach to Check UML/fUML Models Consistency 39

reads the counter-example and makes use of the CSP-to-UML/fUML mapping
table to reflect the traces on the displayed diagrams in the case tool. The modeller
can deal with the Model Debugger using GUI (Graphical User Interface) controls
(step forward, step backward, breakpoints, etc.).

Having consistent UML/fUML diagrams will make the code generation (or
model interpretation) a safer and direct process, because the modeller will be
confident that the generated code from the fUML model is compatible with the
system UML model.

4 The Model Formalizer

The Model Formalizer mainly transforms a source model (UML/fUML dia-
grams) into a formal representation (CSP script). We used Epsilon as an MDE
framework to handle the transformation in two stages; firstly, a Model-to-Model
transformation from the UML/fUML model to CSP model using ETL (Epsilon
Transformation Language) [18] and secondly a Model-to-Text transformation
from the generated CSP model to a CSP script using EGL (Epsilon Generation
Language) [18]. Epsilon also requires the source/target models’ meta-models, so
we used the available UML2 meta-model [8] as well as the CSP meta-model used
in our previous work [9].

The ETL script consists mainly of a group of transformation rules, part of
them related to the UML state diagram elements (4 rules) and the others re-
lated to the fUML activity diagram elements (11 rules). Figure 4 shows a simple
rule (to clarify the concept) which is used to transform a state machine (e.g.,
Controller SD) to a CSP localized process (e.g., Controller SD Proc). The fig-
ure includes the ETL rule which can be understood by referring to the included
UML and CSP meta-models segments.

Fig. 4. Rule(1) for Transforming State Machines to CSP Localized Processes

40 I. Abdelhalim, S. Schneider, and H. Treharne

The model elements can be accessed using the variables SD and CSP with
the ‘!’ operator. The localProc variable represents the main LocalizedProcess that
all other sub-processes belongs to it. By executing this rule two CSP elements
will be created (instances from: ProcessID and ProcessAssignment) and added
to the CSP model. The reader can refer to [18] for more detail about the Epsilon
languages and to a previous paper [12] for all the fUML activity diagram mapping
rules.

After applying the ETL rules to the UML state diagram shown in Figure 1
and then applying the EGL script to the result, the CSP process in Figure 5
will be generated. According to Rule(1) in Figure 4, the state machine has been
translated into a localized CSP process. Each state is translated to a CSP sub-
process (e.g., ReadyToCook state translated to the process STATE 2). The
inState event is used to identify the current active state (ST1, ST2, etc.) which
will be used for traceability. The accept event represents signals (e.g., doorClosed ,
buttonPressed , etc.) reception by the object to change its state.

Controller SD Proc (selfObj) = let
STATE 1 = inState!ST1→

accept !selfObj !doorClosed → STATE 2

STATE 2 = inState!ST2→ (
accept !selfObj !doorOpened → STATE 1
�

accept !selfObj !buttonPressed → STATE 3)

STATE 3 = inState!ST3→ (
accept !selfObj !timerTimesout → STATE 2
�

accept !selfObj !doorOpened → STATE 1)
within STATE 2

Fig. 5. The Corresponding CSP Process for the Microwave Controller UML State
Diagram

Applying the ETL rules followed by the EGL script on the fUML activity
diagram, shown in Figure 2, will result in the CSP process shown in Figure 6.
The main activity is translated to a localized CSP process, Controller AD Proc,
where each node inside it is translated to a sub-process. The first three processes
AC1, AC2 and AC5 correspond to the first three actions of the Controller AD.
AC1 and AC2 represent the Value Specification and Add Structural Feature
Value actions respectively by setting var to FALSE and passing it AC2 which
sets the isCooking attribute (structural feature) to the passed value.

According to the fUML standard, the AcceptEvent action registers the ex-
pected signals to a list (called waiting event accepters) and then waits for the
signals. This logic was implemented in AC5 using the registerSignals event, then

Towards a Practical Approach to Check UML/fUML Models Consistency 41

Controller AD Proc (selfObj , heaterObj) = let
AC1 = valueSpec!selfObj ?var : FALSE !NID1→ AC2(var)
AC2(var) = addStructFtrVal !selfObj !isCooking !var !NID3 →

AC5

AC5 = registerSignals!selfObj !rp1!NID5 → (
accept !selfObj !doorOpenedSignal → ...
�

accept !selfObj !buttonPressedSignal → AC12)

AC12 = send !selfObj !heaterObj !startHeaterSignal !NID9 → ...
...

ND2 = timerNotExpired !selfObj → ...
�
timerExpired !selfObj → ...

within AC1

Fig. 6. Fragment of the Corresponding CSP Process for the Microwave Controller
fUML Activity Diagram (up to decision node for timer expiry)

the accept event. Any decision node with a control flow incoming edge is trans-
lated to a non-deterministic choice. Hence, process ND2 corresponds to the timer
expiry decision node. Some of the events include an ID parameter (e.g., NID1),
this ID will be used for traceability explained in Section 6.

Unlike our previous work [12,19], we do not consider inter-object communica-
tion in this paper. However, our formalization includes all the needed information
to conduct inter-object behaviour analysis in the future. This is the reason for
formalizing elements that will not affect the behavioural consistency checking
(e.g., formalizing the SendSignal action in AC12). Nevertheless, our formaliza-
tion does not cover all aspects and properties of the UML/fUML standards as
we just focus on the elements included in the used case study (Tokeneer).

5 Behavioural Consistency Checking

Having the two kinds of diagrams (UML state diagram and fUML activity di-
agram) formalized into CSP makes the behavioural consistency checking using
FDR2 a direct process. We use FDR2 to handle the model checking based on
the traces refinement semantic model [2]. From one point of view of the process
execution, one process is consistent with another if its behaviour are allowed by
the other. Compared to other semantic models (e.g., stable failures), this one is
sufficient to check if the two UML/fUML diagrams are behaviorally consistent.

Initially, the generated CSP script was augmented (by the Model Formalizer)
with the following assertion to let FDR2 check the refinement between the two
CSP processes. c0 and h0 represent instances of the Controller and Heater

42 I. Abdelhalim, S. Schneider, and H. Treharne

classes respectively. The set hiddenEvents includes all the events except the
accept event.

Controller SD Proc (c0)
T

Controller AD Proc (c0, h0) \ hiddenEvents

However, in the case of an inconsistency, the generated counter-example (a trace
leading to this inconsistency) by FDR2 includes the sequence of events from the
Controller AD Proc process. As will be described in Section 6, having the traces
from one side is not enough for the Model Debugger to highlight the inconsistency
problem on the corresponding UML/fUML diagrams. We also need to retrieve
the states that the specification has passed through. To overcome this issue, we
introduce an additional process Controller SD TR.

The Controller SD TR process is a copy of the Controller AD Proc ex-
cept that it stops when any accept event other than those allowed by the
Controller AD Proc process happens. For example, the sub-process STATE 2
in Controller SD TR is generated as follow:

STATE 2 = inState!ST2→ (
accept !selfObj !doorOpened → STATE 1
�

accept !selfObj !buttonPressed → STATE 3
�

accept !selfObj ?x → STOP)

The refinement check (assertion) we now perform is:

Controller SD Proc (c0)
T

(Controller AD Proc (c0, h0) ‖
{|accept|}

Controller SD TR (c0)) \ hiddenEvents

The parallel combination above represents a process that follows the states in the
Controller SD Proc process, but without affecting the refinement checking. This
representation of the refinement assertion has solved the pre-described issue of
debugging, as now the generated counter-example by FDR2 includes the states of
the two main processes (Controller SD Proc and Controller AD Proc) which
are needed to construct the appropriate feedback to the modeller. To show the
effect of this technique, in the Controller fUML activity diagram in Figure 2,
assume that the modeller (by mistake) connected the edge coming out from
the Accept(doorClosed) action to the Send(stopHeater) action instead of the
Value(FALSE) action. After the formalization and performing the refinement
checking using FDR2, the generated counter-example is as follow:

Towards a Practical Approach to Check UML/fUML Models Consistency 43

<valueSpec.selfObj.FALSE.NID1,

addStructFtrVal.selfObj.isCooking.FALSE.NID3,

registerSignals.selfObj.rp1.NID5,

inState.ST2,

accept.selfObj.doorOpenedSignal,

send.selfObj.heaterObj.stopHeaterSignal.NID8,

registerSignals.selfObj.rp2.NID6,

inState.ST1,

accept.selfObj.doorClosedSignal,

send.selfObj.heaterObj.stopHeaterSignal.NID8,

registerSignals.selfObj.rp2.NID6,

inState.ST2,

accept.selfObj.doorClosedSignal>

The idea of using Controller SD TR derived from Controller SD Proc to track
the states in the specifications, is one of this paper’s contributions. We could not
have been able to see the inState event in the above trace without this.

6 Formalization and Model Checking Feedback

The modeller will be provided with two kinds of feedback after the formaliza-
tion process or behavioural consistency checking. The following sections describe
them with respect to the framework components.

6.1 Formalization Report

The first kind of feedback represents the success or failure of the formalization
process and it is presented to the user through a Formalization Report. In our
approach, not all UML/fUML diagrams can be formalized. They have to fulfill
minimum requirements in order to be formalized. These requirements include
the existence of certain elements and the assignment of certain properties. For
example, the Model Formalizer cannot formalize a UML state diagram that
does not include a connected pseudo state, because this will prevent the Model
Formalizer from setting the initial CSP sub-process in the within clause. Another
example is not assigning the name of an edge emerging from a decision node in
a fUML activity diagram. To be able to check the formalization ability of each
diagram (“is formalizable?”), each transformation rule is divided into two parts.
The first part checks for the required elements/assignments, and if met, the
second part performs the transformation. Otherwise, a formalization error is
reported to the modeller that guides him to the missing items.

6.2 Model Debugger

The second kind of feedback is provided in case of inconsistency and it represents
the counter-example generated by FDR2. This feedback is provided to the mod-
eller through the Model Debugger. As mentioned in Section 3, the Model Debug-

44 I. Abdelhalim, S. Schneider, and H. Treharne

Fig. 7. Screen shot of MagicDraw Running Compass

ger component allows the modeller to interactively debug the consistency prob-
lem visually on the displayed UML/fUML activity diagram using GUI controls.
The controls allow the modeller to step forward/backward (i.e., move within the
sequence of traces of the counter-example with one trace forward/backward).
Whilst the modeller is navigating through the events of the counter-example,
the corresponding UML/fUML elements of the events are highlighted on the dis-
played diagrams to help him locate the source of the inconsistency. Also he can
put a breakpoint on one of the UML/fUML elements and execute all events until
reaching this element. Figure 7 shows the GUI controllers (inside the Model De-
bugger toolbar) and how the UML/fUML elements are highlighted (surrounded
by a coloured square) in the diagrams.

The Model Debugger cannot work without the data that has been collected
during the formalization and the model checking processes. As mentioned in
Section 4, the Model Formalizer generates an ID for the CSP processes’ events.
It also generates the CSP-to-UML/fUML mapping table which holds the CSP
events IDs and their corresponding UML/fUML element IDs (long alphanumeric
references generated by MagicDraw). Table 1 shows a sample of this table which
helps the Model Debugger to know which UML/fUML elements to highlight
given the CSP event ID included in the counter-example. It should be clear
now why we formulated the assertion statement (in Section 5) to force FDR2
to include the state diagram CSP process (Controller SD TR) traces in the
counter-example.

Towards a Practical Approach to Check UML/fUML Models Consistency 45

Table 1. Sample CSP-to-UML/fUML Mapping Table

CSP Event ID UML/fUML Element ID

ST2 16 4 8a01c6 129197859 209692 741

NID3 16 4 80a01c6 128715854 342172 469

We consider providing the model checking results through a Model Debugger
to be another contribution of our work.

7 Approach Implementation

We have implemented our approach as a MagicDraw plugin called “Compass”
(Checking Original Models means Perfectly Analyzed Systems). To use Compass,
the modeller should first model the system objects’ behaviour using UML state
diagrams, then refine each diagram (by adding more implementation details) by
modelling the same behaviour using an fUML activity diagram. At this point,
the modeller can use Compass to start the consistency checking between the two
kinds of diagrams and get the feedback as described in Section 6.

Figure 7 shows a screen shot of MagicDraw during debugging an inconsistency
problem using the Model Debugger toolbar. The screen shows the Microwave
controller UML state diagram and its corresponding fUML activity diagram with
two highlighted elements (ReadyToCook state and isCooking action). There is
also another window that shows the executed traces (states and actions). This
is not included in the screen shot due to lack of space.

We would argue that implementing the approach in a form of a plugin to
an already existing case tool is more practical for several reasons. Compared
to a standalone formalization application, a plugin will allow for having a single
integrated modelling environment. Also modifying the plugin to work with other
case tools is a straightforward task, which means that the plugin can be made
available for several case tools. This in turn will allow the modeller who is already
using a certain case tool not to change his modelling environment to check his
models (or even re-check legacy models).

8 Related Work

Much research work has been done on formalizing UML models to check different
properties. For example, the authors in [20,19,12] used such formalizations to
make sure that their UML models are deadlock free. Others, such as [21,22],
used the formalization to check certain safety properties in the input models.

Intra-model consistency (i.e., are the diagrams of the same model consistent?)
can be checked by formalization as well. Zhao et al. [23] followed that concept by
checking consistency between the UML state diagram and its related sequence
diagrams using Promela as a formal language.

46 I. Abdelhalim, S. Schneider, and H. Treharne

Graw et al. [5] proposed inter-model consistency through checking refinement
between abstract and more detailed UML state and sequence diagrams depend-
ing on cTLA (compositional Temporal Logic of Actions) as a formal representa-
tion. Ramos et al. [4] proposed formalizing UML-RT into Circus to prove that
the model transformation preserved the original model semantics.

Most of the reviewed works in this field performs the model transformation
automatically (from UML to the formal language). Some of these work depended
on MDE tools to do the transformation. Varró et al. in [24] summarized a com-
parison between eleven different MDE tools used to transform from UML activity
diagrams into CSP (UML-to-CSP case study [25]), as part of the AGTIVE’07
tool contest. Also Treharne et al. [9] used the Epsilon framework to transform
UML state diagrams to CSP‖B.

Providing modeller friendly feedback to report the model checking results has
been addressed only a few times in the literature. The authors in [26,27] pro-
posed presenting the model checking results (e.g., counter-example) as an object
diagram that represents a snapshot of the system during the error. Alternatively,
the authors in [28,29] proposed compiler style-errors with valuable feedback.

None of the reviewed works has been concerned with checking consistency be-
tween non-executable and executable semi-formal models (e.g., UML and fUML).
Similarly, providing the formalization feedback interactively through a model de-
bugger has not been developed.

9 Conclusion and Future Work

An approach to check behavioural consistency between UML state diagrams and
their corresponding fUML activity diagrams has been presented in this paper.
The approach depends on a framework that formalizes the UML/fUML diagrams
automatically into CSP and then uses FDR2 to handle the model checking. In
the case of inconsistency, the framework reflects FDR2 output (counter-example)
to the original UML/fUML model through the Model Debugger.

We have developed an implementation of this framework as a MagicDraw
plugin called Compass. Compass made use of the Epsilon MDE framework to
translate the UML/fUML diagrams into a CSP script in two stages (Model-to-
Model then Model-to-Text).

The practicality of this approach comes from several aspects. First, by its
attempt to check consistency between non-executable and executable models,
which we believe will be very important as fUML spreads within the normal soft-
ware development process. Second, we believe that providing the model checking
results through the Model Debugger is more helpful in identifying the source of
the problem instead of just showing an object diagram to the modeller. Finally,
by implementing the approach as a plugin to a case tool and depending on an
MDE framework instead of writing our formalizer from scratch.

Validating the approach’s functionality and applicability was achieved by ap-
plying it on a non-trivial case study (Tokeneer). Using MagicDraw and Compass
during the system modelling helped to identify several inconsistencies between the
UML abstract state diagrams and their corresponding fUML activity diagrams.

Towards a Practical Approach to Check UML/fUML Models Consistency 47

As future work, we will consider inter-object interaction to provide a similar
framework that checks deadlocks and other behavioural properties. We will also
aim to provide additional feedback to the user as a UML sequence diagram which
visualizes the counter-examples as object interactions. Finally, we will upgrade
the Model Debugger to consider the case of having more than one counter-
example generated by FDR2.

Acknowledgments. Thanks to the anonymous referees for their constructive
comments.

References

1. OMG: Semantics of a foundational subset for executable UML models (fUML) -
Version 1.0 (February 2011), http://www.omg.org/spec/fuml/

2. Schneider, S.: Concurrent and Real-Time Systems: the CSP Approach. Wiley,
Chichester (1999)

3. Formal Systems Oxford: FDR 2.91 manual (2010)

4. Ramos, R., Sampaio, A., Mota, A.: A semantics for UML-RT active classes via
mapping into circus. In: Steffen, M., Tennenholtz, M. (eds.) FMOODS 2005. LNCS,
vol. 3535, pp. 99–114. Springer, Heidelberg (2005)

5. Graw, G., Herrmann, P.: Transformation and verification of Executable UML mod-
els. Electron. Notes Theor. Comput. Sci. 101, 3–24 (2004)

6. Hnatkowska, B., Huzar, Z., Kuzniarz, L., Tuzinkiewicz, L.: A systematic approach
to consistency within UML based software development process. In: Blekinge Insti-
tute of Technology, Research Report 2002:06. UML 2002. Workshop on Consistency
Problems in UML-based Software Development, pp. 16–29 (2002)

7. Epsilon Project, http://www.eclipse.org/gmt/epsilon/

8. UML2 Project, http://www.eclipse.org/modeling/mdt/?project=uml2

9. Treharne, H., Turner, E., Paige, R.F., Kolovos, D.S.: Automatic generation of inte-
grated formal models corresponding to UML system models. In: Oriol, M., Meyer,
B. (eds.) TOOLS EUROPE 2009. Lecture Notes in Business Information Process-
ing, vol. 33, pp. 357–367. Springer, Heidelberg (2009)

10. MagicDraw case tool, http://www.magicdraw.com/

11. Barnes, J., Chapman, R., Johnson, R., Widmaier, J., Cooper, D., Everett, B.:
Engineering the tokeneer enclave protection software. In: 1st IEEE International
Symposium on Secure Software Engineering (March 2006)

12. Abdelhalim, I., Sharp, J., Schneider, S.A., Treharne, H.: Formal Verification of
Tokeneer Behaviours Modelled in fUML Using CSP. In: Dong, J.S., Zhu, H. (eds.)
ICFEM 2010. LNCS, vol. 6447, pp. 371–387. Springer, Heidelberg (2010)

13. Mellor, S.J., Balcer, M.J.: Executable UML, A Foundation for Model-Driven Ar-
chitecture. Addison-Wesley, Reading (2002)

14. OMG: fUML Reference Implementation, http://portal.modeldriven.org

15. OMG: Unified modeling language (UML) superstructure (version 2.3) (2010)

16. Gruninger, M., Menzel, C.: Process Specification Language: Principles and Appli-
cations. AI Magazine 24(3), 63–74 (2003)

17. Metadata Interchange (XMI), X, http://www.omg.org/spec/XMI/

18. Dimitrios kolovos, L.R., Paige, R.: The Epsilon Book

http://www.omg.org/spec/fuml/
http://www.eclipse.org/gmt/epsilon/
http://www.eclipse.org/modeling/mdt/?project=uml2
http://www.magicdraw.com/
 http://portal.modeldriven.org
http://www.omg.org/spec/XMI/

48 I. Abdelhalim, S. Schneider, and H. Treharne

19. Turner, E., Treharne, H., Schneider, S., Evans, N.: Automatic generation of CSP ||
B skeletons from xUML models. In: Fitzgerald, J.S., Haxthausen, A.E., Yenigun,
H. (eds.) ICTAC 2008. LNCS, vol. 5160, pp. 364–379. Springer, Heidelberg (2008)

20. Ng, M.Y., Butler, M.: Towards formalizing UML state diagrams in CSP. In: Cerone,
A., Lindsay, P. (eds.) 1st IEEE International Conference on Software Engineering
and Formal Methods, pp. 138–147. IEEE Computer Society, Los Alamitos (2003)

21. Hansen, H.H., Ketema, J., Luttik, B., Mousavi, M., van de Pol, J.: Towards model
checking Executable UML specifications in mCRL2. In: ISSE, pp. 83–90 (2010)

22. Balser, M., Bäumler, S., Reif, W., Thums, A.: Interactive verification of UML state
machines. In: Davies, J., Schulte, W., Barnett, M. (eds.) ICFEM 2004. LNCS,
vol. 3308, pp. 434–448. Springer, Heidelberg (2004)

23. Zhao, X., Long, Q., Qiu, Z.: Model checking dynamic UML consistency. In: Liu,
Z., Kleinberg, R.D. (eds.) ICFEM 2006. LNCS, vol. 4260, pp. 440–459. Springer,
Heidelberg (2006)

24. Varró, D., Asztalos, M., Bisztray, D., Boronat, A., Dang, D.H., Geiss, R., Greenyer,
J., Gorp, P.V., Kniemeyer, O., Narayanan, A., Rencis, E., Weinell, E.: Transfor-
mation of UML Models to CSP: A Case Study for Graph Transformation Tools.
In: Schürr, A., Nagl, M., Zündorf, A. (eds.) AGTIVE 2007. LNCS, vol. 5088, pp.
540–565. Springer, Heidelberg (2008)

25. Bisztray, D., Ehrig, K., Heckel, R.: Case Study: UML to CSP Transformation. In:
Applications of Graph Transformation with Industrial Relevance (2007)

26. Cabot, J., Clarisó, R., Riera, D.: Verifying UML/OCL operation contracts. In:
Leuschel, M., Wehrheim, H. (eds.) IFM 2009. LNCS, vol. 5423, pp. 40–55. Springer,
Heidelberg (2009)

27. Shah, S.M.A., Anastasakis, K., Bordbar, B.: From UML to Alloy and back again.
In: MoDeVVa 2009: Proceedings of the 6th International Workshop on Model-
Driven Engineering, Verification and Validation, pp. 1–10. ACM, New York (2009)

28. Thierry-Mieg, Y., Hillah, L.M.: UML behavioral consistency checking using instan-
tiable Petri nets. In: ISSE, vol. 4(3), pp. 293–300 (2008)

29. Planas, E., Cabot, J., Gómez, C.: Verifying action semantics specifications in UML
behavioral models. In: van Eck, P., Gordijn, J., Wieringa, R. (eds.) CAiSE 2009.
LNCS, vol. 5565, pp. 125–140. Springer, Heidelberg (2009)

The Safety-Critical Java

Mission Model: A Formal Account

Frank Zeyda, Ana Cavalcanti, and Andy Wellings

University of York, Deramore Lane, York, YO10 5GH, UK
{Frank.Zeyda,Ana.Cavalcanti,Andy.Wellings}@cs.york.ac.uk

Abstract. Safety-Critical Java (SCJ) is a restriction of the Real-Time
Specification for Java to support the development and certification of
safety-critical applications. It is the result of an international effort from
industry and academia. Here we present the first formalisation of the
SCJ execution model, covering missions and event handlers. Our formal
language is part of the Circus family; at the core, we have Z, CSP, and
Morgan’s calculus, but we also use object-oriented and timed constructs
from the OhCircus and Circus Time variants. Our work is a first step in
the development of refinement-based reasoning techniques for SCJ.

Keywords: Circus, real-time systems, models, verification, RTSJ.

1 Introduction

Safety-Critical Java (SCJ) [11] restricts the Java API and execution model in
such a way that programs can be effectively analysed for real-time requirements,
memory safety, and concurrency issues. This facilitates certification under stan-
dards like DO-178B, for example. It also makes possible the development of
automatic tools that support analysis and verification.

SCJ is realised within the Real-Time Specification for Java (RTSJ) [21]. The
purpose of RTSJ itself is to define an architecture that permits the develop-
ment of real-time programs, and SCJ reuses some of RTSJ’s concepts and actual
components, albeit restricting the programming interface. SCJ also has a specific
execution model that imposes a rigid structure on how applications are executed.

The SCJ specification, as designed by the JSR 302 expert group, comprises
informal descriptions and a reference implementation [8]. As a result, analysis
tools have been developed to establish compliance with the SCJ restrictions [20].

In this paper, we complement the existing work on SCJ by presenting a formal
model of its execution framework in a Circus-based language. The Open Group’s
informal account of SCJ [8] relies on text and UML diagrams, and our objective is
to formalise the execution model. Circus [5] is a refinement notation for state-rich
reactive systems. Its variants cover, for instance, aspects of time and mobility.
We use its object-oriented variant, OhCircus, as our base notation.

Our formal model first elicits the conceptual behaviour of the SCJ frame-
work, and secondly illustrates the translation of actual SCJ programs into their
OhCircus specifications in a traceable manner. For now, we ignore certain aspects

S. Qin and Z. Qiu (Eds.): ICFEM 2011, LNCS 6991, pp. 49–65, 2011.
c© Springer-Verlag Berlin Heidelberg 2011

50 F. Zeyda, A. Cavalcanti, and A. Wellings

of SCJ, such as the memory model, which we discuss in a separate paper [7],
and scheduling policy. Our focus is the top-level design and execution of SCJ
programs, and its primary framework and application components.

The SCJ framework as designed in Java is a reflection of a general program-
ming paradigm. It embeds a particular view of data operations, memory, and
event-based versus thread-based designs [22]. Our model identifies the fundamen-
tal concepts of SCJ at a level where it can be regarded itself as a programming
language. The fact that it can be realised on top of Java and the RTSJ is a bonus.
It is conceivable, however, to implement specific support based on other main-
stream languages, or even define an entirely new language, and formalisation is
conducive to the development of such a language which is our future ambition.

What we present here is a precise semantics for core elements of SCJ. It
enables formal verification of SCJ applications beyond the informal validation of
statically checkable properties currently available [20]. OhCircus provides a notion
of refinement, and our work is an essential first step to justify development and
verification methods that can produce high-quality SCJ implementations.

Our work also highlights the need for a particular integration of Circus vari-
ants. Their Unifying Theories of Programming (UTP) [13] foundation facilitates
this work. The UTP is a uniform framework in which the semantics of a vari-
ety of programming paradigms can be expressed and linked. UTP theories have
already been presented for Circus and Circus Time [16,18], and also for object-
orientation [17] and the SCJ memory model [7]. We thus identify the Circus
variant necessary to formalise SCJ programs. The design of the semantic model
establishes the right level of detail for reasoning about SCJ, and determines
where the added expressiveness of Java should be ignored.

Finally, our work guides the construction of a platform for reasoning. Our
models are free from the noise that originates from the expressiveness of Java.
They allow us to reason about SCJ programs using refinement-based techniques.
For verification, we can construct models of particular programs, and use the
Circus and UTP techniques for reasoning. For development, we can start from
an abstract specification, and develop implementations that follow the structure
and respect the restrictions of our models.

In the next section, we introduce the SCJ framework and a case study used
throughout as an example. We also provide a brief overview of our formal nota-
tion. In Section 3 we present our models and modelling approach. In Section 4,
we discuss our contributions and some related work.

2 Preliminaries

In this section we present first the SCJ execution model and introduce an exam-
ple: an automotive cruise controller. Afterwards, we present Circus and OhCircus.

2.1 Safety-Critical Java

SCJ recognises that safety-critical software varies considerably in complexity.
Consequently, there are three compliance levels for SCJ programs and framework

The Safety-Critical Java Mission Model: A Formal Account 51

Cruise Control System

Wheel Shaft
Sensor

wheel_shaft

Throttle
Actuator

set_voltage ! v

Engine
Sensor

engine_on
engine_off

Gear SensorBrake SensorLever
Sensor

activate
deactivate

start_acceleration
stop_acceleration

resume top_gear_engaged
top_gear_disengaged

brake_engaged
brake_disengaged

External
Events != Interrupt

Fig. 1. ACCS interactions

implementations. In this work, we are concerned with Level 1, which, roughly,
corresponds in complexity to the Ravenscar profile for Ada [4]. Level 1 applica-
tions support periodic event handlers and aperiodic event handlers.

The SCJ programming model is based on the notion of missions. They are
sequentially executed by an application-specific mission sequencer provided by a
safelet, the top-level entity of an SCJ application. All these concepts are realised
by either interfaces or abstract classes. Namely, they are the Safelet interface,
and the abstract classes MissionSequencer and Mission (see Fig. 2).

A Level 1 mission consists of a set of asynchronous event handlers; both peri-
odic and aperiodic handlers are supported. Each aperiodic handler is associated
with a set of events: firing of one of them causes the handler method to be sched-
uled for execution. Periodic event handlers, on the other hand, are controlled by a
timer. Event handlers are also provided through abstract classes whose handling
method must be implemented by concrete subclasses (see Fig. 2).

A Cruise Control System. As an example of an SCJ program, and to illus-
trate our modelling approach, we present an implementation of Wellings’ auto-
motive cruise control system (ACCS) in [21] that uses SCJ Level 1.

The goal of an ACCS is to automatically maintain the speed of a vehicle
to a value set by the driver; in Fig. 1 we give an overview of its main compo-
nents and commands. Explicit commands are given by a lever whose positioning
corresponds to the following instructions: activate, to turn on the ACCS if the
car is in top gear, and maintain (and remember) the current speed; deactivate,
to turn off the ACCS; start accelerating, to accelerate at a comfortable rate;
stop accelerating, to stop accelerating and maintain (and remember) the cur-
rent speed; and resume to return to the last remembered speed and maintain it.
Implicit commands are issued when the driver changes gear, operates the brake
pedal, or switches on or off the engine. The ACCS is deactivated when the driver
changes out of top gear, presses the brake pedal, or switches the engine off.

The speed of the vehicle is measured via the rotation of the shaft that drives
the back wheels. The shaft generates an interrupt for each rotation, which causes
an event being fired and an associated handler being scheduled for execution.

52 F. Zeyda, A. Cavalcanti, and A. Wellings

+setUp() : void
+tearDown() : void
+getSequencer() : MissionSequencer

«interface»
Safelet

MainSafelet MainMissionSequencer

+getNextMission() : Mission
MissionSequencer

MainMission

+initialize() : void
+cleanup() : void
+requestTermination() : void
+terminationPending() : boolean
+missionMemorySize() : long

Mission

Engine

+handleAsyncEvent() : void
+register() : void

AperiodicEventHandler

GearWheelShaft Brake Lever

+handleAsyncEvent() : void
+register() : void

PeriodicEventHandler ThrottleController

+engineOn() : void
+topGearEngaged() : void
+activate() : void
+deactivate() : void

CruiseControl

«instantiates» «instantiates»

‹‹instantiates››

...

Fig. 2. UML class diagram for the cruise controller

The actual speed of the car depends on the throttle position, which is deter-
mined by the depression of the accelerator pedal and a voltage supplied by the
ACCS. The combination of these values is performed outside the ACCS.

Sensors detect external happenings and generate appropriate interrupts, as
illustrated in Fig. 1. These interrupts are reflected in the SCJ program by the
firing of SCJ events that correspond to the possible happenings. For the setting
of the throttle voltage, communication of the new voltage value to the ACCS
components is realised in the program using a hardware data register.

Fig. 2 presents a UML class diagram that gives an overview of the design
of the ACCS as an SCJ Level 1 safelet. As said above, Safelet is an inter-
face, and the classes MissionSequencer,Mission, AperiodicEventHandler and
PeriodicEventHandler are abstract. They are part of the SCJ API developed
on top of the RTSJ API to capture the SCJ programming model.

MainSafelet is the entry point for the application. It provides the method
getSequencer() that returns the mission sequencer. The other two methods
setUp() and tearDown() are provided for initialisation and cleanup tasks. The
MainMissionSequencer class constructs instances of the Mission class, by im-
plementing getNextMission(). Concrete subclasses of Mission have to im-
plement the initialize() and missionMemorySize() methods. The former
creates the periodic and aperiodic event handlers of the mission. The handlers
register themselves with the mission by way of the register() method.

Both periodic and aperiodic handlers implement handleAsyncEvent() to
specify their behaviour when the handler is released. The two extra methods
requestTermination()and terminationPending() cannot be overridden; they
allow for the mission to be terminated by one of the handlers.

Fig. 2 does not show all components of the SCJ API. There are eight classes
that realise the mission framework, twelve classes in the handler hierarchy, five
classes that deal with real-time threads, seven classes concerned with scheduling,

The Safety-Critical Java Mission Model: A Formal Account 53

and ten classes for the memory model. The formal model that we present here
abstracts from all these details of the realisation of the SCJ Level 1 programming
paradigm in Java. We capture the main concepts of its novel execution model.
This enables reasoning based on the core components of the SCJ paradigm.

2.2 Circus and OhCircus

The Circus language [5] is a hybrid formalism that includes elements from Z [19],
CSP [12], and imperative commands from Morgan’s calculus [15]. Several exam-
ples are provided in the next section: see Fig. 4, 5, 6, and 7, for instance.

Like in CSP, the key elements of Circus models are processes that interact with
each other and their environment via channels. Unlike CSP, Circus processes may
encapsulate a state. The definition of a Circus process hence includes a paragraph
that identifies the state of the process using a Z schema.

The behaviour of a process is defined by its main action (which may refer-
ence local actions, introduced for structuring purposes). The language of actions
includes all constructs from CSP, such as Skip and Stop, input and output pre-
fixes, sequencing, parallelism, interleaving and hiding, as well as operations to
modify the state. Parallelism and interleaving are parametrised in terms of the
state components that each parallel action can modify to avoid potential write
conflicts. State operations can be specified either by Z operation schemas or
guarded commands. We explain the details of the notation as needed.

OhCircus [6] extends Circus with an additional notion of class. Unlike pro-
cesses, objects can be used in arbitrary mathematical expressions. The permissi-
ble notation for OhCircus class methods includes all schema operations, guarded
commands, and some additional notations used to instantiate new data objects,
invoke methods, access object fields, and support inheritance.

Processes describe the active behaviour of the model (or of its components),
including the whole system. Classes model passive data objects and operations
performed on them. In the following section we present our model for SCJ pro-
grams. The notation we use is OhCircus. We, however, use a few action operators
of the Circus Time [18] variant, and object references from our previous SCJ mem-
ory model in [7]. The latter is specified at the level of the Unifying Theories of
Programming [13], the semantic framework of Circus and its extensions.

3 Framework and Application Models

Our model of SCJ factors into two dimensions: a generic framework model, and
an application model that corresponds to a particular concrete SCJ program. We
specify the semantics of safelets, the mission sequencer, missions, and aperiodic
as well as periodic event handlers. To illustrate the application model, we make
use of the cruise controller application as it was presented in the previous section.

Fig. 3 presents an overview of the structure of the model of a typical SCJ
application — here the cruise controller. Each of the five top-level boxes refers
to a process that realises a specific component of the SCJ programming model.
We label these boxes with the process names. Arrows indicate the channels on

54 F. Zeyda, A. Cavalcanti, and A. Wellings

ThrottleController

MainSafelet

MainMission

start_sequencer

done_sequencer

SafeletFW

MainSafeletApp

se
tU
pC
al
l

se
tU
pR
et

te
ar
D
ow
nC
al
l

te
ar
D
ow
nR
et

... = Framework Process ... = Application Process ... = Data Object

MainMissionSequencer

MissionSequencerFW

MainMissionSequencerApp

en
d_
se
qu
en
ce
r_
ap
p

MissionFW

MainMissionApp

in
iti
al
iz
eC
al
l.
m

in
iti
al
iz
eR
et
.m

cl
ea
nu
pC
al
l.
m

cl
ea
nu
pR
et
.m

en
d_
m
is
si
on
_a
pp

do
ne
_m
is
si
on
.m

st
ar
t_
m
is
si
on
.m

en
d_
m
is
si
on
_f
w

Engine
EventHandlerFW

EngineApp

Environment

EngineClass

Aggregates Data Object

st
ar
t_
ha
nd
le
r.
h

st
op
_h
an
dl
er
.h

do
ne
_h
an
dl
er
.h

ac
tiv
at
e_
ha
nd
le
rs

st
op
_h
an
dl
er
s

re
qu
es
tT
er
m
R
et
.m

re
qu
es
tT
er
m
C
al
l.
m

en
gi
ne
_o
n

en
gi
ne
_o
ff

EventHandlerFW

ThrottleControllerApp

ThrottleControllerClass

Aggregates Data Object

Environment

start_handler . h

stop_handler . h

done_handler . h

activate_handlers

requestTermRet.m

requestTermCall.m

ThrottleControllerInit . obj

Synchronisations

ge
tN
ex
tM
is
si
on
C
al
l

ge
tN
ex
tM
is
si
on
R
et
.m

en
te
r_
di
sp
at
ch

le
av
e_
di
sp
at
ch

En
gi
ne
In
it
.o
bj

ad
d_
ha
nd
le
r.
h

se
t_
vo
lta
ge
.v

en
te
r_
di
sp
at
ch

le
av
e_
di
sp
at
ch

Ap
er
io
di
c
Ev
en
t
Ha
nd
le
r

Pe
ri
od
ic
 E
ve
nt
 H
an
dl
er

Fig. 3. Structure of the model the SCJ cruise controller

which the components communicate. For instance, the processes MainSafelet and
MainMissionSequencer communicate on start sequencer and done sequencer .

The model of the application is obtained by parallel composition of the top-
level processes, and by hiding all but the external channels. These define the
interface of the system; for example, we define the event engine on to represent
the happening that occurs when the engine is switched on.

Each top-level process is itself defined by the parallel composition of a generic
framework process (suffix FW), and a process that is in direct correspondence
with the Java code (suffix App). We have an instance of the EventHandlerFW
framework process for each handler. To obtain the model of an existing SCJ
program, we can follow the strategy explained below to construct the App pro-
cesses, and use the FW processes as defined later on; except only that, in the
case of a handler App process, we need to be aware of the events the handler is
bound to, and declare channels to represent them.

The following provides the definition of the MainSafelet process.

channelsetMainSafeletChan =̂
{| setUpCall , setUpRet , tearDownCall , tearDownRet |}

processMainSafelet =̂

(SafeletFW � MainSafeletChan � MainSafeletApp) \MainSafeletChan

The channels on which framework and application process communicate are
hidden (operator \). Here, these are setUpCall , setUpRet , tearDownCall , and
tearDownRet . Above, a channel set MainSafeletChan is defined to contain all

The Safety-Critical Java Mission Model: A Formal Account 55

these channels. In the definition of MainSafelet , it is used to define the synchro-
nisation set of the parallelism (operator � . . . �), and the set of channels to be
hidden. The synchronisation set defines the channels over which communication
requires synchronisation between the two parallel processes.

We differentiate between channels that represent framework events, and chan-
nels that represent method calls. Channels suffixed with Call and Ret encode
method calls. Method calls are in some cases modelled by channel communica-
tions rather than mere OhCircus data operations to allow the framework pro-
cesses to trigger or respond to those calls. A call to requestTermination(), for
instance, has to interact with the mission framework process. We then require a
Call and a Ret channel for this method.

In the following we specify each of the top-level processes.

3.1 Safelet Model

The framework process SafeletFW for a safelet is given below; it has no state.

process SafeletFW =̂ begin
SetUp =̂ setUpCall −→ setUpRet −→ Skip
Execute =̂ start sequencer −→ done sequencer −→ Skip
TearDown =̂ tearDownCall −→ tearDownRet −→ Skip

• SetUp ; Execute ; TearDown
end

The main action, which is given at the end after the •, sequentially executes the
SetUp, Execute and TearDown local actions. They correspond to the initialisation,
execution, and cleanup phases of the safelet. SetUp and TearDown synchronise in
sequence (prefixing operator−→) on the setUp[Call/Ret] and tearDown[Call/Ret]
channels, before terminating (basic action Skip). The synchronisations model calls
to the methods setUp() and tearDown() of the Java class. Since the methods
are parameterless and do not return any values, the communications through the
channels are just synchronisations: there is no input or output. The methods them-
selves are specified in the application process as exemplified below: the framework
process defines the flow of execution, and the application process defines specific
program functionality. Execute raises two framework events: start sequencer to
start the mission sequencer, and done sequencer to detect its termination. These
channels are exposed by the Safelet component (that is, not hidden in its definition
as shown above), and their purpose is to control the MissionSequencer component
which we specify later on.

We now present the application process for the safelet in our example.
process MainSafeletApp =̂ begin

setUpMeth =̂ setUpCall −→ Skip ; setUpRet −→ Skip
tearDownMeth =̂ tearDownCall −→ Skip ; tearDownRet −→ Skip

Methods =̂ µX • setUpMeth ; X

• Methods � tearDownMeth
end

56 F. Zeyda, A. Cavalcanti, and A. Wellings

process MissionSequencerFW =̂ begin
Start =̂ start sequencer −→ Skip

Execute =̂ µX • getNextMissionCall −→ getNextMissionRet ?next−→
if next �= null −→ start mission .next −→ done mission .next −→ X
� next = null −→ Skip
fi

Finish =̂ end sequencer app −→ end mission fw −→ done sequencer −→ Skip

• Start ; Execute ; Finish
end

Fig. 4. Mission sequencer framework process

The specification is trivial here since setUp() and tearDown() in MainSafelet
do not contain any code in the ACCS implementation. More important is the
modelling approach, which we adopt in all application processes. A local action
Methods recursively (operator µ) offers a choice of actions that correspond to
methods of the SCJ class; the choice is exercised by the associated framework
process. For the safelet application process, the only action offered by Methods is
setUpMeth. In the main action, we have a call to Methods . Termination occurs
when there is a call to the tearDown() method. In the main action, this is
captured by an interrupt (operator �) that calls the tearDownMeth action.

A method action, here setUpMeth or tearDownMeth, synchronises on the
channel that represents a call to it, setUpCall or tearDownCall , for instance, and
then executes actions that correspond to the method implementation. Since, as
already mentioned, setUp() and tearDown() in MainSafelet do not contain any
code, in our example above, these actions are just Skip. At the end the method
action synchronises on the channel that signals the return of the call, setUpRet
or tearDownRet , for instance. If the method has parameters or returns a value,
the call and return channels are used to communicate these values. Examples of
our encoding of parametrised methods are shown below.

3.2 Mission Sequencer Model

The mission sequencer process (Fig. 4) communicates with the safelet process to
determine when it has to start, and to signal its termination.

The main action executes Start to wait for the mission sequencer to be started,
which is signalled by a synchronisation on start sequencer . Afterwards, execu-
tion proceeds as specified by a recursion in the action Execute. In each iteration,
it synchronises on the channels getNextMissionCall and getNextMissionRet to
obtain the next mission via next . This corresponds to a call to the SCJ method
getNextMission(). Since it returns a (mission) object, getNextMissionRet takes
as input a value next of type MissionId (containing identifiers for the missions
of an application). A special mission identifier null is used to cater for the case
in which the method returns a Java null reference to signal that there are no
more missions to execute. In Execute, a conditional checks the value of next . If
it is not null , synchronisations on start mission .next and done mission .next

The Safety-Critical Java Mission Model: A Formal Account 57

are used to control the Mission process (defined later on) that manages exe-
cution of the particular mission next , and then Execute recurses (calls X) to
handle the next mission. Otherwise, Execute finishes. At the end, in the Finish
action, synchronisation on end sequencer app is used to terminate the mission
sequencer application process. Next, synchronisation on end mission fw termi-
nates the mission framework process. Finally, synchronisation on done sequencer
acknowledges to the safelet process that the mission sequencer has finished.

For our example, the mission sequencer application process is as follows.

process MainMissionSequencerApp =̂ begin
state MainMissionSequencerState == [mission done : BOOL]
Init =̂ mission done := FALSE
getNextMissionMeth =̂ getNextMissionCall−→

if mission done = FALSE−→
mission done := TRUE ; getNextMissionRet !MainMissionId −→ Skip

� ¬ mission done = FALSE −→ getNextMissionRet !null −→ Skip
fi

Methods = µX • getNextMissionMeth ; X

• Init ; (Methods � end sequencer app −→ Skip)
end

This is a more complete illustration of our approach to modelling SCJ classes as
Circus processes. The member variables of the class become state components. In
the above example, we have one state component mission done corresponding
to a variable of the same name in the SCJ class MainMissionSequencer. We
define a free type BOOL ::= TRUE | FALSE to support boolean values in Z.

The action Init specifies the constructor. Other method actions are named
after the methods of the class. In the case of the mission sequencer application
class modelled above, we have just the method getNextMission().

The main action of an application process is always of the above shape: a call
to Init , if present, and a call to Methods , with an interrupt that allows a control-
ling process to terminate it via a special event (here end sequencer app). In the
case of the safelet application process discussed earlier, the special termination
event corresponded also to a call to its tearDown() method.

In MainMissionSequencerApp, the specification of getNextMissionMeth is in
direct correspondence with the code of getNextMission(). We have a con-
ditional that, depending on the value of mission done updates its value and
outputs (returns) the next mission or null . The difference is that, instead of rep-
resenting a mission by an object, we use constants of type MissionId . In our ex-
ample, since we have only one mission, we have just one constant MainMissionId .

We omit the definition of the process MainMissionSequencer , which is a paral-
lel composition of MissionSequencerFW and MainMissionSequencerApp, similar
to that used to define MainSafelet at the beginning of this section.

3.3 Mission Model

The purpose of a mission process, defined by a parallelism between the mission
framework process and an associated mission application process, is to create the

58 F. Zeyda, A. Cavalcanti, and A. Wellings

process MissionFW =̂ begin

state MissionFWState == [mission : MissionId , handlers : FHandlerId]

Init == [MissionFWState ′ | mission ′ = null ∧ handlers ′ = ∅]

Start =̂ Init ; start mission ?m −→mission := m

AddHandler =̂ val handler : HandlerId • handlers := handlers ∪ {handler}
Initialize =̂ initializeCall .mission−→⎛⎝µX •

⎛⎝ add handler?h −→ (AddHandler(h); X)
�
initializeRet .mission −→ Skip

⎞⎠⎞⎠
StartHandlers =̂ � h : handlers • start handler . h −→ Skip

StopHandlers =̂ � h : handlers • stop handler . h −→ done handler . h −→ Skip

Execute =̂ StartHandlers;activate handlers −→ stop handlers −→ StopHandlers

Cleanup =̂ cleanupCall .mission −→ cleanupRet .mission −→ Skip

Finish =̂ end mission app .mission −→ done mission .mission −→ Skip

• (µX • Start ; Initialize ; Execute ; Cleanup ; Finish ; X)

� end mission fw −→ Skip

end

Fig. 5. Mission framework process

mission’s event handlers, execute the mission by synchronously starting them,
wait for their termination, and afterwards finish the mission. It also allows the
termination of the mission by a handler at any point.

Fig. 5 presents the framework process for mission execution. Its state has two
components: the identifier mission of the mission being executed, if any, and its
finite set handlers of handlers. The handlers are identified by values of a type
HandlerId . The action Init is a standard Z operation to initialise the state. The
declaration MissionFWState′ introduces dashed versions of the state component
names (mission ′ and handlers ′) to represent the values of the components after
initialisation. Init defines that, initially, there is no mission executing, so that
the value of mission is null , and therefore, the set of handlers is empty.

In the main action, we use again the modelling pattern where we have a se-
quence of actions that define the different phases of the entity life-cycle, here
a mission. In the case of the mission framework process, a recursion perpetu-
ally calls this sequence of actions, because this process controls all missions in
the program, and so repetitively offers its service. Termination of the service is
determined by the mission sequencer process using the channel end mission fw .

The Start action initialises the state and waits for the mission sequencer to
start a mission. Since this framework process can handle any mission, Start uses
start mission to take a mission identifier m as input, and records it in mission.
Finish uses that mission identifier to terminate the application process for the
mission with a synchronisation on end mission app .mission, and to signal to
the mission sequencer that the mission has finished with done mission .mission.

The Safety-Critical Java Mission Model: A Formal Account 59

The Initialize action models the initialisation phase which is initiated by the
framework calling the initialize() method. It is specified using a recursion
which continually accepts requests from the mission application process, through
the channel add handler , to add a handler h to the mission (this is achieved by
the parametrised action AddHandler). Besides, the application process may use
the event initialiseRet .mission to terminate Initialize at any time.

In the action Execute, first of all, all handlers are started with a call to the ac-
tion StartHandlers . It uses synchronisations start handler .h to start in interleav-
ing (operator �) all handlers h recorded in the state. The processes corresponding
to the handlers h synchronise with the mission process on start handler .

The handlers do not immediately become active after they are started. For
that, the action Start uses a channel activate handlers . All handler processes
synchronise on it, but only those that previously synchronised on start handler
proceed to execute their active behaviour. In this way, we ensure that handlers
can be initialised asynchronously, but have to start execution synchronously.

Termination of the handlers is initiated by the mission application process
with a synchronisation on stop handlers , raised by the action corresponding to
requestTermination(). After that, Execute calls the action StopHandlers . For
each handler h of the mission, StopHandlers uses stop handler .h to stop it, and
then waits for the notification done handler .h that it actually terminated.

Finally, the Cleanup action calls the action of the mission application pro-
cess corresponding to its cleanup() method. In what follows we discuss the
application process, using the ACCS MainMission class as example.

Action methods are encoded as before; the model for initialize() is differ-
ent, though, since it not only results in the creation of data objects, but also
provides information to the framework about the handlers that have been cre-
ated. Below we include an extract of its specification for the ACCS model.

initializeMeth =̂ initializeCall .MainMissionId−→
var . . . ; speed : SpeedMonitorClass;

throttle : ThrottleControllerClass;

cruise : CruiseControlClass; . . . •
throttle := newThrottleControllerClass(speed , . . .);
ThrottleControllerInit ! throttle −→ Skip;
add handler .ThrottleControllerHandlerId −→ Skip
cruise := newCruiseControlClass(throttle, speedo);
engine := newEngineClass(cruise, . . .);
EngineInit ! engine −→ Skip;
add handler .EngineHandlerId −→ Skip ; . . .

initializeRet .MainMissionId −→ Skip

This formalises the declaration of local variables speed , throttle, and so on for
handler objects. These variables have a class type, and are initialised using its
constructor. For instance, throttle := newThrottleControllerClass(speed , . . .) is
a reference assignment to throttle of an object of class ThrottleControllerClass
defined by its constructor, given speed and other parameters.

An important observation is that a handler is characterised not merely by
(framework and application) processes, but also by a data object. In Fig. 3 this

60 F. Zeyda, A. Cavalcanti, and A. Wellings

is indicated by boxes in the processes for handlers. Accordingly, we need to
establish a connection between the data object and the process that aggregates
it. This is achieved via a designated channel with suffix Init . The application
process uses this channel to retrieve the data object it is connected to.

A pair of Java statements that create and register a handler with the current
mission is, therefore, translated to one assignment and two communications.
As already explained, the assignment constructs the handler’s data object and
assigns it to the appropriate local variable. Next, we have a communication like
ThrottleControllerInit ! throttle, which outputs a reference to the data object to
the handler process. Finally, to record the handler as part of the mission, we
have a communication like add handler .ThrottleControllerHandlerId . In the
program this corresponds to a call to register() on the handler object.

We note, however, that not all data objects need to be wrapped in a process.
For example, the CruiseControlClass object does not need to be associated with
a process since the framework does not need to directly interact with it. It is
used to aggregate other objects and has a direct translation as an OhCircus class.

Another method of a mission application class that needs special encoding
is requestTermination(); it also needs to communicate with the framework
process as it raises the stop handlers event. All other action methods, like, for
instance, the action for the missionMemorySize() method, and the main action
are as already explained and exemplified for application processes.

3.4 Handler Models

As already noted, the application process for a handler associates application
events to it. On the other hand, the specification of the framework process is
similar for periodic and aperiodic handlers. In Fig. 6, we sketch the generic frame-
work process for an event handler. It is parametrised by an identifier that must be
provided when the framework process is instantiated for a particular handler. For
the engine handler, for example, we use EventHandlerFW (EngineHandlerId).

The state component active of the EventHandlerFW records if the handler
is active in the current mission or not. The main action defines an iterative
behaviour that is interrupted and terminated by the event end mission fw ,
which, as mentioned before, indicates the end of the mission execution.

Each iteration defines the behaviour of the handler during a mission. First, the
state is initialised using Init . Afterwards, the handler waits to be started using
the StartHandler action in external choice (operator �) with a synchronisation
on activate handlers , offered by ActivateHandlers . The action StartHandler syn-
chronises on a particular start handler event determined by the handler iden-
tifier. Afterwards, it also offers a synchronisation on activate handlers (calling
ActivateHandlers), which always occurs prior to entering the execution phase.

If the start handler event occurs before activate handlers , the value of active
is TRUE . In this case, the handler calls the action DispatchHandler . It raises the
enter dispatch event to notify the application process that it has to enter the
handler’s dispatch loop in which it starts responding to the external events asso-
ciated with it. The dispatch loop is interrupted after the stop handler . handler

The Safety-Critical Java Mission Model: A Formal Account 61

processEventHandlerFW =̂ handler : HandlerId • begin

state EventHandlerFWState == [active : BOOL]

Init == [EventHandlerFWState ′ | active ′ = FALSE]

StartHandler =̂ start handler . handler −→ active := TRUE

ActivateHandlers =̂ activate handlers −→ Skip

DispatchHandler =̂ enter dispatch−→
stop handler . handler −→ leave dispatch −→ Skip

•

⎛⎜⎜⎜⎜⎝
µX • Init;⎛⎜⎜⎝

((StartHandler ; ActivateHandlers) � ActivateHandlers);
if active = TRUE −→DispatchHandler
� active = FALSE −→ Skip
fi

⎞⎟⎟⎠ ; X

⎞⎟⎟⎟⎟⎠
� end mission fw −→ Skip

end

Fig. 6. Framework process for event handlers

event, by synchronising on leave dispatch. If active is FALSE , the handler pro-
cess skips, as in this case the handler is not part of the current mission.

As already said, the application processes for handlers are factored into a
data object modelled by an OhCircus class, and a process that aggregates it and
releases the handler. Fig. 7 presents the OhCircus class for the Engine Java class.
The correspondence is direct, with member variables defined as state compo-
nents, and the constructor defined in the initial paragraph. For methods, the
only difference is that events are not treated as objects: we use event identi-
fiers. So, handleAsyncEvent takes an event identifier as a value parameter, and
compares it to the identifiers of the events that are handled in the class.

The application process for a handler lifts its data objects to a process that
can interact with the other components of the model. We present in Fig. 8 the
process for the engine handler. The object for the handler is recorded in its state
component obj . The Init action initialises it with the object input through the
constructor call channel: here, the channel EngineInit of type EngineClass .

The handleAsyncEventMeth action simply executes the corresponding data
operation. We cannot adopt exactly this model when handleAsyncEvent() han-
dles an output event. For instance, the throttle controller handler process has to
carry out communications set voltage ! v . In such cases, we cannot represent the
method by just a call to a data operation like in Fig. 8, but have to encode it by
an action. The handleAsyncEventMeth of the application process, in this case,
reflects directly the Java code, but outputs a value in the correct external channel
where in Java we have a device access to achieve the hardware interaction.

Since a handler the used by several missions, the application process re-
peatedly initialises (Init), executes (Execute), and terminates (Terminate) it.
Execution waits for the enter dispatch event, and then enters a loop that repeat-
edly waits for the occurrence of one of the external events associated with the

62 F. Zeyda, A. Cavalcanti, and A. Wellings

classEngineClass =̂ begin
stateEngineState == [private cruise : CruiseControlClass]

initialEngineInit =̂ val cruise? : CruiseControlClass • cruise := cruise?

public handleAsyncEvent =̂ val event : EventId •
if event = EOnEvtId −→ cruise.engineOn()
� event = EOffEvtId −→ cruise.engineOff ()
fi

end

Fig. 7. OhCircus class for the Engine handler

process EngineApp =̂ begin

stateEngineState == [obj : EngineClass]

Init =̂ EngineInit ? o −→ obj := o

handleAsyncEventMeth =̂ val e : EventId • obj .handleAsyncEvent(e)

Execute =̂ enter dispatch −→Dispatch

Dispatch =̂⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

µX •⎛⎜⎜⎜⎜⎜⎜⎜⎝

leave dispatch −→ Skip
�⎛⎜⎜⎜⎝
⎛⎝ engine on −→ handleAsyncEventMeth(EOnEvtId)

�
engine off −→ handleAsyncEventMeth(EOffEvtId)

⎞⎠ ;

� t : 0..EngineDeadline • wait t

⎞⎟⎟⎟⎠

⎞⎟⎟⎟⎟⎟⎟⎟⎠
; X

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠
Terminate =̂ done handler .EngineHandlerId −→ Skip

• (µX • Init ; Execute ; Terminate ; X) � end mission fw −→ Skip

end

Fig. 8. Application process for the Engine handler

handler. In our example, these are engine on and engine off . When such an
event occurs, Dispatch calls the handleAsyncEventMeth action. The subsequent
nondeterministic wait captures the permissible amount of time the program
may take to execute it. The dispatch loop is abandoned when the leave dispatch
event occurs. Termination that follows raises a particular done handler . h event
to notify the mission framework process that the handler has terminated.

In the case of an application process for a periodic handler, the only difference
is in Dispatch. It does not wait for external events and calls handleAsyncEvent()
when an internal timer event release occurs. An additional parallel action Release
generates the timer events. It is given below for ThrottleController.

Release =̂

(µX • (release −→ Skip � 0) ; waitThrottleControllerPeriod ; X)
� leave dispatch −→ Skip

The Safety-Critical Java Mission Model: A Formal Account 63

The Circus Time wait t action waits for the end of the period before terminat-
ing, and the � operator specifies that the release event happens immediately
afterwards. ThrottleControllerPeriod is a constant that specifies the period of
the handler. (We have one such constant for each periodic handler.)

4 Conclusions

As far as we know, what we presented here is the first formalisation of the SCJ
paradigm. Our models capture the essence of its design, and are an essential asset
for analysis and development techniques for SCJ programs based on refinement.

To validate the models, we have translated them for FDR. The CSP trans-
lation encapsulates all Circus state into process parameters. Timing aspects are
ignored, and so is the detailed application-level behaviour of handlers. We en-
sured that simple interaction scenarios do not result in a deadlock, and also that
the mechanism for starting and terminating missions works as expected.

The direct correspondence between SCJ programs and our models enables
automation in both directions. The framework processes are the same for all
programs. The application processes use a fixed modelling pattern. The formal-
isation of the model-generation strategy discussed here, and the development of
an associated tool, is work in progress. What remains to be done is to formalise
the translation rules, and we believe this can be done in a compositional manner
to facilitate their implementation using visitors. The tool will allow us to tackle
larger industrial examples like those in Kalibera et al.’s benchmark [14].

The SCJ also incorporates a region-based memory model with restrictions
on access to support safe dynamic memory management, and associated static
verification techniques. We have abstracted from this here, but refined versions
of our model will incorporate the language features we have formalised else-
where [7]. For this we will further introduce constructs into the language that
make explicit the memory areas in which objects are allocated. Importantly, this
does not impact on any of the models presented earlier: they remain valid.

There are many approaches and tools to reason about object-oriented pro-
grams and Java [3,1], but they do not cater for the specificities of concurrency
in SCJ. Brooke et al. present a CSP specification for a concurrency model for
Eiffel (SCOOP) [2]. Their CSP specification shares some basic ideas with our
Circus models, but is necessarily more complex due to its generality.

Kalibera et al.’s work in [14] is concerned with scheduling analysis and race
conditions in SCJ programs, but it does not use proof-based techniques. Instead,
exhaustive testing and model-checking is applied. Annotation-based techniques
for SCJ can be found in [20,9]. In [20] annotations are used to check for com-
pliance with a particular level of SCJ, and for safe use of memory. Haddad et
al. define SafeJML [9], which extends JML [3] to cover functionality and timing
properties; it reuses existing technology for worst-case execution-time analysis in
the context of SCJ. Our model is a conceivable candidate to justify the soundness
of checks supported by the annotations and carried out by the tools.

Our long term goal is the definition of refinement-based techniques for de-
veloping SCJ programs. Like in the Circus standard technique, we will devise a

64 F. Zeyda, A. Cavalcanti, and A. Wellings

refinement strategy to transform centralised abstract Circus Time models into an
SCJ model as described here. The development of this strategy, and the proof
of the refinement rules that it will require are a challenging aspect of this en-
deavour. This involves the identification of refinement and modelling patterns.
All this shall also provide further practical validation of our model.

Acknowledgements. This work is funded by the EPSRC grant EP/H017461/1.
We have discussed our models with Chris Marriott, Kun Wei, and Jim Woodcock.

References

1. Beckert, B., Hähnle, R., Schmitt, P.H. (eds.): Verification of Object-Oriented Soft-
ware. LNCS (LNAI), vol. 4334. Springer, Heidelberg (2007)

2. Brooke, P., Paige, R., Jacob, J.: A CSP model of Eiffel’s SCOOP. Formal Aspects
of Computing 19(4), 487–512 (2007)

3. Burdy, L., Cheon, Y., Cok, D.R., Ernst, M.D., Kiniry, J.R., Leavens, G.T., Leino,
K.R.M., Poll, E.: An overview of JML tools and applications. Software Tools for
Technology Transfer 7(3), 212–232 (2005)

4. Burns, A.: The Ravenscar Profile. ACM SIGAda Ada Letters XIX, 49–52 (1999)
5. Cavalcanti, A., Sampaio, A., Woodcock, J.: A Refinement Strategy for Circus. For-

mal Aspects of Computing 15(2-3), 146–181 (2003)
6. Cavalcanti, A., Sampaio, A., Woodcock, J.: Unifying classes and processes. Software

Systems and Modeling 4(3), 277–296 (2005)
7. Cavalcanti, A., Wellings, A., Woodcock, J.: The Safety-Critical Java Memory

Model: A Formal Account. In: Butler, M., Schulte, W. (eds.) FM 2011. LNCS,
vol. 6664, pp. 246–261. Springer, Heidelberg (2011)

8. The Open Group. Safety Critical Java Technology Specification. Technical Report
JSR-302, Java Community Process (January 2011)

9. Haddad, G., Hussain, F., Leavens, G.T.: The Design of SafeJML, A Specification
Language for SCJ with Support for WCET Specification. In: JTRES. ACM, New
York (2010)

10. Harwood, W., Cavalcanti, A., Woodcock, J.: A Theory of Pointers for the UTP.
In: Fitzgerald, J.S., Haxthausen, A.E., Yenigun, H. (eds.) ICTAC 2008. LNCS,
vol. 5160, pp. 141–155. Springer, Heidelberg (2008)

11. Henties, T., Hunt, J., Locke, D., Nilsen, K., Schoeberl, M., Vitek, J.: Java for
Safety-Critical Applications. In: SafeCert (2009)

12. Hoare, C.A.R.: Communicating Sequential Processes. Prentice-Hall, Englewood
Cliffs (1985)

13. Hoare, C.A.R., Jifeng, H.: Unifying Theories of Programming. Prentice-Hall,
Englewood Cliffs (1998)

14. Kalibera, T., Parizek, P., Malohlava, M.: Exhaustive Testing of Safety Critical
Java. In: JTRES. ACM, New York (2010)

15. Morgan, C.C.: Programming from Specifications, 2nd edn. Prentice-Hall, Engle-
wood Cliffs (1994)

16. Oliveira, M., Cavalcanti, A., Woodcock, J.: A UTP Semantics for Circus. Formal
Aspects of Computing 21(1-2), 3–32 (2009)

The Safety-Critical Java Mission Model: A Formal Account 65

17. Santos, T., Cavalcanti, A., Sampaio, A.: Object-Orientation in the UTP. In: Dunne,
S., Stoddart, B. (eds.) UTP 2006. LNCS, vol. 4010, pp. 18–37. Springer, Heidelberg
(2006)

18. Sherif, A., Cavalcanti, A., Jifeng, H., Sampaio, A.: A process algebraic framework
for specification and validation of real-time systems. Formal Aspects of Comput-
ing 22(2), 153–191 (2009)

19. Spivey, J.: The Z Notation: A Reference Manual. Prentice-Hall, Englewood Cliffs
(1992)

20. Tang, D., Plsek, A., Vitek, J.: Static Checking of Safety Critical Java Annotations.
In: JTRES, pp. 148–154. ACM, New York (2010)

21. Wellings, A.: Concurrent and Real-Time Programming in Java. Wiley, Chichester
(2004)

22. Wellings, A., Kim, M.: Asynchronous event handling and safety critical Java. In:
JTRES, ACM, New York (2010)

Is There Evolution Before Birth?
Deterioration Effects of Formal Z Specifications

Andreas Bollin

Software Engineering and Soft Computing, AAU Klagenfurt, Austria
Andreas.Bollin@aau.at

http://www.aau.at/tewi/inf/isys/sesc

Abstract. Formal specifications are not an exception for aging. Furthermore,
they stay valid resources only in the case when they have been kept up to date
during all evolutionary changes taking place. As specifications are then not just
written once, an interesting aspect is whether they do also deteriorate or not. In
order to answer this question, this paper addresses the issues on various kinds
of changes in the development of formal specifications and how they could be
measured. For this, a set of semantic-based measures is introduced and then used
in a longitudinal study, assessing the specification of the Web-Service Definition
Language. By analyzing all 139 different revisions of it, it is shown that speci-
fications can deteriorate and that it takes effort to keep them constantly at high
quality. The results yield in a refined model of software evolution exemplifying
these recurring changes.

1 Introduction

Would you step into a house when there is a sign saying “Enter at your own risk”? I
assume not, at least if it is not unavoidable. Well, the situation is quite comparable to a
lot of software systems around. Our standard software comes with license agreements
stating that the author(s) of the software is (are) not responsible for any damage it might
cause, and the same holds for a lot of our hardware drivers and many other applications
around. Basically, we use them at our own risk.

I always ask myself: “Would it not be great to buy (and also to use) software that
comes with a certificate of guarantee instead of an inept license agreement?” Of course,
it would and it is possible as some companies demonstrate. It is the place where formal
methods can add value to the development process. They enable refinement steps and
bring in the advantages of assurance and reliable documentation.

The argument of quality is not just an academic one. Formal methods can be used in
practice as companies using a formal software development process demonstrate [23].
Formal modeling is also not as inflexible as one might believe. Changing requirements
and a growing demand in software involve more flexible processes and it is good to see
that a combination of formal methods and the world of agile software development is
possible [2]. This enables the necessary shorter development cycles, but, and this is the
key issue, it also means to start thinking about evolution right from the beginning.

The questions that arise are simple: (a) Do our formal specifications really change or
evolve, and (b) if this is the case, can we detect or even measure these changes? The ob-
jective of the paper is to answer these two questions. In a first step it demonstrates that

S. Qin and Z. Qiu (Eds.): ICFEM 2011, LNCS 6991, pp. 66–81, 2011.
c© Springer-Verlag Berlin Heidelberg 2011

http://www.aau.at/tewi/inf/isys/sesc

Evolution Before Birth? – Deterioration Effects of Formal Z Specifications 67

formal specifications are not an exception for aging. Section 2 tries to make developers
more receptive to this topic. And in the second step it demonstrates that there might
be deterioration effects when formal specifications are undergoing constant changes.
For this, Section 3 briefly introduces a set of measures that are suitable for assessing Z
specifications, and Section 4 takes a closer look at 139 revisions of a large Z specifi-
cation. Due to the lessons learned, a refined model of software evolution is suggested
in Section 5. Finally, Section 6 summarizes the findings and again argues for a careful
attention of the refined model of (specification) evolution.

2 Perfection or Decay

A formal specification describes what a system should do and as such it can be used
to argue about the correctness of a candidate system. But a specification is not per se a
“correct” mapping of the requirements. It needs time to create a first, useful version and,
as there are affinities with traditional software development, this section starts with the
model of software evolution. This model is then the basis for a – necessary – refinement,
as is shown later in Section 5.

2.1 Back to the Roots

Let us start again with the analogy above: Why does one enter a house even without
bothering about its safety? The answer is simple: normally, one trusts in the original
design, the statics, the teams that built it and the officials that did the final checks. The
trust stays the same when the house is going to be renovated, when the interior changes
and when some walls are broken down (or new ones are erected). One naturally assumes
that the old plans have been investigated and that structural engineers took a look at it.
The same holds for our software systems. There is an overall design, there are teams
that build and modify it and there are teams that test it before being sold. We trust in
their professionalism. A change in requirements and needs then leads to a change in this
software – it is undergoing a “renovation” process that we might call software evolution.

Bennet and Rajlich [1] introduced a staged model to describe this process in more
details (see Fig. 1). Starting with the initial development and the first running version,
evolutionary changes happen, leading to servicing phases and then, finally, to the phase-
out and close-down versions of the software. In their article the authors also point out
the important role of software change for both, the evolution and servicing phases. In
fact, effort is necessary at every step of the phase to keep up with the quality standards
and for keeping alive our trust in it.

Taking a closer look at our analogy of building/reconstructing a house it can be
observed that there is also a chain (or network) of trust. The visitor (or owner) of the
house counts on the construction company, they by themselves trust in the quality of the
building materials they use, and the team that builds the house trusts in the architects
(just to mention some of the links). When our evolving software is undergoing changes,
then there is a similar chain of trust and dependencies.

This is now the place where formal methods come into play. To keep the trust, a
change in the software has to be preceded by changes in the design documents and with

68 A. Bollin

Fig. 1. The versioned staged model of Bennett and Rajlich [1]. Starting with the initial develop-
ment and the first running version evolution is about to begin. The goal of the evolution phase is
to adapt the software to ever changing user requirements or changes in the operating environment.
When substantial changes are not possible anymore (at least not without damages to the system),
then the servicing phase starts. Only small tactical changes are applied. When no more servic-
ing is done, then the phase-out starts. Finally, with the close-down phase, the users are directed
towards a new version.

it a change in the software specifications. One can also put it the other way round: when
the architect does not update his or her plans, then future renovations are (hopefully)
impeded.

2.2 The Role of Formal Design

Writing down requirements in a keen way is necessary, and the use of formality is
not new in this respect. In their article Black et.al point out that formal methods have
already been used by Ada Lovelace’s and Charles Babbage’s work on the analytical
engine when they verified the formulas [2]. Since then several success stories of the use
of formal methods have been published [8,28,23,12,11]. However, traditional formal
design is commonly seen as something that is just happening at the beginning, and
most of us are tempted to think about the development of just one formal model.

As the analogy above demonstrates, this viewpoint is probably not correct. When
drawing up a plan, an architect does not only draw a single version. He or she starts
with a first version, modifies it, and plays around with it. Several versions are assessed
and, finally, discussed with the customer. The plans are, in addition to that, revised
when the building is changed later on. The same holds for formal specifications. Their

Evolution Before Birth? – Deterioration Effects of Formal Z Specifications 69

advantages not only lie in verification and validation considerations. They form the
basis for incrementally pinning down the most important requirements (and eventually
ongoing refinement steps). Only when kept up to date during evolutionary changes, they
act as valid sources for comprehension activities. So, our formal specifications are (and
should be) constantly changing during the software development phases. To think in
terms of “write-once languages” (as already addressed in [16, p.243]) is for sure not
appropriate.

During the last three decades there have been several advances in the field of formal
software development. Specification languages were standardized and then also adapted
to the world of object oriented programming. By the time new languages arise. Alloy is
such an example that also allows for simulation and graphical feedback [13]. However,
the main focus of the tools and languages around rests on support for writing the one
and correct model (and on proving properties of it). Contrarily, in our working group
we have been focusing on servicing and comprehension aspects instead [21,17], and in
the last years these efforts led to a concept location model and a tool for visualization,
slicing and clustering of Z specifications [4]. The resulting tools and techniques will
now be used in order to find out whether (and to which extent) formal specifications do
change during evolutionary activities.

3 On the Search for Measures

Formal specifications (like program code) might age during modifications and it needs
effort to antagonize it. The effects of a modification should be measured in order to
steer the course of change. This means to assess the specification (among other docu-
ments) at every refinement step and to consider the effect on various parameters of the
specification. Looking at size-based measures only (which can be calculated easily) is
for our objectives not enough. When talking about various aspects of deterioration we
are more interested in measuring effects on the specifications’ quality!

3.1 Specification Measures

The majority of specification metrics used in projects belongs to the class of size/quantity
based measures. Most popular is counting lines of specification text, which, apart from
looking at the time needed to write the specification, was also used as the basis to
monitor the often-cited CICS/ESA project of IBM [9]. Counting specific specification
elements is possible, too. Vinter et. al propose to count the type and number of logical
constructs in Z specifications [25]. By a small case-study they demonstrate that these
measures might correlate with the complexity of the specification. However, up to now
a quantitative assessment of the approach is missing. Nogueira et. al suggest to use two
measures expressing the complexity of each operator in the system and to calculate
them by counting input and output data related to the operators [18]. Their experiences
are based on a small case-study using HOPE as a specification language and Modula-
2 for its implementation. Alternatively, Samson et. al suggest to count the number of
equations in a module or per operation [24]. They observed that the number of equa-
tions required to define an operator is frequently equal to the cyclomatic complexity of
code based on the specification.

70 A. Bollin

Complexity considerations are relevant, but within the scope of this work quality
measures are needed. Due to the declarative nature of the formal specifications under
investigation, such measures (usually based on control- and data-flow) are, unfortu-
nately, rare. The above mentioned approaches of Samson et. al or Nogueira et. al can
be seen, if at all, just as possible approximations to quality considerations. But, there is
one approach that could be used as a starting point. By looking at (and analyzing) the
references to state variables in operations, Carrington et. al try to identify states of a
module and to relate them to the top-level modular structure of an implementation [6].
With this, they are introducing the notion of cohesion within a module. They do not
relate it to the quality of a specification, though, but the next section demonstrates that
not so much is missing.

3.2 Slice-Based Coupling and Cohesion Measures

As mentioned in the previous section, it is hard to find suitable quality measures for for-
mal specifications. However, for programming languages there are several approaches
around. Recently, Meyers and Binkley published an empirical study demonstrating the
use of slice-based measures for assessing the quality of 63 C programs [15]. Their
study is based on the following situation: In a system different relations between differ-
ent components can be detected. These relations make up part of the class of semantic
complexity. When taking the information flow within and between these components as
quality indicators, then the dual measures of coupling and cohesion are quite descriptive
when assessing the quality of a program.

A practical way to calculate the needed measures is to make use of slices. Weiser
[26,27] already introduced five slice based measures for cohesion, and three of them
have later on been formally defined by Ott and Thuss [20]: Tightness, Coverage, and
Overlap. Coupling, on the other hand, was defined as the number of local information
flow entering and leaving a procedure, and Harman demonstrated in [10] that it can be
calculated by the use of slices, too.

According to [15, 2:6-2:7], Tightness relates the number of statements common to all
slices to the length of the module. It favors concise single thought modules where most
of the statements are part of all the slices and thus affect all of the outputs. Coverage
on the other hand relates the lengths of the slices to the length of the entire module.
It favors large slices but does not require them to overlap and thus to indicate single
thought modules. As an example, a module containing two independent slices would
result in a value for Coverage of 0.5 but a value for Tightness of 0.0. Overlap measures
how many statements are common to all the slices and relates the number to the size
of all slices. The result is a measure that is not sensitive to changes in the size of the
module, it is only related to the size of the (single) common thought in the module.
Coupling between two modules is calculated by relating the inflow and outflow of a
module (with respect to other modules in the program). Inflow and outflow are also
calculated by making use of slices. Inter-procedural slices yield those statements of a
module that are “outside”, and, when examining these sets of statements mutually, their
relation can be treated as “information flow”. The exact semantics behind the measures
(including the definitions and some impediments in calculating them) are explained in
more details in the paper of Meyers and Binkley [15].

Evolution Before Birth? – Deterioration Effects of Formal Z Specifications 71

Table 1. Coupling and cohesion-related measures for Z specifications as introduced in [5]. SP
is the set representing all slices SPi of a schema ψ in a Z specification Ψ . SPint is the Slice
Intersection, representing the set of all predicates that are part of all slices. SU represents the
Slice Union of all the slices.

Measure Definition Description

Tightness τ (Ψ, ψ) | SPint(Ψ,ψ) |
| ψ | Tightness τ measures the number of

predicates included in every slice.
Coverage Cov(Ψ, ψ) 1

n

∑n
i=1

| SPi |
| ψ | Coverage compares the length of

all possible specification slices SPi

(SPi ∈ SP(Ψ, ψ)) to the length of ψ.
Overlap O(Ψ, ψ) 1

n

∑n
i=1

| SPint(Ψ,ψ) |
|SPi| Overlap measures how many pred-

icates are common to all n possi-
ble specification slices SPi (SPi ∈
SP(Ψ, ψ)).

Inter − Schema Flow
�(ψs, ψd)

|(SU(ψd)∩ψs)|
|ψs| Inter-Schema flow � measures the

number of predicates of the slices in
ψd that are in ψs.

Inter−Schema Coupling
C(ψs, ψd)

�(ψs,ψd) |ψs| + �(ψd,ψs) |ψd|
|ψs|+|ψd| Inter-Schema coupling C computes

the normalized ratio of the flow in
both directions.

Schema Coupling χ(ψi)
∑ n

j=1 C(ψi,ψj) |ψj|∑ n
j=1|ψj| Schema Coupling χ is the weighted

measure of inter-schema coupling of
ψi and all n other schemas.

3.3 Specification Slicing

Slicing can be applied to formal specifications, too. The idea was first presented by
Oda and Araki [19] and has later been formalized and extended by others [7,3,29]. The
basic idea is to look for predicates that are part of pre-conditions and for predicates
that are part of post-conditions. The general assumption is that (within the same scope)
there is a “control” dependency between these predicates. “Data dependency”, on the
other hand, is defined as dependency between those predicates where data is potentially
propagated between them. With this concept, slices can be calculated by looking at a
(set of) predicates at first and then by including all other dependent predicates.

Recently, sliced-based coupling and cohesion measures have then been mapped to
Z by taking the above definitions of Meyers and Binkley as initial points (see Table 1
for a summary). Based on the calculation of slice-profiles which are collections of all
possible slices for a Z schema, the following measures have been assessed in [5]:

– Tightness, measuring the number of predicates included in every slice.
– Coverage, comparing the length of all possible slices to the length of the specifica-

tion schema.
– Overlap, measuring how many predicates are common to all n possible specification

slices.

72 A. Bollin

Table 2. Pearson, Spearman, and Kendall Tau test values (including significance level p) for the
correlation of size and slice-based Z specification measures. Values | R | ∈ [0.8 − 1.0] in the
mean are classified as strongly correlated, values | R | ∈ [0.5−0.8) are classified as moderately
correlated, and values | R | ∈ [0.0− 0.5) are treated as weakly correlated.

Metric Comparison (n=1123)
Sig. Pearson Spearman Kendall

Measure 1 Measure 2 R p R p R p

Strong Tightness Coverage 0.830 .000 0.907 .000 0.780 .000
Moderate Tightness Overlap 0.809 .000 0.749 .000 0.623 .000

Size (LOS) Coupling 0.589 .000 0.686 .000 0.494 .000
Size (LOS) Overlap -.557 .000 -.543 .000 -.415 .000
Size (LOS) Tightness -.541 .000 -.551 .000 -.415 .000
Coverage Overlap 0.531 .000 0.566 .000 0.437 .000

Weak Coupling Overlap -.343 .000 -.315 .000 -.239 .000
Size (LOS) Coverage -.284 .000 -.447 .000 -.326 .000
Coupling Tightness -.272 .000 -.262 .000 -.191 .000
Coupling Coverage 0.006 .829 -.102 .000 -.070 .000

– Coupling, expressing the weighted measure of inter-schema coupling (the normal-
ized ratio of the inter-schema flow – so the number of predicates of a slice that lay
outside the schema – in both directions).

In [5] it was shown that the measures are very sensitive to semantic changes in Z-schema
predicates and that the changes of the values are comparable to their programming
counterparts. This includes all types of operations on the specification, especially the
addition, deletion or modification of predicates. The next and missing step was to look
at a larger collection of sample specifications and assessing their expressiveness. The
major objective was to find out which of the measures describe unique properties of a
Z specification and which of them are just proxies for e.g. the lines of specification text
count (LOS).

In the accompanying study more than 12, 800 lines of specification text in 1, 123 Z
schemas have been analyzed and the relevant results of the analysis of the measures
are summarized in Table 2. The table shows that three tests have been used: Pearson’s
linear correlation coefficient, Spearman’s rank correlation coefficient, and Kendall’s
Tau correlation coefficient. The objective was to find out whether each of the measures
represents some unique characteristic of the specification or not.

The Pearson’s correlation coefficient measures the degree of association between the
variables, but it assumes normal distribution of the values. Though this test might not
necessarily fail when the data is not normally distributed, the Pearson’s test only looks
for a linear correlation. It might indicate no correlation even if the data is correlated in
a non-linear manner. As knowledge about the distribution of the data is missing, also
the Spearman’s rank correlation coefficients have been calculated. It is a non-parametric
test of correlation and assesses how well a monotonic function describes the association
between the variables. As an alternative to the Spearman’s test, the Kendall’s robust
correlation coefficient was used as it ranks the data relatively and is able to identify
partial correlations.

Evolution Before Birth? – Deterioration Effects of Formal Z Specifications 73

The head to head comparison of the measures in Table 2 shows that the slice-based
measures are not only proxies for counting lines of specification text. In fact, most of
the pairs do have a weak or moderate correlation only. So, besides the size of the spec-
ification, one can select Coverage, Overlap, and Coupling as descriptors for properties
of the specification, but, e.g., skip Tightness as it has the highest values of correlation
to most of the other measures.

Meyers and Binkley suggested another measure based on the sizes of the generated
slices and called it “deterioration” [15]. This measure has also been mapped to Z in [5]
and the basic idea goes back to a simple perception: the less trains of thoughts there are
in one schema, the clearer and the sharper is the set of predicates.

When a schema deals with many things in parallel, a lot of (self-contained) predi-
cates are to be covered. This has an influence on the set of slices that are to be generated.
When there is only one “crisp” thought specified in the schema, then the slice intersec-
tions cover all the predicates. On the other hand, when there are different thoughts
specified in it, then the intersection usually gets smaller (as each slice only regards de-
pendent predicates). A progress towards a single thought should therefore appear as a
convergence between the size of the schema and the size of its slice-intersection, a di-
vergence could indicate some “deterioration” of the formal specification. This measure
seems to be a good candidate for checking our assumption whether specifications do
age qualitatively or not, and it defined as follows:

Definition 1 Deterioration. Let Ψ be a Z specification, ψi one schema out of n schemas
in Ψ , and SPint(ψi) its slice intersection. Then Deterioration (δ(Ψ)) expresses the av-
erage module size in respect to the average size of the slice intersections SPint. It is
defined as follows:

δ(Ψ) =
∑n

i=1 | ψi | − | SPint(Ψ, ψi) |
n

Please note that the term “deterioration” as introduced in this paper is neither positive
nor negative and one single value of deterioration is of course not very expressive. It
just tells about how crisp a schema is. It does not allow for a judgement about the
quality of the schema itself. Of course, we could state that all values above a pre-defined
value x are to be treated as something unwanted, but it depends on the problem at
hand whether we can (and should) allow for such schemas. In all, it merely makes
sense to look at the differences in deterioration between two consecutive versions of the
specification and thus to introduce the notion of Relative Deterioration. This measure
can be defined in such a way that the relative deterioration is greater than zero when
there is a convergence between schema size and slice intersection, and it is negative,
when the shears between the sizes get bigger, indicating some probably unintentional
deterioration. Relative Deterioration is defined as follows:

Definition 2 Relative Deterioration. Let Ψn−1 and Ψn be two consecutive versions of a
Z specification Ψ . Then the relative deterioration (ρ(Ψn−1, Ψn)) with n > 1 is calculated
as the relative difference between the deterioration of Ψn−1 and Ψn. It is defined as
follows:

74 A. Bollin

ρ(Ψn) = 1− δ(Ψn)
δ(Ψn−1)

4 Evaluation

With the set of measures at hand and the reasonable suspicion that specifications do age
this paper is now taking a closer look at the development of a real-world specification
and the effect of changes onto the measures introduced in Section 3.

4.1 Experimental Subject

One of the rare, big publicly available Z specifications is the specification of the Web
Service Definition Language (WSDL) [22]. The document specifies the Web Services
Description Language Version 2.0, which is an XML language for describing Web ser-
vices. Besides natural language guidance, the specification defines the core language
that is used to describe Web services based on an abstract model of what the service of-
fers. Additionally, it specifies the conformance criteria for documents in this language.
The reason for focusing on this specification is that, with 2004 onwards, a concur-
rent versioning system (CVS) has been used. WSDL 1.0 is not available in Z, but from
November 2004 till the final release in 2007 139 versions have been checked in. The
first revision is an adoption of WSDL 1.0, and then, successively, functionality has been
added, modified, or deleted. The final revision contains 814 predicates (distributed over
1, 413 lines of Z text).

This specification is now used so check whether, due to maintenance operations,
there are drastic changes in the measures and whether deterioration can be detected or
not. The strategy is simply to look at the changes (as documented in the code and in the
CVS log files) and to compare them to the obtained values.

4.2 The Study

As a first step the CVS log was analyzed. This provided some insights to the types of
changes that occurred on the way to the final release. Though there have been several
changes influencing the events, the following sections and revisions are noticeable and
are considered in more details:

– Up to Revision 1.005 there is a mapping of WSDL version 1.0 to Z. Only minor
changes to the specification happen.

– Between revisions 1.005−1.007 there are mostly structural enhancements. Finally,
model extensions take place.

– At revisions 1.020ff there are several refactoring steps and noticeable extension.
– At revisions 1.045ff there are several smaller changes to some of the concepts.
– At revisions 1.090ff there are massive extensions to the model and new concepts

are introduced.
– Between revisions 1.096− 1.104 the concepts in the model are simplified.

Evolution Before Birth? – Deterioration Effects of Formal Z Specifications 75

Fig. 2. Deterioration for the 139 revisions of the WSDL specification. When the value of de-
terioration increases, then more predicates (not closely related to each other) are introduced to
schemas. This is not bad per se, but it is a hint towards a decrease in cohesion values.

– At revisions 1.127ff there are change requests and, thereinafter, removing features
leads to a structural refactoring.

Up to revision 1.092 the interventions consisted mainly of adding new concepts (in
our case Z schemas) to the specification. After revision 1.095 there are solely change
requests, leading to a refactoring of the specification. Really massive changes took place
at revisions 1.046 and 1.091.

When taking another closer look at the CVS log and the code, a specific strategy
for keeping the specification constantly at a high level of quality can be detected. The
recurring steps of a change request were:

1. Refactoring of the actual version.
2. Adding, removing, or modifying a concept.
3. Update of the natural language documentation.

The interesting question is now whether our measures introduced in Section 3 are able
to reflect these changes and whether the measures of deterioration are able to display
these changes.

4.3 Results

At first let us take a closer look at the measure called deterioration. Fig. 2 presents
the value for all 139 revisions in the CVS. This figure indicates that the specification
remarkably changes at revisions 1.046 and 1.091. In fact, the CVS log also documents
the changes.

As absolute values (as in Fig. 2) do not perfectly describe the influence of a change,
the notion of relative deterioration has been introduced in Section 3. Fig. 3 presents the
value of it for all 139 revisions. Positive values indicate that the difference between the
schema sizes and their slice intersections is reduced; such a deviation is assumed to be
positive in respect to deterioration as the slice intersection is a measure of how strong

76 A. Bollin

Fig. 3. The change in deterioration is better visible when looking at the relative deviation over
the time. A positive value indicates an increase in cohesion, while a negative value indicates a
decrease in the values of cohesion.

the predicates are interwoven in a schema. On the other hand, negative values indicate
negative effects.

When taking again a look at Fig. 3 (especially between revisions 1.020 and 1.046),
then the above mentioned strategy of change requests gets noticeably visible. A change
is implemented by a structural improvement first (to be seen as a positive amplitude),
and then it is followed by the introduction of the new concept, in most cases indicated
by a negative amplitude in the diagram.

Let us now analyze the influence of a change onto the qualitative values of coupling
and cohesion. By looking at Fig. 4, we see that the value for overlap decreases (on
average) a bit. This indicates that, with time, the number of predicates, common to
other slices, gets lower. Single Z schemas seem to deal with more independent thoughts.
Refactoring these thoughts into separate schemas (which happened e.g. at revisions
1.020 and 1.127) helped a bit to improve the structure of the specification again.

The value of coverage follows more or less the fluctuation of overlap – but not at all
revisions to the same extent. On the long run it definitely increases. Coverage tells us
about how crisp a schema is, and in our case the developers of the specification did not
manage to keep this property stable.

Finally, coupling refers to the flow between different schemas in the specification.
Though the value fluctuates, the developers managed to keep coupling quite stable on
the long run. Fig. 4 also shows that the value fluctuates with the values of cohesion, but
not necessarily to the same extent, and not necessarily inversely (as would be assumed
to be normal).

Though with the WSDL specification there is only one experimental subject, the
results seem to substantiate that the measures are suitable for assessing this Z specifica-
tion. The measures called deterioration and relative deterioration reflect the aging of the
system quite well, and the measures for coupling and cohesion (a) do indicate structural
changes and (b) also seem to explain some of the semantic changes in the specification.

Evolution Before Birth? – Deterioration Effects of Formal Z Specifications 77

Fig. 4. The values of cohesion (expressed by the measures of overlap and coverage) and coupling
for the 139 revisions of the WSDL specification. In most cases the values are subject to the same
changes. However, at revisions 1.006 and 1.044 we observe changes into different directions, too.

5 An Extended Model of Evolution

As has been shown in Section 4.3, specifications keep on changing. Either one is still
in the process of finding the most suitable version for our requirements, or one is mod-
ifying them due to changes in our projects’ software systems. With that, a second look
at the software evolution model in Fig. 1 is quite helpful – as one comes down to the
following statement so far:

There is also evolution before the birth of the running version of the software system.

Fig. 5 tries to exemplify this for the initial and evolutionary versions of the soft-
ware. In this figure the original model has been extended by refining the boxes of the
evolutionary versions. Documents and requirements have been added so that formal
specifications are made explicit (as they do belong to the set of necessary documents).
They are, depending on the changing requirements, also changed. These changes either
happen before one has a first running version of the software or afterwards.

The implications of this (refined) picture are manifold and should be considered
when using formal specification languages in the software development lifecycle:

– Suitable size- and quality-based measures should be defined. This ensures that
changes in the various documents – including formal specifications – can be de-
tected and assessed. The slice-based measures introduced above are just an example
of how it could be done for a specific specification language. For other languages
the ideas might be reused. It might also be necessary to define new measures. How-
ever, the crucial point is that there is a measurement system around.

– Points of measurement should be introduced at every change/refinement loop. This
ensures that the effects of changes can be assessed, and that the further direction of
the development can be steered. The example of WSDL shows that already during
the initial development changes have effects and that it takes effort to keep a specifi-
cation constantly at a pre-defined level of quality. One can assume that WSDL is not
an exception and that the observation also holds for other specification documents.
By making use of a measurement system one is at least on the safe side.

78 A. Bollin

Fig. 5. A refined and extended look at the versioned stage model. Starting with a first set of initial
requirements several versions of documents are created. Requirements are refined, and formal
specifications are (among other design documents) also changed and modified. When the design
is fixed, development is about to begin. Due to evolutionary changes after this phase, the existing
documentation – including specifications and design documents – is (and has to be) changed,
too. The term “evolutionary change of a formal specification” is used in a rather general sense.
Apart from the classification of system types of Lehman [14], the figure illustrates that essential
changes might happen to documents before and after delivery.

– The terms “Fixed Design and Documentation” just designate the conceptual border
between the initial development phase and the first running version. Nevertheless,
changes to the documents happen before and after this milestone in the project (as
evolution is about to begin). The previously introduced measure points should also
be defined for the evolutionary phases, and measures should be collected during all
the evolutionary changes and servicing activities (influencing the documents and
specifications).

Basically, the extended model of software evolution makes one property of specification
(and other documents) explicit: they are no exception to aging. With this, it is obvious
that measures, at the right point and extent, help in answering the question of what
happened and, eventually, of what can be done for preventing unwanted deterioration
effects.

6 Conclusion

We started with the observation that formal specifications – documents important in the
very early phases of software development and later on during maintenance – might be
changed more often than commonly expected and that the changes are not necessarily
positive. We wanted to verify this observation, and so we mapped existing semantic-
based measures to Z specification and used them to analyze a large real-world specifi-
cation. The lessons learned so far are manifold.

Evolution Before Birth? – Deterioration Effects of Formal Z Specifications 79

1. Firstly, there was no suitable measurement system around. In order to understand
and to assess changes, new measures had to be developed. These measures, care-
fully mapped to Z specifications, have been evaluated by making use of a large set
of sample specifications. They are maybe not representative for all specifications
around, but the statistical tests helped us in gaining at least basic confidence in the
results for Z.

2. Secondly, changes onto formal specifications definitely might influence the values
of the measures and there is the chance that their effects are underestimated. There
is no model that enunciates this situation, which is also the reason why we borrowed
from the model of evolution and refined it to cover the phases before, within, and
after initial development. A closer look at the evolution of the WSDL specification
seems to confirm the observation mentioned at the beginning of the paper: formal
specifications are not just written once. They are modified, are extended, and they
age.

3. Finally, the measures of coupling and cohesion (and with them deterioration and
relative deterioration) seem to be a good estimate for a qualitative assessment of
a specification. They are easy to calculate and seem to point out a possible loss in
quality.

With that, we are able to answer our two questions that have been raised at the end of
Section 1: specifications evolve and this evolution can be observed by simple semantics-
based measures. The refined and extended model of evolution as presented in Section 5
is a good image of what happens when developing our systems.

The results of this contribution are interesting insofar as it turned out that, for the
full benefits of a formal software development process, it makes sense to permanently
take care of the quality of the underlying formal specification(s). Even when declarative
specification languages are used, this can easily be done by defining suitable measures
and by using them to constantly monitor the quality of the whole system. The goals for
future work now include (a) taking a closer look at other formal specifications in order
to verify and consolidate the findings, (b) investigating the correlation of the specifi-
cation measures to code-based measures in order to come up with different prediction
models, and (c) incorporating the refined model of software evolution into a formal
software development process model that also considers cultural differences between
the different stakeholders in a project.

Overall, the results are encouraging. Formal specifications are not necessarily re-
stricted to the early phases of a software development process. When treated carefully
(and kept up to date) they may help us in producing software systems that can be trusted,
even when changed.

Acknowledgment. I am grateful to the reviewers of the FM 2011 conference and to
my colleagues at AAU Klagenfurt, especially to Prof. Mittermeir, who helped me with
fruitful discussions and reflections on this topic.

80 A. Bollin

References

1. Bennet, K., Rajlich, V.: Software Maintenance and Evolution: a Roadmap. In: ICSE 2000:
Proceedings of the Conference on The Future of Software Engineering, pp. 73–89. ACM,
New York (2000)

2. Black, S., Boca, P.P., Bowen, J.P., Gorman, J., Hinchey, M.: Formal Versus Agile: Survival
of the Fittest. IEEE Computer 42(9), 37–54 (2009)

3. Bollin, A.: Specification Comprehension – Reducing the Complexity of Specifications. Ph.D.
thesis, AAU Klagenfurt (April 2004)

4. Bollin, A.: Concept Location in Formal Specifications. Journal of Software Maintenance and
Evolution – Research and Practice 20(2), 77–105 (2008)

5. Bollin, A.: Slice-based Formal Specifiation Measures – Mapping Coupling and Cohesion
Measures to Formal Z. In: Muñoz, C. (ed.) Proceedings of the Second NASA Formal
Methods Symposium, NASA/CP-2010-216215, NASA, Langley Research Center, pp. 24–
34 (April 2010)

6. Carrington, D., Duke, D., Hayes, I., Welsh, J.: Deriving modular designs from formal spec-
ifications. In: ACM SIGSOFT Software Engineering Notes, vol. 18, pp. 89–98. ACM, New
York (1993)

7. Chang, J., Richardson, D.J.: Static and Dynamic Specification Slicing. Tech. rep., Depart-
ment of Information and Computer Science, University of California (1994)

8. Clarke, E.M., Wing, J.M.: Formal Methods: State of the Art and Future Directions. Tech.
rep., Carnegie Mellon University, CMU-CS-96-178 (1996)

9. Collins, B.P., Nicholls, J.E., Sorensen, I.H.: Introducing formal methods: the cisc experience
with z. In: Mathematical Structures for Software Engineering, pp. 153–164. Clarendon Press,
Oxford (1991)

10. Harman, M., Okulawon, M., Sivagurunathan, B., Danicic, S.: Slice-based measurement of
coupling. In: Proceedings of the IEEE/ACM ICSE workshop on Process Modelling and Em-
pirical Studies of Software Evolution, pp. 28–32. IEEE Computer Society Press, Los Alami-
tos (1997)

11. Hierons, R.M., Bogdanov, K., Bowen, J.P., Cleaveland, R., Derrick, J., Dick, J., Gheo-
rghe, M., Harman, M., Kapoor, K., Krause, P., Lüttgen, G., Simons, A.J.H., Vilkomir, S.,
Woodward, M.R., Zedan, H.: Using formal specifications to support testing. ACM Comput.
Surv. 41(2), 1–76 (2009)

12. Hinchey, M., Jackson, M., Cousot, P., Cook, B., Bowen, J.P., Margaria, T.: Software engi-
neering and formal methods. Communications of the ACM 51(9), 54–59 (2008)

13. Jackson, D.: Software Abstractions - Logic, Language, and Analysis. The MIT Press,
Cambridge (1996)

14. Lehman, M.M.: On understanding laws, evolution, and conservation in the large-program
life cycle. Journal of Systems and Software 1(1), 213–221 (1979)

15. Meyers, T.M., Binkley, D.: An Empirical Study of Slice-Based Cohesion and Coupling Met-
rics. ACM Transactions on Software Engineering and Methodology 17(1), 2:1–2:27 (2007)

16. Mittermeir, R.T., Bollin, A.: Demand-Driven Specification Partitioning. In: Böszörményi, L.,
Schojer, P. (eds.) JMLC 2003. LNCS, vol. 2789, pp. 241–253. Springer, Heidelberg (2003)

17. Mittermeir, R.T., Bollin, A., Pozewaunig, H., Rauner-Reithmayer, D.: Goal-Driven Com-
bination of Software Comprehension Approaches for Component Based Development. In:
Proceedings of the ACM Symposium on Software Reusability Software Engineering Notes,
SSR 2001, Software Engineering Notes, vol. 26, pp. 95–102. ACM Press, New York (2001)

18. Nogueira, J.C., Luqi, Berzins, V., Nada, N.: A formal risk assessment model for software
evolution. In: Proceedings of the 2nd International Workshop on Economics-Driven Software
Engineering Research, EDSER-2 (2000)

Evolution Before Birth? – Deterioration Effects of Formal Z Specifications 81

19. Oda, T., Araki, K.: Specification slicing in a formal methods software development. In: 17th
Annual International Computer Software and Applications Conference, pp. 313–319. IEEE
Computer Society Press, Los Alamitos (1993)

20. Ott, L.M., Thus, J.J.: The Relationship between Slices and Module Cohesion. In: 11th In-
ternational Conference on Software Engineering, pp. 198–204. IEEE Computer Society, Los
Alamitos (1989)

21. Pirker, H., Mittermeir, R., Rauner-Reithmayer, D.: Service Channels - Purpose and Trade-
offs. In: COMPSAC 1998: Proceedings of the 22nd International Computer Software and
Applications Conference, pp. 204–211 (1998)

22. Roberto Chinnici, S.M., Moreau, J.J., Ryman, A., Weerawarana, S.: Web Services Descrip-
tion Language (WSDL) Version 2.0 Part 1: Core Language (2007),
http://www.w3.org/TR/wsdl20

23. Ross, P.E.: The Exterminators. IEEE Spectrum 42(9), 36–41 (2005)
24. Samson, W., Nevill, D., Dugard, P.: Predictive software metrics based on a formal specifica-

tion. Information and Software Technology 29(5), 242–248 (1987)
25. Vinter, R., Loomes, M., Kornbrot, D.: Applying software metrics to formal specifications:

A cognitive approach. In: 5th International Symposium on Software Metrics, pp. 216–223.
IEEE Computer Society Press, Bethesda (1998)

26. Weiser, M.: Program slices: formal, psychological, and practical investigations of an auto-
matic program abstraction method. Ph.D. thesis, University of Michigan (1979)

27. Weiser, M.: Program slicing. In: Proceedings of the 5th International Conference on Software
Engineering, pp. 439–449. IEEE Press, Piscataway (1982)

28. Woodcock, J., Davis, J.: Using Z: Specification, Refinement, and Proof. Prentice-Hall Inter-
national Series in Computer Science. Prentice Hall, Hemel Hempstead (1996)

29. Wu, F., Yi, T.: Slicing Z Specifications. ACM SIGPLAN Notices 39(8), 39–48 (2004)

 http://www.w3.org/TR/wsdl20

Asynchronous Communication in MSVL�

Dapeng Mo, Xiaobing Wang, and Zhenhua Duan��

Institute of Computing Theory and Technology,
and ISN Laboratory Xidian University,

Xi’an, 710071, P.R. China
zjmdp@foxmail.com, {xbwang,zhhduan}@mail.xidian.edu.cn

Abstract. Projection Temporal Logic (PTL) is a sound formalism for specify-
ing and verifying properties of concurrent systems. The modeling, simulation
and verification language MSVL for concurrent systems is an executable sub-
set of PTL. However, asynchronous communication, a key component of model-
ing distributed system, has not been implemented in MSVL. This paper presents
asynchronous communication techniques for MSVL to improve its capability for
modeling and verifying distributed systems. First, a process structure is defined;
then a channel structure and two pairs of communication commands are formal-
ized; finally, an example of asynchronous communication for the contract signing
protocol is demonstrated.

1 Introduction

Temporal logics [1,2,3] have been put forward as a useful tool for specifying and veri-
fying properties of concurrent systems, and widely applied in many fields ranging from
software engineering to digital circuit designs. Projection Temporal Logic(PTL)[4] is an
extension of Interval Temporal Logic (ITL) and a useful formalism for system verifica-
tion. The Modeling, Simulation and Verification Language (MSVL)[5] is an executable
subset of PTL and it can be used to model, simulate and verify concurrent systems. To
do so, a system is modeled by an MSVL program and a property of the system is spec-
ified by a Propositional Projection Temporal Logic (PPTL) formula. Thus, whether or
not the system satisfies the property can be checked by means of model checking with
the same logic framework.

As the complexity of distributed systems increases, a formal language for modeling
and verification is desired. Although MSVL has been used to model, simulate and ver-
ify a number of concurrent systems, it could not be employed to model an asynchronous
distributed system because asynchronous communication techniques have not been im-
plemented in MSVL. For this reason, asynchronous communication construct is to be
formalized.
� This research is supported by the National Program on Key Basic Research Project of China

(973 Program) Grant No.2010CB328102, National Natural Science Foundation of China un-
der Grant Nos. 60910004, 60873018, 91018010, 61003078 and 61003079, SRFDP Grant
200807010012, and ISN Lab Grant No. 201102001,Fundamental Research Funds for the Cen-
tral Universities Grant No. JY10000903004.

�� Corresponding author.

S. Qin and Z. Qiu (Eds.): ICFEM 2011, LNCS 6991, pp. 82–97, 2011.
c© Springer-Verlag Berlin Heidelberg 2011

Asynchronous Communication in MSVL 83

Channel structure is commonly found in temporal logic languages due to its im-
portance to describe asynchronous distributed systems. In ASDL[6], any two distinct
services are impliedly connected by two unidirectional channels. It is a simple and
straightforward approach to implement asynchronous communication technique. For
XYZ/E[7], a channel is defined as a variable that can be a parameter of a process. This
approach is flexible, but conflicts may occur when more than one process accesses a
same channel at the same time. Roger Hale has implemented asynchronous communi-
cation technique for Tempura based on a shared buffer and two primitive operations[8].
The buffer is a single slot in which one message can be stored at a time. Communication
in CCS[9] and CSP[10] is synchronous and there are no message buffers linking com-
municating agents, but asynchronous communication can be modeled by introducing
buffer agents between two communicating entities. These approaches above provide us
a great many ideas to implement asynchronous communication technique in MSVL.

The main contributions of this paper are as follows: 1. A process structure is defined
to describe behaviors of systems. In this way, two or more processes can form a larger
system with a clear structure; 2. To establish links among processes, a channel structure
is presented. Channels are buffers to transport messages; 3. Communication commands,
which are executed by processes to send or receive messages, are formalized. After all
works above have been done, asynchronous communication is possible and a number of
asynchronous concurrent systems can be modeled, simulated and verified with extended
MSVL.

To inspect the practicability of our works, an example of electronic contract signing
protocol is modeled and verified by the extended MSVL. Processes are used to describe
all parties that participate in the protocol and channels are defined to connect all pro-
cesses;then all processes run in parallel to model the protocol. With some properties
specified by PPTL formulas, whether or not the protocol satisfies them are checked.

The paper is organized as follows: In section 2, the syntax and semantics of PTL are
presented. In section 3, the language MSVL is briefly introduced. The formal definitions
of the process structure and asynchronous communication are formalized in section 4.
In section 5, an electronic contract signing protocol is modeled and verified with the
extended MSVL. Conclusions are drawn in the final section.

2 Projection Temporal Logic

2.1 Syntax

Let Π be a countable set of propositions, and V be a countable set of typed static and
dynamic variables. B = {true, false} represents the boolean domain and D denotes
all the data we need including integers, strings, lists etc. The terms e and formulas p are
given by the following grammar:

e ::= v | ©e | -©e | f(e1, . . . , em)
p ::= π | e1 = e2 | P (e1, . . . , em) | ¬p | p1 ∧ p2 | ∃v : p | ©p | -©p |

(p1, . . . , pm) prj p

84 D. Mo, X. Wang, and Z. Duan

I[v] = sk[v] = Ik
v [v]

I[©e] =

{
(σ, i, k + 1, j)[e] if k < j
nil otherwise

I[-©e] =

{
(σ, i, k − 1, j)[e] if i < k
nil otherwise

I[f(e1, . . . , em)] =

{
f(I[e1], . . . , I[em]) if I[eh] �= nil for all h
nil otherwise

Fig. 1. Interpretation of PTL terms

where π ∈ Π is a proposition, and v is a dynamic variable or a static variable. In
f(e1, . . . , em) and P (e1, . . . , em), f is a function and P is a predicate. It is assumed
that the types of the terms are compatible with those of the arguments of f and P .
A formula (term) is called a state formula (term) if it does not contain any temporal
operators (i.e.©, -© and prj); otherwise it is a temporal formula (term).

2.2 Semantics

A state s is a pair of assignments (Iv, Ip) where for each variable v ∈ V defines s[v] =
Iv[v], and for each proposition π ∈ Π defines s[π] = Ip[π]. Iv[v] is a value in D or
nil (undefined), whereas Ip[π] ∈ B. An interval σ =< s0, s1, · · · > is a non-empty
(possibly infinite) sequence of states. The length of σ, denoted by |σ|, is defined as ω
if σ is infinite; otherwise it is the number of states in σ minus one. To have a uniform
notation for both finite and infinite intervals, we will use extended integers as indices.
That is, we consider the set N0 of non-negative integers and ω, Nω = N0 ∪ {ω}, and
extend the comparison operators, =, <,≤, to Nω by considering ω = ω, and for all i ∈
N0, i < ω. Moreover, we define
 as ≤ −{(ω, ω)}. With such a notation, σ(i..j)(0 ≤
i
 j ≤ |σ|) denotes the sub-interval < si, . . . , sj > and σ(k)(0 ≤ k
 |σ|) denotes
< sk, ..., s|σ| >. The concatenation of σ with another interval (or empty string) σ′ is
denoted by σ·σ′. To define the semantics of the projection operator we need an auxiliary
operator for intervals. Let σ =< s0, s1, · · · > be an interval and r1, . . . , rh be integers
(h ≥ 1) such that 0 ≤ r1 ≤ r2 ≤ · · · ≤ rh
 |σ|. The projection of σ onto r1, . . . , rh is
the interval (called projected interval), σ ↓ (r1, . . . , rh) =< st1 , st2 , . . . , stl

>, where
t1, . . . , tl is obtained from r1, . . . , rh by deleting all duplicates. For example,

< s0, s1, s2, s3, s4 >↓ (0, 0, 2, 2, 2, 3) =< s0, s2, s3 >

An interpretation for a PTL term or formula is a tuple I = (σ, i, k, j), where σ =<
s0, s1, · · · > is an interval, i and k are non-negative integers, and j is an integer or
ω, such that i ≤ k
 j ≤ |σ|. We use (σ, i, k, j) to mean that a term or formula is
interpreted over a subinterval σ(i..j) with the current state being sk. For every term e, the
evaluation of e relative to interpretation I = (σ, i, k, j) is defined as I[e], by induction
on the structure of a term, as shown in Fig.1, where v is a variable and e1, . . . , em are
terms.

Asynchronous Communication in MSVL 85

empty
def
= ¬© true more

def
= ¬empty

halt(p)
def
= �(empty↔ p) keep(p)

def
= �(¬empty→ p)

fin(p)
def
= �(empty→ p) skip

def
= ¬empty

x◦ = e
def
= ©x = e x := e

def
= skip ∧ x◦ = e

len(0)
def
= empty len(n)

def
= ©len(n− 1)(n > 0)

Fig. 2. Some derived formulas

The satisfaction relation for formulas |= is inductively defined as follows.

1. I |= π if sk[π] = Ik
p [π] = true.

2. I |= e1 = e2 if I[e1] = I[e2].
3. I |= P (e1, . . . , em) if P is a primitive predicate other than = and, for all h, 1 ≤

h ≤ m, I[eh] �= nil and P (I[e1], . . . , I[em]) = true.
4. I |= ¬p if I �|= p.
5. I |= p1 ∧ p2 if I |= p1 and I |= p2.
6. I |= ∃v : p if for some interval σ′ which has the same length as σ, (σ′, i, k, j) |= p

and the only difference between σ and σ′ can be in the values assigned to variable
v at k.

7. I |=©p if k < j and (σ, i, k + 1, j) |= p.
8. I |= -©p if i < k and (σ, i, k − 1, j) |= p.
9. I |= (p1, . . . , pm) prj q if there exist integers k = r0 ≤ r1 ≤ . . . ≤ rm ≤

j such that (σ, i, r0, r1) |= p1, (σ, rl−1, rl−1, rl) |= pl (for 1 < l ≤ m), and
(σ′, 0, 0, |σ′|) |= q for one of the following σ′:
(a) rm < j and σ′ =σ↓(r0, ..., rm)·σ(rm+1..j)

(b) rm = j and σ′ =σ↓(r0, . . . , rh) for some 0 ≤ h ≤ m.

A formula p is said to be:

1. satisfied by an interval σ, denoted σ |= p, if (σ, 0, 0, |σ|) |= p.
2. satisfiable if σ |= p for some σ.
3. valid, denoted |= p, if σ |= p for all σ.
4. equivalent to another formula q, denoted p ≡ q, if |= (p↔ q).

The abbreviations true, false,∧,→ and↔ are defined as usual. In particular, true
def=

P ∨ ¬P and false
def= ¬P ∧ P for any formula P . Also some derived formulas is

shown in Fig.2.

3 Modeling, Simulation and Verification Language

The Language MSVL with frame[11] technique is an executable subset of PTL and
used to model, simulate and verify concurrent systems. The arithmetic expression e and
boolean expression b of MSVL are inductively defined as follows:

e ::= n | x | ©x | -©x | e0 op e1(op ::= +| − | ∗ |/|mod)
b ::= true | false | e0 = e1 | e0 < e1 | ¬b | b0 ∧ b1

86 D. Mo, X. Wang, and Z. Duan

where n is an integer and x is a variable. The elementary statements in MSVL are de-
fined as follows:

Assignment: x = e
P-I-Assignment: x⇐ e

Conditional: if b then p else q
def= (b→ p) ∧ (¬b→ q)

While: while b do p
def= (b ∧ p)∗ ∧�(empty → ¬b)

Conjunction: p ∧ q
Selection: p ∨ q
Next: ©p
Always: �p
Termination: empty
Sequential: p; q
Local variable: ∃x : p
State Frame: lbf(x)
Interval Frame: frame(x)
Parallel: p ‖ q

def= p ∧ (q; true) ∨ q ∧ (p; true)
Projection: (p1, . . . , pm) prj q

Await: await(b) def= (frame(x1) ∧ · · · ∧ frame(xh)) ∧�(empty ↔ b)
where xi ∈ Vb = {x|x appears in b}

where x denotes a variable, e stands for an arbitrary arithmetic expression, b a boolean
expression, and p1, . . . , pm, p and q stand for programs of MSVL. The assignment
x = e, x⇐ e, empty, lbf(x), and frame(x) can be regarded as basic statements and
the others composite ones.

The assignment x = e means that the value of variable x is equal to the value of
expression e. Positive immediate assignment x ⇐ e indicates that the value of x is
equal to the value of e and the assignment flag for variable x, px, is true. Statements
of if b then p else q and while b do p are the same as that in the conventional im-
perative languages. p ∧ q means that p and q are executed concurrently and share all
the variables during the mutual execution. p ∨ q means p or q are executed. The next
statement©p means that p holds at the next state while �p means that p holds at all the
states over the whole interval from now. empty is the termination statement meaning
that the current state is the final state of the interval over which the program is exe-
cuted. The sequence statement p; q means that p is executed from the current state to
its termination while q will hold at the final state of p and be executed from that state.
The existential quantification ∃x : p intends to hide the variable x within the process
p. lbx(x) means the value of x in the current state equals to value of x in the previous
state if no assignment to x occurs, while frame(x) indicates that the value of vari-
able x always keeps its old value over an interval if no assignment to x is encountered.
Different from the conjunction statement, the parallel statement allows both the pro-
cesses to specify their own intervals. e.g., len(2)‖len(3) holds but len(2) ∧ len(3) is
obviously false. Projection can be thought of as a special parallel computation which
is executed on different time scales. The projection (p1, . . . , pm) prj q means that q is
executed in parallel with p1, . . . , pm over an interval obtained by taking the endpoints

Asynchronous Communication in MSVL 87

of the intervals over which the p,
is are executed. In particular, the sequence of p,

is and q
may terminate at different time points. Finally, await(b) does not change any variable,
but waits until the condition b becomes true, at which point it terminates.

An MSVL interpreter has been implemented in Microsoft Visual C++. An MSVL
program can be transformed to a logically equivalent conjunction of the two formulaes,
Present and Remains. Present consists of immediate assignments to program vari-
ables, output of program variables, true, false or empty. It is executed at the current
state. The formula Remains is what is executed in the subsequent state (if any). The
interpreter accepts well-formed MSVL programs as its input and interprets them in a
serial states. If a program is reduced to true, it is satisfiable and a model is found,
otherwise it has no model.

The interpreter can work in three modes: modeling, simulation and verification. In
the modeling mode, given the MSVL program p of a system, all execution paths of
the system are given as an Normal Form Graph (NFG)[5] of p. A correct path ends
with a bicyclic node as shown in Fig.3(a). Under the simulation mode, an execution
path of the system is output according to minimal model semantics[12] of MSVL. With
the verification mode, given a system model described by an MSVL program, and a
property specified by a PPTL formula, it can automatically be verified whether or not
the system satisfies the property, and the counterexample will be pointed out if the
system does not satisfy it. A satisfiable path ends with a circular node as shown in
Fig.3(b) while an unsatisfiable path ends with a terminative node as shown in Fig.3(c).

(a) (b) (c)

Fig. 3. Three types of nodes

4 Asynchronous Communication

4.1 Process

In[10], a process stands for the behavior pattern of an object. A service can be viewed
as a computational entity in[6]. Similarly, we use a process to describe the manner of an
object. Furthermore, process is a reasonable structure when several MSVL statements
run in parallel and each independently determines the interval length. The introduc-
tion of the process structure simplifies and modularizes programming so that a compli-
cated system can be separated into several processes. Besides, processes are viewed as
communication entities and make the implementation of asynchronous communication
more feasible.

88 D. Mo, X. Wang, and Z. Duan

The process structure consists of two parts: declaration part and calling part. The
declaration part has three components: process name, formal parameters and process
body. The calling part consists of process name and actual parameters.

Let ProcName be the name of a process, and P, P1, P2 be MSVL statements. x, y
are variables, and c, d denotes channel variables. The formal definitions of process are
shown below:

proc ProcName(x) def= {Pro Body}
Pro Body

def= x = e | P1 ∧ P2 | P1 ∨ P2 | ©P | �P | ∃x : P | P1 ||P2 |
if b then P1 else P2 | P1; P2 | while b do P | frame(x) |
send(c, e) | receive(d, y) | empty

ProcName(y) def= (y/x)Pro BodyProcName

Where proc is a key word, and Proc Body is the main body of a process. The state-
ment ProcName(y) refers to call the process ProcName with the actual parameter
y. The semantic of ProcName(y) is to replace the value of all x’s in the main body
of ProcName by the value of y. The statement send(c, e) represents to send a mes-
sage(value of expression e) to channel c while the statement receive(d, y) means to
receive a message from channel d and assign it to the variable y.

4.2 Channel

Channel communication can be synchronous or asynchronous. For synchronous com-
munication, a receiver blocks until a compatible party is ready to send. As to asyn-
chronous communication, a communicating party can start a sending or receiving
activity at any time without consideration of the state of the other party, because there
is a buffer between them.

Before presenting formal definitions, we firstly give informal descriptions of channel
communication. In MSVL, a channel is a bounded First-In-First-Out (FIFO) list where
a message can be inserted at one end and received sequentially at the other. Sending a
message equals appending it to the tail of the channel; receiving a message is to remove
the head of the channel. Only when there is at least one empty place available in the
channel will a sending activity be successful, otherwise waiting for an empty place
or terminating the sending activity may be selected. A similar procedure applies to a
receiving activity. As formal parameters in the declaration of a process can be channel
variables, we can transfer a defined channel variable as the actual parameter to the
formal parameter when calling a process. Then the process can access the channel to
transport messages.

A channel is regarded as a bounded FIFO list and its declaration is given below:

chn c(n) def= c =<> ∧maxc = n

where chn is a key word and chn c(n) declares channel c with a capacity of n. Here c
is an empty list, and maxc is a static variable that represents the capacity of list c. Some
list operators make it behave like a bounded FIFO.

Any process can access a channel if the channel is visible in its scope. Hence, the
number of processes that a channel can connect is not restricted. Obviously, conflicts

Asynchronous Communication in MSVL 89

may happen when more than one process accesses a same channel at the same time
and therefore some exclusion algorithms are necessary. Unfortunately, the algorithms
based on hardware instructions are not workable since atomic operations are incapable
of being expressed in MSVL, and the algorithms related to software are so complicated
that they will make MSVL programs in confusion and barely intelligible. According to
our experience, attaching exactly one process to each end of a channel will be a wise
choice.

4.3 Communication Commands

For simplicity, we firstly introduce two predicates as follows:

isfull(c) def= |c| = maxc

isempty(c) def= |c| = 0

– isfull(c) evaluates to true if channel c is full, otherwise false.
– isempty(c) evaluates to true if channel c is empty, otherwise false.

Let x be an output expression, and y be an input variable, and c be a channel variable.
Communication commands are defined as follows:

send(c, x) def= await(!isfull(c)); c := c· < x >

receive(c, y) def= await(!isempty(c)); y := head(c) ∧ c := tail(c)

– The command send(c, x) will block until c has at least one empty place. If c is
not full at current state, x can be inserted into the tail of c at the next state, other-
wise await(!isfull(c)) statement will be executed repeatedly at the next state in
accordance with the semantic of await structure.

– If c is not empty at current state, the message at the head of c will be removed and
assigned to the variable y at the next state, otherwise await(!isempty(c)) state-
ment will be executed at the next state.

– The length of intervals of the two commands is 1 at least if the predicates isfull
and isempty are false at the initial state. The length, however, may be infinite if
the predicates are always true.

An example is demonstrated to illustrate the use of send and receive.

Example 1. A and B are two processes, and variable c is a channel between them. The
pointer symbols * and & are defined in[13]. The MSVL program is given in Fig.4.

– state s0: A gets ready to append x to the tail of c at the next state. B will execute
await(!isempty(c)) statement again at the next state, since there is no message in
c at the current state.

– state s1: A puts x at the tail of c and then terminates. B prepares to get x at the next
state since x is at the head of c at the current state.

– state s2: B removes x from c and assigns it to the variable y. Then B terminates.

90 D. Mo, X. Wang, and Z. Duan

proc P (ch) = {exists x : {
frame(x)and x = 1 and send(∗ch, x)}
};

proc Q(ch) = {exists y : {
frame(y)and y = 0 and receive(∗ch, y)}
};

frame(c)and chn c(1) and (P (&c)||Q(&c))

Fig. 4. Example of send and receive

While modeling a distributed system with timing constraints, some party may have to
time out, which happens frequently in communication, to give up waiting if its request is
not responded for a long time. The commands send and receive do not terminate until
the predicates isfull and isempty become false, which implies they are not capable of
handling timeout mechanism in these systems. Hence, another pair of communication
commands is provided:

put(c, x) def= if(!isfull(c)) then { c := c· < x > }
else{skip}

get(c, y) def= if(!isempty(c)) then { y := head(c) ∧ c := tail(c) }
else{ skip }

We replace the await structure by if−else structure. If the predicate isfull or isempty
is true, skip is executed. This pair of commands enable us to deal with timeouts in
modeling the systems with timing constraints while the commands send and receive
are convenient to describe the other systems. An appropriate selection should be made
according to the features of the system.

Asynchronous Communication in MSVL 91

5 An Application

5.1 An Example of Electronic Contract Signing Protocol

The crux of a commercial transaction is usually an exchange of one item for another.
More specifically, electronic contract signing can be considered as a fair exchange of
digital signatures to the same contract.

An electronic contract signing protocol allows n parties to sign a contract over net-
works. As the protocol relates to all parties’ benefits, some critical properties need to be
ensured, e.g., fairness[14]. Fairness denotes that either all parties obtain a signed con-
tract, or nobody does. A trust third party(TTP) is necessary to guarantee the fairness,
which is proved by Pagnina and Gartner in 1999[15].

The most straightforward contract signing protocol uses a TTP that first collects
all signatures and then distributes the decision signed or failed. But as the third party
has to be involved in all protocol executions it might easily become a reliability and
performance bottleneck. To avoid such a bottleneck, optimistic protocols which do
not involve a TTP in the normal, exception-less case but only involve it in the pres-
ence of faults or in the case of dishonest parties who do not follow the protocol are
researched.

The optimistic multi-party contract signing protocols can run on synchronous or
asynchronous networks. Basically, ”synchronous”[14] means that all parties have syn-
chronized real-time clocks, and that there is a known upper bound on the network de-
lays. The most widely synchronous protocol is described in [16], which is to be modeled
and verified with extended MSVL below. ”Asynchronous”[14] means that there are no
assumptions on clock synchronization and network delays. This means more precisely
that a communication allows parties to respond at arbitrary times or infinite network de-
lay. The first asynchronous optimistic multi-party contract signing protocol is described
in[14]. Nevertheless, the protocols for asynchronous networks are more expensive. An
improved version presented in[17] requires 2 rounds with the premise that the number
of dishonest parties is less than half parties. Unfortunately, it cannot be predicted.

Before we present the protocol, some assumptions are listed as follows:

1. There is an active-time limit t, after which all parties are guaranteed that the state
of the transaction is not changed. Requests for exceptions must be made before
an earlier deadline. Hence, all parties have to synchronize the clocks in order to
agree on the active-time limit as well as to compute local timeouts within rounds.
In our model, we assume clocks of all parties are synchronized and each party may
decide independently when to time out, and each step runs within a reasonable time
limit.

2. The channels between the TTP and all other parties are reliable according to the
conclusion that Pagnina and Gartner drew in 1999, whereas other channels may be
unreliable. Namely, messages are delivered eventually between TTP and any other
party, but the reliability of message passing cannot be guaranteed in other cases.

3. As already mentioned, TTP is involved in case of exceptions. Exceptions in the
protocol mainly develop in two forms: receiving invalid signatures and losing

92 D. Mo, X. Wang, and Z. Duan

messages, which respectively are caused by dishonest parties and unreliable net-
works. For the simplicity of modeling, both of the two forms are regarded as some
party’s not sending message to others. Therefore once a message is received, it
always represents a valid signature signed by the sender.

The protocol consists of main protocol and recovery protocol. If all parties are hon-
est and no message is lost, the recovery protocol will not be involved. The details are
described as follows[16]:

The Main Protocol

– The First Round
• Pi sends m[1,i] = signi(1, c) to other parties
• From all message of type m[1,j], Pi tries to compile vector M1 = (m[1,1], . . . ,

m[1,n]). If this succeeds and each m[1,j] is a valid signature, then Pi enters the
second round, otherwise Pi waits for a message from TTP .

– The Second Round
• Pi sends m[2,i] = signi(2, c) to other parties
• From all message of type m[2,j], Pi tries to compile vector M2 = (m[2,1], . . . ,

m[2,n]). If this succeeds and each m[2,j] is a valid signature, then Pi decides
signed and stops, otherwise Pi sends m[3,i]=signi(3, M1) to TTP and waits
for reply.

The Recovery Protocol

– TTP : If TTP receives at least one message m[3,i] which contains a full and consis-
tent M1, then TTP sends Mttp = signttp(M1) to all parties, and each Pi receiving
this decides signed, otherwise TTP does not send anything, and each Pi waiting
for a message from TTP decides failed if none arrives, or signed in case Mttp is
received, and stops.

Some explanations of the protocol are listed as follows:

1. The vector M2 and Mttp are equivalent, and they both refer to a valid contract.
Assume an honest party get a valid contract. If this happens because of Mttp, then
TTP has distributed it to all parties, and all honest parties decide signed. Now
assume an honest party V accepts because of M2. As M2 contains all Pi’s signature
m[2,i], Pi successfully complied M1 in round 1. If Pi received M2 in Round 2 it
decides signed. Otherwise it initiates an recovery, which is necessarily answered by
Mttp, and Pi decides signed.

2. In a synchronous network, each Pi waiting for a message from TTP can correctly
decide failed when times out, however, it would not be effective in a asynchronous
network, as a party could not decide whether a message was not sent, or just not
delivered yet.

Asynchronous Communication in MSVL 93

Fig. 5. Protocol structure for three parties

5.2 Modeling, Simulation and Verification with MSVL

Especially, we assume that three parties plan to sign a contract over a synchronous
network by executing the protocol. TTP is included to deal with exceptions. We focus
largely on the procedure of the protocol, and all messages are simplified as strings. The
MSVL code of the protocol and the executable file of the interpreter can be downloaded
by visiting http://ictt.xidian.edu.cn/example.zip.

An analysis of possible execution paths is made according to the number of parties
who fail to send messages in the first round. Not sending messages is caused by two
reasons mentioned above.

– Situation 1: All parties send messages to others in the first round. There are 23 = 8
cases in all, according to whether the three parties send messages or not in the
second round. In any case, all parties can gain a signed contract eventually.

– Situation 2: Two of them send messages but the third one fails to send in the first
round. Then the third one sends a recovery request to TTP in the second round,
therefore all parties will get a signed contract broadcasted by TTP . There are
C2

3 x2=6 cases in all.
– Situation 3: Only one party sends messages in the first round, nobody can success-

fully compile M1 to enter the second round, then all parties will time out in waiting
for TTP ’s broadcast. Hence, there are C2

3=3 cases in all.
– Situation 4: All parties fail to send messages in the first round. Nobody can enter

the second round and there is 1 case in all.

There are 18 cases in all according to the analysis above. We run the program with
extended MSVL interpreter under modeling mode and all 18 execution paths are shown
in Fig.6. Due to the fact that some paths are too long to completely show in the figure,
we use suspension points to represent part of them. In the modeling mode, the bicyclic
nodes merely represent a successful modeling procedure since some nodes stand for a
successful signing and the others represent a failed signing.

http://ictt.xidian.edu.cn/example.zip

94 D. Mo, X. Wang, and Z. Duan

Fig. 6. Modeling result of the protocol

Fig. 7. Verification result of property(1)

Before verifying the properties fairness and optimism, we need to specify them by
PPTL formulas. Then all works of the verification can be done automatically by means
of model checking with the MSVL interpreter.

– A fairness property

define l : cont1 = ”nil”;
define m : cont2 = ”nil”;
define n : cont3 = ”nil”;
define p : cont1 = ”signed”;
define q : cont2 = ”signed”;
define r : cont3 = ”signed”;

fin((p and q and r) or (l and m and n)) (1)

Asynchronous Communication in MSVL 95

Fig. 8. Verification result of property(2)

Fig. 9. Verification result of an unsatisfied PPLT formula

The proposition conti = ”signed” means Pi has got a valid contract while conti =
”nil” implies Pi has failed to get a valid contract. Therefore the property (1) implies
either all parties obtain a signed contract, or nobody does at final states. All 18 paths
ended with circular nodes in Fig.7 show that the protocol satisfies the property (1).

– An optimism property

define d : opt1 = 1;
define e : opt2 = 1;
define f : opt3 = 1;
define g : opt = 1;

fin((d and e and f)→ g) (2)

The proposition opti = 1 means Pi has compiled vector M2 successfully. The
proposition opt = 1 indicates TTP is not involved. Therefore the property (2)
implies TTP will not participate if all parties can compile vector M2 at final states.
Fig.8 indicates the protocol satisfies the property (2).

96 D. Mo, X. Wang, and Z. Duan

– An unsatisfiable PPTL formula

fin(p and q and r) (3)

The formula (3) means all parties will obtain a valid contract at final states. Apparently,
the formula is unsatisfiable in accordance with the analysis above. Some cases will lead
to a situation that nobody gets a valid contract. Fig.9 shows the protocol does not satisfy
the formula (3).

6 Conclusion

In this paper, we have discussed the implementation of asynchronous communication
technique in MSVL. The formal definitions of process structure, channel structure and
communication commands are presented. This enables us to model and verify concur-
rent systems with asynchronous communications. In addition, an example of optimistic
multi-party contract signing protocol has been employed to show how our method
works. Its fairness and optimism have been proved satisfiable with extended MSVL.
In contrast, an unsatisfiable property has also been checked and all counterexamples
have been pointed out. In the future, we will further investigate the operational and ax-
iomatic semantics of MSVL with asynchronous communication. In addition, we will
also try to model and verify some larger example to our approach.

Acknowledgment. We would like to thank Miss Qian Ma and Miss Xia Guo for their
useful help. In particular, Guo’s help on MSVL interpreter and Ma’s suggestion on the
verification example are very appreciated.

References

1. Pnueli, A.: The temporal semantics of concurrent programs. In: Proceedings of the 18th IEEE
Symposium Foundations of Computer Science, pp. 46–67 (1997)

2. Karp, Alan, R.: Proving failure-free properties of concurrent systems using temporal logic.
ACM Trans. Program. Lang. Syst. 6, 239–253 (1984)

3. Cau, A., Moszkowski, B., Zedan, H.: Itl and tempura home page on the web,
http://www.cse.dmu.ac.uk/STRL/ITL/

4. Tian, C., Duan, Z.: Propositional projection temporal logic, buchi automata and ω-regular ex-
pressions. In: Agrawal, M., Du, D.-Z., Duan, Z., Li, A. (eds.) TAMC 2008. LNCS, vol. 4978,
pp. 47–58. Springer, Heidelberg (2008)

5. Duan, Z., Tian, C.: A unified model checking approach with projection temporal logic. In:
Liu, S., Araki, K. (eds.) ICFEM 2008. LNCS, vol. 5256, pp. 167–186. Springer, Heidelberg
(2008)

6. Solanki, M., Cau, A., Zedan, H.: Asdl: A wide spectrum language for designing web services.
In: WWW, pp. 687–696 (2006)

7. Tang, Z.: Temporal Logic Program Designing and Engineering, vol. 1. Sicence Press, Beijing
(1999)

8. Hale, R.: Programming in Temporal Logic. Cambridge University, Cambridge (1988)
9. Milner, R.: A Calculus of Communicating Systems. Springer, Heidelberg (1980)

http://www.cse.dmu.ac.uk/STRL/ITL/

Asynchronous Communication in MSVL 97

10. Hoare, C.A.R.: Communicating sequential processes (August 1978)
11. Duan, Z., Koutny, M.: A framed temporal logic programming language. Journal Computer

Science and Technology 19(3), 341–351 (2004)
12. Duan, Z., Yang, X., Koutny, M.: Framed temporal logic programming. Science of Computer

Programming 70, 31–61 (2008)
13. Duan, Z., Wang, X.: Implementing pointer in temporal logic programming languages. In:

Proceedings of Brazilian Symposium on Formal Methods, Natal, Brazil, pp. 171–184 (2006)
14. Baum-waidner, B., Waidner, M.: Optimistic asynchronous multi-party contract signing

(1998)
15. Pagnia, H., Gartner, F.C.: On the impossibility of fair exchange without a trusted third party.

Darmstadt University of Technology, Tech. Rep. Technical Report: TUD-BS-1999-02 (1999)
16. Asokan, N., Baum-waidner, B., Schunter, M., Waidner, M.: Optimistic synchronous multi-

party contract signing (1998)
17. Baum-Waidner.: Optimistic asynchronous multi-party contract signing with reduced number

of rounds (2001)

Verification of Orchestration Systems
Using Compositional Partial Order Reduction�

Tian Huat Tan1, Yang Liu2, Jun Sun3, and Jin Song Dong2

1 NUS Graduate School for Integrative Sciences and Engineering
tianhuat@comp.nus.edu.sg

2 School of Computing, National University of Singapore
{liuyang,dongjs}@comp.nus.edu.sg

3 Singapore University of Technology and Design
sunjun@sutd.edu.sg

Abstract. Orc is a computation orchestration language which is designed to
specify computational services, such as distributed communication and data ma-
nipulation, in a concise and elegant way. Four concurrency primitives allow pro-
grammers to orchestrate site calls to achieve a goal, while managing timeouts,
priorities, and failures. To guarantee the correctness of Orc model, effective ver-
ification support is desirable. Orc has a highly concurrent semantics which in-
troduces the problem of state-explosion to search-based verification methods like
model checking. In this paper, we present a new method, called Compositional
Partial Order Reduction (CPOR), which aims to provide greater state-space re-
duction than classic partial order reduction methods in the context of hierarchical
concurrent processes. Evaluation shows that CPOR is more effective in reducing
the state space than classic partial order reduction methods.

1 Introduction

The advent of multi-core and multi-CPU systems has resulted in the widespread use of
concurrent systems. It is not a simple task for programmers to utilize concurrency, as
programmers are often burdened with handling threads and locks explicitly. Processes
can be composed at different levels of granularity, from simple processes to complete
workflows. The Orc calculus [17] is designed to specify orchestrations and wide-area
computations in a concise and structured manner. It has four concurrency combinators,
which can be used to manage timeouts, priorities, and failures effectively [17]. The
standard operational semantics [29] of Orc supports highly concurrent executions of
Orc sub-expressions. Concurrency errors are difficult to discover by testing. Hence, it
is desirable to verify Orc formally. The highly concurrent semantics of Orc can lead to
state space explosion and thus pose a challenge to model checking methods.

In the literature, various state reduction techniques have been proposed to tackle the
state space explosion problem, including on-the-fly verification [15], symmetry reduc-
tion [7,11], partial order reduction (POR) [8,22,12,28,5,23], etc. POR works by ex-
ploiting the independency of concurrently executing transitions in order to reduce the
� This research is supported in part by Research Grant IDD11100102 of Singapore University of

Technology and Design, IDC and MOE2009-T2-1-072 (Advanced Model Checking Systems).

S. Qin and Z. Qiu (Eds.): ICFEM 2011, LNCS 6991, pp. 98–114, 2011.
© Springer-Verlag Berlin Heidelberg 2011

Verification of Orchestration Systems 99

s1
t1

t2

t2

t1

s21s12

s2

s1
t1

t2

s12

s2

Before PO R After PO R

Fig. 1. Partial Order Reduction

P

P 2P 1
…

…
P 1 2P 1 1

…

… …

Fig. 2. Hierarchical Concurrent Processes

number of possible interleavings. For example, consider the transition system in Fig-
ure 1 where t1 and t2 are independent transitions. This means that executing either t1t2
or t2t1 from state s1 will always lead to state s2. POR will detect such independency,
and choose only t1t2 for execution, thus reducing the explored state space. Classic POR
algorithms, such as [28,12,8,22,5], work by identifying a subset of outgoing transitions
of a state which are sufficient for verification. In this paper, we denote such subsets as
ample sets – see [8,5].

Many concurrent systems are designed using a top-down architecture, and concur-
rent processes are structured in a hierarchical way. In Figure 2, process P contains
subprocesses Pi (i = 1, 2, etc.) that are running concurrently. Moreover, each process
Pi also contains subprocesses Pij (j = 1, 2, etc.) that are running concurrently. We refer
to concurrent processes of this kind as hierarchical concurrent processes (HCP). There
are many real-life examples of HCP. Consider a browser that supports tabbed brows-
ing. Multiple browser windows could be opened at the same time, each browser window
could contain multiple opened tabs, and each opened tab could download several HTML
elements in parallel. Orc processes provide another example of HCP.

Classic POR algorithms, such as [28,12,8,22,5], assume that local transitions within
the participated processes are dependent. In the context of HCP (Figure 2), if POR is
applied on process P, transitions within processes P1, P2, etc. will be considered as
local transitions, and be assumed to be dependent. Nevertheless, many local transitions
may be independent. In this work, we propose a method called Compositional Partial
Order Reduction (CPOR), which extends POR to the context of HCP. CPOR exploits
the independency within local transitions. It applies POR recursively for the hierarchical
concurrent processes, and several possible ample sets are composed in a bottom-up
manner. In order to apply CPOR to Orc, we first define the HCP structure of an Orc
process. Subsequently, based on the HCP structure, we established some local criteria
that could be easily checked by CPOR algorithm. Experimental results show that CPOR
can greatly reduce the explored state space when verifying Orc models.

Paper Outline. Section 2 introduces Orc language. Section 3 elaborates on CPOR and
shows how it can be applied to Orc models. Section 4 gives several experimental results.
Section 5 surveys the related work. Finally, Section 6 discusses the extensibility of
CPOR with possible future work and concludes the paper.

100 T.H. Tan et al.

2 Orchestration Language Orc

2.1 Syntax

Orc is a computation orchestration language in which multiple services are invoked to
achieve a goal while managing time-outs, priorities, and failures of services or commu-
nication. Following is the syntax of Orc:

Variable x ::= variable name
Value m ::= value
Parameter p ::= x | m
Expression E ::= M(p) – site call

| E | E – parallel
| E > x > E – sequential
| E < x < E – pruning
| E ; E – otherwise

Site. The simplest Orc expression is a site call M(p), where M is the service’s name
and p is a list of parameters. Sites are the basic units of Orc language. A site can be an
external service (e.g. Google site) which resides on a different machine. For example,
Google(“Orc”) is an external site call that calls the external service provided by Google
and its response is the search results for keyword “Orc” by the Google search engine.
A site can also be a local service (e.g. plus site) which resides on the same machine. For
example, a site call plus(1, 1) calls the local plus service and its response is the sum-
mation of the two arguments. Since a site in Orc is essentially a service, henceforth, we
would use the term site and service interchangeably. Some services maintain a state,
those services are denoted as stateful services. An example is Buffer site, which pro-
vides the service of First-In-First-Out (FIFO) queue. We denote the data structure that
constitutes the state of a stateful service as state object of the stateful service. A site call
(e.g. a dequeue operation on Buffer site) for a certain stateful service may change the
corresponding state object (e.g. a FIFO queue). Thus, multiple site calls with the same
arguments to the same stateful service might result in different responses. Services that
do not have any state are called stateless services. An example is plus site, which takes
two numbers as input and returns their summation. Multiple calls with the same argu-
ments to a stateless service will always result in the same response.

Combinators. There are four combinators: parallel, sequential, pruning, and otherwise
combinators. The parallel combinator F | G defines a parallel expression, where ex-
pressions F and G execute independently, and its published value can be the value
published either by F or by G or both of them. The sequential combinator F > x > G
defines a sequential expression, where each value published by F initiates a separate
execution of G wherein x is bound to the published value. The execution of F is then
continued in parallel with all these executions of G. The values published by the se-
quential expression are the values published by the executions of G. For example,
(Google(“Orc”) | Yahoo(“Orc”)) > x > Email(addr, x) will call Google and Ya-
hoo sites simultaneously. For each returned value, an instance of x will be bound to it,
and an email will be sent to addr for each instance of x. Thus, up to two emails will
be sent. If x is not used in G, F & G can be used as a shorthand for F > x > G.

Verification of Orchestration Systems 101

The pruning combinator F < x < G defines a pruning expression, where initially F
and G execute in parallel. However, when F needs the value of x, it will be blocked
until G publishes a value to bind x and G terminates immediately after that. For ex-
ample, Email(addr, x) < x < (Google(“Orc”) | Yahoo(“Orc”)) will get the fastest
searching result for the email sending to addr. If x is not used in F, F ' G can
be used as a shorthand for F < x < G. The otherwise combinator F ; G defines
an otherwise expression, where F executes first. The execution of F is replaced by G
if F halts without any published value, otherwise G is ignored. For example, in the
expression (Google(“Orc”) ; Yahoo(“Orc”)) > x > Email(addr, x), Yahoo site is
used as a backup service for searching “Orc” and it will be called only if the site call
Google(“Orc”) halts without any result for “Orc”.

Functional Core Language (Cor). Orc is enhanced with functional core language
(Cor) to support various data types, mathematical operators, conditional expressions,
function calls, etc. Cor structures such as conditional expressions and functions are
translated into site calls and four combinators [17]. For example, conditional expres-
sion if E then F else G, where E, F, and G are Orc expressions would be translated into
expression (if (b)& F | if (∼ b)& G) < b < E before evaluation.

Example - Metronome. Timer is explicitly supported in Orc by introducing time-
related sites that delay a given amount of time. One of such sites is Rtimer. For exam-
ple, Rtimer (5000)& “Orc” will publish “Orc” at exactly 5 seconds. Functional core
(Cor) defines functions using the keyword def . Following is a function that defines a
metronome [17], which will publish a signal value every t seconds. signal is a value in
Orc that carries no information. Note that the function is defined recursively.

def metronome(t) = (signal | Rtimer(t)& metronome(t))

The following example publishes “tick” once per second, and publishes “tock” once per
second after an initial half-second delay.

(metronome(1000)& “tick”) | (Rtimer(500)& metronome(1000)& “tock”)

Thus the publications are “tick tock tick · · ·” where “tick” and “tock” alternate each
other. One of the properties that we are interested is whether the system could publish
two consecutive “tick”s or two consecutive “tock”s which is an undesirable situation.
In order to easily assert a global property that holds throughout the execution of an Orc
program, we extend Orc with auxiliary variables. The value of an auxiliary variable
could be accessed and updated throughout the Orc program. Henceforth, we will sim-
ply refer to the extended auxiliary variables as global variables. A global variable is
declared with the keyword globalvar and a special site, $GUpdate, is used to update a
global variable. We augment the metronome example with a global variable tickNum,
which is initialized to zero. tickNum is increased by one when a “tick” is published, and
is decreased by one when a “tock” is published.

globalvar tickNum = 0
def metronome(t) = (signal | Rtimer(t)& metronome(t))
(metronome(1000) & $GUpdate({tickNum = tickNum + 1})& “tick”)
| (Rtimer(500) & metronome(1000) & $GUpdate({tickNum = tickNum− 1})
& “tock”)

102 T.H. Tan et al.

With this, we are allowed to verify whether the system could publish two consecutive
“tick”s or two consecutive “tock”s by checking the temporal property such that whether
the system is able to reach an undesirable state that satisfying the condition (tickNum <
0∨ tickNum > 1).

2.2 Semantics

This section presents the semantic model of Orc based on Label Transition System
(LTS). In the following, we introduce some definitions required in the semantic model.

Definition 1 (System Configuration). A system configuration contains two compo-
nents (Proc,Val), where Proc is a Orc expression, and Val is a (partial) variable valua-
tion function, which maps the variables to their values.

A variable in the system could be an Orc’s variable, or the global variable which is
introduced for capturing global properties. The value of a variable could be a primitive
value, a reference to a site, or a state object. The three primitive types supported by
Orc are boolean, integer, and string. All variables are assumed to have finite domain.
Two configurations are equivalent iff they have the same process expression Proc and
same valuation function Val. Proc component of system configuration is assumed to
have finitely many values.

Definition 2 (System Model). A system model is a 3-tuple S = (Var, initG, P), where
Var is a finite set of global variables, initG is the initial (partial) variable valuation
function and P is the Orc expression.

Definition 3 (System Action). A system action contains four components (Event, Time,
EnableSiteType, EnableSiteId). Event is either publication event, written !m or internal
event, written τ . EnableSiteType, EnableSiteId are the type and unique identity of the
site that initiates the system action. Time is the total delay time in system configuration
before the system action is triggered.

Every system action is initiated by a site call, and we extend the system action defined
in [29] with two additional components, EnableSiteType and EnableSiteId, to provide
information for CPOR. A publication event !m communicates with the environment
with value m, while an internal event τ is invisible to the environment. There are three
groups of site calls. The first two groups are site calls for stateless and stateful services
respectively. And the third are the site calls for $GUpdate which update global vari-
ables. These three groups are denoted as stateless, stateful, and GUpdate respectively,
and those are the possible values for EnableSiteType. Every site in the system model is
assigned a unique identity which ranges over non-negative integer value. Discrete time
semantics [29] is assumed in the system. Time ranges over non-negative integer value
and is assumed to have finite domains.

Definition 4 (Labeled Transition System (LTS)). Given a model S = (Var, initG, P),
let Σ denote the set of system actions in P. The LTS corresponding to S is a 3-tuple
(C, init,→), where C is the set of all configurations, init ∈ C is the initial system
configuration (P, initG), and→ ⊆ C × Σ × C is a labeled transition relation, and its
definition is according to the operational semantics of Orc [29].

Verification of Orchestration Systems 103

To improve readability, we write c
a→ c′ for (c, a, c′) ∈ →. An action a ∈ Σ is enabled

in a configuration c ∈ C, denoted as c
a→, iff there exists a configuration c′ ∈ C, such

that c
a→ c′. An action a ∈ Σ is disabled in a configuration c = (P, V), where c ∈ C, iff

the action a is not enabled in the configuration c, but it is enabled in some configurations
(P, V ′), where V ′ �= V . Act(c) is used to denote the set of enabled actions of a configu-
ration c ∈ C, formally, for any c ∈ C, Act(c) = {a ∈ Σ | c a→}. Enable(c, a) is used to
denote the set of reachable configurations through an action a ∈ Σ from a configuration
c ∈ C, that is, for any c ∈ C and a ∈ Σ, Enable(c, a) = {c′ ∈ C | c

a→ c′}. Enable(c)
is used to denote the set of reachable configurations from a configuration c ∈ C, that is,
for any c ∈ C, Enable(c) = {c′ ∈ Enable(c, a) | a ∈ Σ}. Ample(c) is used to denote
the ample set (refer to Section 3) of a configuration c ∈ C. AmpleAct(c) is defined as
the set of actions that caused a configuration c ∈ C transit into the configurations in
Ample(c), that is, for any c ∈ C, AmpleAct(c) = {a ∈ Σ | c

a→ c′, c′ ∈ Ample(c)}.
PAct(c) is used to denote the set of enabled and disabled actions of a configuration c,
and Act(c) ⊆ PAct(c). We use TS to represent the original LTS before POR is applied
and T̂S to represent the reduced LTS after POR is applied. TSc is used to represent
the LTS (before any reduction) that starts from c, where c is a configuration in TS. An
execution fragment l = c0

a1→ c1
a2→ . . . of LTS is an alternating sequence of configu-

rations and actions. A finite execution fragment is an execution fragment ending with a
configuration.

We are interested in checking the system against two kinds of properties. The first
kind is deadlock-freeness, which is to check whether there does not exist a configura-
tion c ∈ C in TS such that Enable(c) = ∅. The second kind is temporal properties that
are expressible with LTL without Next Operator (LTL-X) [5]. For any LTL-X formula
φ, prop(φ) denotes the set of atomic propositions used in φ. In the metronome example
which augmented with a global variable tickNum, prop(φ)={(tickNum < 0), (tickNum >
1)}. An action a ∈ Σ is φ-invisible iff the action does not change the values of propo-
sitions in prop(φ) for all c ∈ C in TS.

2.3 Hierarchical Concurrent Processes (HCP)

The general structure of a hierarchical concurrent process P is shown graphically using
a tree structure in Figure 3. Henceforth, we denote such a graph as a HCP graph, or
simply HCP if it does not lead to ambiguity.

P0

P2P1
…

…
P12P11

…

…

Pn-1

Pn
…

Level 0

Level 1

Level 2

Level n-1

Level n

……

Fig. 3. The general structure of HCP

104 T.H. Tan et al.

Figure 3 shows that process P0 contains subprocesses P1, P2, etc that are running
concurrently. Process P1 in turn contains subprocesses P11, P12, etc that are running
concurrently. This goes repeatedly until reaching a process Pn which has no subpro-
cesses. Each process P in the hierarchy will have its associated level, starting from level
0. A process without any subprocess (e.g. process Pn) is denoted as terminal process,
otherwise the process is denoted as non-terminal process. Furthermore, process P0 at
level 0 is denoted as global process, while processes at level i, where i > 0, are denoted
as local processes. The parent process of a local process P′ is a unique process P such
that there is a directed edge from P to P′ in the HCP graph. When P is the parent process
of P′, P′ is called the child process of P. Ancestor processes of a local process P′ are
the processes in the path from global process to P′. Descendant processes of process P
are those local processes that have P as an ancestor process.

An Orc expression P could be viewed as a process that is composed by HCP. This
could be formalized by constructing the HCP according to syntax of P, assigning pro-
cess identity to each sub-expression of P, and defining how the defined processes evolve
during the execution of expression P. In the following, we illustrate this in detail. An
Orc expression can be either a site call or one of the four combinators and their cor-
responding HCPs are shown in Figure 4. A site call is a terminal process node, while
each of the combinators has either one or two child processes according to their seman-
tics (refer to Section 2), and the HCPs of respective child process nodes are defined
recursively. We denote expressions A and B as LHS process and RHS process for each
combinators in Figure 4. For example, a pruning combinator (A < x < B) contains two
child nodes because its LHS process and RHS process could be executed concurrently.
Each of the process nodes in HCP is identified by a unique process identity (pid), and
node values in HCP are prefixed with their pid (e.g. p0, p1, etc.). In Figure 5, an expres-
sion (S1 ' S2) | (S3 ' S4), where S1, S2, S3, and S4 are site calls, could be viewed as
a process composed by HCP of three levels.

P 0 : S P 0 :A | B P 0 :A < x < B P 0 : A > x > B

S i t e C a l l P a r a l le l P r u n in g S e q u e n t i a l

P 0 : A ; B

O th e r w is e

P 1 : A P 2 :BP 2 : B P 1 :AP 1 : A P 1 : A

Fig. 4. HCP of general Orc Expressions

P 0 : (S 1 < < S 2) | (S 3 < < S 4)

P 1 : S 1 < < S 2 P 2 : S 3 < < S 4

(S 1 < < S 2) | (S 3 < < S 4)

P 3 : S 1 P 4 : S 2 P 5 : S 3 P 6 : S 4

Fig. 5. An example

Consider a transition (P, V) a→ (P′, V ′), where a is some action. We abuse the no-
tation by using P and P′ to denote the HCPs before and after the transition. In fact, P′

could have different tree structures from P, and processes could be added or deleted in
P′. In order to have a clear relation of processes between P and P′, we define the relation
of processes between P and P′ over each rule of the operational semantics of Orc [27],
some of which are presented in Figure 6 for illustration purpose. There are two HCPs
under each rule. HCPs on the left and right are the HCPs before and after triggering
the action initiated by respective rules. Two process nodes on different HCPs belong to
the same process if they have the same pid value, and an arrow is used to relate them.
Processes that could only be found in HCP on the right or left are the processes that
are newly added or deleted respectively. In SEQ1V, the transition of f to f ′ produces an

Verification of Orchestration Systems 105

P0:f | g P0:f'|g

P2:gP1:f P2:gP1:f'

SYM1

P0:f > x > g P2:f' > x > g | [m/x].g

P1:f

SEQ1V

P1:f'

P0:f' > x > g P3:[m/x].g

P0:f < x < g P1: [m/x].f

P1:f

ASYM2V

P2:g

P0:E(p) P1: [p/x].f

DEF

Fig. 6. Relation of Processes between P and P’

A = (userdb.put(“user1”) | userdb.put(“user2”)) < userdb < Buffer()
B = (flightdb.put(“CX510”) | flightdb.put(“CX511”)) < flightdb < Buffer()

Fig. 7. Execution of Orc process P = A | B

output value m, and notation [m/x].g is used to denote that all the instances of variable
x in g are replaced with value m.

A site S is private in P1[P], if the reference of site S could not be accessed by all
processes other than process P1 and its descendant processes under HCP graph of global
process P. Otherwise, site S is shared in process P1[P]. A site S is permanently private
in P1[c], if for any configuration c′ = (P′, V ′) that is reachable by c, if P′ has P1 as its
descendant process, site S must be private in process P1[P′].

The example in Figure 7 shows an Orc process P = A | B. Variables userdb and
flightdb will be initialized to different instances of site Buffer, which provides the ser-
vice of FIFO queue. In process A, two string values user1 and user2 are enqueued in
the buffer referenced by userdb concurrently. Buffer site that is referenced by userdb
is private in A[P], since userdb could only be accessed by process A. Now consider
at some level j of HCP graph of global process P, where j > 1, we have processes
Pj1 = userdb.put(“user1”) and Pj2 = userdb.put(“user2”). Buffer site that is refer-
enced by userdb is shared in Pj1 [P], since userdb could be accessed by Pj2 which is not
a descendant process of Pj1 .

3 Compositional Partial Order Reduction (CPOR)

The aim of Partial Order Reduction (POR) is to reduce the number of possible orderings
of transitions by fixing the order of independent transitions as shown in Figure 1. The
notion of indepedency plays a central role in POR, which is defined below by follow-
ing [13].

Definition 5 (Independency). Two actions a1 and a2 in an LTS are independent if for
any configuration c such that a1, a2 ∈ Act(c):
1. a2 ∈ Act(c1) where c1 ∈ Enable(c, a1) and a1 ∈ Act(c2) where c2 ∈ Enable(c, a2),
2. Starting from c, any configuration reachable by executing a1 followed by a2, can also
be reached by executing a2 followed by a1.
Two actions are dependent iff they are not independent.

Given a configuration, an ample set is a subset of outgoing transitions of the configura-
tion which are sufficient for verification, and it is formally defined as follow:

106 T.H. Tan et al.

Definition 6 (Ample Set). Given an LTL-X property φ, and a configuration c ∈ C in
TS, an ample set is a subset of the enable set which must satisfy the following condi-
tions [5]:
(A1) Nonemptiness condition: Ample(c) = ∅ iff Enable(c) = ∅.
(A2) Dependency condition: Let c0

a1→ c1
a2→ . . .

an→ cn
a→ t be a finite execution frag-

ment in TS. If a depends on some actions in AmpleAct(c0), then ai ∈ AmpleAct(c0) for
some 0 < i ≤ n.
(A3) Stutter condition: If Ample(c) �= Enable(c), then any α ∈ AmpleAct(c) is φ-
invisible.
(A4) Strong Cycle condition: Any cycle in T̂S contains at least one configuration c with
Ample(c)=Enable(c).

To be specific, reduced LTS generated by the ample set approach needs to satisfy con-
ditions A1 to A4 in order to preserve the checking of LTL-X properties. However, for
the checking of deadlock-freeness, only conditions A1 and A2 are needed [12]. Hence-
forth, our discussion will be focused on the checking of LTL-X property, but the reader
could adjust accordingly for the checking of deadlock-freeness.

Conditions A1, A3, and A4 are relatively easy to check, while condition A2 is the
most challenging condition. It is known that checking condition A2 is equivalent to
checking the reachablity of a condition in the full transition system TS [8]. It is desirable
that we could have an alternative condition A2’ that only imposes requirements on the
current configuration instead of all traces in TS, and satisfaction of condition A2’ would
guarantee the satisfaction of condition A2. Given a configuration cg = (Pg, Vg), and Pd

as a descendant process of Pg, with associated configuration cd = (Pd, Vd), we define a
condition A2’ that based solely on cd, and its soundness will be proved in Section 3.3.

(A2’)Local Criteria of A2. For all configurations ca ∈ Ample(cd) and ca = (pa, va)
the following two conditions must be satisfied:
(1) The enable site for the action a that enable ca must be either stateless site, or stateful
site private in pa[Pg];
(2) pa is not a descendant process of the RHS process of some pruning combinators or
the LHS process of some sequential combinators.

Notice that we define an ample set as a set of enabled configurations rather than a set of
enabled actions like [5]. The reason is due to in references like [5], action-deterministic
system is assumed. This entails that for any configuration c ∈ C and any action a ∈ Σ, c
has at most one outgoing transition with action a, formally, c

a→ c′ and c
a→ c′′ implies

c′ = c′′. Therefore, the enabled configurations could be deduced by the enabled actions.
Nonetheless, an Orc system is not action-deterministic, the main reason is because some
events in Orc are internal events that are invisible to the environment. By defining ample
set as a set of configurations, with their associated enabled actions, the requirement of
action-deterministic system is no longer needed.

3.1 Classic POR and CPOR

Classic POR methods assume that local transitions of a process are dependent, and
in the context of HCP, it means that actions within individual processes from level 1

Verification of Orchestration Systems 107

P1 | P2

(1 << 3) | P2

P1 | P2

(1 << 3) | P2 (2 << 3) | P2 (1 | 2) | P2

CPORClassic POR

!2!2 !1

P1 | P2

(1 << 3) | P2 (2 << 3) | P2 (1 | 2) | P2

!2 !1

P1 | (stop << 6) P1 | 4

!4

No POR

Fig. 8. LTS of Orc Process P = (P1 | P2), P1 = ((1 | 2)� 3), P2 = (4� 6)

onwards are simply assumed to be dependent. In Figure 8, three LTSs of the process
P are given. No POR shows the set of all initial transitions of process P; classic POR
shows how the state-space of a parallel composition can be reduced when its component
processes are independent; and CPOR reduces the initial actions further by examining
internal process structure. For simplicity, system configuration is represented only by
process expression. When no POR is applied, all interleavings of transitions are con-
sidered, and there are five branches after the initial state. When the classic POR is
applied, since P1 and P2 are active processes, assume that it checks process P1 first.
All transitions of P1 are assumed to be dependent by the classic POR. For this reason
the resulting ample set of P is {((1 ' 3) | P2), ((2 ' 3) | P2), ((1 | 2) | P2)},
which is a valid ample set after checking for conditions A1-A4. Therefore, there are
three branches from initial state when classic POR is applied. Different from clas-
sic POR, when CPOR is applied, POR is again applied to process (1 | 2). We de-
fine Amples(P) as a set of ample sets of process P that satisfy conditions A1 and A2,
but yet to be checked for conditions A3 and A4. Amples((1 | 2)) = {{1}, {2}} and
Amples(P1) is Amples((1 | 2)) after restructuring by the semantics of P1, which is
{{1' 3}, {2' 3}}. Amples(P) is Amples(P1) after restructuring by the semantics of
P, which is {{1' 3 | P2}, {2 ' 3 | P2}}. Each ample set in Amples(P) will then be
checked for conditions A3 and A4, and both ample sets turn up to be valid, therefore
the ample set {1 ' 3 | P2} is chosen nondeterministically to be the returned value.
Thus there is only a single branch after the initial state when CPOR is applied. There
are a total of 31, 14 and 5 states for LTS of process P in the situations where no POR,
classic POR and CPOR are applied respectively.

3.2 CPOR Algorithm

In this section, we discuss the procedures for CPOR as given in Algorithm 1. CAmple
returns an ample set which is a subset of enabled configurations from the configura-
tion c = (P, V), and Visited is the stack of previously visited configurations. Each
configuration ca in the ample set, where ca = (Proc, Val), is associated with an ac-
tion aa = (Event, Time, EnableSiteType, EnableSiteId), which caused the transition
from c to ca, that is c

aa→ ca. Henceforth, we use the dot-notation such as ca.Proc,
ca.Event, etc to denote the component values of ca as well as the component values
of its associated action aa. P.Amples (line 2) is a set that stores ample set candidates
that satisfy conditions A1 and A2, but yet to check for conditions A3 and A4. Proce-
dure enableSubProcs(P) (line 3) returns the set of enabled child processes according
to HCP graph of Orc expressions P as shown in Figure 4, with an exception that for
sequential process Ps = A > x > B, it returns an empty set {} instead of {A}, and
for pruning process Pp = A < x < B, it returns {A} instead of {A, B}. This exception

108 T.H. Tan et al.

is applied in order to satisfy the condition A2’(2). Procedure fillAmpleRec(P, V) (line
17) retrieves the ample set candidates under valuation V and assigns it to P.Amples.
In line 18, Enable(c) where c = (P, V) gives the set of all enabled configurations
from the configuration c. Procedure checkA2Local(config) checks whether configu-
ration config satisfies A2’(1). Procedure isPrivate (line 32) checks whether the site
with config.EnableSiteId as unique identity is private in Proc[PG] where Proc is the
process component of config and PG is the argument P of procedure CAmple pro-
vided by user, which is the global process that has Proc as descendant process. The
checking is done by syntax analysis. In Orc, P is a terminal process (line 20) iff it
is a site call. Procedure composeAmples(P, sP, V) (line 26) combines sP.Amples back
into P.Amples under valuation V . Procedure reformAmples (sP.Amples, P) (line 27) re-
structures configurations within sp.Amples by operational semantics of Orc. For ex-
ample, consider P = (1 + x < x < 2), and sP = 2. After making a transition,
sP.Amples = {{c}}, where c is the configuration (stop, ∅) with c.Event = !2 . After
restructuring by reformAmples(sP.Amples, P), c becomes (1 + 2, ∅), and c.Event = τ ,
according to rule ASYM2V as stated below.

(2, ∅) !2→ (stop, ∅) [ASYM2V]
(1 + x < x < 2, ∅) τ→ (1 + 2, ∅)

When P = sP, reformAmples(sP.Amples, P) will simply return sP.Amples. Subse-
quently, ample sets that are empty sets are filtered away (line 28). We continue on
the discussion of procedure CAmple. To analyze whether an ample set ample is valid,
the algorithm checks whether all configurations within satisfy conditions A3 and A4
(line 9, 10). If it turns out to be true, a valid ample set is found, and it will be returned
immediately (line 14, 15). If no valid ample set has been found in line 3-15, all the
enabled configurations from current configuration c = (P, V) will be returned (line
16). Regarding checking of condition A3 (line 9), there are two kind of actions that
might not be φ-invisible, which are actions that contain publication events or actions
that involved the update of global variables. Consider the metronome example, if we
are checking property like whether !tick event can be executed infinitely often, an ac-
tion a with a.Event =!tick is not φ-invisible. Another example is when we are checking
whether tickNum < 0 is true in all situations, where tickNum is a global variable, an
action a with a.EnableSiteType = GUpdate is not φ-invisible.

3.3 Soundness

Lemma 1. Given any two actions a1 and a2 in the system, and let s1 and s2 be the
enable sites of actions a1 and a2 respectively. If sites s1 and s2 are not descendant
processes of the RHS process of some pruning combinators and state objects of sites s1
and s2 are disjoint, then action a1 is independent of action a2.

Proof. Actions a1 and a2 are dependent only when (a) action a1 could disable ac-
tion a2 or vice versa or (b) starting from the same configuration, transitions a1a2 and
a2a1 could result in different configurations. Situation (a) could happen if site s1 could
possibly modify the state object of site s2 or vice versa, or when sites s1 and s2 are the
descendant processes of the RHS process of some pruning combinators. For the latter

Verification of Orchestration Systems 109

1 procedure CAmple(P, V, Visited)
2 P.Amples := ∅;
3 foreach sP ∈ enableSubProcs(P) do // A2’(2)
4 fillAmpleRec(sP, V);
5 composeAmples(P, sP, V);
6 foreach ample ∈ P.Amples do
7 validAmple := true;
8 foreach config ∈ ample do
9 if ¬ config satisfies A3 // A3

10 ∨ config ∈ Visited // A4
11 then
12 validAmple := false;
13 break;

14 if validAmple then
15 return ample;

16 return Enable((P, V));

17 procedure fillAmpleRec(P, V)
18 P.Amples := {{config : Enable((P, V))
19 | checkA2Local(config)}}; // A2’(1)

20 if P is terminal process then
21 composeAmples(P, P, V);

22 else
23 foreach sP ∈ enableSubProcs(P) do
24 fillAmpleRec(sP, V);
25 composeAmples(P, sP, V);

26 procedure composeAmples(P, sP, V)
27 P.Amples := P.Amples ∪ reformAmples(sP.Amples, P);
28 P.Amples := P.Amples \ {∅}; // A1

29 procedure checkA2Local(config)
30 return(config.EnableSiteType is stateless ∨
31 config.EnableSiteType is stateful ∧
32 isPrivate(config.EnableSiteId)) ;

Algorithm 1: CAmple

case, consider x < x < (s1 | s2), if site s1 published a value, site s2 will be disabled
immediately. Nevertheless, this case is ruled out by the assumption. Condition (b) could
happen when sites s1 and s2 contain a common state object which they may modify and
depend on. Therefore, conditions (a) and (b) are the results of having a common state
object between sites s1 and s2. This implies that if sites s1 and s2 have disjoint state
objects, actions a1 and a2 are independent to each other. �end.

110 T.H. Tan et al.

Lemma 2. Given a configuration c = (P, V), and process P1 as a descendant process
of P. If P1 is not a descendant process of the LHS process of some sequential combina-
tors, then a site S that is private in P1[P], is permanently private in P1[c] as well.

Proof. We prove by inspecting each rule in the operational semantics of Orc [29]. Only
rule SEQ1V of operational semantics of Orc is possible to transfer the site reference
from a process p to other processes, while retaining process p. Consider HCPs under
rule SEQ1V in Figure 6, a site S that is private in P1[P0] may not be private in P1[P2],
since P3 might have the access to the reference of site S. Therefore, if we exclude
this situation by assuming P1 is not a descendant process of the LHS process of some
sequential combinators, we prove the lemma. � end.

We define several notions here. Given a configuration cg = (Pg, Vg), and Pd as a descen-
dant process of Pg, with associated configuration cd = (Pd, Vd). Ccg is defined as the set
of configurations reachable by cg in LTS; Pcg is defined as {P | c = (P, V) ∧ c ∈ Ccg};
HCP(Pcg) is defined as the HCPs for each global process in Pcg ; Hcg is defined as the
union of processes within each HCP in HCP(Pcg); Hcg [Pd] is the set of processes that
contain process Pd and its corresponding descendant processes in respective HCPs in
HCP(Pcg), and Hcg [Pd] ⊆ Hcg .

Lemma 3. If an action a ∈ Act(cd) satisfies A2’ then the action is independent of any
action b ∈ Act(c′), where c′ = (P′, V ′), such that P′ = Hcg/Hcg [Pd], and V ′ is any
valuation.

Proof. Assume an action a ∈ Act(cd) satisfies A2’, and assume the action is dependent
to an action b ∈ Act(c′). Let sites sa and sb be the enable sites of actions a and b
respectively. By A2’(1), site sa is a stateless site or stateful site that is private in pa[Pg].
Site sa could not be a stateless site since a stateless site does not have a state object,
and thus action a is trivially independent to any actions in the system by Lemma 1
and A2’(2). Therefore, site sa is a stateful site that is private in pa[Pg]. By Lemma 2
and A2’(2), site sa is also permanently private in pa[cg] . By definition, state objects of
site sa and sb are disjoint. By Lemma 1 and A2’(2), actions a and b are independent, a
contradiction. � end.

Theorem 1. If any action a ∈ Act(cd) satisfies A2’, then AmpleAct(cg) = Act(cd) sat-
isfies A2 for all traces in TScg .

Proof. Assume any action a ∈ Act(cd) satisfies A2’, and AmpleAct(cg) = Act(cd) does
not satisfies A2 for some traces in TScg . This means that there exists a finite execution

fragment l = c
a1→ c1

a2→ . . .
an→ cn

an+1→ . . . ,where actions a1, . . . , an �∈ Act(cd)
and action an+1 depends on some actions in AmpleAct(cg) = Act(cd). Since Lemma 3
holds, action an+1 must be from PAct(cd)/Act(cd), we denote the enable site of action
an+1 as Sn+1. Since site Sn+1 is disabled initially in cd, it means that it is enabled later
by a site call from a process p′ ∈ Hcg/Hcg [Pd]. For sites in process Pd, site calls from a
process p′ ∈ Hcg/Hcg [Pd] could only enable the sites that are shared in pd[P′

g], where P′
g

is the global process of p′. We denote the set of state objects of the sites that are shared
in pd[P′

g] as Dshare, and state object of Sn+1 is in Dshare. On the other hand, by Lemma
2 and A2’(2), any action a ∈ Act(cd) is enabled by a site that is permanently private in

Verification of Orchestration Systems 111

pa[cg]. By definition, state object of the enable site of any action a ∈ Act(cd) must not
be found in Dshare. Therefore, action an+1 is independent to all actions in Act(cd) by
Lemma 1 and A2’(2), a contradiction. � end.

Theorem 2. Algorithm CAmple is sound.

Proof. To show the soundness of the algorithm, we need to show that the returned am-
ple set satisfies conditions A1-A4. Checking of condition A1 is done at line 28. Con-
ditions A3 and A4 are checked at the global process level (line 9, 10) at CAmple since
they are only concerned with the property of global process configurations, i.e. whether
their actions are φ-invisible and whether they have been visited before. By Theorem 1,
satisfaction of condition A2’ leads to satisfaction of condition A2. Condition A2’(1)
is checked at line 19. Condition A2’(2) is guaranteed by constraining the procedure
enableSubProcs(P) (line 3) not to return LHS process of a sequential process and RHS
process of a pruning process. � end.

4 Evaluation

Our approach has been realized in the ORC Module of Process Analysis Toolkit (PAT)
[1]. PAT is designed for systematic validation of distributed/concurrent systems using
state-of-the-art model checking techniques [25,26]. It can be considered as a frame-
work for manufacturing model-checkers. The data are obtained with Intel Core 2 Quad
9550 CPU at 2.83GHz and 4GB RAM. ORC module supports verification of deadlock-
freeness and Linear Temporal Logic (LTL) [24] property base on [21]. In Table 1 (A),
three situations are compared: CPOR is the scenario where Compositional POR ap-
proach as described in Section 3 is applied; POR is the scenario where the classic ap-
proach of POR that only considered the concurrency of processes at level 1 is applied;
No POR/CPOR is the scenario where neither POR nor CPOR is applied. In the table, �
and ✗ means the property is satisfied and violated respectively. The results are omitted
(shown as “-”) for states and times, if it takes more than eight hours for verification.

Model Concurrent Quicksort is a variant of the classic quicksort algorithm and em-
phasizes its concurrent perspective, as described in [18]. For model Concurrent Quick-
sort, size denotes the number of elements in the array to be sorted. Property (1.1) is used
to verify whether elements in the array will eventually be sorted, and once sorted, it will
remain sorted. Model Readers-Writers Problem is a famous computer science problem
as described in [9], for which size denotes the number of readers. Property (2.1) ver-
ifies whether the model is possible to reach a state that violates the mutual exclusion
condition. Model Auction Management is the case study in [2] which includes the use
of external services. Please refer to [27] for the details of modeling external services in
our work. Property (3.1) is used to verify that if an item has a bid on it, it will eventu-
ally be sold; Property (3.2) is used to verify that every item is always sold to a unique
winner. Part (B) is the comparison of the effectiveness of our model checker for Orc
and that of the model checker Maude [3,4]. Figures for number of rewrites and time
usage for Maude model checker are from [4], which was run under 2.0GHz dual-core
node with 4GB of memory. The experiments show that CPOR provides greater-scale
reduction than classic POR for HCPs. In addition, our implementation with CPOR is
more efficient than Maude [3,4].

112 T.H. Tan et al.

Table 1. Performance evaluation on model checking Orc’s model

(A) Comparing difference POR methods
States Time(s)

Model Property Size CPOR POR No POR/CPOR CPOR POR No POR/CPOR

Concurrent
(1.1)

2 � 58 1532 10594 0.08 1.13 5

Quicksort
3 � 69 3611 36794 0.11 8.48 74
5 � 237 - - 0.68 - -

Readers-Writers (2.1)
2 ✗ 106 1645 7620 0.07 1.12 4

Problem
3 ✗ 152 18247 142540 0.11 14.86 101
10 ✗ 472 - - 0.49 - -

Auction (3.1) N.A. � 869 - - 0.6 - -
Management (3.2) N.A. � 883 - - 0.75 - -

(B) Comparing Our Model Checker and Maude
States/Rewrites Time(s)

Model Property Our Maude Our Maude

Auction Management
(3.1) � 869 7052663 0.6 14.4
(3.2) � 883 8613539 0.75 19.8

5 Related Work

This work is related to research on applying POR to hierarchical concurrent systems.
Lang et al. [20], proposed a variant of POR using compositional confluence detec-
tion. The proposed method works by analyzing the transitions of the individual process
graphs as well as the synchronization structure to identify the confluent transitions in
the system graph. Transitions within the individual process graphs (at level 1) are as-
sumed to be dependent, thus all possible transitions will be generated for individual
process graphs. While in our work, we further exploit the independency within each
process recursively. Basten et al. [6], proposed an approach to enhance POR via pro-
cess clustering. The proposed method combines processes (at level 1) in clusters, and
applies partial order reduction at proper cluster-level to achieve more reduction. Krimm
et al. [19], proposed an approach to compose the processes (at level 1) of an asyn-
chronous communicating system incrementally, and at the same time apply POR for
the generated LTS. Both approaches of [6] and [19] have the assumption that the local
transitions of each process (at level 1) are dependent. To the best of the author’s knowl-
edge, there is no existing work that applies POR in the context for HCP. The reason
for not including orthogonal approaches such as [20,6,19] for comparisons in Section 4
is because they optimized POR by restructuring or leveraging the information of pro-
cesses at level 1, while CPOR is aimed to extend POR for HCP. This means that they
could be similarly used to optimize CPOR, in the same way they are used to optimize
classic POR.

This work is also related to research on verifying Orc. Liu et al. [10], proposed an
approach to translate the Orc language to Timed Automata, and use model checker
like UPPAAL for verification. However, no reduction is considered. Alturki et al. [2,3],
proposed an approach to translate the Orc language to rewriting logic for verification.
An operational semantics of Orc in rewriting logic is defined, which is proved to be

Verification of Orchestration Systems 113

semantically equivalent to the operational semantics of Orc. To make the formal anal-
ysis more efficient, a reduction semantics of Orc in rewriting logic is further defined,
which is proved to be semantically equivalent to the operational semantics of Orc in
rewriting logic. We have compared the efficiency of our model checker with theirs in
Section 4.

6 Conclusion

In this paper, we proposed a new method, called Compositional Partial Order Reduction
(CPOR), which aims to provide the reduction with a greater scale than current partial
order reduction methods in the context of hierarchical concurrent processes. It has been
used in model checking Orc programs. Experiment results show that CPOR provide
significant state-reduction for Orc programs. There are many languages other than Orc
that could have the structure of HCP such as process algebra languages (e.g. CSP [14])
or service orchestration languages (e.g. BPEL [16]). Similar to classic POR method, the
main challenge of applying CPOR for a language is to find an appropriate local criteria
of A2 for that language. In addition, Algorithm 1 in the paper needs to be adjusted
according to the semantics of the specific language. As for future works, we would
further evaluate CPOR by applying it for verifying programs in other languages.

References

1. PAT: Process Analysis Toolkit, http://www.comp.nus.edu.sg/˜pat/research/
2. AlTurki, M., Meseguer, J.: Real-time rewriting semantics of orc. In: PPDP, pp. 131–142

(2007)
3. AlTurki, M., Meseguer, J.: Reduction semantics and formal analysis of orc programs. Electr.

Notes Theor. Comput. Sci. 200(3), 25–41 (2008)
4. AlTurki, M., Meseguer, J.: Dist-Orc: A Rewriting-based Distributed Implementation of Orc

with Formal Analysis. Technical report, The University of Illinois at Urbana-Champaign
(April 2010), https://www.ideals.illinois.edu/handle/2142/15414

5. Baier, C., Katoen, J.P.: Principles of Model Checking. The MIT Press, Cambridge (2007)
6. Basten, T., Bosnacki, D.: Enhancing partial-order reduction via process clustering. In: ASE,

pp. 245–253 (2001)
7. Clarke, E.M., Filkorn, T., Jha, S.: Exploiting Symmetry In Temporal Logic Model Checking.

In: Courcoubetis, C. (ed.) CAV 1993. LNCS, vol. 697, pp. 450–462. Springer, Heidelberg
(1993)

8. Clarke, E.M., Grumberg, O., Peled, D.A.: Model Checking. The MIT Press, Cambridge
(2000)

9. Courtois, P.J., Heymans, F., Parnas, D.L.: Concurrent control with “readers” and “writers”.
Commun. ACM 14(10), 667–668 (1971)

10. Dong, J.S., Liu, Y., Sun, J., Zhang, X.: Verification of computation orchestration via timed
automata. In: Liu, Z., Kleinberg, R.D. (eds.) ICFEM 2006. LNCS, vol. 4260, pp. 226–245.
Springer, Heidelberg (2006)

11. Emerson, E.A., Sistla, A.P.: Utilizing Symmetry when Model-Checking under Fairness As-
sumptions: An Automata-Theoretic Approach. ACM Transactions on Programming Lan-
guages and Systems (TOPLAS) 19(4), 617–638 (1997)

http://www.comp.nus.edu.sg/~pat/research/
 https://www.ideals.illinois.edu/handle/2142/15414

114 T.H. Tan et al.

12. Godefroid, P.: Partial-Order Methods for the Verification of Concurrent Systems. LNCS,
vol. 1032. Springer, Heidelberg (1996)

13. Håkansson, J., Pettersson, P.: Partial order reduction for verification of real-time components.
In: Raskin, J.-F., Thiagarajan, P.S. (eds.) FORMATS 2007. LNCS, vol. 4763, pp. 211–226.
Springer, Heidelberg (2007)

14. Hoare, C.A.R.: Communicating Sequential Processes. International Series on Computer Sci-
ence. Prentice-Hall, Englewood Cliffs (1985)

15. Holzmann, G.J.: On-the-fly model checking. ACM Comput. Surv. 28(4es), 120 (1996)
16. Jordan, D., Evdemon, J.: Web Services Business Process Execution Language Version 2.0.

(April 2007), http://www.oasis-open.org/specs/#wsbpelv2.0
17. Kitchin, D., Quark, A., Cook, W., Misra, J.: The orc programming language. In: Lee, D.,

Lopes, A., Poetzsch-Heffter, A. (eds.) FMOODS 2009. LNCS, vol. 5522, pp. 1–25. Springer,
Heidelberg (2009)

18. Kitchin, D., Quark, A., Misra, J.: Quicksort: Combining concurrency, recursion, and mutable
data structures. Technical report, The University of Texas at Austin, Department of Computer
Sciences

19. Krimm, J.-P., Mounier, L.: Compositional state space generation with partial order reductions
for asynchronous communicating systems. In: Graf, S. (ed.) TACAS 2000. LNCS, vol. 1785,
pp. 266–282. Springer, Heidelberg (2000)

20. Lang, F., Mateescu, R.: Partial order reductions using compositional confluence detection.
In: Cavalcanti, A., Dams, D.R. (eds.) FM 2009. LNCS, vol. 5850, pp. 157–172. Springer,
Heidelberg (2009)

21. Liu, Y.: Model Checking Concurrent and Real-time Systems: the PAT Approach. PhD thesis,
National University of Singapore (2010)

22. Peled, D.: Combining partial order reductions with on-the-fly model-checking. In: Dill, D.L.
(ed.) CAV 1994. LNCS, vol. 818, pp. 377–390. Springer, Heidelberg (1994)

23. Peled, D.: Ten years of partial order reduction. In: Vardi, M.Y. (ed.) CAV 1998. LNCS,
vol. 1427, pp. 17–28. Springer, Heidelberg (1998)

24. Sistla, A.P., Clarke, E.M.: The complexity of propositional linear temporal logics. J.
ACM 32(3), 733–749 (1985)

25. Sun, J., Liu, Y., Dong, J.S., Pang, J.: PAT: Towards flexible verification under fairness. In:
Bouajjani, A., Maler, O. (eds.) CAV 2009. LNCS, vol. 5643, pp. 709–714. Springer, Heidel-
berg (2009)

26. Sun, J., Liu, Y., Roychoudhury, A., Liu, S., Dong, J.S.: Fair model checking with process
counter abstraction. In: Cavalcanti, A., Dams, D.R. (eds.) FM 2009. LNCS, vol. 5850, pp.
123–139. Springer, Heidelberg (2009)

27. Tan, T.H., Liu, Y., Sun, J., Dong, J.S.: Compositional Partial Order Reduction for Model
Checking Concurrent Systems. Technical report, National Univ. of Singapore (April 2011),
http://www.comp.nus.edu.sg/pat/fm/cpor/CPORTR.pdf

28. Valmari, A.: The state explosion problem. In: Petri Nets, pp. 429–528 (1996)
29. Wehrman, I., Kitchin, D., Cook, W., Misra, J.: A timed semantics of orc. Theoretical Com-

puter Science 402(2-3), 234–248 (2008)

http://www.oasis-open.org/specs/#wsbpelv2.0
 http://www.comp.nus.edu.sg/pat/fm/cpor/CPORTR.pdf

Domain-Driven Probabilistic Analysis of

Programmable Logic Controllers

Hehua Zhang1, Yu Jiang2, William N.N. Hung3, Xiaoyu Song4, and Ming Gu1

1 School of Software, TNLIST, Tsinghua University, China
2 School of Computer Science, TNLIST, Tsinghua University, China

3 Synopsys Inc., Mountain View, California, USA
4 Dept. ECE, Portland State University, Oregon, USA

Abstract. Programmable Logic Controllers are widely used in industry.
Reliable PLCs are vital to many critical applications. This paper presents
a novel symbolic approach for analysis of PLC systems. The main com-
ponents of the approach consists of: (1) calculating the uncertainty char-
acterization of the PLC systems, (2) abstracting the PLC system as a
Hidden Markov Model, (3) solving the Hidden Markov Model using
domain knowledge, (4) integrating the solved Hidden Markov Model
and the uncertainty characterization to form an integrated (regular)
Markov Model, and (5) harnessing probabilistic model checking to ana-
lyze properties on the resultant Markov Model. The framework provides
expected performance measures of the PLC systems by automated ana-
lytical means without expensive simulations. Case studies on an indus-
trial automated system are performed to demonstrate the effectiveness
of our approach.

Keywords: PLC, Hidden Markov Model, Probabilistic Analysis.

1 Introduction

Programmable Logic Controllers are widely used in industry. Many PLC appli-
cations are safety critical. There are a lot of studies on the modeling and ver-
ification of PLC programs. Most of them transfer PLC programs to automata
[3,9,1] or Petri nets [7]. Formal methods [16,6,14]are also proposed for analysis.
Most of these methods consider the static individual PLC program that is iso-
lated from its operating environment and verify some functional properties based
on traversing the transferred model. The existent deterministic analysis of PLC
programs are valuable, but the uncertain errors caused by noise, environment,
or hardware should not be neglected [11].

In this paper, we present a symbolic framework for the formal analysis of PLC
system.1 We develop a probabilistic method to model the inherent uncertainty
property of the PLC system. Then, we abstract the PLC system as a Hidden
Markov Model, and generalize the Baum-Welch algorithm to solve the Hidden
1 This research is sponsored in part by NSFC Program (No.91018015,

No.60811130468) and 973 Program (No.2010CB328003) of China.

S. Qin and Z. Qiu (Eds.): ICFEM 2011, LNCS 6991, pp. 115–130, 2011.
c© Springer-Verlag Berlin Heidelberg 2011

116 H. Zhang et al.

Markov Model using domain knowledge of its dedicated operating environment.
After that, we combine the solved Hidden Markov Model with uncertainty char-
acterization of the PLC system to form an integrated Markov model. We harness
probabilistic model checking to analyze properties on the regular Markov Model
through PRISM [8]. Our framework also allows us to obtain some performance
measures of the PLC system, such as the reliability and some other time related
properties. Case studies demonstrate the effectiveness of our approaches.

2 Preliminaries

Ladder diagram (LD) is a widely used graphical programming language for
PLCs. The language itself can be seen as a set of connections between logi-
cal checkers (contacts) and actuators (coils). If a path can be traced between
the left side of the rung and the output, through asserted contacts, the rung is
true and the output coil storage bit is asserted true. If no path can be traced,
then the output coil storage bit is asserted false. Fig. 1 shows a simple ladder
program with some common instructions. It is made up of four ladder rungs.

The symbol −| |− is a normal open contact, representing a primary input.
When the value of SW1 is 1, the contact stays in the closed state, and the current
flows through the contact. The symbol −|/|− is a normal close contact. When
the value of SW3 is 0, the contact stays in the closed state, and the current flows
through the contact. −| | − | |− represents a serial connection of two kinds of
contacts. Similarly, in the third rung, b1 and V3 are connected in parallel. When
at least one value of them is 1, the current can flow through the trace. There is
also a timer instruction in Fig. 1. More details can be found in [10].

Fig. 1. A simple ladder

The simplest Markov model is the Markov chain which is a random process
with the property that the next state depends only on the current state. It
models the state of a system with a random variable that changes over time. A
discrete time Markov model can be defined as a tuple

〈
S, π, A, L

〉
, where

Domain-Driven Probabilistic Analysis of Programmable Logic Controllers 117

• S = {S1 · · ·SN} is a set of states. We use qt to denote the state of the system
at time t(t ∈ N+).
• π = {π1 · · ·πN} is the initial state distribution, where πi = Pr[q1 = Si] is

the probability that the system state at time unit 1 is Si.
• A = {aij}(∀i, j ∈ N) is the state transition probability matrix for the system

and aij = Pr[qt+1 = Sj |qt = Si].
• L is a set of atomic propositions labeling states and transitions.

In a regular Markov model, the state is directly visible to the observer, and
therefore the state transition probabilities are the only parameters. This model
is too restrictive to be applicable to many problems of interest. Here, we extend
the concept of Markov model to include the case where the observation is a
probabilistic function of the state. In a Hidden Markov Model, the state is not
directly visible, but the output, dependent on the state, is visible. Each state
has a probability distribution over the possible output observations. Hence the
sequence of observations generated by a hidden Markov model gives certain
information about the sequence of states.

Formally, a Hidden Markov Model is defined as a tuple M =
〈
S, O, π, A, B, L

〉
.

The items S, π, A and L are defined as above. The remaining two items of the
tuple are defined as:

• O = {O1 · · ·OM} is a set of observations that the system can generate. We
use vt to denote the observation generated by the system at time t(t ∈ N+).
• B = {bik} is the observation state probability matrix of the system: bik =

Pr[vt = Ok|qt = Si](∀Si ∈ S, ∀Ok ∈ O), which means the probability that
the system generates observation Ok in state Si.

Given an observation sequence Qo = O1O2 · · ·Ot, in our framework, we need to
consider the following problem:

• How to adjust the model parameters A, B to maximize Pr(Qo|M).

The problem has been solved by an iterative procedure such as the Baum-Welch
method [2,5] and equivalently the EM method [4] or gradient techniques [12]. In
this paper, we generalize Baum-Welch method with additional weights.

3 Symbolic Framework

We present a symbolic framework for the formal analysis of PLC systems. The
framework is applicable from the implementation process to the deployment
process of the system. It contains three main procedures: (1) Uncertainty char-
acterization of a PLC ladder program, which can reflect the inner quality of
the system. (2) Hidden Markov Model construction and its solution, which can
reflect the actual operating environment of the PLC system. (3) Reward based
probabilistic model checking to analyze the performance properties of the system
on the integrated Markov model. The components of the framework are shown
in Fig. 2.

118 H. Zhang et al.

Fig. 2. Validation Process

3.1 Modeling Uncertainty of PLC Systems

In a PLC, the program is executed through periodic scanning. In each cycle, the
inputs are first sampled and read. Then, the program instructions are executed.
Finally, the outputs are updated and sent to the actuators. The uncertainty
characterization calculation refers to evaluating the effects of errors caused by
input sampling and program execution. The sampling error happens when the
actual input is 1 (or 0), but the sensor samples a 0 (or 1). Program execution
error happens when the output of each ladder logic is 1 (or 0), mainly for the
AND logic (a ∧ b) and OR logic (a ∨ b), but the actual output of the logic
execution turns out to be 0 (or 1). The probability of these two kinds of errors
depends on noise, environment, hardware, etc.

The uncertainty calculation can be divided into three steps. We first define the
output of each rung on the logic checkers and the output of instructions such as
timer and counter. They are connected by ladder logic (a∧b, a∨b). Then, we build
an abstract syntax tree (AST) for the output expression, with which we can give
a topological sort for each ladder logic (∧(a, b), ∨(a, b)). Finally, we can use the
third algorithm presented in the technical report [17] to process each node in the
abstract tree, until we arrive at the root node. The uncertainty characterization
of this ladder rung can be described as follows:

f(o) = P 0
o Pε(0→ 1) + P 1

o Pε(1→ 0)

The first factor denotes the probability that the output of this ladder rung should
be 0 (denoted by P 0

o), but the root node of the abstract syntax tree propagates
a Pε(0→ 1) error. The second factor is similar. An example is shown in Fig. 3.
Because each ladder logic diagram may have many ladder rungs, we can get the
following theorem:
Theorem 1. The uncertainty characterization of the whole PLC system f is

f = 1−
i=n∏
i=1

(1 − f(o)n)

Where f(o)n means the uncertainty characterization of the n-th ladder rung.

Domain-Driven Probabilistic Analysis of Programmable Logic Controllers 119

Fig. 3. Uncertainty Calculation

3.2 Construction of Hidden Markov Model

Unlike the previous methods which consider an individual PLC program that is
isolated from its operating environment, we construct a Hidden Markov Model
(HMM) to reflect the control principle of the whole PLC system. Our model
manifests the dynamic characteristics of all the possible execution paths of the
PLC system. The HMM depicts how the PLC system transfers from one state
to another with a hidden probability.

As mentioned in Section 2, a HMM can be defined as a tuple
〈
S, O, π, A, B, L

〉
.

We abstract the PLC system as a tuple. S is the set of normal states of the PLC
system. Each state of the PLC system is composed of the states of the physical
devices which are actuated by the PLC ladder program. Then, each state of the
PLC system can be identified by the primary outputs of the PLC ladder rungs.
O contains the observations corresponding to the state set S. It is a probabilistic
function of the state and can be abstracted from basic functional requirements
and from events corresponding to the physical outputs of the system. L is a
set of atomic propositions {L} labeling states and transitions. Since the PLC
works in a periodic scanning manner and there may be timer instructions in the
ladder logic diagram, we extend the label with time attribute to reflect the time
property of the PLC system. The recursive syntax of the label is defined as:

L→ I|T |O; I → I0|I1|0|1; T → n ∈ N+

It is composed of three components. The first component I is the sequence of
the primary inputs of the PLC ladder program. The sequence will determine
the outgoing transitions of each state. The second component T is the time
attribute related to the timer instructions in the ladder program, which means
the corresponding state Si transfers to state Sj with a time delay T . The value
of T is a positive integer N+. O is the set of observations that the primary input
will trigger in the dedicated state Sj of the transition.

120 H. Zhang et al.

3.3 Solving the Hidden Markov Model

After we obtain the knowledge about the PLC systems’ observations, states, and
transitions among those states, we need to solve the unknown parameters of the
HMM, especially for the parameters of the state transition probability A. We
give two methods to solve the HMM by using three kinds of domain knowledge.
If the domain knowledge is from a domain expert or the runtime monitoring
method, the problem can be addressed by the extended Baum-Welch algorithm.

Extended Baum-Welch Method. The extended Baum-Welch algorithm is
based on two kinds of domain knowledge. The first kind of knowledge relies
on domain expert. In a particular application, this can be done by asking the
domain expert to directly provide a set of sequences of the PLC system’s obser-
vations. The observation sequences are representative of the expert’s knowledge
of the PLC system’s actual operating environment. The second kind of domain
knowledge is from runtime monitoring. If the PLC has been deployed on the
system, the system is already in use, we can observe the execution of the system
many times to attain the observations.

After we get the observation sequence O(O1O2 · · ·OtOt+1Ot+2 · · ·OT) of the
HMM from time unit 1 to T , we need to adjust the model parameters M (A, B, π)
to maximize the probability of the observation sequence. The Baum-Welch al-
gorithm applies a dynamic programming technique to estimate the parameters.
It makes use of a forward-backward procedure based on two variables:

αt(i) = P (O1O2 · · ·Ot, qt = Si|M) βt(i) = P (Ot+1Ot+2 · · ·OT |qt = Si, M)

αt(i) is the probability of the partial observation sequence O1O2 · · ·Ot, and
system model is in state Si at time unit t, and βt(i) is the probability of the
partial observation sequence from t + 1 to the end, given state Si at time unit t
and the model M . We compute the parameter aij as follows:

γt(i) = P (qt = Si|O, M) =
αt(i)βt(i)

N∑
i=1

αt(i)βt(i)

γt(i) is the probability of the system in state Si at time t, given the observation
sequence O and the model M .

ξt(i, j) = P (qt = Si, qt+1 = Sj |O, M) =
αt(i)aijbj(Ot+1)βt+1(j)

N∑
i=1

N∑
j=1

αt(i)aijbj(Ot+1)βt+1(j)

ξt(i, j) is the probability of the system in state Si at time t and in state Sj at
time t+1, respectively, with M and O. bj(Ot+1) denotes the probability that the
system is in state j, and the observations is Ot+1.

Domain-Driven Probabilistic Analysis of Programmable Logic Controllers 121

Then, the expected number of all the transitions from Si and the transi-
tions from Si to Sj can be defined as

∑T−1
t=1 γt(i) and

∑T−1
t=1 ξt(i, j), respectively.

The expected number of observing observation Ok in state Si can be defined
as
∑T

t=1,vt=Ok
γt(i). For a single observation sequence, the iterative calculation

formulas for state transition and observation probabilities can be defined as:

aij =

T−1∑
t=1

ξt(i, j)

T−1∑
t=1

γ
(
t i)

bij =

T∑
t=1,vt=Oj

γt(i)

T∑
t=1

γt(i)

The numerator of aij denotes the expected number of transitions from state Si to
Sj , the denominator of aij denotes the expected number of transitions going out
of state Si. The numerator of bij denotes expected number of times in state Si

and observing symbol Oj , the denominator of bij denotes the expected number
of times in state Si.

For different observation sequences Os = [O1, O2 · · · , Os], where Ok = [Ok
1 ,

Ok
2 · · ·Ok

T] is the kth observation sequence, the other symbols are similar. We need
to adjust the model parameter of model M to maximize P (Os|M). We extend the
method presented in [13] with a weight Wk for each Ok. Wk is the frequency of the
sequence Ok. We define Pk = P (Ok|M) and P (Os|M) =

∏k
k=1 PkWk. Then, the

iterative calculation formulas for state transition and observation probabilities
can be changed to:

aij =

k∑
k=1

1
PkWk

T−1∑
t=1

ξk
t (i, j)

k∑
k=1

1
PkWk

T−1∑
t=1

γk
t (i)

bij =

k∑
k=1

1
PkWk

T∑
t=1,vt=Oj

γk
t (i)

k∑
k=1

1
PkWk

T∑
t=1

γk
t (i)

The meaning of the numerator and denominator of the extended formulas are the
same with the original formula described above. Then, we can choose an initial
model M = (A, B, π) and use the initial model to compute the right side of the
iterative calculation formulas. Once we get the new model M = (A, B, π), we can
use M to replace M and repeat this procedure until the probability of observation
sequence P (Os|M) and P (Os|M) are equal or |P (Os|M)− P (Os|M)| < θ, θ is
the precision limit you want.

With these two methods, we can build the solved HMM to show the real
operating environment in an particular application. We can get value of the state
transition matrix, each element aij is also identified with a label L, L→ I/T/O.

3.4 Construction of Combined Regular Markov Model

The uncertainty characterization of the PLC system itself shows the inherent
behaviors of the system, which evaluates the effects of the errors from input
sampling and the errors from program execution. The solved HMM shows the
operating environment of the system in a particular application with the use of

122 H. Zhang et al.

normal states and the transitions. Then, we construct a new Markov model to
combine these two properties.

The first step is to add the abnormal state caused by the uncertainty charac-
terization. Since the system would go into an abnormal state from any normal
states, we build an abnormal state (U) for all normal states (Sn). When a normal
state transits to an abnormal state, it can be recovered by the system itself or
by human intervention, and reset to the initial state. We also need to add these
two kinds of transitions into the solved HMM. Then, we can get all the nodes
and transitions of the new Markov model M ′.

The second step is to initiate the transition matrix of the new model M ′.
We need to assign values to different transitions. The probability of a normal
state transmitting to the abnormal state depends on the value of the uncertainty
calculation. The recovering transitions depends on the design of the system or
the workers. After we add these states and transitions to the matrix A, the value
of aij based on operating environment needs to be adjusted, by multiplying with
a coefficient. The matrix A and A′ are given by:

A =

⎛⎜⎜⎝
a00 a01 . . . a0n

a10 a11 . . . a1n

...
...

. . .
...

an0 an1 . . . ann

⎞⎟⎟⎠ A
′
=

⎛⎜⎜⎜⎜⎝
a00(1− f) a01(1− f) . . . a0n(1− f) f
a10(1− f) a11(1− f) . . . a1n(1− f) f

...
...

. . .
...

an0(1− f) an2(1− f) . . . ann(1− f) f
rU0 0 . . . 0 1− rU0

⎞⎟⎟⎟⎟⎠
In the new matrix, the last row and the last column are for the abnormal state U ,
the remaining rows and columns are for the normal states Sn. The probability
from the normal states to the abnormal state is f , which is the value of the
uncertainty characterization. We know that the error probability is the same for
all the normal states, because uncertainty characterization f is the inner quality
of the PLC ladder program. The recovering transition probability from abnormal
state U to the initial state is rU0, The system will remain in the abnormal state
with a probability 1− rU0 in case of some uncertainty that can-not be recovered
by the system or the operators. The transition probability between the normal
states is aij(1 − f). aij is the transition probability between the normal states
when the system is without uncertainty. The result of aij multiplied by the
coefficient 1 − f is the transition probability combined with the uncertainty
characterization.

Theorem 2. The new transition matrix A
′

satisfies the property of regular
Markov model

Proof. According to the solved HMM’s matrix A:a00 + a01 + · · ·+ a0n = 1

a
′
00 + a

′
01 + · · ·+ a

′
0n = a00(1 − f) + a01(1− f) + · · ·+ a0n(1 − f) + f

= a00 + a01 · · ·+ a0n − (a00 + a01 · · ·+ a0n)f + f

= 1 + f − f = 1 �)
The new Markov model combines the inherent property and the operating envi-
ronment of the PLC system. It closely mimics the actual execution of the PLC in

Domain-Driven Probabilistic Analysis of Programmable Logic Controllers 123

real life applications. Based on this model, we can analyze the runtime properties
of the PLC system using model-checking technology.

3.5 Property Analysis with PRISM

After building the integrated Markov model, we can perform probabilistic model
checking using PRISM [8]. First, we need to specify the Markov model in PRISM
modeling language. Second, the rewards used to specify additional quantitative
measures of interest should be added into the model. Finally, we specify the
properties about the PLC system.

A PRISM model comprises a set of modules which represent different as-
pects of the system. The behavior of the PRISM model is specified by guarded
commands. Synchronization between different modules can be implemented by
augmenting guarded commands with action labels. We now describe the com-
bined Markov model

〈
S

′
, π

′
, A

′
, L

′〉
in PRISM manner. The module is derived

from the transition matrix A
′
of the model. We declare a variable S, whose value

range from [0, n+1]. Then, we build a label command for each arrow of the
matrix A

′
on this variable.

[Li]S = i→ (a
′
i0 : S

′
= 0) + (a

′
i1 : S

′
= 1) + . . . (a

′
in : S

′
= n) + (f : S

′
= n + 1)

Then, we focus on extending the model with rewards. There are two kinds of
rewards and the structure is:

rewards ”reward name” component endrewards

The component for state rewards is guard : reward and the component for
transitions is [Label] guard : reward. The guard is a predicate over the state
variables, Label is the command label in each module, and the reward is a real-
valued expression that will assign quantitative measures we care about the states
and the transitions that are satisfied with the guard.

In the domain of PLC system, the main properties we care about are the tim-
ing and the reliability of the system. So, we define two representative rewards
for the model. The first is about the time property. It can be derived from the
element T of the transition label L. We add a reward component [Li] true : T
for each transition into the reward. The reward reflects the elapsed time of each
transition in the model. The other is a state reward. We associate a number 1
to all the normal states with the reward component S : 1. These can be used
to get the long-run availability of the system. We can also define other kinds of
reward, such as power consumption of each transition and state.

After we describe the probabilistic model and rewards in PRISM manner,
we can analyze some properties of the model. We can specify the properties in
PRISM’s specification language. We can use the P and S operator to specify
quantitative time instant or long-run properties respectively. For example, we
can use the following specification to describe the execution state of the PLC
system in the long-run (U denote the abnormal state of the system, S denote
the normal state of the system):

124 H. Zhang et al.

Property 1: S=?[!U], the probability that the PLC system is not in failure
in the long-run.

We can extend the above property with bounded variant of time. The following
two properties specifications describe the reliability of the PLC system in a time
period:

Property 2: P=?[G[0,t] !U], the probability that the PLC system has no
error during t time units.

We can also use the R operator to get the expected value defined in terms of a
reward structure. We can get many performance measures of the system. Based
on the two rewards defined above, we specify two properties about time:

Property 3: R”S”=?[C≤t], the cumulative time of the system being in
normal states during the t time units.
Property 4: R”T”=?[F U] : the cumulative time of the system passed
before the first uncertainty state happens.

4 Case Studies

We apply our framework to an actual industrial PLC system which was originally
published in [15]. The system is shown in Fig. 4. It consists of three pistons
(A, B, C) which are operated by solenoid valves (V1, V2, V3). Each piston has
two corresponding normally open limit sensor contacts. Three push buttons are
provided to start the system (switch SW1), to stop the system normally (switch
SW2) and to stop the system immediately in emergency (switch SW3). In a
manufacturing facility [15], such piston systems can be used to load/unload
parts from a machine table, or to extend/retract a cutting tool spindle, etc.

Piston A is controlled by valve V1. When the value of V1 is 1 and the piston is
at the left side, the piston will move from left to the right, and the movement is
denoted by A+. When the value of V1 is 0 and the piston is at the right side, the
piston will move back to the left side, and the movement is denoted by A−. We
can see that the movement of A will affect the value of sensors (a0, a1). Initially,
piston A is at the left side and the normally open sensor contact a0 is closed.
Hence, the value of a0 is 1, a1 is 0. When V1 turns out to be 1 at this time, the
piston will move to the right side (A+). Then, the open sensor contact a0 will
break and the sensor contact a1 will close. Hence, the value of a0 changes to 0
and a1 changes to 1, automatically. We can use this property to design ladder
programs to control the system.

There are many PLC ladder programs that can be used to control this system.
Let us see the example in Fig. 1. The ladder program is the same as the third
ladder diagram in [15]. It contains four ladder rungs, which includes 8 primary
input contacts (SW1, SW3, a0, a1, b0, b1, c0, c1). SW1 and SW3 are changed by
human operation, the others are automatically changed by movements of the
pistons. We can construct an automata model for the operating principle of the
PLC system. The state is denoted by the outputs of the ladder. The system has

Domain-Driven Probabilistic Analysis of Programmable Logic Controllers 125

Fig. 4. Industrial automated system originally published in [15]

six normal states (S0, S1, S2, S3, S4, S5), and an uncertainty state corresponding
to the all kinds of failure caused by the uncertainty characterization. The six
normal states are the states of the Hidden Markov Model. In the Fig. 5, each
normal state has some corresponding observations linked by dotted line. In this
system, the four states have only one corresponding observation and state S5

has 3 corresponding observations. The transitions are labeled with the primary
input sequences. The time unit for each transition is 1 time unit except that
the transition between state S3 and S4 is 6 time units. We introduce the control
theory of the model with more detail below.

At first, the system is in a blank state named S0. In this state, the pistons
stay at the left side. So, the values of (a0, a1, b0, b1, c0, c1) are (1, 0, 1, 0, 1, 0).
In the first execution cycle of the PLC system, when the worker press the start
switch(SW1), the system is activated. The values of (V1, V2, V3, T) are (1, 0, 0, 0).
The piston A will move to the right side(A+). The values of (a0, a1, b0, b1, c0, c1)
change to (0, 1, 1, 0, 1, 0). The second execution cycle, the values of (V1, V2, V3, T)
are (1, 1, 0, 0). The piston B will move to the right side(B+). The values of
(a0, a1, b0, b1, c0, c1) changes to (0, 1, 0, 1, 1, 0). The third execution cycle, the
values of (V1, V2, V3, T) are (0, 1, 1, 0). The piston A will move back to the left
and the piston C will move to the right side simultaneously (A−C+). The values
of (a0, a1, b0, b1, c0, c1) changes to (1, 0, 1, 0, 0, 1). If we press SW3, the pistons B
and A will move to the left side (A−B−). The fourth execution cycle, since the
value of c1 and a0 are 1, the timer instruction is activated. In the next five time
units, the value for output (V1, V2, V3, T) will not change. Then, the system will
keep static for five time units. At the sixth time units, the values of (V1, V2, V3, T)
are (0, 0, 0, 1). Then, Pistons B and C will move to the left side (B−C−). The
values of (a0, a1, b0, b1, c0, c1) changes to (1, 0, 1, 0, 1, 0).

We can build the Hidden Markov Model for the PLC system using the oper-
ating principle presented in Fig. 5. The states of the Hidden Markov Model are
the normal states in the automata. The transition Label L between two hidden
states is also derived from the figure. Element I is the eight primary inputs on
the automata label. Element T is the time for each state transition of the original

126 H. Zhang et al.

Fig. 5. Work theory

automata. The set of Observations is composed of the content in the rectangle
of the Fig. 5. Hence, we can get the matrix A, B for the hidden markov model:

A =

⎛⎜⎜⎜⎜⎜⎜⎝

S0 S1 S2 S3 S4 S5

S0 a00 a01 a02 a03 a04 a05

S1 a10 a11 a12 a13 a14 a15

S2 a20 a21 a22 a23 a24 a25

S3 a30 a31 a32 a33 a34 a35

S4 a40 a41 a42 a43 a44 a45

S5 a50 a51 a52 a53 a54 a55

⎞⎟⎟⎟⎟⎟⎟⎠ B =

⎛⎜⎜⎜⎜⎜⎜⎝

A+ B+ C+A− B−C− A− B−A−

S0 b00 b01 b02 b03 b04 b05

S1 b10 b11 b12 b13 b14 b15

S2 b20 b21 b22 b23 b24 b25

S3 b30 b31 b32 b33 b34 b35

S4 b40 b41 b32 b43 b44 b45

S5 b50 b51 b52 b53 b54 b55

⎞⎟⎟⎟⎟⎟⎟⎠
The element a23 means the probability that the state S2 transmit to state S3.

The element b10 means the probability that we can observe that piston A moves
to the right when the system is in state S1. The semantic of the other elements
are the same.

There is a real-life application that the operating environment of the sys-
tem is representative of one movement sequence O: [A+, B+, C+A−, B−C−].
Hence, we need to solve the matrix A and B using the Baum-Welch algorithm
or by simulation to get a maximum P (O|M). Then, we need to combine the
solved Hidden Markov Model M with the uncertainty state caused by the un-
certainty characterization. We assume that the sampling error for each primary
input contacts is 0.05, and the execution error for each ladder logic unit is 0.3.
Using the method in Section 3.1, the uncertainty characterization of the PLC
system is 9.80%. That means the system will go into an uncertainty state with
probability 0.098 from any normal states. The system will recover to the initial
state with probability 0.9 from the uncertainty state. The combined matrix is
as follows:

Domain-Driven Probabilistic Analysis of Programmable Logic Controllers 127

A
′
=

⎛⎜⎜⎜⎜⎜⎜⎝

S0 S1 S2 S3 S4 U
S0 0 0.902 0 0 0 0.098
S1 0 0 0.902 0 0 0.098
S2 0 0 0 0.902 0 0.098
S3 0 0 0 0 0.902 0.098
S4 0 0.902 0 0 0 0.098
U 0.9 0 0 0 0 0.1

⎞⎟⎟⎟⎟⎟⎟⎠
For a more complex example, whose operating environment is representative
of three kinds of observation sequences. The observation sequences O1, O2, and
O3 are [A+, A−], [A+, B+, B−A−] and [A+, B+, A−C+, B−C−], respectively. In
one thousand observations, O1 appear 200 times, O2 appear 200 times, and
O3 about 600 times. Then, we use the Baum-Welch algorithm for multiple ob-
servation sequences described in Section 3.3 and combined it with uncertainty
characterization as follows:

A
′
=

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎝

S0 S1 S2 S3 S4 S5 U
S0 0 0.902 0 0 0 0 0.098
S1 0 0 0.722 0 0 0.180 0.098
S2 0 0 0 0.677 0 0.225 0.098
S3 0 0 0 0 0.902 0 0.098
S4 0 0.902 0 0 0 0 0.098
S5 0.902 0 0 0 0 0 0.098
U 0.9 0 0 0 0 0 0.1

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎠
We can describe the model of this example in PRISM as described in Section
3.5. We extend the model with rewards to help us analyze the system. The time
property is derived from the time element T of the Markov model transition label
L. In addition, we present a reward power for each state. The reward denote the
power consumption for valid piston movements in each state.

At last, we can initiate some properties that we care about the system model.
The first property is based on the reward oper, and denote the long term avail-
ability of the system. The second property is based on the reward time, and
denote the first time that it is in failure. The third property is based on the
reward power, and denote the valid power consumption during 1000 time units.

– S=?[S < 6] R{”time”}=?[F S = 6] R{”power”}=?[C≤1000]

We can do more experiments on the system presented in [15]. There are four
ladder programs presented in that paper. Although the four PLC programs have
the same sampling error and execution error probability, their inner property are
different due to different arrangements of primary inputs and logic executions.
We set the input sampling error probability to 0.05 and change the value of
execution error probability, denoted by ε. Using the method presented in Section
3.1, we can obtain the uncertainty characterization for the four ladder programs
in Table 1.

128 H. Zhang et al.

Table 1. Uncertainty Characterization

ladder ε = 0.01 ε = 0.05 ε = 0.1 ε = 0.15 ε = 0.2 ε = 0.25 ε = 0.3

ladder1 0.67% 16.87% 13.67% 12.54% 10.23% 8.69% 5.51%

ladder2 0.70% 17.63% 13.89% 13.21% 11.82% 10.57% 6.62%

ladder3 1.08% 28.04% 25.36% 24.57% 22.03% 21.18% 9.80%

ladder4 1.15% 30.13% 26.51% 25.82% 24.65% 22.83% 10.94%

Table 2. Uncertainty Characterization By Random Simulation

ladder ε = 0.01 ε = 0.05 ε = 0.1 ε = 0.15 ε = 0.2 ε = 0.25 ε = 0.3

ladder1 0.69% 17.02% 13.82% 12.66% 10.29% 8.75% 5.54%

ladder2 0.74% 17.82% 14.05% 13.35% 11.91% 10.63% 6.67%

ladder3 1.12% 28.22% 25.51% 24.71% 22.14% 21.27% 9.89%

ladder4 1.21% 30.37% 26.68% 25.98% 24.78% 22.95% 11.16%

Table 3. Property Results

property env U=0.01 U=0.03 U=0.05 U=0.07 U=0.09 U=0.1 U=0.15 U=0.2 U=0.25

oper 1 0.989 0.968 0.947 0.928 0.909 0.900 0.857 0.818 0.783

oper 2 0.990 0.971 0.952 0.934 0.917 0.908 0.868 0.830 0.795

time 1 233 98 43 32 27 21 18 8 6

time 2 198 73 38 30 23 21 13 9 7

power 1 1462 1391 1325 1261 1200 1171 1032 908 797

power 2 1234 1181 1130 1081 1034 1011 903 804 714

We have also devised random simulations to confirm the correctness of the
uncertainty characterization. The values get by random simulations is presented
in Table 2. A more visual representation for ladder3 is shown in Fig.6.

In the following, we will show how operating environment affect the perfor-
mance of one PLC system. We use the example described in Fig. 1, which is also
the same as the third ladder diagram in [15]. We have described two operating
environment examples above, which are denoted by two sets of observation se-
quences. We compare the three properties in these two operating environment
with the help of PRISM. The results are shown in Table 3.

From Table 3, we can see the long term availability for the second example
(env=2) is always better than the first example. The first failure time for the
second example come faster than the first one. The total number of valid piston
movements for the first operating environment is bigger than the second. A
more visual representation is shown in Fig.7,8,9 (the green line is for the second
application environment). We can come to the conclusion that: for the same PLC
system, properties of the system are different in different application operating
environment.

Domain-Driven Probabilistic Analysis of Programmable Logic Controllers 129

Fig. 6. uncertainty simulation Fig. 7. Long-term availability

Fig. 8. Failure-Time Fig. 9. Total-movements

5 Conclusion

This paper presents a symbolic framework for the formal analysis of PLC sys-
tems. The framework is based on the uncertainty calculation of the PLC system
itself and the Hidden Markov Model of the whole PLC system. We solve the
Hidden Markov Model by extending the Baum-Welch algorithm or simulation
to reflect the particular operating environment of the system’s application. With
the help of PRISM we can perform probabilistic model checking on the combined
Markov Model. The techniques used in our framework allows us to obtain ex-
pected performance measures of the PLC system, which are more accurate and
closer to the real-world run-time state, by automated analytical means. We can
compare the performance of different PLC system designs for an particular ap-
plication. Our future effort focus on the automatic techniques that transfer PLC
into Hidden Markov Model and a more accurate calculation of the uncertainty
characterization of PLC.

130 H. Zhang et al.

References

1. Bauer, N., Engell, S., Huuck, R., Lohmann, S., Lukoschus, B., Remelhe, M., Sturs-
berg, O.: Verification of PLC Programs Given as Sequential Function Charts.
In: Ehrig, H., Damm, W., Desel, J., Große-Rhode, M., Reif, W., Schnieder, E.,
Westkämper, E. (eds.) INT 2004. LNCS, vol. 3147, pp. 517–540. Springer, Heidel-
berg (2004)

2. Baum, L.E., Sell, G.R.: Growth transformations for functions on manifolds. Pacific
Journal of Mathematics 27(2), 211–227 (1968)

3. Canet, G., Couffin, S., Lesage, J.J., Petit, A., Schnoebelen, P.: Towards the au-
tomatic verification of PLC programs written in instruction list. In: Proc. IEEE
Conf. Systems, Man and Cybernetics, Nashvill, TN, USA, pp. 2449–2454 (October
2000)

4. Dempster, A., Laird, N., Rubin, D., et al.: Maximum likelihood from incomplete
data via the EM algorithm. Journal of the Royal Statistical Society. Series B
(Methodological) 39(1), 1–38 (1977)

5. Ephraim, Y., Dembo, A., Rabiner, L.R.: A minimum discrimination information
approach for hidden Markov modeling. IEEE Transactions on Information The-
ory 35(5), 1001–1013 (2002)

6. Frey, G., Litz, L.: Formal methods in PLC programming. In: Proc. IEEE Conf.
Systems, Man, and Cybernetics, vol. 4, pp. 2431–2436 (2000)

7. Hanisch, H.-M., Thieme, J., Luder, A., Wienhold, O.: Modeling of PLC behaviour
by means of timed net condition/event systems. In: IEEE Int. Symp. Emerging
Technologies and Factory Automation (EFTA), pp. 361–369 (1997)

8. Hinton, A., Kwiatkowska, M., Norman, G., Parker, D.: PRISM: A tool for auto-
matic verification of probabilistic systems. In: Hermanns, H. (ed.) TACAS 2006.
LNCS, vol. 3920, pp. 441–444. Springer, Heidelberg (2006)

9. Willems, H.X.: Compact timed automata for PLC programs. Technical report csi-
r9925, University of Nijmegen, Computing Science Institute (1999)

10. International Electrotechnical Commission (IEC): IEC 61131-3 Standard (PLC
Programming Languages), 2.0 edn. (2003)

11. Johnson, T.L.: Improving automation software dependability: A role for formal
methods? Control Engineering Practice 15(11), 1403–1415 (2007)

12. Levinson, S., Rabiner, L., Sondhi, M.: An introduction to the application of the
theory of probabilistic functions of a Markov process to automatic speech recogni-
tion. The Bell System Technical Journal 62(4), 1035–1074 (1983)

13. Rabiner, L.: A tutorial on hidden Markov models and selected applications in
speech recognition. Proceedings of the IEEE 77(2), 257–286 (1989)

14. Rausch, M., Krogh, B.H.: Formal verification of PLC programs. In: Proc. American
Control Conference (1998)

15. Venkatesh, K., Zhou, M., Caudill, R.J.: Comparing ladder logic diagrams and petri
nets for sequence controller design through a discrete manufacturing system. IEEE
Transactions on Industrial Electronics 41(6), 611–619 (1994)

16. Younis, M.B., Frey, G.: Formalization of existing PLC programs: A survey. In:
Proc. Computational Engineering in Systems Applications, CESA (2003)

17. Zhang, H., Jiang, Y., Hung, W.N.N., Yang, G., Gu, M.: On the uncertainty char-
acterization of programmable logic controllers (2011),
http://web.cecs.pdx.edu/~song/research/paper_hehua_final_2.pdf

http://web.cecs.pdx.edu/~song/research/paper_hehua_final_2.pdf

Statistical Model Checking for Distributed

Probabilistic-Control Hybrid Automata with
Smart Grid Applications

João Martins1,2, André Platzer1, and João Leite2

1 Computer Science Department, Carnegie Mellon University, Pittsburgh PA
{jmartins,aplatzer}@cs.cmu.edu

2 CENTRIA and Departamento de Informática, FCT, Universidade Nova de Lisboa
jleite@di.fct.unl.pt

Abstract. The power industry is currently moving towards a more
dynamical, intelligent power grid. This Smart Grid is still in its in-
fancy and a formal evaluation of the expensive technologies and ideas
on the table is necessary before committing to a full investment. In this
paper, we argue that a good model for the Smart Grid must match
its basic properties: it must be hybrid (both evolve over time, and per-
form control/computation), distributed (multiple concurrently executing
entities), and allow for asynchronous communication and stochastic be-
haviour (to accurately model real-world power consumption). We pro-
pose Distributed Probabilistic-Control Hybrid Automata (DPCHA) as a
model for this purpose, and extend Bounded LTL to Quantified Bounded
LTL in order to adapt and apply existing statistical model-checking tech-
niques. We provide an implementation of a framework for developing
and verifying DPCHAs. Finally, we conduct a case study for Smart Grid
communications analysis.

1 Introduction

The ultimate promise of the Smart Grid is that of a more stable, energy-efficient,
adaptable, secure, resilient power grid, while delivering cheaper electricity. Cur-
rently, energy consumption follows fairly predictable patterns that need to be
very closely matched by power generation (otherwise blackouts or damage to
the infrastructure may occur). There are peak hours (e.g., people arrive home
on a hot summer day and turn on the AC), and low hours (e.g., during the
night). Certain power generators run permanently at 100% capacity, providing
support to what is known as the base load. More adaptable but more expensive
generators change their output to match demand, varying the price of energy
throughout the day. During peak hours, it might be necessary to turn on highly
adaptable and expensive peak load generators, making energy extremely expen-
sive for those few hours.

One of the core ideas of the Smart Grid is that generators will no longer pas-
sively adapt to consumption. Instead, power consumers both at the lower level
(e.g., appliances such as washing machines) and higher level (utilities serving

S. Qin and Z. Qiu (Eds.): ICFEM 2011, LNCS 6991, pp. 131–146, 2011.
c© Springer-Verlag Berlin Heidelberg 2011

132 J. Martins, A. Platzer, and J. Leite

some geographical area) will feed their desired consumption back into the Grid.
Indeed, utilities and home-owners have already begun deploying smart meters
and appliances that make available more detailed, up-to-date energy consump-
tion information. This gives the smarter Grid better foresight, increasing its
robustness and its ability to reschedule non-critical appliances (e.g., the dish-
washer) to off-peak hours, reducing energy costs.

Given the size and criticality of the power infrastructure, it is clear that Smart
Grid technologies have to be analysed very carefully. Furthermore, the cost of
providing real test-beds for all technologies is prohibitive, especially if the infras-
tructure can sustain damaged when things go wrong. Formal verification, on the
other hand, allows us to study a model of the system in question, sidestepping
the above issues. Given an appropriate model, we may then check the system for
properties: how much can be saved with appliance rescheduling? Do Smart Me-
ters help in predicting and optimizing load? Does that prediction help balance
load across generators? Not only are the answers to these questions useful in
furthering our understanding of the technologies, they also give us hints about
how they may be improved upon before real-world deployment.

For the above reasons, we believe that formal verification of new technologies
is fundamental for the Smart Grid. The first step in this endeavour is to find
adequate models for the Grid. The models need to be flexible and generic so
they can be reused for multiple projects and ideas, yet match the nature and
properties of the Grid. Forcing models that do not fit the properties of the Grid
lead to modelling idiosyncrasies, effectively making modelling and verification
much harder than they need to or should be (humanly and computationally).

What, then, are the properties of the Smart Grid? Most importantly, it is
a cyber-physical system. Its infrastructure exists in the real-world and follows
the laws of physics (e.g., a generator increasing its output), but it also contains
control components that make decisions and change the state instantaneously.
Thus, it is a hybrid system, i.e., has both continuous and discrete dynamics.
Some mathematical models and verification techniques for hybrid systems extend
automata theory by allowing continuous evolution to occur in each state (e.g.,
[6,3,1]), but verification is known to be undecidable for most cases [3]. Differential
Dynamic Logic (dL) allows the specification of both the properties and the
behaviour of a hybrid system [9] and provides a proof calculus for verification.

Another property of the Smart Grid is that it is distributed. The Grid is not
one monolithic system, but composed of a large number of distributed and com-
municating entities, from the power generators down to electrical substations to
the utilities, households, appliances and meters. All of these elements coexist,
communicate and cooperate with one another in real-time. Most automata mod-
els support the notion of composition, allowing a fixed number of automata to
execute concurrently. The Grid, however, is dynamically distributed: appliances
are turned on and off, power lines can be cut, and meters may fail. The model
must allow entities/elements to enter, leave and communicate as part of the sys-
tem dynamics. Dynamic I/O Automata [5] allow a dynamic number of elements,
but are not hybrid. Quantified Differential Dynamic Logic (QdL) [10] also allows

Statistical Model Checking for DPCHA and the Smart Grid 133

a dynamic number of elements and is hybrid, but like Dynamic I/O automata,
has a shared-memory communication model. Proposals for Smart Grid commu-
nication are currently based on IP and message-passing protocols, so that forcing
a fundamentally different shared-memory paradigm appears unwise.

Finally, the Grid exhibits stochastic behaviour. As we have seen, power con-
sumption follows known but not completely fixed patterns so that using non-
determinism to model these patterns encodes little information about the actual
behaviour of the Grid. Hybrid system models are generally non-deterministic,
attempting to verify safety properties that hold even in the worst-case. In the
Grid, worst-case scenarios (e.g., all lines cut at the same time, all appliances
always on) are sure to bring about a complete collapse, and most safety proper-
ties will not hold! Alternatively, a probabilistic model enables 1) a more detailed
and accurate representation of the Grid’s consumption patterns and 2) a more
comprehensive quantitative study. Since we know most interesting properties are
not always true, we may estimate the probability that they hold. This precludes
QdL [10], which is not stochastic, whereas Stochastic dL [11] is not distributed.
I/O Automata have a stochastic extension, but it is not distributed [5].

Petri Nets are inherently dynamically distributed and there have been stochas-
tic and differential extensions [12,2]. However, the notion of markings flowing
place to place is not one that we find when designing the participants of the
Smart Grid. They would be composed of multiple markings scattered over differ-
ent places of the Petri graph. Several entities of the same class (e.g., microwaves),
sharing the same “control” graph, would create a multitude of markings super-
imposed in the same places. Markings would have to be associated with one
another to keep track of the entities as a whole, instead of considering an entity
as an indivisible structure. There is also no immediately available communica-
tion mechanism for transmitting messages (with a payload). In conclusion, while
many Petri Net variants feature mechanisms very similar to those of the Smart
Grid, it is our belief their actual implementation is generally differs enough to
warrant the Grid a model of its own.

In [8] the state of the system is given by a composition of objects and mes-
sages. All objects evolve continuously as long as no invariant is violated, and fire
probabilistic discrete transitions when they are. Asynchronous communication
is achieved by assigning a delivery time to all messages upon creation. The de-
cision to do a discrete or continuous transition depends exclusively on whether
an invariant is violated, making the dynamics of this model very restricted.

In summation, we need a model that is composed of many different entities.
These entities should be able to enter and leave the system at will, representing
failures and appliances being turned on or off. Furthermore, the entities must
be able to communicate asynchronously: given the scale of the Grid and the im-
pact of message delivery delays, it is unrealistic to assume synchronous (instant)
communication. Finally, the system must be able to behave probabilistically, in
order to encode uncertain environments, e.g., power consumption. To the best of
our knowledge, no existing model naturally incorporates all of these properties.

134 J. Martins, A. Platzer, and J. Leite

In this paper, we propose Distributed Probabilistic-Control Hybrid Automata
(DPCHA) as such a model. We take care that the system can be easily sampled
from (to obtain execution traces), with the objective of applying existing efficient
statistical verification techniques.

Previous work has shown that statistical model checking (SMC) is a promising
approach for the verification of probabilistic systems [4,15,14]. Given a property
and a model, SMC techniques will repeatedly sample traces from the model and
check if they satisfy the property. Every new result provides more information
on whether the property holds for arbitrary traces. While known to be unsound,
SMC can arbitrarily approximate the probability that the property holds very
efficiently, making many otherwise intractable problems accessible.

Logics traditionally used in the specification of properties for these hybrid
systems generally consider a fixed state-space. This makes them insufficient for
the representation of properties of distributed systems. We propose Quantified
Bounded Linear Temporal Logic, an extension to Bounded Linear Temporal
Logic that handles the dynamic state space of DPCHA using quantification
over the elements of the system. A similar phenomenon has been studied in the
context of Java threads [13], for example, but not for cyber-physical systems.

The main contribution of this paper is the proposal of a model that naturally
adapts to Smart Grid scenarios and for which these techniques are applicable,
enabling meaningful studies of the system.

We present some technical background in Section 2, and our DPCHA model
in Section 3. To specify properties we define QBLTL in Section 4. We briefly
explain Bayesian statistical model checking in Section 5, and develop an initial
case study in the Smart Grid domain in Section 6. We conclude in Section 7.

2 Preliminaries

Before developing the distributed model, we will begin by introducing how a sin-
gle entity behaves (e.g., microwave, generator). Thus, we briefly recall discrete-
time hybrid automata (DTHA) [15]. Each entity must have a state, e.g., current
and desired power output of a generator. The entity is in a location that specifies
how the state should flow as time passes, e.g., spooling up generator to match
desired output. Finally, the entity may decide to jump from one location to an-
other, e.g., the microwave switches to “defrost”. We refer to an entity’s situation
as the pair of its location and state. Thus, DTHA are hybrid because they allow
continuous evolution (time passing) and discrete transitions between locations.

Definition 1 (DTHA). A discrete-time hybrid automaton consists of

– 〈Q, E〉, a “control graph” with Q as locations and E ⊆ Q×Q as the edges
– Rn is the state space of the automaton’s state
– jumpe : Rn ⇀ Rn, a partial function defining how the state changes when

jumping along edge e
– ϕq : R≥0 × Rn → Rn, flows. ϕq(t; x) is the result of a continuous evolution

at location q ∈ Q after time t when starting in state x ∈ Rn

– (q0; x0) ∈ Q× Rn, an initial situation

Statistical Model Checking for DPCHA and the Smart Grid 135

Suppose an entity is in a situation (q; x). It may jump along an edge e originating
from q, updating its state according to jumpe. Or it may remain in q for some
time t, updating its state according to the flow ϕq (which can be, for instance,
the solution of a differential equation system). Since there might be multiple
options for the next step, the automaton is non-deterministic.

Definition 2 (Transition relation for DTHA). The transition relation for
a DTHA is defined as:

(q; x) α−→ (q; x), where

– When α = t ∈ R≥0 is a time, then (q; x) t−→ (q; x) iff x = ϕq(t; x)
– When α = e ∈ E is an edge from q to q, then (q; x) e−→ (q; x) iff x = jumpe(x)

It is only possible to jump along an edge e if the entity’s state is in the domain
of jumpe. In this case, we say that e is enabled and that jumpe works as a guard
for e. A scheduler δ : Q× Rn → R≥0 ∪ E that, given a situation (q; x), decides
the next action α (a flow or an edge to jump), can be applied repeatedly to an
entity’s situation to obtain a trace for that entity.

We now have defined the dynamics of a single entity. To make it behave
probabilistically, all we need to do is to make δ : Q× Rn → D(E ∪ R≥0 ∪R≥0)
return a probability distribution over all possible actions instead of a single action
α. Sampling from this distribution gives the entity its next step.

3 Distributed Probabilistic Control Hybrid Automata

A single entity’s behaviour is given by its control graph, flows and jumps. We
have mentioned that traditional notions of automata composition are not dy-
namic enough for the Grid. Configuration automata [5] keep track of multiple
executing entities (also automata) that can enter and leave the system, resulting
in two layers of automata that have no particular intuition in the Grid. Further-
more, the automata force communication to be immediate and synchronous.

Instead, like in Petri Nets, we assume all the control graphs are given, so
we understand how microwaves (for example) behave, but are not required to
know how many. With these control graphs, jumps and flows for each type of
entity (e.g., microwave, meter), it is trivial to encode the behaviour of all types
of entities in one global control graph.

The global control graph accommodates several entities, not unlike Petri Net
markings. These entities are characterised by their situation and execute like
a single entity from the previous section. This is the basic intuition for the no-
tions of Distributed Discrete-Time Hybrid Automata (DDTHA) and Distributed
Probabilistic Control Hybrid Automata (DPCHA) that we define below.

To maintain a sensible global notion of time, the DDTHA will do a continuous
transition only if all executing entities decide to do so. If any entity decides to do
a jump, then the other entities must either jump as well or flounder (i.e. doing a
discrete transition with no effect), keeping time unchanged. In this sense, discrete
transitions take precedence over continuous transitions, but consume no time.

136 J. Martins, A. Platzer, and J. Leite

We must still address the ability to communicate and to allow entities to enter
or exit the system. We reduce these two concerns (communication and dynamic
number of entities) to five elementary actions : new[N], die, snd[l][T], recv[l][R],
jmp. Each edge in the control graph features an action. When an entity jumps
along that edge, its action is executed. jmp is a null action so that the entity
simply follows jumpe. new[N] additionally creates a new entity with a situation
specified by a function N , and die makes the jumping entity exit the system.
snd[l][T] and recv[l][R] send and receive messages through a channel determined
by function l. The content of the sent message is given by function T , whereas
the receiving entity’s state is updated according to R, taking into account both
its current state and message content. To achieve asynchronous communication,
sent messages are stored at the global automaton level in a “buffer”, and are
removed later when received. The content of messages is a real vector computed
by function T , and affects the receiver’s state according to R. Thus, each action
is characterised by functions determining exactly how it is executed. We let Ae

denote the action of edge e, which happens in addition to the effects of jumpe.
In summary, the control graph retains its general structure, but annotates

each edge with actions for communication and dynamism. Instead of a single
initial situation, we have an initial set of active entities and an initial situation
for each entity. Active entities all evolve time-synchronously, each following the
rules of DTHA. As entities jump along edges, they execute the associated actions,
enabling communication and complex interactions.

Definition 3 (DDTHA). A Distributed Discrete-Time Hybrid Automaton is
composed of

– Rn, the state space for each entity, with n ∈ N
– Rnm , the state space of each message’s content, with nm ∈ N
– A = {new[N], die, snd[l][T], recv[l][R], jmp}, the set of all actions, with

channel specification functions l : Rn → C, new entity creation functions
N : Rn → Q× Rn, message transmission functions T : Rn → Rnm and
message reception functions R : Rnm × Rn → Rn

– 〈Q, E〉, control graph with locations Q and edges E ⊆ Q×A×Q
– jumpe : Rn × Rn, a relation when Ae = recv or function jumpe : Rn → Rn

otherwise, defining acceptable state updates when jumping along edge e
– ϕq, as in Def. 1
– L: a (countable) set of entity identifiers
– A0 ⊂ L: a finite set of initial active entities
– S0 : A0 → Q× Rn, a function with a situation for each initial active entity
– C, a (countable) set of communication channels

The state of a DDTHA consists of the situations of all its entities, active and
past. Information about past entities is kept so that checking properties of them
is well-defined. The state also maintains a set of “in transit” messages (sent but
not received), enabling asynchrony of communication.

Definition 4 (State of a DDTHA). The state of a DDTHA is given by AS =
(A, S, M) with

Statistical Model Checking for DPCHA and the Smart Grid 137

– A ⊂ L a finite set of the labels of active entities
– S : L ⇀ Q× Rn, a partial function with the situation of active/past entities
– M ⊆ C × Rnm , a set of unreceived messages and respective channels

One interesting issue arises when an entity a decides (through a scheduler) to flow
for t time units but sometime at t′ < t some other entity b finishes its own flow
and schedules a jump. In this situation, the DDTHA also schedules a discrete
transition, but a cannot be allowed to reevaluate its previous decision to flow for
t time (e.g., the washing machine should not stop because someone turned on
the TV). Therefore, we assume without loss of generality that each entity stores
in its state (e.g., in its first coordinate) how long it must still flow, denoted by
δ-time. In state (A, S, M), an entity a’s δ-time is denoted δ-timeS(a). When the
DDTHA schedules a discrete transition, any entity with non-zero δ-time will
flounder, thus only truly rescheduling once its flow decision finishes executing.

Another important element of discrete transitions is message reception. There
must be an injective mapping from “in transit” messages to receiving entities
so that they get exactly one message. Injection ensures each receiving entity
gets at most one message. Of course, the entities must react accordingly, and
received/sent messages are removed/added to M .

The following example justifies our choice of probabilities and asynchronous
communication and illustrates a simplified modelling of the Smart Grid.

· PC

Normal(5, εpc)

recv[lc][R]
p = 0.8

snd[lt][Tt]
p = 0.1

· · ·

Normal(7, εc)

snd[lc][Tc]
p = 0.5

Fig. 1. Simplified Smart Grid

Example 1. Newest generation smart me-
ters feed up-to-date information into the
Grid, including power consumption from
the appliance level up to substation and
utility levels and so on; the Grid also
needs to match generator output with
power consumption. There is a Grid con-
trol infrastructure that maintains this
fragile balance.

An ideal model for this scenario would
have entities representing appliances, consuming energy, shutting off and power-
ing on, and sending messages into the Grid through channel lc. Another (unique)
entity, called the Power Controller (PC), would react to messages from lc and
control generator output by sending it messages through lt. Unfortunately, it
is computationally infeasible to model every appliance in a country-wide Grid
(except maybe Monaco or Nauru!). A sensible simplification instead represents
classes of appliances that get turned on at around the same time for a very
similar duration, like ACs/computers in offices, the TVs at home, etc. Ideally,
the exact times and durations are given by probability distributions, simulating
real-world behaviour. We obtain a much more manageable number of entities by
using classes of appliances instead of individual appliances.

Real networks become congested so that messages are not delivered instantly.
Probabilities can be used to simulate this delay: the PC’s choice for flow time,
for instance, could be given as a normal random variable Normal(5, εpc). The PC

138 J. Martins, A. Platzer, and J. Leite

then waits around 5s before getting the message. We may assign its individual
scheduler a 0.8 probability of jumping along a recv edge, so that there is a 0.2
chance it will be further delayed (simulating message loss and retransmission or
congestion). These remaining 0.2 can be split between sending control messages
to generators or deciding to do another flow.

To justify our choice of asynchronous communication, suppose that whenever
an appliance class entity sends a message, the PC is forced to ignore its δ-time
and synchronise to receive that message. The PC is deviating from its original
specification of continuous evolution according to a Normal RV, which would
make the semantics, meaning and usefulness of the model unclear.

Definition 5 (Transition for DDTHA). The transition relation of a
DDTHA is defined inductively as

(A, S, M) α−→ (A, S, M)

where A is non-empty, α ∈ R≥0 ∪ (A→ (E ∪ R≥0 ∪ {F})), iff

– If α = t ∈ R≥0, then ∀a∈A a ∈ A, S(a) t−→ S(a), δ-timeS(a) = δ-timeS(a)− t

and δ-timeS(a) ≥ 0
– If α = τ : A → E ∪ R≥0 ∪ {F}, then there are partial injective mappings

μc : {(c, Rnm) ∈ M} → {a ∈ A : τ(a) = (q, recv[l][R], q)} from messages
of each channel to entities scheduled to receive on that channel, M = (M \⋃{range(μc) : c ∈ C}) ∪ {(l(S(a)), T (S(a))) : a ∈ A, τ(a) = (q, snd[l][T], q)}
and ∀a∈A if δ-timeS(a) > 0, then τ(a) = F , a ∈ A and S(a) = S(a);
otherwise if δ-timeS(a) = 0
• If τ(a) = t ∈ R≥0, then S(a) = S(a) except δ-timeS(a) = t

• If τ(a) = (q, jmp, q) ∈ E, then a ∈ A and S(a)
(q,q)−−−→ S(a)

• If τ(a) = (q, new[N], q) ∈ E, then a ∈ A, S(a)
(q,q)−−−→ S(a), and there

exists a completely new a /∈ A, a ∈ A such that S(a) = N(S(a))

• If τ(a) = (q, die, q) ∈ E, then a /∈ A and S(a)
(q,q)−−−→ S(a)

• If τ(a) = (q, snd[l][T], q) ∈ E, then both a ∈ A, S(a)
(q,q)−−−→ S(a) and

(l(S(a)), T (S(a))) ∈M
• If τ(a) = (q, recv[l][R], q) ∈ E, then μc(a) = (c, y) /∈ M with c =

l(S(a)), a ∈ A and (S(a), R(y, S(a)) ∈ jumpτ(a) and S(a) = R(y, S(a))

There may be multiple messages to deliver to an entity, and vice-versa. To remove
this source of non-determinism, we simply use a combination of lexicographical
and temporal ordering to choose a single assignment.

Given a single-entity scheduler δ : Q× Rn → R≥0 ∪ E like those of DTHA,
we define a DDTHA scheduler Δ for an automaton state (A, S, M) as follows

1. If ∀a∈A δ(S(a)) ∈ R, then Δ(AS) = min{δ(S(a)) : a ∈ A}
2. If ∃a∈A δ(S(a)) ∈ E, then Δ(AS) = τ , where for each a ∈ A:

τ(a) =

{
δ(S(a)) , δ-timeS(a) = 0
F , δ-timeS(a) > 0

Statistical Model Checking for DPCHA and the Smart Grid 139

Each scheduler Δ yields a single execution of the system. These valid executions
are called traces, and are formalised as follows.

Definition 6 (Trace of a DPCHA). A trace of a DPCHA is a sequence
σ = (AS0, t0), (AS1, t1), ..., with ASi as in Def. 4, ti ∈ R≥0 such that 1) AS0 =
(A0, S0, ∅) and 2) for each i ∈ N>0 (up to the size of the trace if it is finite):

1. ASi−1
Δ(ASi−1)−−−−−−→ ASi

2. ti−1 =

{
Δ(ASi−1) , if Δ(ASi−1) ∈ R≥0

0 , if Δ(ASi−1) ∈ (L→ E ∪ {F})

Given the priority of discrete transitions, we make the assumption of divergence
of time, i.e., we do not consider schedulers whose traces have infinitely many
transitions in finite time. This ensures there is no infinite sequence of jumps, i.e.
that time actually passes and the system evolves.

To obtain DPCHA, we probabilise the single entity scheduler δ, from which
the global scheduler Δ is obtained. In effect, we sample from each entity’s distri-
bution sequentially until all entities have decided on their course of action. From
this set of actions we construct the global action, and the distribution of the
global DPCHA action is derived from the distribution of the entities’ actions.
This results in Distributed Probabilistic-Control Hybrid Automata, allowing us
to formally specify the model in Example 1.

4 Quantified Bounded Linear Temporal Logic

The next step towards applying SMC techniques is to define a way to specify
properties and to check whether they are satisfied by the execution traces of the
system. These properties must deal with the distributed nature of the Grid. For
example, we want to be able to aggregate power demand, or how much power is
being generated in total.

We start from Bounded Linear Temporal Logic (BLTL), featuring a strong
bounded until Ut operator to deal with time. φ1 Utφ2 states that φ1 must hold
until φ2 holds and φ2 holds before the time bound t. It does not require φ1 to
hold when φ2 first holds, but it does require φ2 to hold at some point before t.

It has been proven that that BLTL formulae can be checked with only finite
traces as long as the system guarantees divergence of time [15]. Unfortunately,
BLTL lacks the capability to express properties about a system with a dynamic
number of entities, and existing alternatives are domain-specific or bounded
[13]. Each entity contains its variables (e.g., refrigerator temperature), but to
refer to those variables we must first get a handle on the entity itself. We do
this by allowing for quantification over active entities in the system (i.e. actualist
quantification). Similarly, we allow any computable aggregation function to range
over the entities and return some aggregate value (e.g., max,

∑
). This results in

Quantified Bounded linear Temporal Logic, whose syntax is defined as follows:

140 J. Martins, A. Platzer, and J. Leite

Definition 7 (Syntax of QBLTL). Formulae of QBLTL are given by the
following grammar, with ∗ ∈ {+,−,÷,×,̂ } and ∼ ∈ {≤,≥, =}:

θ ::= c | θ1 ∗ θ2 | πi(e) | ∃(e) | ag[e](θ), with i ∈ N, c ∈ Q
φ ::=

∃

(e) | θ1 ∼ θ2 | φ1 ∨ φ2 | ¬φ1 | φ1 Utφ2 | ∃e.φ1

In the above, e is a variable denoting an entity. πi(e) is the ith variable of entity e.
ag[e](θ) stands as a template for any computable, associative and commutative
aggregation function (e.g.,

∑
[e](πtemp(e))). We abuse notation to define

∃

(e) as
1) an indicator function for whether e is active, 2) formula evaluating to true iff
e is active. This is useful for filtering out entities in aggregations and specifying
properties quantifying over entities that exit the system. For example,

∑
[e](

∃

(e))
evaluates to the number of active entities in the automaton.

As usual, we define the other logical operators from Def. 7, e.g., φ1 ∧ φ2 ≡
¬(¬φ1 ∨ ¬φ2), and temporal operators such as Ftφ ≡ trueUtφ (eventually φ
holds before t) and Gtφ ≡ ¬Ft¬φ (φ always holds until t).

The semantics of QBLTL are given with respect to traces and a variable
assignment η : V ars(φ) → L to entity labels (cf. Def. 3), where V ars(φ) is the
set of variables occurring in φ. η is used to keep track of which entity variables
refer to, as in first order logic.

Let σ = (AS0, t0), (AS1, t1), ... be a trace of a DPCHA. We define that
trace σ and assignment η satisfy a formula φ by a relation σ, η |= φ. Let
σi be the trace suffix of σ starting at position i, e.g., σ0 = σ and σk =
(ASk, tk), (ASk+1, tk+1), Let �θ�η

σk represent the value of interpreting θ under
ASk and assignment η, and ASi = (Ai, Si, Mi) for all i ≥ 0.

Definition 8 (Semantics of QBLTL). The semantics of QBLTL for a trace
σk = (ASk, tk), (ASk+1, tk+1), ... are defined by the interpretation of terms:

– �c�η
σk = c,

– �θ1 ∗ θ2�η
σk = �θ1�η

σk ∗ �θ2�η
σk , interpreting the syntactic operator * by the

corresponding semantic operator *,
– �πi(e)�η

σk = xi, where Sk(η(e)) = (q; x) ∈ Q × Rn, and xi is the projection
to the ith coordinate of x,

– � ∃(e)�η
σk = 1 if η(e) ∈ Ak and 0 otherwise.

– �ag[e](θ)�η
σk = ag

(
�θ�η{e�→l1}

σk ,ag
(
..., �θ�η{e�→ln}

σk

))
, where (l1, l2, ..., ln) is

some ordering of Ak (well-defined since ag is associative and commutative),

and the following relation:

– σk, η |= ∃

(e) iff η(e) ∈ Ak

– σk, η |= θ1 ∼ θ2 iff �θ1�η
σk ∼ �θ2�η

σk , extending the syntactic comparison
operator ∼ to the corresponding semantic ∼,

– σk, η |= φ1 ∨ φ2 iff σk, η |= φ1 or σk, η |= φ2,
– σk, η |= ¬φ1 iff σk, η �|= φ1 or it is false that σk, η |= φ1,
– σk, η |= φ1 Utφ2 iff there exists i ∈ N such that 1)

∑i
l=0 tk+l ≤ t, 2) for all

j such that 0 ≤ j < i, σk+j , η |= φ1 and 3) σk+i, η |= φ2,
– σk, η |= ∃e.φ1 iff there exists l ∈ Ak such that σk, η{e +→ l} |= φ1

Statistical Model Checking for DPCHA and the Smart Grid 141

As usual in logic, σk, η |= φ is only well-defined if η contains an assignment for
every free variable of φ. In ∃e, e is a variable ranging over currently existing
entities. However, these entities may leave the system in the future, leaving us
with a “dangling” variable. We illustrate this next.

Example 2. Consider a model where a consumer entity is created whenever
an appliance is turned on, and that disappears when it is turned off. While
verifying this model we may want to check that some appliances are always
running at high power, e.g., a refrigerator with a consumption minimum of
300 watts. This property can be expressed in the following QBLTL formula
∃e.G24·3600πconsumption(e) ≥ 300.

Given a trace for a sample day, we attempt to evaluate the formula. For
instance, suppose e represents a washing machine that is running at first, but
finishes its program and leaves the active Grid sometime later. What is the
meaning of πconsumption(e) ≥ 300 after the washing machine leaves the system?

The actualist semantics that we chose achieve what we believe is a good
compromise that avoids semantic pitfalls, in the same vein as [10]. The key is to
keep track of past entities’ state in S so that the semantics are well-defined even
with exiting entities. The main point, however, is that the special predicate/term∃

(·) can be used to handle entities that have left the system. The property above
should have been ∃e.G24·3600 ∃(e) ∧ πconsumption(e) ≥ 300, i.e. is there an entity
that is permanent and that is always consuming above 300.

We have made sure that our extensions are compatible with earlier SMC
approaches so that we can lift the theory of SMC directly to our scenario.
First, we guarantee that finite simulations are sufficient for checking whether
a QBLTL formula is satisfied, because we cannot run infinite simulations. Due
to our setting, this is a straightforward extension of results from [15]. We define
a bound #(φ) of a QBLTL formula by having #(θ) = 0 for any term θ. For
any other logical connective excluding the until operator (e.g., ¬φ1, φ1 ∨φ2), we
define the bound as the maximum of the bound of its direct subformulae, e.g.,
#(φ1 ∨ φ2) = max(#(φ1), #(φ2)), and #(∃e.φ) = #(φ). Finally, #(φ1 Utφ2) =
t+max(#(φ1), #(φ2)). We can now show that φ is satisfied by two infinite traces
as long as the prefixes bounded by #(φ) of those traces are the same.

Lemma 1 (QBLTL has bounded simulation traces). Let φ be a QBLTL
formula and k ∈ N. Then for any two infinite traces σ = (AS0, t0), (AS1, t1), ...
and σ = (AS0, t0), (AS1, t1), ... with ASk+I = ASk+I and tk+I = tk+I , for all
I ∈ N with

∑
0≤l<I tk+l ≤ #(φ) we have that σk |= φ iff σk |= φ.

The proof is done by induction on QBLTL formulae. The original proof for
BLTL [15] extends directly to our additions. It then follows that sampling can
be bounded with #(φ).

Lemma 2 (Bounded sampling). The problem σ |= φ is well defined and can
be checked for QBLTL formulae φ and traces σ based only on a finite prefix of
σ of bounded duration.

Again, thanks to our compatible setting, the proof for this lemma lifts directly
from [15]. Without this result, SMC would not be applicable in our scenario.

142 J. Martins, A. Platzer, and J. Leite

5 Bayesian Statistical Model Checking

Statistical Model Checking [4,15,14] is a simple technique that has received at-
tention due to its application to many practical situations. We follow the pre-
sentation of a Bayesian approach to the method closely, as presented in [15].

SMC tries to determine the probability p that an arbitrary trace of an au-
tomaton satisfies a QBLTL formula φ. Two core Bayesian approaches have been
proposed: interval estimation and hypothesis testing. These methods diverge
from the traditional model checking problem in that a trace that does not sat-
isfy a formula φ is not a counter-example, but instead evidence that p < 1. For
simplicity, we present the hypothesis testing algorithm and refer to [15] for an
interval estimation algorithm, which is directly applicable in our scenario.

The hypothesis testing algorithm attempts to solve the problem “is the prob-
ability that property φ holds greater or equal to θ”, also represented as P≥θφ.
That is, we compare the null hypothesis H0 : p ≥ θ with the alternate hypoth-
esis H1 : p < θ. We can represent the result of each sampled trace satisfying φ
by Bernoulli random variables with the real probability p. After n samples, we
have d = {x1, ..., xn} draws from those Bernoulli RV’s, and each result gives us
further evidence either for H0 or for H1. Since these hypothesis are mutually ex-
clusive, we can assume that the prior probabilities add to 1, P (H0)+P (H1) = 1.
Bayes’ theorem gives us the posterior probabilities as P (Hi|d) = P (d|Hi)P (Hi)

P (d)

with i ∈ {0, 1}, for every d with P (d) = P (d|H0)P (H0) + P (d|H1)P (H1) > 0,
which is always the case in this instance.

Definition 9 (Bayes factor). The Bayes factor B of sample d and hypotheses
H0, H1 is P (d|H0)

P (d|H1) .

The value of the Bayes factor as defined above, obtained from data d by sampling
and testing the property, can be seen as evidence in favour of the acceptance of
hypothesis H0. The inverse 1

B , on the other hand, is evidence in favour of H1.
We can then choose a threshold T for how much evidence is required before we
accept one of the hypotheses.

From [15], we know an efficient way to calculate the Bayes factor for H0, H1:

Bn =
1− ∫ 1

θ
g(u)du∫ 1

θ g(u)du

(
1

F(x+α,n−x+β)(θ)
− 1

)
,

in the case of beta priors, where x is the number of successes in the draws
d = (x1, ..., xn) and F(s,t)(·) is the Beta distribution function with parameters
s, t. The actual algorithm can be found in Figure 2.

The algorithm samples traces from the DPCHA, then checks them against
the given formula φ. Since the result of these checks can be seen as drawing
from a Bernoulli RV with the desired probability, the algorithm then uses the
Bayes factor to calculate how much evidence is in favour of either H0 or H1.
The amount of evidence changes with each new draw, resulting in an algorithm
that adapts termination to the amount of information it can extract at each

Statistical Model Checking for DPCHA and the Smart Grid 143

Input: DPCHA automaton A, QBLTL property φ, probability θ, threshold T ≥ 1
and Beta prior density g for unknown parameter p
n := 0 {// Total number of traces drawn}
x := 0 {// Total number of traces satisfying φ}
loop

σ := sample trace from DPCHA A {// according to probabilistic Δ, cf. Sect. 3}
n := n + 1
if σ |= φ then {// according to Def. 8}

x := x + 1
end if
B := BayesFactor(n, x)
if B > T then

return H0 accepted
else if B < 1

T
then

return H1 accepted
end if

end loop

Fig. 2. Bayesian Statistical Model Checking for estimation

iteration. Eventually, enough evidence is amassed for one of the hypotheses,
and it is accepted. More details about this and a more sophisticated estimation
algorithm (that we use in the following) can be found in [15].

6 Case Study: Smart Grid

We now develop a case study using a simplified Smart Grid model. We show the
versatility of our model, how smoothly it fits to the verification methods defined
previously, and how easily SMC can be used to check important properties.
Recall that the Smart Grid is a fusion of the Power Grid and the Cyber Grid. The
hope is that communication capabilities and direct feedback from the consumer
level will allow the Smart Grid to provide energy more efficiently and cost-
effectively. We use the techniques implemented in our framework to study what
properties of the communications layer of the Grid are important for achieving
this goal. We focus on the trade-offs between cost-relevant parameters of the
network and overall system performance and safety.

As in the examples above, consumer entities represent classes of appliances.
Their demand follows a bell-shaped curve over time, representing a number of
individual appliances being gradually turned on, then off and exiting the system.
Consumers are managed by a Consumer Controller, which is the environment’s
probabilistic core. It spawns and maintains consumer entities, ensuring Grid
consumption follows the patterns we observe in real life. The probability of
creating a consumer (and its characteristics) depends on the hour of the day.
Consumers appearing during the night or late evening request less energy but
last for longer (2-3h vs 7-8h). The Power Controller (PC) receives feedback
about consumption and matches generator output to demand. The generator
only changes its output acceleration, so timing is essential. Refer to [7] for details.

144 J. Martins, A. Platzer, and J. Leite

Smart Grid

Power consumption # Elems * 100 Estimated Consumption Actual energy output

0 1 2 3 4 5 6 7 8 9 1 0 1 1 1 2 1 3 1 4 1 5 1 6 1 7 1 8 1 9 2 0 2 1 2 2 2 3 2 4 2 5

Time (hours)

0

250

500

750

1,000

1,250

1,500

1,750

2,000

E
le

ct
ri

ci
ty

Fig. 3. Smart Grid scenario with one generator

Figure 3 shows aggregate power consumption, generator output, the PC’s
estimated consumption and the number of active consumer entities during one
day. The shape of sample curves matches the patterns observed in reality, with
peak times and a break for lunch. This indicates that our model, even simplified,
simulates reasonable Grid behaviour. The intervals between control decisions for
the consumers, generator and PC are given by Normal random variables with
mean of 5 and variance between 1 and 3. During these control decisions, the
entity decides whether not to jump along a recv edge, emulating message loss.

We wish to investigate what the impact of network reliability on the system
level properties is by checking how resilient the Grid is to message loss. We use a
benchmark of two core properties. Property (1) G1440|∑[e](Gen(e)·πoutput(e))−∑

[e](Cons(e) · πconsumption(e))| < 400 states that the output of the generator is
always within 400 units of energy of the actual demand within the horizon of
observation (1440 time units). Property (2) G1440|∑[e](Gen(e) · πoutput(e)) −∑

[e](PC(e) · (π0(e)+ ...+π19(e)))| < 250 states that the PC’s estimate of power
consumption is not too far from the truth. The PC’s variables 0 through 19
store how much the consumers tell the PC they are consuming. Here, PC, Gen
and Cons are simply indicator functions for whether the element is the power
controller, a generator or a consumer. We would expect that property (2) is a
prerequisite to property (1), because regulating generator output depends on
having good estimates of the demand.

In our experiments to test message loss resilience, we vary the delivery proba-
bility of messages for the PC. In other words, whenever there is a control decision
the probability that the PC will receive a message (indicating there was no mes-
sage loss) can be 0.9, 9.95, 0.97, 0.98, 0.99 and 1.00. To test these properties
we use Bayesian interval estimation [15], which is a variation of the algorithm
in Section 5. This algorithm returns a confidence interval where the probability
that the properties are satisfied lie. We can specify the size of the interval, as
well as the confidence coefficient, allowing it to be used for cursory and in-depth

Statistical Model Checking for DPCHA and the Smart Grid 145

Table 1. Experimental results for Bayesian hypothesis testing for Smart Grid

(1) 1.00 (2) 1.00 (1) 0.99 (2) 0.99 (1) 0.98 (2) 0.98

Prob. [0.89, 0.93] [0.95, 0.99] [0.87, 0.91] [0.91, 0.95] [0.86, 0.90] [0.86, 0.90]

correct/total 508/557 180/183 582/651 399/426 634/720 608/685

(1) 0.97 (2) 0.97 (1) 0.95 (2) 0.95 (1) 0.9 (2) 0.9

Prob. [0.83, 0.86] [0.82, 0.86] [0.75, 0.79] [0.66, 0.70] [0.28, 0.32] [0.16, 0.20]

correct/total 745/879 754/893 914/1180 998/1461 431/1423 169/971

analyses. Table 1 summarises the results for intervals of 0.04 and a confidence
coefficient of 0.95.

As one would expect, a higher probability of message delivery errors will
exponentially decrease the probability that the Grid is “safe” by making the
generator output deviate too far from what the actual consumption is. In this
scenario, we could now focus on the message delivery probability interval between
0.97 and 1.00. This helps companies and utilities decide whether to invest in more
reliable communication infrastructures or not, depending on what they perceive
the risk to be. It is unclear whether higher levels justify investment in 0.99 or
0.995 reliable infrastructures, because they are more expensive at Grid scale.

We also see that the stronger property (1) holds less often than the weaker
(2), as we foresaw. Furthermore, the discrepancy is proportional to the error
rate. This tells us that communication is central in the Smart Grid. Property
(1), by requiring communication from consumers to the PC to the generator, is
clearly affected by compounded delays of two hops, while (2) only requires one.

Network bandwidth is another very configurable network parameter that
greatly affects deployment costs. The Grid industry still deploys networks that
send a few thousand bits per day. Using the above model with 0.98 message
delivery probability but doubling the consumer feedback interval from 5 to 10
minutes, we obtain the following intervals: for property (1), [0.80, 0.84] and for
(2), [0.78, 0.82], a much lower performance decrease than we expected. We omit
a similar analysis to the one above due to space constraints, and refer to [7].

7 Conclusions

In order to check for desirable properties of Smart Grid technologies, we defined
Distributed Probabilistic-Control Hybrid Automata as a model for hybrid sys-
tems with a dynamic number of probabilistic elements, and Quantified Bounded
Linear Temporal Logic to specify properties in the distributed scenario. We also
showed that Bayesian statistical model checking techniques are applicable in this
context for verifying QBLTL properties. Finally, we developed a Smart Grid case
study where even a preliminary study revealed important cost-benefit relations
relevant to full-scale deployment.

146 J. Martins, A. Platzer, and J. Leite

References

1. Alur, R., Courcoubetis, C., Henzinger, T.A., Ho, P.H.: Hybrid automata: An algo-
rithmic approach to the specification and verification of hybrid systems. In: Gross-
man, R.L., Ravn, A.P., Rischel, H., Nerode, A. (eds.) HS 1991 and HS 1992. LNCS,
vol. 736, Springer, Heidelberg (1993)

2. Demongodin, I., Koussoulas, N.: Differential Petri nets: representing continuous
systems in a discrete-event world. IEEE Transactions on Automatic Control 43(4),
573–579 (1998)

3. Henzinger, T.A.: The theory of hybrid automata. In: LICS (1996)
4. Legay, A., Delahaye, B., Bensalem, S.: Statistical model checking: An overview. In:

Barringer, H., Falcone, Y., Finkbeiner, B., Havelund, K., Lee, I., Pace, G., Roşu,
G., Sokolsky, O., Tillmann, N. (eds.) RV 2010. LNCS, vol. 6418, pp. 122–135.
Springer, Heidelberg (2010)

5. Lynch, N.A.: Input/Output automata: Basic, timed, hybrid, probabilistic, dy-
namic,.. In: Amadio, R.M., Lugiez, D. (eds.) CONCUR 2003. LNCS, vol. 2761,
pp. 187–188. Springer, Heidelberg (2003)

6. Lynch, N.A., Segala, R., Vaandrager, F.W., Weinberg, H.B.: Hybrid I/O automata.
In: Alur, R., Sontag, E.D., Henzinger, T.A. (eds.) HS 1995. LNCS, vol. 1066,
Springer, Heidelberg (1996)

7. Martins, J., Platzer, A., Leite, J.: Statistical model checking for distributed
probabilistic-control hybrid automata in the smart grid. Tech. Rep. CMU-CS-11-
119, Computer Science Department, Carnegie Mellon University (2011)

8. Meseguer, J., Sharykin, R.: Specification and analysis of distributed object-based
stochastic hybrid systems. In: Hespanha, J.P., Tiwari, A. (eds.) HSCC 2006. LNCS,
vol. 3927, pp. 460–475. Springer, Heidelberg (2006)

9. Platzer, A.: Differential dynamic logic for hybrid systems. J. Autom. Reas. 41(2),
143–189 (2008)

10. Platzer, A.: Quantified differential dynamic logic for distributed hybrid systems.
In: Dawar, A., Veith, H. (eds.) CSL 2010. LNCS, vol. 6247, pp. 469–483. Springer,
Heidelberg (2010)

11. Platzer, A.: Stochastic differential dynamic logic for stochastic hybrid programs.
In: Bjørner, N., Sofronie-Stokkermans, V. (eds.) CADE 2011. LNCS, vol. 6803, pp.
431–445. Springer, Heidelberg (2011)

12. Trivedi, K.S., Kulkarni, V.G.: FSPNs: Fluid stochastic Petri nets. In: Ajmone
Marsan, M. (ed.) ICATPN 1993. LNCS, vol. 691, pp. 24–31. Springer, Heidelberg
(1993)

13. Yahav, E., Reps, T., Sagiv, M.: LTL model checking for systems with unbounded
number of dynamically created threads and objects. Tech. Rep. TR-1424, Com-
puter Sciences Department, University of Wisconsin (2001)

14. Younes, H.L.S., Simmons, R.G.: Statistical probabilistic model checking with a
focus on time-bounded properties. Inf. Comput. 204(9), 1368–1409 (2006)

15. Zuliani, P., Platzer, A., Clarke, E.M.: Bayesian statistical model checking with
application to Simulink/Stateflow verification. In: Johansson, K.H., Yi, W. (eds.)
HSCC, pp. 243–252. ACM, New York (2010)

PRTS: An Approach for Model Checking Probabilistic
Real-Time Hierarchical Systems�

Jun Sun1, Yang Liu2, Songzheng Song3, Jin Song Dong2, and Xiaohong Li4

1 Singapore University of Technology and Design
sunjun@sutd.edu.sg

2 National University of Singapore
{liuyang,dongjs}@comp.nus.edu.sg

3 NUS Graduate School for Integrative Sciences and Engineering
songsongzheng@nus.edu.sg

4 School of Computer Science and Technology, Tianjin University
xiaohongli@tju.edu.cn

Abstract. Model Checking real-life systems is always difficult since such sys-
tems usually have quantitative timing factors and work in unreliable environment.
The combination of real-time and probability in hierarchical systems presents
a unique challenge to system modeling and analysis. In this work, we develop
an automated approach for verifying probabilistic, real-time, hierarchical sys-
tems. Firstly, a modeling language called PRTS is defined, which combines data
structures, real-time and probability. Next, a zone-based method is used to build
a finite-state abstraction of PRTS models so that probabilistic model checking
could be used to calculate the probability of a system satisfying certain property.
We implemented our approach in the PAT model checker and conducted experi-
ments with real-life case studies.

1 Introduction

With the development of computing and sensing technology, information process and
control software are integrated into everyday objects and activities. Design and de-
velopment of control software for real-life systems are notoriously difficult problems,
because such systems often have complex data components or complicated hierarchical
control flows. Furthermore, control software often interacts with physical environment
and therefore depends on quantitative timing. In addition, probability exhibits itself
commonly in the form of statistical estimates regarding the environment in which con-
trol software is embedded. Requiring a system always to function perfectly within any
environment is often overwhelming. Standard model checking may produce ‘unlikely’
counterexamples which may not be helpful.

Example 1 (A motivating example). Multi-lift systems heavily rely on control software.
A multi-lift system consists of a hierarchy of components, e.g., the system contains
multiple lifts, floors, users, etc.; a lift contains a panel of buttons, a door and a lift

� This research was partially supported by research grant “SRG ISTD 2010 001” from Singapore
University of Technology and Design.

S. Qin and Z. Qiu (Eds.): ICFEM 2011, LNCS 6991, pp. 147–162, 2011.
© Springer-Verlag Berlin Heidelberg 2011

148 J. Sun et al.

controller; a lift controller may contain multiple control units. It is complex in control
logic as behavior of different components must be coordinated through a software con-
troller. Ideally, the system shall be formally verified to satisfy desirable properties. For
instance, one of the properties is: if a user has requested to travel in certain direction,
a lift should not pass by, i.e., traveling in the same direction without letting the user in.
However, this property is not satisfied. Typically, once a user presses a button on the
external panel at certain floor, the controller assigns the request to the ‘nearest’ lift. If
the ‘nearest’ lift is not the first reaching the floor in the same traveling direction, the
property is violated. One counterexample that could be returned by a standard model
checker is that the lift is held by some user for a long time so that other lifts pass by the
floor in the same direction first. Designing a multi-lift system which always satisfies the
property is extremely challenging. One way is to re-assign all external requests every
time a lift travels to a different floor. Due to high complexity, many existing lift systems
do not support re-assigning requests. The question is then: what is the probability of
violating the property, with typical randomized arrival of user requests from different
floors or from the button panels inside the lifts? If the probability is sufficiently low,
then the design may be considered as acceptable. Further, can we prove that choosing
the ‘nearest’ lift is actually better than assigning an external request to a random lift?

The above example illustrates two challenges for applying model checking in real-
life systems. Firstly, an expressive modeling language supporting features like real-
time, hierarchy, concurrency, data structures as well as probability, may be required
to model complex systems. Secondly, the models should be efficiently model check-
able for widely used properties, such as reachability checking and Linear Temporal
Logic(LTL) checking. One line of work on modeling complicated systems is based on
integrated formal specification languages [10,23]. These proposals suffer from one limi-
tation, i.e., there are few supporting tools for system simulation or verification. Existing
model checkers are limited because they do not support one or many of the required
system features. For instance, SPIN [17] supports complex data operations and concur-
rency, but not real-time or probability. UPPAAL [7] supports real-time, concurrency and
recently data operations as well as probability (in the extension named UPPAAL-PRO),
but lacks support for hierarchical control flow and is limited to maximal probabilistic
reachability checking. PRISM [15] is popular in verifying systems having concurrency,
probability and the combination of real-time and probability in its latest version [19].
However, it does not support hierarchical systems, but rather networks of flat finite state
systems. In addition, most of the tools support only simple data operations, which could
be insufficient in modeling systems which have complicated structures and complex
data operations, such as the multi-lift system.

Contribution. Compared to our previous work [28,27], the contributions of this work
are threefold. First, we develop an expressive modeling language called PRTS, combin-
ing language features from [28,27]. PRTS is a combination of data structures, hierarchy,
real-time, probability, concurrency, etc, and it is carefully designed in order to be ex-
pressive and also model checkable for different properties. Second, a fully automated
method is used to generate abstractions from PRTS models. We show that the infinite
states caused by real-time transitions could be reduced to finitely zones, which are then
subject to probabilistic model checking. The abstraction technique proposed in [27]

An Approach for Model Checking Probabilistic Real-Time Hierarchical Systems 149

is extended to PRTS and shown to be probability preserving. Third, we implement a
dedicated model checker as a part of the PAT model checker [26], which supports edit-
ing, simulating and verifying PRTS models. The tool has been applied to the multi-lift
system and benchmark systems.

Organization. The paper is structured as follows. Section 2 recalls background.
Section 3 introduces the proposed modeling language PRTS. Section 4 defines its op-
erational semantics. Section 5 describes zone-based abstraction technique, which leads
to the model checking approach in Section 6. The evaluation is reported in Section 7.
Section 8 surveys related work. Section 9 concludes the paper and discusses future
work.

2 Basic Concepts

In this section, we recall some basic concepts and definitions of model checking tech-
niques [5] that will be used throughout the rest of the paper. When modeling probabilis-
tic systems (particularly, discrete-time stochastic control processes), MDP is one of the
most widely used models. An MDP is a directed graph whose transitions are labeled
with events or probabilities. The following notations are used to denote different transi-
tion labels. R+ denotes the set of non-negative real numbers; ε ∈ R+ denotes the event
of idling for exactly ε time units; τ denotes an unobservable event; Act denotes the set
of observable events such that τ �∈ Act ; Actτ denotes Act ∪ {τ}. Given a countable
set of states S , a distribution is a function μ : S → [0, 1] such that Σs∈S μ(s) = 1.
μ is a trivial distribution or is trivial if and only if there exists a state s ∈ S such that
μ(s) = 1. Let Distr(S) be the set of all distributions over S . Formally,

Definition 1. An MDP is a tuple D = (S , init ,Act ,Pr) where S is a set of states;
init ∈ S is the initial state; Pr : S × (Actτ ∪ R+)×Distr(S) is a transition relation.

An MDP D is finite if and only if S and Distr(S) are finite. For simplicity, a transition is
written as: s x→ μ such that s ∈ S ; x ∈ Actτ ∪R+ and μ ∈ Distr(S). If μ is trivial, i.e.,
μ(s ′) = 1, then we write s x→ s ′. There are three kinds of transitions. A time-transition
is labeled with a real-valued constant ε ∈ R+. An observable transition is labeled with
an event in Act . An un-observable transition is labeled with τ . Throughout the paper,
MDPs are assumed to be deadlock-free following the standard practice. A deadlocking
MDP can be made deadlock-free by adding self loops labeled with τ and probability 1
to the deadlocking states, without affecting the result of probabilistic verification.

A state of D may have multiple outgoing distributions, possibly associated with dif-
ferent events. A scheduler is a function deciding which event and distribution to choose.
A Markov Chain [5] can be defined given an MDP D and a scheduler δ, which is de-
noted as Dδ . A Markov Chain is an MDP where only one event and distribution is
available at every state. Intuitively speaking, given a state s , firstly an enabled event
and a distribution are selected by the scheduler, and then one of the successor states
is reached according to the probability distribution. A rooted run of Dδ is an alternat-
ing sequence of states and events π = 〈s0, x0, s1, x1, · · ·〉 such that s0 = init . The
sequence 〈x0, x1, · · ·〉, denoted as trace(π), is a trace of Dδ . Let runs(Dδ) denote the

150 J. Sun et al.

set of rooted runs of D. Let traces(Dδ) denote the set of traces of Dδ . Given Dδ and
si ∈ D , let μi be the (only) distribution at si . The probability of exhibiting π in Dδ ,
denoted as PDδ(π), is μ0(s1) ∗ μ1(s2) ∗ · · ·.

It is often useful to find out the probability of D satisfying a property φ. Note that
with different schedulers, the result may be different. For instance, if φ is reachability of
a state s , then s may be reached by different scheduling with different probability. The
measurement of interest is thus the maximum and minimum probability of satisfying φ.
The maximum probability is defined as follows.

Pmax
D (φ) = supδ PD({π ∈ runs(Dδ) | π satisfies φ})

Note that the supremum ranges over all, potentially infinitely many, schedulers. Intu-
itively, it is the maximum of probability of satisfying φ with any scheduler. The mini-
mum is defined as: Pmin

D (φ) = infδ PD({π ∈ runs(Dδ) | π satisfies φ}) which yields
the best lower bound that can be guaranteed for the probability of satisfying φ. For
different classes of properties, there are different methods to calculate the maximum
and minimum probability, e.g., reachability by solving a linear program or graph-based
iterative methods; LTL checking by identifying end components and then calculating
reachability probability [5].

3 Syntax of PRTS

The choice of modeling language is an important factor in the success of the entire
system analysis or development. The language should cover several facets of the re-
quirements and the model should reflect exactly (up to abstraction of irrelevant details)
a system. In this work, we draw upon existing approaches [16,21,2,27] and create the
single notation PRTS. In the following, we briefly introduce the syntax of a core sub-
set of PRTS. Interested readers can refer to PAT user manual for a complete list of
constructs and detailed explanation.

A PRTS model (hereafter model) is a 3-tuple (Var , σi ,P) where Var is a finite
set of finite-domain global variables; σi is the initial valuation of Var and P is a pro-
cess which captures the control logic of the system. A process is defined in form of
Proc(para) = PExpr where Proc is a process name; para is a vector of parameters
and PExpr is a process expression. A rich set of process constructs are defined to cap-
ture different features of various systems, as shown in the following.

P = Stop | Skip | e → P | P � Q | P 	 Q | P ; Q | P ‖ Q | P ||| Q
| P \ {X } | if b then P else Q | a{program} → P | Wait [d]
| P timeout [d] Q | P interrupt [d] Q | P deadline[d] | P within[d]
| pcase{pr0 : P0; pr1 : P1; · · · ; prk : Pk} | ref (Q)

Hierarchical Control Flow. A number of the constructs are adapted from the clas-
sic CSP [16] to support modeling of hierarchical systems. Process Stop and Skip are
process primitives, which denote inaction and termination respectively. Process e → P
engages in an abstract event e first and then behaves as process P . Event e may serve as
a multi-party synchronization barrier if combined with parallel composition ‖. A variety

An Approach for Model Checking Probabilistic Real-Time Hierarchical Systems 151

of choices are supported, e.g., P � Q for unconditional choice; and if b then P else Q
for conditional branching in which b is a boolean expression composed by process pa-
rameters and variables in Var . Process P ; Q behaves as P until P terminates and
then behaves as Q . Parallel composition of two processes is written as P ‖ Q , where
P and Q may communicate via multi-party event synchronization. If P and Q only
communicate through variables1, then it is written as P ||| Q . Process P \ {X } hides
occurrence of any event in {X }. Recursion is supported by referencing a process name
with concrete parameters. The semantics of the constructs is defined in [29].

Data Structures and Operations. Different from CSP, a PRTS model is equipped with
a set of variables Var . Variables can be of simple types like Boolean or integer or arrays
of simple types. In order to support arbitrary complex data structures and operations,
user-defined data types are allowed. A user-defined data type must be defined externally
(e.g., as a C# library), and imported in a model. The detailed explanation of the interface
methods and examples of creating/using C# library can be found in PAT user manual.
Note that in order to guarantee that model checking is terminating, each data object must
have only finitely many different values and all data operations must be terminating,
both of which are users’ responsibility. Furthermore, users are recommended to apply
standard programming techniques like using assertions to ensure correctness of the data
operations. Data operations are invoked through process expression a{program} → P ,
which generates an event a and atomically executes program program at the same time,
and then behaves as P . In other words, program is a transaction. Variable updates are
allowed in program. In order to prevent data race, event a with an attached program
will not to be synchronized by multiple processes.

Real-Time. A number of timed process constructs are supported in PRTS to cover com-
mon timed behavioral patterns. Process Wait [d] idles for exactly d time units, where
d an integer constant. In process P timeout [d] Q , the first observable event of P shall
occur before d time units elapse (since the process is activated). Otherwise, Q takes
over control after exactly d time units. Process P interrupt [d] Q behaves exactly as P
(which may engage in multiple observable events) until d time units elapse, and then Q
takes over control. PRTS extends Timed CSP [25] with additional timed process con-
structs. Process P deadline[d] constrains P to terminate before d time units. Process
P within[d] requires that P must perform an observable event within d time units.
Constant d associated with the timed process constructs are referred as the parameter
of the timed process construct. Note that real-time systems modeled in PRTS can be
fully hierarchical, whereas Timed Automata based languages (e.g., the one supported
by Uppaal) often have the form of a network of flat Timed Automata.

Probability. In order to randomized behaviors (i.e., unreliable environment or cognitive
aspects of user behaviors), probabilistic choices are introduced as follows.

pcase {pr0 : P0; pr1 : P1; · · · ; prk : Pk}
where pri is a positive integer constant to express the probability weight. Intuitively,
it means that with pri

pr0+pr1+···+prk
probability, the system behaves as Pi . Note that the

1 Or synchronous/asynchronous channels. The details are skipped for simplicity.

152 J. Sun et al.

1. #define NoOfFloors 2;
2. #define NoOfLifts 2;
3. #import "PAT.Lib.Lift";
4. var<LiftControl> ctrl = new LiftControl(NoOfFloors,NoOfLifts);
5. Users() = pcase {
6. 1 : extreq.0.1{ctrl.Assign_External_Up_Request(0)} -> Skip
7. 1 : intreq.0.0.1{ctrl.Add_Internal_Request(0,0)} -> Skip
8. 1 : intreq.1.0.1{ctrl.Add_Internal_Request(1,0)} -> Skip
9. 1 : extreq.1.0{ctrl.Assign_External_Down_Request(1)} -> Skip
10. 1 : intreq.0.1.1{ctrl.Add_Internal_Request(0,1)} -> Skip
11. 1 : intreq.1.1.1{ctrl.Add_Internal_Request(1,1)} -> Skip
12. } within[1]; Users();
13. Lift(i, level, direction) = ...;
14. System = (||| x:{0..NoOfLifts-1} @ Lift(x, 0, 1)) ||| Users();

Fig. 1. A lift system model

public void Assign_External_Up_Request(int level) {
1. ...
2. int minimumDistance = int.MaxValue;
3. int chosenLift = -1;
4. for (int i = 0; i < LiftStatus.Length; i++) {
5. int distance;
6. if (LiftStatus[i] >= 0) {
7. if (LiftStatus[i] <= level) {
8. distance = level - LiftStatus[i];
9. } else {
10. distance = NoOfFloors - LiftStatus[i] + NoOfFloors - level;
11. }
12. } else {
13. distance = LiftStatus[i] * -1 + level;
14. }
15. if (distance < minimumDistance) {
16. chosenLift = i;
17. minimumDistance = distance;
18. }
19. }
20. ExternalRequestsUp[level] = chosenLift;
}

Fig. 2. A data operation example

sum of all the probabilities in one pcase is guaranteed to be 1. Process Pi can be any
process and thus PRTS supports fully hierarchical probabilistic systems.

Example 2. We use the lift system example to illustrate modeling with PRTS. The model
(in ASCII format as supported in PAT) is shown in Figure 1. Line 1 and 2 define two
constants which denote the number of floors and lifts respectively. Line 3 imports a
C# library, which defines a data type LiftControl encapsulating all data components
and operations of the lift system. Note that it is a design decision whether to main-
tain the data externally in the C# library or in the model itself. A LiftControl object
contains multiple data structures, e.g., an integer array for user requests from exter-
nal button panels, a two dimensional array for requests for internal button panels, etc.
Interested readers can refer to PAT (version 3.0 or later, open with PAT’s C# editor
and compiler) for its details. The LiftControl class also defines multiple data oper-
ations. For instance, one of them is shown in Figure 2 which assigns an external re-
quest for traveling upwards to a lift. The idea is to assign a request to a lift which can
reach the requesting floor by traveling the minimum number of floors (without changing

An Approach for Model Checking Probabilistic Real-Time Hierarchical Systems 153

direction except at the top or bottom floor). Note that level denotes the requesting floor
and LiftStatus is an array maintaining status of the lifts, i.e., ListStatus[i] = −2 means
that i-th lift is at level 2 traveling downwards. In Figure 1, line 4 of the lift model creates
a LiftControl object named ctrl . Line 5 to 12 defines a process Users(), which models
behavior of the users. In this (overly) simplified model, user requests are assumed to ar-
rive periodically with uniform probabilistic distribution2. There are 6 different requests
with 2 floors and 2 lifts (two of which are external requests). Each is given 1

6 proba-
bility, as modeled using pcase at line 5-12 in Figure 1. For instance, event extreq.0.1
models an external request at 0-floor for traveling upwards. The event is associated with
a program which invokes the method for assigning requests to lifts through object ctrl .
Note that user behaviors are subject to real-time constraint, i.e., a request is requested
within 1 second, modeled using within[1]. At line 13, process Lift which is composed
of sub-processes models an individual lift. We skip its details for the sake of space. At
the top level, the system is the interleaving of users and lifts at line 14.

4 Operational Semantics

The semantics of a PRTS model is an MDP, due to its mixture of nondeterminism and
probabilistic choices. In order to define the operational semantics, we define the notion
of a configuration to capture the global system state during the execution, referred as
concrete configurations. This terminology distinguishes the notion from the abstract
configurations which will be introduced in Section 5.

Definition 2. A concrete system configuration is a tuple c = (σ,P) where σ is a vari-
able valuation and P is a process.

Given a model, the probabilistic transition relation of its MDP semantics can be defined
by associating a set of firing rules with every process construct, which are also known as
concrete firing rules. In the following, the rules for process Wait [d], P timeout [d] Q
and pcase are exemplified in Figure 3. The rest are similarly defined (available in [29]).
The top two rules capture behaviors of process Wait [d]. The first rule states that through
a time-transition, a process may idle for any amount of time as long as it is less than or
equal to d time units. Note that no variable update is not possible in time-transitions.
The second rule states that the process terminates immediately after d becomes 0. The
next four rules capture semantics of process P timeout [d] Q . If an observable event e
can be performed by P , then P timeout [d] Q becomes P ′ (the first rule). That is, once
an observable event is engaged before d time units, time-out never occurs. If d is 0, Q
may take over control and the whole process becomes Q via a τ -transition (the second
rule). Note that it is possible that an observable event occurs when d is 0. Only that
when d is 0, time-transition is not allowed before the τ -transition. If an unobservable
transition is generated by P , the timeout operator remains (the third rule). If P may
idle for less than or equal to d time units, so is P timeout [d] Q . All above transitions
result in trivial distributions. The resultant distribution of the pcase process is defined
such that the probability of becoming Pi is pri . Note that neither variable valuation

2 A realistic user model can be obtained by mining data of actual lift systems.

154 J. Sun et al.

ε ≤ d

(σ,Wait [d])
ε→ (σ,Wait [d − ε]) (σ, Wait [0])

τ→ (σ,Skip)

(σ,P)
e→ (σ′,P ′), e ∈ Act

(σ,P timeout [d] Q)
e→ (σ′,P ′) (σ, P timeout [0] Q)

τ→ (σ,Q)

(σ,P)
τ→ (σ′,P ′)

(σ,P timeout [d] Q)
τ→ (σ′,P ′ timeout [d] Q)

(σ,P)
ε→ (σ,P ′), ε ≤ d

(σ,P timeout [d] Q)
ε→ (σ,P ′ timeout [d − ε] Q)

[pcase]
(σ, pcase {pr0 : P0; pr1 : P1; · · · ; prk : Pk}) τ→ μ

s.t. μ((σ,Pi)) = pri
pr0+pr1+···+prk

for all i ∈ [0, k]

Fig. 3. Concrete firing rules

nor time change. Rule pcase is the only rule which produces a nontrivial distribution.
We remark that different from Probabilistic Timed Automata(PTA) [14,21], probability
and time are separated in PRTS, i.e., a transition can be either time-consuming or has
trivial probability but never both.

Definition 3. Let M = (Var , σinit ,P) be a model. DM is an MDP (S , init ,Act ,Pr)
such that S is a set of concrete system configurations; init = (σinit ,P); and Pr :
S × (Actτ ∪ R+) × Distr(S) is defined by the firing rules.

DM is referred to as the concrete semantics of M . Because PRTS has a dense-time
semantics, DM has infinitely many states. In order to apply model checking techniques,
a finite-state abstract MDP is required.

5 Abstraction

In this section, we present a fully automated approach to generate a finite-state abstract
MDP from a model. Without loss of generality, we assume that every process reach-
able from the initial configuration is finite-state (as defined in [24]). As a result, in a
process which has finitely many process constructs, the only source of infinity is tim-
ing, or equivalently, the infinitely many possible values for parameters of timed process
constructs. For instance, given process Wait [1], there are infinitely many processes that
can be reached by a time-transition, e.g., Wait [0.9], Wait [0.99], Wait [0.999], etc. One
observation is that for certain properties, the exact value of the parameters is not impor-
tant, i.e., they can be grouped into equivalent classes. This leads to the idea of using a

An Approach for Model Checking Probabilistic Real-Time Hierarchical Systems 155

constraint to capture the value of the parameters. In the following, we summarize dy-
namic zone abstraction [27] and prove that it can be applied to PRTS models without
changing the results of probabilistic properties.

In order to distinguish parameters associated with different process constructs, the
first step of the abstraction is to associate timed process constructs with clocks. Con-
straints on the clocks are then used to capture values of the respective parameters. For
simplicity of presentation, we assume that each process construct is associated with a
unique clock3. For instance, let P timeout [d]c Q denote that process P timeout [d] Q
is associated with clock c. P timeout [d]c Q with a constraint c ≤ 5 represents any
process P timeout [d ′] Q with d ′ ≤ 5. This gives the notion of abstract system config-
urations, which compose the abstract MDP.

Definition 4. Given a concrete system configuration (σ,P), the corresponding abstract
system configuration is a triple (σ,PT ,D) such that PT is a process obtained by asso-
ciating P with a set of clocks; and D is a zone over the clocks.

There are usually multiple timed process constructs in a process P . Nonetheless, at one
moment not all of the timed constructs are activated, i.e., only some of them are ready
to take over control and perform a transition. We write cl(P) to denote the set of clocks
activated in P and X = 0 where X is a set of clocks to denote the conjunction of c = 0
for all c ∈ X .

A zone D is the conjunction of multiple primitive constraints over a set of clocks.
A primitive constraint is of the form t ∼ d or ti − tj ∼ d where t , ti , tj are clocks,
d is a constant and ∼ is either, ≥, = or ≤4. Intuitively, a zone is the maximal set of
clock valuations satisfying the constraint. A zone is empty if and only if the constraint
is unsatisfiable. An abstraction configuration (σ,PT ,D) is valid if and only if D is not
empty. The following zone operations are relevant. Let D denote a zone. D↑ denotes
the zone obtained by delaying arbitrary amount of time. Note that all clocks proceed at
the same rate. For instance, let c be a clock, (c ≤ 5)↑ is c ≤ ∞. Given a set of clocks
X , D [X] denotes the set of valuations of clocks in X which satisfy D . Zones can be
equivalently represented as Difference Bound Matrices(DBMs) and zone operations can
be translated into DBMs manipulation [12,8].

In order to define the abstract MDP, we define abstract firing rules. To distinguish
from concrete transitions, an abstract transition is written in the form: (σ,PT ,D) e�
(σ′,P ′

T ,D ′). Figure 4 shows the abstract rules for process Wait [d], P timeout [d] Q
and pcase as examples. Given process P which is associated with clocks, idle(P) is
defined to be the maximum zone such that P can idle before performing an event-
transition. For instance, idle(P deadline[5]c) = idle(P) ∧ c ≤ 5, i.e., P deadline[5]c
can idle as long as P can idle and the reading of c is no bigger than 5. Refer to [29]
for the detailed definition of idle(P) and the rest of the abstract firing rules. Rule ade
in Figure 4 states that process Wait [d] idles for exactly d time units and then engages
in event τ and the process transforms to Skip. Note that the zone of the target con-
figuration is D↑ ∧ c = d . Intuitively, it means that the transition occurs sometime in

3 For practice, clocks are renamed dynamically so that they are shared by processes which are
activated at the same time. Refer to details in [27].

4 In our setting, the clock constraints are always closed.

156 J. Sun et al.

the future (captured by D↑) when c reads d (captured by c = d). It should be clear
that this is ‘equivalent’ to the concrete firing rules. Rule ato1, ato2 and ato3 capture
the abstract semantics of P timeout [d] Q . Depending on when the first event of P
takes place and whether it is observable, process P timeout [d] Q behaves differently
in three ways. Rule ato1 states that if P generates a τ -transition, the timeout construct
remains. Furthermore, the target zone D ′ ∧ c ≤ d constrains that the transition must
take place no later than d time units. In contrast, rule ato2 states that if P generates an
observable transition, then the timeout construct is removed. Similarly, it is constrained
that the transition must occur no later than d time units. Rule ato3 captures the case
when timeout occurs. Namely, timeout occurs if and only if the reading of c is exactly
d and, further, P must be able to idle until c reads d . Rule apcase captures the abstract
semantics of pcase. Note that this τ -transition is instantaneous.

Definition 5. Let M = (Var , σinit ,Proc) be a model. Da
M = (Sa , inita ,Act ,Pra) is

the abstract MDP such that Sa is a set of valid abstract system configurations; inita =
(σinit ,Proc,Dinit) is the initial abstract configuration where Dinit is cl(Proc) = 0;
and Pra is the smallest transition relation such that: for all s ∈ Sa , if s a� μ, then
(s , a, μ′) ∈ Pra such that: if μ((σ,P ,D)) > 0, then μ′((σ,P ,D ′)) = μ((σ,P ,D))
where D ′ = D [cl(Q)] ∧ cl(Q) − cl(P) = 0.

Informally, for any (σ,PT ,D) obtained by applying an abstract firing rule, D ′ is ob-
tained by firstly pruning all clocks which are not in cl(Q) and then setting clocks as-
sociated with newly activated processes (i.e., cl(Q) − cl(P)) to be 0. The construct of
Da

M is illustrated in the following example.

Example 3. Assume a model M = (∅, ∅,P) such that process P is defined as follows.

P = (pcase {1 : Wait [2]c0 ; 3 : Wait [5]c1}) timeout [3]c2 exit → P

The abstract MDP is shown as follows.

A transition is labeled with an event (with a skipped probability 1) or a probabil-
ity less than 1 (with a skipped event τ). Note that all transitions with resulting in a
non-trivial distribution is labeled with τ , whereas all transitions labeled with an event
other than τ has probability 1. The initial configuration state 0 is (∅,P , c2 = 0)
where clock c2 is associated with timeout [3] in P . Applying rule ato3, we get the
transition from state 0 to state 3. Note that clock c2 is pruned after the transition be-
cause it is no longer associated with any process constructs. Applying rule apcase, we
get the transitions from state 0 to state 1 and 4, which belong to the same distribu-
tion. Note that clock c2 is not pruned during both transitions. State 4 is as follows:
(∅,Wait [5]c1 timeout [3]c2 exit → P , c2 = 0 ∧ c1 = 0). By rule apcase, the τ -
transition is instantaneous and thus c2 = 0. Note that c2 = c1 since c1 starts when

An Approach for Model Checking Probabilistic Real-Time Hierarchical Systems 157

[ade]
(σ,Wait [d]c ,D)

τ� (σ,Skip,D↑ ∧ c = d)

(σ,P ,D)
τ� (σ′,P ′,D ′)

[ato1]
(σ,P timeout [d]c Q ,D)

τ� (σ′,P ′ timeout [d]c Q ,D ′ ∧ c ≤ d)

(σ,P ,D)
e� (σ′,P ′,D ′), e �= τ

[ato2]
(σ,P timeout [d]c Q ,D)

e� (σ′,P ′, D ′ ∧ c ≤ d)

[ato3]
(σ,P timeout [d]c Q ,D)

τ� (σ, Q , c = d ∧ idle(P))

[apcase]
(σ, pcase {pr0 : P0; pr1 : P1; · · · ; prk : Pk}, D)

τ� μ
s.t. μ((σ,Pi ,D)) = pri

pr0+pr1+···+prk
for i ∈ [0, k]

Fig. 4. Abstract firing rules

c2 = 0. Two rules can be applied to state 4, i.e., ato3 so that timeout occurs or other-
wise ato2. Applying rule ato3, we obtain the transition from state 4 to state 3. Applying
rule ato2, we obtain the following zone: c1 = 5 ∧ c2 ≤ 3 ∧ c1 = c2. It can be shown
that the zone is empty and hence the transition is infeasible. Other transitions are simi-
larly obtained. Note that the event terminate is generated by the process Skip which is
in term generated from Wait [2] (rule ade). �

6 Verification

We show that the abstraction model can be verified with standard probabilistic model
checking techniques. Given a model M , Da

M must be finite so as to be model checkable.

Theorem 1. Da
M is finite for any model M . �

A proof sketch is as follows. The number of states in Da
M is bounded by the number

of 1) variable valuations, 2) process expressions and 3) zones. By assumption, 1) is
finite. Because clocks are associated with timed process constructs and we assume that
every reachable process P is finite, cl(P) is finite. It can be shown that by reusing
clocks, finitely many clocks are sufficient. Combined with our assumption, 2) is finite.
By previous work on zone abstraction [9], 3) is finite5.

Furthermore, the abstract semantics Da
M must be ‘sufficiently’ equivalent to the con-

crete semantics DM so that verification results based on Da
M apply to DM . In the

following, we show that our abstraction is probability preserving with respect to one
popular class of properties: (untimed) LTL-X (i.e., LTL without the ‘next’ operator)6.

5 Zone normalization is not necessary as all clocks are bounded from above. Refer to [29].
6 The next operator is omitted because its semantics for real-times systems can be confusing.

158 J. Sun et al.

Assume that φ is an LTL-X formula, constituted by temporal operators, logic operators
and atomic propositions on variables. Given a run π of an MDP and φ, satisfaction of
φ by π is defined in the standard way. Let Pmax

D (φ) be the maximum probability of
MDP D satisfying φ; Pmin

D (φ) be the minimum probability satisfying φ. The following
establishes that it is sound and complete to model-check LTL-X against Da

M .

Theorem 2. Let M be a model. Pmax
Da

M
(φ) = Pmax

DM
(φ) and Pmin

Da
M

(φ) = Pmin
DM

(φ). �

A proof sketch is as follows. Refer to [29] for a complete proof. This theorem is proved
by showing that: for every run ex of DM , there is a run ex ′ of Da

M (and vice versa)
such that (1) ex and ex ′ are stutter equivalent in terms of variable valuations; (2) ex
and ex ′ have the same probability. Intuitively, (1) is true because variable valuations do
not change through time transitions and all that our abstract does is to encapsulate time
transitions (while preserving event transitions). (2) is true because time-transitions al-
ways have probability 1. We remark that it is known that forward analysis of PTA [21] is
not accurate (e.g., the maximum probability returned is an over-approximation) because
zone graphes generated from Timed Automata do not satisfy (pre)-stability. We show
in [29] that dynamic zone abstraction (for Stateful Timed CSP [27] and ergo PRTS) gen-
erates zone graphes which are time-abstract bi-similar to the concrete transition systems
and satisfy (pre-)stability. As a result, forward analysis of Da

M is accurate.
We adopt the automata-based approach [5] to check LTL-X properties. Firstly, a de-

terministic Rabin automaton equivalent to a given LTL-X formula is built. The product
of the automaton and the abstract MDP is then computed. Thirdly, end components
in the product which satisfy the Rabin acceptance condition are identified. Lastly, the
probability of reaching any state of the end components is calculated, which equals the
probability of satisfying the property.

7 Implementation and Evaluation

System modeling, simulation and verification in PRTS have been supported (as a
module) in PAT7. PAT has user-friendly editor, simulator and verifier and works un-
der different operating systems. After inputting PRTS model in the editor, users could
simulate the system behaviors step by step or generate the whole state space if the num-
ber of states is under some constraint. For verification, besides the LTL-X checking,
PRTS also supports reachability checking, and refinement checking (i.e., calculating the
probability of a probabilistic system exhibiting any behaviors of a non-probabilistic
specification).

To answer the question on our motivating example, we verify the lift model and
compare two ways of assigning external requests. One is to assign the request to a ran-
dom lift. The other is that an external request is always assigned to the ‘nearest’ lift.
For simplicity, we assume external requests are never re-assigned. A lift works as fol-
lows. It firstly checks whether it should serve the current floor. If positive, it opens its
door and then repeats from the beginning later. If negative, it checks whether it should
continue traveling in the same direction (if there are internal requests or assigned exter-
nal requests on the way) or change direction (if there are internal or assigned external

7 http://www.patroot.com

http://www.patroot.com

An Approach for Model Checking Probabilistic Real-Time Hierarchical Systems 159

Table 1. Experiments: Lift System

System
Random Nearest

Result(pmax) Time(s) Result(pmax) Time(s)
lift=2; floor=2; user=2 0.21875 3.262 0.13889 2.385
lift=2; floor=2; user=3 0.47656 38.785 0.34722 18.061
lift=2; floor=2; user=4 0.6792 224.708 0.53781 78.484
lift=2; floor=2; user=5 0.81372 945.853 0.68403 223.036
lift=2; floor=3; user=2 0.2551 12.172 0.18 6.757
lift=2; floor=3; user=3 0.54009 364.588 0.427 119.810
lift=2; floor=3; user=4 0.74396 11479.966 0.6335 1956.041
lift=2; floor=4; user=2 0.27 27.888 0.19898 13.693
lift=3; floor=2; user=2 0.22917 208.481 0.10938 88.549
lift=3; floor=2; user=3 OOM OOM 0.27344 3093.969

requests on the other direction) or simply idle (otherwise). Note that it is constrained
(using within) to react regularly. The property that a lift should not pass by without
serving a user’s external request is verified through probabilistic reachability analysis,
i.e., what is the maximal probability of reaching a state such that a lift is passing by a
requested floor in the requested direction. Table 1 summarizes the experiment results,
where OOM means out of memory. The experiment testbed is a PC running Windows
Server 2008 64 Bit with Intel Xeon 4-Core CPU×2 and 32 GB memory. Details about
our experiments are available at http : //www .comp.nus .edu.sg/˜pat/icfem/prts .

The parameters of the model denote the number of lifts, the number of floors and
number of user requests respectively. We limit the number of user requests so as to
check how the probability varies as well as to avoid state space explosion. It is inf
when there is no limit. Column Random and Nearest shows the maximum probability
of violating the property with random assignment and ’nearest ’ assignment respec-
tively. Note that it can be shown that the minimum probability is always 0 (i.e., there
exists a scheduler which guarantees satisfaction of the property). The following con-
clusion can be made. Firstly, it takes at least two external requests, two lifts and two
floors to constitute a bad behavior, e.g., one lift is at top floor (and later going down
to serve a request), while a request for going down at the top floor is assigned to the
other lift. Secondly, the more user requests, the higher the probability is. Intuitively, this
means that with more requests, it is more likely that the bad behavior occurs. Similarly,
the probability is higher with more floors. Lastly, ‘nearest’ assignment performs better
than random assignment as expected, i.e., the maximum probability of exhibiting a bad
behavior with the former is always lower than with the latter in all cases.

The statistics on memory consumption is skipped as PAT only generates an estimated
memory usage for each verification run because memory usage is managed by .NET
framework. In average, our current implementation processes 11K states per second
(or millions in one hour) in these experiments, which is less than other explicit-state
model checkers like SPIN. This is expected given the complexity in handling PRTS.
State space explosion occurs when there are more than 3 lifts and more than 4 floors.
This, however, should not be taken as the limit of PAT, as many optimization techniques
are yet to incorporated.

160 J. Sun et al.

Table 2. Experiments: PAT vs PRISM

System Property Result PAT(s) PRISM(s)
ME (N=5) LTL 1 9.031 7.413
ME (N=8) LTL 1 185.051 149.448

RC (N=4,K=4) LTL 0.99935 4.287 33.091
RC (N=6,K=6) LTL 1 146.089 2311.388
CS (N=2, K=4) LTL 0.99902 9.362 1.014
CS (N=3, K=2) LTL 0.85962 212.712 7.628

Next, the PRTS checker is compared with state-of-the-art probabilistic model checker
PRISM on verifying benchmark systems based on MDP. The results are summarized
in Table 2. We use existing PRISM models; re-model them using PRTS and verify
them. The models are a mutual exclusion protocol (ME), a randomized consensus algo-
rithm(RC), and the CSMA/CD protocol (CS). We use the iterative method in calculat-
ing the probability and set termination threshold as relative difference 1.0E-6 (same as
PRISM). Our implementation is better for CS, slightly slower than ME and significantly
slower for RC. The main reason that PAT could outperform PRISM in some cases is that
models in the PRTS have much fewer states than their respective in PRISM - due to dif-
ference in modeling language design. In general, PRISM handles more states per time
unit than PAT. The main reason is the complexity in handling hierarchical models. Note
that though these models have simple structures, there is overhead for maintaining un-
derlying data structures designed for hierarchical systems. PRISM is based on MTBDD
or sparse matrix or a hybrid approach, whereas PAT is based on explicit state representa-
tion currently. Symbolic methods like BDD are known to handle more states. Applying
BDD techniques to hierarchical complex languages like PRTS is highly non-trivial. It
remains as one of our ongoing work.

8 Related Work

There are several modeling methods and model checking algorithms for real-time prob-
abilistic systems. Alur, Courcoubetis and Dill presented a model-checking algorithm
for probabilistic real-time systems to verify TCTL formulae of probabilistic real-time
systems [1]. Their specification is limited to deterministic Timed Automata, and its use
of continuous probability distributions (a highly expressive modeling mechanism) does
not permit the model to be automatically verified against logics which include bounds
on probability. Remotely related is the line of work on Continuous-Time Markov Chains
(CTMC) [4]. Different from CTMC, our work is based on discrete probability distribu-
tions. A method based on MTBDD for analyzing the stochastic and timing properties of
systems was proposed in [3]. Properties are expressed in a subset of PCTL. The method
was not based on real-time but in the realm of discrete time. Similar work using discrete
time includes [13,20].

Research on combining quantitative timing and probability has been mostly based
on Probabilistic Timed Automata (PTA) [14,21]. PTA extends Timed Automata [2]
with nondeterministic choices, and discrete probability distributions which are defined
over a finite set of edges. It is a modeling formalism for describing formally both non-
deterministic and probabilistic aspects of real-time systems. Based on PTA, symbolic

An Approach for Model Checking Probabilistic Real-Time Hierarchical Systems 161

verification techniques [22] are developed using MTBDDs. In [6], Beauquier proposed
another model of probabilistic Timed Automata. The model in [6] differs from PTA
in that it allows different enabling conditions for edges related to a certain action and
it uses Büchi conditions as accepting conditions. In [18], probabilistic timed program
(PTP) is proposed to model real-time probabilistic software (e.g., SystemC). PTP is an
extension of PTA with discrete variables. PTA and PTP are closely related to PRTS
with some noticeable differences. Firstly, time transitions and probabilistic transitions
are separated in PRTS. Secondly, (Stateful) Timed CSP is equivalent to closed Timed
Automata (with τ -transitions) [24] and therefore strictly less expressive, which implies
that PRTS is less expressive than PTA. Lastly, different from PRTS, models based on
PTA or PTP often have a simple structure, e.g., a network of automata with no hierarchy.

Verification of real-time probabilistic systems often uses a combined approach, i.e.,
combination of real-time verifiers with probabilistic verifiers [11]. Our approach is a
combination of real-time zone abstraction with MDP, which has no extra cost of linking
different model checkers. This work is related to our previous works [27,28] with the
following new contribution: the two languages proposed in [27,28] are combined to
form PRTS and dynamic zone abstraction is seamlessly combined with probabilistic
model checking to verify PRTS models.

9 Conclusion

We proposed a modeling language PRTS which is capable of specifying hierarchical
complex systems with quantitative real-time features as well as probabilistic compo-
nents. We show that dynamic zone abstraction results in probabilistic preserving finite-
state abstractions, which are then subject to probabilistic model checking. In addition,
we have extended our PAT model checker to support this kind of systems so that the
techniques are easily accessible. As for future work, we are investigating state space re-
duction techniques such as symmetry reduction, bi-simulation reduction in the setting
of PRTS. We are also exploring other classes of properties such as timed property.

References

1. Alur, R., Courcoubetis, C., Dill, D.L.: Model-checking for Probabilistic Real-time Sys-
tems. In: Leach Albert, J., Monien, B., Rodrı́guez-Artalejo, M. (eds.) ICALP 1991. LNCS,
vol. 510, pp. 115–126. Springer, Heidelberg (1991)

2. Alur, R., Dill, D.L.: A Theory of Timed Automata. Theoretical Computer Science 126, 183–
235 (1994)

3. Baier, C., Clarke, E.M., Garmhausen, V.H., Kwiatkowska, M.Z., Rya, M.: Symbolic Model
Checking for Probabilistic Processes. In: Degano, P., Gorrieri, R., Marchetti-Spaccamela, A.
(eds.) ICALP 1997. LNCS, vol. 1256, pp. 430–440. Springer, Heidelberg (1997)

4. Baier, C., Haverkort, B.R., Hermanns, H., Katoen, J.: Model-Checking Algorithms for
Continuous-Time Markov Chains. IEEE Trans. Software Eng. 29(6), 524–541 (2003)

5. Baier, C., Katoen, J.: Principles of Model Checking. The MIT Press, Cambridge (2008)
6. Beauquier, D.: On Probabilistic Timed Automata. Theor. Comput. Sci. 292(1), 65–84 (2003)
7. Behrmann, G., David, A., Larsen, K.G., Håkansson, J., Pettersson, P., Yi, W., Hendriks, M.:

UPPAAL 4.0. In: QEST, pp. 125–126. IEEE, Los Alamitos (2006)

162 J. Sun et al.

8. Behrmann, G., Larsen, K.G., Pearson, J., Weise, C., Yi, W.: Efficient timed reachability
analysis using clock difference diagrams. In: Halbwachs, N., Peled, D.A. (eds.) CAV 1999.
LNCS, vol. 1633, pp. 341–353. Springer, Heidelberg (1999)

9. Bengtsson, J., Yi., W.: Timed Automata: Semantics, Algorithms and Tools. In: Lectures on
Concurrency and Petri Nets, pp. 87–124 (2003)

10. Butterfield, A., Sherif, A., Woodcock, J.: Slotted-circus. In: Davies, J., Gibbons, J. (eds.)
IFM 2007. LNCS, vol. 4591, pp. 75–97. Springer, Heidelberg (2007)

11. Daws, C., Kwiatkowska, M., Norman, G.: Automatic Verification of the IEEE 1394 Root
Contention Protocol with KRONOS and PRISM. International Journal on Software Tools for
Technology Transfer 5(2-3), 221–236 (2004)

12. Dill, D.L.: Timing Assumptions and Verification of Finite-State Concurrent Systems. In:
Automatic Verification Methods for Finite State Systems, pp. 197–212 (1989)

13. Garmhausen, V.H., Aguiar Campos, S.V., Clarke, E.M.: ProbVerus: Probabilistic Symbolic
Model Checking. In: ARTS, pp. 96–110 (1999)

14. Gregersen, H., Jensen, H.E.: Formal Design of Reliable Real Time Systems. PhD thesis
(1995)

15. Hinton, A., Kwiatkowska, M.Z., Norman, G., Parker, D.: PRISM: A Tool for Automatic
Verification of Probabilistic Systems. In: Hermanns, H. (ed.) TACAS 2006. LNCS, vol. 3920,
pp. 441–444. Springer, Heidelberg (2006)

16. Hoare, C.A.R.: Communicating Sequential Processes. Prentice-Hall, Englewood Cliffs
(1985)

17. Holzmann, G.J.: The Model Checker SPIN. IEEE Trans. on Software Engineering 23(5),
279–295 (1997)

18. Kwiatkowska, M., Norman, G., Parker, D.: A Framework for Verification of Software with
Time and Probabilities. In: Chatterjee, K., Henzinger, T.A. (eds.) FORMATS 2010. LNCS,
vol. 6246, pp. 25–45. Springer, Heidelberg (2010)

19. Kwiatkowska, M., Norman, G., Parker, D.: PRISM 4.0: Verification of probabilistic real-
time systems. In: Gopalakrishnan, G., Qadeer, S. (eds.) CAV 2011. LNCS, vol. 6806, pp.
585–591. Springer, Heidelberg (2011)

20. Kwiatkowska, M., Norman, G., Parker, D., Sproston, J.: Performance Analysis of Probabilis-
tic Timed Automata using Digital Clocks. In: FMSD, vol. 29, pp. 33–78 (2006)

21. Kwiatkowska, M., Norman, G., Segala, R., Sproston, J.: Automatic Verification of Real-time
Systems with Discrete Probability Distributions. Theoretical Computer Science 282(1), 101–
150 (2002)

22. Kwiatkowska, M., Norman, G., Sproston, J., Wang, F.: Symbolic Model Checking for Prob-
abilistic Timed Automata. Information and Computation 205(7), 1027–1077 (2007)

23. Mahony, B.P., Dong, J.S.: Blending Object-Z and Timed CSP: An Introduction to TCOZ. In:
ICSE, pp. 95–104 (1998)

24. Ouaknine, J., Worrell, J.: Timed CSP = Closed Timed Safety Automata. Electrical Notes
Theoretical Computer Science 68(2) (2002)

25. Schneider, S.: Concurrent and Real-time Systems. John Wiley and Sons, Chichester (2000)
26. Sun, J., Liu, Y., Dong, J.S., Pang, J.: PAT: Towards Flexible Verification under Fairness.

In: Bouajjani, A., Maler, O. (eds.) CAV 2009. LNCS, vol. 5643, pp. 709–714. Springer,
Heidelberg (2009)

27. Sun, J., Liu, Y., Dong, J.S., Zhang, X.: Verifying Stateful Timed CSP Using Implicit Clocks
and Zone Abstraction. In: Breitman, K., Cavalcanti, A. (eds.) ICFEM 2009. LNCS, vol. 5885,
pp. 581–600. Springer, Heidelberg (2009)

28. Sun, J., Song, S.Z., Liu, Y.: Model Checking Hierarchical Probabilistic Systems. In: Dong,
J.S., Zhu, H. (eds.) ICFEM 2010. LNCS, vol. 6447, pp. 388–403. Springer, Heidelberg (2010)

29. Sun, J., Song, S.Z., Liu, Y., Dong, J.S.: PRTS: Specification and Model Checking. Technical
report (2010), http://www.comp.nus.edu.sg/pat/preport.pdf

http://www.comp.nus.edu.sg/pat/preport.pdf

S. Qin and Z. Qiu (Eds.): ICFEM 2011, LNCS 6991, pp. 163–178, 2011.
© Springer-Verlag Berlin Heidelberg 2011

Integrating Prototyping into the SOFL Three-Step
Modeling Approach

Fauziah binti Zainuddin and Shaoying Liu

Department of Computer Science
Hosei University, Tokyo, Japan

fauziahz@ump.edu.my, sliu@hosei.ac.jp

Abstract. Writing formal specifications in a practical software project is likely
to increase the time for requirements analysis and/or abstract design and to
postpone the implementation, which is often hard to be accepted by the user
and/or the manager of the project. Prototyping provides an agile approach for
communication between the user and the developer but is unable to deal with all
aspects of the system precisely and completely. In this paper, we put forward a
new development approach resulting from integrating prototyping techniques
into the SOFL three-step modeling approach. The new approach is aimed at
achieving a quality development process through promoting the facilities for
user-friendly communication between the user and the developer and for
exploring all possible aspects of the system precisely. We have applied the
approach to develop an IC card software for the Japan railway service system
and present the recorded data as the result of the study. Compared to our
previous experiences using both formal and informal methods, our study
suggests that the new approach can be more practical than existing formal
specification methods and more effective in achieving the completeness and
accuracy of the user’s requirements than informal specification methods.

Keywords: Low-fidelity prototype, high-fidelity prototype, SOFL.

1 Introduction

Formal methods have been considered as an effective approach to developing high
quality software for safety critical systems [1], but whether they can be easily adopted
by today’s software industry as a routine technique is controversial. In his recent
article [2], Parnas discusses why the well-known current formal software
development methods have not been widely employed by industry. One of the
challenges is that existing formal methods do not seem to provide suitable user
orientation platform for the user to interact directly with the developer and to give full
contribution in the formal specification construction process. Constant user
contributions are very important to ensure that the developer develops the application
software as required by the end user and stakeholder. An analysis on a few literatures
shows that user participation has general positive impact on system success and user
satisfactions [3], but existing formal methods focus only on the preciseness in
expressions; they do not pay attention to the importance of how user-developer
communication is facilitated in the formalization process.

164 F.b. Zainuddin and S. Liu

This issue has motivated us to develop a more practical approach to requirements
analysis and design. The new approach is derived from combination of the existing
SOFL three-step modeling approach [4] with prototyping techniques that are
commonly used for requirements analysis in industry [5]. The SOFL three-step
approach advocates that a complete and precise specification of a software system is
achieved through three steps: informal, semi-formal, and formal specifications.
Although this structure provides more opportunities for the user to access the process
of specification construction than directly writing the specification using a formal
notation, yet our experience shows that users in general still feel difficult to
understand the documentation, since it is hard for them to imagine how the potential
system looks like by merely reading the textual, even precise, documentation. In the
end, the developer has to go forward alone and the construction process tends to be
longer than conventional software development process. The result of the process is a
formal specification that requires a validation against the user’s requirements, which
has proved to be challenging in practice as well [4].

In this paper, we put forward an integrated approach to using prototyping
techniques in the SOFL three-step modeling approach for requirements and design
specifications. In this approach, prototyping techniques are used to: (1) demonstrate
the potential dynamic features of the system under development based on the
currently developed documentation (either informal, semi-formal or formal
specification) to end user, aiming to capture more user’s feedbacks; (2) facilitate the
developer in constructing comprehensive and well defined specifications at different
levels; by examine all possible aspects of the requirements and/or design.

The rest of the paper is organized as follows. In Section 2, we highlight the related
work to motivate our research in this paper. Section 3 gives a brief introduction to the
SOFL three-step approach and discusses its problems, and in Section 4, we give
general idea about prototype. In Section 5, we present our integrated approach, and in
Section 6, we present a case study. In Section 7 we discuss our experience gained
from the case study and the unsolved issues for future research, and finally in Section
8, we draw the conclusions.

2 Related Work

The idea of combining formal methods with prototyping techniques was highlighted
by Liu in his book on the SOFL Formal Engineering Method [4]. He brought up the
idea of using prototyping as medium or technique in visualizing dynamic features of
the system in order to effectively capture the user’s requirements in the early phases
of system development. He believes that the result from using this kind of technique
can serve as the fundamental for developing an entire system using formal methods,
especially on the functional behavior. Peter et al. reported a work on integrating
formal methods and prototyping using component-based approach to construct and
verify user interface [6]. In their approach, a single specification is used to construct
both implementations (prototypes) for experimentation and models for formal
reasoning. Prototypes are expressed directly as specification in the formal notation
and their behavior is observed by animating the specification. This approach provides
the user interface designer with a set of primitive components and a dataflow-based

 Integrating Prototyping into the SOFL Three-Step Modeling Approach 165

formalism for connecting them. Hall [7] reported his previous company success story
using formal methods in developing cost critical systems. In the report, he mentioned
about the need of making formal methods to be more accessible to the user and
suggested using prototyping, particularly in the early stage of the development life
cycle. In his another publication, Hall listed seven myths of formal methods that he
believed not to be true [8]. One of the listed myths is that formal methods are
unacceptable to users. Although he disagreed with this myth, he expressed his
concern about the style of formal specifications, suggesting the idea of animating and
prototyping formal specifications for user access. However, there was no specific
suggestion on how prototyping techniques can be used in combination with formal
methods in his publications.

Our work described in this paper aims to establish an engineering approach using
both formal specification and prototyping in a manner that utilizes their advantages
and reduces the impact of their weaknesses. Instead of using formal specifications for
prototyping purpose (e.g., by automatically transforming a formal specification into
an executable prototype program), our approach is to integrate prototyping techniques
into the SOFL three-step modeling approach so that both prototyping and writing
specifications at different levels can play complementary roles in the process of
obtaining complete and accurate requirements and/or design. Before going to the
details of our approach in Section 4, we first briefly introduce the SOFL three-step
modeling approach next.

3 SOFL Three-Step Approach and Its Problems

3.1 SOFL Three-Step Approach

The Structured Object-oriented Formal Language (SOFL) is a kind of formal
engineering method (FEM) introduced by the second author about 15 years ago. FEM
approach differs from traditional formal methods (FM) such as VDM, Z, and B-
method, in such a way that SOFL emphasizes more engineering disciplines and
techniques to be implemented in software development process [4, 9]. In other words,
SOFL promotes practical ways to use formal techniques while preserving the
advantages of formal methods such as preciseness and effectiveness in facilitating the
development of tool construction [10]. For the sake of space, we focus only on the
three-step modeling approach of the SOFL method in this section. A comprehensive
introduction of SOFL is described in the second author’s book [4].

As shown in Figure 1, the three-step modeling approach starts with writing an
informal specification in a natural language that is supposed to document clearly and
concisely major desired functions, data resources and necessary constraints on both
functions and resources. The goal of this specification is to collect “complete”
requirements (from the coverage’s point of view) from the user and to present them in
a hierarchical structure on an abstract level for comprehensibility. Since all of the
terms used in the specification and the relations among functions, data resources and
constraints are all described informally, their meaning are however not precisely
defined. To clarify these issues, the second step is to refine the informal specification
into a semi-formal specification. To this end, three things must be done: (1) to

166 F.b. Zainuddin and S. Liu

organize the related functions, data resources and constraints into each SOFL module;
(2) to formally define the data resources in each module using the well-defined data
types to set up a foundation for specifying the functions; (3) to define each informal
function as a SOFL process and define its function using informally presented pre-
and post-conditions. Since the semi-formal specification is still expected to serve as a
medium to facilitate the communication between the developer and the user, it is
appropriate to keep the functional description informal.

Fig. 1. SOFL Three-step Approach

The final step is to construct a complete formal specification based on previous
semi-formal specification, by connecting all defined processes using a formalized data
flow diagram, called condition data flow diagram (CDFD), to form the architecture of
the whole system and by formalizing all the informal parts in the semi-formal
specification using predicate logic formulas. During this formalization, all of the
ambiguities of informal descriptions would have been removed and the final
specification offers a firm foundation for implementation and verification of the
program. These three steps relate to each other in restrict refinement and evolutions
depends on the phase of development and will go through certain validation and
verification process.

3.2 Problem Descriptions

Even though there is sufficient evidence resulting from various research previously
[8, 11] to suggest that the SOFL three-step modeling technique be effective in
ensuring software quality and reducing cost for information system development,
there is no indication that it can facilitate the developer-user interaction or
cooperation. With regard of this issue, we have raised three questions about the SOFL
three-step approach.

Firstly, how can we ensure that the user involves in the entire or at least in the first
two steps of the SOFL three-step approach? Based on Kujala et al. [12], the user’s
involvement becomes the key concept of achieving positive effects on system success
and user satisfaction. Kujala [3] and Damoron [13] list benefits that can be derived
from user’s effective involvement. The benefits include: (1) improved quality of the
system arising from more accurate user requirements, (2) avoidance of costly system
features that the user does not want or cannot use, (3) improvement of the level of
acceptance of the system, (4) greater understanding of the system by the user that is
likely to result in more effective use, and (5) increased participation in decision-
making within the organization. Even though all of the benefits are specifically

 Integrating Prototyping into the SOFL Three-Step Modeling Approach 167

focused on system design, yet it aptly illustrates the advantages for system
development as a whole and we also believe that we are sharing the same aim in our
new approach.

Secondly, how can we guarantee that all the system requirements are covered
during the system specification process? This issue has been highlighted by Alaga and
Kourkopolous more than a decade ago [14] and recently by Liu [15] and Nancy [16].
They perceive the completeness of a specification as an important and desired
property of a specification for the guarantee of a valid and correct implementation. A
specification is considered complete if and only if its consequence closure is
equivalent to that of the set of the user’s intended requirements [15], which is
extremely difficult to be formally verified because the concept is related to human
judgments. User’s feedback is perhaps the most important source of human judgment
in any software development process. If this source is eliminated from early
development phase, it will lead to information misinterpretation by the developer.
Sometimes it may end up with the developer building something that is not needed by
the user.

Finally, how can we effectively obtain ideas on system design or dynamic features
of the system? Writing any kind of specification in the SOFL three-step modeling
approach would not effectively demonstrate dynamic features of the system under
development. Without seeing those features, the user may not know exactly about the
system functions and/or performance.

4 Prototyping

Prototyping has been chosen rather than other techniques because of the nature of
prototype: an activity with the purpose of creating a manifestation that, in its simplest
form, filters the qualities in which designers are interested, without distorting the
understanding of the whole [17].

Prototypes can be classified into two types: low-fidelity prototype and high-fidelity
prototype. Low-fidelity prototypes were defined by Sefelin et al. [18] to be the
visualization of design ideas at very early stages of the design process. Therefore they
usually have limitations in terms of functions and interaction prototyping efforts [19].
Low-fidelity prototypes are constructed to deliberately depict concepts, design
alternatives and screen layouts. There are several suggested tools to develop the low-
fidelity prototype such as paper, informal tools and development tools. However in
choosing the right tool, a few elements need to be considered [20]: (1) requirements
of the project, (2) expertise of design team, (3) access to relevant libraries, and (4)
balance investment with effectiveness.

Unlike low-fidelity prototypes, high-fidelity prototypes have complete
functionality and are interactive [19]. This kind of prototype is always used for
exploration and testing, besides the end user can operate the prototype as if it were the
final product. From the end users perspective high-fidelity prototype can help them to
understand how the system will operate, therefore it is easy to get user interface
improvement and recommendations from them. For the programmer, a prototype acts
as a living specification of the functional and operating requirements. Whenever the
design guidance is needed, the prototype will be referred to determine the design
detail.

168 F.b. Zainuddin and S. Liu

In our approach, evolutionary prototyping is strongly recommended to be
implemented along with high-fidelity prototype. According to Davis [21], evolutionary
prototyping has a few characteristics (that suit our proposed approach most): (1) it
implements only confirmed requirements, (2) it is built in a quality manner (including
software requirement specification, design documentation and thorough test set), (3) it is
used to determine what unconsidered but necessary requirements exist (one of the goal
of adopting prototype in our proposed approach).

5 Proposed Framework for Integration

To overcome the weaknesses of the SOFL three-step approach highlighted in the
previous section and achieve a both speedy and quality software development, we
believe that integrating prototyping techniques into the SOFL three-step approach will
provide a solution.

The framework for integration is illustrated in Figure 2. The goal of the framework
is to establish a “user-centered’’ approach to software development using prototyping
and the SOFL three-step specification method. The essential idea of the framework
includes three points: (1) using early specifications (i.e., informal and semi-formal
specifications) to capture user’s requirements and to help build effective prototypes,
(2) using the constructed prototype to obtain further feedbacks from the user by
demonstrating the required functions in the specification and to help evolve the
current specification to a more complete and/or precise specification, and (3) evolving
the latest prototype into the final product based on the formal specification in an
incremental manner. These three points are realized in three phases.

Fig. 2. Proposed SOFL-Prototyping framework

5.1 Phase I

In the first phase of the framework, informal specification is integrated with low-
fidelity prototyping. The informal specification is used to document the user’s
requirements at an abstract level by the developer, which may be incomplete and
imprecise, and are usually difficult to explain to the user. A low-fidelity prototype is
then built, based on the contents of the informal specification and the developer’s
experience, to show the user an image of the potential functions required in an
“animated” manner. This prototype usually allows the user and the developer
communicates more effectively and efficiently, and the feedbacks from the user can
be adopted in evolving the informal specification into a more complete one (but may
still be expressed informally and abstractly).

 Integrating Prototyping into the SOFL Three-Step Modeling Approach 169

To build the low-fidelity prototype, we find that the following process is effective.
Firstly, divide the functions in the informal specification into two groups: (1) major
functions that mostly interest the user and needs to interact with the end-user, (2) all
of the other functions, known as internal functions, which may help realize those
major functions. For example, in the IC card system for Japan railway service adopted
in our case study (Section 6), Recharging card (by updating its balance) is a major
function, but Checking card validity and Checking recharging limit can be internal
functions because these two help realize the two major functions, respectively.
Secondly, build the prototype with a structure of two layers: (1) the first layer is a
visualized user-machine interface that demonstrates each of the selected major
functions, and (2) the second layer is a set of internal functions attached to the
relevant major functions, describing which major function is supported by which
internal functions, as illustrated in Figure 3.a. The interface can be structured in a flat
or hierarchical manner, as shown in Figure 3.b and 3.c respectively, depending on the
developer’s engineering judgment, but generally it may be the mixture of the two at
some level. Further, user interface components such as filter, update, display button
components (components listed in User Interface Simple Pattern [22,23]) can
facilitate developer on basic operation for the associated user interface, while the
profile of the potential user will assist developer on user interface design. The design
for user interface should be simple, using pleasant color, with minimum yet clear
information on it for its usability.

Fig. 3. Prototype Structure

Let us take the functions related to recharging the IC card in the case study for
example. Since recharging card by cash and recharging card from bank account are
two major functions, we create two buttons for choosing the functions on the user-
machine interface of the low-fidelity prototype, as illustrated in Fig. 4, and connect
each of the choice to a graphical representation of the related internal functions, such
as checking the recharging limit and updating card balance. For the sake of space, we
omit these details in Figure 4.

After the low-fidelity prototype is demonstrated to the user, feedbacks from him or
her may be obtained based on which the developer will evolve the informal
specification accordingly. If the feedbacks effect on major structure of the informal
specification, the prototype structure may also need to be evolved properly. This cycle
may continue several times until both the user and the developer reaches an
agreement.

170 F.b. Zainuddin and S. Liu

Fig. 4. Phase I Transformation Example

5.2 Phase II

To further understand the user’s requirements and clarify the ambiguities in the informal
specification, and to prepare for the implementation of the system, the informal
specification is evolved into a semi-formal specification in which all of the related
functions, data resources and constraints are organized into modules and defined more
precisely.

The decision for creating modules can be made based on two sources: the informal
specification and the low-fidelity prototype. The informal specification provides all of
the necessary functions, data resources, and constraints for consideration, while the
prototype supplies the information about the relation between the major functions and
the internal functions, as mentioned previously. One of the ways to create modules is
to put a major function and its associated internal functions in the same module
because they may share the same data resources and constraints. In each module,
necessary types, variables, and constants are declared using the formal notation to
define the meaning of the corresponding data resources listed in the informal
specification; invariants are defined to reflect the corresponding constraints; and
processes are created to define the corresponding functions given in the informal
specification. The characteristic of the semi-formal specification is that all of the
logical expressions, such as pre- and post-conditions of processes, are written
informally while data declarations and process interfaces are defined formally.

On the basis of the semi-formal specification and the low-fidelity prototype, a
high-fidelity prototype will be implemented using a programming language like Java.
The following guidelines are usually considered in building the high-fidelity
prototype:

1. Evolving the user-machine interface of the low-fidelity prototype into a more
effective or appropriate style for the high-fidelity prototype. The idea for the new
interface usually comes from two sources: (1) low-fidelity prototype, because it
was designed according to the required elements and demonstrated to the user for
feedbacks, and (2) semi-formal specification, since more complete and precisely
defined functions are documented based on the user’s feedbacks. For example, the
originally defined flat structure of the user-machine interface may need to be
improved to a more hierarchical structure for usability.

2. For each module in the semi-formal specification, creating a class to implement it
in the prototype. Each process defined in the module can be implemented as a
static or instance method in the class. This principle also applies to (mathematical)
functions defined in the module. Further, transform all of the data types and/or

 Integrating Prototyping into the SOFL Three-Step Modeling Approach 171

state variables into an appropriate concrete data structures in the prototype. For
example, a composite data type in the module can be implemented as a class; a set,
sequence, or map can be implemented as an array or array list data structure,
depending on the developer’s engineering judgment.

3. Implementing the major functions-internal functions structure adopted in the low-
fidelity prototype in a more effective or appropriate style in the high-fidelity
prototype. Since this is still a prototype, there is no need to implement all of the
existing internal functions for each major function; the most important ones that
may draw the user’s attention can be selected for implementation and all the rest
can be arranged for future implementation. For each internal function, its full
functionality may not need to be implemented; only the most interesting part may
be sufficient for the prototype. Thus, the related functions of interest are connected
together properly in the prototype.

Continuing the same example described in Phase 1, we produce a high-fidelity
prototype by following the above guidelines, as shown in Fig. 6, which is part of our
case study content in Section 6 (the figure is not repeated here for the sake of space).

5.3 Phase III

The major tasks of Phase III are twofold: producing a formal specification and
evolving the high-fidelity prototype into a final product. The formal specification in
SOFL basically consists of two parts: (1) a hierarchy of Condition Data Flow
Diagrams (CDFDs) and (2) a corresponding hierarchy of modules. Each CDFD is
associated with a module. The CDFD describes the architecture of the module,
showing how the processes in the same module are integrated based on data flows to
perform the overall behavior of the module, while the module offers a facility to
define precisely all the components of the CDFD, such as processes, data flows, and
data stores. All data flows and stores are declared with well-defined types; their
constraints are defined using invariants; and each process is specified using pre- and
post-conditions in the formal notation.

The formal specification is completed on the basis of the semi-formal specification,
the feedbacks from the user after the demonstration of the high-fidelity prototype, and
the major function-internal function structure of the high-fidelity prototype.
Specifically, it includes the following points:

• The idea of constructing a hierarchy of CDFDs may partly come from the structure
of the high-fidelity that shows how the related functions are connected and partly
come from the semi-formal specification. All of the modules in the semi-formal
specification must be properly integrated into the CDFD hierarchy.

• The precise formal specification for each process occurring in the CDFD may be
written by “evolving” its semi-formal specification (“refinement”, extension, or
modification) [24] based on the user’s feedbacks and the developer’s
understanding.

After the formal specification is completed, it will be used to evolve the high-fidelity
prototype in an incremental manner by doing the following:

172 F.b. Zainuddin and S. Liu

1. Evolve the user-machine interface of the high-fidelity prototype based on the
CDFDs in the formal specification. Since a high level CDFD is usually used to
describe the relation between major processes (corresponding to user’s major
functions) and the decomposed CDFD of a high level process shows how the
related internal processes (corresponding to the user’s internal functions) are
integrated, the information contained in the CDFD hierarchy can be effectively
used to improve the user interface and the structure of the prototype.

2. Extend and improve the algorithm and data structures of the program code of each
method (operation) in the prototype based on the corresponding process
specification. Since the formal process specification usually presents a more
precise and complete definition of the functionality, it can assist the developer to
improve the code.

3. Inspect and test the code to detect bugs using formal specification-based inspection
and testing techniques [25]. Model checking is a so called light weight formal
method for verification [26], but it is still impractical in dealing with real software
systems. Inspection and testing are much more practical; they cannot guarantee the
correctness, but would help the developer increase the confidence in the functional
consistency between the code and the specification.

4. Demonstrate the improved behavior of the current prototype to the user for
validation. If there is any need for further improvement, the developer can directly
incorporate that feedback into the code of the prototype.

These activities can be repeated incrementally until a final product is ready for
delivery. Since the formal specification is a well-defined and organized document, the
evolution process would be unlikely to encounter any chaotic situation. This is a
significant advantage over many agile methods based on the evolutionary process
model as mentioned by Kent [27]. Further, because new implementations or
improvements can be demonstrated to the user frequently after they are completed,
the user’s role in providing feedbacks can be efficiently incorporated into the
development process to ensure the quality of the final product.

Note that since our purpose of writing the formal specification is to help evolve the
current prototype, we do not advocate the approach of automatically transforming a
formal specification into an executable prototype taken by some other researchers
[28]. There are two reasons. One is that such an automatic transformation approach is
only limited to an executable subset of the formal notation. The other is that even if
the prototype can be produced in that way, the efficiency of the prototype (i.e.,
runtime speed and memory) is usually lower than the one produced by the developer.
This result does not fit for our purpose in our approach.

Fig. 5. Phase III Transformation Example

 Integrating Prototyping into the SOFL Three-Step Modeling Approach 173

Figure 5 illustrates the relation between the formal specification and the evolution
of the high-fidelity prototype produced in the previous phase. For the sake of space,
we omit the explanation of the details.

6 Case Study

We have conducted a case study on the proposed framework by developing an IC
card system for Japan railway service in Tokyo using the framework to gain
experience and to identify issues for further improvement. The system offers similar
functions to those of the currently deployed SUICA system. SUICA stands for “Super
Urban Intelligent Card” [29], and has been widely used by Japan Railway (JR). The
initial user requirements document of the IC card system was available, as shown in
Figure 3, before the case study began. The IC card system can be used for
multipurpose, including (1) going in and out of a railway station, (2) buying a train
ticket, (3) recharging the card by cash or through the customer’s bank account, and
(4) using as a fixed period railway pass for a defined station interval.

6.1 Phase I

The first job we did in the case study was to translate the initial user’s requirements
document into a SOFL informal specification. (Refer to Figure 4, shows tasks flow in
this phase). The informal specification was written in a well-organized form, clearly
and concisely describing functions to be implemented, a list of data resources to be
used and necessary constraints on both functions and resources. Secondly, we
transformed the informal specification into prototype structure. Finally, based on this
structure, we built a low-fidelity prototype. Computer-based low-fidelity prototype
was preferable by the subject as being concluded by Sefelin et al. [19] in their
research, comparing computer-based and paper-based low-fidelity prototypes; both of
them lead to almost same quantity and quality of critical user statements. For this
reason, we choose a computer-based low-fidelity prototype using Microsoft
PowerPoint. The ease of use of this presentation software and the ability for
constructing animation have provide advantages for us in simulating the functional
architecture of the IC card system to the user. In a very short period of time we were
able to convert the informal specification into a kind of system like presentation.

We then demonstrated the prototype to the end users for their feedback. Each
major functional scenario of the requirements was demonstrated and explained, and
the user sometimes pointed out mistakes or told his opinions on the “implemented”
functions. The most important feedback gained from the user in the first cycle of the
presentation is that the user discovered a misinterpreted IC card and ATM card
functionality. The user was expecting to see the IC card to have the same function as
an ATM card (this aspect was not mentioned in the user’s initial requirements
document), but this function was built differently in the prototype. Through three such
presentation cycles the user is completely satisfied with the functions provided in the
prototype.

Table 1 shows all of the relevant data concerned with efforts and cost in this phase,
which include performed tasks, the number of iterations (only up to three cycles),
planned time for each task and actual used time.

174 F.b. Zainuddin and S. Liu

Table 1. Recorded System Development Related Data – Phase I

As a result of phase I, the developer gained a deep understanding of what the end
users really wants for the system and they obtained a clear picture of what the system
can provide and how it looks likes on abstract level.

6.2 Phase II

The system requirements analysis continues in phase II, as being illustrated in Figure
6, we first evolved the informal specification into a semi-formal specification, then
revised on the prototype structure and finally build a high-fidelity prototype. We
adopt C# .Net platform for our high-fidelity prototype as requested by the
stakeholder.

Fig. 6. Phase II Transformation Example

Generally, adopting evolutionary prototyping technique is likely to force us to
experience a few iterations. However, in our case study we only experienced one
iteration before proceed to the next phase, even though we discovered new
requirement from end user (extra charges required for every single transaction related
with bank account). Since it relate with computational issue in internal operation, so
we decided to add the new requirement in next phase. As shown in Table 2. This is
mainly attributed to the early user involvement and approval in phase I, which leads
to entire system acceptance and reducing the development time by almost 56% from
the estimated time. The time reduction is due to development team no need to think
on user interface design issue since it was approved in previous phase, so more focus
on other issue such as programming. As shown in Figure 6.c, user interface screen
capture taken from the high-fidelity prototype, the design is consistent with the user
interface design in low-fidelity prototype.

 Integrating Prototyping into the SOFL Three-Step Modeling Approach 175

Table 2. Recorded System Development Related Data – Phase II

6.3 Phase III

In contrast to informal and semi-formal specifications, the formal specification in
SOFL represents the architecture of the entire system and functional definitions of its
components. As being briefly explain in sub-section 5.3.

Comparing to our previous experiences using SOFL in several system development
projects, the developer usually needs to construct CDFD several times in order to
conform to the required system structure. However, by using this prototype
integration approach, the developer can visualize basic system structure according to
the prototype structure in previous phase. This helps the developer to construct the
CDFD much easier, faster and match with the entire desired system structure.

The development of high-fidelity prototype in phase II helps the developer
considerably in constructing the detailed design specification (called explicit
specification in SOFL). During building the high-fidelity prototype, the developer is
forced to experience object-oriented programming to certain extent, thus the same
developer can significantly benefit from this experience in constructing the formal
detailed design specification. For example, the classes and methods defined in the
high-fidelity prototype can be reused in writing the specification. This leads to
shortening the total time for constructing the formal specification.

Table 3. Recorded System Development Related Data – Phase III

As shown in Table 3, total allocation time for formal specification construction was
reduced by almost 30% from the estimated time. For actual product construction,
development was done incrementally and final revised high-fidelity became
construction fundamental.

7 Discussion

The case study allows us to identify the benefits and unresolved issues of the
integrated approach presented in this paper by intuitively comparing with our

176 F.b. Zainuddin and S. Liu

previous experiences using either prototyping techniques or formal methods for
software development, for example, the experience gathered from developing a Parcel
Delivery System for industry. This system was fully developed using SOFL, but we
encountered difficulties in explaining the system details to the stakeholder. The
hardest thing was that the stakeholder could not follow the detail of our explanation
based on the static textual documentation; he could not easily build an image of the
potential system only based on the documentation and our explanation. Sometimes
some textual formal process specifications are hard to explain. This scenario leads to
prolonging the development period. Ideally, we should run a control experiment to
rigorously compare the development results with and without prototyping.
Unfortunately, this kind of experiment requires a lot of resources which are currently
not available. We plan to continue our investigation of this kind in the future.

The benefits can be classified into three categories. First, the integrated approach
can bring the user into the process of specification construction, thus avoiding
“directional” mistakes in defining functions and operation interfaces in early stages.
Second, the prototype can significantly help the developer write both semi-formal and
formal specifications that tend to be more useful for future program verification due
to the operation interface consistency than the specifications written without referring
to any prototype. Finally, using prototypes allows the developer to demonstrate his or
her progress to the user in a vivid and agile manner, thus creating a high possibility to
enhance the user’s confidence in the ongoing project.

The case study also allowed us to find two important issues for future research. First,
we understand that the integrated approach could improve the quality, efficiency and
productivity of the system under development, but have not collected enough hard
evidence to support this claim. To find out the truth, a systematic controlled experiment
must be conducted. This will form an independent study, and will be one of our future
researches. Second, to efficiently apply our approach in practice, an effective tool
support would be important. This will also become another goal of our future research.

8 Conclusion

We describe a new practical approach to software development that integrates
prototyping techniques into the SOFL three-step modeling approach. The informal
specification is used to capture “complete” but abstract user requirements while the
low-fidelity prototype built based on the informal specification is used to demonstrate
the preliminary behavior of the potential system for accurate understanding of the
requirements by both the user and the developer. A semi-formal specification is built
based on both the informal specification and the prototype, and serves as a foundation
for building a high-fidelity prototype. To achieve a systematic and precise
documentation that reflects both the requirements and the system architecture, a
formal design specification is eventually constructed for implementation and its
verification. This formal specification is effectively used as a foundation for
incremental evolution of the high-fidelity prototype. We have applied the integrated
approach in a case study and presented its benefits in facilitating communication
between the user and the developer and avoiding directional mistakes in early stages.
We have also identified two important issues for future research, as described at the
end of Section 7.

 Integrating Prototyping into the SOFL Three-Step Modeling Approach 177

Acknowledgement. This work is supported by NII Collaborative Research Program.
It is also partly supported by the NSFC Grant (No. 60910004), 973 Program of China
Grant (No. 2010CB328102) and, Science and Technology Commission of Shanghai
Municipality under Grant No. 10510704900.

References

1. Woodcock, J., Larsen, P.G., Bicarregui, J., Fitzgerald, J.: Formal Methods: Practice and
Experience. ACM Computing Surveys 41(4), 19:1–19:36 (2009)

2. Parnas, D.: Really Rethinking of “Formal Methods”. Computer, 28–34 (2010)
3. Kujala, S.: User Involvement: A Review of Benefits and Challenges. In: Behaviour &

Information Technology, pp. 1–16 (2003)
4. Liu, S.: Formal Engineering for Industrial Software Development Using the SOFL

Method. Springer, Heidelberg (2004)
5. Litcher, H., Schneider-Hufschmidt, M., Zullighoven, H.: Prototyping in Industrial

Software Projects – Bridging the Gap between Theory and Practice. IEEE Transaction on
Software Engineering, 825–832 (1994)

6. Bumbulis, P., Alencer, P.S.C., Cowan, D.D., Lucena, C.J.P.: Combining Formal
Technique and Prototyping in User Interface Construction and Verification. In: 2nd
Eurographics Workshop on Design, Specification, Verification of Interactive Systems
(DSV-IS 1995), pp. 7–19. Springer, Heidelberg (1995)

7. Hall, A.: What Does Industry Need from Formal Specification Techniques? In: Second
IEEE Workshop on Industrial Strength Formal Specification Techniques, pp. 2–7 (1999)

8. Hall, A.: Seven Myths of Formal Methods. IEEE Software, 11–19 (1990)
9. Liu, S., Asuka, M., Koyama, K., Nakamura, Y.: Applying SOFL to Specify A Railway

Crossing Controller for Industry. In: Industrial Strength Formal Specification Techniques,
2nd IEEE Workshop on Digital Object Identifier, pp. 16–27 (1998)

10. Cheng, B.H.C., France, R.: A Discussion about Integrated Techniques. In: Second IEEE
Workshop on Industrial Strength Formal Specification Techniques, pp. 65–72 (1998)

11. Mat, A.R., Liu, S.: Applying SOFL to Construct Formal Specification an Automatic
Automobile Driving Simulation System. In: International Conference on Software
Technology and Engineering, pp. 42–48. World Scientific Publishing, Singapore (2009)

12. Kujala, S., Kauppinen, M., Lehtola, L., Kojo, T.: The Role of User Involvement in
Requirement Quality and Project Success. In: 13th IEEE International Conference on
Requirement Engineering, pp. 75–84 (2005)

13. Damodaran, L.: User Involvement in the System Design Process – A Practical Guide for
Users. Behaviour & Information Technology, 363–377 (1996)

14. Alagar, V.S., Kourpoulos, D.: Completeness in Specification. Information and Software
Technology, 331–342 (1994)

15. Liu, S.: Utilizing Test Case Generation to Inspect Formal Specifications for Completeness
and Feasibility. In: 10th High Assurance Systems Engineering Symposium, pp. 349–356
(2007)

16. Leveson, N.: Completeness in Formal Specification Language Design for Process-Control
Systems. In: Formal Methods in Software Practice, pp. 75–87. ACM Press, New York
(2000)

17. Youn-Kyung Lim, Erik, S., Josh, T.: The anatomy of prototypes: Prototypes as filters,
prototypes as manifestations of design ideas. ACM Trans. Comput.-Hum. Interact. 15(2),
7–33 (2008)

178 F.b. Zainuddin and S. Liu

18. Sefelin, R., Tscheligi, M., Giller, V.: Paper prototyping - what is it good for? A
comparison of paper- and computer-based low-fidelity prototyping. In: Conference on
Human Factors in Computing Systems CHI 2003, pp. 778–779. ACM Press, New York
(2003)

19. Rudd, J., Stern, K., Isensee, S.: Low vs. High-fidelity Prototyping Debate. ACM
Interactions 3(1), 76–85 (1996)

20. Low fidelity Prototype, http://social.cs.uiuc.edu/class/cs465/
lectures/lofidelity.pdf

21. Davis, A.M.: Operational prototyping: a new development approach. IEEE Software, 70–
78 (1992)

22. Gao, T., Shi, Q.: A Complex Interface Modeling Approach Based on Presentation Style.
In: IEEE International Conference Intelligent Computing and Intelligent Systems, ICIS
2009, pp. 233–237 (2009)

23. Nguyen, T., Tram, Q., Tai, C.G.T., Thuy, D.T.B.: User Interface Design Pattern
Management System Support for Building Information System. In: 1st International IEEE
Conference on Digital Information Management, pp. 99–101 (2007)

24. Liu, S.: Evolution: A More Practical Approach than Refinement for Software
Development. In: Proceedings of Third IEEE International Conference on Engineering of
Complex Computer Systems, pp. 142–151. IEEE Computer Society Press, Los Alamitos
(1997)

25. Liu, S.: Integrating Specification-Based Review and Testing for Detecting Errors in
Programs. In: Butler, M., Hinchey, M.G., Larrondo-Petrie, M.M. (eds.) ICFEM 2007.
LNCS, vol. 4789, pp. 136–150. Springer, Heidelberg (2007)

26. Duan, Z., Tian, C.: A Unified Model Checking Approach with Projection Temporal Logic.
In: Liu, S., Araki, K. (eds.) ICFEM 2008. LNCS, vol. 5256, pp. 167–186. Springer,
Heidelberg (2008)

27. Beck, K.: Embracing Change with Extreme Programming. Computer 32(10), 70–77 (1999)
28. Chachkov, S., Buchs, D.: From Formal Specifications to Ready-to-Use Software

Components: The Concurrent Object Oriented Petri Net Approach. In: IEEE International
Conference on Application of Concurrency to System Design, pp. 99–110 (2001)

29. Shirakawa, Y.: JR East contactless IC card automatic fare collection system “Suica”. In:
7th IEEE International Symposium on Digital Object Identifier High Assurance Systems
Engineering, pp. 3–10 (2002)

A Deterministic Interpreter Simulating a Distributed
Real Time System Using VDM

Kenneth Lausdahl1, Peter Gorm Larsen1, and Nick Battle2

1 Aarhus School of Engineering, Dalgas Avenue 2, DK-8000 Aarhus C, Denmark
2 Fujitsu Services, Lovelace Road, Bracknell, Berkshire. RG12 8SN,UK

Abstract. The real time dialect of VDM, called VDM-RT, contains constructs
for describing concurrent threads, synchronisation of such threads and the dis-
tribution of object instances and their threads over multiple CPUs with busses
connecting them. Tools that simulate an executable subset of VDM-RT models
benefit from being deterministic so that problems are reproducible and can be
more easily investigated. We describe the deterministic scheduling features of our
VDM-RT interpreter, and show how multi-threaded models can also be debugged
deterministically.

Keywords: VDM, interpreter, deterministic, scheduler, real time, multiple
processors, semantics.

1 Introduction

The power of formal methods traditionally lies in being able to write a specification,
and to analyse and refine that specification formally to produce a target implementation
that is verified. However, formal models can also be used for direct simulation of a
system under construction. Benefit can be gained from exploring design options through
simulation, even before any formal analysis of the model has been carried out [34]. One
way for efficiently finding problems with a formal model is to evaluate expressions
making use of the definitions from the model [35]. In the event that such expressions
do not yield the expected values, it is essential to be able to deterministically reproduce
the problem, for example by debugging the model using a deterministic interpreter.

In VDM-RT a model represents a potentially infinite set of semantic models due to
the looseness [37] present in the language. This allows the modeller to gain abstraction
and to avoid implementation bias. To perform a model simulation, tool support must
provide an interpreter for the model language, and a debugging environment that al-
lows the designer to investigate problems. Given a specification with looseness, the tool
support must also provide a deterministic interpreter and debugger, otherwise problems
with the model would not be reproducible and so could not be investigated easily.

Programming language interpreters and compilers are typically not deterministic
when the language includes concurrency, and this is even less likely for debuggers,
where the interference of the user can easily change the behaviour of the program be-
ing debugged. Existing work has examined the problems of the deterministic execution
of programming languages with threads [3]. Others have added assertions to check
the determinism of multi-threaded applications at the programming language level [7].

S. Qin and Z. Qiu (Eds.): ICFEM 2011, LNCS 6991, pp. 179–194, 2011.
c© Springer-Verlag Berlin Heidelberg 2011

180 K. Lausdahl, P.G. Larsen, and N. Battle

In this paper we demonstrate how it is possible to interpret and debug formal models
written in VDM-RT in a deterministic manner. We hope that others can benefit from our
experience and produce similar tools for executable subsets of other formal languages.

The paper starts off with an overview of the VDM technology in Section 2. After-
wards, Section 3 briefly explains how the sequential part of VDM can be interpreted.
Section 4 continues with an explanation about how the concurrent aspects of the VDM
interpreter are made deterministic. This is followed by Section 5 which explains how
the interaction with a debugger interface can be made deterministic. Section 6 provides
related work and finally Section 7 provides concluding remarks.

2 The VDM Technology

The Vienna Development Method (VDM) [4,19,11] was originally developed at the
IBM laboratories in Vienna in the 1970’s and as such it is one of the longest established
formal methods. The VDM Specification Language is a language with a formally de-
fined syntax, static and dynamic semantics [31,26]. Models in VDM are based on data
type definitions built from simple abstract types such as bool, nat and char and
type constructors that allow user-defined product and union types and collection types
such as (finite) sets, sequences and mappings. Type membership may be restricted by
predicate invariants which means that run-time type checking is also required from an
interpreter perspective. Persistent state is defined by means of typed variables, again
restricted by invariants. Operations that may modify the state can be defined implicitly,
using standard pre- and post-condition predicates, or explicitly, using imperative state-
ments. Such operations denote relations between inputs and pre-states and outputs and
post-states, allowing for nondeterminism. Functions are defined in a similar way to op-
erations, but may not refer to state variables. Recursive functions can have a measure
defined for them to ensure termination [33]. Arguments passed to functions and opera-
tions are always passed by value, apart from object references.

Three different dialects exists for VDM: The ISO standard VDM Specification Lan-
guage (VDM-SL) [12], the object oriented extension VDM++ [13] and a further exten-
sion of that called VDM Real Time (VDM-RT) [41,17]. All three dialects are supported
by the open source tool called Overture [23] as well as by VDMTools [14]. These tools,
among other features, include standard parsers and type checkers that produce Abstract
Syntax Trees (ASTs). Such ASTs form the basic input of the interpreter presented in
this article.

None of these dialects are generally executable since the languages permits the mod-
eller to use type bindings with infinite domains, or implicitly defined functions and op-
erations, but the dialects all have subsets that can be interpreted [24]. In addition some
commonly used implicit definitions can be executed in principle [16]. A full description
of the executable subset of the language can be found in [25].

In this paper we focus on the ability to execute a simulation when looseness is present
in the specification in such a way that the results are deterministic and reproducible.
This means that our interpreter’s result will correspond to a valid value from one model
of the specification, and it will always produce that value. All valid models can be col-
lected [22], however our industrial experience indicates that the ability to investigate

A Deterministic Interpreter Simulating a Distributed Real Time System Using VDM 181

multiple models is mainly of academic value. Loose specifications arise because spec-
ifications generally need to be stated at a higher level of abstraction than that of the
final implementation. Looseness enables the modeller to express that it does not matter
which particular value a certain expression yields, as long as it fulfils certain require-
ments [22].

VDM++ and VDM-RT allow concurrent threads to be defined. Such threads are
synchronised using permission predicates that are associated with any operations that
cannot allow concurrent execution. Where pre-conditions for an operation describe the
condition the caller must ensure before calling it, the permission predicate describes
the condition that must be satisfied before the operation can be activated, and until that
condition is satisfied the operation call is blocked. The permission predicates can refer
to instance variables as well as history counters which indicate the number of times an
operation has been requested, activated or completed for the current object. In VDM-
RT, the concurrency modelling can be enhanced by deploying objects on different CPUs
with busses connecting them. Operations called between CPUs can be asynchronous, so
that the caller does not wait for the call to complete. In addition, threads can be declared
as periodic, so that they run autonomously at regular intervals. For periodic threads it
is also possible to express jitter, start time offset as well as the minimum arrival time
between occurences of the operation used in a periodic thread1.

VDM-RT has a special system class where the modeller can specify the hardware
architecture, including the CPUs and their bus communication topology; the dialect
provides two predefined classes for the purpose, CPU and BUS. CPUs are instantiated
with a clock speed (Hz) and a scheduling policy, either First-come, first-served (FCFS)
or Fixed priority (FP). The initial objects defined in the model can then be deployed
to the declared CPUs using the CPU’s deploy and setPriority operations. Buses
are defined with a transmission speed (bytes/s) and a set of CPUs which they connect.
Object instances that are not deployed to a specific CPU (and not created by an object
that is deployed), are automatically deployed onto a virtual CPU. The virtual CPU
is connected to all real CPUs through a virtual bus. Virtual components are used
to simulate the external environment for the model of the system being developed.

The semantics of VDM-RT has been extended with the concept of discrete time,
such that all computations a thread performs take time, including the transmission of
messages over a bus. Time delays can be explicitly specified by special duration and
cycles statements, allowing the modeller to explicitly state that a statement or block
consumes a known amount of time. This can be specified as a number of nanoseconds
or a number of CPU cycles of the CPU on which the statement is evaluated. All virtual
resources are infinitely fast: calculation can be performed instantaneously consuming
no time, though if an explicit duration statement is evaluated on a virtual CPU, the
system time will be incremented by the duration.

The formal semantics of the kernel of VDM-RT is provided in [40] in an operational
semantics style. This uses an interleaving semantics without restricting non-deterministic
choices; in particular there is no requirement for specific scheduling policies. Thus, the

1 In the current version of the VDMJ interpreter the allowable jitter is a simple random dis-
tribution but it is expected that the user in the future will be able to specify a desired jitter
distribution.

182 K. Lausdahl, P.G. Larsen, and N. Battle

semantics enables multiple different interleavings and as such the deterministic execu-
tion provided by the VDMJ [2] interpreter described here can be seen as one possible
scheduling of a model containing non-determinism. Effectively, all the other models are
ignored from the interpreter’s perspective.

The VDM interpreter in Overture is a Java implementation called VDMJ. It im-
plements the scheduling and debug principles presented in this paper. It supports all
VDM dialects, allowing deterministic interpretation of sequential, multi-threaded and
distributed VDM models.

3 Interpreting Sequential VDM Models

In order to simulate the evaluation of functions or operations from a VDM model an
interpreter first needs to be initialised with the definitions declared in the model. This is
achieved with a tree traversal of the AST produced by the parser. Essentially, the syn-
tactic definitions must be transformed into their semantic equivalent representations.
However, since VDM is not designed to be interpreted, this transformation can be quite
complicated, because of the potential dependencies between different definitions. Note
however that the interpreter presented here operate with specific values and not sym-
bolic values [20].

The initialization of a specification amounts to the evaluation of the state of the sys-
tem, either in VDM-SL state definitions or VDM++ and VDM-RT static class
definitions. This involves the evaluation of initialization clauses for the various state
definitions, guided by their definition dependency ordering. VDM does not define a
syntactic order for the evaluation of definitions, but rather the order is inferred from the
definitions’ dependencies on each other: definitions that do not depend on others are
initialized first, in any order; then definitions that depend on those are initialized, and
so on2. Every time a specification is re-initialized, it returns to the same initial state.

When the initialisation is complete, the interpreter is ready to start the evaluation
of a test expression, making use of the definitions and state from the VDM model. In
order to perform such a test evaluation, the interpreter creates a runtime context that
initially contains the values defined in the state (if any). The evaluation then proceeds
by evaluating any arguments, by direct recursive traversal evaluation of the argument
expressions in the AST, and then executing the function or operation body in a new stack
frame that is linked to the state context. The evaluation evolves in a natural recursive
fashion, reflecting the function or operation call structure of the specification on one
particular thread.

The interpreter is also able to check all pre- and post-conditions, type and state in-
variants, recursive measures and performs general runtime type checking. The addi-
tional checks can be switched on or off whenever the user requires additional checking.
Extra checking naturally has an impact on the performance of the interpreter but this
may be a faster way to discover problems in VDM models. Semantically, bottom values
(denoting undefined) will result from different kinds of run-time errors from the inter-
preter depending upon whether such checks are performed or not, but the behaviour

2 There are some dependency orders which are perfectly legal VDM, but which cannot be
calculated by the interpreter.

A Deterministic Interpreter Simulating a Distributed Real Time System Using VDM 183

will always be deterministic. The special check for termination of recursive functions
may be worth a special mention, since this is (as far as we know) not performed by any
other interpreters. In VDM it is possible to define so-called measure functions that
must be monotonically decreasing for recursive calls. This can be checked at run-time
by the interpreter such that infinite recursion will always be detected.

These additional checks, based on predicates, correspond to the kind of checking
carried out in JML [6]. This can be illustrated using the conventional Factorial
function (in the post-condition here a basic library function from the MATH library is
used). The ordering of the additional checking can be seen in Figure 1.

Some VDM expressions contain looseness, for example a choice construct called a
let-be expression looks like: let a in set {1,2} in a. This expression denotes
either 1 or 2 but it is deliberately left as an implementation choice for the implementer

�
public Factorial: nat -> nat1
Factorial(n) ==
if n = 0
then 1
else n * Factorial(n - 1)

pre n >= 0
post RESULT = MATH‘fac(n)
measure Id;

Id : nat -> nat
Id(n) == n;

�� �

Fig. 1. Additional predicate checking in function evaluation

184 K. Lausdahl, P.G. Larsen, and N. Battle

from a refinement perspective. In order to be able to reproduce executions, the inter-
preter must thus choose one of the possible semantic models in order to produce a
deterministic interpretation. In the same way iterations over a set of elements must be
performed in the same order every time to ensure a deterministic result. As a result,
the evaluation of any sequential VDM model by the interpreter will always produce the
same result value, even if looseness means that the result cannot be predicted (easily)
ahead of time.

With respect to the interpretation of logical expressions it is also worth mentioning
that the standard left to right evaluation used in most programming languages are used.
This means that from a semantic perspective it is equivalent to McCarthy logic [28]
instead of the standard Logic of Partial Functions (LPF) handling of undefinedness
in VDM [18,10]. Alternatively one could start parallel threads interpreting each sub-
expression in a logical expression and then only yield a run-time error (denoting un-
defined) in the event that none of them yield a result that is sufficient to determine the
truth value of the logical operator according to the traditional LPF rules. However, it
has been decided that the extra complexity of this would not be worthwhile.

4 Interpreting Concurrent Real-Time Models

All VDM-SL specifications and non-threaded VDM++ specifications result in a simple
single threaded evaluation, as described above. Their execution will always produce the
same result because VDMJ treats all loose operations as under-determined rather than
non-deterministic [26].

VDM-RT simulates distributed systems and thus the initialisation process explained
for sequential VDM models above also needs to deal with the deployment of object in-
stances to CPUs, for example. The user indicates the intended deployment in the special
system class and so the interpreter needs to extract the necessary information from
the AST of that class. In addition, the interpreter needs to make use of the deployment
information to determine whether interprocess communication over a BUS is necessary.
It is also worthwhile noting that if an object instance creates new object instances (using
the new constructor) during the interpretation, those new instances must be deployed
on the same CPU by the interpreter.

Note that the interpreter here abstracts away from the challenges of being able to
determine the global state in a distributed system [1]. Since the interpreter always will
have consistent information about all the CPU’s at any point of time, the traditional
issues with unsynchronised clocks and dependability in distributed systems [21] are
abstracted away.

VDM++ and VDM-RT specifications can have multiple threads of execution, and
their evaluation can easily become non-deterministic since the thread scheduling policy
is deliberately left undefined in the VDM semantics. In order to eliminate this looseness,
VDMJ uses a scheduler which coordinates the activity of all threads in the system and
allows them to proceed, according to a policy, in a deterministic order. This guarantees
repeatable evaluations even for highly threaded VDM specifications.

VDMJ implements VDM threads using Java threads as opposed to a stack machine.
Previous experience [14] with an implementation of a single threaded stack machine

A Deterministic Interpreter Simulating a Distributed Real Time System Using VDM 185

turned out to be slower because of e.g. swap overhead. The Java language does not
define the operation of the underlying JVM thread scheduler. Instead, Java places var-
ious constraints on the ordering of events that must occur between threads, in the light
of synchronization primitives that control access to shared resources. This means that
although a given Java program will have a well defined partial ordering of some of
its operations, the JVM thread scheduler has a great deal of freedom regarding how to
execute threads that are not using synchronized access to variables or methods. In par-
ticular, there is no way to control which thread gets control of which (real) CPU in the
system.

In order to ensure that the VDMJ interpreter is fully independent of the JVM sched-
uler we need to use Java synchronization primitives to enforce the semantics of the
various VDM language features to control concurrency (permission predicates and mu-
texes), and to control the scheduling order and duration of timeslices allocated to dif-
ferent threads.

VDMJ scheduling is controlled on the basis of multiple Resources by a Resource
Scheduler. A Resource is a separate limited resource in the system, such as a CPU or
a bus (see Figure 2). These are separate in the sense that multiple CPUs or busses may
exist, and limited in the sense that one CPU can only run one thread at a time, and
one bus can only be transmitting one message at a time. Therefore there is a queue
of activity that should be scheduled for each Resource – threads to run on a CPU, or
messages to be sent via a bus. The Resource Scheduler is responsible for scheduling
execution on the Resources in the system.

Fig. 2. Overview of the VDM-RT resource scheduler

An interpreter (of any VDM dialect) has a single Resource Scheduler. A VDM-SL
or VDM++ simulation will have only one CPU Resource (called a virtual CPU) and no
bus Resources; a VDM-RT system will have as many CPUs and busses as are defined
in the system class.

186 K. Lausdahl, P.G. Larsen, and N. Battle

Every Resource has a scheduling policy3 potentially different for each instance of
the Resource. A policy implements methods to identify the thread that is best to run
next and for how long it is to be allowed to run (its timeslice).

With VDM-RT, in the event that the active thread is trying to move system time,
the Resource will identify this fact. The Resource Scheduler is responsible for waiting
until all Resources are in this state, and then finding the minimum time step that would
satisfy at least one of the waiting threads. System time is moved forward at this point,
and those threads that have their time step satisfied are permitted to continue, while
those that need to wait longer remain suspended. This reflects the semantics of VDM-
RT as defined in [40,17].

For example, if there are two threads running (on two CPUs), the Resource Scheduler
will offer each of them timeslices in turn. When one thread wishes to move system time
by (say) 10 units, its CPU Resource will indicate this to the Resource Scheduler, which
will stop including it in the scheduling process, allowing the other CPU’s thread to
run. Eventually, the second thread will also want to move system time (typically at the
end of a statement), say by 15 units, and its CPU Resource will also indicate this to
the Resource Scheduler. At this point, all active threads want to move time, one by 10
and the other by 15. The minimum time step that will satisfy at least one thread is a
step of 10 units. So the Resource Scheduler moves system time by 10, which releases
the first thread; the second thread remains trying to move time, but for the remaining
5 units that it needs. By default, all statements take a duration of 2 cycles, calculated
with reference to the speed of the CPU on which the statement is executed. Statements
(or blocks of statements) can have their default times overridden by duration and
cycles statements. The core of the scheduler is illustrated by:

�
progressing := false;
for all resource in set resources do
-- record if at least one resource is able to progress
progressing := CanProgress(resource) or progressing;

let timesteps = {resource.getTimestep()
| resource in set resources}\{nil}

in
-- nobody can progress and nobody is waiting for time
if not progressing and timesteps = {}
then error -- deadlock is detected
-- nobody can progress and somebody is waiting for time
elseif not progressing and timesteps <> {}
then let mintime = Min(timesteps)

in
(SystemClock.advance(mintime);
for all resource in set resources do

AdvanceTime(resource,mintime))
else -- continue scheduling

�� �
3 As described in Section 2, this can currently be either a “First Come First Served” or a “Fixed

Priority” scheduling policy, but more could be added in the future and parameterisation of
these can be imagined.

A Deterministic Interpreter Simulating a Distributed Real Time System Using VDM 187

The initial loop establishes whether any resources can progress. The CanProgress
operation does a compute step for the Resource, if possible. The progressing flag
will be true if any Resource was able to progress. The getTimestep operation ei-
ther returns the timestep requested by the Resource, or nil, indicating that it is not
currently waiting for time to advance. If no Resource can progress and no Resource
is waiting for a timestep, the system is deadlocked. Otherwise, if no Resource can
progress and at least one is waiting for a timestep, then system time can advance by the
smallest requested amount. In this event, every Resource is adjusted by the minimum
step, which will result in at least one Resource being able to progress. This schedul-
ing process continues until the original expression supplied by the user completes its
evaluation.

The critical point, for deterministic behaviour, is that only one Java thread is ever run-
ning at a given point of time: either a thread associated with a CPU or a bus Resource,
or the Resource Scheduler itself (which runs in the main thread). Furthermore, threads
run in a deterministic order and for deterministic timeslices, since the scheduling poli-
cies are deterministic. Timeslices are deterministic because they are implemented as the
execution of a specific number of VDM statements or expressions, rather than a period
of time.

In VDM++ and VDM-RT threads are synchronised using permission predicates and
this adds to the complexity of the VDMJ interpreter. As explained in Section 2 per-
mission predicates can depend on the value of instance variables and history counters.
An object’s history counters contain information about the history of requests, invoca-
tions and completions of all operations for the object. Here it is important to ensure that
threads that have been blocked are awoken in a deterministic fashion. Given that the
threads are otherwise running in a deterministic fashion, this is easily arranged since
all the threads waiting for a history counter change (or a state variable value change)
already have a fixed position in their CPU Resource’s scheduling list. When the waiting
threads are signalled, all applicable threads are signalled at the same time, and no new
threads can be scheduled until this is complete. So the way that the scheduling evolves
after a history event (or state change) is deterministic, since the threads waiting at any
point is also deterministic and the scheduling is deterministic.

Finally, threads that are defined as periodic also need to be taken into account in
the scheduling. A simple periodic thread will calculate that it needs to wait until sys-
tem time has moved (say) 100 time units before it should execute its body again. The
thread does this calculation when it is scheduled to run, which is deterministic since the
scheduler is deterministic; the thread is re-scheduled when the required time is reached,
which again is deterministic because the movement of time only occurs when there is
no scheduling activity. Periodic threads can also have more complex repeat semantics,
limiting the inter-run period for example, or adding random jitter to the period. How-
ever these calculations are still deterministic since a seedable pseudo-random number
generator is used for the jitter. The generator is re-seeded whenever the specification is
re-initialized. This guarantees the overall execution will be the same, given the same
sequence of evaluations after an initialization.

188 K. Lausdahl, P.G. Larsen, and N. Battle

5 Creating a Deterministic Debugger

In order to get a deterministic debugger for an interpreted language the interpreter nat-
urally needs to be deterministic in itself as explained above. However, when a lan-
guage includes concurrent threads, debuggers which have a deterministic interpreter
are not necessarily deterministic since the debugging may effect the execution. Conven-
tional debuggers for multi-threaded applications are usually non-deterministic because
threads suspended for debug do not share their actual thread state and are just excluded
from the scheduling, letting other threads carry on as normal. An example of such a de-
bugger is the Java debugger in Eclipse and the C# debugger in Visual Studio. In the Java
Virtual Machine (VM) a thread can be suspended through the Java Debug Wire Protocol
(JDWP) [29] for inspection. However, the state of the suspended thread is not changed
while the thread is stopped, making any other thread unable to detect that the thread was
suspended. This causes non-deterministic scheduling since the suspended thread can no
longer be scheduled, thus decreasing the number of threads in the scheduling algorithm
by one. Even though the VM supports a total suspend of the entire VM, the problem
still applies, since it makes use of the same internal mechanism, suspending one thread
at a time, risking non-deterministic scheduling during the suspend process.

5.1 Deterministic Debugging

In VDMJ, deterministic scheduling is guaranteed during debugging. This ensures that
threads will always be scheduled in the same order, independent of any debug actions
made by the user. In relation to conventional debuggers, this is like a suspend of the VM
causing the scheduling order to be preserved during debug. The main difference is that
no single thread can be suspended, while others continue. If a thread hits a breakpoint
which forces it into debug mode, its execution will be suspended and a signal will be
sent simultaneously to all other threads to do the same. Similarly, no thread can continue
before all threads have returned from debug mode. The debugger allows all threads to
be inspected while in debug mode, because in effect, they all stopped at the same break-
point. In order for interpretation to continue, all threads must be signalled and receive
the same continue command from the user interface. The order in which the commands
are sent to the threads is irrelevant because interpretation can only be continued after
all threads have received the signal. Great care is taken not to lose signals during this
process. The thread which initiated the debug session is signalled last during a resume,
so that the other threads are in the state that they were before we hit the breakpoint. The
thread order of this signal communication cannot affect the scheduling order, since it is
strictly controlled and independent of the debugging session.

5.2 Debugging User Interface

A debugging interface must be both compelling and simple. However it must provide
enough information and control of the model being debugged to determine if the in-
spected behaviour is correct. In Overture, the debug interface is based on the Debug
feature of the Eclipse platform, allowing a simple, standardized interaction during de-
bugging. A protocol is required to connect the debug interface with the interpreter

A Deterministic Interpreter Simulating a Distributed Real Time System Using VDM 189

(VDMJ). The chosen protocol in Overture is Xdebug DBGP4 [32]. This protocol sup-
ports the debugging of multi-threaded models and provides commands for both control
and retrieval of state information from the executing model. The protocol is designed to
keep the debugger as simple as possible, using simple text commands for control with
more complex XML responses to the user interface with information about the model
or the general state of the interpreter. To integrate the DBGP protocol with the Eclipse
Debug feature, a Debug Target is required which defines the connection between the
debug interface included in Eclipse and the protocol. The debug target is responsible
for sending commands to the interpreter and decoding responses either as state change
of the interpreter, or as information representing threads, stack frames, variables and
values.

(a) Normal flow of the debug protocol. (b) Break in the debug protocol.

Fig. 3. Sequence diagrams of interaction with the debugger

In Figure 3a the normal flow of debugging is shown for a single thread. When the
thread connects to the debug target it sends an init command with a session id. This
causes the debug target to initialize a debugging session and subsequently start the
configuration of the debugger, redirecting output and setting debugger features and
breakpoints followed by a run command starting the executing. This will allow the
debugger to start the interpretation of the model, then the interpreter either hits a break-
point shown in Figure 3b or runs to completion sending a stopped command to the
debug target signalling the end of the debugging session. If a multi-threaded model is
executed only the main thread will send the init command while other threads created
later just connect with the session id which allows the debug target to group them into
the same debug session. The server will always configure all threads after a connection
has been established.

Figure 3b shows the case where a breakpoint is hit in a thread. This causes the thread
to send a break message notifying that a breakpoint was hit. When this happens the
debugger will start populating the user interface with call stack throughstackGet and
variables which are in scope per selected stack frame by the getContext command.
Threads with a short lifetime and with no breakpoints only report their existence if they

4 A common debugger protocol for languages and debugger UI communication.

190 K. Lausdahl, P.G. Larsen, and N. Battle

exist when a breakpoint is hit, this avoids overloading of the debugging protocol in
case many async operations and periodic threads are part of the model. This may
seem trivial but in order to achieve a resonable performance of the interpretation of a
VDM-RT model in the debugger this is a paramount design decision.

5.3 Debugging Multi-threaded Applications

Concurrent VDM models makes use of permission predicates to control concurrent be-
haviour, by allowing synchronization of operations to be explicitly specified. However
if thread execution is restricted by predicates, which includes history counters, then it
is generally difficult to determine why a certain thread is blocked. To improve the de-
bugging of multi-threaded models, VDMJ keeps track of all threads and all associated
history counters and provides this information through the debug interface. This allows
a user to inspect threads blocked by permission predicates as shown in Figure 4. All
history counters associated with a thread will be available with the current value and
operation name e.g. #fin(ClientListen).

Fig. 4. Debug UI Showing history counter values

The permission predicate shown in Figure 4 from the POP3 client/ server applica-
tion [13], guards the operation ClientSend to ensure a balance between send and
received messages. The permission predicate includes several history counters, thus the
variables view provides information about these. In Figure 4 it is easy to deduce the
reason why a permission predicate may be blocked. From a usability perspective this is
a very important feature making it much easier for users to deduce the reasons why a
concurrent model is not behaving as imagined.

6 Related Work

The development that is closely related to the sequential part of this work is clearly the
interpreter from VDMTools [24]. That interpreter has internally defined its own virtual

A Deterministic Interpreter Simulating a Distributed Real Time System Using VDM 191

machine and ensures its deterministic execution by simply having one master scheduler
that controls all threads. However from a performance point of view the VDMJ inter-
preter is usually significantly faster than the interpreter from VDMTools, the exceptions
being test cases that use higher order functions.

The B-Method is also a model-oriented formal method and here the ProB tool [27]
is related to the work presented here. Among other features ProB contains an anima-
tor feature. Since B focus on implicit definitions the executable subset is smaller than
what we are able to cope with in this paper, and concurrency and distributed systems
cannot be incorporated since it is not included in the B notation. The ProB interpreter
is also deterministic but focus is more put on enabling the user to apply operations that
have acceptable pre-conditions interactively rather than on traditional testing which is
enabled with the VDMJ interpreter presented here.

The ProB tool has also been used to animate Z specifications [30]. For Z many others
have also produced interpreters/translators to programming languages for subsets of the
notation [9,39,5,36]. Common to all these papers is that they do not include concurrency
in the Z notation and thus do not have the challenges created for keeping determinism
as presented in this paper.

The POOSL approach has significant similarities with VDM-RT in its ability to de-
scribe a distributed system in a model-oriented fashion [38,15]. Here they have decided
to resolve non-determinism by always selecting the first option when a finite collection
of possibilities exists, though it is stated that it is possible that this way of interpret-
ing the non-determism can be changed in the future. However, they do not have the
interactive debugging functionality described in this paper, but are limited to logging
primitives.

A significantly different approach for interpreting formal models can be found in
Maude [8]. However this technology is based on algebraic approaches using term rewrit-
ing and thus it is not really comparable to the approach presented in this paper.

7 Concluding Remarks

Deterministic interpreters for distributed concurrent models are essential for repeatabil-
ity of test executions. In this paper we have presented one approach for implementing
an interpreter in Java for an executable subset of VDM, and a scheduling algorithm
which takes distribution over resources and scheduling of threads within resources into
account to provide deterministic execution. We have also presented how VDMJ is dif-
ferent to conventional debuggers by enabling debug without affecting the scheduling of
threads. We believe that this property is essential in order for users to be able to dis-
cover why a VDM model with concurrency behaves in a specific way. In addition we
have explained some of design decisions taken both to increase performance as well
as for increasing the usability. We believe that the same principles can be adapted to
interpreters for other formal modelling languages such as Circus [42].

Ongoing work on the semantics of a core kernel of VDM is currently being carried
out. It is expected that the results of this effort will provide a more rigorous presentation
of the material presented here. This will include mappings from the different VDM
dialects to VDM Core as well as considerations for the models that are being ignored
by the interpreter as well.

192 K. Lausdahl, P.G. Larsen, and N. Battle

Regarding the GUI debugger, we expect to improve the functionality by creating
better ways of providing overviews of the status of all threads at all CPUs simulated
in a VDM-RT model. Such improvements will make it easier for the user to quickly
deduce the underlying reasons behind potential issues.

Acknowledgements. The work reported in this paper have partly been carried out in
the DESTECS project which have partially been funded by the European Commission.
In addition we would like to thank Marcel Verhoef, Sune Wolff and the anonymous
reviewers for valuable input on the work presented here.

References

1. Babaoglu, Ö., Marzullo, K.: Consistent Global States of Distributed Systems: Fundamental
Concepts and Mechanisms. Tech. Rep. UBLCS-93-1, University of Bologna, Piazza di Porta
S. Donato, 5, 40127 Bologna (Italy) (January 1993)

2. Battle, N.: VDMJ User Guide. Tech. rep., Fujitsu Services Ltd., UK (2009)
3. Bergan, T., Anderson, O., Devietti, J., Ceze, L., Grossman, D.: CoreDet: A Compiler and

Runtime System for Deterministic Multithreaded Execution. In: ASPLOS 2010. ACM, New
York (2010)

4. Bjorner, D., Jones, C.B. (eds.): The Vienna Development Method: The Meta-Language.
LNCS, vol. 61. Springer, Heidelberg (1978)

5. Breuer, P., Bowen, J.: Towards correct executable semantics for z. In: Bowen, J., Hall, J.
(eds.) Z User Workshop, pp. 185–209. Springer, Heidelberg (1994)

6. Burdy, L., Cheon, Y., Cok, D., Ernst, M.D., Kiniry, J.R., Leavens, G.T., Leino, K.R.M.,
Poll, E.: An overview of JML Tools and Applications. Intl. Journal of Software Tools for
Technology Transfer 7, 212–232 (2005)

7. Burnin, J., Sen, K.: Asserting and checking determinism for multithreaded programs. In: 17th
ACM SIGSOFT Symposium on the Foundations of Software Engineering (FSE). ACM, New
York (2009)

8. Clavel, M., Durán, F., Eker, S., Lincoln, P., Martı́-Oliet, N., Meseguer, J., Talcott, C.L. (eds.):
All About Maude - A High-Performance Logical Framework, How to Specify, Program and
Verify Systems in Rewriting Logic. LNCS, vol. 4350. Springer, Heidelberg (2007)

9. Dick, A., Krause, P., Cozens, J.: Computer aided transformation of Z into Prolog. In:
Nicholls, J. (ed.) Z User Workshop, Workshops in Computing, pp. 71–85. Springer, Hei-
delberg (1990)

10. Fitzgerald, J.S.: The Typed Logic of Partial Functions and the Vienna Development Method.
In: Bjørner, D., Henson, M.C. (eds.) Logics of Specification Languages. EATCS Monographs
in Theoretical Computer Science, pp. 427–461. Springer, Heidelberg (2007)

11. Fitzgerald, J.S., Larsen, P.G., Verhoef, M.: Vienna Development Method. Wiley Encyclope-
dia of Computer Science and Engineering. John Wiley & Sons, Inc., Chichester (2008)

12. Fitzgerald, J., Larsen, P.G.: Modelling Systems – Practical Tools and Techniques in
Software Development, 2nd edn. Cambridge University Press, Cambridge (2009); ISBN 0-
521-62348-0

13. Fitzgerald, J., Larsen, P.G., Mukherjee, P., Plat, N., Verhoef, M.: Validated Designs for
Object–oriented Systems. Springer, New York (2005), http://www.vdmbook.com

14. Fitzgerald, J., Larsen, P.G., Sahara, S.: VDMTools: Advances in Support for Formal Model-
ing in VDM. ACM Sigplan Notices 43(2), 3–11 (2008)

http://www.vdmbook.com

A Deterministic Interpreter Simulating a Distributed Real Time System Using VDM 193

15. Florescu, O., Voeten, J., Verhoef, M., Corporaal, H.: Reusing Real-Time Systems Design
Experience Through Modelling Patterns. In: Forum on specification and Description Lan-
guages (FDL). ECSI (2006); received the best paper award at FDL 2006. This paper is
available on-line at, http://www.es.ele.tue.nl/premadona/publications/
FVVC06.pdf

16. Fröhlich, B.: Towards Executability of Implicit Definitions. Ph.D. thesis, TU Graz, Institute
of Software Technology (September 1998)

17. Hooman, J., Verhoef, M.: Formal semantics of a VDM extension for distributed embedded
systems. In: Dams, D., Hannemann, U., Steffen, M. (eds.) Concurrency, Compositionality,
and Correctness. LNCS, vol. 5930, pp. 142–161. Springer, Heidelberg (2010)

18. Jones, C.B.: Program Specification and Verification in VDM. Logic of Programming and
Calculi of Discrete Design F36, 149–184 (1987)

19. Jones, C.B.: Systematic Software Development Using VDM, 2nd edn. Prentice-Hall Interna-
tional, Englewood Cliffs (1990); ISBN 0-13-880733-7

20. Kneuper, R.: Symbolic Execution as a Tool for Validation of Specifications. Ph.D. thesis,
Department of Computer Science, Univeristy of Manchester (March 1989), technical Report
Series UMCS-89-7-1

21. Lamport, L.: Time, Clocks, and the Ordering of Events in a Distributed System. Communi-
cations of the ACM 21(7), 558–565 (1978)

22. Larsen, P.G.: Evaluation of underdetermined explicit expressions. In: Naftalin, M., Bertrán,
M., Denvir, T. (eds.) FME 1994. LNCS, vol. 873, pp. 233–250. Springer, Heidelberg (1994)

23. Larsen, P.G., Battle, N., Ferreira, M., Fitzgerald, J., Lausdahl, K., Verhoef, M.: The Overture
Initiative – Integrating Tools for VDM. ACM Software Engineering Notes 35(1) (January
2010)

24. Larsen, P.G., Lassen, P.B.: An Executable Subset of Meta-IV with Loose Specification. In:
Prehn, S., Toetenel, H. (eds.) VDM 1991. LNCS, vol. 551, Springer, Heidelberg (1991)

25. Larsen, P.G., Lausdahl, K., Battle, N.: The VDM-10 Language Manual. Tech. Rep. TR-2010-
06, The Overture Open Source Initiative (April 2010)

26. Larsen, P.G., Pawłowski, W.: The Formal Semantics of ISO VDM-SL. Computer Standards
and Interfaces 17(5-6), 585–602 (1995)

27. Leuschel, M., Butler, M.J.: ProB: an automated analysis toolset for the B method.
STTT 10(2), 185–203 (2008)

28. McCarthy, J.: A Basis for a Mathematical Theory of Computation. In: Braffort, P., Hirstberg,
D. (eds.) Western Joint Computer Conference, then published in: Computer Programming
and Formal Systems, pp. 33–70. North Holland, Amsterdam (1967)

29. Microsystems, S.: Java Debug Wire Protocol. 1.5.0 edn. Sun Microsystems, Inc,
(2004), http://download.oracle.com/javase/1.5.0/docs/guide/jpda/
jdwp-spec.html

30. Plagge, D., Leuschel, M.: Validating Z Specifications Using the PROB Animator and Model
Checker. In: Davies, J., Gibbons, J. (eds.) IFM 2007. LNCS, vol. 4591, pp. 480–500.
Springer, Heidelberg (2007)

31. Plat, N., Larsen, P.G.: An Overview of the ISO/VDM-SL Standard. Sigplan Notices 27(8),
76–82 (1992)

32. Rethans, S.C.A.D.: A Common Debugger Protocol for Languages and Debugger UI Com-
munication. XDEBUG, 2 edn. (2011), http://www.xdebug.org/docs-dbgp.php

33. Ribeiro, A., Larsen, P.G.: Proof obligation generation and discharging for recursive defini-
tions in VDM. In: Dong, J.S., Zhu, H. (eds.) ICFEM 2010. LNCS, vol. 6447, pp. 40–55.
Springer, Heidelberg (2010)

34. Rushby, J.: Formal Methods: Instruments of Justification or Tools for Discovery? In: Nordic
Seminar on Dependable Computing System 1994. The Technical University of Denmark,
Department of Computer Science (August 1994)

http://www.es.ele.tue.nl/premadona/publications/FVVC06.pdf
http://www.es.ele.tue.nl/premadona/publications/FVVC06.pdf
http://download.oracle.com/javase/1.5.0/docs/guide/jpda/jdwp-spec.html
http://download.oracle.com/javase/1.5.0/docs/guide/jpda/jdwp-spec.html
http://www.xdebug.org/docs-dbgp.php

194 K. Lausdahl, P.G. Larsen, and N. Battle

35. Rushby, J.: Disappearing formal methods. In: Fifth IEEE International Symposium on High
Assurance Systems Engineering, HASE 2000. IEEE, Los Alamitos (2000)

36. Sherrell, L.B., Carver, D.L.: Experiences in Translating Z Designs to Haskell Implementa-
tions. Software Practice and Experience 24(12), 1159–1178 (1994)

37. Søndergaard, H., Sestoft, P.: Non-determinism in Functional Languages. The Computer Jour-
nal 35(5), 514–523 (1992)

38. Theelen, B., Florescu, O., Geilen, M., Huang, J., van der Putten, P., Voeten, J.: Software/hard-
ware engineering with the parallel object-oriented specification language. In: Proceedings of
the ACM-IEEE International Conference on Formal Methods and Models for Codeesign
(MEMOCODE), pp. 139–148. IEEE Computer Society, Los Alamitos (2007)

39. Valentine, S.: Z−−, an executable subset of Z. In: Nicholls, J. (ed.) Z User Workshop, Work-
shops in Computing, pp. 157–187. Springer, Heidelberg (1992)

40. Verhoef, M.: Modeling and Validating Distributed Embedded Real-Time Control Systems.
Ph.D. thesis, Radboud University Nijmegen (2008); ISBN 978-90-9023705-3

41. Verhoef, M., Larsen, P.G., Hooman, J.: Modeling and Validating Distributed Embedded Real-
Time Systems with VDM++. In: Misra, J., Nipkow, T., Karakostas, G. (eds.) FM 2006.
LNCS, vol. 4085, pp. 147–162. Springer, Heidelberg (2006)

42. Woodcock, J.C.P., Cavalcanti, A.L.C.: A concurrent language for refinement. In: Butterfield,
A., Pahl, C. (eds.) IWFM 2001: 5th Irish Workshop in Formal Methods. BCS Electronic
Workshops in Computing, Dublin, Ireland (July 2001)

On Fitting a Formal Method into Practice�

Rainer Gmehlich1, Katrin Grau1, Stefan Hallerstede2,
Michael Leuschel2, Felix Lösch1, and Daniel Plagge2

1 Robert Bosch GmbH, Stuttgart, Germany
2 Heinrich-Heine-University of Düsseldorf, Germany

Abstract. The development of the Event-B formal method and the sup-
porting tools Rodin and ProB was guided by practical experiences with
the B-Method, the Z specification notation, VDM and similar practical
formal methods. The case study discussed in this article — a cruise con-
trol system — is a serious test of industrial use. We report on where
Event-B and its tools have succeeded, where they have not. We also
report on advances that were inspired by the case study. Interestingly,
the case study was not a pure formal methods problem. In addition to
Event-B, it used Problem Frames for capturing requirements. The in-
teraction between the two proved to be crucial for the success of the
case study. The heart of the problem was tracing informal requirements
from Problem Frames descriptions to formal Event-B models. To a large
degree, this issue dictated the approach that had to be used for formal
modelling. A dedicated record theory and dedicated tool support were
required. The size of the formal models rather than complex individual
formulas was the main challenge for tool support.

1 Introduction

This article recounts an attempt to apply Event-B [1] to an industrial specifi-
cation problem in a methodologically heterogenous environment without prior
use of formal methods. This required integration within an existing, evolving
development methodology. This means the methodology cannot be dictated to
follow customs and conventions that have arisen within formal methods such as
Event-B.

We believe some of the problems we encountered will be typical for industrial
deployment of formal methods in general. In particular, this concerns prob-
lems related to the different cultures, customs and conventions in industry and
academia. At times, these problems (appear to) become more severe than all
technical problems taken together. It seems advisable to be prepared for this,
assuming the different cultures are unavoidable.

The article presents a non-chronological digest of an experiment carried out at
Bosch: to develop a model of a cruise control system. The focus of this experiment
� This research was carried out as part of the EU FP7-ICT research project DEPLOY

(Industrial deployment of advanced system engineering methods for high depend-
ability and productivity) http://www.deploy-project.eu

S. Qin and Z. Qiu (Eds.): ICFEM 2011, LNCS 6991, pp. 195–210, 2011.
c© Springer-Verlag Berlin Heidelberg 2011

196 R. Gmehlich et al.

was to apply Event-B to an industrial problem in an industrial environment. In
that environment, Problem Frames [8] are used to deal with informal require-
ments. Initially, the academics did not yet grasp the central importance of this:
formal methods seem to have a tendency to take over whole development pro-
cesses and dictate what should be done instead. However, here formal methods
were only a piece in a bigger puzzle. Other parts of the puzzle dealt with con-
tinuous control (which is provided by specialised design methods) or real time
(which is considered more a matter of code generation). Note that such issues en-
ter the case study in the form of assumptions at various places. We have learned
that excluding parts of a problem can be a challenge for formal methods. The
claim of correctness will only be with respect to a large set of assumptions, the
justifications of which are unavailable.

The core of the formal modelling problem of the experiment concerns only
the switching behaviour of the cruise control. The main difficulties are to fit
Event-B into the overall development scheme, while finding the appropriate ab-
stractions to express the formal model of the cruise control. In [16], a formal
development of a cruise control in Event-B is presented. The development is
more ambitious than our development, but it does neither support traceability
of Problem Frames descriptions nor hazard analysis. It also does not respect the
boundaries described above about what not to model. One would also think that
hybrid modelling of the cruise control (for instance, [15]) should be of advantage.
But again, our problem is the switching behaviour of the cruise control. We want
to avoid duplicating work already carried out by other engineers. In principle,
one could also use an approach based on StateMate [6]. We believe, however,
that tracing of requirements and matching formal models with Problem Frames
would be difficult. In particular, although Event-B refinement is not satisfactory
for matching Problem Frames elaboration, it gave us a means to express what
we wanted.

We believe our observations and findings would apply in similar form to other
formal methods used in place of Event-B. In this context, note again the exclusion
of certain aspects such as continuity or real time. Not everything is under control
of the formal method. Our contribution is an approach for tracing requirements
by matching Problem Frames with formal Event-B models using a dedicated way
of modelling and instantiating records. We also have made progress in checking
large models for deadlocks using constraint-solving techniques.

Industrial use is impossible without having supporting tools. For Event-B
the Rodin tool [2] has been developed. In short, it deals with editing and proof
obligation generation. It has a plugin architecture that permits its extension with
new functionality. One plugin provided is ProB [11], a tool for model animation,
model checking and constraint checking.

Overview. Section 2 describes how Event-B was fitted into an industrial
development process. The following sections focus on specific problems of the
integration. Section 3 discusses integration with Problem Frames. Section 4 dis-
cusses a specific aspect of that integration: the relationship of Problem Frames

On Fitting a Formal Method into Practice 197

elaboration and Event-B refinement. Section 5 discusses a scaling problem by
way of deadlock analysis. A conclusion follows in Section 6.

2 Event-B in an Industrial Development Process

The case study we discuss in this article is carried out within the Deploy research
project. The project’s main objective is to make major advances in engineering
methods for dependable systems through the deployment of formal engineering
methods. One work package of the project deals with the deployment of for-
mal methods, in particular, Event-B and ProB in the automotive sector. The
case study applies Event-B to the modelling of a cruise control system. A cruise
control system is an automotive system implemented in software which automat-
ically controls the speed of a car. It is part of the engine control system which
controls actuators of the engine (such as injectors, fuel pumps or throttle valve)
based on the values of specific sensors (such as the accelerator pedal position
sensor, the airflow sensor or the lambda sensor).

The cruise control system consists of a discrete part describing the control
logic and continuous parts describing the actual closed loop controllers required
to adjust the speed of the car. In the case study we focus exclusively on the
discrete part, that is, the switching behaviour of the cruise control system. The
continuous control part is provided by other design methods.

2.1 Event-B

Event-B models are composed of contexts and machines. Contexts capture static
aspects of a model expressed in terms of carrier sets, constants and axioms.
Consequences of the axioms can be stated as theorems (that need to be proved).
Fig. 5 and 7 below show two contexts. The concrete context of Fig. 7 is said
to extend the abstract context of Fig. 5: all carrier sets, constants, axioms and
theorems of the context being extended are visible in the extending context.

Machines capture dynamic aspects of a model (see Fig. 6). The state of a
machine is described in terms of variables. The possible values of the variables are
constrained by invariants (see inv1 and inv2 of Fig. 6). Possible state changes are
modelled by events. Each event consists of a collection of parameters p, of guards
g and of actions a (a collection of simultaneous update statements). We use the
following schema to describe events: any p when g then a end. An event may
cause a state change if its guard is true for a choice of parameters. Event-B does
not make any fairness assumptions about event occurrences. Refinement is used
to specify more details about a machine. For instance, the concrete machine of
Fig. 8 is a refinement of the abstract machine of Fig. 6. The state of the abstract
machine is related to the state of the concrete machine by a gluing invariant
associated with the concrete machine that relates abstract variables to concrete
variables (see invariant inv3 in Fig. 8). Each event of the abstract machine is
refined by one or more concrete events. Roughly speaking, the events of the
abstract machine must be capable of simulating the behaviour of the events of

198 R. Gmehlich et al.

the concrete machine. The Rodin tool can generate proof obligations to verify
properties such as invariant preservation or refinement.

2.2 Fitting Event-B into Development Practice

Introducing the formal development method Event-B into industrial practice (in
the automotive sector) requires integration with existing development processes
and tools. Fig. 1 shows a sketch of a development process which includes Event-
B. This article deals with the use of Event-B at the position indicated in the
figure. The main challenge encountered in this respect is concerned with the
relationship of Event-B and Problem Frames.

requirements document
in natural language

requirements engineering
Problem Frames

system model
in Event-B

target code

hazard analysis

closed-loop
controller model

target code

integrated target code

Fig. 1. Overview of the development process

We comment briefly on
the phases of the devel-
opment process, to give
an impression of the gen-
eral picture and the
constraints imposed. De-
velopment begins with nat-
ural language requirements
that tend to be unstruc-
tured and difficult to relate
to a formal model. A haz-
ard analysis yields safety
requirements to be in-
corporated. Requirements
engineering and hazard
analysis go hand in hand.
The development of the

closed loop controller is done by control engineers. Verifying closed loop con-
trollers requires reasoning about continuous time behaviour. Since specialised
methods are already in place we did not study modelling of continuous time be-
havior in the case study. We modelled the discrete part of the system in Event-B
making a contribution to the existing design process. Another work package
of the Deploy project focused on the task of generating code from Event-B
models [3].

The need for Problem Frames for requirements engineering had been recog-
nised early on with formal system modelling in view. The decision to use Prob-
lem Frames was made after a first attempt to directly model natural language
requirements in Event-B resulted in a large gap between the requirements doc-
ument and the Event-B model. The gap between the two documents was too
large to permit maintaining them consistently: it is indispensable to validate
by means of a review, say, that an Event-B model adequately captures what is
stated in the requirements. And tracing this information seemed out of reach.
Furthermore, the Bosch engineers had made good experiences with using the
Problem Frames approach for structuring requirements as well. It is important
to note here, that the conditions determining a decision to use a certain method

On Fitting a Formal Method into Practice 199

in industry are considerably different from those in academia: the method chosen
in industry must not only fit a single problem it must also be understandable
for a large variety of engineers who are not directly involved in solving the prob-
lem at hand. The Problem Frames approach looked very promising to the Bosch
engineers because it could easily be understood by the development engineers.

The Problem Frames approach enabled the Bosch engineers to validate the
Event-B model with respect to the requirements and provided an easier way
of tracing requirements in the Event-B model. With the introduction of the
Problem Frames approach they obtained two simpler validation problems:
(1) to validate whether the problem frames capture the natural language re-

quirements
(2) to validate whether the Event-B model corresponds to the problem frames.
Each of the two validation problems appeared to be feasible as opposed to the
direct approach from natural language requirements to Event-B models.

The insight we gained from the early phase of the case study is that in-
troducing Event-B in industry on its own is difficult. Introducing Event-B in
conjunction with supporting Problem Frames greatly reduces the entry barrier
for engineers to use Event-B. Similar observations have been made with UML-B
before [14].

2.3 Problem Frames

Problem Frames is an informal graphical requirements engineering method de-
veloped by Michael Jackson [8]. The immediate focus of Problem Frames, as
its name suggests, is on software development as a problem to be solved. The
problem to be solved is hereby visualized using problem diagrams that contain
a machine, i.e., the system to be built, the problem world, i.e., the environ-
ment the system is interacting with and the requirements which are expressed in
terms of the problem world. The requirements engineering process usually starts
with a context diagram, an abstract problem diagram, which describes the main
elements of the problem world as well as the overall requirement the system
shall fulfill. Fig. 2 shows a simple context diagram of the cruise control system.

Cruise
Control

Car
Provide

cruise control
functionality

RequirementProblem WorldMachine Domain

a
b

c

Fig. 2. Context diagram for cruise control system

The machine inter-
acts with the problem
world by shared phe-
nomena at the inter-
face a. Typically, these
phenomena are events
and states, controlled
either by the problem

world or by the machine and shared at input-output ports of the machine. Re-
quirements are described only in terms of the phenomena of the problem world
which are shared between the problem world and the requirements at interfaces
b and c.

200 R. Gmehlich et al.

Projections of this context diagram, called subproblems, are then used to de-
scribe different aspects of the problem. A more detailed description of the con-
cepts of Problem Frames can be found in [8].

We extended the original Problem Frames approach [9,13] by an additional
operation called elaboration as well as an adapted version of the already exist-
ing projection operation. In an elaboration of an abstract problem diagram the
environment, the phenomena and the requirements are described in more detail.
For example, the problem diagram in Fig. 4 is an elaboration of the problem
diagram in Fig. 3. Elaboration in Problem Frames thus serves a similar purpose
as refinement in Event-B, i.e., to relate abstract descriptions of the system to
more concrete descriptions.

2.4 The Cruise Control System

In the following we describe the control logic of the cruise control system in
more detail. The behaviour of the cruise control system is determined by three
different operating modes: NOCTRL, CTRL, ACTRL. In the NOCTRL mode
the system is inactive, that is, it is not actively regulating the speed of the car.
In the CTRL mode the system is either maintaining or approaching a previously
defined target speed. In the ACTRL mode the system is either accelerating
or decelerating by a predefined value. The three modes of the system can be
switched by the driver using the control interface or by the software in case the
control software detects an error. In the latter case the mode is always switched
to NOCTRL.

There are two ways of a driver to control the behaviour of the cruise control
system: (i) using the brake pedal or clutch pedal to (temporarily) deactivate
the cruise control system, and (ii) using the control elements provided by the
operating lever. The operating lever usually has the following buttons: (a) SET to
define a target speed, (b) RESUME to resume a previously defined target speed,
(c) TIPUP to increase the target speed, (d) TIPDN to decrease the target speed,
(e) ACC to accelerate, (f) DEC to decelerate. Furthermore, there is a dedicated
switch for switching the cruise control system ON or OFF.

Depending on commands given by the driver or signals received by sensors
the cruise control system switches between the modes. In order to distinguish
the different operational states of the system the three major modes are further
partitioned into a number of ten submodes as shown in Table 1.

3 Relating Problem Frames to Event-B Models

A major obstacle during the case study was to understand how the gap between
Problem Frames and Event-B could be closed. If the informal requirements could
not be traced into the formal models, the development method would be of
no use for the engineers. A close correspondence between concepts of Problem
Frames and Event-B was needed to arrive at a systematic approach to require-
ments tracing. Feedback from the analysis of the formal models should suggest

On Fitting a Formal Method into Practice 201

Table 1. Modes and submodes of the cruise control system

Mode Submode Description

NOCTRL

UBAT OFF Ignition is off and engine not running
INIT Ignition is on and cruise control is being intialized
OFF Ignition is on, cruise control initialized and switched off
ERROR An irreversible error has occurred
STANDBY Cruise control has been switched on
R ERROR A reversible error has occurred

CTRL
CRUISE Cruise control is maintaining the target speed
RESUME Target speed is approached from above or from below

ACTRL
ACC Cruise control is accelerating the car
DEC Cruise control is decelerating the car

improvements to the informal requirements. For example, missing requirements
were identified by using deadlock checking in ProB.

The central concern was to relate the elaboration and projection operations
provided by the extended Problem Frames approach to the notion of refinement
in Event-B. In order to illustrate this problem we use a small example which
describes a fragment of the cruise control system both at an abstract level (see
Fig. 3) and a more concrete (elaborated) level (see Fig. 4). Note that some
aspects (e.g. Ignition) are ignored.

3.1 Problem Frames Description of the Cruise Control

Pedals
CrCtl
Pedals

State
Model

R1

L1

L2L3

L4

Interfaces :
L1 : Pedals!{P Env PedalSignals}
L2 : StateModel!{P CrCtl Mode}
L3 : Pedals!{P Env PedalSignals}
L4 : StateModel!{P CrCtl Mode}

Fig. 3. Abstract problem diagram for pedals

Fig. 3 shows an abstract
problem diagram of the pedal
subproblem for the cruise
control system. The diagram
of Fig. 3 shows the ma-
chine domain CrCtl Pedals,
the given domain Pedals,
the designed domain
State Model, and the require-
ment R1. The phenomena
shared between the machine, the domains, and the requirement are shown in
Fig. 3 under interfaces with the following syntax: [Name of the interface]:
[Domain controlling the phenomenon]!{list of shared phenomena}. For exam-
ple, the line ”L1 : Pedals!{P Env PedalSignals}” means that the phenomenon
P Env PedalSignals controlled by the domain Pedals is shared with the machine
CrCtl Pedals. The requirement R1 states that ”depending on the status of the
pedals (P Env PedalSignals), the internal mode of the cruise control system
(P CrCtl Mode) should change to the mode R ERROR or ERROR.”

Fig. 4 shows the elaborated version of the abstract problem diagram of
Fig. 3. The abstract given domain Pedals has now been elaborated into the
given domains Brake Pedal, Clutch Pedal, and Accelerator Pedal as well as the
abstract phenomena shown in Fig. 3. For example, the abstract phenomenon

202 R. Gmehlich et al.

L24

L6 CrCtl
Pedals

State
Model

Brake
Pedal

Clutch
Pedal

Accelerator
Pedal

R2
(Brake Pedal)

R3
(Brake Pedal)

R5
(Clutch Pedal)

R4
(Clutch Pedal)

R6
(Acc Pedal)

L10

L13

L14

L11

L20
L9

L7

L19

L16

L17

L23

L22

L25

L26L27

L28

Interfaces :
L6 : BrakePedal!{P Env PS BRK PRSD,

P Env PS BRK ERR}
L7 : ClutchPedal!{P Env PS CLT PRSD,

P Env PS CLT ERR}
L9 : StateModel!{P CrCtl Mode}
L10 : BrakePedal!{P Env PS BRK ERR}
L11 : StateModel!{P CrCtl Mode}
L13 : BrakePedal!{P Env PS BRK PRSD,P Env PS BRK ERR}
L14 : StateModel!{P CrCtl Mode}
L16 : ClutchPedal!{P Env PS CLT PRSD,P Env PS CLT ERR}

L17 : StateModel!{P CrCtl Mode}
L19 : ClutchPedal!{P Env PS CLT ERR}
L20 : StateModel!{P CrCtl Mode}
L22 : AcceleratorPedal!{P Env PS ACC ERR}
L23 : StateModel!{P CrCtl Mode}
L24 : AcceleratorPedal!{P Env PS ACC ERR}
L25 : ClutchPedal!{P Env PS CLT ERR}
L26 : AcceleratorPedal!{P Env PS ACC ERR}
L27 : BrakePedal!{P Env PS BRK ERR}
L28 : AcceleratorPedal!{P Env PS ACC ERR}

Fig. 4. Elaborated problem diagram for pedals

P Env PedalSignals has been elaborated into the concrete phenomena
P Env BRK PRSD, P Env BRK ERR, P Env CLT PRSD, P Env CLT ERR,
and P Env PS ACC ERR. The requirement R1 of Fig. 3 has also been elabo-
rated into the requirements R2, R3, R4, R5, R6.

For illustration we state the requirements R2 and R3. Requirement R2 is: “If
the brake pedal is pressed (P Env PS BRK PRSD) and no pedal error is present
(P Env PS BRK ERR = FALSE, P Env PS CLT ERR = FALSE,
P Env PS ACC ERR = FALSE), the mode (P CrCtl Mode) must change to
R ERROR.” Requirement R3 is: “If a brake pedal error is present
(P Env PS BRK ERR), the mode (P CrCtl Mode) must change to ERROR.”
R4 states the same as R2 for the clutch pedal (P Env CLT PRSD) and R5 the
same as R3 for the clutch pedal error (P Env PS CLT ERR). R6 states the same
as R3 for the accelerator pedal error (P Env PS ACC ERR). Pressing the ac-
celerator pedal (P Env PS ACC PRSD) is part of a different subproblem and
therefore not dealt with in Fig. 4.

3.2 Relating Problem Frames Concepts to Event-B Concepts

To support traceability of requirements in problem diagrams to formal elements
of Event-B models we relate Problem Frames concepts one-to-one to Event-
B concepts. This simple approach to relating Problem Frames descriptions to
Event-B models is a key to the feasibility problem of requirements tracing men-
tioned in Section 2.2. Table 2 indicates how the concepts are matched. The tran-
sition from Problem Frames descriptions to Event-B models is still a manual step
in the design process. However, starting from the natural language requirements
this intermediate step provides enough guidance to obtain a suitable Event-B
model that captures the requirements and permits tracing them into that model.

On Fitting a Formal Method into Practice 203

Table 2. Mapping of Problem Frame Elements to Event-B Elements

Problem Frames Event-B

Problem diagram Machine and context

Phenomena Variables, constants or carrier sets

Types of phenomena Carrier sets or constants

Requirements Events and/or invariants

Elaboration of a problem diagram Refinement of a machine or context

Projection of a problem diagram Decomposition of a machine or context

Elaboration of phenomena Data refinement

The first three correspondences for problem diagrams, phenomena and their
types do not pose problems. Requirements state properties that must hold for
the system: if they are dynamic, they are best matched by events; if they are
static, they are best matched by invariants. Determining the relationship of
elaboration and refinement is more involved. In particular, an approach to record
instantiation was needed on top of Event-B refinement for the correspondence
to work. Dealing with projection and decomposition is still more complicated
because in Problem Frames projection is used as early as possible in system
description whereas in Event-B decomposition is usually delayed so that system-
wide properties can be verified before decomposition.

3.3 A Matching Event-B Model of the Cruise Control

Using the mapping from Problem Frames to Event-B described in Section 3.2
we developed an Event-B model of the cruise control. Problem Frames are used
to structure requirements and support their (informal) analysis. Requirements
and domain properties can be stated in any way that appears convenient like
Table 1. Fig. 5 shows a context that captures the table with OK represent-
ing all submodes except R ERROR and ERROR.1 The two constants PS SET

constants OK R ERROR ERROR PS SET PS ERROR
sets T Mode T Env PedalSignals
axioms @axm1 PS SET ⊆ T Env PedalSignals

@axm2 PS ERROR ⊆ T Env PedalSignals
@axm3 PS SET ∩ PS ERROR = ∅
@axm4 partition(T Mode, OK, {R ERROR}, {ERROR}) 2

Fig. 5. Context of abstract model

and PS ERROR are abstractions for specific pedal signal combinations not ex-
pressible in the abstract model. The abstract machine (that corresponds to the
abstract diagram of Fig. 3) is shown in Fig. 6. Depending on the pedal signals
1 We have abstracted from the remaining submodes for the sake of brevity.
2 The predicate partition states that the sets OK, {R ERROR} and {ERROR} are a

set-theoretical partition of the set T Mode.

204 R. Gmehlich et al.

variables P Env PedalSignals P CrCtl Mode
invariants @inv1 P Env PedalSignals ∈ T Env PedalSignals

@inv2 P CrCtl Mode ∈ T Mode
events

event CrCtl Chg Mode PedalSignals R1
when P Env PedalSignals ∈ PS SET ∨ P Env PedalSignals ∈ PS ERROR
then P CrCtl Mode :∈ {R ERROR, ERROR} end

Fig. 6. Abstract machine

the mode is changed. This is stated informally in the Problem Frame diagram
of Fig. 3. Close correspondence between the diagram and the Event-B model
is important for traceability of the requirements and validation of the formal
model.

Correspondence of the abstract diagrams and models is straightforward. Re-
lating elaborated problem diagrams to Event-B models is less obvious because
close correspondence remains crucial. Refinement permits to introduce more de-
tails into a model as needed for elaboration. However, it does not allow to relate
abstract and concrete phenomena systematically. What is needed is closer to
“instantiation” of abstract phenomena by concrete phenomena. Refinement is
powerful enough to emulate the intended effect of such an “instantiation”: we
can state the mathematics of it (see Fig. 7). Although refinement does not suit

constants iEnv PS iEnv PS SET iEnv PS ERROR
axioms

@axm5 iEnv PS ∈ B× B× B× B× B �� T Env PedalSignals
@axm6 iEnv PS ERROR = iEnv PS−1[PS ERROR]
@axm7 iEnv PS ERROR =

(B× {T} × B× B× B) ∪ (B× B× B× {T} × B) ∪ (B× B× B× B× {T})
theorem @thm1 ∀a, b, c, d ·

iEnv PS(a �→ b �→ c �→ d �→ e) ∈ PS ERROR⇔ b = T ∨ d = T ∨ e = T
@axm8 iEnv PS SET = iEnv PS−1[PS SET]
@axm9 iEnv PS SET = ({T}×{F}×B×{F}×{F}) ∪ (B×{F}×{T}×{F}×{F})
theorem @thm2 ∀a, b, c, d, e · iEnv PS(a �→ b �→ c �→ d �→ e) ∈ PS SET⇔

(a = T ∧ b = F ∧ d = F ∧ e = F) ∨ (b = F ∧ c = T ∧ d = F ∧ e = F)

Fig. 7. Context of concrete model

our needs perfectly we can use it to develop the notion of “elaboration in Event-
B” that will suit it. Here refinement is used for the development of a development
method. Refinement in its generality may not be part of the final development
method that could be used at Bosch for the modelling of discrete systems. The
general technique refinement allowed us experiment with different notions using
an available software tool, the Rodin tool. We are aware that the approach us-
ing refinement for instantiation that we describe in the following would be too
complicated to scale. Of course, we intend that records and record instantiation
be incorporated directly into the formal notation of Event-B so that refinement

On Fitting a Formal Method into Practice 205

variables P Env PS BRK PRSD P Env PS BRK ERR P Env PS CLT PRSD
P Env PS CLT ERR P Env PS ACC ERR P CrCtl Mode

invariants @inv3 P Env PedalSignals = iEnv PS(
P Env PS BRK PRSD �→ P Env PS BRK ERR �→ P Env PS CLT PRSD �→
P Env PS CLT ERR �→ P Env PS ACC ERR)

events

event CrCtl Chg Mode PedalSignals R2 refines CrCtl Chg Mode PedalSignals R1
when P Env PS BRK PRSD = T ∧ P Env PS BRK ERR = F∧

P Env PS CLT ERR = F ∧ P Env PS ACC ERR = F
then P CrCtl Mode := R ERROR end

event CrCtl Chg Mode PedalSignals R3 refines CrCtl Chg Mode PedalSignals R1
when P Env PS BRK ERR = T then P CrCtl Mode := ERROR end

event CrCtl Chg Mode PedalSignals R4 refines CrCtl Chg Mode PedalSignals R1
when P Env PS CLT PRSD = T ∧ P Env PS BRK ERR = F

P Env PS CLT ERR = F ∧ P Env PS ACC ERR = F
then P CrCtl Mode := R ERROR end

event CrCtl Chg Mode PedalSignals R5 refines CrCtl Chg Mode PedalSignals R1
when P Env PS CLT ERR = T then P CrCtl Mode := ERROR end

event CrCtl Chg Mode PedalSignals R6 refines CrCtl Chg Mode PedalSignals R1
when P Env PS ACC ERR = T then P CrCtl Mode := ERROR end

Fig. 8. Concrete machine

would not have to be used to imitate it. However, we found it instructive to
determine first what kind of record concept would be needed for our purposes.

Our main insight here is that refinement seems to function as an enabler for the
invention of the required technology. It may not itself be the required technology.
The development of the concept of elaboration in Event-B is discussed in the
next section.

4 Elaboration in Event-B

Dealing with elaboration in Event-B was the central problem to be solved to
deal adequately with traceability of requirements from problem diagrams. Its
solution required a dedicated record theory, an instantiation method and a tool
improvement that could master the refinement-based modelling of the former.

A Convention for Modelling Records. When elaborating Problem Frame
diagrams each abstract phenomenon is replaced by a set of more concrete phe-
nomena. For example, in the cruise control model the abstract phenomenon
P Env PedalSignals is replaced by the concrete phenomena

P Env PS BRK PRSD Brake pedal pressed,
P Env PS BRK ERR Brake pedal error,
P Env PS CLT PRSD Clutch pedal pressed,
P Env PS CLT ERR Clutch pedal error,
P Env PS ACC ERR Accelerator pedal error.

206 R. Gmehlich et al.

This problem appeared to be solved in the form of existing record theories for
Event-B [4] or VDM [10]. However, after some experimentation with [4] we also
shied away from trying [10]. The theories appeared too powerful. Simple facts
—and we only needed simple facts— were comparatively difficult to prove. We
wanted them to be proved automatically without further interaction. It took a
while until we realised that we should formulate a simple effective theory of lim-
ited expressiveness that would satisfy our needs (but not more). The approach
that we use now (see Fig. 7 and 8) does permit nearly fully automatic proofs.
We use a restricted form of data refinement for records based on a convention
to model records loosely by lists of variables. Refinement of such records is done
by instantiating abstract variables by lists of concrete variables and similarly for
parameters. The instantiation is expressed by means of invariants, for instance,
inv3 in Fig. 8. Function iEnv PS is a bijection from the concrete variables to
the abstract variables.3 This function facilitates all refinement proofs. By means
of it abstract constants are mapped to concrete constants that specify relation-
ships between data values in more detail. For instance, by axm6 of Fig. 7 the
concrete set iEnv PS ERROR corresponds to the abstract set PS ERROR. The
concrete set iEnv PS ERROR is then specified in more detail in axm7 . Theo-
rem thm1 formulates the set-theoretical equation in terms of an equivalence.
In fact, theorem thm1 is more useful in proofs. The approach of specifying
iEnv PS ERROR by two axioms has been chosen in order to avoid introduc-
ing contradicting statements in contexts. Important facts such as theorem thm1
are proved. Note that the shape of the theorems matches the needs of the refine-
ment proof. For instance, theorem thm2 is geared towards the refinement proof
of event CrCtl Chg Mode PedalSignals R2. Letting a = P Env PS BRK PRSD,
b = P Env PS BRK ERR and so on, using inv3 we can infer

P Env PS BRK PRSD = T ∧ P Env PS BRK ERR = F∧
P Env PS CLT PRSD = T ∧ P Env PS CLT ERR = F∧
P Env PS ACC ERR = F

⇒ P Env PedalSignals ∈ PS SET ,

which establishes that the concrete guard implies the abstract guard. We have
solved the problem concerning refinement proofs of record instantiation.

Tool Issues. The full model of the cruise control turned out to be difficult
to model check. The extra theory provided in the contexts for the instantia-
tion reduced the efficiency of the associated tools used for model checking and
constraint solving (see Section 5). To solve the problem of instantiation a pre-
processing step is applied to the model to automatically detect records usage.
We begin by searching for axioms of the form iAP ∈ CP �� AP where iAP
is a constant, the “instantiation mapping”, AP a carrier set, the abstract phe-
nomenon to be instantiated, and CP a Cartesian product, modelling the list of
concrete phenomena. Axiom @axm5 in the concrete model above (Fig. 7) is such
an axiom. Using iAP ∈ CP �� AP we can safely assume the set AP to be equal

3 This is even stronger than functional data-refinement.

On Fitting a Formal Method into Practice 207

to CP because of the existence of the bijection iAP . Technically, the concerned
axiom is removed, the set AP turned into a constant and the axioms AP = CP
and iAP = id(CP) are added.

A Method for Records and Record Instantiation. The mathematical
model and its treatment by the tool can be used to formulate a method for
dealing with records and instantiation: All records are non-recursive. They may
contain some constraints, for instance, “maximal speed” > “minimal speed”. For
the instantiation of fields, we simply state which concrete fields instantiate which
abstract fields. Constants like PS ERROR can be instantiated by specifying a
corresponding subset of the concrete record. Abstract properties like @axm3
have to proved for the instantiated subsets.

Discussion. We do not believe that a general theory and method can be
found that would satisfy all the needs of different industrial domains. We need
specific theories and tools that work well in specific domains, for instance, the
automotive domain. Similar experiences have been made in the railway domain
at Siemens Transportation Systems [12], where ProB was improved to deal
with large relations and sets. These arose in the modelling and validation of
track topologies. Our quiet hope is that still some theory and technology can
be shared. It just does not seem reasonable anymore to seek expressly a general
theory with supporting technology.

5 Verifying Deadlock Freedom

Besides invariant preservation, the absence of deadlocks is crucial in this case
study, as it means that the engineers have thought of every possible scenario. In
other words, a deadlock means that the system can be in a state for which no
action was foreseen by the engineers.

Deadlock Freedom. An event is enabled in a state if there are values for its
parameters p that make its guard g true in that state. We denote the enabling
predicate (∃p·g) of an event e by Ge. Event-B provides a way to verify the
deadlock freedom of model: the (DLF) proof obligation of [1]: A ∧ I ⇒ Ge1 ∨
. . . ∨ Gen , where A are the axioms, I are invariants and Ge�

(∈ 1 .. n) the
enabling predicates of the events e� of the considered machine. For the machine
of Fig. 8 this proof obligations is:4

“all axioms and theorems of Fig. 5 and Fig. 7”∧
“all invariants of Fig. 6 and Fig. 8”
⇒ (P Env PS BRK PRSD = T ∧ P Env PS BRK ERR = F∧

P Env PS CLT ERR = F ∧ P Env PS ACC ERR = F)∨
P Env PS BRK ERR = T∨
(P Env PS CLT PRSD = T ∧ P Env PS BRK ERR = F∧
P Env PS CLT ERR = F ∧ P Env PS ACC ERR = F)∨

P Env PS CLT ERR = T ∨ P Env PS ACC ERR = T
4 Currently, this proof obligation is not generated by the Rodin tool. We have gener-

ated it by means of the Flow-Plugin [7].

208 R. Gmehlich et al.

The (DLF) proof obligation in general quickly becomes very complex, in par-
ticular, if the involved events have parameters. As long as it holds and is dis-
charged by an automatic theorem prover this is not a problem. The more common
situation is, however, that it cannot be proved. As a matter of fact, this is also
the more interesting situation because it may point to errors in the model. For
example, the (DLF) proof obligation above could not be proven: an event for
covering the case in which all pedal signals are set to FALSE was missing.

We need the tool in order to find errors in our model and expect support
for correcting the model. To put this into perspective: the real model of the
case study from which the example has been extracted has 78 constants with
121 axioms, 62 variables with 59 invariants and has 80 events with 855 guards.
When the proof of this proof obligation fails, it is not clear at all why this is.
Analysis of a large failed (DLF) proof obligation by interactive proof is very
time consuming. Maybe we simply do not find the proper proof; maybe there
is a deadlock; maybe the invariant is too weak. Counter examples can provide
vital clues where to look for problems.

A different approach is needed to check for deadlocks. The most immediate is
to animate the model and see whether we encounter a state in which no event
is enabled. Another one is to model-check it. Model checking can provide fast
feedback, but is also associated with known problems: in many applications the
state space is either infinite or much too large to explore exhaustively. In the
case study model checking did not produce satisfactory results. Neither proof
nor model-checking worked.

Constraint Checking. Finally, we did achieve good results using constraint
checking. We have implemented a dedicated constraint checker to deal with
deadlock-freedom [5]. It is not based on model execution but yields a solution
to the (DLF) proof obligation, providing a counter example if (DLF) does not
hold. On sub-models with about 20 events constraint checking was very effec-
tive in helping to develop a correct deadlock-free model. But on the large proof
obligation mentioned above it did not help to resolve all problems. Constraint
solving computed counterexamples to (DLF) but eventually it became too time
consuming to see how the model could be corrected. No obvious improvement to
ProB could have solved this problem. Independently of the modelling method,
the large number of constants and variables makes it difficult to interpret dead-
locked states and understand how the model has to be corrected. We believe
that refinement can be used to address the inherent complexity of the model.
This way deadlock-freedom could be analysed for models whose size is increased
in small increments: we have already seen that dealing with about 20 events at
once is effectively possible.

Lessons Learned. The lesson we learned is that the problem could only be
solved by using multiple verification techniques, such as proof, model checking
and animation, in order to analyse, understand and debug the formal model.
Matching Problem Frames with Event-B may have to be relaxed allowing for
refinement in Event-B to cater for a stepwise introduction of records. The most

On Fitting a Formal Method into Practice 209

interesting insight we gained from the case study was the need for strong tools to
allow for large models and at the same time the need for appropriate techniques
to reduce the size of those models. We plan to redo some parts of the modelling
to find a good measure for that mix. The case study was important as a driver
for tool improvements, in particular, of ProB. The scale of the case study was
the key to this.

6 Conclusion

When we started the case study we asked whether Event-B is fit for industrial
use. We had to be more specific about our question. There are too many fac-
tors besides Event-B so that we should have asked whether Event-B fits into a
suitable methodology for development (at Bosch). We have seen that Event-B
allowed us to think about properties of the cruise system model that would be
difficult to achieve non-formally. We have matched Problem Frames elaboration
formally using Event-B refinement. The resulting method of Event-B elaboration
supported by theory and tools is novel and was crucial for the use of Event-B
in the targeted development process. We have successfully analysed the model
with respect to deadlock-freedom, but saw the difficulty of using the counter ex-
amples to develop a non-trivial deadlock-free system. We believe that refinement
will be the key to overcome this difficulty: the model must be analysed and con-
structed piecemeal to provide better feedback to the engineers. In future work,
we would like to check more properties. For instance, check wether the choice
between the events of a machine is deterministic. Only one event should be en-
abled at any time: we expect an implementation of a cruise control controller to
be predictable. We also would like to analyse certain sequences of actions using
temporal (LTL) formulas. Some requirements do not fit into the simple scheme
of events and invariants.

What about the answer to our question? In the case study we could see that
we can clearly profit from the use of formal methods in the development process.
Checking the model for consistency and deadlock-freedom uncovered many errors
in the model and led to various improvements of the requirements. For example,
deadlock checking identified many cases in which requirements had been missing.
Event-B with its tools Rodin and ProB can be useful for improving the quality
of requirements and of models that can serve as blue prints for implementations.
We have also seen that we have profited in “unintended” ways. We did not follow
the method described in [1] but had to develop our own, in particular, to work
with Problem Frames for the management of complex requirements.

Acknowledgements. We are especially grateful to Cliff Jones who coordinated
the work of the academic partners in this case study. We are also grateful for the
fruitful interactions with Rezazadeh Abdolbaghi, Jean-Raymond Abrial, Michael
Butler, Alexei Iliasov, Michael Jackson, Sascha Romanovsky, Matthias Schmalz,
and Colin Snook.

210 R. Gmehlich et al.

References

1. Abrial, J.-R.: Modeling in Event-B: System and Software Engineering. Cambridge
University Press, Cambridge (2010)

2. Abrial, J.-R., Butler, M.J., Hallerstede, S., Hoang, T.S., Mehta, F., Voisin, L.:
RODIN: an open toolset for modelling and reasoning in Event-B. STTT 12(6),
447–466 (2010)

3. Edmunds, A., Butler, M.J.: Tool support for Event-B code generation (2009)
4. Evans, N., Butler, M.J.: A proposal for records in event-B. In: Misra, J., Nipkow, T.,

Karakostas, G. (eds.) FM 2006. LNCS, vol. 4085, pp. 221–235. Springer, Heidelberg
(2006)

5. Hallerstede, S., Leuschel, M.: Constraint-Based Deadlock Checking of High-Level
Specifications. In: Proceedings ICLP 2011 (to appear, 2011)

6. Harel, D., Lachover, H., Naamad, A., Pnueli, A., Politi, M., Sherman, R., Shtull-
Trauring, A., Trakhtenbrot, M.: STATEMATE: A working environment for the
development of complex reactive systems. IEEE Transactions on Software Engi-
neering SE-16(4), 403–414 (1990)

7. Iliasov, A.: On Event-B and Control Flow. Technical Report CS-TR-1159, Univer-
sity of Newcastle (2009)

8. Jackson, M.: Problem Frames: Analyzing and structuring software development
problems. Addison-Wesley Longman Publishing Co., Inc., Amsterdam (2001)

9. Jones, C.B.: DEPLOY Deliverable D15: Advances in Methodological WPs
10. Jones, C.B.: Systematic Software Development Using VDM. Prentice-Hall, Engle-

wood Cliffs (1990)
11. Leuschel, M., Butler, M.J.: ProB: an automated analysis toolset for the B method.

STTT 10(2), 185–203 (2008)
12. Leuschel, M., Falampin, J., Fritz, F., Plagge, D.: Automated property verification

for large scale B models. In: Cavalcanti, A., Dams, D.R. (eds.) FM 2009. LNCS,
vol. 5850, pp. 708–723. Springer, Heidelberg (2009)

13. Loesch, F., Gmehlich, R., Grau, K., Jones, C.B., Mazzara, M.: DEPLOY Deliver-
able D19: Pilot Deployment in the Automotive Sector

14. Snook, C.F., Butler, M.J.: UML-B: Formal modeling and design aided by UML.
ACM Trans. Softw. Eng. Methodol. 15(1), 92–122 (2006)

15. Stursberg, O., Fehnker, A., Han, Z., Krogh, B.H.: Verification of a cruise control
system using counterexample-guided search. Control Engineering Practice 12(10),
1269–1278 (2004)

16. Yeganefard, S., Butler, M.J., Rezazadeh, A.: Evaluation of a Guideline by Formal
Modelling of Cruise Control System in Event-B. In: Muñoz, C. (ed.) NFM 2010,
NASA/CP-2010-216215 (April 2010)

A Formal Engineering Approach to

High-Level Design of Situation Analysis
Decision Support Systems�

Roozbeh Farahbod1, Vladimir Avram2, Uwe Glässer2, and Adel Guitouni1

1 Defence R&D Canada – Valcartier, Québec, Canada
{roozbeh.farahbod,adel.guitouni}@drdc-rddc.gc.ca

2 Computing Science, Simon Fraser University, British Columbia, Canada
{vavram,glaesser}@cs.sfu.ca

Abstract. We apply the Abstract State Machine (ASM) method and
the CoreASM tool to design and analysis of Situation Analysis Decision
Support (SADS) systems. Realistic situation analysis scenarios routinely
deal with situations involving multiple mobile agents reacting to discrete
events distributed in space and time. SADS system engineering practices
call for systematic formal modeling approaches to manage complexity
through modularization, refinement and validation of abstract models.
We explore here SADS system design based on ASM modeling techniques
paired with CoreASM tool support to facilitate analysis of the problem
space and reasoning about design decisions and conformance criteria so
as to ensure they are properly established and well understood prior to
building the system. We provide an extension to CoreASM for the Marine
Safety & Security domain, specifically for capturing rendezvous scenarios.
The extension yields the necessary background concepts, such as mobile
sensors and shipping lanes, and offers runtime visualization of simulation
runs together with an analyzer to measure success of various rendezvous
detection strategies used in the model. We illustrate the application of
the proposed approach using a sample rendezvous scenario.

1 Introduction

In this paper we explore a formal approach to model-driven engineering (MDE)
of situation analysis decision support (SADS) systems. Situation Analysis (SA) is
viewed as a process to provide and maintain a state of situation awareness for the
decision maker. Situation awareness is essential for decision-making activities; it
is about our perception of the elements in the environment, the comprehension
of their meaning, and the projection of their status in the near future [12]. Com-
putational models of situation analysis processes are in many cases distributed
in nature, comprising multiple autonomously operating agents that react in an
asynchronous manner to discrete events distributed in space and time. Agents
cooperate in developing a global understanding of a situation as it unfolds by
exchanging information related to their local perception of events.
� This research has been funded by Defence R&D Canada, MDA Corp. and NSERC.

S. Qin and Z. Qiu (Eds.): ICFEM 2011, LNCS 6991, pp. 211–226, 2011.
c© Springer-Verlag Berlin Heidelberg 2011

212 R. Farahbod et al.

Best engineering practice calls for systematic modeling approaches that build
on established design methods to manage complexity through modularization,
refinement, validation and verification of abstract models. The focus here is
on requirements analysis and design validation of asynchronous SADS system
models by analytical and experimental means. For this purpose we combine
the Abstract State Machine (ASM) method [6] with the extensible CoreASM
tool environment [15] for rapid prototyping of abstract executable models. The
ASM method provides a flexible framework for formalizing abstract operational
concepts and requirements in modeling dynamic system properties.

The goal of our combined ASM/CoreASM approach is to link fundamental
aspects of SADS systems design with rapid prototyping of abstract executable
models in order to facilitate 1) analysis of the problem space and 2) reasoning
about design decisions, and also to 3) derive conformance criteria for checking the
validity of SADS domain models. The proposed approach is intended to ensure
that the key system attributes are properly established and well understood prior
to building the system. Taking advantage of the innovative CoreASM plugin
mechanism, we provide a customized extension to CoreASM for the domain of
Marine Safety & Security, specifically for capturing rendezvous scenarios. This
extension yields the necessary background concepts, such as mobile sensors and
shipping lanes, and also offers runtime visualization of simulation runs together
with an analyzer for measuring the effectiveness of various rendezvous detection
strategies defined as part of the model. We illustrate our solution using a sample
rendezvous scenario, and critically evaluate our approach in light of joint projects
[23,16] with Defence R&D Canada and MDA Corp., Richmond, BC, a leader in
Canada’s defence and space technology.

Section 2 frames the problem scope and discusses related work. Sections 3
and 4 recall key aspects of the ASM method and CoreASM tool architecture.
Section 5 illustrates the SADS application scenario and Section 6 the CoreASM
SA plugin developed for this type of scenarios. Section 7 concludes the paper.

2 Problem Description

Experienced decision makers rely on situation awareness in order to make in-
formed decisions. As Endsley puts it, decisions are formed by situation aware-
ness and situation awareness is formed by decisions [20]. Situation awareness
is a state of mind maintained by the process of situation analysis. Therefore, in
this work, we focus on situation analysis decision support.

Despite situation awareness and decision making being intimately related,
they form distinct parts of a dynamic decision making process. Situation aware-
ness as a product of situation analysis provides input to the decision making
process. A situation analysis decision support system is usually composed of
the following components: 1) situation information collection (e.g., sensors and
sensors networks), 2) knowledge base on the situation, 3) reasoning scheme (en-
gine) about the situation, 4) human-computer interface, and 5) controls. Figure
1 illustrates a basic representation of such a system. Decision making influences

A Formal Engineering Approach to High-Level Design 213

the situation analysis process by adjusting its control parameters as illustrated
in Figure 1. Finally, this feedback loop results in the state of situation awareness
being constantly adjusted in response to the goals and requirements of decision
making.

Control
Parameters

HCI

Situation Analysis

Decision Making

Sensor Data

Situation
Konwledge Base

Fig. 1. Situation Analysis and Decision Support

2.1 Design and Validation of SADS Systems

Realistic situation analysis scenarios routinely deal with convoluted and intricate
event patterns and interdependencies to interpret and reason about complex sit-
uations, assess risks and predict how a situation may evolve over time. Decision
support systems for situation analysis can be very complex with numerous re-
sources, distributed computing agents, and events distributed in space and time.
Design and development of SADS systems face two fundamental questions:

1. How can we formulate the problem in a precise and yet understandable form?
2. How can we express and evaluate a solution before actually building it into

a system?

Rapidly increasing complexity of decision-making problems and elaborate con-
textual situations have altered the nature of decision support. Interactive
decision-making, to be facilitated by decision support systems, has become a
complex multifaceted process—decision-makers must engage in solving various
semi-structured, or even ill-structured, problems involving multiple attributes,
objectives and goals. As a result, SADS system design is not an intuitive deter-
ministic task [31,28].

A comprehensive formal systems design approach is needed to address the
nondeterministic complexities arising from today’s real-world decision-making
requirements [28]. Such an approach should facilitate design and development of
model-based decision support systems through three stages: formulation, solu-
tion and analysis. Formulation refers to generating a model of the problem space,
the solution stage refers to the development of a solution, and the analysis stage
refers to ‘what-if’ analyses and validation of solutions [33].

214 R. Farahbod et al.

Formal frameworks proposed for modeling of SADS systems, such as [8] and
[29], mainly focus on specific and mostly theoretical aspects of developing SADS
systems and leave a gap for practical systems design. We believe that a compre-
hensive formal framework in this context would have two purposes [16]:

1. facilitate exploration of the problem space and the key aspects to be ad-
dressed;

2. provide an experimental platform that allows one to evaluate and compare
feasible solutions.

Thus, any such framework ought to support adaptive and evolutionary design
approaches that encompass dynamic modeling, simulation and validation in an
interactive and iterative fashion.

2.2 Related Work

There are three known major approaches to design and development of SADS
systems, which can be characterized as using: 1) general purpose formal logics
[2,32]; 2) methods like machine learning and ontologies [9,11]; and 3) approaches
specifically designed for SA, such as dynamic Case Based Reasoning and State
Transition Data Fusion (STDF) [25,29]. None of these specifically supports the
early phases of problem formulation and system design, while making imple-
mentation commitments prior to rigorous requirements analysis and validation
of design specifications.

For example, the approach in [2] attempts to make their decision support
system operational by employing the reasoners which are associated with the
specific logics. An SADS system necessarily must be able to reason about data
over time, an aspect which is not supported by the applied reasoners. As a
result, the authors were forced to design their framework to work around this
issue. However, even though these approaches may not lend themselves well to
decision support system design as addressed here, it is important to realize they
can play an important part in the process, and each have their own strengths
and benefits. This is one of the reasons why we are proposing an integrated
framework [16] which makes use of existing approaches such as STDF [29] and
Interpreted Systems (IS) [26].

There is a neccessity for broader and more integrated approaches to designing
of decision support systems for complex domains [28]. We believe, as McDermid
put it, that “Large, complex systems are hard to evolve without undermining
their dependability. Often change is disproportionately costly. . . ” [30] and thus
system architectures are pivotal in meeting this challenge [28].

3 Abstract State Machines

This section briefly outlines basic concepts of the ASM method for high-level
design and analysis of distributed systems. For further details, we refer to [6,24].
Abstract State Machines are a versatile mathematical framework for modeling

A Formal Engineering Approach to High-Level Design 215

of discrete dynamic systems that aims at bridging the gap between formal and
empirical approaches by linking specification methods and computation mod-
els. Building on common notions from discrete mathematics and computational
logic, static and dynamic aspects of systems are modeled at any desired level of
abstraction by combining the concept of abstract states with transition systems.
ASMs have been used in modeling of architectures, languages, protocols and
virtually all kinds of sequential, parallel and distributed systems with a notable
orientation toward applied system engineering [21,5,22,34].1

A fundamental challenge in designing SADS systems for real-life applications
is understanding the problem (the formulation phase). The inherent complexity
of the design task calls for continual analysis and validation of both the problem
formulation and potential solutions (the analysis phase) as part of a progressing
design process. To adequately capture the problem and devise feasible solutions,
we propose an explorative modeling approach that supports the development of
abstract models, the appropriateness and validity of which can be established
analytically and experimentally early in the design process. To achieve this, a
model should be concise and easily readable both for domain experts and system
designers, and should come with a precise semantics allowing to resolve potential
ambiguities and identify loose ends. In this context, freedom of abstraction plays
an important role as it enables designers to stress on the essential aspects of
problem solutions rather than encoding insignificant details. Executability of
abstract and even incomplete models is often a desirable feature for experimental
validation of complex system models in early design stages to obtain feedback
from domain experts. Besides, freedom of abstraction ought to be paired with
well-defined refinement techniques that make it easy to cross levels of abstraction
and link models at different levels through incremental steps all the way down
to a concrete model serving as a reliable blueprint for construction.

ASM models are in essence rigorously defined “pseudo-programs” operating
on abstract data structures [6]; this way, they support writing of concise and
intelligible specifications with a precise semantic foundation. The ASM frame-
work comes with a sound and powerful notion of stepwise refinement [7] that
helps in structuring the design of a system into suitable levels of abstraction
and linking them down to a concrete model. In addition, the ASM framework
is open to integrate domain-specific concepts and flexible to be combined with
other modeling approaches as needed by the application domain [16,3].

3.1 ASM Systems Engineering Method

The ASM method aims at industrial system design and development by inte-
grating precise high-level, problem-domain oriented modeling into the design
and development cycle, and by systematically linking abstract models down to
executable code. The method consists of three essential elements: a) capturing
the requirements into a precise yet abstract operational model, called a ground
model ASM, b) systematic and incremental refinement of the ground model down

1 See also the ASM website at www.asmcenter.org and the overview in [6].

http://www.asmcenter.org

216 R. Farahbod et al.

to the implementation, and c) experimental model validation through simula-
tion or testing at each level of abstraction. This process emphasizes freedom of
abstraction as a guiding principle, meaning that original ideas behind the design
of a system can be expressed in a direct and intuitive way so as to enable sys-
tem designers to stress on the essential aspects of design rather than encoding
insignificant details. To this end, it is crucial that the method allows for and
actually encourages language conventions to be established, as in the typical “in
the following, we use the notation . . . to mean . . . ”. It is also understood that
authors can use the full extent of mathematics and computer science notations
if that is instrumental to express themselves clearly. Any executable implemen-
tation must thus allow for similar extensibility, which constitute a significant
design challenge in itself.

Starting from a ground model and applying the process of step-wise refine-
ment [7], a hierarchy of intermediate models can be created that are systemat-
ically linked down to the implementation. At each step, the refined model can
be validated and verified to be a correct implementation of the abstract model.
The resulting hierarchy serves as design documentation and allows one to trace
requirements down to the implementation.

3.2 Distributed ASMs

The original notion of basic ASM was defined to formalize simultaneous parallel
actions of a single computational agent. A basic ASM M is defined as a tuple of
the form (Σ, I, R, PM), where Σ is a finite set of function names and symbols,
I is a set of initial states for Σ, R is a set of transition rule declarations, and
PM ∈ R is a distinguished rule, called the main rule or the Program of M .

A state A for Σ is a non-empty set X together with an interpretation
fA : Xn �→ X for each function name f in Σ. Functions can be static or dy-
namic. Interpretations of dynamic functions can change from state to state. The
evaluation of a transition rule in a given state produces a finite set of updates
of the form 〈(f, 〈a1, . . . , an〉), v〉 where f is an n-ary function name in Σ and
a1, . . . , an, v ∈ X . An update (f, args, v) prescribes a change to the content of
location f(args) taking effect in the next state.

A distributed ASM (DASM) MD is defined by a dynamic set Agent of au-
tonomously operating computational agents, each executing a basic ASM. This
set may change dynamically over runs of MD, as required to model a varying
number of computational resources. Agents of MD interact with each other, and
also with the operational environment of MD, by reading and writing shared
locations of a global machine state. The underlying semantic model resolves
potential conflicts according to the definition of partially ordered runs [22,24].

MD interacts with its operational environment—the part of the external
world visible to MD—through actions/events observable at external interfaces,
formally represented by controlled and monitored functions. Of particular inter-
est are monitored functions, read-only functions controlled by the environment.
A typical example is the abstract representation of global system time in terms

A Formal Engineering Approach to High-Level Design 217

of a monitored function now taking values in a linearly ordered domain Time.
Values of now increase monotonically over runs of MD.

4 The CoreASM Extensible Architecture

CoreASM [13,18] is a environment for writing, running, and validation of exe-
cutable specifications according to the ASM method.2 It has been designed with
an extensible plugin-based architecture that offers a great deal of flexibility for
customizing its language definition and execution engine depending on the appli-
cation context. The CoreASM environment consists of a platform-independent
engine for executing CoreASM specifications and a GUI for interactive visual-
ization and control of simulation runs. The engine comes with a sophisticated
interface enabling future development and integration of complementary tools,
e.g., for symbolic model checking and automated test generation [13].

Over several years, CoreASM has been put to the test in a range of appli-
cations in the private and public sectors, spanning computational criminology,
coastal surveillance, situation analysis, decision support systems, and Web ser-
vices. The diversity of application fields has been invaluable to examine the
practicability of using CoreASM for requirements analysis, design specification
and rapid prototyping of abstract executable models [17,16,10].

Abstract state machines are used in diverse application domains, some of
which require the introduction of special rule forms and data structures. Conse-
quently, CoreASM is designed to be flexibly extensible by third parties in order
to meet diverse application requirements. Besides, to ensure freedom of experi-
mentation, CoreASM allows various modeling tools and environments to closely
interact with the engine and also enables researchers to experiment with vari-
ations to CoreASM. The design of a plugin-based architecture with a minimal
kernel for the CoreASM language and modeling environment offers the extensi-
bility of both the language and its simulation engine. A micro-kernel (the core
of the language and engine) contains the bare essentials. Most of the constructs
of the language and the functionalities of the engine come in the form of plugins
extending the kernel. This concept is explored in detail in [14,18].

4.1 Extensible Language

Language extensibility is not a new concept. There are a number of programming
languages that support some form of extensibility ranging from introducing new
macros to the definition of new syntactical structures. However, what CoreASM
offers is the possibility of extending and modifying the syntax and semantics of
the language, keeping only the bare essential parts invariable. In order to achieve
this goal, plugins can extend the grammar of the core language by providing new
grammar rules together with their semantics. As a result, to load each specifica-
tion, the CoreASM engine builds a language and a parser for that language to
parse the specification based on the set of plugins that the specification uses.
2 CoreASM is an Open Source project and is readily available at www.coreasm.org.

http://www.coreasm.org

218 R. Farahbod et al.

4.2 Extensible Engine

There are two different mechanisms for extending the CoreASM engine. Plugins
can either extend the functionality of specific engine components (such as the
parser or the scheduler), or they extend the control state ASM of the engine by
interposing their own code in between state transitions of the engine. The latter
mechanism enables a wide range of extensions of the engine’s execution cycle
for the purpose of implementing various practically relevant features, such as
adding debugging support, adding a C-like preprocessor, or performing statistical
analysis of the behavior of the simulated machine (for instance, through coverage
analysis, profiling and the like).

In the extensible Control State ASM [15] of the engine, each state transition is
associated with an extension point. Plugins can extend the engine’s control state
ASM by registering for these extension points. At any extension point, if there is
any plugin registered for that point, the code contributed by the plugin for that
transition is executed before the engine proceeds to the next control state. As
an example, the eCASM of Figure 2(a) can be executed with a set of extension
point plugins {p1, p2} contributing rules PRule1 and PRule2 that (potentially)
extend the execution of the machine to the control state ASM of Figure 2(b).

i rulecond j

(a)

i rulecond j

PRule2PRule1

(b)

Fig. 2. (a) An Extensible Control State ASM and (b) its extended form

5 Application Scenario

This section illustrates a rendezvous scenario to showcase the application of
high-level modeling of an SADS system using ASMs and CoreASM. We model
the scenario, including both the environment and the proposed SADS system,
using multi-agent ASMs and utilize the CoreASM environment to validate both
models with respect to Marine Safety & Security operational concepts.

There are vessels traveling along shipping lanes (see Figure 3). Each vessel
Vi moves along a particular shipping lane Li. A vessel Vi may send a request-
for-rendezvous to a non-deterministically chosen vessel Vj suggesting a point of
rendezvous in the future. If Vj accepts the rendezvous request, the two vessels
will meet at the agreed point, staying close for at least a minimum time T r

min

and then moving back to their shipping lanes continuing their journey.

A Formal Engineering Approach to High-Level Design 219

Fig. 3. Rendezvous Scenario

A number of observers Oi in the environment (depicted by) monitor the
location of vessels within sight using sensors Sij that each have observation
errors. The idea is to build a simple decision support system that can warn the
user of potential rendezvous.

5.1 Vessels

Vessels and observers are modeled as Nodes that can move in the environment
according to their controlled velocity. The following ASM specification abstractly
models vessel behavior:

VesselProgram ≡
NodeProgram
if rendezvousActive(self) then

MaintainRendezvous
else

StayOnLane
RendezvousCommunications

The rule NodeProgram, which is the common behavioral aspect of all nodes,
updates the location of the vessel according to simulation time and its velocity. If
a rendezvous is in progress, MaintainRendezvous ensures that the vessel’s velocity
directs it towards the rendezvous point and if there, keeps it at the point for
at least a minimum time T r

min; otherwise, StayOnLane keeps the velocity of
the vessel aligned to its shipping lane. In parallel, RendezvousCommunications
maintains the communication between vessels in arranging rendezvous. As an
example, the StayOnLane rule is defined as follows:

220 R. Farahbod et al.

StayOnLane ≡
if ¬isPointOnPath(loc, shipLane, de) then

velocity := speedVector(loc, closestPointOnPath(loc, shipLane, dirOnLane), vunit)
isOnLane := false

else
MoveOnLane

The above rule indicates that if the vessel is not within distance de of its lane,
it should adjust its velocity such that it steers towards the lane; otherwise, it
should keep moving on the lane.3

5.2 Observers

Every observer is modeled as an instance of an Observer agent which extends
the functionalities of a Node with Situation Analysis behavior following the core
idea of the STDF process model for situation awareness and applying the IS
view of knowledge representation. The abstract behavior of an Observer node is
specified by the following ASM rule:

ObserverProgram ≡
NodeProgram
MaintainOptimumLocation
STDFProgram

STDFProgram ≡
stepwise {Detection Observation Comprehension Projection UpdateSTDFState}

where the STDFProgram models the main STDF activities in order to achieve
a situation awareness by detecting and observing the nodes, comprehension of
the situation, projection of the events into the future and updating the current
understanding of the events based on the newly observed information.

In this scenario, the Detection rule creates a typical 2-dimensional Kalman [27]
filter for every vessel in the environment. The Observation rule maintains a his-
tory of observations for every observed vessel. The Comprehension rule updates
the value of predicates of interest (such as pShipOnLanei probability of a vessel
Vi being on a shipping lane, or pFutureRendezvousij probability of a future
rendezvous between two vessels Vi and Vj). The Projection rule uses Kalman fil-
ters to project future locations of the vessels and the UpdateSTDFState corrects
Kalman filters based on the last observations.

Projection ≡
forall n in observedNodes(self) do

projectedLoc(self , n) := predicttkf (kalmanFilter(self , n), undef)

3 To improve readability, we assume the parameter self to be implicitly passed to the
functions loc, shipLane, dirOnLane, and isOnLane.

A Formal Engineering Approach to High-Level Design 221

UpdateSTDFState ≡
forall n in observedNodes(self) do

kalmanFilter(self , n) := correctFiltertkf (kalmanFilter(self , n), observedLoc(self , n))

5.3 Rendezvous Awareness

In order to demonstrate how the ASM engineering method facilitates design
exploration of SADS systems, in our example we evaluate four different ren-
dezvous detection strategies. Because it is not the aim of this work to come up
with new rendezvous prediction algorithms, so far, we have only implemented
basic rendezvous prediction and detection algorithms.

The first model depicted in Figure 4(a) attempts to predict if and where a
rendezvous will take place between two vessels. It starts by computing trajecto-
ries, based on current and projected locations, for both vessels currently being
analyzed. If there is an intersection of the computed trajectories and it is de-
tected that the vessels are not on their sea lanes, then a new line is calculated
in between the two currently observed locations of the vessels. If the shortest
distance d in between this line and the previously computed trajectory inter-
section point of the vessels is below a certain threshold the model assumes that
a rendezvous will occur. Finally the predicted rendezvous location is set to the
midpoint between the vessels and the rendezvous probability is set to a function
of the distance between the line joining the two vessels and the intersection point
of their trajectories.

The second model uses the exact same method for predicting rendezvous
occurrences and locations as the first model. However, instead of using the last
observed location for vessels when computing their trajectories it utilizes an
average last location based on n previously observed vessel locations.

The third model uses a hybrid approach between the first model and a model
utilizing vessel headings (Figure 4(b)). Using these headings the angle θ in be-
tween the directions is calculated and if it is considered to be close to 180 degrees
the model assumes that the vessels are currently heading in opposite directions.
Once the model identifies that the vessels are moving towards each other, it uses
the exact same approach as in the first model to determine the location and
the probability of the rendezvous. The main advantage of this model is that it
excludes ships with intersecting paths that are moving away from each other.

The fourth model only makes use of heading data. It first uses the same
approach as in the third model to detect whether or not two vessels are heading
towards each other. Once this is established, the model tries to ensure that
the vessels are heading towards each other on the same path within a threshold
which is specified in degrees (Figure 4(c)). This is achieved by drawing a straight
line between the currently observed positions of the two vessels in question and
observing the angles θA and θB which this path creates with the current headings
of the vessels. If the average of the angles for the two vessels is below a certain
threshold then the model assumes they are heading towards a rendezvous point
and calculates this as the midpoint between their current locations.

222 R. Farahbod et al.

(a) (b) (c)

Fig. 4. Detection of Rendezvous Location: Models 3 and 4

6 The SA Plugin

In order to facilitate modeling and analysis of SADS systems in the context
of marine safety and security, in particular the application scenario described in
Section 5, we have extended the CoreASM modeling environment with a special-
purpose plugin, called the SA Plugin, that provides the following components:

1. necessary background concepts such as the domain of sensor, Kalman filter,
geographical location, and shipping lane together with related operations;

2. a visualizer that provides a runtime visualization of simulation runs by mon-
itoring the states of the simulated machine;

3. an analyzer that reports on measure of success of various rendezvous detec-
tion strategies used in the model.

The rest of this section briefly explores the design and development of this plugin.

6.1 Extending the CoreASM Engine

The SA Plugin extends the CoreASM engine in two ways: First, it extends the
initial vocabulary of CoreASM with domains of Sensor, Kalman filter, 2D Point
and Path and related operations on these domains such as binding sensors to
other observable functions, defining error parameters on sensors, correction and
prediction operations on Kalman filters, and distance and projection on Paths
and Points.

Second, it extends the control flow of the CoreASM engine and injects visual-
ization and analysis code after successful completion of every computation step.
The code updates the 3D visual representation of the state of the simulated sys-
tem (location of vessels, markers for detected rendezvous, etc.) and, in addition,
gathers statistical information on the effectiveness of each observer in detecting
rendezvous with respect to the actual events in the environment. In addition to
updating the visualization, the plugin produces a live log of the actual events
happening in the environment, and observers’ reactions to those events, in an
external file that can later be used for analysis of the strategies.

A Formal Engineering Approach to High-Level Design 223

6.2 Visualization

As soon as the engine completes the first step of the simulation, the SA Plugin
opens its visual interface window (see Figure 5). The main component of this
window is a real-time 3D visualization of the scenario ©1 based on the states
of the CoreASM simulation. In the snapshot presented in Figure 5 one can see
four vessels (labeled A to D) and five observer nodes (labeled O-1 to O-5) where
O-1 to O-4 each employ rendezvous detection models 1 to 4 (see Section 5.3)
and O-5 employs an integration of all 4 observations. On the right ©2 , there is a
list of observer nodes in the model. If an observer is selected, the 3D visualizer
shows the world-view of the selected observer, including its observed position of
vessels ©3 (which has a non-deterministic error), and its detected or projected
rendezvous areas ©4 , marked by red cones. The size of each cone is inversely
proportional to the probability of a rendezvous in that area.

1

24

5

3

Fig. 5. A Snapshot of the CoreASM SA Plugin

6.3 Situation Analysis

The lower section of the visual interface window ©5 provides a textual inter-
face to query the runtime values of various predicates captured in the abstract
model. A parser is used to parse the queries provided in the input line into Core-
ASM expressions, the values of which are retrieved using the Control API of the
CoreASM engine and printed out in the output panel below.

224 R. Farahbod et al.

Table 1. Performance of Rendezvous Detection Methods over 100 incidents

Detections Delay First Dist. First Prob. Final Dist. Final Prob.

O1 100% 33.69 19.11 0.53 7.85 0.68
O2 96% 39.90 27.87 0.56 6.03 0.81
O3 54% 45.84 8.22 0.52 5.40 0.65
O4 96% 35.30 9.99 1.00 2.24 1.00
O5 99% 28.42 28.52 0.85 4.00 0.92

Upon termination of the simulation run, for every observer, the following
values are reported: number of observations, average detection delay, average
distance from predicted rendezvous location to real rendezvous location (at the
first and final detection), and average detection probability (at the first and
final detection). Table 1 presents a summary of the observation reports over a
run of our scenario with 100 rendezvous incidents.4 Farahbod et al. [19] provide
additional experimental results and a Receiver Operating Characteristic (ROC)
curve for the rendezvous detection models.

7 Conclusions and Future Work

In this paper we propose a hybrid formal framework for interactive modeling
and experimental validation of SADS scenarios in the Marine Safety & Secu-
rity domain. The proposed framework captures common concepts and notions
of situation analysis and situation awareness, allows for reasoning about knowl-
edge, uncertainty and belief change, and enables rapid prototyping of abstract
executable decision support system models.

Albeit the sample rendezvous scenarios studied here are relatively simple when
compared to other typical rendezvous pattern, the intrinsic complexity of such
scenarios already demands systematic approaches that facilitate development of
executable formal models in order to explore the problem space, reason about
design decisions and investigate feasible solutions. Yet the application presented
in this paper demonstrates how the framework facilitates a seamless mapping
of functional system requirements into an abstract executable ground model [4]
which can be analyzed through simulation and animation to check its validity
and appropriateness. To this end, the proposed framework complements purely
analytical means that focus on verification of internal properties such as consis-
tency and completeness of a model (not further detailed here), and provides a
sensible way of linking formal and empirical aspects in model-driven engineering
of SADS systems. Experimental study of SA scenarios as presented here can
considerably enhance our insight into intricate system dynamics and simplify
the challenging task of deriving meaningful conformance criteria for checking
the validity of SADS domain models against established operational concepts of
Marine Safety & Security.

This work is a first step towards building a framework for design and develop-
ment of SADS systems. Specifically, we are planning to extend the background
4 This report excludes false positives.

A Formal Engineering Approach to High-Level Design 225

concepts supported by the framework, improve the user interface and visualiza-
tion capabilities, and enhance the analysis method using the scripting features
of the CoreASM Bârun plugin [1]. In addition, we consider importing real data
to ground the validation phase in actual real-world scenarios.

References

1. Altenhofen, M., Farahbod, R.: Bârun: A scripting language for coreASM. In:
Frappier, M., et al. (eds.) ABZ 2010. LNCS, vol. 5977, pp. 47–60. Springer, Hei-
delberg (2010)

2. Baader, F., et al.: A novel architecture for situation awareness systems. In: Giese,
M., Waaler, A. (eds.) TABLEAUX 2009. LNCS, vol. 5607, pp. 77–92. Springer,
Heidelberg (2009)

3. Börger, E.: Why Use Evolving Algebras for Hardware and Software Engineer-
ing? In: Bartosek, M., Staudek, J., Wiedermann, J. (eds.) SOFSEM 1995. LNCS,
vol. 1012, pp. 236–271. Springer, Heidelberg (1995)

4. Börger, E.: The ASM ground model method as a foundation of requirements
engineering. In: Dershowitz, N. (ed.) Verification: Theory and Practice. LNCS,
vol. 2772, pp. 145–160. Springer, Heidelberg (2004)

5. Börger, E., Glässer, U., Müller, W.: Formal Definition of an Abstract VHDL 1993
Simulator by EA-Machines. In: Delgado Kloos, C., Breuer, P.T. (eds.) Formal
Semantics for VHDL, pp. 107–139. Kluwer Academic Publishers, Dordrecht (1995)

6. Börger, E., Stärk, R.: Abstract State Machines: A Method for High-Level System
Design and Analysis. Springer, Heidelberg (2003)

7. Börger, E.: Construction and analysis of ground models and their refinements as
a foundation for validating computer based systems. Formal Aspects of Comput-
ing 19(2), 225–241 (2007)

8. Bossé, É., Jousselme, A.L., Maupin, P.: Situation analysis for decision support: A
formal approach. In: Proc. of the 10th Intl. Conf. on Information Fusion (2007)

9. Brannon, N.G., Seiffertt, J.E., Draelos Il, T.J., Wunsch, D.C.: Coordinated machine
learning and decision support for situation awareness. Neural Networks 22(3), 316–
325 (2009)

10. Brantingham, P.L., Glässer, U., Jackson, P., Vajihollahi, M.: Modeling criminal ac-
tivity in urban landscapes. In: Memon, N., Farley, J.D., Hicks, D.L., Rosenoørn, T.
(eds.) Mathematical Methods in Counterterrorism, pp. 9–31. Springer, Heidelberg
(2009)

11. Chmielewski, M.: Ontology applications for achieving situation awareness in mili-
tary decision support systems. In: Nguyen, N.T., Kowalczyk, R., Chen, S.-M. (eds.)
ICCCI 2009. LNCS, vol. 5796, pp. 528–539. Springer, Heidelberg (2009)

12. Endsley, M.R.: Theoretical underpinnings of situation awareness: A critical re-
view. In: Endsley, M.R., Garland, D.J. (eds.) Situation Awareness Analysis and
Measurement, LEA (2000)

13. Farahbod, R., Gervasi, V., Glässer, U.: CoreASM: An extensible ASM execution
engine. Fundamenta Informaticae, 71–103 (2007)

14. Farahbod, R., Gervasi, V., Glässer, U., Ma, G.: coreASM plug-in architecture. In:
Abrial, J.-R., Glässer, U. (eds.) Rigorous Methods for Software Construction and
Analysis. LNCS, vol. 5115, pp. 147–169. Springer, Heidelberg (2009)

15. Farahbod, R., Glässer, U.: The CoreASM modeling framework. Software: Practice
and Experience 41(2), 167–178 (2011)

226 R. Farahbod et al.

16. Farahbod, R., Glässer, U., Bossé, E., Guitouni, A.: Integrating abstract state ma-
chines and interpreted systems for situation analysis decision support design. In:
Proc. of the 11th Intl. Conf. on Information Fusion, Köln, Germany (July 2008)

17. Farahbod, R., Glässer, U., Khalili, A.: A multi-layer network architecture for dy-
namic resource configuration & management of multiple mobile resources in mar-
itime surveillance. In: Proc. of SPIE Defense & Security Symposium, Orlando,
Florida, USA (March 2009)

18. Farahbod, R.: CoreASM: An Extensible Modeling Framework & Tool Environment
for High-level Design and Analysis of Distributed Systems. Ph.D. thesis, Simon
Fraser Univ., BC, Canada (May 2009)

19. Farahbod, R., Avram, V., Glässer, U., Guitouni, A.: Engineering situation anal-
ysis decision support systems. In: European Intelligence and Security Informatics
Conference, Athens, Greece (2011)

20. Garland, D.J., Endsley, M.R.: Situation Awareness: Analysis and Measurement.
CRC Press, Boca Raton (2000)

21. Glässer, U., Gotzhein, R., Prinz, A.: The formal semantics of SDL-2000: Status
and perspectives. Computer Networks 42(3), 343–358 (2003)

22. Glässer, U., Gurevich, Y., Veanes, M.: Abstract communication model for dis-
tributed systems. IEEE Trans. on Soft. Eng. 30(7), 458–472 (2004)

23. Glässer, U., et al.: A collaborative decision support model for marine safety and
security operations. In: Hinchey, M., et al. (eds.) DIPES 2010. IFIP AICT, vol. 329,
pp. 266–277. Springer, Heidelberg (2010)

24. Gurevich, Y.: Evolving Algebras 1993: Lipari Guide. In: Börger, E. (ed.) Specifi-
cation and Validation Methods, pp. 9–36. Oxford University Press, Oxford (1995)

25. Jakobson, G., Lewis, L., Buford, C., Sherman, C.: Battlespace situation analysis:
The dynamic cbr approach. In: Military Communications Conf., vol. 2, pp. 941–947
(October 2004)

26. Jousselme, A.L., Maupin, P.: Interpreted systems for situation analysis. In: Proc. of
the 10th Intl. Conf. on Information Fusion, Québec, Canada (July 2007)

27. Kalman, R.E.: A new approach to linear filtering and prediction problems. Trans-
actions of the ASME–Journal of Basic Engineering 82(Series D), 35–45 (1960)

28. Klashner, R., Sabet, S.: A DSS design model for complex problems: Lessons from
mission critical infrastructure. Decision Support Systems 43, 990–1013 (2007)

29. Lambert, D.A.: STDF model based maritime situation assessments. In: Proc. of
the 10th Intl. Conf. on Information Fusion (July 2007)

30. McDermid, J.: Science of software design: Architectures for evolvable, dependable
systems. In: NSF Workshop on the Science of Design: Software and Software-
Intensive Systems, Airlie Center, VA (2003)

31. Nemati, H., Steiger, D., Iyer, L., Herschel, R.: Knowledge warehouse: an architec-
tural integration of knowledge management, decision support, artificial intelligence
and data warehousing. Decision Support Systems 33(2), 143–161 (2002)

32. Ryu, Y.U.: Constraint logic programming framework for integrated decision sup-
ports. Decision Support Systems 22(2), 155–170 (1998)

33. Shim, J.P., Warkentin, M., Courtney, J.F., Power, D.J., Sharda, R., Carlsson, C.:
Past, present, and future of decision support technology. Decision Support Sys-
tems 33(2), 111–126 (2002)

34. Stärk, R., Schmid, J., Börger, E.: Java and the Java Virtual Machine: Definition,
Verification, Validation. Springer, Heidelberg (2001)

Conformance Checking of

Dynamic Access Control Policies

David Power, Mark Slaymaker, and Andrew Simpson

Oxford University Computing Laboratory
Wolfson Building, Parks Road, Oxford OX1 3QD, UK

Abstract. The capture, deployment and enforcement of appropriate ac-
cess control policies are crucial aspects of many modern software-based
systems. Previously, there has been a significant amount of research un-
dertaken with respect to the formal modelling and analysis of access
control policies; however, only a limited proportion of this work has
been concerned with dynamic policies. In this paper we explore tech-
niques for the modelling, analysis and subsequent deployment of such
policies—which may rely on external data. We use the Alloy modelling
language to describe constraints on policies and external data; utilising
these constraints, we test static instances constructed from the current
state of the external data. We present Gauge, a constraint checker for
static instances that has been developed to be complementary to Alloy,
and show how it is possible to test systems of much greater complexity
via Gauge than can typically be handled by a model finder.

1 Introduction

Large-scale data-oriented systems dominate much of our lives: as employees, as
consumers, as patients, as travellers, as web surfers, and as citizens. The nature
of much of this data, coupled with an increased awareness of relevant security
and privacy issues, means that it is essential that effective tools, technologies
and processes are in place to ensure that any and all access is appropriate.
Our concern in this paper is the construction of access control policies that
rely on context to inform decisions. (Arguments as to the potential benefits of
context-sensitive access control have been made by, for example, [1], [2], and
[3].) Specifically, our concern is what might be termed evolving access control—
whereby access control decisions are made on the basis of state.

We utilise formal models for the construction and analysis of such dynamic
policies. In this respect, our work has much in common with that of [4], which
defines a framework to capture the behaviour of access control policies in dy-
namic environments. (In common with our approach, the authors also separate
the policy from the environment.) Importantly, our work is driven by practi-
cal concerns. The policies that are constructed and analysed are subsequently
deployed to instances of the sif (service-oriented interoperability framework)
middleware framework [5,6] to support the secure sharing and aggregation of
data.

S. Qin and Z. Qiu (Eds.): ICFEM 2011, LNCS 6991, pp. 227–242, 2011.
c© Springer-Verlag Berlin Heidelberg 2011

228 D. Power, M. Slaymaker, and A. Simpson

The framework supports relatively straightforward policies that conform to
the role-based access control (RBAC) model [7]; it also supports more complex
policies in the expressive XACML (eXtensible Access Control Markup Language)
policy language.1

Of course, the use of access control policies can bring many benefits when
managing complex systems: by centralising all authorisation decisions, consis-
tency of access can be maintained, and updating a single access control policy is
much simpler than modifying multiple components. Nevertheless, creating and
updating access control policies is still a potentially time-consuming task. Going
further, policy languages such as XACML support access to external data—
which may be updated independently of the policy. While this simplifies the
task of maintaining policies, it greatly complicates their analysis and also neces-
sitates controls on the modification of external data.

As demonstrated by many authors, formal methods have a role to play in this
area, with examples including the work of [8] and [9]—both of which are con-
cerned with the modelling and analysis of XACML. Even when the requirements
for an access control policy are well understood, it is still possible for mistakes to
be made: the flexibility of policy languages increases the potential for mistakes
due, in part, to their expressiveness.

We utilise the Alloy Modelling Language [10] in this paper to build models of
policies and external data. Using the Alloy Analyzer we are able to test properties
of those models. By constructing instances of policies and external data, we are
able to evaluate the constraints described in the Alloy model.2 However, the
Alloy Analyzer is only capable of analysing models of bounded size; this and a
lack of support for the large integers needed to model times, dates and monetary
values has led some researcher to avoid using the Alloy Modelling Language [16].
To address these problems, we have developed a tool for checking constraints on
large policies which also has the potential to support large integers and other
data types.

While, in general, it is not possible to say if a policy is ‘correct’ (due to the
‘safety problem’ of [17]), it is possible to test for certain healthiness conditions,
such as separation of duty constraints in role-based policies. Of course, there
are many other possible constraints which may be appropriate in role-based
policies, such as the absence (or presence) of a user with all permissions, or all
users having at least one role.

To this end, we concern ourselves with RBAC models and policies as a means
of illustrating the contribution. Specifically, we build on the RBAC model of [18],
which has been utilised in the policy editing tool described in [19]. It should be
noted that the modelling and analysis of RBAC constraints has a rich history,
with the work of [20] and [21] being of particular note.

1 See http://www.oasis-open.org/committees/xacml/
2 Other work that has built policy analysis tools on Alloy include the contribu-

tions of [11], [12] and [13]. Also relevant in terms of related work is the DynAlloy
tool [14,15], which extends Alloy to handle dynamic specifications.

Conformance Checking of Dynamic Access Control Policies 229

Virtual Organisation

E

Data

Pm

I

E

Data

Pn

I

Site MSite N Client MClient N

Client U

Internal user request

External user request

Fig. 1. The sif view of a distributed system

The structure of the remainder of this paper is as follows. In Section 2 we
describe the motivation for, and context of, our work: the capture, analysis and
enforcement of dynamic access control policies that make reference to external
state. Then, in Section 3, we describe the modelling and analysis of constraints
via Alloy. In Section 4 we introduce Gauge—our tool for the evaluation of Alloy
predicates and expressions. Finally, in Section 5, we summarise the contribution
of this paper and outline potential areas of future work.

2 Context

In this section we present the background to our work. We start by introducing
the sif framework, before giving consideration to what we term evolving access
control. We then briefly introduce our RBAC policy editing tool.

2.1 sif

sif (service-oriented interoperability framework) is concerned with supporting
secure data sharing and aggregation in a fashion that doesn’t require organ-
isations to throw away existing data models or systems, change practices, or
invest in new technology. The philosophy behind sif was originally described
in [22]. There, a virtual organisation—spread across two or more geographically
or physically distinct units—was characterised as per Figure 1. Deployments
communicate via their external interfaces (represented by E), with data being
accessed via an internal interface, I . The permitted access to the data is regu-
lated by policies (P): each organisation has control over its data, which means
that the responsibility for defining policies resides a local level.

sif offers support for three types of ‘plug-in’—data plug-ins, file plug-ins and
algorithm plug-ins—and it is these plug-ins that facilitate interoperability. By
using a standard plug-in interface, it becomes possible to add heterogeneous

230 D. Power, M. Slaymaker, and A. Simpson

ServiceClient Service
Data

Audit Manager

Audit
Dynamic

State

State Manager

Audit Handler

Policy
File

Access Control

Fig. 2. Evolving access control architecture

resources into a virtual organisation. If, in a distributed, heterogeneous context,
a user runs a query across several data nodes, then the middleware will distribute
that query to the nodes and aggregate the results. The middleware exposes as
much to the user as the developer considers useful for the application in question:
it may be appropriate to expose the whole underlying data structure, allowing
users to construct SQL queries; alternatively, a simple interface supporting pre-
formulated queries might be appropriate.

2.2 Evolving Access Control

The middleware framework of the previous section has the potential to support
what might be termed evolving access control : what may be accessed by users and
applications may change dynamically, depending on context. Examples of such
policies might include “if there has been no contact from Officer X for over 30
minutes then access should be denied from her device,” “Professor Y can access
up to 10 of these images,” and “Dr Z can access data provided that the network
capacity is sufficient.” Meta-policies prescribe the relationship between policies:
after Officer X has been out of contact for over 30 minutes, any access that
was previously possible is now denied; once Professor Y has accessed 10 images,
she can access no more of them; when the network capacity increases, Dr Z
can access data to his heart’s content.3 Thus, these meta-policies are necessarily
written at a higher level of abstraction than policies—and, as such, are intended
to be closer to the level at which requirements might be captured or guidelines
might be stated.

Of course, providing a system with the functionality to adapt access control
policies automatically means that the need for assurance that the correct policy
3 Note that our notion of meta-policy—describing the relationship between policies—

differs from that of [23]—where the concern is ‘policies about policies’.

Conformance Checking of Dynamic Access Control Policies 231

Policy Tooling

Edit Policy

sif Middleware

Access Control
Policy 1

Resource
1

Resource
n

Retrieve Policy

Deploy Policy

Validate
Policy

Revise Check

Access Control
Policy n

Fig. 3. Policy editing and validation workflow

is in place necessarily increases: ensuring that certain fundamental properties
hold in every potential state, for example, is essential—we would not want our
protection mechanism to evolve into a state that provided little protection, for
example. Hence the driver for a model-driven approach to evolving access control:
raising the level of abstraction for data owners and policy writers, with a view
to giving a degree of assurance that data sharing is appropriate.

In this paper, our concern is the modelling and analysis of external data
referenced by access control policies. Ideally, it would be possible not only to
analyse the current state of external data but to model the modifications of that
data. This is possible with our evolving access control deployments, where the
combination of policy and external state evolve in accordance with a meta-policy.

The architecture of the existing evolving access control system is presented in
Figure 2. Here, an audit of client activity and other events of significance is han-
dled by an audit manager. Handlers monitor the audit and update the dynamic
state in accordance with the rules of the meta-policy. When the server makes an
access control request, external data can be accessed via a state manager which
reads the dynamic state.

2.3 RBAC Policy Editing Tool

The sif middleware can support a number of different types of access control
policies, with the associated RBAC editing tool of [19] allowing the creation
and modification of RBAC policies. An illustration of how formal modelling
and analysis is incorporated into the overall RBAC policy workflow is given in
Figure 3.

Once modified, the policy is converted into an Alloy instance and then val-
idated against an Alloy model using the Alloy Evaluator. The tool tests each
policy against 12 different constraints; if a constraint does not hold, the user
is informed of the reason why so that the policy can be revised. The process
of creating instances is discussed in more detail in Section 4, in which we also
describe an alternative method of evaluating constraints.

232 D. Power, M. Slaymaker, and A. Simpson

3 Constraints and Requirements

The work described in the following is motivated by the desire to be able to
ensure that policy level constraints hold in the presence of dynamically changing
data—assuming that we are aware of potential changes to the external data
and, as such, can perform constraint checking before the changes are made. The
simplest solution to this problem is to treat the entire policy as external data and
to check all of the constraints whenever there is a potential change. However, a
more efficient approach is to check just the constraints that are dependent on the
external data; this approach assumes that any constraints that are independent
of the external data have been checked at the time of policy construction.

We start by describing the model for RBAC policies that we leverage to
illustrate our contribution.

3.1 RBAC

The underlying principle upon which role-based access control is based is the
association of permissions with the roles that users may hold within an organi-
sation. There are four standard components in the ANSI standard for role-based
access control systems [7].

– Core RBAC is mandatory in any RBAC system, and associates permissions
with roles and roles with users.

– Any combination of the following can be utilised in a particular system.
1. Role hierarchies define what amounts to an inheritance relation between

roles. As an example, role r1 inherits from role r2 if all privileges associ-
ated with r2 are also associated with r1.

2. A static separation of duty (SSD) constraint is characterised by a role set,
rs , such that # rs ≥ 2, and a natural number, n, such that 2 ≤ n ≤ # rs ,
and ensures that no user can be authorised for n or more roles in rs .

3. A dynamic separation of duty (DSD) constraint is concerned with ses-
sions: a DSD constraint ensures that no user can be associated with n
or more roles in rs in a particular session.

3.2 An Alloy Representation of RBAC

We present a model for core RBAC with hierarchy and static separation of
duty constraints. The model is based on that of [18], which presents a formal
description of RBAC using the formal description language, Z [24,25].

First, we introduce User, Role, Action and Resource, with Action and
Resource being used to define the contents of a Permission.

sig User, Role, Action, Resource {}

sig Permission {
action : Action,
resource : Resource

}

Conformance Checking of Dynamic Access Control Policies 233

The MER signature represents a mutually exclusive roles constraint which re-
stricts the combinations of roles a user can be associated with. The signature
consists of an integer, limit, and a set of roles, roles. The MER signature also
has a constraint, which states that the value of limit ranges between 2 and the
cardinality of the roles set.

sig MER {
limit : Int,
roles : set Role

} {
2 <= limit
limit <= (# roles)

}

The fact uniquePermission ensures that each Permission is unique, i.e. no
two different (signified by disj) elements of Permission have the same action–
resource pair. This simplifies the subsequent definitions in the RBAC model.

fact uniquePermission {
all disj pb1, pb2 : Permission |
pb1.action != pb2.action || pb1.resource != pb2.resource

}

The Hierarchy signature represents an RBAC system with a role hierarchy and
static separation of duty constraints. It contains the sets USERS, ROLES and PRMS,
which represent the particular users, roles and permissions to which the policy
relates. It also contains the relations UA, PA and RH, which represent the user-
role, role-permission and role hierarchy mappings. The set SC is a set of static
separation of duty constraints, the roles of which must be a subset of ROLES.
The relation RH must be acyclic, which is ensured by no (^RH & iden). The
composition UA.*RH.PA creates a user–permission relation which relates users
and their reachable permissions taking into account the role hierarchy.

sig Hierarchy {
USERS : set User,
ROLES : set Role,
PRMS : set Permission,
UA : USERS -> ROLES,
RH : ROLES -> ROLES,
PA : ROLES -> PRMS,
SC : set MER

} {
no (^RH & iden)
all s : SC | s.roles in ROLES

}

We now describe a number of constraints that can be used to validate policies.
The applicability of each constraint will depend, of course, upon the context of

234 D. Power, M. Slaymaker, and A. Simpson

the deployed policy. In total, there are 12 constraints that are checked by our
RBAC policy construction tool, three of which are presented below.

The first example is a constraint on any individual user having all permissions,
represented as a fact called NobodyCanDoEverything affecting all elements of
Hierarchy. This fact could have been included in the signature of Hierarchy,
but is written as a separate fact to promote modularity and (consequently) to
allow it to be tested independently.

fact NobodyCanDoEverything {
all h : Hierarchy, u : h.USERS |
u.(h.UA).*(h.RH).(h.PA) != h.PRMS

}

Similarly, the enforcement of static separation of duty constraints is written as a
separate fact called NobodyBreachesSC. If the constraint does not hold, the tool
evaluates the function fun NobodyBreachesSC which returns a set containing
(Hierarchy, MER, User) triples indicating, for each hierarchy, the particular static
separation of duty of constraint which has been breached and the user that
breaches it. Similar functions exist for the other constraints.

fact NobodyBreachesSC {
all h : Hierarchy, s : h.SC, u : h.USERS |

#(s.roles & u.(h.UA).*(h.RH)) < s.limit
}

fun fun_NobodyBreachesSC() : Hierarchy -> MER -> User {
{ h : Hierarchy, s : h.SC, u : h.USERS |

#(s.roles & u.(h.UA).*(h.RH)) >= s.limit }
}

There are also constraints relating to redundancy in the model. One such ex-
ample is NoRedundantPermissions, which prevents a role from being assigned
a permission that it already holds due to inheritance.

fact NoRedundantPermissions {
all h : Hierarchy, r : h.ROLES |
no (r.(h.PA) & r.^(h.RH).(h.PA))

}

3.3 Adding Sessions

We now consider how sessions can be added to the RBAC model so as to allow
us to divide a policy into static and dynamic parts. We assume that the dynamic
parts of the policy are stored as external data.

The signature Session extends Hierarchy. The relation AR contains the cur-
rently active roles for each user; this represents the dynamic part of the policy.
The set DC is a set of dynamic separation of duty constraints, which restrict the

Conformance Checking of Dynamic Access Control Policies 235

active roles of a user (it is assumed that the set DC does not change dynamically).
As was the case for static separation of duty constraints, it is assumed that all
dynamic separation of duty constraints refer only to roles from the set ROLES.
The composition AR.PA is now used to relate users to their current permissions.

sig Session extends Hierarchy {
AR : USERS -> ROLES,
DC : set MER

} {
all d : DC | d.roles in ROLES

}

The value of the relation AR needs to meet two criteria: each user–role pair has to
represent a role that the user has access to, and the dynamic separation of duty
constraints must be met. These criteria are captured in the fact DynamicFact.

fact DynamicFact {
all s : Session |
s.AR in (s.UA).*(s.RH) &&
all d : s.DC , u : s.USERS |
#(d.roles & u.(s.AR)) < d.limit

}

As none of the constraints on Hierarchy make reference to AR they will not need
to be checked when AR changes, which reduces the amount of dynamic constraint
checking required. It is possible to add extra constraints that do depend on the AR
relation. For example, it is possible to modify the fact NobodyCanDoEverything
to only depend on the currently activated roles.

fact NobodyCanCurrentlyDoEverything {
all s : Session, u : s.USERS |
u.(s.AR).(s.PA) != s.PRMS

}

4 Gauge

In this section we discuss Gauge, a means of evaluating Alloy predicates and
expressions that has been developed as a companion tool to the Alloy Analyzer.
Unlike the Alloy Analyzer, Gauge is not a model finder and can only work with
known instances. Specifically, Gauge is designed for instances built from real
world data which are too large for a model finder to handle; it is also capable
of handling large integers and other data types which are commonly found in
practice.

236 D. Power, M. Slaymaker, and A. Simpson

Fig. 4. Parsing and evaluation process

4.1 Overview

The first stage of using Gauge involves creating an Alloy model and using the
Alloy Analyzer to check the suitability of the model. Once this has been done,
it is then possible to construct a JavaScript Object Notation (JSON) instance
of the data using the signatures defined in the model.

Figure 4 shows how the Alloy model and JSON instance are processed. The
Alloy model is parsed using a modified version of the parser used by the Alloy
Analyzer; this creates both type information for the signatures and predicate
information for the facts and other constraints. The type information is used
to turn the JSON instance into an object representation (considered further in
the next section). Once the instance object has been created, the predicates can
then be evaluated. In certain circumstances, Gauge can extend the instance by
adding new atoms; this is represented by the dotted arrow.

4.2 Instances

An instance consists of three types of data: atoms, signature relations and field
relations. Atoms are the basic building blocks of an instance and each atom has
a signature type. The signature relations are sets of atoms of a certain signature
type. Where one signature extends another, atoms of the subtype will appear in
both signature relations. Field relations are sets of tuples, the first element of
which is the atom to which the field relates.

In a JSON instance, each atom is introduced as a separate object. The id
field is used as a unique identifier for the atom and the type field represents
the signature type of the atom. If the atom has any field values, these are listed
in fields where each field name is associated with an array of arrays of atom
identifiers. The inner arrays are necessary as field values could be of any arity.

Conformance Checking of Dynamic Access Control Policies 237

Shown below is an example of JSON instance containing a MER atom and its
associated roles.

{ id : role1, type : Role },
{ id : role2, type : Role },
{ id : mer1, type : MER,
fields : {
limit : [[2]],
roles : [[role1],[role2]]}

}

When loaded, the following atoms, signature relations and field relations are cre-
ated, including the univ signature relation which all signatures extend. Integers
are identified using a decimal string representation.

Atoms = {role1, role2,mer1, 2}
Signatures = {Role → {role1, role2},MER → {mer1},

Int → {2}, univ → {role1, role2,mer1, 2}}
Fields = {limit → {(mer1, 2)}, roles → {(mer1, role1), (mer1, role2)}}

4.3 Evaluation

Each predicate that is to be evaluated is constructed from a number of ex-
pressions. When evaluated, an expression can have either a Boolean value, a
relational value, or a primitive integer value. For relational operators, such as
composition (.) or union (+), Gauge first evaluates the two sub-expressions and
then combines the resulting relations using the operator specified. When refer-
ence is made to a signature or field, the associated relation is retrieved from the
instance.

For Boolean operators such as (&&) or (||), a ‘short-circuit’ approach is used
whereby sub-expressions are evaluated from left to right as required. Similarly,
when evaluating quantifiers such as some or all evaluation stops as soon as a
definitive result is found.

Some expressions introduce variables, the simplest of which is let. To store
the current values of variables, a mapping is maintained between variables and
the relations they represent. For a let expression, the value of the variable is
fixed within each evaluation. After evaluating the body of the let expression,
the variable is removed from the mapping before the result is returned. For
quantifiers, the value of each variable is drawn from a set, the body of the
quantifier is evaluated separately for each combination of variable values. Set
comprehensions work similarly to quantifiers with successful combinations of
variable values being turned into tuples and added to the resulting relation.

Calls to predicates and functions are handled dynamically during evaluation.
The arguments are first calculated and added to the variable mapping. The
body of the called predicate or function is then evaluated. As a natural conse-
quence of this evaluation method, Gauge is capable of evaluating certain types
of recursively defined functions and predicates.

238 D. Power, M. Slaymaker, and A. Simpson

4.4 Types

While it is possible to model specific aspects of data types when constructing
an Alloy model, a certain amount of abstraction is needed if one wishes to use
the model-finding capabilities of the Alloy Analyzer. An example of this is the
representation of integers, where the bit width is restricted. When testing for
counterexamples, the restriction of the bit width is not normally a problem;
however, real world data is, of course, likely to exceed the bit width used for
modelling.

There are many other data types that would be of relevance in an access
control system, including times, dates, strings and X.509 certificates. Each of
these would be impossible to model completely in Alloy but are simple to handle
in a general purpose programming language.

Such types are handled in a straightforward manner in Gauge by casting be-
tween Alloy atoms and native representations as necessary. As a simple example,
part of the Gauge time module is presented below. Here, currentTime refers to
the current time, and the predicate Time lte is used for comparisons.

sig Time {}
one sig currentTime extends Time {}

pred Time_lte(t1, t2 : Time) {
lte[t1,t2]

}

As a simple example, the predicate NineToFive can be used to check if the time
of evaluation is in ‘normal office hours’: between 9am and 5pm.

pred NineToFive() {
Time_lte[T_9_0_0,currentTime]
Time_lte[currentTime,T_17_0_0]

}

When evaluating NineToFive, Gauge will recognise the predicate Time lte as
a predicate on time and, instead of expanding its definition, will perform the
comparison using native Java objects. For atoms such as T 9 0 0, Gauge will
create a time object with the three numbers representing hours, minutes and
seconds. The atom currentTime is also recognised as a special case and a new
atom is created which represents the current time.

It is possible to use the same methods to allow time arithmetic, such as adding
an hour or calculating the difference between two times. These will potentially
add new atoms to the instance. Without the ability to add new atoms, all inter-
mediate results would need to form part of the initial instance.

4.5 Scalability

While the model finder used by Alloy is capable of dealing with the case when
the relations are all fixed, it still is restricted by internal data structures which

Conformance Checking of Dynamic Access Control Policies 239

Users Atoms Static time Dynamic time

256 530 41ms 8ms
512 995 88ms 14ms
1024 1925 189ms 24ms
2048 3785 544ms 110ms
4096 7505 1.78s 169ms
8192 14945 6.71s 591ms
16384 29825 27.5s 2.29s
32768 59585 122s 8.38s
65536 119105 553s 35.6s

Fig. 5. Scalability results

put a limit on the total number of atoms of 231/n (where n is the largest arity
of any relation in the model). In our RBAC model, the UA, PA and RH field
relations are all of arity 3, which imposes a limit of approximately 1,000 total
atoms. Gauge, on the other hand, does not have any restrictions on the size of
the instance other than the memory needed to store it.

To test scalability, instances of policies were created, and the time taken to
test the 12 static and 2 dynamic constraints were recorded. A simple role hi-
erarchy was created, with all apart from one role being connected in a binary
tree. One user was allocated the ‘separate role’, with all others being randomly
allocated between one and three roles from the tree. For each role, there were
exactly four permissions, each having a unique action and resource. There was a
single separation of duty constraint for every 16 roles—with each such constraint
involving two roles, one of which was the ‘separate role’. By allocating the roles,
permissions and constraints in this fashion, it was possible to ensure that all
but one of the constraints held, maximising the amount of work required. The
constraint that did not hold pertained to a role being senior to multiple roles.

There were 16 times as many users as roles, and 8 times as many active roles.
The number of users is listed in Figure 5, together with the total number of
atoms. The total number of atoms includes 64 integers and the atom representing
the policy, but otherwise is proportional to the number of users.

4.6 Optimisation

To achieve the times listed in Figure 5, the constraints were modified so that
they could be evaluated more efficiently. As discussed previously, Gauge uses a
simple evaluation strategy for quantifiers where the body is evaluated separately
for each combination of variable values. This can lead to an expression being
evaluated multiple times for the same values. By using let statements, it is
possible to store the results of expressions so they can be reused. Shown below
is DynamicFact rewritten using let statements.

240 D. Power, M. Slaymaker, and A. Simpson

fact DynamicFact {
all s : Session |
let sess = s.AR |
sess in (s.UA).*(s.RH) &&
all d : s.DC |

let lim = d.limit |
let rol = d.roles |
all u : s.USERS | #(rol & u.sess) < lim

}

In this case the difference in performance is significant: with 8192 users, the
evaluation took 454 seconds without the let statements and 0.795 seconds
with the let statements. Other optimisations are less obvious; for example,
uniquePermission can be rewritten to remove the quantifiers completely.

fact uniquePermission {
(action.~action & resource.~resource) in iden

}

Again, the difference in performance is significant: with 2048 permissions, the
original uniquePermission took 14 seconds to evaluate compared with 0.022
seconds for the alternative version.

Another potential area of performance gain when evaluating the dynamic
constraints comes from using an incremental approach to evaluation. In the
current example, the deactivation of a role can never result in the breaching of
a constraint and the activation of a role can only result in breaches related to
the user doing the activating and the role(s) being activated. A combination of
storing the value of expressions related to the static part of the policy (such as
(s.UA).*(s.RH)) and only evaluating quantifiers for the parts of the dynamic
policy that have changed (removing all u : s.USERS) would have a dramatic
effect on performance.

5 Conclusions and Further Work

In this paper we have discussed methods for the modelling and analysis of access
control policies which reference external data. The referencing of external data is
of particular relevance when dealing with dynamic access control policies which
are constantly modified in response to user activity or system events. By building
models of access control policies in the Alloy modelling language, we are able
to describe policy constraints and test existing policies. By directly creating
Alloy instances, it becomes possible to test more complex policies than might
be handled by the Alloy model finder. We have described a prototype evaluator
called Gauge which is capable of handling large instances and also has limited
support for real world data types.

By decomposing a model of an access control policy into static and dynamic
parts, we have shown how it is possible to test just a small set of constraints

Conformance Checking of Dynamic Access Control Policies 241

when the dynamic parts of a policy change. It is possible to test the suitability of
a set of constraints by using the model-finding capabilities of the Alloy Analyzer;
once a set of constraints has been found to be suitable, a simple evaluation of a
new instance is sufficient.

The long-term goal is to be able to analyse changes in dynamic state in real
time. While this is currently feasible for policies which have hundreds or even
thousands of users, the evaluation time for larger policies starts to become pro-
hibitive. By providing a facility for the persistent storage of instances it will be
possible to cache results and to only evaluate constraints related to changes in
the dynamic state. With such a system in place, it should be possible to handle
significantly larger policies.

For changes to the static parts of policies, there is the potential to increase
the speed of evaluation by decomposing the problem and utilising parallel eval-
uation; with the advent of cloud computing infrastructures, such approaches are
now more feasible than ever before, and we intend exploring the potential for
benefitting from such developments in the near future. Finally, while the develop-
ment of Gauge has been driven by the needs of a particular domain, we consider
it to be a general purpose evaluator; as such, we will be giving consideration to
further application areas in the coming months.

References

1. Kumar, A., Karnik, N., Chafle, G.: Context sensitivity in role-based access control.
ACM SIGOPS Operating Systems Review 36(3), 53–66 (2002)

2. Bhatti, R., Bertino, E., Ghafoor, A.: A trust-based context-aware access control
model for web-services. Distributed and Parallel Databases 18(1), 83–105 (2005)

3. Hulsebosch, R.J., Salden, A.H., Bargh, M.S., Ebben, P.W.G., Reitsma, J.: Context
sensitive access control. In: Proceedings of the 10th ACM Symposium on Access
Control Models and Technologies (SACMAT 2005), pp. 111–119 (2005)

4. Dougherty, D.J., Fisler, K., Krishnamurthi, S.: Specifying and reasoning about
dynamic access-control policies. In: Furbach, U., Shankar, N. (eds.) IJCAR 2006.
LNCS (LNAI), vol. 4130, pp. 632–646. Springer, Heidelberg (2006)

5. Simpson, A.C., Power, D.J., Russell, D., Slaymaker, M.A., Kouadri-Mostefaoui,
G., Ma, X., Wilson, G.: A healthcare-driven framework for facilitating the secure
sharing of data across organisational boundaries. Studies in Health Technology and
Informatics 138, 3–12 (2008)

6. Slaymaker, M.A., Power, D.J., Russell, D., Simpson, A.C.: On the facilitation of
fine-grained access to distributed healthcare data. In: Jonker, W., Petković, M.
(eds.) SDM 2008. LNCS, vol. 5159, pp. 169–184. Springer, Heidelberg (2008)

7. Ferraiolo, D.F., Sandhu, R.S., Gavrilla, S., Kuhn, D.R., Chandramouli, R.: Pro-
posed NIST standard for role-based access control. ACM Transactions on Infor-
mation and Systems Security 4(3), 224–274 (2001)

8. Zhang, N., Ryan, M., Guelev, D.P.: Synthesising verified access control systems
in XACML. In: Proceedings of the 2nd ACM Workshop on Formal Methods in
Security Engineering (FMSE 2004), pp. 56–65 (2004)

9. Bryans, J.W., Fitzgerald, J.S.: Formal engineering of XACML access control poli-
cies in VDM++. In: Butler, M., Hinchey, M.G., Larrondo-Petrie, M.M. (eds.)
ICFEM 2007. LNCS, vol. 4789, pp. 37–56. Springer, Heidelberg (2007)

242 D. Power, M. Slaymaker, and A. Simpson

10. Jackson, D.: Software Abstractions: Logic, Language, and Analysis. MIT Press,
Cambridge (2006)

11. Schaad, A., Moffett, J.D.: A lightweight approach to specification and analysis of
role-based access control extensions. In: Proceedings of the 7th ACM Symposium
on Access Control Models and Technologies (SACMAT 2002), pp. 13–22 (2002)

12. Hughes, G., Bultan, T.: Automated verification of access control policies. Technical
Report 2004-22, University of California, Santa Barbara (2004)

13. Fisler, K., Krishnamurthi, S., Meyerovich, L., Tshantz, M.C.: Verification and
change-impact analysis of access-control policies. In: Inverardi, P., Jazayeri, M.
(eds.) ICSE 2005. LNCS, vol. 4309, pp. 196–205. Springer, Heidelberg (2006)

14. Frias, M.F., Galeotti, J.P., Pombo, C.G.L., Aguirre, N.M.: DynAlloy: upgrading Al-
loy with actions. In: Inverardi, P., Jazayeri, M. (eds.) ICSE 2005. LNCS, vol. 4309,
pp. 442–451. Springer, Heidelberg (2006)

15. Frias, M.F., Pombo, C.G.L., Galeotti, J.P., Aguirre, N.M.: Efficient analysis of
DynAlloy specifications. ACM Transactions on Software Engineering and Method-
ology (TOSEM) 17(1), Article number 4 (2007)

16. Shaikh, R.A., Adi, K., Logrippo, L., Mankovski, S.: Inconsistency detection method
for access control policies. In: Proceedings of 6th International Conference on In-
formation Assurance and Security (IAS 2010), pp. 204–209 (2010)

17. Harrison, M.A., Ruzzo, W.L., Ullman, J.D.: Protection in operating systems. Com-
munications of the ACM 19(8), 461–471 (1976)

18. Power, D.J., Slaymaker, M.A., Simpson, A.C.: On formalizing and normalizing
role-based access control systems. The Computer Journal 52(3), 305–325 (2009)

19. Power, D.J., Slaymaker, M.A., Simpson, A.C.: Automatic conformance checking
of role-based access control policies via alloy. In: Erlingsson, Ú., Wieringa, R.,
Zannone, N. (eds.) ESSoS 2011. LNCS, vol. 6542, pp. 15–28. Springer, Heidelberg
(2011)

20. Ahn, G.J., Sandhu, R.S.: Role-based authorization constraint specification. ACM
Transactions on Information and Systems Security 3(4), 207–226 (2000)

21. Crampton, J.: Specifying and enforcing constraints in role-based access control. In:
Proceedings of the 8th ACM Symposium on Access Control Models and Technolo-
gies (SACMAT 2003), pp. 43–50 (2003)

22. Power, D.J., Politou, E.A., Slaymaker, M.A., Simpson, A.C.: Towards secure grid-
enabled healthcare. Software: Practice and Experience 35(9), 857–871 (2005)

23. Hosmer, H.H.: Metapolicies I. ACM SIGSAC Review 10(2-3), 18–43 (1992)
24. Spivey, J.M.: The Z Notation: A Reference Manual. Prentice-Hall, Englewood Cliffs

(1992)
25. Woodcock, J.C.P., Davies, J.W.M.: Using Z: Specification, Refinement, and Proof.

Prentice-Hall, Englewood Cliffs (1996)

A Knowledge-Based Verification Method for

Dynamic Access Control Policies

Masoud Koleini and Mark Ryan

University of Birmingham,
Birmingham, B15 2TT, UK

{m.koleini,m.d.ryan}@cs.bham.ac.uk

Abstract. We present a new approach for automated knowledge-based
verification of access control policies. The verification method not only
discovers if a vulnerability exists, but also produces the strategies that
can be used by the attacker to exploit the vulnerability. It investigates
the information needed by the attacker to achieve the goal and whether
he acquires that information when he proceeds through the strategy or
not. We provide a policy language for specifying access control rules
and the corresponding query language that is suited for expressing the
properties we aim to verify. The policy language is expressive enough to
handle integrity constraints and policy invariants. Finally, we compare
the results and enhancements of the current method - implemented as a
policy verification tool called PoliVer - over similar works in the context
of dynamic access control policy verification.

1 Introduction

Social networks like Facebook and LinkedIn, cloud computing networks like
Salesforce and Google docs, conference paper review systems like Easychair and
HotCRP are examples of the applications that huge numbers of users deal with
every day. In such systems, a group of agents interact with each other to access
resources and services. Access control policies in such multi-agent systems are
dynamic (state-based) [1,2,3,4], meaning that the permissions for an agent de-
pend on the state of the system. As a consequence, permissions for an agent can
be changed by the actions of other agents.

For complex systems, reasoning by hand about access control policies is not
feasible. Automated verification is a solution and enables policy designers to
verify their policies against properties needed. For instance, in Google docs, we
need to verify “if Alice shares a document with Bob, it is not possible for Bob to
share it with Charlie unless Alice agrees”, or in HotCRP, “if Bob is not chair, it
is not possible for him to promote himself to be a reviewer of a paper submitted
to the conference”. If such properties do not hold, it can imply a security hole
in the system and needs to be investigated and fixed by policy designers.

Knowledge - the information that an agent or group of agents has gained about
the system - plays an important role in exploiting vulnerabilities by the attacker.
For instance in Facebook, consider a situation in which Alice is a friend of Bob,

S. Qin and Z. Qiu (Eds.): ICFEM 2011, LNCS 6991, pp. 243–258, 2011.
c© Springer-Verlag Berlin Heidelberg 2011

244 M. Koleini and M. Ryan

and she has excluded non-friends from seeing her photos and her list of friends.
Bob has tagged Alice on some photos of him, which are publicly available. Eve
is interested in finding some photos of Alice. If Eve knows that Alice and Bob
are friends, then the pseudocode below demonstrates how she can proceed:

foreach (photo ∈ Bob.photos)
if (photo.isAccessibleBy(Eve) and Alice ∈ photo.tags)

Output photo;

Although this vulnerability exists, Eve still needs to find some of Alice’s friends
to exploit it. The required information may be a prior knowledge, or gained by
exploring the system. In both cases, a verification method that investigates how
the agents can gain information about the system, share it with other agents and
use the information to achieve the goal is valuable in debugging access control
policies.

This paper proposes a dynamic access control model supporting knowledge-
based verification through reasoning about readability. In this context, an agent
knows the value of a proposition1 (for instance, areFriends(Alice, Bob)) if he
has previously read the proposition, or performed an action that has altered its
value. This abstraction of knowledge results in a simpler model, which makes
the verification efficient, and is powerful enough to model knowledge in access
control systems. Using this definition of knowledge, we are able to efficiently
verify a property - as a vulnerability - over access control systems, and if the
property is satisfied, produce an output which demonstrates how an agent can
execute a sequence of actions to achieve the goal, what information he requires
to safely proceed through the strategy and what are the risky situations where
he needs to guess what action to perform.

As an important feature in this paper, we are interested in finding the system
propositions in which the strategy for the attacker to achieve the goal is different
according to whether the proposition is true or false. We call those propositions
effective. The values of effective propositions are needed by the attacker to de-
termine the appropriate strategy. If the attacker does not know the value of
the effective proposition, he could still guess the value. In the case of wrong
guess, he may be able to backtrack to the guessing state and select the right
strategy. However, backtracking has two main disadvantages: firstly, it may not
be possible to backtrack or undo the actions already performed and secondly,
unauthorized actions may be logged by the system. So, the attacker needs to
minimize guessing to get the goal.

The proposed algorithm is able to:

– Verify a property (or equivalently, goal) over an access control system which
is characterised by a dynamic policy.

– Provide the strategy together with the information required for an attacker
to achieve the goal, if the goal is found to be achievable.

1 In the context of this paper, a proposition refers to a boolean variable in the system,
and a state is a valuation of all system propositions.

A Knowledge-Based Verification Method 245

– Find out if the attacker can gain the required knowledge while he traverses
through the strategy.

Our Contribution: We propose a policy language with corresponding verifica-
tion algorithm that handles integrity constraints - rules that must remain true
to preserve integrity of data. The policy language enables users to define action
rules and also read permission rules to represent agent knowledge in the system.
We provide a verification algorithm (with respect to effective propositions) which
is able to find the strategy in a more efficient way than the guessing approach
in a similar knowledge based verification framework [1]. The algorithm verifies
knowledge by reasoning about readability. This approach approximates knowl-
edge, finds errors efficiently and is easier to automate. Finally, we present case
studies for strategy finding and knowledge verification algorithm and compare
the performance with similar methods.

The rest of this paper is organized as follows. Related work is discussed in
Section 2. Formal definitions of access control policy, access control system and
query language are introduced in Section 3. Model-checking strategy is explained
in Section 4. Knowledge-based verification of the strategies is presented in Sec-
tion 5. Experimental results are provided in section 6 and conclusions and future
work are explained in Section 7.

Notation 1. To enhance readability, for the rest of this paper, letters with no
index such as u and a used as the arguments will represent variables. indexed
letters such as u1 and a1 will be used for objects (instantiated variables).

2 Related Work

Although there is lots of research in the area of stateless access control sys-
tem verification [5,6,7], we only mention several important related papers in the
context of dynamic policy verification.

One of the first works is the security model of Bell and LaPadula designed in
1976 [8]. This model is a state transition framework for access control policies in
a multi-level security structure and is based on security classification of objects
and subjects. In general, the model is not fine-grained, not all access control
policies can be modelled and also contains several weaknesses [9].

Dougherty et al. [3] define a datalog-based verification of access control poli-
cies. They have separated static access control policy from the dynamic be-
haviour and defined a framework to represent the dynamic behaviour of access
control policies. They consider an environment consisting of the facts in the sys-
tem. Performing each action adds some facts or removes some other from the
environment. They perform formal analysis for safety and availability properties
on their access control model.

In terms of verifying knowledge, RW [1] is the most similar framework to
ours2. “Read” and “write” rules in RW define the permissions for read/write
2 RW is implemented as a tool named AcPeg (Access Control Policy Evaluator and

Generator).

246 M. Koleini and M. Ryan

access to the system propositions. RW considers agent knowledge propositions
in state space. So, an agent can perform an action if he knows he is able to
perform it. RW suffers from the restriction that only one proposition can be
updated at a time in every write action. Our policy language allows defining
actions with bulk variable update. As a practical limitation, the state space in
RW grows in a greater context than conventional model-checkers, which makes
the verification of complex policies difficult. Our method is more efficient as it
abstracts knowledge states and and uses a fast post-processing algorithm for
knowledge verification.

SMP [10] is a logic for state-modifying policies based on transaction logic.
Although SMP provides an algorithm that finds the optimal sequence of tran-
sitions to the goal, it suffers from restricted use of negation in preconditions,
which is not the case in our proposed algorithm.

Becker [2] has designed a policy language (DynPAL) that is able to verify
safety properties over dynamic access control policies with an unbounded num-
ber of objects. The paper proposes two methods for reasoning about reachability
and policy invariants. For reachability, the policy can be translated into PDDL
syntax [11] and verified using a planner. Safety properties can be verified using
a first order logic theorem prover and by translating the policy and invariance
hypothesis into the first order logic validity problem. According to the experi-
mental results [2], the planner may not be successful in finding if a property is
an invariant in a reasonable time. Also initial states are not considered in safety
property verification.

3 Definitions

3.1 Access Control Policy

In a multi-agent system, the agents authenticate themselves by using the pro-
vided authentication mechanisms, such as login by username and password, and
it is assumed that the mechanism is secure and reliable. Each agent is autho-
rized to perform actions, which can change the system state by changing the
values of several system variables (in our case, atomic propositions). Perform-
ing actions in the system encapsulates three aspects: the agent request for the
action, allowance by the system and system transition to another state. In this
research, we consider agents performing different actions asynchronously; a real-
istic approach in computer systems. We present a simple policy language that is
expressive enough to model an asynchronous multi-agent access control system.

Syntax Definition: Let T be the set of types which includes a special type
“Agent” for agents and Pred be a set of predicates such that each n-ary predicate
has a type t1 × · · · × tn → {
,⊥}, for some ti ∈ T . Let V be a set of variables.
Every variable in set V has a type. Consider v as a sequence of distinct variables.
If w ∈ Pred, then w(v) is called an atomic formula. L is a logical formula and
consists of atomic formulas combined by logical connectives and existential and
universal quantifiers. In the following syntax, id represents the identifier for the
rules, and u is a variable of type Agent.

A Knowledge-Based Verification Method 247

The syntax of access control policy language is as follows:

L ::=
 | ⊥ | w(v) | L ∨ L | L ∧ L | L → L | ¬L | ∀v : t [L] | ∃v : t [L]
W ::= +w(v) | − w(v) | ∀v : t. W

Ws ::= W | Ws, W

ActionRule ::= id(v) : {Ws} ← L

ReadRule ::= id(u, v) : w(v) ← L

Given a logical formula L, we define fv(L) ⊆ V to be the set of all variables in
atomic formulas in L, which occur as free variables in L. We extend fv to the
set {Ws} in the natural way.

An action rule has the form “α(v) : E ← L” such that logical formula L
represents the condition under which the action is permitted to be performed.
The set of signed atomic formulas E represents the effect of the action. +w(v)
in the effect means executing the action will set the value of w(v) to true and
−w(v) means setting the value to false. In the case of ∀v : t.W in the effect, the
action updates the signed atom in W for all possible values of v. α(v) represents
the name of the action rule. We can refer to the whole action rule as α(v).

We also stipulate for each action rule α(v) : E ← L where v = (v1, . . . , vn):

– v1 is of type Agent and presents the agent performing the action.
– fv(E) ∪ fv(L) ⊆ v.
– {+w(x),−w(x)} �⊆ E where x is a sequence of variables.

A read permission rule has the form “ρ(u, v) : w(v) ← L” such that the logical
formula L represents the condition under which the atomic proposition w(v) is
permitted to be read and ρ(u, v) represents the name of the read permission
rule. We can refer to the whole read permission rule as ρ(u, v).

We also stipulate for each read permission rule ρ(u, v) : w(v) ← L where
v = (v1, . . . , vn):

– u is of type Agent and presents the agent reading w(v).
– fv(L) ⊆ {u, v1, . . . , vn}.

Definition 1. (Access control policy). An access control policy is a tuple
(T, Pred, A, R) where T is the set of types, Pred is the set of predicates, A is
the set of action rules and R is the set of read permission rules.

Example 1. A conference paper review system policy contains the following
properties for unassigning a reviewer from a paper:

– A chair is permitted to unassign the reviewers.
– If a reviewer is removed, all the corresponding subreviewers (subRev) should

be removed from the system at the same time.

The unassignment action can be formalized as follows:

delRev(u, p, a) : {-rev(p, a), ∀b : Agent. -subRev(p, a, b)} ← chair(u) ∧ rev(p, a)

Example 1 shows how updating several variables synchronously can preserve
integrity constraints. The RW framework is unable to handle such integrity
constraint as it can only update one proposition at a time.

248 M. Koleini and M. Ryan

3.2 Access Control System

Access control policy is a framework representing authorizations, actions and
their effect in a system. Access control systems can be presented by a policy, a
set of objects and corresponding substitutions.

We define Σ as a finite set of objects such that each object in Σ has a type.
Σt ⊆ Σ is the set of objects of type t. If V is the set of variables, then a
substitution σ is a function V → Σ that respects types.

Definition 2. (Atomic propositions). The set of atomic propositions P is de-
fined as the set of predicates instantiated with the objects in Σ:

P = {w(v)σ | w ∈ Pred, v ∈ V ∗ and σ is a substitution}
A system state is a valuation of atomic propositions in P . A state s can be
defined as a function P → {
,⊥}. We use s[p �→ m] to denote the state that is
like s except that it maps the proposition p to value m.

Instantiation of the Rules: When a substitution applies to an action rule
in the policy, it will extend to the variables in arguments, effects and logical
formula in the natural way. If a : e ← f is the instantiation of α(v) : E ← L
under the substitution σ, then a = α(v)σ, e = Eσ and f = Lσ.

This is the same for applying a substitution to the read permission rules in
the policy. If r : p ← f is the instantiation of ρ(u, v) : w(v) ← L under the
substitution σ, then r = ρ(u, v)σ, p = w(v)σ and f = Lσ.

Definition 3. (Action, read permission). An action is an instantiation of a
policy action rule. A read permission is an instantiated read permission rule.

Since the number of objects is finite, each quantified logical formula will be
expanded to a finite number of conjunctions (for ∀ quantifier) or disjunctions
(for ∃ quantifier) of logical formulas during the instantiation phase. The universal
quantifiers in the effect of actions will be expanded into a finite number of signed
atomic propositions.

Definition 4. (Access control system). An access control system is an access
control policy instantiated with the objects in Σ.

Definition 5. (Action effect). Let a : e ← f be an action in the access control
system. Action a is permitted to be performed in state s if f evaluates to true
in s. We also define:

effect+(a) = {p | + p ∈ e} effect−(a) = {p | − p ∈ e}
effect(a) = effect+(a) ∪ effect−(a)

3.3 Query Language

Verification of the policy deals with the reachability problem, one of the most
common properties arising in temporal logic verification. A state s is reachable
if it can be reached in a finite number of transitions from the initial states.

A Knowledge-Based Verification Method 249

In multi-agent access control systems, the transitions are made by the agents
performing actions.

The query language determines the initial states and the specification. The
syntax of the policy query is:

L ::=
 | ⊥ | w(v) | 〈w(v)〉 | L ∨ L | L ∧ L | L → L | ¬L | ∀v : t [L] | ∃v : t [L]
W ::= w(v) | w(v) ∗ | w(v)! | w(v)∗! | ¬W

Ws ::= null | Ws, W

G ::= C : (L) | C : (L THEN G)
Query ::= {Ws} → G

where w(v) is an atomic formula and C is a set of variables of type Agent.
In the above definition, G is called a nested goal if it contains the keyword

THEN, otherwise it is called a simple goal. C is a coalition of agents interacting
together to achieve the goal in the system. Also the agents in a coalition share
the knowledge gained by reading system propositions or performing actions. The
specification 〈w(v)〉 means w(v) is readable by at least one of the agents in the
coalition. Initial states are the states that satisfy the literals in {Ws}. Every
literal W is optionally tagged with * when the value of atomic formula is fixed
during verification, and/or tagged with ! when the value is initially known by at
least one of the agents in the outermost coalition.

Example 2. One of the properties for a proper conference paper review system
policy is that the reviewers (rev) of a paper should not be able to read other
submitted reviews (submittedR) before they submit their own reviews. Consider
the following query:

{chair(c)∗!,¬author(p, a)∗, submittedR(p, b), rev(p, a),¬submittedR(p, a)} →
{a} : (〈review(p, b)〉 ∧ ¬submittedR(p, a) THEN {a, c} : (submittedR(p, a)))

The query says “starting from the initial states provided, is there any reachable
state that agent a can promote himself in such a way that he will be able to read
the review of the agent b for paper p while he has not submitted his own review
and after that, agent a and c collaborate together so that agent a can submit his
review of paper p?”. If the specification is satisfiable, then there exists a security
hole in the policy and should be fixed by policy designers. In the above query,
the value of chair(c) and author(p, a) is fixed and chair(c) is known to be true
by the agent a at the beginning.

Instantiation of the Policy Query: An instantiated query or simply query
is the policy query instantiated with a substitution. The query i → g is the
instantiation of policy query I → G with substitution σ if i = Iσ and g = Gσ.

For the query i → g, we say g is satisfiable in an access control system if there
exists a conditional sequence of actions called strategy (defined below) that makes
the agents in the coalitions achieve the goal beginning from the initial states.
The strategy is presented formally by the following syntax:

strategy ::=null | a; strategy | if(p) {strategy} else {strategy}

250 M. Koleini and M. Ryan

In the above syntax, p is an atomic proposition and a is an action. If a strategy
contains a condition over the proposition p, it means the value of p determines
the next required action to achieve the goal. p is known as an effective proposition
in our methodology.

Definition 6. (Transition relation). Let s1, s2 ∈ S where S is the set of states,
and ξ be a strategy. We use s1 →ξ s2 to denote “strategy ξ can be run in state
s1 and result in s2”, which is defined inductively as follows:

– s →null s.
– s →a;ξ1 s′ if

• a is permitted to be performed in state s and
• s′′ →ξ1 s′ where s′′ is the result of performing a in s.

– s →if(p){ξ1} else {ξ2} s′ if:
• If s(p) =
 then s →ξ1 s′ else s →ξ2 s′.

A set of states st2 is reachable from set of states st1 through strategy ξ (st1 →ξ

st2) if for all s1 ∈ st1 there exists s2 ∈ st2 such that s1 →ξ s2.

Definition 7. (State formula). If S is the set of states and st ⊆ S then:

– fst is a formula satisfying exactly the states in st: s ∈ st ↔ s |= fst.
– stf is the set of states satisfying f : s ∈ stf ↔ s |= f .

4 Model-Checking and Strategy Synthesis

Our method uses backward search to find a strategy. The algorithm begins from
the goal states stg and finds all the states with transition to the current state,
called pre-states. The algorithm continues finding pre-states over all found states
until it gets all the initial states (success) or no new state could be found (fail).

The model-checking problem in this research is not a simple reachability ques-
tion. As illustrated in Figure 1, the strategy is successful only if it works for all
the outcomes of reading or guessing a proposition in the model. Thus, read-
ing/guessing behaviour produces the need for a universal quantifier, while ac-
tions are existentially quantified. The resulting requirement has an alternation
of universal and existential quantifiers of arbitrary length, and this cannot be
expressed using standard temporal logics such as CTL, LTL or ATL.

Notation 2. Assume f is a propositional formula. Then p ∈ prop(f) if propo-
sition p occurs in all formulas equivalent to f .

Definition 8. (Transition system). If action a is defined as a : e ← f and st is
a set of states, PRE∃

a (st) is the set of states in which action a is permitted to
perform and performing the action will make a transition to one of the states in
st by changing the values of the propositions in the effect of the action. Let Lit∗
be the set of literals that are tagged by ∗ in the query. Then:

PRE∃
a(st) =

{
s ∈ S | s |= f, ∀l ∈ Lit∗ : s |= l, s[p �→ � | +p ∈ e][p �→ ⊥ | −p ∈ e] ∈ st

}

A Knowledge-Based Verification Method 251

st0 ∃a
∀p

states with p = �
st1

states with p = ⊥
st2

∃a

∃a

∃a

∃a

∃a
stg

Fig. 1. Strategy finding method. Ovals represent sets of states. Solid lines show the
existence of an action that makes a transition between two sets of states. Dashed
lines are universally quantified over the outcome of reading or guessing the value of
proposition p.

4.1 Finding Effective Propositions

Definition 9. (Effective proposition). Atomic proposition p is effective with re-
spect to st0 as the set of initial states and stg as the set of goal states if there
exist a set of states st and strategies ξ0, ξ1 and ξ2 such that ξ1 �= ξ2 and:

– st0 →ξ0 st,
– st ∩ {s | s(p) =
} →ξ1 stg,
– st ∩ {s | s(p) = ⊥} →ξ2 stg and
– st ∩ {s | s(p) =
} �= ∅, st ∩ {s | s(p) = ⊥} �= ∅.

Effective propositions are important for the following reason:
The value of proposition p is not specified in the query and is not known by

the agents at the beginning. The agents need to know the value of p to select
the appropriate strategy to achieve the goal. In the states of st, if the agent (or
coalition of agents) knows the value of p, he will perform the next action without
taking any risk. Otherwise, he needs to guess the value of p. This situation is
risky and in the case of a wrong decision and may not be repeatable.

The algorithm provided in this paper is capable of finding effective proposi-
tions while searching for strategies, and then, is able to verify the knowledge of
the agents about effective propositions in the decision states.

Proposition 1. Let st1, st2 and stg be sets of states and ξ1 and ξ2 be strategies
such that st1 →ξ1 stg and st2 →ξ2 stg. Suppose p ∈ prop(fst1) ∩ prop(fst2),
std = stfst1[�/p] ∩ stfst2[⊥/p] and s ∈ std. Then if s(p) =
, we conclude that
s →ξ1 stg, otherwise s →ξ2 stg will be concluded.

Proof. A complete proof using structural induction is provided in [12].

Let stg in proposition 1 be the set of goal states, std the set of states found
according to the proposition 1 and st0 the set of initial states. If there exist a
strategy ξ0 such that st0 →ξ0 std, then by definition 9, the atomic proposition p
is an effective proposition and therefore std →if(p) {ξ1} else {ξ2} stg. The states in
std are called decision states.

252 M. Koleini and M. Ryan

Example 3. Let (T, Pred, A, R) be a simple policy for changing password in a
system, where:

T = {Agent}
Pred = {permission(a : Agent), trick(a : Agent), passChanged(a : Agent)}
A = {setTrick(a) : {+trick(a)} ← ¬permission(a),

changePass(a) : {+passChanged(a)} ← permission(a) ∨ trick(a)}
We have excluded read permission rules, as they are not required in this partic-
ular example. In the above policy, the administrator of the system has defined a
permission for changing password. The permission declares that one of the propo-
sitions permission(a) or trick(a) is needed for changing password. permission(a)
is write protected for the agents and no action is defined for changing it. If an
agent does not have permission to change his password, he can set trick(a) to
true first and then, he will be able to change the password. This can be seen as
a mistake in the policy.

Consider that we have just one object of type Agent in the system (ΣAgent =
{a1}) and we want to verify the query {} → {a} : (passChanged(a)). The only
possible instantiation of the query is when a is assigned to a1. As the initial
condition is empty, the set of initial states contain all the system states (st0 = S).
The following procedures show how the strategy can be found:

fstg = passChanged(a1)

We can find one set of states as the pre-state of stg:

fPRE∃
changePass(a1)(stg) = fst1 = permission(a1) ∨ trick(a1)

st1 →changePass(a1) stg

fstg and fst1 don’t share any proposition and hence, there is no effective proposi-
tion occurring in both of them together. For the set st1, we can find one pre-set:

fPRE∃
setTrick(a1)(st1) = fst2 = ¬permission(a1)

st2 →setTrick(a1);changePass(a1) stg

The next step is to look for effective propositions occurring in fst1 and fst2 . For
p = permission(a1) we have:

fst1 [
/p] =
, fst2 [⊥/p] =
, fst1 [
/p] ∧ fst2 [⊥/p] =

st3 = st� = S st3 →ξ stg

ξ =if(permission(a1)){changePass(a1)} else {setTrick(a1); changePass(a1)}
Since st0 ⊆ st3, the goal is reachable and we output the strategy.

Backward Search Transition Filtering: If an action changes a proposition,
the value of the proposition will be known for the rest of the strategy. So in
backward search algorithm, we filter out the transitions that alter effective
propositions before their corresponding decision states are reached.

A Knowledge-Based Verification Method 253

4.2 Pseudocode for Finding Strategy

Consider P as the set of atomic propositions, AC the set of all the actions that
the agents in coalition C can perform, st0 the set of initial states and stg the
set of goal states for simple goal g. KC contains the propositions known by
the agents in coalition C at the beginning (tagged with ! in the query). The
triple (st, ξ, efv) is called state strategy which keeps the set of states st found
during backward search, the strategy ξ to reach the goal from st and the set of
effective propositions efv occurring in ξ. The pseudocode for the strategy finding
algorithm is as follows:

1: input: P , AC , st0, stg, KC

2: output: strategy
3: state strategies:={(stg, null, ∅)}
4: states seen:=∅
5: old strategies:=∅
6:

7: while old strategies �=state strategies do
8: old strategies:=state strategies
9: for all (st1, ξ1, efv1) ∈ state strategies do

10: for all a ∈ AC do
11: if effect(a) ∩ efv1 = ∅ then
12: PRE := PRE∃

a (st1)
13: if PRE �= ∅ and PRE �⊆ states seen then
14: states seen := states seen ∪ PRE
15: ξ := “a; ” + ξ1

16: state strategies := state strategies ∪ {(PRE, ξ, efv1)}
17: if st0 ⊆ PRE then
18: output ξ
19: end if
20: end if
21: end if
22: end for
23:

24: for all (st2, ξ2, efv2) ∈ state strategies do
25: for all p ∈ P\KC do
26: if p ∈ prop(fst1) ∩ prop(fst2) then
27: PRE := stfst1[�/p] ∩ stfst2[⊥/p]

28: if PRE �= ∅ and PRE �⊆ states seen then
29: states seen := states seen ∪ PRE
30: ξ := “if(p)” + ξ1 + “else” + ξ2

31: state strategies := state strategies ∪ {(PRE, ξ, efv1 ∪ efv2∪
32: {p})}
33: if st0 ⊆ PRE then
34: output ξ
35: end if
36: end if

254 M. Koleini and M. Ryan

37: end if
38: end for
39: end for
40: end for
41: end while

The outermost while loop checks the fixed point of the algorithm, where no
more state (or equivalently, state strategy) could be found in backward search.
Inside the while loop, the algorithm traverses the state strategy set that contains
(stg, null, ∅) at the beginning. For each state strategy (st, ξ, efv), it finds all
the possible pre-states for st and appends the corresponding state strategies to
the set. It also finds effective propositions and decision states by performing
pairwise analysis between all the members of the state strategy set based on
the proposition 1. The strategy will be returned if the initial states are found
in backward search. The proof for the termination, soundness (If the algorithm
outputs a strategy, it can be run over st0 and results in stg) and completeness (If
some strategy exists from st0 to stg, then the algorithm will find one) is provided
in [12].

Verification of the Nested Goals: To verify a nested goal, we begin from the
inner-most goal. By backward search, all backward reachable states will be found
and their intersection with the states for the outer goal will construct the new
set of goal states. For the outer-most goal, we look for the initial states between
backward reachable states. If we find them, we output the strategy. Otherwise,
the nested goal is unreachable.

5 Knowledge vs. Guessing in Strategy

Agents in a coalition know the value of a proposition if: they have read the value
before, or they have performed an action that has affected that proposition3.
If a strategy is found, we are able to verify the knowledge of the agents over
the strategy and specifically for effective propositions, using read permissions
defined in the policy. Read permissions don’t lead to any transition or action,
and are used just to detect if an agent or coalition of agents can find out the way
to the goal with complete or partial knowledge of the system. The knowledge is
shared between the agents in a coalition.

To find agent knowledge over effective propositions, we begin from the initial
states, run the strategy and verify the ability of the coalition to read the effective
propositions. If at least one of the agents in the coalition can read an effective
proposition before or at the corresponding decision states, then the coalition can
find the path without taking any risk. In the lack of knowledge, agents should
guess the value in order to find the next required action along the strategy.

Pseudocode for Knowledge Verification over the Strategy: Let g be a
simple goal and (st0, ξ, efv) be the state strategy where st0 is the set of initial
3 In this research, we do not consider reasoning about knowledge like the one in in-

terpreted systems. This approach makes the concept of knowledge weaker, but more
efficient to verify.

A Knowledge-Based Verification Method 255

states, st0 →ξ stg and efv is the set of effective propositions occurring in ξ.
If C is the coalition of agents and KC the knowledge of the coalition at the
beginning, then the recursive function “KnowledgeAlgo” returns an annotated
strategy with a string “Guess:” added to the beginning of every “if” statement
in ξ, where the coalition does not know the value of the proposition inside if
statement.

1: input: st0, ξ, efv , C, KC

2: output: Annotated strategy ξ′

3:

4: function KnowledgeAlgo(st, ξ, efv, C, KC)
5: if ξ=null then
6: return null
7: end if
8: for all p ∈ efv , u1 ∈ C do
9: for all read permissions ρ(u1, o) : p ← f do

10: if st |= f then
11: KC := KC ∪ {p}
12: end if
13: end for
14: end for
15: if ξ = a; ξ1 then
16: st′ :=result of performing action a in st
17: return “a;”+
18: KnowledgeAlgo(st′, ξ1, efv , C, KC ∪ effect(a))
19: else if ξ = if(p){ξ1} else {ξ2} then
20: if p ∈ KC then
21: str :=“”
22: else
23: str :=“Guess: ”
24: end if
25: return str+ “if(p){”+
26: KnowledgeAlgo(stfst∧p, ξ1, efv\{p}, C, KC) + “} else {”+
27: KnowledgeAlgo(stfst∧¬p, ξ2, efv\{p}, C, KC) +“}”
28: end if
29: end function

Knowledge Verification for Nested Goals: To handle knowledge verification
over the strategies found by nested goal verification, we begin from the outermost
goal. We traverse over the strategy until the goal states are reached. For the next
goal, all the accumulated knowledge will be transferred to the new coalition if
there exists at least one common agent between the two coalitions. The algorithm
proceeds until the strategy is fully traversed.

256 M. Koleini and M. Ryan

RW(Algo-1) PoliVer algorithm

Query Time Memory Time Memory

Query 4.2 2.05 18.18 0.27 3.4

Query 4.3 0.46 9.01 0.162 6.68

Query 4.4 6.45 59.95 0.52 6.61

Query 6.4 9.10 102.35 0.8 12.92

Query 6.8 20.44 222.02 0.488 7.30

Fig. 2. A comparison of query verification time (in second) and runtime memory usage
(in MB) between RW and PoliVer

6 Experimental Results

We implemented the algorithms as a policy verification tool called PoliVer by
modifying the AcPeg model-checker, which is an open source tool written in Java.
First, we changed the parser in order to define actions and read permissions
in the policy as in section 3.1. The query language also changed to support
queries of the form defined in section 3.3. Second, we implemented the strategy
finding algorithm in the core of AcPeg and then, applied knowledge verification
algorithm over strategies found.

One of the outcomes of the implementation was the considerable reduction of
binary decision diagram (BDD) variable size compared to RW. In RW, there are
7 knowledge states per proposition and therefore, an access control system with
n propositions contains 7n different states. Our simplification of knowledge-state
variables results in 2n states. The post-processing time for knowledge verification
over found strategies is negligible compared to the whole process of strategy
finding, while produces more expressive results.

We encoded authorization policies for a conference review system (CRS), em-
ployee information system (EIS) and student information system (SIS) in [1] into
our policy language. We compared the performance in terms of verification time
and memory usage for the queries: Query 4.2 for CRS with 7 objects (3 papers
and 4 agents) that looks for strategies which an agent can promote himself to
become a reviewer of a paper, Query 4.3 for CRS which is a nested query that
asks if a reviewer can submit his review for a paper while he has read the review
of someone else before, Query 4.4 with 4 objects for CRS with five-level nested
queries that checks if an agents can be assigned as a pcmember by the chair and
then resign his membership, Query 6.4 with 18 objects for EIS which evaluates
if two managers can collaborate to set a bonus for one of them and Query 6.8
for SIS with 10 objects that asks if a lecturer can assign two students as the
demonstrator of each other.

Figure 2 shows a considerable reduction in time and memory usage by the
proposed algorithm compared to Algo-1 in RW (Algo-1 has slightly better per-
formance and similar memory usage compared to Algo-0). As a disadvantage
for both systems, the verification time and state space grow exponentially when
more objects are added. But this situation in our algorithm is much better
than RW. Our experimental results demonstrates the correctness of our claim in

A Knowledge-Based Verification Method 257

Fig. 3. Verification time vs. number of agents for RW and PoliVer (Query 6.8)

practice by comparing the verification time of Query 6.8 for different number of
agents. Figure 3 sketches the verification time for both algorithms for different
number of agents in logarithmic scale. The verification time in RW increases as
2.5n where n is the number of agents added, while the time increases as 1.4n in
our algorithm. Note that this case study does not show the worst case behaviour
when the number of agents increases4.

7 Conclusion and Future Work

Our language and tool is optimised for analysing the access control policies of
web-based collaborative systems such Facebook, LinkedIn and Easychair. These
systems are likely to become more and more critical in the future, so analysing
them is important. More specifically, in this work:

– We have developed a policy language and verification algorithm, which is
also implemented as a tool. The algorithm produces evidence (in the form
of a strategy) when the system satisfies a property.

– We remove the requirement to reason explicitly about knowledge, approxi-
mating it with the simpler requirement to reason about readability as it is
sufficient in many cases. Compared to RW that has 7n states, we have only
2n states in our approach (where n is the number of propositions). Also, com-
plicated properties can be evaluated over the policy by the query language
provided.

– We detect the vulnerabilities in the policy that enable an attacker to discover
the strategy to achieve the goal, when some required information is not
accessible. We introduce the concept of effective propositions to detect such
vulnerabilities.

– A set of propositions can be updated in one action. In the RW framework,
each write action can update only one proposition at a time.

4 The tool, case studies and technical reports are accessible at:
http://www.cs.bham.ac.uk/ mdr/research/projects/11-AccessControl/

poliver/

http://www.cs.bham.ac.uk/~mdr/research/projects/11-AccessControl/poliver/
http://www.cs.bham.ac.uk/~mdr/research/projects/11-AccessControl/poliver/

258 M. Koleini and M. Ryan

Future Work: For the next step, we intend to cover large applications like
Facebook and Easychair in our case studies.

Acknowledgements. We would like to thank Microsoft Research as Masoud
Koleini is supported by a Microsoft PhD scholarship. We also thank Moritz
Becker and Tien Tuan Anh Dinh for their useful comments and Joshua Phillips
for the performance and quality testing of the release version of PoliVer.

References

1. Zhang, N., Ryan, M., Guelev, D.P.: Synthesising verified access control systems
through model checking. J. Comput. Secur. 16(1), 1–61 (2008)

2. Becker, M.Y.: Specification and analysis of dynamic authorisation policies. In: CSF
2009: Proceedings of the 2009 22nd IEEE Computer Security Foundations Sympo-
sium, pp. 203–217. IEEE Computer Society, Washington, DC, USA (2009)

3. Dougherty, D.J., Fisler, K., Krishnamurthi, S.: Specifying and reasoning about
dynamic access-control policies. In: Furbach, U., Shankar, N. (eds.) IJCAR 2006.
LNCS (LNAI), vol. 4130, pp. 632–646. Springer, Heidelberg (2006)

4. Naldurg, P., Campbell, R.H.: Dynamic access control: preserving safety and trust
for network defense operations. In: SACMAT 2003: Proceedings of the Eighth ACM
Symposium on Access Control Models and Technologies, pp. 231–237. ACM, New
York (2003)

5. Fisler, K., Krishnamurthi, S., Meyerovich, L.A., Tschantz, M.C.: Verification and
change-impact analysis of access-control policies. In: ICSE 2005: Proceedings of
the 27th International Conference on Software Engineering, pp. 196–205. ACM,
New York (2005)

6. Becker, M.Y., Gordon, A.D., Fournet, C.: SecPAL: Design and semantics of a
decentralised authorisation language. Technical report, Microsoft Research, Cam-
bridge (September 2006)

7. Li, N., Mitchell, J.C., Winsborough, W.H.: Design of a role-based trust manage-
ment framework. In: Proceedings of the 2002 IEEE Symposium on Security and
Privacy, pp. 114–130. IEEE Computer Society Press, Los Alamitos (2002)

8. Bell, D., LaPadula., L.J.: Secure computer systems: Mathematical foundations and
model. Technical report, The Mitre Corporation (1976)

9. Bell, D.E.: Looking back at the bell-la padula model. In: ACSAC 2005: Proceedings
of the 21st Annual Computer Security Applications Conference, pp. 337–351. IEEE
Computer Society, Washington, DC, USA (2005)

10. Becker, M.Y., Nanz, S.: A logic for state-modifying authorization policies. ACM
Trans. Inf. Syst. Secur. 13(3), 1–28 (2010)

11. Fox, M., Long, D.: Pddl2.1: An extension to pddl for expressing temporal planning
domains. Journal of Artificial Intelligence Research 20, 61–124 (2003)

12. Koleini, M., Ryan, M.: A knowledge-based verification method for dynamic ac-
cess control policies. Technical report, University of Birmingham, School of Com-
puter Science (2010), http://www.cs.bham.ac.uk/~mdr/research/projects/

11-AccessControl/poliver/

http://www.cs.bham.ac.uk/~mdr/research/projects/11-AccessControl/poliver/
http://www.cs.bham.ac.uk/~mdr/research/projects/11-AccessControl/poliver/

Validation of Security-Design Models Using Z

Nafees Qamar1,2, Yves Ledru1, and Akram Idani1

1 UJF-Grenoble 1/Grenoble-INP/UPMF-Grenoble2/CNRS, LIG UMR 5217,
F-38041, Grenoble, France

{Muhammad-Nafees.Qamar,Yves.Ledru,Akram.Idani}@imag.fr
2 INRIA Rhône Alpes, Grenoble, France

Abstract. This paper is aimed at formally specifying and validating
security-design models of an information system. It combines graphical
languages and formal methods, integrating specification languages such
as UML and an extension, SecureUML, with the Z language. The mod-
eled system addresses both functional and security requirements of a
given application. The formal functional specification is built automati-
cally from the UML diagram, using our RoZ tool. The secure part of the
model instanciates a generic security-kernel written in Z, free from ap-
plications specificity, which models the concepts of RBAC (Role-Based
Access Control). The final modeling step creates a link between the func-
tional model and the instanciated security kernel. Validation is performed
by animating the model, using the Jaza tool. Our approach is demon-
strated on a case-study from the health care sector where confidentiality
and integrity appear as core challenges to protect medical records.

1 Introduction

In secure information systems, specifications include functional aspects, describ-
ing how information is processed, and security aspects, modelling a security pol-
icy. Security policies are often described using access control rules. In this paper,
we focus on the use of SecureUML [3], a UML profile for RBAC (Role-Based
Access Control) [7] to describe access control rules. Separation of concerns tends
to separate functional and security models. But, in SecureUML, authorization
rules of the security model may refer to contextual elements of the functional
one. One of the key considerations in secure systems development is thus to pro-
duce an integrated model of functional and non-functional aspects. This gives
rise to the concept of security-design models (e.g.,[9], [3]). Such models can be
used to validate the security policy, in the context of the functional model, and
to study how the integrated system would react to attacks.

This paper tries to incorporate the precision of formal languages into intu-
itive graphical models. SecureUML [3] expresses functional and security models
as UML diagrams. In this paper, we show how these diagrams can be translated
into a single formal specification, expressed in the Z language [16]. We then use
Jaza [18] to animate the model and contribute to its validation. Validation is
performed by asking queries about the access control rules, as done in the Secure-
Mova tool [4], and by playing scenarios, which lead the system through several

S. Qin and Z. Qiu (Eds.): ICFEM 2011, LNCS 6991, pp. 259–274, 2011.
c© Springer-Verlag Berlin Heidelberg 2011

260 N. Qamar, Y. Ledru, and A. Idani

Fig. 1. Security policy model using SecureUML

state changes and involve both security and functional models. Such dynamic
scenarios can exhibit security flaws, which cannot be detected by static queries.
A companion paper [11] describes these validation activities using animation,
while the current paper focuses on the underlying Z specification.

In the past, we developed RoZ, a tool which transforms a UML class diagram,
annotated with Z assertions, into a Z specification [6]. The resulting Z specifi-
cations can be animated using Jaza [10]. Our mid-term goal is to upgrade RoZ
in order to address security concerns in our UML models. Our security model is
based on SecureUML [3], a UML profile for RBAC [7]. Several works [7],[1],[13]
attempt to specify RBAC in Z. Most of them specify the RBAC meta-model.
As far as we know, none of these has been used in conjunction with an anima-
tor in order to validate a given security policy. So our goal is not to model or
validate RBAC itself, but to validate security policies expressed as RBAC rules
in the context of a functional specification. Several tools exploit OCL in order
to validate RBAC rules. Sohr et al [15] have adapted the USE OCL tool for
the analysis of security policies. SecureMova [4],a tool dedicated to SecureUML,
allows one to query the security policy, and to evaluate which actions are permit-
ted for a given role in a given context, depicted as an object diagram. Still, both
tools don’t animate the operations of the functional model, making it difficult to
evaluate how evolutions of the functional state can impact authorization rules.

This paper presents our translation of functional and security models into Z
and how these can be validated, using the Jaza animator. Our approach has
the following goals: (1) to start from an intuitive graphical specification which
features both functional and security models, 2) to systematically construct a
formal specification of the integrated system from the graphical model, and 3)
to use queries and animation to validate the integrated model. It must be noted
that we currently focus on validation, i.e. confront our model to the user, and

Validation of Security-Design Models Using Z 261

Fig. 2. Object diagram for the functional model produced from the output of Jaza

ensure that it exhibits the expected behaviour. Although we use formal methods,
we don’t address verification (i.e. prove that the system is right) at this stage.

The paper is structured as follows. Sect. 2 introduces an illustrative example.
Sect. 3 recalls the principles of the translation of the functional model, while
Sect. 4 features the specification of the security kernel. The integration of both
models is described in Sect. 5. Sect. 6 features the validation activities, based on
animation. Finally, Sect. 7 and 8 present related work and conclusion.

2 Illustrative Example: Medical Information System

Fig. 1 models a simple medical information system using SecureUML [3]. The
figure has two sides where functional features on the right, are decoupled from
security features on the left. The functional part describes four classes : pa-
tients, doctors, hospitals and medical records. Each medical record corresponds
to exactly one patient. Its field contents stores confidential information whose
integrity must be preserved. The functional part also records the current hospital
hosting the patient, the doctors working in this hospital, and the one responsible
for the patient’s medical record. Fig. 2 gives an object diagram corresponding
to this functional model. It features 4 patients, 2 doctors (Alice and Bob), 2
medical records, and 2 hospitals. Alice is linked to both hospitals, while Bob
only works for one of them.

The left part of Fig. 1 describes the access control rules of the information
system. In SecureUML and RBAC, users of the system are abstracted into roles,
and permissions are granted to roles. Fig. 1 features two roles : Nurse and
Doctor . An inheritance relation links Doctor to Nurse, expressing that doctors
inherit all permissions of nurses. Confidentiality and integrity must be ensured
for medical records. Two permissions rule the access to class MEDRECORD .
Permission ReadMedRecord is granted to nurses (and inherited by doctors). It
expresses that nurses and doctors have read access to medical records. It refers to
entity action read which designates operations accessing the class without mod-
ifying it. Although the security part of Fig. 1 uses the graphical syntax of UML

262 N. Qamar, Y. Ledru, and A. Idani

(classes and association classes), elements stereotyped as roles or permissions
only make sense for security concerns. For example, there will not be objects of
type Nurse in our animations, but there will be users playing this role. Similarly,
the associative class ReadMedrecord is simply a graphical notation to express the
permissions associated to nurses and related to medical records.

Permission UpdateMedrecord grants additional rights to doctors, who may
update medical records. Constraint “Same hospital as patient” restricts this
permission to the doctors linked to the same hospital as the patient. In Fig.
2, it means that only Alice may modify the medical record of John, numbered
“med data1”, because she is the only doctor linked to RedCross hospital. In
SecureUML, such constraints are expressed in OCL; here, they will be expressed
in the Z language. In Fig. 1, a third permission named UpdateDoctor grants to
all doctors full access, i.e. read and update access, to objects of class DOCTOR.

Validation studies normal and malicious behaviours. In this paper, besides
some nominal scenarios, we study the following attack: Bob, a malicious doctor,
wants to corrupt the integrity of John’s medical record. Since Bob is not working
for RedCross hospital, the access control rules should forbid this modification.

3 Translating the Functional Model into Z

The following sections describe how the integrated graphical model of Fig. 1 is
translated into a Z specification. First, the RoZ tool automatically translates the
functional model, corresponding to the right part of Fig. 1. RoZ [6] transforms
a UML class diagram, annotated with Z assertions, into a single Z specification.
An optional feature of the tool also generates basic operations such as setters and
getters for the attributes and the associations. These basic operations are often
implicitly included in a class diagram; so the tool avoids the analyst to manually
specify each of these operations. One may fear that, in a security context, these
additional operations augment the “attack surface” of the application. In such
a case, the analyst can choose to disable their optional generation, or to exclude
them from the set of operations linked to the access control model (Sect. 5).

Here are some elements of the formal specification generated from the func-
tional diagram of the medical record information system. First, the types of the
class attributes are introduced as given types.

[NAME ,USERID ,STRING,RECORDNB]

MEDRECORD

recordnb : RECORDNB

contents : STRING

MedrecordExt

Medrecord : F MEDRECORD

DOCTOR

id : USERID

name : NAME

DoctorExt

Doctor : FDOCTOR

Every class is translated into two Z schemas. The first one, a schema type, de-
scribes the type of the elements of the class. This schema corresponds to the class

Validation of Security-Design Models Using Z 263

intent and lists the class attributes. Schemas MEDRECORD and DOCTOR de-
scribe the intent of the corresponding classes. A second schema describes the
extension of the class, i.e. the set of objects belonging to the class. Schemas
MedrecordExt and DoctorExt correspond to these extensions; each of these in-
cludes a finite set of objects corresponding to the type of the class.

During a Jaza animation, each object is represented as a list of pairs
attribute == value. The list is enclosed between 〈| . . . |〉. Here is the Jaza repre-
sentation of sets Doctor and Medrecord corresponding to the state of Fig. 2.
Doctor ′ == {〈| id == ”003”, name == ”Alice” |〉, 〈| id == ”004”, name == ”Bob” |〉}
Medrecord ′ == {〈| contents == ”healthy”, recordnb == ”meddata2” |〉,

〈| contents == ”sick”, recordnb == ”meddata1” |〉}
UML associations are translated by RoZ as a pair of functions correspond-

ing to both roles of the association. For example, functions hospitalsOfDoctor
and doctorsOfHospital describe the association between doctors and hospitals.
Their domain and range are constrained by predicates of the schema. Additional
predicates express that the inverse role can be constructed from the direct one.1

DoctorHospitalRel

HospitalExt; DoctorExt

hospitalsOfDoctor : DOCTOR �→ F HOSPITAL

doctorsOfHospital : HOSPITAL �→ FDOCTOR

dom hospitalsOfDoctor ⊆ Doctor ∧ ⋃(ran hospitalsOfDoctor) ⊆ Hospital

. . .

Here is how Jaza represents role doctorsOfHospital corresponding to Fig. 2.
doctorsOfHospital ′ ==

{(〈| name == ”BlueCare” |〉, {〈| id == ”003”, name == ”Alice” |〉,
〈| id == ”004”, name == ”Bob” |〉}),

(〈| name == ”RedCross” |〉, {〈| id == ”003”, name == ”Alice” |〉})}
Finally, we give several specifications of operations. MRChangeContents is a

setter for field contents . This operation, which works on the type of medical
records, must be “promoted” to impact the actual contents of the class exten-
sion, and to modify the related associations. MRChangeContentsP , the promoted
operation takes an additional input x? designating the object to modify2.

MRChangeContents

ΔMEDRECORD

newcontents? : STRING

contents ′ = newcontents? ∧ recordnb′ = recordnb

MRChangeContentsP == MRChangeContents ∧ . . .

1 These predicates are omitted for space reasons.
2 For more information on operation promotion please refer to Wordsworth’s text [19]

page 137.

264 N. Qamar, Y. Ledru, and A. Idani

Operation DRLinkDoctors creates a link between a doctor and an hospital. Its
predicates distinguish between the case where a first doctor is linked to the
hospital, and the case where doctors were already linked to this hospital.

DRLinkDoctors

ΞHospitalExt; ΞDoctorExt ; ΔDoctorHospitalRel

hospital? : HOSPITAL; doctor? : DOCTOR

(hospital? �∈ dom doctorsOfHospital) ⇒
(doctorsOfHospital ′ = doctorsOfHospital ⊕ {hospital? �→ {doctor?}})

(hospital? ∈ dom doctorsOfHospital) ⇒
(doctorsOfHospital ′ = doctorsOfHospital ⊕ {hospital? �→

(doctorsOfHospital(hospital?) ∪ {doctor?})})

These operations are sufficiently detailed to animate the model with Jaza.
After several steps, one may end up with a state corresponding to Fig. 2. Nev-
ertheless, these operations don’t take into account the access control rules. In
particular, they are not aware of which user is executing them. This will be the
responsibility of the security kernel described in the next section.

4 The Security Kernel

The translation process proceeds with the security part of Fig. 1. Our approach
is based on a reusable security kernel which specifies the main concepts of RBAC
in Z. This security kernel is instantiated with the roles, permissions, resources
and operations of the SecureUML diagram.

4.1 Permissions

A permission assignment links a role to an operation on a given class, also called
the protected resource. These four types are introduced in Z as given types or as
enumerated types. When considering enumerated types, the values of the type
must be extracted from the UML diagram in order to instantiate the security
kernel. Here are the type declarations corresponding to Fig. 1. Schema Sets
includes sets of values corresponding to each of these types.

[PERMISSION]

ROLE ::= Doctor | Nurse

RESOURCE ::= Medrecords | Patients |
Doctors | Hospitals

ABS ACTION ::= EntityRead |
EntityUpdate | EntityFullAccess

Sets

role : FROLE

resource : FRESOURCE

permission : F PERMISSION

abs action : F ABS ACTION

Here are the values of these variables during the Jaza animation, as they appear
after the initialisation step.

Validation of Security-Design Models Using Z 265

abs action ′ == {EntityFullAccess, EntityRead , EntityUpdate},
permission ′ == {”ReadMedrecord”, ”UpdateDoctor”, ”UpdateMedrecord”},
resource ′ == {Doctors, Hospitals, Medrecords, Patients},
role ′ == {Doctor , Nurse},

Schema ActionAssignment links roles to a tuple made of the name of the per-
mission, the abstract action allowed by the permission and the kind of resource
associated to this permission.

ActionAssignment

action Asmt : ROLE ↔ (PERMISSION × ABS ACTION ×RESOURCE)

The permissions of Fig. 1 are stored during a Jaza session as:
action Asmt ′ == {(Doctor , (”UpdateDoctor”, EntityFullAccess, Doctors)),

(Doctor , (”UpdateMedrecord”, EntityUpdate, Medrecords)),
(Nurse, (”ReadMedrecord”, EntityRead , Medrecords))}

4.2 Role Hierarchy

RBAC allows us to define hierarchical relations between roles. This is captured
by schema RoleInherits . The predicates forbid circularity in the role hierarchy,
and forbid the use of roles not declared in set role.

RoleInherits

Sets

role Inherits : ROLE ↔ ROLE

role Inherits+ ∩ id role = ∅
dom role Inherits ⊆ role ∧ ran role Inherits ⊆ role

Fig. 1 features a simple role hierarchy, where role Doctor inherits all permissions
of Nurse. This is expressed in Jaza as:
role Inherits ′ == {(Doctor , Nurse)},
Schema InheritAssignment computes comp Asmt which is action Asmt com-
bined with the inherited permissions.

InheritAssignment

RoleInherits

ActionAssignment

comp Asmt : ROLE ↔ (PERMISSION × ABS ACTION × RESOURCE)

comp Asmt = {r : dom action Asmt; x : role; a : ran action Asmt

| ((x �→ r) ∈ ((role Inherits+) ∪ (id role))) ∧ ((r �→ a) ∈ action Asmt) • (x �→ a)}

In our example, permission ReadMedrecord is inherited by doctors from nurses.
Relation comp Asmt is initialized by Jaza as:
comp Asmt ′ == {(Doctor , (”ReadMedrecord”, EntityRead , Medrecords)),

(Doctor , (”UpdateDoctor”, EntityFullAccess, Doctors)),
(Doctor , (”UpdateMedrecord”, EntityUpdate, Medrecords)),
(Nurse, (”ReadMedrecord”, EntityRead , Medrecords))},

266 N. Qamar, Y. Ledru, and A. Idani

4.3 Action Hierarchy

Permissions of Fig. 1 refer to abstract actions, such as read or update. These
must be linked to their concrete counterparts. Our security kernel expresses
this link in action Relation, as well as an action hierarchy (action Hierarchy),
defining abstract actions in terms of other abstract actions (e.g. EntityFullAccess
includes EntityUpdate and EntityRead). These relations are expressed in schema
ActionsRelation. We first introduce the enumerated type of atomic actions, cor-
responding to the methods of PATIENT and MEDRECORD in Fig. 1.

ATM ACTION ::= MRReadMedrecord1 | DRLinkDoctors1 | MRChangeContentsP1

ActionsRelation

Sets

action Hierarchy : ABS ACTION ↔ ABS ACTION

atm action : F ATM ACTION

action Relation : ABS ACTION ↔ (ATM ACTION × RESOURCE)

action Hierarchy+ ∩ id abs action = ∅
dom action Hierarchy ⊆ abs action ∧ ran action Hierarchy ⊆ abs action

dom action Relation ⊆ abs action ∧ ran action Relation ⊆ (atm action × resource)

It must be noted that the correspondance between abstract and concrete
actions takes into account the class on which the abstract action is performed. For
example, concrete operation MRReadMedrecord1 only makes sense for medical
records. These relations are instantiated as follows in our example.
action Hierarchy ′ == {(EntityRead , EntityFullAccess),

(EntityUpdate, EntityFullAccess)},
action Relation ′ == {(EntityRead , (MRReadMedrecord1, Medrecords)),

(EntityUpdate, (MRChangeContentsP1, Medrecords)),
(EntityUpdate, (DRLinkDoctors1, Doctors))},

abstract Asmt unfolds the hierarchy of abstract actions in comp Asmt . Then
concrete Asmt replaces abstract actions by their concrete counterparts for the
given kind of resource.

ComputeAssignment

InheritAssignment ; ActionsRelation

abstract Asmt : ROLE ↔ (PERMISSION × ABS ACTION ×RESOURCE)

concrete Asmt : ROLE ↔ (PERMISSION × ATM ACTION ×RESOURCE)

...

concrete Asmt ′ ==
{(Doctor , (”ReadMedrecord”, MRReadMedrecord1, Medrecords)),
(Doctor , (”UpdateDoctor”, DRLinkDoctors1, Doctors)),
(Doctor , (”UpdateMedrecord”, MRChangeContentsP1, Medrecords)),
(Nurse, (”ReadMedrecord”, MRReadMedrecord1, Medrecords))},

For example, this table tells us that nurses may call MRReadMedrecord on class
MEDRECORD .

Validation of Security-Design Models Using Z 267

Table 1. Three sessions

Session User Role User Id

sess1 Alice Doctor 003
sess2 Bob Doctor 004
sess3 Jeck Nurse 007

4.4 Roles, Users and Sessions

Users of the security kernel must be linked to roles, through sessions. Schema
RoleAssignment introduces a set of users and relation role Asmt lists the roles a
user can take. SessionRoles defines sessions and user ids. Type USERID already
appeared in the functional model and is used to make a link between users taking
a role featured in the security part of the model (e.g. Doctor), and the classes
representing these users in the functional model (e.g. DOCTOR). Injective func-
tion accessRights links user ids to users. Function session User links a session
to some user, who has activated a set of roles, recorded in session Role. These
roles must correspond to roles allowed to this particular user in role Asmt . Sev-
eral predicates (omitted for space reasons), associated to these schemas, check
the consistency between these variables. Table 1 features several sessions with
associated users, roles and ids.

[USER,SESSION]

RoleAssignment

Sets

user : FUSER

role Asmt : USER ↔ ROLE

. . .

SessionRoles

RoleAssignment

uid : F USERID ;

session : FSESSION

accessRights : USERID �� USER

session User : SESSION �→ USER

session Role : ROLE ↔ SESSION

. . .

4.5 Putting It All Together

Schema PermissionAssignment computes an entire table of the graphical model
given in Fig. 1. It constructs a relation between user identity, user, role and the
respective permissions, atomic actions, and the resources. This is achieved using
the concrete Asmt relation and linking roles to their users and user ids.

PermissionAssignment

SessionRoles; RoleAssignment ; ComputeAssignment

perm Asmt : (USERID × USER × ROLE)↔
(PERMISSION ×ATM ACTION × RESOURCE)

perm Asmt = {uid : dom accessRights; u : dom role Asmt;

r : ran role Asmt; b : ran concrete Asmt |
(uid ,u) ∈ accessRights ∧ (u, r) ∈ role Asmt ∧ (r , b) ∈ concrete Asmt •

((uid ,u, r) �→ b)}

268 N. Qamar, Y. Ledru, and A. Idani

In our example, perm Asmt is initialized as follows:
perm Asmt ′ ==
{((”003”, ”Alice”,Doctor), (”ReadMedrecord”, MRReadMedrecord1, Medrecords)),
((”003”, ”Alice”,Doctor), (”UpdateDoctor”, DRLinkDoctors1, Doctors)),
((”003”, ”Alice”,Doctor), (”UpdateMedrecord”, MRChangeContentsP1, Medrecords)),
((”004”, ”Bob”, Doctor), (”ReadMedrecord”, MRReadMedrecord1, Medrecords)),
((”004”, ”Bob”, Doctor), (”UpdateDoctor”, DRLinkDoctors1, Doctors)),
((”004”, ”Bob”, Doctor), (”UpdateMedrecord”, MRChangeContentsP1, Medrecords)),
((”007”, ”Jeck”, Nurse), (”ReadMedrecord”, MRReadMedrecord1, Medrecords))},

We can now use this table, and the information about sessions, to specify
the basis for secure operations. SecureOperation actually does nothing: it does
neither update the state nor computes a result. It simply states preconditions
to allow user?, with id uid?, acting in a given role?, during a given session? to
perform a given action? on a resource?, as stated by permission?.

SecureOperation

ΞSessionRoles; ΞPermissionAssignment

session? : SESSION ; resource? : RESOURCE ; atm action? : ATM ACTION

role? : ROLE ; user? : USER; uid? : USERID ; permission? : PERMISSION

(session?, user?) ∈ session User

(role?, session?) ∈ session Role

((uid?,user?, role?), (permission?, atm action?, resource?)) ∈ perm Asmt

SecureOperation will be used in the next section in combination with opera-
tions of the functional model.

Another use of tables perm Asmt and concrete Asmt is to perform queries on
the access control policy. In a companion paper [11], we feature six such queries,
inspired by SecureMova [4]. For example, query EvaluateActionsAgainstRoles
returns a table listing all roles allowed to perform a given action, and the corre-
sponding permission.

EvaluateActionsAgainstRoles

ΞSets; ΞComputeAssignment

atm action? : ATM ACTION

z roles! : ROLE ↔ (PERMISSION × ATM ACTION × RESOURCE)

z roles! = {r : dom comp Asmt; p : permission; rsrc : resource |
(r �→ (p, atm action?, rsrc)) ∈ concrete Asmt • (r �→ (p, atm action?, rsrc))}

This can be evaluated using Jaza. For example, the following query questions
about the permissions to call MRChangeContentsP1. The answer tells us that
only role doctor is allowed to perform this action on medical records.
; EvaluateActionsAgainstRoles[atm action? := MRChangeContentsP1]
. . .
z roles! == {(Doctor , (”UpdateMedrecord”, MRChangeContentsP1, Medrecords))}

Validation of Security-Design Models Using Z 269

5 Linking Functional and Security Models

SecureOperation is meant to be included, as a precondition, in the secured version
of the operations of the functional model. For example, let us consider the setter
method for contents , named MRChangeContentsP . A secured version of this
operation includes the schema of the operation and SecureOperation. Schemas
PatientHospitalRel and DoctorHospitalRel are also included to get read access
to the associations between hospitals, patients and doctors.

SecureMRChangeContentsP

SecureOperation

MRChangeContentsP

ΞPatientHospitalRel ; ΞDoctorHospitalRel

atm action? = MRChangeContentsP1 ∧ resource? = Medrecords

∃ hospital : Hospital | hospitalOfPatient(patientOfMedrecord(x?)) = hospital •
∃ doctor : Doctor | accessRights−1(session User(session?)) = doctor .id •

doctor ∈ doctorsOfHospital(hospital)

The first predicate links this operation to the corresponding atomic action and
resource in the security model. It can be generated automatically. The other predi-
cate expresses constraint Same hospital as patient : “the medical record may only
be updated by a doctor working in the current hospital of the patient”. It retrieves
hospital , the hospital corresponding to the patient of medical record x?. Then it
retrieves the DOCTOR object corresponding to the id of the user of the current
session. Finally, it checks that this doctor works for hospital . This constraint, ex-
pressed informally in Fig. 1 must be added manually by the analyst.

This operation inherits all input parameters of schema SecureOperation. Most
of these parameters can be deduced by Jaza once session? has been fixed. There-
fore, we define a new version of the schema hiding these parameters.

SecureMRChangeContentsP2 ==

SecureMRChangeContentsP \ (uid?, user?, abs action?, atm action?, resource?,

permission?, role?)

Secure versions of ReadMedicalRecord and LinkDoctors are defined similarly.
Constraint “Same hospital as patient” links information from the security

model (the id of the current user) to the state of the functional model (the
hospital of the patient). Its evaluation depends on the states of both models and
can thus evolve if any of these states evolves. As we will see in Sect. 6, this makes
the analyses and validation of the security policy more complex.

6 Validating and Animating Secure Operations

Graphical models such as Fig. 1 remain rather abstract. Moreover, complex in-
teractions between functional and security models may either forbid one to play
a nominal behaviour, or allow an attack to succeed. This would reveal that the

270 N. Qamar, Y. Ledru, and A. Idani

detailed specifications don’t model the user’s intent. Animation can help con-
vince the user that the model corresponds to his intent. Our validation of security
properties uses the Jaza tool[18]. Jaza can animate a large subset of constructs
of the Z language. It uses a combination of rewriting and constraint solving to
find a final state and outputs from a given initial state and inputs. If the initial
state and inputs don’t satisfy the precondition of the operation, the tool returns
”No Solutions”. The tool can be further queried to find out which constraint
could not be satisfied. ZLive3 is a more recent tool which should eventually re-
place Jaza. But its current version (1.5.0) has an insufficient coverage of the Z
language to animate the specifications generated by our tools.

In the sequel, we start from the state of Fig. 2 and Table 1. We first show that
normal behaviours are permitted by the security model. We then investigate the
attempts of a malicious doctor to corrupt the integrity of a medical record.

6.1 Normal Behaviour
Our first tests play nominal scenarios. Their success will show that the combina-
tion of security and functional models allows normal behaviours to take place.
Scenario I: A doctor reads a medical record.
; SecureMRReadMedrecord2
Input session? = ”sess1”
Input r? = ”meddata2”

This first scenario tests whether a doctor, here Alice using sess1, may read med-
ical record meddata2. This tests the inheritance of permission ReadMedrecord
from nurses to doctors. Jaza animation succeeds and gives the following result:
x ! == {〈| contents == ”healthy”, recordnb == ”meddata2” |〉}

Scenario II: A doctor updates the medical record of a patient in the same hos-
pital. In this scenario, doctor Alice wants to update some medical record. Since
Alice belongs to the same hospital as the patient, this modification is allowed.
; SecureMRChangeContentsP2
Input x? = 〈| contents == ”healthy”, recordnb == ”meddata2” |〉
Input newcontents? = ”severe”
Input session? = ”sess1”

The output shows that the medical record’s contents have changed to ”severe”.
Medrecord ′ == {〈| contents == ”severe”, recordnb == ”meddata2” |〉,

〈| contents == ”sick”, recordnb == ”meddata1” |〉}
These two examples show that the security kernel does not block licit opera-

tions. They can be shown to stakeholders of the information system to validate
that the right behaviour was captured.

6.2 Analysing a Malicious Behaviour

Security analysis must also evaluate the system’s ability to block unauthorized
behaviour. Here, let us consider a malicious doctor, Bob, who tries to corrupt the
integrity of medical record meddata1, calling operation MRChangeContentsP1.
3 http://czt.sourceforge.net/zlive/index.html

http://czt.sourceforge.net/zlive/index.html

Validation of Security-Design Models Using Z 271

As we have seen in Sect. 4.5, a query tells us that only doctors are allowed
to perform this operation. Still, animations go beyond the results of queries pre-
sented in Sect. 4.5, because queries don’t take into account constraints such as
Same hospital as patient which may restrict the access to some operations. We
will thus try a scenario where Bob attempts to modify medical record meddata1.

Scenario III.A: A doctor attempts to update the medical record of a patient of
another hospital.

; SecureMRChangeContentsP2
Input x? = 〈| contents == ”sick”, recordnb == ”meddata1” |〉
Input newcontents? = ”cured”
Input session? = ”sess2”

Hopefully, Jaza answers that this execution is not allowed by the model.
No Solutions

A closer look at the constraints tells us that Bob’s hospital is not the same as
the one of the patient. The query tool told us that only doctors are allowed to
change the contents of a medical record. But Jaza animation also confirmed that
a constraint requires the doctor to work in the same hospital as the patient. Since
Bob does not work in the same hospital, there are two ways for him to change
the outcome of this constraint. Either he moves the patient to his hospital, or
he joins the hospital of the patient. Let us study the latter solution, and query
the model about which roles are allowed to change the affiliation of a doctor.
; EvaluateActionsAgainstRoles[atm action? := DRLinkDoctors1]
. . .
z roles! == {(Doctor , (”UpdateDoctor”, DRLinkDoctors1, Doctors))}
The query tells us that doctors are allowed to call this operation. Let us try it!
Scenario III.B: The doctor first attempts to change his hospital association
using one of the class methods and he succeeds in his attempt.

; SecureDRLinkDoctors2
Input session? = ”sess2”
Input hospital? = 〈| name == ”RedCross” |〉
Input doctor? = 〈| id == ”004”, name == ”Bob” |〉
The output tells us that Bob is now working for both hospitals.
doctorsOfHospital ′ ==

{(〈| name == ”BlueCare” |〉, {〈| id == ”003”, name == ”Alice” |〉,
〈| id == ”004”, name == ”Bob” |〉}),

(〈| name == ”RedCross” |〉, {〈| id == ”003”, name == ”Alice” |〉,
〈| id == ”004”, name == ”Bob” |〉})}

Scenario III.C: The doctor makes the malicious changes to the medical record

; SecureMRChangeContentsP2
Input x? = 〈| contents == ”sick”, recordnb == ”meddata1” |〉
Input newcontents? = ”cured”
Input session? = ”sess2”

Bob did succeed and compromised the integrity of the medical record.

272 N. Qamar, Y. Ledru, and A. Idani

Medrecord ′ == {〈| contents == ”cured”, recordnb == ”meddata1” |〉,
〈| contents == ”severe”, recordnb == ”meddata2” |〉},

It means that the current access control rules allow any doctor to join the hospital
of any patient. Constraint “Same hospital as patient” is thus useless!

Our approach supports three kinds of validation activities: (a) answering stan-
dard queries about the access rules (leaving out the constraints), (b) checking
that a given operation may be performed by a given user in a given state, (c)
sequencing several operations for given users from a given state. Our scenarios
show that the three kinds of activities are useful. State of the art tools such
as SecureMova or OCL/USE only allow (a) and (b), which are mainly of static
nature. Our tool covers (c), adding a dynamic character to validation activities
and allowing to explore attack scenarios.

Constructing a sufficiently complete set of scenarios is essential to perform a
suitable validation. This construction is outside the scope of the current paper
that focuses on making such scenarios animatable.

7 Related Work

Our previous works [6],[10] on RoZ are the roots to our present work. Amalio
[2] gives an overview of the alternate approaches to translate UML into Z.

SecureUML[3] is a security profile for UML. It has already been presented and
it is the basis of our approach. The works of Sohr [15], and the SecureMova tool
[4] are the closest to our approach, and have deeply influenced it. In Sect. 6, we
showed several queries similar to the ones handled by these tools. In addition,
our tool can handle sequences of operations involving both security and func-
tional models. UMLSec [9] is another UML profile that focuses on secrecy and
cryptographic protocols. Our work does not target secrecy aspects, but addresses
a more abstract level focusing on access control.

Hall [8] used Z to specify a formal security policy model for an industrial
project. Likewise, ISO standardized RBAC has widely been described by re-
searchers using Z. A few notable propositions elsewhere [1],[12],[20] offer generic
formal representation of RBAC. Yet, these works focus on meta-model founda-
tions of RBAC, while we target the animation of application level models.

Various validation and verification of security properties based on RBAC are
given in previous work [12],[5]. Abdallah [1] defines a security administration
using access monitor for core RBAC and distinguishes among various concepts
of RBAC. Boswell [5], describes a security policy model in Z, for NATO Air
Command and Control System (ACCS). The author shares learned lessons from
manual validation of this large, distributed, and multi-level-secure system. Mori-
moto et al., [12] chose a common-criteria security functional requirements taken
from ISO/IEC-15408 and proposed a process to verify Z specifications by the
Z/EVES theorem prover. Sohr [14] has proposed protecting clinical information
systems to overcome risks by using first-order LTL supported by Isabelle/HOL
for formal verification of security policy for RBAC.

Toahchoodee et al [17] merge functional and security models into a single UML
model which is translated into Alloy. Alloy can then be used to find a state which

Validation of Security-Design Models Using Z 273

breaks a given property. The properties they describe [17] are mainly of static
nature, i.e. they focus on the search for a state which breaks a property, and
don’t search for sequences of actions leading to such a state.

8 Conclusion and Future Work

We have presented an approach to validate security design models using Z as-
sertions. The graphical notation of security rules is inspired by SecureUML. Our
proposal goes through three steps: (a) automated generation of functional spec-
ifications using RoZ [6], (b) the use of a generic security kernel, instantiated by
the security model, and specified in Z, and (c) the link between the kernel and
the operations of the functional model. Animation of the specifications makes it
possible to check that normal behaviours are authorized by the security model
and to analyze potential attacks. This is based on the evaluation of standard
queries about the security policy and the animation of user-defined scenarios.
Using Jaza brings a dynamic dimension to these analyses which is not covered
by state of the art tools such as SecureMova and USE. It must be noted that the
goal of our animation is to validate the rules of a given security policy, not the
RBAC model itself. Further work should address the validation of the generic
security kernel described in Sect. 4, i.e. to establish that this generic kernel con-
forms to the RBAC standard[7]. We intend to evaluate it by the animation of
several case studies documented in the RBAC litterature.

Our current tool automatically translates the functional model, but requires
manual instantiation of the security kernel, and manual definition of the link
between both models. Our next step is to generate this information automati-
cally, from the security part of the SecureUML diagram and a description of the
action hierarchy. Also, the security kernel can be improved to take into account
additional concepts such as delegation or organisation.

An adequate choice of nominal and attack scenarios is essential to guarantee
the quality of the validation activities. Perspectives include the definition of
metrics for the coverage of the model by these scenarios, and the automated
generation of scenarios that systematically explore the model. This could benefit
from the use of verification techniques like model-checking.

Acknowledgment. We first want to thank the reviewers of ICFEM for their
constructive comments. This research is partly supported by the ANR Selkis and
TASCCC Projects under grants ANR-08-SEGI-018 and ANR-09-SEGI-014.

References

1. Abdallah, A.E., Khayat, E.J.: Formal Z Specifications of Several Flat Role-Based
Access Control Models. In: Proceedings of the 30th Annual IEEE/NASA Software
Engineering Workshop (SEW 2006), pp. 282–292. IEEE Computer Society, Los
Alamitos (2006)

274 N. Qamar, Y. Ledru, and A. Idani

2. Amálio, N., Polack, F.: Comparison of Formalisation Approaches of UML Class
Constructs in Z and Object-Z. In: Bert, D., Bowen, J., King, S. (eds.) ZB 2003.
LNCS, vol. 2651, pp. 339–358. Springer, Heidelberg (2003)

3. Basin, D., Doser, J., Lodderstedt, T.: Model Driven Security: From UML Models
to Access Control Infrastructures. ACM TOSEM 15(1), 39–91 (2006)

4. Basin, D.A., Clavel, M., Doser, J., Egea, M.: Automated Analysis of Security De-
sign Models. Information and Software Technology, Special issue on Model Based
Development for Secure Information Systems 51(5) (2009)

5. Boswell, A.: Specification and Validation of a Security Policy Model. IEEE Trans-
actions on Software Engineering 21(2), 63–68 (1995)

6. Dupuy, S., Ledru, Y., Chabre-Peccoud, M.: An Overview of RoZ: A Tool for Inte-
grating UML and Z Specifications. In: Wangler, B., Bergman, L.D. (eds.) CAiSE
2000. LNCS, vol. 1789, pp. 417–430. Springer, Heidelberg (2000)

7. Ferraiolo, D.F., Sandhu, R.S., Gavrila, S.I., Kuhn, D.R., Chandramouli, R.: Pro-
posed NIST standard for Role-based Access Control. ACM Transactions on Infor-
mation and System Security, 224–274 (2001)

8. Hall, A.: Specifying and Interpreting Class Hierarchies in Z. In: Proceedings of the
Z User Workshop, pp. 120–138. Springer/BCS (1994)

9. Jürjens, J.: Secure Systems Development with UML. Springer, Heidelberg (2004)
10. Ledru, Y.: Using Jaza to Animate RoZ Specifications of UML Class Diagrams.

In: Proceedings of the 30th Annual IEEE/NASA Software Engineering Workshop
(SEW-30 2006), pp. 253–262. IEEE Computer Society, Los Alamitos (2006)

11. Ledru, Y., Qamar, N., Idani, A., Richier, J.L., Labiadh, M.A.: Validation of secu-
rity policies by the animation of Z specifications. In: 16th ACM Symposium on Ac-
cess Control Models andTechnologies, SACMAT2011, pp. 155–164. ACM,New York
(2011)

12. Morimoto, S., Shigematsu, S., Goto, Y., Cheng, J.: Formal verification of security
specifications with common criteria. In: Proceedings of the 22nd Annual ACM Sym-
posium on Applied Computing (SAC 2007), pp. 1506–1512. ACM, New York (2007)

13. Power, D., Slaymaker, M., Simpson, A.: On Formalizing and Normalizing Role-
Based Access Control Systems. The Computer Journal 52(3), 305–325 (2009)

14. Sohr, K., Drouineaud, M., Ahn, G.: Formal Specification of Role-based Security
Policies for Clinical Information Systems. In: Proc. of the 20th Annual ACM Sym-
posium on Applied Computing, pp. 332–339. ACM, New York (2005)

15. Sohr, K., Drouineaud, M., Ahn, G.J., Gogolla, M.: Analyzing and managing role-
based access control policies. IEEE Trans. Knowl. Data Eng. 20(7), 924–939 (2008)

16. Spivey, J.M.: The Z Notation: A reference manual, 2nd edn. Prentice Hall, Engle-
wood Cliffs (1992)

17. Toahchoodee, M., Ray, I., Anastasakis, K., Georg, G., Bordbar, B.: Ensuring spatio-
temporal access control for real-world applications. In: SACMAT 2009, 14th ACM
Symp. on Access Control Models and Technologies. ACM, New York (2009)

18. Utting, M.: JAZA: Just Another Z Animator (2005),
http://www.cs.waikato.ac.nz/~marku/jaza/

19. Wordsworth, J.: Software Development with Z: a practical approach to formal
methods. Addison-Wesley, Reading (1992)

20. Yuan, C., He, Y., He, J., Zhou, Z.: A Verifiable Formal Specification for RBAC
Model with Constraints of Separation of Duty. In: Lipmaa, H., Yung, M., Lin, D.
(eds.) Inscrypt 2006. LNCS, vol. 4318, pp. 196–210. Springer, Heidelberg (2006)

http://www.cs.waikato.ac.nz/~marku/jaza/

Mutation in Linked Data Structures�

Ewen Maclean and Andrew Ireland

School of Mathematical and Computer Sciences,
Heriot-Watt University

Edinburgh, UK
{E.A.H.Maclean,A.Ireland}@hw.ac.uk

Abstract. Separation logic was developed as an extension to Hoare logic
with the aim of simplifying pointer program proofs. A key feature of the
logic is that it focuses the reasoning effort on only those parts of the
heap that are relevant to a program - so called local reasoning. Under-
pinning this local reasoning are the separating conjunction and sepa-
rating implication operators. Here we present an automated reasoning
technique called mutation that provides guidance for separation logic
proofs. Specifically, given two heap structures specified within separa-
tion logic, mutation attempts to construct an equivalence proof using
a difference reduction strategy. Pivotal to this strategy is a generalised
decomposition operator which is essential when matching heap struc-
tures. We show how mutation provides an effective strategy for proving
the functional correctness of iterative and recursive programs within the
context of weakest precondition analysis. Currently, mutation is imple-
mented as a proof plan within our CORE program verification system.
CORE combines results from shape analysis with our work on invari-
ant generation and proof planning. We present our results for mutation
within the context of the CORE system.

1 Introduction

Separation logic [13,14] was developed as an extension to Hoare logic with the
aim of simplifying pointer program proofs, but in general is applicable when
reasoning about dynamically allocated objects. A key feature of the logic is that
it focuses the reasoning effort on only those parts of the heap that are relevant
to a program – so called local reasoning. Underpinning this local reasoning are
the separating conjunction and separating implication operators. In general, to
support proof automation within separation logic requires automated reasoning
techniques that can deal with both operators. Here we present mutation which is
such a technique. Specifically, given two heap structures specified within separa-
tion logic, mutation attempts to construct a functional equivalence proof. To give
an intuition for the technique, mutation is analogous to the task of assembling
jigsaw pieces as illustrated in Fig 1. That is, when proving functional equivalence
one needs to consider both the shape and data associated with the jigsaw pieces.
Mutation constrains proof search by the use of a difference reduction strategy
� The research reported in this paper is supported by EPSRC grant EP/F037597. Our

thanks go to Gudmund Grov for his feedback and encouragement with this work.

S. Qin and Z. Qiu (Eds.): ICFEM 2011, LNCS 6991, pp. 275–290, 2011.
c© Springer-Verlag Berlin Heidelberg 2011

276 E. Maclean and A. Ireland

Fig. 1. Jigsaw analogy for reasoning about heap equivalence

that attempts to match heap structures. Pivotal to mutation is a generalised
decomposition operator which is essential when matching heap structures, and
corresponds to the need for non-structural inductive lemmas which arise when
reasoning about the heap [3]. While the jigsaw analogy works well for shape,
it is less effective in communicating the functional part. Essentially, by estab-
lishing the shape properties, mutation as a side-effect calculates pure functional
proof obligations. Currently, mutation is implemented as a proof plan within
our CORE program verification system. Mutation provides an effective strat-
egy for proving the functional correctness of iterative and recursive programs
within the context of a weakest precondition analysis. CORE combines results
from shape analysis with our work on invariant generation and proof planning.
In particular, the functional proof obligations mentioned above are discharged
using IsaPlanner [8], a proof planner for the Isabelle proof development environ-
ment [12], which embodies a state-of-the-art inductive theorem proving strategy,
i.e. rippling [5]. We present our results for mutation within the context of the
CORE system.

The rest of the paper is structured as follows. In §2 we give a brief intro-
duction to separation logic. Mutation and its application to loop based code is
described in detail in §3. §4 describes how the approach can be generalised, while
our implementation and results are presented in §5. Related and future work is
covered in §6 and our conclusions are presented in §7.

2 Separation Logic

The development of separation logic was influenced by early work on program
reasoning by Burstall [6] and the Logic of Bunched Implications by O’Hearn and
Pym. Here we give a brief introduction to separation logic, for a full account
see [14].

Mutation in Linked Data Structures 277

Separation logic extends predicate calculus with new forms of assertions for
describing the heap:

– empty heap: the assertion emp holds for a heap that contains no cells.
– singleton heap: the assertion X �→ E holds for a heap that contains a single

cell, i.e. X denotes the address of a cell with contents E.
– separating conjunction: the assertion P ∗Q holds for a heap if the heap can

be divided into two disjoint heaps H1 and H2, where P holds for H1 and Q
holds for H2 simultaneously.

– separating implication: the assertion P −∗Q holds for a heap H1, if whenever
H1 is extended with a disjoint heap H2, for which P holds, then Q holds for
the extended heap.

Typically one wants to assert that a pointer variable, say X , points to E within
a larger group of heap cells. This can be represented by (X ↪→ E), which is an
abbreviation for (true ∗ (X �→ E)) – which asserts that the heap can be divided
into two parts: A singleton heap, for which (X �→ E) holds; and the rest of the
current heap, for which true holds. Note that true holds for any heap. In what
follows we will focus on pointers that reference a pair of adjacent heap cells. So
we will use (X �→ E1, E2) as an abbreviation for (X �→ E1)∗ (X +1 �→ E2). This
pair notation can be generalised to any product type, and to records which can
be seen as labelled product types. Central to the logic is the frame rule:

{P}C{Q}
{R ∗ P}C{R ∗Q}

Note that the frame rule imposes a side condition, i.e. no variable occurring
free in R is modified by C – where R denotes the frame invariant mentioned
earlier. It is the frame rule that supports local reasoning. Within the context of
goal directed proof, it allows us to focus on the correctness of C within a tight
specification, expressed by assertions P and Q. An important role for the frame
rule is in reasoning about recursively defined procedures.

We will also make significant use of the following rule which expresses the
relationship between separating conjunction and separating implication:

P ∗Q � R

Q � P −∗R
(1)

3 Mutation: Reasoning about Shape and Data

The mutation proof pattern we describe below is applicable to the verification
of both iterative and recursive programs. For reasons of space, however, we fo-
cus here on its application to iterative code, i.e. the verification of a loop body
with respect to a given loop invariant1. While the technique has been tested on

1 In the recursive case the loop invariant is replaced by a frame invariant. A full account
of mutation and invariant generation is available as a Technical Report, see [9].

278 E. Maclean and A. Ireland

The picture above corresponds to data lseg(a, i, o), where i and o delimit the
singly linked-list segment representing a, i.e. the sequence [a1, a2, . . . , an].

Fig. 2. An acyclic singly linked-list segment

programs that manipulate acyclic singly-linked lists, we describe in §4 some ex-
periments on binary trees, and how it can be extended to arbitrary recursively
defined linked list data structures. Consider the following iterative version of
in-place list reversal:

{(∃a. data lseg(a, i, null)∧ a0 = a)}
o = null;
while (i != null) {

t = i->tl;
i->tl = o;
o = i;
i = t; }

{(∃b. data lseg(b, o, null) ∧ a0 = rev(b))}

Note that the program variables i and o point to the initial and reversed linked
lists respectively. Note also that we use i->tl to de-reference the next pointer
field of i, while i->hd de-references the data field. Turning to the pre- and
postconditions, we use the inductively defined predicate data lseg to specify an
acyclic singly-linked list segment:

data lseg([], Y, Z)↔ emp ∧ Y = Z (2)
data lseg([W |X], Y, Z)↔ (∃p. (Y �→ W, p) ∗ data lseg(X, p, Z)) (3)

Note that the first argument denotes a sequence, where sequences are repre-
sented using the Prolog list notation. The second and third arguments delimit
the corresponding linked-list segment structure. Note also that the definition ex-
cludes cycles. The data lseg predicate is illustrated in Fig 2. Finally, we use rev
to denote sequence reversal which is defined in terms of app, list concatenation,
i.e.

Mutation in Linked Data Structures 279

rev([]) = []
rev([X |Y]) = app(rev(Y), [X])

app([], Z) = Z

app([X |Y], Z) = [X |app(Y, Z)]

In order to verify the code a loop invariant is required which needs to specify two
disjoint lists, i.e. the list pointed to by i, representing the segment that remains
to be reversed, and the list pointed to by o, representing the segment that has
been reversed so far. In separation logic, such an invariant can be represented
as follows:

(∃a, b. data lseg(a, i, null) ∗ data lseg(b, o, null)∧ a0 = app(rev(b), a)) (4)

Using weakest precondition (WP) analysis, intermediate assertions can be calcu-
lated for the code given above as follows:

{(∃a, b. data lseg(a, i, null) ∗ data lseg(b, o, null)
∧ a0 = app(rev(b), a)) ∧ ¬(i = null)}

{(∃a, b. (i �→ F1,F2) ∗ ((i �→ F1, o)−∗ (data lseg(a,F4, null) ∗ data lseg(b, i, null)
∧ (t ↪→ F3,F4) ∧ a0 = app(rev(b), a))}

t = i->tl;
{(∃a, b. (i �→ F1,F2) ∗ ((i �→ F1, o)−∗ (data lseg(a, t, null) ∗ data lseg(b, i, null)

∧ a0 = app(rev(b), a))}
i->tl = o;

{(∃a, b. data lseg(a, t, null) ∗ data lseg(b, i, null) ∧ a0 = app(rev(b), a))}
o = i;

{(∃a, b. data lseg(a, t, null) ∗ data lseg(b, o, null) ∧ a0 = app(rev(b), a))}
i = t

{(∃a, b. data lseg(a, i, null) ∗ data lseg(b, o, null) ∧ a0 = app(rev(b), a))}

Note that F1, F2, F3 and F4 denote meta-variables. Verification corresponds to
proving that the precondition implies the calculated WP, i.e.

data lseg(Xa, i, null) ∗ data lseg(Xb, o, null) ∧
a0 = app(rev(Xb),Xa)) ∧ ¬(i = null) �

(i �→ F1,F2) ∗ ((i �→ F1, o)−∗
data lseg(Fa,F4, null) ∗ data lseg(Fb, i, null) ∧

(i ↪→ F3,F4) ∧ a0 = app(rev(Fb),Fa) (5)

Note that the existential variables a and b within the hypotheses are replaced by
the skolem constants Xa and Xb respectively, while in the goal they are replaced
by meta variables Fa and Fb respectively.

280 E. Maclean and A. Ireland

Proving such a verification condition (VC) gives rise to the following patterns
of reasoning:

� (. . . R−∗Q . . .)
...

� (. . . R−∗ (S ∗Q′) . . .)
� . . . Q′ . . .

. . . P . . . � S ∗Q
...

. . . R ∗ P ′ . . . � S ∗Q

. . . P ′ . . . � (R−∗ (S ∗Q))
. . . P ′ . . . � Q

Note that both patterns contain a common core – the selection, attraction and
cancellation of heaplets R and S. Crucially R and S are unifiable, and occur on
either side of the −∗ operator. The pivotal cancellation step corresponds to an
application of the following rewrite rule2

(X −∗ (X ∗ Y)) :⇒ Y (6)

Such a cancellation step is required in order to achieve a match between a goal
and a given hypothesis – typically this is referred to as fertilisation. Note that
this pattern arises when reasoning about programs that mutate the heap, i.e.
programs that allocate or update heaplets. We have represented this pattern of
reasoning as a proof strategy which we call mutation. As a difference reduction
strategy, mutation is strongly influenced by rippling [5]. While mutation focuses
on the cancellation of heaplets, rippling focuses on the elimination of induction
terms. As indicated above, the pattern may involve just the goal, but also a given
hypothesis. In order to explain the mutation proof strategy, we introduce meta-
level annotations. Specifically, we will refer to a heaplet X that occurs on the
left-hand side of a −∗ as an anti-heaplet, and annotate it as X

−
, alternatively

if X occurs on the right-hand side of a −∗ it will be annotated as X
+
. Using

these meta-level annotations, the general pattern of mutation is illustrated in
Fig 3.

As will be illustrated later, for a given verification, multiple applications of
the mutation strategy will be required in order to complete a proof. But first we
will describe in more detail mutation in terms of its lower level parts, i.e. heaplet
analysis, attraction and cancellation.

3.1 Heaplet Analysis and Heap Decomposition

The process of identifying a heaplet R that cancels an anti-heaplet S may in-
volve choice. In the presentation that follows we give example healpets and
anti-heaplets as pointer cells, but in general a heaplet and anti-heaplet can be
any structure existing within the heap. Below we list the heuristics that we use
in identifying such heaplets3:

2 We use :⇒ to denote the rewrite relation and → to denote logical implication.
3 In order to simplify our description we exploit the fact that P " Q and " P −∗Q are

equivalent (see rule (1)).

Mutation in Linked Data Structures 281

" (. . . R
−−∗Q . . .)

...

" (. . . R
−−∗ (S

+ ∗Q′) . . .)

" . . . Q′ . . .

goal mutation

. . . P . . . " S
+ ∗Q

...

. . . R
− ∗ P ′ . . . " S

+ ∗Q

. . . P ′ . . . " (R
−−∗ (S

+ ∗Q))

. . . P ′ . . . " Q

hypothesis mutation

Fig. 3. General pattern of mutation

1. Explicit case: there exists a heaplet and anti-heaplet which unify, i.e.

(. . . ∗ (x �→ y, z)
− ∗ . . .)−∗ (. . . ∗ (x′ �→ y′, z′)

+ ∗ . . .)

where x, y, z and x′, y′, z′ unify respectively.
2. Implicit case: there exists a heaplet but no explicit anti-heaplet which

unifies, or vice versus:

(a) Simple decomposition: Where an explicit anti-heaplet (x �→ , y)
−

exists a complementary heaplet may be identified by unfolding the “head”
of a data lseg predicate, i.e.

. . . −∗ (. . . ∗ data lseg(, x
+

,) ∗ . . .)

decomposes to give:

. . . −∗ (. . . ∗ ((x �→ , T)
+ ∗ data lseg(, T,)) ∗ . . .)

Alternatively the “tail” of a data lseg predicate, i.e.

. . . −∗ (. . . ∗ data lseg(, , y
−) ∗ . . .)

decomposes to give:

. . . −∗ (. . . ∗ (data lseg(, , T) ∗ (T �→ , y)
−

) ∗ . . .)

The same pattern holds for an explicit heaplet, where no explicit anti-
heaplet occurs.

(b) General decomposition: In general, the (anti-)heaplet may be embed-
ded within a data lseg, and progress towards a proof will then require a
general decomposition step. When applied to the goal, this involves the

282 E. Maclean and A. Ireland

introduction of meta-variables (Fi), place-holders that will be instanti-
ated by fertilisation:

. . . ∗ data lseg(F1, x
+
,) ∗ . . .

decomposes to give:

. . . ∗ data lseg(F2, x
+
, F3

+
) ∗ (F3 �→ F4,F5)

+∗
data lseg(F6, F5

+
,) ∗ . . . ∧ F1 = app(F2, [F4|F6])

At the level of annotations, we use a dotted box to emphasise the po-
tential for unfolding heaplets, e.g. Fj

+
. Note that when rewriting a

hypothesis, the general decomposition step introduces skolem constants,
i.e. Xj . The notion of simple and general decomposition for data lseg
described above are illustrated diagrammatically in Fig 4.

Note that “head” and “tail” decomposition are special cases of the general
decomposition step.

Fig. 4. Simple and general decomposition for data lseg

3.2 Heaplet Attraction, Cancellation and Fertilisation

Once heaplet analysis is complete, rewriting is used to attract the selected
heaplet and anti-heaplet so as to enable a cancellation step:

((. . .) ∗ (x �→ y, z)
− ∗ (. . .)) −∗ ((. . .) ∗ (x′ �→ y′, z′)

+ ∗ (. . .))
...

...

((. . .) ∗ (. . .) ∗ ((x �→ y, z)
− −∗ ((x′ �→ y′, z′)

+ ∗ ((. . .) ∗ (. . .))))

by (6)
((. . .) ∗ (. . .)) ∗ ((. . .) ∗ (. . .))

Mutation in Linked Data Structures 283

The rewriting that proceeds the cancellation step involves the application of
rewrite rules which are derived from basic properties of separation logic, e.g.

X ∗ Y :⇒ Y ∗X (7)
pure(Z) → (X ∧ Z) ∗ Y :⇒ X ∗ (Z ∧ Y) (8)

(X ∗ Y) ∗ Z :⇒ X ∗ (Y ∗ Z) (9)

where pure is a predicate which denotes that its argument has no shape content.
Attraction selects rewrite rules which reduce the term tree distance between a

heaplet and its anti-heaplet. There is no search in this process. To illustrate this
consider the term tree manipulation shown in Fig 5. The term S

+
is moved

within the term a∗(b∗(S
+∧c)) and transformed into the term S

+∗((c∧b)∗a),
in order that rule (6) can apply. To illustrate an informal argument for the
termination of attraction, assume the position of a term within a term tree is
given by a list of branch indices, starting at 1. Application of commutativity
rules such as (7) reduces the number of occurrences of the index 2 within the
position tree. Application of associativity rules such as (9) reduces the length of
the position tree. The process terminates when the position tree [1] is reached,
indicating that the desired term is at the top of the tree.

Note that in general, mutation is an iterative strategy, where a successful pat-
tern of attraction and cancellation may require additional decomposition steps
in order to achieve fertilisation. This is potentially a non-terminating process so
a depth bound is used to control the search.

Now we return to the list reversal example presented earlier, and VC (5).
Using the mutation annotations described above, the VC becomes:

data lseg(Xa, i
−

, null) ∗ data lseg(Xb, o
−

, null) ∧
a0 = app(rev(Xb),Xa)) ∧ ¬(i = null) �

(i �→ F1,F2)
+ ∗ ((i �→ F1, o)

−−∗

data lseg(Fa, F4
+
, null) ∗ data lseg(Fb, i

+
, null) ∧

(i ↪→ F3,F4)
+ ∧ a0 = app(rev(Fb),Fa) (10)

Proving (10) requires three applications of the mutation strategy. Here we only
sketch the high-level pattern. The first application focuses on the goal:

. . . � . . . ∗ ((i �→ F1, o)
−−∗ . . . ∗ data lseg(Fb, i

+
, null)) ∧ . . .

. . . � . . . ∗ ((i �→ F1, o)
−−∗ . . . ∗ ((i �→ Fbhd

,F6)
+∗

data lseg(Fbtl
,F6, null)) ∧ . . .

. . . � . . . ∗ ((i �→ F1, o)
−−∗ ((i �→ Fbhd

,F6)
+ ∗ (. . . ∗

data lseg(Fbtl
,F6, null)))) ∧ . . .

. . . � . . . ∗ (. . . ∗ data lseg(Fbtl
,F6, null)) ∧ . . .

284 E. Maclean and A. Ireland

a∗(b∗(S
+∧c)) a∗((S

+∧c)∗b) ((S
+∧c)∗b)∗a (S

+∗(c∧b))∗a S
+∗((c∧b)∗a)

Selective rewriting (anti-)heaplets, with the overall aim of reducing the term
tree distance between healpets and anti-heaplets.

Fig. 5. Mutation guided rewriting

The above rewriting is justified by (3), (9) and (6). The second application
applies to both the hypotheses and goal. Focusing on the left conjunct within
the goal, we obtain the following high-level pattern:

. . . data lseg(Xa, i
−

, null) ∗ . . . � ((i �→ F1,F2)
+ ∗ . . .)

. . . ((i �→ Xahd
,X1)

− ∗ data lseg(Xatl
,X1, null)) ∗ . . . � ((i �→ F1,F2)

+ ∗ . . .)

. . . ∗ data lseg(Xatl
,X1, null) ∗ . . . � ((i �→ Xahd

,X1)
−−∗

((i �→ F1,F2)
+ ∗ . . .))

. . . ∗ data lseg(Xatl
,X1, null) ∗ . . . � (. . .)

where F1 and F2 are instantiated to be Xahd
and X1 respectively. Here the

rewriting is justified by (3), (1) and (6). Turning to the right conjunct we require
a third application of mutation:

(i �→ Xahd
,X1)

− ∗ . . . � (i ↪→ F3,F4)
+ ∧ . . .

(i �→ Xahd
,X1)

− ∗ . . . � ((i �→ F3,F4)
+ ∗ true) ∧ . . .

. . . � (i �→ Xahd
,X1)

−−∗ (((i �→ F3,F4)
+ ∗ true) ∧ . . .)

. . . � (i �→ Xahd
,X1)

−−∗ ((i �→ F3,F4)
+ ∗ (true ∧ . . .))

. . . � true ∧ . . .

Mutation in Linked Data Structures 285

where F3 and F4 are instantiated to be Xahd
and X1 respectively. This rewriting

is justified by (1), (9) and (6). As noted in the §1, a side-effect of manipulating
the shape is a functional residue. In the case of list reversal, the residue takes
the form:

� app(rev(Xb), [X1|X3]) = app(rev([X1|Xb]),X3)

As noted in §1, we use IsaPlanner [8] to discharge these proof obligations.

3.3 An Example General Decomposition

Note that in the list reversal example, the decomposition step involved splitting
off the head of the heap structure. As highlighted in §3.1, a more general form of
decomposition may be required. To motivate this point, consider the following
specification of list concatenation:

{data list(a, x) ∗ data list(b, y) ∧ a0 = a ∧ b0 = b}
local n,t;
if (x == null) {

x = y; }
else {

t = x;
n = t->tl;
while (n != null) {

t = n;
n = t-> tl; }

t->tl = y; }
{(∃c. data list(c, x) ∧ c = app(a0, b0))}

where we use the abbreviation data list to denote a null-terminated linked-list
segment via:

data list(A, I) ↔ data lseg(A, I, null) (11)

In this example, the loop invariant takes the form:

(∃α, β, h. data lseg(α, x, t) ∗ (t �→ h, n) ∗ data list(β, n) ∗ data list(b0, y) ∧
x �= n ∧ a0 = app(α, [h|β]))

The annotated version of the VC resulting from proving the loop invariant im-
plies the postcondition takes the form:

data lseg(Xα, x
−

, t) ∗ (t �→ Xh, null)
− ∗ data lseg(Xb, y

−
, null) ∧

x �= null ∧ Xa = app(Xα, [Xh|null]) �
(t �→ F1,F2)

+ ∗ ((t �→ F1, y)
−−∗ data lseg(F3, x

+
, null)

∧ F3 = app(Xa,Xb)) (12)

286 E. Maclean and A. Ireland

Focusing on the goal associated with (12), and in particular the anti-heaplet

(t �→ F1, y)
−

, then mutation guides us to apply a general decomposition step

to data lseg(F3, x
+

, null) in order to generate a heaplet that will cancel the
anti-heaplet, i.e.

. . . � (t �→ F1,F2)
+ ∗ ((t �→ F1, y)

−−∗

data lseg(F4, x
+

,F5) ∗ (F5 �→ F6,F7)
+ ∗ data lseg(F8, F7

+
, null)

∧ F3 = app(F4, [F6|F8]) ∧ F3 = app(Xa,Xb)) (13)

Note that to achieve the cancellation two attraction steps, corresponding to
commutativity and associativity are required.

4 Towards a Generalisation of Mutation

So far we have described mutation within the context of an acyclic singly linked
list segment as represented by the inductively defined predicate data lseg. We
now describe how the basic approach could be generalised for other inductively
defined predicates. In particular, we illustrate the generalisation via some exper-
iments in applying the strategy to binary trees.

As an example of generalising mutation beyond linked lists, consider the fol-
lowing inductive definition of a binary tree:

data tree(t0, X) ↔ emp ∧X = null

data tree(t(H, TL, TR), Y) ↔ (∃l, r. (Y �→ H, l, r) ∗
data tree(TL, l) ∗ data tree(TR, r))

The tree representation for the functional content is defined as

tree ::= t0 | t(int, tree, tree)

where t0 denotes the empty tree. To illustrate this representation, consider the
following program fragment which isolates the left branch of a binary tree:

{data tree(t(1, t(2, t0, t0), t(3, t0, t0)), i)}
j = i->l;
i->l = null;

{data tree(t(2, t0, t0), j) ∗ data tree(t(1, t0, t(3, t0, t0)), i)}

In terms of mutation, this leads to the following VC:

data tree(t(1, t(2, t0, t0), t(3, t0, t0)), i
−

) �
(i �→ F1,F2,F3)

+ ∗ ((i �→ F1, null,F3)
−−∗

data tree(t(2, t0, t0), F5
+
) ∗ data tree(t(1, t(3, t0, t0), t0), i

+
)∧

(i ↪→ F4,F5,F6)
+
)

Mutation in Linked Data Structures 287

Comparing this VC with (10) we see that the shape and distribution of heaplets
and anti-heaplets is similar, and that heaplet analysis, decomposition, attraction
and cancellation are applicable.

To generalise mutation completely, we must introduce rules for general de-
composition. In the case of linked lists we extend the definitions (2) and (3) via
the rule:

data lseg(D, W, Z) ∧ D �= [] ↔ W �= Z ∧
(∃d1, d2, d3, x1, x2. (data lseg(d1, W, x1) ∗ (x1 �→ d2, x2) ∗

data lseg(d3, x2, Z)) ∧D = app(d1, [d2|d3])) (14)

which is illustrated by the general case in Fig. 4. Note that we record the place at
which the linked list segment was decomposed by using existential variables. The
components of the decomposition are two linked list segments, a heaplet and a
functional constraint. The functional constraint D = app(d1, [d2|d3]) is sufficient
to describe how the data given by the existential variables is composed.

In the case of trees, we introduce a predicate data tseg, which is analogous
to data lseg, and record the decomposition via existential variables and a posi-
tion within the tree. data tseg generalises data tree by introducing a “trailing
pointer” indicating where the tree is decomposed. Similarly to the list segment
example (14), the components of binary tree decomposition are three tree seg-
ments, a heaplet and a functional constraint. The functional constraint uses a
function tree join which uses the position data and existential variables to de-
scribe how the tree is composed, this is analogous to append, i.e. app. As the
decomposition is not linear, it is necessary to introduce a position argument for
the functional composition of the data. We give the general decomposition rule
for tree segments as:

data tseg(t0, Y, (Z,)) ↔ emp ∧ Y = Z

data tseg(T, X, (Y, P)) ∧ T �= t0 ↔ X �= Y ∧ (∃i, j, k, p1, p2, p3, t2, t3, d1, tl, tr.

data tseg(t1, X, (i, p1)) ∗ (i �→ d1, tl, tr) ∗
data tseg(t2, tl, (j, p2)) ∗ data tseg(t3, tr, (k, p3)) ∧

T = tree join(t1, d1, t2, t3, p1) ∧ Y = c(P, p1, p2, p3, j, k))

where c denotes a function that calculates where the initial trailing pointer Y
lies after the decomposition. The rule for defining data tseg in terms of data tree
takes the form:

data tree(T, I) ↔ (∃p. data tseg(T, I, (null, p)))

which is analogous to the linked-list abbreviation given by (11).

5 Implementations and Results

We now describe briefly the parts of the CORE system [10] that are relevant to
the mechanisation of mutation. Moreover, we give the results of our experiments
with mutation on programs which manipulate linked lists.

288 E. Maclean and A. Ireland

The CORE system incorporates different components, but the principal com-
ponent relevant to the work presented here is the proof planner. We use a veri-
fied VC generator [1], and our proof planner which manipulates the VCs. Proof
planning is a technique which supports abstract reasoning, by decoupling proof
search and proof checking – for more details see [4]. In the work we present here,
mutation is an example of an abstract reasoning technique. Heaplet analysis, as
described via meta-level annotations in §3 is implemented via a heuristic scor-
ing technique – where each possible match is assigned a score according to the
likelihood of mutation cancelling heaplet/anti-heaplet pairs.

Table 1 shows the results of applying mutation to annotated programs which
manipulate pointers. Mutation was successful at dealing with all the example
programs and was fully automatic. Indicated in the table are the type of program
– iterative (I), recursive (R) and involving a function call (F). Also indicated are
the types of decomposition step required - H indicates taking an element from
the head of a linked list, while T indicates taking an element from the tail, and
G is the general case – all three cases are illustrated in Fig 4.

Table 1. Results of applying mutation to linked list programs

Name Type
Mutation
H G T

split list S ✔

copylist R ✔ ✔

list reverse I ✔

list traverse I ✔ ✔

list insert rec R ✔ ✔ ✔

list length I ✔ ✔

list append I ✔ ✔ ✔

list remove R ✔ ✔ ✔

push S ✔

enqueue F ✔

pop dequeue S ✔

Name Type
Mutation
H G T

double list R ✔ ✔

list copy I ✔ ✔

list traverse R ✔ ✔

list deallocate rec R ✔ ✔

list deallocate I ✔ ✔

list min R ✔ ✔

list append rec R ✔ ✔ ✔

list reverse rec R ✔ ✔

list replace last R ✔ ✔

list rotate IF ✔ ✔

sortlist RF ✔ ✔ ✔

6 Related and Future Work

Our work adds a functional dimension to the shape analysis results of Small-
foot [2]. Specifically, mutation provides proof guidance when combining shape
and functional properties. Holfoot [15] embeds Smallfoot style analysis within
the HOL proof development environment, and also supports functional reason-
ing. Like Smallfoot, Holfoot supports forward proof which is in contrast to our
backward (WP) style of reasoning. In terms of automation, Holfoot is able to
automatically generate frame invariants, but loop invariants must be supplied,
as is the case with Smallfoot. A related system, JStar [7] which targets the verifi-
cation of Java programs, makes use of abstract interpretation for the generation
of loop invariants. For the purposes of explaining mutation, we have included
the loop invariants. However, it should be noted that mutation is used within

Mutation in Linked Data Structures 289

the context of the CORE system which supports the automatic generation of
the functional loop invariants via term synthesis. Another approach to extending
shape analysis is described in [11] where user defined shape predicates are also
used to describe size. It should also be noted that mutation has similarities with
the rewrite strategy used within SmallfootRG, although with a different goal in
mind, i.e. rely/guarantee style reasoning. Finally, with regards to our general
decomposition steps. While these are handcrafted, we know of no system which
automates the construction of such lemmas.

In terms of future work, we aim to further investigate mechanised support for
the construction of general decomposition rules. The CORE system currently
supports the visualisation of heap structures. One way forward would be to build
upon the visualiser, and provide a tool in which a user can input decomposition
rules via diagrams.

7 Conclusion

We have introduced mutation, an automated reasoning technique that is de-
signed to prove the equivalence of linked data structures specified in separation
logic. This is a challenging problem, made even more challenging if there is a
necessity to prove equivalence of the data held within these structures. We have
shown that the technique works well for linked list structures. In addition, we
have also illustrated how it can be generalised for more complicated data types.
By implementing mutation via a proof planner, it can potentially be integrated
within other separation logic theorem provers.

References

1. Atkey, R.: Amortised resource analysis with separation logic. In: 19th European
Symposium on Programming, pp. 85–103 (2010)

2. Berdine, J., Calcagno, C., O’Hearn, P.: Smallfoot: Modular automatic assertion
checking with separation logic. In: de Boer, F.S., Bonsangue, M.M., Graf, S., de
Roever, W.-P. (eds.) FMCO 2005. LNCS, vol. 4111, pp. 115–137. Springer, Heidel-
berg (2006)

3. Berdine, J., Calcagno, C., O’Hearn, P.: Symbolic execution with separation logic.
In: Yi, K. (ed.) APLAS 2005. LNCS, vol. 3780, pp. 52–68. Springer, Heidelberg
(2005)

4. Bundy, A.: The use of explicit plans to guide inductive proofs. In: Lusk, R., Over-
beek, R. (eds.) CADE 1988. LNCS, vol. 310, pp. 111–120. Springer, Heidelberg
(1988)

5. Bundy, A., Basin, D., Hutter, D., Ireland, A.: Rippling: Meta-level Guidance for
Mathematical Reasoning. Cambridge University Press, Cambridge (2005)

6. Burstall, R.M.: Some techniques for proving correctness of programs. In: Machine
Intelligence, vol. 7, pp. 23–50. Edinburgh University Press, Edinburgh (1972)

7. Distefano, D., Parkinson, M.J.: jstar: towards practical verification for java. In:
Proceedings of the 23rd ACM SIGPLAN Conference on Object-Oriented Program-
ming Systems Languages and Applications, OOPSLA 2008, pp. 213–226. ACM,
New York (2008)

290 E. Maclean and A. Ireland

8. Dixon, L., Fleuriot, J.D.: IsaPlanner: A prototype proof planner in isabelle. In:
Baader, F. (ed.) CADE 2003. LNCS (LNAI), vol. 2741, pp. 279–283. Springer,
Heidelberg (2003)

9. Ireland, A., Maclean, E., Grov, G.: Verification and synthesis of functional correct-
ness of pointer programs. Research Memo HW-MACS-TR-0087, School of Mathe-
matical and Computer Sciences, Heriot-Watt University (2011)

10. Maclean, E., Ireland, A., Grov, G.: The core system: Animation and functional
correctness of pointer programs, Under review as a ASE-11 Tool Demonstration
paper (2011)

11. Nguyen, H.H., David, C., Qin, S., Chin, W.N.: Automated verification of shape
and size properties via separation logic. In: Cook, B., Podelski, A. (eds.) VMCAI
2007. LNCS, vol. 4349, pp. 251–266. Springer, Heidelberg (2007)

12. Nipkow, T., Paulson, L.C., Wenzel, M.T.: Isabelle/HOL — A Proof Assistant for
Higher-Order Logic. LNCS, vol. 2283. Springer, Heidelberg (2002)

13. O’Hearn, P., Reynolds, J., Hongseok, Y.: Local reasoning about programs that
alter data structures. In: Fribourg, L. (ed.) CSL 2001 and EACSL 2001. LNCS,
vol. 2142, pp. 1–19. Springer, Heidelberg (2001)

14. Reynolds, J.C.: Separation logic: A logic for shared mutable data structures. In:
Logic in Computer Science, pp. 55–74. IEEE Computer Society, Los Alamitos
(2002)

15. Tuerk, T.: A formalisation of smallfoot in HOL. In: Berghofer, S., Nipkow, T.,
Urban, C., Wenzel, M. (eds.) TPHOLs 2009. LNCS, vol. 5674, pp. 469–484.
Springer, Heidelberg (2009)

Contract-Based Verification of Simulink Models�

Pontus Boström

Department of Information Technologies, Åbo Akademi University,
Joukahaisenkatu 3-5, 20520 Turku, Finland

pontus.bostrom@abo.fi

Abstract. This paper presents an approach to compositional contract-
based verification of Simulink models. The verification approach uses
Synchronous Data Flow (SDF) graphs as a formalism to obtain sequen-
tial program statements that can then be analysed using traditional
refinement-based verification techniques. Automatic generation of the
proof obligations needed for verification of correctness with respect to
contracts, as well as automatic proofs are also discussed.

1 Introduction

Model-based design has become a widely used design method to create embedded
control software. In this approach, the controller is developed together with
a simulation model of the plant to be controlled. This enables simulation of
the complete system and thereby some degree of evaluation and testing of the
controller without using a prototype. One of the most popular tools for model-
based design of control systems is Simulink [17].

Simulink has a user-friendly graphical modelling notation based on data flow
diagrams, as well as good simulation tools for testing and validating controllers
together with models of the controlled plant. The complexity of control systems
is increasing rapidly as more functionality in many applications, such as anti-
locking brakes and fuel-injection systems, is implemented in software. As the
systems become more complex, the size of the Simulink models used in their
design also quickly grows. Hence, there is a continuing need to better manage
the complexity of models. Since control systems also often have high reliability
requirements, there is also a need to analyse the models for correctness. One
approach that we have explored to address the problems above is to use contracts
to aid the decomposition of models into smaller parts with well defined interfaces
and to aid the analysis of those parts and their interaction for correctness.

The aim of this paper is to propose a new compositional technique for veri-
fying functional correctness of Simulink models with respect to contracts. Con-
tracts here refer to pre- and postconditions for programs or program fragments.
Contract-based design has become a popular method for object-oriented soft-
ware development [18,11,6]. This suggests contracts could be useful for Simulink
data flow diagrams also. Furthermore, the interaction between components in

� Work done in the EFFIMA program coordinated by Fimecc.

S. Qin and Z. Qiu (Eds.): ICFEM 2011, LNCS 6991, pp. 291–306, 2011.
c© Springer-Verlag Berlin Heidelberg 2011

292 P. Boström

Simulink data flow diagrams is simpler than between objects in object-oriented
systems, which means that automated formal verification can potentially be eas-
ier to do.

We have earlier developed contracts and contract-based verification methods
for Simulink models [9,10,7]. Here we give more expressive contracts, similar
in expressiveness to the contracts for reactive components in [16]. In addition
features in [9,10,7], the contracts here can model internal state of components
and relate it to the concrete state used in the Simulink diagrams. A new com-
positional method to verify correctness of Simulink models with respect to these
contracts is also given. The formal analysis methods for Simulink models with
contracts are based on translating the models to functionally equivalent sequen-
tial statements that can be analysed by traditional, refinement-based, techniques
[1,3,4]. To obtain the sequential program statements, Simulink diagrams are
viewed as synchronous data flow (SDF) graphs [15,14]. The benefit of using SDF
graphs compared to the more ad-hoc approach in [9,10,7] is that the mapping of
these data flow graphs to the sequential programs used in the analysis has been
thoroughly studied. The approach is supported by a tool [8] that can automati-
cally verify that Simulink models satisfy their contracts. Contract-based design
in Simulink has been applied to larger examples [9,7]. The contracts were found
to be useful both when structuring the system and for verification.

The paper starts with an overview of Simulink, as well as the proposed con-
tract format. Then SDF graphs are presented with the translation procedure to
the sequential programming notation used for analysis. This is followed by dis-
cussion of translation correctness. Representation of Simulink diagrams as SDF
graphs is then discussed, followed by a presentation of methods for analysis of
correctness with respect to contracts, as well as tool support. To illustrate the
approach, contract-based verification is used on a small example.

2 Simulink

The language used to create models in Simulink is based on hierarchical data flow
diagrams [17]. A Simulink diagram consists of functional blocks connected by
signals (wires). The blocks represent transformations of data, while the signals
give the flow of data between blocks. The blocks have in- and out-ports that
act as connection points for signals. The in-ports provide data to the blocks,
while the out-ports provide the results computed by the blocks. Blocks can be
parameterised with parameters that are set before model execution and remain
constant during the execution. Blocks can also contain memory. Hence, their
behaviour does not only depend on the current values on the in-ports and the
parameter values, but also on previous in-port values.

Here only discrete Simulink models with one rate are considered. This means
that a model is evaluated periodically with a given sampling rate. At each sam-
pling instant, all blocks in the diagram are evaluated in the order given by the
signals between them. The models are also assumed to be non-terminating, which
is a common assumption for control systems.

Contract-Based Verification of Simulink Models 293

TLC

timeout

light1

light2

(a) light2
2

light1
1

LS2

timeout light

LS1

timeout light

timeout
1

(b)

light

1

ls

z

1

Switch1 Logical
Operator

NOT
timeout

1

(c)

Fig. 1. (a) A subsystem that contains a simple traffic light controller, (b) its contents
consisting of two individual light controllers and (c) the individual light controllers

In its most general form, a discrete Simulink block b contains a list of in-ports
u, a list of out-ports y, parameters c and a state vector (internal memory) x [17].
The behaviour of the block is given by the difference equation in (1).

y.k = f.c.(x.k).(u.k)
x.(k + 1) = g.c.(x.k).(u.k)

(1)

Here f denotes the function that updates the out-ports y at sample k and g
the function that updates the state x. Consider, e.g., the Logical Operator-block
and the Unit Delay-block (marked by 1/z) in Fig. 1 (c). In this case the Logical
Operator-block negates the input, while a Unit Delay-block delays the input
with one sampling time. The behaviour of the Logical Operator-block is then
given by the equation y.k = ¬u.k. Note that this block has no internal state. A
Unit Delay-block then has the behaviour given as y.k = x.k ∧ x.(k + 1) = u.k.
Information about other blocks can be found in the Simulink documentation [17].
The diagrams can also be hierarchically structured using the notion of subsystem
blocks, which are blocks that themselves contain diagrams.

To illustrate the use of Simulink, a small example that consists of a controller
for a simplified traffic light system is given. The system consists of two lights that
can be either green (true) or red (false). However, both lights should not be green
at the same time. When a timeout signal has the value true, the lights change.
The subsystem block TLC in Fig. 1 (a) contains the traffic light controller. A
new light configuration is computed separately for each light by the subsystems
LS1 and LS2 (Fig. 1 (b)) at each sampling instant. Both lights are switched in
case timeout is true otherwise they retain their values (Fig. 1 (c)).

3 Contracts in Simulink

Simulink diagrams for advanced control systems can contain thousands of blocks.
For example, in the system discussed in [9], the controller contains more than
4000 blocks. To effectively manage the complexity of such large models, there is
a need to better make explicit the division of responsibility between subsystems.
To make verification scalable, it is also useful to reason about the interaction
between subsystems at a higher level of abstraction than their detailed content,
which often consist of deep hierarchies of diagrams containing hundreds of blocks.

294 P. Boström

contract :
parameters : (c : t)+
inports : (u : t)+
outports : (y : t)+
memory : (x : t)+
paramcondition : Qparam

precondition : Qpre

postcondition : Qpost

initicondition : Qinit

postconditionm : Qpostm

refrel : Qrefrel

end

contract :
inports :
timeout : boolean
outports :
light1 : boolean ;
light2 : boolean
memory :
s : boolean

postcondition :
∼ light1 || ∼ light2

postconditionm :
s′ == if timeout then ∼s

else s end
initcondition :
s == false
refrel :
s == v.(LS1/ls) &&
v.(LS2/ls) ∼= v.(LS1/ls)
end

(a) (b)

Fig. 2. (a) The abstract syntax of contracts and (b) an example contract that describes
the traffic light controller subsystem

Our proposed solution to the problems above is to use contracts to describe
subsystems. This enables verifying subsystem hierarchies one layer at the time,
where each layer relies on the contract descriptions of the subsystems in the layer
below. The contracts are mainly intended for expressing properties of control
logic. System level properties such as, e.g. stability and performance, are best
handled by other means.

An (atomic) subsystem can essentially be considered to be a block of the
form in (1), where the internal diagram implements f and g and the state x is
provided by the memories of the blocks inside the subsystem. A contract contains
conditions to describe this type of behaviour. Our proposed contracts have the
abstract syntax given in Fig. 2 (a). There c, u, y and x are identifiers, t is a type
in the set {double, int, boolean}, z+ denotes one or more occurrences of z and Q
denotes a predicate. The contract first declares the parameters, in- and out-ports
of the subsystem, as well as internal state (specification) variables. These are all
given as lists of identifier-type pairs. The behaviour of the subsystem is described
by a set of conditions. Here Qparam describes the block parameters used in
the subsystem, Qinit describes the initial values of the variables x, Qpre is the
precondition, Qpost is the postcondition constricting the out-ports and Qpostm

the postcondition constricting the new values x′ of x. The specification variables
in the contracts give an abstract view of the block memories inside the subsystem.
The block memories in turn represent the concrete state of the Simulink model.
The condition Qrefrel is then used to describe how the specification variables
relate to block memories. In order to refer to block memories in the internal
diagram, we use a naming scheme based on block naming policy in Simulink
[8]. The contracts here have a similar structure and describe the same type of
behaviour as the ones for reactive components in [16].

To give an idea of how contracts can be used, a contract describing the
functionality of the traffic light system from Section 2 is given in Fig. 2 (b).
A specification variable s is used to model the state of the first light. The

Contract-Based Verification of Simulink Models 295

initialisation of this light is here assumed to be red (false). The postconditions
then encode the desired behaviour of the controller. Both lights should not be
green (true) at the same time. Note that for brevity the postcondition does not
consider that the output depends on s. The refinement relation then describes
how the memory in the Unit delay-blocks in the subsystems LS1 and LS2 relate
to s. Here a function v is used to map block memories to variable identifiers.
This mapping is discussed more in Section 6. The concrete syntax used in the
contract conditions is inspired by the syntax of Matlab expressions [8].

4 Synchronous Data Flow Graphs

The goal is to verify functional correctness of Simulink models with respect
to contracts. Program analysis for sequential programs have been studied ex-
tensively, e.g., [3,4]. To reuse this work, we translate the Simulink diagrams
to functionally equivalent sequential programs. Furthermore, this allows us to
also handle imperative constructs from Matlab, which are often used in con-
junction with Simulink. To obtain such sequential programs from Simulink dia-
grams, we represent the diagrams as synchronous data flow (SDF) graphs [15,14]
since compilation of such graphs to sequential or parallel code has been studied
extensively.

A data flow program is described by a directed graph where data flows be-
tween nodes along the edges. Synchronous data flow programs are a special case
where the communication between nodes is synchronous, i.e., the size of the
communication buffers is known in advance. The paradigm in [15,14] is intended
for heterogenous systems where the nodes can be implemented either by other
data flow graphs or in some other programming notation. A node can produce a
new value on its outgoing edges when data is available on all incoming edges. A
node with no incoming edges can fire at any time. Nodes have to be side-effect
free. The data flow graphs presented here are used for sampled signal processing
systems, i.e., the nodes in the diagrams are executed periodically with a fixed
sampling rate. Furthermore, the SDF programs are never supposed to terminate.

We use a similar notation as in [15,14] to describe our synchronous data flow
graphs. An example is given in Fig. 3. The program computes the (exponential)
moving average v of the input u over time, v.k = aw.k + (1 − a)D.v.k. Here
D.v.k denotes the delay of v with one sampling time, D.v.k = v.(k − 1).

Each node is labelled with the in- and out-port names, as well as the update
statement inside the node that describes how the out-ports are modified each
time the node is executed. The triangle shaped nodes are input or output nodes.
They are used to model input and output of data from outside of the graph.
The input blocks are assumed to always have data available [15]. The number
n on an edge adjacent to the source node denotes that the node will output n
pieces of data, while the number m near the destination node denotes that the
block will read m pieces of data when it fires. This gives a convenient way to also
handle multi-rate data flow networks. Since we only consider single-rate graphs
here, n and m are always 1. The D on an edge denotes that the edge delays the
data by one sampling time. Each delay also has an identifier, here d.

296 P. Boström

u y1 1
u1

u2
y:=u1+u2 y

1

y:=(1−a)*u
y

11 1
u

1

1

1
u

y

source sinksumgain1

gain2

y:=w v:=u

D − d

y:=a*u

Fig. 3. Example of a simple SDF program

The nodes in the SDF graph can be statically scheduled to obtain sequential
or parallel programs [15]. Here we will only present the algorithm [15] for obtain-
ing a minimal periodic admissible sequential schedule (PASS), which represents
the shortest repeating sequential program. To describe the scheduling, we first
construct a topology matrix for the SDF graph. This matrix describes how the
data availability on the edges change during the execution of the graph. As an
example, consider the graph G in Fig. 3. We first number the nodes using a
function nn and edges using ne according to:

nn.source = 1
nn.gain1 = 2
nn.sum = 3
nn.gain2 = 4
nn.sink = 5

and

ne.(source, gain1) = 1
ne.(gain1, sum) = 2
ne.(gain2, sum) = 3
ne.(sum, gain2) = 4
ne.(sum, sink) = 5

The element (ne.e, nn.n) of the topology matrix Γ for G in Fig. 3 then describes
how many data items node n produces on edge e when it fires.

Γ =

⎡⎢⎢⎢⎣
1 −1 0 0 0
0 1 −1 0 0
0 0 −1 1 0
0 0 1 −1 0
0 0 1 0 −1

⎤⎥⎥⎥⎦ (2)

The node n run at step k is specified with a vector v.k that contains 1 in the
position given by the number nn.n and 0 elsewhere. For example, if the node
source is run then v.k is v.k =

[
1 0 0 0 0

]T . Using the vector v.k for the node
executed at step k, the amount of data on the edges at step k + 1, b.(k + 1), is
now given as:

b.(k + 1) = b.k + Γv.k (3)

The change to the buffers is given as the product of the topology matrix and the
current v.k. The initial amount of data on an edge is given by the number of de-
lays on the edge. For the graph G, the initial state is given by b.0 =

[
0 0 0 1 0

]T .
The vectors q in the null-space1 of Γ then give the number of times the nodes
can be executed in order to return the buffers to the initial state.

b.0 = b.0 + Γq (4)
1 The null-space of a matrix A is the set of all vectors q, such that Aq = 0.

Contract-Based Verification of Simulink Models 297

In case the graph is schedulable, the least [15], non-zero, integer vector in the
null-space of Γ gives the number of times each node is executed in the minimal
PASS. This gives an algorithm for scheduling the nodes.

1. Find the smallest integer vector q in the null-space of Γ
2. Construct a set S of all nodes in the graph
3. For each α ∈ S, schedule α if it is runnable and then update the state b.(k+1)

in (3) according to v for α. A node is runnable if it has not yet been run qα

times and if execution of α does not make any bi.(k + 1) in (3) negative.
4. If each node α is scheduled qα times, then stop
5. If no node in S can be scheduled, return error else go to step 3.

5 The Sequential Language

The computation inside nodes is described with a simple imperative program-
ming language. This language is also the target language when translating the
SDF graph to a sequential program. The focus is here on verification and a
language designed for this purpose is therefore used [3].

Since the analysis methods are based on the refinement calculus [3], a short
introduction is needed. Each program statement is a predicate transformer from
predicates on the output state space to predicates on the input state space. A
predicate transformer S applied to a predicate q gives the weakest predicate
describing the states from where S is guaranteed to establish q. The syntax of
the statement language is given as:

S ::= x := E (Assignment) |
[g] (Assumption) |
{g} (Assertion) |

x : |P (Non− deterministic assignment) |
S1; S2 (Sequential composition) |
S1 � S2 (Non− deterministic choice)

(5)

Here x is a list of variables, E a list of expressions, while g and P are predicates.
For an arbitrary postcondition q we have that:

(x := E).q = q[x/E]
[g] .q = g ⇒ q
{g}.q = g ∧ q

x : |P (x, x′).q = ∀x′ · P (x, x′)⇒ q[x/x′]
(S1; S2).q = S1.(S2.q)
(S1 � S2).q = S1.q ∧ S2.q

(6)

Each statement is thus a predicate transformer that transforms a post-condition
q into the weakest precondition for the statement to establish condition q. A
statement S terminates properly, if it is executed in a state where it can reach the
weakest post-condition true. These states are described by the condition S.true,
which is referred to as the termination guard of S, t.S =̂ S.true. In states where
S.true does not hold the statement is said to abort. A statement S is said to
behave miraculously, if executed in a state where S.false holds. The statement
S can then establish any post-condition. The condition that describes the states
where S will not behave miraculously is called the guard of S, g.S =̂ ¬S.false . All
statements in (5) are monotonic [3]. A statement S is monotonic, if it preserves
the ordering given by implication: S.q ⇒ S.p, if q ⇒ p.

298 P. Boström

A refinement relation � can be defined for the predicate transformers: S �
R =̂ ∀q ·S.q ⇒ R.q. This relation states that if S can establish a postcondition
q, then q can also be established by R. Since all statements are monotonic,
refinement of an individual statement in a program leads to the refinement of
the whole program [3]. We can also introduce the concept of data refinement.
Data refinement is used when two programs do not necessarily work on the
same state-space and we like to prove that one refines the other. To prove the
refinement, we use a decoding statement Δ that maps the concrete state space
to the abstract state space [1,4]. Data refinement of S by R under decoding Δ,
S �Δ R, is defined as: S �Δ R =̂ Δ; S � R; Δ. The decoding Δ is normally
assumed to have the form Δ =̂ {+a− c|Q} [1], where {+a− c|Q} denotes non-
deterministic angelic assignment that removes the concrete variables c from the
state space and adds the abstract variables a to the state space in manner such
that Q relates a and c [1]. An angelic relational assignment statement has the
semantics: {+a− c|Q}.q = ∃a′ ·Q[a/a′] ∧ q[a/a′] (see [1,4]).

Due to the quantification over predicates, the formulation of refinement above
is not very convenient to use. We here use a condition that allows generation of
proof obligations for refinement in first order logic when the abstract statement
has a specific format, S = {g}; a, z : |P . Using Δ = {+a− c|Q}, rule (7) can be
used to prove S �Δ R, see [1].

Q ∧ g ∧ z, a = z0, a0 ⇒ R.(∃a′ ·Q[a/a′] ∧ P [a, a′, z, z′/a0, a
′, z0, z]) (7)

Here a again denotes the abstract variables, c denotes the concrete variables and
z common variables. The intuition is that if the precondition g holds in the ab-
stract initial state then the concrete statement R will reach a state corresponding
to an abstract state reachable by a, z : |P .

Simulink is used to develop control systems, where the interaction of pro-
grams with their environment rather than their input-output behaviour is im-
portant. Hence, we are here interested in reactive systems. Consider two sys-
tems constructed from iteration of statements S and S′, init;do S od and
init′;do S′ do . The behaviour of the systems can then be defined by the traces
of the observable states generated during execution [2]. Data refinement can be
used to show trace refinement [2], init;do S od �tr init′;do S′ do , between
the two systems if they have the same observable state. Hence, that all traces
generated by the concrete system can also be generated by the abstract system.
Assume we have a decoding statement Δ that states how the unobservable state
of the two systems relate. It is then sufficient to prove [2]: Δ; init � init′; Δ
and Δ; S � S′; Δ if S′ is strict, g.S = true. This provides a mechanism to prove
correctness of the system over all executions by only analysing the iterated state-
ments. Note also that the decoding statement can be used to provide essentially
a loop invariant on the observable and concrete state, see (7).

6 Translation of SDF Graphs

An SDF graph can be translated to a functionally equivalent sequential program
by utilising the scheduling in Section 4. Here we will only consider single-rate

Contract-Based Verification of Simulink Models 299

Simulink models. Hence, in the systems we consider all data-rates are one and
there is also at most one delay on each edge. First we need to introduce the
buffers needed for the communication between the nodes. In principle the com-
munication is handled through FIFO-buffers [14]. However, to make the proof
obligations simpler, we would like to have static buffers (shared variables). Due
to the restrictions on delays and data rates, static buffering is straightforward
to implement. All ports and delays are first translated as variables.

Definition 1. Let the function v be an injective function from node and port or
delay to variable identifier. Then v.n.p maps a node n and port p to a unique
identifier, while v.d then maps a delay d to a unique variable identifier.

Using the unique variable identifiers, an SDF graph can be translated to a state-
ment in the imperative programming language in (5).

Definition 2. Let trans be a function from an SDF graph to a sequential state-
ment. The translation trans.G of SDF graph G is obtained as follows:

1. For each node n in G: Each out-port p in n is translated to a unique variable
v.n.p. Each unconnected in-port p in n is also translated to a unique variable
v.n.p.

2. Each delay d is also translated to a unique variable v.d.
3. The sequential statements from the nodes in G are scheduled according to

the algorithm in Section 4.
4. For each delay d on an edge e an update statement v.d := v.n.p, where v.d is

the variable obtained from d and port p in n is the source port of e, is added
after the statements from the source and destination nodes of e.

Since we only consider a special case in this paper, the data is handled as if FIFO-
buffers were used. If there is no delay on an edge, then the required buffer size
is one, since for each data element produced on the edge one will be consumed.
The variable obtained from the out-port then corresponds directly to a buffer
with one element. In case there is one delay on an edge the required buffer size
is two, since both the delayed value and the value produced by the source node
have to fit into the buffer. In this case the delay variable corresponds to the
head of the buffer and the variable obtained from the out-port in the source
node corresponds to the tail element. Fig. 4 illustrates this situation.

Consider the SDF graph G in Fig. 3. This graph is translated to the sequential
statement trans.G given below:

trans.G =̂ v.source.y := v.G.w;
v.gain1.y := a ∗ v.source.y;
v.gain2.y := (1− a) ∗ v.d;
v.sum.y := v.gain1.y + v.gain2.y;
v.d := v.sum.y;
v.G.v := v.sum.y

(8)

The statements are obtained from the nodes and scheduled according to Defini-
tion 2. Here we assume that w and v in the in and out nodes are ports of a node

300 P. Boström

n m

u uy y

D − d

v.n.y v.d

n m

v.n.y

(a) (b)

Fig. 4. (a) The buffer of an edge from n to m without a delay and (b) the buffer of an
edge with one delay d

G that contains the graph. Note that we have directly replaced every in-port
with the out-port variable or delay variable it is connected to.

We can now give a semantics to complete SDF graphs [8], i.e., graphs with
no unconnected inputs. The semantics of a complete SDF graph G is here given
by the traces of observable behaviour of the system obtained from the minimal
PASS, init;do trans.G od . Hence, we can observe the state between repetitions
of shortest repeating program statement. This semantics has been chosen to
match the semantics of discrete single-rate Simulink, where at each sampling
instant the entire model is evaluated.

6.1 Correctness of the Translation

A minimal PASS obtained with the algorithm in Section 4 is not necessarily
unique. In order for the translation from SDF graph to sequential statement to be
correct, all minimal PASS for the same graph should yield functionally equivalent
statements. Different schedules can only be created during scheduling if several
nodes are runnable at the same time, i.e., the nodes are independent. Changing
the order in which the nodes are chosen then corresponds to swapping the nodes
in the resulting schedule. We can thus generate all possible minimal schedules
by repeated pairwise swapping of independent nodes. In order to transform a
minimal PASS into any other, we then have to show that for any two statements
S1 and S2 obtained from two independent nodes, S1; S2 = S2; S1. This does not
hold in general even though statements from independent nodes use disjoint sets
of variables. Consider for example S1 = {false} and S2 = [false]. However,
we have that {g.(S1; S2)}; S1; S2 = {g.(S2; S1)}; S2; S1. Thus for two statements
T1 and T2 obtained from two different PASS for the same SDF graph we have:
{g.T1}; T1 = {g.T2}; T2. Note that when we have a deterministic program T then
it is non-miraculous [3], i.e., g.T = true

7 SDF Graph Representation of Simulink Models

To give a semantics to Simulink models, they are mapped to SDF graphs. Dis-
crete Simulink models consist of graphical data flow diagrams, which are similar
to SDF graphs. However, a Simulink block is not exactly the same as a node in
the SDF notation. In this section we present how to map the most fundamental
blocks to their corresponding SDF representation.

Contract-Based Verification of Simulink Models 301

Simulink: y(k)=f(x(k),u(k))

x(k+1)=g(x(k),u(k))
z

1

SDF:

1

1

1

D

u
x’

x’:=g(u,x)

y
x

x

y:=f(u,x)u

1

1

x:=u

y:=x

x

x
y

u

D
u2
u1

y:=u1+u2 y

(a) (b) (c)

Fig. 5. The SDF representation of (a) a general Simulink block, (b) a Unit delay-block
and (c) a Sum-block

7.1 Mapping Simulink Blocks to Nodes

We can differentiate between the following important Simulink blocks: Func-
tional blocks, In and out blocks and Subsystem blocks.

Functional blocks. These blocks in the Simulink library directly encapsulates a
difference equation. Consider again a Simulink block with the general form in
(1). The implementation of the block as an SDF graph is shown in Fig. 5 (a). The
behaviour of the block is described by two equations, which are not necessarily
executed together. All Simulink functional blocks are then special cases of this
general pattern: consider, e.g., the Unit delay-block and the Sum-block shown
with their SDF representations in Fig. 5 (b) and (c), respectively. Note that we
here only consider Simulink blocks that do not have side effects.

In and out blocks. These blocks are used to obtain inputs from in-ports of the
containing subsystem, as well as export values to the out-ports. In and out blocks
correspond to in and out nodes in the SDF graphs.

Subsystem blocks. Subsystem blocks that are used for structuring Simulink dia-
grams. The diagrams are structured using virtual and atomic subsystem blocks.
Virtual subsystems are only used to syntactically group different blocks together
and they do not have any affect on the behaviour of the Simulink models. Since
execution of blocks from two virtual subsystems might have to be interleaved,
we cannot translate virtual subsystem blocks individually and then compose
the result. To handle this problem, the virtual subsystem hierarchy is flattened
during the translation of the diagrams. This flattening might lead to scalability
problems in the verification, and atomic subsystems should be preferred instead.
The atomic subsystems are mapped to SDF nodes themselves. The content of an
atomic subsystem is translated recursively to an SDF graph, which then become
the content of the SDF node corresponding to the subsystem. Consider an atomic
subsystem S with in-ports u and out-ports y in Fig. 6. Its SDF representation
(denoted sdf.S) is obtained by recursively translating its content.

302 P. Boström

S

u y
y
1

R

v x
u
1

yu sdf.S x
111

v
1

sdf.R

u y

(a) (b)

Fig. 6. (a) A Simulink atomic subsystem S and the corresponding SDF node and (b)
the contents of S and its corresponding SDF representation

u y

D

1

1

1 1 1

1

1
1 1

x’ 1
u x

y

w N v

M

y:=w u v:=u

x′ : |Qpostm

y : |QpostQparam ∧Qpre

Fig. 7. SDF graph obtained from the contract specification of an atomic subsystem

7.2 Mapping a Subsystem Contract Description to an SDF Graph

One goal of the method given in this paper is to use the contract descriptions of
(atomic) subsystems as abstractions of the subsystem behaviours when analysing
models. From the contract description we can directly obtain the most abstract
statement that satisfies the contract. The most abstract statement that satisfies
a specification concerning variables x with precondition Qpre and a postcondition
Qpost, is {Qpre}; x : |Qpost, see [3].

Assume we have subsystem S in Fig. 6 (a), which is described by the contract
C in Fig. 2 (a). We then get the SDF graph representation, sdf.C, shown in
Fig. 7 for the contract. This is the most abstract description of S that can be
used when analysing models where the subsystem is used. Note that this is very
similar to the translation of the general Simulink block in Fig. 5 (a). The reason
is that the contract gives an abstract description of the same type of behaviour.

A functionally equivalent sequential program statement trans.(sdf.C) can now
be obtained. This is again done using the translation procedure in Definition 2.

trans.(sdf.C)] =̂ v.w.y := v.S.w; {Qparam[u/v.w.y] ∧Qpre[u/v.w.y]};
v.N.y : |Qpost[x, u, y/v.d, v.w.y, v.N.y]; v.S.v := v.N.y;
v.M.x′ : |Qpostm[x, u, x′/v.d, v.w.y, v.M.x′′]; v.d := v.M.x′

(9)

As in (8), references to the inports are directly substituted by the variable ob-
tained from the connected outport or delay. Note that again the variables w and
v in the in and out nodes are considered ports in the containing subsystem S.

Contract-Based Verification of Simulink Models 303

8 Verification with Respect to Contracts

In order to do compositional verification of Simulink models, we need to show
that the use of a subsystem implementation instead of its contract description
(Fig. 7) preserves the behaviour, i.e. refines, the complete system. Assume we
have a Simulink model M containing an atomic subsystem M with contract C.
The semantics of the Simulink model is given by the translation to sequential
statements. The abstract statement obtained from the modelM where M is used
can be written as trans.(sdf.M) =̂ S1; trans.(sdf.C)[v.M.pi/v.(conn.pi)]; S2. The
concrete statement is then given as trans.(sdf.M′) =̂ S1; trans.(sdf.M)[v.M.pi/
v.(conn.pi)]; S2. In the complete translation all connected in-ports of M are re-
placed by the port or block memory they are connected to (see Section 6).
This is here denoted with the substitution [v.M.pi/v.(conn.pi)], where pi are in-
ports of subsystem M and conn.pi denotes the out-ports or delays those ports
are connected to. According to Section 5, in order to prove trace refinement
init;do trans.(sdf.M) od �tr init′;do trans.(sdf.M′) od it is sufficient to
prove data refinement of the initialisation and the statement inside the loop.
The observable state is considered to be all variables except the ones internal to
subsystem M and contract C. For the statement we thus need to prove:

Δ; S1; trans.(sdf.C)[v.M.pi/v.(conn.pi)]; S2

 S1; trans.(sdf.M)[v.M.pi/v.(conn.pi)]; S2; Δ
(10)

Since the refinement only concerns the internals of M , the decoding Δ refers only
to the internal variables of trans.(sdf.C) and trans.(sdf.M). Here it has the form
Δ =̂ {−v.bn.pn, v.dn + v.x, v.bo.po|Qrefrel}, where pn denotes the new out-ports,
po denotes old out-ports, dn denotes new delays obtained from Simulink block
memories and x denotes specification variables in contract C. Recall that Qrefrel

(see Fig. 2 (b)) is a predicate that relates the specification variables in contract
C with the block memories and specification variables in the diagram inside M .

Since the variables of Δ and S1, as well as Δ and S2 are disjoint, we have that
Δ; S1 � S1; Δ and Δ; S2 � S2; Δ. To prove (10) we then need to show that:

Δ; trans.(sdf.C) � trans.(sdf.M); Δ (11)

Proof.

Δ; S1; trans.(sdf.C)[v.M.pi/v.(conn.pi)]; S2

 {Assumption above}
S1; Δ; trans.(sdf.C)[v.M.pi/v.(conn.pi)]; S2

= {v.M.pi, v.(conn.pi) not free in Δ}
S1; (Δ; trans.(sdf .C))[v.M.pi/v.(conn.pi)]; S2

 {Assumption (11) and v.(conn.pi) not free in trans.(sdf.M)}
S1; (trans.(sdf.M); Δ)[v.M.pi/v.(conn.pi)]; S2

= {v.M.pi, v.(conn.pi) not free in Δ}
S1; trans.(sdf .M); [v.M.pi/v.(conn.pi)]; Δ; S2

 {Assumption above}
S1; trans.(sdf .M)[v.M.pi/v.(conn.pi)]; S2; Δ

�$

304 P. Boström

Note also that if all subsystems are implemented as deterministic diagrams,
then the corresponding statements do not behave miraculously [3]. The SDF
graph obtained from the Simulink model is thus non-terminating, which is the
requirement for correct translation stated in Subsection 6.1.

8.1 Tool Support

Prototype tool support for this approach has been developed [8]. The tool takes a
Simulink model annotated by contracts written down as text in the Description-
field of the subsystems as argument. The tool then automatically checks that
each atomic subsystem (with a contract) satisfies its contract using the approach
described in this paper. Currently the tool supports virtual, atomic and enabled
subsystems, a wide variety of mathematical and logical blocks, delay and memory
blocks, as well as switch blocks. However, this list of handled Simulink constructs
is expanding. To prove (11), the final proof obligation is after simplifcations gen-
erated using formula (7). To increase scalability when verifying that a subsystem
conforms to its contract, the verification tool uses the abstractions given by the
contract descriptions of the subsystems at lower levels in the subsystem hierar-
chy as discussed earlier. We have used the SMT solver Z3 [13] to automate the
proofs. The constructs that are supported (e.g. the types of arithmetic) and the
scalability of the verification is thus largely dependent on this tool.

8.2 Example of Subsystem Refinement

To give an example of the translation of Simulink models and the analysis meth-
ods, the simple traffic light controller from Section 2 is used. The subsystem,
TLC, implementing the controller is shown in Fig. 1 (a). The contract C associ-
ated with the subsystem is given in Fig. 2 (b). The contract specification of the
subsystem is translated to a sequential program statement as described in (9):

trans.(sdf.C) =̂
v.Timeout .y := v.TLC.timeout;
v.N .light1, v.N .light2 : |¬v.N .light1′ ∨ ¬v.N .light2′;
v.TLC .light1 := v.N .light1; v.TLC .light2 := v.N .light2;
v.M.s′ : |v.M.s′′ = if v.Timeout .y then ¬v.s else v.s end; v.s := v.M.s′

The statement above should then be refined by the translation of the diagram
inside the subsystem TLC, which is shown in Fig. 1 (b). One possible translation
of the diagram is then given as:

trans.(sdf .TLC) =̂ trans.(sdf.LS1)[v.LS1 .timeout/v.TLC .timeout];
trans.(sdf.LS2)[v.LS2 .timeout/v.TLC .timeout];
v.TLC .light1 := v.LS1.light;
v.TLC .light2 := v.LS2.light;

The translation proceeds recursively through subsystems LS1 and LS2. In case
they would have contracts, their contract description would be used in the trans-
lation. The block memories from the unit delay blocks in LS1 and LS2 relate to
the specification variable s as described by Qrefrel in Fig. 2 (b). The refinement
rule (11) for subsystem refinement leads to the condition:

Contract-Based Verification of Simulink Models 305

{−v.(LS1/ls), v.(LS2/ls), . . . + v.s, . . . |Qrefrel}; trans.(sdf.C)

 trans.(sdf.TLC); {−v.(LS1/ls), v.(LS2/ls), . . . + v.s, . . . |Qrefrel}
The tool we have developed [8] has been used to verify this refinement. When-
ever subsystem TLC is used in a model we can now use the simpler contract
description when analysing the rest of the model. Since we have property (10)
and we proved property (11) above, the behaviour of the complete model when
the internal diagram of the subsystem is used will refine the behaviour of the
model when contract description is used.

9 Conclusions

This paper presents one approach to automatically verify that Simulink models
satisfy contracts stating functional properties. The method is based on repre-
senting Simulink diagrams as SDF graphs to obtain a functionally equivalent
sequential program statements that can be analysed using traditional refinement-
based methods. This gives an approach to compositionally verify large models.
As a by-product, we also obtain a method for contract-based verification for any
SDF-based notation. The approach has also been implemented in a tool [8].

Other formalisations of Simulink supported by verification tools exist in Lustre
[19] and Circus [12]. However, these approaches do not consider compositional,
contract-based, verification. Contracts could be analysed in those frameworks
also, but our approach gives a convenient way to separately reason about both
pre- and post-conditions, as well as refinement. Our method can also easily han-
dle the imperative constructs from Matlab that are often used in conjunction
with Simulink, which would problematic in Lustre. The tool with the goals closest
to ours is Simulink Design Verifier (SLDV) [17]. This tool can verify that dis-
crete Simulink models satisfy properties given as special blocks in the diagrams.
However, it does not provide a method to systematically build correctness argu-
ments for large models as we do with contracts. SLDV verifies that from a given
initial state a state violating the given properties cannot be reached, while our
approach is an inductive argument stating that if we start from a state satisfying
the refinement relation the model will again end up in such a state and behave
according to the contract description. Furthermore, SDLV cannot handle non-
linear arithmetic, which Z3 can handle to some degree. This makes it limited for
verification of complex properties involving arithmetic. Its main focus is perhaps
also more on verifying control logic that involves Stateflow [17].

The work can extended in several directions. Multi-rate systems and more
of the Simulink modelling language should be considered. SDF graphs already
support multi-rate systems. However, the SDF multi-rate notion does not di-
rectly correspond to the one in Simulink. Boogie [5] should also be investigated
as a tool for automatic verification of the sequential statements obtained by our
translation process, since it is already a very mature tool for this purpose. As
a conclusion, SDF graphs in conjunction with the theory of refinement seem
to give a good basis for contract-based verification of Simulink models, since
mature automatic verification tools and techniques can be used.

306 P. Boström

References

1. Back, R.-J.R., von Wright, J.: Refinement calculus, part I: Sequential nondeter-
ministic programs. In: de Bakker, J.W., de Roever, W.-P., Rozenberg, G. (eds.)
REX 1989. LNCS, vol. 430, pp. 42–66. Springer, Heidelberg (1990)

2. Back, R.-J.R., von Wright, J.: Trace refinement of action systems. In: Jonsson, B.,
Parrow, J. (eds.) CONCUR 1994. LNCS, vol. 836, pp. 367–384. Springer, Heidel-
berg (1994)

3. Back, R.-J.R., von Wright, J.: Refinement Calculus: A Systematic Introduction.
Springer, Heidelberg (1998)

4. Back, R.-J.R., von Wright, J.: Encoding, decoding and data refinement. Formal
Aspects of Computing 12, 313–349 (2000)

5. Barnett, M., Chang, B.Y.E., Deline, R., Jacobs, B., Leino, K.R.M.: Boogie: A mod-
ular reusable verifier for object-oriented programs. In: de Boer, F.S., Bonsangue,
M.M., Graf, S., de Roever, W.-P. (eds.) FMCO 2005. LNCS, vol. 4111, pp. 364–387.
Springer, Heidelberg (2006)

6. Barnett, M., Fähndrich, M., Leino, K.R.M., Müller, P., Schulte, W., Venter, H.:
Specification and verification: The Spec# experience. Communications of the
ACM 54(6) (2011)

7. Boström, P.: Formal design and verification of systems using domain-specific lan-
guages. Ph.D. thesis, Åbo Akademi University (TUCS) (2008)

8. Boström, P., Grönblom, R., Huotari, T., Wiik, J.: An approach to contract-based
verification of Simulink models. Tech. Rep. 985, TUCS (2010)

9. Boström, P., Linjama, M., Morel, L., Siivonen, L., Waldén, M.: Design and val-
idation of digital controllers for hydraulics systems. In: The 10th Scandinavian
International Conference on Fluid Power, pp. 227–241 (2007)

10. Boström, P., Morel, L., Waldén, M.: Stepwise Development of Simulink Models
Using the Refinement Calculus Framework. In: Jones, C.B., Liu, Z., Woodcock, J.
(eds.) ICTAC 2007. LNCS, vol. 4711, pp. 79–93. Springer, Heidelberg (2007)

11. Burdy, L., Cheon, Y., Cok, D., Ernst, M., Kiniry, J., Leavens, G.T., Leino, K.R.M.,
Poll, E.: An overview of JML tools and applications. International Journal on
Software Tools for Technology Transfer 7(3), 212–232 (2005)

12. Cavalcanti, A., Clayton, P., O’Halloran, C.: Control law diagrams in circus. In:
Fitzgerald, J.S., Hayes, I.J., Tarlecki, A. (eds.) FM 2005. LNCS, vol. 3582, pp.
253–268. Springer, Heidelberg (2005)

13. de Moura, L., Bjørner, N.: Z3: An efficient SMT solver. In: Ramakrishnan, C.R.,
Rehof, J. (eds.) TACAS 2008. LNCS, vol. 4963, pp. 337–340. Springer, Heidelberg
(2008)

14. Lee, E.A., Messerschmitt, D.G.: Static scheduling of synchronous data flow pro-
grams for digital signal processing. IEEE Trans. on Computers C-36(1) (1987)

15. Lee, E.A., Messerschmitt, D.G.: Synchronous data flow. Proceedings of the
IEEE 75(9) (1987)

16. Maraninchi, F., Morel, L.: Logical-time contracts for reactive embedded compo-
nents. In: EUROMICRO 2004. IEEE Computer Society, Los Alamitos (2004)

17. Mathworks Inc.: Simulink (2010), http://www.mathworks.com
18. Meyer, B.: Object-Oriented Software Construction, 2nd edn. Prentice-Hall, Engle-

wood Cliffs (1997)
19. Tripakis, S., Sofronis, C., Caspi, P., Curic, A.: Translating discrete-time Simulink

to Lustre. ACM Trans. on Embedded Computing Systems 4(4), 779–818 (2005)

http://www.mathworks.com

S. Qin and Z. Qiu (Eds.): ICFEM 2011, LNCS 6991, pp. 307–322, 2011.
© Springer-Verlag Berlin Heidelberg 2011

Exploiting Abstraction for Efficient Formal Verification
of DSPs with Arrays of Reconfigurable Functional Units*

Miroslav N. Velev** and Ping Gao

Aries Design Automation
miroslav.velev@aries-da.com
http://www.miroslav-velev.com

Abstract. We compare two approaches for efficient formal verification of the
integration of pipelined processor cores with arrays of reconfigurable functional
units. The processors are modeled at a high level of abstraction, using a subset
of Verilog, in a way that allows us to exploit the property of Positive Equality
that results in significant simplifications of the solution space, and orders of
magnitude speedup relative to previous methods. The presented techniques al-
low us to formally verify the integration of pipelined processors, including
complex Digital Signal Processors (DSPs), with arrays of reconfigurable func-
tional units of any size, where the reconfigurable functional units have any de-
sign, and for any topology of the connections between them. Such architectures
are becoming increasingly used because of their much higher performance and
reduced power consumption relative to conventional processors. One of the
compared two approaches, which abstracts the entire array of reconfigurable
functional units, results in at least 3 orders of magnitude speedup relative to the
other approach that models the exact number of reconfigurable functional units
and abstracts the design of each and the network that connects them, such that
the speedup is increasing with the size of the array. To the best of our know-
ledge, this is the first work on automatic formal verification of pipelined pro-
cessors with arrays of reconfigurable functional units.

1 Introduction

Many reconfigurable processor architectures have been proposed—see [19] for a
detailed discussion of several. Semiconductor companies are increasingly using re-
configurable processors [4, 5, 12, 13, 15], because of their much higher performance
and reduced power consumption relative to conventional processors. Efficient formal
verification of such processors is a challenge.

The contribution of this paper is a method for efficient formal verification of pipe-
lined processors with arrays of reconfigurable functional units. The presented abstrac-
tion techniques allow us to formally verify the integration of pipelined processor
cores with arrays of reconfigurable functional units, where the arrays can have any
size, and the reconfigurable functional units any design and any topology of the con-
nections between them. The resulting techniques can be viewed as design for formal

* This research was partially funded by the U.S. NSF and NASA.
** Corresponding author.

308 M.N. Velev and P. Gao

verification, and produce at least 3 orders of magnitude speedup, which is increasing
with the number of reconfigurable functional units in the array.

In this paper we formally verify variants of the ADRES reconfigurable architecture
[22] with increasing numbers of reconfigurable functional units in their arrays. The
processors are modeled at a high level of abstraction, using a subset of Verilog, in a
way that allows us to exploit the property of Positive Equality to achieve significant
simplifications of the solution space, and orders of magnitude speedup relative to pre-
vious methods. Correctness is proved with Correspondence Checking [9, 30, 44]—a
highly automatic method for formal verification of pipelined/superscalar/VLIW im-
plementation processors by comparison with a non-pipelined specification, based on
an inductive correctness criterion and symbolic simulation. This approach is exhaus-
tive, in contrast to assertion-based formal verification, where many properties are
proved without guaranteeing that they cover all possible execution scenarios.

Every time the design of computer systems has shifted to a higher level of abstrac-
tion, productivity has increased. The logic of Equality with Uninterpreted Functions
and Memories (EUFM) [9] allows us to abstract functional units and memories, while
completely modeling the control of a processor. In our earlier work on applying
EUFM to formal verification of pipelined and superscalar processors, we imposed
some simple restrictions [29, 30] on the modeling style for defining such processors,
resulting in correctness formulas where most of the terms (abstracted word-level val-
ues) appear only in positive equations (equality comparisons) that are called p-
equations. Such terms, called p-terms (for positive terms), can be treated as distinct
constants [7], thus significantly pruning the solution space, and resulting in orders of
magnitude speedup of the formal verification; this property is called Positive Equal-
ity. The speedup from Positive Equality is at least 5 orders of magnitude for elaborate
dual-issue superscalar designs, and increases with the complexity of the microproces-
sor under formal verification [44]. On the other hand, equations that appear in nega-
tive polarity, or in both positive and negative polarity, are called g-equations (for
general equations), and their arguments g-terms. G-equations can be either true or
false, and can be encoded with Boolean variables [16, 25, 36, 48] by accounting for
the property of transitivity of equality [8], when translating an EUFM correctness
formula to an equivalent Boolean formula.

The modeling restrictions and the resulting scalability, together with techniques to
model multicycle functional units, exceptions, and branch prediction [31], allowed an
earlier version of our tool flow to be used to formally verify a model of the M•CORE
processor at Motorola [20], and detect three bugs, as well as corner cases that were
not fully implemented. We also applied this method to formally verify an out-of-order
superscalar processor, where the reorder buffer could hold up to 1,500 instructions in
various stages of execution, and the issue and retire logic could dispatch and com-
plete, respectively, up to 128 instructions per clock cycle [34]. A VLIW processor
imitating the Intel Itanium [18, 27] in many features, and that could have more than
200 RISC-like instructions in execution, was formally verified in [32, 44]. Techniques
to formally verify pipelined processors with data-value prediction were presented
in [46], and with delayed branches in [47]. An efficient method for debugging in
Correspondence Checking was proposed in [49]. An approach for automatic formal
verification of pipelined processors with hardware mechanisms for soft-error
tolerance [6, 11] was presented in [50].

 Exploiting Abstraction for Efficient Formal Verification 309

Our tool flow consists of: 1) a symbolic simulator for a subset of Verilog, used to
symbolically simulate a pipelined, or superscalar, or VLIW implementation processor
and its non-pipelined specification, and produce an EUFM correctness formula; 2) a
decision procedure for the logic of EUFM that exploits Positive Equality and other
optimizations to translate the EUFM correctness formula to a satisfiability-equivalent
Boolean formula; and 3) an efficient Boolean Satisfiability (SAT) solver.

Recent dramatic improvements in SAT-solvers [17, 23, 24, 26] significantly sped
up the solving of Boolean formulas generated in formal verification of microproces-
sors. However, as found in [35], the new efficient SAT-solvers would not have scaled
for solving these Boolean formulas if not for the property of Positive Equality. Effi-
cient translations to CNF [37, 38, 40 – 43], exploiting the special structure of EUFM
formulas produced with the modeling restrictions, resulted in additional speedup of 2
orders of magnitude.

2 Background

2.1 Using Positive Equality to Formally Verify Pipelined Processors

We use a two-step methodology for formal verification of pipelined, superscalar, or
VLIW processors. In step one, all functional units and memories are formally verified
individually, in isolation from the rest of the processor. We assume that this step is
already performed when the individual modules are implemented; the technology for
formal verification of individual functional units and memories is very mature, and is
already used in industry. In step two, which is the focus of this paper, we prove that
the correct functional units and memories are integrated correctly with control
mechanisms in a processor pipeline in a way that preserves the sequential instruction
semantics during the concurrent execution of any combination of instructions from
any possible state.

For step two above, we perform formal verification by Correspondence Checking
—comparing a pipelined implementation against a non-pipelined specification, using
controlled flushing [10] to automatically compute an abstraction function, Abs, that
maps an implementation state to an equivalent specification state. The safety property
(see Fig. 1) is expressed as a formula in the logic of EUFM, and checks that one step
of the implementation corresponds to between 0 and k steps of the specification,
where k is the issue width of the implementation, i.e., the maximum number of in-
structions that an implementation processor can start executing in a clock cycle; k > 1
in superscalar processors. FImpl is the transition function of the implementation, and
FSpec is the transition function of the specification. We will refer to the sequence of
first applying Abs and then FSpec as the specification side of the diagram in Fig. 1, and
to that of first applying FImpl and then Abs as the implementation side.

The safety property is the inductive step of a proof by induction, since the initial
implementation state, QImpl, is completely arbitrary. If the implementation is correct
for all transitions that can be made for one step from an arbitrary initial state, then the
implementation will be correct for one step from the next implementation state, QImpl,
since that state will be a special case of an arbitrary state as used for the initial state,
and so on for any number of steps. For some processors, e.g., where the control logic

310 M.N. Velev and P. Gao

is optimized by using unreachable states as don’t-care conditions, we might have to
impose a set of invariant constraints for the initial state, QImpl, in order to exclude
unreachable states. Then, we need to prove that those constraints will be satisfied in
the implementation state after one step, QImpl, so that the correctness will hold by
induction for that state, and so on for all subsequent states. The reader is referred to
[39, 45] for efficient ways to prove liveness of pipelined processors, and to [1, 2] for a
discussion of correctness criteria. We can prove liveness by a modified version of the
safety correctness criterion [39, 45].

FImpl

FSpec

Abs

QImpl

Abs

Q Impl

Q Spec

equalityk

Q0
Spec

equality1

=

equality0 equality1 . . . equalityk = true
Safety property:

FSpec FSpec

equality2

. . .

k steps

1 step

equality0

=

= =

Q1
Spec Q2

Spec Qk
Spec

. . .

Fig. 1. The safety correctness property for an implementation processor with issue width k: one
step of the implementation should correspond to between 0 and k steps of the specification,
when the implementation starts from an arbitrary initial state QImpl that is possibly restricted by
a set of invariant constraints

The syntax of EUFM [9] includes terms and formulas. Terms are used to abstract
word-level values of data, register identifiers, memory addresses, as well as the entire
states of memories. A term can be an Uninterpreted Function (UF) applied to a list
of argument terms, a term variable, or an ITE operator selecting between two argu-
ment terms based on a controlling formula, such that ITE(formula, term1, term2) will
evaluate to term1 when formula = true, and to term2 when formula = false. The syntax
for terms can be extended to model memories by means of functions read and write
[9, 33]. Formulas are used to model the control path of a processor, as well as to
express a correctness condition. A formula can be an Uninterpreted Predicate (UP)
applied to a list of argument terms, a Boolean variable, an ITE operator selecting
between two argument formulas based on a controlling formula, or an equation
(equality comparison) of two terms. Formulas can be negated and combined with
Boolean connectives. We will refer to both terms and formulas as expressions. If we
exclude functions read and write from the syntax of EUFM, we obtain the logic of
Equality with Uninterpreted Functions.

 Exploiting Abstraction for Efficient Formal Verification 311

UFs and UPs are used to abstract the implementation details of functional units by
replacing them with “black boxes” that satisfy no particular properties other than that
of functional consistency. Namely, that equal combinations of values to the inputs of
the UF (or UP) produce equal output values. Thus, we will solve a more general prob-
lem—proving that the processor is correct for any functionally consistent implemen-
tation of its functional units. However, this more general problem is easier to solve.

Function read takes two argument terms serving as memory state and address, re-
spectively, and returns a term for the data at that address in the given memory. Func-
tion write takes three argument terms serving as memory state, address, and data, and
returns a term for the new memory state. Functions read and write satisfy the for-
warding property of the memory semantics: read(write(mem, waddr, wdata), raddr) is
equivalent to ITE((raddr = waddr), wdata, read(mem, raddr)).

We classify the equations that appear negated as g-equations (for general equa-
tions), and as p-equations (for positive equations) otherwise. We classify all terms
that appear as arguments of g-equations as g-terms (for general terms), and as p-terms
(for positive terms) otherwise. We classify all applications of a given UF as g-terms if
at least one application of that UF appears as a g-term, and as p-terms otherwise.

In [29, 30], the style for modeling high-level processors was restricted in order to
increase the terms that appear only in positive equations or as arguments to UFs and
UPs, and reduce the terms that appear in both positive and negated equations. First,
equations between data operands, where the result appears in both positive and ne-
gated polarity—e.g., determining whether to take a branch-on-equal instruction—are
abstracted with a new UP in both the implementation and the specification. Second,
the Data Memory is abstracted with a conservative model, where the interpreted func-
tions read and write are replaced with new UFs, DMem_read and DMem_write, re-
spectively, that do not satisfy the forwarding property. This property is not needed, if
both the implementation and the specification execute the same sequence of opera-
tions that are not stalled based on conditions that depend on equations between ad-
dresses for that memory [33]. The property of functional consistency of UFs and UPs
can be enforced by Ackermann constraints [3], or nested ITEs [28]. In our decision
procedure, we use nested ITEs, because this translation method allows us to treat
more terms as p-terms, and thus to exploit Positive Equality more fully [7].

The modeling restrictions result in a monotonically positive structure of the
correctness formula that contain p-equations and applications of UFs and UPs. Such
formulas have to be valid for any interpretation of the p-terms, including the maxi-
mally diverse interpretation, where each p-term is replaced with a distinct constant.
However, because of the monotonically positive structure of a correctness formula, its
validity under a maximally diverse interpretation of the p-terms implies the validity of
the formula under any interpretation of the p-terms. The resulting property of Positive
Equality produces a significant pruning of the solution space, and orders of magnitude
speedup. The focus of the current paper is how to exploit Positive Equality to
efficiently formally verify complex pipelined processors with large arrays of recon-
figurable functional units.

2.2 Abstracting a Single Reconfigurable Functional Unit

In our recent work [51], we proposed a method to abstract a single reconfigurable
functional unit with the placeholder shown in Fig. 2.

312 M.N. Velev and P. Gao

Present_Conf_State

Data Op Conf_Command

Next_State
(UF)

Reconf

(UF)
ALU

Result

re
g

Fig. 2. Placeholder for abstracting one reconfigurable functional unit

The entire state of the configuration memory that stores the configuration contexts
of this functional unit was abstracted with one term stored in the latch Pre-
sent_Conf_State. The next state of that latch was produced by UF Next_State that takes
as inputs the present state of the latch and term Conf_Command that abstracts the cur-
rent configuration command. Depending on the ISA, the latch that abstracts the pre-
sent state of the configuration memory could be updated conditionally, based on an
enable signal (not shown in the figure) produced by the decoding logic of the proces-
sor. UF Reconf ALU abstracts the computation of a word-level result as a function of
the current state of the configuration memory, the input data term (there can be as
many input data terms as required for the given reconfigurable functional unit), and
the opcode term Op that is assumed to specify both the computation to be performed
and the configuration context to be used from the configuration memory.

If a reconfigurable functional unit produces several word-level or bit-level output
values, the computation of each will be abstracted with a different UF or UP, respec-
tively, that all have the same inputs. For a given reconfigurable functional unit, the
same placeholder (consisting of UFs and UPs with the same names for the computa-
tion of the results and the next state of the configuration memory) is used to abstract
that reconfigurable functional unit in both the pipelined/superscalar/VLIW implemen-
tation processor and the non-pipelined specification.

2.3 The ADRES Reconfigurable Architecture

In the ADRES reconfigurable architecture [22] (see Fig. 3.a), a VLIW processor core
interacts with an array of reconfigurable functional units. Each reconfigurable func-
tional unit (FU) has its dedicated register file (RF), configuration memory (Conf. RAM),
and configuration counter (conf. counter) that selects a configuration context from the
configuration memory to control the FU in each clock cycle (see Fig. 3.b). A recon-
figurable functional unit takes as inputs two data operands, src1 and src2, a 1-bit predi-
cate value, pred, and the currently selected configuration context, and produces as
results one word-level value, dst1, and two 1-bit predicate values, pred_dst1 and
pred_dst2 that will be used for predication of later computations. The word-level result
is written to that functional unit’s dedicated register file, as controlled by the currently
selected configuration context. A network on a chip with a specific topology of con-
nections is used to send results from each of these functional units to any of the other

 Exploiting Abstraction for Efficient Formal Verification 313

reconfigurable functional units, and to the integer functional units in the VLIW core.
The configuration of the connections in the network is controlled by the currently se-
lected configuration contexts of all reconfigurable functional units. The configuration
contexts, their selection with the configuration counter, and the communication be-
tween the reconfigurable functional units in the array is orchestrated by the compiler.

The ADRES architecture is a template in that its specific design can be optimized
for a given set of applications by varying: the architecture of the VLIW processor
core, the number of reconfigurable functional units in the array, the computational
power of each reconfigurable functional unit (they do not have to be identical), the
size of the configuration memory and register file of each of these functional units,
and the topology of the communication network between them, among other factors.

(a) (b)

Fig. 3. (a) The ADRES architecture template; and (b) an example of a reconfigurable functional
unit (FU) in ADRES with its dedicated Register File (RF), and configuration memory (Conf.
RAM)

3 Techniques for Abstracting Arrays of Reconfigurable
Functional Units

3.1 Detailed Abstract Modeling of the Array of Reconfigurable Functional
Units

We start by presenting a method for detailed abstract modeling of the array of recon-
figurable functional units in the ADRES architecture, using abstraction techniques
that allow us to exploit the property of Positive Equality. We use an uninterpreted
function (UF) to abstract the network that selects each predicate operand or data
operand for one of the reconfigurable functional units, regardless of the topology of
that network and its selection mechanism. This is done with a different UF for each

314 M.N. Velev and P. Gao

predicate or data operand of each reconfigurable functional unit, thus modeling a pos-
sibly different topology and mechanism for selecting each operand. Such an UF has
as inputs all possible sources of predicate or data operands, respectively, including the
outputs of functional units in the main pipeline of the processor, results computed by
the other reconfigurable functional units in the array in the previous clock cycle and
stored in the registers after those reconfigurable functional units, and the register file
of the given reconfigurable functional unit. Furthermore, each such UF that models
the selection of an operand has as input a term that abstracts the control bits selecting
an operand from the possible sources in the current clock cycle; this term abstracts the
control bits that are extracted from the current configuration context in order to select
the data operand in the given UF.

The detailed abstract model of one reconfigurable functional unit in the array of the
ADRES architecture is shown in Fig. 4. The UFs that abstract the selection of the one
predicate and two data operands for a given reconfigurable functional unit are in the
top center and are labeled, respectively, Select Pred Operand, Select Data Operand 1, and
Select Data Operand 2. The computation of the two predicate and one data results is
abstracted with uninterpreted functions Compute pred_dst1, Compute pred_dst2, and
Compute dst1, respectively, shown at bottom center.

Possible Sources

Select Pred

(UF)
Operand

. . .

of Pred. Operands
Possible Sources

Select Data

(UF)
Operand 1

. . .

of Data Operands
Possible Sources

Select Data

(UF)
Operand 2

. . .

of Data Operands

Compute

(UF)
pred_dst1

Compute

(UF)
pred_dst2

Compute

(UF)
dst1

reg reg reg

FSM Abstraction of
Register File

reg

Read Data
Operand 1

(UF)

Read Data
Operand 2

(UF)

Local Data 1
Local Data 2

pred_dst1 pred_dst2 dst1

Next Reg
File State

(UF)

FSM Abstraction of
Configuration RAM

R
eg

_F
ile

_S
ta

te

FSM Abstraction of
Configuration Counter

Conf_Counter_Command

Next Conf

(UF)

re
g Counter State

Conf

Get_Ctrl_Pred

Get_Ctrl_Data1

Get_Ctrl_Data2

Get_SrcReg1

Get_SrcReg2

Get_RegWrite

Get_Op_Dst1

Get_Op_Pred_Dst2

Get_Op_Pred_Dst1

Counter
State

Conf_RAM_Command

Next Conf

(UF)

re
g RAM State

Conf
RAM
State

Get_DestReg

Fig. 4. Detailed abstract model of one reconfigurable functional unit in the array of the ADRES
architecture

 Exploiting Abstraction for Efficient Formal Verification 315

The Configuration Counter is abstracted with a Finite State Machine (FSM), shown
in the lower left corner of Fig. 4, where the current state is abstracted with term Conf
Counter State, stored in a register, and the next state is computed with UF Next Conf
Counter State, which takes as operands the term for the current state and term
Conf_Counter_Command that abstracts a command for updating/modifying the current
state that comes from the main processor pipeline, and produces a term for the next
state of the Configuration Counter. The Configuration RAM is abstracted with an-
other FSM, shown in the middle and top on the left side, where the current state is
abstracted with term Conf RAM State, stored in a register, and the next state is com-
puted with UF Next Conf RAM State, which takes as operands the term for the current
state and term Conf_RAM_Command that abstracts a command for updating/modifying
the current state that comes from the main processor pipeline.

Extracting the various command fields and control bits from the current Configura-
tion RAM state, as pointed to by the current state of the Configuration Counter, is
done with nine UFs and one UP, that all take as arguments the terms for the current
state of the Configuration RAM and for the current state of the Configuration
Counter, and produce abstractions of the corresponding control fields. For example,
UF Get_Ctrl_Pred extracts a term that abstracts the control signals selecting the predi-
cate operand, as abstracted by UF Select Pred Operand. Similarly, UFs Get_Ctrl_Data1
and Get_Ctrl_Data2 extract terms that abstract the control signals selecting the first and
the second data operands, respectively, as abstracted by UFs Select Data Operand 1 and
Select Data Operand 2. UFs Get_SrcReg1, Get_SrcReg2, and Get_DestReg extract terms
that represent the two source register identifiers and one destination register identifier
that are used to, respectively, read two data operands from the local register file, and
write the word-level result when computed at the end of the current clock cycle. Unin-
terpreted Predicate (UP) Get_RegWrite extracts a control bit that indicates whether the
word-level result dst1 that will be computed in the current cycle will be written to the
local register file. Finally, UFs Get_Op_Pred_Dst1, Get_Op_Pred_Dst2, and Get_Op_Dst1
extract terms that abstract the control bits selecting operations to be performed when
computing the two predicate and one data results.

The local register file is abstracted with another FSM (see the right side of Fig. 4),
where the entire state is abstracted with term Reg_File_State. The reading of the two
data operands is abstracted with UFs Read Data Operand 1 and Read Data Operand 2,
respectively, that both take as an argument the term for the current state of the register
file, as well as the term that abstracts the corresponding source register identifier, as
produced by UFs Get_SrcReg1 and Get_SrcReg2, respectively. The next state of the
register file is abstracted with a term produced by UF Next Reg File State that takes as
arguments the term for the current register file state, the term for the destination regis-
ter identifier, and the term for the current data result, dst1, whose computation is ab-
stracted with UF Compute dst1. From [33], we can use such an FSM abstraction of the
local register file, since both the implementation and the specification processors exe-
cute the same sequence of memory operations for each such register file, and these
operations are not stalled based on conditions that depend on equations between ad-
dresses (register identifiers) for that register file. This is the case, because in the
ADRES architecture all computations are orchestrated by the compiler and there is no
stalling in the array of reconfigurable functional units.

316 M.N. Velev and P. Gao

The entire array of reconfigurable functional units is modeled by using the detailed
abstraction from Fig. 4 for each reconfigurable functional unit. The models for the
different functional units are linked together by using the two predicate and one
data results, computed by each of these functional units at the end of the previous
clock cycle, as possible sources of the one predicate and two data operands for all
functional units in the array. The same abstraction of the array is used in both the
pipelined/superscalar/VLIW implementation processor, and in its non-pipelined
specification. Note that each reconfigurable functional unit in the array contributes 6
architectural state elements—the 6 registers that are shaded in Fig. 4—to the set of
architectural state elements, for which the automatic tool has to compare for equality
the symbolic expressions produced by both sides of the commutative correctness
diagram in Fig. 1.

As an optimization, which we applied, we can use different names for the 20 UFs
and one UP that are used to abstract each reconfigurable functional unit in the array.
This allows us to model potentially different topologies of the networks for selecting
operands, potentially different logic for extracting control signals from the currently
selected configuration context from the Configuration RAM, and potentially different
implementations of the functional units, as well as of the Configuration RAM and
register file of each functional unit. Also, this results in much simpler symbolic ex-
pressions when UFs and UPs are eliminated in translation of the EUFM correctness
formula to CNF, since functional consistency will be enforced only for different ap-
plications of an UF or an UP for the same reconfigurable functional unit, as opposed
to for all reconfigurable functional units.

We can prove the following lemma, where a conservative approximation means an
abstraction that omits some properties of the original model in a conservative way that
may only lead to a falsification of the correctness condition; however, if the correct-
ness condition is satisfied with the conservative approximation, then the correctness
condition will also be satisfied with the original model that also satisfies the omitted
properties (that were not necessary for the correctness proof).

LEMMA 1. The presented detailed abstract model of one reconfigurable functional
unit, as shown in Fig. 4, when used with different names for the 20 UFs and one
UP that abstract each reconfigurable functional unit in the array, is a conservative
approximation.

Proof: Follows from the construction of the model in Fig. 4 and using different names
for the UFs and UPs used for different reconfigurable functional units in the array. �

3.2 Abstracting the Entire Array of Reconfigurable Functional Units with One
FSM

We can also abstract the entire array of reconfigurable functional units with just one
FSM, where the present state is represented with term Present_State stored in a register,
and the next state is a term produced by uninterpreted function Next_State that takes as
arguments the term for the present state, the terms Conf_Counter_Command and
Conf_RAM_Command that abstract the commands from the main processor pipeline for
updating, respectively, the Configuration Counters and the Configuration RAMs
in the array, and any additional terms that abstract operands supplied by the main
processor pipeline, as shown in Fig. 5.

 Exploiting Abstraction for Efficient Formal Verification 317

The present state of the FSM from Fig. 5 is used not only for computing the next
state of the FSM, but also in the main processor pipeline as an argument to all UFs
and UPs that in the detailed model from Sect. 3.1 had as arguments terms from any of
the state elements in the array of reconfigurable functional units. In this way, we can
view each of these UFs and UPs as both abstracting the same computation as in the
detailed processor model from Sect. 3.1 and extracting the field from the present state
of the array that was used as an argument to the corresponding UF or UP in the proc-
essor pipeline from Sect. 3.1.

Present_State

Conf_Counter_Command

Next_State
(UF)re

g
operands from main
processor pipelineConf_RAM_Command

. . .

to main
processor
pipeline

Fig. 5. An FSM that can be used to abstract the entire array of reconfigurable functional units

The same abstraction of the array is used in both the pipelined/superscalar/VLIW
implementation processor, and in its non-pipelined specification. Now only one new
architectural state element is introduced, regardless of the size of the array.

LEMMA 2. The presented abstraction of the entire array of reconfigurable functional
units, as shown in Fig. 5, is a conservative approximation.

Proof: Follows from the construction of the model in Fig. 5, where term Present_State
can be viewed as abstracting the concatenation of all state elements from the detailed
model in Sect. 3.1, and UF Next_State can be viewed as abstracting the combined op-
eration of all UFs and UPs from the detailed model of the array of reconfigurable
functional units.

The above abstraction is based on the assumption that the correctness of the array
of reconfigurable functional units is proved separately. This has to be done for the
approaches from both Sect. 3.1 and 3.2 when proving that a specific algorithm is
correctly mapped onto the array of reconfigurable functional units, based on given
specific contents of the Configuration RAMs and Configuration Counters, as well as
specific implementations of all logic blocks in the array of reconfigurable functional
units. Such a proof will be carried out for each implementation of an algorithm that is
mapped onto an array of reconfigurable functional units, and is beyond the scope
of this paper. The focus of this paper is a method for proving the correctness of the
integration of an array of reconfigurable functional units with a given pipelined,
superscalar, or VLIW processor pipeline.

318 M.N. Velev and P. Gao

4 Results

The experiments were conducted on a computer with two 3.47-GHz six-core Intel
Xeon x5690 processors and 64 GB of memory, running Red Hat Enterprise Linux
v6.1. (Each experiment used only a single core, and had access to 32 GB of memory.)
We applied our industrial tool, combined with a proprietary SAT solver that is faster
than the best publicly available SAT solvers by at least a factor of 2. The computation
of the abstraction function in the inductive correctness criterion of safety from Fig. 1
was done with controlled flushing [10]. Translation to CNF was done with block-level
methods, where blocks of logic gates are translated to CNF without intermediate CNF
variables for internal values [37, 38, 40, 42, 43].

The experiments were to formally verify safety of processors, starting with
DSP_base, the original DSP design before its extension with an array of reconfigur-
able functional units in the style of the ADRES architecture. That processor has 5
pipeline stages with up to 9 RISC-like instructions in each stage, for a total of up to
45 RISC-like instructions in execution. DSP_base implements predicated execution
for each instruction, based on the value of a qualifying predicate register from a
predicate register file. There are separate integer and floating-point register files. The
processor implements branch prediction, exceptions, and has multicycle functional
units—the instruction memory interface, the floating-point functional units in the
Execution stage, and the data memory interface can each take multiple clock cycles to
complete an operation.

As shown in the first line of Table 1, the formal verification of the original design,
DSP_base, results in a Boolean correctness formula with 4,238 Boolean variables,
and its CNF translation has 14,540 CNF variables, 743,481 literals, and 214,842
clauses. The symbolic simulation according to the correctness diagram in Fig. 1 took
0.03 s, the translation of the EUFM correctness formula to CNF 0.6 s, and the SAT
solving 3.8 s, for a total of 4.4 s.

We wrote a script that automatically extends the original DSP with detailed ab-
stract models of arrays of reconfigurable functional units, as described in Sect. 3.1.
Another script was used to add the same detailed model of the array to the non-
pipelined specification processor. The size of the array varied from 1 to 2,048. As
discussed in Sect. 3.1, each reconfigurable functional unit had 6 flip-flops in its ab-
stract model that were considered to be part of the architectural state elements of the
extended processor. The experiments for these models are presented in the middle
section of Table 1. As can be seen, the processors with arrays of up to 16 reconfigur-
able functional units result in CNF correctness formulas that are comparable in size to
that from the original processor, and so are their respective total times for formal veri-
fication. However, after the processor with an array of 256 reconfigurable functional
units, the numbers of literals and clauses in the CNF correctness formulas increase
by a factor of 3 or more, and the total formal verification time by approximately a
factor of 5 with each doubling of the number of reconfigurable functional units. Our
decision procedure ran out of memory (given the 32 GB available to it) in the transla-
tion of the EUFM correctness formula to CNF for the model with an array of 2,048
reconfigurable functional units, and so the formal verification of that design did not
complete in 10,236 s.

The last row of Table 1 presents the results for the DSP where the entire array of
reconfigurable functional units is abstracted with a single FSM in a way that is a con-
servative approximation, for any number of reconfigurable functional units in the

 Exploiting Abstraction for Efficient Formal Verification 319

Table 1. Experimental results. The formal verification of the DSP with an array of 2,048 recon-
figurable functional units ran out of memory in the translation of the EUFM correctness formu-
la to CNF, given the 32 GB of memory that were accessible by the tool. Boolean variables are
those that are arguments of the Boolean correctness formula before its translation to CNF.

Benchmark

CNF Formula Time [s]

Bool
Vars

CNF
Vars Literals Clauses Size

[MB]

Symbolic
Simu-
lation

Transl.
to CNF

SAT
Solving Total

DSP_base 4,238 14,540 743,481 214,842 4.9 0.03 0.6 3.8 4.4

DSP_array_1 4,247 14,782 749,278 216,785 4.9 0.03 0.6 4.1 4.7
DSP_array_2 4,252 14,843 751,842 217,580 4.9 0.03 0.6 4.0 4.6
DSP_array_4 4,262 14,965 757,096 219,206 4.9 0.04 0.6 4.0 4.6
DSP_array_8 4,286 15,255 770,726 223,248 5.0 0.04 0.7 4.4 5.1
DSP_array_16 4,322 15,697 792,148 229,970 5.2 0.06 0.9 3.9 4.9
DSP_array_32 4,242 16,656 844,635 244,688 5.5 0.12 1.2 5.5 6.8
DSP_array_64 4,562 18,625 992,836 290,306 6.5 0.19 2.3 6.8 9.3
DSP_array_128 4,882 22,662 1,416,702 416,415 9.5 0.45 6.9 13.2 20.6
DSP_array_256 5,522 30,337 2,763,268 808,130 19 1.37 29 25 55
DSP_array_512 6,802 46,071 7,542,856 2,192,512 53 4.9 163 138 306
DSP_array_1024 9,362 77,280 25,362,823 7,316,482 180 28 1,212 550 1,790
DSP_array_2048 —— —— —— —— — 108 >10,128 —— >10,236

DSP_array_fsm 4,242 14,706 747,155 216,120 4.9 0.03 0.61 4.6 5.2

array, for any design of these functional units, and any topology of the connections be-
tween them, as presented in Sect. 3.2. The entire state of the array was abstracted with
one term stored in a flip-flop that was considered part of the architectural state. As can
be seen, the CNF correctness formula had approximately the same size as that from
formal verification of the original processor without an array of reconfigurable func-
tional units. The total formal verification time was 5.2 s. This represents at least 3 or-
ders of magnitude speedup relative to the formal verification of the processor with an
array of 2,048 reconfigurable functional units, and the speedup is increasing with the
size of the array. Thus, the formal verification time becomes invariant, regardless of the
size of the array of reconfigurable functional units, their design, the sizes of their regis-
ter files and configuration memories, or the topology of the connections between them.

5 Conclusion

We presented abstraction techniques to formally verify the integration of pipelined
processors with arrays of reconfigurable functional units in the style of the ADRES
architecture. Our techniques allow us to formally verify the integration of pipelined
processor cores with arrays of reconfigurable functional units of any size, where the
reconfigurable functional units have any design, and are connected with a network of
any topology. These abstraction techniques result in at least 3 orders of magnitude
speedup relative to formal verification without them, and the speedup is increasing
with the number of reconfigurable functional units in the array. To the best of
our knowledge, this is the first work on automatic formal verification of pipelined
processors with arrays of reconfigurable functional units.

320 M.N. Velev and P. Gao

References

[1] Aagaard, M.D., Day, N.A., Lou, M.: Relating Multi-Step and Single-Step Microproces-
sor Correctness Statements. In: Aagaard, M.D., O’Leary, J.W. (eds.) FMCAD 2002.
LNCS, vol. 2517, pp. 123–141. Springer, Heidelberg (2002)

[2] Aagaard, M.D., Cook, B., Day, N.A., Jones, R.B.: A Framework for Superscalar Micro-
processor Correctness Statements. Software Tools for Technology Transfer (STTT) 4(3),
298–312 (2003)

[3] Ackermann, W.: Solvable Cases of the Decision Problem. North-Holland, Amsterdam
(1954)

[4] Anglia, STMicroelectronics Adds DSP to Reconfigurable-Processor SoC for Wireless In-
frastructure Applications (March 2006),
http://www.anglia.com/newsarchive/904.asp?article_id=1750

[5] Asia and South Pacific Design Automation Conference (ASP-DAC 2009), Panel Discus-
sion: Near-Future SoC Architectures—Can Dynamically Reconfigurable Processors be a
Key Technology? (January 2009)

[6] Blaauw, D., Das, S.: CPU, Heal Thyself: A Fault-Monitoring Microprocessor Design
Can Save Power or Allow Overclocking. IEEE Spectrum 46(8), 40–43 (2009),
http://spectrum.ieee.org/semiconductors/processors/
cpu-heal-thyself/0

[7] Bryant, R.E., German, S., Velev, M.N.: Processor Verification Using Efficient Reduc-
tions of the Logic of Uninterpreted Functions to Propositional Logic. ACM Transactions
on Computational Logic 2(1), 93–134 (2001)

[8] Bryant, R.E., Velev, M.N.: Boolean Satisfiability with Transitivity Constraints. ACM
Transactions on Computational Logic (TOCL) 3(4), 604–627 (2002)

[9] Burch, J.R., Dill, D.L.: Automated Verification of Pipelined Microprocessor Control. In:
Dill, D.L. (ed.) CAV 1994. LNCS, vol. 818, pp. 68–80. Springer, Heidelberg (1994)

[10] Burch, J.R.: Techniques for Verifying Superscalar Microprocessors. In: Design Automa-
tion Conference (DAC 1996), pp. 552–557 (June 1996)

[11] Das, S., Tokunaga, C., Pant, S., Ma, W.-H., Kalaiselvan, S., Lai, K., Bull, D.M., Blaauw,
D.T.: RazorII: In Situ Error Detection and Correction for PVT and SER Tolerance. IEEE
Journal of Solid-State Circuits 44(1), 32–48 (2009)

[12] DPReview, Casio Introduces Exilim EX-ZR10 with Back-Illuminated Sensor (September
2010),
http://www.dpreview.com/news/1009/10092015casioexzr10.asp

[13] EDACafe, Panasonic Deploys Reconfigurable Logic in Professional AV Products (No-
vember 2007), http://www10.edacafe.com/nbc/articles/view_
article.php?section=CorpNews&articleid=462449

[14] Eén, N., Sörensson, N.: MiniSat: A SAT Solver with Conflict-Clause Minimization. In:
Bacchus, F., Walsh, T. (eds.) SAT 2005. LNCS, vol. 3569, pp. 61–75. Springer, Heidel-
berg (2005)

[15] Free Press Release, Sony Details PSP Chip Specs (PlayStation Portable Game Player)
(June 2007), http://www.free-press-release.com/news/200706/
1182092979.html

[16] Goel, A., Sajid, K., Zhou, H., Aziz, A., Singhal, V.: BDD Based Procedures for a Theory
of Equality with Uninterpreted Functions. Formal Methods in System Design 22(3), 205–
224 (2003)

[17] Goldberg, E., Novikov, Y.: BerkMin: A Fast and Robust Sat-Solver. In: Design, Auto-
mation and Test in Europe (DATE 2002), pp. 142–149 (March 2002)

 Exploiting Abstraction for Efficient Formal Verification 321

[18] Intel Corporation, IA-64 Application Developer’s Architecture Guide (May 1999),
http://developer.intel.com/design/ia-64/architecture.htm

[19] Kim, Y., Mahapatra, R.N.: Design of Low-Power Coarse-Grained Reconfigurable Archi-
tectures. CRC Press, Boca Raton (2011)

[20] Lahiri, S., Pixley, C., Albin, K.: Experience with Term Level Modeling and Verification
of the M·CORE TM Microprocessor Core. In: International Workshop on High Level De-
sign, Validation and Test (HLDVT 2001), pp. 109–114 (November 2001)

[21] Le Berre, D., Simon, L.: Results from the SAT 2004 SAT Solver Competition. In: SAT
2004 (May 2004)

[22] Mei, B., De Sutter, B., Vander Aa, T., Wouters, M., Dupont, S.: Implementation of a
Coarse-Grained Reconfigurable Media Processor for AVC Decoder. Journal of Signal
Processing Systems 51, 225–243 (2008)

[23] Moskewicz, M.W., Madigan, C.F., Zhao, Y., Zhang, L., Malik, S.: Chaff: Engineering an
Efficient SAT Solver. In: 38th Design Automation Conference (DAC 2001) (June 2001)

[24] Pipatsrisawat, K., Darwiche, A.: A Lightweight Component Caching Scheme for Satis-
fiability Solvers. In: Marques-Silva, J., Sakallah, K.A. (eds.) SAT 2007. LNCS,
vol. 4501, pp. 294–299. Springer, Heidelberg (2007)

[25] Pnueli, A., Rodeh, Y., Strichman, O., Siegel, M.: The Small Model Property: How Small
Can It Be? Journal of Information and Computation 178(1) (2002)

[26] Ryan, L.: Siege SAT Solver, http://www.cs.sfu.ca/~loryan/personal
[27] Sharangpani, H., Arora, K.: Itanium Processor Microarchitecture. IEEE Micro. 20(5),

24–43 (2000)
[28] Velev, M.N., Bryant, R.E.: Bit-Level Abstraction in the Verification of Pipelined Micro-

processors by Correspondence Checking. In: Gopalakrishnan, G.C., Windley, P. (eds.)
FMCAD 1998. LNCS, vol. 1522, pp. 18–35. Springer, Heidelberg (1998)

[29] Velev, M.N., Bryant, R.E.: Exploiting Positive Equality and Partial Non-Consistency in
the Formal Verification of Pipelined Microprocessors. In: 36th Design Automation Con-
ference (DAC 1999), pp. 397–401 (June 1999)

[30] Velev, M.N., Bryant, R.E.: Superscalar Processor Verification Using Efficient Reduc-
tions of the Logic of Equality with Uninterpreted Functions to Propositional Logic. In:
Pierre, L., Kropf, T. (eds.) CHARME 1999. LNCS, vol. 1703, pp. 37–53. Springer,
Heidelberg (1999)

[31] Velev, M.N., Bryant, R.E.: Formal Verification of Superscalar Microprocessors with
Multicycle Functional Units, Exceptions, and Branch Prediction. In: DAC 2000, pp. 112–
117 (June 2000)

[32] Velev, M.N.: Formal Verification of VLIW Microprocessors with Speculative Execution.
In: Emerson, E.A., Sistla, A.P. (eds.) CAV 2000. LNCS, vol. 1855, pp. 86–98. Springer,
Heidelberg (2000)

[33] Velev, M.N.: Automatic Abstraction of Memories in the Formal Verification of Supers-
calar Microprocessors. In: Margaria, T., Yi, W. (eds.) TACAS 2001. LNCS, vol. 2031,
pp. 252–267. Springer, Heidelberg (2001)

[34] Velev, M.N.: Using Rewriting Rules and Positive Equality to Formally Verify Wide-
Issue Out-Of-Order Microprocessors with a Reorder Buffer. In: Design, Automation and
Test in Europe (DATE 2002), pp. 28–35 (March 2002)

[35] Velev, M.N., Bryant, R.E.: Effective Use of Boolean Satisfiability Procedures in the
Formal Verification of Superscalar and VLIW Microprocessors. Journal of Symbolic
Computation (JSC) 35(2), 73–106 (2003)

[36] Velev, M.N.: Automatic Abstraction of Equations in a Logic of Equality. In: Cialdea
Mayer, M., Pirri, F. (eds.) TABLEAUX 2003. LNCS, vol. 2796, pp. 196–213. Springer,
Heidelberg (2003)

322 M.N. Velev and P. Gao

[37] Velev, M.N.: Using Automatic Case Splits and Efficient CNF Translation to Guide a
SAT-Solver When Formally Verifying Out-of-Order Processors. In: Artificial Intelli-
gence and Mathematics (AI&MATH 2004), pp. 242–254 (January 2004)

[38] Velev, M.N.: Efficient Translation of Boolean Formulas to CNF in Formal Verification of
Microprocessors. In: Asia & South Pacific Design Autom. Conf., pp. 310–315 (January
2004)

[39] Velev, M.N.: Using Positive Equality to Prove Liveness for Pipelined Microprocessors.
In: Asia and South Pacific Design Automation Conference, pp. 316–321 (January 2004)

[40] Velev, M.N.: Exploiting Signal Unobservability for Efficient Translation to CNF in For-
mal Verification of Microprocessors. In: Design, Automation and Test in Europe (DATE
2004), pp. 266–271 (February 2004)

[41] Velev, M.N.: Encoding Global Unobservability for Efficient Translation to SAT. In: In-
ternational Conference on Theory and Applications of Satisfiability Testing (May 2004)

[42] Velev, M.N.: Comparative Study of Strategies for Formal Verification of High-Level Pro-
cessors. In: Int’l. Conf. on Computer Design (ICCD 2004), pp. 119–124 (October 2004)

[43] Velev, M.N.: Comparison of Schemes for Encoding Unobservability in Translation to
SAT. In: Asia & South Pacific Design Automation Conference (ASP-DAC 2005), pp.
1056–1059 (January 2005)

[44] Velev, M.N., Bryant, R.E.: TLSim and EVC: A Term-Level Symbolic Simulator and an
Efficient Decision Procedure for the Logic of Equality with Uninterpreted Functions and
Memories. Int’l. Journal of Embedded Systems 1(1/2), 134–149 (2005)

[45] Velev, M.N.: Automatic Formal Verification of Liveness for Pipelined Processors with
Multicycle Functional Units. In: Borrione, D., Paul, W. (eds.) CHARME 2005. LNCS,
vol. 3725, pp. 97–113. Springer, Heidelberg (2005)

[46] Velev, M.N.: Using Abstraction for Efficient Formal Verification of Pipelined Processors
with Value Prediction. In: International Symposium on Quality Electronic Design (2006)

[47] Velev, M.N.: Formal Verification of Pipelined Microprocessors with Delayed Branches.
In: ISQED 2006, pp. 296–299 (March 2006)

[48] Velev, M.N., Gao, P.: Exploiting Hierarchical Encodings of Equality to Design Indepen-
dent Strategies in Parallel SMT Decision Procedures for a Logic of Equality. In: High
Level Design Validation and Test Workshop (HLDVT 2009), pp. 8–13 (November 2009)

[49] Velev, M.N., Gao, P.: A Method for Debugging of Pipelined Processors in Formal Veri-
fication by Correspondence Checking. In: ASP-DAC 2010, pp. 619–624 (January 2010)

[50] Velev, M.N., Gao, P.: Method for Formal Verification of Soft-Error Tolerance Mechan-
isms in Pipelined Microprocessors. In: Dong, J.S., Zhu, H. (eds.) ICFEM 2010. LNCS,
vol. 6447, pp. 355–370. Springer, Heidelberg (2010)

[51] Velev, M.N., Gao, P.: Automatic Formal Verification of Reconfigurable DSPs. In: Asia and
South Pacific Design Automation Conference (ASP-DAC), pp. 293–296 (January 2011)

Architectural Verification of Control Systems

Using CSP

Joabe Jesus1, Alexandre Mota1, Augusto Sampaio1, and Luiz Grijo2

1 Centro de Informática - Universidade Federal de Pernambuco (UFPE)
Recife - PE - Brazil

{jbjj,acm,acas}@cin.ufpe.br
2 Empresa Brasileira Aeronáutica (Embraer)

São José dos Campos - SP - Brazil
luiz.grijo@embraer.com.br

Abstract. Although validation of complex dynamic systems can be re-
alised using checklists and simulations provided by tools such as Simulink,
these techniques usually do not cover all system behaviours. Moreover,
the control laws are rarely modelled together with the system architec-
ture. This integration can reveal defects which are only detected in final
stages of the development. This work presents two major contributions:
a strategy to validate the integration of a proposed architecture with
control laws, based on the CSP process algebra; and the validation of
a Fly-by-wire Elevator Control System designed by Embraer. The re-
sults show that the strategy helps finding defects in early stages of the
development, saving time and costs.

1 Introduction

Correct design and implementation of complex dynamic systems is a technical
challenge. The validation activities necessary to guarantee the correctness of a
system design are very complex, whereas exhaustive verification of a system im-
plementation using a test suite is commonly impractical [1]. Even the usage of
system engineering process models focused on validation and verification (V&V),
such as the V-Model provided by the SAE International in its Aerospace Rec-
ommended Practice (ARP) number 4754 [2], need improvements and additional
processes to help industry to reach the “time to market”. Moreover, V&V tech-
niques of simulation and testing as well as complementary processes mentioned
in [2], such as the certification activities (DO-178B checklists) and the safety
assessment process (ARP4761) do not guarantee the absence of system faults
(caused by errors and observed as failures).

To guarantee the correctness of such systems the use of formal methods is
highly indicated [1]. For example, aviation companies, such as Embraer and
Airbus, space agencies such as NASA, and their partners and suppliers have
been applying formal methods and model driven development to improve their
systems [3,4]. One of their main challenges is transforming the V-Model into an
improved model (Y-Model [5]) in which model-based design is used to produce

S. Qin and Z. Qiu (Eds.): ICFEM 2011, LNCS 6991, pp. 323–339, 2011.
c© Springer-Verlag Berlin Heidelberg 2011

324 J. Jesus et al.

better products and help finding defects as early as possible, reducing the number
of change cycles in the development.

This work uses formal models as a basis to analyse dynamic systems. Our
key idea is to analyse the system design both at a more abstract level as well
as when embedded into different architectures, similar to what is performed in
hardware-software codesign methodologies [6]. We propose the use of the process
algebra CSP (Communicating Sequential Processes) [7] to specify and analyse
the architectural and the operational requirements together with the control law
diagrams, by considering the Simulink model as the software part and the arqui-
tecture models as the hardware part. We also define a strategy for integrating
these system models into CSP and use data abstraction techniques to allow
verification using model-checking. Particularly, by considering the environment
(external devices and equipments such as sensors and actuators) and the pro-
cessors where the system will be scheduled, our strategy allows the engineer to
analyse whether the design satisfies some properties before starting the coding
and manufacturing phases inside the components layer of the V-Model, thus
saving costs. Moreover, we define translation rules that automatically transform
control laws (discrete time Simulink block diagrams [8]) into machine readable
CSP (CSPM) [7], the CSP version used in tools, and an integration pattern for
analysis. In this way we take advantage of existing tools, and particularly the
Failures-Divergences Refinement (FDR) model-checker [7], for checking desired
properties of the system design.

This paper is organised as follows. Section 2 briefly discusses the problem
of verification of control models described in Simulink. In Section 3 we present
our strategy to verify control systems as well as the automatic translation of
control law diagrams into CSP and our approach to the integration of these
diagrams and the system architectural requirements into CSP . Afterwards, Sec-
tion 4 presents the application of our strategy to the Fly-By-Wire (FBW) indus-
trial case study. Finally, Section 5 discusses related work and Section 6 presents
our conclusions and future work. We assume basic knowledge about Simulink
and CSP , although we explain some constructs as the need arises.

2 Simulink and the Verification of Control Systems

A wide variety of activities of the aviation industry, such as the airplane design,
are regulated by federal organisations. Moreover, some certification standards
must be fulfilled by an aircraft for it to be allowed to fly [9]. Essentially, these
regulations require an aircraft to be safely controllable and manoeuvrable during
all flight phases. The process consists basically in checking the safety/operational
requirements for the aircraft systems and its equipments as well as the nominal
behaviour1. In this Section we brifly discuss verification of control system designs
described in Simulink.

The concept of control is important for a variety of dynamic systems and the
use of block diagrams is an established technique to model a control system.
1 The behaviour the system/equipament must exhibit if none of its components fail.

Architectural Verification of Control Systems Using CSP 325

Fig. 1. (a) An actuator control system in Simulink; (b) The V-Model

A control law diagram is a visual model that consists, essentially, of a set of
blocks and lines (signals) connecting them. It models the equations of the entire
system using simple logical and arithmetic blocks (see Fig. 1(a)).

In this context, well established simulation environments such as Simulink [8]
(a graphical front-end for Matlab) support the design of complex systems, involv-
ing a continuous or discrete model (control law) for each operational condition.

Simulink allows defining subsystems (parameterised through mask variables)
which can be grouped into block libraries. Moreover, it provides several pre-
defined libraries and blocksets (domain specific libraries). These features and
rich sets of blocks help desiging complex systems at a high level of abstraction.
Blocks are usually polymorphic (operate on several datatypes). When copied to
a diagram, they are instantiated to the particular context (refer to [8] for further
details).

2.1 Verification of Control Systems

The V-Model, in Fig. 1(b), defines two legs which separate the specification and
the integration activities, respectively. The V&V activities relate the specifica-
tion and integration activities through the analysis and identification of errors
in each level (product, systems, equipaments and components). However, during
the development, the costs for modifications increase tremendously, not only due
to the repetition of work in the design departments, but also in related disci-
plines. So, when a defect is found, the project must return to its specification
activities, increasing costs and delaying the schedule.

According to [9], control computers include several basic functions that are
of direct interest to test engineers during the verification activities, for instance:
control laws, sensor processing functions, actuator interfaces, redundancy man-
agement, failure monitoring and reporting systems. In this context, the verifica-
tion of the system architecture is often realised during the integration leg of the
V-Model, instead of being realised in the specification leg.

In some companies, like Embraer, V&V activities are performed in a host
computer and in target computers. A host computer, running Simulink, is used
during design and to check whether a discrete model, corresponding to the con-
tinuous model, can produce adequate outputs (such as system response analysis).

326 J. Jesus et al.

Whereas target computers are used in a test laboratory (such as an “iron bird
rig” — a skeleton of the final aircraft), in a (flight) simulator and in operational
tests. Nevertheless, these target environments require a considerable investment
in equipment and facilities [9]. This has motivated our approach to carry out ver-
ification in an early stage, abstracting both the host and the target computers
into an integrated CSP model.

3 A Strategy to Verify Control System Designs

The key idea of our strategy is to generate an integrated formal model from the
requirements (architectural and operational) and control laws design; and use
model checkers to investigate the desired properties of the system. Thus, defects
are found as early as possible. Moreover, it is possible to reduce the number of
change cycles realised to correct these defects because they are usually found
during integration tests.

Fig. 2. Verification strategy steps

Fig. 2 depicts our strategy. It starts with the automatic translation from a
normalised Simulink block diagram to a CSP specification. Complementary, the
system architectural requirements (equipments descriptions and operational con-
ditions) are also specified in CSP (a non-automatic step yet). These specifications
are manually combined to build a complete specification that has all controller
components and the nominal behaviour of the architectural components of the
system. Then, desired properties of the system are described in CSP as well.
The complete specification is abstracted to avoid the state-explosion problem
and analysed using the FDR model-checker. If a given property is not satis-
fied, the analysis will produce a counter-example used as input to change the
specifications (block diagram and architecture) of the system. A more detailed
description of each step is presented below.

Architectural Verification of Control Systems Using CSP 327

3.1 Mapping Control Law Diagrams to CSP

In this section we present our translation rules from Simulink to CSP . An impor-
tant contribution of this work is our set of algebraic rules to systematically map
a Simulink model into a CSP specification. We propose rules that are composi-
tional. This allows one to create a CSP specification by translating the hierarchy
of blocks, in an incremental fashion. It is important to note that Simulink has no
formal semantics in which we can formally guarantee the correctness of the rules
we are proposing. Therefore, we are indeed giving a semantics to Simulink via a
mapping into CSP . The proposed semantics is based on the informal descriptions
provided in the Simulink manuals [8], like other works do [10,11].

The process algebra CSP [7] is suitable for describing the behaviour of sys-
tems formally through the definition of sequential processes. These processes are
defined using operators over events (atomic computations) and can be combined
to form more elaborate processes, using a rich repertoire of operators, such as
choice, sequential and parallel composition. Besides all these elements, CSPM

(the machine-readable version2 of CSP) also provides functional programming
features, such as parameters, local definitions and abstract datatypes; and sup-
port for manipulating booleans, integers, tuples, sets and sequences. Moreover,
events are defined through channels (families of events), which can carry data
from a specified type.

As already mentioned, Simulink blocks are usually polymorphic. However,
CSPM only provides a few types and it has no such a notion of polymorphic chan-
nels. To fill this gap, we define an infrastructure in CSPM composed of four incre-
mental layers (Prelude.csp, Types.csp, Blocks.csp and BlockLibrary.csp)
to help defining Simulink blocks as CSP processes. With these layers we can de-
fine our normalisation rules and our translation rules, whose generated processes
are heavily defined in terms of the infrastructure of our layers. Details about our
design decisions and other abstractions can be found in [12].

The first set of rules is used to simplify block diagrams. These normalisation
rules are inspired in some refactoring rules for programming languages. The
key idea is to eliminate subsystem duplications. That is, convert the original
replicas into references to a single copy of the subsystem. These simplifications
are helpful to minimise the size of the original system; this is crucial for using
model checking.

The second set of rules (mapping rules) is applied to a normalised model.
The translation is performed in a bottom-up order by applying the translation
function Ψ . The mapping rules are presented as equations, whose left-hand side
represents the application of Ψ to an element of Simulink and the right-hand
side is the CSPM script produced by this particular application of the function.
Therefore, our set of mapping rules is an inductive definition of Ψ on the hierar-
chical structure of a Simulink model. The translation strategy can be thought of
as a term rewriting system that exhaustively applies the rules that progressively
replace Simulink elements with CSP constructs. Figure 3 summarises the overall

2 http://www.fsel.com/documentation/fdr2/html/index.html

http://www.fsel.com/documentation/fdr2/html/index.html

328 J. Jesus et al.

Fig. 3. Strategy to translate Simulink elements into CSP constructs

strategy and illustrates that, given a Simulink model as input, we can produce
a corresponding CSPM specification.

In Figure 3, window (A) shows how our strategy starts by applying Rule 5 of Ψ
to a Simulink model. Thus, window (B) presents the generated CSP specification
composed of a single process M simple monitor corresponding to the result of
this application of Ψ . Rule 5 uses the Rule 4 to define the local definitions
corresponding to the model diagram elements (blocks, signals and connections).
Besides, several rules are listed in the figure to indicate their relationships.

Before presenting our translation rules we need to discuss the representation
of signals. Signals of the user block diagrams (model or subsystems) are mapped
into indexed references of a channel that we call sig. This indexed reference is
realised through a unique identifier (PortId) composed of the block identifier
(BlockId) and the number (Int) of the port that produces the signal.

datatype BlockId = N1_BlockName1 | ... | N1_BlockNamei

| N2_BlockName1 | ... | N2_BlockNamej

| Nm_BlockName1 | ... | Nm_BlockNamek

nametype PortId = BlockId.Int
channel sig: PortId.T

To explicitly capture the origin of the signals we use a datatype BlockId that
defines a tag for each block in the user model. Also, in order to distinguish
blocks with the same name in different subsystems, a block identifier (tag from
BlockId) is prefixed with a namespace identifier (N1 , N2 and Nm in the

Architectural Verification of Control Systems Using CSP 329

BlockId definition) defined incrementally by traversing the model using a depth-
first algorithm. For instance, a signal produced by the first port of a Demux
block named Demultiplex inside a (sub)system identified by m (1 ≤ m ≤ M)
becomes sig.Nm Demultiplex.1.

The channel sig just describes how data exchanged between two or more
block processes are captured as events, but it still does not connect the blocks.
The synchronous semantics of CSP guarantees that the value read by the des-
tination processes is the same written by the source process at any time step.
The following rule summarises how we translate a signal:

Rule 1 (Map Named Signal)

Ψ

⎛⎜⎜⎝
⎞⎟⎟⎠ (Nm) = sig_SignalName =

sig.Nm_BlockName.i (1)

Signals are translated as declarations (aliases) by prefixing the name given by
the user with “sig ”. In addition, we also map inport and outport connections
to CSP renamings referencing our channels in and out, respectivelly.

Rule 2 (Map Inport Connection)

Ψ

⎛⎝ ⎞⎠ (Nm) = in.K <- sig iSignalK (2)

The following is the main rule to map elementary blocks:

Rule 3 (Map Elementary Block)

Ψ

⎛⎜⎜⎜⎝
⎞⎟⎟⎟⎠ (Nm) =

BlockName =
BlockType(Ψ([ϕ �→ υ])(Nm)) [[

Ψ(cs)(Nm)]]
(3)

Where BlockType ∈ BlockLibrary; BlockType is associated to the Simulink
block β; the arguments are obtained from Ψ([ϕ �→ υ])(Nm); and cs is a list of
inport and outport connections.

This rule generates a reference to a process of our BlockLibrary layer with
arguments translated from arguments (υ) of the block. The translation function
Ψ takes two factors into account to choose a process from our BlockLibrary
that is appropriate to model the Simulink block: the block type and the block
sample time configuration (see details in [12]).

To exemplify the translation, assume that β is a Unit Delay block from the
Simulink Discrete Library and that [ϕ �→ υ] associates the value 1 to the parame-
ter initial condition (x0) and the value 1/64 to the parameter SampleTime,

330 J. Jesus et al.

then Ψ(β[ϕ �→ υ]) results in B UnitDelay(I.1)(Sampler 64Hz) as presented
in Fig. 4. Furthermore, we use a renaming to identify the connection of the
block process to the translated signals, obtained by applying Ψ to the named or
unnamed signals that surround the block.

Ψ

⎛⎜⎜⎝
⎞⎟⎟⎠ (Nm) =

MyUnitDelay =

B_UnitDelay(Ψ([x0 �→ 1])(Nm)) [[

in.1 <- Ψ(iSignal)(Nm),
out.1 <- Ψ(oSignal)(Nm)]]

Fig. 4. Applying Rule 3 to an elementary UnitDelay block

Now, we can translate a normalised block diagram δ containing a list bks of
blocks, a list sgs of signals and a list cs of connections using the next rule:

Rule 4 (Map Block Diagram)

Ψ

(
δ
[bks , sgs , cs]

)
(Nm) =

Ψ(bks)(Nm)
Ψ(ζ(sgs))(Nm)
CS = { (p1, Γ (cs(| b1 |))),

(p2, Γ (cs(| b2 |))), ...,
(pN , Γ (cs(| bN |))) }

(4)

Where cs(| bk |) is the list of connections involving the block bk ; and Γ (cs(| bk |))
is a set of events of channel sig that will be consumed by the process pk .

In this rule, Ψ is first applied to the list of blocks (bks), that is, to every block
(b1, b2 and bN) of the list bks , producing a list of respective process declarations
(referenced in CS as p1, p2 and pN). Then, Ψ is applied to the named signals
obtained by applying a filter (ζ) over sgs . Finally, we apply an auxiliary function
Γ to each block to produce a relation CS that associates the generated processes
to the set of events of channel sig consumed by the process, similar to what is
done with CLawSP [10].

The following rule concludes the translation by mapping the user model, which
has an internal diagram δ, to a process definition:

Rule 5 (Map Model)

Ψ

⎛⎝ModelName
δ[

bks , sgs , cs
]
⎞⎠ () =

M ModelName =

let Ψ(δ)(N1)
within B_System(CS)

(5)

Where B System(CS) = || (p,chs): CS @ [chs] p, that is, an indexed
(replicated) alphabetised parallel expression in which the processes (p) are re-
stricted to the set of events (chs).

This translation maps the entire Simulink model as a unique process whose
name is given by the name of the Simulink system prefixed by “M ”. We firstly
apply Ψ to the internal block diagram δ, producing the declarations of the system

Architectural Verification of Control Systems Using CSP 331

— note that the first namespace (N1) is defined here. Then, the relation CS, from
Rule 4, is passed as argument to the process B System from our BlockLibrary,
performing the connections of the processes through an indexed alphabetised
parallel.

Furthermore, we also have rules to handle Simulink subsystems, enable ports
and reference blocks (see [12]) — omitted here due to space restrictions.

3.2 Mapping Architectural Requirements to CSP

The requirements of a product are separated into several groups such as safety,
certification, product, system and functional. In this work we focus on nominal
behaviour. Thus, functional and system requirements are our main interest. Func-
tional requirements describe the functions designed in Simulink and performed on
the (flight) control computers. System requirements describe the architecture and
operation modes of the system (usually associated to architectural components
like command switches), as well as restrictions on the physical implementation of
the system, such as limits on data communicated between items of equipment [9].

Thus, the really important requirements to translate are those describing the
system architecture. Typical architectures of control systems include items of
equipment such as sensors and transducers, displays, actuators, electrical, me-
chanical and hydraulic components. To translate these items to CSP we can use
almost all expressions provided by CSPM , including the usage of our provided
infraestructure.

As long as the requirements are domain specific, we connect them with the
translated Simulink model. To achieve this, we first define a process that repre-
sents a (computer) clock that listens to tock events and consequently execute a
simulation loop when it generates tick events.

channel tock

Clock = tock -> tick -> Clock

Then, we declare the set of channels aTick, containing the event tick; and
aClock, including the events tick and tock;

aTick = {| tick |}
aClock = {| tick, tock |}

and define a process ControlComputer, in which the model process is embedded.

ControlComputer(Model) = (Model [| aTick |] Clock) \ aClock

Through the parallel composition of the model (Model) and the Clock,

synchronising on the event tick (inside aTick), the computer process controls
when each Simulink loop iteration occurs. Moreover, by hiding the clock events
(aClock), we define the control computer as a “black box” component, as long
as the environment will only have access to the input and output defined by the
process Model.

Although the control computers are the main equipments responsible to exe-
cute the control logic, other interesting items used in a control system architec-
ture are the data buses that transmit data between other items using specific

332 J. Jesus et al.

communication protocols. To represent such a kind of item one can use similar
ideas from those used in [13]. For a detailed explanation about data buses and
flight control systems architecture refer to [14].

Using our approach for other equipments of the system it is possible to model
the logic of an equipament in Simulink and specify its architecture using the
power of CSPM operators. In particular, indexed (replicated) process operators
can be used to specify complex architectures involving characteristics such as
redundancy and monitoring.

3.3 Defining Properties

According to [7], parallel composition can be used in two ways: to synchronise
processes to carry out a task concurrently or to be equivalent to the conjunction
(for instance, logical “and”) of trace specifications. In this second usage CSP acts
more than a simple specification language and the parallel process is supposed
to be used on the left-hand side of a refinement check. If we take the entire CSP
model of a control system, as previously showed, and compose it in parallel with
CSP processes that reveal non expected behaviours in our system, we can find
defects of the system architecture or of the system design.

We define a channel defectFound of a user defined datatype Defect to allow
the definition of properties using the following template

channel defectFound: Defect

DefectK = events of interest -> if verification mechanism

then defectFound.DEFECT_ID_K -> STOP
else DefectK

By providing just the desired events of interest, which are produced by system,
and a verification mechanism to verify a given property, it is possible to define
many kinds of properties. Moreover, the template process deadlocks if the defect
is found. Thus, our validation strategy results are obtained by assertions like

assert (System [|{| events of interest |}|] DefectK) :[deadlock free [F]]

This idea of putting a process to watch another process for defects is also dis-
cussed in details in [15]. Moreover, System can also have deadlocks, but, in this
case, the Simulink design or architecture is supposed to deadlock as well.

3.4 Abstraction and Validation

After composing the CSP specifications generated from the Simulink model,
from the system architecture and from specified properties, some simplifications
must be performed, since most real systems have infinite domains that are not
directly supported by a model checker like FDR. Although user may need to carry
out some abstractions, the state-space explosion problem can be avoided in our
strategy by using the ideas of [16,17] and changing/tunning the type parameter
(Tin) of our library processes, see [12]. However, this latter abstraction must be
accomplished not only by reducing the data domains used by the process, but
also between block processes.

Architectural Verification of Control Systems Using CSP 333

A detailed discussion about the optimisations we perform during our trans-
lation can be found in [12]. Basically, we reduce the size of our library block
processes and also reduce the size of the final specification using ideas such as
factorisation and compression algorithms of FDR [7].

3.5 Tool Support and Completeness

To be able to translate complex Simulink models, we implemented our rules in a
prototype tool (Sim2Csp). This tool automatically generates a CSPM from a
Simulink model (MDL file). It was implemented in Java reusing the Simulink file
parser of Circus Producer [10] and using concepts of model transformation.

Concerning completeness, our translation rules deal with all concepts identi-
fied in discrete Simulink models, as depicted in Fig. 3, although we still do not
have a complete block library. Furthermore, even if we can translate a complete
Simulink diagram to CSPM , this does not guarantee that the CSPM specifica-
tion is analysable by model-checking due to limitations of FDR. This can be
the case even after the abstraction process. Nevertheless, this is a fundamental
problem related to model-checking [17]. Regarding soundness, as already men-
tioned, our mapping into CSP actually defines a semantics for Simulink. Even
so, we checked the expected equivalence of certain Simulink blocks using the
data independence technique [16] (see details in [12]), such as Memory and Unit-
Delay; as well as errors also identified in Simulink. For instance, in algebraic loops
(deadlocks cause by direct feedthrough) [8].

4 Verifying a Fly-by-Wire Elevator Control System

In most aircrafts, the pitching movement (the up-and-down motion of the air-
craft’s nose) is controlled by two elevator surfaces at the rear of the fuselage.
The Elevator Control System (ECS) is a command augmentation system and it
is responsible to one of the essential primary functions of an aircraft: the pitch
function. The main goal of the ECS is to control these two surfaces, augmenting
the commands of the pilots when the aircraft is in air, to decrease pilot work-
load [9]. Moreover, it can be operated in direct mode, if the pilot has direct
control of a surface; or in alternate mode, otherwise.

Fig. 5 shows an architectural overview of the ECS. The system is composed
of Inceptors, Display, Sensors, Controllers and Actuators. Inceptors (side-sticks)
capture commands from the pilots: priorities, from push-buttons (PB); and lon-
gitudinal side-stick deflections (in degrees), from Linear Variable Differential
Transformers (LVDT). These signals are processed by four controllers, which
also consider the state of the airplane to generate commands to the associated
actuator (PCU). The flight conditions are derived from three airplane state vari-
ables: pitch rate (in degrees per second), aircraft location (“on ground” or “in
air”) and flap position (retracted or deployed). These signals are provided by
three Inertial Reference Units (IRUs), four Weight-On-Wheels (WOW) sensors
(two for each landing gear below the wings) and the Flap-Slat Actuator Control
Electronics (FSACE), respectively.

334 J. Jesus et al.

Fig. 5. The Elevator Control System - Architecture Overview

The system captures commands or intents from pilots through inceptors and
then processes these signals in the controller component, which also receives
feedback inputs from three rate gyros (IRUs) sensors, from actuator raw LVDT
and from surface deflection LVDTs. As most flight control actuation systems
on current aircrafts, the ECS actuators are electrically signalled (engaged or
disengaged by solenoid valves) and hydraulically powered (forces are regulated
by servo valves). These actuators drive the surface movements according to the
commands sent, via electrical wiring, from the controllers. Each controller is em-
bedded into a primary computer — Flight Control Module (FCM). Controllers
are defined in Simulink and have several subsystems, including the control law
function (control algorithm) to send the command signals to the associated actu-
ator. It is important to highlight that every surface has two attached actuators,
which are associated to a specific replica of the controller.

We point out that many equipments illustrated in Fig. 5 such as side-sticks,
sensors and actuators are physical devices designed by suppliers of the manu-
facturer and integrated to the aircraft. Thus, their descriptions are restricted
to their operation requirements. Just the controller components embedded into
Flight Control Modules (FCM) are designed by Embraer. So, we use our tool to
apply normalisation rules and translate the normalised model to CSP , generat-
ing a specification containing: 286 instances of library processes, 30 definitions
of subsystem processes, 539 usages of the channel sig and 1 process defini-
tion for a Stateflow chart. Afterwards, we properly represented the architectural
components and operation requirements in CSP .

Architectural Verification of Control Systems Using CSP 335

4.1 Validation and Results

The flight control laws inside the Control Logic subsystem describe what
changes in the system plant must be done to satisfy the pilot commands. When
designing the laws, control engineers define the required frequencies of the sig-
nals consumed by the controller to guarantee stability of the feedback control.
Moreover, they also verify whether the commands sent to the actuator drive the
elevator correctly.

In parallel to the control law design, the architecture is defined with redun-
dancy and voting mechanisms, creating replicas of the controller that must share
the same input signals. However, if replicas of the controller are not synchronised
they can drive the elevators “correctly” (as designed) in opposite directions. This
is an important property, as long as this would cause a rolling moment at the air-
craft tail and an undesired spin movement of the aircraft. In particular, elevators
are usually projected for the longitudinal control of the airplane whereas such a
movement (lateral control) is controlled by the two aileron surfaces, located at
the trailing edges of the wings.

Observing the Priority Logic subsystem we think that if the controllers
embedded into FCMs are not synchronised they can receive different values
of the priorities from the pilots. This can produce different commands to the
surfaces, as long as the side-sticks of the captain and the first-officer can be in
opposite directions. Thus, our verification goal is to check whether this property
can be violated. We design an Observer process based on the process Defect
from Section 3.3.

Observer = surfacePos?x?s1Pos:Ts_Surface ->
surfacePos?y:diff({1,2},{x})?s2Pos:Ts_Surface ->

if (neq(s1Pos, s2Pos)) then defect -> STOP
else Observer

It receives the positions s1Pos and s2Pos (of type Ts Surface) of the two
elevator surfaces x and y (∈ {1, 2}) and checks the property by comparing these
positions. When the surfaces have different positions (described by the inequality
neq(s1Pos,s2Pos)), the observer produces a defect event and then deadlocks
(STOP).

Finally, the Observer is combined in parallel with the System and the verifi-
cation reduced to an assertion that should not reveal a deadlock.

ObservedSystem = ECS [| {| surfacePos.i.x | i<-{1,2}, x<-Ts_Surface |} |] Observer
assert ObservedSystem :[deadlock free [F]]

Intuitively, a deadlock can occur because the Priority Logic subsystems can
give control to different pilots if the controllers are not synchronised to read the
priorities and debounce them.

After specifying all those components in CSP as well as the desired property,
the ObservedSystem presents a huge state space (the state explosion problem)
due to the manipulated data types. To overcome this problem we need to perform
some simplifications. We use the data abstraction approach proposed in [17] to
find the minimum values of the data types (the abstract domains) that are
relevant to capture the system’s behaviour of interest. This reveals, for example,

336 J. Jesus et al.

that abstracting the pitch rate signals produced by the IRUs or the side-stick
LVDT signal as Tinteger values ranging between -64 and 64, instead of the
floating precision numbers with 18 bits of accuracy, results in five (discrete)
values: -25, -1, 0, 1 and 25, corresponding to the positions LOWER, NEGATIVE,
NEUTRAL, POSITIVE and HIGHER. So, we just modify the set T LVDT as
follows:

T_LVDT = { I.x | x<-{ -25, -1, 0, 1, 25 }}

Moreover, as the Controllers depend on the LVDT signals, they are also abstracted
to finite domains. We applied this technique to each component of the system
and also to the interactions between them.

The verification of the model (A1) performed with FDR founds a deadlock
— confirming our intuition that the architecture can interfere in the design
(Simulink model) — because the four FCMs are not executing the Priority
Logic subsystems synchronously. Following our strategy, we performed a change
in the design using a simplified architecture (A2), with only two controllers
embedded into a two FCMs and reading the priorities synchronously; then the
property was satisfied. Table 1 shows the results of the analysis. We observed
that simplifying the architecture reduced the verification time. All experiments
were performed on an Intel Core 2 Duo T5750 processor, 2Gb RAM and OS
Kubuntu Linux 8.10 inside VirtualBox 3.2.

Table 1. Formal verification results

Processes Approx. Time Deadlock free

A1 2680 12 hours Fail

A2 1368 9 hours Pass �

Table 2. Test-based verification

Simulation Tests “Iron bird rig” Test Laboratory

Computer Type Host Host Target

Equipment Type Simulated Simulated Real (Final)

Approx. Time 1 hour 2 hours 1 hour + ∼ 4 months (construction)

As previously said, in a standard V-Model, the design is verified in several
phases of the development with different techniques such as simulation in a host
computer and tests in a prototype laboratory with a target (micro)processor
and real equipments (RIG test). According to Embraer, as we see in Table 2, the
estimated time to execute tests that cover this same property is about four hours.
However the time elapsed from the end of the design phase — after the tests
in a target computer with simulated equipments — to the analysis of the “Iron
bird” test results is approximately four working months, due to the construction
of the necessary laboratory facilities. Moreover, as we said, if a problem is found
during a RIG test, for example, the correction cycle is very costly. In this way,
our work significantly reduces the costs of manufacturing and testing incorrect
designs, since our validation is done during the initial phases of the development.

Architectural Verification of Control Systems Using CSP 337

5 Related Work

We identified several related works [11,18,10,3,19,20] that aim to guarantee cor-
rectness of control systems. However, none of these works have considered a
systematic translation from Simulink to CSP , based on compositional rules, nor
the influence of architectural requirements on the system in a formal way. They
only define the steps to create a complete model in their formal notations in-
formally, hiding the translation details into tools that implement their informal
descriptions. Our tool support is based on our normalisation and translation
rules.

The work reported in [11] is close to the works of CLawZ [18] and Circus [10]
with respect to proposing a systematic translation from Simulink into some
formal language. But [11] defines a new language based on time intervals. These
works differ from ours because they use theorem proving. Thus, in most cases,
it is not possible to automatically check a property, whereas in our strategy
one can automatically prove a system property, provided the model is correctly
abstracted. Moreover, [18] and [10] address checking code against model, rather
than model against requirements.

Concerning the translation from Simulink into a formal notation but aiming
at checking safety properties, normally stated in terms of boolean formulas, we
can find the works [3,19]. They use NuSMV as the target formal language and
do not provide any comments on how to handle state-explosion.

The work reported in [20] is similar to our Simulink translation approach.
However, Lustre is used as the formal notation to represent Simulink blocks.
This can also be regarded as a formalisation of Simulink as long as Lustre, like
CSP , is equipped with a formal semantics. They also report the development of
a strategy (without rules) and a translator utility. Nevertheless, the purpose of
their approach is to produce correct implementations.

Furthermore, tools like the Simulink Validation and Verification [21] contribute
to the work of certifying the model compliance with DO-178B [22]. It allows
monitoring the model signals during extensive testing, so that correct designs
are created.

Moreover, the formal models produced by our strategy can also be anal-
ysed using other tools for CSP , such as the Process Analysis Toolkit (PAT)
model-checker3. Furthermore, the CSP-Prover4 can be used to apply our strat-
egy to continuous systems, as long as the CSP-Prover provides built-in real
numbers and can deal with infinite models. By using the CSP-Prover, our work
immediately extends the work of [11] in terms of supported formal analysis
techniques.

6 Conclusion

In this work we have shown that a Simulink control diagram can be represented
formally as a process in the process algebra CSP . We accomplished this by
3 http://www.comp.nus.edu.sg/~pat/
4 http://staff.aist.go.jp/y-isobe/CSP-Prover/CSP-Prover.html

http://www.comp.nus.edu.sg/~pat/
http://staff.aist.go.jp/y-isobe/CSP-Prover/CSP-Prover.html

338 J. Jesus et al.

defining an infrastructure that provides useful constructions to represent control
diagrams, and an automatic translation of the system designs in Simulink to
the top-level components of this infrastructure. Furthermore, our layered infras-
tructure helps defining a formal semantics to Simulink elements (blocks, signals,
subsystems and timing features).

One of the key points of our infrastructure are the template processes that
represent the Simulink main elements. For instance, we have a process Block
that describes a generic Simulink discrete block, a Sampler process that behaves
as a limited counter (quickly compiled by FDR) and integrated to the Block by
the function Sampled. Moreover, Simulink loops are captured by the tick events
synchronised by all processes.

Another important point to observe is about minimising the state-space of the
CSP specification. Our template processes allow the factorisation of the block
timing features, reducing state explosion. This was possible due to the defini-
tion of the timing controlling events (tick, step and sampleStep) triggered
by Samplers and listened by Sampled. Furthermore, we proposed normalisa-
tion rules to simplify Simulink models, avoiding duplicated definitions — this
minimises the generated CSP specification.

As discussed in [12], some processes of our library are data independent and
can be easily abstracted using the technique of Lazić’s work [16]; we did this in
the ECS. Other blocks are data dependent and need the ideas of data abstrac-
tion [17]. For instance, the type parameter Tin is used to restrict the inputs of
the block [12].

By defining properties as observer processes and using deadlock analysis, we
can also check the system design. This idea was inspired, for example, in [7]
about parallel composition as conjunction. This allowed us to find a defect when
integrating the Simulink model of the Elevator Control System with its proposed
architecture.

Finally, our rules are implemented in our prototype tool Sim2Csp. This tool
automatically generates a CSPM model from a Simulink model file, and was
implemented in Java reusing the core of Circus Producer [10].

As future work we intend to improve our block library, our tool (Sim2Csp)
and apply data independece and data abstraction automatically. We also intend
to realise a deeper investigation on how the formal techniques of data abstraction,
abstract interpretation and data independence can be supported in our strategy.

Acknowledgements. This work was supported by INES5, funded by CNPq
and FACEPE, grants 573964/2008-4 and APQ-1037-1.03/08, by CNPq grant
482462/2009-4 and by the Brazilian Space Agency (UNIESPAÇO 2009).

References

1. Holloway, C.M.: Why engineers should consider formal methods. In: Proceedings
of the 16th AIAA/IEEE Digital Avionics Systems Conference, Irvine CA, vol. 1,
pp. 1.3-16 – 1.3-22 (October 1997)

5 http://www.ines.org.br

http://www.ines.org.br

Architectural Verification of Control Systems Using CSP 339

2. Certification Considerations for Highly-Integrated or Complex Aircraft Systems.
Technical Report ARP4754, SAE International, Warrendale, PA (December 1999)

3. Bernard, R., Aubert, J., Bieber, P., Merlini, C., Metge, S.: Experiments in model-
based safety analysis: flight controls. In: 1st IFAC workshop on Dependable Control
of Discrete Systems (2007)

4. Bozzano, B., Villafiorita, A.: Improving system reliability via model checking: The
fSAP/NuSMV-SA safety analysis platform. In: Anderson, S., Felici, M., Littlewood,
B. (eds.) SAFECOMP 2003. LNCS, vol. 2788, pp. 49–62. Springer, Heidelberg
(2003)

5. Camus, J.-L., Dion, B.: Efficient development of airborne software with Scade suite.
Esterel Technologies (2003), http://www.esterel-technologies.com

6. Silva, L., Sampaio, A., Barros, E.: A constructive approach to hardware/software
partitioning. Form. Methods Syst. Des. 24(1), 45–90 (2004)

7. Roscoe, A.: The Theory and Practice of Concurrency. Prentice Hall PTR, Engle-
wood Cliffs (1997)

8. The MathWorks Inc. Simulink User’s Guide (2008)
9. Pratt, R.: Flight Control Systems: Pratical Issues in Design and Implementation.

The Institution of Electrical Engineers, UK (2000)
10. Zeyda, F., Cavalcanti, A.: Mechanised Translation of Control Law Diagrams into

Circus. In: Leuschel, M., Wehrheim, H. (eds.) IFM 2009. LNCS, vol. 5423, pp.
151–166. Springer, Heidelberg (2009)

11. Chen, C., Dong, J.S.: Applying Timed Interval Calculus to Simulink Diagrams. In:
Liu, Z., Kleinberg, R.D. (eds.) ICFEM 2006. LNCS, vol. 4260, pp. 74–93. Springer,
Heidelberg (2006)

12. Jesus, J.: Designing and formal verification of fly-by-wire flight control systems.
Master’s thesis, UFPE (2009), joabe.ecomp.poli.br/msc/jbjj-msc.pdf .

13. Roscoe, A., Broadfoot, P.: Proving Security Protocols With Model Checkers by
Data Independence Techniques (1999)

14. Grijo, L.: Architectures of Flight Control and Autopilot for Civil Aircraft. Master’s
thesis, Aeronautical Institute of Technology, São José dos Campos (2004)

15. Halbwachs, N., Lagnier, F., Raymond, P.: Synchronous Observers and the Verifi-
cation of Reactive Systems. In: Third Int. Conf. on Algebraic Methodology and
Software Technology, AMAST 1993. Springer, Heidelberg (1993)

16. Lazic, R., Roscoe, A.: Data independence with generalised predicate symbols. In:
PDPTA 1999, vol. I, pp. 319–325. CSREA Press (1999)

17. Farias, A., Mota, A., Sampaio, A.: Compositional Abstraction of CSPZ Processes.
Journal of the Brazilian Computer Society 14(2) (June 2008)

18. Arthan, R.D., Caseley, P.: Colin O’Halloran, and A. Smith. ClawZ: Control Laws
in Z. In: Proc. 3rd IEEE ICFEM 2000, York, pp. 169–176 (September 2000)

19. Meenakshi, B., Bhatnagar, A., Roy, S.: Tool for Translating Simulink Models
into Input Language of a Model Checker. In: Liu, Z., Kleinberg, R.D. (eds.)
ICFEM 2006. LNCS, vol. 4260, pp. 606–620. Springer, Heidelberg (2006)

20. Tripakis, S., Sofronis, C., Caspi, P., Curic, A.: Translating discrete-time Simulink
to Lustre. ACM Trans. Embed. Comput. Syst. 4(4), 779–818 (2005)

21. The MathWorks Inc. Simulink Validation and Verification 2 User’s Guide (2008)
22. Software considerations in airborne systems and equipment certification. DO 178B,

RTCA Inc., Washington D.C. (December 1992)

http://www.esterel-technologies.com
joabe.ecomp.poli.br/msc/jbjj-msc.pdf

Symbolic Execution of Alloy Models

Junaid Haroon Siddiqui and Sarfraz Khurshid

The University of Texas at Austin

Abstract. Symbolic execution is a technique for systematic exploration
of program behaviors using symbolic inputs, which characterize classes
of concrete inputs. Symbolic execution is traditionally performed on im-
perative programs, such as those in C/C++ or Java. This paper presents
a novel approach to symbolic execution for declarative programs, specif-
ically those written in Alloy – a first-order, declarative language based
on relations. Unlike imperative programs that describe how to perform
computation to conform to desired behavioral properties, declarative pro-
grams describe what the desired properties are, without enforcing a spe-
cific method for computation. Thus, symbolic execution does not directly
apply to declarative programs the way it applies to imperative programs.
Our insight is that we can leverage the fully automatic, SAT-based anal-
ysis of the Alloy Analyzer to enable symbolic execution of Alloy models
– the analyzer generates instances, i.e., valuations for the relations in
the model, that satisfy the given properties and thus provides an exe-
cution engine for declarative programs. We define symbolic types and
operations, which allow the existing Alloy tool-set to perform symbolic
execution for the supported types and operations. We demonstrate the
efficacy of our approach using a suite of models that represent struc-
turally complex properties. Our approach opens promising avenues for
new forms of more efficient and effective analyses of Alloy models.

1 Introduction

Symbolic execution [5, 14] is a technique first presented over three decades ago
for systematic exploration of behaviors of imperative programs using symbolic
inputs, which characterize classes of concrete inputs. The key idea behind sym-
bolic execution is to explore (feasible) execution paths by building path con-
ditions that define properties required of inputs to execute the corresponding
paths. The rich structure of path conditions enables a variety of powerful static
and dynamic analyses. However, traditional applications of symbolic execution
have largely been limited to small illustrative examples, since utilizing path con-
ditions in automated analysis requires much computation power, particularly
for non-trivial programs that have long execution paths with complex control
flow. During recent years, many advances has been made in constraint solving
technology [7] and additionally, raw computation power has increased substan-
tially. These advancements have led to a resurgence of symbolic execution, and
new variants that perform partial symbolic execution have become particularly
popular for systematic bug finding [4] in programs written in commonly used
languages such as C/C++, C#, and Java.

S. Qin and Z. Qiu (Eds.): ICFEM 2011, LNCS 6991, pp. 340–355, 2011.
c© Springer-Verlag Berlin Heidelberg 2011

Symbolic Execution of Alloy Models 341

While symbolic execution today lies at the heart of some highly effective and
efficient approaches for checking imperative programs, the use of symbolic exe-
cution in declarative programs is uncommon. Unlike imperative programs that
describe how to perform computation to conform to desired behavioral prop-
erties, declarative programs describe what the desired properties are, without
enforcing a specific method for computation. Thus, symbolic execution, or exe-
cution per se, does not directly apply to declarative programs the way it applies
to imperative programs.

This paper presents a novel approach to symbolic execution for declarative
programs written in the Alloy modeling language [11]. Alloy is a first-order
declarative logic based on sets and relations, and is supported by its fully au-
tomatic, SAT-based analyzer. The Alloy tool-set is rapidly gaining popularity
for academic research and teaching as well as for designing dependable software
in industry. The powerful analysis performed by the analyzer make Alloy par-
ticularly attractive for modeling and checking a variety of systems, including
those with complex structural constraints – SAT provides a particularly efficient
analysis engine for such constraints.

Our insight into symbolic execution for Alloy is that path conditions in sym-
bolic execution, which by definition are constraints (on inputs), can play a fun-
damental role in effective and efficient analysis of declarative programs, which
themselves are constraints (that describe “what”). The automatic analysis per-
formed by the Alloy tool-set enables our insight to form the basis of our approach.
Given an Alloy model, the analyzer generates instances, i.e., concrete valuations
for the sets and relations in the model, which satisfy the given properties. Thus,
the analyzer, in principle, already provides an execution engine for declarative
programs, which bears resemblance to concrete execution of imperative pro-
grams. Indeed, a common use of the analyzer is to simulate Alloy predicates and
iterate over concrete instances that satisfy the predicate constraints [11]. The
novelty of our work is to introduce symbolic execution of Alloy models, which is
inspired by traditional symbolic execution for imperative programs. Specifically,
we introduce symbolic types and symbolic operators for Alloy, so that the exist-
ing Alloy Analyzer is able to perform symbolic execution for the supported types
and operations. To illustrate, symbolically simulating an Alloy predicate using
our approach allows generating a symbolic instance that consists of a concrete
valuation, similar to a traditional Alloy instance, as well as a symbolic valuation
that includes a constraint on symbolic values, similar to a path condition.

We demonstrate the efficacy of our approach using a suite of models that rep-
resent a diverse set of constraints, including structurally complex properties. Our
approach opens promising avenues for new forms of more efficient and effective
analyses of Alloy models. For example, our approach allows SAT to be used to
its optimal capability for structural constraint solving, while allowing solving of
other kinds of constraints to be delegated to other solvers. As another example,
our approach allows Alloy users to view multiple instances simultaneously with-
out the need for enumeration through repeated calls to the underlying solver: a
symbolic instance represents a class of concrete instances.

342 J.H. Siddiqui and S. Khurshid

This paper makes the following contributions:

– Symbolic execution for declarative programs. We introduce the idea of
symbolic execution for declarative programs written in analyzable notations,
similar to symbolic execution of imperative programs.

– Symbolic execution for Alloy models. We present our approach for
symbolic execution of Alloy, and provide an extensible technique to support
various symbolic types and operators.

– Demonstration. We use a suite of small but complex declarative models to
demonstrate the efficacy of our approach and the promise it holds in laying
the foundation of novel methodologies for automated analysis of declarative
programs.

2 Background and Illustrative Example

This sections presents background on symbolic execution and Alloy and an ex-
ample of symbolic execution for Alloy technique using a sorted linked list.

2.1 Symbolic Execution Basics

Forward symbolic execution is a technique for executing a program on symbolic
values [14]. There are two fundamental aspects of symbolic execution: (1) defin-
ing semantics of operations that are originally defined for concrete values and
(2) maintaining a path condition for the current program path being executed –
a path condition specifies necessary constraints on input variables that must be
satisfied to execute the corresponding path.

As an example, consider the following program that returns the absolute value
of its input:

static int abs(int x) {
L1. int result;
L2. if (x < 0)
L3. result = 0 - x;
L4. else result = x;
L5. return result; }

To symbolically execute this program, we consider its behavior on a primitive
integer input, say X. We make no assumptions about the value of X (except what
can be deduced from the type declaration). So, when we encounter a conditional
statement, we consider both possible outcomes of the condition. To perform
operations on symbols, we treat them simply as variables, e.g., the statement
on L3 updates the value of result to be 0-X. Of course, a tool for symbolic
execution needs to modify the type of result to note updates involving symbols
and to provide support for manipulating expressions, such as 0-X.

Symbolic execution of the above program explores the following two paths:

path 1: [X < 0] L1 -> L2 -> L3 -> L5
path 2: [X >= 0] L1 -> L2 -> L4 -> L5

Symbolic Execution of Alloy Models 343

Note that for each path that is explored, there is a corresponding path condition
(shown in square brackets). While execution on a concrete input would have
followed exactly one of these two paths, symbolic execution explores both.

2.2 Alloy Basics

Alloy is a first-order relational language [11]. An Alloy specification is a sequence
of paragraphs that either introduce new types or record constraints on fields of
existing types. Alloy assumes a universe of atoms partitioned into subsets, each
of which is associated with a basic type. Details of the Alloy notation and of the
Alloy Analyzer can be found in [11].

Acyclic lists can be modeled in Alloy with the following specification (called
SortedList for consistency with the example in the following section):

one sig SortedList {
header: lone Node,
size: Int }

sig Node {
data: Int,
nextNode: lone Node }

pred Acyclic(l: SortedList) {
all n: l.header.*nextNode | n !in n.^nextNode }

The signature declarations SortedList and Node introduce two uninterpreted
types, along with functions header : SortedList → Node, size : Sort-
edList → Int, data : Node → Int, and nextNode : Node → Node. header
and nextNode are partial functions, indicated by the declaration lone.

The Alloy predicate Acyclic, when invoked, constrains its input l to be acyclic.
The dot operator ‘.’ represents relational image, ‘~’ represents transpose, ‘^’
represents transitive closure, and ‘*’ denotes reflexive transitive closure.

The quantifier all stands for universal quantification. For instance, the con-
straint all n: l.header.*nextNode | F holds if and only if evaluation of the
formula F holds for each atom in the transitive closure of nextNode starting from
l.header. Formulas within curly braces are implicitly conjoined. The quantifier
lone stands for “at most one”. There are also quantifiers some and no with the
obvious meaning.

Given an Alloy specification, the Alloy Analyzer automatically finds instances
that satisfy the specification, i.e., the valuations of relations and signatures that
make all the facts in the specification true. Alloy Analyzer finds instances within
a pre-specified scope – the maximum number of atoms in each basic signature.
Alloy Analyzer can also enumerate all non-isomorphic instances.

2.3 Illustrative Example: Symbolic Execution for Alloy

This section presents an example of symbolic execution of Alloy formulas using a
sorted linked list. In Section 2.2 we presented the Alloy specification for a linked
list. To make it into a sorted linked list, we use the following predicate.

344 J.H. Siddiqui and S. Khurshid

(a) Concrete (b) Symbolic

Fig. 1. Visualizing a sorted linked list with three nodes

pred RepOk(l: SortedList) {
all n: l.header.*nextNode| n !in n.^nextNode -- acyclicity
#l.header.*nextNode = l.size -- size ok
all n: l.header.*nextNode |
some n.nextNode => n.data < n.nextNode.data } -- sorted

The Alloy Analyzer can be used on this model to find instances of a sorted linked
list. We add the following commands to our model to test the RepOk predicate
for three nodes.

fact { SortedList.header.*nextNode = Node } -- no unreachable Node
run RepOk for 3 -- maximum 3 atoms of each kind

As a result of executing this model, Alloy Analyzer produces an instance. The
user can get more and more instances by clicking next. One example instance is
shown in Fig. 1(a). This sorted linked list represents the sequence 〈4, 6, 7〉. The
Alloy Analyzer produces many more instances with three nodes with different
sorted arrangements of integers in the domain of Alloy integers.

Symbolic execution of Alloy (Section 3) is a technique to produce instances
with symbolic variables and a set of constraints over those symbolic variables.
These individual constraints are called clauses in our models. The technique is
implemented as (1) Alloy library module, (2) a set of guidelines for the user on
how to write their Alloy formulas, (3) a set of mechanically generated rules, and
finally (4) a mechanism to invoke the Alloy Analyzer. To use symbolic execution
of Alloy, the user writing the model has to include the symbolic module:

open symbolic

The user changes any uses of Int they wants to make symbolic to SymbolicInt.
The updated signature declarations for our example look like this:

one sig SortedList {
header: lone Node,
size: SymbolicInt }

Symbolic Execution of Alloy Models 345

sig Node {
data: SymbolicInt,
nextNode: lone Node }

Lastly, the user changes any operations performed on the symbolic variables to
use the predicates provided by the symbolic module (e.g. eq, lt, gt, etc.). We
follow the predicate names introduced by the Alloy 4.2 release candidate in its
integer module for concrete operations on integers. If the user uses these pred-
icates, no changes are required for predicate invocation. The Alloy Analyzer’s
type checking finds out whether a symbolic operation is needed or a concrete
operation. The updated RepOk predicate looks like this:

pred RepOk(l: SortedList) {
all n: l.header.*nextNode| n !in n.^nextNode -- acyclicity
(#l.header.*nextNode).eq[l.size] -- size ok
all n: l.header.*nextNode |
some n.nextNode => (n.data).lt[n.nextNode.data] } -- sorted

As the next step, the Alloy module is transformed and a new fact is mechanically
generated. This fact ensures that the symbolic integers used are all unique. For
sorted linked list, this fact is:

fact {
#SymbolicInt = (#SortedList).plus[#Node]
SymbolicInt = SortedList.size + Node.data }

Finally, when this updated model is run through Alloy Analyzer, models with a
set of constraints on these symbolic integers are generated. An example instance
with three nodes is given in Fig. 1(b). This time, however, it is the only instance
with three nodes. Other instances either have fewer or more nodes. This helps
the user visualize the model in a more efficient manner. Also a symbolic instance
more explicitly states the relationship between data nodes.

3 Symbolic Execution of Alloy Formulas

This section presents the four key parts of our approach: (1) Alloy library module
that introduces symbolic variables and operations on them as well as a represen-
tation for clauses that define constraints on symbolic fields, (2) changes required
in the user model to introduce symbolic fields, (3) mechanically generated facts
that enable consistent usage of symbolic values, and (4) Alloy Analyzer usage to
restrict any redundant clauses from being generated.

3.1 Symbolic Alloy Module

This section presents the Alloy module that enables symbolic execution. The
module starts by the module declaration and a few signatures:

346 J.H. Siddiqui and S. Khurshid

module symbolic

abstract sig Expr {}
sig SymbolicInt, SymbolicBool extends Expr {}

abstract sig RelOp {}
one sig lt, gt, lte, gte, eq, neq, plus, minus extends RelOp {}

Expr atoms represent expressions that can be symbolic variables or expressions
on symbolic variables and plain integers. RelOp are single atoms (because of
the one modifier) that represents a few binary operations we demonstrate. Next
we define the Clause atom, which is an expression combining two symbolic
variables, standard Alloy integers, or expressions.

abstract sig Clause extends Expr {
LHS: Expr+Int,
OP: RelOp,
RHS: Expr+Int }

Next, we have a set of predicates that require certain clauses to exist. For example
the following lt and eq predicates would require that appropriate Clause atoms
must exist. These Clause atoms in the final output show us the relationship
enforced on symbolic variables in the model.

pred lt(e1: Expr+Int, e2: Expr+Int) {
some c: Clause | c.LHS = e1 && c.OP = LT && c.RHS = e2 }

pred eq(e1: Expr+Int, e2: Expr+Int) {
some c: Clause | c.LHS = e1 && c.OP = EQ && c.RHS = e2 }

Similar predicates exist for all supported operations and Alloy functions exist to
combine plus and minus operators to form more complex expressions.

3.2 User Modifications to Alloy Model

This section describes the changes required of the user in their model. Some such
changes were discussed in Section 2.3 in the context of a sorted linked list.

The first change is a call to use the symbolic module. This imports the library
signatures, predicates, and functions discussed in the previous section.

open symbolic

Next the user changes Int to SymbolicInt and Bool to SymbolicBool. These
are the only primitive types supported by the Alloy Analyzer and we enable
symbolic analysis for both of them.

Lastly, the user has to change all operations on symbolic variables to use
one of the predicates or functions in the symbolic module. However, the names
we used are the same as those used in the built-in Alloy integer module. The
new recommended syntax of Alloy 4.2 release candidate is already to use such
predicates. Specifically, for plus and minus predicates, the old syntax is no longer
allowed. The + and - operators exclusively mean set union and set difference now.

Symbolic Execution of Alloy Models 347

We follow the lead of this predicate-based approach advocated in the Alloy 4.2
release candidate and support eq, neq, lt, gt, lte, gte, plus, and minus in our
symbolic module. If the user is using old Alloy syntax, he has to change to the
new syntax as follows:

a = b ⇒ a.eq[b]
a < b ⇒ a.lt[b]
a > b ⇒ a.gt[b]
a + b ⇒ a.plus[b]
a - b ⇒ a.minus[b]

The plus and minus operations in our symbolic library come in two forms: as
a predicate and as a function. The predicate requires the clause to exist and
the function returns the existing clause. For example, to convert an expression
a+b>c the user first converts it to new syntax i.e. (a.plus[b]).gt[c]. Then
he adds the plus operation as a separate predicate as well i.e. a.plus[b] &&
(a.plus[b]).gt[c]. The compiler recognizes the first invocation as a predicate
that requires a new clause to exist and the second invocation as returning that
clause. If the predicate is omitted, the function returns no clause and no sat-
isfying model is found. We include two case studies that show how it is used
(Section 4.3 and Section 4.4).

3.3 Mechanically Generated Facts

This section presents the Alloy facts that our technique mechanically generates
to ensure soundness of symbolic execution. These facts ensure that symbolic
variables are not shared among different objects. For example, two Node atoms
cannot point to the same SymbolicInt atom as data. Otherwise, we cannot
distinguish which nodes’s symbolic variable a Clause is referring to. Note that
this does not prevent two nodes to contain the same integer value.

We use two mechanically generated facts to ensure uniqueness of symbolic
variables. To form these facts, we find all uses of symbolic variables (SymbolicInt
and SymbolicBool). We describe the generation of facts for SymbolicInt. Sim-
ilar facts are generated for SymbolicBool.

Consider a sig A where B is a field of type SymbolicInt – i.e. B is a relation
of the type A→SymbolicInt. We form a list of all such relations {(A1, B1), (A2,
B2), (A3, B3), ...} and then generate two facts.

The first fact ensures that all SymbolicInt atoms are used in one of these
relations and the second fact ensures that we exactly have as many SymbolicInt
atoms as needed in these relations. If any SymbolicInt atom is used in two
relations, then some SymbolicInt atom is not used in any relation (because of
second fact), but unused SymbolicInt atoms are not allowed (because of first
fact). Thus the two facts are enough to ensure unique symbolic variables.

SymbolicInt = A1.B1 + A2.B2 + A3.B3 + ...
#SymbolicInt = #A1 + #A2 + #A3 + ...

Note that if some sig has more than one SymbolicInt, then for some i, j,
Ai = Aj. The particular sig will be counted twice in the second fact. Also note

348 J.H. Siddiqui and S. Khurshid

that the new Alloy syntax requires the second fact to be written using the plus
function as the + operator is dedicated to set union operation.
#SymbolicInt = (#A1).plus[(#A2).plus[(#A3).plus[...]]]

3.4 Alloy Analyzer Usage

This section discusses a practical issue in analyzing a model that contains sym-
bolic clauses instead of concrete integers. The key problem is to deal with re-
dundant clauses that may exist in a symbolic instance because they are allowed
by the chosen scope, although not explicitly enforced by the constraints, i.e., to
separate redundant clauses from enforced clauses. Recall that the Alloy Analyzer
finds valid instances of the given model for the given scope. Any instance with
redundant clauses within given bounds is still valid. These redundant clauses
are not bound to any particular condition on the symbolic variables and can
take many possible values resulting in the Alloy Analyzer showing many in-
stances that are only different in the values of redundant clauses. We present
two approaches to address this problem.

Iterative Deepening. The first approach is to iteratively run the Alloy Ana-
lyzer on increasing scopes for Clause atoms until we find a solution. The pred-
icates in symbolic module require certain Clause atom to exist. If the scope
for sig Clause is smaller than the number of required clauses, then the Alloy
Analyzer will declare that no solutions can be found. This separate bound on
sig Clause can be given as:
run RepOk for 3 but 1 Clause

There are three considerations in this approach. The first is performance. Perfor-
mance is an issue for large models where the bound on Clause has to be tested
from zero to some larger bound. However, for most models, Alloy analysis is of-
ten performed for small sizes. Thus the repetitions required for testing different
values is also expected to be small. Still, this incurs a performance overhead.

The second consideration is how to decide an upper bound on number of
clauses. The user may use multiple clauses on each symbolic variable. We can
enumerate to twice the number of symbolic variables as a safe bound and then
inform the user that there may be instances with more clauses but none with
fewer clauses. If the user knows that their model needs more clauses, then they
can give a higher bound for the clauses to find such instances.

The third consideration is if we find a solution with n clauses, there may be
solutions with more than n clauses. For example, the user can write a predicate
like:
a.eq[b] || (a.eq[c] && c.eq[b])

Such an expression can result in one to three clauses. If Alloy Analyzer finds a
solution with n clauses, there might be solutions with n + 1 and n + 2 clauses.
Because of this, when we find a valid solution, we inform the user that there
might be solutions with more clauses. Again, the user – with knowledge of the
model – can force a higher bound on clauses or rewrite such predicates.

Symbolic Execution of Alloy Models 349

Skolemization. The second approach for handling the bound on Clause atoms
uses skolemization in Alloy. According to Alloy’s quick guide, “Often times,
quantified formulas can be reduced to equivalent formulas without the use of
quantifiers. This reduction is called skolemization and is based on the introduc-
tion of one or more skolem constants or functions that capture the constraint of
the quantified formula in their values.”

The important aspect of skolemization for our purpose is that skolemized
atoms are identified explicitly in Alloy Analyzer’s output. If we ensure that all
generated clauses are skolemized we can start with a large bound for Clause
atoms and easily identify redundant Clause atoms in the output.

Additionally, Alloy Analyzer’s code can be modified to generate only skolem-
ized atoms of one kind. This eliminates all issues related with bounds on the
number of clauses. Only enforced clauses will be generated.

The only drawback to this scheme is that the user needs to ensure all pred-
icates can be converted by skolemization. For example, the ordering check for
sorted list in Section 2.3 does not produce skolemized results the way it is writ-
ten. However the following equivalent predicate does:

some tail: l.header.*nextNode | no tail.nextNode
&& all n: l.header.*nextNode-tail | (n.data).lt[n.nextNode.data]

Instead of an implication, we have to use universal and existential quantifiers.
The new sorting check for linked list works with skolemization.

Skolemization translates existential quantifier based expressions. In the future,
it should be investigated if the technique associated with skolemization – that
renames an atom generated to satisfy a predicate – can be separately used for
symbolic execution of Alloy. This would require changing the Alloy Analyzer
implementation and only allowing Clause atoms that are generated to satisfy
predicates in the symbolic module. Such Clause atoms would be generated
regardless of how the predicate in symbolic module was invoked.

4 Case Studies

This section presents four small case studies that demonstrate that our technique
enables novel forms of analysis of Alloy models using the Alloy Analyzer.

4.1 Red-Black Trees

Red-black trees [6] are binary search trees with one extra bit of information per
node: its color, which can be either red or black. By restricting the way nodes
are colored on a path from the root to a leaf, red-black trees ensure that the tree
is balanced, i.e., guarantee that basic dynamic set operations on a red-black tree
take O(lg n) time in the worst case.

A binary search tree is a red-black tree if:

1. Every node is either red or black.
2. Every leaf (NIL) is black.

350 J.H. Siddiqui and S. Khurshid

Fig. 2. Visualizing the constraints on data in a red-black tree with three nodes

3. If a node is red, then both its children are black.
4. Every path from the root node to a descendant leaf contains the same number

of black nodes.

All four of these red-black properties are expressible in Alloy [13]. Each node is
modeled as:

sig Node {
left: Node,
right: Node,
data: SymbolicInt,
isBlack: Bool }

The core binary tree properties are:

pred isBinaryTree(r: RedBlackTree) {
all n: r.root.*(left + right) {
n !in n.^(left + right) -- no directed cycle
lone n.~(left + right) -- at most one parent
no n.left & n.right }} -- distinct children

We show how symbolic execution of Alloy formulas helps in generating and
visualizing red-black tree instances. Using symbolic execution for size is similar
to sorted linked list. We now show how to make data symbolic and write the
binary search tree ordering constraints using predicates in the symbolic module.

pred isOrdered(r: RedBlackTree) {
all n: r.root.*(left+right) { -- ordering constraint
some n.left => (n.left.info).lt[n.info]
some n.right => (n.info).lt[n.right.info] }}

Next, we consider the isBlack relation. The constraints to validate color are:

pred isColorOk(r: RedBlackTree) {
all e: root.*(left + right) | -- red nodes have black children
e.isBlack = false && some e.left + e.right =>
(e.left + e.right).isBlack = true

Symbolic Execution of Alloy Models 351

Fig. 3. Visualizing the constraints on a list with alternating colors. Presents an example
with symbolic booleans.

all e1, e2: root.*(left + right) | --all paths have same #blacks
(no e1.left || no e1.right) && (no e2.left || no e2.right) =>
#{ p: root.*(left+right) |

e1 in p.*(left+right) && p.isBlack = true } =
#{ p: root.*(left+right) |

e2 in p.*(left+right) && p.isBlack = true }
}

We don’t want isBlack to be symbolic because isBlack ensures that the gener-
ated trees are balanced. If we allow isBlack to be symbolic, the Alloy Analyzer
will give instances with unbalanced trees combined with a set of unsolvable con-
straints for isBlack. To avoid such instances we keep isBlack concrete.

In Fig. 2, an example of a red-black tree instance produced by symbolic exe-
cution of the above model is shown. The root node is red while both children are
black. The constraints show that data in left node has to be less than data in
root node which has to be less than data in the right node. Another constraint
shows that size has to be three for this red-black tree.

4.2 Colored List

In this example, we consider a list where no two successive elements have the
same color. This example presents a case where symbolic booleans are used.

The Node sig is defined as:

sig Node {
nextNode: lone Node,
color: SymbolicBool }

The check for alternate colors in the list can be written as

pred ColorsOk(l: ColoredList) {
all n: l.header.*nextNode |
some n.nextNode => (n.color).neq[n.nextNode.color] }

When this Alloy model is symbolically executed, one instance we get is shown
in Fig. 3. There are expressions that restrict the value of each boolean to be not
equal to either its predecessor’s data or its successor’s data.

352 J.H. Siddiqui and S. Khurshid

Fig. 4. Visualizing the constraints on data in a fibonacci sequence. Presents an example
of non-trivial numeric constraints.

Such a models help in visualizing the structure of a model and understanding
the relationships between various elements. Since each symbolic instance corre-
sponds to a class of concrete instances, we are able to visualize more structures
and build a better understanding of the model in much less time.

4.3 Fibonacci Series

This example presents how symbolic execution of Alloy models is able to allow
non-trivial numeric operations and help avoid integer overflow. Because of Alloy’s
SAT-based analysis, the domain of integers used has to be kept small and integer
overflow is a well-recognized issue. The Alloy 4.2 release candidate supports an
option that disables generation of instances that have numeric overflow. Our
approach provides an alternative solution since we build constraints on symbolic
fields and do not require SAT to perform arithmetic.

This example considers a fibonacci series stored in a linked list. The first two
elements are required to contain zero and one. Anything after that contains the
sum of last two elements. This can be modeled in Alloy as:

pred isFibonacci(l: SortedList) {
some l.header => (l.header.data).eq[0]
some l.header.nextNode => (l.header.nextNode.data).eq[1]
all n: l.header.*nextNode |
let p = n.nextNode, q = p.nextNode |
some q => (n.data).plus[p.data] &&
(q.data).eq[(n.data).plus[p.data]] }

The first two constraints ensure that if the header and its next exist, they
should be equal to 0 and 1 respectively. The third constraint works on all nodes
(n) thats that have two more nodes (p and q) in front of them. It generates a
plus clause between n and p and then generates an equality clause between the
plus clause and q. This covers all restrictions on data in a fibonacci series.

Symbolic Execution of Alloy Models 353

(a) First Branch (b) Second Branch

Fig. 5. Visualizing constraints on two paths within a small imperative function.
Presents an example of visualizing traditional path conditions using Alloy.

Fig. 4 shows an instance of the fibonacci list with four nodes. The conditions
show that the third and fourth node have to contain the sum of the previous two,
while the first two nodes can only contain 0 and 1. This shows the expressive
power of symbolic execution for Alloy models and the way it shows a whole class
of concrete inputs in a single visualization.

4.4 Traditional Symbolic Execution of Imperative Code

This section demonstrates an example of a small imperative function that is
translated to Alloy and is symbolically executed using the Alloy Analyzer. This
shows a non-conventional application of the Alloy Analyzer. Consider the abs
function from Section 2.1 that returns the absolute value of its input.

static int abs(int x) {
int result;
if (x < 0)
result = 0 - x;

else result = x;
return result; }

This function can modeled in Alloy as:

pred abs(x: Int, result: Int) {
x.lt[0] => 0.minus[x] && result.eq[0.minus[x]]
else x.gte[0] && result.eq[x] }

The predicate takes x and result where x is the original input and result
models the return value of this function. Symbolic execution of this function
explores two paths with conditions x<0 on one path and x>=0 on the other path.

When we run this model using symbolic execution for Alloy models, we find
both these paths in the output of Alloy Analyzer. The visualization of these
paths is shown in Fig. 5. Within the correct bounds and when redundant clauses
are prevented, these are the only two results generated by the Alloy Analyzer.

This case study is one of the novel applications of symbolic execution in Alloy.
It shows that Alloy can even provide a symbolic execution engine for traditional
symbolic execution. It is yet to be seen how feasible Alloy would be in comparison
with other symbolic execution engines for analysis of imperative programs.

354 J.H. Siddiqui and S. Khurshid

5 Related Work

Clarke [5] and King [14] pioneered traditional symbolic execution for imperative
programs with primitive types. Much progress has been made on symbolic exe-
cution during the last decade. PREfix [1] is among the first systems to show the
bug finding ability of symbolic execution on real code. Generalized symbolic exe-
cution [12] shows how to apply traditional symbolic execution to object-oriented
code and uses lazy initialization to handle pointer aliasing.

Symbolic execution guided by concrete inputs is one of the most studied ap-
proaches for systematic bug finding during the last five years. DART [10] com-
bines concrete and symbolic execution to collect the branch conditions along
the execution path. DART negates the last branch condition to construct a new
path condition that can drive the function to execute on another path. DART
focuses only on path conditions involving integers. To overcome the path explo-
sion in large programs, SMART [9] introduced inter-procedural static analysis
techniques to reduce the paths to be explored by DART. CUTE [15] extends
DART to handle constraints on references. CUTE can in principle be used with
preconditions on structural inputs.

EGT [2] and EXE [3] also use the negation of branch predicates and symbolic
execution to generate test cases. They increase the precision of the symbolic
pointer analysis to handle pointer arithmetic and bit-level memory locations. All
the above approaches consider symbolic execution for imperative constraints.

Symbolic Execution has been applied outside the domain of imperative pro-
grams. Thums and Balser [16] uses symbolic execution to verify temporal logic
and statecharts. They consider every possible transition and maintain the sym-
bolic state. Wang et al. [18] use symbolic execution to analyze behavioral re-
quirements represented as Live Sequence Charts (LSC). LSC are executable
specifications that allow the designer to work out aberrant scenarios. Symbolic
execution allows them to group a number of concrete scenarios that only differ
in the value of some variable. These are novel applications of symbolic execu-
tion, however, they translate the problem from some domain to a sequence of
events with choices. This is essentially a sequential operation. To our knowledge
symbolic execution has not yet been applied to declarative logic programs.

The Alloy Analyzer uses the Kodkod tool [17], which provides the interface
to SAT. The Alloy tool-set also includes JForge [8], which is a framework for
analyzing a Java procedure against strong specifications within given bounds. It
uses Kodkod for its analysis. JForge translates an imperative Java program to
its declarative equivalent. We believe JForge can provide an enabling technology
to transform our technique for symbolic execution of Alloy models to handle
imperative programs.

6 Conclusion

This paper introduced a novel technique for symbolic execution of declarative
models written in the Alloy language. Our insight is that the fully automatic
SAT-based analysis that the Alloy tool-set supports, provides a form of execution

Symbolic Execution of Alloy Models 355

that can be leveraged to define symbolic execution for Alloy. We demonstrated
the efficacy of our technique using a variety of small but complex Alloy models,
including red-black trees, colored lists, Fibonacci series, as well as a model of an
imperative program. We believe our work opens exciting opportunities to develop
more efficient and effective analyses of Alloy. For example, the constraints on
symbolic fields can be solved using specialized solvers that directly support the
corresponding theories. Moreover, a symbolic instance summarizes a number of
concrete instances and thus our technique provides an efficient mechanism for
the user to enumerate and inspect desired instances.

Acknowledgments. This work was funded in part by the Fulbright Program,
the NSF under Grant Nos. IIS-0438967 and CCF-0845628, and AFOSR grant
FA9550-09-1-0351.

References

1. Bush, W.R., et al.: A Static Analyzer for Finding Dynamic Programming Errors.
Softw. Pract. Exper. 30 (2000)

2. Cadar, C., Engler, D.: Execution generated test cases: How to make systems code
crash itself. In: Godefroid, P. (ed.) SPIN 2005. LNCS, vol. 3639, pp. 2–23. Springer,
Heidelberg (2005)

3. Cadar, C., et al.: EXE: Automatically Generating Inputs of Death. In: CCS 2006
(2006)

4. Cadar, C., et al.: Symbolic Execution for Software Testing in Practice Preliminary
Assessment. In: ICSE Impact (2011)

5. Clarke, L.A.: Test Data Generation and Symbolic Execution of Programs as an aid
to Program Validation. PhD thesis, University of Colorado at Boulder (1976)

6. Cormen, T.T., et al.: Introduction to Algorithms. MIT Press, Cambridge (1990)
7. de Moura, L., Bjørner, N.: Z3: An efficient SMT solver. In: Ramakrishnan, C.R.,

Rehof, J. (eds.) TACAS 2008. LNCS, vol. 4963, pp. 337–340. Springer, Heidelberg
(2008)

8. Dennis, G., Yessenov, K.: Forge website, http://sdg.csail.mit.edu/forge/
9. Godefroid, P.: Compositional Dynamic Test Generation. In: POPL (2007)

10. Godefroid, P., et al.: DART: Directed Automated Random Testing. In: PLDI (2005)
11. Jackson, D.: Software Abstractions: Logic, Language, and Analysis. The MIT

Press, Cambridge (2006)
12. Khurshid, S., et al.: Generalized symbolic execution for model checking and testing.

In: Garavel, H., Hatcliff, J. (eds.) TACAS 2003. LNCS, vol. 2619, pp. 553–568.
Springer, Heidelberg (2003)

13. Khurshid, S., Marinov, D.: TestEra: Specification-Based Testing of Java Programs
using SAT. Automated Softw. Eng. J. 11 (2004)

14. King, J.C.: Symbolic Execution and Program Testing. Commun. ACM 19 (1976)
15. Sen, K., et al.: CUTE: A Concolic Unit Testing Engine for C. In: ESEC/FSE (2005)
16. Thums, A., Balser, M.: Interactive verification of statecharts. In: Ehrig, H., Damm,

W., Desel, J., Große-Rhode, M., Reif, W., Schnieder, E., Westkämper, E. (eds.)
INT 2004. LNCS, vol. 3147, pp. 355–373. Springer, Heidelberg (2004)

17. Torlak, E., Jackson, D.: Kodkod: A relational model finder. In: Grumberg, O., Huth,
M. (eds.) TACAS 2007. LNCS, vol. 4424, pp. 632–647. Springer, Heidelberg (2007)

18. Wang, T., et al.: Symbolic Execution of Behavioral Requirements. In: Pract.
Aspects Decl. Lang. (2004)

http://sdg.csail.mit.edu/forge/

Distributed Theorem Proving
for Distributed Hybrid Systems�

David W. Renshaw, Sarah M. Loos, and André Platzer

Carnegie Mellon University, Computer Science Department, Pittsburgh, PA, USA

Abstract. Distributed hybrid systems present extraordinarily challenging prob-
lems for verification. On top of the notorious difficulties associated with
distributed systems, they also exhibit continuous dynamics described by quan-
tified differential equations. All serious proofs rely on decision procedures for
real arithmetic, which can be extremely expensive. Quantified Differential Dy-
namic Logic (QdL) has been identified as a promising approach for getting a
handle in this domain. QdL has been proved to be complete relative to quantified
differential equations. But important questions remain as to how best to translate
this theoretical result into practice: how do we succinctly specify a proof search
strategy, and how do we control the computational cost? We address the problem
of automated theorem proving for distributed hybrid systems. We identify a sim-
ple mode of use of QdL that cuts down on the enormous number of choices that it
otherwise allows during proof search. We have designed a powerful strategy and
tactics language for directing proof search. With these techniques, we have im-
plemented a new automated theorem prover called KeYmaeraD. To overcome the
high computational complexity of distributed hybrid systems verification, KeY-
maeraD uses a distributed proving backend. We have experimentally observed
that calls to the real arithmetic decision procedure can effectively be made in par-
allel. In this paper, we demonstrate these findings through an extended case study
where we prove absence of collisions in a distributed car control system with a
varying number of arbitrarily many cars.

1 Introduction

Hybrid systems with joint discrete and continuous dynamics have received consider-
able attention by the research community, including numerous model checking [11,2,9]
and some theorem proving approaches [18,22,23]. Unfortunately, even though hybrid
systems verification is already very challenging, not all relevant cyber-physical systems
can be modeled as hybrid systems. Hybrid systems cannot represent physical control
systems that are distributed or form a multi-agent system, e.g., distributed car control
systems. Such systems form distributed hybrid systems [8,15,25] with discrete, contin-
uous, and distributed dynamics. Distributed hybrid systems combine the challenges of

� This material is based upon work supported by the National Science Foundation under NSF
CAREER Award CNS-1054246, Grant Nos. CNS-0926181, CNS-0931985, CNS-1035800,
by the ONR award N00014-10-1-0188, by DARPA FA8650-10C-7077. The second author
was supported by an NSF Graduate Research Fellowship.

S. Qin and Z. Qiu (Eds.): ICFEM 2011, LNCS 6991, pp. 356–371, 2011.
c© Springer-Verlag Berlin Heidelberg 2011

Distributed Theorem Proving for Distributed Hybrid Systems 357

hybrid systems and distributed systems, which are both undecidable. Validation tech-
nology for distributed hybrid systems had been mostly limited to simulation [8,20] and
semantic considerations [28,15]. Very recently, a verification logic, called quantified
differential dynamic logic (QdL) has been introduced, along with a proof calculus for
distributed hybrid systems [25]. This calculus is compositional and has been proved to
be complete relative to quantified differential equations [25]. Yet, several questions need
to be addressed to translate this theoretical result into practice. We consider questions
of automation in a theorem prover in this paper.

The most important question is how to structure and traverse the proof search space
for distributed hybrid systems. We develop a range of techniques to control the proof
search space in practice. Our first improvement over the QdL base calculus [25] is
that we cut down the branching factor during proof search significantly. The QdL base
calculus allowed rules to be applied anywhere within a formula, which leads to a sub-
stantial amount of unnecessary nondeterminism in proof search. We develop a proper
sequent calculus and reduce rule application to top-level formulas in the sequent when-
ever possible. We dispense with the big step arithmetic rule from [25] and introduce
modular arithmetic rules that are more amenable to automation. Instead of recursive
first-order substitutions [25], we introduce new proof rules for quantified assignments,
which are the distributed and first-order equivalent of Hoare’s assignment rule.

These improvements reduce the unnecessary nondeterminism in proof search sub-
stantially. Yet, the distributed hybrid systems verification problem also leads to inher-
ent nondeterminisms during proof search. In theory, this concerns only the (in)variant
search [25], but, in practice, there are also influential choices in how to handle the arith-
metic [24]. The heavy computational cost (doubly exponential) of real arithmetic places
quite a burden on the proof search procedure. Especially, common heuristics like “if this
branch does not close after 5 min, it (practically) never will” are remarkably unsuccess-
ful in distributed hybrid systems. We need more advanced strategies that consider all
proof options in a fair way and timeshare limited computation resources efficiently.

For hybrid systems theorem proving [22], we know several proof strategies that can
be successful depending on the property to be shown [24]. We expect different and even
more varied proof search strategies to be of relevance in distributed hybrid systems
theorem proving. We, thus, develop a strategy language in which new strategies can be
expressed easily. In an extended case study, we also show that this strategy language
has its merits for scripting local proof tactics for arithmetically difficult parts of a proof.

We take the nondeterminisms in proof search at face value. We develop a proof pro-
cedure with built-in and/or-branching. Alternatives in proof rule application produce or-
branches. The premises of a particular proof rule produce and-branches. Our approach
follows all proof search alternatives in parallel. An alternative will only be discarded if
it became irrelevant (an or-sibling has been proved or an and-sibling disproved). Proof
search may also temporarily disfavor a proof branch that it considers less promising at
the moment but may dynamically revisit this choice later.

We have implemented this approach in a new automated theorem prover called KeY-
maeraD that has a distributed (multiple cores and computers) proof engine for dis-
tributed (multi-agent) hybrid systems. Note that our distributed prover does not just
prove one of the distributed agents on each of the distributed cores. This coarse-grained

358 D.W. Renshaw, S.M. Loos, and A. Platzer

parallelism is terribly inefficient and not even sufficient, because the systems we con-
sider have an unbounded number of agents, which then could not be proved on a finite
computer.

To show that our approach is successful in practice, we consider an extended case
study and prove collision freedom in a distributed car control system. Thanks to the
distributed proof search procedures in KeYmaeraD, we found a simpler proof than we
previously found manually [16]. This observation shows that the approach presented in
this paper can be quite useful. Our previous prover, KeYmaera [27], for hybrid systems
cannot handle distributed hybrid systems. In previous work on car control verification
[16], we, thus, came up with a proof about two cars in KeYmaera and then used a
sophisticated modular proof argument showing how safety of the distributed system
could be concluded in a modular way. This lifting effort was a formal but fully manual
paper-proof and required modularization proof rules that can only be used in some
scenarios. In this paper we consider a more systematic approach that makes it possible
to verify systems like distributed car control in a fully mechanized theorem prover for
distributed hybrid systems, not just hybrid systems. Our contributions are as follows:

– We identify a mode of using QdL proof rules that is suitable for automation and lim-
its the proof search space significantly by reducing unnecessary nondeterminisms.

– We present a systematic proof search framework with and/or-branching that reflects
the problem structure in distributed hybrid systems verification naturally.

– We implement our framework in KeYmaeraD, the first verification tool for dis-
tributed hybrid systems.

– We present a flexible combinator approach to proof strategies.
– We formally verify collision freedom in a challenging distributed car control system

and present the first mechanized proof of distributed car control.

2 Related Work

Hybrid Systems. Process-algebraic approaches, like χ [3], have been developed for
modeling and simulation. Verification is still limited to small fragments that can be
translated directly to other verification tools like PHAVer or UPPAAL, which do not
support distributed hybrid systems.

Automated Theorem Proving. Theorem provers designed in the so-called LCF style
focus on the construction of objects of a distinguished type called thm, the constructors
of which correspond exactly to the proof rules of the logic of interest. This provides an
intrinsic mechanism for ensuring that any theorem object represents a valid proof, and
it reduces the trusted code base to the implementation of the proof rules. Proof search
then centers on the use of tactics, which are high-level scripts succinctly describing the
expected structure of a proof.

Prominent examples of provers in the LCF style include Isabelle [21] and NuPRL
[13]. These systems can be used to encode and reason about object logics such as QdL,
they permit users to call external decision procedures, and there has been serious work
in using parallelism to improve Isabelle’s performance [19]. For these reasons, Isabelle

Distributed Theorem Proving for Distributed Hybrid Systems 359

is an attractive candidate for our intended applications. However, the work on paral-
lelism has primarily focused on speeding up the checking of proofs, rather than assist-
ing in the construction of proofs. We would like to use a parallelism model tuned to our
particular workflow, and to retain flexibility to modify it in the future. Moreover, we
want to move away from the command-line interfaces common to LCF-style provers,
instead opting for a more point-and-click interface, akin to that of KeYmaera [27].

Car Control Case Study. Major initiatives have been devoted to developing safe next-
generation automated car control systems, including the California PATH project, the
SAFESPOT and PReVENT initiatives, the CICAS-V system, and many others. With
the exception of [16], safety verification for car control systems has been for specific
maneuvers or systems with a small number of cars [29,1,6,17]. Our formal verification
of collision-freedom applies to a generic, distributed control for arbitrarily many cars.

Other projects have attempted to ensure the safety of more general systems with
simulation and other non-formal methods [7,10,5,14]. Our techniques follow a formal,
mechanized, proof calculus, which tests safety completely, rather than using a finite
number of simulations which can only test safety partially. We build on the work of
[16], which presented a cumbersome, manual proof of collision-freedom for a highway
system. We generate a semi-automated, mechanized proof safety for a lane of an arbi-
trary number of cars, where cars may merge into and exit the system. In this case study,
mechanization not only provides a more convincing proof, but also allows us to find
simpler proofs of safety.

3 Preliminaries: Quantified Differential Dynamic Logic

As a system model for distributed hybrid systems, QdL uses quantified hybrid pro-
grams (QHP) [25]. Note that we use a slightly simplified fragment of QdL here that is
more amenable to automation. QHPs are defined by the following grammar (α, β are
QHPs, θ terms, i a variable of sort C, f is a function symbol, s is a term with sort
compatible to f , and H is a formula of first-order logic):

α, β ::= ∀i : C A | ∀i : C {D & H} | ?H | α ∪ β | α; β | α∗

whereA is a list of assignments of the form f (s) := θ and nondeterministic assignments
of the form f (s) := ∗, and D is a list of differential equations of the form f (s)′ = θ.
When an assignment list does not depend on the quantified variable i, we may elide the
quantification for clarity.

The effect of assignment f (s) := θ is a discrete jump assigning θ to f (s). The ef-
fect of nondeterministic assignment f (s) := ∗ is a discrete jump assigning any value
to f (s). The effect of quantified assignment ∀i : C A is the simultaneous effect of all
assignments in A for all objects i of sort C. The QHP ∀i : C a(i) := a(i) + 1, for exam-
ple, expresses that all cars i of sort C simultaneously increase their acceleration. The
effect of quantified differential equation ∀i : C D& H is a continuous evolution where,
for all objects i of sort C, all differential equations in D hold and formula H holds
throughout the evolution (i.e. the state remains in the region described by evolution do-
main constraint H). The dynamics of QHPs changes the interpretation of terms over

360 D.W. Renshaw, S.M. Loos, and A. Platzer

time: for an R-valued function symbol f , f (s)′ denotes the derivative of the interpreta-
tion of the term f (s) over time during continuous evolution, not the derivative of f (s)
by its argument s. We assume that f does not occur in s. In most quantified assign-
ments/differential equations s is just i. For instance, the following QHP expresses that
all cars i of sort C drive by ∀i : C x(i)′′ = a(i) such that their position x(i) changes con-
tinuously according to their respective acceleration a(i).

The effect of test ?H is a skip (i.e., no change) if formula H is true in the current state
and abort (blocking the system run by a failed assertion), otherwise. Nondeterministic
choice α ∪ β is for alternatives in the behavior of the distributed hybrid system. In the
sequential composition α; β, QHP β starts after α finishes (β never starts if α continues
indefinitely). Nondeterministic repetition α∗ repeats α an arbitrary number of times,
possibly zero times.

The formulas of QdL [25] are defined as in first-order dynamic logic plus many-
sorted first-order logic by the following grammar (φ, ψ are formulas, θ1, θ2 are terms of
the same sort, i is a variable of sort C, and α is a QHP):

φ, ψ ::= θ1 = θ2 | θ1 ≥ θ2 | ¬φ | φ ∧ ψ | φ ∨ ψ | ∀i : C φ | ∃i : C φ | [α]φ | 〈α〉φ
We use standard abbreviations to define ≤, >, <,→. The real numbers R form a distin-
guished sort, upon which are defined the rigid functions + and ×. Sorts C � R have no
ordering and hence θ1 = θ2 is the only relation allowed on them. For sort R, we abbre-
viate ∀x : R φ by ∀x φ. In the following, all formulas and terms have to be well-typed.
QdL formula [α]φ expresses that all states reachable by QHP α satisfy formula φ. Like-
wise, 〈α〉φ expresses that there is at least one state reachable by α for which φ holds.

For the formal semantics of QdL and QHPs, we refer to [25].

Example 1. Let C be the sort of all cars. By x(i), we denote the position of car i, by v(i)
its velocity and by a(i) its acceleration. Then the QdL formula

(∀i : C x(i) ≥ 0)→ [∀i : C {x(i)′ = v(i), v(i)′ = a(i) & v(i) ≥ 0}](∀i : C x(i) ≥ 0)

says that, if all cars start at a point to the right of the origin and we only allow them to
evolve as long as all of them have nonnegative velocity, then they end up to the right
of the origin. In this case, the QHP just consists of a quantified differential equation
expressing that the position x(i) of car i evolves over time according to the velocity v(i),
which evolves according to its acceleration a(i). The constraint v(i) ≥ 0 expresses that
the cars never move backwards, which otherwise would happen eventually in the case
of braking a(i) < 0. This formula is indeed valid, and KeYmaeraD would be able to
prove it.

4 Revised QdL Proof Calculus

Our desire during verification is to prove that a given formula is valid, that is, true under
all interpretations of function symbols. We do this by finding a tree of rule applications
(i.e. a proof) within a formal proof calculus (i.e. a set of proof rules), reducing our
formula to known facts. In broad strokes, our typical approach is to divide proof search

Distributed Theorem Proving for Distributed Hybrid Systems 361

Γ, φ⇒ φ, Δ
(close)

Γ ⇒ Δ

Γ, φ⇒ Δ
(hide-L)

Γ ⇒ Δ

Γ ⇒ φ, Δ
(hide-R)

Γ, φ⇒ Δ

Γ ⇒ ¬φ, Δ (¬R)
Γ ⇒ φ, ψ, Δ

Γ ⇒ φ ∨ ψ, Δ (∨R)
Γ ⇒ φ, Δ Γ ⇒ ψ, Δ

Γ ⇒ φ ∧ ψ, Δ (∧R)
Γ, φ⇒ ψ, Δ

Γ ⇒ φ→ ψ, Δ
(→R)

Γ ⇒ φ, Δ

Γ,¬φ⇒ Δ
(¬L)

Γ, φ⇒ Δ Γ, ψ⇒ Δ

Γ, φ ∨ ψ⇒ Δ
(∨L)

Γ, φ, ψ⇒ Δ

Γ, φ ∧ ψ⇒ Δ
(∧L)

Γ ⇒ φ, Δ Γ, ψ⇒ Δ

Γ, φ→ψ ⇒ Δ
(→L)

x1 fresh Γ ⇒ φ(x1), Δ

Γ ⇒ ∀x : C φ(x), Δ
(∀R)

Γ,∀x : C φ(x), φ(θ)⇒ Δ

Γ,∀x : C φ(x)⇒ Δ
(∀L)

[α][β]φ

[α; β]φ
(;)

[α]φ∧[β]φ

[α ∪ β]φ
(∪)

χ→φ

[?χ]φ
(?)

Γ ⇒ ψ, Δ Γ, ψ⇒ [α]ψ, Δ Γ, ψ⇒ φ, Δ

Γ ⇒ [α∗]φ, Δ
(∗)

Fig. 1. Common rules for QdL

into three phases. First we transform and decompose our formula according to any
QHPs that it contains. Then we use the nullarize rule (cf. Section 4.6) to get rid of
index variables. Finally, we deal with the remaining first-order real arithmetic using
quantifier elimination in real-closed fields (which does not support general function
symbols [22]).

Taking the proof rules in [25] as a starting point, we have designed new proof rules
with several aims in mind. Primarily, we have aimed for a set of proof rules that makes
proof search amenable to automation. We have also favored rules that are simple enough
that their proof of soundness is readily understood. Pictured in Figure 1 are the proof
rules that we leave unmodified (but cf. the caveat in the next subsection), and the stan-
dard rules for a classical sequent calculus. Instead of dealing with raw formulas, we
deal with sequents of the form Γ ⇒ Δ, denoting that the conjunction of the formulas
in the list Γ implies the disjunction of the formulas in Δ, where Γ and Δ are finite sets
of formulas. Note that in this paper we concentrate on the [α] modality and universal
quantification. Similar ideas apply to the 〈α〉 modality and existential quantification.

4.1 Working Outside-In

In the proof calculus given in [25], most of the rules for dealing with QHPs can be
applied deep within formulas. For example, if we were trying to prove the formula

[?x > 30][y := 0 ∪ y := x][x := x + 1; ?(y < 10)] x = y

we could apply the (?) rule, the (∪) rule, or the (;) rule. (In this formula, x and y
are nullary functions. For brevity, we do not notationally distinguish between nullary
functions and free variables.) In our approach, we only consider the outermost part of a
formula unless we are forced otherwise. So we would use the (?) rule on this formula.
This greatly cuts down on the number of choices at each step of proof search. One

362 D.W. Renshaw, S.M. Loos, and A. Platzer

downside is that sometimes our approach (and-)branches more than is strictly necessary.
We find in practice that the benefit from reducing the (or-)branching factor outweighs
this cost.

4.2 A Note about Capture

Recall that instead of having a separate syntactic category for state variables, we allow
functions to change their interpretation during the execution of a QHP; this is where a
program’s state is stored. One consequence of this setup is that performing a substitu-
tion is not as straightforward as in ordinary first-order logic. We have to worry about
functions being captured by assignments inside of modalities. For example, we can
incur capture by “substituting” the term x(i) for the variable Y in the formula

[∀ j : C x(j) := x(j) + 1] 0 = Y,

even though x(i) does not appear in this formula. If we are not careful, this could lead to
unsoundness of our proof rules. Therefore, we use a notion of substitution admissibility
that excludes substitutions like the above one. We will not formally define admissibility
here, but refer to [25].

4.3 Assignment

Proof rules for assignment are central to our approach. We want a proof rule to allow us
to work on formulas such as [x := 1]φ. This formula means that φ holds after execution
of the QHP x := 1. One approach to working on this formula would substitute 1 for
x in φ. Indeed, when doing so is an admissible substitution, this gives us a sound rule.
This rule should be familiar to readers familiar with Hoare Logic. If the substitution is
not admissible, as in the case when we are trying to prove [x := 1][x := 0]x = 1, then
this approach fails. In this case, however, we can introduce a new nullary function x1,
rename x to x1 in φ, and instead prove [x := 1][x1 := 0]x1 = 1, by applying a now-trivial
substitution. But then what should we do with formulas such as

[x := 1][x := 1∪?(true)]x = 1

where it is not clear how to rename in a way that will make the substitution admissible?
The approach that we take is to delay substitution, encoding its information into a new
assumption. Thus, to prove the above formula, we can prove the equivalent

(x1 = 1)→ [x1 := 1∪?(true)]x1 = 1.

We can write our rule as follows:

A fresh Γ, updates(A,A)⇒ rename(A,A, φ), Δ

Γ ⇒ [A]φ, Δ
(:=)

where A is a set of fresh names forA’s assigned functions. The formula rename(A,A, φ)
is φ with all occurences ofA’s assigned functions renamed by their fresh counterparts
(from A). Also, updates(A,A) is a set of formulas that relates A’s assigned functions
to their fresh counterparts in the appropriate way. The exact form updates(A) depends
on the form of the assignments contained in it. We show some examples in Figure 2.

Distributed Theorem Proving for Distributed Hybrid Systems 363

A A updates(A,A) rename(A,A, x = f (k))
x := x + 1 x1 x1 = x + 1 x1 = f (k)

x := y + 1, y := x x1, y1 x1 = y + 1 and y1 = x x1 = f (k)
∀i : C f (i) := f (i) + 1 f1 ∀i : C f1(i) = f (i) + 1 x = f1(k)

f (j) := 3 f1 f1(j) = 3 and ∀i : C i � j→ f1(i) = f (i) x = f1(k)

Fig. 2. Examples for the (:=) rule

4.4 Equality Substitution

The assignment rule ends up adding many new function symbols along with assump-
tions about them. It is desirable that we have a way to simplify this information. Suppose
that θ1 and θ2 are closed terms and we know θ1 = θ2. Suppose furthermore that we are
trying to prove Γ ⇒ Δ, where Γ and Δ are modality-free. Then we may replace any
occurrence of θ1 in Γ or Δ with θ2. Often we want to perform all possible replacements
so as to eliminate a particular function. For this common case, we have the following
proof rule:

Γθ2
θ1
⇒ Δθ2

θ1

θ1=θ2, Γ ⇒ Δ
(=)

Here, Γθ2
θ1

means Γ with every occurrence of θ1 replaced by θ2. This is not a substitution
in the ordinary sense of the word, because θ1 is a term, not a variable. We emphasize
that it is important that Γ and Δ be modality-free. Otherwise the rule could incur capture
and be unsound.

4.5 Differential Equations

Suppose that the QHP we need to deal with is a set of quantified differential equations
D, and suppose furthermore thatD has a set of symbolic solutions S (t). The usual proof
rule to apply in this situation, as put forth in [25], is

∀t ≥ 0 ((∀0 ≤ t̃ ≤ t [S (t̃)]H)→ [S (t)]φ)

[∀i : C {D & H}]φ (=′)

which is essentially a direct translation of the semantics of D. The premise can be
understood informally as follows: for all future times t, if the solution remains in the
domain constraint H up to time t, then the postcondition is true at time t. This premise
has the undesirable characteristic of containing a nested quantification on the left of an
implication. Often, the following rule (with a simpler, but stronger premise) suffices:

∀t ≥ 0 [S (t)](H → φ)

[∀i : C {D & H}]φ (=′endpoint)

This premise states that, for all future times t, if the solution is in the domain constraint
H at t, then the postcondition is true at t. We call this the endpoint version of the rule.

364 D.W. Renshaw, S.M. Loos, and A. Platzer

4.6 Eliminating Index Variables

The first order theory of real numbers is decidable only for formulas that have no unin-
terpreted non-nullary function symbols. Therefore, in order to use a backend decision
procedure, we need to get rid of such functions. In [25], this task was accomplished in
a proof rule that eliminated all non-nullary functions in a single proof rule application.
This had the potential to cause an exponential blowup in the size of the sequent.

In contrast, we take a more local approach. We use what we call the nullarize proof
rule, which looks for occurrences of a given closed term θ, and replaces them with a
new nullary function. We write the rule as follows.

g1 fresh Γ
g1

θ ⇒ Δ
g1

θ

Γ ⇒ Δ
(null)

Recall that this is not substitution—it is a replacement operation. It is important that θ
be a closed term. We may not, for example, use the rule to get rid of f (i) in the formula

∀i : C f (i) > 0,

If this formula occurred on the left of the sequent, then we can nullarize f only after we
have used the (∀L) rule to instantiate i.

4.7 Real Arithmetic

Nullary functions can be understood as being implicitly universally quantified. In con-
trast, we consider any variables that are free to be implicitly existentially quantified
(inside of the universal quantification of functions). For example, if Y is a free variable
and x is a nullary function, then the formula x = Y means for all interpretations of x
there exists a value for Y such that x = Y. This particular formula is valid.

Thus, once we have eliminated modalities and non-nullary functions, we are left
with a sequent that is equivalent to a formula in the first-order theory of real closed
fields. This is a decidable theory. Note that there is a subtle distinction here—first-order
logic over the reals, with uninterpreted functions, is undecidable. However, first-order
arithmetic, with only the rigid arithmetic functions, is decidable. Therefore, when we
have reached this point, we invoke a decision procedure for this theory.

5 Proving in KeYmaeraD

In order to make use of the above proof calculus, we have implemented KeYmaeraD, a
new theorem prover. KeYmaeraD’s design is inspired by the LCF approach to theorem
proving. At any given time there is a tree called the proof state, which the user is trying
to build into a proper proof. Each node in the tree represents a proof goal (i.e. a sequent).
The only way the user has of changing the proof state is to apply one of the proof rules,
as pictured in Figure 3. Applying a proof rule to a goal does one of three things:

Distributed Theorem Proving for Distributed Hybrid Systems 365

Fig. 3. Application of proof rules to nodes (the circles) leads to and-branching (the squares)

1. fails, in which case the proof state is left unchanged,
2. succeeds in closing the goal,
3. breaks the goal into one or more conjunctive subgoals.

One way in which KeYmaeraD differs from many LCF-style provers is that it allows
or-branching on the proof state itself, rather than only at the level of tactics. (We will
discuss tactics later.) This allows the user to explore multiple possible proofs simul-
taneously, as pictured in Figure 4. If any or-branch successfully closes, KeYmaeraD
automatically marks the others as irrelevant, as pictured in Figure 5.

Fig. 4. Application of different rules at the same node
leads to or-branching, shown here as circle nodes
with two children

Fig. 5. Closing an or-branch

The typical strategy we use to try to prove a QdL formula in KeYmaeraD is as
follows: We want to use the proof rules to get rid of modalities and the indices. Then
we will be left with arithmetic, which is decidable. For dealing with the QHPs in the
modalities, we have found that it often suffices to work from the outside in, as discussed
in the previous section. In this way, we do not have to think about which rule to apply.
The hard part in this phase is choosing invariants for loops and differential equations
(if they do not have symbolic solutions; see [26]). The or-branching is useful for trying
different invariants and remembering why particular branches fail to close.

Next, we get rid of indices. The hard part here is choosing instantiations. If our
goal has no modalities and no indices, we can pass it to the arithmetic backend. This
procedure will return asynchronously and KeYmaeraD will appropriately update the
proof state to reflect its success or failure.

One key observation is that giving the arithmetic solver too much information can
cause it to take too long (even by > 3 orders of magnitude). We often need to decide

366 D.W. Renshaw, S.M. Loos, and A. Platzer

what parts of the sequent to include. A common pattern in our workflow is the follow-
ing. We let the arithmetic decision procedure work on a sequent as soon as we have
gotten rid of modalities and indices. In the meantime, we start an or-branch that hides
believed-to-be-irrelevant formulas in the sequent before again invoking the procedure.
Sometimes the original call returns before we even get to making a second call. Some-
times the second call returns immediately and makes the first call irrelevant.

6 Strategy Language

Using KeYmaeraD to apply proof rules one by one—a task that is already much easier
than manipulating QdL formulas on paper—quickly becomes tedious. To increase the
user’s power, we introduce tactics, which are a way to script proof search. Our ultimate
aim is to allow QdL theorem proving to be as automated as possible. We envision that
future versions of KeYmaeraD will be able to perform successful proof searches that
take on the order of days or weeks using a cluster of tens or hundreds of computers
running the arithmetic backend. Carefully designed tactics should provide a modular
way to work toward this aim.

KeYmaeraD has an embedded language of base tactics and tactic-combinators (“tac-
ticals” in the jargon). Tactics can be built from provided tactics. We also allow tactics
to use arbitrary code in the Scala language, which is the implementation language of
KeYmaeraD. In this latter case, tactics can read and do whatever analysis they like on
the entire proof state. In keeping with our LCF-style design, the only way that a tac-
tic can change the proof state, however, is to apply proof rules. Hence, tactics are not
soundness-critical, only important for completeness.

The type of a tactic is as follows:

Node→ Option[List[Node]]

A tactic takes a node of the proof state. It does some computation that might have ef-
fects on the proof state. Then, it either returns None, signaling failure, or it succeeds and
returns a list of nodes. Note that this success does not necessarily signify that the tactic
has proved any particular goal—it just means that the tactic did what it was meant to
do on this node. The list of returned nodes is intended to be used for the composition of
tactics. A typical mode of use is for this list to be a conjunctive list of subgoals— if they
are all valid then the original sequent is valid. However, the soundness of the system
does not depend on tactics being used only in this way. Indeed, the tactic arithT, as
explained below, does not follow this pattern. Some common tactics and tactic combi-
nators are shown in Figure 6.

6.1 Example: Instantiation

Here we explain one kind of tactic that we have found useful. Suppose we have several
formulas with universal quantifiers on the left in our sequent. To make use of these
formulas, we will need to use the (∀L) rule, which instantiates the formulas. We may
want to think carefully about what terms we will use for the instantiations. If so, we
might, e.g. use a tactic that looks for formulas of the form i = j uses these matched terms

Distributed Theorem Proving for Distributed Hybrid Systems 367

Tactics
nilT Always fails.
unitT Always succeeds, returning the given node (no-op).
tryruleatT(rl,pos) Tries to apply the rule rl at the position pos.
tryruleT(rl) Tries to apply the rule rl at all positions until it succeeds.
tryrulepT(rl,prd) Tries the rule on a top-level formula where the predicate is true.
Tactic Combinators
eitherT(t1,t2) First tries t1. Upon failure, tries t2.
composeT(t1,t2) Tries t1 and then, upon success, applies t2 to all the returned nodes.
repeatT(t) Tries t until it fails, returning the result of the final success.
branchT(t,ts) Tries t. Upon success, maps the returned nodes to ts.

Fig. 6. Tactics and Tactic Combinators

to instantiation. At the other extreme, we may just want to instantiate the quantified
formulas with any and all terms that could possibly make sense. (This is often feasible
for sorts other than the real numbers, where no functions are predefined and the only
relation is equality.) This is often useful in sequents that are light on arithmetic. But
exhaustive instantiation quickly chokes the arithmetic solvers. Tactics that take either
of these tacks are used heavily in our case study.

6.2 Arithmetic

The decision procedure for arithmetic returns asynchronously. We have a tactic called
arithT that fails if the goal cannot be passed to the procedure. (This happens if there are
any modalities or indices left.) Otherwise it succeeds, returning the empty list. When
the procedure returns with a result, KeYmaeraD will automatically update the proof
state to reflect the new information. To better understand this protocol, consider the
composed tactic eitherT(arithT, myOtherTactic). If arithT fails, then we need
to continue to work on the sequent to get rid of modalities or indices. Therefore, in
that case we continue with myOtherTactic. Otherwise, we do not need to do anything
other than wait for the decision procedure to return. So the tactic succeeds, even if the
procedure eventually returns “false.”

6.3 Input Formulas

Some important proof rules such as (∗) are parametrized by a formula. Because of our
renaming method for dealing with assignments, sometimes it is impossible for the writer
of a proof script to know in advance what name some functions will have when such a
rule needs to be applied. Therefore, we provide a unification function unify that can
be invoked in tactics. The result of unify(fm1,fm2) is either failure or a substitution
function which, when applied to fm2 will return fm1. Note that we do not use unify to
synthesize invariant formulas, we merely use it to get a handle on formulas as they shift
names.

368 D.W. Renshaw, S.M. Loos, and A. Platzer

7 Case Study

In this section we present a mechanized, formal verification of a distributed adaptive
cruise control and automatic braking system as a complex case study of the KeYmaeraD
theorem prover. Major initiatives have been devoted to developing safe next-generation
automated car control systems, including the California PATH project, the SAFESPOT
and PReVENT initiatives, the CICAS-V system, and many others. Chang et al. [4], for
instance, propose CICAS-V in response to a report that crashes at intersections in the
US cost $97 Billion in the year 2000.

Providing a formal verification of safety-critical cyber-physical systems is vital to
ensure safety as the public adopts these systems into daily use. However, before KeY-
maeraD, formal verification of large-scale, distributed, hybrid systems was only pos-
sible manually. Manual proofs not only require ample skilled man-power, but are also
prone to errors. Applying the powerful verification methods of QdL to a broad range
of distributed hybrid systems is not possible without automation and mechanization,
which KeYmaeraD provides.

In this section, we present the first semi-automated and fully mechanized proof of an
arbitrary number of cars driving under distributed controllers along a straight lane.

Modeling. Model 1 is a QHP for an arbitrary number of cars following distributed, dis-
crete and continuous dynamics along a straight lane. In addition, the model allows cars
to appear and disappear at any time and in any safe location, simulating lane changes.
The discrete control consists of three possible choices, modeled as a nondeterminis-
tic assignment in ctrl(i); see line (3). Braking is allowed at all times, and is the only
option if certain safety constraints are not met. Car i may accelerate only if the con-
straint Safeε(i) holds, meaning that the cars in front of car i are far enough away for
car i to accelerate for at least ε time units. Here, ε represents the upper bound on
sensor/communication update delay. Additionally, if the car is stopped, it can always
continue to stand still.

Every car on the lane is associated with three real values: position, velocity, and
acceleration. Since cars may also appear and disappear, we add a fourth element: ex-
istence. The existence field is a bit that flips on (

∃

(n) � 1) when a car appears on the
lane and off (

∃

(n) � 0) when a car disappears. Any number of cars may disappear from
the road (simulating merging into an adjacent lane or exiting the highway) at any time.
To accomplish this, the model non-deterministically chooses an existing car and flips
its existence bit to off; see line (8). Modeling cars merging into the lane is almost as
simple; however, before a car can merge, it must check that it will be safely in front of
or behind all previously existing cars on the lane; see line (9).

This model is similar to the lhc model proved manually in [16], but with a few
simplifications. First, we assume in line (4) that the cars have omniscient sensing, i.e.,
each car receives data about the position and velocity of all the cars on the lane, as
opposed to just the car directly ahead. Second, we assume that when the car accelerates,
it applies maximum acceleration, and when it brakes it applies maximum braking, rather
than choosing from a bounded range of acceleration and braking forces.

Distributed Theorem Proving for Distributed Hybrid Systems 369

Model 1. Local highway control (lhc)

lhc ≡ ((ctrln; dynn)∗ ∪ delete∗ ∪ create∗)∗ (1)

ctrln ≡ ∀i : C a(i) := ∗; ?(∀i : C

∃

(i) = 1→ ctrl(i)) (2)

ctrl(i) ≡ a(i) = −B ∨ (Safeε(i) ∧ a(i) = A) ∨ (v(i) = 0 ∧ a(i) = 0) (3)

Safeε(i) ≡ ∀ j : C x(i) ≤ x(j) ∧ i � j→ (4)

x(i) +
v(i)2

2B
+

(A
B
+ 1
) (A

2
ε2 + εv(i)

)
< x(j) +

v(j)2

2B
(5)

dynn ≡ (t � 0; ∀i : C {dyn(i)}) (6)

dyn(i) ≡ x(i)′ = v(i), v(i)′ = a(i), t′ = 1 & (t ≤ ε ∧ (

∃

(i) = 1→ v(i) ≥ 0)) (7)

delete ≡ n � ∗; ?(

∃

(n) = 1);

∃

(n) � 0 (8)

create ≡ n � new; ?(∀i : C E(i) = 1→ (i� n) ∧ (n � i)) (9)

(n � new) ≡ n � ∗; ?(

∃

(n) = 0 ∧ v(n) ≥ 0);

∃

(n) � 1 (10)

(i� n) ≡ (x(i) ≤ x(n) ∧ i � n)→
(
x(i) < x(n) ∧ x(i) +

v(i)2

2B
< x(n) +

v(n)2

2B

)
(11)

Verification. Now that we have described a suitable model for a lane of cars in a
highway (Model 1), we identify a set of safety requirements and prove that the model
never violates them. Safety verification must ensure that, at all times, every car on the
road is safely behind all the cars ahead of it in its lane. We say that car i is safely
following car j if (i � j), as defined in line (11). To capture the notion that the cars
should be safe at all times, we use the [α] modality, as shown in Proposition 1.

Proposition 1 (Safety of local highway control lhc). Assuming the cars start in a
controllable state (i.e. each car is a safe distance from the cars ahead of it on the lane),
the cars may move, appear, and disappear as described in the (lhc) model, then no
cars will ever collide. This is expressed by the following provable QdL formula:

(∀ i : C ∀ j : C (

∃

(i) = 1 ∧ ∃(j) = 1)→ ((i� j) ∧ v(i) ≥ 0 ∧ v(j) ≥ 0)) →
[lhc](∀i : C ∀ j : C (

∃

(i) = 1 ∧ ∃(j) = 1)→ ((i � j) ∧ v(i) ≥ 0 ∧ v(j) ≥ 0)))

Our final tactic script is about 400 lines. At the end of its execution, the proof state has
1134 nodes. On a MacBook Pro with a 2.86GHz Core 2 Duo processor, using Math-
ematica 7.0.0 for the real arithmetic backend, the proof takes 40 seconds to complete
with one worker, and 33 seconds with two workers. This includes the time it takes to
compile and load the tactic script— approximately 13 seconds.

In the course of developing this proof, we discovered that the endpoint rule for dif-
ferential equations suffices for this formula—a simplification which greatly increases
the computational efficiency of our proof.

Because KeYmaeraD uses a tactics-based approach rather than real-time interac-
tions, verification requires fewer human inputs and lends itself to reusability. The two
car case for this model, for instance, required far fewer tactics when implemented in
KeYmaeraD than the hundreds of human-interactions needed by KeYmaera. The tac-
tics were also robust enough to be applied to multiple proof branches. Moreover, we

370 D.W. Renshaw, S.M. Loos, and A. Platzer

initially proved a version that omitted x(i) < x(j) in the invariant. Then, after realizing
that the invariant did not obviously imply the safety condition we wanted, we added
this condition. With only minimal changes to the tactics script, the updated model was
easily verified.

The manual proof presented in [16] relies heavily on modular proof structure prin-
ciples to get the proof complexity to a manageable size. With KeYmaeraD, we can
improve on that modular structure by employing modular proof tactics. This approach
still simplifies the resulting proof structure as before, but, unlike dedicated modularity
arguments, it also maintains better robustness to changes in the model.

8 Conclusions and Future Work

We introduce automation techniques for theorem proving for distributed hybrid systems
using quantified differential dynamic logic. We have implemented KeYmaeraD, the
first formal verification tool for distributed hybrid systems. As a major case study in
KeYmaeraD, we have formally verified collision freedom in a sophisticated distributed
car control system with an unbounded (and varying) number of cars driving on a straight
lane.

References

1. Althoff, M., Althoff, D., Wollherr, D., Buss, M.: Safety verification of autonomous vehicles
for coordinated evasive maneuvers. In: IEEE IV 2010, pp. 1078–1083 (2010)

2. Alur, R., Courcoubetis, C., Halbwachs, N., Henzinger, T.A., Ho, P.H., Nicollin, X.,
Olivero, A., Sifakis, J., Yovine, S.: The algorithmic analysis of hybrid systems. Theor. Com-
put. Sci. 138(1), 3–34 (1995)

3. van Beek, D.A., Man, K.L., Reniers, M.A., Rooda, J.E., Schiffelers, R.R.H.: Syntax and
consistent equation semantics of hybrid Chi. J. Log. Algebr. Program. 68(1-2), 129–210
(2006)

4. Chang, J., Cohen, D., Blincoe, L., Subramanian, R., Lombardo, L.: CICAS-V research on
comprehensive costs of intersection crashes. Tech. Rep. 07-0016, NHTSA (2007)

5. Chee, W., Tomizuka, M.: Vehicle lane change maneuver in automated highway systems.
PATH Research Report UCB-ITS-PRR-94-22, UC Berkeley (1994)

6. Damm, W., Hungar, H., Olderog, E.R.: Verification of cooperating traffic agents. Interna-
tional Journal of Control 79(5), 395–421 (2006)

7. Dao, T.S., Clark, C.M., Huissoon, J.P.: Optimized lane assignment using inter-vehicle com-
munication. In: IEEE IV 2007, pp. 1217–1222 (2007)

8. Deshpande, A., Göllü, A., Varaiya, P.: SHIFT: A formalism and a programming language for
dynamic networks of hybrid automata. In: Hybrid Systems, pp. 113–133 (1996)

9. Frehse, G.: PHAVer: algorithmic verification of hybrid systems past HyTech. STTT 10(3),
263–279 (2008)

10. Hall, R., Chin, C.: Vehicle sorting for platoon formation: Impacts on highway entry and
troughput. PATH Research Report UCB-ITS-PRR-2002-07, UC Berkeley (2002)

11. Henzinger, T.A., Nicollin, X., Sifakis, J., Yovine, S.: Symbolic model checking for real-time
systems. In: LICS, pp. 394–406 (1992)

12. Hespanha, J.P., Tiwari, A. (eds.): Hybrid Systems: Computation and Control, 9th Interna-
tional Workshop, HSCC 2006. LNCS, vol. 3927. Springer, Heidelberg (2006)

Distributed Theorem Proving for Distributed Hybrid Systems 371

13. Howe, D.J.: Automating Reasoning in an Implementation of Constructive Type Theory.
Ph.D. thesis, Cornell University (1988)

14. Jula, H., Kosmatopoulos, E.B., Ioannou, P.A.: Collision avoidance analysis for lane changing
and merging. PATH Research Report UCB-ITS-PRR-99-13, UC Berkeley (1999)

15. Kratz, F., Sokolsky, O., Pappas, G.J., Lee, I.: R-charon, a modeling language for reconfig-
urable hybrid systems. In: Hespanha, J.P., Tiwari, A. (eds.) HSCC 2006. LNCS, vol. 3927,
pp. 392–406. Springer, Heidelberg (2006)

16. Loos, S.M., Platzer, A., Nistor, L.: Adaptive cruise control: Hybrid, distributed, and now
formally verified. In: Butler, M., Schulte, W. (eds.) FM 2011. LNCS, vol. 6664, pp. 42–56.
Springer, Heidelberg (2011)

17. Lygeros, J., Lynch, N.: Strings of vehicles: Modeling safety conditions. In: Henzinger, T.A.,
Sastry, S.S. (eds.) HSCC 1998. LNCS, vol. 1386, Springer, Heidelberg (1998)

18. Manna, Z., Sipma, H.: Deductive verification of hybrid systems using STeP. In: Henzinger,
T.A., Sastry, S.S. (eds.) HSCC 1998. LNCS, vol. 1386, pp. 305–318. Springer, Heidelberg
(1998)

19. Matthews, D.C.J., Wenzel, M.: Efficient parallel programming in Poly/ML and Isabelle/ML.
In: DAMP (2010)

20. Meseguer, J., Sharykin, R.: Specification and analysis of distributed object-based stochastic
hybrid systems. In: Hespanha, J.P., Tiwari, A. (eds.) HSCC 2006. LNCS, vol. 3927, pp. 460–
475. Springer, Heidelberg (2006)

21. Paulson, L.C.: The foundation of a generic theorem prover. Journal of Automated Reason-
ing 5 (1989)

22. Platzer, A.: Differential dynamic logic for hybrid systems. J. Autom. Reas. 41(2), 143–189
(2008)

23. Platzer, A.: Differential-algebraic dynamic logic for differential-algebraic programs. J. Log.
Comput. 20(1), 309–352 (2010)

24. Platzer, A.: Logical Analysis of Hybrid Systems: Proving Theorems for Complex Dynamics.
Springer, Heidelberg (2010)

25. Platzer, A.: Quantified differential dynamic logic for distributed hybrid systems. In: Dawar,
A., Veith, H. (eds.) CSL 2010. LNCS, vol. 6247, pp. 469–483. Springer, Heidelberg (2010)

26. Platzer, A.: Quantified differential invariants. In: Frazzoli, E., Grosu, R. (eds.) HSCC. ACM,
New York (2011)

27. Platzer, A., Quesel, J.D.: KeYmaera: A hybrid theorem prover for hybrid systems (Sys-
tem description). In: Armando, A., Baumgartner, P., Dowek, G. (eds.) IJCAR 2008. LNCS
(LNAI), vol. 5195, pp. 171–178. Springer, Heidelberg (2008)

28. Rounds, W.C.: A spatial logic for the hybrid p-calculus. In: Alur, R., Pappas, G.J. (eds.)
HSCC 2004. LNCS, vol. 2993, pp. 508–522. Springer, Heidelberg (2004)

29. Stursberg, O., Fehnker, A., Han, Z., Krogh, B.H.: Verification of a cruise control system
using counterexample-guided search. Control Engineering Practice (2004)

Towards a Model Checker for NesC and Wireless Sensor
Networks�

Manchun Zheng1, Jun Sun2, Yang Liu1, Jin Song Dong1, and Yu Gu2

1 School of Computing, National University of Singapore
{zmanchun,liuyang,dongjs}@comp.nus.edu.sg

2 Singapore University of Technology and Design
{sunjun,jasongu}@sutd.edu.sg

Abstract. Wireless sensor networks (WSNs) are expected to run unattendedly
for critical tasks. To guarantee the correctness of WSNs is important, but highly
nontrivial due to the distributed nature. In this work, we present an automatic ap-
proach to directly verify WSNs built with TinyOS applications implemented in
the NesC language. To achieve this target, we firstly define a set of formal op-
erational semantics for most of the NesC language structures for the first time.
This allows us to capture the behaviors of sensors by labelled transition systems
(LTSs), which are the underlying semantic models of NesC programs. Secondly,
WSNs are modeled as the composition of sensors with a network topology. Veri-
fications of individual sensors and the whole WSN become possible by exploring
the corresponding LTSs using model checking. With substantial engineering ef-
forts, we implemented this approach in the tool NesC@PAT to support verifica-
tions of deadlock-freeness, state reachability and temporal properties for WSNs.
NesC@PAT has been applied to analyze and verify WSNs, with unknown bugs
being detected. To the best of our knowledge, NesC@PAT is the first model
checker which takes NesC language as the modeling language and completely
preserves the interrupt-driven feature of the TinyOS execution model.

1 Introduction

Wireless sensor networks (WSNs) are widely used in critical areas like military surveil-
lance, environmental monitoring, seismic detection [2] and so forth. Such systems are
expected to run unattendedly for a long time in environments that are usually unsta-
ble. Thus it is important for them to be highly reliable and correct. TinyOS [16] and
NesC [7] have been widely used as the programming platform for developing WSNs,
which adopt a low-level programming style [13]. Such a design provides fine-grained
controls over the underlying devices and resources, but meanwhile makes it difficult
to understand, analyze or verify implementations. The challenges of modeling and for-
mally verifying WSNs with NesC programs are listed as follows.

– The syntax and semantics of NesC are complex [7] compared to those of formal
modeling languages. To the best of our knowledge, there has not been any for-
mal semantics for the NesC language. Thus establishing formal models from NesC
programs is non-trivial.

� This research is supported in part by Research Grant IDD11100102 of Singapore University of
Technology and Design, IDC and MOE2009-T2-1-072 (Advanced Model Checking Systems).

S. Qin and Z. Qiu (Eds.): ICFEM 2011, LNCS 6991, pp. 372–387, 2011.
c© Springer-Verlag Berlin Heidelberg 2011

Towards a Model Checker for NesC and Wireless Sensor Networks 373

– TinyOS provides hardware operations on motes (i.e. sensors) which can be invoked
by NesC programs including messaging, sensing and so on [16,6]. Therefore, mod-
eling NesC programs (executing on TinyOS) requires modeling the behaviors of
hardware at the same time.

– TinyOS adopts an interrupt-driven execution model, which introduces local concur-
rency (i.e. intra-sensor concurrency) between tasks and interrupts, which increases
the complexity of model checking NesC programs.

Related Work. A number of approaches and tools have been published on analyzing,
simulating, debugging and verifying WSN applications or WSNs. W. Archer et al. pre-
sented their work on interface contracts for TinyOS components in [3], which exposed
bugs and hidden assumptions caused by improper interface usages, and added plen-
tiful safety conditions to TinyOS applications. Nguyet and Soffa proposed to explore
the internal structure of WSN applications using control flow graphs, but without any
error detection [23]. V. Menrad et al. proposed to use Statecharts to achieve readable
yet more precise formulations of interface contracts [22]. These approaches contribute
to the correctness of usages of interfaces, but are incapable of verifying any specific
property like safety or liveness.

The tool FSMGen [13] presented by N. Kothari et al. infers compact, user-readable
Finite State Machines from TinyOS applications and uses symbolic execution and pred-
icate abstraction for static analysis. This tool captures highly abstract behaviors of NesC
programs and has revealed some errors. However, low-level interrupt driven code is not
applicable since the tool is based on a coarse approximation of the TinyOS execution
model. Some essential features like loops are not supported and the tool provides no
supports for analyzing the concurrent behaviors of a WSN (rather than a single sensor).

Bucur and Kwiatkowska proposed Tos2CProver [4] for debugging and verifying
TinyOS applications at compile-time, checking memory-related errors and other low-
level errors upon registers and peripherals. Checking run-time properties like the un-
reachability of error states is not supported in Tos2CProver. Again, this approach only
checks errors for single-node programs and lacks the ability to find network-level errors.

Hanna et al. proposed SLEDE [8,9] to verify security protocol implementations in
the NesC language by extracting PROMELA [11] models from NesC implementations.
This approach is translation-based, and abstracts away certain NesC features like the
concurrency between tasks and interrupts, thus failing to find concurrency-related bugs
that are significant. Moreover, SLEDE is dedicated to security protocols, and not appli-
cable for verifying non-security properties like liveness.

T-Check [18] is built upon the TinyOS simulator TOSSIM [15] and uses explicit
model checking techniques to verify safety and liveness properties. T-Check revealed
several bugs of components/applications in the TinyOS distribution, however, it has
limited capability in detecting concurrent errors due to the limitation of TOSSIM, e.g.,
in TOSSIM, events execute atomically and are never preempted by interrupts. More-
over, the assertions of T-Check are specified in propositional logic, which is incapable
of specifying important temporal properties like the infinitely often release of a buffer
or the alternate occurrences of two events.

While the existing approaches have contributed a lot to analyzing and finding bugs
of TinyOS applications or WSNs, few of them simulate or model the interrupt-driven

374 M. Zheng et al.

execution model of TinyOS. Further, only a few are dealing with WSNs, which are
obviously more complex than individual sensors. In this paper, we propose a system-
atic and self-contained approach to verify WSNs built with TinyOS applications (i.e.
NesC programs). Our work includes a component model library for hardware, and
the formalized definitions of NesC programs and the TinyOS execution model. Based
on these, the labelled transition systems (LTSs) of individual sensors are constructed
directly from NesC programs. With a network topology that specifies how the sen-
sors are connected, the LTS of a WSN is then composed (on-the-fly) from the LTSs
of individual sensors. Model checking algorithms are developed to support verifica-
tions of deadlock-freeness, state reachability and temporal properties specified as lin-
ear temporal logic (LTL) [21] formulas. Both the state space of a WSN and that of
an individual sensor can be explored for verifications. With substantial engineering
efforts, our approach has been implemented as the NesC module in PAT [19,25,20],
named NesC@PAT (available at http://www.comp.nus.edu.sg/∼pat/research). In this
paper, we use NesC@PAT to verify the Trickle [17] algorithm of WSNs. A bug of the
algorithm is found and has been confirmed by implementing a WSN using real sensors
(e.g., Iris motes). This shows that our approach can assist developers for behavioral
analysis, error detection, and property verification of WSNs.

Contribution. We highlight our contributions in the following aspects.

– Our approach works directly on NesC programs, without building (abstract) models
before applying verification techniques. Manual construction of models is avoided,
which makes our approach useful in practice.

– We formally define the operational semantics of NesC and TinyOS as well as
WSNs. New semantic structures are introduced for modeling the TinyOS execu-
tion model and hardware-related behaviors like timing, messaging, etc.

– The interrupt-driven feature of the TinyOS execution model is preserved in the
sensor models generated in our approach. This allows concurrency errors between
tasks and interrupts to be detected.

– Our approach supports verifications of deadlock-freeness, state reachability and
temporal properties. This provides flexibility for verifying different properties to
guarantee the correctness of sensor networks. Moreover, the expressive power of
LTL has allowed to define significant temporal properties (e.g., the infinite often
occurrences of a event).

The rest of the paper is organized as follows. Section 2 introduces NesC and TinyOS,
and discusses the complexity and difficulty caused by specific features of NesC and
TinyOS. The formal definitions of sensors and the operational semantics of TinyOS
applications are presented in Section 3. Section 4 defines WSNs formally and intro-
duces how the LTS of a WSN is obtained. Section 5 presents the architecture of our
tool NesC@PAT and experimental results of verifying the Trickle algorithm. Finally,
Section 6 concludes the paper with future works.

2 Preliminaries

This section briefly introduces the NesC programming language and the TinyOS operat-
ing system. Section 2.1 illustrates the specific features of NesC which make it complex

http://www.comp.nus.edu.sg/~pat/research

Towards a Model Checker for NesC and Wireless Sensor Networks 375

Configu-
ration

Usr Prv

User
Configuration

Interface =

Component

Provider
Configuration

Interface =

Component

… …

1. A component

can be a confi-

guration or

module;

2. Components

can be

hierarchical.

Call a
command

Event

Implementation

M odule

Command

Implementation

Signal an
event

Module

Fig. 1. Call graph of NesC programs

1. int main() · · · {
2. atomic {
3. platform bootstrap();
4. call Scheduler.init();
5. call PlatformInit.init();
6. · · ·}
7. nesc enable interrupt();
8. signal Boot.booted();
9. call Scheduler.taskLoop();
10. return -1;
11. }

Fig. 2. TinyOS Boot Sequence

to directly verify NesC programs. Section 2.2 introduces TinyOS with an explanation
of its execution model and its hardware abstraction architecture.

2.1 The NesC Language

The programming language NesC (Nested C) [7] is proposed for developing WSNs.
NesC is a dialect of C, which embodies the structural concepts and the execution model
of TinyOS applications. NesC has two basic modular concepts: interface and compo-
nent. An interface declares a number of commands and events. A command denotes the
request for an operation, and an event indicates the completion of that operation. Thus,
NesC achieves a non-blocking programming convention, implementing operations as
split-phase. In other words, the request of a operation and its completion are separated.

An interface can be either provided or used by a component. In NesC, there are two
types of component, i.e. configuration and module. A configuration indicates how com-
ponents are wired to one another via interfaces. A module implements the commands
declared by its provided interfaces and the events declared by its used interfaces. Com-
mands and events are two types of functions, and task is the third. A component may
call a command or signal an event of an interface. Table 1 exemplifies the common-used
constructs of the NesC language, and the corresponding operational semantics will be
discussed in Section 3.

A call graph describes the wiring relation between components. Fig. 1 illustrates a
general call graph of NesC programs. Inside a configuration, a second-level configu-
ration can be wired to a third component, where the second-level configuration itself
contains a wiring relation between a set of components. Thus, the call graph of a NesC
program might be a hierarchical ’tree’ of components, where intermediate nodes are
configurations and leaves are modules.

NesC is an extension of the C language. It does not support advanced C features like
dynamic memory allocation, function pointer, multi-thread and so on, which makes it
an ‘easier’ target for formal verification. Nonetheless, it supports almost the same set
of operators, data types, statements and structures as C does and, in addition, NesC-
specific features such as calling a command, signaling an event, posting a task and so
forth. Verifying NesC programs is thus highly non-trivial, as illustrated in the following.

376 M. Zheng et al.

Table 1. Common-used NesC Constructs

NesC Construct Example Remark

Command
command error t AMControl.start()
{· · ·} There are commands, events and tasks

besides ordinary functions. The only
difference among them is the way of
invocation. A task is a parameterless
function without any return value.

Event
event message t* Receive.receive
(message t* msg, · · ·, uint8 t len)
{· · · return msg; }

Task
task void setLeds()
{· · ·}

Call call Timer.startPeriodic(250); Call, signal and post are function calls,
invoking commands, events and tasks,
respectively.

Signal signal Timer.fired();
Post a task post setLeds();

Atomic
atomic{x = x + 1;
call AMSend.send(dst, pkt);}

Interrupts are disabled within an
atomic block.

– Function calls like calling a command or signaling an event could be complex if
the module invoking the command/event and that implementing it are wired via a
hierarchical call graph.

– NesC allows local variables declared in functions or even in blocks of functions,
just like C does. A traditional way to analyze local variables is to use stacks. Deal-
ing with local variables significantly increases the complexity of verification.

– NesC is a typed programming language, and all data types of C including array and
struct are supported. There are also type operations (e.g. type casting) supported by
NesC. Therefore, modeling NesC should take into account typed aspects.

– There are other expressive features of NesC, which are inherited from C, however
make it complex. Examples of such features include pointers, parameters being
types, definition of types, pre-compilation, etc.

We remark that our approach targets at NesC programs and does not necessarily support
the verification of C programs. In the following, we briefly explain how we support the
above ‘troubling’ features.

Fortunately, NesC is static [7], i.e. there is no dynamic memory allocation or func-
tion pointer. Thus the variable access and the call graph can be completely captured at
compile time. In our work, we treat pointers as normal variables, the value of which is a
reference to a certain variable. We develop a parser to produce the call graph of a NesC
program with the function (command, event, task or normal function) bodies defined
by each component. A nested search algorithm is designed to traverse the call graph for
fetching the corresponding function body once a function is invoked.

Local variables are modeled statically in our approach, with a renaming method to
avoid naming conflicts. Nested function calls are supported with the assumption that
there are no circles within the calling stacks. This is because that we rename local
variables according to the positions of their declarations. Thus distinguishing the local
variables between two invocations of the same function can be tricky and costly. How-
ever, the restriction is modest. The reason is that the most common invocation circle
of NesC programs lies in the split-phase operations, i.e. when a command finishes it

Towards a Model Checker for NesC and Wireless Sensor Networks 377

signals an event and in that event when it is completed it calls back the command again.
However, [14] recommends NesC programmers to avoid such a way of programming.
Even in this situation we can still get rid of naming conflicts of local variables because
a new invocation of a function is always assured to be at the end of the previous one.

Typed information is captured and we distinguish variables declared as different
types and analyze functions with parameters being types. Our work also supports defin-
ing new types by struct and typedef . Moreover, pre-compilation is supported, as well
as capturing information from .h files. More details of tackling NesC language features
can be found in our technical report in [1].

2.2 TinyOS and Its Execution Model

TinyOS [6,16] is the run-time environment of NesC programs. The behavior of a NesC
program is thus highly related to the interrupt-driven execution model of TinyOS [14].
Tasks are deferred computations, which are scheduled in FIFO order. Tasks always run
till completion, i.e. only after a task is completed, can a new task start its execution. In
contrast, interrupts are preemptive and always preempt tasks. In our work, this interrupt-
driven feature is captured using an interrupt operator (�), as discussed in Section 3.

The operating system TinyOS is implemented in NesC, with a component library
for hardware operations like sensing, messaging, timing, etc. The TinyOS component
library adopts a three-layer Hardware Abstraction Architecture (HAA), including Hard-
ware Presentation Layer (HPL), Hardware Adaptation Layer (HAL) and Hardware In-
terface Layer (HIL) [16,6]. The design of HAA gradually adapts the capabilities of the
underlying hardware platforms to platform-independent interfaces between the oper-
ating system and the application code. Specific semantic structures are introduced for
modeling hardware devices, which will be discussed in Section 3.

Since TinyOS 2.0, each NesC application should contain a component MainC (pre-
defined by TinyOS), which implements the boot sequence of a sensor [14]. Fig. 2
sketches the function that implements the boot sequence. At first, the scheduler,
hardware platform and related software components are initialized (line 3-5). Then in-
terrupts are enabled (line 7) and the event booted of interface Boot (Boot.booted) is
signaled (line 8), after which the scheduler recurrently runs tasks that have been posted
(line 9). The execution of line 2 to 7 is usually short and always decided by TinyOS thus
our approach assumes that this part is always correct and begins modeling the behaviors
of a sensor at the execution of event Boot.booted.

3 Formalizing Sensors with NesC Programs

This section presents the formalization of sensors running TinyOS applications. In par-
ticular, we present the operational semantics of the NesC programming constructs, and
introduce dedicated semantic structures for capturing the TinyOS execution model and
hardware behaviors and then the LTS semantics of sensors.

The behaviors of a sensor are determined by the scheduler of tasks and the concurrent
execution between tasks and device interrupts.

378 M. Zheng et al.

Definition 1 (Sensor Model). A sensor model S is a tuple S = (A, T, R, init, P) where
A is a finite set of variables; T is a queue which stores posted tasks in FIFO order; R is
a buffer that keeps incoming messages sent by other sensors; init is the initial valuation
of the variable set A; and P is a program, composed by the running NesC program M
that can be interrupted by various devices H, i.e., P = M � H.

H models (and often abstracts) the behaviors of hardware devices such as Timer, Re-
ceiver and Reader (i.e. the sensing device). Because tasks are deferred computations,
when posted they are pushed into the task queue T for scheduling in FIFO order. We
remark that T and R are empty initially for any sensor model S. The interrupt opera-
tor (�) is introduced to capture the interrupt-driven feature of the TinyOS execution
model, which will be explained later in this section.

The variables in A are categorized into two groups. One is composed of variables
declared in the NesC program, which are further divided into two categories according
to their scopes, i.e. component variables and local variables. Component variables are
defined in a component’s scope, whereas local variables are defined within a function’s
or a block’s scope. In this work, all variables including local variables are loaded to the
variable set A at initialization. To avoid naming conflicts, the name of each variable is
first prefixed with the component name. A local variable is further renamed with the
line number of its declaration position. The other is a set of device status variables that
capture the states of hardware devices. For example, MessageC.Status is introduced to
model the status of the messaging device. A status variable is added into A after the
compilation if the corresponding device is accessed in the NesC program.

Example 1. Trickle [17] is a code propagation algorithm which is intended to reduce
network traffic. Trickle controls message sending rate so that each sensor hears a small
but enough number of packets to stay up-to-date. In the following, the notion code
denotes large-size data (e.g. a route table) each sensor maintains, while code summary
denotes small-size data that summarizes the code (e.g. the latest updating time of the
route table). Each sensor periodically broadcasts its code summary, and

– stays quiet if it receives an identical code summary;
– broadcasts its code if it receives an older summary;
– broadcasts its code summary if it receives an newer summary.

We have implemented this algorithm in a NesC program TrickleAppC (available in [1]),
with the modification that a sensor only broadcasts the summary initially (instead of
periodically) and if it receives any newer summary. The struct MetaMsg is defined to
encode a packet with a summary, and ProMsg is defined to encode a packet with a
summary and the corresponding code. Initially, each node broadcasts its summary (a
MetaMsg packet) to the network . If an incoming MetaMsg packet has a newer sum-
mary, the sensor will broadcast its summary; if the received summary is outdated, the
sensor will broadcast its summary and code (a ProMsg packet). An incoming ProMsg
packet with a newer summary will update the sensor’s summary and code accordingly.

Assume that a sensor executes TrickleAppC. By Definition 1, the corresponding
sensor model is S = (A, T, R, init, P). In TrickleAppC, component TrickleC is re-
ferred as App, so App is used for renaming its variables. The variable set after renam-
ing is A = { MessageC.Status, App.summary, App.code, App.34.pkt, · · ·}, where

Towards a Model Checker for NesC and Wireless Sensor Networks 379

event void AMControl.startDone(error t rs){
if (rs! = SUCCESS){
//The previous request fails

call AMControl.start();
} else { sendSummanry(); }

}
Fig. 3. Event AMControl.startDone

0

3

21

start

m sg

send/ m sg

send

sD one

send

rcv

m sg

send/m sg

4
send

rcv

sDone

Fig. 4. The MessageC Model

variables with two-field names (e.g. App.summary) are component variables, except
for MessageC.Status (a device status variable) and those with three-field names (e.g.
App.34.pkt) are local variables. init is the initial valuation where MessageC.Status =
OFF, App.summary = 0, App.code = 0, App.34.pkt = null, · · ·. In TrickleAppC, only
the messaging device MessageC is accessed, therefore, initially the program P is event
Boot.booted interrupted by the messaging device, i.e., P = Mb � MessageC. Event
Boot.booted is implemented by TrickleC, and the following is its function body.

event void Boot.booted(){
call AMControl.start(); //Start the messaging device

}
Calling AMControl.start will execute the corresponding command implemented by
ActiveMessageC. Component ActiveMessageC is defined in the TinyOS component
library for activating the messaging device. When AMControl.start is completed, the
event AMControl.startDone (implemented by TrickleC) will be signaled. If AMControl.
start returns SUCCESS, the function sendSummary is called for sending the summary.
Otherwise, the command AMControl.start is re-called, as shown in Fig. 3. We use a
model MessageC to describe the behaviors of the messaging device of a sensor. If
AMControl.start is performed successfully, the program P of S will become P = M′

b �
MessageC′, and the value of MessageC.Status will be modified. �

The models of the hardware devices are developed systematically. According to the
TinyOS component library, we develop a component model library for most common-
used components like AMSenderC, AMReceiverC, TimerC, etc1. We currently model
hardware at HAA’s top layer, i.e. Hardware Interface Layer, ignoring differences be-
tween the underlying platforms. For example, components ActiveMessageC,
AMSenderC and AMReceiverC from the TinyOS component library are designed for
different operations on the messaging device, such as activation, message transmission
and message reception. Although there may be multiple AMSenderC’s or
AMReceiverC’s in a NesC program, they all share the same messaging device. In Fig. 4,
action start is a command from ActiveMessageC, action send is a request for sending a
message from an AMSendderC, and action msg is the arrival of an incoming message.
Action sDone and action rcv are interrupts triggered by MessageC, which signal the
sendDone event of AMSenderC and the receive event of AMReceiverC, respectively.

Definition 2 (Sensor Configuration). Let S = (A, T, R, init, P) be a sensor model. A
sensor configuration C of S is a tuple (V, Q, B, P) where V is the valuation of variables

1 The current component library is not yet complete but sufficient for many NesC programs.

380 M. Zheng et al.

A; Q is a sequence of tasks, being the content of T; B is a sequence of messages, being
the content of R; P is the executing program.

For a sensor model S = (A, T, R, init, P), its initial configuration Cinit = (init, ∅,
∅, P), in respect that initially task queue T and message buffer R are empty. A transition
is written as (V, Q, B, P) e→ (V ′, Q′, B′, P′) (or C

e→ C′ for short). Next, we define the
behavior of a sensor as an LTS.

Definition 3 (Sensor Transition System). Let S = (A, T, R, init, P) be a sensor model.
The transition system of S is defined as a tuple T = (C, init,→), where C is the set of
all reachable sensor configurations and → is the transition relation.

The transition relation is formally defined through a set of firing rules associated with
each and every NesC programming construct. The firing rules for post and call are
presented in Fig. 5 for illustration purpose. The complete set of firing rules can be
found in [1]. The following symbols are adopted to define the firing rules.

– ∩ is sequence concatenation.
– � simply denotes the termination of the execution of a statement.
– τ is an event label denoting a silent transition.
– Impl(f , Larg) returns the the body of function ({F}) f with arguments Larg.
– FstFnc(Larg) returns the first element in Larg which contains function calls.
– Larg[a′/a] replaces argument a with a′ in the argument list Larg.
– I is a status variable in A, denoting whether interrupts are allowed. Interrupts are

only disabled within an atomic block thus I is set off only during an atomic block.

Rules post1 and post2 describe the semantics of the statement post tsk(). The task tsk
will be pushed to the task queue Q if there are no identical tasks pending in Q (rule
post1), otherwise the task is simply dropped (rule post2). Rules call1 and call2 capture
the semantics of a command call call intf .cmd(Larg), where Larg is the list of arguments.
If the arguments contain no function calls, the execution of a command call will transit
directly to the execution of the corresponding function body (rule call1). Otherwise, the
function calls in the arguments will be executed first (rule call2), also step by step.

Apart from the firing rules for NesC structures, we adopt several operators and se-
mantic structures from process algebra community [10] to capture the execution model
of TinyOS and hardware behaviors. Some of these firing rules are presented in Fig. 6,
and the complete set can be found in [1]. The interrupt operator (�) is used to formalize
the concurrent execution between tasks and interrupts, and interrupts always preempt
tasks, denoted by rules itr1. Further, when a task (M) completes its completion, a new
task will be fetched from Q for execution (rule itr3). Interrupts are always enabled in
rules itr3 and itr4 because no atomic blocks are executing. A sensor will remain idle
when no interrupts are triggered by devices (i.e. H is idle) and no tasks are deferred
(rule itr4), and it can be activated by an interrupt like the arrival of a new message.

A hardware interrupt is modeled as an atomic action which pushes a task to the top
of the task queue, and thus the task has a higher priority than others. This task will
signal the corresponding event for handling the interrupt. This is exactly the way that
TinyOS deals with hardware interrupts. For example, when an interrupt is triggered by
an incoming message, a task (trcv) will be added at the head of Q for signaling a receive

Towards a Model Checker for NesC and Wireless Sensor Networks 381

e = s.post.t, t �∈ Q, Q′ = Q ∩ 〈t〉
[post1]

(V, Q, B, post tsk())
e→ (V, Q′, B, �)

e = s.post.t, t ∈ Q
[post2]

(V, Q, B, post tsk())
e→ (V, Q, B, �)

FstFnc(Larg) = ε, F = Impl(intf .cmd, Larg)
[call1]

(V, Q, B, call intf .cmd(Larg))
e→ (V, Q, B, {F})

FstFnc(Larg) = a, a �= ε, (V, Q, B, a)
e→ (V ′, Q′, B′, a′)

[call2]
(V, Q, B, call intf .cmd(Larg))

e→ (V ′, Q′, B′, call intf .cmd(Larg[a′/a]))

Fig. 5. Firing Rules for NesC Structures

event (rule rcv). Semantic structures Send and Rcv are defined to model the behaviors
of sending and receiving a message respectively. Send is defined as (s, dst, msg), where
s is the identifier of the sensor which sends a message, dst is the list of receivers and
msg is the message itself.

Notice that devices such as Timer, Receiver, Reader (Sensor) and so on ‘execute’
concurrently, because they can trigger interrupts independently. This is captured using
an interleave operator |||, which resembles the interleave operator in CSP [10].

4 Formalizing Wireless Sensor Networks

In this section, we formalize WSNs as LTSs. A sensor networkN is composed of a set
of sensors and a network topology2. From a logical point of view, a network topology is
simply a directed graph where nodes are sensors and links are directed communications
between sensors. In reality, a sensor always broadcasts messages and only the ones
within its radio range would be able to receive the messages. We introduce radio range
model to describe network topology, i.e. whether a sensor is able to send messages to
some other sensor. Let N = {0, 1, · · · , i, · · · , n} be the set of the unique identifier of
each sensor in a WSN N . The radio range model is defined as the relation R : N ↔ N,
such that (i, j) ∈ R if and only if sensor j is within sensor i’s radio range. We define a
WSN model as the parallel of the sensors with its topology, as shown in Definition 4.

Definition 4 (WSN Model). The model of a wireless sensor networkN is defined as a
tuple(R, {S0, · · · ,Sn}) whereR is the radio model (i.e. network topology), {S0, · · · ,Sn}
is a finite ordered set of sensor models, and Si (0 � i � n) is the model of sensor i.

Sensors in a network can communicate through messaging, and semantic structures
Send and Rcv are defined to model message transmission among sensors. WSNs are

2 We assume that the network topology for a given WSN is fixed in this work.

382 M. Zheng et al.

V(I) = on, (V, Q, B, H)
e→ (V ′, Q′, B′, H′)

[itr1]
(V, Q, B, M � H)

e→ (V ′, Q′, B′, M � H′)

H is idle or V(I) = off , (V, Q, B, M)
e→ (V ′, Q′, B′, M′)

[itr2]
(V, Q, B, M � H)

e→ (V ′, Q′, B′, M′ � H)

H is idle, M = Impl(t, ∅)
[itr3]

(V, 〈t〉∩ Q′, B, � � H)
e→ (V, Q′, B, M � H)

H is idle
[itr4]

(V, ∅, B, � � H)
s.idle→ (V, ∅, B, � � H)

B = 〈msg〉∩ B′, trcv �∈ Q, Q′ = 〈trcv〉 ∩Q
[rcv]

(V, Q, B, Rcv)
s.rcv msg→ (V, Q′, B′, Rcv)

tsendDone �∈ Q, Q′ = 〈tsendDone〉 ∩Q
[send]

(V, Q, B, Send(s, msg))
s.send.msg→ (V, Q′, B, �)

Fig. 6. Firing Rules for Concurrent Execution and Hardware Behaviors

highly concurrent as all sensors run in parallel, i.e. the network behaviors are obtained
by non-deterministically choosing one sensor to execute at each step.

Definition 5 (WSN Configuration). Let N = (R, {S0, · · · ,Sn}) be a WSN model. A
configuration of N is defined as the finite ordered set of sensor configurations: C =
{C0, · · · , Cn} where Ci (0 � i � n) is the configuration of Si.

Definition 5 formally defines a global system state of a WSN. Next, the semantics of
sensor networks can be defined in LTSs, as follows.

Definition 6 (WSN Transition System). Let N = (R, {S0, · · · ,Sn}) be a sensor net-
work model. The WSN transition system corresponding to N is a 3-tuple
T = (Γ, init, ↪→) where Γ is the set of all reachable WSN configurations, init =
{Cinit

0 , · · · , Cinit
n } (Cinit

i is the initial configuration of Si) being the initial configuration
of N , and ↪→ is the transition relation.

Example 2. Fig. 7 presents a WSN with three nodes (i.e., S0, S1 and S2), each of which
is implemented with application TrickleAppC (Tk for short) of Example 1. The radio
range of each senor is described by a circle around it, and the network topology model
can be abstracted as R = {(0, 1), (1, 2), (2, 0)}.

Towards a Model Checker for NesC and Wireless Sensor Networks 383

0/Tk

1/Tk

2/Tk

Fig. 7. A WSN Example

A transition of a WSN is of the form C e
↪→

C′, where C = {C0, · · · , Ci, · · · , Cn} and C′ =
{C′

0, · · · , C′
i , · · · , C′

n}. The transition relation is ob-
tained through a set of firing rules, which are shown
in Fig. 8. Rule network1 describes the concurrent
execution betweens sensors, i.e. the network non-
deterministically chooses a sensor to perform a tran-
sition. Rule network2 is dedicated for communi-
cation. Function Radio(i) returns the set of sen-
sors that are within sensor i’s radio range. Function
InMsg(msg, Cj) enqueues the message msg to sensor
j, i.e. C′

j = InMsg(dst, msg, Cj) ⇔ (j ∈ dst ⇒ C′
j =

Cj[Bj
∩ 〈msg〉 /Bj]) ∧ (j �∈ dst ⇒ C′

j = Cj). Thus a
sensor sending a message will not only change its local state but also change those of
the sensors in the destination list, by enqueuing the message to their message buffers.

Ci
e→ C′

i , e �= si.send.dst.msg, e �= si.idle
[network1]

{C0, · · · ,Ci, · · · ,Cn} e
↪→ {C0, · · · ,C′

i , · · · ,Cn}

Ci
e→ C′

i , e = si.send.msg, ∀ j ∈ [0, i) ∪ (i, n] • C′
j = InMsg(Radio(i),msg,Cj)

[network2]

{C0, · · · ,Ci, · · · ,Cn} e
↪→ {C′

0, · · · ,C′
i , · · · ,C′

n}

Fig. 8. Firing Rules for Sensor Networks

5 Implementation and Evaluation

Our approach has been implemented in the model checking framework PAT as the NesC
module, which is named NesC@PAT. Fig. 9 illustrates the architecture of NesC@PAT.
There are five main components, i.e. an editor, a parser, a model generator, a simulator
and a model checker. The editor allows users to input different NesC programs for
sensors and to draw the network topology, as well as to define assertions (i.e. verification
goals). The parser compiles all inputs from the editor. The model generator generates
sensor models based on the NesC programs and the built-in hardware model collection
(i.e. the component model library). Furthermore, it generates WSN models. Both the
sensor models and the network models are then passed to the simulator and the model
checker for visualized simulation and automated verification respectively.

NesC@PAT supports both sensor-level and network-level verifications, against prop-
erties including deadlock-freeness, state reachability, and liveness properties expressed
in linear temporal logic (LTL) [21]. Deadlock-freeness and state reachability are checked
by exhaustively exploring the state space using Depth-first search or Breadth-first search
algorithms. We adopt the approach presented in [25] to verify LTL properties. First, the
negation of an LTL formula is converting into an equivalent Büchi automaton; and then
accepting strong connected components (SCC) in the synchronous product of the au-
tomaton and the model are examined in order to find a counterexample. Notice that the

384 M. Zheng et al.

NesC Parser

Graphic
Simulator

Assertion
Collection

Assertion Parser

Network
Model

Parser

Model Genertor

On-the-fly
Model

CheckerCounterexample

Model Checker

Simulator

Sensor
Model

Collection

Hardware
Model

Collection

Sensor X NesC Program Network Topology Assertions Editor

Network Parser

Fig. 9. Architecture of NesC@PAT

0/01/1

0/0

0/0 1/1 0/0

0/0

1/1

0/0

0/00/01/1

0/0 1/1

0/0

0/00/01/1

Fig. 10. Network Topology: Star, Ring, Single-track Ring

SCC-based algorithm allows us to model check with fairness [27], which often plays an
important role in proving liveness properties of WSNs.

NesC@PAT was used to analyze WSNs deployed with the Trickle algorithm pre-
sented in Example 1. We studied WSNs with different topologies including star, ring
and single-tracked ring (short for SRing). The settings of WSNs are presented in Fig. 10,
where 1/1 stands for new code/new summary and 0/0 stands for old code/old summary
and a directed graph is used to illustrate the logical view for each network. Two safety
properties (i.e. Deadlock free and Reach FalseUpdat− ed) and two liveness properties
(i.e. ♦AllUpdated and �♦AllUpdated) are verified. Property Reach FalseUpdated is a
state reachability checking, which is valid if and only if the state FalseUpdated where
a node updates its code with an older one can be reached. Property ♦AllUpdated is
an LTL formula which is valid if and only if the state AllUpdated where all nodes are
updated with the new code can be reached eventually, while �♦AllUpdated requires
state AllUpdated to be reached infinitely often.

A server with Intel Xeon 4-Core CPU*2 and 32 GB memory was used to run the
verifications, and the results are summarized in Table 2. The results show that the al-
gorithm satisfies the safety properties, i.e. neither a deadlock state nor a FalseUpdated
state is reachable. As for the liveness property, both ring and star networks work well,
which means that every node is eventually updated with the new code. However, the
single-tracked-ring (SRing) network fails to satisfy either liveness property. The coun-
terexample produced by NesC@PAT shows that only one sensor can be updated with
the new code. By simulating the counterexample in NesC@PAT, we can find the reason

Towards a Model Checker for NesC and Wireless Sensor Networks 385

(a) Initial Setting (b) Star/Ring network (c) SRing network

Fig. 11. Real Executions on Iris Motes

of this bug. On one hand, the initially updated node A receives old summary from node
C thus broadcasting its code but only node B can hear it. On the other hand, after node
B is updated it fails to send its code to node C because node B never hears an older
summary from node C. We also increased the number of sensors for SRing networks,
and the results remained the same.

We ran the Trickle program on Iris motes to study whether this bug could be evi-
denced in real executions. The TrickleAppC was modified by adding operations on leds
to display the changes of code (available in [1]):

1. Initially sensor A has the new code (1/1) and has its red led on, while sensor B and
C have the old code (0/0) and have their yellow leds on, as shown in Fig. 11a.

2. A sensor will turns on its red led when it is updated with the new code.
3. Different topologies are achieved by specifying different AM id for each sensor’s

AMSenderC and AMReceiverC, details of which are in [1].

The revised TrickleAppC was executed on real sensors with star, ring and single-tracked
ring topologies. Fig. 11b shows that the star/ring network is able to update all nodes,
and Fig. 11c shows that the single-tracked ring network fails to update one node, which
confirms that the bug found by NesC@PAT could be evidenced in reality.

Discussion. The results in Table 2 show that a WSN of Trickle algorithm with three
nodes has a state space of 106 ∼ 107, and the state space grows exponentially with
the network topology and the number of nodes. One direction of our future work is
to introduce reduction techniques such like partial order reduction [24] and symmetry
reduction [5] to improve the scalability of our approach. Hardware-related behaviors
are abstracted and manually modeled based on real sensors, i.e. Iris motes. This manual
abstraction of hardware is simple to implement, but lacks the ability to find errors due
to hardware failures, as the hardware is assumed to be always working.

6 Conclusion

In this work, we present an initial step towards automatic verifications of WSNs at
implementation level. Semantic models, i.e. event-based LTS, of WSNs are generated
directly and automatically from NesC programs, avoiding manual construction of mod-
els. To the best of our knowledge, our approach is the first complete and systematical
approach to verify networked NesC programs. Moreover, our approach is the first to

386 M. Zheng et al.

Table 2. Experimental Results

Network Property Size Result #State #Transition Time(s) Memory(KB)

Star

Deadlock free

3

� 300,332 859,115 49 42,936
Reach FalseUpdated × 300,332 859,115 47 23,165
♦AllUpdated � 791,419 2,270,243 148 25,133
�♦AllUpdated � 1,620,273 6,885,511 654 13,281,100

Ring
Deadlock free

3
� 1,093,077 3,152,574 171 80,108

Reach FalseUpdated × 1,093,077 3,152,574 161 27,871
♦AllUpdated � 2,127,930 6,157,922 389 78,435

SRing

Deadlock free
3 � 30,872 85,143 5 19,968
4 � 672,136 2,476,655 170 72,209

Reach FalseUpdated
3 × 30,872 85,143 5 23,641
4 × 672,136 2,476,655 156 62,778

♦AllUpdated
3 × 42 73 <1 19,290
4 × 52 113 <1 19,771

�♦AllUpdated

3 × 146 147 <1 51,938
4 × 226 227 <1 51,421
8 × 746 747 <1 59,900
20 × 4,126 4,127 2 148,155

model the interrupt-driven execution model of TinyOS. This is important since it al-
lows concurrency errors at sensor level to be detected. Model checking algorithms have
been implemented for verifying various properties.

Our work currently adopts a non-threaded execution model of TinyOS. Recently,
new models have been proposed, e.g., TOSThread [12] has been proposed to allow
user threads in TinyOS. Our future work thus includes designing approach for model-
ing TOSThread. Moreover, the current component model library of NesC@PAT only
models a subset of the TinyOS component library. Another future direction is to gen-
erate comprehensive timing models using techniques [26,20] and to take failures into
account by probabilistic modeling techniques [28]. We also plan to apply reduction
techniques [29] for optimizing the usage of time and memory at verification phase.

References

1. NesC@PAT, http://www.comp.nus.edu.sg/˜pat/NesC/
2. Akyildiz, I.F., Su, W., Sankarasubramaniam, Y., Cayirci, E.: Wireless sensor networks: a

survey. Computer Networks 38, 132–138 (2001)
3. Archer, W., Levis, P., Regehr, J.: Interface contracts for TinyOS. In: IPSN, pp. 158–165

(2007)
4. Bucur, D., Kwiatkowska, M.Z.: Software verification for TinyOS. In: IPSN, pp. 400–401

(2010)
5. Emerson, E.A., Jha, S., Peled, D.: Combining Partial Order and Symmetry Reductions. In:

Brinksma, E. (ed.) TACAS 1997. LNCS, vol. 1217, pp. 19–34. Springer, Heidelberg (1997)
6. Gay, D., Levis, P., Culler, D.E.: Software design patterns for TinyOS. ACM Trans. Embedded

Comput. Syst. 6(2) (2007)

http://www.comp.nus.edu.sg/~pat/NesC/

Towards a Model Checker for NesC and Wireless Sensor Networks 387

7. Gay, D., Levis, P., Behren, R.v., Welsh, M., Brewer, E., Culler, D.: The nesC Language: A
Holistic Approach to Networked Embedded Systems. In: PLDI, pp. 1–11 (2003)

8. Hanna, Y., Rajan, H.: Slede: Framework for automatic verification of sensor network security
protocol implementations. In: ICSE Companion, pp. 427–428 (2009)

9. Hanna, Y., Rajan, H., Zhang, W.: Slede: a domain-specific verification framework for sensor
network security protocol implementations. In: WISEC, pp. 109–118 (2008)

10. Hoare, C.A.R.: Communicating Sequential Processes. Prentice-Hall, Englewood Cliffs
(1985)

11. Holzmann, G.J.: Design and Validation of Protocols: A Tutorial. Computer Networks and
ISDN Systems 25(9), 981–1017 (1993)

12. Klues, K., Liang, C.-J.M., Paek, J., Musaloiu-Elefteri, R., Levis, P., Terzis, A., Govindan, R.:
TOSThreads: thread-safe and non-invasive preemption in TinyOS. In: SenSys, pp. 127–140
(2009)

13. Kothari, N., Millstein, T.D., Govindan, R.: Deriving State Machines from TinyOS Programs
Using Symbolic Execution. In: IPSN, pp. 271–282 (2008)

14. Levis, P., Gay, D.: TinyOS Programming, 1st edn. Cambridge University Press, Cambridge
(2009)

15. Levis, P., Lee, N., Welsh, M., Culler, D.E.: TOSSIM: Accurate and Scalable Simulation of
Entire TinyOS Applications. In: SenSys, pp. 126–137 (2003)

16. Levis, P., Madden, S., Polastre, J., Szewczyk, R., Woo, A., Gay, D., Hill, J., Welsh, M.,
Brewer, E., Culler, D.: TinyOS: An operating system for sensor networks. In: Ambient Intel-
ligence. Springer, Heidelberg (2004)

17. Levis, P., Patel, N., Culler, D.E., Shenker, S.: Trickle: A Self-Regulating Algorithm for Code
Propagation and Maintenance in Wireless Sensor Networks. In: NSDI, pp. 15–28 (2004)

18. Li, P., Regehr, J.: T-check: bug finding for sensor networks. In: IPSN, pp. 174–185 (2010)
19. Liu, Y., Sun, J., Dong, J.S.: An Analyzer for Extended Compositional Process Algebras. In:

ICSE Companion, pp. 919–920. ACM, New York (2008)
20. Liu, Y., Sun, J., Dong, J.S.: Developing Model Checkers Using PAT. In: Bouajjani, A., Chin,

W.-N. (eds.) ATVA 2010. LNCS, vol. 6252, pp. 371–377. Springer, Heidelberg (2010)
21. Manna, Z., Pnueli, A.: The Temporal Logic of Reactive and Concurrent Sys-

tems:Specification. Springer, Heidelberg (1992)
22. Menrad, V., Garcia, M., Schupp, S.: Improving TinyOS Developer Productivity with State

Charts. In: SOMSED (2009)
23. Nguyen, N.T.M., Soffa, M.L.: Program representations for testing wireless sensor network

applications. In: DOSTA, pp. 20–26 (2007)
24. Peled, D.: Combining Partial Order Reductions with On-the-fly Model-Checking. Formal

Methods in System Design 8(1), 39–64 (1996)
25. Sun, J., Liu, Y., Dong, J.S., Pang, J.: PAT: Towards Flexible Verification under Fairness.

In: Bouajjani, A., Maler, O. (eds.) CAV 2009. LNCS, vol. 5643, pp. 709–714. Springer,
Heidelberg (2009)

26. Sun, J., Liu, Y., Dong, J.S., Zhang, X.: Verifying Stateful Timed CSP Using Implicit Clocks
and Zone Abstraction. In: Breitman, K., Cavalcanti, A. (eds.) ICFEM 2009. LNCS, vol. 5885,
pp. 581–600. Springer, Heidelberg (2009)

27. Sun, J., Liu, Y., Roychoudhury, A., Liu, S., Dong, J.S.: Fair model checking with process
counter abstraction. In: Cavalcanti, A., Dams, D.R. (eds.) FM 2009. LNCS, vol. 5850, pp.
123–139. Springer, Heidelberg (2009)

28. Sun, J., Song, S., Liu, Y.: Model Checking Hierarchical Probabilistic Systems. In: Dong, J.S.,
Zhu, H. (eds.) ICFEM 2010. LNCS, vol. 6447, pp. 388–403. Springer, Heidelberg (2010)

29. Zhang, S.J., Sun, J., Pang, J., Liu, Y., Dong, J.S.: On Combining State Space Reductions with
Global Fairness Assumptions. In: Butler, M., Schulte, W. (eds.) FM 2011. LNCS, vol. 6664,
pp. 432–447. Springer, Heidelberg (2011)

Formal Analysis of a Scheduling Algorithm for

Wireless Sensor Networks

Maissa Elleuch1,2, Osman Hasan2, Sofiène Tahar2, and Mohamed Abid1

1 CES Laboratory, National School of Engineers of Sfax, Sfax University
Soukra Street, 3052 Sfax, Tunisia
maissa.elleuch@ceslab.org,
mohamed.abid@enis.rnu.tn

2 Dept. of Electrical & Computer Engineering, Concordia University
1455 de Maisonneuve W., Montreal, Quebec, H3G 1M8, Canada

{melleuch,o hasan,tahar}@ece.concordia.ca

Abstract. In wireless sensor networks (WSNs), scheduling of the sensors
is considered to be the most effective energy conservation mechanism. The
random and unpredictable deployment of sensors in many WSNs in the
open fields makes the sensor scheduling problem very challenging and thus
randomized scheduling algorithms are used. The performance of these al-
gorithms is usually analyzed using simulation techniques, which do not of-
fer 100% accurate results. Moreover, probabilistic model checking, when
used, does not include a strong support to reason accurately about statis-
tical quantities like expectation and variance. In this paper, we overcome
these limitations by using higher-order-logic theorem proving to formally
analyze the coverage-based random scheduling algorithm for WSNs. Us-
ing the probabilistic framework developed in the HOL theorem prover, we
formally reason about the expected values of coverage intensity, the up-
per bound on the total number of disjoint subsets, for a given expected
coverage intensity, the lower bound on the total number of nodes and the
average detection delay inside the network.

Keywords: Probabilistic reasoning, Theorem proving, Higher-order-logic,
Wireless sensor networks, Scheduling, Coverage.

1 Introduction

Wireless sensor networks (WSNs) [24] have been proposed as an efficient solution
to monitor a field without any continuous human surveillance. Such networks are
composed of small tiny devices wirelessly connected over the field. The main task
of sensors consists in taking measurements of the monitored event. According
to these measurements, a decision procedure is made at the base station. The
WSNs are extensively being deployed these days in a variety of applications like
detection of natural disasters or biological attacks and military tracking.

Minimizing energy requirements for the sensor nodes is very critical given the
fact that these nodes are always stand-alone and battery powered. Scheduling
[14] of the nodes is one of the most widespread solutions to preserve energy. It

S. Qin and Z. Qiu (Eds.): ICFEM 2011, LNCS 6991, pp. 388–403, 2011.
c© Springer-Verlag Berlin Heidelberg 2011

Formal Analysis of a Scheduling Algorithm for Wireless Sensor Networks 389

consists in splitting the network on several sub-networks, which work alterna-
tively. The biggest challenge involved in this approach is the ability to provide
continuous coverage, i.e., reliable monitoring or tracking by sensors.

For inhospitable fields where the sensors are arbitrarily deployed, the trend
is to use a random scheduling scheme. As the study of random scheduling algo-
rithms for WSNs is recent, the focus is to investigate more in developing new
models that can satisfy the coverage constraint. In general, a theoretical paper-
and-pencil based model of the proposed scheduling algorithm is developed and
analyzed. After that, performance evaluation by simulation is done in order to
illustrate the theoretical results. Nevertheless, the results obtained by simula-
tion can never be totally accurate. Thus, simulation cannot be considered as a
reliable solution for the probabilistic analysis of WSNs especially when applied
to validate WSNs for mission-critical applications like military, health, disaster
relief and environmental monitoring.

In order to overcome the common drawbacks of simulation, formal methods
[6] have been proposed as an efficient solution to validate a wide range of hard-
ware and software systems. Formal methods increase the system reliability by
rigorously using mathematical techniques to analyze the mathematical model
for the given system. They have the advantage to find out subtle errors that
cannot be revealed by traditional simulation. The need of formal methods in
the context of WSNs is illustrated in [19]. However, formal methods seem very
restricted when used to validate probabilistic systems. The random components
of the system cannot be directly modeled within traditional formal tools. For ex-
ample, it will be impossible to reason precisely about statistical properties, such
as expectation and variance, in the case of state-based approaches. Furthermore,
huge proof efforts are usually expected to be involved in reasoning about random
components of a wireless system in the case of theorem proving.

Due to the recent developments in the formalization of probability theory
concepts in higher-order-logic [12,7], the analysis of a variety of wireless sys-
tems with random components in a higher-order-logic theorem prover [5] can
be handled with reasonable amount of proof efforts. In this paper, we propose
to use the probabilistic framework developed in the HOL theorem prover [7] to
formally analyze the coverage-based random scheduling algorithm of [18]. Due
to the high expressiveness of the underlying logic and the inherent soundness of
theorem proving, this framework overcomes the common limitations of proba-
bilistic model checking, which are the state space explosion and the inaccuracy
in the reasoning about statistical quantities. Particularly, we aim at verifying
the expected values of coverage intensity, and deducing the upper bound on the
total number of disjoint subsets, given expected coverage intensity for the given
scheduling algorithm. We also verify the lower bound on the total number of
nodes and the average detection delay inside the network.

The remainder of this paper is organized as follows. First, we discuss related
work. Then, we present an overview of HOL probabilistic analysis foundations.
Sections 4 and 5 provide the formal specification and verification of the coverage-
based random scheduling algorithm, respectively. Finally, we conclude the paper.

390 M. Elleuch et al.

2 Related Work

Due to its wide applicability, the random scheduling algorithm has been analyzed
using various approaches in the open literature. The most commonly used ap-
proach is simulation, where a computer based mathematical model of the given
algorithm is built and then evaluated through rigorous sampling. The simulation
tools must essentially provide some probabilistic features in order to perform re-
alistic simulations. In [18], a coverage-based random scheduling algorithm has
been analyzed by a mathematical model, which coverage has been subsequently
enhanced in [17] by eliminating some blind points. The evaluation of the two
previous works within a Java simulator has restricted the monitored region to
200mx200m, the detection range to 10m, and the number of sub-networks to 6.
Due to the inherent nature of simulation coupled with the usage of computer
arithmetic, the probabilistic analysis results attained by the simulation approach
can not be termed as completely accurate.

Probabilistic model checking is one of the first formal methods to be used
for probabilistic analysis of wireless systems [22]. It has the same principle as
traditional model checking: the mathematical model of the probabilistic system
is exhaustively tested to check if it meets a set of probabilistic properties. This
technique has been successfully used to validate many aspects of WSNs. The
authors of [20] performed the formal analysis of the OGDC algorithm in the
RT-Maude rewriting tool [21]. They have successfully analyzed the common
performance metrics, such as, the network coverage intensity and lifetime. The
probabilistic model checker PRISM [15] has also been used quite frequently for
the verification of medium access control (MAC) protocols designed for WSNs,
such as the S-MAC [1] and ECO-MAC [25] protocols. For the first protocol, the
authors have verified, within PRISM, the reachability of packets to the sink node
for a simple network model of 3-hops. They have also evaluated the expected
communication latency and energy consumption of the model. Regarding the
probabilistic model checking of ECO-MAC, it has especially verified properties
related to the number of packet retransmissions.

In addition to its accuracy, the main advantage of probabilistic model checking
method is its mechanization. However, it also suffers from some major shortcom-
ings like the common problem of state space explosion [2] and the inability to
reason accurately about statistical properties. For instance, during the verifi-
cation of the OGDC [20] algorithm, the network model has been limited to 6
nodes on a surface of 15mx15m. Similarly, in [1], the network hops have been
restricted to 3 and the number of scheduled subsets to 2 so that the built model
can be accepted in PRISM. Finally, while verifying the ECO-MAC [25] protocol,
the authors have been also obliged to readjust some parameters by a reduction
factor in order to avoid a state explosion problem which was completely unpre-
dictable. On the other hand, the reasoning support for statistical quantities in
probabilistic model checker like PRISM is not so accurate. In [1], the authors
have given expected values of communication latency and energy consumption
by running several experiments on the proposed model of S-MAC. These values
were specific to the chosen configuration and can not be considered as general

Formal Analysis of a Scheduling Algorithm for Wireless Sensor Networks 391

in any way. Another limitation of some classical model checkers trying to model
probabilities can be also identified in [20], where the probability modeling was
very approximative within the RT-Maude tool. The authors have just used a
random function which is assumed to be ’good’ to generate such behavior. For
Uniform distributions, they have selected a sampling value generated by the same
random function on a given interval. Such kind of analysis is not exhaustive and
thus cannot be termed as formally verified.

In this paper, we overcome the limitations of both simulation and model
checking techniques by using the probabilistic framework developed in the HOL
theorem prover to validate a variant of the randomized scheduling of nodes in
the context of WSNs. This framework, which is a theorem proving based prob-
abilistic analysis framework, has already shown its practical effectiveness on a
lot of case studies. Indeed, Hurd successfully verified the Miller-Rabin primality
test; a well-known and commercially used probabilistic algorithm [13]. Hasan et
al. verified the stop-and-wait protocol [9], a stuck-at fault model for reconfig-
urable memory arrays [8] and the automated repeat request (ARQ) mechanism
at the logic link control (LLC) layer of the General Packet Radio Service (GPRS)
standard for Global System for Mobile Communications (GSM) [10]. The HOL
probabilistic framework is principally founded on Hurd’s PhD thesis [12] where
the formalization of some discrete random variables along with their verification,
based on the corresponding PMF properties is presented [12]. In [7], Hurd’s for-
malization framework has been extended with a formal definition of expectation.
This definition is then utilized to formalize and verify the expectation and vari-
ance characteristics associated with discrete random variables that attain values
in positive integers only. Statistical properties of continuous random variables
have been also verified in [11]. To the best of our knowledge, none of the past
works dealing with the random scheduling algorithm for WSNs or one of its vari-
ant has incorporated a formal probabilistic technique based on model checking
or theorem proving.

3 Preliminaries

In this section, we describe the main theoretical elements upon which the proba-
bilistic framework developed in the HOL theorem prover is built [7]. Particularly,
we present the formalization of discrete random variables in HOL and the veri-
fied probabilistic properties that will be needed later. The general methodology
that we have to follow for analyzing a wireless system within the probabilistic
framework developed in the HOL theorem prover can be found in [10].

3.1 Formalization of Discrete Random Variables and Verification of
their PMF

A random variable is called discrete if its range, i.e., the set of values that it can
attain, is finite or at most countably infinite [23]. Discrete random variables are
mathematically specified by their Probability Mass Functions (PMF) which is

392 M. Elleuch et al.

the probability that a random variable X is exactly equal to some value x, i.e.,
Pr(X = x). In higher-order-logic, discrete random variables are formalized as
deterministic functions with access to an infinite Boolean sequence B∞; a source
of infinite random bits with data type (num → bool)[12]. According to the result
of popping the top most bit in the infinite Boolean sequence, these deterministic
functions make random choices. They may pop as many random bits as they
need for their computation. At the end of the computation, they return the
result along with the remaining portion of the infinite Boolean sequence to be
used by other functions. Thus, a random variable that takes a parameter of type
α and ranges over values of type β can be represented in HOL by the function:

F : α → B∞ → β ×B∞.

As an example, the Bernoulli(1
2) random variable that returns 1 or 0 with equal

probability can be modeled as follows

� bit = λs. (if shd s then 1 else 0, stl s).

where the variable s represents the infinite Boolean sequence and the functions
shd and stl are the sequence equivalents of the list operation ’head’ and ’tail’.
The function bit accepts the infinite Boolean sequence and returns a pair with
the first element equal to either 0 or 1 and the second element equal to the
unused portion of the infinite Boolean sequence, which in this case is the tail of
the sequence.

Random variables can also be expressed in a more compact form using the
general state-transforming monad where the states are the infinite Boolean se-
quences.

� ∀ a,s. unit a s = (a,s)
� ∀ f,g,s. bind f g s = g (fst (f s)) (snd (f s)).

The HOL functions fst and snd above return the first and second components
of a pair, respectively. The unit operator is used to lift values to the monad,
and the bind is the monadic analogue of function application. All monad laws
hold for this definition, and the notation allows us to write functions without
explicitly mentioning the sequence that is passed around, e.g., function bit can
be defined as

� bit monad = bind sdest (λb. if b then unit 1 else unit 0).

where, sdest gives the head and tail of a sequence s as a pair (shd s, stl s).
The measure theory formalization of [12] can be used to define a probability

function prob, which transforms sets of infinite Boolean sequence to the set of
real number between 0 and 1. The domain of prob is the set E of probability
events. Consequently, the formalization of prob and E can be used together to
prove probabilistic properties of random variables such as:

� prob {s | fst (bit s) = 1} =
1
2
.

Formal Analysis of a Scheduling Algorithm for Wireless Sensor Networks 393

where the HOL function fst selects the first component of a pair and {x|C(x)}
represents a set of all elements x that satisfy the condition C.

By following the methodology described above, most of the commonly used
discrete random variables which are frequently used have been specified in the
HOL theorem prover. The corresponding PMF of each of these discrete random
variables has been also verified. For example, HOL definitions and PMF theorems
for the Bernoulli, Uniform, Binomial and Geometric random variables can be
found in [12,7].

3.2 Formalization and Verification of Expectation Properties for
Discrete Random Variables in HOL

The expectation of a discrete random variable, which attains values in the pos-
itive integers only, is specified as follows [16]:

Ex fn[f(R)] =
∞∑

n=0

f(n)Pr(R = n). (1)

where R is the discrete random variable and f represents a function of the
random variable R. The function f maps the random variable R to a real value.
The above definition of expectation holds only if the summation is well defined,
i.e., finite. The above equation can be formalized in HOL as follows:

Definition 1
� ∀ f R. expec fn f R = suminf (λn.(f n)prob {s | (fst (R s)=n)}).

The HOL function suminf represents the infinite summation of a real sequence.
The function expec fn accepts two parameters, the function f of type (num →
real) and the positive integer valued random variable R and returns a real num-
ber.

The expectation of a discrete random variable that attains values in positive
integers would be a particular case of the above definition where the function f
is instantiated by the identity function (λn.n).

Definition 2
� ∀ R. expec R = expec fn (λn.n) R.

For illustration purposes, the formalization of expectation of a positive valued
discrete random variable was used to verify the expectation of the Bernoulli, Uni-
form, Binomial and Geometric random variables [7]. It was also very interesting
to check the correctness of some related properties, which greatly facilitates the
theorem proving based probabilistic analysis. For example, the proof of the lin-
earity of expectation, specified in (2), has been provided in [7].

Ex fn[af(R) + b] = aEx fn[f(R)] + b (2)

394 M. Elleuch et al.

4 Coverage-Based Randomized Scheduling Algorithm

According to the probabilistic framework, proposed in [10], the formal analysis
of wireless systems is composed of two main steps, i.e., the formalization of the
given wireless system, while modeling its random components by the formalized
random variables, and using this model to formally verify properties of interest as
higher-order-logic theorems. In this section, we develop a HOL formalization of
the coverage-based random scheduling algorithm for WSNs, which corresponds
to the first step outlined above. This formalization is basically inspired by the
paper-and-pencil based analytical analysis presented in [18].

4.1 Overview of the Coverage-Based Randomized Scheduling
Algorithm

We consider a WSN that deploys n sensors over a field of size a. All sensors
have the same task; gathering data and routing it back to the base station.
The deployment of nodes over the two-dimensional field is random and thus no
location information is available. The size of the sensing area of each sensor is
denoted by r. A sensor can only sense the environment and detect events within
its sensing range. We say that a point of the monitored field is covered when
any event occurring at this point can be detected by at least one active sensor.
The probability q that each sensor covers a given point is r/a. The random
scheduling of the nodes assigns each sensor to one of the k sub-networks with
equal probability 1/k. During a time slot Ti, only the nodes belonging to the
sub-network i will be active and can cover an occurring event. Hence, the disjoint
sub-networks created will work alternatively. We denote also by: Si, the set of
sensors that belongs to the sub-network i and covers a specific point inside the
field, S, the set of nodes covering a specific point inside the field, and, c, the
cardinality of S.

For illustration purposes, Fig. 1 shows how the scheduling algorithm splits
arbitrarily a network containing eight sensor nodes to two sub-networks. The
eight nodes, randomly deployed in the monitored region, are identified by IDs
ranging from 0 to 7. The two sub-networks are called S0 and S1. Each node
chooses at random between 0 and 1 in order to be assigned to one of these two

Fig. 1. An example of the randomized coverage-based algorithm [18]

Formal Analysis of a Scheduling Algorithm for Wireless Sensor Networks 395

sub-networks. Suppose that nodes 0; 2; 5; 6 select the number 0 and join the
subset S0 and nodes 1; 3; 4; 7 choose the number 1 and join the subset S1. Thus,
the two sub-networks will work alternatively. In other words, when the nodes
0; 2; 5; 6, which sensing ranges are denoted by the solid circles, are active, the
nodes 1; 3; 4; 7 illustrated by the dashed circles will be idle and vice versa.

4.2 Formalization of the Network Coverage Intensity

The challenge in the random scheduling algorithm described below, is to select a
value of k so that the energy can be saved with a good coverage. Therefore, the
performance of this algorithm depends essentially on the chosen value of k. A
large k will imply a lot of sub-networks which would in turn result in few nodes
in each of these sub-networks, and hence a poor coverage. However, a small k
will imply few sub-networks with a lot of points covered simultaneously by a lot
of nodes, so a waste of energy.

The random scheduling algorithm involves several random variables. The first
one distributes uniformly the nodes over the sub-networks. It is formalized by
the HOL function rd subsets:

Definition 3
� (∀ k. rd subsets 0 k = []) ∧
(∀ c,k. rd subsets (c+1) k = (prob uniform k)::(rd subsets c k)).

which generates recursively a list of Uniform random variables, and accepts two
parameters: c, the number of sensors that covers a specific point inside the field,
and k, the number of sub-networks. In this definition, we use the predefined
HOL function prob uniform which takes as input a natural k and generates a
Uniform (k) random variable.

Let X be the random variable denoting the total number of non-empty subsets
Sj. X is defined as follows:

X =
k−1∑
j=0

Xj. (3)

where Xj is the Bernoulli random variable describing a non-empty subset. The
variable Xj, expressed by the following HOL function, is based on the recursive
HOL predicate subset empty which describes an empty subset by looking for
an index j in the list generated by the function rd subsets.

Definition 4
� ∀ j,c,k. subset non empty j c k = bernoulli num

(prob bern {s | fst (subset empty j (rd subsets c k) s) = F}).
The function subset non empty takes three parameters: j, a natural number,
c, the number of sensors that covers a specific point inside the field, and k, the
number of sub-networks. The set {s | fst (subset empty j (rd subsets c
k) s) = F}, used in this function, formally models the set of events when the
subset Sj is non-empty.

396 M. Elleuch et al.

In order to define the random variable X , given in (3), we first define a function
which recursively generates a list of Xj’s by accepting the parameters: k, the
length of the list, c, the number of sensors that covers a specific point inside
the field, and m, the number of sub-networks. After that, a pre-defined function
of the HOL probability theory, called sum rv lst, accepts this list of random
variables and returns their sum as a single random variable.

Definition 5
� (∀ c,m. subset non empty lst 0 c m = [subset non empty 0 c m]) ∧
(∀ k,c,m. subset non empty lst k c m =
(subset non empty (k+1) c m)::(subset non empty lst k c m)).

The coverage intensity for a specific point Cp can now be defined as the average
time during which the point is covered by the total length of the scheduling
cycle.

Cp =
E[X]× T

k × T
. (4)

where E[X] denotes the expectation of the random variable X defined in (3).
The variable Cp is formalized in HOL as follows:

Definition 6
� ∀ c,k. cvrge intsty pt c k =
(expec (sum rv lst (subset non empty lst k c (k+1))))/(k+1).

The above definition specifies the coverage intensity for a specific point using
the HOL function cvrge intsty pt. This function takes as parameters: c, the
number of sensors that covers a specific point inside the field, and k, the number
of sub-networks. Added to the function subset non empty lst, this definition
uses two other predefined HOL functions which are expec, for the expectation
of a discrete random variable (Definition 2), and sum rv lst, for the summation
over random variables. More details about these two functions can be found in
the preliminaries section and in [7].

It has been shown in [18] that Cp is equal to:[
1−

(
1− 1

k

)c]
. (5)

We recall that the variable c is initially the number of nodes covering a specific
point inside the field. Covering a point or not can be assimilated to a Bernoulli
trial with the probability q. If we consider the variable c among the n nodes of the
network, it becomes a Binomial random variable with the following probability:

Pr(c = j) =
n!

j! (n− j)!
qj(1− q)n−j . (6)

where q is the probability that each sensor covers a given point.
Thereafter, Cp is also a random variable. Particularly, Cp is a function of

the random variable c. Since the random deployment strategy distributes inde-
pendently the nodes over the area and the random scheduling makes a uniform

Formal Analysis of a Scheduling Algorithm for Wireless Sensor Networks 397

distribution of the same sensors, the expectation of Cp for any point inside the
area is the same and its value is Cn. The variable Cn is defined as follows:

Cn = Ex fn[Cp] (7)

where Ex fn designates the expectation of a function of a random variable. The
corresponding HOL function formalizing (7) is:

Definition 7
� ∀ q,n,k. cvrge intsty network q n k =
expec fn (λx. 1 + (-1)×(1 - 1/(k+1))x) (prob binomial p n q).

The above function cvrge intsty network accepts as inputs q, the probability
that a sensor covers a point, n, the number of sensors deployed inside the field,
and k, the number of sub-networks. This function specifies the expectation of a
function of random variable and thus needs two parameters: the input function
which basically describes the variable Cp and the random variable which is the
Binomial of (6).

4.3 Formalization of the Average Detection Delay

The average detection delay is another performance metric which can be relevant
in evaluating the random scheduling algorithm. It is defined as the expectation
of the time elapsed from the occurrence of an event to the time when the event
is detected by some sensor nodes. The average detection delay for an event
arriving at any time slot with equal probability and lasting for duration longer
than (k − 1)× T , is defined as:

delays =
k−1∑
i=1

T∫
0

1
T
× Pr(H0 ∩H1 ∩ ... ∩Hi)× (i× T − t)dt. (8)

where Hi is the event that none of the c covering sensor nodes belongs to the
working subset i, Hi is the event that at least one of the c covering sensors
belongs to the working subset i, T is the duration of a time slot, and k is the
number of disjoint subsets.

Defining the HOL theorem corresponding to the verification of the average
detection delay requires the formalization of the set (H0∩H1∩...∩H(i−1)∩Hi)
as a higher-order-logic function. The proposed idea consists in dividing this set
into two parts: the first one defines the intersection of the (i − 1) first events
while the second models the event that ’the ith working sub-network is non-empty
within Ti’.

The function compl intersection, given in Definition 8, illustrates the first
part of the required final set.

Definition 8
� ∀ i,c,k. compl intersection i c k =

bind (indep rv list (subset non empty rv list i c k))
(λx. unit (disj list x)).

398 M. Elleuch et al.

This builds the intersection of events describing the (i − 1) first empty sub-
sets. The idea is to first make a list of the required random variables (function
subset non empty rv list) by satisfying the independence criteria (function
indep rv list), and then create the conjunction of all the elements of the list
as required. The function compl intersection takes as parameters: i, a natural
index, c, the number of sensors that covers a specific point inside the field, and
k, the number of sub-networks. The HOL definitions of the the two functions
used within the function compl intersection can be found in [4].

The second part of the final set is described by the Bernoulli random variable
used in (3) which also expresses the event of an empty subset. Thus, the final
set is described by the following HOL function final set which takes the same
parameters as the function compl intersection.

Definition 9
� ∀ i,c,k. final set i c k =

bind (compl intersection i c k) (λx.
bind (subset non empty (k-i-1) c (k-i)) (λy.
unit (¬x ∧ (y = 1)))).

5 Formal Verification of the Random Scheduling
Algorithm

We use the defined HOL functions in order to formally verify the main statistical
properties regarding the network coverage intensity and the average detection
delay. We have described the verified theorems in a backward chaining approach,
i.e., we present the main goal first and then the corresponding proofs.

5.1 Formal Verification of the Network Coverage Intensity

We have already noticed from the specification section that the network coverage
intensity is defined as a statistical measure of the coverage intensity for a specific
point (see (7)). Hence, we need to verify first that the coverage intensity for a
specific point, defined in (4), is really equal to the expression given in (5). The
HOL theorem corresponding to this property can be expressed as follows:

Theorem 1
� ∀ c,k. cvrge intsty pt c k = 1 - (1 - (1/(k+1)))c.

The verification of the above theorem is based on Theorem 2, which gives the
expectation of the random variable specified in (3).

Theorem 2
� ∀ c,k. expec (sum rv lst (subset non empty lst k c (k+1))) =

(k+1)×(1 - (1 - (1/(k+1)))c).

The proof of Theorem 2 is mainly based on the application of the expectation
property stating that the expectation of the sum of discrete random variables

Formal Analysis of a Scheduling Algorithm for Wireless Sensor Networks 399

is equal to the sum of their respective expectation, and the verification of the
expectation of each element of the list subset non empty lst [4].

Next, we have to verify the second main theorem related to the network
coverage intensity Cn. It has been shown in [18] that Cn is equal to:

1−
(
1− q

k

)n

. (9)

which is formalized in HOL by the following theorem:

Theorem 3
� ∀ n,q,k. (0 ≤ q) ∧ (q ≤ 1) ∧ (1 ≤ n) ⇒

(cvrge intsty network q n k = (1 - (1-(q/(k+1)))n)).

The proof of Theorem 3 is primarily based on the application of the linearity
of expectation property (see (2)) which further requires the independence of the
Binomial random variable, already verified in [7], and the proof of the finite
summation of the corresponding function multiplied by the probability. Besides
that, the proof of Theorem 3 needed a lot of mathematical reasoning related to
the real summation especially for the Binomial theorem for reals which was not
available in the existing HOL libraries and thus, we had to prove it.

Theorem 3 gives a clear relationship between the network coverage intensity,
the number of nodes n and the number of disjoint sub-networks k. As a result,
two important corollaries can be deduced. Given a number k, we require that the
minimum of the network coverage intensity Cn is t, and we can deduce the lower
bound on the necessary number of sensor nodes in the whole network which is:

n ≥
[

ln(1 − t)
ln
(
1− q

k

)] . (10)

The above corollary has been successfully verified in HOL by using intermediate
results associated to the two mathematical functions of power and logarithm.

Similarly, we can deduce that for a given n and providing a network coverage
intensity of at least t, the upper bound on the number of disjoint subsets k is:

k ≤ q

1− e
ln(1−t)

n

. (11)

The proof of the above corollary was straightforward and is based on pre-verified
theorems from the two HOL theories of real and exponential.

The second corollary, given in (11), is very useful in dynamically adjusting the
coverage of a sensor network after it is deployed. When the total number of sensor
nodes is fixed, the network coverage intensity can be adjusted by changing the
number of disjoint subsets k. A simple message flooding can be done to inform
all sensor nodes about the new value of k.

5.2 Formal Verification of the Average Detection Delay

It has been shown in [18] that the average detection delay for an event, occurring
at a point covered by c sensor nodes and lasting for duration longer than (k −
1)× T , is equal to:

400 M. Elleuch et al.

delays =
T

2
×
[(

k − 1
k

)c

+ 2×
k−1∑
i=2

(
k − i

k

)c
]

. (12)

We have successfully verified the theorem formalizing the above equation. The
proof has been based on an important result, verified in Theorem 4, along with
some reasoning based on derivatives, and the corresponding details can be found
in [4].

Theorem 4
� ∀ i c k. (2 ≤ k) ∧ (1 ≤ (k - i)) ⇒

(prob bern {s | fst (final set i c k s) = T} =
product 0 i (λj. (1-(1/(k-j)))c)×(1-(1-1/(k-i))c)).

This theorem reduces the probability of a set of independent events to the prod-
uct of their respective probabilities. The function product, used in the above
theorem, is a recursive function that gives the product of a sequence of elements
of the same function. The proof of Theorem 4 required reasoning related to the
transformation of probabilistic sets and to the independence theorem of proba-
bility. Under some assumptions, this last theorem transforms the probability of
the intersection of two independent events into the product of their respective
probabilities.

Our results demonstrate the effectiveness of the probabilistic theorem prov-
ing based approach for the verification of randomized scheduling algorithms for
WSNs. We have been able to formally verify the most important probabilis-
tic properties of interest associated with the network coverage intensity and
the average detection delay. While other techniques, like simulation and model
checking, are restricted by the number of simulated nodes n, the number of dis-
joint subsets k, the sensing range r, and the surface a, our results are completely
generic, i.e., the verified theorems are universally quantified for all values of n,
k, r and a.

Moreover, the inherent soundness of theorem proving certifies that the ob-
tained results are 100% accurate. Based on the discussion in Sections 1 and 2 of
this paper, it is clear that other techniques can never have this flexibility. Indeed,
previous simulation work have given non-exhaustive results which are valid for
specific network configurations. Similarly, probabilistic model checking have been
frequently forced to restrict the values of the two first parameters in order to
avoid a state space explosion problem. Finally, compared to probabilistic model
checkers, a major novelty provided in this paper is the ability to perform formal
and accurate reasoning about statistical properties of the problem. Hence, it was
possible to verify the network coverage intensity which is a statistical measure of
the coverage intensity for a specific point. This possibility is mainly due to the
strong theoretical support for probability modeling available within the HOL
probabilistic framework and the high expressibility of higher-order logic.

The above mentioned additional benefits, associated with the theorem proving
approach, are attained at the cost of the time and effort spent, while formalizing

Formal Analysis of a Scheduling Algorithm for Wireless Sensor Networks 401

the randomized scheduling algorithm and formally reasoning about its proper-
ties, by the user. This analysis consumed approximately 200 man-hours and 1500
lines of HOL code by an expert user.

The major challenges faced in this work include the learning of the HOL
probabilistic framework that primarily requires prior familiarization with the
theorem proving technique and a good background on the probability theory.
Higher-order-logic formalization also required a lot of intuition in selecting the
right random variables. Similarly, an exhaustive set of assumptions is required for
the verification as missing any assumption leads to verification failure due to the
inherent soundness of the underlying theorem proving approach. Nevertheless,
the fact that we were building on top of already verified probability theory related
results helped significantly in this regard. In this paper, a lot of intermediate
results have been omitted in order to meet page limits. The interested reader
can refer to [4] for more details about all the theorems.

6 Conclusions

Due to the deployment constraints of WSNs, we are more motivated to provide
algorithms characterized by a probabilistic behavior. Such a characteristic is
impossible to cover using classic validation procedures like simulation, which
do not ascertain 100% accuracy. The purpose of this paper was to provide a
reliable analysis by using an accurate formal probabilistic reasoning based on
the general purpose HOL theorem prover. We formally analyzed the coverage
and the average detection delay of a scheduling algorithm designed for randomly
deployed wireless sensor networks. We particularly verified the expected values of
the coverage intensity, the upper bound on the total number of disjoint subsets,
the lower bound on the total number of nodes and the average detection delay
inside the network.

To the best of our knowledge, this paper presents the first formal analysis of a
randomized scheduling problem using a probabilistic formal method. Obtained
results have the advantages to be exhaustive and completely generic, i.e., valid
for all parameter values, which cannot be attained in simulation or probabilistic
model checking based approach. In addition, the successful formal reasoning
about statistical properties clearly demonstrates the practical effectiveness of
the proposed approach compared to probabilistic model checking, where such a
feature is not available.

It is important to note that the usability of the HOL probabilistic frame-
work for the WSN context is not limited to the current case study. Indeed, the
whole framework can be efficiently used to formally analyze several probabilistic
routing algorithms for WSNs. One such example is the Reverse Path Forward-
ing (RPF) algorithm [3]. Once the HOL probabilistic framework is enriched with
possibilities to reason about statistical properties of multiple continuous random
variables, it will be promising to extend the formal analysis of the coverage-based
scheduling algorithm. We can, for example, think to formally verify the network
lifetime which is a crucial aspect in the WSNs context or the impact of clock
asynchrony on the coverage quality.

402 M. Elleuch et al.

References

1. Ballarini, P., Miller, A.: Model Checking Medium Access Control for Sensor Net-
works. In: International Symposium on Leveraging Applications of Formal Meth-
ods, Verification and Validation, pp. 255–262. IEEE Press, New York (2006)

2. Clarke, E.M., Grumberg, O., Peled, D.A.: Model Checking. The MIT Press, Cam-
bridge (2000)

3. Dalal, Y., Metcalfe, R.: Reverse Path Forwarding of Broadcast Packets. Commun.
of ACM 21(12), 1040–1048 (1978)

4. Elleuch, M., Hasan, O., Tahar, S., Abid, M.: Formal Probabilistic Analysis of the
Coverage-based Random Scheduling Algorithm for WSNs. Technical Report. ENIS,
Sfax University, Tunisia (2011),
http://www.ceslab.org/publications/TR_FPARSAWSN_v1.3.pdf

5. Gordon, M.J.C.: Mechanizing Programming Logics in Higher-Order Logic. In:
Current Trends in Hardware Verification and Automated Theorem Proving, pp.
387–439. Springer, Heidelberg (1989)

6. Gupta, A.: Formal Hardware Verification Methods: A Survey. Formal Methods in
System Design 1(2-3), 151–238 (1992)

7. Hasan, O.: Formal Probabilistic Analysis using Theorem Proving. PhD Thesis,
Concordia University, Montreal, QC, Canada (2008)

8. Hasan, O., Tahar, S., Abbasi, N.: Formal Reliability Analysis using Theorem Prov-
ing. IEEE Transactions on Computers 59(5), 579–592 (2010)

9. Hasan, O., Tahar, S.: Performance Analysis and Functional Verification of the Stop-
and-Wait Protocol in HOL. Journal of Automated Reasoning 42(1), 1–33 (2009)

10. Hasan, O., Tahar, S.: Probabilistic Analysis of Wireless Systems using Theorem
Proving. Electronic Notes in Theoretical Computer Science 242(2), 43–58 (2009)

11. Hasan, O., Abbasi, N., Akbarpour, B., Tahar, S., Akbarpour, R.: Formal Reasoning
about Expectation Properties for Continuous Random Variables. In: Cavalcanti,
A., Dams, D.R. (eds.) FM 2009. LNCS, vol. 5850, pp. 435–450. Springer, Heidelberg
(2009)

12. Hurd, J.: Formal Verification of Probabilistic Algorithms. PhD Thesis, University
of Cambridge, Cambridge, UK (2002)

13. Hurd, J.: Verification of the Miller-Rabin Probabilistic Primality Test. J. of Logic
and Algebraic Programming 50(1-2), 3–21 (2003)

14. Jain, S., Srivastava, S.: A Survey and Classification of Distributed Scheduling Al-
gorithms for Sensor Networks. In: International Conference on Sensor Technologies
and Applications, pp. 88–93. IEEE Press, New York (2007)

15. Kwiatkowska, M., Norman, G., Parker, D.: PRISM: Probabilistic Model Check-
ing for Performance and Reliability Analysis. ACM SIGMETRICS Performance
Evaluation Review 36(4), 40–45 (2009)

16. Levine, A.: Theory of Probability. Addison-Wesley series in Behavioral Science,
Quantitative Methods. Addison-Wesley, Reading (1971)

17. Lin, J.W., Chen, Y.T.: Improving the Coverage of Randomized Scheduling in Wire-
less Sensor Networks. IEEE Transactions on Wireless Communications 7(12), 4807–
4812 (2008)

18. Liu, C., Wu, K., Xiao, Y., Sun, B.: Random Coverage with Guaranteed Connectiv-
ity: Joint Scheduling for Wireless Sensor Networks. IEEE Transactions on Parallel
and Distributed Systems 17(6), 562–575 (2010)

http://www.ceslab.org/publications/TR_FPARSAWSN_v1.3.pdf

Formal Analysis of a Scheduling Algorithm for Wireless Sensor Networks 403

19. McIver, A.K., Fehnker, A.: Formal Techniques for the Analysis of Wireless
Networks. In: International Symposium on Leveraging Applications of Formal
Methods, Verification and Validation, pp. 263–270. IEEE Computer Society, Wash-
ington, DC, USA (2006)

20. Ölveczky, P.C., Thorvaldsen, S.: Formal Modeling and Analysis of the OGDC
Wireless Sensor Network Algorithm in Real-Time Maude. In: Bonsangue, M.M.,
Johnsen, E.B. (eds.) FMOODS 2007. LNCS, vol. 4468, pp. 122–140. Springer, Hei-
delberg (2007)

21. The Real-Time website, http://heim.ifi.uio.no/peterol/RealTimeMaude/
22. Rutten, J., Kwaiatkowska, M., Normal, G., Parker, D.: Mathematical Techniques

for Analyzing Concurrent and Probabilisitc Systems. CRM Monograph Series,
vol. 23. American Mathematical Society, Providence (2004)

23. Yates, R.D., Goodman, D.J.: Probability and Stochastic Processes: A Friendly
Introduction for Electrical and Computer Engineers. Wiley, Chichester (2005)

24. Yick, J., Mukherjee, B., Ghosal, D.: Wireless Sensor Network Survey. J. Computer
Networks 52, 2292–2330 (2008)

25. Zayani, H., Barkaoui, K., Ben Ayed, R.: Probabilistic Verification and Evaluation
of Backoff Procedure of the WSN ECo-MAC Protocol. J. of Wireless & Mobile
Networks 2(2), 156–170 (2010)

 http://heim.ifi.uio.no/peterol/RealTimeMaude/

An Abstract Model for Proving Safety of

Multi-lane Traffic Manoeuvres�

Martin Hilscher1, Sven Linker1, Ernst-Rüdiger Olderog1, and Anders P. Ravn2

1 Department of Computing Science, University of Oldenburg, Germany
{martin.hilscher,sven.linker,olderog}@informatik.uni-oldenburg.de

2 Department of Computer Science, Aalborg University, Denmark
apr@cs.aau.dk

Abstract. We present an approach to prove safety (collision freedom)
of multi-lane motorway traffic with lane-change manoeuvres. This is ul-
timately a hybrid verification problem due to the continuous dynamics of
the cars. We abstract from the dynamics by introducing a new spatial in-
terval logic based on the view of each car. To guarantee safety, we present
two variants of a lane-change controller, one with perfect knowledge of
the safety envelopes of neighbouring cars and one which takes only the
size of the neighbouring cars into account. Based on these controllers
we provide a local safety proof for unboundedly many cars by showing
that at any moment the reserved space of each car is disjoint from the
reserved space of any other car.

Keywords: Multi-lane motorway traffic, lane-change manoeuvre, colli-
sion freedom, abstract modelling, spatial interval logic, timed automata.

1 Introduction

To increase the safety of road traffic many individual driving assistant systems
based on suitable sensors have been developed for cars. The next step is to utilize
car to car communication to combine such individual system to build up more
advanced assistance functionalities. In this paper we study one such functionality,
lane-change assistance for cars driving on a multi-lane motorway. The challenge
is to develop lane-change controllers based on suitable sensor and communication
facilities such that the safety (collision freedom) of multi-lane motorway traffic
can be demonstrated if all cars are equipped with such a controller. This is
ultimately a problem of hybrid system verification, where the car dynamics, the
car controllers, and suitable assumptions together should imply safety.

In the California PATH (Partners for Advanced Transit and Highways) project
automated highway systems for car platoons including lane change have been
designed. Lygeros et al. [1] sketch a safety proof taking car dynamics into account,
but admitting safe collisions, i.e., collisions at a low speed. Not all scenarios of
multi-lane traffic are covered in the analysis. Jula et al. [2] provide calculations
� This research was partially supported by the German Research Council (DFG) in

the Transregional Collaborative Research Center SFB/TR 14 AVACS.

S. Qin and Z. Qiu (Eds.): ICFEM 2011, LNCS 6991, pp. 404–419, 2011.
c© Springer-Verlag Berlin Heidelberg 2011

An Abstract Model for Proving Safety of Multi-lane Traffic Manoeuvres 405

of safe longitudinal distances between cars based on car dynamics. Werling et al.
[3] study car traffic in urban scenarios and an abstract representation of several
car manoeuvres. In their analysis cars are assumed to drive with constant speed.
To simplify safety proofs controller patterns are exploited in Damm et al. [4],
where a proof rule for collision freedom of two traffic agents based on criticality
functions is proposed. This proof rule has for instance been applied to verify a
distance controller. However, it is not clear how to extend this approach to deal
with arbitrarily many cars on a motorway. Our paper is inspired by approaches
to controller design for hybrid systems that separate the dynamics from the
control layer. Raisch et al. [5,6] introduce abstraction and refinement to support
a hierarchical design of hybrid control systems. Van Schuppen et al. [7] introduce
synthesis of control laws for piecewise-affine hybrid systems based on simplices.

Our key idea for coping with the safety of many cars on a motorway is to show
that different cars occupy and reserve disjoint spaces. To this end, we introduce
an abstract model of multi-lane motorway traffic based on spatial properties of
local views of cars. The properties are expressed in a new dedicated Multi-Lane
Spatial Logic (MLSL) inspired by Moskowski’s interval temporal logic [8], Zhou,
Hoare and Ravn’s Duration Calculus [9], and Schäfer’s Shape Calculus [10].
MLSL is a two-dimensional extension of interval temporal logic, where one di-
mension has a continuous space (the position in each lane) and the other has a
discrete space (the number of the lane). In MLSL we can for instance express
that a car E has reserved a certain space on its lane. However, that the size of
this reservation covers the braking distance of E is not part of the spatial logic.
This would come into the picture only when refining the spatial properties to
the car dynamics, which is not part of this paper. By using MLSL, we separate
the purely spatial reasoning from the car dynamics.

As we shall see, spatial properties needed for the safety proof can be expressed
very concisely in MLSL. We shall use formulas of MLSL as guards and state
invariants of abstract lane-change controllers. In a technical realisation of such
controllers, the properties that may appear in the formulas stipulate suitable
sensors of the cars, for instance distance sensors.

The contributions of our paper are follows:

– we introduce an abstract model of motorway traffic with lane-change ma-
noeuvres and a suitable spatial interval logic MLSL (Sect. 2);

– we provide two variants of lane-change controllers, a simple one with perfect
knowledge of the safety envelopes of neighbouring cars and an elaborated
one which takes only the extension of the neighbouring cars into account,
but requires communication with a helper car (Sect. 3);

– we conduct proofs of safety (collision freedom) for both controllers (Sect. 4).

Finally, in Sect. 5 we conclude and discuss more related and future work.

2 Abstract Model

Usually, road traffic is modelled as a dynamical system, where each vehicle has a
trajectory in the plane defined by its position, its speed and its acceleration [1].

406 M. Hilscher et al.

However, to conduct a proof of safety of many cars on a multi-lane motorway,
this is a far too detailed description of traffic. Thus we introduce a more abstract
model which is based on local views of cars as shown in Fig. 1.

We start from a global picture of multi-lane motorway traffic, where the road
has an infinite extension with positions represented by the real numbers and
where lanes are represented by natural numbers 0, 1, . . . , n. At each moment of
time each car, with a unique identity denoted by letters A, B, . . . , has its position
pos, speed spd, and acceleration acc. We assume that all traffic proceeds in one
direction, with increasing position values, in the pictures shown from left to right.
The abstract model is introduced by allowing for each car only local views of
this traffic. A view of a car E comprises a contiguous subset of lanes, and has a
bounded extension. A view containing all lanes with an extension up to a given
constant, the horizon, will be called standard view.

D F

C

claim A

A

BE

view of E
pos(E)

1

2

0 spd(E), acc(E) safety envelope

size

Fig. 1. View of car E comprising a bounded extension of lanes 1 and 0. Car E sees its
own reservation, both the reservation and the claim of car A ahead, which is preparing
for a change from lane 0 to lane 1, and part of the reservation of car C driving on
a neighbouring lane behind E. It does not see the cars B, D and F because they are
driving outside of its view.

What a car “knows”of its view is expressed by formulas in a dedicated multi-
lane spatial logic, which extends interval temporal logic [8] to two dimensions,
one with a continuous space (the position in each lane) and the other with a
discrete space (the number of the lane). Such a formula consists of a finite list
of lanes, where each lane is characterized by a finite sequence of segments. A
segment is either occupied by a car, say E, or it is empty (free). For instance, in
the view of car E shown in Fig. 1, the following formula φ holds:

φ ≡
〈

free � E � free � cl(A) � free
C � free � re(A) � free

〉
Here � is the chop operator of interval temporal logic; it serves to separate
adjacent segments in a lane. In the logic we can distinguish whether a car A has
reserved a space in a lane (re(A)) or only claimed a space (cl(A)) for a planned
lane change manoeuvre. We stipulate that reserved and claimed spaces have the
extension of the safety envelopes of the cars, which include at each moment the
speed dependent braking distances. The key idea of our approach is that we
abstract from the exact values of these distances in our safety proof.

An Abstract Model for Proving Safety of Multi-lane Traffic Manoeuvres 407

2.1 Traffic Snapshot

We introduce a formal model T S of a traffic snapshot, which describes the traffic
on the motorway at a given point in time. Henceforth we assume a globally unique
identifier for each car and take I as the set of all such car identifiers, with typical
elements A, B, Furthermore, L = {0, . . . , N}, for some fixed N ≥ 1, denotes
the set of motorway lanes, with typical elements l, m, n.

Definition 1 (Traffic Snapshot). A traffic snapshot T S is a structure

T S = (res, clm, pos , spd , acc),

where res, clm, pos , spd , acc are functions

– res : I → P(L) such that res(C) is the set of lanes C reserves,
– clm : I → P(L) such that clm(C) is the set of lanes C claims,
– pos : I → R such that pos(C) is the position of car C along the lanes,
– spd : I → R such that spd(C) is the current speed of the car C,
– acc : I → R such that acc(C) is the current acceleration of the car C.

We denote the set of all traffic snapshots by TS.

Definition 2 (Transitions). The following transitions describe the changes
that may occur at a traffic snapshot T S = (res, clm, pos , spd , acc). Note that we
use the overriding notation ⊕ of Z for function updates [11].

T S t−→T S′ ⇔ T S′ = (res, clm, pos ′, spd ′, acc)

∧∀C ∈ I : pos ′(C) = pos(C) + spd(C) · t + 1
2acc(C) · t2

∧∀C ∈ I : spd ′(C) = spd(C) + acc(C) · t (1)

T S c(C,n)−−−−→T S′ ⇔ T S′ = (res, clm′, pos , spd , acc)
∧ |clm(C)| = 0 ∧ |res(C)| = 1
∧ {n + 1, n− 1} ∩ res(C) �= ∅
∧ clm′ = clm⊕ {C �→ {n}} (2)

T S wd c(C)−−−−−→T S′ ⇔ T S′ = (res, clm′, pos , spd , acc)
∧ clm′ = clm⊕ {C �→ ∅} (3)

T S r(C)−−−→T S′ ⇔ T S′ = (res′, clm′, pos , spd , acc)
∧ clm′ = clm⊕ {C �→ ∅}
∧ res′ = res⊕ {C �→ res(C) ∪ clm(C)} (4)

T S wd r(C,n)−−−−−−→T S′ ⇔ T S′ = (res′, clm, pos , spd , acc)
∧ res′ = res⊕ {C �→ {n}}
∧n ∈ res(C) ∧ |res(C)| = 2 (5)

T S acc(C,a)−−−−−→T S′ ⇔ T S ′ = (res, clm, pos , spd , acc′)
∧ acc′ = acc ⊕ {C �→ a} (6)

408 M. Hilscher et al.

In (1) time can pass, which results in the cars moving along the motorway accord-
ing to their respective speeds and accelerations. A car may claim a neighbouring
lane n iff it currently does not already claim another lane or is in the progress of
changing the lane and therefore reserves two lanes (2). Furthermore a car may
withdraw a claim (3) or reserve a previously claimed lane (4) or withdraw the
reservation of all but one of the lanes it is moving on (5). Finally a car may
change its acceleration (6).

Example. The following trace shows a car C driving for t1 seconds on lane 1
or 3, then claiming lane 2, driving for t2 seconds while claiming lane 2, reserving
lane 2, driving for tlc seconds on both lanes (moving over) and then withdrawing
all reservations but the one for lane 2.

T S1
t1−→T S2

c(C,2)−−−−→T S3
t2−→T S4

r(C)−−−→T S5
tlc−→T S6

wd r(C,2)−−−−−−→T S7

2.2 View

For our safety proof we will restrict ourselves to finite parts of a traffic snapshot
T S called views, the intuition being that the safety of manoeuvres can be shown
using local information only.

Definition 3 (View). A view V is defined as a structure V = (L, X, E), where

– L = [l, n] ⊆ L is an interval of lanes that are visible in the view,
– X = [r, t] ⊆ R is the extension that is visible in the view,
– E ∈ I is the identifier of the car under consideration.

A subview of V is obtained by restricting the lanes and extension we observe.
For this we use sub- and superscript notation: V L′

= (L′, X, E) and VX′ =
(L, X ′, E), where L′ and X ′ are subintervals of L and X, respectively.

For a car E and a traffic snapshot T S = (res, clm, pos , spd , acc) we define
the standard view of E as

Vs(E, T S) = (L, [pos(E) − h, pos(E) + h], E) ,

where the horizon h is chosen such that a car driving at maximum speed can,
with lowest deceleration, come to a standstill within the horizon h.

Sensor Function. Subsequently we will use a car dependent sensor function
ΩE : I× TS → R+ which, given a car identifier and a traffic snapshot, provides
the length of the corresponding car, as perceived by E. In Section 3 we will give
safety proofs for two sensor function instantiations, one delivering the safety
envelope of all cars (perfect knowledge) and one delivering only the actual size
of cars. See Fig. 1 for illustration.

An Abstract Model for Proving Safety of Multi-lane Traffic Manoeuvres 409

Abbreviations. For a given view V = (L, X, E) and a traffic snapshot T S =
(res, clm, pos , spd , acc) we use the following abbreviations:

IV = {C | C ∈ I ∧ (∃l ∈ L : l ∈ res(C) ∨ l ∈ clm(C))
∧ [pos(C), pos(C) + ΩE(C, T S)] ∩X �= ∅} (7)

resV = res ∩ (IV × P(L)) (8)
clmV = clm ∩ (IV × P(L)) (9)

lenV :
{

IV → P(X)
C �→ [pos(C), pos(C) + ΩE(C, T S)] ∩X

(10)

The set (7) is constructed in the following way: a car C is in IV iff it occupies
(intends to change to) a lane considered in this view and C’s occupation of the
road as perceived by E intersects with the extension considered in the view. The
functions (8) and (9) are restrictions of their counterparts in T S to the sets of
lanes and identifiers considered in this view. The function (10) gives us the part
of the motorway car E perceives occupied by a car cut on the edges of the view’s
extension.

2.3 A Multi-lane Spatial Logic

In this section we will define the syntax and semantics of the spatial logic used in
the definition of the lane change controller. Since we are interested in the safety
of manoeuvres on a motorway with multiple lanes, we call this logic multi-lane
spatial logic (MLSL). We employ five different atoms, boolean connectors and
first-order quantification. Furthermore we use two chop operations. The first
chop is denoted by
 like for interval logics, while the second chop operation is
given only by the vertical arrangement of formulae.

Their intuitions are as follows. A formula φ1
φ2 is satisfied by a view V with
the extension [r, t], if V can be divided at a point s into two subviews V1 and V2,
where V1 has the extension [r, s] and satisfies φ1 and V2 has the extension [s, t]
and satisfies φ2, respectively. A formula φ2

φ1
is satisfied by V with the lanes l to

n, if V can be split along a lane m into two subviews, V1 with the lanes l to m
and V2 with the lanes m + 1 to n, where Vi satisfies φi for i = 1, 2.

The set of variables ranging over car identifiers is denoted by Var, with typical
elements c, d, u and v. To refer to the car owning the current view, we use a
special variable ego ∈ Var.

Definition 4 (Syntax). The syntax of the multi-lane spatial logic MLSL is
given by the following formulae:

φ ::= true | u = v | free | re(γ) | cl(γ) | φ1 ∧ φ2 | ¬φ1 | ∃v : φ1 | φ1
 φ2 | φ2

φ1

where γ is a variable or a car identifier, and u and v are variables. We denote
the set of all MLSL formulae by Φ.

410 M. Hilscher et al.

Definition 5 (Valuation and Modification). A valuation is a function
ν : Var → I. For a valuation ν we use the overriding notation ν ⊕ {v �→ α} to
denote the modified valuation, where the value of v is modified to α.

Since the semantics is defined with respect to both views and valuations, we
will only consider valuations ν which are consistent with the current view V =
(L, X, E), which means that we require ν(ego) = E. In the following definition,
observe that we require that the spatial atoms may only hold on a view with
exactly one lane and an extension greater than zero. In the semantics of free, we
abstract from cars visible only at the endpoints of the view.

Definition 6 (Semantics). In the following, let u and v be variables and γ a
variable or a car identifier. The satisfaction of formulae with respect to a traffic
snapshot T S, a view V = (L, X, E) with L = [l, n] and X = [r, t], and a valuation
ν consistent with V is defined inductively as follows:

T S, V, ν |= true for all T S, V, ν

T S, V, ν |= u = v ⇔ ν(u) = ν(v)
T S, V, ν |= free ⇔ |L| = 1 and |X | > 0 and

∀i ∈ IV : lenV (i) ∩ (r, t) = ∅
T S, V, ν |= re(γ) ⇔ |L| = 1 and |X | > 0 and ν(γ) ∈ IV and

resV (ν(γ)) = L and X = lenV (ν(γ))
T S, V, ν |= cl(γ) ⇔ |L| = 1 and |X | > 0 and ν(γ) ∈ IV and

clmV (ν(γ)) = L and X = lenV (ν(γ))
T S, V, ν |= φ1 ∧ φ2 ⇔ T S, V, ν |= φ1 and T S, V, ν |= φ2

T S, V, ν |= ¬φ ⇔ not T S, V, ν |= φ

T S, V, ν |= ∃v : φ ⇔ ∃α ∈ IV : T S, V, ν ⊕ {v �→ α} |= φ

T S, V, ν |= φ1
φ2 ⇔ ∃ s : r ≤ s ≤ t and
T S, V[r,s], ν |= φ1 and T S, V[s,t], ν |= φ2

T S, V, ν |= φ2

φ1
⇔ ∃m : l − 1 ≤ m ≤ n + 1 and

T S, V [l,m], ν |= φ1 and T S, V [m+1,n], ν |= φ2

We write T S |= φ if T S, V, ν |= φ for all views V and consistent valuations ν.

For the semantics of the vertical chop, we set the interval [l, m] = ∅ if l > m. A
view V with an empty set of lanes may only satisfy true or an equality formula.
We remark that both chop modalities are associative. For the definition of the
controller we employ some abbreviations. In addition to the usual definitions of
∨,→,↔ and ∀, we use a single variable or car identifier γ as an abbreviation
for re(γ) ∨ cl(γ). Furthermore, we use the notation 〈φ〉 for the two-dimensional
modality somewhere φ, defined in terms of both chop operations:

An Abstract Model for Proving Safety of Multi-lane Traffic Manoeuvres 411

〈φ〉 ≡ true

⎛⎝ true
φ

true

⎞⎠
 true.

In the following, the main application of the somewhere modality is to abstract
the exact positions on the road from formulae, e.g., to identify overlaps of claims
and safety envelopes. If a view V satisfies the formula ∃c : 〈cl(ego) ∧ re(c)〉, then
there is a part on some lane in V occupied by both the claim of the car under
consideration and the safety envelope of some car c.

In the safety proof we exploit that somewhere distributes over disjunction:

〈φ1 ∨ φ2〉 ≡ 〈φ1〉 ∨ 〈φ2〉 . (11)

This equivalence is an immediate consequence of the semantics.

3 Controllers

We now present two lane-change controllers, one with perfect knowledge of the
safety envelopes (covering the necessary braking distances) of neighbouring cars
and one which takes only the physical size of the neighbouring cars into account.

The controllers are specified as timed automata [12] with clocks ranging over
R and data variables ranging over L and I. The semantics is a transition system,
where a configuration C consists of a traffic snapshot T S, the standard view V of
a car, a valuation ν (also of clocks and data variables), and the current state q of
the controller, i.e. C = (T S, V, ν, q). To restrict the transitions which are allowed
in a lane-change manoeuvre, like the creation of new claims and the extension
and shrinking of reservations, suitable MLSL formulae will appear in transition
guards and state invariants. We take care that none of our controllers introduces
a timelock, which would prevent time from progressing unboundedly.

Timed automata working in parallel can communicate with each other via
broadcast channels as in UPPAAL [13]. Using a CSP-style notation [14], sending
a value val over a channel p is denoted by p!val; receiving a value over p and
binding it to a variable c appearing free in a guard φ is denoted by p?c : φ.
Formally, T S, V, ν |= p?c : φ iff T S, V, ν⊕{c �→ val} |= φ, where val is the value
simultaneously sent via p!val by another automaton. A message sent by a car C
is broadcast to all cars within the extension of the standard view of C.

3.1 Changing Lanes with Perfect Knowledge

Let us first assume that every car can perceive the full extension of claims and
reservations of all cars within its view. In other words, every car has perfect
knowledge of the status of the road within its view. This assumption is formalised
through the sensor function ΩE , which defines the extension of the cars seen by
the owner E of a view. Putting ΩE(I, T S) = se(I, T S) models that the sensors

412 M. Hilscher et al.

return the whole safety envelope for all cars. This implies that a car E perceives
a car C as soon as C’s safety envelope enters the view of E.

Intuitively, a car C on lane n, in the following called the actor, can claim a
space on a target lane m next to n to start the manoeuvre. This does not yet
imply that C actually changes the lane. It corresponds to setting the direction
indicator to prepare for a lane change. The goal of the actor is to safely convert its
claim into a reservation of m. If the space claimed by the actor is already occupied
or claimed by another car (potential collision check), C removes its claim and
continues driving on its current lane. Even though we assume instantaneous
transitions, we allow time to pass up to a certain time bound to between claiming
and reserving a lane. If no potential collision occurs, the actor communicates its
new reservation and starts its manoeuvre. Since we abstract from the exact form
of changing the lane, we just assume that the manoeuvre takes at most tlc time
to finish. Finally, the actor shrinks its reservation to solely m.

This intuition is formalised by the lane-change controller LCP in Fig. 2. At
the initial state q0, we assume that the car has reserved exactly one lane, which
is saved in the variable n. Furthermore, we employ an auxiliary variable l to
store the lane the actor wants to change to. The collision check cc expresses the
disjointness of the actor’s reservation and the reservations of all other cars:

cc ≡ ¬∃c : c �= ego ∧ 〈re(ego) ∧ re(c)〉 ,
the potential collision check pc(c) for a car c expresses the overlapping of the
actor’s claim with (the reservation or claim of) c:

pc(c) ≡ c �= ego ∧ 〈cl(ego) ∧ c〉 .

q0 : cc q1 q2 :
¬∃c : pc(c)

x ≤ to

q3 : x ≤ tlc

n + 1 ≤ N

/c(ego, n + 1);

l := n + 1

0 ≤ n− 1

/c(ego, n− 1);

l := n− 1

∃c : pc(c)

/wd c(ego) ¬∃c : pc(c)

/x := 0

∃c : pc(c)

/wd c(ego)

¬∃c : pc(c)

/r(ego); x := 0

x ≥ tlc/

wd r(ego, l); n := l

Fig. 2. Controller LCP for the Lane-Change Manoeuvre with Perfect Knowledge

An Abstract Model for Proving Safety of Multi-lane Traffic Manoeuvres 413

3.2 A More Realistic Approach for Changing Lanes

The assumption that every car can perceive every safety envelope within its
view is very strong. In this section, we define a controller which accomplishes a
lane-change manoeuvre with much less information: each car knows only the size
of the other cars, while it still knows its own safety envelope. Hence the sensor
function for a view V = (L, X, E) is defined conditionally by

ΩE(I, T S) ≡ if I = E then se(I, T S) else size(I) fi.

In this setting, the potential collision check is not sufficient for the safety of the
manoeuvre, since the actor cannot know whether the safety envelope of a car on
the lane the actor wants to occupy overlaps with its own safety envelope. Our
approach to overcome this problem is the definition of a helper controller HC
(Fig. 4) implemented in addition to the lane-change controller LC (Fig. 3).

q0 : cc q1 q2 :
¬∃c : pc(c)

x < to

q4 : x ≤ tlc

q3 : x ≤ tlc

n + 1 ≤ N

/c(ego, n + 1);

l := n + 1

0 ≤ n− 1

/c(ego, n− 1);

l := n− 1

∃c : pc(c)

/wd c(ego) ¬∃c : pc(c)/

req !ego; x := 0

∃c : pc(c) ∨ no?c : ego = c∨
(x ≥ to ∧ ∃c : ph(c))

/wd c(ego)

yes?c : ego = c∧
¬∃c : pc(c)/

r(ego); x := 0

¬∃c : (ph(c) ∨ pc(c))

/r(ego); x := 0

x ≥ tlc/

wd r(ego, l); n := l

x ≥ tlc/wd r(ego, l);

lc end !ego; n := l

Fig. 3. Controller LC for the Lane-Change Manoeuvre with a Helper Car

The idea of the lane-change manoeuvre with the help of these controllers
is similar to the previously described manoeuvre. The actor sets a claim and
checks whether this claim overlaps with already existing claims and reservations.
However, since the actor can perceive via re(c) only the physical size of other
cars c and not the whole of their safety envelopes, it cannot know whether its
claim overlaps with a car driving behind the actor on the target lane. Hence the

414 M. Hilscher et al.

q0 q1 :
¬lc∧
x < to

q3 :¬lc ∧ x ≤ tlc

q2 : x ≤ to

q4 : U q5 : U

req?c : ¬ph−1(c)req?c : ¬ph−1(c)

req?c : ¬ph−1(c)

req?c : ph−1(c) ∧ lc

/d := c; x := 0

no!d

req?c : (ph−1(c) ∧ h �= c)

/d := c no!d

req?c : (ph−1(c) ∧ h �= c)

/d := c
no!d

req?c : ph−1(c) ∧ ¬lc

/x := 0; h := c

ph−1(h) ∧ x < to/

yes!h

x ≥ to/

no!h

(lc end?c : h = c)

∨x ≥ tlc

Fig. 4. Controller HC for Helper Car

actor broadcasts a request req to find a potential helper. Such a helper car has
to fulfill three conditions. It has to be on the target lane m, it has to be behind
the actor, and it must not already be involved in a lane-change manoeuvre.

The formula to identify such a car from the viewpoint of the actor is called
potential helper check :

ph(c) ≡ 〈re(c)
 free
 cl(ego)〉 .
If a such helper car is approached by a broadcast request req from the actor,
its controller HC checks for disjointness of its own reservation and the actor’s
claim, using the inverse potential helper check defined by

ph−1(c) ≡ 〈re(ego)
 free
 cl(c)〉 ,
and that it is not performing a lane-change manoeuvre, expressed by the formula

lc ≡
〈

ego
ego

〉
.

If these two conditions are satisfied, it responds with the acknowledgment yes .
Afterwards, it ensures that no other car may enter the lane in between the helper
and the actor. This is done in the urgent states [13] q4 and q5 of the controller
HC. Then, the actor may safely change the lane by extending its reserved space
to lane m and remove its claim. Otherwise, if no helper is available, the actor
waits for a certain time to without getting any response. Afterwards, it has to
check, whether a car entered its view on lane m, before possibly extending its
reservation to lane m. If m is free within the actor’s horizon, the reservation gets
extended, otherwise the actor removes its claim and returns to the initial state,
since it cannot guarantee the disjointness of its claim and the reservation of the
new car. After successfully changing the lane, the actor removes its reservation
of lane n and drives solely on lane m.

An Abstract Model for Proving Safety of Multi-lane Traffic Manoeuvres 415

4 Safety Proof

The desired safety property is that at any moment the spaces reserved by differ-
ent cars are disjoint. To express this property we consider the formula

Safe ≡ ∀c, d : c �= d ⇒ ¬〈re(c) ∧ re(d)〉 ,
which states that in each lane any two different cars have disjoint reserved spaces.
The quantification over lanes arises implicitly by the negation of the somewhere
modality in Safe. We call a traffic snapshot T S safe if T S |= Safe holds. The
safety property depends on the following three assumptions.
Assumption A1. There is an initial safe traffic snapshot T S0.
Assumption A2. Every car C is equipped with a distance controller that keeps
the safety property invariant under time and acceleration transitions, i.e., for

every transition T S t−→T S′ and T S acc(C,a)−−−−−→T S′ if T S is safe also T S′ is safe.
Informally, this means that the distance controller admits a positive acceleration
of C only if the space ahead permits this. Also, if the car ahead is slowing down,
the distance controller has to initiate braking (with negative acceleration) of C
to reduce the extension of its reservation (the safety envelope).
Assumption A3. Every car is equipped with a controller LCP as in Fig. 2.

Then the safety property is formalised by the following theorem.

Theorem 1 (Safety of LCP). Suppose that the assumptions A1–3 hold. Then
every traffic snapshot T S that is reachable from T S0 by time and acceleration
transitions and transitions allowed by the controller LCP in Fig. 2 is safe.

Proof. It suffices to prove safety from the perspective of each car, i.e., that there
is no other car with intersecting reserved space. Formally, we fix an arbitrary
car E and show that for all traffic snapshots T S reachable from T S0, all views
V of E, and all valuations with ν(ego) = E:

T S, V, ν |= Safe ′, where Safe ′ ≡ ¬∃ c �= ego ∧ 〈re(ego) ∧ re(c)〉 . (12)

We proceed by induction on the number k of transitions needed to reach T S
from T S0.
Induction basis: k = 0. Then T S = T S0 and (12) holds by A1.
Induction step: k → k + 1. Consider some T S1 that is reachable from T S0 by
k transitions and thus satisfy (12) by induction hypothesis. Let T S result from
T S1 by one further transition, which we now examine.

For a transition T S1
t−→T S or T S1

acc(C,a)−−−−−→T S of any car C property (12)
holds for T S by A2. Of all other transitions allowed by the LCP controller of E,

only a reservation transition T S1
r(E)−−−→T S could possibly violate property (12).

In the LCP controller of E shown in Fig. 2 the only reservation transition starts
in state q2. This state satisfies the invariant

¬∃ c : c �= ego ∧ 〈cl(ego) ∧ c〉 ,

416 M. Hilscher et al.

which implies ¬∃ c : c �= ego∧〈cl(ego) ∧ re(c)〉. By taking the induction hypoth-
esis (12) for T S1 into account, we thus have

T S1, V, ν |= ¬∃ c : c �= ego ∧ 〈cl(ego) ∧ re(c)〉
∧ ¬∃ c : c �= ego ∧ 〈re(ego) ∧ re(c)〉 .

We transform this formula:

(¬∃ c : c �= ego ∧ 〈cl(ego) ∧ re(c)〉) ∧ (¬∃ c : c �= ego ∧ 〈re(ego) ∧ re(c)〉)
↔ ¬∃ c : (c �= ego ∧ 〈cl(ego) ∧ re(c)〉) ∨ (c �= ego ∧ 〈re(ego) ∧ re(c)〉)
↔ ¬∃ c : c �= ego ∧ (〈cl(ego) ∧ re(c)〉 ∨ 〈re(ego) ∧ re(c)〉)
↔ {somewhere distributes over disjunction: see (11)}

¬∃ c : c �= ego ∧ 〈(cl(ego) ∧ re(c)) ∨ (re(ego) ∧ re(c))〉
↔ ¬∃ c : c �= ego ∧ 〈(cl(ego) ∨ re(ego)) ∧ re(c)〉 .

Applying the Reservation Lemma 1 to the latter formula yields

T S, V, ν |= ¬∃ c : c �= ego ∧ 〈re(ego) ∧ re(c)〉 ,
which shows that (12) holds for T S. !
We now connect formulae about reservations with the fact, that a newly created
reservation occupies the same space as a previous claim (A proof is contained in
the long version of this paper [15]).

Lemma 1 (Reservation). Consider a reservation transition T S r(C)−−−→T S ′ and
an MLSL formula φ′ not containing cl(γ) as a subformula. Let φ result from
φ′ by replacing every occurrence of re(γ) by re(γ) ∨ cl(γ). Then for all views
V = (L, X, E) with C ∈ IV and valuations ν with ν(γ) = C the following holds:

T S, V, ν |= φ if and only if T S′, V, ν |= φ′.

4.1 Safety Proof for Changing Lanes with Help

As for the controller LCP, we want to prove that the property Safe is an invariant
of the allowed transitions, but now the with assumption A3 modified as follows:
Assumption A3. Every car is equipped with the controllers LC as in Fig. 3
and HC of Fig. 4 running in parallel.
Since this scenario incorporates communication between two cars, the helper and
the actor, we have to assume that a car changing a lane can perceive all cars
whose safety envelopes reach up to its position.
Assumption A4. The horizon h of the standard view (Def. 3) is at least the
length of the safety envelope of the fastest car with the smallest braking force.

Theorem 2 (Safety of LC and HC). Suppose that the assumptions A1–4
hold. Then every traffic snapshot T S that is reachable from T S0 by time and
acceleration transitions and transitions allowed by the controller LC in Fig. 3
and the helper controller HC in Fig. 4 is safe.

An Abstract Model for Proving Safety of Multi-lane Traffic Manoeuvres 417

Proof. We refine the proof of Theorem 1. Fix an arbitrary car E and show that
for all traffic snapshots T S reachable from T S0, all helper cars H , standard views
V of E and VH of H , and valuations ν and ν′ consistent with the respective views:
T S, V, ν |= Safe ′ and T S, VH , ν′ |= Safe ′. Again, we proceed by induction on
the number k of transitions needed to reach T S from T S0.
Induction basis: k = 0. Then T S = T S0 and (12) holds by A1.
Induction step: k → k + 1. Consider some T S1 that is reachable from T S0

by k transitions and thus satisfy (12) by induction hypothesis. Let T S result
from T S1 by one further transition, which we now examine. As in the proof
of Theorem 1, the only possibly dangerous transition is a reservation transition

T S1
r(E)−−−→T S. In the controller LC of car E shown in Fig. 3 there are two such

transitions, both starting in state q2. Observe that in q2, whenever there is a
potential collision the manoeuvre is aborted. Hence, if a car D creates a new
claim overlapping with E’s claim, D or E withdraws its claim. Now, consider
the transition from q2 to q3. By A4 and since the safety envelope starts at the
position of its car, we may proceed as in the proof of Theorem 1.

Next, consider the transition from q2 to q4. We have to show that E’s claim
does not overlap with the reservation of the helper H . Let VH be the standard
view of H and ν′ be a valuation consistent with VH . Since the controller HC sends
to E the message yes !E, it has taken the transition with the guard ph−1(E),
exiting state q1 of HC, so T S1, VH , ν′ |= 〈re(ego)
 free
 cl(E)〉.

Since the state q1 of HC has the invariant lc, the subformula free is satisfied by
a subview with an extension greater than zero, and claims of E cannot overlap
with existing reservations of E, this implies

T S1, VH , ν′ |= ¬ 〈re(ego) ∧ (cl(E) ∨ re(E))〉 .
Since ν′(E) = E, we can apply the Reservation Lemma 1, which yields

T S, VH , ν′ |= ¬ 〈re(ego) ∧ re(E)〉 . !

5 Conclusion

The novelty in our paper is the identification of a level of abstraction that enables
a purely spatial reasoning on safety. We proved safety for arbitrarily many cars
on the motorway locally, by considering at most two cars at a time.

More on related work. Manoeuvres of cars have been extensively studied in the
California PATH (Partners for Advanced Transit and Highways) project [16],
which aimed at an Automated Highway System (AHS) to increase safety and
throughput on highways. The project introduced the concept of a platoon, a
tightly spaced convoy of cars driving on a motorway at a relatively high speed.

In Hsu et al. [17] the architecture of the AHS system is outlined, and at the
platoon layer three manoeuvres are investigated: merge and split of platoons as
well as lane change of free traffic agents, i.e., single cars. For these manoeuvres
protocols are modelled as communicating finite state machines and tested within

418 M. Hilscher et al.

the automata-based tool COSPAN by R. Kurshan. The protocol for lane change
does not take all possible traffic scenarios on neighbouring lanes into account.
For example, the scenario where cars are driving on both the target lane and the
lane next to it is not considered.

In Lygeros et al. [1] the analysis of [17] is refined by taking the hybrid con-
trollers as the model. Sufficient conditions on the car dynamics are established for
showing safety of the AHS system at the coordination layer (for communication
and cooperation between cars) and the regulation layer (for hybrid controllers
performing the traffic manoeuvres). The lane change manoeuvre is explicitly
investigated in a multi-lane safety theorem. However, its proof, based on an in-
duction argument on the number of cars, is only outlined. Moreover, the possible
scenarios of lane change in dense traffic are only partially covered. The scenario
where two cars wish to change to a common target lane is not taken into account.

The safety problem has also been studied for railway networks, which are
simpler to handle because the movements of trains are more constrained than
those of cars. Haxthausen and Peleska [18] give manual safety proof for trains
driving in an arbitrary railway network. Faber et al. [19] provide an automatic
verification of safety properties in railway networks.

Future work. On the application side we want to pursue an extension of the scope
of our work. For example, we intend to study the scenarios of urban traffic as in
[3]. Also, we would like to study variations of the assumptions made in our safety
proofs. On the foundational side we would like to investigate the connection of
MLSL with more traditional spatial logics based on topological models [20] and
its meta properties like decidability. Here proof ideas from [21] might be helpful.
This leads to question of automatic verification of the safety properties. Here
the approach of [19] could be considered.

The semantics of MLSL may be extended to include a length measurement.
Let φθ denote that φ holds for a length θ, where θ is a first-order term denoting
a real value. The semantics on p. 410 is extended by

T S, V, ν |= φθ ⇔ T S, V, ν |= φ and |X | = ν(θ).

The initial definition of MLSL semantics contained this case, but to our own sur-
prise, we did not make use of this measurement in the controllers and the safety
proofs, respectively. This is due to the fact that we reason at a very abstract
level, and that differences in lengths are only taken care of in the assumptions.

To link our work to hybrid systems, a refinement of the spatial reasoning in
this paper to the car dynamics is of interest. There we could benefit from the
approaches in [5,6,7,4] and expect that length measurements are needed.

References

1. Lygeros, J., Godbole, D.N., Sastry, S.S.: Verified hybrid controllers for automated
vehicles. IEEE Transactions on Automatic Control 43, 522–539 (1998)

2. Jula, H., Kosmatopoulos, E.B., Ioannou, P.A.: Collision avoidance analysis for lane
changing and merging. Technical Report UCB-ITS-PRR-99-13, California Partners
for Advanced Transit and Highways (PATH), Univ. of California at Berkeley (1999)

An Abstract Model for Proving Safety of Multi-lane Traffic Manoeuvres 419

3. Werling, M., Gindele, T., Jagszent, D., Gröll, L.: A robust algorithm for handling
traffic in urban scenarios. In: Proc. IEEE Intelligent Vehicles Symposium, Eind-
hoven, The Netherlands, pp. 168–173 (2008)

4. Damm, W., Hungar, H., Olderog, E.R.: Verification of cooperating traffic agents.
International Journal of Control 79, 395–421 (2006)

5. Moor, T., Raisch, J., O’Young, S.: Discrete supervisory control of hybrid systems
based on l-complete approximations. Discrete Event Dynamic Systems 12, 83–107
(2002)

6. Moor, T., Raisch, J., Davoren, J.: Admissiblity criteria for a hierarchical design of
hybrid systems. In: Proc. IFAD Conf. on Analysis and Design of Hybrid Systems,
St. Malo, France, pp. 389–394 (2003)

7. Habets, L.C.G.J.M., Collins, P., van Schuppen, J.: Reachability and control syn-
thesis for piecewise-affine hybrid systems on simplices. IEEE Transactions on Au-
tomatic Control 51, 938–948 (2006)

8. Moszkowski, B.: A temporal logic for multilevel reasoning about hardware. Com-
puter 18, 10–19 (1985)

9. Zhou, C., Hoare, C., Ravn, A.: A calculus of durations. Information Processing
Letters 40, 269–276 (1991)

10. Schäfer, A.: A Calculus for Shapes in Time and Space. In: Liu, Z., Araki, K. (eds.)
ICTAC 2004. LNCS, vol. 3407, pp. 463–477. Springer, Heidelberg (2005)

11. Woodcock, J., Davies, J.: Using Z – Specification, Refinement, and Proof. Prentice-
Hall, Englewood Cliffs (1996)

12. Alur, R., Dill, D.L.: A theory of timed automata. TCS 126, 183–235 (1994)
13. Behrmann, G., David, A., Larsen, K.G.: A tutorial on uppaal. In: Bernardo,

M., Corradini, F. (eds.) SFM-RT 2004. LNCS, vol. 3185, pp. 200–236. Springer,
Heidelberg (2004)

14. Hoare, C.A.R.: Communicating sequential processes. CACM 21, 666–677 (1978)
15. Hilscher, M., Linker, S., Olderog, E.R., Ravn, A.P.: An abstract model for proving

safety of multi-lane traffic maenoeuvres. Report 79, SFB/TR 14 AVACS (2011);
ISSN: 1860-9821, avacs.org

16. Varaija, P.: Smart cars on smart roads: problems of control. IEEE Transactions on
Automatic Control AC-38, 195–207 (1993)

17. Hsu, A., Eskafi, F., Sachs, S., Varaija, P.: Protocol design for an automated highway
system. Discrete Event Dynamic Systems 2, 183–206 (1994)

18. Haxthausen, A.E., Peleska, J.: Formal development and verification of a distributed
railway control system. IEEE Trans. on Software Engineering 26, 687–701 (2000)

19. Faber, J., Ihlemann, C., Jacobs, S., Sofronie-Stokkermans, V.: Automatic Verifica-
tion of Parametric Specifications with Complex Topologies. In: Méry, D., Merz, S.
(eds.) IFM 2010. LNCS, vol. 6396, pp. 152–167. Springer, Heidelberg (2010)

20. van Benthem, J., Bezhanishvili, G.: Modal logics of space. In: Aiello, M.,
Pratt-Hartmann, I., Benthem, J. (eds.) Handbook of Spatial Logics, pp. 217–298.
Springer, Heidelberg (2007)

21. Schäfer, A.: Axiomatisation and decidability of multi-dimensional duration
calculus. Information and Computation 205, 25–64 (2007)

avacs.org

Formal Derivation of a Distributed Program

in Event B

Alexei Iliasov1, Linas Laibinis2, Elena Troubitsyna2,
and Alexander Romanovsky1

1 Newcastle University, UK
2 Åbo Akademi University, Finland

{alexei.iliasov,alexander.romanovsky}@ncl.ac.uk,
{linas.laibinis,elena.troubitsyna}@abo.fi

Abstract. Achieving high dependability of distributed systems remains
a major challenge due to complexity arising from concurrency and com-
munication. There are a number of formal approaches to verification of
properties of distributed algorithms. However, there is still a lack of meth-
ods that enable a transition from a verified formal model of communica-
tion to a program that faithfully implements it. In this paper we aim at
bridging this gap by proposing a state-based formal approach to correct-
by-construction development of distributed programs. In our approach we
take a systems view, i.e., formally model not only application but also its
environment – the middleware that supports it. We decompose such an in-
tegrated specification to obtain the distributed program that should be de-
ployed on the targeted network infrastructure. To illustrate our approach,
we present a development of a distributed leader election protocol.

1 Introduction

Development of distributed systems remains one of the more challenging engi-
neering tasks. The complexity caused by concurrency and communication re-
quires sophisticated techniques for designing distributed systems and verifying
their correctness. Active research in this area has resulted in a large variety of
distributed protocols and approaches for their verification. However, these tech-
niques emphasise the creation of a mathematical model establishing algorithm
properties and per se do not provide an unambiguous recipe on how to develop a
distributed program that would correctly implement a desired algorithm. More-
over, these techniques often ignore the impact of deploying the developed soft-
ware on a particular network infrastructure. In this paper we present a complete
formal development of a distributed protocol (a fairly common variation of leader
election [9]) and demonstrate how state-based modelling and refinement help to
alleviate these problems.

The main technique for mastering system complexity is abstraction and de-
composition. Our development starts from creating an abstract centralised sys-
tem specification. In a chain of correctness preserving refinement steps we build

S. Qin and Z. Qiu (Eds.): ICFEM 2011, LNCS 6991, pp. 420–436, 2011.
c© Springer-Verlag Berlin Heidelberg 2011

Formal Derivation of a Distributed Program in Event B 421

MACHINE M
SEES Context
VARIABLES v
INVARIANT Inv(c, s, v)
INITIALISATION . . .
EVENTS

E1 = any vl where g(c, s, vl, v) then S(c, s, vl, v, v′) end
. . .

END

Fig. 1. Structure of Event B model

the details of the distributed algorithm and communication scheme. Our mod-
elling adopts a systems approach: the specification defines not only the behaviour
and properties of the algorithm but also the essential assumptions about the net-
work infrastructure. The final step of our refinement chain is decomposition. We
rely on the modularisation extension of Event B [2] to decompose the specifi-
cation into separate modules representing the communicating processes and the
middleware. The obtained specification of processes may be further refined into
runnable specifications and treated as programs. Alternatively, a translation may
be done into a programming language. Our formal development ensures that the
resulting distributed program will behave correctly when deployed on the mid-
dleware that satisfies the assumptions explicitly stated in the formal model.

2 Background

We start by briefly describing our development framework. The Event B for-
malism [2,16] is a specialisation of the B Method [1], a state-based formal ap-
proach that promotes the correct-by-construction development paradigm and
formal verification by theorem proving. Event B enables modelling of event-based
(reactive) systems by incorporating the ideas of the Action Systems formal-
ism [4] into the B Method. Event B is actively used within the FP7 ICT project
DEPLOY [12] to develop dependable systems from various domains.

2.1 Modelling and Refinement in Event B

The Event B development starts from creating an abstract system specification.
The general form of an Event B model is shown in Figure 1. Such a model
encapsulates a local state (program variables) and provides operations on the
state. The actions (called events) are defined by a list of new local variables
(parameters) vl, a state predicate g called event guard, and a next-state relation
S called substitution (see the EVENTS section in Figure 1). Event parameters and
guards may be sometimes absent leading to the respective syntactic shortcuts
starting with keywords when and begin.

422 A. Iliasov et al.

The event guard g defines the condition or a set of states when the event is
enabled. The relation S is expressed as either a deterministic or non-deterministic
assignment to the model variables. One form of a non-deterministic assignment
used in the paper is the selection of a value from a set expression, written as
v :∈ Set, where Set is an non-empty set of possible values.

The INVARIANT clause contains the properties of the system (expressed as
state predicates) that should be preserved during system execution. These de-
fine the safe states of a system. In order for a model to be consistent, invariant
preservation should be formally demonstrated (i.e., proved). Data types s, con-
stants c and relevant axioms are defined in a separate component called context
(clause SEES in Figure 1).

The cornerstone of the Event B method is refinement – the process of trans-
forming an abstract specification by gradually introducing implementation de-
tails while preserving correctness. It allows us to transition from an abstract,
non-deterministic model to a detailed, deterministic program implementing a
system. Since Event B models are state-based, data refinement – a technique
of reinterpreting a model using different state models – is at the core of most
refinement proofs. For a refinement step to be valid, every possible execution of a
refined machine must correspond to some execution step of its abstract machine.

The consistency of Event B models, i.e., verification of well-formedness and in-
variant preservation as well as correctness of refinement steps, should be formally
demonstrated by discharging relevant proof obligations, which collectively define
the proof semantics of a model [2]. The Rodin platform [18], a tool supporting
Event B, is an integrated environment that automatically generates necessary
proof obligations and manages a collection of automated provers that would try
to autonomously discharge the generated theorems. At times a user interven-
tion would be necessary to guide the provers or construct a complete proof in
an interactive proving environment. The level of automation in proving is high
enough to make realistic development practical. On average, the rate of assisted
proofs is about 20%, of which only a small percentage goes beyond giving one
or two hints to the provers.

2.2 Modelling Modular Systems in Event B

Recently the Event B language and tool support have been extended with a
possibility to define modules [11,17] – components containing groups of callable
atomic operations. Modules can have their own (external and internal) state and
the invariant properties. The important characteristic of modules is that they
can be developed separately and, when needed, composed with the main system.

A module description consists of two parts – module interface and module
body. Let M be a module. A module interface MI is a separate Event B com-
ponent. It allows the user of module M to invoke its operations and observe the
external variables of M without having to inspect the module implementation
details. MI consists of external module variables w, constants c, sets s, the ex-
ternal module invariant M Inv(c, s, w), and a collection of module operations,
characterised by their pre- and postconditions, as shown below.

Formal Derivation of a Distributed Program in Event B 423

INTERFACE MI
SEES MI Context
VARIABLES w
INVARIANT M Inv(c, s, w)
INITIALISATION . . .
PROCESS

PE1 = any vl where g(c, s, vl, w) then S(c, s, vl, w, w′) end
. . .

OPERATIONS
O1 = any p pre Pre(c, s, vl, w) post Post(c, s, vl, w, w′) end
. . .

END

Fig. 2. Interface Component

The primed variables in the operation postcondition stand for the final vari-
able values after operation execution. If some primed variables are absent, this
means that the corresponding variables are unchanged by an operation.

In addition, a module interface description may contain a group of standard
Event B events under the PROCESS clause. These events model autonomous
module thread of control, expressed in terms of their effect on the external
module variables. In other words, the module process describes how the module
external variables may change between operation calls.

A module development starts with the design of an interface. Once an interface
is defined, it cannot be altered in any manner. This ensures that a module body
may be constructed independently from the model relying on the interface of
the module. A module body is an Event B machine. It implements the interface
by providing the concrete behaviour for each of the interface operations. The
interface process specification may be further refined like a normal subset of
Event B events. A set of additional proof obligations are generated to guarantee
that an operation has a suitable implementation in the implementing machine.

When module M is imported into another Event B machine, the importing
machine may invoke the operations of M and access (read) the external (inter-
face) variables of M . To make a specification of a module generic, in MI Context
we can define some constants and sets (types) as parameters. Their properties
then define the constraints to be verified when a module is instantiated.

Next we present a formal development of a distributed system that illustrates
the various aspects of modelling and refinement in Event B.

3 Modelling of a Leader Election Protocol

The main goal of this paper is to present an entire formal development of a
distributed system in Event B. The system implements a leader election protocol,
i.e., its purpose is to elect a single leader among all the participating processes.
The solution is inspired by the bully algorithm [9]. In its simple interpretation the

424 A. Iliasov et al.

algorithm ensures that the process with a largest id wins from all the processes
willing to become a leader.

Our development strategy is as follows. The development starts from a trivial
high-level specification that “magically” elects the leader. In a number of steps
we obtain a model of a centralised leader election algorithm. Then we gradually
decentralise this model by refining its data structure and behaviour. Several
refinement steps aim at decoupling the data structures of the individual processes
and introducing the required communication mechanism.

In this last, more challenging refinement step, we decompose the specification
to separate the model of communication environment (middleware) from the
models of constituent processes. To achieve this, we rely on the modularisation
extension of Event B. Finally, we show how the process specifications may be
converted into runnable code. Due to a space limit we do not present the complete
specifications produced at each refinement step. Instead we describe the more
interesting aspects of each particular model. The complete Event B development
is available at [14].

3.1 Abstract Model of Leader Election

Abstract Specification. Our development starts with creating an abstract
model that defines a single variable leader and one-shot leader election abstrac-
tion. Assume that the system has n processes and the process ids are from 1 .. n.
The leader election protocol is made of a single event that atomically selects a
new leader value:

elect = any nl where nl ∈ 1 .. n then leader := nl end

First Refinement. In the first refinement step we start to introduce some
localisation properties of the algorithm. Each process is able to decide (vote) on
whether it wants to become a new leader or not. Such a decision is made by a
process independently of other processes and is recorded in a global vector of
decisions: decision : 1 .. n �→ 0 .. n.

When a process votes, it puts into the decision vector either its id (process
identifier), indicating that it is willing to be a new leader, or 0, indicating the
opposite: ∀i · i ∈ dom(decision) ⇒ decision(i) ∈ {0, i}.

To determine the leader among the set of willing processes, we compare their
”bully” id’s. A new leader is a process with the maximal id among the processes
that are willing to be leaders. Assuming the decision vector is complete, the new
leader is the process with the largest id, i.e., max(ran(decision)), where ran is
the function range operator.

Unfortunately, all the processes may refuse being a leader and then the election
has to be restarted. This means that a protocol round is potentially divergent.
To avoid this, we exclude the situation when every process decides not to be
a leader. This is achieved by requiring that any process willing to initiate the
protocol is also committing to be a leader. The corresponding invariant property
states that, whenever the decision vector is not empty, there is a process willing
to be a new leader: card(decision) ≥ 1 ⇒ max(ran(decision)) ∈ 1 .. n.

Formal Derivation of a Distributed Program in Event B 425

This invariant guarantees that after a voting round, when the decision vector
has records for all the processes, there is a new leader. The protocol may be
initiated by any process that has not yet voted (event initiate). As soon as a
new election is initiated, i.e., dom(decision) �= ∅, the remaining processes are
free to choose or decline to be a new leader (event decide).

initiate = any idx where
idx ∈ 1 .. n
idx /∈ dom(decision)

then
decision(idx) := idx

end

decide = any idx, d where
idx ∈ 1 .. n
idx /∈ dom(decision)
d ∈ {idx, 0}
decision �= ∅

then
decision(idx) := d

end

Even after the protocol has been initiated, the processes can still continue to
“initiate” the election. This effectively corresponds to expressing willingness to
become a new leader. The abstract event elect is now refined by the following
a deterministic event, computing the new leader id from the vector of process
decisions.

elect = when dom(decision) = 1 .. n then leader := max(ran(decision)) end

3.2 Decentralising Leader Election

Second Refinement. After the first refinement the leader election is modelled
in a centralised way – processes are able to access the global decision vector
decision. It yields a simple model but prevents a distributed implementation.
Our next refinement step aims at decentralising the model (and thus the lo-
calisation of model state). For each process i, we introduce other(i) – a local,
process-specific version of the global decision vector: other ∈ 1 .. n→ P(0 .. n).

Based on the information contained in other(i), the process i should be able
compute an overall leader without consulting the global vector decision. In the
invariant we postulate that a local knowledge of a process is a part of the global
decision vector: ∀i · i ∈ 1 .. n ⇒ other(i) ⊆ ran({i} �− decision), where �− is the
domain subtraction operator. At the same time, other(i) does not include the
process decision stored separately.

To populate their local versions of the decision vector, the processes have to
communicate between each other. Once the process has voted, it starts commu-
nicating its vote to other processes. Symmetrically, a process populates its local
knowledge by receiving messages from the other processes. As a simple model
of communication, for each process i, we introduce the set recv(i) – a set of the
processes from which it has received their vote messages, and the set pending(i)
– a set of the processes that it has committed to communicate its decision to. A
process must communicate its decision to all other processes.

We do not consider here process and communication failures. Process crashes
and message loss do not affect the correctness properties but make it impossi-
ble to demonstrate the progress (convergence) of the protocol (unless, of course,
there is an upper bound on the number of process and message failures). We

426 A. Iliasov et al.

prefer to produce a stronger, convergent model first and then consider a case
where individual communications steps cannot be proven convergent due to po-
tentially infinite retransmission attempts recovering from lost messages. Our
intention is to deal with process and communication failures in the model of the
middleware introduced after the decomposition step.

In the following invariant we define the properties of our communication
scheme. The messages committed by one process to be sent are not yet received
by another process:

∀i, j · i ∈ 1 .. n ∧ j ∈ 1 .. n ⇒ (i ∈ pending(j) ⇒ j /∈ recv(i))

Moreover, for each process, the local version of the decision vector other(i) is an
exact slice of the global decision vector, formed from the received messages:

∀i · i ∈ 1 .. n ⇒ decision[recv(i)] = other(i)

where [...] is the relational image operator.
The behavioural part of the communication model comprises two new events:

send and receive. The event send models sending a decision message to some
destination process to. The event is potentially divergent. It will be made con-
vergent in the next refinement step. The event receive models the reception of a
decision message. It uses the message to update the local knowledge (other(to))
of a process as well as the sets of the received and pending messages.

send =
any idx, to where

idx ∈ dom(decision)
to ∈ 1 .. n \ {idx}
idx /∈ recv(to)

then
pending(idx) :=

pending(idx)∪ {to}
end

receive =
any idx, to where

idx ∈ dom(pending)
to ∈ pending(idx)

then
recv(to) := recv(to) ∪ {idx}
other(to) := other(to) ∪ {decision(idx)}
pending(idx) := pending(idx) \ {to}

end

The purpose of the decentralisation performed at this refinement step is to
ensure that, once the local decision vector is completely populated, a process
can independently elect the leader. To represent the locally selected leaders,
we split (data refine) the abstract variable leader into a vector of leaders, one
for each process. We define the gluing invariant that connects the new vec-
tor leaders with the abstract variable leaders ∈ 1 .. n �→ 1 .. n such that
∀i · i ∈ dom(leaders) ⇒ leaders(i) = leader.

The central property of this refinement step is that the leader id is determined
from the local knowledge is the actual leader defined by the global decision
vector:

∀i · i ∈ 1 .. n ∧ recv(i) = dom({i} �− decision) ⇒
max(ran(decision)) = max(other(i)∪ {decision(i)})

This is an essential property with respect to the protocol correctness. It also
justifies refining the event elect into its decentralised version, where each process
is able to compute the common leader once other(i) contains the decisions of all
other processes: leaders(idx) := max(other(idx) ∪ {decision(idx)}).

Formal Derivation of a Distributed Program in Event B 427

3.3 Refining Inter-process Communication

Third Refinement. Our next refinement steps aims at achieving further decou-
pling of process data structures. Currently, to send a decision message, a process
should access the recv variable of the targeted recipient to check that it has not
received this message. Such an access to the process local data can be avoided if
for each process i we introduce a history of the recipients of messages sent by i
– sent(i), where sent ∈ 1 .. n→ P(1 .. n). Correspondingly, event send is refined
as follows

send = any idx, to where
. . .
to /∈ sent(idx) // instead of idx /∈ recv(to)

then
sent(idx) := sent(idx) ∪ {to}
. . .

end

Since sent(i) includes all the messages currently being transmitted, the pending
messages constitute the subset of the outgoing messages history: ∀i · i ∈ 1 .. n ⇒
pending(i) ⊆ sent(i). Now we can formulate the following property central to
the model of communication mechanism.

∀i, j · i ∈ 1 .. n ⇒ (j ∈ sent(i) \ pending(i) ⇔ i ∈ recv(j))

It postulates that if a process j has received a message from a process i then the
process i has sent the message to j and this message is not currently in transition
(not in the set pending). The same property holds in the other direction: what
has been sent and is not being transmitted has been received. This allows us to
conclude that the combination of sent, pending and recv describes a one-to-one
asynchronous communication channel.

Fourth Refinement. As a result of introducing the message history sent, the
vector recv becomes redundant. Therefore, it may be data refined by a sim-
pler data structure, irec, storing only the number of received messages. This
simplifies the model, e.g., by allowing to replace adding elements to a set by
incrementing the message count irec, where irec ∈ 1 .. n → 0 .. (n − 1) and
∀i · i ∈ 1 .. n ⇒ irec(i) = card(recv(i)).

Fifth Refinement. The final step towards achieving the localisation of process
data is to avoid direct access to the memory of another agent1. One remaining
case is an action of the receive event updating variable other(i) (see the complete
event receive definition above): other(to) := other(to) ∪ {decision(idx)}.
1 The sole exception we are going to allow in our model concerns the values of

pending(i), which may be read by another process j. Around this exception we
are going to build a model of inter-process communication.

428 A. Iliasov et al.

Our solution is to communicate the decision of the sending process along with
the id of the destination process. The value decision(idx) becomes embedded
into a message sent by the process idx to the process to. We refine the history of
sent messages sent by an extended version xsent: xsent ∈ 1 ..n→ (1 ..n �→0 .. n)
such that ∀i · i ∈ 1 .. n ⇒ sent(i) = prj1[xsent(i)]. A similar relation is defined
for pending(i). The decision of the sender is contained in the second projection:
∀i · i ∈ 1 .. n ∧ xsent(i) �= ∅ ⇒ {decision(i)} = prj2[xsent(i)].

Let us now analyse the information presented in xsent. The domain of xsent
is the name of a sending process, while its range is a set of pairs of the form of
(target process, process decision). xsent is a set of triplet that have the structure
of a simple network protocol message:

〈source address〉 | 〈target address〉 | 〈payload〉

The address fields are process names and the decision of a sending process.
The result of this refinement step is a model that reflects the essential features
of a distributed system. Namely, it separates the private and externally visible
memory of the processes and explicitly defines inter-process communication. The
communication is based on message passing in a point-to-point network protocol.

4 Deriving Distributed Implementation

Before presenting the decomposition of the model of leader election, we first
describe the general structure of a distributed system that we aim at.

Our goal is to implement a distributed software that will operate on top of
the existing hardware and some network infrastructure (middleware). We as-
sume that middleware is a generic platform component and its sole functionality
is to deliver messages between processes. In our model we make the following
assumptions about the middleware behaviour:

– the middleware implements a simple point-to-point communication proto-
col; as a message it expects a data structure containing source and target
addresses of the network points as well as the data to be delivered to the
target point;

– for any message sent, it is guaranteed that the message is eventually deliv-
ered2;

– when a message is delivered, the sender gets a delivery receipt;
– the middleware is not able to access the internal memory of a process; it

only observes the buffer of output messages.

The description fits any packet-oriented protocol that has the capability of
acknowledging the reception of a message, i.e., TCP/IP. While modelling a dis-
tributed system, we consider the communications among the processes as obser-
vations of the messages sent and received by the processes. The communication

2 In reality, this means that the failure to deliver a message aborts the whole protocol.
The consequences of this are outside of the scope of this paper.

Formal Derivation of a Distributed Program in Event B 429

Fig. 3. Output history (oh), output queue (the darker part of oh) and input history
(ih)

history of an individual process is represented by two message sequences – for
sent and received messages respectively.

We define the following data structures:

il ∈ N index of the last message in input history
ol ∈ N index of the last message in otput history
ih ∈ 1 . . . il →MSG input history sequence
oh ∈ 1 . . . ol →MSG output history sequence
r ∈ N index of the last sent message in input history

where MSG is an type of process messages. The current queue of outgoing
messages is then a particular slice of the output history:

(r + 1 .. ol � oh) output queue
ol − r ≤ L output queue length constraint

where L is the maximum length of the output queue (that is, the sender buffer
size). At any given point of time the output message history consists of the mes-
sages already sent and the messages produced but not yet delivered. The variable
r points at the last message that has been reported as delivered by the environ-
ment. When an environment successfully delivers a message, the variable r is incre-
mented. The out-of-order message delivery is possible but for simplicity we focus
on a simpler, ordered delivery (the protocol itself is insensitive to out-of-order de-
livery). The oldest message awaiting delivery is located at index r+1 in the output
history. Consequently, the restriction of the output history r + 1 .. ol � oh gives
us a sequence of all the messages awaiting delivery. The middleware constantly
observes the changes made to the output histories of processes and reacts on the
appearance of a new message awaiting delivery3.

To model process communication, we define callable operations for each pro-
cess. These operations will be invoked by the middleware every time a message is
delivered or received. We specify these operations in the style described in sub-
section 2.2. Each process has two such operations, receive msg and deliver msg:

receive msg = any m pre
m ∈ MSG

post
ih′ = ih ∪ {il + 1 �→ m} ∧
il′ = il + 1

end
deliver msg = pre ol > r post r′ = r + 1 end

3 Event B does not have a notion of fairness so it is possible that the middleware delays
the delivery of a message for as long as there are other messages to deliver. We have
proven that this does not affect the protocol progress.

430 A. Iliasov et al.

The operation receive msg is invoked when a new message is delivered to a pro-
cess. The operation saves the message into the input history. An invocation of
deliver msg by the middleware informs a process about the delivery of the oldest
message in the output queue.

Let P , Q be processes and P pid, Q pid be their ids (names). The process
communication is modelled via the operations P receive msg and Q deliver msg
that correspond respectively to the P and Q instances of receive msg and de-
liver msg. The asynchronous communication between P and Q is specified by
two symmetric middleware events Q to P and P to Q, where

Q to P = any msg where
msg ∈ 0..n
Q ol > Q r //process has an undelivered message
P pid �→ msg = Q oh(Q r + 1)

then
nil := P receive msg(msg) // the message is delivered to P
nil := Q deliver msg // and removed from the queue of Q

end

Here nil is a helper variable to save a void result of a operation call. The event
P to Q is defined similarly. Both Q to P and P to Q are refinements of the ab-
stract event receive.

Above we considered the case with two processes, P and Q. However, the
presented approach can be generalised to any number of processes4.

4.1 System Architecture

The goal of the planned decomposition refinement step is to derive the dis-
tributed architecture that supports the communication scheme described above.
The general representation of the system architecture after decomposition (in a
simple case with only two processes) is shown in Figure 4. The abstract, mono-
lithic model is refined by a model representing the communication middleware,
which references the involved processes realised as separate modules. The mid-
dleware accesses the modules via the provided generic interface (hence, all the
processes are based on the single interface). The interface of a module includes
not only the operations receive msg and deliver msg but also the specification of
an autonomous process thread of control (or, simply, a process thread).

In this part of an interface we define the effect of a process thread on the
interface variables. In a distributed system, the specification of a process thread
should at least define how and when the process adds messages to the output
queue. We also require that a process does not change the input history and the
part of output history preceding the output queue. Also, the output message
queue may only be extended by a process thread (that is, the middleware would

4 At the moment one has to fix the number of processes at a decomposition step.
We are working on improvements to Rodin that would allow us to model generic
decomposition steps and later instantiate them with any number of processes.

Formal Derivation of a Distributed Program in Event B 431

Abstraction

Process P
(generic
interface)

Middleware

Refines

Process Q
(generic
interface)

deliver_msg

deliver_msg

receive-msg

receive_msg

Fig. 4. Decomposition architecture

not create messages on its own). These conditions are mechanically generated
as additional proof obligations for a model.

A process thread is defined via a number of events. At the decomposition level,
these events define how the process thread may update the interface variables.
Since the interface variables are used to replace the abstract model variables, it
is necessary to link the interface events with the abstracts events of the model
before decomposition. Such a link is defined at the point of module import (in
the middleware model). It is necessary to specify which interface events are used
to refine abstract model events. There are two typical scenarios to achieve this:
(i) distributing the abstract events among the interface events, or (ii) splitting
the same abstract event into several interface events. In our model it is the latter
case as we move the behaviour of a process into its own module.

Next we present how this general decomposition strategy can be applied to
derive a distributed implementation of the leader election protocol.

4.2 Decomposition of the Leader Election Model

The essence of the decomposition refinement step is the data refinement of the
various data structures of the leader election protocol into input and output
message histories of the individual processes. For the sake of simplicity, the
election is done among two process called P and Q, which differ, at the interface
level, only by their process id.

The overall scheme of the accomplished decomposition refinement is shown in
Figure 5. The result of the fifth refinement, elect5, is refined by the middleware
model elect6. This model imports two instances of the generic module interface
Node. All the variables and most of operations of the interface corresponding to
processes P and Q appear with the prefixes P and Q respectively. This is a
feature of the modularisation extension that helps to avoid name clashes when
importing several interfaces. The variables of the abstract model elect5 are split
into two groups. The variables decision and leaders become internal, ”phantom”
variables of the process instances, i.e., they cannot be accessed by middleware.
These variables are only used in the process thread. The other variable group
including other, irec, xsent, and xpending is replaced (data refined) by the
corresponding input and output histories of the process instances.

432 A. Iliasov et al.

Model elect5
VARIABLES

other, irec, xsent, xpending

EVENTS

initiate
decide
send
elect

receive

Interface for process P
(instance of Node)

Interface for process Q
(instance of Node)

VARIABLES

P_phantom_decision,
P_phantom_leader

P_il, P_ol, P_ih, P_oh, P_r

VARIABLES

Q_il, Q_ol, Q_ih, Q_oh, Q_r

Q_phantom_decision,
Q_phantom_leader

OPERATIONS OPERATIONS

P_deliver_msg
P_receive_msg

Q_receive_msg
Q_deliver_msg

PROCESS PROCESS

initiate
decide
send
elect

initiate
decide
send
elect

decision, leaders

Middleware
(model elect6)

EVENTS

P_to_Q
Q_to_P

USES
Node with prefix P_
Node with prefix Q_

INVARIANTS
<gluing invariants>

Refines

ImportsImports

Data refinement Operation refinement Operation call

Fig. 5. The structure of the decomposition refinement

The number of message received from other process is related to the length
of the input history of a process, while the local knowledge of a process is same
as the information contained in its input history. The following are the data
refinement conditions for these two variables (for the case of process P).

irec(P pid) = P il
other(P pid) = ran(P ih)

The process output history, oh, is a suitable replacement for xsent. The abstract
notion of not yet delivered messages (xpending) maps into the output message
queue. The refinement relation for xsent and xpending is the following:

xsent(P pid) = ran(P oh)
xpending(P pid) = ran(P r + 1 .. P ol � P oh)

From earlier refinement steps we know that xpending(P pid) ⊆ xsent(P pid).
This coincides with the definition of the output queue as a subset of the output
history. Such simple mapping between message histories and the variables of the
previous (centralised) model is possible because they describe the same idea –
asynchronous communication – albeit in differing terms.

The events of the abstract model are also split into two groups. The event
receive is now refined by the middleware events implementing the point-to-point
process communication, P to Q and Q to P. The remaining events, initiate, de-
cide, send, and elect, become a part of the process thread of each process. There-
fore, these events are also distributed, each dedicated to the functionality of a
single process.

Formal Derivation of a Distributed Program in Event B 433

4.3 Towards Runnable Code

The decomposition step leaves us with a specification of a process separated
from the specification of the middleware. To implement the model as a software
system, we have to achieve the following goals: (i) ascertain that the middleware
model is compatible with the deployment infrastructure; (ii) convert the process
specification into process software. The former task may be approached by using
the middleware model as a blueprint to be matched against the existing middle-
ware implementation, e.g, via model-based testing. A logically simpler, though
normally impractical, alternative is to pursue the top-down approach and refine
the middleware model all the way to machine code or even hardware description.
For the latter task, one normally employs a code generator, which essentially ac-
complishes a large-scale unproven refinement step relating two formal languages:
a target programming language and our modelling language, Event B. Unfortu-
nately, no such tool is yet available for Event B. Nevertheless, we have conducted
a manual, line-by-line translation into Java [15]. Let us note that, whichever ap-
proach we take, we have to make a transition from a completely proven artefact
to a system with an unproven, informal part. One way to reduce the gap between
a model and its runnable version is to treat a deterministic model as a program.
For this, it suffices to build an Event B model interpreter, which, in principle,
can be achieved by first defining an Event B operational semantics.

Let v be the variables, E the set of events and Σ0 the set of initial states of
an Event B model. Also, let the set of model states be defined as Σ = {v | I(v)},
where I(v) is the model invariant and Σ0 ⊆ Σ. A distinguished value nil /∈ Σ
denotes the state of an uninitialised model. An event e ∈ E is interpreted as a
next-state relation e : Σ ↔ Σ. The behaviour of the model is then given by a
transition system (Σ ∪ {nil},→) where → is defined by the following rules:

v ∈ Σ0

(nil) → (v)
v �→ v′ ∈ ⋃E
(v) → (v′)

The first rule initialises the model. The second one describes state transitions
defined by a combination of all the model events. It may be proven that the proof
semantics of Event B implies that, unless a deadlock is reached, there is always
a next state v′ and it is a safe state. A tool for this style of code generation is
available for Event B [6]. Rather than simply interpreting models, it produces
equivalent C code.

To obtain a complete operational code, it is necessary to do an ’assembly’ step
linking the program of a process with the program of the existing networking
infrastructure. At the moment this step is completely manual.

4.4 Proof Statistics

The proof statistics (in terms of generated proof obligations) for the presented
Event B development is shown below. The numbers here represent the total
number of proof obligations, the number of automatically and manually proved
ones, and the percentage of manual effort. Here the models elect0-elect6 are the

434 A. Iliasov et al.

protocol refinement steps. IProcess is the process module interface component.
QuickPrg is one specific realisation of the process module body that may learn
the overall leader before the completion of the protocol. Other process imple-
mentations (found in [14]) do not incur any proof obligations. Two models stand
out in terms of proof effort: elect2 is an important step giving the proof of the
protocol correctness, while elect6 accomplishes model decomposition. About 35%
of total manual proofs are related to the decomposition step.

Step Total Auto Manual Manual %

elect0 3 3 0 0%
elect1 16 13 3 19%
elect2 76 61 15 20%
elect3 23 23 0 0%
elect4 19 12 7 37%

Step Total Auto Manual Manual %

elect5 37 29 8 22%
elect6 131 106 25 19%

IProcess 53 44 9 17%
QuickPrg 19 16 3 16%

Overall 377 307 70 19%

5 Conclusions

In this paper we have presented an application of Event B and its modularisation
extension to the derivation of a correct-by-construction distributed program.
The formal model construction is a top-down refinement chain, based on the
ideas pioneered in Dijkstra’s work on program derivation [7]. We start with a
centralised and trivially correct model and end up with a localised, deterministic
model of a process. Small abstraction gaps between models constructed at each
refinement step have simplified protocol verification and allowed us to better
manage the complexity traditionally associated with distributed programs.

In the domain of refinement-driven development, the closest work is the devel-
opment of distributed reference counting algorithm [5] and also topology discov-
ery model [10]. Both present verification of fairly intricate protocols and propose
developments starting with a simple, centralised abstraction that is gradually re-
placed by a complex of communicating entities. The focus of these works is on
the investigation of the consistency properties of the relevant protocols. In con-
trast, we place an emphasis on the role of refinement as an engineering technique
to obtain correct-by-construction software.

Another closely related work is derivation of a distributed protocol by refine-
ment in [3]. The development finishes with a formal model of a program to be run
by each process. Our approach has a number of significant distinctions. Firstly,
we perform the actual decomposition and separate processes from middleware.
Secondly, we explicitly define our assumptions about the middleware providing
the correct infrastructure for deploying the derived distributed program.

Walden [19] has investigated formal derivation of distributed algorithms within
the Action Systems formalism [4], heavily relying on the superposition refine-
ment technique. These ideas, while not supported by an integrated toolkit, are
very relevant in the domain of Event B.

Butler et al. [13,8] have presented a number of formal developments address-
ing refinement of distributed systems. The presented work focuses on Event B
modelling of a range of two-process communication primitives.

Formal Derivation of a Distributed Program in Event B 435

There are a number of model checking approaches to verifying distributed pro-
tocols. Model checking is a technique that verifies whether the protocol preserves
certain properties (e.g., deadlock freeness) by fully exploring its (abridged) state
space. Refinement approaches take a complementary view – instead of verifying
a model extracted from an existing program, they promote a derivation of a
program with in-built properties. The correct-by-construction development al-
lows us to increase the complexity of a formal model gradually. This facilitates
comprehension of the algorithm and simplifies reasoning about its properties.

The main contribution of this paper is a complete formal development of a
distributed program implementing a leader election protocol. The formal devel-
opment has resulted in creating not only a mathematical model of distributed
software but also its implementation. The systems approach that we have adopted
has allowed us not only create the programs to be run by network processes but
also explicitly state the assumptions about the middleware behaviour. These
assumptions allow the designers to choose the appropriate type of middleware
on which the derived program should be deployed. We have conducted a code
generation experiment and ascertained that the constructed program behaves as
expected [15]. With a tool support, obtaining runnable code would be straight-
forward. As a continuation of this work we plan to model and derive the code of
a fully operational distributed control system.

Acknowledgments. This work is supported by the FP7 ICT DEPLOY Project
and the EPSRC/UK TrAmS platform grant.

References

1. Abrial, J.R.: The B-Book. Cambridge University Press, Cambridge (1996)
2. Abrial, J.R.: Modelling in Event-B. Cambridge University Press, Cambridge (2010)
3. Abrial, J.R., Cansell, D., Mery, D.: A mechanically proved and incremental devel-

opment of IEEE 1394. Formal Aspects of Computing 14, 215–227 (2003)
4. Back, R., Sere, K.: Superposition refinement of reactive systems. Formal Aspects

of Computing 8(3), 1–23 (1996)
5. Cansell, D., Méry, D.: Formal and incremental construction of distributed algo-

rithms: on the distributed reference counting algorithm. Theoretical Computer
Science 364, 318–337 (2006)

6. Degerlund, F., Walden, M., Sere, K.: Implementation issues concerning the action
systems formalism. In: Proceedings of the Eighth International Conference on Par-
allel and Distributed Computing Applications and Technologies (PDCAT 2007).
IEEE Computer Society, Los Alamitos (2007)

7. Dijkstra, E.: A Discipline of Programming. Prentice-Hall International, Englewood
Cliffs (1976)

8. Fathabadi, S., Butler, M.: Applying Event-B Atomicity Decomposition to a Multi
Media Protocol. In: de Boer, F.S., Bonsangue, M.M., Hallerstede, S., Leuschel, M.
(eds.) FMCO 2009. LNCS, vol. 6286, pp. 89–104. Springer, Heidelberg (2010)

9. Garcia-Molina, H.: Elections in distributed computing systems. IEEE Transactions
on Computers 31(1) (1982)

10. Hoang, T., Kuruma, H., Basin, D., Abrial, J.R.: Developing topology discovery in
Event B. Science of Computer Programming 74 (2009)

436 A. Iliasov et al.

11. Iliasov, A., Troubitsyna, E., Laibinis, L., Romanovsky, A., Varpaaniemi, K., Ilic, D.,
Latvala, T.: Supporting Reuse in Event B Development: Modularisation Approach.
In: Frappier, M., Glässer, U., Khurshid, S., Laleau, R., Reeves, S. (eds.) ABZ 2010.
LNCS, vol. 5977, pp. 174–188. Springer, Heidelberg (2010)

12. IST FP7 project DEPLOY, http://www.deploy-project.eu/
13. Butler, M., Yadav, D.: An incremental development of the Mondex system in Event

B. Formal Aspects of Computing 20, 61–77 (2008)
14. Protocol, L.E.: Event B specification (2011),

http://iliasov.org/modplugin/leaderel2commented.zip

15. Protocol, L.E.: Java implementation (2011),
http://iliasov.org/modplugin/leaderel_program.zip

16. Rigorous Open Development Environment for Complex Systems (RODIN): Deliv-
erable D7, Event B Language, http://rodin.cs.ncl.ac.uk/

17. RODIN modularisation plug-in: Documentation,
http://wiki.event-b.org/index.php/Modularisation_Plug-in

18. The RODIN platform, http://rodin-b-sharp.sourceforge.net/
19. Walden, M.: Formal Reasoning About Distributed Algorithms. Åbo Akademi Uni-

versity, Finland, ph.D. Thesis (1998)

http://www.deploy-project.eu/
http://iliasov.org/modplugin/leaderel2commented.zip
http://iliasov.org/modplugin/leaderel_program.zip
 http://rodin.cs.ncl.ac.uk/
 http://wiki.event-b.org/index.php/Modularisation_Plug-in
http://rodin-b-sharp.sourceforge.net/

From Requirements to Development:
Methodology and Example

Wen Su1, Jean-Raymond Abrial2, Runlei Huang3, and Huibiao Zhu1

1 Software Engineering Institute, East China Normal University
{wensu,hbzhu}@sei.ecnu.edu.cn

2 Marseille, France
jrabrial@neuf.fr

3 Alcatel-Lucent Shanghai Bell
runleihuang@alcatel-sbell.com.cn

Abstract. The main destination of this paper is the industrial milieu. We are con-
cerned with the difficulties encountered by industrial developers who are willing
to apply "new" approaches to software engineering (since they always face the
same problem for years: how to develop safe software) but are in fact disap-
pointed by what is proposed to them. We try to characterize what the relevant
constraints of industrial software projects are and then propose a simple method-
ology able to face the real problem. It is based on the usage of Event-B [1] and is
illustrated by means of an industrial project.

1 Introduction

We believe that, for a long time, software engineering has been considered either a
theoretical discipline in certain circles of Academia, while a rather purely technical
discipline in others. In the former case, the focus is put mainly on the mathematical
semantics of the programming language that is used, while in the second case the focus
is put on the informal modeling of the problem at hand using semantically meaning-
less boxes and arrows. In our opinion, none of these approaches is very useful for the
working software developer facing industrial problems. This is because a vast majority
of industrial software development project is characterized as follows:

1. The problem is usually not mathematically involved.
2. The industrial "Requirement Document" of the project is usually very poor and

difficult to exploit.
3. The main functions of the intended system are often quite simple.
4. However, many special cases make things complicated and difficult to master.
5. The communication between the software and its environment involves compli-

cated procedures.

As a result, the developer is very embarrassed because he/she does not know how to
"attack" the project development. This is particularly frustrating because, from a certain
point of view, the function of the final system seems to be very simple (case 3 above).

S. Qin and Z. Qiu (Eds.): ICFEM 2011, LNCS 6991, pp. 437–455, 2011.
c© Springer-Verlag Berlin Heidelberg 2011

438 W. Su et al.

For solving these difficulties, industrial managements have developed some "processes"
defining the various phases that engineers have to follow in order to achieve the intended
result, namely to have a final software satisfying its specification. Roughly speaking, the
various phases of such industrial development processes are usually as follows:

1. Choose a programming language to code the software.
2. Write the software specifications, using various semi-formal approaches.
3. Design the system by cutting it into pieces with "well defined" communication

mechanisms.
4. Code the various pieces using the chosen programming language.
5. Verify the code by means of various testing approaches.
6. Deliver the documentation of the system.

Note that phase 1 (programming language choice) is usually not an explicitly written
part of the development process although it is implicitly very often decided quite early
as indicated here. The discipline imposed by such a development process is certainly
not a bad habit. However, in our opinion, it does not solve the real difficulty faced by
the developer: how to structure the development approach so that one can have a strong
feeling that the final product is indeed the one that was intended.

The purpose of this paper is to propose a systematic approach able to help the indus-
trial developer to solve the mentioned difficulties. We think that such an approach or a
similar one is not used by industrial practitioners, this is the reason why we think it is
worth proposing it here. We shall first present our simple methodology in section 2 and
then illustrate it by means of a real industrial project in section 3.

2 Methodology

The key ingredient of this methodology is derived from the observation that the system
we intend to build is too complicated: it has therefore to be initially simplified (even
very much simplified) and then gradually made more complicated in order to take ac-
count in a smooth fashion of all its peculiarities.

However, one of the main difficulties here for people to adopt such a practice is that
they are not usually used to consider first a system that is simpler than the one they have
to develop: they try to immediately take into account all the complexities of the system at
once. Also the usage of a top-down approach is in fact very rare in industry. The practice
of heavy testing has made people writing code and only then trying to validate it.

2.1 The Requirement Document

But, of course, in order to figure out what the real complications of the system we intend
to build are, we cannot in general rely on the industrial requirement document that is
at our disposal. As said in the Introduction, this document is quite often very difficult
to exploit. So, our first action is to rewrite this document: this is to be done of course
together with the people who wrote the initial one.

It is important to state that we do not consider that the initial requirement document
is useless: most of the time, it contains all the details of the future system. We just say
that it is difficult to read and exploit for doing our initial engineering work. In section
3.2, we shall explain more on the requirement document while presenting our example.

From Requirements to Development: Methodology and Example 439

2.2 The Refinement Strategy

As said in the previous section, the key idea of this approach is to proceed by successive
approximations. For doing this, it is important to prioritize the way we are going to take
account of the requirements that have been carefully identified in the new requirement
document. When we say "to take account of the requirements", we are not very clear
here. To take account of them in order to do what?

1. To write the code. But how can we write software code by successive approxima-
tion? NO, writing the code is far too early a phase at this stage.

2. To reshape once again the requirement document. NO, one rewriting is sufficient.
3. To write a specification document by translating the requirements into boxes and

arrows. NO, we are not sure that it will add something to the requirements that
we have been very careful to write by simple natural language statements: experi-
ence shows that such translations, far from making things clearer, quite often make
things very obscure and therefore difficult to exploit later to write the final code.

4. To write a specification document by using a mathematical language for translating
the requirements. NO, the term "translation" is not adequate here. The requirements
are usually not amenable to a direct translation.

5. To write successive mathematical models defining gradually some mathematical
simulations of the dynamic system we intend to build. YES, that will be our ap-
proach. This notion of model will be developed in the next section.

2.3 Some Rules

Now that we have defined (at least vaguely for the moment) what is to be done after
taking account of the requirements, we have now to give some rules by which this
choice among all the requirements can be performed in various steps. This is not easy
to do so, for the very good reason that there is not in general a single "obvious" choice.
However, we can give some rules of thumb:

R0. Take a short number of requirements at a time.
R1. Take account of a requirement partially only if it seems too complicated to be

swallowed in one step.
R2. Introduce the other parts of a complicated requirement in further steps.
R3. As a special case of the previous rules, when a condition depends on many differ-

ent cases, first abstract it with a non determinate boolean condition and then make
it concrete and deterministic in further steps.

R4. Introduce gradually the functions of the system.
R5. Start with the most abstract requirements of the whole system: its main functions.
R6. Introduce the most concrete requirements at the very end of the choice process.
R7. Try to balance the requirements of the software and those of its environment.
R8. Be careful not to forget any requirements.
R9. If a requirement cannot (for some reason) be taken into account, remove it from

the document.

440 W. Su et al.

It is clear that this initial ordering of the requirements is not the last word concerning
this question. We might discover later that our initial choice is not technically adequate.
We might also discover that some requirements are simply impossible to achieve, or
badly expressed, or be better modified, etc. We must feel free to modify our choices
and to modify our requirement document as well. In section 3.4, we shall explain more
about the refinement strategy of our example.

2.4 Modeling with Event-B [1] and Proving with the Rodin Platform [2]

Equipped with the "road map" (Requirement Document and Refinement Strategy) de-
fined in previous sections1, we can now enter our next phase: modeling.

Modeling versus Programming
The first thing to understand about modeling is that it is quite different from program-
ming. In the latter, we describe the way a computer must behave in order to fulfill a
certain task, while in the former we describe the way a system can be observed: the em-
phasis is put on the global simulation of an entire system taking account of the properties
that must be obeyed. This is clearly something that is not part of the programming of
a piece of software. In other words, the modeling we envisage is not that of the future
software alone but rather the modeling of this software together with its surrounding
environment. This aspect will be made clearer in the illustrating example presented in
section 3.

Successive Approximations
Another important difference between modeling and programming is that modeling can
be developed by successive approximations while this is clearly impossible, and even
dangerous, with programming: every programmer knows very well how perilous it is
to modify or extend a piece of software as one has no guarantee not to introduce subtle
bugs in doing so.

Mathematical Modeling
The simulations done in our approach are not realized by using a simulation language:
we rather build mathematical models of discrete transition systems. All this is described
in details in [1] where this approach is called "Event-B". Next is a brief informal de-
scription of Event-B, which was largely inspired by Action Systems [4] [5].

Event-B
Roughly speaking, a mathematical model (a simulation) done with Event-B is simply
defined by means of a state and some transitions on this state (the events). The state
is defined by means of variables together with some permanent properties that these
variables must be fulfilled: such properties are called the invariants of the state. Each
transition is defined by means of two items: the guard defining the necessary conditions
for the transition to occur and the actions defining the way the state is modified by the

1 These two first phases of our approach can take a significant time, i.e. several months, for
important projects.

From Requirements to Development: Methodology and Example 441

transition. As can be seen, any "state machine" (which is nothing else but a transition
system) can be defined in this way. Some proofs must be performed in order to ensure
that each transition indeed maintains the properties of the state variables (the invariants).

Superposition Refinement
A model described in the way we have just mentioned is able to be extended: this is
done by adding more variables (and thus more invariants) and more events to it. This
technique is called superposition refinement [3]. Besides extending the state and adding
events, some extensions can also be performed in two more ways on already existing
events: (1) by strengthening their guards, and (2) by extending their actions. It means
that an existing transition can be made more precise in a superposition refinement by
giving additional constraints to it.

Proofs
Invariant preservation proofs may have to be performed while doing a refinement.
Moreover, in a refinement, proofs of guards strengthening have also to be added to
those of invariant preservations. The important thing to understand here is that proofs
already done in a previous model (the one that is extended) remain valid after the ex-
tension, and so on while doing further refinements. In other words, we can accumulate
progressive proof work in a safe way.

Deadlock Freeness
An important property of a state transition system is deadlock freeness. A system (or
some part of it) is said to be deadlocked if no transition can occur any more. Most of the
time, we are interested in modeling systems that never deadlock. It is simply done by
proving that a transition can always occur. As the conditions for an event to occur are
defined by its guard, deadlock freeness is thus ensured by proving that the disjunction
of the guards of the concerned events is always true.

The Rodin Platform
In the previous sections, we mention the necessity of proving things about models: in-
variant preservation, guard strengthening, and deadlock freeness. In a typical industrial
project there might be several thousands proofs2. It is obviously out of the question
to manually generate what is to be proved and to manually prove all of them. A tool
has been built for doing this: the Rodin Platform [2]. It has been developed over the
last seven years by means of European Projects fundings. The Rodin Platform is con-
structed on top of Eclipse. It contains many plug-ins among which some important ones
are the Proof Obligation Generator and the Prover. The former is able to generate the
statements to be proved by analyzing the models. The latter is able to prove the various
statements generated by the previous plug-in either automatically or interactively (i.e.
helped by the human user giving some hints to the automatic prover)3.

2 In the example developed in this paper, we have 439 proofs.
3 In the example developed in this paper, all 439 proofs are done automatically (except two of

them done interactively) by the prover of the Rodin Platform.

442 W. Su et al.

Finding Errors while Proving
An important aspect of this proving effort is that we might encounter problems in at-
tempting to perform some of the proofs: we might discover that they simply cannot be
proven automatically nor interactively. This is the indication that something is wrong in
our model. This might be corrected by modifying, removing or adding some invariants,
or by doing the same on events guards or actions.

Proving versus Testing
What can be seen here is that proving plays for models the same role as that played
by testing for programs. However, the big difference between the two is that proving is
not performed at the end of the modeling phase but in the middle of it, more precisely
at each refinement step. This means that proving is indeed part of modeling. In doing
this, we might also figure out that certain requirements are in some cases impossible to
achieve: this is where it might be advisable to return to the requirement document and
modify it. We might also figure out that our refinement strategy has to be re-thought:
some requirements might be taken in a different order so as to improve the proving
process.

Checking Models against the Requirement Document
While developing the various successive models of a system, we have to follow what we
prescribe in the refinement strategy. This is done by checking that, at each refinement
step, we take account of the various requirements that were chosen. At the end of the
modeling phase we must have taken all requirements into account.

Data Refinement
The next step is to envisage how the part of the model dealing with the future software
can be translated into executable code. Before doing that however, it might be necessary
to envisage other kinds of refinements needed to transform the data structures used in the
model into implementable data structures. This kind of refinement is called data refine-
ment [6]. It is not considered in this paper and not used in the example of section 3.

2.5 After Modeling

Once the modeling phase is finished, that is when in the last refinement we can figure
out that we have taken successfully all requirements and done all proofs, then we can
envisage to go into the next phase: coding and executing. This will be done by using
automatic plug-ins of the Rodin Platform.

Concerning execution, some interesting plug-ins are also available on the Rodin Plat-
form: these are AnimB and ProB [7]. They are able to directly animate (without prior
translation) and also model-check some Event-B models. Such animations are quite
useful: they allow users to see how the global model of the system can behave.

3 The Example

In this section, we propose to illustrate the methodology we have just briefly presented
in the previous section. This will be done thanks to a real industrial example. In devel-
oping this example, we shall give more information than the general one we already

From Requirements to Development: Methodology and Example 443

gave on the way each phase is performed. We shall follow the various phases that were
mentioned in the previous section:

1. Re-writing the requirement document in section 2.1.
2. Make precise the refinement strategy in section 2.2.
3. Develop the various models in section 2.4.

Our example is extracted from the software controlling the behavior of a train. This
software is called the "Vehicle OnBoard Controller (for short VOBC): the part we shall
develop is called the "Mode Selection Subsystem", it is a module of the VOBC.

3.1 Main Purpose of System

The purpose of the system under study is to detect the driving mode wished by the train
driver (he has some buttons at his disposal to do that) and decide accordingly whether
this mode is feasible so that the current mode of the train could be (or not be) that
wished by the driver. The different modes are the following:

1. OFF: train stops,
2. Restricted Manual Forward (RMF): forward manual drive, no train protection,
3. Restricted Manual Reverse (RMR): backward manual drive, no train protection,
4. Train Protection Manual (ATPM): forward manual drive, train protection,
5. Automatic Mode (ATO): forward automatic drive, train protection.

The “train protection" is a special automatic procedure taking care of dangerous situa-
tions (like trespassing a red light). In certain circumstances, the VOBC shall trigger the
emergency brake (EB) of the train in case the request made by the driver might put the
train in a dangerous situation. When such a special case vanishes then the VOBC can
resume with a normal behavior.

As can be seen, this system seems to be quite straightforward. It is indeed. However
we shall discover in the sequel that there is a vast number of special cases and also some
peculiar equipments so that the system becomes complicated to develop. In fact, we face
exactly the difficulty that was mentioned at the beginning of this article: a complicated
and intricate situation without any sophisticated mathematics.

3.2 The Requirement Document

The requirement document takes the form of two embedded texts: the explanatory text
and the reference text. They are both written in English. The former contains general
explanations about the project we want to develop: it is supposed to help a new reader to
understand the problem. The latter is made of short (dry) labelled and numbered state-
ments listing the precise requirements that must be fulfilled by the concerned system:
these statements should be self-contained4.

Some of the "requirements" are mainly assumptions concerning the equipment rather
than, strictly speaking, genuine requirements. They are nevertheless very important as
they define the environment of our future software.

4 The example treated here is a simplified version of a real example. We simplify it in order to
cope with the size of this paper.

444 W. Su et al.

1) Requirement Labelling

We shall adopt the following labels for our assumptions and requirements: TR_ENV
(train environment), DR_ENV (driver environment), VOBC_ENV (VOBC environ-
ment), and VOBC_FUN (VOBC functions).

2) The Main Actors

Here are the various "actors" of our system: a train, a train driver, and the VOBC (a
software controller). In the sequel, we shall first define some assumptions about these
actors and then focus on the main function of the VOBC.

3) Train Assumptions

The following assumptions are concerned with the devices, equipment, and information
that are relevant to our project in the train: the cabin, the mode button, the emergency
brake, and speed information.

A train has two cabins (cabin A and B), each one is either active or inactive. TR_ENV-1

Each cabin contains a Mode Selection Switch (MSS), with available modes:

- Off (OFF) - Restricted Manual Forward (RMF)
- Automatic Mode (ATO) - Restricted Manual Reverse (RMR)

TR_ENV-2

Each cabin contains an Automatic Train Protection Manual button (ATPM). TR_ENV-3

It seems strange, a priori, to have the mode ATPM not defined as another alterna-
tive in the MSS button: this makes things complicated. We shall see how in the de-
velopment, we might first simplify this situation by considering that the switch has an
ATPM position in order to focus more easily on the main problem. Here are more train
assumptions:

The train has an Emergency Brake TR_ENV-4 The train may be stationary TR_ENV-5

4) Driver Assumptions

The following assumptions are concerned with the actions the driver can do and that are
relevant to our problem: requiring a mode modification.

The MSS is used by the driver of an active cabin to request a certain mode DR_ENV-1

The ATPM button is for the driver to request the Automatic Train Protection DR_ENV-2
Manual Mode (ATPM)

5) VOBC Assumptions

Next are a series of assumptions concerning the information the VOBC can receive from
its environment.The next requirement shows that the VOBC can receive a large number
of information: clearly we shall have to formalize this gradually. It is also mentioned

From Requirements to Development: Methodology and Example 445

that the VOBC works on a cycle basis. In other words, the VOBC periodically checks
this information and then takes some relevant decisions.

The VOBC has a periodic interrogation (cycle) to the train for the conditions:

- The MSS position (OFF, RMR, RMF, ATO) - The state of the driver screen (TOD)

- The active cab (cab A or cab B, no cab) - The state of Brake Release
- The speed (stationary,non-stationary) - The ATPM button depressed
- The position - A valid LMA
- The orientation (Limit of Movement Authorization)

- The possible calibrated wheel - The startup tests completed
- The Brake/Motor output (normal, failure) - Trainline Healthy

VOBC_
ENV-1

The next requirement shows a complicated encoding of the information received by the
VOBC. As will be seen below, we shall take into account this complex coding at the
very end of our development only.

The VOBC has a periodic interrogation to the validation of Mode Selector,
it is communicated the MSS position by means of the boolean below:

MSS Mode 1 Mode 2 ACA ACB FWDCS REVCS

OFF 0 0 X X X X

FWD 1 0 1 0 1 0

FWD 1 0 0 1 0 1

REV 1 0 1 0 0 1

REV 1 0 0 1 1 0

ATO 0 1 X X X X

VOBC_
ENV-2

* X means input does not play a part in determination of the mode.
One active cab is required to be detected except OFF mode (zero or one)
All other boolean combinations are considered Mode Selector invalid.

The mention "FWD" and "REV" in this table for the "MSS" position come from the
industrial document. More precisely, "FWD" stands for "RMF" and "REV" stands for
"RMR".

Here is one the main output of the VOBC: triggering of the emergency brake.

The Emergency Brake is activated by the VOBC. VOBC_ENV-3

6) VOBC Functionalities

In this section, we carefully define the various functional requirements of the VOBC.
· Active and passive state of the VOBC

In this section, we encounter a large number of cases where the VOBC can enter into
the "passive" state. Obviously, we have to take such cases gradually only.

The VOBC can be in a passive or active state. On start-up, it is passive. VOBC_FUN-1

446 W. Su et al.

After start-up, if the VOBC receives the startup tests completion VOBC_FUN-2
then the VOBC shall move to active state.

The VOBC moves to passive state if one of the following conditions is met:

- Trainline is not healthy.
- The mode selector input is invalid (VOBC_ENV-2)
- The cabin combination is invalid (VOBC_ENV-2) VOBC_
- The Brake/Motor output is failure when the VOBC is in ATO mode. FUN-5
- The selected direction is towards the train rear when in ATO or ATPM mode
- The position is lost when the mode is ATPM or ATO.
- The mode transition required is detected but the transition fails
- The current mode is ATPM or ATO but this current mode is not available

(see below Mode Availability VOBC_FUN-7,8)

If the VOBC is in the passive state, then when the conditions for this are VOBC_
over, the VOBC tests the transition of the selected MSS mode: FUN-4

- If the test succeeds, it changes to the required mode in active state.
- Otherwise, it stays in passive state

The previous requirement covers the case where the passive state was entered while in
the ATPM mode. It goes back "naturally" in the RMF mode.

When the VOBC moves from active state to passive state, the VOBC_FUN-3
emergency brake must be triggered.

· Mode Availabilities

Here are some further requirements of the VOBC. We shall see that sometimes the ATO
or ATPM modes are said to be "not available". Such complicated cases, again, will be
taken into account gradually.

The ATPM and ATO modes can be available or not available by the VOBC. VOBC_FUN-6

These conditions are required by an active

VOBC to make the ATPM mode available:

- Train position and orientation established

- Wheels calibrated

- Selected direction not reverse

- Valid LMA received.

- TOD is not failure

VOBC_FUN-7

These conditions are required by an active

VOBC to make the ATO mode available:

- Train position and orientation established

- Wheels calibrated

- Selected direction not reverse

- Valid LMA received

- No Brake/Motor Effort failure detected

- No Brake Release failure detected

VOBC_FUN-8

From Requirements to Development: Methodology and Example 447

· Mode Transitions (Basic Functionalities)

Here, at last, we reach the basic functionalities of the VOBC: the mode transition deci-
sions. When in an active state, the role of the VOBC is to validate the mode required by
the driver.

The VOBC provides the followingoperating modes for the train: VOBC_

- Off (OFF) - Restricted Manual Forward (RMF) FUN-9
- Automatic Mode (ATO) - Restricted Manual Reverse (RMR)
- Automatic Train protection Manual (ATPM)

The VOBC can accept a mode change requested by the driver only VOBC_FUN-10
if it has detected that the train is stationary

If the VOBC detects a mode change requested by the driver while the VOBC_
train is not stationary then: FUN-11

- it activates the Emergency Brake
- it maintains the current train mode of operation

If the VOBC detects a stationary train, it releases the Emergency Brake due VOBC_
to mode changes only when the VOBC is not in passive state FUN-12

If the active VOBC receives a driver’s mode request, it will not test the
mode transition (see VOBC_FUN-14-19) until the train is stationary. VOBC_

- If the test succeeds, transit to the required mode FUN-13
- If it fails, transit to the passive state

Some of the following requirements about RMF or ATPM mode transition are compli-
cated due to the presence of the ATPM button. This will not be taken into account at the
beginning of the development.

The VOBC can transition to RMF
mode while not in ATPM mode
if the conditions below are met: VOBC_

- One cab is active. FUN-14
- The MSS is in the RMF position
- The train is stationary.

The VOBC can transition to RMF
mode while in ATPM mode
if the following conditions are met:

- One cab is active. VOBC_
- The MSS is in the RMF position. FUN-15
- The train is stationary.
- The ATPM button is activated.

The VOBC can transition to RMR
if the conditions below are met: VOBC_

- One cab is active. FUN-16
- The MSS is in the RMR position.
- The train is stationary.

The VOBC can change to ATPM
from RMF if all below are met: VOBC_

- One cab is active. FUN-17
- The MSS is in the RMF position.
- The train is stationary.
- The ATPM button is activated.
- ATPM mode is available.

448 W. Su et al.

The VOBC can transition to ATO
if the conditions below are met: VOBC_

- One cab is active. FUN-18
- The MSS is in the ATO position.
- The train is stationary.
- ATO mode is available.

The VOBC can transition to OFF
if the conditions below are met: VOBC_

- One cab is active. FUN-19
- The MSS is in the OFF position.
- The train is stationary.

3.3 Comments about the Previous Requirements

A Large Number of Requirements

We have 29 requirements to take account of. Notice however that the real example has
far more requirements: more than one hundred. But even with this restricted number of
requirements, we can figure out that things have become quite complicated to handle.
It is not clear how we can treat this situation in a decent fashion. The difficulty comes
from the large number of variables we have to take into account. Again, this situation
is very typical of industrial projects. We face here the exact situation that we want to
solve in this article.

The Difficulty

At first glance, it seems very difficult to simplify things as we recommended in section
2 describing our methodology in general terms. It seems that the only approach we can
use here is one where everything is defined at the same level. This is the case because
all requirements are heavily related to each others: a typical case is VOBC_FUN_5
mentioning mode availability and VOBC_FUN_7,8 describing these availabilities.

The Solution: Abstraction, Refinement, and Proofs

We shall see in the next section how the introduction of abstraction and refinement will
solve this difficult question: when some conditions are quite heavy (e.g. those mak-
ing the VOBC state "passive" in VOBC_FUN-5), we shall abstract them by a simple
boolean variable which will be later expanded. We shall see also that such an approach
will have a strong influence on the design of our system.

Moreover, as explained in section 2.4, we perform some proofs at each refinement step
allowing us to check that our system is consistent. Such proofs help us correcting errors
that we might have introduced while modeling. Again, proving is part of modeling.

3.4 Refinement Strategy

In this section, we shall obey all the rules mentioned in section 2.3 as guidelines. We
present here how to choose among all the requirements and perform them in various
steps.

From Requirements to Development: Methodology and Example 449

Initial Model: Normal Behavior

The idea is to start by eliminating all complicated cases, as mentioned in R5: only con-
sider the main functions of the whole system, namely checking the consistency between
the mode wished by the driver and the mode that is acceptable by the VOBC system.
Here, we almost ignore all the noises, just use a most abstract one: a non-deterministic
event standing for all the noises.

For instance, we shall suppose that the MSS button has an ATPM alternative: we can
thus (temporarily) remove the ATPM button from the cabin (it was defined in require-
ment TR_ENV-3). This button will be re-introduced in the fifth refinement below. We
can forget about the particularly complicated encoding between the train and the VOBC
(defined in requirement VOBC_ENV-2).

We also eliminate all special cases where the emergency brake is possibly triggered
(requirements VOBC_FUN-3 and VOBC_FUN-5).

Finally, we forget about the initialization of the VOBC (see VOBC_FUN-2).
The net result of all these simplifications is that we only consider the normal case

where the wish of the train driver is positively received by the VOBC: this is the initial
model.

In subsequent refinements we shall gradually re-introduce all the complicated cases
we eliminated in this initial model. In doing this, we follow our rule R4 concerned with
the progressive introduction of the system functions.

First Refinement: Non-stationary Case

In this level, we take account of the most important special case that influences the
system decision. By reading carefully the requirement document, it seems that this most
important special case is the one where the wish of the driver is done while the train
is not stationary (VOBC_FUN-10). We introduce this special case in this refinement.
Here again, we follow our rule R4.

Second Refinement: Elementary Non-availabilities

Similarly to the previous refinement taking account of rule R4, we present here spe-
cial cases inside the system decision. We also obey rule R0: taking a small number of
requirements at a time. These special cases are the non-availabilities of the ATPM or
ATO modes that are introduced in requirements VOBC_FUN-7,8 by some complex
conditions.

For the moment, we shall follow our rule R3 telling us that we can abstract a complex
condition with a boolean variable: so, we only introduce the very fact that these modes
might be unavailable by using abstract boolean variables obtained non-deterministically,
without relying on the corresponding details. By doing so, we also follow our rule R1
stipulating that we could take account of a requirement in a partial way only. These
boolean variables will be given more deterministic concrete understanding in the sixth
refinement below.

Note that the order of this refinement and the previous one could be interchanged as
they do not depend on each other.

450 W. Su et al.

Third Refinement: Active and Passive States, Initialization

In this level, we extend our development of the VOBC by adding a system state (pas-
sive and active). This corresponds to requirements VOBC_FUN-1,2,3,4. Following
R1, R2, R3, and R4, we take account in a partial way of the state of the VOBC by
means of a boolean variable. Partially only because, again, all the fine details of the
"passivity" are too complicated (they will be introduced in the sixth refinement). How-
ever, the availabilities of the ATPM and ATO mode are taken into account (see require-
ments VOBC_FUN-3) by means of the boolean variabIes introduced in the previous
refinement.

We also take account of the initialization of the VOBC. Moreover, we consider the
fact that only one cabin is active for accepting a transition.

Fourth Refinement: Emergency Brake

Here we focus on an important output of the VOBC which is influenced by all the
special cases: we introduce the emergency brake (introduced in VOBC_FUN-3 and
VOBC_FUN-11). It is triggered by all the special cases we have now considered
(at least partially): non-stationarity (first refinement), non-availabilities (second refine-
ment), and possible passivity (third refinement).

Until now, we took account of all the functions of the system in an abstract way. The
following refinements consider now the very concrete requirements related to a large
number of variables.

Fifth Refinement: Handling of the ATPM Button

In the initial model, we were cheating by having the ATPM button inside the MSS
switch. This was done for simplification. We are now ready to introduce the special
properties of ATPM button for handling this particular mode. For this reason, we in-
troduce special TRAIN variables and events. As mentioned in R7, we do introduce the
environment variable in a way that is balanced with the VOBC development. This is
what we do here: introducing the train variables only when we need it.

Sixth Refinement: Completion of Non-availabilities and Passive State Cases

We are now able to complete all cases of non-availabilities of the ATPM or ATO modes
(VOBC_FUN-7,8). We also consider all cases of passivity (VOBC_FUN-5).

Seventh Refinement: Encoding of the Cabin and MSS button

We consider the encoding of the communication between the train and the VOBC, now
taking partial account of requirement VOBC_ENV-2.

Eighth Refinement: Last Encoding

This refinement takes account of the last requirement of VOBC_ENV-2.

From Requirements to Development: Methodology and Example 451

3.5 Refinement Strategy Synthesis

The following table maps the initial model and the eight refined models to the related
requirements which are taken into account.

Refinement VOBC Function Train Driver VOBC

Initial VOBC_FUN-9,14-19(p) TR_ENV-2(p) DR_ENV-1,2(p) VOBC_ENV-1(p)

First VOBC_FUN-10,11-19(p) TR_ENV-5 – VOBC_ENV-1(p)

Second VOBC_FUN- 5(p), 6, 17(p), 18(p) – – –

Third VOBC_FUN-1,2,4,5(p),14-19(p) TR_ENV-1 – VOBC_ENV-1(p)

Fourth VOBC_FUN-3,11,12 TR_ENV-4 – VOBC_ENV-3

Fifth VOBC_FUN-15,17 TR_ENV-2,3 DR_ENV-2 VOBC_ENV-1(p)

Sixth VOBC_FUN-5,7,8 – – VOBC_ENV-1,2(p)

Seventh – – – VOBC_ENV-2(p)

Eighth – – – VOBC_ENV-2

* (p) means the related requirement is PARTIALLY taken into account.

As it is shown in this table, at each level we only take a short number of requirements,
this follows R0. We also find many partial accounts. This follows R1 and R2: we take
account of complicated requirements partially only and leave the other parts for further
steps. The whole refinement strategy follows R5 and R6: start from the very abstract
requirements and end with the concrete ones. After this refinement strategy is obtained,
we take R8 into account: to make sure no requirement has been forgotten, and then,
following R9, remove all requirements that cannot be considered.

3.6 Formal Development

The formal development presented in this paper is only very short due to some lack
of space. The interested reader can download the complete formal development of this
example from the Event-B website [2]. In the following, we present some diagrams
describing in a simple manner the events of each step. Such events are implicitly repre-
sented in some boxes standing for the various phases that will be executed. We follow
exactly what was presented in section 3.4 describing our refinement strategy.

In the initial model, we have essentially two sets of events corresponding to the
TRAIN Input phase where an abstract MSS might be changed and the VOBC Decision
phase where the modification of the abstract MSS made by the driver is accepted:

In the first refinement, we take account of the speed of the TRAIN and the correspond-
ing possible rejection made by the VOBC:

452 W. Su et al.

In the second refinement, we introduce some boolean variables dealing with the ATPM
and ATO availabilities. These boolean variables are non-deterministically assigned in
the VOBC Checks phase. The boolean variables are then used (read) in the VOBC
Decision phase:

In the third and fourth refinements, we introduce a similar boolean variable for the
"passivity" state and we deal with the Emergency Brake handling in the VOBC Decision
phase:

In the fifth refinement, we make the driver switch and button more concrete. More
precisely, we now separate the ATPM button from the abstract MSS:

In the sixth refinement, we introduce a large number of various inputs in the TRAIN
Inputs phase allowing us to make deterministic the assignments to the availabilities and
passivity boolean variables in the VOBC Checks phase. An important aspect of what is
done here is that the boolean variables introduced in the second and third refinements
in the VOBC Checks phase are still used (read) in the VOBC Decision phase, which is
thus not modified.

From Requirements to Development: Methodology and Example 453

In the seventh and eighth refinements, we introduce more TRAIN Inputs and thus im-
plement the MSS switch as well as the ATPM button. This introduces an intermediate
TRAIN Checks phase. We have now a clear separation between the part of the model
dealing with the future software and that dealing with the environment:

3.7 Proof Statistics

The entire formal development with the Rodin Platform generated 439 proof obliga-
tions all automatically discharged except two of them requiring a very light manual
intervention (one click).

3.8 Timing and Determinism Issues

In the real industrial system, there are some important timing issues that have not been
taken into account in this paper because of the lack of space. However, it its possible
to give some information on how this can be formalized in our model. The problem is
as follows: the driver MSS button change or ATPM button depression should last for
a certain time in order to be taken into account by the VOBC. This is to avoid some
outside troubles. The problem can be simply formalized by ensuring that any change in
these buttons has to last continuously for at least some cycles ("8" is a typical number)
before being taken into account by the VOBC. This could have been incorporated at the
end of the development.

Determinism (for the VOBC) is another important issue in industry. It means that
exactly one event (of the VOBC) has its guard true. So, it is a theorem we can prove.
Deadlock freeness means there is at least one guard true, determinism is one step more
precise: there is exactly exactly one guard that is true. It can be checked in any refine-
ment, but it is more interesting to check it at the end.

454 W. Su et al.

4 Related Work

There have been recently several papers [8] [9] [10] on topics similar to the ones presented
in this paper. They are all concerned with defining some guidelines for modeling complex
systems. They treat problems that are more complex that the one envisaged here: how
to structure the refinements of systems where a future software controller has to master
an environment by means of some sensors and actuators. Their main message is to start
by defining the environment together with the properties to be ensured on it, and then
(and only then) to study how a controller can handle the situation although it will base
its decision on a fuzzy picture (due to the transmission time) of the real environment.

The case studied here is simpler than the one studied in these papers in that our
controller is just there to decide whether the driver has the right to require a new mode.
We do not control a complex situation. However, we treat a problem that is not so much
studied in their examples, namely that of the presence of a large number of special
cases and special equipments, transforming an apparently simple problem into one that
becomes quite complicated (but not complex).

5 Conclusion

In this paper, we briefly recall a simple methodology to be used for industrial software
developments. The main points we wanted to insist on are the following: (1) the impor-
tance of having a well-defined requirement document, (2) the need to enter in a formal
model construction before the coding phase, and (3) the usage of superposition refine-
ment in this modeling phase so that the system can be first drastically simplified and
then gradually extended to fulfill its requirements.

This methodology was illustrated by a simple example representing a typical prob-
lem encountered in industry (although slightly simplified). In this example, we show a
more important point, namely how the usage of superposition refinement leads naturally
to the design of our system into successive phases enriching gradually the "contents"
of its main variables until one can reach a final decision phase that is independent from
the many more basic variables.

Acknowledgement. The authors gratefully acknowledge support from the Danish Na-
tional Research Foundation and the National Natural Science Foundation of China
(Grant No. 61061130541) for the Danish-Chinese Center for Cyber Physical Systems.
This work was also supported by National Basic Research Program of China (No.
2011CB302904), National High Technology Research and Development Program of
China (No. 2011AA010101) and National Natural Science Foundation of China (No.
61021004).

References

1. Abrial, J.R.: Modeling in Event-B: System and Software Engineering. Cambridge University
Press, Cambridge (2010)

2. Rodin Platform, http://www.event-b.org

http://www.event-b.org

From Requirements to Development: Methodology and Example 455

3. Back, R.J.R., Sere, K.: Superposition Refinement of Reactive Systems. Formal Aspect of
Computing (1995)

4. Back, R.J.R., Kurki-Suonio, R.: Distributed Cooperation with Action Systems. ACM Trans-
action on Programming languages and Systems (1988)

5. Butler, M.J.: Stepwise Refinement of Communication Systems. Science of Computer Pro-
gramming (1996)

6. Hoare, C.A.R.: Proof of Correctness of Data Representation. Acta Informatica (1972)
7. Leuschel, M., Butler, M.: ProB: An Automated Analysis Toolset for the B Method. Interna-

tional Journal on Software Tools for Technology Transfer (2008)
8. Hoang, T.S., Hudon, S.: Defining Control Systems with Some Fragile Environment. Working

Report 723 ETH (2011)
9. Butler, M.J.: Towards a Cookbook for Modelling and Refinement of Control Problems.

Working paper (2009), http://deploy-eprints.ecs.soton.ac.uk/108/
10. Yeganefard, S., Butler, M.J., Rezazadeh, A.: Evaluation of a guideline by formal modelling

of cruise control system in Event-B. In: Proceedings of NFM (2010)

http://deploy-eprints.ecs.soton.ac.uk/108/

Reasoning about Liveness Properties in Event-B�

Thai Son Hoang1 and Jean-Raymond Abrial2

1 Department of Computer Science,
Swiss Federal Institute of Technology Zurich (ETH-Zurich), Switzerland

htson@inf.ethz.ch
2 Marseille, France

jrabrial@neuf.fr

Abstract. Event-B is a formal method which is widely used in modelling safety
critical systems. So far, the main properties of interest in Event-B are safety re-
lated. Even though some liveness properties, e,g, termination, are already within
the scope of Event-B, more general liveness properties, e.g. progress or persis-
tence, are currently unsupported. We present in this paper proof rules to reason
about important classes of liveness properties. We illustrate our proof rules by
applying them to prove liveness properties of realistic examples. Our proof rules
are based on several proof obligations that can be implemented in a tool support
such as the Rodin platform.

Keywords: Event-B, liveness properties, formal verification, tool support.

1 Introduction

Event-B [1] is a formal modelling method for discrete state transition systems and is
based on first-order logic and some typed set theory. The backbone of the method is
the notion of step-wise refinement, allowing details to be gradually added to the for-
mal models. An advantage of using refinement is that any (safety) properties that are
already proved to hold in the early models are guaranteed to hold in the later models.
This is crucial in a method for developing systems correct-by-construction. System de-
velopment using Event-B is supported by the RODIN platform [2]. It is an open and
extensible platform containing facilities for modelling and proving Event-B models.

So far, most of the properties that are proved in Event-B are safety properties, i.e.,
something (bad) never happens, which are usually captured as invariants of the models.
Although it is essential to prove that systems are safe, it might not be sufficient. Con-
sidering an elevator system, an important safety property is that the door must be closed
while the elevator is moving. However, an unusable non-moving elevator also satisfies
this safety property. Hence, it is desirable to be able to specify and prove that the sys-
tem also satisfies some liveness properties, e.g., it is always that case that a request will
eventually be served.

Currently, besides safety properties that are captured as invariants, Event-B can only
be used to model certain liveness properties, e.g., termination. More general classes of
liveness properties, such as progress or persistence are unsupported. On the one hand,

� Part of this research was supported by DEPLOY project (EC Grant number 214158).

S. Qin and Z. Qiu (Eds.): ICFEM 2011, LNCS 6991, pp. 456–471, 2011.
c© Springer-Verlag Berlin Heidelberg 2011

Reasoning about Liveness Properties in Event-B 457

we want to increase the set of properties that can be specified and verified in Event-B.
On the other hand, we aim to keep the reasoning practical, so that we can easily have
tool support to generate and discharge obligations.

We propose a set of proof rules for reasoning about three different classes of liveness
properties. The rules are based on some basic proof obligations, that can be conve-
niently implemented in the supporting Rodin platform of Event-B. The first proof rule
is for proving existence properties stating that something will always eventually occur
(�♦P). The second proof rule is for reasoning about progress properties: something
must eventually happen if some condition becomes true (�(P1 ⇒ ♦P2)). The third
proof rule is for proving persistence properties: eventually, something always holds
(♦�P).

The rest of the paper is organised as follows. Section 2 gives an overview of the
Event-B modelling method and temporal logic. Our main contribution is in Section 3
including proof rules for the previously mentioned properties. Section 4 illustrates the
applicability of our rules to some realistic examples. We briefly elaborate our ideas
for tool supports in Section 3.3. Finally, we draw some conclusion (Section 6), discuss
related work (Section 5), and investigate future research directions (Section 6.1).

2 Background

2.1 The Event-B Modelling Method

A model in Event-B, called machine, contains a vector of state variables v and a set of
events evti. Each event has the form evti =̂ any x whereGi(x , v) then Ai(x , v , v ′) end ,
where x are parameters of the event, Gi(x , v) is the guard and Ai(x , v , v ′) is the action.
The guard of an event is the necessary condition for the event to be enabled. The ac-
tion of an event comprises several assignments, each has one of the following forms:
v := E(x , v), v :∈ E(x , v), and v :| Q(x , v , v ′).

Assignments of the first form deterministically update variables v with values of
E(x , v). Assignments of the latter two forms are nondeterministic. They update vari-
able v to be either some member of a set E(x , v) or satisfying a before-after predicate
Q(x , v , v ′). The first two forms of assignment can be represented using the last form
with the corresponding before-after predicates v ′ = E(x , v) and v ′ ∈ E(x , v). Assign-
ments of an action are supposed to be executed in parallel. Each event therefore corre-
sponds to a before-after predicate A(x , v , v ′) by conjoining the before-after predicate
of all assignments and the predicate u = u ′ where u is the set of variables unchanged
by the action. A dedicated event, called init, without parameters and guard is used as
the initialisation of the machine. An after predicate Init is associated with init.

Variables v are constrained by invariant I(v) which needs to be proved to hold in
every reachable state of the system. This is guaranteed by proving that the invariant is
established by the initialisation init and subsequently preserved by all events.

To overcome the complexity in system development, Event-B advocates the use of
refinement: a process of gradually adding details to a model. A development in Event-B
is a sequence of machines, linked by some refinement relationship: an abstract ma-
chine is refined by the subsequent concrete machine. Abstract variables v are linked to
concrete variables w by some gluing invariant J(v ,w). Any behaviour of the concrete

458 T.S. Hoang and J.-R. Abrial

model must be simulated by some behaviour of the abstract model, with respect to the
gluing invariant J(v ,w).

An Event-B machine corresponds to a state transition system: the states s are cap-
tured as tuples 〈v〉, representing the values of variables v ; and the events correspond to
transitions between states. An event evt is said to be enabled in a state s if there exists
some parameter x such that the guard G of the event hold in that state s. Otherwise, the
event is said to be disabled. A machine M is said to be deadlocked in s if all its events
are disabled in that particular state.

Given an event evt, we say a state t is an evt-successor state of s if t is a possible
after-state of the execution of evt from the before-state s. Lifting the definition to a
machine M, we say that t is an M-successor state of s if there exists an event evt of M
such that t is an evt-successor of s.

A trace σ of a machine M is a sequence of states (either finite or infinite) s0, s1, . . .
satisfying the following conditions.

– s0 is an initial state, i.e., satisfying the initial after predicate Init.
– For every two successive states si and si+1, si+1 is an M-successor state of si.
– If the sequence is finite and ends in some state sfinal then machine M is deadlocked

in sfinal.

Finally, a machine M is associated with a set of traces T (M) denoting all of its possible
traces.

2.2 Temporal Logic

We give a summary of the (propositional) LTL temporal logic similar to the one defined
by Manna and Pnueli [10]. We will consider temporal formulas to be interpreted over
the sequences of states arising from machine traces.

The basic element of the language is a state formula P : any first-order logic formula.
It describes some property that holds in some state s. It is built from terms and pred-
icates over the program variables v . The extended temporal formulas are constructed
from these basic state formulas by applying the Boolean operators ¬,∧,∨,⇒ and tem-
poral operators: always (�), eventually (♦) and until (U).

Let σ be a non-empty, finite or infinite, sequence of states of the form s0, s1, We
use the standard notation σ � φ to denote that σ satisfies formula φ. We first define
some notations that will be used in the interpretation of temporal formulas.

– States satisfying a state formula P are called P -states.
– The length of the trace σ denoted as l(σ) is defined as follows. If σ is finite, i.e.,

of the form s0, . . . , sk, l(σ) = k + 1. If σ is infinite, l(σ) = ω, the least infinite
ordinal number.

– Given a number 0 ≤ k < l(σ), a k-suffix sequence of states of σ denoted as σk

is the sequence of states obtained by dropping the first k elements from σ, i.e.,
σk = sk, sk+1,

The interpretation of the LTL formulas over σ is as follows.

– For a state formula P , σ � P iff s0 is a P -state.

Reasoning about Liveness Properties in Event-B 459

– The Boolean operators are interpreted intuitively.

σ � φ1 ∧ φ2 iff σ � φ1 “and” σ � φ2 ,
σ � φ1 ∨ φ2 iff σ � φ1 “or” σ � φ2.
σ � ¬φ iff “not” σ � φ ,
σ � φ1 ⇒ φ2 iff σ � φ1 “then” σ � φ2 .

– The temporal operators are interpreted as follows.

σ � � φ iff for all k where 0 ≤ k < l(σ), we have σk � φ.
σ � ♦φ iff there exists k where 0 ≤ k < l(σ), such that σk � φ.
σ � φ1 U φ2 iff there exists k, where 0 ≤ k < l(σ), such that

σk � φ2, and
for all i such that 0 ≤ i < k, we have σi � φ1.

In the case where we have some state predicates P , P1, P2, the combination with the
temporal operators can be understood as follows.

σ � � P iff every state in σ are P -state.
σ � ♦P iff there exits some P -state in σ.
σ � P1 U P2 iff there exists some P2-state sk in σ,

and every state until sk (excluding sk) is P1-state.

Definition 1. A machine M is said to satisfy property φ (denoted as M � φ) if all its
traces satisfy φ, i.e., ∀σ ∈ T (M)·σ � φ.

In subsequent proof rules, we use the notation M � φ to denote that M � φ is provable.

3 Proof Rules

In this section we present some proof rules to reason about important classes of liveness
properties. We progress by first presenting some basic proof obligations as building
blocks for the later proof rules. We assume here that there is a machine M with events
of the general form mentioned in Section 2.1.

3.1 Proof Obligations

Machine M Leads from P1 to P2. Given two state formulas P1, P2, we say M leads
from P1 to P2 if for any pair of successor states (si, si+1) of any trace of M, if si is a
P1-state then si+1 is a P2-state. We first define the leads from notion for events.

An event evt leads from P1 to P2 if starting from any P1-state, execution of ev-
ery event leads to a P2-state. This is guaranteed by proving the following (stronger)
condition.

P1(v) ∧G(x , v) ∧ A(x , v , v ′)⇒ P2(v ′)

(We adopt the convention that free variables in proof obligations are universally quan-
tified.)

Given the above definition, M leads from P1 to P2 if every event evt of M leads from
P1 to P2.

Proof. From the definition of machine trace in 2.1 and of leads from notion for events.

460 T.S. Hoang and J.-R. Abrial

In subsequent proof rules, we use the notation M � P1 � P2 to denote that this fact
is provable. Note that the property can be stated in terms of k-suffix as follows. For any
pair of successor state si, si+1 of any k-suffix of any trace of M, if si is a P1-state then
si+1 is a P2-state.

Machine M is Convergent in P . The obligation allows us to prove that any trace of
M does not end with an infinite sequence of P -states. Equivalently, the property can be
stated as: any k-suffix of any trace of M also does not end with an infinite sequence
of P -state. This can be guaranteed by reasoning about the convergence property of the
events in M as follows.

– An integer expression V (v) (called the variant) is defined.
– For every event evt of M, we prove that

1. When in a P -state, if evt is enabled, V (v) is a natural number1.

P (v) ∧G(x , v)⇒V (v) ∈ N

2. An execution of evt from a P -state decreases V (v).

P (v) ∧G(x , v) ∧ A(x , v , v ′)⇒ V (v ′) < V (v)

Proof. If a trace ends with an infinite sequence of P -states, then V (v) will be de-
creased infinitely (condition 2). However, since in P -states, V (v) is a member of a
well-founded set (condition 1), this results in a contradiction.

In the subsequent proof rules, we use M � ↓ P to denote that this fact (i.e., M is con-
vergent in P) is provable.

Machine M is Divergent in P . This obligation allows us to prove that any infinite
trace of M ends with an infinite sequence of P -states. An equivalent property is that any
infinite k-suffix of any trace of M also ends with an infinite sequence of P -states.

– An integer expression V (v) (called the variant) is defined.
– For every event evt of M, we prove the following conditions.

1. When in a ¬P -state, if evt is enabled, V (v) is a natural number.
2. An execution of evt from a ¬P -state decreases the value of the variant.

¬P (v) ∧G(x , v) ∧ A(x , v , v ′)⇒ V (v ′) < V (v)

3. An execution of evt from a P -state does not increase V (v) if the new value of
the variant V (v′) is a natural number.

P (v) ∧G(x , v) ∧ A(x , v , v ′) ∧V (v ′) ∈ N⇒ V (v ′) ≤ V (v)

Proof. Condition 1 and 2 guarantees that the variant V is a member of an well-founded
set (e.g., N) and decreases when ¬P holds, and condition 3 ensures that this decreasing
cannot be undone when P holds. Hence if M has an infinite trace, then ¬P -states will
eventually disappear from it.

In the subsequent proof rules, we use M � ↗ P to denote that this fact (i.e., M is
divergent in P) is provable.

1 More generally, the variant can be a member of any well-founded set.

Reasoning about Liveness Properties in Event-B 461

variables: r , w

invariants:
inv1 : r ∈ N

inv2 : w ∈ N

inv3 : 0 ≤ w − r
inv4 : w − r ≤ 3

init
begin

r , w := 0, 0
end

read
when

r < w
then

r := r + 1
end

write
when

w < r + 3
then

w := w + 1
end

Fig. 1. Machine RdWr: Reader/Writer

Machine M is Deadlock-Free in P . This obligation allows to prove that any (finite)
trace of M does not end in a P -state. This is guaranteed by proving that in a P -state, at
least one event of M is enabled, i.e., M is deadlock-free in any P -state.

P (v) ⇒
∨
i

(∃x ·Gi(x , v))

Proof. From the definition of machine trace in Section 2.1.

Note that an equivalent property is as follows: any k-suffix of any trace of M is also
deadlock-free in P , i.e., does not end in a P -state.

In the subsequent proof rules, we use M �
 P to denote that this fact is provable.

3.2 Proof Rules

We are going to use the example of Reader/Writer in Fig. 1 to illustrate our proof rules
in this section. The machine models a system with two processes Reader and Writer
sharing a common bounded buffer. The machine has two variables, namely r and w
(both initialised to 0), representing the current pointer of the reader and the writer. The
“buffer” is the range [r + 1,w] representing the data that have been written but not yet
read. The size of the buff is w − r . Assuming that the buffer can hold a maximum of 3
pieces of data, we must have 0 ≤ w − r and w − r ≤ 3 as invariants of the model.

There are two events: read and write for reading and writing, respectively. Event
read increases the read pointer r by 1, when there are some unread data. Similarly,
event write advances the writer pointer w , when there is still some space in the buffer.

Invariance. Safety properties are usually captured in Event-B machine as invariants.
The proof rules for invariance properties are well-known and already built-into for
Event-B. They are also used in [10]. We restate the rules mentioned in Section 2.1
in terms of the above proof obligations as follows.

� Init ⇒ I
M � I � I

M � � I

INVinduct

462 T.S. Hoang and J.-R. Abrial

The above rule INVinduct allows us to prove invariance properties which are induc-
tive. Otherwise, i.e. when invariance properties are not inductive, the following proof
rule can be used.

� J ⇒ I
M � � J

M � � I

INVtheorem

Informally, rule INVtheorem allows us to prove that I is an invariance property relying
on a stronger additional invariant J . Subsequently, we can make use of the inductive rule
INVinduct to prove that J is an invariance property,

Invariance properties are important in reasoning about the correctness of our models
since it limits the set of reachable states. In the subsequent proof rules, we adopt the
convention that already proved invariance properties can be assumed and hence, do not
mention them explicitly.

Existence. An existence property states that some (good) property, say P , will always
eventually hold. The following proof rule allows us to prove that a machine M satisfies
an existence property �♦P by reasoning about convergence and deadlock-freedom.

M � ↓ ¬P
M � � ¬P

M � �♦P

LIVE� ♦

Proof. Consider a trace σ of machine M. Consider a k-suffix σk of σ. If σk is an infi-
nite sequence of states, according to the first antecedent, it cannot end with an infinite
sequence of (¬P)-states, hence a P -state eventually appears. The second antecedent
ensures that in the case where σk is finite, it does not end in a (¬P)-state, i.e., it must
end in a P -state.

Example 1. We want to prove that for RdWr, eventually r ≥ L for some natural num-
ber L. Our reasoning is as follows.

RdWr � � ♦ r ≥ L
LIVE� ♦−−−−−−−→

⎧⎪⎨⎪⎩
RdWr � ↓ (¬r ≥ L) (1)

RdWr � � (¬r ≥ L) (2)

(1) RdWr � ↓ (¬r ≥ L) : we propose a variant V1 = (L − r) + (L + 3 − w), a sum
of two terms, which are decreased accordingly by read and write. The fact that the
variant is a natural number when the events are enabled in a (¬r ≤ L)-state is a
consequence of invariant inv4.

(2) RdWr �
 (¬r ≥ L) : According to the proof obligation for proving deadlock-
freedom, we have to prove that ¬r ≥ L ⇒ r �= w ∨ w �= r + 3 which holds
trivially.

Reasoning about Liveness Properties in Event-B 463

Progress. A progress property states that a P1-state must always be followed eventually
by a P2-state. For a machine M, the property can be formalised as follows M � �(P1⇒
♦P2). In order to reason about progress properties, we introduce two proof rules. The
first one Until deals with a special form of progress properties where P1 is stable (i.e.,
holds until P2 holds). The second one LIVEprogress deals with a more general form
of progress properties by “inventing” an auxiliary property.

M � (P1 ∧ ¬P2) � (P1 ∨ P2)
M � �♦(¬P1 ∨ P2)

M � �(P1 ⇒ (P1 U P2))

Until

M � �(P1 ∧ ¬P2 ⇒ P3)
M � �(P3 ⇒ (P3 U P2))

M � �(P1 ⇒ ♦P2)

LIVEprogress

Proof. The rules are justified as follows.

– Until: Consider a trace σ of machine M. Consider a k-suffix σk of σ where sk is
a P1-state. We have to prove that there exists a state P2-state sm in trace σ (with
k ≤ m) such that any state between sk and sm (excluding sm) is a P1-state.
• If sk is also a P2-state, then we can take m to be k.
• If sk is a ¬P2-state, then it is also a (P1 ∧ ¬P2)-state. From the second an-

tecedent, we know that eventually, there is a (¬P1 ∨ P2)-state. Let sm be the
first such state (hence k ≤ m). We will prove that sm is indeed the state that
we are looking for.
∗ Since sm is the first state after sk satisfying ¬P1∨P2, any state in between

sk and sm excluding sm is a (P1 ∧ ¬P2)-state, i.e., is a P1-state.
∗ Since sk is a (P1 ∧ ¬P2)-state, and sm is a (¬P1 ∨ P2)-state, they must

be different, i.e., k �= m, hence sm−1 is a state in between sk and sm.
Subsequently, sm−1 must be a (P1 ∧ ¬P2)-state. Together with the first
antecedent of the rule, sm is a (P1 ∨ P2)-state. Since sm is both a (¬P1 ∨
P2)-state and a (P1 ∨ P2)-state, it must be a P2 state.

– LIVEprogress: Rule LIVEprogress relies on auxiliary state predicate P3 and its
justification is as follows. The first antecedent states that P1 ∧ ¬P2 ⇒ P3 is an
invariant of machine M and the second antecedent states an until-property where
P3 holds until eventually P2 holds. Consider any k-suffix σk of a trace σ of machine
M, where sk is a P1-state. If sk is also a P2-state then the progress property holds
trivially. Otherwise, i.e., if sk is a ¬P2-state, according to the first antecedent, sk

must be a P3-state. The second antecedent then allows us to conclude that there
exits a P2-state sm where k ≤ m.

Example 2. Consider machine RdWr. We want to prove that the reader can always
make some progress, which is formalised by RdWr � �(w = L⇒♦ r = L) , for some
natural number L. Our reasoning starts by applying rule LIVEprogress with the aux-
iliary state predicate P3 to be r < L.

RdWr � �(w = L ⇒ ♦ r = L)
LIVEprogress−−−−−−−−−−→

⎧⎪⎪⎪⎨⎪⎪⎪⎩
RdWr � �(w = L ∧ ¬r = L ⇒ r < L) (3)

RdWr � �(r < L ⇒ (r < L U r = L)) (4)

(3) The fact that w = L ∧ ¬r = L⇒ r < L is a consequence of invariant inv3, i.e.
proved by rule INVtheorem.

464 T.S. Hoang and J.-R. Abrial

(4) We apply rule Until as follows.

RdWr � �(r < L ⇒ (r < L U r = L))

Until−−−−→

⎧⎪⎪⎪⎨⎪⎪⎪⎩
RdWr � (r < L ∧ ¬r = L) � (r < L ∨ r = L) (4.1)

RdWr � �♦(¬r < L ∨ r = L) (4.2)

(4.1) This sub-goal can be simplified as RdWr � (r < L) � (r ≤ L) , i.e., we must
prove that read and write lead from r < L to r ≤ L, which is trivial. For read,
we need to prove r < L ∧ r �= w ⇒ r + 1 ≤ L.

(4.2) This sub-goal is equivalent to RdWr � �♦(r ≥ L) which we proved in
Example 1.

Persistence. A persistence property states that P must eventually hold forever. For-
mally, this is expressed for a machine M as M � ♦� P .

M � ↗ P
M � � ¬P

M � ♦� P

LIVE♦ �

Proof. Consider any trace σ of machine M. The first antecedent guarantees that if the
σ is infinite, it will end with an infinite sequence of P -states. The second antecedent
ensures that if σ is finite, it cannot end with a (¬P)-state. Together, we know that the σ
ends with (finite or infinite) sequence of P -states.

Example 3. Consider machine RdWr. We want to prove that ♦�(L ≤ w) for some
natural number L. We start by applying rule LIVE♦ �.

RdWr � ♦�(L ≤ w)
LIVE♦ �−−−−−−−→

⎧⎪⎨⎪⎩
RdWr � ↗ (L ≤ w) (5)

RdWr � � (¬L ≤ w) (6)

(5) We use V2 = (L− w) + (L− r) as our variant.
1. In (¬L ≤ w)-states, V2 is a natural number (thanks to invariant r ≤ w).
2. Both read and write decrease V2, hence, they satisfy conditions for decreasing

the variant in (¬L ≤ w)-states and not increasing the variant in L ≤ w)-
states.

(6) We have to prove that ¬L ≤ w ⇒ r �= w ∨ w �= r + 3, which is trivial.

3.3 Tool Support

Our proof rules are based on several basic proof obligations that can be easily realised
in a tool support such as the Rodin platform. In particular, the proof obligations related
to our illustrated examples in Section 4 are indeed simulated within the current Rodin
platform, relying on the standard proof obligation generators. For example, the proof

Reasoning about Liveness Properties in Event-B 465

obligations for proving that a machine M is convergent in P is encoded by adding P
to guards of all events and prove the new events are convergent with some variant V .
Other proof obligations, e.g., deadlock-freedom, are mostly encoded as theorems in the
models. The generated obligations are discharged using the current proving support
within the platform.

We propose to extend the Event-B models with clauses corresponding to the different
liveness properties. For example, the existence property in Example 1 can be specified
as follows.

existence:
exst1 : r ≥ L

variant (L − r) + (L + 3 − w)

Note that we also need to include the declaration for the variant used in proving con-
vergence properties. With this declaration, related proof obligations for ensuring the
existence property can be generated accordingly.

Similarly, we can define the following clauses for progress and persistence prop-
erties. Note that we also indicate the auxiliary invariant for the progress property, in
addition to the declaration of the variant.

progress:
prog1 : from w = L to r = L

invariant r < L
variant (L − r) + (L + 3 − w)

persistence:
stbl1 : L ≤ w

variant (L − w) + (L − r)

We are working on extending the Rodin platform to include these newly proposed
clauses.

4 Examples

We illustrate our application of proof rules for existence and progress properties with
Peterson’s mutual exclusion algorithm (Section 4.1). The proof rule for persistence is
illustrated in our example of a device calibration in Section 4.2.

4.1 Peterson’s Algorithm

Description. Peterson’s algorithm [13] involves two processes P a and P b. It is a
mutual exclusion algorithm: at most one process shall be in the, so-called, ”critical
section”. It uses three variables: w a , w b, and turn, elements of the set {0, 1}.

When w a = 1 (resp. w b = 1), it means that P a (resp. P b) wishes to enter the
critical section or is in the critical section. When turn = 0, it means that it is P a’s
turn to enter the critical section (if it wishes to do so), and similarly with turn = 1
for P b.

Initially, we have w a = 0, w b = 0 (i.e., no process wishes to enter the critical
section), and turn takes any value in {0, 1}. Here are the skeletal sequential programs
supposed to be executed concurrently:

466 T.S. Hoang and J.-R. Abrial

P a
while true do

// Wishing to Enter the Critical Section
w a := 1;
turn := 1;
// Busy Waiting
while ¬ (w b = 0 ∨ turn = 0) do

SKIP

end
// Enter Critical Section
...
w a := 0
// Leave Critical Section
...

end

P b
while true do

// Wishing to Enter the Critical Section
w b := 1;
turn := 0;
// Busy Waiting
while ¬ (w a = 0 ∨ turn = 1) do

SKIP

end
// Enter Critical Section
...
w b := 0
// Leave Critical Section

...
end

As can be seen, each process enters a “busy waiting” loop before entering the critical
section. Each of them waits until the proper conditions to enter the critical section hold.
For P a, it corresponds to waiting either that P b does not wish to enter the critical
section (w b = 0) or that it is P a’s turn to enter the critical section (turn = 0). We
have similar busy waiting conditions for P b.

We would like to prove two things:

Mutual exclusion. At most one process can be in the critical section at a time.
Progress. A process wishes to enter the critical section will eventually do so.

Refinement Strategy. We shall proceed with three models. The initial model will han-
dle the mutual exclusion problem: it is independent from the Peterson’s algorithm.
The first refinement deals with Peterson’s algorithm: we shall have to prove that this re-
finement indeed refines the initial model and thus obeys the mutual exclusion property.
Finally, the second refinement deals with the progress property.

The Initial Model

Variables and Invariants. In this initial model, besides variables w a and w b as defined
in the description, we introduce two more variables, a and b, members of the set {0, 1}.
When a = 1, it means that P a is in the critical section, and similarly with b for P b.

variables: a, b, w a, w b

invariants:
inv0 1 : w a = 0 ⇒ a = 0
inv0 2 : w b = 0 ⇒ b = 0
inv0 3 : a = 0 ∨ b = 0

Invariant inv0 1 says that when P a does not wish to enter the critical section (w a =
0) then it is certainly not in the critical section (a = 0). Invariant inv0 2 defines a
similar property for P b. Invariant inv0 3 formalises the mutual exclusion property: at
most one process can be in the critical section at a time.

Events. All variables are initialised with 0. Next are events associated with P a. There
are three events describing the way P a can enter and leave each phase: wishing to enter
the critical section, entering the critical section, or leaving it. The sequentiality of the
events is ensured by the fact that P a can be in exactly one situation at a time, either
w a = 0 or w a = 1 ∧ a = 0 or w a = 1 ∧ a = 1.

Reasoning about Liveness Properties in Event-B 467

wish a
when

w a = 0
then

w a := 1
end

enter a
when

w a = 1
a = 0
b = 0

then
a := 1

end

leave a
when

a = 1
then

a := 0
w a := 0

end

The events for P b are similar. The two processes are obviously concurrent as there is
clearly some non-determinacy between the events of one and those of the other.

As can be seen, process P a enters the critical section if it is not in it (a = 0) and if
process P b is also not in it (b = 0): the mutual exclusion property is ensured. However,
we have two problems here: (1) the checking by P a of the situation of P b by looking
at b, (2) we have no guarantee that one process does not always enter the critical section
while the other one wants to do it as well. These problems will be addressed in the
subsequent refinements.

Proofs. There are 25 proof obligations all discharged automatically by the Rodin prover.

First Refinement

Variables and Invariants. Besides variables introduced in the initial model, we add now
the variable turn as defined in the description.

variables: . . .
turn

invariants:
inv1 1 : turn = 0 ∧ w a = 1 ⇒ b = 0
inv1 2 : turn = 1 ∧ w b = 1 ⇒ a = 0

Invariant inv1 1 is needed in order to prove guard strengthening in event enter a. This
is because in this event we remove the reference to variable b. Invariant inv1 2 plays a
similar role for P b.

Events. These events deal with P a. In the event enter a, the guard b = 0 has been
replaced by the guard w b = 0 ∨ turn = 0 that does not make any reference to b.

wish a
when

w a = 0
then

w a := 1
turn := 1

end

enter a
when

w a = 1
a = 0
w b = 0 ∨ turn = 0

then
a := 1

end

leave a
when

a = 1
then

a := 0
w a := 0

end

We have similar events for P b which are omitted.

Proofs. The Proof Obligation Generator of the Rodin platform produces 18 proof obli-
gations all discharged automatically.

Second Refinement. In this refinement, we shall prove the progress property for pro-
cess P a by encoding the proof obligations in the Rodin platform (see Section 3.3). The
property can be stated as follows:

468 T.S. Hoang and J.-R. Abrial

Peterson � �(w a = 1⇒♦ a = 1)

i.e. if process P a wishes to enter the critical section (w a = 1) then it will eventually
be able to do so. In fact P a remains wishing to enter the critical section until it enters it.
Hence we can apply proof rule LIVEprogress with w a = 1 as the auxiliary invariant.
The first subgoal is trivial, proving that w a = 1 ∧ ¬a = 1 ⇒ w a = 1, the second
subgoal is Peterson � �(w a = 1 ⇒ w a = 1 U a = 1) .

According to rule Until, we have to prove the following two statements:

Peterson � (w a = 1 ∧ a = 0) � (w a = 1 ∨ a = 1)
Peterson � �♦(w a = 0 ∨ a = 1)

The first statement generates 6 proof obligations that are all discharged trivially. Ac-
cording to the proof rule LIVE� ♦, the second statement leads to the following:

Peterson � ↓ (w a = 1 ∧ a = 0)
Peterson �
 (w a = 1 ∧ a = 0)

The first of these statement requires finding a decreasing variant, which we propose

V3 = 2 ∗ w b + 3 ∗ turn − b− a2

The fact that this variant is a natural number whenever an event is enabled and under
the assumption w a = 1 ∧ a = 0 generates 6 proof obligations that are easily
discharged. The fact that this variant is decreased by every event under the assumption
w a = 1 ∧ a = 0 generates 6 proof obligations that are easily discharged provided
we add the following additional invariant:w a = 1 ∧ w b = 0 ⇒ turn = 1. The
second statement requires to prove that the model is deadlock free under the assumption
w a = 1 ∧ a = 0. It is easily discharged.

Proofs. We have to prove 24 proof obligations. The prover of the Rodin platform proves
them all automatically except two easy ones that were proved interactively. All in all,
we have 67 proof obligations all proved automatically except two of them.

At this level of details, our Event-B model allows common variables to be accessed
and modified concurrently. If we are interested in the precise atomicity assumption on
common variables, e.g. turn, it is possible to decompose the events wish a, wish b,
enter a, and enter b so that some new events treat with turn only (together with some
address counters for sequencing). Introducing these details would only add some com-
plication to the illustration of our proof rules.

4.2 Device Calibration

We now consider a second example. A certain device can be either on or off . Calibra-
tion allows the device to be adjusted. During calibration, the status of the device can
alternate. We assume that the duration of the calibration process is limited and model
the system as follows. A Boolean variable s denotes the status of the device, and an
integer variable t denote the current time, initialised to be 0. The machine Calibration
contains three events, each of them advances t by 1. When t is less than some con-
stant M then calibration happens, alternating the status s between on and off (events

2 V3 is a lexicographic variant: (turn ,w b,−(a + b)), with decreasing order of precedences.

Reasoning about Liveness Properties in Event-B 469

calibrate on and calibrate off). When t is greater than M and the device is on then
the device works normally, no more calibration occurs, only the time t advances (event
working)

calibrate on
when

s = off
t ≤ M

then
s := on
t := t + 1

end

calibrate off
when

s = on
t < M

then
s := off
t := t + 1

end

working
when

s = on
M ≤ t

then
t := t + 1

end

We want to prove that eventually, the device will be persistent in the on state, i.e.
Calibration � ♦� s = on . Applying our LIVE♦ � results in two sub-goals.

– Calibration � ↗ (s = on) . We propose the following variant V4 = M − t .
• To prove that V4 is a natural number when ¬s = on , we add the following

invariant inv0 1 stating that s = off ⇒ t ≤ M .
• All events increase t hence decrease the variant V4, hence they certainly de-

crease V4 when ¬s = on and do not increase V4 when s = on .
– Calibration �
 (s = off) . For this, we must prove that when s = off then one

of the events is enabled, and in our case, it is calibrate on, according to inv0 1.

We encode the verification conditions in the Rodin platform, resulting in 19 proof obli-
gations, all of them are discharged automatically by the built-in provers.

5 Related Work

The idea of combining different reasoning features, e.g., invariant, event convergence
and deadlock-freedom to prove liveness properties has been presented in our earlier
work [8]. There we prove liveness properties characterising when a system reaches
stable states. Here, we extend this idea to prove some other important classes of liveness
properties. In designing our proof rules, we have been inspired by the pioneering work
of Chandy and Misra [4], of Lamport [9], and in particular of Manna and Pnueli [10].

Our proof rules for progress properties are similar to that of Manna and Pnueli [10],
in the sense that we both use the variant technique to reason about convergence of
events. However, our Until rule for proving P1⇒(P1 U P2) has the additional assump-
tion ¬P2 in its sub-goals, i.e., we need to prove the sub-goal only when the desirable
condition P2 has not yet been established. The use of the variant technique is clearly
an advantage over the proof lattices approach from Owicki and Lamport [12] when the
systems have infinitely many states. In UNITY [4], reasoning about progress properties
is embedded within its logic by several proof rules. Our proof rules are comparable to
a combination of their transitivity, implication and induction rules. An important mo-
tivation for us is to be able to realise the reasoning about liveness properties in a tool
support. In our opinion the rules from [10,4] are not at the level which can be realised
practically.

In [3], Abrial and Mussat have addressed the problem of verifying progress proper-
ties, by formulating the problem in terms of proving loops termination. Our proof rules

470 T.S. Hoang and J.-R. Abrial

are stronger than those in [3]. In particular when proving P1⇒ (P1 U P2), we allow the
triggering condition P1 to be invalidated as soon as the desirable condition P2 holds,
i.e., proving that M � (P1 ∧ ¬P2) � (P1 ∨ P2) , whereas in [3], a stronger condition
was proposed, i.e., M � (P1 ∧ ¬P2) � P1 .

Within our knowledge, there are no practical proof rules existing for persistence
properties. A stronger persistence property can be defined in the work of Chandy and
Misra [4] by combining an existence property, e.g., ♦P and a stable properties, e.g.,
P ⇒� P . Whereas in their work a persistence predicate remains hold once it holds, we
allow a persistence predicate to be invalidated, before becoming stable. In particular,
our notion divergence by proving a non-increasing variant is novel.

Proving general LTL properties in Event-B has been consider in [6]. The approach
taken is to encode in B the Büchi automata equivalent to the LTL properties, and then
synchronise the resulting machine with the original event system. Several analyses are
done on the combined machine, including proving that eventually some accepting state
of the Büchi automata will be reached. The downside of this approach is that the reason-
ing is done on the combined machine containing the original machine with the represen-
tation of the LTL property, which increases the complexity of the verification process,
for example, finding the appropriate variant.

6 Conclusions

We have presented our proposed proof rules for reasoning about three types of liveness
properties in Event-B: existence, progress and persistence. These classes cover a sig-
nificant numbers of properties that are used in practice. According to the survey done
by Dwyer, Avrunin and Corbett [5], amongst over 500 examples of property specifica-
tions that they have collected, 27% are invariance properties (in terms of global absence
and universality properties). The class of existence and progress properties cover 45%.
Altogether with our extension, we can model in Event-B 72% instead of 27% of the
collected properties.

Another practical aspect of our proof rules is that they rely on some basic reasoning
obligations which can be implemented straight away in a tool support such as the Rodin
platform. This requires only to add to the platform a new declaration and to extend the
proof obligation generator for generating appropriate proof obligations. These condi-
tions can be proved within the scope of the existing provers, i.e., there is no need for
extending the proving support of the platform.

6.1 Future Work

The main difference between our proof rules and those in [10,12,4] is that we have
not yet considered (strongly/weakly) fairness assumptions. This will be necessary later,
especially in modelling concurrent and distributed systems. At the moment, we regard
this as future work and expect to have some proof rules using similar proof obligations.

In this paper, we do not attempt to have a complete set of proof rules (even for the
set of properties under consideration). We rather to come up with some practical rules
for some reasonable important subset of properties. Future work along the direction of
having a relative complete set of rules can be inspired from [11].

Reasoning about Liveness Properties in Event-B 471

A direct extension of our proof rules is to include the notion of probabilistic conver-
gence [7]. This allows us to model systems with probabilistic behaviours and reason
about properties such as “eventually certain condition holds with probability one”. An
example is the proof of Rabin’s choice coordination algorithm to guarantee that even-
tually, with probability one, all processes agree on a particular alternative [14].

An important future research direction is to investigate how liveness properties can
be maintained during refinement. While safety properties are maintained by refinement
in Event-B, more investigation need to be done to ensure that liveness properties are
preserved during refinement with the possibility of strengthening the refinement notion.
In [6], the author proposes a notion of refinement oriented by the property. Since the
definition depends on the LTL property of interest, references to this property will need
to be carried along the refinement chain. We are looking for a notion of refinement pre-
serving our interested set of liveness properties without confining to similar restriction.

Acknowledgement. We would like to thank anonymous reviewers for their construc-
tive comments. We also thank David Basin, Andreas Fürst, Dominique Méry and
Matthias Schmalz for their help with various drafts of the paper.

References

1. Abrial, J.-R.: Modeling in Event-B: System and Software Engineering. Cambridge Univer-
sity Press, Cambridge (2010)

2. Abrial, J.-R., Butler, M., Hallerstede, S., Hoang, T.S., Mehta, F., Voisin, L.: Rodin: an open
toolset for modelling and reasoning in Event-B. International Journal on Software Tools for
Technology Transfer (STTT) 12(6), 447–466 (2010)

3. Abrial, J.-R., Mussat, L.: Introducing dynamic constraints in B. In: Bert, D. (ed.) B 1998.
LNCS, vol. 1393, pp. 83–128. Springer, Heidelberg (1998)

4. Chandy, K.M., Misra, J.: Parallel Program Design: A Foundation. Addison-Wesley, Reading
(1988)

5. Dwyer, M., Avrunin, G., Corbett, J.: Patterns in property specifications for finite-state verifi-
cation. In: ICSE, pp. 411–420 (1999)

6. Groslambert, J.: Verification of LTL on B event systems. In: Julliand, J., Kouchnarenko, O.
(eds.) B 2007. LNCS, vol. 4355, pp. 109–124. Springer, Heidelberg (2006)

7. Hallerstede, S., Hoang, T.S.: Qualitative probabilistic modelling in event-B. In: Davies, J.,
Gibbons, J. (eds.) IFM 2007. LNCS, vol. 4591, pp. 293–312. Springer, Heidelberg (2007)

8. Hoang, T.S., Kuruma, H., Basin, D., Abrial, J.-R.: Developing topology discovery in Event-
B. Sci. Comput. Program. 74(11-12), 879–899 (2009)

9. Lamport, L.: The temporal logic of actions. ACM Trans. Program. Lang. Syst. 16(3), 872–
923 (1994)

10. Manna, Z., Pnueli, A.: Adequate proof principles for invariance and liveness properties of
concurrent programs. Sci. Comput. Program. 4(3), 257–289 (1984)

11. Manna, Z., Pnueli, A.: Completing the temporal picture. Theor. Comput. Sci. 83(1), 91–130
(1991)

12. Owicki, S., Lamport, L.: Proving liveness properties of concurrent programs. ACM Trans.
Program. Lang. Syst. 4(3), 455–495 (1982)

13. Peterson, G.: Myths about the mutual exclusion problem. Inf. Process. Lett. 12(3), 115–116
(1981)

14. Yilmaz, E., Hoang, T.S.: Development of Rabin’s choice coordination in Event-B. Technical
report, University of Dusseldorf, Proceedings of AVoCS 2010 (2010)

Extracting Significant Specifications from Mining
through Mutation Testing

Anh Cuong Nguyen and Siau-Cheng Khoo

Department of Computer Science, National University of Singapore
{anhcuong,khoosc}@comp.nus.edu.sg

Abstract. Specification mining techniques are used to automatically in-
fer interaction specifications among objects in the format of call sequences,
but many of these specifications can be meaningless or insignificant. As
a consequence, when used in program testing or formal verification, the
presence of these leads to false positive defects, which in turn demand
much effort for manual investigation. We propose a novel process for deter-
mining and extracting significant specifications from a set of mined spec-
ifications using mutation testing . The resulting specifications can then be
used with program verification to detect defects with high accuracy. To our
knowledge, this is the first fully automatic approach for extracting signif-
icant specifications from mining using program testing. We evaluate our
approach through mining significant specifications for the Java API and
use them to find real defects in many systems.

Keywords: Specification mining, mutation testing, formal specifications.

1 Introduction

Specification mining is a process that enables the inference of candidate interac-
tion protocols between objects in a program from its execution traces or source
code. One important type of these specifications is the class of temporal logic
properties over function or method call sequences. These specifications can be
efficiently used to describe interesting reliability and safety properties of software
system such as lock acquisition and release, or resource ownership properties like
“all calls to read(f) must exist between calls to open(f) and close(f).”

Specifications reflecting legitimate usage protocols can be used in program
testing or formal verification to detect defects in systems. A system is said to
have defects if it does not respect one or more legitimate protocols. A common
issue pertaining to specification mining approach, however, is that there are typ-
ically many meaningless and insignificant specifications discovered by the mining
process. As a consequence, when insignificant specifications are used for detect-
ing defects, they usually lead to false reports and demand expensive effort for
manual investigation. To illustrate this problem, consider the experiment done
by Wasylkowski et al. for detecting anomalies in AspectJ, a compiler for the
AspectJ language, using object usage model mined from a specification miner
called Jadet [19]. Among 276 anomalies and 790 violations detected, only 7

S. Qin and Z. Qiu (Eds.): ICFEM 2011, LNCS 6991, pp. 472–488, 2011.
© Springer-Verlag Berlin Heidelberg 2011

Extracting Significant Specifications from Mining through Mutation Testing 473

violations from 6 anomalies lead to real system defects. Aside from Wasylkowski
experiment, many other experiments also show that verify systems against spec-
ifications obtained from mining may lead to many violations, but only a few of
them actually associated with real defects. [17,12,10].

How can one mine specifications against violations of which can lead to real
defects rather than false ones? In this paper, we propose a novel technique that
employs mutation tests to determine significant specifications from a set of mined
specifications. The resulting specifications can then be used in program verifica-
tion to detect defects with high precision.

Specifically, given a mined specification that attempts to describe a behavior
of a method, we perform a mutation operation on the method body so that it
intentionally violates the given specification. We then execute the method with
specific input to determine if such a violation of specification will lead to excep-
tion being thrown at appropriate program points. When that happens, we deem
the mined specification to be significant. Otherwise, we deem it insignificant.

We have implemented a prototype to test our proposal on the Java API, and
discovered significant specifications with 100% of precision and at least 80% of
recall. We then supplied the resulting significant specifications to a model checker
to help find real defects. Our experiment shows that specifications deemed as
significant can drastically expedite the discovery of real defects in programs that
use the corresponding API.

Our main contributions are as follows:

1. We put the definition of specification significance on a firmer theoretical
ground. We assess the significance of a specification by its ability to exhibit
bad system behaviours when it is violated (Sec. 2). To our knowledge, this
is the first work looking into this issue.

2. We introduce a novel approach for determining significant specifications us-
ing mutation testing.

3. We demonstrate the effectiveness of this approach by implementing a proto-
type to test on Java API.

The outline of this paper is as follows: In Section 2, we provide an overview of
specification mining and formal representation of specification. We then provide
a theoretical formulation of the notion of “significant specification” in Section 3.
This is followed by a detailed description of our “mutation test” approach (Sec-
tion 4) and an experiment on its effectiveness (Section 5). Finally, we discuss
related work in Section 6 before concluding in Section 7.

2 Background

We begin with a brief overview on how specification mining can produce an
insignificant specification and then detect false defects from it. Suppose that we
want to mine call sequence usages of the Stack object in each method body,
using either their execution traces or source codes. Consider the following code
snippet, which is taken from Apache Fop, a print formatter for XSL formatting
objects.

474 A.C. Nguyen and S.-C. Khoo

1 private Stack nestedBlockStack = new Stack();
2 public void handleWhiteSpace(...) {
3 ...
4 if (nestedBlockStack.empty() || fo != nestedBlockStack.peek()) {
5 ...
6 nestedBlockStack.push(currentBlock);
7 } else {
8 nestedBlockStack.pop();
9 }

10 ...
11 if (!nestedBlockStack.empty())
12 nestedBlockStack.pop();
13 ...
14 }

The execution flow from line 4 to line 8 in the above snippet introduces a
specification stating that a stack must be peeked before it is popped: pop ↪→
peek1. In addition, lines 11 and 12 introduce another specification stating that a
stack must be checked for its emptiness before it can be popped: pop ↪→ empty.
We shall refer to these two rules as R1 and R2, in that respective order.

Intuitively, R2 is a more preferable candidate for the process of checking
and finding defects. Still, a closer analysis on the code reveals that R1 is also
a meaningful specification in the current context. It can be interpreted that a
stack should check (by peeking) for the existence of an object before it actually
executes a pop operation. However, this usage protocol is not universally required
for well-behaved stack objects. Different from R1, R2 states a rule that a stack
should strictly follow. A precondition for a stack to perform a pop is that the
object stack must be at a non-empty state. Therefore a call to empty checks for
the legal state of stack object before it can perform a pop. Without checking
the object stack for emptiness, the program may crash when trying to perform
a pop operation. For this reason, defects found by a violation to R2 are likely
to be true defects, whereas defects found by a violation to R1 are likely to be
false ones.

The specification miner is unfortunately clueless about this intuition. Cur-
rently, a common solution to this problem is to determine the specification sig-
nificance based on the notion of confidence and support, which are linked to
the number of occurrences of the pattern in the given sequences. However, this
solution can be ineffective in many cases because an insignificant rule may have
a high occurrence. For example, R1 can have a very high occurrence if the code
accidentally uses the rule frequently throughout an execution (which is indeed
the case for Fop where our experiment discovered 122 occurrences of R1.)

In this paper, we propose a novel technique to ascertain the significance of
system specifications: A specification is deemed significant when violating the
specification during program execution can make the participating objects mis-
behave, which lead to bad system behavior, exhibited by a system crash. It

1 Section 2.1 explains the notation in detail.

Extracting Significant Specifications from Mining through Mutation Testing 475

should be noted that our definition of significance centers on the behavior of the
participating objects found in the specification, and referenced in the code.

For the remaining of this section, we describe the type of system specification
we use throughout the paper (Sec. 2.1). In Sec. 3, we formalize various definitions
of specification significance and give an overview of our solution for identifying
significant specifications (Sec. 3.1).

2.1 Past-Time Temporal Specification

Past-time temporal specifications are rules stating that “whenever a series of
events occurs, previously another series of events must have happened” [14].
Specifications of this format are commonly found in practice and useful for pro-
gram testing and verification. Indeed in our empirical study with the Java API,
we found a large number of significant rules obeying past-time temporal logic,
for example, next ↪→ hasNext, pop ↪→ empty or get ↪→ size.

In our work, past-time temporal specifications discovered are always con-
structed from two components, a consequence and a premise, each consists of
a series of events. A specification is denoted as consequence ↪→ premise and
states that whenever a series of consequence events occurs it must be preceded
by another series of premise events. Each past-time temporal specification can
be mapped to its corresponding Linear-time Temporal Logic (LTL) expression.
Examples of such correspondences are shown in Table 1, which we borrow from
[14]. In addition, all past-time temporal specification in our work must obey

Table 1. Specifications and their Past-time LTL Equivalences

Specification LTL Notation

a ↪→ b G(a → X−1F−1b)

〈a, b〉 ↪→ c G((a ∧XFb) → X−1F−1c)

a ↪→ 〈b, c〉 G(a → X−1F−1(c ∧X−1F−1b))

another condition, which is all events in the specification must be method calls
coming from the same object. This condition is not strictly required for our
technique for detecting significant specifications, but it is appropriate for a pre-
liminary study. A technique that handles specifications across multiple objects
can be extended straightforwardly from ours.

Finally, a violation of a past-time temporal specification can happen when one
or more events in the premise are missing while all events in the consequence oc-
cur in the correct order. We use the notation

v
↪→ to symbolize violation. Examples

of violations of specifications used in Table 1 are shown in Table 2.

3 Specification Significance

To have a sense of how specification significance can be defined, let’s consider the
following scenario. Suppose that a programmer makes use of a new API library

476 A.C. Nguyen and S.-C. Khoo

Table 2. Specification Violations and their Past-time LTL Equivalences

Specification Format Violation LTL of Violation Notation

a ↪→ b a
v

↪→ ¬b F (a ∧X−1G−1¬b)

〈a, b〉 ↪→ c 〈a, b〉 v
↪→ ¬c F ((a ∧XFb) ∧X−1G−1¬c)

a ↪→ 〈b, c〉 a
v

↪→ 〈¬b, c〉 F (a ∧X−1G−1(c → X−1G−1¬b))

a
v

↪→ 〈b,¬c〉
a

v
↪→ 〈¬b,¬c〉

and she must follow some call sequence usage specifications specified by the
library, which are sometimes documented, sometimes not. She would be prone
to make mistake by not obeying some of the usage specifications. When this
happens, one or more objects defined in the specification will behave wrongly,
and this leads to bad program behaviours.

The definition of specification significance simulates this real life scenario.
Firstly, when determining the significance, we look at three components that
make of a specification: the method calls that make of the event series, the par-
ticipating objects and the relevant code that the specification resides in. Then the
significance of a specification can be viewed as its ability to cause a participating
object to misbehave when the call series does not occur correctly, and that leads
to bad code behaviours. Particularly in this work, we consider an object misbe-
haviour as a thrown exception, and a bad behaviour as a code crash due to the
exception. We will discuss further in Sec. 7 how we can determine other kinds
of bad code behaviour by incorporating more code checking systems. Concretely
we define 3 levels of specification significance as follows, of which the latter two
are goals attainable by our method.

Usage Significance. Rules belonging to this set are meaningful and important
for use in some specific contexts. An example is File.delete() ↪→ File.isDire-
ctory(), which is used to delete system directories. Violations of these rules are
though harmful in some specific usages, they are safe in other usages. Therefore
when these rules are used for testing software, their violations may lead to many
false positive defects. We do not deal with these rules here.

Object Significance. Rules belonging to this set are not only important for
the usage code but also important for the object participating in the usage.
An example is Stack.pop() ↪→ Stack.empty(). When these rules are violated,
some calls in the rule will likely throw exceptions. The rule premise can be seen
as a check for the object state validity, before the object can use a call in the
rule consequence. Therefore if the check fails (the object state is invalid) but the
object still uses a call in consequence, the call will trigger an exception.

Definition 1 (Object Significance). A specification Spec is object significant
if and only if there exist a code C and its input I such that code C when executed

Extracting Significant Specifications from Mining through Mutation Testing 477

with I will crash, due to the violation of Spec, by throwing an exception at a call
c occurred in consequent component of Spec.

Spec.sig() ⇔ ∃ C, I ∃ c ∈ Spec.cons:(
C.exec(I) ∧ Spec.violate()

)∧ E@c
The notation E@ c denotes throwing of an exception at call c.

Is one code crash sufficient to determine the object significance of a specifica-
tion? Generally, not all programs that violate an object significant specification
will lead to crashes. For example, one may not need to call Stack.empty() be-
fore Stack.pop() if she knows that the stack is not empty. Nevertheless, we
found that the definition using the existence of at least one code crash is useful
enough to detect object significant specifications in practice.

Universe Significance. Rules belonging to this set are dictators for every code.
An example is InputStream.reset() ↪→ InputStream.mark(int), which states
that the InputStream need to be marked before “repositioning” can be performed
on the input stream to the most previous mark (by calling reset). The rule
premise in this case is meant to bring the object to a valid state for using a call
in the rule consequence. Violation of these rules will most likely cause exceptions
(unless, for example, the call in premise is replaced by its definition).

Definition 2 (Universe Significance). A specification Spec is universe sig-
nificant if and only if for all code C and its input I, when C is executed with I
and the specification Spec is violated, the code will crash by an exception thrown
by a call c occurred in consequent component of Spec.

Spec.sig() ⇔ ∀ C, I ∀ c ∈ Spec.cons:(
C.exec(I) ∧ Spec.violate()

)→ E@c

3.1 Identifying Significant Specifications

In this work we introduce a method for identifying object and universe significant
specifications in an API library. An overview of our method is shown in Fig. 1.
Concretely the method works as follows.

– In the first step, the API-client (back-end software) is fetched into a past-time
temporal specification miner. The miner returns a set of raw specifications
of the API, which contains both significant and insignificant specifications.

– For each specification, we simulate the specification violation by suppressing
one or more calls occurring in its premise; the suppression is achieved by
creating mutated programs. We use codes of the API-clients as candidate
programs for mutation.

– Mutated programs are executed. If one of the programs crashes by an excep-
tion caused by a call in the specification consequence component, we deemed
the corresponding specification to be significant, otherwise it is insignificant.
Finally we collect all significant specifications and output to the user.

478 A.C. Nguyen and S.-C. Khoo

Fig. 1. Extract Significant Specifications from an API Library

4 Mutation Testing

We are now ready to discuss the realization of our mutation testing technique
as a practical and effective tool for extracting significant specifications. Our goal
is to express opinions about which design choices we prefer and discuss both
advantages and shortcomings of these decisions.

We begin by employing a temporal specification miner called Lm [6]. Lm takes
in a set of execution traces. Based on the user-specified minimum thresholds of
support and confidence, Lm generates a set of past-time temporal specifications,
such as the example below:

1 <org/apache/fop/fo/XMLWhiteSpaceHandler.handleWhiteSpace(Lorg/apache/
fop/fo/FObjMixed;Lorg/apache/fop/fo/FONode;Lorg/apache/fop/fo/FONode
;)V:97,106 ...>

2 (122, 1.0)
3 PREMISE:
4 java/util/Stack.empty()Z
5 CONSEQUENCE:
6 java/util/Stack.pop()Ljava/lang/Object;

The specification states that any Stack object must follow the rule pop ↪→
empty. The rule has a support of 122 (instances from the collection of traces)
and a full confidence of 1.0, and one instance of the rule occurs inside the method
body of XMLWhiteSpaceHandler.handleWhiteSpace() at source line 97 and 106. We
call the method body a container of the specification.

4.1 Simulating Specification Violation through Program Mutation

We simulate a specification violation by mutating the original program. We use
containers of the specification as candidate codes for injecting mutations. The
idea behind mutation is to suppress specific calls in the containers that also
appear in the specification premise, so that when the container is executed, it
causes the program to crash due to violation of the specification.

There are several challenging design issues in program mutation:

Extracting Significant Specifications from Mining through Mutation Testing 479

Issue 1. Each past-time temporal specification can be violated in many ways.
A challenge here is to efficiently represent and manipulate all these violations.

Issue 2. Method call under suppression may occur multiple times in a container.
Which occurrence should we suppress to effectively violate the specification?

Issue 3. We mutate the suppressed call by replacing it with an object of iden-
tical return type to ensure smooth running of the code. There can be many
candidate objects for replacement, which one should we use?

Generally a specification premise can contain several calls. However, an error
may occur only when a particular combination of calls are suppressed. For ex-
ample, the specification pop ↪→ 〈empty peek〉 about a Stack object only yields
error at pop when empty is missing (suppressing peek yields no errors). Simu-
lating violation by suppressing all combinations of calls in the premise can be
expensive: we need to generate 2n − 1 mutated programs when a premise con-
tains n calls. This complexity can be mitigated in two ways. First, we check only
closed temporal rules [14], which are intuitively rules with “maximal” length. Sec-
ond, we mutate the container of a closed rule by simultaneously suppressing all
calls in the premise. For example, for all three rules pop ↪→ 〈empty peek〉, pop
↪→ peek and pop ↪→ empty (the first rule is closed while the other two can be
subsumed by the first), we need only one check by suppressing both empty and
peek at the same time. Intuitively, if the closed rule is detected as insignificant
(call to pop does not yield error), we can safely claim that the rule itself and all
subsumed rules are insignificant. On the other hand, if the closed rule is detected
as significant, the rule itself or some of its subsumed rules may also be significant
(here pop ↪→ empty is also significant). Later when we have detected a succinct
set of significant rules, we can analyze them further to see which subsumed rules
are also significant. This will be studied in Sec. 4.4.

For design issues 2 and 3, we illustrate our design decisions through an exam-
ple. Consider the specification given in the beginning of Sec. 4 and its container
shown in Sec. 2. Suppose that we want to simulate a violation pop ↪→ ¬empty.
Following is a suitable mutation for the container.

1 private Stack nestedBlockStack = new Stack();
2 public void handleWhiteSpace(...) {
3 ...
4 if (nestedBlockStack.empty() || fo != nestedBlockStack.peek()) {
5 ...
6 nestedBlockStack.push(currentBlock);
7 } else {
8 nestedBlockStack.pop();
9 }

10 ...
11 if (!false) % Replaces (!nestedBlockStack.empty())
12 nestedBlockStack.pop();
13 ...
14 }

480 A.C. Nguyen and S.-C. Khoo

We mutate the container by replacing the call nestedBlockStack.empty()
at line 11 to a concrete value false. This example exposes two problems: the
call under suppression (e.g. empty) can appear many times (issue 2) and it can
be replaced by many concrete values (e.g. true or false) (issue 3).

We address the second issue by relaxing the definition of violation in the
following way: a specification is violated when one (rather than all) of its in-
stances is violated. Thus, when there are many candidate calls for suppression,
we only need to suppress those calls that appear in the specification instances.
In case of Lm, the specification instances are iterative patterns [15], which can
be uniquely identified from the traces. It becomes natural to use instances to
determine a specification violation. In our example above, assuming that line 8 is
not executed, the only iterative pattern instance that supports the specification
is empty@11 pop@12. This instance is thus subject to mutation.

Furthermore, when the mutated code crashes due to an exception, we check
whether the exception is raised by a call that is (i) defined in specification con-
sequence, and (ii) part of the instance used for mutation. Only when both con-
ditions are satisfied can we conclude that the specification is significant. In our
example above, we need to check that the exception is raised by pop@12 but not
by other occurrences of pop.

Finally, a suppressed call can be replaced by many different concrete values,
and some might be more suitable than others. For example, in the mutation
above, it is more suitable to use false as a replacement value because us-
ing true will make the call pop at line 12 non-executable. Ideally one would
want to try all possible replacement values, but this is infeasible in practice. In
our implementation, we try to simulate as many values as possible using ran-
domly created objects. We discuss the mechanism for creating objects further
in Sec. 4.2. Quantitatively, we create one mutation for one replacement object.
Thus, if a specification has i instances, its premise contains n calls and each call
has maximum r replacement objects, we generate at most ir mutated programs.
In Sec. 4.3 we described how the number of mutated programs can be further
reduced, thus improving the performance of our technique.

We implement our mutation technique for Java language to work on Java
bytecode programs. Bytecode manipulations are done using the Asm bytecode
manipulation framework [3]. We omit the details due to space constraint.

4.2 Generating Replacement Objects

Our mutation technique requires replacing the suppressed call by an object of its
return type (except for void, which we simply skip the call). We generate these
objects by first creating an object pool for each object type. An object pool is a
set of bytecode instruction sequences that generate objects on the fly. For each
type, the content of object pool is randomly created. Generation mechanism can
be characterized by three types of input object: primitive types, classes with
public constructors and arrays.

We partition the object pool for any primitive type with wide value range
into distinct pre-defined sets. For int, these are: large negative, small negative,

Extracting Significant Specifications from Mining through Mutation Testing 481

0, small positive and large positive numbers. For each value range, we only create
a small number of objects. Bytecode instructions are used to construct objects
within each value range of the corresponding primitive type, as shown in Table 3.

Table 3. Object Pool and Value Ranges for Primitive Type

Primitive Type Bytecode Instructions Value Ranges
byte, short, int {bipush $val} [MIN,-100];[-50,-1];0;

[1,50];[100,MAX]
long, float, double {ldc $val} [MIN,-100.0];[-50.0,-1.0];0.0

[1.0,50.0];[100.0,MAX]
boolean {iconst_0}, {iconst_1} false; true
char {bipush $val} [a-z]; [A-Z]; [0-9]; [^a-zA-Z0-9]

Object pool of a class that has public constructors is generated inductively
and component-wise using object pool of the primitive types. In order to prevent
the inductive generation from going into a loop, when initializing an object, we
choose constructors that do not involve any parent objects of the current object
or the object itself as parameters.

For object pool of array type, we firstly assign a random size to each array
dimension. Elements of the array are either a primitive type or a normal class
and can be randomly generated as usual.

One shortcoming of this approach is that we cannot generate any objects
of classes that do not have public constructors, or constructors that require
parameters that cannot be generated, as well as array of these classes. These cases
rarely occur in our experiment. When they happen, we mark the specification
for manual review.

4.3 Exploring Early Pruning

The complexity of our algorithm depends on the run time of containers and the
number of mutations under inspection. To reduce the number of mutations and
the containers’ run time, we utilize two effective pruning strategies.

Duplicated Instances Avoidance. For two specifications R1 and R2 that
have the same premise but R1’s consequence is a super-sequence of R2, we
always check R1 first. To illustrate this, consider an example with two specifi-
cations pertaining to Rectangle2D object which are mined from Apache Fop,
R1 = 〈 getWidth, getY, getHeight 〉 ↪→ getX and R2 = getY ↪→ getX. Set of
instances for R1 is {transfrom:22,22,22,22} while for R2 is {transfrom:22,22;
generate:56,56}. Since the instance for R1 also re-occurs as one for R2, we re-
member the instance and only check it once, at rule R1.

482 A.C. Nguyen and S.-C. Khoo

Fig. 2. Mutation of a Container

Early Termination. Figure 2 shows
how a container is being mutated.
Aside from suppressing calls in rule
premise, we also insert try-catch block
around every call in the rule conse-
quence. Each try-catch block does not
only record the specification as signifi-
cant, but also forces early termination
of the execution once its significance is
determined. In addition, we also force
termination of execution (by inserting
System.exit(0)) when the container
exits, if all calls in the instance under
check have been executed.

4.4 Specification Refinement

We show here how the significance of the temporal rules identified by our method
can be further improved, leading to a reduction in the number of false positives
when used in software testing and/or verification.

Disjunctive Premise. It is common for a call sequence to be preceded by
multiple choices of premises. Therefore, given two specifications that have same
consequence but different premises, we combine them using disjunction. For
example we combine two rules pop ↪→ empty and pop ↪→ push into a single,
but more precise rule pop ↪→ empty|push.

Conjunctive Premise. For specifications with multiple calls in the premise,
some of these calls may not be required for the consequence, and thus may be
dropped. Given such a specification, we re-apply the check on the specification,
by suppressing each call in the premise one by one. If a call suppression does not
lead to throwing of exceptions, we can safely remove it. For example with the rule
pop ↪→ 〈 peek, empty 〉, we can remove peek to obtain the rule pop ↪→ empty.

5 Evaluation

We have built a system described in this paper as a plug-in, called SpecCheck,
for the Lm miner. Fig. 3 depicts its system architecture. SpecCheck plugin is
implemented as a Java agent that would be invoked by the Java Virtual Machine
during load time of the target application. We evaluated SpecCheck on the
DaCapo 2009 benchmarks [2] to address the following concerns:

– What proportion of the specifications labelled by SpecCheck as significant
are indeed significant (precision)?

– What proportion of significant specifications has been labelled by Spec-
Check as such (recall)?

Extracting Significant Specifications from Mining through Mutation Testing 483

Fig. 3. SpecCheck High-level Architecture

– How efficient are the significant specifications, compared to the original spec-
ifications, in detecting system defects?

DaCapo 2009 benchmark suite consists of 14 complex Java systems that range
over a diverse set of application domains. We select from DaCapo 7 single-thread
driven benchmarks to evaluate the effectiveness of SpecCheck (see Table 4).
We use the test harness provided by the benchmark suite and perform evaluation
for traces of all calls to the Java API library (Sec. 5.1). Finally we evaluate the
effectiveness of extracted rules in finding defects in Sec. 5.1.

5.1 Java API Rules

Mining Setup. The set of traces for each Java class varies pretty much in size
and some can be very large due to code looping. We keep the traces as they
are but use different support and confidence threshold settings for each trace
depending on its size. Concretely we set support and confidence thresholds to 5
and 40% respectively for trace files less than 100KB, 50 and 40% respectively
for trace files less than 1MB, 100 and 60% respectively for trace files less than
5MB, and ignore all trace files larger than that. Using these settings, the mining
process can finish within minutes.

Evaluation Results. Throughout the suite, Lm infers a large number of specifi-
cations, among them an average of 6% (38/633) are determined by SpecCheck
as significant (Table 4). The ratio of specifications marked as significant to all
mined specifications is small, but this is consistent with many past studies that
the number of mined specifications which lead to real defects are normally small
[17,12,10].

We end up with 22 significant specifications after specification refinement step:
21 of them are object significant and 1 of them is universe significant.

To assess the precision and recall of SpecCheck, we employed three pro-
grammers to independently and manually extract significant rules from mined
rules. Based on this result, precision and recall achieved by SpecCheck are very
encouraging, as depicted in Table 4.

484 A.C. Nguyen and S.-C. Khoo

Table 4. Significant Java API Rules Extracted from DaCapo 2009 Benchmarking Suite

Benchmark Mined Spec Significant Spec Spec
Project Considered Identified Precision Recall Discarded
avrora 28 3 100% 100% 89.2%
batik 369 16 100% 80.0% 95.3%
eclipse 145 10 100% 100% 93.1%

fop 132 11 100% 100% 91.6%
jython 193 14 100% 87.5% 93.2%
luindex 34 4 100% 100% 88.2%
pmd 61 9 100% 100% 85.2%
Total 633 38 100% 86.0% 93.9%

After Spec Refinement: No. of Object Spec : 21 No. of Universe Spec : 1

In the assessment of “recall”, we have missed a few significant rules (6/44),
which correctly reflect some limitations of our mutation techniques. Firstly we
may not have generated the correct replacement objects which can cause ex-
ceptions. Secondly we may never reach a designated consequence call which we
would like to check during execution, as the program threw exception earlier than
expected. Finally we may miss some significant rules that produce errors, but
without throwing the anticipated exceptions (e.g. null pointer creation, memory
leak, etc.)

A sampling of significant specifications is displayed in Table 5. The sample
shows that we can detect rules whose significance cannot be trivially judged by
looking at name similarities (e.g. pop ↪→ empty). We can also detect rules of
length greater than 2 (e.g. getPixels ↪→ 〈 getMinX, getMinY, getHeight 〉).
Finally we find one universe significant rule. It is reset ↪→ mark, which has been
explained in Sec. 3.

Performance. Without applying any optimizations described in Sec. 4.3, the
checking step does not complete even after several hours for most benchmarks.2
This is expected, for example in Eclipse case, where a single run of the appli-
cation can take up to 2 minutes. The dataset consists of 145 specifications for
checking, each specification has at least two instances and each instance gener-
ates at least two mutated programs. The number of mutated programs can be
up to 580 and running all of them takes approximately 1160 minutes (which is 19
hours!). Fortunately, with the pruning techniques described in Sec. 4.3, checking
of specifications mined from Eclipse took only around 15 minutes (6 seconds
per rule in average). This confirms that our pruning strategy is necessary and
efficient.

5.2 Verification Using Java API Rules

In order to ascertain that the specifications we have identified are indeed signif-
icant, we compare their ability to detect defects or code smells against those we
2 We conduct the experiment in an Intel Core i5 M460 computer with 2GB memory

running Linux Mint 10 Julia.

Extracting Significant Specifications from Mining through Mutation Testing 485

Table 5. A Sampling of Java API Significant Specifications from the DaCapo suite

Java Class Specification
Object Signifiance

FlatteningPathIterator currentSegment([F)I ↪→ isDone()Z
Raster getPixels(IIII[I)[I ↪→ getMinX()I getWidth()I|

getMinX()I getMinY()I
getHeight()I

ByteBuffer get()B ↪→ hasRemaining()Z
Stack pop()Object ↪→ empty()Z|push(Object)Object

LinkedList get(I)Object ↪→ size()I|add(Object)Z
String substring(II)String ↪→ length()I|indexOf(C)I

Universe Significance
InputStream reset()V ↪→ mark(I)V

Table 6. Significant Specifications Show More True Positives and Fewer False Positives

Significant Specs Insignificant Specs
Benchmark Classes Anomalies True False Anomalies True False

avrora 1838 3 2 2 19 0 61
batik 2430 3 2 1 34 0 154

eclipse 527 3 1 2 22 0 108
fop 1314 2 2 0 11 0 57

jython 2816 1 0 1 24 0 103
luindex 536 1 1 2 10 0 62

pmd 727 2 5 3 13 0 68
Total 9652 7 13 11 60 0 613

have classified as insignificant. We only choose those insignificant specifications
with high confidences (> 80%). There are 368 of them in total. We employ Jfta
[4] to perform static verification.

For those identified significant specifications, running Jfta over the seven Da-
capo benchmarks reported only a few violations; many of them were true pos-
itives. This is in line with our hypothesis that the specifications are significant.
On the other hand, verifying using insignificant specifications reported a large
number of anomalies and violations (nearly 1000 violations for most projects).
However, we observed that majority of violations came from certain Java API
classes (e.g. StringBuilder and rules toString ↪→ append). Thus we only se-
lected and reported the maximum 10 violations of different anomalies from each
API class in case of insignificant specifications. Nevertheless, these specifications
still produced much more error reports compared to those produced by signif-
icant specifications. Table 6 shows the result of our comparison. It reports the
number of anomalies (ie., violation of specifications), true and false code smells
(codes that indicate something may go wrong [19]) or defects. (Recall that one
anomaly may consist of several defects, each in a different method.)

486 A.C. Nguyen and S.-C. Khoo

We inspected all violations manually and reported either defects or code smells
as true positives and the rest as false positives. When we are not sure if a
violation is a defect/code smell, we conservatively count it as false positive. We
also do not consider violations that are already handled directly by a try-catch
block in the code. Aside from keeping the amount of false positives small, we
are also interested in finding real defects. Among seven projects, 54% of error
reports uncover real defects or code smells, which is a considerably high rate
for a specification-based bug detection tool (e.g. compared to [10,19]). A more
detailed analysis of these errors is available in our technical report [16].

6 Related Work

The integration of data mining into software engineering has attracted much
interest in the past decade. The field is dynamically evolving. Many projects
on specification mining produce either an automation [1,13] or frequent pat-
terns of software behaviours [15,12]. Perracotta [20] mines two-event tempo-
ral logic rules that match a given template, which is later extended by Javert
to mine more complex specifications [7]. On mining object-oriented behaviours,
Jadet and Adabu respectively use static and dynamic analysis to mine intra-
procedural object usage models [19,5]. Finally, the specification miner LM we
used mines live sequence charts, inter-object behaviours of arbitrary sizes [6].

Specification mining can infer many specifications but many of them can be
meaningless or irrelevant. This limitation creates a big hurdle for introducing
specification mining into real practices. Many interesting research has been pro-
posed to mitigate this hurdle. Thummalapenta and Xie opine that rules exhibit-
ing exceptional conditions can lead to discovery of real defects, and propose to
mine exception-handling rules [17]. Ocd automatically learns, enforces and de-
termines anomalies using online statistical learning [8]. Jadet, and later Check-
MyCode, determine anomalies based on various heuristic ranking [19,10]. Goues
and Weimer also introduce a method to mine specifications with few false pos-
itives. Their method uses software artifacts like repository and source code to
select only input traces with acceptable trustworthiness metrics [9]. Our method
inherits advantages from all cited methods: we also mine specifications and de-
tect anomalies with few false positives, allow arbitrary temporal specifications
and only require the software itself as input. Finally Dallmeier et al. introduce
Tautoko tool, which also performs mutation operations, but for the purpose of
test case generation [4].

7 Conclusion

We have presented the first mutation testing-based algorithm that identifies sig-
nificant specifications from a set of mined specifications. We implemented our
algorithm in an efficient and practical tool called SpecCheck. Initial evalua-
tion on DaCapo benchmarks shows encouraging result: we are able to identify
significant Java API specifications with high precision and recall; significant

Extracting Significant Specifications from Mining through Mutation Testing 487

specifications can be used to detect defects with high accuracy. In comparison,
use of those specifications not identified as significant leads to a large number of
false positives.

In future we would like to apply our technique to a wider range of projects
to gain better statistical results, and to collect significant specifications as a
database for bug detection purpose, probably similar to [10]. We also want to
detect significance based on program errors aside from exceptions; one way to
do this is to incorporate with verification tools such as Cork [11] or Jpf [18],
which can detect memory leaks and concurrency errors.

Acknowledgements. We thank Zhao Lin, Shafeeq Ahmed and Quang Huynh
for their help on the evaluation of SpecCheck. We thank the anonymous re-
viewers for their valuable feedbacks. Additional thanks go to Hugh Anderson,
David Lo, Sandeep Kumar, Chengnian Sun, Narcisa Milea and Zhiqiang Zuo
for their inputs and discussions on the preliminary versions for this work. This
research is partially supported by the research grants R-252-000-403-112 and
R-252-000-318-422.

References

1. Ammons, G., Bodík, R., Larus, J.R.: Mining specifications. In: POPL 2002, pp.
4–16 (2002)

2. Blackburn, S.M., Garner, R., Hoffmann, C., Khang, A.M., McKinley, K.S., Bentzur,
R., Diwan, A., Feinberg, D., Frampton, D., Guyer, S.Z., Hirzel, M., Hosking, A.,
Jump, M., Lee, H., Moss, J.E.B., Moss, B., Phansalkar, A., Stefanović, D., Van-
Drunen, T., von Dincklage, D., Wiedermann, B.: The dacapo benchmarks: java
benchmarking development and analysis. In: OOPSLA 2006, pp. 169–190 (2006)

3. Bruneton, E., Lenglet, R., Coupaye, T.: Asm: A code manipulation tool to im-
plement adaptable systems. In: Adaptable and Extensible Component Systems,
Grenoble, France (2002), asm.objectweb.org/current/asm-eng.pdf

4. Dallmeier, V., Knopp, N., Mallon, C., Hack, S., Zeller, A.: Generating test cases
for specification mining. In: ISSTA 2010, pp. 85–96 (2010)

5. Dallmeier, V., Lindig, C., Wasylkowski, A., Zeller, A.: Mining object behavior with
adabu. In: WODA 2006, pp. 17–24 (2006)

6. Doan, T.A., Lo, D., Maoz, S., Khoo, S.C.: Lm: a miner for scenario-based specifi-
cations. In: ICSE 2010, pp. 319–320 (2010)

7. Gabel, M., Su, Z.: Javert: fully automatic mining of general temporal properties
from dynamic traces. In: SIGSOFT 2008/FSE, vol. 16, pp. 339–349 (2008)

8. Gabel, M., Su, Z.: Online inference and enforcement of temporal properties. In:
ICSE 2010, pp. 15–24 (2010)

9. Goues, C., Weimer, W.: Specification mining with few false positives. In:
Kowalewski, S., Philippou, A. (eds.) TACAS 2009. LNCS, vol. 5505, pp. 292–306.
Springer, Heidelberg (2009)

10. Gruska, N., Wasylkowski, A., Zeller, A.: Learning from 6,000 projects: lightweight
cross-project anomaly detection. In: ISSTA 2010, pp. 119–130 (2010)

11. Jump, M., McKinley, K.S.: Cork: dynamic memory leak detection for garbage-
collected languages. In: POPL 2007, pp. 31–38 (2007)

asm.objectweb.org/current/asm-eng.pdf

488 A.C. Nguyen and S.-C. Khoo

12. Livshits, B., Zimmermann, T.: Dynamine: finding common error patterns by min-
ing software revision histories. In: ESEC/FSE, vol. 13, pp. 296–305 (2005)

13. Lo, D., Khoo, S.C.: Smartic: towards building an accurate, robust and scalable
specification miner. In: SIGSOFT 2006/FSE, vol. 14, pp. 265–275 (2006)

14. Lo, D., Khoo, S.C., Liu, C.: Mining past-time temporal rules from execution traces.
In: WODA 2008, pp. 50–56 (2008)

15. Lo, D., Khoo, S.C., Wong, L.: Non-redundant sequential rules-theory and algo-
rithm. Inf. Syst. 34, 438–453 (2009)

16. Nguyen, A.C., Khoo, S.C.: Extracting significant specifications from mining
through mutation testing. Tech. Rep. TRA7/11, Department of Computer Science,
National University of Singapore (July 2011)

17. Thummalapenta, S., Xie, T.: Mining exception-handling rules as sequence associ-
ation rules. In: ICSE 2009, pp. 496–506 (2009)

18. Visser, W., Havelund, K., Brat, G., Park, S., Lerda, F.: Model checking programs.
Automated Software Engineering 10, 203–232 (2003)

19. Wasylkowski, A., Zeller, A., Lindig, C.: Detecting object usage anomalies. In:
ESEC-FSE 2007, pp. 35–44 (2007)

20. Yang, J., Evans, D., Bhardwaj, D., Bhat, T., Das, M.: Perracotta: mining temporal
api rules from imperfect traces. In: ICSE 2006, pp. 282–291 (2006)

Developer-Oriented Correctness Proofs

A Case Study of Cheney’s Algorithm

Holger Gast

Wilhelm-Schickard-Institut für Informatik
University of Tübingen

gast@informatik.uni-tuebingen.de

Abstract. This paper examines the problem of structuring proofs in
functional software verification from a novel perspective. By aligning
the proofs with the operational behaviour of the program, we allow the
formalization of the underlying concepts and their properties to reflect
informal correctness arguments. By splitting the proof along the different
aspects of the code, we achieve re-use of both theories and proof strategies
across algorithms, thus enabling reasoning by analogy as employed in
software construction. We demonstrate the viability and usefulness of
the approach using a low-level C implementation of Cheney’s algorithm.

1 Introduction

Proofs in functional software verification are usually complex and technically
involved. In the case of automatic verification, they require the maintenance
of abstract state in ghost-variables (e.g. [1,2]), auxiliary intermediate assertions
(e.g. [3]), and suitable axioms and triggers to guide the specific prover ([4]; e.g. [2,
§4.3], [1, §7]). While interactive software verification can in principle lead to more
readable and understandable proofs (e.g. [5, §1.2], [6]) even in the most carefully
structured larger case studies (e.g. [7,8,9,10]), the presentation is limited to the
specifications and invariants, while proofs are expressly excluded ([7,8]), or are
only surveyed at a very high level (e.g. [10]). The implicit underlying strategy is
to reduce most occurring goals to forms that the available automatic provers can
handle (e.g. [7,10]). Even allowing for necessary abbreviations for space reasons,
the gap between the concrete code and the formal proof is still tremendous and
often needs to be bridged at a technical level.

This paper proposes to approach the problem of finding and structuring cor-
rectness proofs from the developer’s (or software engineer’s) perspective. The
immediate motivation for this choice is the fact that developers seem to be able
to produce code that is basically correct (except for failures in unforeseen cir-
cumstances), so their mode of reasoning can be considered overall successful. By
emulating it at a more formal level, one would arrive at proofs that are more
precise versions of the developers’ correctness arguments, thus bridging the gap
between the formal and the informal.

We show that it is possible carry out this agenda by verifying a moderately
complex algorithm, a C implementation of Cheney’s collector [11]. Herein, we
apply the following strategies derived from a developer’s point of view.

S. Qin and Z. Qiu (Eds.): ICFEM 2011, LNCS 6991, pp. 489–504, 2011.
c© Springer-Verlag Berlin Heidelberg 2011

490 H. Gast

– Developers rely on experience with similar algorithms. For a novel problem,
they identify familiar parts or aspects and apply the corresponding coding
idioms and reasoning patterns. We therefore structure the proof around pre-
viously known aspects: graphs of memory objects, including reachability, are
shared with the Schorr-Waite algorithm [12] and the collector’s work queue
is treated as a linked lists from [13,14]. The algorithm’s distinguishing for-
warding pointers reduce to the map datatype from the Isabelle/HOL library.

– A major strength of interactive theorem proving is the possibility to develop
self-contained theories independently of concrete verification conditions (e.g.
[5], [10], [6]). As an experiment, we have therefore formalized the mentioned
aspects by considering the algorithm’s code and expected behaviour alone,
without looking at the concrete verification conditions. The derived lem-
mas thus follow a developer’s mental execution of the code, and the actual
verification was found to consist of applying these lemmas.

– We unify the overall proof by applying the split/join reasoning pattern
throughout. The pattern complements the separation lemmas of classical
approaches [6] and extends the automatic unfoldings of [15]: before the code
manipulates a memory object, the pre-condition must be split such that sep-
aration lemmas prove the parts unchanged; for the post-condition, the split
parts are joined together. Beyond automatic unfoldings, the formulation of
split/join theorems reflects the information available at their point of appli-
cation (e.g. §3.2) and boundary parameters (§2.5–2.7, §3.2) are introduced
to enable the split. The reasoning pattern resembles a developer’s drawing
of pointer diagrams to make explicit the manipulated entities.

The proof is carried out in lightweight separation, which is described in detail
in [12,16,13] and is developed as a conservative extension of Isabelle/HOL. For
the purposes of this paper, it can be treated as a usual verification environment
based on Hoare logic. We introduce the notation and concepts as needed. The
proof document is available from the author’s homepage [17].

The contributions of the paper are the following:
– The aspect-oriented proof style enables the re-use of extensive and non-trivial

generic theories across algorithms that implement different specifications and
only share the specific aspects of their correctness arguments. The re-use also
comprises reasoning patterns building on the re-used theories.

– Since the aspects are mostly independent of one another, the different parts
of the proof can equally be developed, understood, and maintained indepen-
dently. We have found this useful in adjusting the details of the formalization
during development, as is usually necessary for any larger case study.

– All parts of the proof exhibit a direct link to an informal understanding of
the code and the high-level steps are connected by a few straightforward
arguments about equalities, sets, and maps.

Overview. Section 2 formalizes the different independent aspects of Cheney’s
algorithm and exhibits the theory re-use from earlier developments. Section 3
assembles the aspects into a common invariant and correctness proof of the
overall algorithm. Section 4 surveys related work. Section 5 concludes.

Developer-Oriented Correctness Proofs 491

Fig. 1. Overview over the Collector State

2 Dissecting Cheney’s Algorithm

This section summarizes Cheney’s collector [11,9,18] and formalizes its three
main aspects: the object graph, the work queue, and the forwarding map. The
final aspect captures that the to-space is large enough for receiving all necessary
copies of objects.

Following the earlier studies [9,18], we restrict the algorithm to objects with
two fields, which may contain pointers or atomic data, and to a single root
reference. The machine representation of pointers, values, and objects follows [9].

2.1 The Three Main Aspects of the Algorithm

Figure 1 depicts the general idea of Cheney’s collector. The algorithm works on
two equal-size half-spaces, the from-space and the to-space. (They are depicted
here in different sizes to save vertical space.) At the beginning of a collection,
the from-space contains all objects allocated by the program, while the to-space
is empty. The collector’s task is to copy all objects still required by the program
into the to-space and to declare the from-space unused.

The algorithm’s first aspect is the graph formed by the objects in the from-
space, with the pointers in their fields as the successors. The graph is accessed
from a single cell root, which represents the root set in the program’s run-time
stack. The central point here is the notion of reachability: an object is required
by the program iff it is reachable in the graph starting from the root cell.

Further, the algorithm uses the copied objects between the addresses toSpace
and free as a work queue. These objects are divided by the scan pointer: the
objects before scan, i.e. a′, b′ , are processed completely, i.e. their fields already
point to copies of their original successor objects. The objects after scan, i.e. c′,
d′, have been copied but their fields have not been updated.

The final aspect of the algorithm is the forwarding map: objects in the from-
space that have already been copied, i.e. objects a to d, contain a forwarding
pointer to their copies in their first word. These pointers are crucial for handling
aliasing and cycles. For instance, when processing c′, the algorithm finds that
its successor a has already been copied because its first field is a pointer to the
to-space, and it therefore sets the first field of c′ to a′. By the same mechanism,
the cycle from e to b will lead to a cycle from the later copy e′ to b′.

492 H. Gast

1 void collect(void **r) {

2 void *tmp = fromSpace;

3 fromSpace = toSpace;

4 toSpace = tmp;

5 free = toSpace;

6 scan = free;

7

8 copy_ref(r);

9 while (scan != free) {

10 copy_ref((void**)scan);

11 copy_ref((void**)(scan + 4));

12 scan = scan + 8;

13 }

14 }

1 void copy_ref(void **p) {

2 if (*((int*)p) & 1 == 0 &&

3 *(void**)p != null) {

4 void *obj = *p;

5 int fwd = *(int*) obj;

6 if (fwd & 1 == 0 &&

7 toSpace <= (void*)fwd &&

8 (void*)fwd < toSpace+spaceSz){

9 *(void**)p = (void*)fwd;

10 } else {

11 void *newObj = free;

12 free = free + 8;

13 *(int*)newObj = *(int*)obj;

14 *(int*)(newObj + 4) =

15 *(int*)(obj + 4);

16 *(void**)obj = newObj;

17 *(void**)p = newObj;

18 } } }

Fig. 2. The Collector’s Code

2.2 Implementation

Figure 2 shows the collector’s code (in the C dialect of [12,16]). It is organized
around the idea of copying references, i.e. memory words that contain either an
atomic value or a pointer to an object. Values and pointers are distinguished by
the least-significant bit in their byte-representation [9]. Both the root cell and
the two fields of an object constitute references in this sense, which is expressed
in the factoring the basic step into the copy_ref function.

The function copy_ref mainly performs a case distinction. Lines 2–3 identify
pointers by checking the bit-representation of the reference. Nothing is done
for atomic values and the null pointer. Lines 4–8 read the first word of the
referenced object and check for a forwarding pointer. If the object obj has already
been copied, reference p is set to the existing copy (Line 9). The final case in
Lines 11–17 allocates an object at free, copies obj, and sets p to the new object.

At an informal level, copy_ref is correct since it maintains the situation of
Figure 1 and guarantees that after execution the reference p is handled com-
pletely, i.e. it contains the “correct” atomic value or the “correct” pointer to the
copy of the original object. We will subsequently make this general idea precise
enough for formal verification while maintaining the link to the informal view.

The collect function drives the overall process. It is called when the to-space
is exhausted and the objects still used by the program must be copied to the
empty from-space. Lines 2–6 reverse the roles of the half-spaces and initialize
the collection. Line 8 copies the root reference, Lines 9–13 process newly copied
objects until no more such objects remain. Intuitively, the loop invariant should
be a formalization of Figure 1, which we achieve in the remainder of the paper.

Developer-Oriented Correctness Proofs 493

2.3 Values, Pointers, and Objects

We will now make the informal view presented so far precise enough for formal
verification, while maintaining close links to the informal arguments. We start by
introducing some basic definitions that abstract over the low-level representation
of values and pointers (to-int and to-ptr convert the byte-representation into a
word [19] or the wrapper type addr [12], respectively).

is-atomic v ≡ to-int v AND 1 �= 0 ∨ to-ptr v = null
is-ptr v ≡ to-int v AND 1 = 0 ∧ to-ptr v �= null

The memory objects handled by the collector consist of two adjacent machine
words. The constant obj-fields yields the byte-representations of these words in a
list ([] denotes a HOL list; rd ctx p t M reads the byte-representation of type t
at address p in memory M ; ⊕ is address offset; ctx is the context containing the
type definitions; gctx is a global context fixed for the development).

obj-fields p M ≡ [rd gctx p TInt M, rd gctx (p ⊕ 4) TInt M]

Lightweight separation [12] requires a symbolic formalization of the memory
layout in the form of covers. An object is covered by a block of 8 consecutive
bytes.

obj-cover p ≡ block p 8

To access the fields, we prove that an object may be split [12] into its two fields
(� p : t� is a block at p with the size of type t; ‖ is the disjoint union of covers).

obj-cover p = � p :TInt � ‖ � p ⊕ 4 :TInt �

The core idea of lightweight separation is to prove the result of memory accesses
unchanged after a modification by the program by reasoning about the disjoint-
ness of covers [16]. We therefore show (automatically) that the memory accessor
obj-field p depends only on the object at p.

declare accessor ”obj-fields p” ”obj-cover p”

Since the constants introduced subsequently have straightforward accessed re-
gions and the proofs are automatic, we omit the corresponding declarations.

2.4 The Structure of the Half-Spaces

The collector’s overall memory layout is given by global variables toSpace,
fromSpace, spaceSz, and free. We therefore define constants to access them,
according to this template (rdv is a rd with the address and type of a variable):

toSpace M ≡ to-ptr (rdv (in-globals gctx) ”toSpace” M)

The layout obeys the following invariant: from- and to-space are given by non-
null pointers such that the spaces are contiguous and non-overlapping ({a..<b}
is the half-open interval [a, b); to-Ptr converts an addr to its byte-representation).

space-vars-inv M ≡
fromSpace M �= null ∧ toSpace M �= null ∧
is-ptr (to-Ptr (fromSpace M)) ∧ is-ptr (to-Ptr (toSpace M)) ∧
fromSpace M ≤ fromSpace M ⊕ spaceSz M ∧
toSpace M ≤ toSpace M ⊕ spaceSz M ∧
{fromSpace M ..< fromSpace M ⊕ spaceSz M}

∩ {toSpace M ..< toSpace M ⊕ spaceSz M} = {}

494 H. Gast

Pointers into the to-space play a special role of forwarding pointers, and we
introduce the following constants:
toSpace-range M ≡ { toSpace M ..< toSpace M ⊕ spaceSz M }
to-space-ref p M ≡ is-ptr (rd gctx pTInt M)∧to-ptr (rd gctx p TInt M)∈toSpace-range M

2.5 Queue Structure

We now turn to the structure of the work queue. The algorithm splits the objects
between toSpace and free into two groups at scan and advances scan linearly
through the objects. It thus treats the copied objects as two linear lists, one of
“jobs already done” and one of “jobs that need to be done”.

Linear lists are, of course, a common structure that developers are familiar
with. We have therefore developed a generic library of lists [14], building on [13].
The library is expressed as a locale [20], Isabelle’s form of parameterized theories.
The list locale takes two parameters: the cover node for the list nodes and a
function succ reading the next -pointer from a node. The node cover is, of course,
the obj-cover from §2.3; the next -link is computed from the objects’ size:1

queue-succ p M ≡ p ⊕ 8

The library furthermore assumes that the next-link only depends on the ob-
ject under consideration, which is proven automatically. Re-using the library as
a locale instance q takes 20 lines of straightforward Isabelle code; the queue-
structure can then be expressed by the constant nodes in q: there are nodes B

(for “black” [9]) and Q (for “queue”) such that
q.nodes (toSpace M) (scan M) B M∧q.nodes (scan M) (free M) Q M∧ set B∩set Q={}

The library also provides theorems for reasoning about the defined lists. For
instance, the loop in collect starts with configuration (a) below, then takes
one object off the front of list Q in (b), works on it, and adds it to list B in (c).

These are very common operations lists. The library therefore provides theo-
rem (1) for unfolding the first node of a lists and theorem (2) for folding a node
into the end of a list. (The complementary theorems are available, too. The
parameter succ will be replaced by queue-succ in the specific local instance.)

p �= q

nodes p q xs M = (∃ ys. nodes (succ p M) q ys M ∧ xs = p # ys ∧ p /∈ set ys)
(1)

nodes p r ys M succ r M = q q /∈ set (ys @ [r])

nodes p q (ys @ [r]) M
(2)

1 For objects of arbitrary length, the successor could be computed by reading the
object’s header field. The used list structure is thus not overly general.

Developer-Oriented Correctness Proofs 495

Note also that premise of (1) and the first premise of (2) directly relate to the
while-test and operations of collect. The second premise of (2) is given by the
disjointness condition in the above formalization of the work queue. By applying
the theorems as suggested, both the structure of the queue and the correctness
proofs are thus related to a developer’s familiar concept of lists.

2.6 The Object Graph

Developers naturally think of memory objects a set of entities that are linked by
pointers. In programming languages with garbage collection, the runtime system
guarantees that all objects reachable from the program variables will always be
retained in memory and that there are no dangling pointers.

We make this general idea more precise by using a generic library from an
earlier case study of the Schorr-Waite algorithm [12]. The locale parameters
here are the object’s memory layout, which is given by the constant obj-cover

(§2.5), and a function that reads the successor-pointers from a given object.
That function is defined directly using obj-fields (§2.3): the object successors are
precisely the pointers stored in the object fields. (Note that is-ptr null is false.)

obj-succs p M ≡ map to-ptr (filter is-ptr (obj-fields p M))

Creating the instance g of the object graph locale takes 16 lines. The library then
provides extensive automatic proof support [12, §5.1] for establishing disjointness
of sets of objects in the graph by set-theoretic arguments about their base-
pointers and Burstall-style [21] disjointness proofs on individual fields.

We can now introduce and motivate the split/join proof strategy announced
in §1. For the queue structure in §2.5, it was natural to split off the “current”
node from the list Q to modify its content while standard separation lemmas [6]
prove the remainder of Q unchanged. Analogously in the case of an object graph,
assertions about reachability may be invalidated by modifications to individual
objects. It therefore becomes necessary to split the graph at particular objects.

The splitting of lists into fragments is enabled by an explicit end node. The
graph library thus introduces a boundary set Q into the definition of reachability:
reachable P Q R M denotes that in memory state M, there are paths starting in
set P to all nodes in set R that never touch Q. In particular, Q and R are disjoint.

The collector uses the reachability predicate in two places: first, the speci-
fication (§3.1) defines the set of objects R reachable in the initial state (with
an empty boundary set). Second, and more interestingly, we can capture that
all objects that have not been copied so far (predicate forw-obj, see §2.7) are
reachable from the work queue, without ever crossing an already copied object:

g.reachable (g.Succs (set Q) M ∪ S) {p ∈ R. forw-obj p M} {p ∈ R. ¬ forw-obj p M}M

This formalization is particularly interesting as it mirrors the following conjunct
of the Schorr-Waite loop invariant ([12, Figure 4], [6, i4,i6]): all unmarked nodes
are reachable from the stack without crossing marked nodes (or null pointers).

reachable ({t}∪ set (map (λn. to-ptr (cell-r-rd n M)) S))
{n. n = null ∨ n∈N ∧ marked n M} {n∈N. ¬marked n M} M

At this point, we thus see the re-use of a proof strategy between algorithms that
are only linked by the aspects of a work queue and reachability in object graphs.

496 H. Gast

Using the boundary set, the library provides the splitting theorem (3) ([12,
(44)]): the reachable set R can be split at some subset D into parts R1 and R2

and D. Note that both R1 and R2 are disjoint from D, such that nodes in D can
be manipulated without influencing reachability within R1 and R2.

reachable Γ P Q R M D ⊆ R D ∩ Q = {}
(∃R1 R2. reachable Γ P (Q ∪ D) R1 M ∧

reachable Γ (Succs Γ D M) (Q ∪ D) R2 M ∧
R = R1 ∪ R2 ∪ D)

(3)

Conversely, two parts of a object graph thus created can be joined together:

reachable P Q R M reachable P’ Q R’ M

reachable (P ∪ P’) Q (R ∪ R’) M
(4)

Both theorems apply in the verification of the copy_ref function: before setting
the forwarding pointer of obj in Line 16, the reachability of un-copied nodes is
split using (3) to expose the object obj. At the end, the split parts are joined
by (4), using the fact that obj has now been copied.

This reasoning succeeded immediately, because it mirrors the Schorr-Waite
proof [12, §5.2.4]. The proximity to an informal argument is also interesting:
one would draw a pointer diagram, highlight the object to be manipulated, and
think about the reachability by paths that might cross the object.

The specification of copying collectors rests on the notion of a graph isomor-
phism [18,22,9], i.e. a one-to-one mapping from the original object graph to its
copy that respects the pointer structure. The definition can be given at the level
of the existing graph library as follows, and it will be equally re-usable.

First, the isomorphism will map addresses, while object fields can contain
either pointers or atomic values. Following [18], we hide the case distinction by
an auxiliary function pointer map, which is the identity on atoms.

pmap ϕ ≡ λv. if is-ptr v
then (if to-ptr v ∈ dom ϕ then Some (to-Ptr (the (ϕ (to-ptr v)))) else None)
else Some v

Then, a morphism is a mapping between object sets that respects the successor
relations; an isomorphism is an injective morphism (◦ is function composition).

morph ϕ A fieldsA B fieldsB ≡
dom ϕ = A ∧ ran ϕ = B ∧
(∀a ∈ A. fieldsB (the (ϕ a)) = map (the ◦ pmap ϕ) (fieldsA a))

iso ϕ A fieldsA B fieldsB ≡ morph ϕ A fieldsA B fieldsB ∧ inj-on ϕ A

2.7 The Forwarding Pointers

The forwarding pointers established by the algorithm are used to handle aliasing
and cycles. Beyond this technical role, they bear a relation to the specification
(cf. §3.1) as they constitute the graph isomorphism that a copying collector con-
structs [18,22]. As this aspect touches all parts of Figure 1, it is the most complex
one. Nevertheless, it can be tackled using the proposed split/join strategy and
arguments following the algorithm’s operational behaviour.

Developer-Oriented Correctness Proofs 497

The basis for the development is a predicate for forwarded objects. An object
is forwarded iff its first field is a to-space reference (§2.4, Figure 1).

forw-obj p M ≡ to-space-ref p M

The forwarding pointers can be read as a (partial) mapping from the original
objects from the set R of reachable objects (§2.6) to the copies, if these exist
(Isabelle maps are functions to the option type to encode partiality):

forw-map R M ≡ λp. if p ∈ R ∧ forw-obj p M
then Some (to-ptr (rd gctx p TInt M))
else None

We are now going to capture the consistency conditions expressed visually in
Figure 1 in a predicate Forw ϕ R B C Q M0 M. It relates the parts B, Q and R

from Figure 1 in the initial state M0 and current state M. The set C of “current”
objects plays the role of a boundary set of §2.5 and §2.6: it may contain the
objects that have been removed temporarily from the queue for processing (§2.5).

Forw ϕ R B C Q M0 M ≡
ϕ = forw-map R M ∧ ran ϕ = B ∪ C ∪ Q ∧ inj-map ϕ ∧
(∀ r ∈ dom ϕ . the (ϕ r) ∈ B −→
set (obj-succs r M0) ⊆ dom ϕ ∧
obj-fields (the (ϕ r)) M = map (the ◦ pmap ϕ) (obj-fields r M0)) ∧
(∀ r ∈ dom ϕ . the (ϕ r) ∈ Q −→
obj-fields (the (ϕ r)) M = obj-fields r M0)

The forwarding map ϕ is thus injective and targets the entire queue. For the
objects in the black part B, their successors are also copied and the object fields
are mapped by ϕ. For the queue part Q, the object fields are copies of the source
object under ϕ. Note how all of these relationships are derived directly from
Figure 1 and capture the aspects of the “forwarding” and “copying” completely.

As with the previous aspects, we now consider the split/join theorems for
Forw. They will be applied in Line 17 of copy_ref, the only point where the
forwarding map is modified. According to the preceding if-conditions, the object
obj has not been forwarded at this point, so we can extract it by the splitting
rule (5), thus making it accessible for modification.

¬ forw-obj p M

Forw ϕ R B C Q M0 M = Forw ϕ (R - {p}) B C Q M0 M
(5)

After the update of Line 17, the object obj is forwarded, the forwarding map
has therefore been extended, and the queue contains a newly copied object. The
extension of the forwarding map is expressed by the following constant (where
operator ++ from the Isabelle library denotes the merge of two maps).

extend-forw ctx ϕ p M = ϕ ++ [p �→ to-ptr (rd ctx p TInt M)]

The join theorem (6) then expresses the reasoning necessary for deriving that
the forwarding map is consistent after copy_ref. Note how the first premise
reflects the conclusion of (5) while the others capture the operational behaviour
of the algorithm, as gleaned from the code.

498 H. Gast

Forw ϕ (R - {p}) B C Q M0 M
p ∈ R forw-obj p M

obj-fields (to-ptr (rd ctx p TInt M)) M = obj-fields p M0
to-ptr (rd ctx p TInt M) /∈ B ∪ C ∪ Q

same-static ctx gctx

Forw (extend-forw ctx ϕ p M) R B C (Q ∪ { to-ptr (rd ctx p TInt M) }) M0 M

(6)

The final code location concerned with the forwarding map is Line 12 of collect,
which advances scan and thus moves the “current” object to the “black” part of
the work queue (§2.5). At this point, both fields of the object at scan must be
“completely processed”. Using the function pmap from §2.6, we can express this
assertion concisely: a reference is “done”, under a given mapping ϕ, if in current
state M its previous content in M’ has been overwritten with the correct word:

done-ref p ϕ M’ M ≡ (pmap ϕ (rd gctx p TInt M’) = Some (rd gctx p TInt M))

The constant is, however, more than an auxiliary. Consider the two calls in the
collect loop. Each guarantees in its post-condition done_ref for its passed
object field, but each possibly extends the map ϕ. It therefore became clear im-
mediately that (7) was needed at the end of the loop body; by proving it directly,
we could check the background theory about the algorithm before attempting
the verification. (≤m from the Isabelle library defines extensions of maps.)

done-ref p ϕ M’ M ϕ ≤m ϕ’

done-ref p ϕ’ M’ M
(7)

Theorem (8) then verifies the correctness of Line 17 of collect: the forwarding
map is left intact if both object fields are “done”:

Forw ϕ R B {p} Q M0 M
obj-fields p M’ = obj-fields (the (inv-map ϕ p)) M0

done-ref p ϕ M’ M done-ref (p ⊕ 4) ϕ M’ M

Forw ϕ R (insert p B) {} Q M0 M

(8)

We wished to be sure early in proof development that the overall goal of con-
structing the graph isomorphism (§2.6) would be attained. Immediately after
deriving the definition of Forw from Figure 1, we therefore proved (9) to ensure
that the consistency conditions are strong enough: when the algorithm’s work
queue becomes empty after the loop, and all objects have been forwarded, then
the forwarding map is an isomorphism.

Forw ϕ R B {} {} M0 M ∀ p ∈ R. forw-obj p M

iso ϕ R (λp. obj-fields p M0) B (λp. obj-fields p M)
(9)

In summary, even the complex aspect of the forwarding map has been derivable
from the code and informal arguments, without referring to the generated verifi-
cation conditions. The search for split/join theorems has led to understandable
reasoning steps, whose application during the verification is clear.

Developer-Oriented Correctness Proofs 499

2.8 Remaining Free Space

The collector copies objects out of the from-space into the to-space. Since both
spaces have the same size, the to-space will be large enough to receive all copies.
In order to be satisfied that this reasoning will be sufficient, we proved (10) before
proceeding further (region-size A is the size of the region covered by A; � denotes
allocatedness [16]). Its premises reflect the situation in Line 11 of copy_ref: as
an invariant, the space occupied by all non-copied objects is no greater than the
remaining free-block (i.e. the remainder of the to-space after free); both the free-
block and the non-copied objects are allocated; and some object p among these
has not been copied. The conclusion asserts that one object can be extracted to
maintain the invariant and to split the free-block; furthermore moving the free-
pointer forward will leave it inside the to-space, ready for further allocations.

region-size (g.nodes {p ∈ R. ¬ forw-obj p M}) ≤ region-size (free-block M)
M � free-block M ‖ g.nodes {p ∈ R. ¬ forw-obj p M}
p ∈ R ¬ forw-obj p M

region-size (g.nodes {p’ ∈ R. p’ �= p ∧ ¬ forw-obj p’ M }) +8≤ region-size (free-block M)∧
free-block M = obj-cover (free M)

‖ block (free M ⊕ 8) (spaceSz M - (free M � toSpace M) - 8) ∧
free M < free M⊕ 8 ∧ free M⊕ 8≤ toSpace M⊕ spaceSz M

(10)

3 Assembling the Correctness Proof

Section 2 has formalized the aspects of Cheney’s algorithm along with theorems
for reasoning about them, and has indicated precisely how to apply the theorems
in verification. It remains to assemble the available parts into the correctness
proof. This mode of presentation reflects our way of proceeding: we finished
most of the base work before being concerned with the verification conditions.

3.1 The Specification of collect

The pre-condition of the collector is the expected one: the memory consists of
the two half-spaces (§2.4) and the objects R reachable from the root r (§2.6)
are contained in the (exhausted) to-space. Finally, the two spaces are laid out
according to §2.4, the global definitions in the current context match those in
gctx, and the auxiliary (or logical) variable M0 is bound to the initial state
(� denotes that the cover describes the entire memory layout):

M � � r :TInt � ‖ gc-vars ‖ to-block M ‖ from-block M ∧
g.reachable (ref-set r M) {} R M ∧ g.nodes R � to-block M ∧
space-vars-inv M ∧ same-static ctx gctx ∧ M0 ::= M

The post-condition specifies the same memory layout, but the object graph is
copied to the new to-space into a set R’ of objects, whose graph structure is
isomorphic to that of the initial graph R [18,22]:

M � �R0 :TInt � ‖ gc-vars ‖ to-block M ‖ from-block M ∧ space-vars-inv M ∧
(∃ϕ R’. iso ϕ R (λp. obj-fields p M0) R’ (λp. obj-fields p M) ∧

g.nodes R’ � to-block M)

500 H. Gast

gc-inv root sc sc’ R S B C Q ϕ M0 M ≡
space-vars-inv M ∧
is-ptr (to-Ptr (free M)) ∧ free M ∈ { toSpace M .. toSpace M ⊕ spaceSz M } ∧
q.nodes (toSpace M) sc B M ∧ q.nodes sc’ (free M) Q M ∧
set B ∩ (set C ∪ set Q)= {} ∧ set C ∩ set Q = {} ∧
(set B ∪ set C ∪ set Q) ⊆ {..< free M } ∧
Forw ϕ R (set B) (set C) (set Q) M0 M ∧
g.reachable (ref-set root M0) {} R M0 ∧
g.nodes R � from-block M ∧
to-block M = g.nodes (set B ∪ set C ∪ set Q) ‖ free-block M ∧
g.reachable (g.Succs (set Q) M∪S) {p∈R. forw-obj p M} {p∈R. ¬ forw-obj pM}M ∧
region-size (g.nodes {p ∈ R. ¬ forw-obj p M}) ≤ region-size (free-block M) ∧
(∀p ∈ R. ¬ forw-obj p M −→ obj-fields p M = obj-fields p M0)

Fig. 3. The Collector’s Invariant

3.2 The Loop Invariant and Proof of collect

The main invariant of collect (Figure 3), which together with the memory lay-
out from the pre-condition forms the loop invariant, relates the parts of Figure 1
and has four further parameters S, C, sc and sc’, which act as boundaries in the
formulation of split/join theorems. The invariant gathers the aspects from §2: it
captures the half-spaces (§2.4) with the additional free pointer and the queue
structure (§2.5), whose fragments are delimited by the boundary parameters.
In the forwarding map, it leaves C open in the same way as §2.7. It keeps the
definition of R as the set of objects reachable in the initial state M0, and the
split of the (swapped) from- and to-spaces. Finally, the invariant on sizes (§2.8)
and the reachability of un-copied nodes (§2.6) guarantee that the algorithm can
make progress. The un-copied objects remain unmodified from the initial state,
which again imitates the invariant of the Schorr-Waite algorithm [12,6].

Like the separate aspects, the invariant enjoys split and join theorems that
guide the verification. The split theorem (11) is applied at the beginning of the
collect loop body, where the invariant holds and the queue is not empty. It
moves the object scan to the current nodes C and makes explicit the information
that was known before: its successors may lead to un-copied nodes, and its fields
are just copied from some original object (given by ϕ−1), such that the successors
are contained in R (by reachable sets being closed).

gc-inv root (scan M) (scan M) R S B [] Q ϕ M0 M scan M �= free M

∃Q’. gc-inv root (scan M) (queue-succ (scan M) M) R
(S ∪ set (obj-succs (scan M) M)) B [scan M] Q’ ϕ M0 M ∧

Q = scan M # Q’ ∧ scan M /∈ set Q’ ∧
obj-fields (scan M) M = obj-fields (the (inv-map ϕ (scan M))) M0 ∧
set (obj-succs (scan M) M) ⊆ R

(11)

After the loop body, the scan object is re-integrated into the overall structure
by the join theorem (12). Therein, M’ designates the memory state before the
loop body, such that the first three premises mirror the conclusion of the split

Developer-Oriented Correctness Proofs 501

theorem (11) and the advancing of scan (Line 12). The real proof obligation is in
the last line: both fields of the object must be “done” (§2.7). In the conclusion,
the scan object is now “black”.

gc-inv root (scan M’) (scan M) R (set (obj-succs (scan M’) M’)) B [scan M’] Q ϕ M0 M
obj-fields (scan M’) M’ = obj-fields (the (inv-map ϕ (scan M’))) M0
scan M = scan M’ ⊕ 8
done-ref (scan M’) ϕ M’ M done-ref (scan M’ ⊕ 4) ϕ M’ M

gc-inv root (scan M) (scan M) R {} (B @ [scan M’]) [] Q ϕ M0 M

(12)
The proof of both theorems (11) and (12) are direct using the split/join theorems
for the constituent aspects from §2. For instance, the last two premises of (12)
are obviously needed to apply (8).

The verification of collect is now clear: in the beginning, gc-inv holds trivially
for the empty queue and empty forwarding map. The helper copy_ref will be
proven in §3.3 to maintain gc-inv and to guarantee that its argument is a done-ref

(§2.7) after execution. For collect, we therefore split gc-inv at the beginning of
the loop body by (11) and join it after the two calls by (12) (using (7)).

In summary, the overall correctness proof is only an application of reasoning
steps derived from informal arguments of the code’s behaviour and consistency
conditions in §2, and the developer’s intention of factoring out the copying of a
single reference is reflected in the proof structure.

3.3 The copy ref Function

Informally, the auxiliary function copy_ref must process a single reference com-
pletely, i.e. convert it to a done-ref (§2.7), without violating gc-inv. Its specifica-
tion merely makes this notion precise. The pre-condition assumes the invariant
memory layout and gc-inv, and binds a few auxiliary variables to initial values.
∃ ’B Q. gc-inv root sc sc’ R S B C Q ϕ M0 M ∧ proper-ref p R M ∧

M � gc-vars ‖ g.nodes R ‖ g.nodes (set B ∪ set Q) ‖ free-block M ‖ � p :TInt � ‖ F ∧
same-static ctx gctx ∧ P0 := p ∧ M1 ::= M ∧ wf-cover F

The post-condition asserts gc-inv (albeit with a possibly changed queue) and
an unmodified layout (although the free-block may be different). Furthermore,
it has processed the given reference as required (§2.7), has at most extended
the forwarding map, and has not modified the space variables, the pointer scan
and F, which contains the remainder of the memory (the frame conjunct [12]).
∃ ’B Q ϕ ’. gc-inv root sc sc’ R S B C Q ϕ ’ M0 M ∧
M � gc-vars ‖ g.nodes R ‖ g.nodes (set B ∪ set Q) ‖ free-block M ‖ �P0 :TInt � ‖ F ∧
done-ref P0 ϕ ’ M1 M ∧ map-le ϕ ϕ ’ ∧
frame (space-vars ‖ gvar-block ”scan” ‖ F) M1 M

As in the case of collect, the correctness proof of copy_ref follows the indi-
cations from §2: in the first case (Lines 7–9), only the reference p is modified,
and the post-condition can be derived by extracting knowledge about the copied
pointer from gc-inv. The second case (Lines 11–17) is the interesting one: we
split the graph R by (3), the forwarding map by (5), and the free-block by (10).
To derive the post-condition, the complementary join theorems (4) and (6) are
invoked to re-assemble gc-inv and the post-condition.

502 H. Gast

4 Related Work

We have proposed strategies for structuring a correctness proof from a developer’s
perspective. To the best of our knowledge, neither the alignment of the proof with
different aspects of the algorithm, nor the unifying strategy of high-level split/join
theorems with dedicated boundary parameters have been discussed before. Fur-
ther, no other study has attempted theory re-use across algorithms through generic
formalizations of shared aspects. We now discuss related case studies on garbage
collectors, focussing on recent low-level implementations.

Myreen [7] verifies Cheney’s collector by refinement, proving successively more
detailed specifications correct relative to the previous one. The intention is to
re-use higher levels, which express the core of copying collection, to verify other
collectors. This re-use is, however, not demonstrated, and it applies only to
algorithms with the same specification. Our approach of factoring the proof
into aspects has enabled the re-use of extensive theories across algorithms with
different specifications. Myreen explicitly excludes the discussion of the proofs
beyond mentioning that his approach is a reduction to set-theoretic arguments.

Varming/Birkedal [23, §4.1] formalize the earlier pen-and-paper development
[18] in Isabelle/HOLCF based on higher-order separation logic. Their structure
of the invariants and specifications is complementary to ours, in that they use the
separating conjunction to specify disjoint parts of the heap independently, while
we formalize the unifying aspects across the entire heap. Their definitions of the
invariants refer to the memory content directly, and no intermediate levels are
introduced. The overall structure of the substantial development is not discussed.

McCreight [9, Ch. 6] gives a detailed proof of Cheney’s collector in separation
logic. He structures the specifications and invariants carefully by a number of
auxiliary predicates and motivates their definitions in relation to the code (e.g.
[9, §6.2, Fig. 6.7]). His loop invariant is developed in several steps (Figs. 6.16,
6.17, 6.18, 6.21). Following the idea of local reasoning, each definition leaves
open a parameter for the remainder of the memory, which is instantiated in the
subsequent definitions. The development is thus, again, complementary to ours
by splitting the assertions along the memory layout, as prescribed by separation
logic. Independent lemmas about the auxiliary predicates are not discussed, and
McCreight mentions (§6.3.3; p. 122; §6.4.3) that the actual proofs involve a
substantial amount of manual, low-level manipulation.

Hawblitzel and Petrank [2] verify several practical collectors using the Boo-
gie/Z3 tool-suite. The collectors are written in BoogiePL, are translated to as-
sembly language, and can be applied to existing benchmarks. Their specifications
follow the framework [22], but exclude the central aspect of reachability [2, §4.1.1].
The proofs are discussed briefly along the verification conditions, which are also
related back to the code. For the SMT prover to succeed, however, a substantial
amount of further annotations as well as detailed technical considerations on trig-
gers [2, §4.3] are necessary.

Mehta and Nipkow [6] verify the related Schorr-Waite graph marking algo-
rithm. Their elegant Isar proof [6, §7.2] is discussed down to individual verifica-
tion conditions. However, no attempt at structuring the proof further is made

Developer-Oriented Correctness Proofs 503

and the level of detail is limited by the used high-level language. Hubert and
Marché [10] verify a C implementation of the same algorithm. Their description
of the proof in [10, §4] is limited to the explanation of the invariant.

5 Conclusion

We have approached the verification of a low-level C implementation of Cheney’s
collector from a developer’s perspective: by formalizing and reasoning about the
different aspects of the algorithm independently, by choosing the aspects to be
familiar from other contexts, and by unifying the development using the intro-
duced split/join reasoning pattern, a strong relationship between the proof and
an informal understanding of the code’s operational behaviour was maintained
throughout. The verification then consisted in applying the derived lemmas, and
the overall proof appears as a precise version of informal correctness arguments.

The development [17] consists of 2590 lines, which is comparable to [7] and
substantially smaller than [9]. Of these lines, 1230 are re-used from previous
studies (lists: 330; object graphs: 650 (+750 ML); byte-level memory: 250). The
new part consists of 280 lines for basic definitions and library instantiation (§2.4–
§2.6); 580 for proofs about the aspects (§2.5–2.8); 60 for code and specification;
440 for the verification conditions (§3). This relative distribution underlines the
degree of re-use, as well as the largely self-contained treatment of the identified
aspects of the algorithm.

The proposed approach has shown several benefits. First, we have achieved
high-level proof re-use across different algorithms: two aspects, the work queue
and reachability in object graphs, were solved completely by generic theories
from previous developments. Isabelle locales were found to be a suitable mech-
anism for accomplishing such re-use. Second, the strong relation between the
proof structure and the code greatly aided the development, since proofs could
be derived from the informal correctness arguments as used by developers. Fi-
nally, the fact that the reasoning about the different aspects is independent has
enhanced the maintainability of the proof during development.

We have chosen an interactive prover for our development because of its sup-
port for structured theory development. The application of the derived lemmas
was, however, mostly automatic and consisted in discharging side-conditions in
set-theory by simple tactic invocations. As future work, we therefore propose
to investigate the application of our approach in the context of the Boogie and
SMT solver integration [5] available with the current Isabelle distribution.

References

1. Banerjee, A., Barnett, M., Naumann, D.A.: Boogie meets regions: A verification
experience report. In: Shankar, N., Woodcock, J. (eds.) VSTTE 2008. LNCS,
vol. 5295, pp. 177–191. Springer, Heidelberg (2008)

2. Hawblitzel, C., Petrank, E.: Automated verification of practical garbage collectors.
SIGPLAN Not. 44(1), 441–453 (2009)

504 H. Gast

3. Zee, K., Kuncak, V., Rinard, M.: Full functional verification of linked data struc-
tures. SIGPLAN Not. 43(6), 349–361 (2008)

4. Moskal, M.: Programming with triggers. In: Dutertre, B., Strichman, O. (eds.)
SMT 2009: Proceedings of the 7th International Workshop on Satisfiability Modulo
Theories. ACM, New York (2009)

5. Böhme, S., Moskal, M., Schulte, W., Wolff, B.: HOL-Boogie–An interactive prover-
backend for the Verifying C Compiler. J. Autom. Reason. 44, 111–144 (2010)

6. Mehta, F., Nipkow, T.: Proving pointer programs in higher-order logic. Inf. Com-
put. 199(1-2), 200–227 (2005)

7. Myreen, M.O.: Reusable verification of a copying collector. In: Leavens, G.T.,
O’Hearn, P., Rajamani, S.K. (eds.) VSTTE 2010. LNCS, vol. 6217, pp. 142–156.
Springer, Heidelberg (2010)

8. Marti, N., Affeldt, R.: Formal verification of the heap manager of an operating
system using separation logic. In: Liu, Z., Kleinberg, R.D. (eds.) ICFEM 2006.
LNCS, vol. 4260, pp. 400–419. Springer, Heidelberg (2006)

9. McCreight, A.: The Mechanized Verification of Garbage Collector Implementa-
tions. PhD thesis, Department of Computer Science, Yale University (2008)

10. Hubert, T., Marché, C.: A case study of C source code verification: the Schorr-Waite
algorithm. In: Aichernig, B.K., Beckert, B. (eds.) SEFM. IEEE, Los Alamitos (2005)

11. Cheney, C.J.: A nonrecursive list compacting algorithm. Commun. ACM 13, 677–
678 (1970)

12. Gast, H.: Reasoning about memory layouts. Formal Methods in System De-
sign 37(2-3), 141–170 (2010)

13. Gast, H., Trieflinger, J.: High-level Reasoning about Low-level Programs. In:
Roggenbach, M. (ed.) Automated Verification of Critical Systems 2009. Electronic
Communications of the EASST, vol. 23 (2009)

14. Gast, H.: Verifying the L4 kernel allocator in lightweight separation (2010),
http://www-pu.informatik.uni-tuebingen.de/users/gast/proofs/kalloc.pdf

15. Berdine, J., Calcagno, C., O’Hearn, P.W.: Smallfoot: Modular automatic asser-
tion checking with separation logic. In: de Boer, F.S., Bonsangue, M.M., Graf,
S., de Roever, W.-P. (eds.) FMCO 2005. LNCS, vol. 4111, pp. 115–137. Springer,
Heidelberg (2006)

16. Gast, H.: Lightweight separation. In: Mohamed, O.A., Muñoz, C., Tahar, S. (eds.)
TPHOLs 2008. LNCS, vol. 5170, pp. 199–214. Springer, Heidelberg (2008)

17. Gast, H.: A developer-oriented proof of Cheney’s algorithm (2011),
http://www-pu.informatik.uni-tuebingen.de/users/gast/proofs/cheney.pdf

18. Torp-Smith, N., Birkedal, L., Reynolds, J.C.: Local reasoning about a copying
garbage collector. ACM Trans. Program. Lang. Syst. 30(4), 1–58 (2008)

19. Dawson, J.E.: Isabelle theories for machine words. In: 7th International Workshop
on Automated Verification of Critical Systems (AVOCS 2007). ENTCS, vol. 250
(2009)

20. Kammüller, F., Wenzel, M., Paulson, L.C.: Locales - A sectioning concept for
isabelle. In: Bertot, Y., Dowek, G., Hirschowitz, A., Paulin, C., Théry, L. (eds.)
TPHOLs 1999. LNCS, vol. 1690, pp. 149–166. Springer, Heidelberg (1999)

21. Burstall, R.: Some techniques for proving correctness of programs which alter data
stuctures. In: Meltzer, B., Michie, D. (eds.) Machine Intelligence, vol. 7. Edinburgh
University Press, Edinburgh (1972)

22. McCreight, A., Shao, Z., Lin, C., Li, L.: A general framework for certifying garbage
collectors and their mutators. SIGPLAN Not. 42(6), 468–479 (2007)

23. Varming, C., Birkedal, L.: Higher-order separation logic in Isabelle/HOLCF.
Electron. Notes Theor. Comput. Sci. 218, 371–389 (2008)

http://www-pu.informatik.uni-tuebingen.de/users/gast/proofs/kalloc.pdf
http://www-pu.informatik.uni-tuebingen.de/users/gast/proofs/cheney.pdf

Static Analysis of String Values

Giulia Costantini1, Pietro Ferrara2, and Agostino Cortesi1

1 University Ca’ Foscari of Venice, Italy
{costantini,cortesi}@dsi.unive.it

2 ETH Zurich, Switzerland
pietro.ferrara@inf.ethz.ch

Abstract. In this paper we propose a unifying approach for the static
analysis of string values based on abstract interpretation, and we present
several abstract domains that track different types of information. In
this way, the analysis can be tuned at different levels of precision and
efficiency, and it can address specific properties.

1 Introduction

Strings are widely used in modern programming languages. Their applications
vary from providing an output to a user to the construction of programs
executed through reflection. For instance, in PHP strings can be a way of com-
municating programs, while in Java they are widely used as SQL queries, or
to access information about the classes through reflection. The execution of
str.substring(str.indexOf(′a′)) raises an exception if str does not contain an
′a′ character: in this case, it would be useful being able to track the characters
surely contained on the variable str. As another example, when dealing with
SQL queries, what happens if we execute the query “DELETE FROM Table WHERE
ID = ” + id when id is equal to “10 OR TRUE”? The content of Table would
be permanently erased! It’s clear that a wrong manipulation of strings could
lead not only to subtle exceptions, but to dramatic and permanent effects as
well [20].

For all these reasons, the interest on approaches that automatically analyse
and discover bugs on strings is constantly raising. On the other hand, the state-
of-the-art in this field is still limited: approaches that rely on automata and use
regular expressions are precise but slow, and they do not scale up [14,24,21,13],
while many other approaches are focused on particular properties or class of
programs [10,18,12]. Genericity and scalability are the main advantages of the
abstract interpretation approach [4,5], though its instantiation to textual values
has been quite limited up to now.

The main contribution of this paper is the formalisation of a unifying abstract
interpretation based framework for string analysis, and its instantiations with
four different domains that track distinct types of information. In this way, we
can tune the analysis at diversified levels of accuracy, yielding to faster and
rougher, or slower but more precise string analyses.

S. Qin and Z. Qiu (Eds.): ICFEM 2011, LNCS 6991, pp. 505–521, 2011.
c© Springer-Verlag Berlin Heidelberg 2011

506 G. Costantini, P. Ferrara, and A. Cortesi

1 var query = "SELECT ’$\$$’ ||

2 (RETAIL/100) FROM INVENTORY WHERE ";

3 if (l != null)

4 query = query+"WHOLESALE > "+l+" AND ";

5

6 var per = "SELECT TYPECODE, TYPEDESC FROM

7 TYPES WHERE NAME = ’fish’ OR NAME = ’meat’";

8 query = query+"TYPE IN (" + per + ");";

9 return query;
(a) The first running example

1 string x = "a";

2 while(cond)

3 x = "0" + x + "1";

4 return x;
(b) The second running
example

Fig. 1. The running examples

We inspired our work looking at the approach adopted for numerical domains
for static analysis of software [7,11,19]. The interface of a numerical domain
is nowadays standard: each domain has to define the semantics of arithmetic
expressions (like i + 5) and boolean conditions (like i < 5). Similarly, we con-
sider a limited list of basic string operators that can be easily extended to the
various programming languages. The concrete semantics of these operators is
approximated in the four different abstract domains. In addition, after 30 years
of practice with numerical domains, it is clear that a monolithic domain precise
on any program and property (e.g., Polyhedra [7]) gives up in terms of efficiency,
while to achieve scalability we need specific approximations on a given property
(e.g., Pentagons [17]) or class of programs (e.g., ASTRÉE [6]). With this sce-
nario in mind, we develop several domains inside the same framework to tune the
analysis at different levels of precision and efficiency w.r.t. the analysed program
and property. Other abstractions are possible and welcomed, and we expect our
framework to be generic enough to support them.

The paper is structured as follows. In the rest of this Section we introduce two
running examples, and we recall some basics of abstract interpretation. Section
2 defines the syntax of the string operators we will consider. Section 3 introduces
the concrete semantics, while in Section 4 the abstract domains are formalised.
Finally, Section 5 discusses the related work, and Section 6 concludes.

1.1 Running Examples

Along the paper, we will always refer to the two examples reported in Tables 1(a)
and 1(b). The first Java program is taken from [10], and it dynamically builds an
SQL query by concatenating some strings. One of these concatenations applies
only if a certain value (unknown at compile time) is not null. We are interested in
checking if the SQL query resulting by the execution of such code is well formed.
For the sake of readability, we will use some shortcuts to identify string constants
of this program, as reported in Table 1. The second program modifies a string
inside a while loop whose condition cannot be statically evaluated. Therefore,
we will need to apply a widening operator [2] to force the convergence of the
analysis. Intuitively, this program produces strings in the form “0na1n”.

Static Analysis of String Values 507

Table 1. Shortcuts of string constants in the first running example

Name String constant

s1 “SELECT ′$′ || (RETAIL/100) FROM INVENTORY WHERE ”
s2 “WHOLESALE > ”
s3 “ AND ”
s4 “SELECT TYPECODE, TYPEDESC FROM TYPES

WHERE NAME = ′fish′ OR NAME = ′meat′”
s5 “TYPE IN (”
s6 “); ”

1.2 Abstract Interpretation

Abstract interpretation is a theory to define and soundly approximate the se-
mantics of a program [4,5], focusing on some runtime properties of interest.
Usually, each concrete state is composed by a set of elements (e.g., all the pos-
sible computational states), that is approximated by an unique element in the
abstract domain. Formally, the concrete domain ℘(D) forms a complete lattice
〈℘(D),⊆, ∅, D,∪,∩〉. On this domain, a semantics S is defined. In the same way,
an abstract semantics is defined, and it is aimed to approximate the concrete
one in a computable way. Formally, the abstract domain A has to form a com-
plete lattice 〈A,≤A,⊥A,
A,!A, A〉. The concrete elements are related to the
abstract domain by a concretization γA and an abstraction αA functions. In or-
der to obtain a sound analysis, we require that the abstraction and concretization
functions above form a Galois connection. An abstract semantics S is defined as
a sound approximation of the concrete one, i.e., ∀a ∈ A : αA ◦ S�γA(a)� ≤A S�a�.

When abstract domains do not satisfy the ascending chain condition, a widen-
ing operator ∇A is required in order to guarantee the convergence of the fixed
point computation. This is an upper bound operator such that for all increasing
chains a0 ≤A . . . an ≤A . . . the increasing chain defined as w0 = a0, . . . , wi+1 =
wi∇Aai+1 is not strictly increasing.

2 Syntax

Different languages define different operators on strings, and usually each lan-
guage supports a huge set of such operators: in Java 1.6 the String class contains
65 methods plus 15 constructors, System.Text in .Net contains about 12 classes
that work with Unicode strings, and PHP provides 111 string functions. Consid-
ering all these operators would be quite verbose, and in addition the most part
of them perform similar actions using slightly different data. We restrict our de-
scription on a small but representative set of common operators. We chose these
operators looking at some case studies. Other operators can be easily added to
our approach. For each operator, this would mean to define its concrete seman-
tics, and its approximations on the different domains we will introduce.

508 G. Costantini, P. Ferrara, and A. Cortesi

Table 2. The concrete semantics, where �B represents that the condition could be
evaluated to true or false depending on the string in S1 we are considering

S�new String(str)�() = {str}
S�concat�(S1, S2) = {s1s2 : s1 ∈ S1 ∧ s2 ∈ S2}
S�readLine�() = S
S�substringeb�(S1) = {cb..ce : c1..cn ∈ S1 ∧ n ≥ e ∧ b ≤ e}

B�containsc�(S1) =

⎧⎨⎩
true if ∀s ∈ S1 : c ∈ char(s)
false if ∀s ∈ S1 : c /∈ char(s)
�B otherwise

A common operation is the creation of a new constant string (new String(str)
where str is a sequence of characters). Usually programs concatenate strings
(concat(s1, s2) where s1 and s2 are strings), read inputs from the user
(readLine()), and take a substring of a given string (substringeb(s), where
s is a string, and b and e are integer values) as well. A common test is to check
if a string contains a character (containsc(s), where s is a string and c is a
character).

3 Concrete Domain and Semantics

3.1 Concrete Domain

Our concrete domain is simply made of strings. Given an alphabet K, that is
a finite set of characters, we define strings as (possibly infinite) sequences of
characters. Formally, S = K∗, where A∗ is an ordered sequence of elements in A,
that is, A∗ = {a1 · · · an : ∀i ∈ [1..n] : ai ∈ A}. A string variable in our program
could have different values in different executions, and our goal is to approximate
all these values (potentially infinite, e.g., when dealing with user input) in a finite,
computable, and hopefully efficient manner. Our lattice will be made of sets of
strings. As usual in abstract interpretation, the partial order is the set inclusion.
Formally, our concrete domain is defined by 〈℘(S),⊆, ∅, S,∪,∩〉.

3.2 Semantics

Table 2 formalises the concrete semantics. For each statement of the language
we introduced in Section 2, we define its semantics. For the first four statements,
we define a semantics S that, given the statement and eventually some sets of
concrete string values in S, returns a set of strings resulting from that operation.
The semantics of new String(str) returns a singleton containing str, while the
semantics of readLine returns a set containing all the possible strings, since we
may read any string from the standard input. The semantics of concat returns
all the possible concatenations of a string taken from the first set and a string
taken from the second set (we denote by s1s2 the concatenation of strings s1
and s2), while the semantics of substringeb returns all the substrings from the

Static Analysis of String Values 509

b-th to e-th character of the given strings (note that if one of the strings is
too short, there is not any substring for it in the resulting set, since this would
cause a runtime error without producing any value). For containsc we define
a particular semantics B : [℘(S) → {true, false,
B}] that, given a set of strings,
returns true if all the strings contains the character c, false if none contains this
character, and
B otherwise. This special boolean value represents a situation in
which the boolean condition may be evaluated to true some times, and to false
other times. We denoted by char a function that returns the set of characters
contained in the string in input.

4 Abstract Domains and Semantics

What is the relevant information contained in a string? How can we approx-
imate it in an efficient way? Tracking both sound and precise information at
compile time on strings in an efficient way is infeasible. Then we need to intro-
duce approximation. We want to track information precise enough to efficiently
analyse the behaviours of interest, considering the string operators we defined in
the previous section. Our purpose is to approximate strings as much as we can,
preserving the information we deem relevant.

4.1 Character Inclusion

For the first abstract domain we aim at approximating a string through the
characters we know it surely contains or it could contain. This information could
be particularly useful to track if the indexes extrapolated from a string with
operators like indexOf(c) could be used to cut the string (because c is surely
contained in the string), or they could be invalid (e.g., -1). A string will be
represented by a pair of sets: the set of certainly contained characters C and the
set of maybe contained characters MC (CI = {(C, MC) : C, MC ∈ ℘(K) ∧ C ⊆
MC} ∪ ⊥CI). The partial order ≤CI on CI is the following one:

(C1, MC1) ≤CI (C2, MC2) ⇔ (C1, MC1) = ⊥CI ∨ (C1 ⊇ C2 ∧MC1 ⊆ MC2)

This is because the more information we have on the string (that is, the more
characters are certainly contained and the less characters are maybe contained),
the less number of strings we are representing. For example the abstract el-
ement represented by the pair ({a}, {a}) is more precise than the one repre-
sented by (∅, {a, b}). In fact, the first pair represents the concrete set of strings
{a, aa, aaa, . . .} while the second pair corresponds to {ε, a, b, aa, bb, ba, ab, . . .}.

For these reasons, the least upper bound is defined by !CI((C1, MC1),
(C2, MC2)) = (C1 ∩ C2, MC1 ∪ MC2), and the greatest lower bound is defined
by CI((C1, MC1), (C2, MC2)) = (C1 ∪ C2, MC1 ∩MC2). The widening operator
corresponds to the !CI operator, and it ensures the convergence of the analysis
since we supposed that the alphabet is finite. The top element of the lattice is

CI = (∅, K), while the bottom element ⊥CI corresponds to a “failure” state.

The function which abstracts a single string s is: α′
CI(s) = (char (s), char (s)).

The abstraction function takes us from a set of strings to an element in CI, and

510 G. Costantini, P. Ferrara, and A. Cortesi

Table 3. The abstract semantics of CI

SCI�new String(str)�() = (char(str), char (str))

SCI�concat�((C1, MC1), (C2, MC2)) = (C1 ∪ C2, MC1 ∪MC2)

SCI�readLine�() = (∅, K)

SCI�substringeb�((C1, MC1)) = (∅, MC1)

BCI�containsc�((C1, MC1)) =

⎧⎨⎩
true if c ∈ C1

false if c /∈ MC1

�B otherwise

#I Var CI
1 query α′

CI(s1)
3 l (∅, K)
3 query (π1(α

′
CI(s1)) ∪ π1(α

′
CI(s2))∪

π1(α
′
CI(s3)), K)

4 query (π1(α
′
CI(s1)), K)

5 per α′
CI(s1)

7 query (π1(α
′
CI(s1)) ∪ π1(α

′
CI(s4))∪

π1(α
′
CI(s5)) ∪ π1(α

′
CI(s6)),K)

(a) First running example

#I Var CI
1 x ({a}, {a})
3 x ({0, a, 1}, {0, a, 1})
4 x ({a}, {0, a, 1})

(b) Second running example

Fig. 2. The results of CI

it returns the upper bound of the abstraction of all the concrete strings. Let πi

be the projection on the i-th component of a tuple.
αCI(S1) =

⊔
CI,s∈S1

α′
CI(s) = (

⋂
s∈S1

π1(α′
CI(s)),

⋃
s∈S1

π2(α′
CI(s)))

Semantics. Table 3 defines the abstract semantics of the operators introduced
in Section 2 on the abstract domain CI. We denote by SCI and BCI the abstract
counterparts of S and B respectively.

When we evaluate a string, we know that the characters that are surely or
maybe included are exactly the ones that appear in the string. The concatenation
of two strings will contain all the characters that are surely or maybe contained
in the two strings. readLine returns a top value, while if we take a substring of
a given string, the result will possibly contain all the characters that are possibly
contained in the initial string, while we know nothing about the surely contained
characters. Finally, the semantics of containsc is quite precise, as it checks if a
character is surely contained or not contained respectively through C and MC.

Running Example. Consider the examples introduced in Section 1.1. The re-
sults of the analysis of the first program using CI are depicted in Figure 2(a). At
the beginning, variable query is related to a state that contains the abstraction of
c1, that is, both C and MC contain all the characters of s1. Since we do not know the
value of l, we compute the least upper bound between the abstract values of query
after instructions 1 and 3. In this way, we obtain that after the if statement the
abstract value of query contains the abstraction of s1 in the C component (since it
surely contains all the characters of that constant string), and the top value in the

Static Analysis of String Values 511

MC component (since we may have concatenated a string that may contain any
character). At the end of the given code, query surely contains the characters of
s1, s4, s5, and s6, and it may contain any character, since we possibly concatenated
in query an input string (the l variable).

As for the second program, in Figure 2(b) we see that after instruction 1 x
surely contains ‘a’. Inside the loop (line 3), x surely contains ‘a’, ‘0’ and ‘1’. In
line 4 we report the least upper bound between the value of x before entering
the loop (line 1) and the value after the loop (line 4): variable x surely contains
the character ‘a’, and it also may contain the characters ‘0’ and ‘1’.

4.2 Prefix and Suffix

The next abstract domain we consider approximates strings by their prefix. A
string will be a sequence of characters which begins with a certain sequence of
characters and ends with any string (we use ∗ to represent any string, ε included).
For example, abc∗ represents all the strings which begin with “abc”, including
“abc” itself. Since the asterisk ∗ at the end of the representation is always present,
we do not include it in the domain and consider abstract elements made only of
sequence of characters: PR = K∗ ∪ ⊥PR The partial order on this domain is:
S ≤PR T ⇔ S = ⊥PR ∨ (∀i ∈ [0, len(T)− 1] : len(T) ≤ len(S) ∧ T[i] = S[i])

An abstract string S is smaller than T if T is a prefix of S or if S is the bottom
⊥PR of the domain. The least upper bound operator is defined as the longest
common prefix of two strings. The greater lower bound is defined by:

 PR(S1, S2) =

⎧⎨⎩
S1 if S1 ≤PR S2

S2 if S2 ≤PR S1

⊥PR otherwise
The widening operator is simply the upper bound operator above, as the latter

converges in finite time. Top and bottom elements are, respectively, ε (the empty
prefix) and ⊥PR. The function which abstracts a single string is α′

PR(s) = s.
The abstraction function is αPR(S1) =

⊔
PR,s∈S1

α′
PR(s). This means that we

consider the longest common prefix amongst all strings in S1.
We can track information about the suffix of a string as well. We define

another abstract domain, SU , where a string will be something which ends with
a certain sequence of characters. The notation and all the operators of this
domain are dual to those of the previous domain. The definition of the domain
is: SU = K∗ ∪ ⊥SU . The partial order is:

S ≤SU T ⇔ S = ⊥SU ∨ (∀i ∈ [0, len(T)− 1] : len(T) ≤ len(S)∧
T[i] = S[i + len(S)− len(T)])

The least upper bound !SU is the longest common suffix, while the greatest
lower bound SU is the smallest suffix (if they are comparable) or ⊥SU (if they
are not comparable). The widening operator is the least upper bound operator
above. The top element is ε. The function which abstracts a single string is:
α′
SU (s) = s, and the abstraction function is αSU(S1) =

⊔
SU ,s∈S1

α′
SU (s).

These abstract domains could be particularly useful to check if some simple
syntactic properties (e.g., a string that is used as an SQL command always begins
with “SELECT” and ends with “; ”) are respected by all possible executions.

512 G. Costantini, P. Ferrara, and A. Cortesi

Table 4. The abstract semantics of PR

SPR�new String(str)�() = str

SPR�concat�(p1, p2) = p1

SPR�readLine�() = ε

SPR�substringeb�(p) =

⎧⎨⎩
p[b · · · e− 1] if e ≤ len(p)
p[b · · · len(p)− 1] if e > len(p) ∧ b < len(p)
ε otherwise

BPR�containsc�(p) =

{
true if c ∈ char(p)
�B otherwise

SSU�new String(str)�() = str

SSU�concat�(s1, s2) = s2
SSU�readLine�() = ε

SSU�substringeb�(s) = ε

BSU�containsc�(s) =

=

{
true if c ∈ char(s)
�B otherwise

(a) The abstract semantics of
SU

#I Var PR SU
1 query s1 s1

3 l ε ε
3 query s1 s3

4 query s1 “ ”
5 per s4 s4

7 query s1 s6

(b) First running
example

#I Var PR SU
1 x a a
3 x 0 1
4 x � �

(c) Second run-
ning example

Fig. 3. The abstract semantics of SU and the running examples

Semantics. Table 4 and 3(a) define the abstract semantics on PR and SU
respectively. The most precise suffix and prefix of a constant string are the string
itself. When we concatenate two strings, we consider as prefix and suffix of the
resulting string the abstract value of the left and right operand respectively. As
usual, the semantics of readLine returns the top value. The same happens for
substringeb in SU , since we do not know how many characters there are before
the suffix. Instead, PR can be more precise if b (and eventually e) are smaller
than the length of the prefix we have. Finally, the semantics of containsc returns
true iff c is in the prefix or suffix, and
B otherwise, since we have no information
at all about which characters are after the prefix or before the suffix.

Running Example. The results of the analyses using the prefix and suffix
domains on our running examples are reported in Figures 3(b) and 3(c).

For the first program, at line 1, query contains the whole string s1 as both
prefix and suffix. As already pointed out, l is an input of the user, so we do not
know what its prefix and suffix are. On the other hand, when we concatenate it
at line 3, we still have some information on the prefix and suffix of the resulting
string. Thus, at the end of the analyses, we get that the prefix of query is string
s1, its suffix is s6, although we lose information about what there is in the middle.

For the second program, before entering the loop we know the prefix and suffix
of x. Inside the loop after line 3, the convergence for x is ‘0’ as prefix and ‘1’
as suffix. This state, combined through the lub operator with the state before
the loop, unfortunately goes to
 (the longest common prefixes and suffixes are
empty), making us lose all the information.

Static Analysis of String Values 513

4.3 Bricks

The next abstract domain, BR, captures both inclusion and order amongst char-
acters, using a simplification of regular expressions. Therefore, the information
tracked by this domain could be adopted to prove more sophisticated proper-
ties than the previous domains (e.g., the well-formedness of SQL queries). A
string is approximated by a combination of bricks. A brick is defined as an ele-
ment of: B = [℘(S)]min,max, where min and max are two integer positive values.
A brick represents all the strings which can be built through the given strings,
taken between min and max times altogether. For example, [{“mo”, “de”}]1,2 =
{mo, de, momo, dede, mode, demo}. We represent strings as ordered lists of bricks.
For example we have that [{“straw”}]0,1[{“berry”}]1,1 = {berry, strawberry}
since [{“straw”}]0,1 concretizes to {ε, “straw”} and [{“berry”}]1,1 to {“berry”}.
Since a particular set of strings could be represented by more than one combi-
nation of bricks, we adopted a normalised form in which the lists are made of
bricks like [T]1,1 or [T]0,max>0, where T is a set of strings. We defined a function
normBricks(L) which, given a list of bricks L, returns its normalized version.

The abstract domain of bricks is defined as: BR = B∗
, that is, the set of all

finite sequences composed of bricks. The top element
BR is a list containing
only
B. The bottom element is ⊥BR, an empty list or any list which contains
at least one invalid element (⊥B). The partial order between single bricks is:
[C1]min1,max1 ≤B [C2]min2,max2 ⇔ (C1 ⊆ C2 ∧ min1 ≥ min2 ∧ max1 ≤ max2) ∨
[C2]min2,max2 =
B ∨ [C1]min1,max1 = ⊥B where
B and ⊥B are special bricks,
respectively greater and smaller than any other brick. The partial order between
lists of bricks L1 and L2 is as follows:

L1 ≤BR L2 ⇔ (L2 =
BR) ∨ (L1 = ⊥BR) ∨ (∀i ∈ [1, n] : L1[i] ≤B L2[i])

where we make L1 and L2 have the same size n by adding empty bricks ([∅]0,0)
at the end of the shorter list. The upper bound operator on a single brick is:⊔

B([S1]m1,M1 , [S2]m2,M2) = [S1 ∪ S2]min(m1,m2),max(M1,M2)

The upper bound operator on lists of bricks (elements of our domain) is as
follows: given two lists L1 and L2, we make them to have the same size n adding
empty bricks to the shorter one. Then:

⊔
BR(L1, L2) = LR[1]LR[2] . . .LR[n] where

∀i ∈ [1, n] : LR[i] = !B(L1[i], L2[i]).
Let kL, kI and kS be three constant integer values. The widening operator

∇BR : (BR× BR) → BR is defined as follows:

∇BR(L1, L2) =

⎧⎨⎩

BR if (L1 �BR L2 ∧ L2 �BR L1)∨

(∃i ∈ [1, 2] : len(Li) > kL)
w(L1, L2) otherwise

where w(L1, L2) = [Bnew
1 (L1[1], L2[1]);Bnew

2 (L1[2], L2[2]); . . . ;Bnew
n (L1[n], L2[n])],

with n being the size of the bigger list (we make them to have the same size n
adding empty bricks to the shorter one), and Bnew

i (L1[i], L2[i]) is defined by:

514 G. Costantini, P. Ferrara, and A. Cortesi

Table 5. The abstract semantics of BR

SBR�new String(str)�() = [{str}]1,1

SBR�concat�(b1, b2) = normBricks(concatList(b1, b2))

SBR�readLine�() = �BR

SBR�substringeb�(b) =

{
[T

′
]1,1 if b[0] = [T]1,1 ∧ ∀t ∈ T : len(t) ≥ e

�BR otherwise

BBR�containsc�(b) =

⎧⎨⎩
true if ∃B ∈ b : B = [T]m,M ∧ 1 ≤ m ≤ M ∧ (∀t ∈ T : c ∈ char(t))

false if ∀[T]m,M ∈ b,∀t ∈ T : c /∈ char(t)
�B otherwise

Bnew
i ([S1i]m1i,M1i , [S2i]m2i,M2i) =

⎧⎪⎪⎪⎨⎪⎪⎪⎩

B if |S1i ∪ S2i| > kS

∨L1[i] =
B ∨ L2[i] =
B
[S1i ∪ S2i]

(0,∞)
if (M−m) > kI

[S1i ∪ S2i]
(m,M)

otherwise
where m = min(m1i, m2i) and M = max(M1i, M2i). ∇BR is an upper bound
operator because it returns either
BR or w(L1, L2), which builds a new list of
bricks which is bigger (with respect to ≤BR) than both L1 and L2. The resulting
list is greater or equal because each brick is greater than or equal to the two cor-
responding bricks in L1 and L2, since we always take the union of the two strings
sets and an index range bigger than the initial two. Moreover, this operator con-
verges because a value of an ascending chain can increase along three axes: (i)
the length of the brick list, (ii) the indices range of a certain brick, and (iii) the
strings contained in a certain brick. The growth of an abstract value is bounded
along each axis with the help of the three constants. After the list has reached kL

elements, the entire abstract value is approximated to
BR. If the range of a cer-
tain brick becomes larger than kI , the range is approximated to (0, +∞). Finally,
if the strings set of a certain brick reaches kS elements, the brick is approximated
to
B. The lower bound operator is dual with respect to the upper bound op-
erator above. Formally,

�
B([S1]m1,M1 , [S2]m2,M2) = [S1∩S2]max(m1,m2),min(M1,M2).

The abstraction function is defined by: α′
BR(s) = [{s}](1,1) and

αBR(S1) =
⊔

BR,s∈S1
α′
BR(s) = [S1](1,1)

Semantics. Table 5 defines the abstract semantics on BR. When a constant
string is evaluated, the semantics returns a single brick containing exactly that
string with [1, 1] as index. For the concatenation of two strings, we rely on the
concatList function that concatenates two lists of bricks, and then we normalise
its result. readLine returns the top value, while substringeb returns the sub-
string iff the first brick of the list has index [1, 1] and the length of all the strings
contained in it is greater than e. Notice that T

′
= {t.substring(b, e)∀t ∈ T}.

Finally, the semantics of containsc returns true iff there is surely at least one
brick that contains c and whose minimal index is at least 1. It returns false iff
all the bricks do not contain c, and
B otherwise.

Static Analysis of String Values 515

#I Var BR
1 query [{s1}]1,1

3 l �B
3 query [{s1 + s2}]1,1�B[{s3}]1,1

4 query [{s1, s1 + s2}]1,1�B[{s3}]0,1

5 per [{s4}]1,1

7 query [{s1, s1 + s2}]1,1�B[{s3}]0,1

[{s5 + s4 + s6}]1,1

(a) First running example

#I Var BR
1 x [{“a”}]1,1

3 x �
4 x �

(b) Second run-
ning example

Fig. 4. The results of BR

Running Example. The results of the analysis of the running examples using
BR are depicted in Figures 4(a) and 4(b). For the first program, the bricks of
the final result on query are four: (i) the first brick represents a string between
s1 and s1 + s2, (ii) the second brick corresponds to the input l, (iii) the third
brick could be the empty string ε or s3, and (iv) the fourth brick represents the
concatenation of s5, s4, and s6. We can see that the precision is higher than in
the previous domains, but still not the best we aim to get: amongst the concrete
results we have, for example, s1 + s3 + s5 + s4 + s6, which cannot be computed
in any execution of the analysed code. For the second program, the result is
unsatisfactory: the use of the widening operator makes us lose all information.
At the end of the program, variable x has value
.

4.4 String Graphs

The last abstract domain we introduce exploits type graphs, a data structure
which represents tree automata [15], adapting them to represent sets of strings.
A type graph T is a triplet (N, AF , AB) where (N, AF) is a rooted tree whose arcs
in AF are called forward arcs, and AB is a restricted class of arcs, backward arcs,
superimposed on (N, AF). Each node n ∈ N of a type graph has a label, denoted
by lb(n), indicating the kind of term it describes, and the nodes are divided into
three classes: simple, functor and OR nodes. We use the convention that n/i
denotes the i-th son of node n, and the set of sons of a node n is then denoted as
{n/1, . . . , n/k} with k = outdegree(n) where outdegree is a function that given a
node returns the number of its sons. We define a modified version of type graphs,
called string graphs, which represent strings instead of types. String graphs have
the same basic structure of type graphs. The following differences distinguish
them: (i) simple nodes have labels from the set {max,⊥, ε} ∪ K; (ii) the only
functor we consider is concat (with its obvious meaning of string concatenation).
Thus, functor nodes are labelled with concat/k. An example is depicted in Figure
5. The root of the string graph is an OR node with two sons: a simple node (b)
and a concat node with two sons of its own. The second son of the concat node
is the root (with the use of a backward arc). Such string graph represents the
following set of strings: {b, ab, aab, aaab, . . .} = a∗b.

516 G. Costantini, P. Ferrara, and A. Cortesi

Fig. 5. An example of
string graph

The abstract domain is: SG = NSG, where NSG is
the set of all Normal String Graphs. In fact, the type
graphs are very suitable for representing a set of terms.
However, several distinct type graphs can have the same
denotation. The existence of superfluous nodes and arcs
makes operations needed during abstract interpretation,
such as the ≤-operation, quite complex and inefficient.
In order to reduce this variety of type graphs, additional
restrictions are imposed (for details see [15]), defining
normal type graphs. We added a few other restrictions
(specific for string graphs), thus obtaining the definition
of normal string graphs. For example, we impose that
concat nodes are not allowed to have only one son (they
should be replaced by the son itself) or that a concat node cannot have two
successive sons with both label concat (they should be merged together). An
algorithm of normalisation (normStringGraph), encapsulating all those rules, is
defined as well.

The bottom element ⊥SG is a string graph made by one bottom node. The
top element is a string graph made by only one node, a max-node. To define
the partial order of the domain we can exploit an algorithm defined in [15]:
≤ (n, m, ∅). The algorithm compares the two nodes in input (n, m). In some
cases the procedure is recursively called, for example if n and m are both concat
or OR nodes. Note that the recursive call adds a new edge ({n, m}) to the third
input parameter (a set of edges). If, at the next execution of the procedure
(≤ (n′, m′, E)), the edge {n′, m′} is contained in E then the procedure immediately
returns true. The order is then:

T1 ≤SG T2 ⇔ T1 = ⊥SG ∨ (≤ (n0, m0, ∅) : n0 = root(T1) ∧ m0 = root(T2))
where root(T) is the root element of the tree defined in T. The least upper bound
between two string graphs T1 and T2 can be computed creating a new string
graph T whose root is an OR-node and whose sons are T1 and T2. Then we
apply the compaction algorithm that will transform T in a normal string graph:⊔

SG(T1, T2) = normStringGraph(OR(T1, T2))
The greatest lower bound operator is described in the appendix of [15], while

the widening operator is described in [23]. The abstraction of a string is: α′
SG(s) =

concat/k{s[i] : i ∈ [0, k− 1]} where k = len(s), and the abstraction function is:
αSG(S1) =

⊔
SG,s∈S1

α′
SG(s) = normStringGraph(OR{α′

SG(s) : s ∈ S1})
Semantics. Table 6 defines the abstract semantics on SG. The evaluation of a
string returns a concat containing the sequence of all the characters of the string.
When we concatenate two strings, the semantics returns the normalisation of a
concat node containing the two strings in sequence. As usual, the semantics
of readLine returns the top value. The semantics of substringeb (where res =
concat/(e− b){(root(t)/i) : i ∈ [b, e− 1]}) returns a precise value only if the root
is a concat node with at least e characters. Finally, containsc returns true iff
there is a concat node containing c in the tree, and without any OR node in the
path from the root to this node.

Static Analysis of String Values 517

Table 6. The abstract semantics of SG

SSG�new String(str)�() = concat/k{str[i] : i ∈ [0, k− 1]}
SSG�concat�(t1, t2) = normStringGraph(concat/2{t1, t2})
SSG�readLine�() = �SG

SSG�substringeb�(t) =

{
res if root(t) = concat/k ∧ ∀i ∈ [0, e− 1] : lb(root(t)/i) ∈ K
�SG otherwise

BSG�containsc�(t) =

⎧⎪⎪⎨⎪⎪⎩
true if ∃m ∈ t : m = concat/k ∧OR /∈ path(root, m)∧

∃i : lb(m/i) = c

false if �n ∈ t : lb(n) = max ∨ lb(n) = c

�B otherwise

#I Var SG
1 query concat[s1]
3 l max
3 query concat[s1 + s2;max; s3]

4 query SG1 = OR[concat[s1];
concat[s1 + s2;max; s3]]

5 per concat[s4]

7 query concat[SG1;
concat[s5 + s4 + s6]]

(a) First running example

#I Var SG
1 x concat[“a”]
3 x OR1[“a”; concat[“0”; OR1; “1”]]
4 x OR1[“a”; concat[“0”; OR1; “1”]]

(b) Second running example

Fig. 6. The results of SG

Running Example. The results of the analysis of the running examples through
string graphs are depicted in Figures 6(a) and 6(b). For sake of simplicity, we
adopt the notation concat[s] to indicate a string graph with a concat node whose
sons are all the characters of string s. The symbol + represents, as usual, string
concatenation, while ; is used to separate different sons of a node.

For the first program, the resulting string graph for query represents exactly
the two possible outcomes of the procedure. For the second program, the result-
ing string graph for x represents exactly all the concrete possible values of x.
Note that the resulting string graph contains a backward arc to allow the repe-
tition of the pattern 0n . . . 1n. This abstract domain is the most precise domain
for the analysis of both running examples: it tracks information similarly to BR
domain, but its lub and widening operators are definitely more accurate.

4.5 Discussion: Relations between the Four Domains

The abstract domains we introduced in the previous sections track different types
of information. Let us discuss the relations between different domains. Intuitively,
there are two axes on which the analyses of string values can work: the charac-
ters contained in a string, and their position inside the string. It is easy to see
that the CI, PR and SU are less precise than BR and SG. In fact, CI domain
considers only character inclusion and completely disregards the order. PR and

518 G. Costantini, P. Ferrara, and A. Cortesi

SU domains consider also the order, but limiting themselves to the initial/final
segment of the string, and in the same way they collect only partial information
about character inclusion. BR and SG, instead, track both inclusion and order
along the string. In [3] we studied these relationships in details: we defined pairs
of functions (abstraction and concretization) from domain to domain, and showed
that CI, PR and SU are more abstract (i.e., less precise) than both BR and SG.
In the case of BR versus SG, the comparison is more complex, since they exploit
very different data structures. For example, SG has OR-nodes, while BR can only
trace alternatives inside bricks but not outside (like: “these three bricks or these
other two”). From this perspective, SG is more precise than BR. Another im-
portant difference is that SG has backward arcs which allow repetitions of pat-
terns, but they can be traversed how many times we want (even infinite times).

Fig. 7. The hierarchy of ab-
stract domains

With BR, instead, we can indicate exactly how many
times a certain pattern should be repeated (through
the range of bricks). This makes BRmore expressive
thanSG in that respect. So, these domains are not di-
rectly comparable. We obtain the lattice depicted in
Figure 7, where the upper domains are more approx-
imated. We denote by
 the abstract domain that
does not track any information about string values,
and by ℘(K∗) the (näıve and uncomputable) domain
that tracks all the possible strings values we can have.

In conclusion, the first three domains (CI, PR,
SU) are not so precise but the complexity is kept
linear, whereas the other domains (BR and SG) are
more demanding (though in the practice complexity
is still kept polynomial) but also more precise.

5 Related Work

The static analysis of strings was addressed in various directions.
Kim and Choe [16] introduced recently an approach based on abstract interpre-

tation. They abstract strings with pushdown automata (PDA). The result of the
analysis is compared with a grammar to determine if all the strings generated by
the PDA belong to the grammar. This approach has a fixed precision, and in the
worst case (not often encountered in practice) it has exponential complexity.

Hosoya and Pierce [14] used tree automata to verify dynamically generatedXML
documents. The regular expression types of this approach recall our BR domain,
while the tree automata recall our SG domain. However, they are focused on build-
ing XML documents, while our focus is on collecting possible values of generic
string variables. In addition, they require to manually annotate the code through
types while our approach is completely automatic.

A more recent work was developed by Yu et al. [24]. It presented an automata-
based approach for the verification of string operations in PHP programs. The
information tracked by this analysis is fixed, and it is specific for PHP programs.

Static Analysis of String Values 519

Tabuchi et al. [21] presented a type system based on regular expressions. It is
focused on a λ-calculus supporting concatenation, and pattern matching. Some
type annotation is required when dealing with recursive function.

Thiemann [22] introduced a type system for string analysis based on context-
free grammars. Their analysis is more precise than those based on regular expres-
sions, but the only supported string operator is concatenation, and the analysis is
tuned at a fixed level of precision.

Context-free grammars are also the basis of the analysis of Christensen et al.
[1]. This analysis is tuned at a fixed level of abstraction. In the second running
example of this paper, SG domain reaches a better precision than theirs.

Minamide [18] presented an analysis to statically check some properties of Web
pages generated dynamically by a server-side program. This work is specific for
HTML pages, while we do not need to know the reference grammar a priori. Also
in this case, SG obtain a better precision on the loop example.

Doh et al. [8] proposed a technique called “abstract parsing”: it combines LR(k)-
parsing technology and data-flow analysis to analyse dynamically generated doc-
uments. Their technique is quite precise, but the level of abstraction is fixed, and
it cannot be tuned at different levels of precision and efficiency.

Given this context, our work is the first one that (i) is a generic, flexible, and ex-
tensible approach to the analysis of string values, and (ii) can be tuned at different
levels of precision and efficiency.

6 Conclusion and Future Work

In this paper we introduced a new framework for the static analysis of string values,
and four different abstract domains. We chose some string operators on which we
focused our approach defining the concrete and the abstract semantics.

Future Work. We are working on the implementation of our approach in Sample
(Static Analyzer of Multiple Programming LanguagEs) [9]. We plan to apply our
analysis to some case studies to study the precision of our analysis. In order to
check the scalability and performances of our approach, we plan to apply our anal-
ysis to some Scala standard libraries. Some preliminary experimental results point
out that CI and PR×SU are quite efficient, BR is slower but still fast, while SG’s
performances seem to be still critical.

Acknowledgments. Work partially supported by RAS project “TESLA - Tec-
niche di enforcement per la sicurezza dei linguaggi e delle applicazioni”, and by
SNF project “Verification-Driven Inference of Contracts”.

References

1. Christensen, A., Moller, A., Schwartzbach, M.: Precise analysis of string expres-
sions. In: Cousot, R. (ed.) SAS 2003. LNCS, vol. 2694, pp. 1–18. Springer, Heidelberg
(2003)

2. Cortesi, A., Zanioli, M.: Widening and narrowing operators for abstract interpreta-
tion. Computer Languages, Systems and Structures 37(1), 24–42 (2011)

520 G. Costantini, P. Ferrara, and A. Cortesi

3. Costantini, G.: Abstract domains for static analysis of strings. Master’s thesis, Ca’
Foscari University of Venice (2010)

4. Cousot, P., Cousot, R.: Abstract interpretation: a unified lattice model for static
analysis of programs by construction or approximation of fixpoints. In: POPL 1977.
ACM, New York (1977)

5. Cousot, P., Cousot, R.: Systematic design of program analysis frameworks. In:
POPL 1979. ACM, New York (1979)

6. Cousot, P., Cousot, R., Feret, J., Mauborgne, L., Miné, A., Monniaux, D., Rival, X.:
The ASTREÉ analyzer. In: Sagiv, M. (ed.) ESOP 2005. LNCS, vol. 3444, pp. 21–30.
Springer, Heidelberg (2005)

7. Cousot, P., Halbwachs, N.: Automatic discovery of linear restraints among variables
of a program. In: Proceedings of POPL 1978. ACM Press, New York (1978)

8. Doh, K., Kim, H., Schmidt, D.: Abstract parsing: Static analysis of dynamically
generated string output using LR-parsing technology. In: Palsberg, J., Su, Z. (eds.)
SAS 2009. LNCS, vol. 5673, pp. 256–272. Springer, Heidelberg (2009)

9. Ferrara, P.: Static type analysis of pattern matching by abstract interpretation. In:
Hatcliff, J., Zucca, E. (eds.) FMOODS 2010. LNCS, vol. 6117, pp. 186–200. Springer,
Heidelberg (2010)

10. Gould, C., Su, Z., Devanbu, P.: Static checking of dynamically generated queries in
database applications. In: Proceedings of ICSE 2004, pp. 645–654. IEEE Computer
Society, Los Alamitos (2004)

11. Granger, P.: Static analysis of linear congruence equalities among variables of a pro-
gram. In: Abramsky, S. (ed.) CAAP 1991 and TAPSOFT 1991. LNCS, vol. 493, pp.
169–192. Springer, Heidelberg (1991)

12. Gulwani, S.: Automating string processing in spreadsheets using input-output ex-
amples. In: Proceedings of POPL 2011. ACM, New York (2011)

13. Hooimeijer, P., Veanes, M.: An evaluation of automata algorithms for string analy-
sis. In: Jhala, R., Schmidt, D. (eds.) VMCAI 2011. LNCS, vol. 6538, pp. 248–262.
Springer, Heidelberg (2011)

14. Hosoya, H., Pierce, B.: Xduce: A statically typed xml processing language. ACM
Trans. Internet Technol. 3(2), 117–148 (2003)

15. Janssens, G., Bruynooghe, M.: Deriving description of possible values of program
variables by means of abstract interpretation. Journal of Logic Programming 13(2-
3), 205–258 (1992)

16. Kim, S.-W., Choe, K.-M.: String analysis as an abstract interpretation. In: Jhala, R.,
Schmidt, D. (eds.) VMCAI 2011. LNCS, vol. 6538, pp. 294–308. Springer, Heidelberg
(2011)

17. Logozzo, F., Fähndrich, M.: Pentagons: A weakly relational domain for the efficient
validation of array accesses. In: Proceedings of SAC 2008. ACM Press, New York
(2008)

18. Minamide, Y.: Static approximation of dynamically generated web pages. In: Pro-
ceedings of WWW 2005, pp. 432–441. ACM, New York (2005)

19. Miné, A.: The octagon abstract domain. Higher-Order and Symbolic Computation
(2006)

20. Halder, R., Cortesi, A.: Obfuscation-based analysis of sql injection attacks. In: IEEE
(ed.) Proceedings of ISCC 2010 (2010)

21. Tabuchi, N., Sumii, E., Yonezawa, A.: Regular expression types for strings in a text
processing language. Electr. Notes Theor. Comput. Sci. 75 (2002)

Static Analysis of String Values 521

22. Thiemann, P.: Grammar-based analysis of string expressions. In: Proceedings of
TLDI 2005, pp. 59–70. ACM, New York (2005)

23. van Hentenryck, P., Cortesi, A., Le Charlier, B.: Type analysis of prolog using type
graphs. Journal of Logic Programming 22(3), 179–208 (1995)

24. Yu, F., Bultan, T., Cova, M., Ibarra, O.: Symbolic string verification: An automata-
based approach. In: Havelund, K., Majumdar, R. (eds.) SPIN 2008. LNCS, vol. 5156,
pp. 306–324. Springer, Heidelberg (2008)

A Theory of Classes from the Theoretical
Foundations of LePUS3

Jonathan Nicholson

University of Essex, UK
johnic@essex.ac.uk

Abstract LePUS3 is a formal design description language for specifying
decidable (i.e. automatically verifiable) properties of object-oriented de-
sign. LePUS3 has been successfully applied to both design verification
and reverse engineering applications. However, LePUS3 is becoming over
zealously pragmatic. Its current definition is inflexible, limiting is expres-
sivity, extensibility and reasoning capabilities. We present a new theory
of classes derived from the theoretical foundations of LePUS3, and defi-
ned in the Typed Predicate Logic. The expressive power of our theory is
demonstrated by specifying and reasoning over design patterns.

Keywords: Formal Specification and Modelling, LePUS3, Typed Pre-
dicate Logic, Design Patterns.

1 Introduction

LePUS3 is a formal design description language for the specification of design
patterns, frameworks, and programs at an appropriate level of abstraction [5]. A
LePUS3 specification is called a Codechart, which is constructed from a minimal
vocabulary representing the core building-blocks of class-based object-oriented
design (Table 1). Codecharts are formal specifications [20] that may be unpacked
into the First Order Predicate Logic (FOPL [9]).

Table 1. The core building-blocks of object-oriented design representable in LePUS3

Classes, methods, and method signatures: the primitive entities of LePUS3
Finite sets of entities: particular attention is given to sets of classes that constitute
inheritance class hierarchies and sets of dynamically-bound methods
Properties and relationships of entities: for example inheritance and aggregation

“Formal verification methods are very hard to put in practice because both
the semantics and the specification of a complex system are extremely difficult
to define. Even when this is possible, the proof cannot be automated . . . without
great computational costs” [8]. The building-blocks of LePUS3 do not include
generally undecidable concepts such as objects, behaviour, events, or program

S. Qin and Z. Qiu (Eds.): ICFEM 2011, LNCS 6991, pp. 522–536, 2011.
© Springer-Verlag Berlin Heidelberg 2011

A Theory of Classes from the Theoretical Foundations of LePUS3 523

state. Indeed, the scope of LePUS3 is restricted to only those decidable (i.e.
automatically verifiable) statements of object-oriented design. This sacrifice in
expressivity ensures that it is possible (in principle) to create conclusive auto-
mated tool support in applications such as design verification [12] and reverse
engineering [7] with minimal computational cost1. However, these applications
have become LePUS3’s primary measure of success, and the language is prone
to becoming over zealously pragmatic: its definition has become increasingly
complex yet reflects a degree of logical innocence. Types are inflexibly defined,
lacking notions such as subtyping. Relations are not explicitly typed, and few
relations have axioms governing their use. The result of this is a definition that
is difficult to reason with, maintain, and extend.

In this paper we present a new theory of classes derived from the theoreti-
cal foundations—the relevant definitions, intentions, and intuitions—of LePUS3.
That is, we are concerned with capturing the underpinning logic of LePUS3 in
a more elegant and rigorous fashion that is open to further investigation and
extension, without losing the sight of practical concerns. We build our theory on
the Typed Predicate Logic summarised in section 2. In section 3 we present our
theory and discuss how it improves on the type system in LePUS3. Finally, in
section 4 we apply our theory to representing (specifying) the Factory Method
and Abstract Factory design patterns, and prove a relationship between the two.

2 Typed Predicate Logic

Typed Predicate Logic (TPL [18]) is “a broad framework in which a rich variety
of theories [of types] can be easily and elegantly formulated” that is “sufficiently
flexible to elegantly support a wide range of such constructors, including de-
pendent types, subtypes, and polymorphism” [18]. The role that TPL type theo-
ries play is parallel to first order theories in First Order Predicate Logic (FOPL).
That is, the bare notions of FOPL are operations, properties, relations and ob-
jects, which are given substance by first order theories [19]. Although types can
be admitted to FOPL, this is usually achieved using extensional set-theoretic
notions [9]. In comparison, the bare notions of TPL are operations, properties,
relations, objects and types, which are given substance by type theories [19].
Types in TPL are intensional primitive notions whose contents are determined
by axiomatic theories. TPL is therefore the ideal framework on which to deve-
lop our new theory of classes. As the reader may not be familiar with TPL,we
devote this section to its very short introduction.

TPL is a many-sorted natural deduction system, where syntax and semantics
are both defined with rules: “a type-inference system that is constituted by the
membership and formation rules for types and propositions” [18]. To accomplish
this, TPL requires the following four judgements (Θ):

T type T is a type φprop φ is a proposition
t : T t is a term of type T φ φ holds

1 Similar approaches include Spine [2] and DPML [10], compared to LePUS3 in [11].

524 J. Nicholson

where a term t is either a variable (denoted t), or the result of a function (such
as f(t1, . . . , tn)). A theory’s membership rules are those that conclude with a
judgement of the form T type, whereas formation rules conclude in the form of
φprop. We show what conclusions follow from a set of premises using the normal
sequent notation, Γ � Θ, where Θ is a judgement, and Γ is is a finite sequence of
judgements of the form t : T or φ, called a context. The order that judgements
occur within contexts is significant, for example the declaration t : T must occur
in the context before the variable t occurs in some proposition φ, written φ [t].

The basic structural rules of TPL are assumption (A1−2), thinning (W1−2),
and substitution (Sub). The assumption rules ensure that every term is attached
to a type, and permits only grammatically acceptable assumptions. The thinning
rules allow weakening under the same grammatical conditions. The substitution
rule allows a variable, x, to be replaced (substituted) by another term, t.

A1
Γ � T type

Γ, x : T � x : T
W1

Γ, Δ � Θ Γ � T type

Γ, x : T, Δ � Θ

A2
Γ � φprop

Γ, φ � φ
W2

Γ, Δ � Θ Γ � φprop

Γ, φ, Δ � Θ

Sub
Γ, x : T, Δ � Θ [x] Γ � t : T

Γ, Δ [t/x] � Θ [t/x]

where in the rules A1 and W1, x is does not already exist in Γ or Δ, and Θ [t/x]
is the consistent replacement of variable x with term t in Θ.

The above summarises the very foundation of TPL on which axiomatic type
theories are built. We discuss how this is accomplished in the following subsec-
tions. In §2.1 we discuss how propositions are defined by introducing conjunction.
In §2.2 we discuss how types are defined by introducing a simple non-negative
integer type and the universe of types. In §2.3 we discuss how we concisely and
elegantly define relations via specification. See [18] for a much more detailed and
explicit account of TPL.

2.1 Propositions

Traditionally, FOPL and similar systems are defined using an over-generating
context-free grammar where syntactically valid sentences are given an appro-
priate meaning, or pruned, by semantic rules. For example, the BNF grammar
excerpt φ ::= . . . |φ ∧ φ defines the syntax of conjunctions. TPL defines its
syntax in the same way it defines its semantics: by rules. Consider the rules
Con1−4, which introduce the standard notion of conjunction [9] in TPL [18].

Con1
Γ � φprop Γ � ϕprop

Γ � φ ∧ ϕprop
Con2

Γ � φ Γ � ϕ

Γ � φ ∧ ϕ

Con3
Γ � φ ∧ ϕ

Γ � φ
Con4

Γ � φ ∧ ϕ

Γ � ϕ

A Theory of Classes from the Theoretical Foundations of LePUS3 525

Con1 is a formation rule that defines under what conditions it is grammatically
acceptable to use the ∧ symbol. That is, if we know that both φ and ϕ are
propositions then we may conclude that φ∧ϕ is also a proposition. This method
of defining syntax “permits the expression of systems that involve a rich notion
of type including dependency and self application” [19].

The remaining rules should be familiar to the reader. Con2 is an introduction
rule that defines under what conditions we may introduce a conjunction. That
is, if both φ and ϕ hold then we may conclude that their conjunction holds.
Finally, Con3 and Con4 are elimination rules that define under what conditions
we may eliminate a conjunction. That is, if the conjunction φ∧ϕ holds then we
may conclude that φ (Con3) and ϕ (Con4) hold.

2.2 Types

TPL’s treatment of types is non-standard as they are primitive intensional no-
tions, i.e. their equality is not based on shared membership. Types are given
meaning through type theories. Consider the simple case of natural numbers2:

N1 N type

N1 introduces the type of natural numbers, N, which means very little without
an associated type theory that describes its members:

N2 0 : N N3
Γ � n : N

Γ � n+ : N
N4

Γ � a+ =N b+

Γ � a =N b
N5

Γ � n : N
Γ � n+ �=N 0

N6
Γ, n : N � φ [n] prop Γ � φ [0] Γ, n : N, φ [n] � φ [n+]

Γ, n : N � φ [n]

These rules admit zero as our only constant natural number (N2), where every
other natural number is obtained by a finite series of applications of the successor
function (N3−6). N3 is the successor function’s formation rule, N4 tells us that
successor is injective, and N5 that zero is never a successor. Finally, rule N6 is
the induction principle of N with the usual interpretation, allowing us to reason
over terms of this type. We could further flesh out this theory with addition,
multiplication, etc., but doing so is out of the scope of this paper.

We move on to briefly discuss the universe of types: a type whose members
are themselves types. U1 introduces the universe of types as a type, which we
call U . U2 ensures all types are members of U , and U3 ensures all members of
U are types. That is, the universe of types is closed over the type system and
includes U itself.

U1 U type U2
Γ � T type

Γ � T : U U3
Γ � T : U
Γ � T type

2 N is not representative of any primitive type in a given programming language, such
as int in Java, rather it is a simple demonstrative example of types in TPL.

526 J. Nicholson

The universe of types move type variables from meta-notation to first class citi-
zens of the theory. That is, it facilitates quantification and reasoning over types.
This substantially increases the expressive power and polymorphic capabilities
of type theories in TPL. For example, it allows for notions such as dependent
types and subtyping [18].

2.3 Specifications

Specifications elegantly introduce new relations into a theory. They consist of
a series of declarations that associate variables with types, and a proposition
that articulates relationships between the variables. We write specifications in a
box-style format inspired by the Z Specification Language [14]:

R

x1 : T1, . . . , xn : Tn

φ [x1, . . . , xn]

The following definition gives the logical foundation of specifications:

Definition 1. Suppose that3:

R0 x1 : T1, . . . , xn : Tn � φ [x1, . . . , xn] prop

then we may introduce a new relation symbol R governed by the following:

R1 x1 : T1, . . . , xn : Tn � R (x1, . . . , xn) prop

R2 ∀x1 : T1 · . . . ∀xn : Tn · φ [x1, . . . , xn] → R (x1, . . . , xn)
R3 ∀x1 : T1 · . . . ∀xn : Tn · R (x1, . . . , xn) → φ [x1, . . . , xn]

where R1−3 are the formation, introduction and elimination rules respectively.

This forms the basis for more advanced kinds of specification, e.g. dependent
and recursive specification. Importantly, relations can also be reasoned over as
first class citizens of a theory. For example, the relation R has the type4:

R : schema (T1, . . . , Tn)

We present several examples of specifications in the next section, where we put
these powerful abstraction mechanisms to use in defining our theory of classes.

3 Where φ is restricted to a semi-decidable proposition formed of the basic relations,
functions, types, Ω (contradiction) and logical connectives ∧, ∨, and ∃.

4 This is the S type constructor in [18], which we rename to schema for clarity.

A Theory of Classes from the Theoretical Foundations of LePUS3 527

3 Toward a Theory of Classes

We could define our theory of classes by translating each definition from LePUS3
into TPL, but doing so does not encourage conceptual clarity. Instead, we build
our theory from the ground up, using LePUS3 as a guide, but not as gospel. This
affords more flexibility and freedom in our interpretation of LePUS3. When it
was appropriate to do so we also took inspiration from [3], which discusses many
of the distinctions and common features of object-oriented programming lan-
guages, and the Java™ programming language [15]. In the following subsections
we present the basic types and relations of our theory of classes.

3.1 Classes and Hierarchies

The most fundamental building-block of object-oriented design is a notion of
class. As in LePUS3, we take classes to be atomic elements of our theory, which
we introduce5 in the same way we did for natural numbers (§2.2):

CLS1 CLASS type

Note that, as LePUS3, we abstract from distinctions between classes, inner
classes, anonymous inner classes, interfaces, primitive types, and so on. This
is an appropriate abstraction when designing or visualising systems at this level,
as such detail is often unnecessary. If such detail were required, we could easily
extend our theory to accommodate them as subtypes of CLASS without losing
clarity of our theory. This simplistic approach to classes serves our purposes.

Next, we give this type some rules to give it meaning in our theory. Perhaps
the primary relationship between classes is that of inheritance, which groups
classes into hierarchies, facilitating a form of polymorphism in the implemen-
tation language. There are many interpretations as to what inheritance means
(see [17]), and we do not attempt to capture them all. Instead we follow LePUS3
and restrict ourselves to the two most common interpretations of inheritance,
subclassing and subtyping, as implemented in Java by the extends and implements
keywords respectively. We group these two notions as a single binary relation over
classes, Inherit (a, b) (CLS2) meaning a inherits from b, for the same reason we
abstracted from the distinctions between kinds of classes. We may always extend
our theory if this distinction were required. Inherit is given meaning by rules
CLS3 and CLS4, which state that a class may not inherit from itself and that
there is no direct cyclic inheritance between two distinct6 classes respectively.

CLS2 Inherit : schema (CLASS× CLASS)

CLS3
Γ � c : CLASS

Γ � ¬Inherit (c, c)
CLS4

Γ � Inherit (a, b)
Γ � ¬Inherit (b, a)

5 This partially formalises [5, Definition VI].
6 If a = b then the premise of CLS4 cannot hold as it would contradict the conclusion

of CLS3, therefore a �= b.

528 J. Nicholson

[11] discusses this relation in more detail, and describes its impact to other
relations. For example, we argued that Inherit is equivalent to its transitive
closure (Inherit+):

CLSI Γ, a, b : CLASS � Inherit (a, b) ↔ Inherit+ (a, b)

and that Inherit is a strict order relationship over CLASS. Both these results can
be observed in [5] and [4] respectively, and are supported by [3]. The interesting
consequence of this is that we may deduce the second axiom of class-based
programs, that “there are no cycles in the inheritance graph” [5, Definition VIII].
That is, we are able to prove the following proposition:

Proposition 1. Γ, a, b : CLASS � Inherit+ (a, b) → ¬Inherit+ (b, a)

Proof. Firstly we assume that Inherit+ (a, b) holds. By application of CLSI we
get Inherit (a, b). By application of CLS4 we get ¬Inherit (b, a). Finally, by
application of CLSI again we get ¬Inherit+ (b, a). !
Finally, notice that we declared the Inherit relation and constrained its use
with axioms rather than defining it in a specification. We treat relations, such
as Inherit, in the same way that LePUS3 does, i.e. descriptive rather than
prescriptive. If we define inheritance by specification (prescriptively) we limit
our theory to representing only those implementation languages with exactly the
same definition. Our approach allows our theory to represent a greater proportion
of implementation languages—any that agree with our descriptive rules.

Let us examine another of the types from LePUS3, inheritance class hierar-
chies (or simply: hierarchies). A hierarchy is a set of classes that contains a root
class, which all other members of the hierarchy (possibly indirectly) inherit from
[5, Definition IV]. Unlike the Inherit relation, we know exactly what a hierar-
chy is in this context, so we first capture this knowledge by introducing a new
relation, Hierarchy, via specification7:

Hierarchy

h : set (CLASS)

∃root ∈ h · ∀x ∈ h · x �= root → Inherit (x, root)

Notice that our specification is dramatically simpler than its LePUS3 counterpart
and permits singleton hierarchies. The Hierarchy relation is easily turned into
a new type, HIERARCHY, as a subtype of set (CLASS) [11]. Explicitly defining
HIERARCHY as a subtype captures implicit implications made in its use and
definition in LePUS3 [5, Definition IV], which lacks the notion of subtype.
7 Where set is the type constructor for finite sets with the usual operations of mem-

bership, quantification, and so on.

A Theory of Classes from the Theoretical Foundations of LePUS3 529

3.2 Methods and Clans

Another of the core building-blocks of object-oriented design representable in
LePUS3 (Table 1) are methods and their signatures. Our treatment of methods
mirrors their treatment in LePUS3. That is, methods are atomic primitive en-
tities that cannot be decomposed into instructions. We do not distinguish bet-
ween special kinds of methods, such as static or class (instance) methods. We
may extend our theory with further relations/subtypes to capture these details
if required. Based on these these assumptions we introduce our type of methods:

MTH1 METHOD type

A method is identified by its signature, often taken to be its name (identifier), the
type and order of its arguments, and its return type. However, method signatures
in LePUS3 do not include the return type. The reasoning for this is that the
return type does not necessarily distinguish methods in many statically typed
object-oriented implementation languages. In Java, for example, it would be a
compile-time error if two methods in the same class differ only in their respective
return types. LePUS3 therefore abstracts from the return type, modelling only
the identifier and argument types. Although we maintain the same abstraction,
our theory is flexible enough to accommodate the specification of return types
if required at a later date.

Additionally, like classes and methods before them, LePUS3 treats method
signatures as atomic entities. This abstraction is extremely useful as we have
often found little need to specify identifiers and argument types explicitly [5].
However, specifying and reasoning over method signatures at such a general
level prevents reasoning over identifiers or arguments independently. We improve
matters, without sacrificing abstraction, by defining method signatures as the
Cartesian product (×) of an identifier and a list8 of classes9:

MTH4 IDENTIFIER type

MTH5 SIGNATURE � IDENTIFIER × list (CLASS)

With our new SIGNATURE type we introduce a small shorthand notation.
Consider a method signature with the identifier i and arguments a and b. In
the usual pair notation this would be written (i, [a, b]), which gives few visual
clues as to its purpose. In our shorthand we may represent this pair as i 〈a, b〉,
which is more intuitive as it is closer to how method signatures are written in
a programming language such as Java10. Importantly, observe that we have not
8 Where list is the type constructor for finite lists with the usual operations of mem-

bership, quantification, and so on.
9 As in LePUS3, primitive types from the implementation language are treated as

classes. See §3.1. This is sufficient for the current investigation, where our scope is
necessarily limited. Future work includes investigating a more generic definition of
signature to accommodate arguments of any type.

10 Although i 〈a, b〉 is not as intuitive as i (a, b), the latter would cause confusion with
relations and functions.

530 J. Nicholson

lost the ability to treat method signatures as atomic entities; we are free to
specify and reason over method signatures with in as much detail as we wish.

Let us now give these types some substance. We begin with the SignatureOf
relation (MTH6), which maps methods to their signatures. MTH7 is derived
from the third axiom of class-based programs: “every method has exactly one si-
gnature” [5, Definition VIII]. MTH8 ensures that a signature must be associated
with at least one method. These rules tell us that SignatureOf is a surjective
functional relation from METHOD to SIGNATURE.

MTH6 SignatureOf : schema (SIGNATURE×METHOD)

MTH7
Γ � m : METHOD

Γ � ∃!x : SIGNATURE · SignatureOf (x, m)

MTH8
Γ � s : SIGNATURE

Γ � ∃x : METHOD · SignatureOf (s, x)

Our next relation MethodMember (MTH9) governs how classes and methods
are associated, i.e. method membership, primarily characterised by MTH10.
This formalises the third axiom of class-based programs: “no two methods with
the same signature are members of the same class” [5, Definition VIII].

MTH9 MethodMember : schema (CLASS×METHOD)

MTH10

Γ � MethodMember (c, m1) Γ � MethodMember (c, m2)
Γ � SignatureOf (s, m1) Γ � SignatureOf (s, m2)

Γ � m1 = m2

We could further constrain MethodMember as we did Inherit. For example, to
require that a method must be a member of at least one class, e.g. Java and
Smalltalk. But many such rules would not be applicable to languages like C++,
where methods can be defined globally. We must be careful in what we choose
to include in our theory so as to not specialise our theory to any one set of
implementation languages.

The SignatureOf and MethodMember relations (specifically MTH10) are
a linchpin in the core of LePUS3: the superimposition function (⊗) [5, Defini-
tion V]. This function identifies a unique method by its signature (its name)
and a class (its scope), and is designed to extend naturally for nested sets. We
introduced the superimposition function into our theory by first defining an ap-
propriate relation11, and then by proving that it is indeed functional [11]. The
superimposition function always favours sets of dynamically-bound methods.

LePUS3 gives special attention to sets of dynamically-bound methods12 (Table
1). However, neither LePUS3 or our theory represent objects, or attempt to iden-
tify exactly which method is executed at runtime. We represent the structure of
11 We omit the specification for which as it is outside the scope of this paper.
12 “Dynamic binding means that the operation that is executed when objects are re-

quested to perform an operation is the operation associated with the object itself
and not with one of its ancestors” [3].

A Theory of Classes from the Theoretical Foundations of LePUS3 531

sets of dynamically-bound methods, i.e. a set of methods that all share the same
signature such that one of them may be dynamically selected and executed at
runtime. These sets of methods are called clans. Although LePUS3 stresses the
importance of clans [5], it fails to treat them satisfactorily.

A clan in LePUS3 is defined as a set of methods that all share the same signa-
ture. This loose definition allows any method with an adequate signature to be
in a clan with otherwise unrelated methods. For example, consider the methods
java.util.jar.Manifest.fill() and java.util.zip.ZipFile.fill(), which are not dynamically-
bound. Despite sharing the same signature, their respective classes are not ap-
propriately related by inheritance. A stronger notion of clan is therefore one
parallel to hierarchies, where the key relation is method overriding. To articu-
late this we begin by specifying what method overriding means in this context:

Overrides

m1, m2 : METHOD

m1 �= m2∧
(∃x : SIGNATURE · SignatureOf (x, m1) ∧ SignatureOf (x, m2))∧(

∃x, y : CLASS · Inherit (x, y)∧
MethodMember (x, m1) ∧MethodMember (y, m2)

)

Where method m1 Overrides m2 if they are not equal, share the same signature,
and their respective classes are related by inheritance13. Continuing to mirror
hierarchies, a clan is therefore defined as a non-empty (possibly singleton) set of
methods that are all related by the Overrides relation to a single root:

Clan

c : set (METHOD)

∃root ∈ c · ∀x ∈ c · x �= root → Overrides (x, root)

Observe that Clan requires each method to be a member of a class involved in
the same class hierarchy, thus ensuring that a clan may only include dynamically-
bound methods. We conclude this extension by treating clans as we did hierar-
chies by introducing the type CLAN, a subtype of set (METHOD) based on the
Clan relation. This is another example of how our theory opens up and improves
on LePUS3.
13 Note that Overrides and its transitive closure Overrides+ are equivalent by virtue

of the Inherit relation.

532 J. Nicholson

3.3 Predicates

This section laid the groundwork for our theory of classes: its types and pri-
mary relationships, discussed with respect to its origins in LePUS3. With it
we were able to articulate more detailed relationships in object-oriented design,
such as Overrides and Clan (§3.2). Reasoning over sets in our theory, such as
clans and hierarchies, can be accomplished using universal and existential quan-
tification. This immediately makes our theory more flexible than LePUS3, in
which all quantification is hidden in the meta-language and exposed only wi-
thin more complex relations called predicates : All, Total and Isomorphic
[5]. These predicates are useful abstractions that are tailored to the domain of
object-oriented design. Consequently their definition naturally differs from that
traditionally given, therefore we use the names All, Tot and Iso respectively
to avoid confusion over terminology. Each of the three predicates capture a dif-
ferent sort of abstraction over relations when applied to (possibly) nested sets.
The following is a very brief summary of each predicate14 for the case of unnested
sets x, y, and relation R:

– All (R, x)–all elements of x are in R. Inspired by universal quantification.
– Tot (R, x, y)–each element of x, excluding abstract methods, relate to some

element of y by R. Inspired by total functions.
– Iso (R, x, y)–each element of x, excluding abstract methods, relates to unique

element of y by R. Inspired by bijective functions (isomorphisms).

4 Reasoning about Design Patterns

Design patterns [1] (or simply patterns) document a “recurring solution to a
standard problem” [13] in software design. We focus our attention on object-
oriented patterns, specifically those documented in [6]. The principle components
of a pattern according to [6] are:

Name. Identifies the pattern.
Problem. Describes when to apply the pattern, often split into intent, motiva-

tion, and applicability.
Solution. Describes what design (or variations of) should be employed, often

split into structure, participants, responsibilities, and collaborations.
Consequences. Arguments for and against applying the pattern.

We do not, nor can we, formalise every aspect of a pattern. The scope of our
theory is best suited to formalising a pattern’s solution, an area that has received
much attention in many pattern formalisation languages [16]. In this section we
specify and reason over the Factory Method and Abstract Factory patterns. In
Table 2 we present a very brief summary of the Factory Method pattern [6].

By examining this description we observe that the abstract/concrete fac-
tory and product classes both constitute inheritance hierarchies, which we call
14 Each predicate is fully specified for all cases in [11]

A Theory of Classes from the Theoretical Foundations of LePUS3 533

Table 2. Summary of the Factory Method pattern [6]

AbstractFactory: Declares the factory method, which produces an AbstractProduct
instance. AbstractFactory may also define a default implementation of the factory
method that returns a default ConcreteProduct object, but generally relies on its
subclasses to define a factory method that returns an instance of the appropriate
ConcreteProduct.
ConcreteFactory: Inherits from AbstractFactory, and overrides the factory method to
return an instance of a specific ConcreteProduct.
AbstractProduct: Defines the interface of all products.
ConcreteProduct: Inherits from AbstractProduct and implements its interface. There is
exactly one ConcreteProduct class for each ConcreteFactory class.

Factories and Products respectively. There are no constraints on what the si-
gnature of the factory method should be, so we abstract this as a signature
variable, FactoryMth. As AbstractFactory declares the factory method interface,
which is implemented in each ConcreteFactory class, there is a clan of factory
methods in the Factories hierarchy. For each specific ConcreteFactory class, the
respective factory method creates and returns an instance of the appropriate
ConcreteProduct class. The Iso predicate appropriately represents this one-to-one
relationship between factory methods and their respective products. Indeed, this
is the very situation that this predicate is designed to capture. The relation we
use with the Iso predicate is Produce [11], where Produce (a, b) means method
a creates and returns (produces) an instance of class b. We consolidate this
information in the following specification:

FactoryMethod

Factories : HIERARCHY
Products : HIERARCHY
FactoryMth : SIGNATURE

Iso (Produce, FactoryMth⊗ Factories, Products)

“One person’s pattern can be another person’s primitive building block” [6].
Indeed, pattern specifications extend our theory with new relations, thereby
allowing patterns to be reused as building-blocks for more complex specifications;
a degree of flexibility and freedom that does not currently exist in LePUS3.

Next, consider Table 3, which briefly summarises the Abstract Factory pattern
[6]. Notice that this pattern is very similar to the Factory Method we previously
examined (Table 2), with two important differences. In this case there are mul-
tiple product hierarchies, which we group together as a set of hierarchies called
PRODUCTS. Additionally, there are multiple factory method signatures, which

534 J. Nicholson

Table 3. Summary of the Abstract Factory pattern [6]

AbstractFactory: Declares a set of factory methods, each of which return an
AbstractProduct instance. Generally, AbstractFactory defers (via dynamic binding)
creation of AbstractProduct instances to the relevant ConcreteFactory subclass.
ConcreteFactory: Inherits from AbstractFactory, and overrides all factory methods to
return an instance of a specific ConcreteProduct.
AbstractProduct: Defines the interface of all products. There is exactly one
AbstractProduct class for each ConcreteFactory class.
ConcreteProduct: Inherits from AbstractProduct and implements its interface. There is
exactly one ConcreteProduct class for each factory method in the respective
ConcreteFactory class.

we group together into a set of signatures called FactoryMths. Each factory me-
thod produces product instances, where there are as many factory methods in
each ConcreteFactory class as there are ConcreteProduct classes. This is specified in
exactly the same way as the Factory Method pattern with the Produce relation
and the Iso predicate, which extends naturally to nested sets. Therefore, we
arrive at the following specification:

AbstractFactory

Factories : HIERARCHY
PRODUCTS : set (HIERARCHY)
FactoryMths : set (SIGNATURE)

Iso (Produce, FactoryMths⊗ Factories, PRODUCTS)

With formalisms of each of these patterns we begin to see possible relation-
ships between them. Indeed, the similarities between our FactoryMethod and
AbstractFactory relations are visually evident. That is, AbstractFactory looks
like it is an abstraction of FactoryMethod. We formalise and prove this hypo-
thesis15 as follows:

Proposition 2.
f : HIERARCHY p : HIERARCHY fm : SIGNATURE

FactoryMethod (f, p, fm) → AbstractFactory (f, {p} , {fm})

15 [5] provides a similar, if inverted, proof in LePUS3. By showing that every program
implementing FactoryMethod also implements AbstractFactory, it is concluded
that the latter is more abstract than the former. Thus, this relationship between
patterns is indirectly deduced via their relationship to (theoretical) programs.

A Theory of Classes from the Theoretical Foundations of LePUS3 535

Proof. By deduction on the relations FactoryMethod and AbstractFactory:

1. We begin by assuming that FactoryMethod (f, p, fm) holds.
2. We eliminate the FactoryMethod relation by applying rule R3, concluding

that Iso (Produce, fm⊗ f, p) holds.
3. By the definition of the Iso predicate [11] we may abstract this proposition

by introducing singleton sets. That is, if Iso (Produce, fm⊗ f, p) holds then
we know that Iso (Produce, {fm⊗ f} , {p}) also holds.

4. By the definition of the superimposition function [11] we know that the
same set of methods results from {fm⊗ f} and {fm} ⊗ f . By rephrasing
the proposition in this way we obtain Iso (Produce, {fm} ⊗ f, {p}).

5. We introduce the AbstractFactory relation by applying rule R2, concluding
that AbstractFactory (f, {p} , {fm}) holds

6. By implication introduction we obtain that which we were required to prove.
 !

This proves that AbstractFactory is an abstraction of FactoryMethod, i.e. wi-
thin the scope of our theory, our specification of the Abstract Factory pattern
is an abstraction of our specification of the Factory Method pattern. A logical
consequence of this is that any program that is shown to satisfy FactoryMethod
must also satisfy the AbstractFactory. In [11] we also proved that our specifica-
tion of the State pattern is an abstraction of the Strategy pattern, and similarly
that the Object Adaptor pattern is an abstraction of the Proxy pattern.

5 Conclusion

LePUS3 is a formal design description language for specifying decidable (i.e.
automatically verifiable) properties of object-oriented design. LePUS3 has had
success in applications to design verification [12] and reverse engineering [7], but
application has become the language’s primary measure of success. LePUS3 is
prone to becoming over zealously pragmatic: its definition has become increa-
singly complex yet reflects a degree of logical innocence [11].

In this paper we presented a theory of classes derived from the theoretical
foundations of LePUS3 (§3) that addresses several issues, implicit assumptions,
and murky corners in the current definition of LePUS3 [5]. The resultant theory
is more open to both theoretical and practical investigation [11]. The scope of
our theory mirrors that of LePUS3, i.e. to those properties of design that can (in
principle) be automatically verified. However, our theory is more flexible than
LePUS3 and may be extended so as to capture more detailed object-oriented
design, such as objects and events. Such extensions would greatly increase the
expressivity of our theory, but would have consequences to automated verifica-
tion. Future work includes further research into such extensions, and applications
such as reverse engineering and program metrics. Finally, we applied our theory
to specifying and reasoning over the Abstract Factory and Factory Method de-
sign patterns, and proved that the former is an abstraction of the latter (§4).

536 J. Nicholson

Acknowledgements. This work was partially funded by the UK’s Engineering
and Physical Research Council. The authors wish to thank R. Turner, A.H.
Eden, E. Gasparis, and R. Kazman for their contributions to this project.

References

1. Beck, K., Cunningham, W.: Using pattern languages for Object-Oriented pro-
grams. In: OOPSLA 1987 workshop on the Specification and Design for Object-
Oriented Programming, Florida, USA (September1987)

2. Blewitt, A., Bundy, A., Stark, I.: Automatic verification of design patterns in Java.
In: Proceedings of the 20th IEEE/ACM International Conference on Automated
Software Engineering, pp. 224–232. ACM, CA (2005)

3. Craig, I.: The Interpretation of Object-Oriented Programming Languages, 2nd edn.
Springer, Heidelberg (2000)

4. Eden, A.H., Gasparis, E., Nicholson, J.: LePUS3 and Class-Z reference manual.
Technical Report CSM-474, School of Computer Science and Electronic Enginee-
ring, University of Essex (December 2007); ISSN 1744-8050

5. Eden, A.H., Nicholson, J.: Codecharts: Roadmaps and Blueprints for Object-
Oriented Programs. Wiley-Blackwell (2011)

6. Gamma, E., Helm, R., Johnson, R., Vlissides, J.M.: Design Patterns: Elements of
Reusable Object-Oriented Software. Addison-Wesley Professional, Reading (1994)

7. Gasparis, E.: Design Navigation: Recovering Design Charts From Object-Oriented
Programs. PhD, University of Essex (February 2010)

8. Hinchey, M., Jackson, M., Cousot, P., Cook, B., Bowen, J.P., Margaria, T.: Software
engineering and formal methods. Communications of the ACM 51(9), 54–59 (2008)

9. Huth, M.R.A., Ryan, M.D.: Logic in Computer Science: Modelling and Reasoning
about Systems, 2nd edn. Cambridge University Press, Cambridge (2000)

10. Maplesden, D., Hosking, J., Grundy, J.: A visual language for design pattern mode-
ling and instantiation. In: Design Patterns Formalization Techniques. IGI Global,
USA (2007)

11. Nicholson, J.: On the Theoretical Foundations of LePUS3 and its Application to
Object-Oriented Design Verification. PhD, University of Essex, UK (2011)

12. Nicholson, J., Gasparis, E., Eden, A.H., Kazman, R.: Automated verification of
design patterns in LePUS3. In: Proceedings of the 1st NASA Formal Methods
Symposium, pp. 76–85. NASA, Moffett Field (2009)

13. Schmidt, D.C., Fayad, M., Johnson, R.E.: Software patterns. Communications of
the ACM 39(10), 37–39 (1996)

14. Spivey, J.M.: The Z Notation: a Reference Manual, 2nd edn. Prentice-Hall, Engle-
wood Cliffs (1992)

15. Sun Microsystems Inc.: Java 6 SDK: standard edn. documentation (2006)
16. Taibi, T.: Design Patterns Formalization Techniques. IGI Global, Hershey (2007)
17. Taivalsaari, A.: On the notion of inheritance. ACM Computing Surveys 28(3),

438–479 (1996)
18. Turner, R.: Computable Models. Springer, Heidelberg (2009)
19. Turner, R.: Logic and computation (May 2010),

http://cswww.essex.ac.uk/staff/turnr/Mypapers/TPLessex.pdf
20. Wing, J.M.: A specifier’s introduction to formal methods. Computer 23(9), 8–23

(1990)

http://cswww.essex.ac.uk/staff/turnr/Mypapers/TPLessex.pdf

Differencing Labeled Transition Systems

Zhenchang Xing1, Jun Sun2, Yang Liu1, and Jin Song Dong1

1 National University of Singapore
{xingzc,liuyang,dongjs}@comp.nus.edu.sg

2 Singapore University of Technology and Design
sunjun@sutd.edu.sg

Abstract. Concurrent programs often use Labeled Transition Systems (LTSs) as
their operational semantic models, which provide the basis for automatic system
analysis and verification. System behaviors (generated from the operational se-
mantics) evolve as programs evolve for fixing bugs or implementing new user
requirements. Even when a program remains unchanged, its LTS models ex-
plored by a model checker or analyzer may be different due to the application
of different exploration methods. In this paper, we introduce a novel approach
(named SpecDiff) to computing the differences between two LTSs, represent-
ing the evolving behaviors of a concurrent program. SpecDiff considers LTSs
as Typed Attributed Graphs (TAGs), in which states and transitions are encoded
in finite dimensional vector spaces. It then computes a maximum common sub-
graph of two TAGs, which represents an optimal matching of states and transi-
tions between two evolving LTSs of the concurrent program. SpecDiff has been
implemented in our home grown model checker framework PAT. Our evaluation
demonstrates that SpecDiff can assist in debugging system faults, understanding
the impacts of state reduction techniques, and revealing system change patterns.

1 Introduction

Concurrent programs involve a collection of processes whose behaviors heavily depend
on their interactions with other processes and on their reactions to the environment
stimuli. The Labeled Transition System (LTS) provides a generic semantic model for
capturing the operational semantics of concurrent programs, and is widely used as a
basis for automatic software analysis like model based testing [10] or model check-
ing [4]. This semantic model evolves as the program evolves due to bug fixing or im-
plementing new user requirements. A minor syntactic change may lead to significantly
different semantic models. For example, a minor change to an atomic step in a con-
current stack program (see Section 3) can lead to very different system behaviors and
the violation of critical properties (e.g., linearizability [6]). Even when the program
remains syntactically unchanged, its LTS model explored by a model checker or an-
alyzer may be different due to the application of different exploration methods. For
example, a model checker may apply partial order reduction [27] or process counter
abstraction [21], which can result in a partial LTS compared with the original one.

Identifying the differences in system behaviors of evolving programs is important in
debugging and system understanding. Researchers have presented techniques to com-
pute and analyze the changing behavior of programs based on code statements [11],

S. Qin and Z. Qiu (Eds.): ICFEM 2011, LNCS 6991, pp. 537–552, 2011.
c© Springer-Verlag Berlin Heidelberg 2011

538 Z. Xing et al.

control flow [2], data flow [14], and symbolic execution [20,22]. These program repre-
sentations are not effective in analyzing and verifying the interactions between concur-
rent processes. Pinpointing differences in the evolving LTSs of a concurrent program
can lead to effective analysis of the evolving behaviors of concurrent programs. The
underlying assumption is that the evolving LTSs of a program are structurally similar
and the structural differences in LTSs can reveal the behavioral changes of a program.

However, computing differences between LTSs is highly nontrivial. The main chal-
lenge is how to systematically quantify the similarity of states and transitions and the
overall quality of the matching. A state in an LTS can be rather complicated. For con-
current systems, the system configuration has a graph-based structure, in which there
are different active processes at different states. The structure of system configuration
varies significantly during system transitions. Furthermore, the graph structure of LTSs,
such as the incoming and outgoing transitions of states and the transition labels must
also be taken into account when comparing two LTSs.

In this paper, we present SpecDiff, an approach to compute and analyze the differ-
ences between two evolving LTSs of a concurrent program. The main idea is to repre-
sent an LTS as a TAG that encodes the states and transitions in finite dimensional vector
spaces, and then exploit the robust graph matching technique to compute an optimal
matching of states and transitions between two LTSs. We adopt a modeling language,
CSP# [24], for concise behavioral description of concurrent programs. The semantic
model of CSP# programs are LTSs. SpecDiff takes as inputs two LTSs of two versions
of a CSP# program or of the same program explored with different behavior exploration
techniques. It applies GenericDiff framework [28] to compute the differences between
two input LTSs. Based on the differences between two LTSs, SpecDiff merges them
into a unified model and supports the visualization and query-based analysis of the two
LTSs and their differences. Note that our approach is not limited to CSP#, but rather
a general method which is capable of identifying the behavioral changes of concurrent
programs with LTS-based operational semantic model.

We implement and integrate SpecDiff in our home grown model checker, PAT
(Process Analysis Toolkit) [13,25]. We evaluate the applicability of SpecDiff and its
potential benefits in debugging and understanding the evolving behaviors of real-life
concurrent programs using three scenarios, in which the LTS changes due to three dis-
tinct reasons: 1) the system evolution; 2) the application of partial order reduction;
and 3) the application of process counter abstraction. These scenarios demonstrate that
SpecDiff can assist in debugging system faults, understanding the impacts of state re-
duction techniques, and revealing system change patterns.

2 Related Work

One notion commonly used for comparison of system behaviors is refinement. Refine-
ment captures the behavioral relationship between an abstract model of a system (e.g.,
a specification) and a more detailed model (e.g., an implementation). The correctness
of the latter with respect to the former can be established by studying their refine-
ment relationship. Transition-system refinement is commonly defined as trace inclu-
sion or simulation [17]. This definition ensures that if the specification satisfies certain

Differencing Labeled Transition Systems 539

property, so does the implementation. This notion of refinement constitutes the founda-
tion of model-based testing [10] and model-based debugging [15].

A symmetric version of the simulation relation is known as bisimulation [16]. Our
SpecDiff approach is reminiscent of determining bisimilarity between transition sys-
tems. However, bisimilarity requires the behavior of two states to be identical. In
contrast, SpecDiff computes a quantitative correspondence value between states, repre-
senting how alike they behave. A pair of corresponding states may differ in their system
configurations and transitions. Similarly, Girard and Pappas [5] proposed the notion
of approximate bisimulation for metric transition systems, whose states and transitions
represent quantitative data and computation, such as temperature measurement. The
quantitative data constitutes a metric space for measuring the approximate bisimilarity
between two metric LTSs. Such approximate bisimilarity allows the possibility of data
errors in the analysis of control systems [5]. In our work, the LTSs to be compared
do not contain quantitative states and transitions. But SpecDiff encodes the states and
transitions of LTSs in finite dimensional vector spaces to quantify their similarities.

If a property is not satisfied, most model checkers will produce a counterexample,
which is important in debugging complex systems. For example, Konighofer et al. [12]
debugs incorrect specifications based on explaining unrealizability using counterexam-
ples. In contrast, SpecDiff analyzes the differences of the evolving LTSs of a concurrent
program. It offers more contextual information, since the whole LTSs are compared and
differences are highlighted. It can be complementary to counterexample analysis. Fur-
thermore, SpecDiff is also useful in other scenarios, such as assessing the impact of
various state space optimization techniques. In such scenarios, model checkers would
not provide any counterexamples. However, there is still a need to detect and understand
the differences of LTSs.

Program differencing methods [7,9,29] have long been used for identifying syntac-
tic and semantic differences between program versions. Person et al. [20] exploit the
over-approximating symbolic execution technique to characterize behavioral program
differences. Siegel et al. [23] apply model checking and symbolic execution to verify
the equivalence of sequential and parallel versions of a program. A recent work by Qi
et al. [22] presents a technique to debug evolving programs using symbolic execution
and SAT solver. In our work, SpecDiff exploits a robust model differencing framework
(i.e., GenericDiff [28]) to compare the evolving LTSs of a concurrent program.

One of the key steps of GenericDiff is to perform a random walk on graph to propa-
gate the correspondence values of node pairs based on graph structure. This process has
close connections to the Markov decision process used in [19,18]. Sokolsky et al. [19]
compare the LTSs of viruses to classify them into families. Nejati et al. [18] compute a
similarity measure between Statecharts specifications for finding their correspondences.
The goal of our SpecDiff is to detect and analyze the evolving behaviors of a concurrent
program, resulted from various reasons.

3 A Motivating Example

We motivate this work with a scenario for an evolving concurrent stack implementa-
tion. A concurrent stack is a data structure that provides push and pop operations with

540 Z. Xing et al.

1 # d e f i n e N 2 ; # d e f i n e SIZE 2 ; var H = 0 ; var HL[N] ; Push (i) =
2 τ{HL[i]=H} →
3 i f a (HL[i]==H){ push . i . (H+1){ i f (H<SIZE){H++}} → Skip }
4 e l s e { τ → Push (i) } ;
5 Pop (i) = τ {HL[i]=H;} →
6 i f a (H==0){ pop . i . 0 → Skip }
7 e l s e {
8 τ → i f a (HL[i] �=H){τ → Pop (i)}
9 e l s e { pop . i .H{ i f (H>0){H−−}} → Skip } } ;

10 P r o c e s s (i) = (Push (i) � Pop (i)) ; P r o c e s s (i) ;
11 S t a c k () = (| | | x : { 0 . . N−1}@Process (x))

Listing 1.1. A concurrent stack in CSP# - atomic-ifa

the usual LIFO (Last In First Out) semantics for concurrent processes. Herlihy and
Wing proposed linearizability [6] as an important correctness criterion for implementa-
tions of concurrent data structures. For example, the concurrent stack is linearizable if
the projection of the operations in time can be matched to a sequence of operations of a
sequential stack. The goal of designing concurrent data structures is to achieve the max-
imum concurrency yet still preserve the linearizability. The critical design decision is
to use suitable locks or synchronization primitives, such as compare-and-swap (CAS),
load-linked (LL) or store-conditional (SC) to guarantee the exclusive access of concur-
rent data structures at the critical points (a.k.a. linearization points). If too many steps
are executed atomically, then the throughput of the concurrent data structure is low. If
too few steps are executed atomically, then linearizability may be violated.

Trieber [26] proposed a concurrent stack implementation using CAS operators. List-
ing 1.1 shows the algorithm in CSP#. H is the head pointer (being 0 initially) to the top
element of stack, HL[i] is a (local) variable of process i to store the value read from the
head pointer. The head pointer H is shared by all processes. Each operation tries to up-
date the H until CAS operation succeeds. We will further explain the process definitions
in Section 4.2. Here it is important to understand that the CAS operator is implemented
using the variable HL[i], which updates H if the value of H is the same as initially read
value in HL[i]. The operational semantics of ifa (line 4 and 7 of Listing 1.1) is that the
condition checking and first event execution of true/false branch are done in one atomic
step, which gives the power to simulating the CAS operator.

When designing the algorithm, CAS operator should be used with care because it
requires additional hardware support and reduces the concurrency. In order to maxi-
mize concurrency, a modified implementation of the concurrent stack may decrease the
atomicity level by changing atomic conditional choice (ifa) at line 4 and 7 in Listing 1.1
into a regular conditional choice (if). Unfortunately, this change results in the violation
of the linearizability of concurrent stack. It is clear that the change of atomicity level of
conditional choice affects the correctness of linearizability. However, this minor change
results in significantly different system behavior. The LTS of the correct version con-
tains 438 states and 1120 transitions, while the LTS of the faulty version contains 1102
states and 2642 transitions. It is not obvious that why the change of atomicity of condi-
tional choice introduces the fault.

Differencing Labeled Transition Systems 541

τ
16/28

13/18

6/225/8 9

23

τ [if]

push.0.1 push.0.1

pop.1.0

Fig. 1. One incorrect interaction between two processes

Fig. 2. The architecture of SpecDiff

Our SpecDiff is able to compare the evolving LTSs of the two versions of the con-
current stack. Figure 1 shows one violation of the linearizability of the concurrent stack
due to the change of the program. The green states and transitions are reported to be
present only in the LTS of the correct version, whereas the red states and transitions
are only present in the LTS of the faulty version. SpecDiff reports that the state 61 of
the correct LTS corresponds to the state 22 of the faulty LTS but the two states behave
differently. The state 6 transits to the state 16 by firing a push.0.1 event in the correct
LTS. However, the corresponding state of the state 6, i.e., the state 22 of the faulty LTS
does not transit to the corresponding state of the state 16, i.e., the state 28 of the fault
LTS by firing a push.0.1 event. Instead, the state 22 of the faulty LTS transits to the
state 23 (a state that is only present in the faulty LTS), by firing a push.0.1, from which
the system can fire a pop.1.0 event, which violates the linearizability of the concurrent
stack. Essentially, the second process pops nothing after the first process has pushed
one item into the stack.

4 The SpecDiff Approach

We begin with an overview of SpecDiff. We then discuss the syntax and semantics of
CSP# language. Next, we present how SpecDiff compares the LTSs for detecting the
behavioral changes of a concurrent program. Finally, we discuss the visualization and
query-based analysis of SpecDiff for inspecting the LTSs and their differences.

4.1 Overview of SpecDiff

Figure 2 presents the architecture of SpecDiff. As a proof of concept, we have imple-
mented SpecDiff in PAT [13] model checker. We adopt CSP# [24] for describing the

1 The state index is only for illustration purpose.

542 Z. Xing et al.

Fig. 3. The architecture of GenericDiff

behavior of concurrent programs, which offers great flexibility in modeling concurrent
processes and their interactions.

Given two CSP# programs p1 and p2, CSP# parser parses them into two configu-
ration graphs CG1 and CG2. The configuration graph is a rooted directed graph, rep-
resenting the internal syntactic model of a CSP# program. The PAT’s simulator that
implements the operational semantics of CSP# performs a (bounded) depth-first explo-
ration of configuration graph to generate the LTS model. Given a CSP# program and
a particular simulator, the generated LTS is stable across simulations. In our work, the
program p1 and p2 represent the same program or the two versions of a program. When
p1 and p2 are the same, different LTSs can be obtained by adopting different simulators
that support different behavior exploration methods, such as partial order reduction [27].

The main challenge in comparing the LTSs is quantifying the similarity of states
and transitions and the overall quality of the matching. The key idea of SpecDiff is to
represent the LTSs as TAGs and exploit the graph matching techniques to determine
an optimal correspondence relation over the states and transitions of the input LTSs.
More specifically, SpecDiff exploits the GenericDiff framework [28] to compare the
evolving LTSs of a CSP# program. First, if the program p1 and p2 are different, it
applies GenericDiff to compare the configuration graphs (CG1 and CG2) of p1 and p2

to determine the correspondences between the processes defined in p1 and p2, which
in turn helps to determine the correspondences between states of two LTSs. Second, it
applies GenericDiff to compare the LTSs (LTS1 and LTS2) of p1 and p2 to determine
the correspondences between states and transitions. Based on the matching results of
two LTSs, SpecDiff merges the two LTSs into a unified model. It supports visualization
and query-based analysis of the two LTSs and their differences.

4.2 Syntax of CSP#

A CSP# [24] program contains the constant and variable definitions, channel defini-
tions and process definitions. Like any program, CSP# programs also evolve. Since the
processes are a key factor to determine the state similarity in the corresponding LTSs,
given two versions of a program p1 and p2, we must first find the syntactic differences
between p1 and p2. In our work, we compare the configuration graphs CG1 and CG2

of p1 and p2 to determine the correspondences between processes of p1 and p2.

Differencing Labeled Transition Systems 543

A process is defined as an equation in the following syntax P(x1, x2, . . . , xn) =
ProcessExp, where P is the process name, x1, x2, . . . , xn is an optional list of pro-
cess parameters and ProcessExp is a process expression. A named process may be
referenced by its name (with the valuation of the parameters). The process expression
defines the computational logic of the process. The following is a BNF description of
process expressions [24]. CSP# supports various types of process constructs, including
primitives, event prefixing, channel communication, hiding, and various process com-
positions. CSP# parser parses a CSP# program into a configuration graph CG(V ,E),
where the vertex set V contains the processes defined in the program and the edge set
E contains the composition relations between processes.

P = Stop | Skip | e.x{prog} → P | ch!x → P | ch?x → P | P \ X
| P ; Q | P � Q | P Q | [b]P | P ‖ Q | P ||| Q | P � Q
| if b {P} else {Q} | ifa b {P} else {Q} | ref (Q)

The concurrent stack program in Figure 1.1 implements Treiber’s lock-free concurrent
stack [26] in CSP#. It represents the concurrent stack as a singly-linked list with a head
pointer to the top element of the stack and uses CAS to modify the value of the head
pointer atomically. This program defines two constants (Line 1). N is the number of
processes and SIZE is the size bound of the stack. To make the state finite, we bound
the size of the stack and the number of processes. Line 2 defines a variable H that
records the stack head pointer and a variable HL that records the temporary head value
of each process. The process definitions Push(i), Pop(i), Process(i), and Stack()
specify the exact behaviors of the concurrent stack.

Figure 4 presents the partial configuration graph of this stack program. The Stack()
process is defined as the interleaving (|||) of N Process(i). The Process(i) is de-
fined as the sequential composition (;) of a choice process ([]) and itself (self-loop).
The choice process ([]) is composed of two choices (Push(i)[]Pop(i)). The process
Push(i) is defined as a event prefixing process τ{HL[i] = H } → τ is the event
name and the statement block attached to this event is a sequential program that is ex-
ecuted atomically together with the occurrence of the event. In this example, it update
HL[i] to be H . The process Push(i) behaves like the atomic conditional choice pro-
cess ifa(HL[i] == H){. . .}else{. . .} after performing τ{HL[i] = H }. If the boolean
expression HL[i] == H evaluates to true, then Push(i) behaves like the event prefix-
ing process push.i .(H + 1){...} → Skip that performs push.i .(H + 1), updates H ,
and then terminate. If HL[i] == H evaluates to false, Push(i) behaves like the event
prefixing process τ → Push(i). Similarly, process Pop(i) defines the behavior of pop
operation (details are omitted in Figure 4 for the sake of clarity).

4.3 Operational Semantic of CSP#

The operational semantics of CSP# programs is defined in the form of Structural Op-
erational Semantics (SOS) rules [24]. It extends the operational semantics for CSP [3].
These rules translate a CSP# program into an LTS.

An LTS is a 3-tuple (S , init ,→), which consists of a set of system configurations,
i.e., global states, the initial system configuration init ∈ S , and a set of labeled tran-
sition relations →. In CSP#, a state is composed of two components (V ,P) where V

544 Z. Xing et al.

Stack()

[]τ

{HL[0]=H}τ

ifa (HL[0]==H)

Skip

push.0.(H+1){...}τ

(Push(0)[]Pop(0));Process(0)

||| Process(i)

Pop(0)

Fig. 4. Stack program configuration graph

{...}/ {...}τ τ

push.0.(H+1){...}/push.0.1{H+1}

ifa (HL[0]==H) if (HL[0]==H)

Fig. 5. Partial matching result

S1/S1´

pop.x.H

push.y.(H+1)

S3

S1/S1´ S1/S1´ S1/S1´

τ

pop.x.H

S2/S2´

S4/S4´

(B)

τ

push.x.(H+1)
push.x.(H+1)

S3 S2/S2´

S4/S4´

(A) (C)

τ

push.x.(H+1)

push.y.(H+1)

push.y.(H+1)

S3 S2/S2´

S4/S4´

τ

pop.x.Hpop.x.H

S3 S2/S2´

S4/S4´

(D)

pop.y.H pop.y.H

Fig. 6. Four types of incorrect interactions

is a valuation function mapping a variable name (or a channel name) to its value (or a
sequence of items in the buffer) and P is the current process expression. A transition is
a labeled directed relation from a source state to a target state. The labeled transition re-
lation → conforms to the structural operational semantics of CSP# process constructs.
The transition label represents the engaged event. This event has a name and an ordered
list (possible empty) of parameter expressions, which captures the information such as
process id and the valuation of global variables or channel buffers.

For example, in the LTS of the correct version of the stack program in Figure 1.1,
the valuation of global variables H and HL at the state 6 is 0 and [0, 0] respectively.
The process expression at the state 6 is ifa(HL[0] == H){push.0.(H + 1){. . .} →
Skip} . . . ; Process(0) ||| ifa(H == 0){pop.1.0 → Skip} Since HL[0] == H
evaluates to true at the state 6, the first process can perform the event prefixing process
push.0.(H + 1){. . .} → Skip. Consequently, the state 6 transits to the state 16 by a
push.0.1 transition. The first parameter 0 of the push.0.1 event is the id of the first
process and the second parameter is the updated head pointer of the shared stack. The
valuation of H and HL at the target state 16 is 1 and [0, 0]. The process expression at
the state 16 is Skip; Process(0) ||| ifa(H == 0){pop.1.0 → Skip}

4.4 Comparing Configuration Graphs and Labeled Transition Systems

SpecDiff applies GenericDiff [28] to compare the evolving configuration graphs and
LTSs. GenericDiff is a general framework for model comparison. Given two input mod-
els, GenericDiff casts the problem of comparing two models as the problem of recog-
nizing the Maximum Common Subgraph of two TAGs. The only step required to apply

Differencing Labeled Transition Systems 545

GenericDiff is to develop the necessary domain-specific inputs (see the architecture of
GenericDiff in Figure 3). The domain-specific types and properties specify the TAG
that GenericDiff builds when parsing the input model and the characteristic properties
of model elements and relations that discriminate their instances. The pairup feasibility
predicates specify rules that a pair of elements (relations) must satisfy so that they can
be paired-up as matching candidates. The random walk tendency functions specify the
parameters for the random walk process that propagates the correspondence values on
graph. GenericDiff reports a symmetric difference between two input models, i.e., a set
of corresponding model elements and relations in two models and two sets of model
elements and relations that are only present in one of the two input models respectively.
Due to the space limitation, interested readers are referred to [28] for the technical de-
tails about how SpecDiff configures GenericDiff framework.

Figure 5 presents the partially matching results of the configuration graphs of the two
versions of the stack program. In this example, the program suffers a minor syntactic
change. The atomic conditional choice (green) is only present in the configuration graph
of the correct stack program, while the regular conditional choice (red) is only present
in the faulty version. All other process constructs are matched.

However, this minor syntactic change to the stack program results in significant
semantics changes. Figure 1 presents a violation of linearizability of the concurrent
stack among these semantics changes as reported by SpecDiff. Due to the decrease of
the atomicity level of conditional choice in the faulty version, the condition checking
if (H == 0) will not be executed atomically together with either pop.i .0 → Skip (then
branch) or tau → ifa(HL[i]! = h) . . . (else branch). Consequently, the second pro-
cess evaluates H == 0 at the state 9 (only present in the faulty LTS), the faulty LTS
transits to the state 22. However, at the state 22, before the second process executes
pop.1.0 → Skip, the first process executes push.0.(H + 1){. . .} → Skip, which up-
date the head pointer of the concurrent stack, i.e., H becomes 1 at the state 23. But the
second process is not aware of this update and erroneously execute pop.1.0 → Skip.

4.5 Analyzing the LTS Differences

Given the matching results of two LTSs, SpecDiff merges the two LTSs into a unified
model. The unified model is constructed by first creating the matched parts of two
LTSs (i.e., corresponding states and transitions) and then applies a sequence of insert
operations to create the unmatched states and transitions on the basis of the matched
parts of two LTSs. A pair of matched states and transitions appears only once in the
unified model. It is important to note that, in our formulation of the LTS similarity, two
states (one from each LTS) being matched only indicates that the two states are similar
in terms of their characteristic properties and graph structures. As shown in our running
example, two matched states (e.g. 6/22) may still differ in their system configurations
(i.e., the valuation of global variables and channels and/or the process expression) and
their incoming and outgoing transitions.

To enable an intuitive means of inspecting the differences between the two
LTSs, we have developed two types of visualizations for the unified model: normal
and fragmented. The normal view shows the unified model in a whole graph. The
fragmented view breaks the unified model into a set of disconnected matched and

546 Z. Xing et al.

unmatched fragments. A matched (unmatched) fragment is a maximally connected sub-
graph of matched (unmatched) states. That is, there are no matched (unmatched) states
and transitions in the unified model that could be added to the subgraph and still leave
it connected. A unmatched fragment also contains the duplicates of the matched states
neighboring with unmatched states. The matched fragments can be hidden in the frag-
mented view. The detailed state information, i.e., the valuation of global variables and
channels as well as the process expression at a state can be inspected in the State Info
view or a pop-up window. The visualization supports zooming-in/out and panning the
view.

Figure 1 shows partially a normal view of the unified model of the two evolving
LTSs of the stack program. The matched states and transitions of two LTSs are shown
in black, while the unmatched states and transitions of two LTSs are shown in green
and red respectively. In the visualization, the states are indexed with unique ids for
illustration purpose. A pair of matched states sid1 and sid2 (one from each LTS) is
shown in one node labeled sid1/sid2. For example, 6/22 represents that the state 6 of
the correct LTS correspondes to the state 22 of the faulty LTS. Note that the state indices
have nothing to do with the similarity between states. A pair of matched transitions
(one from each LTS) is shown as one edge labeled tl1/tl2, tl1 and tl2 being the labels
of two transitions. When tl1 and tl2 are the same, tl2 is omitted for the sake of clarity.

For example, the transition 6/22
pop.1.0→ 9/17 represents a pair of matched transitions

6
pop.1.0→ 9 and 22

pop.1.0→ 17.
In addition to the interactive visual inspection of two LTSs and their differences,

SpecDiff stores all the data of two LTSs and their differences in a database. We have
defined several queries for detecting behavioral change patterns based on the matching
results of two LTSs. For example, one query has been defined to search for pairs of

matched states with unmatched same-label transitions. The transitions 6/22
push.0.1→

16/28 and 6/22
push.0.1→ 23 shown in Figure 1 is an instance returned by this query.

The visual inspection and query-based analysis complement each other. The visu-
alization provides an intuitive means of inspecting the differences between two LTSs.
Query-based analysis scales up to large LTSs. It helps to identify the potentially inter-
esting states and transitions that are worth further investigation. The analysts can then
visually explore these states and transitions. In fact, we use the visualization and query-
based analysis interleavingly to incrementally build up the knowledge about the two
compared LTSs and their differences.

5 Evaluation

In this section, we present our preliminary evaluation of SpecDiff. We focus on the
general applicability and the potential benefits of SpecDiff in three scenarios, where the
LTS models of concurrent programs change due to three distinct reasons.

5.1 The Effectiveness of SpecDiff

We first report our experience in using SpecDiff for debugging and understanding
the evolving LTSs of concurrent programs. Three scenarios were illustrated: 1) the

Differencing Labeled Transition Systems 547

evolution of a concurrent stack that results in faulty behaviors; 2) the application of
partial order reduction; 3) the application of process counter abstraction. Note that the
programs remain unchanged in the second and third scenarios, but the LTS models actu-
ally explored are different due to the application of state space reduction or abstraction
techniques.

The Evolution of a Concurrent Stack. Concurrent programs are significantly more
difficult to design and verify than the sequential ones because process executing con-
currently may interleave their steps in many ways, each with a different and potentially
unexpected outcome. Our running example demonstrates such a case. A change to the
atomicity of conditional choices results in the violation of the linearizability of the con-
current stack. Detecting and analyzing the differences between the correct and faulty
LTSs help to debug and understand the evolving behavior of concurrent programs.

In Section 3, we discussed an incorrect interaction between two processes in the
faulty concurrent stack (see Figure 1). This incorrect behavior motivated us to define
a query searching for pairs of matched states with unmatched same-label transitions.
Figure 6 presents four types of incorrect interactions between two processes of the
concurrent stack that we have learned from inspecting the SpecDiff results.

Our running example illustrates the first type of incorrect interactions (Figure 6 (A)).
The process y pops nothing or an item from the invalid stack top after the process x has
pushed one item into the stack. In the second type of incorrect interactions (Figure 6
(B)), one process x executes a pop operation, which updates the head pointer and results
in HL[y] �= H , i.e., the temporary head value of the other process y is different from the
head pointer. Under this condition, the correct behavior of the process y should perform
τ → Push(y) and then update its temporary head value before any push operations.
However, due to the non-atomic execution of condition checking HL[y] == H and
push operation, the process y pushes one item into the invalid stack top.

In the third type shown in Figure 6 (C), the process x performs a push operation
between the condition check HL[y] == H and the push operation of the process y;
the process y overrides the item pushed by the process x . In the forth type, the process
x performs a pop operation between the condition check HL[y] == H and the pop
operation of the process y; the process y pops an item from the invalid stack top.

We also used the PAT model checker to verify the linearizibility of the faulty CSP#
concurrent stack program. PAT reports one counterexample . . . → pop.1.1 → pop.0.1,
which represents an instance of the forth type of incorrect interactions between the
two processes of concurrent stack. In this particular case, the process 1 pops an item
from the stack top (the head pointer H being 1 before the pop operation) such that the
stack becomes empty (H being 0). And then the process 0 attempts to pop from the
invalid stack top. This counterexample is important in debugging the incorrect program
behavior. But it reveals only one case of incorrect interactions. Furthermore, it is not
always straightforward to imagine what the corresponding correct behaviors are and
what the differences between the correct and incorrect behaviors are. As demonstrated
in this case study, our SpecDiff is able to reveal four types of incorrect interactions
(see Figure 6) and it is able to offer more contextual information for understanding the
evolving behaviors of concurrent programs.

548 Z. Xing et al.

63/133

57/27 56/50

55

get.3.0

get.2.3 get.3.3

eat.3 eat.1

put.1.2put.3.0

Fig. 7. The impact of partial order reduction

23/68

37/70

τ

ττ [if]

[if]

push.0.1

[else]

58

62 63

64

69
push.1.1push.0.1

push.1.2 push.0.2

push.0.1

Fig. 8. An example of false positive match

The Application of Partial Order Reduction. To enable a rigorous correctness proof
of a concurrent program, we need to accurately model a concurrent program, for ex-
ample using formal languages like CSP# [24]. Once the specification of a concurrent
program stabilizes, it is often optimized manually or mechanically in order to make
verification feasible or efficient [4]. For example, partial order reduction [27] is a tech-
nique for reducing the state space to be explored by a model checking algorithm. It
exploits the commutativity of concurrently executed independent transitions, which re-
sult in the same state when executed in different order. The application of such state
reduction techniques can result in the intricate differences in the partial LTS being ex-
plored. Identifying these differences helps developers better understand the impact of
state space reduction techniques.

In this scenario, we have implemented the classic dining philosophers problem in
CSP#, which demonstrates the multi-process synchronization problem in concurrent
computing. We simulated two LTSs of this dining philosophers CSP# program with and
without partial order reduction respectively. With four philosophers, the LTS obtained
without partial order reduction contains 1297 states and 4968 transitions, while the LTS
obtained with partial order reduction contains 1214 states and 3396 transitions.

We applied SpecDiff to compare these two LTSs. SpecDiff isolated the 83 states
and 1572 transitions that have not been explored when the partial order reduction is in
place. Figure 7 presents partially an unmatched LTS fragment. At the state 63 and the
state 133, the first philosopher P1 have grabbed two forks and the third P3 philosopher
have grabbed one fork. Without partial order reduction, there are three ways to proceed,
i.e., P1 eats (eat .1 transition, not shown in Figure 7), P3 grabs another fork (get .3.3
transition), or the second philosopher P2 grabs one fork (get .2.3 transition). With par-
tial order reduction, only one way (i.e., P1 eats) is possible. Consequently, the partial
LTS explored with partial order reduction will not consist of the transitions get .3.3 and
get .2.3; the system will not enter the state 55 in which both P1 and P3 have grabbed
two forks and can eat.

The Application of Process Counter Abstraction. A parameterized system has finite
types of processes, but the number of processes of each type can be very large or even
unbounded. Such systems frequently arise in concurrent algorithms and protocols, such

Differencing Labeled Transition Systems 549

as the classic readers-writers problem and the Java meta-lock algorithm [1]. Process
counter abstraction [21] is a common state abstraction technique for analyzing parame-
terized systems, which groups the processes based on which state of the local finite state
machine they reside in. To achieve a finite state abstract system, one can then adopt a
cutoff number, so that any counter greater than the cutoff number is abstracted to w
(unbounded number). This yields a sound but incomplete verification procedure - any
linear temporal logical property verified in the abstract system holds for all concrete
finite-state instances of the system, but not vice versa. In such cases, it is desirable to
find plausible change patterns of system behavior as the cutoff number changes, since
inspecting such change patterns may lead to effective abstraction acceleration and sys-
tem verification.

Let us start with the classic readers-writer problem. We implemented the readers-
writer lock pattern in a parameterized specification in CSP#. The readers-writer lock
allows concurrent read access to an object but requires exclusive access for write. It is a
synchronization primitive supported by Java version 5 or above and C#. We simulated
20 LTSs of this CSP# readers-writer lock program by setting the cutoff number to i(i =
1..20). We applied SpecDiff to compare the consecutive LTSs ltsi and ltsi+1 and then
inspected the differences between ltsi and ltsi+1 as the cutoff number increases.

Let N be the maximum number of readers that can read concurrently. SpecDiff
revealed that, as the cutoff number i increases by 1, there will be N − i − 1 addi-
tional fragments in the ltsi+1. An additional fragment links two pairs of matched states
SP1 and SP2 with i + 3 unmatched states in between. At SP1, an unbounded number
of readers do not hold the lock and one reader holds the lock, while at the other pair
of matched states SP2, one reader does not hold the lock and an unbounded number of
readers hold the lock. From SP1, the only reader that holds the lock releases the lock
(i.e., stopread); the ltsi+1 transits to an unmatched state where no readers hold the lock.
Then, the readers keep acquiring the lock (i.e., startread) until all the readers hold the
lock. Finally, one reader releases the lock and the ltsi+1 reaches to SP2 where only one
reader does not hold the lock. The transitions from SP2 to SP1 is in reverse.

We also implemented a parameterized abstract specification in CSP# for Java met-
alock algorithm [1]. Java metalock plays an essential role in allowing Java to offer
concurrent access to objects. Metalocking can be viewed as a two-tiered scheme. At the
metalock level, a thread waits until it can enqueue itself on an object’s monitor queue
in a mutually exclusive manner. We simulated 9 LTSs of this CSP# program by set-
ting the number of threads that can wait at waiting state to m(m = 2..10). We applied
SpecDiff to compare the consecutive LTSs ltsm and ltsm+1. SpecDiff revealed that, as
m increases by 1, ltsm+1 will have 40 more states and 90 more transitions. There are
10 pairs of matched states, from which ltsm+1 transits to unmatched states by getslow
transitions (i.e., obtaining an object lock by a slow path). From those unmatched states,
ltsm+1 then transits to other unmatched states until it finally transits back to the 10 pairs
of matched states by request transitions (i.e., signaling the request for an object).

5.2 The Robustness of SpecDiff

The quantitative similarities of states and transitions are heuristic estimates, based on
the characteristic properties of states and transitions as well as the graph structure of

550 Z. Xing et al.

LTSs (see Section 4.4). In this section, we evaluate how good the heuristics of SpecDiff
are in matching the corresponding states and transitions in two evolving LTSs.

In principle, the precision and recall metrics are used to evaluate the quality of such
matching tasks. Given the total number of matched states (Mactual) and the number
of matched states reported by SpecDiff (Mreported), precision is the percentage of the
correctly reported matches (Mactual ∩Mreported)/Mreported and recall is the percentage
of matches reported (Mactual ∩ Mreported)/Mactual . In this work, we have manually
examined two compared LTSs to establish the oracle (i.e., Mactual) for the analysis.
Overall, the precision and recall of SpecDiff is fairly good. In the first scenario, the
precision and recall of SpecDiff is 95% and 95% respectively. SpecDiff achieves 100%
precision and 100% recall in the second and third scenarios. We attribute this to the rich
domain-specific properties and graph structure of the input LTSs.

Figure 8 presents an example of false positive (i.e., erroneous) match of states in the
first scenario. SpecDiff reports the state 23 of the correct LTS and the state 68 of the
faulty LTS as a pair of corresponding states. However, the state 23 should be matched
to the state 58 of the faulty LTS, as the state pair (23/58) can better reflect the violation
of the linearizibility of the concurrent stack. It will be an instance of the third type of
violations (see Figure 6).

However, as the set of active processes at the state 23 and the state 58 is “too” dif-
ferent, the state 23 and the state 58 are not paired-up as matching candidates. Conse-
quently, SpecDiff matches the state 23 to the state 68 which is one transition (if) away
from the state 58. Since the matching of the state 23 and the state 68 is less intuitive for
understanding the violation of the linearizibility of concurrent stack, we consider it as
a false positive match. In the first scenario, such erroneous matches prevent the states
from being matched to their “real” counterparts, which consequently results in the false
negatives (i.e., missed matches).

6 Threats to Validity

In this work, we ground our discussion on CSP# for modeling the behavior of concur-
rent programs. We exploit the syntax and structural operational semantics of CSP# to
quantify the similarity between the LTSs of a concurrent program. However, the foun-
dational concept of SpecDiff is general, i.e., representing a labeled transition system
as a typed attributed graph, quantifying the states and transitions in finite dimensional
vector spaces, and exploiting the graph differencing framework to compare the LTSs.
Given a modeling language with different syntax and operational semantics, SpecDiff
should be applicable as long as the language has LTS-based operational semantics.

The SpecDiff is used to compare the evolving LTSs of two versions of a program
or the LTSs of a program explored by different behavior exploration techniques. The
underlying assumption is that the structural differences of syntactic models and LTSs
of a program can reveal the syntactic and behavioral changes of the program under
investigation. However, this assumption does not hold for two arbitrary programs. Two
different programs may have the same LTSs. On the other hand, the LTSs being different
does not indicate that the two programs must behave differently.

While our preliminary evaluations demonstrate the applicability and potential ben-
efits of SpecDiff, its practical utility still needs further assessments. Scalability is an

Differencing Labeled Transition Systems 551

important challenge to our SpecDiff approach. We are currently exploring a few ways
to mitigate the scalability issue. First, we may explore syntactic differences (which
could be easy to compute) to guide the comparison of large LTSs. While specification
remains unchanged, limiting the depth of search could be one solution. Alternatively,
we are considering integrating intuitive visualization technique that allows the user to
interactively explore the state space and select which part(s) of the LTSs to differenti-
ate. This would incorporate the human intelligence to guide an interactive differencing
process, because the user would have clues about which parts most likely go wrong.
Second, we are reviewing the current implementation that compares the LTSs rendered
in the GUI. Direct comparison of the internal data structures of LTSs could significantly
reduce the execution time and memory consumption. Last but not least, our experiment
suggests that often the important differences (e.g. faults) would be reflected in the differ-
ences of small sized models. Similar experience has been reported by other verification
tools like Alloy [8].

7 Conclusions and Future Work

In this paper, we present SpecDiff for identifying the behavioral changes of concurrent
programs with LTS-based semantic model. The main challenge in comparing LTSs lies
in how to systematically quantify the similarity of states and transitions of the LTSs and
the overall quality of the matching. Our solution is to represent the labeled transitions
systems as typed attributed graphs, encodes the states and transitions in finite dimen-
sional vector spaces, and exploits the robust graph matching techniques to determine an
optimal correspondence relation over the states and transitions of the input LTSs.

We have developed a proof-of-concept implementation of SpecDiff on the PAT model
checker. We evaluated the applicability and the potential benefits of SpecDiff in the evo-
lution and optimization of concurrent programs, written in CSP#, a modeling language
for concurrent systems. Our evaluation shows that SpecDiff is able to produce an accu-
rate matching results between the evolving LTSs of a concurrent program. The reported
differences are useful in debugging program faults and understanding the behavioral
change patterns of concurrent programs.

This work is the first step in exploiting the model differencing techniques to support
the development and verification of concurrent programs. Our future work will further
develop more types of analysis based on the SpecDiff results. We also plan to extend
SpecDiff to compare and analyze real-time systems and web services.

References

1. Agesen, O., Detlefs, D., Garthwaite, A., Knippel, R., Ramakrishna, Y., White, D.: An Ef-
ficient Meta-Lock for Implementing Ubiquitous Synchronization. In: OOPSLA 1999, pp.
207–222 (1999)

2. Agrawal, H., Horgan, J., London, S., Wong, W.: Fault localization using execution slices and
dataflow tests. In: ISSRE 1995, pp. 143–151 (1995)

3. Brookes, S.D., Roscoe, A.W., Walker, D.J.: An Operational Semantics for CSP. Technical
report (1986)

4. Clarke, E., Grumberg, O., Peled, D.: Model Checking. The MIT Press, Cambridge (1999)

552 Z. Xing et al.

5. Girard, A., Pappas, G.: Approximation metrics for discrete and continuous systems. IEEE
Transactions on Automatic Control 52(5), 782–798 (2005)

6. Herlihy, M., Wing, J.M.: Linearizability: A Correctness Condition for Concurrent Objects.
ACM Trans. on Prog. Lang. and Syst (TOPLAS) 12(3), 463–492 (1990)

7. Horwitz, S.: Identifying the semantic and textual differences between two versions of a pro-
gram. SIGPLAN Not. 25(6), 234–245 (1990)

8. Jackson, D.: Software Abstractions. MIT Press, Cambridge (2006)
9. Jackson, D., Ladd, D.: Semantic diff: A tool for summarizing the effects of modifications.

In: ICSM 1994, pp. 243–252 (1994)
10. Jacky, J., Veanes, M., Campbell, C., Schulte, W.: Model-Based Software Testing and Analy-

sis with C#. Cambridge University Press, Cambridge (2007)
11. Jones, J., Harrold, M.: Empirical evaluation of the tarantula automatic fault-localization tech-

nique. In: ASE 2005, pp. 273–282 (2005)
12. Könighofer, R., Hofferek, G., Bloem, R.: Debugging formal specifications using simple

counterstrategies. In: FMCAD 2009, pp. 152–159 (2009)
13. Liu, Y., Sun, J., Dong, J.S.: An Analyzer for Extended Compositional Process Algebras. In:

ICSE 2008 Companion, pp. 919–920 (2008)
14. Masri, W.: Fault localization based on information flow coverage. Technical report, AUB-

CMPS-07-10 (2007)
15. Mayer, W., Stumptner, M.: Model-based debugging – state of the art and future challenges.

Electron. Notes Theor. Comput. Sci. 174(4), 61–82 (2007)
16. Milner, R.: Communication and Concurrency. Prentice-Hall, Englewood Cliffs (1989)
17. Milner, R.: Operational and algebraic semantics of concurrent processes, pp. 1201–1242

(1990)
18. Nejati, S., Sabetzadeh, M., Chechik, M., Easterbrook, S., Zave, P.: Matching and merging of

statecharts specifications. In: ICSE 2007, pp. 54–64 (2007)
19. Sokolsky, S.K.O., Lee, I.: Simulation-based graph similarity. In: Hermanns, H. (ed.)

TACAS 2006. LNCS, vol. 3920, pp. 426–440. Springer, Heidelberg (2006)
20. Person, S., Dwyer, M.B., Elbaum, S., Pǎsǎreanu, C.S.: Differential symbolic execution. In:

Nyberg, K. (ed.) FSE 2008. LNCS, vol. 5086, pp. 226–237. Springer, Heidelberg (2008)
21. Pnueli, A., Xu, J., Zuck, L.: Liveness with (0, 1,∞)-counter abstraction. In: Brinksma, E.,

Larsen, K.G. (eds.) CAV 2002. LNCS, vol. 2404, pp. 107–122. Springer, Heidelberg (2002)
22. Qi, D., Roychouhury, A., Liang, Z., Vaswani, K.: Darwin: an approach for debugging evolv-

ing programs. In: Dunkelman, O. (ed.) FSE 2009. LNCS, vol. 5665, pp. 33–42. Springer,
Heidelberg (2009)

23. Siegel, S.F., Mironova, A., Avrunin, G.S., Clarke, L.A.: Using model checking with symbolic
execution to verify parallel numerical programs. In: ISSTA 2006, pp. 157–168 (2006)

24. Sun, J., Liu, Y., Dong, J.S., Chen, C.Q.: Integrating Specification and Programs for System
Modeling and Verification. In: TASE 2009, pp. 127–135 (2009)

25. Sun, J., Liu, Y., Dong, J.S., Pang, J.: PAT: Towards Flexible Verification under Fairness.
In: Bouajjani, A., Maler, O. (eds.) CAV 2009. LNCS, vol. 5643, pp. 709–714. Springer,
Heidelberg (2009)

26. Treiber, R.K.: Systems Programming: Coping with Parallelism. Technical Report RJ 5118,
IBM Almaden Research Center (1986)

27. Valmari, A.: Stubborn Set Methods for Process Algebras. In: PMIV 1996, pp. 213–231
(1996)

28. Xing, Z.: Genericdiff: A general framework for model comparison. Technical report, Na-
tional University of Singpore (2011),
http://www.comp.nus.edu.sg/˜pat/publications/gendiff.pdf

29. Yang, W.: Identifying syntactic differences between two programs. Softw. Pract.
Exper. 21(7), 739–755 (1991)

http://www.comp.nus.edu.sg/~pat/publications/gendiff.pdf

Developing a Consensus Algorithm Using Stepwise
Refinement

Jeremy W. Bryans

School of Computing Science, Newcastle University, United Kingdom
Jeremy.Bryans@ncl.ac.uk

Abstract. Consensus problems arise in any area of computing where
distributed processes must come to a joint decision. Although solutions to con-
sensus problems have similar aims, they vary according to the processor faults
and network properties that must be taken into account, and modifying these as-
sumptions will lead to different algorithms. Reasoning about consensus proto-
cols is subtle, and correctness proofs are often informal. This paper gives a fully
formal development and proof of a known consensus algorithm using the step-
wise refinement method Event-B. This allows us to manage the complexity of the
proof process by factoring the proof of correctness into a number of refinement
steps, and to carry out the proof task concurrently with the development. During
the development the processor faults and network properties on which the devel-
opment steps rely are identified. The research outlined here is motivated by the
observation that making different choices at these points may lead to alternative
algorithms and proofs, leading to a refinement tree of algorithms with partially
shared proofs.

Keywords: Consensus Algorithms, Stepwise Refinement, Verification, Event-B.

1 Introduction

A consensus problem is one in which a number of distributed processes must come to
a common decision despite different initial proposals from the processors. They arise
in many areas of computing, such as the decision to commit to a transaction on a dis-
tributed database or agreeing a common value from a number of independent sensors.
A consensus algorithm is an algorithm which solves the consensus problem for particu-
lar processor and network fault assumptions, timing models and reliability/performance
trade-offs. The wide variety of these assumptions has led to the design of a wide variety
of bespoke consensus algorithms.

Developing consensus algorithms and proving them to be correct is a challenging
task and in many cases informal proofs of correctness are provided. The research in
this paper is motivated by the eventual goal of defining a taxonomy of consensus algo-
rithms, in which algorithms are more or less closely related according to the similarity
or disparity of their underlying assumptions. Such a taxonomy could then form a basis
for a set of stepwise-refined formal developments of consensus algorithms which would
share more or less steps according to the similarity of their fault assumptions.

S. Qin and Z. Qiu (Eds.): ICFEM 2011, LNCS 6991, pp. 553–568, 2011.
c© Springer-Verlag Berlin Heidelberg 2011

554 J.W. Bryans

The purpose of this work is to give a refinement-based approach to the formal devel-
opment and proof of a well-known consensus algorithm as a means of evaluating the
plausibility of a formal taxonomy of consensus protocols. During the development the
processor faults and network properties on which the development steps rely are iden-
tified. Development using stepwise refinement has a number of benefits. Proof com-
plexity is managed by splitting the proof over a number of refinement steps, so proof
invariants may be given and proved at the earliest possible stage, before the introduc-
tion of distracting detail. A stepwise development naturally postpones some decisions
(such as particular fault and network models) and related algorithms may therefore be
developed by making different choices at these points, therefore reusing early parts of
a development.

In this paper a formal development of the Floodset consensus algorithm [12] is given,
using the modelling language Event-B [1]. Floodset is chosen because it is a relatively
straightforward consensus algorithm with strong fault assumptions, and the Event-B
formalism is chosen because it supports stepwise refinement by structuring develop-
ments into a chain of machines linked by refinement relations, thereby managing the
complexity of proof. It is also well supported by proof tools.

Sect. 2 gives the consensus correctness criteria, as well as a description of the Flood-
set algorithm and assumptions. The modelling technology used is outlined in Sect. 3.
The body of the work is in Sect. 4, which describes the development of the Floodset
algorithm by stepwise refinement. Sect. 5 draws some conclusions and considers the
plausibility of this work as a basis for a taxonomy of consensus algorithms.

Related Work. Event-B is used in [4] to model the distributed reference counting al-
gorithm, which shares and removes resources in a distributed way while ensuring that
shared resources currently being used elsewhere are not removed. The given algorithm
does not allow for potential faults. In [3] the authors use Event-B to give a stepwise
refinement model of the IEEE 1394 Tree Identify Protocol. This is a specialised con-
sensus problem in which participants must elect a leader. A single abstract event is re-
fined into an existing protocol and message-passing between participants is introduced
in a later refinement. Potential faults within the system are not considered. In [7] an
algorithm for topology discovery is presented in which individual nodes in a network
must remain up-to-date about the changing topology of the network.

In [13] security protocols are developed using Isabelle/HOL. Stepwise refinement is
exploited to break the development into logical stages, and to allow the possibility of
making different choices at various stages in a development. In [8] Event-B is used to
model a consensus protocol under similar assumptions to those made here – messages
may be dropped but not forged. The initial machine is roughly equivalent to our machine
X4. The authors do not address the algorithmic description of protocols. Event-B is
used to consider consensus analysis in [14]. The focus there is on multi-agent systems
and the specification of separate machines which are later composed.

The Heard-Of model [6] is a common representation of a number of standard systems
and failure assumptions, and has been used to verify complex protocols [5].

Developing a Consensus Algorithm Using Stepwise Refinement 555

2 The Floodset Algorithm

A consensus algorithm is one which meets a number of correctness properties and there
are a number of ways in the literature of formulating these. In this work, the following
definitions, taken from [12], are chosen.

Agreement: No two correct processes decide on different values,
Validity: Any decision value for a process is an initial value for some process, and
Termination: All correct processes eventually reach a decision.

The Floodset algorithm [12] is a solution to the consensus problem. It assumes a syn-
chronous network model (processor computation takes place in synchronous rounds)
and failstop processors (processors may only fail by stopping, and once stopped cannot
restart during that execution of the algorithm.) Processors may not behave maliciously.
Floodset also assumes a reliable network, although messages may not be received if
the receiver has failed. The number of rounds executed is a parameter of Floodset, and
up to t processor failures may be tolerated, provided t+1 rounds are executed, and the
original number of processors is greater than t.

The Floodset algorithm proceeds as follows. Each process1 begins with an initial
value. In the first round, every process sends its identity and value to all other pro-
cesses. Processes retain all received (process, value) pairs. In each subsequent round,
all processes send all the pairs they currently know2. Faulty processors may fail at any
time.

Fig. 1 depicts the first two rounds of an example execution of Floodset on processors
p1, p2 and p3. Fig. 1(a) gives the initial state of the three processes. During the first
round, processor p2 fails after process p2 has sent its name and value to process p3, but
before sending them to process p1. It receives nothing from either of the other processes.
Processes p1 and p3 communicate fully with each other. The state after the first round
is given in Fig. 1(b). During the second round, processes p1 and p3 again communicate
fully, leading to the state shown in Fig. 1(c).

After t+1 rounds have been carried out, each process arrives at its final value by
running a deterministic decision function on its final (local) state, which selects one of
the values known to that process. To demonstrate that each correct process arrives at the
same value, it is sufficient to ensure that the initial inputs each correct process provides
to the deterministic decision function are identical.

To see that Floodset is correct, recall that t+1 rounds are executed, up to t failures
are tolerated, and that failures are failstop (failed processes do not resume execution.)
There must therefore be a round in which no failures occur. After this round (which
we refer to later as the saturation round) all working processes (a superset of correct
processes) must have the information, and this information cannot be added to at later
rounds in the protocol. Each correct process therefore has the same input at decision

1 A process is assumed to run on a single processor, and we therefore conflate process and
processor, referring to both in the subsequent text as pi.

2 A version of Floodset can be implemented which sends only values, and omits process names.
Process names are included to make this model more reusable in the future development of
more complex consensus algorithms.

556 J.W. Bryans

��
�	
p1 {(p1, v1)}

��
�	
p2

{(p2, v2)} ��
�	
p3 {(p3, v3)}

(a)

��
�	
p1 {(p1, v1),

(p3, v3)}

��
�	
p2

{(p2, v2)}
�������

�	
p3 {(p3, v3),

(p1, v1),

(p2, v2)}

�
�
�
�����
�
���

(b)

��
�	
p1 {(p1, v1),

(p3, v3),

(p2, v2)}

��
�	
p2

{(p2, v2)} ��
�	
p3 {(p3, v3),

(p1, v1),

(p2, v2)}

�
�
�
�����
�
���

(c)

Fig. 1. Example initial rounds of Floodset with three processors

time, and the same value will be reached. Formalising this argument to derive a precise
specification of the state information after each round forms the second part of the
formal development in Sect. 4.2 – 4.5.

3 Event-B

A Event-B [1] model is composed of a sequence of machines, each of which (apart
from the first) is linked to its predecessor by a refinement relation. A machine contains
variables modelling state data, invariants which restrict the possible values of variables,
and events which change the values of variables. An event consists of guards, which
must be true in order for the event to occur, and actions, in which the values of variables
are changed. Events may be parameterised, and in general an event takes the form

eventname
any p where

G(p, v)
then

S(p, v)
end

where p are the event parameters, v are the state variables of the machine, G is a list
of guards and S is the list of actions, made up of one or more assignments to variables.
Each machine may have associated carrier sets and constants, which are held in a con-
text visible to the machine. A context may be extended by another context, visible to
subsequent machines in the sequence of refinements.

Proof obligations allow us to establish the internal consistency of individual ma-
chines, and the validity of the refinement relation between machines. Invariant preser-
vation is the proof obligation that requires each invariant to continue to hold whenever
any event occurs.

For any step in the refinement chain, the relationship between the variables in the
abstract model and the variables in the concrete model is given by a gluing invariant.
To show that an event in the concrete model refines an event in the abstract model, it

Developing a Consensus Algorithm Using Stepwise Refinement 557

must be shown that the guards of the concrete event imply the guards of the abstract
event, and that the variable states reached after the occurrence of the concrete and the
abstract event are linked by the gluing invariant.

Proof obligations are generated and in some cases proved automatically by the Rodin
Tools [2]. Those that are not proved automatically may be discharged with the help of
the interactive theorem prover.

4 Development

The approach taken to the development has three stages3. The first stage is the specifi-
cation of the result of a successful run of any consensus algorithm by giving an abstract
description of the chosen consensus properties above. This stage is independent of the
algorithm chosen and corresponds to the initial machine in the development (X0).

The proof of the agreement property relies on the fact that the local views of correct
processes are identical at the end of any execution. To show this, we show that the
views of all working processes become equal before the end of an execution, and do not
change for the remainder of that execution.

The second stage derives a precise specification of the behaviour of each round of
Floodset by formalising the informal proof of correctness given in Sect. 2. The first ma-
chine in this stage (X1) introduces the round structure of the algorithm, and identifies
three phases in the execution. The saturation round is a separate phase, and is the first
round in which no processes fail. All preceding rounds are part of the pre-saturation
phase, and all subsequent rounds are part of the post-saturation phase. The specifica-
tion of the three phases therefore varies according to phase.

Within an execution, a process cannot know which phase it is in, as phase is a global
notion and not a local one. The final specification of the round behaviour must not
therefore vary according to phase. However, identifying the phase facilitates our devel-
opment and proof, so phase distinctions are introduced in X1 and used in X2 and X3.
The stronger guards in the saturation round specification in X1 play an important role
in proving the key invariant at the end of Sect. 4.2. In refinement X2 the set live is
identified, which is the faulty processes still working during the saturation round. Re-
finement X3 makes further use of the fault assumptions to define a function between
round numbers and the processes which fail in that round. This brings the phase de-
scriptions to the point where they are equal but for the phase information. Refinement
X4 then merges the three events together, producing a common specification for the
behaviour of each round of Floodset. The final stage is the final refinement (X5) in
which the sending and receiving behaviour of individual processes is introduced and
an abstract network description is given. It is shown by refinement that this description
meets the specification deduced in X4.

The first two consensus properties (agreement and validity) are established in X0 and
demonstrated to hold throughout the development using refinement. The third property
(termination) is shown by model-checking the completed development. Termination
was therefore shown using ProB, a model-checker for Event-B [11].

3 The model is available at http://deploy-eprints.ecs.soton.ac.uk/

558 J.W. Bryans

4.1 The Initial Machine

The purpose of the initial machine is to define the success conditions for Floodset.
We begin with some terminology. The distributed system considered contains a finite
set of processes, P . Each process p in P has an initial value given by INIT (p) and
drawn from a set V , which is proposed to its peers as a possible final value. The set
CORR ⊆ P is the set of processes which behave correctly throughout the execution
of the algorithm.

After the execution of Floodset each correct process pc has a view – a set containing
all the learned (process, value) pairs. The function M gives the final view of each correct
process. At termination, each correct process pc runs the decision function on M(pc).

The initial machine contains a single success event floodset (see Fig. 2) which will
fire when the correctness properties hold. On firing, floodset assigns a value to M which
is a correct final outcome of the Floodset algorithm – the properties defining consensus
hold over M .

The guards on the floodset event define the correctness conditions by imposing re-
strictions on the event parameter m, which is then assigned to the final views M . The
first guard gives the type of m, which is the same as the variable M : it assigns views
to correct processes. The second guard establishes the first two consensus properties. f
and g are two arbitrary views from m. The first conjunct of the consequent of guard 2
ensures that these are equal, which is a sufficient condition for the consensus property of
agreement. To ensure validity, the second conjunct (CORR � INIT ⊆f) requires that
a process is aware of the initial values of all correct processes and the third (f⊆INIT)
conjunct requires that no incorrect values (i.e. ones not in INIT) are present in any
final view. We assume that the decision function picks one of values given in the final
view.

floodset
any m where

(1) m ∈ CORR→ (P �→ V)
(2) ∀f, g ·(g ∈ ran(m) ∧ f ∈ ran(m)) ⇒

f = g ∧ CORR � INIT ⊆ f ∧ f ⊆ INIT
then

M := m
end

Fig. 2. The floodset event in the initial machine

The third consensus property, that of termination, is a consequence of the firing of
floodset, rather than being a precondition to its firing. We establish this for the final
development using the model checker ProB [11].

4.2 The First Refinement: Introducing Phase Specifications

The first refinement begins the second development stage, in which a specification for
the behaviour of a round of Floodset is derived. A different specification is introduced
for each of the three phases. Recall that in an execution of Floodset, the saturation round

Developing a Consensus Algorithm Using Stepwise Refinement 559

is the first round in which no failures occur. In it all currently working processes will
learn all known information. Any rounds before the saturation round are modelled by
the event presat. The saturation round is modelled by the event saturation, and rounds
after the saturation round are modelled by the event postsat. The saturation round may
be any round in an execution. We cannot tell in advance which round will be the satu-
ration round, only that there will be one.

In this refinement a progress counter r is introduced. When r∈1..t+1 it records the
current round number. r = t+2 when the final round is completed, and r = t+3 when
the floodset event has taken place.

The saturation round is labelled j, where j, where j ∈ 1..t+1. In the presat rounds
r<j and in the postsat rounds r>j. Since presat, postsat and saturation are new events
they are considered to refine the skip event. The final event is floodset, a refinement of
floodset in the previous machine. Machines X0 and X1 and the refinement relationship
between them are summarised in Fig. 3.

X0 skip skip skip floodset
⇑ ⇑ ⇑ ⇑

X1 presat saturation postsat floodset
r < j r = j r > j r= t+2

∧
r < t+2

Fig. 3. The refinement relationship between the first two machines

During execution, each process maintains a working view of the information it has
received. These working views are given by the global variable W ∈ P → (P �→ V).
Initially W (p) = {(p, INIT (p))}, since each process begins knowing its own value.

In each round, each process p sends W (p) to all other processes, and at the end of
each round W is updated.

The presat event (Fig. 4) defines the intermediate view W for pre-saturation rounds
(guard 1). The parameter new gives all the information received by each process dur-
ing the round. This could include information already known to the process. The only
restriction on new is given in guard 4 – no process is sent false information. The pa-
rameter w is the updated state of the views of each process when this new information
is received (guard 5). It is assigned to the working view W .

After the saturation event (Fig. 4), every correct process will have the same view. At
this level of abstraction, it is not possible to give a precise specification of this view, but
some restrictions may be identified. The parameter f is a view of an arbitrary process.
Guard 4 requires that it may include only correct information (information from the
initial state) and guard 5 requires that it must include the proposed values of all correct
processes. The parameter w has the same purpose as in the presat event – to identify
the updated value of W – but in the saturation round more precise restrictions can be
placed on w. Since no processor fails in this round, all currently working processes send
and receive all their information successfully. After this round all currently working
processors will therefore have the same view. It is not possible at this level of abstraction
to identify the set of currently working processes precisely, but it must contain the set

560 J.W. Bryans

presat
any new, w where

(1) r < j
(2) new ∈ P → (P �→ V)
(3) w ∈ P → (P �→ V)
(4) ∀p·p ∈ P ⇒ new(p) ⊆INIT
(5) ∀p·w(p) = W (p) ∪ new(p)

then
W := w
r := r + 1

end

saturation
any f, w where

(1) r = j
(2) w ∈ P → (P �→ V)
(3) f ∈ (P �→ V)
(4) f ⊆ INIT
(5) CORR � INIT ⊆ f
(6) ∀g ·g ∈ ran(CORR � w)⇒f =g

then
W := w
r := r + 1

end

Fig. 4. The presat and saturation events in the first refinement

of correct processes. Thus the only values of W allowed after saturation are those in
which all correct processes share the same view (given by the parameter f). This view
must be shared by at least all the correct processes (guard 6.)

Since no process can now learn new information, (and therefore W cannot change
further) the postsat event simply increments the round counter until the remaining
rounds have been completed.

The refined floodset event (not given) simply increments the round counter after the
final round.

The invariant below moves the correctness criteria from the floodset event in the
previous machine and shows that the first two consensus properties hold for all rounds
following the saturation round (rounds in which r>j).

r > j ⇒ (∃f ·(f ∈ (P �→ V) ∧
CORR � INIT ⊆ f ∧
f ⊆ INIT ∧
(∀g ·g ∈ ran(CORR � W)⇒ f = g)))

4.3 Identifying Live Processes: X2

This refinement introduces no new state, but looks more closely at the existing state
variable W and strengthens the set of invariants relating to it (Fig. 5). The first invariant
gives an upper bound on the information known by a process. It states that all (pro-
cess,value) pairs known by any process must be valid, in the sense that they are given
by the original function INIT . This excludes the possibility of a process learning false
information at any stage. The second invariant states that every process is aware of its
own initial value.

The set of processes which fail in an execution is defined as the FLT = P \CORR.
The number of failing processes must not be more than the number of faults (failing
processes) that can be tolerated: t ≥ card(FLT).

Developing a Consensus Algorithm Using Stepwise Refinement 561

(1) ∀p·p ∈ dom(W)⇒W (p) ⊆ INIT
(2) ∀p·p ∈ dom(W)⇒ p �→ INIT (p) ∈ W (p)

Fig. 5. Invariants in X2

presat
refines presat
any new, w where

(1) r < j
(2) new ∈ P → (P �→ V)
(3) w ∈ P → (P �→ V)
(4) ∀p·p ∈ CORR ⇒

CORR � INIT ⊆ new(p)
(5) ∀p·p ∈ CORR⇒ new(p) ⊆ INIT
(6) ∀p·p ∈ FLT ⇒ new(p) ⊆ INIT
(7) ∀p·w(p) = W (p) ∪ new(p)

then
W := w
r := r + 1

end

postsat
refines postsat
any new, w where

(1) r > j
(2) r ≤ t+1
(3) w ∈ P → (P �→ V)
(4) new ∈ P → (P �→ V)
(5) ∀p·p ∈ P ⇒ new(p) ⊆ W (p)
(6) ∀p·p ∈ P ⇒

w(p) = W (p) ∪ new(p)
then

W := w
r := r + 1

end

Fig. 6. The presat and postsat events in X2

The event presat is now refined to the description given in Fig. 6. Since processes
may fail during these rounds and therefore fail to send or receive information the value
of new is non-deterministic. Guard 4 gives a lower bound: each correct process receives
information from all correct processes. Guards 5 and 6 give an upper bound for new for
correct and faulty processes respectively – in each case the process receives only valid
information. The final guard creates the new value for W using the parameter w.

The refined postsat event (Fig. 6) adds the restriction that no process learns anything
new after saturation (guard 6).

The saturation event (Fig. 7) gives the value of W after this round more precisely.
The faulty processes which are currently working at the time of the saturation round
are identified using the parameter live ⊆ FLT (guard 3). After this round, all currently
working processes (CORR∪ live) know all that each currently working process knows
(guard 4.) Processes that have already failed (those in FLT \ live) learn nothing new
(guard 5). We remove the parameter f from saturation to make it more consistent with
the definitions of presat and postsat. The refinement is performed using the witness
f = union(W [CORR ∪ live]). The property that all correct processes have the same
view after saturation is therefore recorded in a different way in guard 6.

4.4 Homogenising the Events: X3

The events presat, saturation and postsat are still unimplementable, as they rely on
processes knowing in advance which round will be the saturation round. Over this

562 J.W. Bryans

saturation
refines saturation
any w, live where

(1) r = j
(2) w ∈ P → (P �→ V)
(3) live ⊆ FLT
(4) ∀p·p ∈ CORR ∪ live⇒ w(p) = union(W [(CORR ∪ live)])
(5) ∀p·p ∈ FLT \ live⇒ w(p) = W (p)
(6) ∀p, q ·{p, q} ⊆ CORR⇒ w(p) = w(q)

then
W := w
r := r + 1

end

Fig. 7. The saturation event in X2

refinement (X3) and the next (X4) this reliance on the global saturation variable is
removed by merging these three events into a single event which does not depend on j.
The purpose of this refinement is to finally “set up” this merging by providing versions
of the three events in which each event has the same guards and actions (excluding those
guards which refer to j). The subsequent refinement then merges these three events into
a single event which does not rely on j.

To do this, the set of processes are considered more carefully and those which will
fail in each round are identified. The function d (in context X3 ctx) maps each round
to the set of processes which fail in that round, and is defined by axioms 1–4 in Fig. 8.
Axiom 1 gives the type of d, and axiom 2 ensures that no process can fail in two separate
rounds. All processes in FLT will fail (axiom 3), and no process fails in the saturation
round (axiom 4). The function d may be any function that satisfies these axioms.

(1) d : 1..t+1 → P(FLT)
(2) ∀i, k·i ∈ dom(d) ∧ k ∈ dom(d) ∧ i �= k ⇒ d(i) ∩ d(k) = ∅
(3) ∀p·p ∈ FLT ⇒ (∃i·i ∈ dom(d) ∧ p ∈ d(i))
(4) d(j) = ∅
(5) dead : 1..t+2→ P(FLT)
(6) dead(1) = ∅
(7) ∀i·i ∈ dom(dead)∧ i ≥ 2⇒ dead(i) = union(d[(1 .. (i−1))])

Fig. 8. The axiomatic definition of d and dead in context X3 ctx

The helper function dead is defined using d in axioms 5–7 in Fig. 8. For each round
dead returns all the processes that have failed prior to the start of that round (axiom 7).
We assume that no processes fail before the start of the execution (axiom 6).

The descriptions of the events presat, saturation, postsat differ only by their second
guard (r < j, r = j, r > j respectively). The definition of presat is given in Fig. 9. The
guards distinguish three disjoint sets of processes, depending on whether they will work
correctly throughout that round, will fail at some point during the round, or have failed
already.

Developing a Consensus Algorithm Using Stepwise Refinement 563

For the first two sets the guards give an upper and lower bound on the new informa-
tion that can be received in a round. All working processes send and receive to them-
selves. Since the processes which fail before round r are given by dead(r), processes
working at the start of a round r are given by CORR∪ (FLT \dead(r)). The processes
working correctly at the end of round r are given by CORR ∪ (FLT \ dead(r + 1)).

Guard 5 of presat states that the most information a process which works for the
whole round may learn is union(W [CORR ∪ (FLT \ dead(r))]). In this case all
processes in d(r) transmit all messages before failing. Guard 6 states that the least
information a process working for the whole round will receive is everything known
by any process which survives the round. In this case all processes in d(r) fail before
sending any messages. Processes which have failed before this round and are no longer
communicating will learn nothing in this round (guard 7). Guard 8 states that processes
in d(r) may learn as much as the processes which continue to function correctly for the
whole round. In the worst case, they will fail before receiving any information (guard
9). As previously, the new value for W is identified as w (guard 10). Apart from guard
1, these guards are now identical for each of the three round events.

The invariant on W can now be strengthened, and is given below. It states that ev-
ery process still operating after the saturation round learns nothing new after the sat-
uration round. The common information known at the saturation round is given by
union(W [CORR ∪ (FLT \ dead(j))]).

∀p·r ∈ dom(dead) ∧ p ∈ CORR ∪ (FLT \ dead(r)) ∧ r > j ⇒
W (p) = union(W [CORR ∪ (FLT \ dead(j))])

presat
refines presat
any w, new where

(1) r < j
(2) r < t+2
(3) w ∈ P → (P �→ V)
(4) new ∈ P → (P �→ V)
(5) ∀p·p ∈ CORR ∪ (FLT \ dead(r + 1)) ⇒

new(p) ⊆ union(W [CORR ∪ (FLT \ dead(r))])
(6) ∀p·p ∈ CORR ∪ (FLT \ dead(r + 1)) ⇒

union(W [(CORR ∪ (FLT \ dead(r + 1)))]) ⊆ new(p)
(7) ∀p·p ∈ dead(r)⇒ new(p) = ∅
(8) ∀p·p ∈ d(r)⇒ new(p) ⊆ union(W [CORR ∪ (FLT \ dead(r))])
(9) ∀p·w(p) = W (p) ∪ new(p)

then
W := w
r := r + 1

end

Fig. 9. The event presat in X3

564 J.W. Bryans

4.5 Refining Out the Saturation Assumption: X4

In this refinement, the floodset event remains unchanged and the three events presat,
saturation and postsat are merged into the single event round (Fig. 10). To perform the
merging, it must be shown that the concrete guards of round imply the disjunction of
the guards of the merged events. The guards of round are identical to the guards of the
three events in the previous refinement, except that the second guard has been removed,
so the proof reduces to proving the trivial theorem r < j ∨ r = j ∨ r > j.

This round event is now a sufficiently detailed description of a single round of the
algorithm to allow an implementation to be developed and a possible implementation is
shown in the next section.

4.6 Implementing the Round Event: X5

The round event provides a global specification of the desired behaviour of Floodset at
each round. The purpose of this refinement is to define the local behaviour of individual
processes. A message passing network model is also introduced.

A round is now split into three phases: sending, receiving, and restarting. In the
sending phase messages are sent to the network middleware. In the receiving phase
all the messages for each process are sent to that process. The restarting phase is used
to reset the state of processes after a round. The variable phase records the phase of the
round.

round
refines presat, saturation, postsat
any new, w where

(1) r < t + 2
(2) w ∈ P → (P �→ V)
(3) new ∈ P → (P �→ V)
(4) ∀p·p ∈ CORR ∪ (FLT \ dead(r + 1)) ⇒

new(p) ⊆ union(W [CORR ∪ (FLT \ dead(r))])
(5) ∀p·p ∈ CORR ∪ (FLT \ dead(r + 1)) ⇒

union(W [(CORR ∪ (FLT \ dead(r + 1)))]) ⊆ new(p)
(6) ∀p·p ∈ dead(r)⇒ new(p) = ∅
(7) ∀p·p ∈ d(r)⇒ new(p) ⊆ union(W [CORR ∪ (FLT \ dead(r))])
(8) ∀p·w(p) = W (p) ∪ new(p)

then
W := w
r := r + 1

end

Fig. 10. The event round in X4

The point at which a process fails is now identified more accurately using the vari-
ables die in send and die in rec. No process sends or receives messages in the
restarting phase, so a process which fails during restarting may be considered to

Developing a Consensus Algorithm Using Stepwise Refinement 565

have failed during receiving, after all messages have been sent. The important axioms
are

∀i·i ∈ 1 .. t+1⇒ die in send(i) ∩ die in rec(i) = ∅
∀i·i ∈ 1 .. t+1⇒ die in send(i) ∪ die in rec(i) = d(i)

The network middleware is given the variable mw, where mw(p) is the set of all
(process, value) pairs that have been sent to process p. A process p records the pro-
cesses to which it has sent messages as sent(p).

The sending phase consists of multiple occurrences of the send event (Fig. 11), each
parameterised by the sender (fr) and receiver (to). The only processes unable to send
information in round r are the ones which have already failed (given by dead(r)), so fr
may be drawn from any other process (guard 3). Processes do not maintain a record of
their failed peers, so each process sends to all other processes. It would also be possible
to design a “failure aware” algorithm in which a process learns about and records failed
peers, and does not send to processes it knows have failed. The end of the sending
phase is marked by a phase transition event (not given.)

In the rec event (Fig. 11) one of the working processes receives all its amalgamated
information from the middleware in a single message. The processes which are working
at the start of the receiving phase are given by the invariant

receiving ⊆ CORR ∪ (FLT \ dead(r + 1)) ∪ die in rec(r)

and any of these processes may receive from the middleware (guard 2). Those that will
fail during this round (die in rec(r)) may or may not receive from the middleware
before they fail. Receiving processes are added to the set received, which is local to
the middleware. Wpart is a temporary variable, which contains the partially updated
view of W during the receiving phase.

The end of the receiving phase is marked by the event end rec phase in Fig. 12
which assigns the partial view Wpart to W , and refines the event round from the pre-
vious refinement. It may fire once all working processes have received messages from
the middleware (guard 3).

send
any fr, to where

(1) r < t + 2
(2) phase = sending
(3) fr∈CORR ∪(FLT \ dead(r))
(4) to ∈ P
(5) to /∈ sent(fr)

then
mw(to) := mw(to) ∪ W (fr)
sent(fr) := sent(fr) ∪ {to}

end

rec
any p where

(1) r < t+2
(2) p ∈CORR ∪(FLT \dead(r+1))

∪ die in rec(r)
(3) p /∈ received
(4) phase = receiving

then
received := received ∪ {p}
W part(p) := W part(p) ∪ mw(p)

end

Fig. 11. The events send and rec in X5

566 J.W. Bryans

end rec phase
refines round
when

(1) r < t+2
(2) phase = receiving
(3) (CORR ∪ (FLT \ dead(r + 1))) ⊆ received

then
W := W part
r := r + 1
phase := restarting

end

Fig. 12. The end rec phase event in X5

A number of implementation issues remain open. In particular, events which mark
the end of the sending or receiving phase are global specifications, using global vari-
ables in the guards. The event end rec phase refers to received, which suggests that
processes have knowledge of the internal state of the middleware. In reality this re-
liance would be removed by implementing these events locally as time-triggered events
on each processor. The functions d and dead could be removed from the specification
using a description of an explicit fault injector in the network model.

5 Discussion and Conclusions

We have demonstrated the stepwise refinement in the development of a well-known con-
sensus algorithm, Floodset. The initial, most abstract model captured the three generic
consensus properties in Sect. 2. The first two (agreement and validity) are demonstrated
by construction. They are captured in the initial abstract model, and shown by refine-
ment to continue to hold at each step.

The third property, that all correct processes eventually reach a decision, may be
shown by demonstrating deadlock freeness — that each model in a development (apart
form the first) does not deadlock more often than its predecessor. That is, the only exe-
cution paths permitted are those which eventually satisfy the most abstract specification
in the refinement chain. In this development, the description of rounds in X1 is deliber-
ately more non-deterministic than necessary. The second refinement introduces no new
state, so all properties introduced in X2 could have been introduced in X1. The more
restrictive invariants in X2 mean fewer execution paths, and therefore deadlock free-
dom cannot be proved at this step. However, this refinement is carried out over two steps
to simplify the proofs involved at each stage. Termination was therefore shown using
the ProB [11] model-checker. It was shown that the development has not introduced a
possible deadlock where the floodset event cannot eventually occur. This was shown for
three processes with arbitrary initial state, by checking the truth of the temporal logic
proposition F[floodset] (eventually the floodset event occurs).

A good level of automatic proof (> 75%) is achieved, given the complexity of the
development. However the manual proof overhead is still relatively high, and this may
lead away from the goal of reusable models and proofs.

Developing a Consensus Algorithm Using Stepwise Refinement 567

A number of decision points were identified during the development. Each of these is
a potential point of branching, and so using this development as a basis for a branching
taxonomy seems to be a promising approach. On the other hand, the manual proof effort
required by this work may be too high to be reused in more complex developments.
This work sought to provide a reuseable platform for the development of consensus
algorithms with weaker failure and network models and so the algorithm transmits sets
of (process, value) pairs, rather than just values. Refactoring the development to use
more simple datatypes may lead to improved levels of automatic proof, and therefore
improve the potential for reuse. A further possibility is to split the final refinement step
to introduce the network model and the individual processes separately.

Floodset relies on the assumption that processes can only fail by stopping entirely.
Allowing Byzantine failures naturally leads to more complex algorithms. An interesting
intermediate case is to allow only authenticated messages between processes. Further-
more, Floodset relies on a synchronous timing model and is a round-based algorithm,
and the development here makes use of that structure. Algorithms developed for asyn-
shronous timing models are less structured, and developing such models using stepwise
refinement is a more challenging task. We will investigate these alternative network and
timing models using the Byzantine Generals algorithm [10] and the Paxos algorithm [9].

Acknowledgements. This work was supported by the EU Integrated Project DEPLOY
(www.deploy-project.eu/) and by the EPSRC Platform Grant TrAmS. John Fitzgerald
suggested this line of research. Thanks also to Sascha Romanovsky and Alexei Iliasov,
and to the anonymous reviewers who made a number of suggestions which led to im-
provements in the work.

References

1. Abrial, J.-R.: Modeling in Event-B: System and Software Engineering. Cambridge Univer-
sity Press, Cambridge (2010)

2. Abrial, J.-R., Butler, M., Hallerstede, S., Voisin, L.: An Open Extensible Tool Environment
for Event-B. In: Liu, Z., Kleinberg, R.D. (eds.) ICFEM 2006. LNCS, vol. 4260, pp. 588–605.
Springer, Heidelberg (2006)

3. Abrial, J.-R., Cansell, D., Méry, D.: A Mechanically Proved and Incremental Development
of IEEE 1394 Tree Identify Protocol. Formal Asp. Comput. 14(3), 215–227 (2003)

4. Cansell, D., Méry, D.: Formal and incremental construction of distributed algorithms: On the
distributed reference counting algorithm. Theoretical Computer Science 364(3), 318–337
(2006); Applied Semantics

5. Charron-Bost, B., Merz, S.: Formal Verification of a Consensus Algorithm in the Heard-Of
Model. Int. J. Software and Informatics 3(2-3), 273–303 (2009)

6. Charron-Bost, B., Schiper, A.: The Heard-Of model: computing in distributed systems with
benign faults. Distributed Computing 22, 49–71 (2009)

7. Hoang, T.S., Kuruma, H., Basin, D.A., Abrial, J.-R.: Developing Topology Discovery in
Event-B. In: Leuschel, M., Wehrheim, H. (eds.) IFM 2009. LNCS, vol. 5423, pp. 1–19.
Springer, Heidelberg (2009)

8. Krenický, R., Ulbrich, M.: Deductive verification of a byzantine agreement protocol. Tech-
nical report, Karlsruhe Institute of Technology (April 2010)

9. Lamport, L.: The part-time parliament. ACM Trans. Comput. Syst. 16(2), 133–169 (1998)

568 J.W. Bryans

10. Lamport, L., Shostak, R., Pease, M.: The byzantine generals problem. ACM Trans. Program.
Lang. Syst. 4(3), 382–401 (1982)

11. Leuschel, M., Butler, M.: ProB: A Model Checker for B. In: Araki, K., Gnesi, S., Mandrioli,
D. (eds.) FME 2003. LNCS, vol. 2805, pp. 855–874. Springer, Heidelberg (2003)

12. Lynch, N.A.: Distributed Algorithms, 1st edn. Morgan Kaufmann, San Francisco (1997)
13. Sprenger, C., Basin, D.: Developing security protocols by refinement. In: 17th ACM Confer-

ence on Computer and Communications Security, CCS 2010 (2010)
14. Truong, N.-T., Trinh, T.-B., Nguyen, V.-H.: Coordinated consensus analysis of multi-agent

systems using Event-B. In: Seventh IEEE International Conference on Software Engineering
and Formal Methods, pp. 201–209 (2009)

Refining Nodes and Edges of State Machines

Stefan Hallerstede1 and Colin Snook2

1 University of Düsseldorf
2 University of Southampton

Abstract. State machines are hierarchical automata that are widely
used to structure complex behavioural specifications. We develop two
notions of refinement of state machines, node refinement and edge re-
finement. We compare the two notions by means of examples and argue
that, by adopting simple conventions, they can be combined into one
method of refinement. In the combined method, node refinement can
be used to develop architectural aspects of a model and edge refine-
ment to develop algorithmic aspects. The two notions of refinement are
grounded in previous work. Event-B is used as the foundation for our
refinement theory and UML-B state machine refinement influences the
style of node refinement. Hence we propose a method with direct proof of
state machine refinement avoiding the detour via Event-B that is needed
by UML-B.

1 Introduction

Theories and calculi of verification and refinement are established: for instance,
Hoare logic [4], refinement calculus [13] and Event-B [2]. Hoare logic is difficult
to use on a larger scale. Refinement addresses some shortcomings of Hoare logic
allowing properties of less detailed abstractions to be proved before turning to
the detailed implementation. However, the refinement calculi are rather restric-
tive when it comes to system modelling. The refinement method of Event-B
relaxes some of the restrictions by abandoning most control structure and using
a weaker semantic foundation. In [2] a large number of complex models are pre-
sented to demonstrate verification on a larger scale. Still, two problems remain:
it can be difficult to build larger models that are inherently structured and to
master more complex sequences of refinements. Our main concern in this article
is making verification and refinement easier to use. To this end, we are inter-
ested in methods and techniques for stating, managing and visualising complex
verification and refinement proofs.

UML-B, a UML-based notation defined on top of Event-B, has been developed
over the last ten years to support the writing of more complex models with
consequent structuring needs, in particular, state machines [17]. UML-B was first
invented in [18] as a UML profile with translation to B and has been developed
into a diagrammatic front-end to Event-B.

UML-B supports refinement of state machines but is not equipped with its
own theory of refinement. It relies on a translation to Event-B using explicit

S. Qin and Z. Qiu (Eds.): ICFEM 2011, LNCS 6991, pp. 569–584, 2011.
c© Springer-Verlag Berlin Heidelberg 2011

570 S. Hallerstede and C. Snook

variables to represent the state machines [14]. Recently we have also evaluated
the use of Event-B for the development of sequential programs [8]. The lack of
control structures can make modelling of such algorithms difficult. However, the
advances made by Event-B with respect to incremental proving [3] are mainly
due to the lack of control structures. Avoiding the reintroduction of control
structures we use state machine notation to provide the needed features [7]. The
refinement method of [14] could be named “node refinement”: nodes are replaced
by state machines. The choice of [7], “edge refinement” is different: edges are re-
placed by state machines. In this article we compare the two refinement methods.
We are specifically interested in their similarities.1 For this purpose we have for-
malised the refinement notion underlying the conventions of UML-B via node
refinement. This formalisation of edge and node refinement is independent from
Event-B. It is an alternative refinement based on the diagrammatic notations
and, unlike UML-B, does not involve translation into the Event-B notation. We
suggest a combined method that allows us to switch between the two at any
refinement step. In the future, we think they could be merged entirely, so that
we would get one refinement method with perspectives of node and edge refine-
ment. However, this is likely to change both refinement methods. We believe it
is of interest to present the two methods before unifying them so that it will be
easier to judge what is gained and what is lost in the unification.

In our use of state machine diagrams, they serve to describe refinement proofs.
The possible execution semantics is secondary. We content ourselves with the po-
tential of an operational interpretation. Invariant based programming described
in [5] follows a similar approach for the construction of correct programs. It uses
refinement in the sense of [19] to construct a correctness proof along with the
corresponding correct program. In comparison, our approach is intended to be
used for program development but also for systems modelling. Our definitions of
refinement obey the “statechart refinement rules for behavioural compatibility”
stated in [15]. However, we focus on the development of a proof method whereas
[15] uses the rules to formulate an approach for test case generation. The re-
lated [12] focuses on common patterns of structural refinement that could be
used with state machines. In [11] formal semantics of state machines is discussed
and proof rules for superposition refinement are proposed. By contrast, we use
the more general Event-B refinement as a foundation of our approach. Compar-
atively simple structural refinement for state machines based on Event-B has
been discussed in [16]. In [6] JSD-like diagrams are used to illustrate concurrent
Event-B models and their refinement but the diagrams are not formally linked
to Event-B models.

Overview. In Section 2 we briefly introduce the state machine notation that
we use and in Section 3 we outline the two refinement methods. In Section 4
we present the construction of an iterative Quicksort algorithm using the two
methods side by side. This could give the impression that the two notions are
interchangeable. In Section 5 we present a development by node refinement of
a simple controller which is not an edge refinement and we suggest a combined

1 When looking at [14] and [7] the similarities are far from obvious.

Refining Nodes and Edges of State Machines 571

refinement method that permits mixing node and edge refinement. Section 6
draws a conclusion and sketches some future work.

2 State Machines

State machines are a diagrammatic modelling notation where the condition of
a system is represented by states (denoted by the nodes of a graph) and the
behaviour of the system is represented by transitions connecting the nodes (de-
noted by edges of a graph). The UML contains a hierarchical state machine
notation which is widely used in industry and that has been adopted by UML-
B. Fig. 1(a) shows a typical UML state machine. For our purposes it is easier

A

B

a b

I
i

J
j

H
h

(a) UML notation

A

B

a b

I
i

J
j

H

h

h

(b) Reduced notation

Fig. 1. State machine notation

to work with a simpler reduced notation without explicit initial “ ” and final
states “ ” as shown in Fig. 1(b). This makes it easier to define (refinement)
proof obligations.

In this paper, we represent a node as and an edge, connecting two nodes,
as . Convergent loop edges may be used to indicate that the loop edge
may only be followed finitely often before an “ordinary edge” is followed. The
restriction to convergent loops is inherited from Event-B where event may be
marked ‘convergent’ or ‘anticipated’.2 Loop edges are often used to prepare for
introducing and proving the convergence of a more complex loop involving sev-
eral edges and nodes. Edges are labelled with events that describe the effect of
following that edge. An event has the shape any p when g then x := a. The
parameters p are non-deterministically chosen when an event occurs. The guard
g of an event states the condition, a first-order predicate, under which the event
may occur.3 If its guard is true an event is said to be enabled. The action of an
event is an (simultaneous) update statement of the form x := a where x is a
variable (list) of the state machine containing the event and a is an expression
(list). Clauses of an event are simply left out when they would have no effect.
The parameters may be left out if there are none, a guard if it is true, an action
if it is x := x.
2 We do not distinguish those two concepts but simply allow convergence to be proved

at later refinement steps.
3 Predicates p, q written on consecutive lines are implicitly conjoined.

572 S. Hallerstede and C. Snook

Nodes are labelled by assertions. If A is the label of a node, we write “@A p”
to say that “A contains p” or, in other words, “p holds at A”. We also call
assertions of nodes with loop edges invariants.4 In formulas we use A to stand
for p. State machines are a notation for proofs similarly to proof outlines [4]. An
edge labelled e where e = any p when g then x := a connecting a node labelled
A to a node labelled B corresponds to a proof obligation: A ∧ g ⇒B[x := a].
Formal proof is the central aspect of our notation replacing the operational view
of UML-B.

State machine notation supports hierarchical construction where state ma-
chines may be nested within a node of the parent state-machine. We refer to
the node containing the nested state machine as a super-node and represent it
as . Super nodes structure assertions: if a super node A contains a node (or
super node) B then B contains all assertions that A contains. This is their only
function in our approach. We do not attach any operational meaning to super
nodes. Super nodes are essential in our definition of node and edge refinement.
Super nodes (themselves) are not connected by edges. Sometimes we draw an
edge exiting a super-node as an abbreviation for an edge that exits all contained
nodes. This is often used in node refinement diagrams. For edge refinement dia-
grams we need a third kind of edge: anonymous edges that are not labelled.
They can be imagined to be labelled with skip, the event that is always enabled
and does not change the state. In a state machine we identify initial nodes to be
those nodes that do not have entering edges, and final nodes to be those nodes
that do not have exiting edges. An anonymous edge entering a super node is to
be connected to the initial nodes of the contained state machine; an anonymous
edge exiting a super node is to be connected to the final nodes. An anonymous
edge connecting A to B corresponds to the proof obligation A⇒B. Anonymous
edges are needed in edge refinement diagrams to model conditional statements.

We have adapted the notation to emphasise similarities between the two no-
tions of refinement. In particular, we do not use the notation of [7] for edge
refinement and of [14] for node refinement. This makes it easy to see the dif-
ferences and similarities and suggests how combined use of the two methods is
possible. (The striking similarity that results from the common notation strongly
suggests combined use or unification.) We believe that it should be possible to
unify the two methods completely into a single refinement method, but as a
consequence they could both lose their defining characteristics: specialisation on
either architectural or algorithmic refinement. The new method will have to re-
cover the two aspects in order to provide strong methodological guidelines for
the use of the unified method.

3 Refinement

We discuss the two refinement notions by means of the refinement diagrams
stated in Fig. 2. The concepts are easy to generalise. See, e.g., [11] for node
4 By contrast, an Event-B model has only one “global” invariant. Nodes of our notation

would have to be represented in Event-B by abstract program counters.

Refining Nodes and Edges of State Machines 573

refinement and [7] for edge refinement. Fig. 2(a) shows a state machine that
we use as an abstraction (also called abstract model) for the refinements shown
in Fig. 2(b) to Fig. 2(d) (also called concrete models). The proof obligations
are adapted from corresponding Event-B proof obligations. We use the same

A B
e

(a) State machine

C

Φ

φ

A

D
e

B

ψ

B

(b) Refinement of A and B

C

Φ

φ

A

B
e

(c) Refinement of A

B

B

(d) Reuse of B

Fig. 2. Refinement diagrams

diagrams to describe both refinement methods. Edges of concrete models may be
labelled with events e occurring already in the abstract model: the concrete event
e = any q when h then y := b refines the abstract event e = any p when g then x :=
a. For instance, the proof obligation for the edge labelled e in Fig. 2(b) is:
C∧h∧W⇒g∧D[x, y := a, b], where W is a predicate, called witness, that relates
the concrete parameters q to the abstract parameters p. The existence of suitable
parameters q must be proved: C∧h⇒(∃q ·W). A refinement may also introduce a
new name f for a refined event e by stating the abstract name in brackets behind
the new concrete name: f (e). Concrete edges otherwise labelled with events that
do not occur in the abstract model are said to be new. New events, e.g., φ in
Fig. 2(b), must refine skip, the event that is always enabled and does not change
the state. For φ = any q when h then y := b we have to prove: Φ∧h⇒C[y := b].
For a convergent loop edge A e where e = any p when g then x := a we have
to provide a variant u and prove A ∧ g ⇒ u ≥ 0 and A ∧ g ⇒ u[x := a] < u, or
the corresponding proof obligation for a refinement of e.5 While e has not been
proved convergent, we have to show for refinements any q when h then y := b of
e that they do not “disturb” new convergent edges introduced in a refinement
of A or e. We have to prove: F ∧ h⇒ u ≥ 0 and F ∧ h⇒ u[x := a] ≤ u where F
is a node introduced in a refinement of A or e, and u the variant of some other
convergent event.

In Fig. 2(c) only (super) node A looks affected by the refinement. However,
in a refinement all nodes are replaced. The outgoing edge labelled e is simply
connected to node B. The node B shown in the figure is considered a node
of the concrete model. We can think of it as a node B inside a super node B
(see Fig. 2(d)) that is not shown. Assertions in refinements are always added
to concrete nodes. This approach avoids adding assertions accidentally to many
nodes when data-refining. The super nodes in refinement diagrams are also used

5 We also allow finite set as variants but do not provide proof obligations here. See
[2].

574 S. Hallerstede and C. Snook

to indicate containment of assertions among concrete nodes. For instance, an
assertion added to B in Fig. 2(b) is also added to D as indicated by the super
node labelled B. Edges in refinement diagrams can only connect concrete nodes.
Everything not shown in a refinement diagram stays structurally unchanged.

Node refinement. Node refinement replaces a node with a super-node, hence
an assertion with a collection of more precise assertions. The new nodes enable
new edges to be added and old edges to be replicated (for instance, elaborating
non-deterministic choices present in events, in the diagram). New edges may be
added between nodes inside a (refined) super-node and must not exit or enter
that super-node. Edges of the abstract state-machine must be preserved: their
refinements must connect the corresponding (refined) super-nodes. A loop edge,
having the same node for both its source and its target, is refined by a transition
between two nodes inside the corresponding refined super-node.

Edge refinement. Edge refinement replaces an edge with a state machine that
is to be inserted between the source and the target of the edge. State machines
occurring in edge refinements must have at most one initial node where the
execution of the modelled algorithm would start. Nodes occurring in state ma-
chines introduced by edge refinements may have at most one edge entering from
other nodes. But they may have several loops. More complex diagrams can be
constructed using super nodes and anonymous edges. The constructed diagrams
correspond closely to proof outlines as discussed in [4].

4 Development of a Sequential Algorithm

In [2] it is shown how Event-B can be used for the development of sequential
algorithms. The proof method is well-suited for this purpose, providing strong
support for finding invariants and carrying complex termination proofs. Recently,
we argued [8] that some structuring facilities would benefit the method in terms
of proof methodology and potential scaling. State machines could solve some
of the issues involved. Developing a sequential algorithm we present the two
approaches to state machine refinement side by side. Node and edge refinement
provide two different views on the same development with the same proofs,
documenting and explaining different aspects of the involved refinement steps.
We do not present the proof obligations and proofs in full. It is rather intricate.
Instead, we want to convey that using the two refinement techniques, finding the
proof and presenting it are made much easier. The associated proof obligations
have been produced by imitating the notation in Event-B. That is, we have used
Rodin tool [3] to carry out the proofs but the translation into Event-B has been
manual.

Fig. 3 gives a brief overview of the development. Along the sequence of (re-
fined) models m1 to m7 a number of variables modelling the state of the algo-
rithm are introduced and removed. The table provides, for each model, a short
description of its purpose and mentions the variant used for termination proofs
(if any).

Refining Nodes and Edges of State Machines 575

model introduced removed description variant

m0 a specification of sorting
m1 b, t, m, n introduction of outer loop and stack
m2 C lexicographic convergence of outer loop C
m3 C lexicographic convergence of outer loop t
m4 L, R, π introduction of inner loop R− L
m5 u, v implementation of inner loop (v − u) + 1
m6 s, l, o, p, q t, m, n new representation of stack
m7 h replacement of pivot index by pivot value

Fig. 3. Overview of the development

m0. Fig. 4 shows the specification of the sorting algorithm consisting of a state
machine, an assertion a ∈ D→Z specified to hold at A, and an event sort that
specifies sorting of array a using a permutation p. Initially, we assert that a is

A E
sort

@A a ∈ D → Z

sort = any p when
p ∈ P
∀x, y · x ∈ D ∧ y ∈ D ∧ x ≤ y ⇒ (a ◦ p)(x) ≤ (a ◦ p)(y)

then
a := a ◦ p

Fig. 4. Specification of a sorting algorithm

an array with domain D and range Z. There is nothing to prove because no
assertion has been specified at E. Our aim is to construct a state machine that
implements iterative Quicksort based on [4] and [10].

m1. Fig. 5 shows the first node and edge refinement steps. Although the two
diagrams look identical they describe different viewpoints of the same proof.
Diagram 5(a) describes how the abstract node A can be replaced by a super
node, indicating the internal structure of the super node and how the concrete
edge sort is to be connected to neighbours of the super node. Diagram 5(b)
describes how the abstract edge can be replaced by the four edges init, part,
drop and sort. The super-state node in this diagram only indicates that at I all
assertions of A hold. Event init sets up the variables for the loop. Event part
specifies partitioning of the section m(t) .. n(t) of the array b containing at least
two elements described by the top of the stack. The sub-sections m(t) .. r and
l .. n(t) are stored on the stack and the corresponding partitioning is stored in b,

part = any p l r f when
t > 0 ∧m(t) < n(t) ∧ f ∈ m(t) .. n(t) ∧ p ∈ P ∧ l > r ∧ . . .
∀x · x ∈ (b ◦ p)[m(t) .. l−1]⇒ x ≤ b(f)
∀x · x ∈ (b ◦ p)[r+1 .. n(t)]⇒ b(f) ≤ x

then
b, m, n, t := b ◦ p, m �− {t+1 �→ l}, n �− {t �→ r, t+1 �→ n(t)}, t+1 .

576 S. Hallerstede and C. Snook

A I
init

part

drop

E
sort

A

(a) Node refinement of A

A I
init

part

drop

E
sort

A

(b) Edge refinement of sort

Fig. 5. First refinement

Event drop removes intervals from the stack that contain at most one element.
The abstract event sort of Fig. 4 is refined by the concrete event sort of Fig. 5
(as indicated by the reuse of the name), sort = when t ≤ 0 then a := b. We have
to prove this: using p ∈ P ∧ b = a ◦ p as a witness for the abstract parameter
p —its existence is guaranteed by I below—, the invariant and concrete guard
I ∧ t ≤ 0 imply the guard of the corresponding abstract event sort and the
equality a = b which establishes the simulation by the abstract event’s action
a := a ◦ p. Among other assertions I contains the following:

@I t ≥ 0 ∧ n(0) = 0 ∧ (∃q · q ∈ P ∧ b = a ◦ q) ∧ . . .
∀x, y · x ∈ D ∧ y ∈ n(t)+1 .. N ∧ x ≤ y ⇒ b(x) ≤ b(y) .

We omit the proofs that the new events init, part and drop refine skip. During
those proofs more assertions would be added to node I incrementally [3].
m2 and m3. In refinement step m2 convergence of event part is proved and
convergence of event drop in refinement step m3, establishing a lexicographic
variant (see [2]). We introduce a variable C to express the variant, adding C :=
0 .. N+1× 0 .. N+1 to the action of event init and C := C \ ((0 .. m(t)× r+1 ..
N+1)∪(0..l−1×n(t)..N+1)) to the action of event part. We add some assertions
to the node I :

@I C ∈ 0 .. N+1↔ 0 .. N+1
∀i · i ∈ 1 .. t⇒m(i) �→ n(i) ∈ C
∀x, y · x �→ y ∈ C ∧ y ≤ N ⇒ (∀v · v ∈ x+1 .. y+1⇒ v �→ y ∈ C)
∀x, y · x �→ y ∈ C ∧ x ≥ 1⇒ (∀w · w ∈ x−1 .. y−1⇒ x �→ w ∈ C) .

Using C as a variant we can prove that part is convergent. Event drop obviously
does not change C. Compared to direct verification (e.g. [4]) Event-B refinement
offers the advantage of introducing and removing auxiliary variables whenever
it appears convenient. Compared to program refinement [13] it offers more flex-
ibility with complex refinement steps. Convergence of drop can be verified with
the variant t, the height of the stack. The first component of the lexicograph-
ical variant is a set, the second a number. The chosen proof method frees us
from having to construct the lexicographical variant explicitly; or rather, the
construction is automated.

Refining Nodes and Edges of State Machines 577

m4. We introduce a nested loop to compute the partitioning. In this refinement
step the outer loop is introduced, the inner loops in the next step. As this
refinement concerns inner nodes, the node refinement diagram becomes more
complicated than the edge refinement diagram. The reason for this is that node
refinement diagrams can potentially express more complex refinements. An edge
refinement replaces always one edge. Node refinements can replace several edges
in one go. However, the node refinement diagram contains all elements that are
involved in the proof. In this sense the edge refinement diagram is less complete.
We have to show that init establishes the concrete invariant I. The edge sort in
Fig. 6(a) is redundant: neither event sort nor node E are changed, and I may
only be stronger than its abstract counterpart. Still, both diagrams represent
the same proof.

Note the difference of how loops are refined in node and edge refinement
diagrams. Nodes are uniquely identifiable in node refinement diagrams whereas
in edge refinement diagrams only edges need to be uniquely identifiable. An
edge refinement has start and final nodes that are connected to the start and
final node of the refined edge. If a loop is edge-refined, the concerned node is
replicated in the refined diagram. E.g., Fig. 6(b) has two copies of node I. The
two copies do not denote the same node. If a loop is node-refined, the concerned
node is not replicated. Instead, the loop remains in the diagram either as a loop
or as a cycle involving several nodes.

A I
init

drop

J

entr part

loop

E
sort

I

(a) Node refinement of I

I J
entr

loop

I
part

I

(b) Edge refinement of part

Fig. 6. Fourth refinement

The node J specifies the loop invariant. It is established initially by event
entr, where entr = when t > 0 then c, L, R, π := b, m(t), n(t), (m(t)+n(t)) ÷ 2.
At J all assertions of I hold plus the following:

@J t > 0 ∧m(t) < n(t) ∧ π ∈ m(t) .. n(t) ∧ . . .
L > R+1⇒m(t) < L ∧R < n(t)

Similarly to the first refinement step these assertions are mostly determined
by the shape of the guard and action of the abstract event part of m1. This is
driven by the proof obligations for the refinement of part, where part = when L >
R then b, m, n, t := c, m�−{t+1 �→ L}, n�−{t �→ R, t+1 �→ n(t)}, t+1.6 However,
6 With appropriate witnesses for the abstract parameters: f = π and so on.

578 S. Hallerstede and C. Snook

during the development, assertions were also propagated bottom up. In refine-
ment m5 the assertions that already hold at J in m4 are essential for refinement
proofs of the loop body. Note that the last three assertions at J would be dif-
ficult to guess in a top down manner. They were propagated upwards from the
refinement proofs of events swap and done of m5. The guard of event loop has
subsequently been chosen such that it preserves these assertions:

loop = any p l r when
L ≤ R ∧ p ∈ P ∧ . . .
l > r+1⇒ (m(t) < l ∧ r < n(t))

then
c, L, R := c ◦ p, l, r

The redundancy between loop and J is intentional; the assertions that hold at
J are established dynamically by choosing appropriate parameters p, l and r
nondeterministically. Often the construction is guided by invariant preservation
proofs. The same principle is already present in the B-Method [1]: it emphasises
assertions and requires statement of suitable events respecting the assertions.
m5. In this refinement the body of the inner loop is implemented. It demon-
strates how nested assertions are used in more complex steps of a refinement
proof. In refinements m6 and m7 we will show two more refinements of the
model that has now become quite complex. The degree of difficulty does not
increase as the model grows in complexity. This was the main motivation that
started this work on top of Event-B. We preserve the strengths of Event-B: the
emphasis on reasoning, formal proof, and incremental modelling [8]. The key to
incremental modelling in Event-B is the generation of fine grained proof obliga-
tions exploiting proof-oriented facts specified in formal models. Fig. 7(a) shows

I J

entr

part

Kindx

incl

L
nxtl

decr

N

nxtr

done(loop)

swap(loop)

L
K

J

(a) Node refinement of J

Fig. 7. Fifth refinement

the node refinement where J is refined and two nested super nodes K,

@K L ≤ R ∧ u ≤ v+1 ∧ . . .

and L, with @L c(u) ≥ b(π), are introduced. So node N, with @N b(π) ≥ c(v),
contains all assertions of I, J, K and L. Following the nesting the structure

Refining Nodes and Edges of State Machines 579

could be introduced step-wise but we find that the larger step that we chose is
not difficult to prove. Nothing would be gained by using additional refinement
steps. In our experience the liberty in choosing the granularity of refinement
steps makes it easier to produce the proof for a whole development. The mixture
of program verification and step-wise refinement techniques supports the user
in choosing appropriate abstractions. Supporting this mixture is not common
in verification or refinement methods. The events done, with done = when u >
v then L, R := u, v, and swap, with swap = when u ≤ v then c, L, R := c�−{u �→
c(v), v �→ c(u)}, u+1, v−1, refine the abstract event loop as indicated by writing
the name of the abstract event name in brackets behind the concrete event
names.

Fig. 7(b) shows the refinement as an edge refinement. It emphasises more how
we would read the body of a loop as a sequence of commands. The structure of the
inside of the loop is more obvious than in node refinement. In the corresponding
node refinement one has to look more closely to identify the relevant part. The

J K
indx

incl

L
nxtl

decr

N
nxtr

J
swap(loop)

J
done(loop)

L
K

J

(b) Edge refinement of loop

Fig. 7. Fifth refinement

two events done and swap specify different values for the witnesses of the abstract
parameters (of event loop). For example, done specifies p = D � id and swap
specifies p = (D � id) �− {u �→ v, v �→ u} giving a clue about how loop is
implemented. Witnesses are a versatile feature of Event-B being applicable to
verification techniques besides proof [9].

m6. In the sixth refinement the two nodes I and J are refined simultaneously
demonstrating how sub-nodes of the refined nodes are to be connected. This is a
data-refinement replacing the pointer to the top of the stack t by a new pointer
s such that t = s+1, storing the top of the stack m(t) and n(t) in dedicated
variables p and q, and finally, replacing the stack m and n by the “smaller”
stack l and o. In the edge refinement diagram (Fig. 8(b)) we have collected
two simultaneous edge refinements. The corresponding two simultaneous node
refinements are shown in Fig. 8(a). In the edge refinement diagram we have to
draw an additional super node —the inner super node I— and connect it using
anonymous edges. This is necessary because of restrictions on the shape of edge
refinement diagrams that are imposed in order to be able to map such diagrams
to customary control structures.

580 S. Hallerstede and C. Snook

A I
init

B

pops termdrop

J

entr

H

part

prep

N

done

swap

K
indx

E
sort

I

J

(a) Node refinements of I and J

I I

B

pops

B

term

B I
drop

II

J H
prep

I
part

J

(b) Edge refinements of drop and part

Fig. 8. Sixth refinement

m7. The last refinement step introduces a new variable h to replace b(π) in all
event guards. In other words we add h = b(π) to the nodes J, K, L and N. The
new event setp contains the assignment h := b(π). Note how new events in the

I

J

G

entr

setp

N

done

swap

K
indx

H
prep

J

(a) Node refinement of J

I G
entr

J
setp

J

(b) Edge refinement of entr

Fig. 9. Seventh refinement

refinement diagrams are indicated by the nesting of the (super) nodes; compare
Fig. 8 and Fig. 9 in this respect.

Closing remarks. We can carry out a series of data refinements to remove “syn-
onyms” of variables. For instance, a, b and c by a variable h. This does not affect
the structure of the diagrams. No further diagrams need to be drawn for these
refinements.

We think the diagrams are easy to understand and manipulate. With their
help, complex refinement steps using the Event-B refinement method are possi-
ble that would not be feasible in Event-B itself. Using multiple refinement steps

Refining Nodes and Edges of State Machines 581

in Event-B does not always solve the problem. This is particularly important be-
cause in Event-B the ordering of the refinement steps influences the shape of the
developed program. Using state machines its shape is specified and refinement
is only concerned with structuring a complex correctness proof.

5 Design of a Controller

The edge refinement diagrams in Section 4 are simpler than the corresponding
node diagrams. The developed algorithmic structure is more discernible. Edge re-
finement was developed for this purpose and is therefore more specialised towards
algorithm development than node refinement. This specialisation is achieved by
imposing greater restrictions on the refinements that can be made. Lacking these
restrictions, node refinement allows more flexibility in refinements. Node refine-
ment is suited for the modelling and refinement of systems level models. It was
developed for this purpose. In this section, we demonstrate the greater general-
ity of node refinement by means of a model of a simple controller system which
has mechanisms for responding and recovering from faults. The controller could
not be developed using edge refinement. Although this example is simple and
somewhat manufactured, it is intuitive and sufficient to illustrate the greater
generality of node refinement. One can easily imagine that the model can be ex-
panded in later refinements with similar patterns that would be impossible with
edge refinement. Usually, there is a collection of informal requirements describ-
ing possible behaviours on which formal system modelling is based. Feedback
from the formal model can then be used to improve the requirements: pointing
to specification gaps and contradictions. However, for the present purpose we are
not concerned with discussing requirements and do not refer to them explicitly.
We also do not go into detail concerning the assertions and events that occur in
the model.
The controller model. The initial abstract model of the controller (see Fig. 10)
has three states: the power is off “U ”; the power is on “P”; the power is on but
the controlled is in a fault state “F”. An edge labelled pwr models the power

U P
pwr

F

flt

clr

Fig. 10. Abstract controller model

being switched on and while the power is switched on, faults may occur flt and
are subsequently cleared clr.

Firstly, the fault state “F” is refined to distinguish two sub-categories of fault
(see Fig. 11(a)), ones that can be recovered from “R”, and ones that require a
reset “E”. This enables the edge flt to be refined by spitting it into two edges
uerr and rerr representing the two categories of fault. Similarly, clr is refined
into reset and recover originating from their respective fault categories. Recovery

582 S. Hallerstede and C. Snook

may be unsuccessful resulting in a recoverable fault becoming transmuted into
a resettable one by edge rfail.

The powered state “P” is then refined to distinguish two sub-modes of op-
eration (see Fig. 11(b)). The control is switched off “X ”, and the control is
switched on “O”. Edges on and off form a loop allowing power to be cycled.
This enables us to refine edges uerr, reset, rerr and recover so that recoverable
errors originate and recover to the powered sub-state, “O”, while unrecoverable
ones originate and reset to the unpowered sub-state, “X ”.

The behaviour of the controller while being in one of the states P or F is
more general than the patterns arrived at by edge refinement. If we were to
implement a control program, we would introduce a dedicated variable to model
the current operational state of the controller. This would obfuscate the model
hiding the control structure in the program text. If we do not insist on program
structure, state machines can concisely and clearly capture the behaviour.

P

E

uerr (flt)

reset (clr)

R

rfail

rerr (flt)

recover (clr)

F

(a) Node refinement of F

X

O

onoff

E

reset

uerr

R

recover

rerr

P

(b) Node refinement of P

Fig. 11. Refinements of the controller model

The refinement of node F splits the incoming and outgoing edges into cases
that are revealed by the node refinement. This would not be possible using edge
refinement.

The refinement of node P introduces a cycle between the states X and O.
If this was introduced via edge refinement it would require a loop at P in the
abstraction. This would require prediction of later refinements in the abstract
model which would be detrimental to its objective. The aim of abstract system
modelling is to simplify the model in order to concentrate on important proper-
ties. Abstract models could become unnecessarily complex if stricter rules were
imposed.

Allowing more general diagrams to be constructed supports forms of reasoning
that would be difficult to achieve using the simpler algorithmic diagrams enforced
by edge refinement. For instance, we may want to argue whether edge rfail is
reasonable: is it reasonable for a supposedly recoverable error to result in a reset
of the controller. The explicit modelling of the control states makes it possible
to discuss such questions. This would not be possible if the control state was
encoded by a program variable.

Refining Nodes and Edges of State Machines 583

A combined refinement method. Using node refinement we can deal with more
general architectural requirements. Edge refinement on the other hand provides
only algorithmic structures that can be safely mapped on to (sequential) pro-
grams. A combined method would have the strengths of both. One could, for
instance, develop the architecture of the controller using node refinement and
implement the code at the edges using edge refinement. We have seen in Sec-
tion 3 that the proof obligations of the methods could be easily mixed. We could
simply consider every edge refinement to be a stylised node refinement allowing
them to be mixed freely. Edge refinement can also be used to prove properties of
deadlock-freedom [7]. Node refinement does not support this. The main difficul-
ties are to achieve a clear refinement method and to avoid large complex proof
obligations. Our next aim is to investigate deadlock-freedom properties of node
refinement.

6 Conclusion

We have demonstrated the use of state machines for the formalisation of complex
models based on Event-B. We have discussed two approaches to refinement that
suggest themselves when modelling with state machines: node refinement and
edge refinement. We have defined the two notions of refinement (based on Event-
B refinement). Node and edge refinement have similar proof obligations. We have
argued that, for the development of programs, they can be seen as providing two
views of the same proof of correctness and refinement. However, node refinement
is more general. It has been conceived for system-level modelling and it is not so
obvious how to develop programs by this means alone. Edge refinement on the
other hand has been conceived for program development, but is too restrictive
to be used for system modelling. Combined use of both can address a large class
of systems using node refinement for architectural modelling aspects and edge
refinement for algorithmic aspects. We believe the two notions of refinement
could be unified. However, care has to be taken to preserve the strong support
of the two modelling aspects: architecture and algorithms. In this article we have
not discussed deadlock-freedom. For edge refinement it is obvious how properties
of deadlock-freedom can be proved. For node refinement it is less clear how this
can be done. We will still be looking for a method that is easy to apply. A unified
method could transfer the concept of deadlock-freedom as dealt with by edge
refinement to node refinement.

References

1. Abrial, J.-R.: The B-Book: Assigning Programs to Meanings. In: CUP (1996)
2. Abrial, J.-R.: Modeling in Event-B: System and Software Engineering. In: CUP

(2010)
3. Abrial, J.-R., Butler, M.J., Hallerstede, S., Hoang, T.S., Mehta, F., Voisin, L.:

Rodin: an open toolset for modelling and reasoning in Event-B. STTT 12(6), 447–
466 (2010)

584 S. Hallerstede and C. Snook

4. Apt, K.R., de Boer, F.S., Olderog, E.-R.: Verification of Sequential and Concurrent
Programs. Springer, Heidelberg (2009)

5. Back, R.-J.: Invariant based programming: basic approach and teaching experi-
ences. Formal Asp. Comput. 21(3), 227–244 (2009)

6. Fathabadi, A.S., Butler, M.: Applying Event-B Atomicity Decomposition to a Multi
Media Protocol. In: de Boer, F.S., Bonsangue, M.M., Hallerstede, S., Leuschel, M.
(eds.) FMCO 2009. LNCS, vol. 6286, pp. 89–104. Springer, Heidelberg (2010)

7. Hallerstede, S.: Structured Event-B Models and Proofs. In: Frappier, M., Glässer,
U., Khurshid, S., Laleau, R., Reeves, S. (eds.) ABZ 2010. LNCS, vol. 5977, pp.
273–286. Springer, Heidelberg (2010)

8. Hallerstede, S., Leuschel, M.: Experiments in Program Verification using Event-B.
In: Formal Asp. Comput. (to appear, 2011)

9. Hallerstede, S., Leuschel, M., Plagge, D.: Refinement-Animation for Event-B — To-
wards a Method of Validation. In: Frappier, M., Glässer, U., Khurshid, S., Laleau,
R., Reeves, S. (eds.) ABZ 2010. LNCS, vol. 5977, pp. 287–301. Springer, Heidelberg
(2010)

10. Kaldewaij, A.: Programming: The Derivation of Algorithms. Prentice-Hall, Engle-
wood Cliffs (1990)

11. Knapp, A., Merz, S., Wirsing, M.: Refining Mobile UML State Machines. In: Rat-
tray, C., Maharaj, S., Shankland, C. (eds.) AMAST 2004. LNCS, vol. 3116, pp.
274–288. Springer, Heidelberg (2004)

12. Lano, K., Clark, D.: Semantics and Refinement of Behavior State Machines. In:
Filipe, J., Cordeiro, J. (eds.) Enterprise Information Systems. LNBIP, vol. 19, pp.
42–49. Springer, Heidelberg (2009)

13. Morgan, C.C.: Programming from Specifications, 2nd edn. Prentice-Hall, Engle-
wood Cliffs (1994)

14. Said, M.Y., Butler, M.J., Snook, C.F.: Language and tool support for class and
state machine refinement in UML-B. In: Cavalcanti, A., Dams, D.R. (eds.) FM
2009. LNCS, vol. 5850, pp. 579–595. Springer, Heidelberg (2009)

15. Simons, A.J.H.: A theory of regression testing for behaviourally compatible object
types. Softw. Test, Verif. Reliab. 16(3), 133–156 (2006)

16. Snook, C., Waldén, M.: Refinement of statemachines using event B semantics.
In: Julliand, J., Kouchnarenko, O. (eds.) B 2007. LNCS, vol. 4355, pp. 171–185.
Springer, Heidelberg (2006)

17. Snook, C.F., Butler, M.J.: UML-B: Formal modeling and design aided by UML.
ACM Trans. Softw. Eng. Methodol. 15(1), 92–122 (2006)

18. Snook, C.: Exploring the Barriers to Formal Specification. PhD thesis, Electronics
and Computer Science, University of Southampton (2002)

19. Wirth, N.: Program development by stepwise refinement. CACM 14(4), 221–227
(1971)

Some Event-B Specific Symbols

a◦p denotes composition of a and b: x �→ y ∈ a◦p⇔(∃z · x �→ z ∈ p∧z �→ y ∈ a).
t � r denotes domain restriction of r by t: x �→ y ∈ t � r⇔ x ∈ t ∧ x �→ y ∈ r.
t �− r denotes domain subtraction of r by t: x �→ y ∈ t �− r⇔ x �∈ t ∧ x �→ y ∈ r.
s �− r denotes relational override of s by r: s �− r⇔ (dom(r) � s) ∪ r.

Managing Complexity through Abstraction:

A Refinement-Based Approach to Formalize
Instruction Set Architectures

Fangfang Yuan1,
, Stephen Wright1,

, and Kerstin Eder1 and David May2

1 Computer Science Department, University of Bristol, Bristol BS8 1UB
{fangfang.yuan,stephen.wright,kerstin.eder}@bristol.ac.uk

2 XMOS Ltd, Venturers House, King St, Bristol BS1 4PB
dave@xmos.com

Abstract. Verifying the functional correctness of a processor requires
a sound and complete specification of its Instruction Set Architecture
(ISA). Current industrial practice is to describe a processor’s ISA infor-
mally using natural language often with added semi-formal notation to
capture the functional intent of the instructions. This leaves scope for
errors and inconsistencies. In this paper we present a method to specify,
design and construct sound and complete ISAs by stepwise refinement
and formal proof using the formal method Event-B. We discuss how the
automatically generated Proof Obligations help to ensure self-consistency
of the formal ISA model, and how desirable properties of ISAs can be
enforced within this modeling framework. We have developed a generic
ISA modeling template in Event-B to facilitate reuse. The key value of
reusing such a template is increased model integrity. Our method is now
being used to formalize the ISA of the XMOS XCore processor with
the aim to guarantee that the documentation of the XCore matches the
silicon and the silicon matches the architectural intent.

1 Introduction

The Instruction Set Architecture (ISA) is the part of a computer’s architecture
visible to programmers. It specifies the basic data types, all instructions, internal
storage, addressing modes, memory architecture and interrupt/exception hand-
ling. Programmers use the ISA as a reference manual for coding. Design engineers
use it as a reference for implementation. Processor verification heavily relies
on the ISA [16] because the ISA provides the functional reference specification
against which the processor’s implementation is verified.

Current industrial practice is to describe a processor’s ISA informally using
natural language often with added semi-formal notation to capture the func-
tional intent of the instructions. This leaves scope for errors and inconsistencies.
� Funded in part by EPSRC grant EP/E001556/1 ”Reassessing Processor Design As-

sumptions in Cryptography”.
�� Funded by a one year EPSRC Knowledge Transfer Secondment running since Octo-

ber 2010 under grant EP/H500316/1 and kindly hosted by XMOS Ltd.

S. Qin and Z. Qiu (Eds.): ICFEM 2011, LNCS 6991, pp. 585–600, 2011.
c© Springer-Verlag Berlin Heidelberg 2011

586 F. Yuan et al.

Moreover, in most cases these “specification” documents, often referred to as Ar-
chitecture Reference Manuals, do not have any formal relationship to the actual
design nor to the product. One of the recognized challenges in the 2009 issue
of the International Technology Roadmap for Semiconductors [1] is Specification
for verifiability: “How to specify the desired behavior of a design is a continuing
challenge in design verification. ... For instance, there is a need for automatic
ways to check the self-consistency of a specification document, so that different
specifications don’t state conflicting requirements. In addition, specific training
is needed for designers to use these notations and to be able to develop formal
specifications consistently.”

We present a novel formal modeling method that addresses this challenge
in the context of specifying, designing and constructing instruction sets using
Event-B [3]. The fundamental principles underlying this method are rigorous
application of stepwise formal refinement combined with mathematical proof.
The refinement process supports incremental construction of the entire ISA from
a simple state machine by repeatedly splitting the instruction set into instruction
classes that have common behavior until individual instructions are reached at
the bottom level of the model. This refinement strategy promotes reasoning
about the model as it is being developed and helps engineers understand the
intent of the ISA as a whole as opposed to specifying each instruction in isolation.

Mathematical proof serves three purposes during model construction. One is
establishing self-consistency of the formal model. The second is ensuring that
each refinement step is valid. Both are enforced in Event-B by default through
the generation of Proof Obligations (POs). The third is to demonstrate desirable
properties of the model. These can be defined explicitly during modeling through
the introduction of invariants and theorems. In the context of ISAs it is, for
example, important to ensure that the ISA is complete in terms of covering all
possible changes to the processor state. Another desirable property for an ISA
may be determinism, i.e. the ISA defines exactly one change to the processor
state for each input condition. POs are automatically generated to ensure the
model satisfies these domain specific properties.

To facilitate uptake of our modeling method we have developed a generic
template in Event-B ready to use with the Rodin tool set [4]. The template
has been designed to support the ISA development process and is based on the
generalization of three ISA models of increasing complexity; from an academic
“toy” ISA called MIDAS [24], via the more elaborate ISA of the performance-
optimized cryptographic processor CRISP [19] to the ISA of the XMOS XCore
processor [17], a fully fledged industrial processor design. Currently, the XCore
ISA model is being completed. The template is structured into several abstrac-
tion layers, each addressing a set of fundamental design options available for the
respective instruction class. The template is generic in that it is parametrized
and thus offers design alternatives for later instantiation. We call these alter-
natives choice points because they allow the model to be tailored to a specific
ISA or an ISA family. Each refinement step is intentionally kept small enough
to remain comprehensible.

Managing Complexity through Abstraction 587

While it is difficult to provide precise data on development time with and
without using the generic template, an increase in modeling productivity is in-
dicated by the fact that ISAs of increasing numbers of instructions, from ∼30
for MIDAS via ∼50 for CRISP to ∼170 for the XCore, have been (or are being)
modeled each within roughly one year of development effort. The key value of
such a generic template is more than just the productivity gain during model-
ing. Re-using this template ensures increased model integrity and results in more
reliable and trustworthy models. This gives design and verification engineers a
higher degree of confidence in the correctness of the formal model that is used
as top-level specification during verification.

2 Event-B and the Rodin Development Platform

Event-B [3] is a formal method that combines mathematical techniques, set the-
ory and first-order logic for the purpose of building and analyzing models of
complex systems. Event-B is model-based. The stored state within a system is
represented by globally scoped state variables. All modifications to this state
are defined by atomic events, consisting of actions (the description of the state
modifications) and guards (the conditions under which the actions may occur).
Set membership statements, fundamentally derived from integers, Booleans, or
completely abstract sets, provide variable type information. In our Event-B ISA
models, all the actions of a single instruction’s execution are encapsulated within
a single event, deliberately abstracting any ordering performed by an actual im-
plementation. Thus the model’s independence from any particular implementa-
tion is preserved.

An important feature of Event-B is refinement. Abstract model variables may
be refined to one or more concrete variables. The relationship between abstract
and concrete versions of a variable is stated by a gluing invariant. Thus any
events containing refined variables must also be refined in the concrete version
of the model in order to maintain the relationship stated in the gluing invariant.
Other event refinements are possible: guards may be restated or strengthened,
that is replaced by a logical sub-set of the abstract guard. Events may be split
during refinement into two or more concrete events, in which the guards and
actions of each must be valid refinements of the abstract version. Refinement
allows systems to be described at different levels of abstraction which is key to
our approach to ISA formalization.

Central to reasoning about Event-B models is the use of proof obligations
(POs). By default, Event-B POs ensure a model is sound with respect to the
basic rules of set theory, first-order logic and the basic principles of formal refine-
ment. As discussed in [13], provision of a domain specific behavioral semantics
is not necessary to establish soundness of a model (in terms of the model being
self consistent and all refinements being valid), because the POs are generic and
therefore applicable to different modeling domains. Beyond basic soundness, do-
main specific properties of a model can be introduced through the definition of
invariants and theorems for which extra POs will be generated.

588 F. Yuan et al.

POs in Event-B are classified according to type [3]. In our Event-B models
the following PO types are of particular relevance:

– WD: A well-definedness PO ensures expressions are properly defined and
comply with applicable constraints.

– FIS: A feasibility PO ensures that each non-deterministic action is feasible.
In particular, this ensures an action provides a satisfiable post condition
when the guards are satisfied.

– THM: A theorem PO ensures an explicitly introduced theorem is provable.
– INV: An invariant preservation PO ensures that each invariant is preserved

by each event. This means that invariants must be initiated properly and
hold whenever the values of the involved state variables change.

– GRD: A guard strengthening PO ensures for corresponding concrete and
abstract events that the concrete guards are stronger (or equally strong) than
the abstract ones. As a consequence, whenever a concrete event is enabled
so too is the respective abstract event.

– SIM: A simulation PO ensures that the outcome of the concrete event’s
actions is not contradicting what the related abstract event does.

Rodin is an open-source development platform for Event-B [4]. It provides an
environment for system modeling and analysis, including support for refinement,
i.e. POs are generated automatically, and support for mathematical proof, i.e.
most POs can be discharged automatically. It also allows model checking and
animation via ProB [20].

3 Literature Review

Verification is the process used to demonstrate the correctness of a design with re-
spect to its specification [7]. By its very nature, verification requires descriptions
of a design at two levels of abstraction: one higher level, this one is typically
referred to as the specification, and one lower level. In addition, a method is
needed to establish correctness of the lower-level description with respect to the
higher-level one. Methods for simulation-based (dynamic) and formal (static)
verification are increasingly successfully used in practice. An introduction to the
state of the art in verification can be found in [21].

Verification relies on the fundamental assumption that the higher-level de-
scription is functionally correct, self-consistent and also complete in that it must
cover all the behaviors of the design. This is very difficult to achieve.1 In prac-
tice, a lot of time is often spent resolving inconsistencies and filling omissions
in the ISA during micro-architectural design and verification. Recent work has
extended coverage metrics so that the degree of completeness of a specification
can be established retrospectively [9]. Ideally, however, a specification should be

1 It is of increasing importance especially for a business model that aims to license the
ISA as separate IP. Ensuring compatibility with third party developments heavily
relies on the ISA specification.

Managing Complexity through Abstraction 589

developed in such a way that these important properties are an integral part of
the description from the outset.

Various Architecture Description Languages have been developed to describe
ISAs in order to dynamically explore design features. A typical example is
ArchC [6]. While these approaches allow validation of the functional behav-
ior of an ISA via test runs, they do not provide methods to formally reason
about an ISA in terms of checking self-consistency and completeness. A formal
model provides the most appropriate description for this purpose. The literature
contains examples of different kinds of formal models used for microprocessor
specification and verification. We now review relevant key contributions.

One of the first attempts to provide a correct and complete description of a
microprocessor instruction set was the specification of the 8-bit Motorola 6800
ISA in Z. This formal specification [8] primarily served as documentation. It
could also be used to manually prove properties of instruction sequences. One
problem identified in [8] was the “possible complexity of the description”.

In [14] an algebraic method to model microprocessors at different abstraction
levels for the purpose of verification is presented. It uses iterated maps over state
sets to describe the functional behavior of a higher-level specification, called the
Programmer’s Model (i.e. the ISA), and of a lower-level implementation, called
the Abstract Circuit Design. It then defines under which conditions the lower-
level algebraic model correctly implements the higher-level specification. Proof
support in HOL was provided for this method [11] and a first formalization
of the ARM ISA in HOL was undertaken [10]. Within this HOL specification
the ARM ISA is grouped into eight instruction classes. For each instruction
class state transforming HOL functions are defined to cover each individual
instruction. Tackling complete industrial designs in this way can lead to quite
sizable specifications, confirming the observation made in [8] as described above.
A more recent formalization of the ARMv7 ISA came to 6500 lines of HOL4
script. In [12] details of the extra effort invested into ensuring this complex model
is “valid and trustworthy” are outlined. These primarily include tool support in
the form of an instruction evaluator to enable extensive validation of the formal
model against ARM hardware. Testing found several bugs in the formal model.

Another early approach to formalize ISAs with a focus on establishing the
semantics of an instruction set for later verification is presented in [22]. HOL is
used for formalization and to prove internal model consistency, e.g. type checking
of definitions and ensuring totality of each definition. Exponentially increasing
prover time in the size of the ISA model was identified as a problem. Based on
the fact that ISAs contain collections of instructions that have similar behavior,
instructions with common behavior are represented by special semantic frame-
works. These provide parametrized abstractions of the behavior of an entire class
of instructions (up to the specific operation of individual instructions). While
semantic frameworks are acknowledged to facilitate creating and maintaining
specifications, the approach in [22] does not take advantage of these abstrac-
tions to reduce the size of the formal model which in turn would probably have
increased proof efficiency.

590 F. Yuan et al.

Industrial sized ISAs tend to be large and complex. The need to introduce
more structure into ISA formalization has already been recognized when first
attempts to ISA formalization were made. In [8] it was noted that the stepwise
construction of the formal model from “easily assimilated concepts” would help
to overcome the difficulty in constructing a complete and correct formal specifi-
cation for increasingly complex architectures. It was proposed to keep each such
concept “readily understandable” and to layer such a formal specification with
the aim to facilitate its construction and also to ease readability and compre-
hension. We aim to achieve exactly this.

We have now reviewed several examples of ISA formalizations. Our work at-
tempts to overcome a limitation common to all these: the lack of a systematic
abstraction/refinement hierarchy. Such a hierarchy has several obvious benefits
in terms of combating complexity: It provides an overarching description that
relates individual instructions and gives a top-down “narrative” allowing engi-
neers to understand the meaning of instructions and their interaction. Layers in
the hierarchy also provide natural boundaries to control the size of the formal
model so that proofs can be done more efficiently either at higher abstraction
levels or by decomposition into a series of locally scoped smaller proofs.

The use of refinement in Event-B supports the creation of a hierarchical model
via top-down refinement. The hierarchy provides an intuitive structure that fa-
cilitates model construction, maintenance, re-use and comprehension. In com-
parison, the approaches reviewed above are ”flat”. Tackling designs of industrial
complexity with such ”flat” approaches results in increasingly complex formal
models and at best ad-hoc solutions to combat the associated problems.

A recent example of modeling the Z80 ISA with the B-Method [2], a pre-
decessor of Event-B, is presented in [18]. Common functionality of individual
instructions has been factored into auxiliary functions (re-usable within this
model). Proof ensures consistency of the model as well as satisfaction of system
and safety properties. Our method goes beyond this work in that it demonstrates
how the generalization of common functionality can be extended beyond classes
of instructions to modeling entire classes of ISAs.

4 The MIDAS and CRISP ISA Models

The feasibility of formalizing ISAs in Event-B was first demonstrated on the
MIDAS ISA model [24]. Re-using this model to formalize the CRISP proces-
sor’s ISA was a natural next step. This section briefly introduces our refinement
strategy, followed by short reviews of key features of both ISA models.

4.1 Refinement Strategy

The entire instruction space of the ISA is initially represented by an abstract
set Inst. This allows all aspects of the representation to be abstracted, including
any numerical values that may be assigned by a particular implementation. Inst
represents all possible instructions that may be presented to the processor at

Managing Complexity through Abstraction 591

run-time, including both valid and invalid. Instruction classes are constructed
by the successive partitioning of sub-sets of Inst based on common features,
e.g. control flow2 instructions, instructions which access the internal storage,
load/store instructions, etc. This gives rise to a hierarchy of abstraction layers.
These sub-sets are then employed in the guards of events describing the possible
outcomes of execution of a particular instruction class. An event describing the
successful execution of the instruction is initially created by appropriate refine-
ment of its abstract event. To ensure completeness, complementary events de-
scribing all possible failure conditions for the instruction are then derived by the
negation of each guard in the successful-execution event within the constraints
of the corresponding abstract failure event. One failure event is constructed for
each negated guard and inherits the actions of the abstract failure event. This
refinement strategy is currently performed manually although the provision of
tool support within the Rodin environment would be feasible.

4.2 Modeling the MIDAS ISA in Event-B

The MIDAS3 ISA consists of 35 simple instructions. The salient features of
MIDAS are as follows:

a) Both a register file and a stack version were required.
b) Each instruction takes up to 2 source and up to 1 destination operands.
c) Condition flags are used for storing the result of the branch condition that

is evaluated by a compare instruction.

The 39/40 refinement steps within the MIDAS derivation can be grouped into
distinct layers. At the top is a basic State Machine (SM). It provides the fun-
damental operations of a processor in terms of a basic next state function. Two
abstract events represent successful instruction completion or failure due to any
error condition. Following the SM layer, the Control Flow (CF) layer introduces
an instruction space and Program Counter (PC). Note that the PC is defined
by a variable local to each event, rather than fixing it to a specific location.
This allows the PC to be further refined to reside in a special-purpose register,
such as in CRISP; or in one of the general-purpose registers, such as in the
ARM architecture [5]. Branching is based on a calculated condition flag; Table 1
enumerates all the cases to be considered, based on the result of the condition
evaluation wrt status and value, and PC validity, i.e. in or outside of range, after
PC recalculation.

Next, the Register Array (RA) layer refines the instruction subset that writes
to the internal storage. The internal storage is specified in the RA layer context
as a total function, (represented by → in Event-B), called RA, from an integer
subset, called RADom, to a set of bit patterns, called Data. The definition in

2 In this paper, we use control flow instructions to refer to instructions that change
the flow of control; compare instructions for instructions that evaluate (branch)
conditions; branch means conditional change.

3 Microprocessor Instruction and Data Abstraction System.

592 F. Yuan et al.

Table 1. Control Flow Layer: Successful and Error Handling Event Refinements

Condition Evaluation
PC Recalculation Event Refinement

Status Value

successful true in range Event for true-condition error-free case

successful true ¬ in range Event for invalid PC recalculation case

successful false in range Event for false-condition error-free case

successful false ¬ in range Event for invalid PC increment case

failed n/a n/a Event for condition evaluation error

Equation 1 ensures that each element in RADom can be mapped to one and
only one bit pattern in Data.

RA ∈ RADom→Data (1)

For the register file MIDAS version, the internal storage is accessed using an
intermediate variable idx to specify the register position. The action of updating
the internal storage is defined in Equation 2, where op is the operation of the
instruction, which takes 2 source operands, s0 and s1, and produces a bit pattern
that fits one element of the internal storage.

RA(idx) := op(s0, s1) (2)

For the stack-based MIDAS version, a set of events is refined to catch illegal
accesses such as stack overflow or empty stack. These error cases also give rise
to the invalid condition evaluation described in the last row of Table 1. Note
that both MIDAS versions have been refined from the same abstract model.

The next layer, the MEmory layer (ME), refines the load/store instruction
subset. The instruction and data memories are defined as separate total functions
from the memory index domain to a set of bit patterns.

Further MIDAS ISA-specific layers refine the ME layer to a level from which
an executable reference model is generated [23] to be used for dynamic model
validation. Thus, [24] presents a “correct-by-construction” stepwise refinement
of an entire, yet simple ISA down to executable code. The layers of the MIDAS
ISA model are depicted on the left in Figure 1.

4.3 Modeling the CRISP ISA in Event-B

The MIDAS ISA model was extended to formalize the more complex CRISP4

ISA. CRISP is a modified MIPS architecture [15], with 50 instructions, optimized
towards fast cryptographic computation. The features of the CRISP ISA are:

a) CRISP uses a register file for internal storage. The number of registers in
CRISP is 2 raised to the power of the bit width of the index specifier.

b) Each instruction can take up to 4 source and up to 2 destination operands,
enabling special instructions for fast execution of cryptographic algorithms.

c) Compare-and-branch instructions comprise both compare and branch oper-
ations, so no conditional state is stored. Some of them are bit-addressed.

4 Cryptographic RISC Processor [19].

Managing Complexity through Abstraction 593

Conditional

Calculation

Midas Common

Midas Stack Midas Register

Midas Stk B2C Midas Reg B2C

State Machine

Control Flow

Register Array

Memory

State Machine

Control Flow

Register Array

Memory

CRISP Register

CRISP Calc

State Machine

Control Flow

Register Array

Memory

XCore0

XCore B2C

XCore1

Generic
Refinement

Processor
Specific

Refinement

Auto-coding
Refinement

MIDAS CRISP XCore

Target of
XCore ISA

Development

Extended

Extended

Extended

Extended

Extended

Extended

XCore B2Doc

Extended

Fig. 1. The derivation and structure of the Generic ISA Model

The CRISP ISA model has 47 refinement steps. The SM layer is identical to
the MIDAS model. In the CF layer, where MIDAS uses separate instructions
for compare and branch, CRISP merges these two steps into one-step dedicated
instructions. CRISP has bit-addressed conditional instructions, which may fail
due to invalid indexing causing an “out of register width” error (an instance of
the error case in the last row of Table 1). In the model the bit compare function
is defined as:

BbitComp ∈ Data×RADom→BOOL (3)

When this function is applied in Equation 4, the first parameter is the data in
the first register, while the second is the data in the second register.

cond = BbitComp(op1Data �→ Data2Int(op2Data)) (4)

The definition in Equation 3 requires, via a WD PO, that the integer in the
second register must be within the register array domain.

In the RA layer, CRISP re-uses the internal storage definition of MIDAS. The
instruction format in CRISP permits dual destination instructions. Updating 2
destination registers in one single action is desirable as this maintains consistency
with the abstract action, given in Equation 5.

RA :∈ RADom→Data (5)

A formal statement describing such a dual-write is given in Equation 6, where
the registers indexed by d0 and d1 are updated with the two-part result produced
by the operation op applied to the operands s0, s1, s2, and s3.

RA := RA �− { d0 �→ op(s0, s1, s2, s3)[0]5, d1 �→ op(s0, s1, s2, s3)[1] } (6)
5 Please note that the use of indexing to access the first segment of the result in

“op(s0, s1, s2, s3)[0]” is for the purpose of illustration only; this is not Event-B syntax.
The Event-B models use two designated variables to capture the results of “op”.

594 F. Yuan et al.

The internal storage RA is specified as a total function, which requires that any
action must assign a unique value to each updated element. Our refinement gives
rise to a SIM PO that ensures the update in Equation 6 simulates the abstract
one. Discharging this PO is only possible by adding a new guard that requires
the indices d0 and d1 are not identical. This is a typical example of requirement
discovery as a by-product of the seamless interaction of modeling and proof
as promoted in Event-B. The missing requirement was added to the original
(informal) CRISP ISA manual to avoid potential race conditions in practice.

The CRISP model was constructed to explore the consistency of the CRISP
ISA during ISA design; code generation was not required. The structure of the
CRISP ISA model is given in the middle column in Figure 1. The CRISP ISA
model demonstrated that the formal model is easily extendable. In the process
of modeling new error cases were identified which were missing from the CRISP
specification. Note that, this was possible even without a fully refined model.

5 The Generic Modeling Template

The numerous similarities between the MIDAS and CRISP ISA models moti-
vated a generalization of the model to a re-usable template, i.e. the generic
model. This relatively short paper cannot contain all the information needed to
use the generic model. Instead, an overview is given of its structure followed by
a section that focuses on a generic formalization of the internal storage options.

5.1 Structure of the Generic Modeling Template

The top four layers of the MIDAS and CRISP ISA models, as illustrated in
Figure 1, share features commonly found in any ISA. These include a basic
state machine to specify how instructions are executed (SM layer), the means to
control program execution including the definition of the PC and all control flow
instructions (CF layer), the organization of and access to the register array (RA
layer) and also the organization of and access to the memory with load/store
instructions (ME layer). For each of these aspects there are alternative design
options. To accommodate these, choice points are built into the generic model.
A choice point can later be instantiated, i.e. further refined, to one particular
option. Thus, the resulting hierarchy provides a generic template within which
the effects of different design options can be explored at the appropriate level of
abstraction. The generic model covers the fundamental design options open at
the different layers in accordance with the classification of processors in [15].

The entire generic model consists of 27 refinement steps, yielding 63 events
at the final layer, i.e. the ME layer of the CRISP column in Table 2. The model
is available from http://www.cs.bris.ac.uk/~yuan/GM.zip. The next section
provides an insight into a generic formalization of the internal storage options.

http://www.cs.bris.ac.uk/~yuan/GM.zip

Managing Complexity through Abstraction 595

5.2 Generalization of Internal Storage Options

A basic differentiator between processors is the internal storage method; the
RA layer addresses this aspect. Conventional options for internal storage are
an accumulator, a stack or a register file. All of these may be refined from
an addressable contiguous region. The following context fragments show the
definitions used in the generic model to capture this internal storage region
without committing to any one of the above options.

CONSTANTS
MinRAIdx
MaxRAIdx
RADom

AXIOMS
axm1: MinRAIdx ∈ N

axm2: MaxRAIdx ∈ N

axm3: MinRAIdx ≤ MaxRAIdx
axm4: RADom = MinRAIdx .. MaxRAIdx

CONSTANTS
instT oSrc0Idx
instT oSrc1Idx
instT oDst0Idx
· · ·

AXIOMS
axm1: instT oSrc0Idx ∈ Inst → N

axm2: instT oSrc1Idx ∈ Inst → N

axm3: instT oDst0Idx ∈ Inst → N

· · ·: · · ·

To fetch a bit pattern from the internal storage an access function is applied
to an instruction, e.g. s0 = RA(instToSrc0Idx (inst)) fetches the first source
operand of instruction inst. The action is guarded to check whether the index
belongs to RADom which ensures legitimate accesses, especially for stack and
accumulator machines. The actual type of internal storage is left as an open
choice point. For CRISP, the instTo〈operand〉Idx mappings are refined to imple-
ment point a) from Section 4.3 into Inst →RADom, i.e. a one-to-one mapping;
this makes the guards that check legitimate accesses to the register file always
true and the corresponding failure events become obsolete. This is an excellent
example of how clever design can reduce verification effort.

Equations 2 and 6 describe internal storage updates for two specific ISAs. The
generic model accommodates this functionality by providing a generic update
over the entire internal storage region for instructions with m sources and n
destinations given in Equation 7, where op is the operation of the instruction,
which produces a bit pattern to fit n destinations. The update in Equation 7
overrides the existing internal storage region with a new mapping, which assigns
the respective result to the n destinations indexed with idx0 . . . idxn−1.

RA := RA �−{ idx0 �→ op(s0, · · · , sm−1)[0],
idx1 �→ op(s0, · · · , sm−1)[1], · · ·,
idxn−1 �→ op(s0, · · · , sm−1)[n− 1] }

(7)

Equations 2 and 6 are now instantiations of this generic formula, fixing the
number of updates to either one or two. The syntax used in Equation 7 contains
ellipsis and is for illustration only. The values for m and n have to be instantiated
to fit the target instruction format, e.g. for CRISP m = 4 and n = 2. For n > 1
the update gives rise to the SIM PO mentioned in Section 4.3. This PO revealed
an important practical constraint which is incorporated into the generic model
both as a guard and as an error condition in case the guard is not satisfied: In
architectures with multi-destination instructions, the destination registers need to
be distinct: writing multiple values into the same register causes a race condition.

Our formalization greatly benefits from the fact that Event-B by default
enforces model consistency and valid refinements. A clear advantage is that

596 F. Yuan et al.

important properties can be introduced early, i.e. at higher levels of abstrac-
tion within the hierarchy. For example, the ARMv7 Reference Manual [5] states
that for dual destination instructions, such as the Signed Multiply Accumulate
Long Dual SMLALD instruction on page A8-338, the two destinations must refer
to distinct registers. The CRISP processor has dual destination instructions with
a similar requirement, so does the XCore ISA. Instead of repeating this require-
ment for each individual instruction in the formal ISA model, the requirement is
introduced together with the dual destination instruction format in the RA layer
because this requirement applies irrespective of the instruction’s functionality.
By default, any subsequent refinements must preserve this requirement.

6 Modeling the XCore ISA in Event-B

XMOS Ltd is a fab-less semiconductor company that develops multi-core, multi-
threaded processors. XMOS has developed several core pieces of technology,
including a multi-threaded general purpose processor (XCore), an interconnect
switch that routes messages between cores, and a link to interconnect these
switches. Support for these features is integrated into the ISA. This greatly
improves run-time performance at the cost of introducing specialist instructions.
The XCore ISA [17] comprises of ∼170 instructions. It has been embodied in
the XS1-G4 XCore processor (a four-core device that can run up to 32 real time
tasks), and the XS1-L1 (a single core device that can run up to 8 real time tasks).
Although the XCore is used as the basis of multi-core devices, the individual cores
are entirely symmetric and linked only via asynchronous communication links.
Thus the single ISA model is appropriate to each individual core. XMOS also
provides a complete software development tool-chain that supports C, C++, and
XC (a language developed to best exploit the XCore architecture). The XCore
has been exploited in a range of different markets, including audio, display,
communications, robotics and motor control.

A one year Knowledge Transfer Secondment started in October 2010 to trans-
fer the modeling method to XMOS in order to formalize the XCore ISA. Our
objective is to derive an executable reference model from the formal model of the
XCore ISA using the techniques described in [23]. In addition, we intend to use
the formal model to generate a document that specifies the XCore ISA behavior
under all conditions derived from the formal specification. The formalization is
expected to produce two important results: it will guarantee that the documen-
tation of the XCore matches the silicon, and it will guarantee that the silicon
matches the architectural intent. The former is important to exclude errors from
documentation; the latter will be particularly important for the next generation
products. Typically, the next generation of a processor is heavily based on the
current one and is obtained by extending the current instruction set architecture.
Such extensions, unless rigorously verified, can easily introduce inconsistencies
within the newly extended ISA itself, which then propagate into the design and
finally, if undetected during design verification, into the end product. The for-
mal ISA model in Event-B lends itself naturally to modification and extension
based on the principle of stepwise refinement. The need to formally establish

Managing Complexity through Abstraction 597

model consistency between refinement levels, which is inherent to the Event-B
method, guarantees the absence of inconsistencies being introduced during the
ISA extension process.

The first phase of the project, the extension of the generic model to accom-
modate commercial ISA features, has already been completed (see the right
column in Figure 1). Extensions include: Memory alignment requirements for
both instruction and data fetches from memory are modeled with uncommitted
constants. Vectored jumps on exception detection extend the simple machine-
halt defined in the original generic model. Vectored interrupt behavior triggered
by modeled external events was added. Other extensions capture less common
features. Specifically, an ability to pause in anticipation of external events and
the special instructions used to support this behavior. Although unusual, similar
features could be provided by other ISAs. The behavior is therefore included at
an abstract level within the generic model to permit future re-use.

In the next phase of the project, the processor specific refinement, this en-
hanced generic model is being used as the basis for refinement to an XCore-
specific model. While this phase is labor intensive, it involves formalizing the
functional behavior of each instruction, there are no further formalization chal-
lenges now that the generic model has been extended to accommodate the XCore
ISA features. Instead, this phase will challenge tool capacity.

The value of the modeling approach has already been demonstrated by the
discovery of subtle errors in the published specification as compared to the ex-
isting product, even prior to the refinement of the current abstract model to full
detail. For example, the requirement not to permit the use of equal register in-
dexes as destinations for dual-destination instructions, which is embedded in the
generic model, enabled discovery of an undocumented exception implemented by
the XCore for these instructions: the actual machine robustly detects this error
condition and yields an exception. One instruction was specified with differ-
ent behaviors, depending on the value of one of its included immediate fields.
Separate refinement of the two forms of the instruction from separate abstract
events, effectively defining two separate instructions, was found to match the ap-
proach taken by the XCore implementation. Thus it was found that in one form
there is never a memory access; this form is the faster of the two and can never
give rise to an exception. In the other form there is always a memory access.
The formal model helps to identify and document such issues, enforcing explicit
specification of all exceptions. The cases detected so far had previously not been
explicitly documented due to the fact that there is no single model from which
documentation and executables are generated. The current state of development
of the XCore ISA model is given in the right column of Figure 1.

7 Summary

We have presented a method to formalize ISAs in Event-B using a refinement-
based strategy to build a hierarchically structured formal specification. We have
intentionally kept each refinement small enough to remain comprehensible and
functionally self-contained. To enable re-use of our method we developed a

598 F. Yuan et al.

generic ISA modeling template. This template captures all common and dif-
ferentiating ISA features discussed in [15] by providing choice points at different
levels of abstraction. This allows tailoring the model to capture a specific target
ISA or ISA family. We noticed that deriving the CRISP ISA model by refining
the generic model considerably decreased the effort spent on modeling. Most
time was used discharging POs, many of a very similar nature. Defining a set
of domain-specific proof tactics, i.e. a meta-level ordered sequence of rules akin
to the proof commands mentioned in [18], would increase the efficiency of dis-
charging many of these. The generic modeling template is currently being used
to formalize the ISA of the XMOS XCore processor. This necessitated the ex-
tension of the existing template to accommodate commercial ISA features. In
this process, the generic model has already helped to identify some subtle er-
rors. Future re-use of the generic model may require further such extensions. The
generic model thus “grows” into an electronic repository of ISA design expertise.
The key benefit of deriving an ISA from this template, compared to developing
a model from scratch, is the increased model integrity which ensures a more
reliable and trustworthy model giving design and verification engineers a higher
degree of confidence in the model’s correctness.

With reference to Figure 1, Table 2 shows the number of refinement steps
within each abstraction layer, the event counts sampled at the bottom of each
layer, and the total number of discharged POs in each model.

Table 2. Data from the ISA models of MIDAS (R)egister / (S)tack version, CRISP
and XCore

MIDAS CRISP XCore

Layers Steps #Events Steps #Events Steps #Events

Generic
Refinement

SM 5 8 5 8 3 8

CF 5 17 5 17 13 18

RA 5 42 7 51 2 23

ME 9 56 10 63 9 39

Processor
Specific
Refinement

EXT1 4 63 5 47 5 45

EXT2 2 83 2 64 6 64

EXT3 7 107 13 110 - -

Auto-coding
Refinement

EXT4 2 (R) 3 (S) 109 (R) 113 (S) - - - -

Total POs 4804 2101 1343

The differing values for each layer of the generic model reflect its upgrading
across successive versions, as illustrated in Figure 1. Modifications include expan-
sion to capture new features (e.g. multi-destination instructions for CRISP and
interrupt handling for the XCore). In addition, the XCore ISA model is being con-
structed using Rodin 2.0 taking advantage of the enhancements recently made to
the Event-B notation. For MIDAS and CRISP Rodin 0.8.2 was used.

8 Conclusion

Verifying the functional correctness of a processor requires an unambiguous,
self-consistent, complete and functionally correct specification of its ISA. Such

Managing Complexity through Abstraction 599

rigorous specification can most effectively be achieved with formal methods and
in practice requires robust tool support. Using Event-B and the Rodin tool set as
a formal modeling method and development environment has several advantages.

Firstly, the model can be incrementally developed by following a stepwise
refinement strategy. This allows design development and exploration within a
hierarchy of increasingly detailed abstraction levels. The hierarchical structure of
the generic model provides a means to manage complexity through abstraction.
This facilitate model construction, maintenance, re-use and comprehension. The
abstraction layers also provide boundaries to control the size of the model so
that proof can be done more efficiently.

Secondly, the generation and discharge of POs ensures model consistency and
valid refinement by default right from the outset and without the need to explic-
itly provide a domain-specific semantics. Desirable domain specific properties
can additionally be introduced into the model. One such property for ISAs may
be enabledness, i.e. ensuring transitions are defined from all states. Enabled-
ness corresponds to the absence of deadlock at ISA level, which would result
in the processor hanging unexpectedly during program execution. Enabledness
properties, similar to the ones discussed in [13], could be introduced into the
model resulting in extra POs being generated to preserve these. The interaction
between modeling and proof can help discover important missing constraints of
practical relevance even at an early stage of formalization. The resulting models
provide unambiguous, self-consistent and complete specifications. In addition,
validation of functional correctness can be achieved by biased random testing of
the executable reference model which can be generated from the bottom level of
a fully developed ISA model.

Finally, for formal models and methods such as the one presented in this
paper, the ultimate test of acceptance in practice is whether or not these can be
seamlessly integrated into the tool flow currently used by design and verification
engineers. Code and document generation from the bottom level of refinement
provides this important link to integrate our method into existing flows. An
ISA description and an executable reference model are thus derived from the
same formal source. The design verification process, where the reference model
serves as executable specification, ensures that the implementation functionally
matches the reference model. Our approach thus closes an important gap at
the front end of existing design flows by providing a formal link between the
documentation, the design and, indirectly, the actual product.

References

1. International Technology Roadmap for Semiconductors, chap. Design, p. 19 (2009),
http://www.itrs.net

2. Abrial, J.R.: The B-book: Assigning Programs to Meanings. Cambridge University
Press, New York (1996)

3. Abrial, J.R.: Modeling in Event-B: System and Software Engineering. Cambridge
University Press, Cambridge (2010)

http://www.itrs.net

600 F. Yuan et al.

4. Abrial, J.R., Butler, M., Hallerstede, S., Hoang, T.S., Mehta, F., Voisin, L.: Rodin:
An open toolset for modelling and reasoning in Event-B. STTT 12(6), 447–466
(2010)

5. ARM Ltd: ARM Architecture Refernce Manual, AMVv7-A and ARMv7-R edn.
6. Azevedo, R., Rigo, S., Bartholomeu, M., Araujo, G., Araujo, C., Barros, E.: The

ArchC architecture description language and tools. Int. J. Parallel Program. 33,
453–484 (2005)

7. Bergeron, J.: Writing Testbenches: Functional Verification of HDL Models, 2nd
edn. Springer, Heidelberg (2003)

8. Bowen, J.P.: Formal specification and documentation of microprocessor instruction
sets. Microprocess. Microprogram 21(1-5), 223–230 (1987)

9. Chockler, H., Halpern, J.Y., Kupferman, O.: What causes a system to satisfy a
specification? ACM Transactions on Computational Logic 9, 1–26 (2008)

10. Fox, A.: A HOL specification of the ARM instruction set architecture. Tech. Rep.
UCAM-CL-TR-545, University of Cambridge, Computer Laboratory (June 2001)

11. Fox, A.: An algebraic framework for modelling and verifying microprocessors using
HOL. Tech. Rep. UCAM-CL-TR-512, University of Cambridge, Computer Labo-
ratory (March 2001)

12. Fox, A., Myreen, M.: A trustworthy monadic formalization of the ARMv7 instruc-
tion set architecture. Interactive Theorem Proving, ITP (2010)

13. Hallerstede, S.: On the purpose of Event-B proof obligations. Formal Aspects of
Computing 23(1), 133–150 (2011)

14. Harman, N.A., Tucker, J.V.: Algebraic models and the correctness of microproces-
sors. In: Proceedings of the IFIP WG 10.5 Advanced Research Working Conference
on Correct Hardware Design and Verification Methods, pp. 92–108. Springer, Hei-
delberg (1993)

15. Hennessy, J.L., Patterson, D.A.: Computer Architecture: A Quantitative Ap-
proach, 3rd edn. Morgan Kaufmann, San Francisco (2002)

16. Jones, R.B., O’Leary, J.W., Seger, C.J.H., Aagaard, M.D., Melham, T.F.: Practi-
cal formal verification in microprocessor design. IEEE Design & Test of Comput-
ers 18(4), 16–25 (2001)

17. May, D.: The XMOS XS1 Architecture. XMOS Limited (2009)
18. Medeiros Jr., V., Déharbe, D.: Formal Modelling of a Microcontroller Instruction

Set in B. In: Formal Methods: Foundations and Applications: 12th Brazilian Sym-
posium on Formal Methods, pp. 282–289 (2009)

19. Page, D.: CRISP: A Cryptographic RISC Processor, pagecs.bris.ac.uk
20. ProB, http://www.stups.uni-duesseldorf.de/ProB/
21. Wile, B., Goss, J.C., Roesner, W.: Comprehensive Functional Verification. Morgan

Kaufmann, San Francisco (2005)
22. Windley, P.J.: Specifying Instruction-Set Architectures in HOL: A Primer. In:

Melham, T.F., Camilleri, J. (eds.) HUG 1994. LNCS, vol. 859, pp. 440–455.
Springer, Heidelberg (1994)

23. Wright, S.: Automatic Generation of C from Event-B. In: IM FMT 2009 Workshop
on Integration of Model-based Formal Methods and Tools (February 2009)

24. Wright, S., Eder, K.: Using Event-B to construct instruction set architectures.
Formal Aspects of Computing 23(1), 73–89 (2010)

pagecs.bris.ac.uk
http://www.stups.uni-duesseldorf.de/ProB/

A Language for Test Case Refinement in the

Test Template Framework

Maximiliano Cristia2,3, Diego Hollmann2, Pablo Albertengo1,
Claudia Frydman3, and Pablo Rodriguez Monetti4

1 Flowgate Consulting, Rosario, Argentina
2 CIFASIS-UNR, Rosario Argentina
3 LSIS-UPCAM, Marseille, France
4 FCEIA-UNR, Rosario, Argentina

mcristia@flowgate.net

Abstract. Model-based testing (MBT) generates test cases by analysing
a formal model of the system under test (SUT). In many MBT methods,
these test cases are too abstract to be executed. Therefore, an executable
representation of them is necessary to test the SUT. So far, the MBT
community has focused on methods that automate the generation of test
cases, but less has been done in making them executable. In this paper
we propose a language to specify rules that can be automatically applied
to produce an executable representation of test cases generated by the
Test Template Framework (TTF), a MBT method for the Z notation.

1 The Process of Model-Based Testing

Model-based testing (MBT) is a well-known technique aimed at testing software
by analysing a formal model or specification of the system under test (SUT) [1,2].
These techniques have been developed and applied to models written in different
formal notations such as Z [3], finite state machines and their extensions [4], B
[5], algebraic specifications [6], and so on. The fundamental hypothesis behind
MBT is that, as a program is correct if it satisfies its specification, then the
specification is an excellent source of test cases.

Figure 1 depicts a possible testing process when a MBT method is applied.
So far, the MBT community has focused on the “Generation” step in which
testers analyse a model of the SUT and generate test cases by applying different
techniques. Test cases produced by the “Generation” step are abstract in the
sense that they are written in the same language of the model, making them, in
most of the MBT methods, not executable. In effect, during the “Refinement”
step these abstract test cases are made executable by a process that can be
called refinement, concretization or reification. Note that this not necessarily
means that the SUT has been refined from the model; it only says that test cases
must be refined. In fact, Hierons and others conclude that the relation between
refinement and MBT is still a challenge that would have a very tangible benefit if
solved [2]. Besides, test case refinement can require an effort equal to the 25% up
to 100% of the time spent on modelling [1], so it is worth to automate this step

S. Qin and Z. Qiu (Eds.): ICFEM 2011, LNCS 6991, pp. 601–616, 2011.
c© Springer-Verlag Berlin Heidelberg 2011

602 M. Cristiá et al.

Fig. 1. A general description of a possible MBT process

as much as possible. Furthermore, automating this step enables the automation
of the rest of the MBT process. Once test cases have been refined they can
be automatically executed by one of the many test execution environments or
techniques already developed [7,8]. Hence, the problem we try to solve is the
automation of the “Refinement” step and not the automation of the “Execution”
step, which has been extensively studied.

As we have said, there is a variety of MBT methods for many formal nota-
tions. Our work concentrates in the Z notation [9]. Z is a widely known formal
notation based on first order logic and set theory. There are some MBT meth-
ods available for the Z notation. In [10] the authors apply category–partition;
Hall [11] generates tests by analysing the test domains of Z operations; in [12]
the Z information provided in a μSZ specification is used to provide sequences
of transitions that covers a EFSM derived from the specification; Hierons [13]
also partitions a Z operation and then derives a FSA to control how testing is
performed; Horcher and Peleska [14] apply DNF to a Z operation and describe
a MBT process similar to the one in Figure 1. However, we think that the Test
Template Framework (TTF) [3,15,16] is the MBT method that takes the most
of the Z notation, as we will show in Section 2. We have developed the first
automatic implementation of the TTF in a tool called Fastest [17,18,19].

Hence, in this paper we propose a test case refinement language (TCRL) as
an extension to the TTF. This TCRL does not assume that the SUT has been
refined from the Z specification. In fact, if this is the case there might be better
options [20]. However, our method does assumes that the SUT’s source code is
available. We have implemented an interpreter for this TCRL in Fastest following
an architecture that allows users to automatically refine test cases to different
programming languages after specifying simple refinement rules. Furthermore,
the architecture makes it easy to plug in modules that implement the TCRL for
programming languages not yet supported by the tool. The implementation is
still a research prototype.

This article is a summary of a 65 page long reference manual describing the
TCRL [21]. Therefore, due to space restrictions, here we will introduce only its
most relevant features by means of some running examples. This document along

A Language for Test Case Refinement in the Test Template Framework 603

with examples to be executed on Fastest can be found at http://www.flowgate.
net/pdf/ftcrl.tar.gz.

In Section 2 we introduce the TTF and in 3 we precisely state the contribution
of this article. Section 4 describe the most salient features of our method. A case
study is briefly introduced in Section 5. We discuss some similar approaches in
Section 6 and our conclusions in Section 7.

2 The Test Template Framework

In this section we briefly introduce those steps of the TTF strongly related to
test case refinement—for a thorough introduction see [17,18,3]. The presentation
is made by means of an example that we will use throughout this article. It is
assumed that the reader is fluent in the Z notation. In the TTF each operation
within the specification is analysed to generate abstract test cases, as follows:

1. Consider the valid input space (VIS) of a Z operation.
2. Apply one or more testing tactics in order to partition the VIS.
3. Find one abstract test case from each satisfiable test condition.

We will introduce these steps for the operation named NewClient of the Z spec-
ification shown in Figure 2. The specification is about the savings accounts of a
simple banking system. Table 1 summarizes the meaning of each basic element of
the model. We think that this table plus the common knowledge about savings
accounts will suffice to understand the model.

[AN ,UID ,NAME]
BALANCE == N

State schema for the savings accounts.

Bank
clients : UID �→ NAME
balances : AN �→ BALANCE
owners : UID ↔ AN

NewClientOk
ΔBank
u? : UID
name? : NAME ; n? : AN

u? �∈ dom clients
n? �∈ dom balances
clients ′ = clients ∪ {u? �→ name?}
balances ′ = balances ∪ {n? �→ 0}
owners ′ = owners ∪ {u? �→ n?}

ClientAlreadyExists == [ΞBank ; u? : UID | u? ∈ dom clients]
AccountAlreadyExists == [ΞBank ; n? : AN | n? ∈ dom balances]
NewClient == NewClientOk ∨ ClientAlreadyExists ∨ AccountAlreadyExists

Fig. 2. Part of a Z specification of the savings accounts of a banking system

604 M. Cristiá et al.

Table 1. Meaning of the basic elements of the Z model of Figure 2

Term Meaning

AN The set of possible savings accounts numbers

UID The set of identifiers of individuals

NAME The set of names of individuals

clients u The name of person u as is recorded in the bank

balances n The balance of savings account n

owners(u, n) u is an owner of account n

NewClient(u,name,n) Account n is opened by client u whose name is name

Step 1. Since NewClient is a total operation, its VIS is the Z schema declaring
all the input and before state variables used by it:

NewClientVIS == [clients : UID �→ NAME ; balances : AN �→ BALANCE ;
owners : UID ↔ AN ; name? : NAME ; u? : UID ; n? : AN]

Step 2. The TTF partitions the VIS by applying one or more testing tactics.
The result is a set of so-called test specifications. Test specifications obtained
in this way can be further subdivided into more test specifications by applying
other testing tactics. The net effect of this technique is a progressive partition
of the VIS into more restrictive test specifications. This procedure can continue
until the engineer think that the test specifications will uncover enough errors
in the implementation. Each tactic indicates how the current test specification
must be partitioned by giving a set of predicates characterizing each resulting test
specification. Two of the testing tactics proposed within the TTF are Disjunctive
Normal Form (DNF) and Standard Partitions (SP) [3,17].

In this example, we first apply DNF to the VIS of NewClient , getting the
following test specifications:

NewClientDNF
1 == [NewClientVIS | u? �∈ dom clients ∧ n? �∈ dom balances]

NewClientDNF
2 == [NewClientVIS | u? ∈ dom clients]

NewClientDNF
3 == [NewClientVIS | n? ∈ dom balances]

SP is applied to the set union operator (∪) in clients ∪ {u? �→ name?} in order
to partition NewClientDNF

1 , yielding the following satisfiable test specifications
(the unsatisfiable ones have been omitted for brevity):

NewClientSP
2 == [NewClientDNF

1 | clients = ∅ ∧ {u? �→ name?} �= ∅]
NewClientSP

4 == [NewClientDNF
1 |

clients �= ∅ ∧ clients ∩ {u? �→ name?} = ∅]

Step 3. The TTF prescribes to derive abstract test cases only from those test
specifications that were not partitioned—we have four in the example. This
means to find at least one element satisfying each of them. For example, the

A Language for Test Case Refinement in the Test Template Framework 605

following horizontal schemas represent abstract test cases of the corresponding
test specifications1:

NewClientATC
1 == [NewClientSP

2 | balances = ∅ ∧ name? = name0 ∧
n? = an0 ∧ u? = uid0 ∧ clients = ∅ ∧ owners = ∅]

NewClientATC
2 == [NewClientSP

4 | u? = uid0 ∧ name? = name0 ∧
n? = an0 ∧ balances = {(an1, 20)} ∧
clients = {(uid1,name0)} ∧ owners = {(uid1, an1)}]

NewClientATC
3 == [NewClientDNF

2 | balances = ∅ ∧ name? = name0 ∧
n? = an0 ∧ u? = uid0 ∧ clients = {(uid0,name0)} ∧ owners = ∅]

NewClientATC
4 == [NewClientDNF

3 | n? = an0 ∧ name? = name0 ∧
balances = {(an0, 0)} ∧ u? = uid0 ∧ clients = ∅ ∧ owners = ∅]

As can be seen, within the TTF an abstract test case is a conjunction of equalities
between VIS variables and constant values, rather than a sequence of operations
leading to the desired state, as it is suggested by other approaches [1,2]. Some
of these equalities specify the initial state for the test, while others specify the
values for the input parameters of the SUT. This is a key issue when test case
refinement is considered.

Note that test specifications and abstract test cases are all expressed in Z.
In the TTF test cases do not include test oracles because they are provided at

the end of the MBT process [3]. Since oracles appear at the end of the process
we do not need to deal with them during test case refinement. In the TTF, test
case refinement concerns only with state and input data refinement.

3 A Method for Test Case Refinement

The core of this paper is, then, a general method for refining test cases, like
NewClientATC

4 , written in LATEX markup, into executable programs or scripts
written in some programming language. The result of this refinement is a col-
lection of concrete test cases, or just test cases when it is clear from context.
This refinement requires: (a) identifying the SUT’s state variables and input
parameters that correspond to the specification variables; (b) initializing the
implementation variables as specified in each abstract test case; (c) initializing
implementation variables used by the SUT but not considered in the specifica-
tion; and (d) performing a sound refinement of the values of the abstract test
cases into values for the implementation variables. For instance, if account num-
bers are implemented as integer numbers, then an0 in NewClientATC

4 must be
refined as, say, 9711048.

The method yields programs written in the SUT’s implementation language
because we found it natural to correlate specification and implementation vari-
ables and it is easier to initialize them, assuming the SUT’s source code is avail-
able. The correlation between specification and implementation variables is given
1 Identifiers like name0 are assumed to be declared in axiomatic definitions and are

regarded as constants of their types.

606 M. Cristiá et al.

by engineers by means of so-called refinement rules, written in a declarative
TCRL which is, in principle, independent of any programming language.

In summary, the method receives a user-defined refinement rule for a given Z
operation, a list of test cases for that operation and the name of a programming
language, and automatically applies the refinement rule to the list of test cases
outputting a list of concrete test cases written in that programming language,
each of which:

1. Sets the initial state of the SUT as specified by the test case.
2. Sets the input parameters expected by the SUT as specified by the test case.
3. Calls the SUT.

As it can be seen, the method we propose can be thought as a lightweight form
of what is traditionally called data refinement [22, chapter 10]. Furthermore,
as we have anticipated in the introduction, this method does not assume that
the SUT was formally developed because no information from a possible formal
refinement is needed.

All the remaining test activities—i.e. compiling test cases, executing them,
capturing their output, etc. (Figure 1)—are beyond the scope of this paper.

4 Fastest Test Case Refinement Language

The method we propose is called Fastest TCRL (FTCRL). FTCRL is an inter-
preted language whose programs are refinement rules. Refinement rules trans-
form a list of abstract test cases generated by Fastest into a list of concrete
test cases in the SUT’s programming language. The interpreter receives the tar-
get programming language as a parameter. In this paper we show part of the
FTCRL semantics when the target programming language is C [23]; in [21] the
full operational semantics for C and Java can be found.

The TTF is intended to be used as an MBT method for unit testing. There-
fore, given a unit of implementation, P, engineers must find the Z schema, S ,
that specifies P—this schema may reference other schemas and it can be the
specification of other units as well. Then, a refinement rule for the pair (P,S)
must be given.

4.1 An Example of a Refinement Rule

Since refinement rules are essentially specifications of how VIS variables must be
refined into implementation variables, we need some information about the unit
under test (UUT). Below we introduce a typical refinement rule that is explained
and analysed in the following sections.

Assume the banking system specified in Section 2 is implemented in the C
programming language2. Let’s say that elements of AN and NAME are im-
plemented as character strings, elements of UID are integer numbers and those

2 We assume the reader is familiar with the C programming language [23].

A Language for Test Case Refinement in the Test Template Framework 607

of BALANCE are floats. Say clients is implemented as a simply-linked list, c,
declared as:

struct cdata {int uid; char *name; struct cdata *n;} *c;

balances is implemented as an array, b, declared as:

struct bdata {char* num; float bal;} b[100];

and there is an integer variable, l, pointing to the last used component of b.
owners is implemented as a doubly-linked list, o, declared as:

struct odata {int *puid; char *pn; struct odata *n,*p;} *o;

where puid should point to the uid member of the corresponding node in c;
pn should point to the num member of the corresponding b component; and n
and p are pointers to the next and previous nodes in the list, respectively. Say
that c, b, l and o are global variables. Finally, let’s assume that NewClient is
implemented by a C function with the following signature:

int newClient(int u, char *name, char *n)

Figure 3 shows the refinement rule for NewClient , when it is implemented by
newClient() and the data structures described above. Figure 4 shows the con-
crete test case generated by applying that refinement rule to NewClientATC

2 .
Note: (a) the kind of information of the UUT that is needed to write a refine-
ment rule; (b) FTCRL assumes that the SUT’s source code is available; and
(c) Figure 4 is an executable C program. Please, look at these figures while we
introduce FTCRL below.

4.2 The Basic Structure of a Refinement Rule

The first line in a refinement rule declares its name. Refinement rules have four
mandatory sections that must be written in strict order: @PREAMBLE, @LAWS, @UUT
and @EPILOGUE. The interpreter uses the preamble to collect typing information
of the UUT and adds it at the beginning of a test case. The preamble should
contain all the code necessary to compile the UUT—for instance, UUT’s defini-
tion, type declarations, sentences to import external resources, header files, etc.
The epilogue should contain code to perform clean-up once the test has been
run—for instance, deleting a file—and it is blindly copied at the end of each
test case. The @UUT section contains only one line of FTCRL code to call the
UUT. The value returned by the UUT is not considered since it does not affect
refinement, but other steps of the MBT process.

The name of a refinement rule can be used in other refinement rules as shown
in Figure 5, with the obvious meaning. Note that this mechanism allows users
to use the same @LAWS section with different preambles and epilogues, thus mak-
ing it possible to refine the same abstract test cases to different programming
languages, since all the code of the refinement rule that depends on the target
programming language is confined to these two sections. The language includes
others forms of reuse [21].

608 M. Cristiá et al.

@RRULE bank

@PREAMBLE

#include <bank.h>

@LAWS

l1:u? ==> u

l2:name? ==> name

l3:n? ==> n

l4:clients ==> c AS LIST[SLL,n] WITH[clients.@dom ==> c.uid,

clients.@ran ==> c.name]

l5:balances ==> b AS ARRAY WITH[balances.@dom ==> b.num,

balances.@ran ==> b.bal];

balances.@# ==> l

l6:owners ==> o AS LIST[DLL,n,p]

WITH[owners.@dom ==> o.puid AS REF[c.uid],

owners.@ran ==> o.pn AS REF[b.num]]

@UUT newClient(u,name,n)

Fig. 3. Refinement rule for NewClient . bank.h declares all the elements of the UUT

#include <bank.h>

int main() {

int u = 345;

char *name = "name0", *n = "an0";

struct cdata cdata0 = {87,"name0",NULL};

struct bdata bdata0 = {"an1",20};

struct odata odata0 = {0,0,NULL,NULL};

c = &cdata0;

b[0] = bdata0;

l = 1;

odata0.puid = &cdata0.uid;

odata0.pn = bdata0.num;

o = &odata0;

newClient(u,name,n);

return 1;

}

Fig. 4. Concrete test case for NewClientATC
2 generated by bank of Figure 3

@RRULE otherBankingRefRule

@PREAMBLE bank.@PREAMBLE

@LAWS

bank.l04

.....

commercialAccounts.@LAWS

.....

@UUT deposit(....)

Fig. 5. Refinement rules can be reused as Z schemas are reused by schema inclusion

A Language for Test Case Refinement in the Test Template Framework 609

4.3 Refinement Laws

The @LAWS section is a list of refinement laws (or laws), of the following form:

ident:list_of_spec_vars ==> refinement

where ident is an identifier to reuse the law in other rules (Figure 5), list_of_
spec_vars is a list of one or more specification variables, and refinement spec-
ifies how the specification variables must be refined. The token ==> can be read
as ‘refines to’.

The most simple law is, for instance, l1 in Figure 3. For each abstract test
case, this law makes the interpreter to declare a local variable named u of type
int and to assign it the value of u? in the abstract test case (Figure 4). The type
of u is deduced as follows: u is the first parameter in the call placed in the @UUT
section, and the first parameter found in the signature of newClient() is of type
int. In general, all the typing information can be deduced by parsing both the
LATEX markup of the Z specification and the source code of the SUT. Constant
values of given types at the specification level, such as uid0, are translated to
the implementation type by applying an arbitrary bijection whenever necessary.

Note that, in this context, the overflow C semantics of the int type is not
a problem when refining Z’s Z, because, if at the Z level a natural number is
greater than the C int limit, then, precisely, this test case will test how the
program deals with the overflow C semantics. It is not the difficulty appearing
in classical refinement calculus: the intention is to test the program, not to refine
the specification.

Law l4 specifies that clients is implemented as the c list. The first parameter
of the LIST clause indicates that c is a simply-linked list and the second one is
the name of the variable pointing to the next node in the list—some of these
parameters are ignored when refining to some programming languages, Java is an
instance. It is necessary to include this information in the law because, in some
programming languages, it is impossible to automatically deduce that c is a list,
solely from its declaration. The WITH clause helps to specify how each ordered
pair in clients must be accommodated in the list. In this case, elements in the
domain go to uid and elements in the range to name. Therefore, the interpreter
creates a new variable of type cdata for each pair in clients and initializes them
with the constant values of each pair. The value of the n member of each of these
new variables is set to point to the address of any other of them—since clients
is a function, there is no order between its pairs, and so any order in c should be
correct. In general, FTCRL applies a sort of extensionality to refine Z sets [21].

Note how a specification variable is refined to more than one implementation
variable in l5; balances.@# is the cardinality of balances . Had it been necessary
to make l to point to the first free component in b, then we would have written:
balances.@# + 1—in general, any constant expression is valid.

Regarding l6, DLL stands for doubly-linked list and the other two parameters
are the members pointing to the next and previous nodes, respectively. If an
implementation variable is intended to hold a reference (or a pointer) to some
data in some other data structure, the REF directive must be used. It is possible

610 M. Cristiá et al.

to generate source code according to this specification because every element
of a dynamic data structure is first saved in a new static variable whose name,
memory address and value can be freely used by the interpreter.

4.4 More Examples and Features

In this section we will show a few small examples to introduce a variety of
FTCRL’s features; sometimes we will use the savings account example.

Two specification variables refined into one implementation variable. Consider
the following excerpt from some specification:

[NAME]
AddPerson == [first?, last? : NAME . . . | . . .]

Assume the implementation stores the first and last name of persons in a single
character string variable, name. Then, the law could be as follows:

person:first?, last? ==> last? ++ ", " ++ first? ==> name

If an abstract test case binds name0 to first? and name1 to last?, then the
interpreter would generate the following code:

char* name = "name1, name0";

Implementation details abstracted away in the specification. Now assume the
implementation of the banking system introduced in Section 2 stores also the
address and age of each client. Specifiers abstracted away these details retaining
only the name of the client. Therefore, cdata would indeed be:

struct cdata {int uid, age; char *name, *addr; struct cdata *n;} c;

In this case the refinement law would be:

l04:clients ==> c AS LIST [SLL,n]
WITH [clients.@dom ==> c.uid,

clients.@ran ==> c.name,
"Road" ==> c.addr,
40 ==> c.age]

or @AUTOFILL ==> c.* can replace "Road" ==> c.addr, 40 ==> c.age [21].
In other words, if an implementation detail was abstracted away in the specifi-
cation, then, in some way, its value is irrelevant with respect to the correctness
of the implementation. Hence, the same value can be used in all of the tests.

A Language for Test Case Refinement in the Test Template Framework 611

Refining into external resources. Assume there is an UUT of the banking system
that reads client data from a text file. Test cases for this UUT would need to
initialize this file according to the value clients has in different abstract test
cases. Say the file stores one record per line with the format UID:NAME. Then,
the refinement law would be:

file:clients ==> clients.@DOM ++ ":" ++ clients.@RAN
==> clientData.txt AS FILE[/bank]

If in some test case we have clients = {(uid1,name0), (uid2,name1)} the inter-
preter would produce roughly the following C code:

fd = open(/bank/clientData.txt, O_RDWR | O_TRUNC | O_CREAT);
.......
write(fd, "87:name0", strlen("87:name0"));
write(fd, "91:name1", strlen("91:name1"));
.......
close(fd);

where 87 and 91 result from applying an arbitrary bijection between UID and
int as we have said before.

Refining complex Z types. Suppose it is necessary to refine f : X �→ Y �→ H ×W
where X , Y and W are given types and H is the schema [a : A; b : B]. The
recursive nature of FTCRL, Z and all programming languages make it possible to
refine such complex types in equally complex implementation data structures.
For instance, the dot notation in FTCRL can be recursively applied to cross
products, schema types and other constructions [21].

Data structures currently supported. The implementation data structures that
are supported by FTCRL depends on the programming language. For C and
Java we have [21]:

– C: int (plus all the modifiers short, long, unsigned and signed), char,
float, double, enum, arrays, struct and pointers to any of them. This
implies that all kinds of lists are supported.

– Java: int, short, long, byte, Integer, Short, Long, Byte, char, Character,
float, double, Float, Double, enum, arrays, class, List<type>,
ArrayList<type>, LinkedList<type>, Attributes, HasMap, Hashtable,
IdentityHashMap, TreeMap, WeakHashMap and String.

Completeness—Refining to possibly unsupported data structures. Say some C
program defines a list where each node points to the next node but also to the
node five positions ahead. Data structures like this can be arbitrary complex,
but, as far as we know, they are seldom used. FTCRL was designed to directly
support the most common data structures, but it provides a (low level) language
feature that allows to refine to any data structure. This feature involves using
the @PLCODE optional section. This section can contain only source code (of the

612 M. Cristiá et al.

SUT’s programming language) and is blindly copied between the code generated
after parsing @LAWS and the call to the UUT. We expect that users will use this
section only when they find no other way of writing their refinement rules, be-
cause it increases the dependency of refinement rules on the SUT’s programming
language. Readers can find more about @PLCODE in [21, Section 2.4].

Even considering only the most common data structures, it is very difficult to
prove that FTCRL can be used to refine any Z variable into any implementation
data structure because it would require to prove that for every programming lan-
guage. However, since FTCRL supports all the C data structures, we have strong
reasons to believe that data structures defined by higher-level programming lan-
guages can be supported too. The @PLCODE mechanism provides completeness
where the proper FTCRL code fails to do so.

Implementation independence. We want to emphasize that refinement rules and
all the test cases generated by them are resilient to a number of changes in the
implementation. For instance, considering the savings accounts example, if there
is some error in updating or walking c, or some error in keeping the references
of o’s nodes, or l is not correctly synchronized with the last used component of
b, and these errors are fixed, the bank refinement rule remains the same since c,
o, b and l all maintain their attributes and roles in the implementation.

Fastest’s architecture for test case refinement. Fastest is a Java application, so
it is FTCRL’s interpreter. Currently, the interpreter is a proof of concept im-
plemented with the ANTLR parser generator [24]—and using a simpler version
of FTCRL than the one shown here. The architecture of the interpreter was
envisioned to allow for easily plug-in modules implementing FTCRL for new
programming languages, as shown in Figure 6. Some of the pluggable modules
hide a few technological issues such as connections to databases, operating sys-
tem interactions, etc.

Fig. 6. Simple module diagram of the Fastest’s architecture for test case refinement

5 A Case Study

This approach has been used in a contract with Nemo Group (Argentina) to
test its core product. Confidentiality issues and space restrictions impede us to

A Language for Test Case Refinement in the Test Template Framework 613

include all the information; key data is available at http://www.flowgate.net/
pdf/cacheflight.tar.gz. Nemo’s core business is software development for
the travel industry. The SUT is a large Java application whose purpose is to
provide booking functionality for flights provided by several major international
companies. This program heavily uses a database.

We have written Z specifications for the most critical methods of the key
classes of the SUT. The choice of methods and classes as well as the specifica-
tion for each of them had to be reverse-engineered along with some key Nemo’s
engineers. This process was carried out in such a way that we did not read the
code. First, we asked Nemo’s engineers what a particular method should do,
then we wrote the specification according to their comments—how they learned
the function of a method was transparent for us. Once the specifications were
ready we applied Fastest to generate abstract test cases and, at the same time, we
wrote the refinement rules—during this activity we seldom needed the assistance
of Nemo’s personnel since we have already learned the application. Currently,
we have refined more than one thousand test cases with a few refinement rules.
Refinement rules include database connections, nested classes, lists, etc. How-
ever, we cannot give figures about how many errors were found because the
experiment concluded when we were able to execute the test cases.

6 Related Work

Refinement calculus or specification refinement has a long and well-established
tradition in the formal methods community [25,26]. The Z formal notation is
not an exception [22]. However, these theories are aimed at a much harder and
general problem than ours: to formally transform an abstract specification into
executable code. Usually, these methods list a set of sound refinement rules
guaranteeing that every time they are applied, the description so obtained veri-
fies the original specification. Classical refinement has four important differences
with our method: (a) we do not try to refine the whole specification but just
some constant values of some variables; (b) the implementation is already avail-
able, it must not be derived from the specification; (c) we do not attempt to
prove that refinement rules are right, precisely, we try to surface problems in the
implementation; and (d) we propose that users write refinement rules instead of
choosing them from a fixed menu, because implementations can be arbitrarily
complex. However, our approach was inspired by the idea of tiered specifications
proposed for Larch [27] which can be seen as a form of refinement.

The creators of the TTF applied it to Object-Z to test classes of object-
oriented programs [28]. They use the ClassBench testing framework which re-
quires testers to write testgraphs to test the class under test. Once testgraphs
are written ClassBench automatically tests the class. The authors propose to
generate a finite state machine (FSM) from a test specification and then to
transform the FSM to a testgraph. However, it is not clear how easy it might
be to semi-automatically derive testgraphs from abstract test cases. Actually, the

614 M. Cristiá et al.

authors discuss several issues that arise when transforming a FSM to a testgraph
because they are models at different levels of abstraction.

Derrick and Boiten [20] analyse the relationship between testing and refine-
ment in the context of Z specifications. However, they apply a different approach
because they assume that the implementation has been refined from the specifi-
cation. Therefore, they first derive abstract test cases from the Z specification—
in doing so they apply a different method, not the TTF—and then they use
information available in the refinement in order to refine the abstract test cases.
Although their method is more formal than FTCRL, it is less applicable than
ours since formal refinement is seldom available.

BTT is a MBT method based on the B notation that generates sequences of
operation invocations at an abstract level that constitute the abstract test cases
[5]. This sequences are made executable by translating them into scripts [29].
These scripts are built by providing a test script pattern and a mapping table.
The test script pattern is a source code file in the target language with some tags
indicating where to insert sequences of operation invocations. The information
present in a mapping table is similar to that of a refinement rule. However, the
mapping tables do not seem to be as expressive as FTCRL. Furthermore, in
this method testers must provide the test script pattern instead of getting it
automatically from the reification information.

AspecT is an aspect-oriented language for the instantiation of abstract test
cases from UML statecharts [30]. This approach uses a combination of languages,
Ecore, OCL, Phyton, Groovy and AspectT, to refine test cases. It does not
seem to clearly define the mapping between specification and implementation
variables but to decompose the refinement phase into several steps in which
aspects, pointcuts and advices are written.

If some naming conventions are applied and the implementation is conve-
niently annotated, it might be possible to automatically define many refinement
rules. Meyer and et al. manage to automatically test programs by annotating
them with contracts written in the implementation language, Eiffel in this case
[31]. They, for instance, use the same names for variables in the implementation
and in the contracts. We need to further investigate whether this can be applied
to Z specifications since they are more abstract than contracts.

7 Conclusions

We have proposed FTCRL, a declarative refinement language that automates
test case concretization within the Test Template Framework (TTF), a Z-based
MBT method. By defining simple refinement rules, that are independent of test
cases and, to a great extent, of the implementation itself, testers can use an
interpreter to refine all the abstract test cases generated by Fastest—TTF’s
implementation. A prototype of this interpreter has been implemented in Fastest
by following an architecture that allows developers to plug-in modules supporting
different implementation languages.

Refinement rules become, also, a key formal document linking the specification
and the implementation. It must be noted, however, that the mere possibility

A Language for Test Case Refinement in the Test Template Framework 615

of writing a refinement rule does not necessarily imply that the implementation
verifies the specification. Once the implementation has passed all the tests, it
can be assumed correct (modulo testing) and, then, refinement rules might be
used to perform some lightweight formal analyses.

We plan to improve the interpreter and to add more features to FTCRL. So
far, the method is non-intrusive, i.e. it does not modify the SUT to test it—even
if it is implemented in Java where reflection is used to access private members
from the outside. This property is important since modifying the SUT to get it
tested can be a source of artificial errors. However, we have a problem with local
static variables declared inside a subroutine since they cannot be initialized from
the outside of the unit under test. We need to further investigate this issue.

References

1. Utting, M., Legeard, B.: Practical Model-Based Testing: A Tools Approach.
Morgan Kaufmann Publishers Inc., San Francisco (2006)

2. Hierons, R.M., et al.: Using formal specifications to support testing. ACM Comput.
Surv. 41(2), 1–76 (2009)

3. Stocks, P., Carrington, D.: A Framework for Specification-Based Testing. IEEE
Transactions on Software Engineering 22(11), 777–793 (1996)

4. Grieskamp, W., Gurevich, Y., Schulte, W., Veanes, M.: Generating finite state
machines from abstract state machines. In: ISSTA 2002: Proceedings of the 2002
ACM SIGSOFT International Symposium on Software Testing and Analysis, pp.
112–122. ACM, New York (2002)

5. Legeard, B., Peureux, F., Utting, M.: A comparison of the BTT and TTF test-
generation methods. In: Bert, D., Bowen, J. (eds.) B 2002 and ZB 2002. LNCS,
vol. 2272, pp. 309–329. Springer, Heidelberg (2002)

6. Bernot, G., Gaudel, M.C., Marre, B.: Software testing based on formal specifica-
tions: a theory and a tool. Softw. Eng. J. 6(6), 387–405 (1991)

7. Posey, B.: Just Enough Software Test Automation. Prentice Hall PTR, Upper
Saddle River (2002)

8. Fewster, M., Graham, D.: Software test automation: effective use of test execution
tools. ACM Press/Addison-Wesley Publishing Co. (1999)

9. Information Technology, I.S.O.: – Z Formal Specification Notation – Syntax, Type
System and Semantics. Technical Report ISO/IEC 13568, International Organiza-
tion for Standardization (2002)

10. Ammann, P., Offutt, J.: Using formal methods to derive test frames in category-
partition testing. In: Compass 1994: 9th Annual Conference on Computer Assur-
ance, pp. 69–80. National Institute of Standards and Technology, Gaithersburg
(1994)

11. Hall, P.A.V.: Towards testing with respect to formal specification. In: Proc. Second
IEE/BCS Conference on Software Engineering, IEE/BCS Conference Publication,
vol. 290, pp. 159–163 (July 1988)

12. Hierons, R.M., Sadeghipour, S., Singh, H.: Testing a system specified using State-
charts and Z. Information and Software Technology 43(2), 137–149 (2001)

13. Hierons, R.M.: Testing from a Z specification. Software Testing, Verification &
Reliability 7, 19–33 (1997)

14. Hörcher, H.M., Peleska, J.: Using Formal Specifications to Support Software Test-
ing. Software Quality Journal 4, 309–327 (1995)

616 M. Cristiá et al.

15. Stocks, P.: Applying Formal Methods to Software Testing. PhD thesis, Department
of Computer Science, University of Queensland (1993)

16. Maccoll, I., Carrington, D.: Extending the Test Template Framework. In: Proceed-
ings of the Third Northern Formal Methods Workshop (1998)

17. Cristiá, M., Rodŕıguez Monetti, P.: Implementing and applying the stocks-
carrington framework for model-based testing. In: Breitman, K., Cavalcanti, A.
(eds.) ICFEM 2009. LNCS, vol. 5885, pp. 167–185. Springer, Heidelberg (2009)

18. Cristiá, M., Albertengo, P., Rodŕıguez Monetti, P.: Pruning testing trees in the Test
Template Framework by detecting mathematical contradictions. In: Fiadeiro, J.L.,
Gnesi, S. (eds.) SEFM, pp. 268–277. IEEE Computer Society, Los Alamitos (2010)

19. Cristiá, M., Albertengo, P., Rodŕıguez Monetti, P.: Fastest: a model-based testing
tool for the Z notation. In: Mazzanti, F., Trentani, G. (eds.) PTD-SEFM, Consiglio
Nazionale della Ricerche, Pisa, Italy, pp. 3–8 (2010)

20. Derrick, J., Boiten, E.: Testing refinements of state-based formal specifications.
Software Testing, Verification and Reliability (9), 27–50 (1999)

21. Cristiá, M., Rodŕıguez Monetti, P., Albertengo, P.: The FTCRL reference guide.
Technical report, Flowgate Consulting (2010)

22. Potter, B., Till, D., Sinclair, J.: An introduction to formal specification and Z.
Prentice Hall PTR, Upper Saddle River (1996)

23. Kernighan, B.W., Ritchie, D.M.: The C Programming Language, 2nd edn.
Prentice-Hall, Inc., Englewood Cliffs (1988)

24. Parr, T.: Language Implementation Patterns: Create Your Own Domain-Specific
and General Programming Languages, 1st edn. Pragmatic Bookshelf (2009)

25. Morgan, C.: Programming from specifications, 2nd edn. Prentice Hall International
(UK) Ltd., Hertfordshire (1994)

26. Back, R.J., Wright, J.V.: Refinement Calculus: A Systematic Introduction, 1st edn.
Springer-Verlag New York, Inc., Secaucus (1998)

27. Guttag, J.V., Horning, J.J.: Larch: languages and tools for formal specification.
Springer-Verlag New York, Inc., New York (1993)

28. Carrington, D.A., MacColl, I., McDonald, J., Murray, L., Strooper, P.A.: From
object-z specifications to classbench test suites. Softw. Test., Verif. Reliab. 10(2),
111–137 (2000)

29. Bouquet, F., Legeard, B.: Reification of executable test scripts in formal
specicifation-based test generation: The Java card transaction mechanism case
study. In: Araki, K., Gnesi, S., Mandrioli, D. (eds.) FME 2003. LNCS, vol. 2805,
pp. 778–795. Springer, Heidelberg (2003)

30. Benz, S.: Aspectt: aspect-oriented test case instantiation. In: Proceedings of the 7th
International Conference on Aspect-oriented Software Development, AOSD 2008,
pp. 1–12. ACM, New York (2008)

31. Meyer, B., Fiva, A., Ciupa, I., Leitner, A., Wei, Y., Stapf, E.: Programs that test
themselves. Computer 42, 46–55 (2009)

Automating Algebraic Methods in Isabelle

Walter Guttmann1, Georg Struth2, and Tjark Weber3

1 Institut für Programmiermethodik und Compilerbau, Universität Ulm
walter.guttmann@uni-ulm.de

2 Department of Computer Science, The University of Sheffield
g.struth@dcs.shef.ac.uk

3 Computer Laboratory, University of Cambridge
tw333@cam.ac.uk

Abstract. We implement a large Isabelle/HOL repository of algebras
for application in modelling computing systems. They subsume compu-
tational logics such as dynamic and Hoare logics and form a basis for var-
ious software development methods. Isabelle has recently been extended
by automated theorem provers and SMT solvers. We use these integrated
tools for automatically proving several rather intricate refinement and
termination theorems. We also automate a modal correspondence result
and soundness and relative completeness proofs of propositional Hoare
logic. These results show, for the first time, that Isabelle’s tool integra-
tion makes automated algebraic reasoning particularly simple. This is a
step towards increasing the automation of formal methods.

1 Introduction

Many popular formalisms for developing and verifying programs and software
systems, and many system semantics are based on algebra. Many computational
logics, for instance temporal, dynamic or Hoare logics, have algebraic siblings.
Algebraic approaches offer simple abstract modelling languages, system analysis
via equational reasoning, and a well developed meta-theory, namely universal
algebra. In the area of formal methods, algebraic semantics form an important
part of, for example, Alloy, B and Z.

Among the above algebraic methods, variants of idempotent semirings and
Kleene algebras play a fundamental role. They provide the operations for non-
deterministic choice, sequential composition and (in)finite iteration of a system;
important semantics—binary relations, computation traces, computation trees—
are among their models. They have already been applied widely from compiler
optimisation and feature-oriented software development to program transfor-
mation and refinement. They are particularly suitable for automation [18,20];
automated theorem proving (ATP) systems were, in fact, instrumental for de-
veloping some recent variants [10].

Stand-alone ATP systems, however, do not suffice for coherently implement-
ing and applying algebraic methods. Mechanisms for designing modular theory
hierarchies, inheriting and instantiating theorems across hierarchies and mod-
els, exploiting dualities, filtering relevant hypotheses, supporting (co)inductive

S. Qin and Z. Qiu (Eds.): ICFEM 2011, LNCS 6991, pp. 617–632, 2011.
c© Springer-Verlag Berlin Heidelberg 2011

618 W. Guttmann, G. Struth, and T. Weber

reasoning or decision procedures for data types, and integrating domain specific
solvers are indispensable for these tasks. Yet all these mechanisms are available
through the recent integration of ATP systems and Satisfiability Modulo The-
ories (SMT) solvers into Isabelle/HOL [28,4]. Our paper shows that this offers
new perspectives for algebraic methods in formal software development: we have
implemented a large Isabelle/HOL repository for algebraic methods, which con-
tains more than 1000 facts.1 They have all been obtained by ATP and SMT,
using Isabelle’s Sledgehammer tool which calls the external provers E, SPASS
and Vampire and internally reconstructs their output with the theorem prover
Metis or the SMT solver Z3. While some basic features of the repository have
been presented in a tutorial paper [13], this paper describes the more advanced
implementation of modal algebras and computational logics and discusses several
intricate modelling examples. Our main results are as follows:

∗ In the context of Kleene algebras [6,22] we show how inductive proofs in-
volving finite iteration can be automated and give a new simple automated
calculational proof of a well-known termination theorem [2].

∗ In the context of modal Kleene algebras [8,26] we automatically derive the
axioms of propositional dynamic logic, notably Segerberg’s formula, show
how dualities give theorems for free, discuss how to obtain an algebraic wlp-
calculus, and automate a rather complex computational modelling task.

∗ Based on modal Kleene algebras, we automatically relate three algebraic no-
tions of termination, which implies a modal correspondence result for Löb’s
formula. We apply these notions in a simple automated proof of a generali-
sation of the above termination theorem [12].

∗ From a minimalist set of algebraic axioms we develop the calculus and se-
mantics of propositional Hoare logic and provide simple abstract automated
soundness and relative completeness proofs. We instantiate this theory to
modal Kleene algebras and further to the relational wlp-semantics.

∗ We instantiate all abstract concepts and results to binary relations, thus
making them available for relational program semantics and development.

In combination, these results yield the main contribution of this paper: Isabelle’s
Sledgehammer tool enabled us to design and implement a large modular reposi-
tory for algebraic methods with relative ease by ATP and SMT, to extend it to
implementations of various computational logics and program semantics, and to
automate some rather complex modelling tasks. Such methods can complement
existing Isabelle verification technology [29] by additional support for developing
programs that are correct by construction.

This paper can only present some main theorems and proof sketches. A com-
plete documentation of all formal proofs is available in our repository. This pa-
per has been generated by Isabelle’s document preparation system. The theory
sources and its technical content are formally verified by Isabelle2011.

1 The repository is available at http://www.dcs.shef.ac.uk/∼georg/isa/

http://www.dcs.shef.ac.uk/~georg/isa/

Automating Algebraic Methods in Isabelle 619

2 Preliminaries

This work builds on our large repository for Kleene and relation algebras that
contains most of the standard calculational theorems in these areas. We use a
relational semantics, but do not need full relation algebras.

An Isabelle theory for dioids is the basis of our formalisation. It covers variants
of semirings needed for process algebras, the analysis of probabilistic algorithms,
program refinement, formal language theory or relational program semantics.
Isabelle’s class mechanism [14] is used for implementing this theory hierarchy.
For the sake of simplicity we only discuss semirings and dioids. Many theorems
hold already in weaker variants.

Formally, a semiring is a structure (S, +, ·, 0, 1) such that (S, +, 0) is a commu-
tative monoid, (S, ·, 1) is a monoid, the distributivity laws x · (y+z) = x ·y+x ·z
and (x+ y) · z = x · z + y · z hold and 0 is an annihilator, that is, 0 ·x = 0 = x · 0.
A dioid is a semiring in which addition is idempotent, that is, x + x = x. By
idempotency, the additive monoid forms a semilattice and the dioid is ordered
by the semilattice order x ≤ y ↔ x+ y = y. The semiring operations are isotone
with respect to ≤ and 0 is its least element. The order is instrumental for prov-
ing theorems in dioids and Kleene algebras, splitting identities into inequalities:
‘Use inequalities wherever possible’ [6, page 120].

Each semiring comes with a dual semiring—its opposite—in which the order
of multiplication is swapped. This is captured in Isabelle by defining x�y = y ·x
and proving the following fact.

Lemma (in semiring-one-zero) dual-semiring-one-zero:
class.semiring-one-zero (op +) (op �) 1 0

We have shown in Isabelle that the binary relations on a set S under union,
relational composition, the empty set and the identity relation form a dioid. In
this model, (a, c) ∈ x · y if and only if (a, b) ∈ x and (b, c) ∈ y for some b ∈ S,
and 1 = {(a, a) : a ∈ S}. More abstractly, an element x represents an action
of a system, + a non-deterministic choice between actions and · the sequential
composition of actions; 0 and 1 are the aborting and the ineffective actions.

For modelling iterative behaviour, dioids can be expanded to Kleene algebras.
Formally, a Kleene algebra is a dioid augmented with a star operation that
satisfies the unfold and induction axioms

Assumes star-unfoldl : 1+x ·x∗ ≤ x∗

Assumes star-inductl : z+x ·y ≤ y → x∗·z ≤ y

and their opposites (with arguments to · swapped). In relation Kleene algebras,
x∗ is the reflexive transitive closure of the relation x. More abstractly, x∗ is the
least (pre)fixpoint of the mapping f(y) = 1 + x · y and its opposite. It models
finite iteration of x in the sense that, by the unfold law, either 1 is executed
(which has no effect) or an x-action is performed before the iteration continues.
The next section shows how infinite iteration can be axiomatised similarly.

Kleene algebras were initially conceived as algebras of regular expressions. A
classical result states that Kleene algebras are complete for the equational theory

620 W. Guttmann, G. Struth, and T. Weber

of regular expressions [22]. Hence all regular identities from formal languages,
for instance, 1 + x · x∗ = x∗ = x∗ · x∗ = x∗∗ and (x + y)∗ = x∗ · (y · x∗)∗ and
x · (y · x)∗ = (x · y)∗ · x, hold in this setting. The theory of Kleene algebras
in our repository contains more than 100 facts for different variants and, by
instantiation, for models based on binary relations, languages and traces. Almost
all proofs could be fully automated by invoking Sledgehammer. All identities hold
in weak variants where the Isabelle decision procedure for regular expression
equivalence [24] is not applicable.

3 Warm-Up: Three Proofs in Kleene Algebra

We now set the scene for later results. First, beyond purely equational reasoning
and the capabilities of ATP systems, we automate two inductive proofs in Kleene
algebras. Second, reasoning about infinite behaviours, we automate a coinductive
proof of a well-known termination theorem.

The Kleene star is often defined as a sum of powers: x∗ =
∑

i≥0 xi. A benefit of
Kleene algebra, which is slightly weaker, is that it replaces higher-order inductive
reasoning about powers and unbounded suprema by equational reasoning in first-
order logic. Yet many theorems combine the star and finite sums and require both
kinds of reasoning. To implement this combination we use a primitive recursive
function power for xi with Isabelle’s built-in theory of sums and a small set of
simple lemmas (see below). Our first induction example is an unfold law that
frequently occurs in automata theory.

Lemma powerstar-unfoldl : (
∑

i=0..n . x i) + xn+1·x∗ = x∗

Proof (induct n)
case 0 show ?case by simp (smt mult-oner star-unfoldl-eq)
case Suc thus ?case by (simp add : setsum-cl-ivl-Suc) (smt add-assoc

power .simps(2) distl mult-oner mult-assoc star-unfoldl-eq power-commutes)
qed

Isabelle’s Isar proof language allows users to obtain human-readable proofs. In
our examples, however, the main emphasis is on proof automation beyond the
granularity of textbook proofs. Hence the above proof only displays the splitting
into inductive cases, which is beyond first-order reasoning. The proofs of the
base case and the induction step are fully automatic, using previously verified
lemmas that have been selected by Sledgehammer’s relevance filter.

In the base case, Isabelle’s simplifier strips off the sums before Z3 uses some
basic regular identities. In the induction step, we simplify again before Z3 uses
the inductive definition of powers xSuc n = x · xn, the lemma xm · xn = xn · xm

and further regular identities.
One advantage of the approach is that users can, to a large extent, control the

granularity of Isar proofs. In the rest of this paper, we will usually only display
Isar proof skeletons, in which the list of lemmas used is omitted. In these cases,
we merely indicate whether Metis or the SMT solver has been used.

Automating Algebraic Methods in Isabelle 621

Our second example is (the dual of) Conway’s powerstar axiom for Kleene
algebras [6]. Its proof requires some inductive facts about sums, but does not
need induction itself.

Lemma conway-powerstar-var : x∗ = (
∑

i=0..n . x i)·(xn+1)∗

Proof −
have x∗ ≤ (

∑
i=0..n . x i)·(xn+1)∗ by (smt star-inductl-eq sum-power-3 distr

add-assoc add-comm star-unfoldl-eq mult-onel sum-power-2 mult-assoc mult-oner)
thus ?thesis
by (smt power-le-star prod-star-closure star-invol star-iso sum-power-le-star eq-iff)

qed

The identities x · ∑n
i=0 xi = (

∑n
i=1 xi) + xn+1 and

∑n
i=0 xi = 1 +

∑n
i=1 xi

are used in the first step together with star induction. The second step uses
the approximation law

∑n
i=0 xi ≤ x∗. All other properties are again regular

identities. We will further need the following instance of the powerstar axiom.

Lemma conway-powerstar-2: x∗ = (x2)∗+x ·(x2)∗ — by smt

The above examples show, for the first time, how combined fixpoint-based and
inductive reasoning can be fully automated in Isabelle.

To reason about infinite iteration we augment Kleene algebras by an omega
operation which is axiomatised as a greatest (post)fixpoint.

Assumes omega-unfold : xω ≤ x ·xω

Assumes omega-coinduct : y ≤ z+x ·y → y ≤ xω+x∗·z
Kleene algebras expanded by this operation are called omega algebras [5]. We
have shown within Isabelle/HOL that binary relations form omega algebras and
developed the basic calculus of omega algebra. The following, for instance, is a
separation theorem for infinite loops.

Theorem omega-sum-refine: y ·x ≤ x ·(x+y)∗ → (x+y)ω = xω+x∗·yω

Proof
assume y ·x ≤ x ·(x+y)∗

hence (x+y)ω ≤ x ·(x+y)∗·(x+y)ω+yω — by smt
thus (x+y)ω = xω+x∗·yω — by metis

qed

It states that if x quasicommutes over y, that is, y · x ≤ x · (x + y)∗, the infinite
loop (x+y)ω in which x and y are executed non-deterministically can be refined
to the more deterministic loops in xω+x∗ ·yω. The initial step uses the unfold law
(x+y)ω = yω+y∗ ·x·(x+y)ω and then applies the consequence y∗ ·x ≤ x·(x+y)∗

of quasicommutation.
In omega algebra, termination can be expressed as the absence of infinite iter-

ation: (iteration of) x terminates if and only if xω = 0. Our previous refinement
theorem then implies the following well-known separation of termination:

Corollary bd : y ·x ≤ x ·(x+y)∗ → ((x+y)ω = 0 ↔ xω+yω = 0)
by (smt add-comm annil no-trivial-inverse omega-sum-refine omega-sum-unfold)

It states that termination of x + y can be separated into individual termination
of x and y whenever x quasicommutes over y. An informal proof chasing infinite

622 W. Guttmann, G. Struth, and T. Weber

relational diagrams is due to Bachmair and Dershowitz [2]. In omega algebra,
it arises as a simple consequence of the loop refinement law. The proof in this
section is significantly simpler and more automatic than earlier proofs [18]. A
generalisation of this result in modal Kleene algebra is proved in Section 6.

4 Modal Semirings and Kleene Algebras

Reasoning about computing systems often requires modelling state spaces in
addition to actions. One way to achieve this is to define modal operators over
dioids or Kleene algebras. For an action x of a system and a set of states p, the
forward diamond operator |x〉p models the set of all states from which executing
x may lead into p, whereas the forward box operator |x]p models the set of
all states from which executing x must lead into that set. Backward boxes and
diamonds can be defined as well: 〈x|p describes the set of states one may reach
from p by executing x, and [x|p describes the set of all states that can only be
reached from p. In relational models (Kripke frames), |x〉p is the preimage of the
set p under the relation x, that is, the domain of x restricted in its range to p:
|x〉p = d(x · p). Similarly, 〈x|p = r(p · x), where r denotes the range operation.

Modal operators can therefore be obtained in dioids or Kleene algebras by
axiomatising domain and range. In fact, an antidomain operation a can be in-
troduced in dioids by three simple axioms [10]:

Assumes a1: a(x)·x = 0
Assumes a2: a(x ·y)+a(x ·a(a(y))) = a(x ·a(a(y)))
Assumes a3: a(a(x))+a(x) = 1

It is the Boolean complement of the domain operation: a(x) describes the set
of states not in the domain of an action x, that is, the part of the state space
where x is not enabled. In the relational model, a(x) = {(s, s) : ¬∃t . (s, t) ∈ x}.
Domain can then be defined as d(x) = a(a(x)). It models that part of the state
space where the action x is enabled. Thus d(x) = {(s, s) : ∃t . (s, t) ∈ x} in the
relational model. The domain operation induces an appropriate state space: if
S is a dioid, then the set of domain elements d(S) = {d(x) : x ∈ S} forms a
Boolean algebra with join +, meet · and complement a. Moreover, p ∈ d(S) if
and only if p = d(p), whence domain elements can be typed by applying d or a.
We use the letters p, q, . . . to highlight domain elements.

A range operation is axiomatised as domain in the opposite semiring. We have
formalised this duality in Isabelle. All theorems about domain semirings have
been automatically dualised to range semirings.

Forward diamonds and boxes are then defined in an Isabelle class for forward
modal semirings.

Assumes fdiamond-def : |x〉y = d(x ·y)
Assumes fbox-def : |x]y = a(x ·a(y))

We have axiomatised backward modal operators dually by using range. Kleene
algebras extended by all these operations are called modal Kleene algebras [26].

Automating Algebraic Methods in Isabelle 623

Again, duality has been formally established by Isabelle’s locale mechanism and
all statements about backward modalities have been obtained directly by duality.

Boxes and diamonds are duals, too: |x]p = a(|x〉a(p)) and [x|p = a(〈x|a(p)).
This De Morgan duality acts on the Boolean subalgebra d(S) of S. Capturing
it formally within Isabelle requires axiomatisations based on carrier sets, which
have a detrimental effect on proof automation. To dualise diamond statements
into box statements, we use a simple trick instead: we provide the dual theorem
together with a set of about 10 lemmas, including the De Morgan laws for a and
d and similar ‘conversion theorems’. We show an example in Section 5.

The interaction between the star, the modalities and (anti)domain elements
is particularly interesting. The relational semantics of while-programs can be
encoded in this setting, for example, if p then x else y as d(p) · x + a(p) · y, and
while p do x as (d(p) · x)∗ · a(p). This is used in Section 7. Furthermore, modal
star induction laws can be derived:

Lemma dia-star-induct: d(p)+(|x〉d(q)) ≤ d(q) → |x∗〉d(p) ≤ d(q)
Lemma box-star-induct : d(q) ≤ d(p)·|x]d(q) → d(q) ≤ |x∗]d(p)

These link modal Kleene algebras with computational logics such as proposi-
tional dynamic logic or Hoare logic. In particular, the forward box operator
abstractly represents the wlp-operator and the calculus of modal Kleene algebra
encompasses the laws of partial correctness for while-programs. Finally, we have
instantiated the relational model of modal Kleene algebras in Isabelle.

5 Dynamic Algebras and Segerberg’s Formula

We now relate modal Kleene algebras with dynamic algebras, which are alge-
braic siblings of propositional dynamic logic (PDL). Our repository contains
automated proofs of all PDL axioms—in algebraic form—as theorems of modal
Kleene algebra. As an example we present the derivation of Segerberg’s formula,
the only non-trivial proof task, from the modal star induction law. To simplify
presentation and proof we introduce an auxiliary function.

Definition A x p ≡ d(x ·p)·a(p)

It models those states outside of p from which executing x may lead into that
set. Since the domain and antidomain operations are used for complementa-
tion and for typing domain elements, type conversions that humans would leave
implicit tend to pollute proofs and inhibit automation. We therefore provide
helper lemmas, for instance, |x〉p = d(|x〉p), |x〉p = |x〉d(p), A x p = d(A x p),
A x p = (|x〉p) · a(p) and a(A x a(p)) = a(p) + |x]d(p), to derive Segerberg’s
formula after splitting into inequalities.

Lemma fsegerberg : |x∗〉d(p) = d(p)+|x∗〉(A x p)
Proof −
have |x∗〉d(p) ≤ d(p)+|x∗〉(A x p) — by smt, using diamond star induction
thus ?thesis — by smt

qed

624 W. Guttmann, G. Struth, and T. Weber

Segerberg’s formula is perhaps better known and explained in box form. We
prove it by duality using the trick described above.

Lemma fbox-segerberg : |x∗]d(p) = d(p)·|x∗](a(p)+|x]d(p))
by (smt a-A a-closure a-de-morgan-var-2 antidomain-semiring-domain-def

fbox-simp-2 fdia-fbox fsegerberg)

The list of lemmas contains the diamond variant of Segerberg’s formula plus
some helpers, including a De Morgan law for domain and antidomain elements.
This list has been obtained from a larger one by minimising with Sledgehammer.

In box form, Segerberg’s formula expresses induction: its right-hand side states
that the system is originally in p and it is always the case (after executing x any
number of times) that p will be preserved when executing x once more. The left-
hand side states that the system is always in p (after repeatedly executing x).
The term a(p) + |x]d(p) corresponds to the Boolean implication d(p) → |x]d(p).
We introduce special notation in Isabelle,

Definition p
x−→q ≡ a(p)+|x]d(q)

expressing that if p holds in the current state, q must hold after executing the
action x. We can then rewrite Segerberg’s formula as |x∗]d(p) = d(p) · |x∗](p x−→p).

Modal Kleene algebra supports automated computational modelling by equa-
tional reasoning. As an example we prove a rather intricate formula expressing
a separation property for alternating transitions between sets of states p and
q. Again, we first introduce some helper lemmas: (i) d(p) · p

x−→q = d(p) · |x]q,
(ii) p

x−→q · |x]q
y−→s ≤ p

x · y−−−→s, and (iii) |x∗](d(p) · |x]d(p)) = |x∗]d(p). Equation
(i) expresses a (dynamic) form of modus ponens, (ii) a property of sequential
composition, as in the wlp-calculus, and (iii) an unfold property for boxes.

Theorem alternation:
d(p)·|x∗]((p x−→q)·(q x−→p)) = |(x ·x)∗](d(p)·(q x−→p))·|x ·(x ·x)∗](d(q)·(p x−→q))

Proof −
have d(p)·|x∗]((p x−→q)·(q x−→p)) = d(p)·|(x ·x)∗]((p x−→q)·|x](q

x−→p)·(q x−→p)·|x](p
x−→q))

— essentially by powerstar, distributing boxes and regular identities

also have . . . = d(p)·|(x ·x)∗](p x ·x−−→p)·|(x ·x)∗]((p x−→q)·|x](q
x−→p)·(q x−→p)·|x](p

x−→q))
— essentially by the above property (ii)

also have . . . = |(x ·x)∗]d(p)·|(x ·x)∗]((p x−→q)·|x](q
x−→p)·(q x−→p)·|x](p

x−→q))
— by Segerberg’s formula

also have . . . = |(x ·x)∗](d(p)·|x ·x]d(p))·|(x ·x)∗]((q
x−→p)·|x](d(q)·(p x−→q)))

— by distributing boxes, property (i) and rearranging terms
finally show ?thesis — by property (iii) and distributing boxes

qed

By instantiating q with a(p) or p, our separation theorem specialises to an ex-
ercise from Harel, Kozen and Tiuryn’s book on dynamic logic [15, Exercise 5.6],
namely the identity p · |x∗](p x−→a(p) · a(p) x−→p) = |(x · x)∗]p · |x · (x · x)∗]a(p), and
to Segerberg’s formula. Both instances have again been proved automatically.

Automating Algebraic Methods in Isabelle 625

6 Termination and Löb’s Formula

To generalise our termination example from Section 3 we now implement no-
tions of termination in modal Kleene algebra. In particular, we prove a modal
correspondence result, namely that Löb’s formula expresses wellfoundedness on
transitive Kripke frames. We express both the frame property and Löb’s formula
in modal Kleene algebra and then establish their equivalence.

Definition Ω x p ≡ d(p)·a(x ·p)

If p is a set, then Ω x p describes those elements in p from which no further
x-transitions inside of p are possible, hence x-maximal elements. We have first
proved helper lemmas such as Ω x p = d(p) · a(|x〉p) = d(p) · |x]a(p). We have
also proved that the non-maximal states in p are those from which there is an
x-transition into p: a(Ω x p) = a(p) + |x〉p and d(p) · a(Ω x p) = d(p) · |x〉p.
Finally, we have shown that Ω x p = 0 if and only if d(p) ≤ |x〉p.

Following [9] we have formalised three algebraic notions of termination in
Isabelle. In set theory, a relation x on a set q is Noetherian if every non-empty
subset of q has an x-maximal element, which means that if a subset p of q has
no x-maximal elements, then it must be empty:

Definition Noetherian(x) ≡ (∀ p . Ω x p = 0 → d(p) = 0)

This is equivalent to ∀p . d(p) ≤ |x〉p → d(p) = 0. Our abstract notion of Noether-
ity has been formally linked with the standard relational definition within Isa-
belle, that is, in the relational model the two definitions are equivalent. The
second way of expressing termination is as follows:

Definition PreLoebian(x) ≡ (∀ p . d(p) ≤ |x∗〉(Ω x p))

Third, if x is transitive, which implies x = x · x∗, we can apply |x〉 to both sides
of this formula and obtain Löb’s formula.

Definition Loebian(x) ≡ (∀ p . |x〉p ≤ |x〉(Ω x p))

We now relate the three properties, formalising the approach in [9]. Noetherity
can be interpreted as a frame property via the relational model, and Löb’s for-
mula as a formula of modal logic; hence we establish a modal correspondence
result. The main step is to show that an element is pre-Löbian if and only if it
is Noetherian.

Theorem Noetherian(x) ↔ PreLoebian(x)
Proof −
have ∀ p . d(p)·a(|x∗〉(Ω x p)) ≤ |x〉(d(p)·a(|x∗〉(Ω x p))) — mainly star unfold
hence Noetherian(x) → PreLoebian(x) — by Noetherity
thus ?thesis — straightforward

qed

The remaining proofs are then straightforward.

Lemma Loebian(x) → Noetherian(x)
Lemma (∀ p . |x〉(|x〉p) ≤ |x〉p) → PreLoebian(x) → Loebian(x)
Theorem (∀ p . |x〉(|x〉p) ≤ |x〉p) → (Noetherian(x) ↔ Loebian(x))

626 W. Guttmann, G. Struth, and T. Weber

Finally, we translate Löb’s formula into its more conventional box version:

Lemma (∀ p . |x〉p ≤ |x〉(Ω x p)) ↔ (∀ p . |x](a(|x]d(p))+d(p)) ≤ |x]d(p))

As an example for termination analysis with modal Kleene algebra, we now prove
a generalisation of Bachmair and Dershowitz’s theorem which, in a higher-order
relational setting, is due to Doornbos, Backhouse and van der Woude [12]. We
expand modal Kleene algebras by an operation ∇ of divergence [9], mapping each
action x to the set of those states from which infinite x-transition sequences may
start. Divergence is modelled as a greatest (post)fixpoint; it is the greatest set
of states that is invariant with respect to ‘stepping back’ with x.

Assumes nabla-closure: d(∇x) = ∇x
Assumes nabla-unfold : ∇x ≤ |x〉∇x
Assumes nabla-coinduction: d(y) ≤ |x〉d(y)+d(z) → d(y) ≤ ∇x+|x∗〉d(z)

We have developed a simple ∇-calculus in Isabelle which is very similar to that of
the omega operation. We use the instance d(y) ≤ |x〉d(y) → d(y) ≤ ∇x of nabla
coinduction, the fact that nabla is a fixpoint ∇x = |x〉∇x, subdistributivity
∇x ≤ ∇(x + y), isotonicity x ≤ y → ∇x ≤ ∇y, star absorption |x∗〉∇x = ∇x,
and Ω x d(y) = 0 → d(y) ≤ ∇x. We have also formally linked divergence Kleene
algebras with the relational model.

In divergence Kleene algebras an action x terminates if and only if ∇x = 0. We
have shown that this property implies that x is Noetherian (hence pre-Löbian).

Doornbos, Backhouse and van der Woude’s theorem generalises quasicommu-
tation to lazy commutation: y ·x ≤ x ·(x+y)∗+y. We use that lazy commutation
implies y · x∗ ≤ x · (x + y)∗ + y.

Theorem dbw : y ·x ≤ x ·(x+y)∗+y → (∇x+∇y = 0 ↔ ∇(x+y) = 0)
Proof (rule+)
assume lazycomm: y ·x ≤ x ·(x+y)∗+y and xy-wf : ∇x+∇y = 0
hence ∇(x+y) ≤ |x〉∇(x+y)+|y〉|x∗〉(Ω x (∇(x+y)))

— by nabla unfold and because x is pre-Löbian
hence ∇(x+y) ≤ |x〉∇(x+y)+|x〉|(x+y)∗〉(Ω x (∇(x+y)))+|y〉(Ω x (∇(x+y)))
using lazycomm — and distributing diamonds

hence ∇(x+y) ≤ |x〉∇(x+y)+|y〉(Ω x (∇(x+y))) — by star absorption
with xy-wf show ∇(x+y) = 0 — by Noetherity

next assume ∇(x+y) = 0 thus ∇x+∇y = 0 — by subdistributivity of nabla
qed

In particular, this theorem holds in the relational model, where ∇x = d(xω).

7 Hoare Logic

In this section we consider propositional Hoare logic (PHL), a fragment of Hoare
logic that abstracts from assignments and focuses on the control structure of
while-programs. PHL is also a fragment of PDL [15] and it is subsumed by
Kleene algebra with tests [23]. We give an abstract algebraic formalisation and

Automating Algebraic Methods in Isabelle 627

automatically derive soundness and relative completeness of PHL. To link Hoare-
style reasoning about programs with modal Kleene algebras, we show that the
latter satisfy the abstract axioms.

Soundness and relative completeness of different variants of Hoare logic are
well known and have already been proved in Isabelle/HOL [27,29]. Our devel-
opment abstracts from underlying structures such as state spaces and program
executions. By assuming a small axiom set, it generalises previous approaches in
modal Kleene algebra [26], benefits automated proving and supports models be-
yond relational ones. Our proofs are highly automatic using Metis and Z3. Basic
algebraic properties, meaningful lemmas and whole cases in inductive proofs can
be shown by single calls to these tools.

Our presentation focuses on partial correctness, but this is not an inherent
limitation. We take the following steps.

1. Axiomatise tests as a subset of elements that form a Boolean algebra. Tests
are needed as conditions in while-programs and as preconditions in correct-
ness statements.

2. Axiomatise preconditions. We use a subset of axioms known from the weakest
liberal precondition operator.

3. Axiomatise while-programs. We use equational axioms for the conditional,
the unfold rule for the while-loop and an axiom capturing soundness of the
loop rule in the Hoare calculus.

4. Derive soundness and relative completeness. We can thus axiomatise validity
of Hoare triples and obtain the rules of PHL as consequences.

5. Show that modal Kleene algebras form an instance of the above theory.

We now elaborate these steps.
1. Boolean subset: As described in Section 4, the range of the antidomain op-

eration a forms a Boolean algebra. In program semantics, its elements typically
represent conditions on the state space. This motivates the following axiomati-
sation.

We assume a structure (S, ·, a) such that a(S), the range of a, is a Boolean
algebra with meet operation · and complement a. Technically, this is achieved
by taking an axiomatisation for Boolean algebra and replacing each variable x
with a(x), denoting an arbitrary element of the range of a. We use Huntington’s
axioms [25], which are particularly concise, and therefore yield a small set of
axioms for a. Additionally, closure of a(S) under · is asserted by the axiom
a(x) · a(y) = a(a(a(x) · a(y))); by definition it is closed under a. The constants 0
and 1, the join operation + and the order ≤ can then be expressed in terms of ·
and a. Laws of Boolean algebra, including [25, Theorems 3, 5, 7], are restricted
to the range of a and derived automatically.

It is essential to impose the Boolean algebra only on a subset of elements,
because some models of programs are not closed under general complements [17].

2. Preconditions: The elements of the Boolean subset serve as tests, firstly in
preconditions. Our axioms for preconditions are motivated by the properties of
weakest liberal preconditions [11]. The weakest liberal precondition wlp(x, q) is
the set of initial states from which all terminating executions of the program x

628 W. Guttmann, G. Struth, and T. Weber

end up in a state satisfying q. While the program x may be an arbitrary element,
q and wlp(x, q) must be tests, that is, in the range of a.

This motivates the introduction of the binary operation x«q, our abstract
version of wlp(x, q), with the following axioms in an Isabelle class.

Assumes pre-closed : x«a(q) = a(a(x«a(q)))
Assumes pre-seq : x ·y«a(q) = x«y«a(q)
Assumes pre-test : a(p)·(a(p)«a(q)) = a(p)·a(q)
Assumes pre-distrib: x«a(p)·a(q) = (x«a(p))·(x«a(q))

Similarly to the axiomatisation of the Boolean subset, we use a(q) to denote an
arbitrary element in the range of a. The axiom pre-closed states that the result
of « is a test, effectively making « an operation which takes an element and a
test and yields a test. The axioms pre-seq and pre-test capture the interaction
of preconditions with sequential composition and tests, respectively. The axiom
pre-distrib separates the conjunction of two postconditions.

3. While-Programs: A second use of tests is as conditions: the statement
if p then x else y is obtained by the ternary operation x�p�y, where p is a
test. For our derivation of PHL it suffices to characterise the two branches by
the following axioms; see [16,21] for more comprehensive axiomatisations.

Assumes a(p)·(x�a(p)�y) = a(p)·x
Assumes a(a(p))·(x�a(p)�y) = a(a(p))·y

The following consequence exemplifies the interaction of the conditional with
preconditions. It essentially states soundness of the PHL conditional rule.

Lemma a(p)·a(q) ≤ x«a(s) ∧ a(a(p))·a(q) ≤ y«a(s) → a(q) ≤ x�a(p)�y«a(s)
— by smt

Conditions also occur in while-loops: the statement while p do x is obtained by
the binary operation p∗x, where p is a test. The unfold property of the while-loop
is captured by the following axiom.

Assumes a(p)∗x = x ·(a(p)∗x)�a(p)�1

While-programs can be constructed from atomic programs by the operations
of sequential composition, conditional and while-loop. In PHL, atomic programs
are an unspecified set; in concrete models they contain, for example, assignments.

Inductive-Set While-program
where x ∈ Atomic-program ⇒ x ∈ While-program

| x ∈ While-program ∧ y ∈ While-program ⇒ x ·y ∈ While-program
| x ∈ While-program ∧ y ∈ While-program ⇒ x�a(p)�y ∈ While-program
| x ∈ While-program ⇒ a(p)∗x ∈ While-program

Isabelle expects the meta-logic implication ⇒ in such inductive definitions; we
also use it instead of → for subsequent results proved by induction.

For simplicity, we assume that all tests in the range of a can be used as
conditions in while-programs. A more detailed theory prescribes how to construct
tests from an unspecified set of atomic tests by Boolean operations. It is then
necessary to assume that preconditions are such tests; see [7,15,1] for related
questions of expressibility.

Automating Algebraic Methods in Isabelle 629

4. Hoare Calculus: The unfold rule for while-loops is sufficient for proving
relative completeness of PHL. Soundness of the partial correctness while-loop
rule is essentially captured by the following, additional axiom.

Assumes a(p)·a(q) ≤ x«a(q) → a(q) ≤ a(p)∗x«a(a(p))·a(q)

It can be derived in models where an explicit definition of while-loops is available.
The reason for this indirect characterisation is that different models may have
different semantics of while-loops.

The calculus makes correctness claims in the form of Hoare triples p {x} q.
Intuitively, this triple states that all terminating executions of the program x
started from a state satisfying p end up in a state satisfying q.

We capture the rules of the Hoare calculus by the following inductive predi-
cate. Hence p �x� q holds if the triple p {x} q is derivable.

Inductive derived-hoare-triple (- � - � -)
where x ∈ Atomic-program ⇒ x«a(p)�x �a(p)

| a(p)�x �a(q) ∧ a(q)�y �a(s) ⇒ a(p)�x ·y �a(s)
| a(p)·a(q)�x �a(s) ∧ a(a(p))·a(q)�y �a(s) ⇒ a(q)�x�a(p)�y �a(s)
| a(p)·a(q)�x �a(q) ⇒ a(q)�a(p)∗x �a(a(p))·a(q)
| a(p) ≤ a(q) ∧ a(q)�x �a(s) ∧ a(s) ≤ a(t) ⇒ a(p)�x �a(t)

The calculus has one axiom for atomic programs, one rule for each program
construct and the rule of consequence. It follows by induction that only while-
programs appear in derivable Hoare triples.

Lemma p�x �q ⇒ p = a(a(p)) ∧ q = a(a(q)) ∧ x ∈ While-program
by (induct rule: derived-hoare-triple.induct) — and 5 applications of smt

Validity of the Hoare triple p {x} q is defined by the predicate p 〈x〉 q, which
holds if p and q are tests, x is a while-program and the condition p is sufficient
to establish the postcondition q:

Definition p〈x〉q ≡ (p = a(a(p)) ∧ q = a(a(q)) ∧ x ∈ While-program ∧ p ≤ x«q)

Soundness and relative completeness are proved separately by induction. Rea-
soning for each case is automated by Metis or Z3.

Theorem soundness: p�x �q ⇒ p〈x〉q
by (induct rule: derived-hoare-triple.induct) — and 5 applications of smt

Lemma pre-completeness: x ∈ While-program ⇒ x«a(q)�x �a(q)
by (induct arbitrary : q rule: While-program.induct) — and 4 applications of smt

Theorem completeness: p〈x〉q → p�x �q — by smt

For convenient application of the calculus, we axiomatise validity of Hoare triples
without referring to while-programs, using the predicate p {|x|} q.

Assumes a(p){|x |}a(q) ↔ a(p) ≤ x«a(q)

Based on this, we derive the above Hoare rules and further, auxiliary rules [1].
5. Instance for Modal Kleene Algebra: In the richer structure of modal Kleene

algebra, we can explicitly define preconditions, the conditional, the while-loop

630 W. Guttmann, G. Struth, and T. Weber

and the validity of Hoare triples. To inherit the results derived above, we establish
the subclass relationship by verifying the axioms, again using Z3.

— in the context of modal Kleene algebra
Assumes x«p = |x]p
Assumes x�p�y = d(p)·x+a(p)·y
Assumes p∗x = (d(p)·x)∗·a(p)
Assumes p{|x |}q ↔ d(p) ≤ |x]q

This makes the Hoare calculus available for reasoning about programs in modal
Kleene algebra. The following simple example treats a while-loop, whose body
contains two sub-programs w and y switching between states p and q. They are
surrounded by sub-programs v, x and z for which p and q are invariants. The
result shows that p is preserved by the while-loop.

Lemma d(p){|v |}d(p) ∧ d(p){|w |}d(q) ∧ d(q){|x |}d(q) ∧ d(q){|y |}d(p) ∧ d(p){|z |}d(p)
→ d(p){|d(s)∗v ·w ·x ·y ·z |}a(s)·d(p) — by smt

8 Discussion and Conclusion

Our results show that algebraic formal methods can easily be developed by
automated reasoning within Isabelle/HOL. A surprising observation is that the
SMT solver Z3 often outperformed Metis and sometimes even the external ATP
systems invoked by Sledgehammer. Although not especially designed for proofs
in algebra, it could frequently automate proof steps at textbook level. Related
empirical evidence supporting this observation has been obtained by using a
benchmark suite of seven representative Isabelle formalisations that range from
fast Fourier transforms to security protocol analysis [3].

Variants of Kleene algebras and their modal extensions are particularly suit-
able as algebraic methods because, in general, their theories admit a high degree
of automation and important logics of programs and program semantics can be
developed from that basis. This also includes temporal logics [18], which we did
not discuss in this text. In contrast to previous work that was based solely on
ATP [19,20], Isabelle’s mechanisms for higher-order reasoning, proof manage-
ment and theory modularisation are an essential aspect of the formalisation.
To highlight the concision and simplicity of the algebraic approach, we only
presented some proofs at the algebraic level. The complete formalisation of the
relational model can be found in our repository.

While most of the basic proofs in Kleene algebras, omega algebras and modal
Kleene algebras could be found automatically based on proof search by Sledge-
hammer (sometimes after splitting identities into inequalities), most of the more
complex proofs in this paper have been engineered: Sledgehammer was often
only able to automate individual proof steps at the granularity of handwritten
proofs. Sometimes, when the scope of hypotheses was large, it was even unable
to filter out the relevant lemmas. We have then merged steps for Metis or Z3
until those failed within reasonable time limits.

Automating Algebraic Methods in Isabelle 631

Our repository contains a large coherent set of algebraic theorems that re-
quire both equational and order-based reasoning. Therefore, it lends itself ide-
ally for empirical investigations, tool optimisation, the design of tactics and the
development of proof presentation methods. The repository can be extended for
algebraic proof support for existing formal methods. This is promising for ap-
plications in formal program development and analysis. It would yield a high
degree of automation and the possibility to switch seamlessly between pointwise
domain-specific and abstract algebraic reasoning.

Another aspect of tool integration into Isabelle has not been discussed in
this paper. Counterexample generators such as Nitpick complement the ATP
systems and allow a proof and refutation game which is useful for developing and
debugging formal specifications. Examples can be found across the repository.

Our main interest in a repository for algebraic methods and our main moti-
vation for the research in this paper is to devise program development methods
that complement and augment existing verification environments and tools. The
combination of algebraic methods with proof technology ranging from domain-
specific solvers and ATP systems to higher-order reasoning within the Isabelle
theorem proving environment could make formal program development signif-
icantly simpler and more automatic. Integrating additional statements such as
assignments, and data types such as numbers, arrays or lists into our abstract
approach, and linking it with state-of-the-art program development methods is
therefore the obvious direction for future work.

Acknowledgement. Walter Guttmann was supported by a fellowship within
the Postdoc-Programme of the German Academic Exchange Service (DAAD).
Georg Struth acknowledges funding from EPSRC grant EP/G031711/1. Tjark
Weber acknowledges funding from EPSRC grant EP/F067909/1.

References

1. Apt, K.R., de Boer, F.S., Olderog, E.R.: Verification of Sequential and Concurrent
Programs, 3rd edn. Springer, Heidelberg (2009)

2. Bachmair, L., Dershowitz, N.: Commutation, transformation, and termination. In:
Siekmann, J.H. (ed.) CADE 1986. LNCS, vol. 230, pp. 5–20. Springer, Heidelberg
(1986)

3. Blanchette, J.C., Böhme, S., Paulson, L.C.: Extending Sledgehammer with SMT
Solvers. In: Bjørner, N., Sofronie-Stokkermans, V. (eds.) CADE 2011. LNCS,
vol. 6803, pp. 116–130. Springer, Heidelberg (2011)

4. Böhme, S., Weber, T.: Fast LCF-style proof reconstruction for Z3. In: Kaufmann,
M., Paulson, L.C. (eds.) ITP 2010. LNCS, vol. 6172, pp. 179–194. Springer, Hei-
delberg (2010)

5. Cohen, E.: Separation and reduction. In: Backhouse, R., Oliveira, J.N. (eds.) MPC
2000. LNCS, vol. 1837, pp. 45–59. Springer, Heidelberg (2000)

6. Conway, J.H.: Regular Algebra and Finite Machines. Chapman and Hall, London
(1971)

7. Cook, S.A.: Soundness and completeness of an axiom system for program verifica-
tion. SIAM J. Comput. 7(1), 70–90 (1978)

632 W. Guttmann, G. Struth, and T. Weber

8. Desharnais, J., Möller, B., Struth, G.: Kleene algebra with domain. ACM Trans-
actions on Computational Logic 7(4), 798–833 (2006)

9. Desharnais, J., Möller, B., Struth, G.: Algebraic notions of termination. Logical
Methods in Computer Science 7(1:1), 1–29 (2011)

10. Desharnais, J., Struth, G.: Internal axioms for domain semirings. Sci. Comput.
Program. 76(3), 181–203 (2011)

11. Dijkstra, E.W.: A Discipline of Programming. Prentice-Hall, Englewood Cliffs
(1976)

12. Doornbos, H., Backhouse, R., van der Woude, J.: A calculational approach to
mathematical induction. Theor. Comput. Sci. 179(1-2), 103–135 (1997)

13. Foster, S., Struth, G., Weber, T.: Automated engineering of relational and algebraic
methods in Isabelle/HOL. In: de Swart, H. (ed.) RAMICS 2011. LNCS, vol. 6663,
pp. 52–67. Springer, Heidelberg (2011)

14. Haftmann, F., Wenzel, M.: Local theory specifications in Isabelle/Isar. In: Berardi,
S., Damiani, F., de’Liguoro, U. (eds.) TYPES 2008. LNCS, vol. 5497, pp. 153–168.
Springer, Heidelberg (2009)

15. Harel, D., Kozen, D., Tiuryn, J.: Dynamic Logic. MIT Press, Cambridge (2000)
16. Hoare, C.A.R., Hayes, I.J., He, J., Morgan, C.C., Roscoe, A.W., Sanders, J.W.,

Sorensen, I.H., Spivey, J.M., Sufrin, B.A.: Laws of programming. Commun.
ACM 30(8), 672–686 (1987)

17. Hoare, C.A.R., He, J.: Unifying theories of programming. Prentice Hall Europe
(1998)

18. Höfner, P., Struth, G.: Automated reasoning in Kleene algebra. In: Pfenning, F. (ed.)
CADE 2007. LNCS (LNAI), vol. 4603, pp. 279–294. Springer, Heidelberg (2007)

19. Höfner, P., Struth, G.: On automating the calculus of relations. In: Armando, A.,
Baumgartner, P., Dowek, G. (eds.) IJCAR 2008. LNCS (LNAI), vol. 5195, pp.
50–66. Springer, Heidelberg (2008)

20. Höfner, P., Struth, G., Sutcliffe, G.: Automated verification of refinement laws.
Annals of Mathematics and Artificial Intelligence 55(1-2), 35–62 (2009)

21. Jackson, M., Stokes, T.: Semigroups with if-then-else and halting programs. Inter-
national Journal of Algebra and Computation 19(7), 937–961 (2009)

22. Kozen, D.: A completeness theorem for Kleene algebras and the algebra of regular
events. Information and Computation 110(2), 366–390 (1994)

23. Kozen, D.: On Hoare logic and Kleene algebra with tests. ACM Transactions on
Computational Logic 1(1), 60–76 (2000)

24. Krauss, A., Nipkow, T.: Proof pearl: Regular expression equivalence and relation
algebra. Journal of Automated Reasoning (2011),
http://dx.doi.org/10.1007/s10817-011-9223-4

25. Maddux, R.D.: Relation-algebraic semantics. Theor. Comput. Sci. 160(1-2), 1–85
(1996)

26. Möller, B., Struth, G.: Algebras of modal operators and partial correctness. Theor.
Comput. Sci. 351(2), 221–239 (2006)

27. Nipkow, T.: Hoare logics in Isabelle/HOL. In: Schwichtenberg, H., Steinbrüggen,
R. (eds.) roof and System-Reliability, pp. 341–367. Kluwer Academic Publishers,
Dordrecht (2002)

28. Paulson, L.C., Blanchette, J.C.: Three years of experience with Sledgehammer, a
practical link between automatic and interactive theorem provers. In: Sutcliffe, G.,
Ternovska, E., Schulz, S. (eds.) Proceedings of the 8th International Workshop on
the Implementation of Logics, pp. 3–13 (2010)

29. Schirmer, N.: Verification of Sequential Imperative Programs in Isabelle/HOL.
Ph.D. thesis, TU München (2006)

P

Term Rewriting in Logics of Partial Functions

Matthias Schmalz

ETH Zurich, Switzerland�

Abstract. We devise a theoretical foundation of directed rewriting, a term rewrit-
ing strategy for logics of partial functions, inspired by term rewriting in the Rodin
platform. We prove that directed rewriting is sound and show how to supply new
rewrite rules in a soundness preserving fashion. In the context of Rodin, we show
that directed rewriting makes a significant number of conditional rewrite rules un-
conditional. Our work not only allows us to point out a number of concrete ways
of improving directed rewriting in Rodin, but also has applications in other logics
of partial functions. Additionally, we give a semantics for the logic of Event-B.

1 Introduction

Partiality is a common phenomenon in computer science: programs may not terminate,
throw exceptions, or have undesired side-effects such as memory corruption. Reason-
ing about partial functions often involves proving a term to be well-defined; informally,
a term is well-defined if and only if the involved functions are always applied to ar-
guments within their domains. Well-definedness proofs are often perceived as an an-
noying distraction. Moreover, a theorem prover for a logic of partial functions can be
overwhelmed by the number of well-definedness subgoals arising during proofs.

This paper tackles the problem of term rewriting in logics of partial functions. Many
unconditional rewrite rules that are sound in logics of total functions become condi-
tional when transferred to logics of partial functions; e.g., rewriting $x − $x to 0 is
typically sound only under the condition that $x is well-defined. Note that the ’$’ in $x
emphasizes that $x matches arbitrary, possibly ill-defined, terms. Proving such well-
definedness conditions even when applying the simplest rewrite rules constitutes a sig-
nificant overhead.

In order to make concrete statements about the practical impact of our results, we fo-
cus on a particular logic of partial functions, although our results are of a more general
nature. Event-B [1] is a formal method for modeling discrete state transition systems.
Event-B is based on a logic of partial functions. Rodin [2] is the corresponding develop-
ment environment. Interestingly, Rodin often avoids proving well-definedness: Rodin
rewrites $x− $x to 0 without checking well-definedness of $x, and $x÷ $x to 1 with-
out proving that $x differs from 0. This raises several questions, in particular, why term
rewriting in Rodin is sound and to what extent Rodin avoids solving well-definedness
conditions. The question of soundness has been addressed in [11], but only for a frag-
ment of the logic (see Sect. 6).

In this paper, we provide a theoretical foundation for Rodin’s rewriting strategy: di-
rected rewriting. Usually, the term t may be rewritten to u if and only if t ≡ u, i.e., t

� This research is supported by the EU funded FP7 project Deploy (Grant N° 214158).

S. Qin and Z. Qiu (Eds.): ICFEM 2011, LNCS 6991, pp. 633–650, 2011.
© Springer-Verlag Berlin Heidelberg 2011

634 M. Schmalz

and u are semantically equal. In directed rewriting, t may be rewritten to u if and only
if t � u, where � designates the flat domain order � (see e.g. [18, p. 61]). We explain
how conditional directed rewrite rules can be applied within proofs and why their appli-
cation is sound. Directed rewriting is unsafe in general, i.e., it may transform a provable
statement into an unprovable one and thus lead a proof attempt into a dead end. How-
ever, we show that it is straightforward to avoid this unsafety. Moreover, we provide
evidence that directed rewriting significantly reduces the number of well-definedness
checks required during proofs.

It is desirable that the set of rewrite rules used in proofs can be extended in a
soundness preserving fashion. Event-B requires operators and binders to be monotonic
w.r.t. the flat domain order; this is one of the reasons why directed rewriting is suc-
cessful. However, if all operators are required to be monotonic, it is difficult to express
soundness proof obligations for user-supplied rewrite rules. We point out a solution to
this problem for a class of rewrite rules that often occur in practice.

Soundness proofs obviously presuppose a well-understood notion of validity. Other
work introducing Event-B’s logic disregards the details about partial functions [1] or is
confined to an untyped fragment of Event-B’s logic [12], in particular excluding sets.
We therefore start our exposition with a novel presentation of syntax and semantics of
Event-B’s logic.

The main contribution of this paper is the insight how a simple change in the rewrit-
ing strategy makes a significant number of conditional rewrite rules unconditional. Al-
though we present our results in the context of Event-B, they have applications in other
logics of partial functions such as LPF [10] and PVS [17], as we will explain in Sect. 6.
We believe that our novel presentation of Event-B’s logic not only helps to understand
directed rewriting, but is also useful for further developments such as mathematical
(viz. conservative) extensions [5,20] and generic instantiation [23]. As a direct applica-
tion, our results suggest several ways of improving Rodin’s current implementation of
directed rewriting.

2 Abstract Syntax

Sequences. By t1, . . . , tn and t1 . . . tn we denote the sequence of length n with ti
at position i, for 1 ≤ i ≤ n. Variables denoting sequences are written in bold and
underlined. We write ti for the ith element of t when it exists, |t| for t’s length, and t, t′

or (t, t′) for the concatenation of t and t′.

2.1 Types and Terms

Types. Roughly speaking, Event-B has a Hindley-Milner style type system, just like
HOL [8] and ML. A signature Σ consists of three pairwise disjoint sets of type oper-
ators, (ordinary) operators, and binders. We assume we are given infinitely many type
variables that are distinct from the type operators given by signatures. A signature Σ
assigns a non-negative integer, called arity, to each type operator. The signatures we
consider in this paper all include the boolean type operator B of arity zero. The set of
types (over Σ) is the smallest set such that every type variable is a type, and τ(ν) is a
type if ν is a sequence of types and τ a type operator of arity |ν|.

Term Rewriting in Logics of Partial Functions 635

Examples of type operators in Rodin include the integer type Z of arity 0 and the
powerset type operator P of arity 1. Informally,Z denotes the set of all integers, P(Z)
the set of all subsets of Z , and P(α) the set of all subsets of α.

A (type) substitution σ (over Σ) consists of a sequence α of pairwise distinct type
variables and a sequence μ of types, where |α| =

∣∣μ∣∣, and is written [α := μ]. The
substitution σ maps the type ν to the type νσ obtained by simultaneously replacing
every occurrence of αi by μi, 1 ≤ i ≤ |α|, in ν. The type sequence ν′ is an instance of
ν iff |ν′| = |ν| and there is a substitution σ such that ν′

i = νiσ, for 1 ≤ i ≤ |ν|.

Terms. The signature Σ associates with each ordinary operator f a sequence of types
ν (the argument type) and a type μ (the result type), written as f ◦◦ ν � μ or, if ν
is empty, also as f ◦◦ μ. With each binder Q the signature Σ associates a non-empty
sequence ν (the bound variable type), a non-empty sequence μ (the argument type),
and a type ξ (the result type), written as Q ◦◦ (ν � μ) � ξ.

Examples of operators in Rodin include 0 ◦◦ Z , conjunction ∧ ◦◦ (B,B) � B, and
membership ∈ ◦◦ (α,P(α)) � B. An example of a binder is universal quantification
∀ ◦◦ (α � B) � B, which informally takes a function mapping elements of α to
booleans and yields a boolean.

We assume we are given infinitely many variable names that always differ from the
operators and binders given by signatures. An (ordinary) variable x ◦◦ ν consists of a
variable name x and a type ν. An operator variable $f ◦◦ ν � μ consists of a variable
name f , argument types ν and a result type μ; if ν is empty, we usually write $f ◦◦ μ
instead of $f ◦◦� μ.

Conditions T1-T4 below inductively define terms (over Σ). By t has type ν (abbre-
viated as t ◦◦ ν) we mean |t| = |ν| and ti is of type νi, 1 ≤ i ≤ |t|.
T1: Every ordinary variable of type ν is a term of type ν.
T2: If f ◦◦ ν � μ is an operator and t ◦◦ ν ′ a sequence of terms, then f(t ◦◦ ν ′) ◦◦ μ′ is

a term of type μ′, provided (ν ′, μ′) is an instance of (ν, μ).
T3: If $f ◦◦ ν � μ is an operator variable and t ◦◦ ν a sequence of terms, then $f(t ◦◦

ν) ◦◦ μ is a term of type μ.
T4: If Q ◦◦ (ν � μ) � ξ is a binder, x ◦◦ ν′ a sequence of pairwise distinct variables,

and t ◦◦ μ′ a sequence of terms, then (Q x ◦◦ ν′ · t ◦◦ μ′) ◦◦ ξ′ is a term of type ξ′,
provided (ν ′, μ′, ξ′) is an instance of (ν, μ, ξ).

A term of type B is called formula. Rodin imposes further restrictions on terms; in
particular, terms containing variables with the same name but different types are in some
cases rejected. We ignore these restrictions, because they have no logical significance
and would merely complicate our presentation without adding clarity.

Operators and operator variables have much in common, but are used for different
purposes. Intuitively, an operator has a fixed meaning, while the meaning of an op-
erator variable is unspecified. A term of the form $f(t) serves as place-holder, e.g.,
when specifying rewrite rules (Sect. 4.1). Rodin does not explicitly support operator
variables, which is convenient for term rewriting (Sect. 4.3), but introduces challenges
when reasoning about the soundness of rewrite rules (Sect. 5).

636 M. Schmalz

We adopt the usual definitions of bound and free (ordinary) variables. Unless men-
tioned otherwise, we consider alpha-congruent terms, i.e., terms that informally speak-
ing differ only in the names of bound variables (see e.g. [9]), as identical.

2.2 An Example Signature

For the sake of illustration, we define the signature Σ1 introducing

– the type operators B and Z of arity 0 and P of arity 1,

– the operators D ◦◦ α � B, • ◦◦ α, and = ◦◦ (α, α) � B,

– the operators
 ◦◦ B, ⊥ ◦◦ B, and ¬ ◦◦ B � B,

– the operators ∧ ◦◦ (B,B) � B, ∨ ◦◦ (B,B) � B, and ⇒ ◦◦ (B,B) � B,

– the operators ∈ ◦◦ (α,P(α)) � B, ∅ ◦◦ P(α), and ∩ ◦◦ (P(α),P(α)) � P(α),
– the operators 0 ◦◦ Z and 1 ◦◦ Z , and mod ◦◦ (Z,Z) � Z , and

– the binders ∀ ◦◦ (α � B) � B and collect ◦◦ (α � B) � P(α).
Rodin provides more symbols than those in Σ1 (see [20]). The operators D and • are
not available in Rodin, but simplify our presentation. Intuitively, the term D(t) is true
if t is well-defined and otherwise false. The term • is always ill-defined. Our results do
not depend on the availability of •. Whenever required, we will discuss the relevance of
our results for signatures without D.

To improve readability, we use infix notation and leave out parentheses when the
precedence is clear. We leave out type constraints “◦◦ ν” when the types are clear or
irrelevant. Terms of the form collect x · ϕ are written {x | ϕ}. The formula ∀x1 ·
. . . ∀x|x| · ϕ is abbreviated as ∀x · ϕ. By default, a term is of the most general type,
and we assign the same types to different occurrences of a variable name. See [13] for
Rodin’s concrete syntax conventions.

3 Semantics

An important decision is in which logic to formalize the denotations of Event-B’s
types and terms. The best option can certainly not be uniquely determined. We have
decided to define the semantics of Event-B’s logic by an embedding in higher-order
logic (HOL) for the following reasons. First, HOL has a well-understood set theoretic
semantics [3,8]. Second, Event-B’s logic closely resembles HOL; the main difference
lies in the treatment of partial functions. This similarity allows us to keep our presen-
tation of semantics concise. Third, there are powerful theorem provers for HOL such
as Isabelle/HOL [15]. Hence, an embedding of Event-B’s logic into HOL enables us
to use Isabelle/HOL as a theorem prover for Rodin. We regard it as promising to inte-
grate Isabelle/HOL into Rodin, because Isabelle/HOL provides powerful proof tactics
and Isabelle/HOL’s proofs are more trustworthy than Rodin’s thanks to Isabelle’s LCF
architecture. Isabelle/HOL can also be used to prove meta-theorems about Event-B that
are hard to formalize in Event-B itself; for example, in [20] we use Isabelle/HOL to
prove soundness of Event-B proof rules.

Our main sources of information are [1,12,13]; these sources give an intuition about
the intended semantics, but also leave questions open. We have resolved these questions
through discussions with other Rodin developers.

Term Rewriting in Logics of Partial Functions 637

3.1 Isabelle/HOL

To make the paper more accessible to readers not familiar with Isabelle/HOL, we sum-
marize the most relevant features. Isabelle [19] is a generic theorem prover supporting
various logics. The term HOL from now on refers to the instantiation of Isabelle to
HOL.

HOL’s type system (see [8,24]) essentially coincides with ML’s. The notation t :: ν
indicates that the term t has type ν. A term of type ν ⇒ μ denotes a function taking
one argument of type ν and yielding a result of type μ. Functions taking n arguments,
n > 0, are represented by terms of type ν1 ⇒ · · · ⇒ νn+1. The type operator ⇒
associates to the right. The application of the function f to the n arguments x1, . . . , xn

is written f x1 . . . xn and should be read as (. . . (f x1) . . .) xn. Function application
has higher precedence than infix operators: f x + 1 is to be read as (f x) + 1.

Terms of type ν ⇒ μ represent total functions. Partial functions are therefore some-
times approximated by total functions: HOL’s integer division div is a total function of
type int ⇒ int ⇒ int. The developers of Isabelle/HOL have decided that x div (0 :: int)
equals 0. The way how a partial function is approximated by a total function varies from
case to case: in particular, the “least integer” Least {x :: int. True} is left unspecified.

3.2 Option Types

We develop a theory EB0 providing auxiliary definitions. The standard theory of HOL
introduces option types, defined by

datatype α option = Some α | None.

Intuitively, the type α option contains copies of all elements of α and a constant None.
If x is of type α, then Some x is the copy of x in α option. The theory EB0 introduces
the notations α↑ for α option, x↑ for Some x, and • for None.

Moreover, EB0 defines the functions WD, T, F, WT by

WD x = (x �= •),
T ϕ = (ϕ = True↑), F ϕ = (ϕ = False↑), WT ϕ = (ϕ �= False↑).

The function WD takes a term t of type ν↑ and indicates whether t differs from •.
The term t is well-defined iff WD t is valid and ill-defined iff ¬(WD t) is valid. The
functions T and F take a term ϕ of type bool↑ and indicate whether ϕ equals True↑ or
False↑, respectively. Moreover, WT ϕ indicates whether ϕ is weakly true, i.e., equal to
True↑ or equal to •. Finally, we say that a function f whose arguments and result have
option types is strict iff WD(f x) −→ WD x1 ∧ · · · ∧WD x|x| is valid.

3.3 Denotations of Types and Terms

Given a signature Σ, a structure (over Σ) specifies the denotations of Event-B types
and terms over Σ. Technically, a structure (M, �·�) consists of a HOL theory M extend-
ing EB0 and a denotation function �·� mapping Event-B symbols, types, and terms to
HOL symbols, types, and terms, respectively. For a sequence t of types or terms, �t�
abbreviates (�t1�, . . . , �t|t|�).

638 M. Schmalz

For every Event-B type variable α, we define �α� = α; here we assume, without loss
of generality, that α is a HOL type variable. For every Event-B type operator τ of arity
n, �τ� is a HOL type operator taking n arguments1. The boolean type B denotes bool,
and a type τ(ν) denotes the type (�ν�) �τ�, i.e., the result of applying the type operator
�τ� to the types �ν�.

While the denotation of a type is obtained by renaming type operators, the situation
is more involved for terms. The denotation function �·� maps operators f ◦◦ ν � μ to
HOL constants of type �ν1�↑ ⇒ . . .⇒ �ν|ν|�↑ ⇒ �μ�↑ and binders Q ◦◦ (ν � μ) � ξ
to HOL constants of type

(�ν1�⇒ . . .⇒ �ν|ν|�⇒ �μ1�↑)⇒ . . .⇒ (�ν1�⇒ . . .⇒ �ν|ν|�⇒ �μ|μ|�↑)⇒ �ξ�↑.

An operator is strict iff its denotation is strict.
An Event-B term of type ν denotes a HOL term of type �ν�↑ as follows:

1. �x ◦◦ ν� = (x :: �ν�)↑.
2. �f(t) ◦◦ μ′� = ((�f� �t�) :: �μ′�↑).
3. �$f(t) ◦◦ μ� = (($f �t�) :: �μ�↑).
4. �(Qx ◦◦ ν · t) ◦◦ ξ′� = ((�Q� (λx :: �ν�. �t1�) . . . (λx :: �ν�. �t|t|�)) :: �ξ′�↑).

For convenience, we assume that, for each Event-B variable name x, both x and $x are
available as variable names in M. In 4, the notation x::ν abbreviates (x1 ::ν1) . . . (x|x|::
ν|ν|).

An Event-B term is well-defined (ill-defined) iff its denotation is well-defined (ill-
defined). The Event-B terms t and u are equivalent iff �t� = �u� is valid. An Event-B
formula ϕ is valid iff T�ϕ� is valid.

Readers familiar with HOL may wonder why Event-B has the syntactic categories
of operators and binders. HOL provides only one operator, namely function applica-
tion, and one binder, namely lambda-abstraction, and views the remaining operators
and binders as constants of suitable function types. It would however be difficult to
organize the logic of Event-B in a similar way, because Event-B’s constants (i.e., oper-
ators with empty argument types) denote terms of type ν↑; hence constants cannot be
used to represent operators or binders, simply because they have inappropriate types.

3.4 An Example Structure

We define a structure (EB1, �·�) over Σ1, the signature introduced in Sect. 2.2. It reflects
the intended semantics of the symbols introduced by Σ1, i.e., the semantics that is
used to validate the inference rules implemented in Rodin. The denotations of Rodin’s
remaining symbols are defined in [20].

We start with the denotations of type operators, D, and •:

�B� = bool, �Z� = int, �P� = set,

�D� x = (WD x)↑, �•� = •.
1 In this regard, we also view HOL’s type synonyms as type operators.

Term Rewriting in Logics of Partial Functions 639

The strict extension F of a function f taking n arguments, n ≥ 0, is given by

F x1 . . . xn =
{• (¬(WD x1) ∨ · · · ∨ ¬(WD xn))

(f y1 . . . yn)↑ (x1 = y1↑ ∧ · · · ∧ xn = yn↑).
Intuitively, F behaves as f for well-defined arguments and is ill-defined if an argument
is ill-defined. The denotations of most operators are strict extensions:

the denotation of
 ⊥ ¬ = ∅ ∈ ∩ 0 1

is the strict extension of True False ¬ = {} ∈ ∩ 0 :: int 1 :: int

Thus, if x is an ordinary variable, then x = x is valid, because x is well-defined. If
however $x is an operator variable, then $x = $x is not valid.

The operator mod is strict; its result is ill-defined if an argument is negative:

�mod� x↑ y↑ =
{

(x mod y)↑ (x ≥ 0 ∧ y > 0)
• (otherwise).

The denotation of conjunction is given by

�∧� ϕ ψ =

⎧⎨⎩True↑ (T ϕ ∧ T ψ)
False↑ (F ϕ ∨ F ψ)
• (otherwise).

The denotations of disjunction and implication are defined such that $ϕ ∨ $ψ is equiv-
alent to ¬(¬$ϕ ∧ ¬$ψ) and $ϕ⇒ $ψ is equivalent to ¬$ϕ ∨ $ψ.

Note that conjunction, disjunction, and implication are not strict. In particular, both
⊥∧$ϕ and $ϕ∧⊥ are equivalent to⊥. Contrast this to intersection: neither ∅∩$R nor
$R ∩∅ is equivalent to ∅, because $R is not necessarily well-defined and intersection
is strict.

Finally, �∀� and �collect� are defined such that

�∀x · ϕ� =

⎧⎨⎩
True↑ (∀x. T �ϕ�)
False↑ (∃x. F �ϕ�)
• (otherwise),

�{x | ϕ}� =
{{x. T �ϕ�}↑ (∀x. WD �ϕ�)
• (otherwise).

The universal quantifier may be viewed as generalized conjunction: for instance, ∀x ◦◦

B · $ϕ(x) is equivalent to $ϕ(
)∧ $ϕ(⊥). The variables bound by a binder range over
well-defined values: ∀x · x = x is valid, and {x | x �= x} is equivalent to the empty
set ∅.

3.5 Substitutions

Intuitively, a type substitution [α := ν] is applied to a term by simultaneously replacing
αi by νi, 1 ≤ i ≤ |α|. The details are similar as in HOL (cf. [8, CH. 15]) and can be
found in [21]. We define the denotation �[α := ν]� of a type substitution by [α := �ν�].
From this, we prove the following duality property:

640 M. Schmalz

Lemma 1. If t is an Event-B term and σ a type substitution, then �tσ� = �t��σ�.

Type variables intuitively serve as place holders for types. By defining the effect of type
substitutions on terms, we make precise how exactly type variables can be instantiated.
Lemma 1 provides a semantic characterization of type substitutions σ; in particular, if
T �ϕ� is valid, then so is T �ϕσ�.

An operator substitution σ is written

[$f1($x1) := u1, . . . , $fn($xn) := un],

where $f1, . . . , $fn are pairwise distinct, the elements of $xi are pairwise distinct, the
type of $xi is the argument type of $fi, and the type of ui the result type of $fi, for
1 ≤ i ≤ n. Let us consider three examples. First, we will see that ($ϕ∧¬$ϕ)[$ϕ :=
]
equals
 ∧ ¬
. Second, consider ∀x · $ϕ(x); by writing $ϕ(x) instead of $ϕ, we
indicate that the term substituted for $ϕ(x) may have free occurrences of x. We will see
that (∀x · $ϕ(x))[$ϕ($y) := ($y = 0)] equals ∀x · x = 0. Finally, (∀x · $ϕ)[$ϕ :=
(x = 0)] equals ∀y · x = 0.

The denotation �σ� of σ is

[$f1 := λ$x1. �u1�, . . . , $fn := λ$xn. �un�].

To obtain a duality property analog to Lemma 1, we define the result of applying σ to a
term as follows:

1. xσ = x,

2. f(t)σ = f(tσ),
3. $g(t)σ = $g(tσ), provided $g differs from $fi, for 1 ≤ i ≤ n,

4. $fi(t)σ = ui[$xi
1 := t1σ, . . . , $xi|$xi| := t|t|σ], for 1 ≤ i ≤ n,

5. (Qy · t)σ = Qy · tσ, provided no element of y occurs free in u1, . . . , un.

In 2, 3, and 5, we adopt the convention that tσ abbreviates t1σ, . . . , t|t|σ. The proviso
of 5 is achieved by suitable renaming of bound variables. Operator substitutions fulfill
a duality property analog to Lemma 1:

Lemma 2. If t is a term and σ an operator substitution, then �tσ� = �t��σ�.

If we defined substitutions for ordinary variables, they would fail to satisfy a property
analog to Lemma 1 and 2. Suppose we define an ordinary substitution σ such that xσ is
•. Then �xσ� is •, but there is no way of defining �σ� such that �x��σ� equals •, because
�x� is defined as x↑.

4 Term Rewriting

In the following, the available types and terms, and their denotations are specified by a
signature Σ and a structure (M, �·�) over Σ. If Σ provides symbols of Σ1 (cf. Sect. 2.2),
we assume that their denotations are given according to (EB1, �·�) (cf. Sect. 3.4).

Term Rewriting in Logics of Partial Functions 641

In Event-B, proofs are organized in terms of hypothetical statements, called sequents.
A sequent ψ � ϕ consists of a finite set {ψ} of formulae, called hypotheses, and a
single formula ϕ, called goal. When a sequent is used to express a desired property of
an Event-B model, we refer to it as proof obligation.

We consider several ways of defining denotations of sequents, all of the form

�ψ1, . . . , ψn � ϕ� = (H�ψ1� ∧ · · · ∧ H�ψn� −→ G�ϕ�).

The functionsH and G range over T and WT. We distinguish WW-, WS-, SW-, and SS-
semantics, where the first letter indicates the choice of H and the second the choice of
G; the letter S (“strong”) represents the choice T, and the letter W (“weak”) represents
the choice WT. A sequent is WW-, WS-, SW-, or SS-valid iff its denotation is valid
according to WW-, WS-, SW-, or SS-semantics, respectively. As Event-B is based on
SW-validity, we refer to SW-validity also as validity.

An inference rule is written
Γ

Γ0
and consists of a possibly empty sequence Γ of

sequents, called antecedents, and a single sequent Γ0, called consequent. It is sound
iff validity of all antecedents implies validity of the consequent. We are interested in
backwards proofs: in a backwards proof a sequent Δ is proved by first choosing a rule
with Δ as consequent and then proving the antecedents of the rule. This is repeated up
to the point where no sequents remain to be proved.

Note that rules are schematic in the sense that they may contain operator variables,
which can be instantiated by substitution. Because of Lemmas 1 and 2, soundness is
closed under substitution, i.e., if an inference rule is sound, then so is the result of
applying a substitution to its antecedents and consequent. However, side-conditions
that require variables not to occur free in formulae must be stated informally. Defining
a formal representation covering all inference rules of Event-B is not in the scope of
this paper.

The choice between WW-, WS-, SW-, and SS-semantics influences which inference
rules are sound. Unfortunately it is not an easy choice; for each of the four semantics
there exist an unsound rules whose unsoundness may be hard to accept for some reader:

semantics unsound rule

WW
χ � ψ

χ,¬ψ � ⊥ notE

SS
χ, ϕ � ⊥
χ � ¬ϕ

notI

semantics unsound rule

WS
χ, ϕ � ϕ

hyp

SW
χ � ψ χ, ψ � ϕ

χ � ϕ
cut

It is therefore not surprising that different logics are based on different semantics:
Event-B [12] and PVS [17] choose SW-semantics; LPF [4], the logic underlying VDM,
is based on SS-semantics; Owe [16] favors WS-semantics. To our best knowledge, only
Owe explains his choice by a comparison between the four semantics. In Section 4.2, we
will show why SW-semantics, and SW-semantics only, is well-suited for term rewriting.
We thus provide a novel argument in favor of SW-semantics.

642 M. Schmalz

4.1 Rewriting Terms to Equivalent Terms

When rewriting terms to equivalent terms in Event-B’s logic, it is often necessary to
check well-definedness of the term to be rewritten. Consider for example

($x = $x) ≡
. (1)

A rule t ≡ u is sound iff t and u are equivalent; hence, (1) is unsound. The unsoundness
becomes evident when rewriting the goal D(• = •) to D(
). However, the rule is
sound under the precondition D($x), i.e., whenever a well-defined term is substituted
for $x. Similarly, the following rules are sound only under appropriate well-definedness
preconditions:

$x ∈ $R ∩ $S ≡ $x ∈ $R ∧ $x ∈ $S, (2)

$x ∈ ∅ ≡ ⊥, (3)

0 ∈ {x | $ϕ(x)} ≡ $ϕ(0). (4)

The need for well-definedness preconditions stems from the special status of •, i.e.,
(1) is unsound because equality is strict and therefore not reflexive, (2) is unsound
because intersection is strict and conjunction is not, (3) is unsound because membership
is strict, and (4) is unsound because there are substitutions σ such that $ϕ(0)σ is well-
defined whereas $ϕ(1)σ is not. Well-definedness preconditions can be avoided to some
extent by choosing appropriate semantics. However, this would result in difficulties
when applying Event-B to the problems it has initially been designed for.

During conditional rewriting as in, e.g., Isabelle [14], it is often hard to predict and
control which conditions can be solved and whether a conditional rewrite rule is applied.
The choice of tactic that solves conditions is tricky: if it is too weak, many conditional
rewrite rules become useless; if it is too powerful, term rewriting becomes slow. Be-
cause solving conditions is undecidable, these problems are inevitable in general; but
we will see that we can sometimes do better.

In the following sections, we present directed rewriting. Directed rewrite rules have
well-definedness preconditions, but these preconditions can always be solved, and there-
fore do not need to be checked. We thus show how the before mentioned problems can
be avoided for a non-trivial class of rewrite rules. We will also demonstrate the practical
relevance of directed rewriting.

4.2 Directed Rewriting

A directed rewrite rule consists of a (pre)condition ϕ ◦◦ B, a left-hand side t ◦◦ ν, and a
right-hand side u ◦◦ ν, and is written

ϕ

t ◦◦ ν � u ◦◦ ν
. (5)

An unconditional rule has the condition
 and is written t ◦◦ ν � u ◦◦ ν. For the
semantics of directed rewrite rules, we recall the flat domain order � defined by

∀x y. x � y ←→ (WD x −→ x = y).

Term Rewriting in Logics of Partial Functions 643

The rewrite rule (5) denotes WT�ϕ� −→ �t� � �u� and is sound iff its denotation is
valid. Directed rewrite rules are not symmetric: soundness of t � u does not imply
soundness of u � t. The reader may want to check that the rules (1 – 4) can be recast
as unconditional sound directed rewrite rules.

Alternatively, we could have defined the denotation of (5) by T�ϕ� −→ �t� � �u�.
Our choice of semantics is motivated by the observation (cf. [21]) that the majority of
the conditional rewrite rules available in Rodin are already sound w.r.t. our semantics,
which interprets the condition ϕ as WT�ϕ�. The advantage of our semantics over the
alternative semantics, which interprets ϕ as T �ϕ�, is that D(ϕ) does not need to be
proved when applying the rule; this makes conditional rules more generally applicable.
If a rule is sound only w.r.t. the alternative semantics we may replace the condition ϕ
by D(ϕ) ∧ ϕ.

The following lemma shows how to use directed rewrite rules to rewrite formulae:

Lemma 3. If the rule
ψ

ϕ1 � ϕ2
(6)

is sound, then so are

χ � ψ χ � ϕ2

χ � ϕ1
and

χ � ψ χ, ϕ2 � ϕ

χ, ϕ1 � ϕ
. (7)

Intuitively, if the rule in (6) is sound, it may be used to rewrite a hypothesis or goal ϕ1 to
ϕ2 in a backwards proof. Moreover, when applying a conditional rule, one has to prove
the condition ψ from the other hypotheses χ of the sequent at hand. Note that, although,
in general, ϕ1 and ϕ2 are equivalent only if ϕ1 is well-defined, there is no need to prove
well-definedness of ϕ1 when applying the rewrite rule. This is how directed rewriting
avoids solving well-definedness conditions.

Lemma 3 is an immediate consequence of the definitions of soundness and the fact
that sequents have SW-semantics. The assertion does not hold if sequents have WW-,
WS-, or SS-semantics: take the empty sequence for χ,
 for ψ, • for ϕ1, and
 or
⊥ for ϕ2. Thus, SW-semantics is the only of the four semantics, under which directed
rewriting is sound.

So far we are assuming that we want to apply directed rewrite rules from left to
right, i.e., to rewrite ϕ1 to ϕ2. If we wanted to apply them in reverse direction, i.e.,
to rewrite ϕ2 to ϕ1, this would be sound only under WS-semantics. We believe that
rewriting in reverse direction is not useful in practice, because it would make rules like
$x = $x �
, $ϕ ∧ ¬$ϕ � ⊥, $R ∩ ∅ � ∅, and many others inapplicable.

4.3 Rewriting Subterms

Term rewriting would not be very useful without the possibility of rewriting subterms.
We now explain under which assumptions directed rewriting of subterms is sound.

A HOL function f is monotonic iff

∀x y. x1 � y1 ∧ · · · ∧ x|x| � y|y| −→ f x � f y.

644 M. Schmalz

For uniformity, we also consider terms of type ν↑ as monotonic. The order� is lifted to
functions in the usual point-wise fashion: f � g ←→ (∀x. f x � g x). The denotation
Q of a binder is monotonic iff

∀f g. f1 � g1 ∧ · · · ∧ f|f| � g|g| −→ Q f � Q g.

Similarly, an operator or binder is monotonic iff its denotation is.
The following lemma shows that directed rewrite rules may be applied to subterms of

the hypothesis or the goal at hand. The restriction is that only arguments of monotonic
operators and binders may be rewritten.

Lemma 4. If the directed rewrite rule
ϕ

t � t′
is sound, then so are

ϕ

f(u, t, u′) � f(u, t′, u′)
and

∀x · ϕ
Qx · v, t, v′ � Qx · v, t′, v′ ,

where f is a monotonic operator and Q a monotonic binder.

Note that every strict operator is monotonic. Moreover, every operator and binder of
Σ1 is monotonic; for most operators this is obvious, because they are strict. In fact, all
operators and binders available in Rodin are monotonic [20]. However, neither the well-
definedness operator D is monotonic, nor the denotations of operator variables that take
at least one argument. Hence, rewriting subterms is sound for the logic implemented by
Rodin, but rewriting arguments of D or of operator variables is in general unsound.

4.4 Safety

In this section we address the question under which conditions directed rewriting is safe.
Informally, an unsafe backwards step transforms a valid sequent into an invalid one and
thus drives the proof into a dead end. We restrict the discussion to unconditional rules,
assuming that conditional rules are applied only if their conditions can be solved.

Formally, an inference rule is safe iff validity of its consequent implies validity of
all antecedents. The inference rules resulting from sound directed rewrite rules are in
general unsafe: take the rule rewriting � • to � ⊥ as an example.

An inference rule is WS-safe iff WS-validity of the consequent implies WS-validity
of all antecedents. Note that the inference rules resulting from sound directed rewrite
rules are WS-safe. Hence, if (i) the sequent at hand is WS-valid, and (ii) only WS-safe
rules are applied, then only WS-valid (and therefore valid) sequents will arise during
the proof attempt. We will examine under which circumstances Conditions (i) and (ii)
are true.

Note that ψ � ϕ is valid iff D(ψ), D(ϕ), ψ � ϕ is WS-valid (and therefore also
valid). So it is straightforward to establish Condition (i) by a mild (and validity preserv-
ing) modification of the proof obligation at hand.

Of course, inference rules may be only safe but not WS-safe: consider
� •
�
 . Such

rules need to be avoided to fulfill Condition (ii). We can always transform a safe in-
ference rule into a WS-safe one (in a soundness preserving manner) by adding well-
definedness conditions to the antecedents. That is actually unnecessary for the inference

Term Rewriting in Logics of Partial Functions 645

rules available in Rodin: by inspecting the list of available rules, we observe that every
inference rule of Rodin is safe iff it is WS-safe. So Condition (ii) is fulfilled in Rodin if
the user avoids applying unsafe rules.

In summary, directed rewriting is unsafe in general; but after slight modifications of
the proof obligation and the proof calculus, directed rewriting is safe whenever only
safe inference rules are applied within proofs. For Rodin, such modifications of the
proof calculus are unnecessary2.

4.5 Practical Relevance

We have seen that directed rewriting is sound if (i) sequents are interpreted in SW-
semantics and (ii) the operators and binders “surrounding” the term to be rewritten
are monotonic. There is no agreement in the literature on which of the four sequent
semantics is best; we view directed rewriting as a novel argument in favor of SW-
semantics. Clearly, non-monotonic operators are sometimes useful; e.g., we will see
how to apply them for reasoning about the soundness of rewrite rules (see Sect. 5).
We have however experienced that monotonicity is an acceptable restriction for many
applications. Other researchers seem to make similar experiences: Jones et al. [10] point
out that non-monotonic operators are “not needed for specifying software systems” or
“seldom employed in proofs”. PVS [17] supports only monotonic operators and binders.

To understand how often directed rewrite rules arise in practice, we have analyzed
the rewrite rules available in the Rodin platform. New rules for Rodin’s term rewriter
are chosen and implemented based on the requests of Rodin users. The set of available
rules therefore reflects which rules are important in practice. The details of our analysis
can be found in [21].

We say that a sound directed rewrite rule is truly directed iff its condition does not
imply equivalence of its left- and right-hand side. In total, Rodin implements 453 un-
conditional directed rewrite rules; 165 of them (about 36%) are truly directed. Without
directed rewriting, Rodin would have to prove well-definedness of the left-hand side
whenever applying one of these rules. Moreover, Rodin implements 53 conditional di-
rected rewrite rules of which 42 (about 79%) are truly directed. Thus, in a significant
number of cases directed rewriting makes conditional rewrite rules unconditional or
weakens the condition of a rewrite rule. We therefore conclude that directed rewriting
constitutes an important optimization of Rodin’s term rewriter.

The reader may have the impression that directed rewriting mainly compensates for
problems introduced by the fact that Event-B’s logic explicitly supports partial func-
tions. But this is not entirely true. In logics of total functions it is quite common to ap-
proximate partial functions by underspecified total functions. In such a logic, x mod 0
denotes an unspecified integer. Therefore xmodx is equivalent to 0 only if ¬(x = 0). In
Event-B and with directed rewriting, we can avoid the condition ¬(x = 0) by restating
the rule as $xmod $x � 0. Thus, directed rewriting not only compensates for problems
introduced by explicit partiality, but also makes rules unconditional that are commonly
conditional in logics of total functions. In the case of Rodin, there are 35 such rules.

2 We do not make a statement about required modifications of Rodin’s proof obligations, because
we are not aware of a document specifying them.

646 M. Schmalz

5 Proving User Supplied Rules Sound

Rodin provides a generic term rewriter to which the user can supply new rewrite rules
[11]. The term rewriter accepts a new rule only if the user formally proves its soundness.
Rules with conjunctions, disjunctions, implications, universal or existential quantifiers
on the left-hand side are however rejected, because it has been unclear how to generate
the required soundness proof obligations. Operator variables with non-empty argument
types are not supported either. Below, we show how to overcome these limitations for a
practically relevant class of rewrite rules.

In a logic with the well-definedness operator D and operator variables, it is straight-
forward to express soundness proof obligations:

Lemma 5. The directed rewrite rule
ϕ

t � u
is sound iff

D(ϕ)⇒ ϕ, D(t) � D(u) ∧ t = u is valid.

However, Rodin supports neither the operator D nor operator variables, which makes
Lemma 5 inapplicable. A way out would be to make the operator D and operator vari-
ables available. Unfortunately, such a change would not come cheaply, because mono-
tonicity assumptions are hard-wired in several places, in particular in Rodin’s term
rewriter. Therefore, we develop a method for expressing soundness proof obligations
with only monotonic operators and binders and without operator variables.

Before going into the gory details, let us consider an example. For convenience,
we introduce the operator restrict with argument type (B, α) and result type α whose
denotation is given by �restrict� ϕ x = (if T ϕ then x else •). Consider the rule
(∃x · x = $y) �
; Lemma 5 suggests, after slight simplifications, the following
soundness proof obligation:

D(∃x · x = $y) � ∃x · x = $y. (8)

To eliminate the operator variable $y, we extend the underlying signature by the oper-
ators dy and sy; dy is of type B and sy has the same type as $y. The denotations of dy
and sy are left unspecified, except that we require WD �dy� and WD �sy� to be valid.
Intuitively, restrict(dy, sy) is equivalent to $y. Then, (8) is equivalent to

D(∃x · x = restrict(dy, sy)) � ∃x · x = restrict(dy, sy). (9)

The goal of (9) is already built from monotonic operators and binders. The hypothesis
of (9) is equivalent to

(∃x · dy ∧ x = restrict(dy, sy)) ∨ (∀x · dy ∧ ¬(x = restrict(dy, sy))).

Note that we are unable to directly eliminate D from (8), because that would require us
to eliminate D from terms of the form D($y).

The following theorem shows how to establish the transition from (8) to (9) in gen-
eral, provided operator variables are applied only to ordinary variables.

Theorem 6. Suppose all occurrences of the operator variable $f ◦◦ ν � μ in the
sequent Γ take only ordinary variables as arguments. Extend the underlying signature

Term Rewriting in Logics of Partial Functions 647

by the operators df ◦◦ ν � B and sf ◦◦ ν � μ, and the underlying structure such that
�df� is specified by WD(�df � x) ←→ WD x3 and �sf � by WD(�sf� x) ←→ WD x.
Then Γ is valid w.r.t. the original structure iff Γ [$f($x) := restrict(df($x), sf($x))]
is valid w.r.t. the extended structure.

Here, WD x abbreviates WD x1 ∧ · · · ∧WD x|x|. A substitution is applied to a sequent
by simultaneous application to the hypotheses and the goal.

After applying Theorem 6 to eliminate operator variables, it remains to eliminate
well-definedness conditions D(t). If t is a term over Rodin’s signature, it is well-known
how to do that (see [6]). The procedure in [6] can be easily extended to terms containing
restrict and the ad-hoc operators arising from Theorem 6. The result is a soundness
proof obligation containing only monotonic operators and binders and not containing
operator variables.

To understand the relevance of the machinery described above, we consider the
rewrite rules implemented by Rodin as a benchmark. There are still rules for which
the soundness proof obligations cannot be expressed, even with the above procedure.
These rules fall in at least one of the following two categories:

1. rules containing associative operators with an arbitrary number of arguments; an
example is the rule $ϕ1 ∧ · · · ∧ $ψ ∧ · · · ∧ $ϕn ⇒ $ψ �
.

2. rules that violate the proviso of Theorem 6. An example is the rule
D($y)

∀x · x = $y⇒ $ϕ(x) � $ϕ($y)
, because the $y in $ϕ($y) is not an ordinary

variable.

Only five rewrite rules fall into the second category (cf. [21]).
We admit that our procedure for expressing soundness proof obligations is not

straightforward. Rodin’s commitment to monotonicity has a price!

6 Related Work

PVS uses predicate subtypes and dependent types to represent partial functions: a partial
function is viewed as total function over a restricted domain. Although the semantics of
PVS [17] is presented quite differently from the semantics of Event-B’s logic, we ob-
serve the following similarities: if we view type-correctness in PVS as well-definedness
in Event-B, then the operators and binders available in PVS are monotonic, operator
variables are unavailable, and PVS inference rules are (SW-)sound. Hence, directed
rewriting is sound in PVS and the problem and solution concerning reasoning about
soundness (cf. Sect. 5) apply.

We are not aware of a paper devising the foundations of term rewriting in PVS. From
the prover guide [22, p. 86], we have the impression that PVS implements directed
rewrite rules such as 0 ∗ $x � 0. However, the techniques discussed in Sect. 5 seem
to be unavailable: we tried to introduce the rule $x ∈ ∅ � ⊥ (and some others), but
PVS insisted on checking well-definedness of $x when applying this rule. Therefore
we believe that our results can be used to improve term rewriting in PVS.

3 This is achieved by consts �df � ax specification (�df�) WD(df x) ←→ WD x.

648 M. Schmalz

LPF [10], the logic underlying VDM, is based on SS-semantics. It is therefore sound
to apply directed rewrite rules to hypotheses belonging to LPF’s monotonic fragment,
but unsound to apply directed rewrite rules to goals. Dawson [7] already defines a ver-
sion of unconditional directed rewriting for quantifier free LPF; we in particular com-
plement his work by providing evidence that directed rewriting is powerful in prac-
tice and by our results on safety. The complications when reasoning about soundness
of rewrite rules addressed in Sect. 5 do not arise in LPF, because LPF supports non-
monotonic operators.

Monotonicity is an important concept in LCF (see e.g. [18]); hence there is a chance
of applying directed rewriting. Conjectures in LCF seem however often to be built from
≡ and � (in Event-B terminology). The challenge is to reorganize proofs in terms of
sequents that have SW-semantics. More research is needed to understand whether di-
rected rewriting has applications in LCF.

Maamria and Butler [11] devise directed rewriting for the untyped fragment of Event-
B, i.e., the fragment with exactly one non-boolean type. In their setting, the left- and
right-hand sides of rewrite rules are built from operator variables with empty argument
types and strict operators. In particular, they do not support rewrite rules whose left- or
right-hand sides involve boolean connectives or binders. We overcome these restrictions
and correct a flaw concerning the application of conditional rewrite rules. (The proviso
above (4.2) on p. 11 allows one to apply conditional rewrite rules in an unsound way.)

Our research has been greatly inspired by term rewriting in Isabelle [14].

7 Conclusions and Future Work

We have devised the foundations of directed rewriting, a technique that rewrites not
only terms to equivalent terms but also ill-defined to well-defined terms. To make con-
crete statements about the practical impact of directed rewriting, we have focused on a
particular logic of partial functions, namely the logic of Event-B. Applications to other
logics of partial functions are described in Sect. 6.

As a prerequisite of our investigations, we have defined a semantics for Event-B’s
logic (see Sect. 3). Soundness of directed rewriting in Event-B, as manifested by Lem-
mas 3 and 4, is an immediate consequence of our presentation of semantics, and the
observations that sequents have SW-semantics (see Sect. 4), and operators and binders
are monotonic (see Sect. 4.3). In particular, we have shown how to apply conditional
rewrite rules to the arguments of binders, which is currently not supported in Rodin.
Our work on semantics has also helped us to spot inconsistency bugs in earlier ver-
sions of Rodin’s theorem prover and identify dispensable preconditions of rewrite rules
(see [21]).

To understand the practical impact of directed rewriting, we have analyzed the di-
rected rewrite rules implemented by Rodin (see Sect. 4.5). Our conclusion is that di-
rected rewriting makes a significant number of conditional rewrite rules unconditional
and thus constitutes an important optimization. Directed rewriting is unsafe it general:
it may transform a valid sequent into an invalid one during a backwards proof. This
unsafety can however be easily avoided, for reasons explained in Sect. 4.4.

Monotonicity is an important prerequisite for soundness of directed rewriting, but
a disturbing restriction when reasoning about soundness of rewrite rules. In Sect. 5

Term Rewriting in Logics of Partial Functions 649

we have shown how to express soundness proof obligations for a practically important
class of rewrite rules using only monotonic operators and binders. In particular, we have
pointed out how to overcome limitations of Rodin concerning rules that contain boolean
connectives or binders.

We are currently integrating Isabelle as an automated theorem prover into Rodin4.
Our logical embedding of Event-B’s logic into HOL serves as a basis. This Isabelle
based theorem prover already provides a restricted version of directed rewriting.

Acknowledgements. The author would like to thank several people for their helpful
feedback on preliminary versions of this paper: David Basin, Andreas Fürst, Matus
Harvan, Thai Son Hoang, Felix Klaedtke, Ognjen Maric, Simon Meier, Patrick Schaller,
Benedikt Schmidt, and Laurent Voisin. The author is also grateful for the numerous
useful suggestions of the anonymous reviewers.

References

1. Abrial, J.R.: Modeling in Event-B, Cambridge (2010)
2. Abrial, J.R., Butler, M.J., Hallerstede, S., Hoang, T.S., Mehta, F., Voisin, L.: Rodin: an open

toolset for modelling and reasoning in Event-B. STTT 12(6), 447–466 (2010)
3. Andrews, P.B.: An Introduction to Mathematical Logic and Type Theory. Kluwer, Dordrecht

(2002)
4. Barringer, H., Cheng, J.H., Jones, C.B.: A logic covering undefinedness in program proofs.

Acta Inf. 21, 251–269 (1984)
5. Butler, M., Maamria, I.: Mathematical extension in Event-B through the Rodin theory com-

ponent (2010), http://deploy-eprints.ecs.soton.ac.uk/251
6. Darvas, Á., Mehta, F., Rudich, A.: Efficient well-definedness checking. In: Armando, A.,

Baumgartner, P., Dowek, G. (eds.) IJCAR 2008. LNCS (LNAI), vol. 5195, pp. 100–115.
Springer, Heidelberg (2008)

7. Dawson, J.E.: Simulating term-rewriting in LPF and in display logic. In: Supplementary
Proc. of TPHOLs, pp. 47–62. Australian National University (1998)

8. Gordon, M.J.C., Melham, T.F.: Introduction to HOL, Cambridge (1993)
9. Hindley, J.R., Seldin, J.P.: Lambda-Calculus and Combinators, Cambridge (2008)

10. Jones, C.B., Middelburg, C.A.: A typed logic of partial functions reconstructed classically.
Acta Inf. 31(5), 399–430 (1994)

11. Maamria, I., Butler, M.: Rewriting and well-definedness within a proof system. In: PAR.
EPTCS, vol. 43, pp. 49–64 (2010)

12. Mehta, F.: A practical approach to partiality – A proof based approach. In: Liu, S., Araki, K.
(eds.) ICFEM 2008. LNCS, vol. 5256, pp. 238–257. Springer, Heidelberg (2008)

13. Metayer, C., Voisin, L.: The Event-B mathematical language (2009),
http://deploy-eprints.ecs.soton.ac.uk/11

14. Nipkow, T.: Term rewriting and beyond - theorem proving in isabelle. Formal Asp. Com-
put. 1(4), 320–338 (1989)

15. Nipkow, T., Paulson, L.C., Wenzel, M.T.: Isabelle/HOL - A Proof Assistant for Higher-Order
Logic. LNCS, vol. 2283. Springer, Heidelberg (2002)

16. Owe, O.: Partial logics reconsidered: A conservative approach. Formal Asp. Comput. 5(3),
208–223 (1993)

4 http://wiki.event-b.org/index.php/Export_to_Isabelle

http://deploy-eprints.ecs.soton.ac.uk/251
http://deploy-eprints.ecs.soton.ac.uk/11
http://wiki.event-b.org/index.php/Export_to_Isabelle

650 M. Schmalz

17. Owre, S., Shankar, N.: The formal semantics of PVS (1999),
http://pvs.csl.sri.com/papers/csl-97-2/csl-97-2.ps

18. Paulson, L.C.: Logic and Computation: Interactive Proof with Cambridge LCF, Cambridge
(1987)

19. Paulson, L.C.: The foundation of a generic theorem prover. J. Autom. Reasoning 5(3), 363–
397 (1989)

20. Schmalz, M.: The logic of Event-B (2011),
ftp://ftp.inf.ethz.ch/pub/publications/tech-reports/
6xx/698.pdf

21. Schmalz, M.: Term rewriting in logics of partial functions (2011),
ftp://ftp.inf.ethz.ch/pub/publications/tech-reports/7xx/
732.pdf

22. Shankar, N., Owre, S., Rushby, J.M., Stringer-Calvert, D.W.J.: PVS prover guide (2001),
http://pvs.csl.sri.com/doc/pvs-prover-guide.pdf

23. Silva, R., Butler, M.: Supporting reuse of Event-B developments through generic instantia-
tion. In: Breitman, K., Cavalcanti, A. (eds.) ICFEM 2009. LNCS, vol. 5885, pp. 466–484.
Springer, Heidelberg (2009)

24. Wenzel, M.: Type classes and overloading in higher-order logic. In: Gunter, E.L., Felty, A.P.
(eds.) TPHOLs 1997. LNCS, vol. 1275, pp. 307–322. Springer, Heidelberg (1997)

http://pvs.csl.sri.com/papers/csl-97-2/csl-97-2.ps
ftp://ftp.inf.ethz.ch/pub/publications/tech-reports/6xx/698.pdf
ftp://ftp.inf.ethz.ch/pub/publications/tech-reports/6xx/698.pdf
ftp://ftp.inf.ethz.ch/pub/publications/tech-reports/7xx/732.pdf
ftp://ftp.inf.ethz.ch/pub/publications/tech-reports/7xx/732.pdf
http://pvs.csl.sri.com/doc/pvs-prover-guide.pdf

Synchronous AADL and Its Formal Analysis in

Real-Time Maude

Kyungmin Bae1 and Peter Csaba Ölveczky2, Abdullah Al-Nayeem1,
and José Meseguer1

1 University of Illinois at Urbana-Champaign
2 University of Oslo

Abstract. Distributed Real-Time Systems (DRTS), such as avionics
systems and distributed control systems in motor vehicles, are very hard
to design because of asynchronous communication, network delays, and
clock skews. Furthermore, their model checking problem typically be-
comes unfeasible due to the large state spaces caused by the interleavings.
For many DRTSs, we can use the PALS methodology to reduce the prob-
lem of designing and verifying asynchronous DRTSs to the much simpler
task of designing and verifying their synchronous versions. AADL is an
industrial modeling standard for avionics and automotive systems. We
define in this paper the Synchronous AADL language for modeling syn-
chronous real-time systems in AADL, and provide a formal semantics
for Synchronous AADL in Real-Time Maude. We have integrated into
the OSATE modeling environment for AADL a plug-in which allows us
to model check Synchronous AADL models in Real-Time Maude within
OSATE. We exemplify such verification on an avionics system, whose
Synchronous AADL design can be model checked in less than 10 sec-
onds, but whose asynchronous design cannot be feasibly model checked.

1 Introduction

Many real-time systems are distributed due to physical and fault-tolerance re-
quirements. Designing, implementing, and verifying such systems is very difficult
and costly. Due to their asynchrony, clock skews, and message delays, such sys-
tems may experience race conditions and violations of their safety properties
that can be very difficult to uncover by testing. Automated formal verification
by model checking is also unfeasible in practice, since, due to asynchrony, there
are too many interleavings, leading to a veritable combinatorial explosion.

The above remarks apply to the verification of both designs and code. Since
design errors are much more expensive than coding errors, there is general agree-
ment that system verification should first be carried out at the level of designs by
verifying the model representing a system design. For real-time systems such as
avionics and automative systems the AADL modeling language [16] is a widely
used industrial standard. To make formal verification of AADL models possible
two key problems have to be solved. The first problem is to have a formal seman-
tics of AADL models, since without such a semantics there is no mathematical

S. Qin and Z. Qiu (Eds.): ICFEM 2011, LNCS 6991, pp. 651–667, 2011.
c© Springer-Verlag Berlin Heidelberg 2011

652 K. Bae et al.

model satisfying any properties. We have addressed this problem by providing
a formal semantics in rewriting logic for a behavioral fragment of AADL [14],
and other researchers have carried our related efforts [3,4,5,9,14]. The second
problem is the one mentioned above: since AADL models have components that
interact asynchronously with each other, their automatic model checking veri-
fication becomes unfeasible even for simple models. The key point is that the
inherent difficulties of verifying a distributed real-time system (DRTS) do not
disappear at the level of models: they are common to both models and code.

To reduce the difficulties of designing and verifying DRTSs, we and other
colleagues at Rockwell-Collins and UIUC have proposed the PALS transforma-
tion [1,11,17]. The key idea behind PALS is that the intended behavior of many
DRTSs is that they should be virtually synchronous. That is, conceptually there
is a logical period during which all components perform a transition and send
data to each other. The PALS transformation (summarized in Section 2) achieves
this virtual synchrony by reducing the design and verification of a DRTS of this
nature to that of a much simpler semantically equivalent synchronous one [11].

Our Approach and Contributions. Our approach to verifying in practice
AADL models that are distributed but virtually synchronous is based on the
following ideas and contributions: (i) to specify a fragment of AADL called Syn-
chronous AADL in which synchronous models can be defined (Section 3); (ii) to
define a formal synchronous semantics for this subset (Section 5); (iii) to em-
body this semantics in a tool called SynchAADL2Maude (Section 8), which is
an OSATE plugin and maps models in Synchronous AADL to rewrite theories
in Real-Time Maude, where such models can be simulated and verified by model
checking (Section 6); (iv) to illustrate the effectiveness of the approach by mod-
eling in Synchronous AADL and verifying in SynchAADL2Maude an avionics
example that we could not verify in its asynchronous version: the requirements
for this example can now be verified in 10 seconds or less (Section 7).

Using the PALS transformation it is then possible to transform a Synchronous
AADL model into a correct-by-construction asynchronous one [1]. The usefulness
of our work is not restricted to PALS: it can be exploited by similar transfor-
mations relating synchronous and asynchronous systems for other distributed
real-time architectures, such as the time-triggered architecture [10].

The huge state space reduction from the verification of an asynchronous sys-
tem to that of its synchronous counterpart is not specific to AADL models: for
the avionics example in Section 4 a similar reduction was reported by Darren
Cofer and Steven Miller in [13] using SMV models. We conducted an experi-
ment modeling the same example directly in Real-Time Maude: the number of
states of the synchronous system was 185, and all properties were verified in
0.8 seconds or less, but the simplest possible asynchronous model (no network
delays, no execution time, no clock skews) had 3,047,832 states [11]. Although
it was possible to verify a property of the asynchronous system in 2000 seconds,
as soon as a one-unit delay was possible for messages, model checking became
impossible. What this work achieves is to make such a huge reduction possible
for AADL models to support their automatic model checking verification.

Synchronous AADL and Its Formal Analysis in Real-Time Maude 653

2 Preliminaries on AADL, Real-Time Maude, and PALS

AADL. The Architecture Analysis & Design Language (AADL) [16] is an in-
dustrial modeling standard used in avionics, aerospace, automotive, medical de-
vices, and robotics communities to describe an embedded real-time system as an
assembly of software components mapped onto an execution platform.

An AADL model describes a system of hardware and software components.
Software components include threads that model the application software to
be executed. Thread behavior is described using the behavior annex [8], which
models thread behaviors as transition systems with local state variables. The
OSATE modeling environment provides a set of Eclipse plug-ins for AADL. The
current stable version 1.5.8 of OSATE, that also supports the behavior annex,
supports version 1 of the AADL standard; therefore, the language Synchronous
AADL defined in this paper is also based on version 1 of AADL.

In the software component subset of AADL that is the focus of this paper, a
component type specifies the component’s interface and properties, and a com-
ponent implementation specifies the internal structure of the component as a set
of subcomponents and a set of connections linking their ports. System compo-
nents are the top level components, and a set of thread components define their
dynamic behaviors. Components may have properties describing its parameters
and other information. The dispatch protocol of a thread determines when the
thread is executed. For example, a periodic thread is activated at fixed time
intervals, and an aperiodic thread is activated when it receives an event.

Thread behavior is defined by guarded state transitions. The actions per-
formed when a transition is applied may update local variables, generate new
outputs, and/or suspend the thread. Actions are built from basic actions using
sequencing, conditionals, and finite loops. When a thread is activated, an en-
abled transition is applied; if the resulting state is not a complete state, another
transition is applied, until a complete state is reached (or the thread suspends).

Real-Time Maude. A Real-Time Maude [15] timed module specifies a real-
time rewrite theory of the form (Σ, E, IR,TR), where:

– (Σ, E) is a membership equational logic [6] theory with Σ a signature1 and
E a set of confluent and terminating conditional equations. (Σ, E) specifies
the system’s states as an algebraic data type.

– IR is a set of (possibly conditional) labeled instantaneous rewrite rules spec-
ifying the system’s instantaneous (i.e., zero-time) local transitions.2

– TR is a set of tick rewrite rules of the form crl [l] : {u} => {v} in time
τ if cond. Such a rule specifies a transition with duration τ and label l from
an instance of the term u to the corresponding instance of the term v.

1 i.e., Σ is a set of declarations of sorts, subsorts, and function symbols.
2 E is a union E′∪A, where A is a set of equational axioms such as associativity, com-

mutativity, and identity, so that deduction is performed modulo A. Operationally, a
term is reduced to its E′-normal form modulo A before any rewrite rule is applied.

654 K. Bae et al.

The Real-Time Maude syntax is fairly intuitive (see [6]). A function symbol f
is declared with the syntax op f : s1 . . . sn -> s, where s1 . . . sn are the sorts
of its arguments, and s is its (value) sort. Equations are written with syntax eq
u = v, and ceq u = v if cond for conditional equations.

A class declaration class C | att1 : s1, . . . , attn : sn declares a class C
with attributes att1 to attn of sorts s1 to sn. An object of class C is represented
as a term < O : C | att1 : val1, ..., attn : valn > where O is the object’s identifier,
and where val1 to valn are the current values of the attributes att1 to attn. The
global state has the form {t}, where t is a term of sort Configuration that has
the structure of a multiset of objects and messages, with multiset union denoted
by a juxtaposition operator that is declared associative and commutative, so
that rewriting is multiset rewriting supported in Real-Time Maude. A subclass
inherits all the attributes and rules of its superclasses.

A Real-Time Maude specification is executable, and the tool offers a variety
of formal analysis methods. The rewrite command simulates one behavior of the
system, starting with a given initial state. The search command uses a breadth-
first strategy to analyze all possible behaviors of the system from an initial state,
by checking whether a state matching a pattern and satisfying a condition can
be reached from the initial state. Real-Time Maude’s linear temporal logic model
checker checks whether each behavior from an initial state, possibly up to a
time bound, satisfies a linear temporal logic formula. State propositions, possibly
parametrized, are operators of sort Prop. A temporal logic formula is constructed
by state propositions and temporal logic operators such as True, ~ (negation),
/\, \/, -> (implication), [] (“always”), <> (“eventually”), U (“until”), and O
(“next”). The command (mc t |=u ϕ .) then checks whether the temporal
logic formula ϕ holds in all behaviors starting from the initial state t.

PALS. In many systems targeted by AADL, such as avionics systems and dis-
tributed control systems in motor vehicles, the system design is essentially a
synchronous design that must be realized in a distributed setting. The design
and verification of such distributed real-time systems is a challenging and error-
prone task because of asynchronous communication, network delays, clock skews,
and because the state space explosion caused by the system’s concurrency can
make it unfeasible to apply model checking to verify required properties.

The key idea of the PALS architectural pattern [1,11,13] is to reduce the de-
sign and verification of a distributed real-time system to that of its much simpler
synchronous version when the network infrastructure guarantees bounds on the
messaging delays and the skews of the local clocks. For a synchronous design
SD and network bounds Γ , PALS defines the corresponding asynchronous dis-
tributed design PALS(SD , Γ). In [12] we formalize PALS and prove that the typ-
ically unfeasible task of model checking the asynchronous design PALS (SD , Γ)
reduces to the feasible task of model checking the synchronous design SD .

The systems we target consist of components that communicate asynchronous-
ly and must change state and respond to environment inputs within hard real-
time bounds. A synchronous PALS model is therefore formalized as the

Synchronous AADL and Its Formal Analysis in Real-Time Maude 655

synchronous composition of a collection of deterministic typed machines, a non-
deterministic environment, and a wiring diagram that connects the machines:

Definition 1. A typed machine M = (Di, S, Do, δM) consists of:

– Di, called the input set, a nonempty set of the form Di = Di1 × · · · ×Din ,
– S, a nonempty set, called the set of states.
– Do, called the output set, a nonempty set of the form Do = Do1×· · ·×Dom,
– δM , called the transition function, a function δM : (Di × S) → (S ×Do).

That is, a machine has n input ports and m output ports; an input to port k is
an element of Dik

, and an output from port j is an element of Doj .

M1

M3

M2

Fig. 1. A machine ensemble

Typed machines can be “wired together” into a machine ensemble by means of
a “wiring diagram,” as shown in Fig. 1. An ensemble has a synchronous seman-
tics : all machines perform a transition simultaneously, and whenever a machine
has a feedback wire to itself and/or to any other machine, then the corresponding
output becomes an input for any such machine at the next step. We assume an
environment where the constraints on the values generated by the environment
can be defined as a satisfiable predicate ce : De

o → Bool so that ce(d1, . . . , dme)
is true if and only if the environment can generate output (d1, . . . , dme). We
refer to [11] for the formal definition of the synchronous system.

3 Synchronous AADL

This section defines the Synchronous AADL language that can be used to model
synchronous designs in AADL, including both synchronous PALS designs and
other synchronous designs that can be mapped onto different distributed real-
time architectures, such as the time-triggered architecture [10].

We have defined Synchronous AADL as an annotated sublanguage of AADL,
in which the execution of each thread in each “round” is independent of the
other threads, and where output generated by a thread in a round is available
as input at the receiving thread exactly at the beginning at the next “round.”
In AADL, such threads would be executed asynchronously. However, since the
threads are independent of each other in each round, the “final” states in each
round are the same in both any asynchronous execution and in a synchronous

656 K. Bae et al.

execution. Therefore, all AADL constructs in the subset have the same meaning
in AADL and Synchronous AADL. Synchronous AADL also adds a property set
SynchAADL to declare Synchronous AADL-specific properties as explained below.

Since Synchronous AADL is intended to model synchronous designs, as op-
posed to asynchronous implementations, it ignores the hardware and scheduling
features of AADL. Synchronous AADL therefore focuses on the behavioral and
structural subset of AADL, namely, hierarchical system, process, and thread
components, ports and connections, and thread behaviors defined in the behav-
ior annex standard. We next discuss the definition of Synchronous AADL.

Dispatch. The dispatch protocol is used to trigger an execution of an AADL
thread. A periodic thread is dispatched at the beginning of each new time pe-
riod of the thread. In aperiodic, sporadic, timed, and hybrid dispatch, a thread
is dispatched when it receives an event. Such event-triggered dispatch is not
suitable to define a system in which all threads (with a possible exception for
the environment thread) should execute in lock-step, since the sending thread
triggers the execution of the receiving thread, which would read in its ith round
the output generated by the sender in the same round. Therefore, each thread
must have periodic dispatch; furthermore, since each thread must execute in each
round, the period of all the threads must be the same.

Communication. There are three kinds of ports in AADL: data, event, and event
data ports. Event and event data ports can be used to dispatch event-triggered
threads. To have only AADL constructs that define “synchronous behaviors,” the
communication primitives must ensure that all output generated in an iteration
is available to the receiver at the beginning of the next iteration, and not earlier.

Version 1 of AADL has two kinds of data connections: immediate and delayed
connections. For threads with the same dispatch time, the source of an imme-
diate connection must execute before the destination thread, which violates the
intended “lock-step” semantics. For a delayed connection, the value from the
sender is transmitted at its deadline and is available to the receiver at its next
dispatch. In our setting, where all threads have periodic dispatch with the same
period, the output generated in an iteration is therefore available at the start
of the next iteration. Since only data ports have delayed connections, and since
event-triggered dispatches are excluded, only data ports are used in Synchronous
AADL, and connections between non-environment threads must be delayed.

Execution Times. Since the components execute in lock-step, it is natural to
assume that they use the same time to perform their execution. For simplic-
ity, and since the PALS synchronous model is untimed, we assume that thread
executions are instantaneous.

Deterministic Threads. In the systems targeted by PALS and Synchronous
AADL, the nodes that communicate with the environment are invariably deter-
ministic. We therefore assume that the transition system defining the behavior
of a non-environment thread is deterministic, and that each such thread has the
property SynchAADL::Deterministic => true.

Synchronous AADL and Its Formal Analysis in Real-Time Maude 657

Environment Thread. In PALS, the environment thread generates output non-
deterministically in each iteration. The possible outputs can often be defined by
an environment constraint ce so that ce(o) is true if and only if the environ-
ment can nondeterministically generate output o in any iteration. The property
SynchAADL::IsEnvironment => true denotes that the thread is an environ-
ment thread, and SynchAADL::InputConstraints => ("Boolean formula")
defines an input constraint on a set of Boolean-valued outputs. We assume that
a Synchronous AADL system has at most one environment thread.

It seems natural to regard the system as responding to the current envi-
ronment output. We therefore support only immediate connections from the
environment. According to the AADL semantics, this forces the environment to
execute before the other nodes in each round.

Declaring Synchronous Systems. The top-level system component declares the
entire system to execute synchronously by declaring SynchAADL::Synchronous
=> true. The period of the system can be declared by SynchAADL::SynchPeriod
=> p. A Synchronous AADL model defines a synchronous machine ensemble in
the obvious way, as explained in [2].

4 An Avionics Example

We exemplify Synchronous AADL with fragments of a model of an avionics
system based on a specification by Steve Miller and Darren Cofer at Rockwell-
Collins [13]. A full description of this model is given in [2].

In integrated modular avionics (IMA), a cabinet is a chassis with a power
supply, internal bus, and general purpose computing, I/O, and memory cards.
Aircraft applications are implemented using the resources in the cabinets. There
are always two or more physically separated cabinets on the aircraft so that
physical damage does not take out the computer system. The active standby
system considers the case of two cabinets and focuses on the logic for decid-
ing which side is active. Each side can fail, and a failed side can recover after
failure. In case one side fails, the non-failed side should be the active side. In
addition, the pilot can toggle the active status of the sides. The full functional-
ity of each side depends on the two sides’ perception of the availability of other
system components. The architecture of the system is shown in Figure 2. Each
time Environment dispatches, it nondeterministically sends 5 Boolean values, one
through each ports, so that two sides cannot fail at the same time. Therefore, in
each round, the environment can send any one of 24 different 5-tuples.

The Synchronous AADL Model. The following top-level system implementation
declares the architecture of the system, with the three subcomponents sideOne,
sideTwo, and env, and with immediate data connections (denoted by the arrow
‘->’) from the environment to the two sides, and with delayed data connections
(‘->>’) between the two sides (parts of the model are replaced by ‘...’):

658 K. Bae et al.

Fig. 2. The architecture of the active standby system

system implementation ActiveStandbySystem.impl

properties

SynchAADL::Synchronous => true; SynchAADL::SynchPeriod => 2 ms;

subcomponents

sideOne: system Side1.impl; sideTwo: system Side2.impl; env: system Environment.impl;

connections

data port sideOne.side1ActiveSide ->> sideTwo.side1ActiveSide;

data port sideTwo.side2ActiveSide ->> sideOne.side2ActiveSide;

data port env.side1FullyAvail -> sideOne.side1FullyAvail;

data port env.side1FullyAvail -> sideTwo.side1FullyAvail;

...

end ActiveStandbySystem.impl;

We do not show the definition of the system env, which contains an instance of
the following thread component defining the environment:

thread EnvironmentThread

features

side1FullyAvail: out data port Behavior::boolean;

side2FullyAvail: out data port Behavior::boolean;

manualSelection: out data port Behavior::boolean;

side1Failed: out data port Behavior::boolean;

side2Failed: out data port Behavior::boolean;

end EnvironmentThread;

thread implementation EnvironmentThread.impl

properties

SynchAADL::InputConstraints => ("not (s1F and s2F)"); SynchAADL::IsEnvironment => true;

Dispatch_Protocol => Periodic; Period => 2 ms;

annex behavior_specification {**

states s0 : initial complete state;

state variables

s1FA: Behavior::boolean; s2FA: Behavior::boolean; mS: Behavior::boolean;

s1F: Behavior::boolean; s2F: Behavior::boolean;

transitions

s0 -[]-> s0 {side1FullyAvail := s1FA; side2FullyAvail := s2FA;

manualSelection := mS; side1Failed := s1F; side2Failed := s2F;};

**};

end EnvironmentThread.impl;

Synchronous AADL and Its Formal Analysis in Real-Time Maude 659

The environment has a single transition, that sends the values of the state vari-
ables s1FA, s2FA, mS, s1F, and s2F to the corresponding output ports. These
variables can be assigned any values that satisfy the constraint not (s1F and
s2F) that states that side 1 and side 2 cannot both fail at the same time.

The following component defines the behavior of side 1:

thread Side1Thread

features

side2ActiveSide: in data port Behavior::integer;

manualSelection: in data port Behavior::boolean;

side1Failed: in data port Behavior::boolean;

side1FullyAvail: in data port Behavior::boolean;

side2FullyAvail: in data port Behavior::boolean;

side1ActiveSide: out data port Behavior::integer;

end Side1Thread;

thread implementation Side1Thread.impl

properties

SynchAADL::Deterministic => true; Dispatch_Protocol => Periodic; Period => 2 ms;

annex behavior_specification {**

states preInit: initial complete state;

initState, side1FailedState, side2FailedState, side1WaitState, side1ActiveState,

side2ActiveState: complete state;

state variables

prevSide2ActiveStatus: Behavior::integer; prevManSwitch: Behavior::boolean;

initially prevSide2ActiveStatus := 0; prevManSwitch := false;

transitions

...

side2ActiveState -[side1Failed = false and side2ActiveSide != 0 and

side1FullyAvail = true and ((prevManSwitch = false and

manualSelection = true) or

side2FullyAvail = false)]-> side1ActiveState

{side1ActiveSide := 1; prevSide2ActiveStatus := side2ActiveSide;

prevManSwitch := manualSelection;};

...

**};

end Side1Thread.impl;

We show only one of the 20 transitions in this thread. The transition takes
the thread from state side2ActiveState to state side1ActiveState if the in-
put received in the side1Failed port is false, the value received in the port
side2ActiveSide is different from 0, etc. As a result of applying the transition,
the value 1 is sent through the output port side1ActiveSide, and the local
variables prevSide2ActiveStatus and prevManSwitch are assigned the values
received in the ports side2ActiveSide and manualSelection, respectively.

5 Real-Time Maude Semantics of Synchronous AADL

This section summarizes the Real-Time Maude semantics of Synchronous AADL.
The entire formal semantics of Synchronous AADL is given in [2].

Representing Synchronous AADL Models in Real-Time Maude. The
semantics of a component-based language can naturally be defined in an object-
oriented style, where each component instance is modeled as an object. The hi-
erarchical structure of Synchronous AADL components is reflected in the nested

660 K. Bae et al.

structure of objects, in which an attribute of an object contains its subcompo-
nents as a multiset of objects. Any Synchronous AADL component instance is
represented as an object instance of a subclass of the following class Component,
which contains the attributes common to all kinds of components:

class Component | features : Configuration, subcomponents : Configuration,

properties : Properties, connections : ConnectionSet .

The attribute features denotes the ports of a component, represented as a mul-
tiset of Port objects; subcomponents denotes the subcomponents of the object;
properties denotes its properties ; and connections denotes its connections.

The Thread class is declared as follows:

class Thread | behaviorRef : ComponentRef, variables : Valuation,

currState : Location, completeStates : LocationSet .

subclass Thread < Component .

Since the term representing the transitions of a thread can be fairly large, we
do not carry them around in the objects. Instead, a memo-ized (see [6]) func-
tion transitions : ComponentRef ~> TransitionSet contains the transitions
of each thread component, represented as a semi-colon-separated multiset of
transitions of the form s -[guard]-> s′ {actions}. The attribute behaviorRef
denotes the component of the thread; variables denotes its local variables and
their values; currState denotes the current “state” of the transition system;
and completeStates denotes its complete states.

Data ports are represented as objects of subclasses of the class Port, whose
content attribute denotes the content of the port, which is either noMsg (the
port buffer is empty) or contains a data element e, in which case the content is
data(e). Thread input ports also have a flag fresh, denoting whether the port
received data in the latest dispatch.

class Port | content : MsgContent . class InDataPort . class OutDataPort .

subclass InDataPort OutDataPort < Port .

class InDataThreadPort | fresh : Bool .

subclass InDataThreadPort < InDataPort .

sort MsgContent .

op noMsg : -> MsgContent [ctor] .

op data : Bool -> MsgContent [ctor] .

op data : Int -> MsgContent [ctor] .

A level-up connection, linking an outgoing port P in a subcomponent C to the
outgoing port P ′ in the “current” component, is modeled as a term C.P -->P ′.
Immediate same-level and level-down connections are terms of the forms, respec-
tively, C1.P1 -->C2.P2 and P -->C.P ′. Delayed connections are denoted with
the arrow -->>. A connection set is a semi-colon-separated set of connections.

For example, in our avionics example, an instance of the top-level system
component in Section 4 would be represented in Real-Time Maude by the term

Synchronous AADL and Its Formal Analysis in Real-Time Maude 661

< MAIN : System | features : none, properties : Synchronous(true) ; SynchPeriod(2),

subcomponents : < sideOne : System | ... > < sideTwo : System | ... >

< env : System | ... >,

connections : sideOne . side1ActiveSide -->> sideTwo . side1ActiveSide ;

sideTwo . side2ActiveSide -->> sideOne . side2ActiveSide ;

env . side1FullyAvail --> sideOne . side1FullyAvail ;

...

env . side2Failed --> sideTwo . side2Failed >

The instance side1Thread of the component Side1Thread.impl in a particular
state is represented by the term

< side1Thread : Thread |

features : < side2ActiveSide : InDataThreadPort | content : data(2), fresh : true >

< manualSelection : InDataThreadPort | content : data(false), fresh : true >

...

< side1ActiveSide : OutDataPort | content : data(0) >,

subcomponents : none, properties : periodic-dispatch(2) ; Deterministic(true),

connections : none, behaviorRef : thread Side1Thread . impl,

variables : (prevSide2ActiveStatus |-> 2) (prevManualSwitch |-> false),

currState : side1FailedState,

completeStates : preinit initState side1FailedState ... side2ActiveState >

Formalizing the Synchronous Steps. Assuming that the system contains one
environment thread and that the other threads are deterministic, a synchronous
step of the system is formalized by the following tick rewrite rule:

var SYSTEM : Object . var VAL : Valuation . var VALS : ValuationSet .

crl [syncStepWithTime] :

{SYSTEM}

=> {applyTransitions(transferData(applyEnvTransitions(VAL, SYSTEM)))}

in time period(SYSTEM)

if containsEnvironment(SYSTEM) /\ VAL ;; VALS := allEnvAssignments(SYSTEM).

The function allEnvAssignments uses Maude’s SAT solver to find all val-
uations of the Boolean variables in the environment thread that satisfy the
environment constraint. The union operator _;;_ is declared to be associa-
tive and commutative; therefore, any of these valuations is nondeterministi-
cally assigned to the variable VAL in the matching condition VAL ;; VALS :=
allEnvAssignments(SYSTEM). The function applyEnvTransitions then per-
forms the environment transition that outputs the values of the variables given
by the selected valuation VAL. The function transferData then transfers the
data from the output ports to the receiving input ports and then clears the out-
put ports. Finally, the function applyTransitions applies transitions in each
non-environment thread until a complete state is reached in the thread. The
function period extracts the period of the system.

The function applyTrans, which distributes to the thread objects in the state,
is defined as follows for deterministic threads:

ceq applyTransitions(

< O : Thread | properties : Deterministic(true) ; PROPS,

662 K. Bae et al.

features : PORTS, currState : L1, completeStates : LS,

variables : VAL, behaviorRef : CR >)

= if L2 in LS then < O : Thread | features : NEW-PORTS, currState : L2,

variables : NEW-VALUATION >

else applyTransitions(< O : Thread | features: NEW-PORTS, currState : L2,

variables : NEW-VALUATION >) fi

if ((L1 -[GUARD]-> L2 {SL}) ; TRANSITIONS) := transitions(CR)

/\ evalGuard(GUARD, PORTS, VAL)

/\ transResult(NEW-PORTS, NEW-VALUATION) :=

executeTransition(L1 -[GUARD]-> L2 {SL}, PORTS, VAL) .

The thread is in local state L1, and a transition L1 -[GUARD]-> L2 {SL}, whose
GUARD evaluates to true in the current state and input port values, is applied
from the transitions in transitions(CR). The function executeTransition
executes a given transition in a state with a given set PORTS of ports and assign-
ment VAL of the state variables. The function returns a term transResult(p, σ),
where p is the state of the ports after the execution, and σ denotes the resulting
values of the state variables. If the resulting state L2 is not a complete state, the
function applyTransitions is applied again to the new state.

6 Formal Analysis of Synchronous AADL Models

The Real-Time Maude model that can be synthesized from a Synchronous AADL
model can be formally analyzed in different ways. This section presents some
functions allowing the user to define system properties for a Synchronous AADL
model without having to understand its formal representation. For example,

value of v in component fullComponentName in globalComponent

gives the value of the state variable v in the thread identified by the full com-
ponent name fullComponentName in the system in state globalComponent . The
full component name is a ->-separated path of component names. Likewise,

location of component fullComponentName in globalComponent

gives the current location/state in the transition system in the given thread.
In our example, if MAIN is the name of the top-level component, then the

following search command checks whether we can reach a state where the side
one thread is in state side1ActiveState and the side two thread is in state
side2ActiveState:

Maude> (utsearch [1] {initial} =>* {C:Configuration}

such that

((location of component (MAIN -> sideOne -> sideProcess -> sideThread)

in C:Configuration) == side1ActiveState

and (location of component (MAIN -> sideTwo -> sideProcess -> sideThread)

in C:Configuration) == side2ActiveState) .)

Synchronous AADL and Its Formal Analysis in Real-Time Maude 663

For LTL model checking purposes, our tool has useful pre-defined parametric
atomic propositions, such as full thread name @ location, which holds when the
thread is in state location, and

value of port/variable in component fullThreadName is v

that holds in a state if the value of the local variable or port of the thread is v.

7 Verifying the Active Standby System

This section shows how we have verified the Synchronous AADL model of the
active standby system in Section 4. That model, the synthesized Real-Time
Maude specification, and the properties we have verified for this example and
another avionics example are given in [2].

The paper [13] lists five properties that the avionics system must satisfy. We
explain how we have verified one of these properties (R1): Both sides should
agree on which side is active (provided neither side has failed, the availability of
a side has not changed, and the pilot has not made a manual selection).

Side i thinks that side j is active if it sends the number j to its output port
sideiActiveSide. Using the predefined proposition value of port in thread is
v, we can easily define the formula agreeOnActiveSide to hold when both sides
think that side 1 is active or when both sides think that side 2 is active:

op agreeOnActiveSide : -> Formula .

eq agreeOnActiveSide =

((value of side1ActiveSide in component (MAIN -> sideOne-> sideProcess-> sideThread) is 1)

/\ (value of side2ActiveSide in component (MAIN -> sideTwo-> sideProcess-> sideThread) is 1))

\/ ((value of side1ActiveSide in component (MAIN -> sideOne-> sideProcess-> sideThread) is 2)

/\ (value of side2ActiveSide in component (MAIN-> sideTwo -> sideProcess-> sideThread)is 2)).

Side i has failed if it has received the value true in its sideiFailed port:

ops side1Failed side2Failed neitherSideFailed : -> Formula .

eq side1Failed

= value of side1Failed in component (MAIN -> sideOne-> sideProcess-> sideThread) is true .

eq side2Failed

= value of side2Failed in component (MAIN -> sideTwo-> sideProcess-> sideThread) is true .

eq neitherSideFailed = (~ side1Failed) /\ (~ side2Failed) .

Likewise, the proposition sideiFullyAvailable holds if side i is fully available.
There is no change in availability if both sides are equally available in the current
state and in the next state:

op noChangeAvailability : -> Formula .

eq noChangeAvailability = (side1FullyAvailable <-> O side1FullyAvailable)

/\ (side2FullyAvailable <-> O side2FullyAvailable) .

We define a property that the pilot has made a manual selection, and then define
a formula that says that in the next state, the pilot has not made a manual
selection, the availability of a side has not changed, and neither side has failed:

664 K. Bae et al.

ops manSelectPressed noChangeAssumptionNextState : -> Formula .

eq manSelectPressed

= value of manualSelection in component (MAIN-> sideOne -> sideProcess-> sideThread) is true .

eq noChangeAssumptionNextState

= noChangeAvailability /\ (O ~ manSelectPressed) /\ (O neitherSideFailed) .

As explained in [12], the requirement R1 is not satisfied in the active standby
system; instead, we verify the following weaker property R1:
op R1 : -> Formula .

eq R1 = [] (noChangeAssumptionNextState

-> O (agreeOnActiveSide \/ O (neitherSideFailed -> agreeOnActiveSide))) .

We then use Real-Time Maude model checking to verify the property O R1:

Maude> (mc {initial} |=u O R1 .)

rewrites: 1211549 in 9698ms cpu (9918ms real) (124918 rewrites/second)

Result Bool : true

We have also verified that the Synchronous AADL model satisfies corrected
versions of all the five requirements; in each case, it takes less than 10 seconds.

8 The SynchAADL2Maude Tool

We have integrated the Real-Time Maude verification of Synchronous AADL
models into the Open Source AADL Tool Environment (OSATE). The Syn-
chAADL2Maude tool is an OSATE plug-in that uses OSATE’s model traversal
facility to support both checking whether a model is a legal Synchronous AADL
model and verifying Synchronous AADL models within OSATE.

When OSATE has generated an AADL instance model from an AADL spec-
ification, we can use the SynchAADL2Maude tool to: (i) check whether the
instance model is a Synchronous AADL model, (ii) generate the correspond-
ing Real-Time Maude model, and (iii) model check LTL properties of the in-
stance model. Figure 3 shows the SynchAADL2Maude window for the active
standby example. The Constraints Check button, the Code Generation but-
ton, and Do Verification button are used to perform, respectively, the static
analysis, the Real-Time Maude code generation, and the model checking. The
corrected versions of the active standby system requirements have been entered
into the tool, and are shown in the “AADL Property Requirement” table. The
Do Verification button has been clicked and the results of the model checking
are shown in the “Maude Console.”

The properties to be verified are managed by the associated XML property
file. For example, to add an LTL model checking command to verify the property
R1 in Section 7, we just add the following command tag to the property file:
<command>

<name>R1</name>

<value type = "ltl">

O [] (noChangeAssumptionNextState

-> O (agreeOnActiveSide \/ O (neitherSideFailed -> agreeOnActiveSide))) .

</value>

</command>

Synchronous AADL and Its Formal Analysis in Real-Time Maude 665

Fig. 3. SynchAADL2Maude window in OSATE

New formulas can be defined in the property file using the definition tag. For
example, the new constant side1Failed is defined as follows:

<definition>

<name>side1Failed</name>

<value>

value of side1Failed in component (MAIN -> sideOne -> sideProcess -> sideThread) is true

</value>

</definition>

9 Related Work

The paper [7] formalizes the AADL data port protocol in Event-B. Despite the
title of the paper, it does not define a synchronous subset of AADL and therefore
does not provide an executable formal semantics of any such subset. There exist
a number of formalizations and verification tools for different subsets of AADL
(see, e.g., [3,4,5,14]). These approaches target ordinary (asynchronous) AADL
models and do not define synchronous subsets of AADL. In [9], the behaviors of
single AADL threads are given by synchronous Lustre programs. Since [9] also
targets “standard” asynchronous AADL models, the authors show how asyn-
chronous computation can be encoded in a synchronous language. This encoding
does of course not reduce the state space of the asynchronous system.

Our work is motivated by the PALS pattern [1,11,13] that reduces the design
and verification of an asynchronous system to that of its synchronous version.

666 K. Bae et al.

There is a fair amount of work that relates synchronous and asynchronous models
in various ways; we refer to [12] for an extensive discussion on this topic.

10 Concluding Remarks

To the best of our knowledge the work we have presented is the first defining a
synchronous subset of AADL. Such a subset is essential to reduce the design and
verification complexity of distributed real-time systems that should operate in a
virtually synchronous way. The formal semantics of synchronous AADL models
we have provided is also essential for formal verification and is supported in
practice by the SynchAADL2Maude tool in a way that preserves the AADL
“look and feel” for users and minimizes the need for a detailed knowledge of
the underlying Real-Time Maude tool. In summary, our work makes possible in
practice the formal verification of asynchronous AADL models that are virtually
synchronous by supporting the definition and verification of their semantically
equivalent synchronous counterparts.

As usual much work remains ahead. One natural extension of the proposed
AADL subset and the SynchAADL2Maude tool is the simultaneous support of
synchronous subsystems with different periods and of additional AADL features.
Further experimentation and development of additional case studies will also be
important to improve the tool and its performance and to facilitate its use.

Acknowledgments. Our design of Synchronous AADL was inspired by our
previous work on PALS with Steve Miller and Darren Cofer at Rockwell-Collins
corporation, and Lui Sha at UIUC. We have also benefited from many discussions
on the design of Synchronous AADL with Lui Sha and Peter Feiler; and from
the feedback of the participants at several AADL meetings. We also thank the
anonymous reviewers for helpful comments on a previous version of this paper.
This work has been partially supported by the Boeing corporation under grant
C8088, by the National Science Foundation, including grants CNS 08-34709 and
CCF 09-05584, and by the Research Council of Norway, Rockwell Collins Inc.,
the Office of Naval Research, Lockheed Martin Corporation, and the Software
Engineering Institute.

References

1. Al-Nayeem, A., Sun, M., Qiu, X., Sha, L., Miller, S.P., Cofer, D.D.: A formal
architecture pattern for real-time distributed systems. In: Proc. RTSS 2009. IEEE,
Los Alamitos (2009)

2. Bae, K., Ölveczky, P.C., Al-Nayeem, A., Meseguer, J.: Synchronous AADL and its
formal analysis in Real-Time Maude. Department of Computer Science, University
of Illinois at Urbana-Champaign (2011), http://hdl.handle.net/2142/25091

3. Berthomieu, B., Bodeveix, J.P., Chaudet, C., Dal Zilio, S., Filali, M., Vernadat,
F.: Formal verification of AADL specifications in the topcased environment. In:
Kordon, F., Kermarrec, Y. (eds.) Ada-Europe 2009. LNCS, vol. 5570, pp. 207–221.
Springer, Heidelberg (2009)

http://hdl.handle.net/2142/25091

Synchronous AADL and Its Formal Analysis in Real-Time Maude 667

4. Bozzano, M., Cimatti, A., Katoen, J.P., Nguyen, V., Noll, T., Roveri, M., Wim-
mer, R.: A model checker for AADL. In: Touili, T., Cook, B., Jackson, P. (eds.)
CAV 2010. LNCS, vol. 6174, pp. 562–565. Springer, Heidelberg (2010)

5. Chkouri, M.Y., Robert, A., Bozga, M., Sifakis, J.: Translating AADL into BIP -
application to the verification of real-time systems. In: Chaudron, M.R.V. (ed.)
MODELS 2008. LNCS, vol. 5421, pp. 5–19. Springer, Heidelberg (2009)

6. Clavel, M., Durán, F., Eker, S., Lincoln, P., Mart́ı-Oliet, N., Bevilacqua, V., Tal-
cott, C.: All About Maude - A High-Performance Logical Framework. LNCS,
vol. 4350. Springer, Heidelberg (2007)

7. Filali, M., Lawall, J.: Development of a synchronous subset of AADL. In: Frappier,
M., Glässer, U., Khurshid, S., Laleau, R., Reeves, S. (eds.) ABZ 2010. LNCS,
vol. 5977, pp. 245–258. Springer, Heidelberg (2010)

8. França, R., Bodeveix, J.P., Filali, M., Rolland, J.F., Chemouil, D., Thomas, D.:
The AADL behaviour annex - experiments and roadmap. In: Proc. ICECCS 2007.
IEEE, Los Alamitos (2007)

9. Jahier, E., Halbwachs, N., Raymond, P., Nicollin, X., Lesens, D.: Virtual execution
of AADL models via a translation into synchronous programs. In: Proc. EMSOFT
2007. ACM, New York (2007)

10. Kopetz, H., Bauer, G.: The time-triggered architecture. Proc. of the IEEE 93(1)
(2003)

11. Meseguer, J., Ölveczky, P.C.: Formalization and correctness of the PALS archi-
tectural pattern for distributed real-time systems. In: Dong, J.S., Zhu, H. (eds.)
ICFEM 2010. LNCS, vol. 6447, pp. 303–320. Springer, Heidelberg (2010)

12. Meseguer, J., Ölveczky, P.: Formalization and correctness of the PALS ar-
chitectural pattern for distributed real-time systems. Tech. rep., Department
of Computer Science, University of Illinois at Urbana-Champaign (2010),
http://hdl.handle.net/2142/17089

13. Miller, S.P., Cofer, D.D., Sha, L., Meseguer, J., Al-Nayeem, A.: Implementing
logical synchrony in integrated modular avionics. In: Proc. DASC 2009. IEEE, Los
Alamitos (2009)

14. Ölveczky, P.C., Boronat, A., Meseguer, J.: Formal semantics and analysis of behav-
ioral AADL models in real-time maude. In: Hatcliff, J., Zucca, E. (eds.) FMOODS
2010. LNCS, vol. 6117, pp. 47–62. Springer, Heidelberg (2010)

15. Ölveczky, P.C., Meseguer, J.: Semantics and pragmatics of Real-Time Maude.
Higher-Order and Symbolic Computation 20(1-2), 161–196 (2007)

16. SAE AADL Team: AADL homepage (2009), http://www.aadl.info/
17. Sha, L., Al-Nayeem, A., Sun, M., Meseguer, J., Ölveczky, P.: PALS: Physically

asynchronous logically synchronous systems. Tech. rep., Department of Computer
Science, University of Illinois at Urbana-Champaign (2009),
http://hdl.handle.net/2142/11897

http://hdl.handle.net/2142/17089
http://www.aadl.info/
http://hdl.handle.net/2142/11897

Author Index

Abdelhalim, Islam 33
Abid, Mohamed 388
Abrial, Jean-Raymond 437, 456
Albertengo, Pablo 601
Al-Nayeem, Abdullah 651
Avram, Vladimir 211

Bae, Kyungmin 651
Battle, Nick 179
Bollin, Andreas 66
Boström, Pontus 291
Bryans, Jeremy W. 553

Cavalcanti, Ana 49
Cortesi, Agostino 505
Costantini, Giulia 505
Cristiá, Maximiliano 601

Dong, Jin Song 98, 147, 372, 537
Duan, Zhenhua 82

Eder, Kerstin 585
Elleuch, Maissa 388

Farahbod, Roozbeh 211
Ferrara, Pietro 505
Frydman, Claudia 601

Gao, Ping 307
Gast, Holger 489
Glässer, Uwe 211
Gmehlich, Rainer 195
Goltz, Ursula 16
Grau, Katrin 195
Grijo, Luiz 323
Gu, Ming 115
Gu, Yu 372
Guitouni, Adel 211
Guttmann, Walter 617

Hallerstede, Stefan 195, 569
Hasan, Osman 388
Hilscher, Martin 404
Hoang, Thai Son 456

Hollmann, Diego 601
Huang, Runlei 437

Idani, Akram 259
Iliasov, Alexei 420
Ireland, Andrew 275

Jesus, Joabe 323
Jiang, Yu 115
Jifeng, He 1

Khakpour, Narges 16
Khoo, Siau-Cheng 472
Khurshid, Sarfraz 340
Koleini, Masoud 243

Laibinis, Linas 420
Larsen, Peter Gorm 179
Lausdahl, Kenneth 179
Ledru, Yves 259
Leite, João 131
Leuschel, Michael 195
Li, Xiaohong 147
Linker, Sven 404
Liu, Shaoying 163
Liu, Yang 98, 147, 372, 537
Loos, Sarah M. 356
Lösch, Felix 195

Maclean, Ewen 275
Martins, João G. 131
May, David 585
Meseguer, José 651
Mo, Dapeng 82
Mota, Alexandre 323

Nguyen, Anh Cuong 472
N.N. Hung, William 115
Nicholson, Jonathan 522

O’Hearn, Peter W. 14
Olderog, Ernst-Rüdiger 404
Ölveczky, Peter Csaba 651

Plagge, Daniel 195
Platzer, André 131, 356
Power, David 227

670 Author Index

Qadeer, Shaz 15
Qamar, Nafees 259

Ravn, Anders P. 404
Renshaw, David W. 356
Rodŕıguez Monetti, Pablo 601
Romanovsky, Alexander 420
Ryan, Mark 243

Sampaio, Augusto 323
Schmalz, Matthias 633
Schneider, Steve 33
Siddiqui, Junaid Haroon 340
Simpson, Andrew 227
Sirjani, Marjan 16
Slaymaker, Mark 227
Snook, Colin 569
Song, Songzheng 147
Song, Xiaoyu 115
Struth, Georg 617
Su, Wen 437
Sun, Jun 98, 147, 372, 537

Tahar, Sofiène 388
Tan, Tian Huat 98
Treharne, Helen 33
Troubitsyna, Elena 420

Velev, Miroslav N. 307

Wang, Xiaobing 82
Weber, Tjark 617
Wellings, Andy 49
Wright, Stephen 585

Xing, Zhenchang 537

Yuan, Fangfang 585

Zainuddin, Fauziah binti 163
Zeyda, Frank 49
Zhang, Hehua 115
Zhao, Yongxin 1
Zheng, Manchun 372
Zhu, Huibiao 437

	Title Page
	Preface
	Organization
	Table of Contents
	Invited Talks
	Towards a Signal Calculus for Event-Based Synchronous Languages
	Introduction
	Pure Signals and Event Guards
	Instantaneous Reactions: I-Calculus
	Algebraic Semantics
	Parallel
	Guard
	Concealment
	Primitives
	Dependence
	Additional Laws

	Normal Form for I-Calculus
	Discussion
	References

	Reasoning about Programs Using a Scientific Method
	Poirot—A Concurrency Sleuth

	Formal Models
	Context-Based Behavioral Equivalence of Components in Self-Adaptive Systems
	Introduction
	Illustrating Example
	PobSAM
	Formal Modeling of Collaborating UAVs
	Statebased Bisimulation
	Context-Specific Behavioral Equivalence
	Context-Specific Behavioral Equivalence of Actions
	Context-Specific Behavioral Equivalence of Governing Policies
	Context-Specific Behavioral Equivalence of Adaptation Policies
	Context-Specific Behavioral Equivalence of Configurations and Managers

	Related Work
	Conclusions
	References

	Towards a Practical Approach to Check UML/fUML Models Consistency Using CSP
	Introduction
	Background
	fUML
	CSP

	Approach Overview
	The Model Formalizer
	Behavioural Consistency Checking
	Formalization and Model Checking Feedback
	Formalization Report
	Model Debugger

	Approach Implementation
	Related Work
	Conclusion and Future Work
	References

	The Safety-Critical Java Mission Model: A Formal Account
	Introduction
	Preliminaries
	Safety-Critical Java
	Circus and OhCircus

	Framework and Application Models
	Safelet Model
	Mission Sequencer Model
	Mission Model
	Handler Models

	Conclusions
	References

	Is There Evolution Before Birth? Deterioration Effects of Formal Z Specifications
	Introduction
	Perfection or Decay
	Back to the Roots
	The Role of Formal Design

	On the Search for Measures
	Specification Measures
	Slice-Based Coupling and Cohesion Measures
	Specification Slicing

	Evaluation
	Experimental Subject
	The Study
	Results

	An Extended Model of Evolution
	Conclusion
	References

	Asynchronous Communication in MSVL
	Introduction
	Projection Temporal Logic
	Syntax
	Semantics

	Modeling, Simulation and Verification Language
	Asynchronous Communication
	Process
	Channel
	Communication Commands

	An Application
	An Example of Electronic Contract Signing Protocol
	Modeling, Simulation and Verification with MSVL

	Conclusion
	References

	Model Checking and Probability
	Verification of Orchestration Systems Using Compositional Partial Order Reduction
	Introduction
	Orchestration Language Orc
	Syntax
	Semantics
	Hierarchical Concurrent Processes (HCP)

	Compositional Partial Order Reduction (CPOR)
	Classic POR and CPOR
	CPOR Algorithm
	Soundness

	Evaluation
	Related Work
	Conclusion
	References

	Domain-Driven Probabilistic Analysis of Programmable Logic Controllers
	Introduction
	Preliminaries
	Symbolic Framework
	Modeling Uncertainty of PLC Systems
	Construction of Hidden Markov Model
	Solving the Hidden Markov Model
	Construction of Combined Regular Markov Model
	Property Analysis with PRISM

	Case Studies
	Conclusion
	References

	Statistical Model Checking for Distributed Probabilistic-Control Hybrid Automata with Smart Grid Applications
	Introduction
	Preliminaries
	Distributed Probabilistic Control Hybrid Automata
	Quantified Bounded Linear Temporal Logic
	Bayesian Statistical Model Checking
	Case Study: Smart Grid
	Conclusions
	References

	PRTS: An Approach for Model Checking Probabilistic Real-Time Hierarchical Systems
	Introduction
	Basic Concepts
	Syntax of PRTS
	Operational Semantics
	Abstraction
	Verification
	Implementation and Evaluation
	Related Work
	Conclusion
	References

	Specification and Development
	Integrating Prototyping into the SOFL Three-Step Modeling Approach
	Introduction
	Related Work
	SOFL Three-Step Approach and Its Problems
	SOFL Three-Step Approach
	Problem Descriptions

	Prototyping
	Proposed Framework for Integration
	Phase I
	Phase II
	Phase III

	Case Study
	Phase I
	Phase II
	Phase III

	Discussion
	Conclusion
	References

	A Deterministic Interpreter Simulating a Distributed Real Time System Using VDM
	Introduction
	The VDM Technology
	Interpreting Sequential VDM Models
	Interpreting Concurrent Real-Time Models
	Creating a Deterministic Debugger
	Deterministic Debugging
	Debugging User Interface
	Debugging Multi-threaded Applications

	Related Work
	Concluding Remarks
	References

	On Fitting a Formal Method into Practice
	Introduction
	Event-B in an Industrial Development Process
	Event-B
	Fitting Event-B into Development Practice
	Problem Frames
	The Cruise Control System

	Relating Problem Frames to Event-B Models
	Problem Frames Description of the Cruise Control
	Relating Problem Frames Concepts to Event-B Concepts
	A Matching Event-B Model of the Cruise Control

	Elaboration in Event-B
	Verifying Deadlock Freedom
	Conclusion
	References

	A Formal Engineering Approach to High-Level Design of Situation Analysis Decision Support Systems
	Introduction
	Problem Description
	Design and Validation of SADS Systems
	Related Work

	Abstract State Machines
	ASM Systems Engineering Method
	Distributed ASMs

	The CoreASM Extensible Architecture
	Extensible Language
	Extensible Engine

	Application Scenario
	Vessels
	Observers
	Rendezvous Awareness

	The SA Plugin
	Extending the CoreASM Engine
	Visualization
	Situation Analysis

	Conclusions and Future Work
	References

	Security
	Conformance Checking of Dynamic Access Control Policies
	Introduction
	Context
	sif
	Evolving Access Control
	RBAC Policy Editing Tool

	Constraints and Requirements
	RBAC
	An Alloy Representation of RBAC
	Adding Sessions

	Gauge
	Overview
	Instances
	Evaluation
	Types
	Scalability
	Optimisation

	Conclusions and Further Work
	References

	A Knowledge-Based Verification Method for Dynamic Access Control Policies
	Introduction
	Related Work
	Definitions
	Access Control Policy
	Access Control System
	Query Language

	Model-Checking and Strategy Synthesis
	Finding Effective Propositions
	Pseudocode for Finding Strategy

	Knowledge vs. Guessing in Strategy
	Experimental Results
	Conclusion and Future Work
	References

	Validation of Security-Design Models Using Z
	Introduction
	Illustrative Example: Medical Information System
	Translating the Functional Model into Z
	The Security Kernel
	Permissions
	Role Hierarchy
	Action Hierarchy
	Roles, Users and Sessions
	Putting It All Together

	Linking Functional and Security Models
	Validating and Animating Secure Operations
	Normal Behaviour
	Analysing a Malicious Behaviour

	Related Work
	Conclusion and Future Work
	References

	Formal Verification
	Mutation in Linked Data Structures
	Introduction
	Separation Logic
	Mutation: Reasoning about Shape and Data
	Heaplet Analysis and Heap Decomposition
	Heaplet Attraction, Cancellation and Fertilisation
	An Example General Decomposition

	Towards a Generalisation of Mutation
	Implementations and Results
	Related and Future Work
	Conclusion
	References

	Contract-Based Verification of Simulink Models
	Introduction
	Simulink
	Contracts in Simulink
	Synchronous Data Flow Graphs
	The Sequential Language
	Translation of SDF Graphs
	Correctness of the Translation

	SDF Graph Representation of Simulink Models
	Mapping Simulink Blocks to Nodes
	Mapping a Subsystem Contract Description to an SDF Graph

	Verification with Respect to Contracts
	Tool Support
	Example of Subsystem Refinement

	Conclusions
	References

	Exploiting Abstraction for Efficient Formal Verification of DSPs with Arrays of Reconfigurable Functional Units
	Introduction
	Background
	Using Positive Equality to Formally Verify Pipelined Processors
	Abstracting a Single Reconfigurable Functional Unit
	The ADRES Reconfigurable Architecture

	Techniques for Abstracting Arrays of Reconfigurable Functional Units
	Detailed Abstract Modeling of the Array of Reconfigurable Functional Units
	Abstracting the Entire Array of Reconfigurable Functional Units with One FSM

	Results
	Conclusion
	References

	Architectural Verification of Control Systems Using CSP
	Introduction
	Simulink and the Verification of Control Systems
	Verification of Control Systems

	A Strategy to Verify [acas]Control System Designs
	Mapping Control Law Diagrams to CSP
	Mapping Architectural Requirements to CSP
	Defining Properties
	Abstraction and Validation
	Tool Support and Completeness

	[jbjj]VerifyingValidating a Fly-by-Wire Elevator Control System
	Validation and Results

	Related Work
	Conclusion
	References

	Symbolic Execution of Alloy Models
	Introduction
	Background and Illustrative Example
	Symbolic Execution Basics
	Alloy Basics
	Illustrative Example: Symbolic Execution for Alloy

	Symbolic Execution of Alloy Formulas
	Symbolic Alloy Module
	User Modifications to Alloy Model
	Mechanically Generated Facts
	Alloy Analyzer Usage

	Case Studies
	Red-Black Trees
	Colored List
	Fibonacci Series
	Traditional Symbolic Execution of Imperative Code

	Related Work
	Conclusion
	References

	Cyber Physical Systems
	Distributed Theorem Proving for Distributed Hybrid Systems
	Introduction
	Related Work
	Preliminaries: Quantified Differential Dynamic Logic
	RevisedQdL Proof Calculus
	Working Outside-In
	A Note about Capture
	Assignment
	Equality Substitution
	Differential Equations
	Eliminating Index Variables
	Real Arithmetic

	Proving in KeYmaeraD
	Strategy Language
	Example: Instantiation
	Arithmetic
	Input Formulas

	Case Study
	Conclusions and Future Work
	References

	Towards a Model Checker for NesC andWireless Sensor Networks
	Distributed Theorem Proving for Distributed Hybrid Systems
	Introduction
	Related Work
	Preliminaries: Quantified Differential Dynamic Logic
	Revised Proof Calculus
	Working Outside-In
	A Note about Capture
	Assignment
	Equality Substitution
	Differential Equations
	Eliminating Index Variables
	Real Arithmetic

	Proving in KeYmaeraD
	Strategy Language
	Example: Instantiation
	Arithmetic
	Input Formulas

	Case Study
	Conclusions and Future Work
	References

	Introduction
	Preliminaries
	The NesC Language
	TinyOS and Its Execution Model

	Formalizing Sensors with NesC Programs
	Formalizing Wireless Sensor Networks
	Implementation and Evaluation
	Conclusion
	References

	Formal Analysis of a Scheduling Algorithm for Wireless Sensor Networks
	Introduction
	Related Work
	Preliminaries
	Formalization of Discrete Random Variables and Verification of their PMF
	Formalization and Verification of Expectation Properties for Discrete Random Variables in HOL

	Coverage-Based Randomized Scheduling Algorithm
	Overview of the Coverage-Based Randomized Scheduling Algorithm
	Formalization of the Network Coverage Intensity
	Formalization of the Average Detection Delay

	Formal Verification of the Random Scheduling Algorithm
	Formal Verification of the Network Coverage Intensity
	Formal Verification of the Average Detection Delay

	Conclusions
	References

	An Abstract Model for Proving Safety of Multi-lane Traffic Manoeuvres
	Introduction
	Abstract Model
	Traffic Snapshot
	View
	A Multi-lane Spatial Logic

	Controllers
	Changing Lanes with Perfect Knowledge
	A More Realistic Approach for Changing Lanes

	Safety Proof
	Safety Proof for Changing Lanes with Help

	Conclusion
	References

	Event-B
	Formal Derivation of a Distributed Program in Event B
	Introduction
	Background
	Modelling and Refinement in Event B
	Modelling Modular Systems in Event B

	Modelling of a Leader Election Protocol
	Abstract Model of Leader Election
	Decentralising Leader Election
	Refining Inter-process Communication

	Deriving Distributed Implementation
	System Architecture
	Decomposition of the Leader Election Model
	Towards Runnable Code
	Proof Statistics

	Conclusions
	References

	From Requirements to Development: Methodology and Example
	Introduction
	Methodology
	The Requirement Document
	The Refinement Strategy
	Some Rules
	Modeling with Event-B [1] and Proving with the Rodin Platform [2]
	AfterModeling

	The Example
	Main Purpose of System
	The Requirement Document
	Comments about the Previous Requirements
	Refinement Strategy
	Refinement Strategy Synthesis
	Formal Development
	Proof Statistics
	Timing and Determinism Issues

	Related Work
	Conclusion
	References

	Reasoning about Liveness Properties in Event-B
	Introduction
	Background
	The Event-B Modelling Method
	Temporal Logic

	Proof Rules
	Proof Obligations
	Proof Rules
	Tool Support

	Examples
	Peterson’s Algorithm
	Device Calibration

	Related Work
	Conclusions
	FutureWork

	References

	Verification, Analysis and Testing
	Extracting Significant Specifications from Mining through Mutation Testing
	Introduction
	Background
	Past-Time Temporal Specification

	Specification Significance
	Identifying Significant Specifications

	Mutation Testing
	Simulating Specification Violation through Program Mutation
	Generating Replacement Objects
	Exploring Early Pruning
	Specification Refinement

	Evaluation
	Java API Rules
	Verification Using Java API Rules

	Related Work
	Conclusion
	References

	Developer-Oriented Correctness Proofs A Case Study of Cheney’s Algorithm
	Introduction
	Dissecting Cheney’s Algorithm
	The Three Main Aspects of the Algorithm
	Implementation
	Values, Pointers, and Objects
	The Structure of the Half-Spaces
	Queue Structure
	The Object Graph
	The Forwarding Pointers
	Remaining Free Space

	Assembling the Correctness Proof
	The Specification of collect
	The Loop Invariant and Proof of collect
	The copy ref Function

	Related Work
	Conclusion
	References

	Static Analysis of String Values
	Introduction
	Running Examples
	Abstract Interpretation

	Syntax
	Concrete Domain and Semantics
	Concrete Domain
	Semantics

	Abstract Domains and Semantics
	Character Inclusion
	Prefix and Suffix
	Bricks
	String Graphs
	Discussion: Relations between the Four Domains

	RelatedWork
	Conclusion and FutureWork
	References

	A Theory of Classes from the Theoretical Foundations of LePUS3
	Introduction
	Typed Predicate Logic
	Propositions
	Types
	Specifications

	Toward a Theory of Classes
	Classes and Hierarchies
	Methods and Clans
	Predicates

	Reasoning about Design Patterns
	Conclusion
	References

	Differencing Labeled Transition Systems
	Introduction
	Related Work
	A Motivating Example
	The SpecDiff Approach
	Overview of SpecDiff
	Syntax of CSP#
	Operational Semantic of CSP#
	Comparing Configuration Graphs and Labeled Transition Systems
	Analyzing the LTS Differences

	Evaluation
	The Effectiveness of SpecDiff
	The Robustness of SpecDiff

	Threats to Validity
	Conclusions and Future Work
	References

	Refinement
	Developing a Consensus Algorithm Using Stepwise Refinement
	Introduction
	The Floodset Algorithm
	Event-B
	Development
	The Initial Machine
	The First Refinement: Introducing Phase Specifications
	Identifying Live Processes: X2
	Homogenising the Events: X3
	Refining Out the Saturation Assumption: X4
	Implementing the Round Event: X5

	Discussion and Conclusions
	References

	Refining Nodes and Edges of State Machines
	Introduction
	State Machines
	Refinement
	Development of a Sequential Algorithm
	Design of a Controller
	Conclusion
	References

	Managing Complexity through Abstraction: A Refinement-Based Approach to Formalize Instruction Set Architectures
	Introduction
	Event-B and the Rodin Development Platform
	Literature Review
	The MIDAS and CRISP ISA Models
	Refinement Strategy
	Modeling the MIDAS ISA in Event-B
	Modeling the CRISP ISA in Event-B

	The Generic Modeling Template
	Structure of the Generic Modeling Template
	Generalization of Internal Storage Options

	Modeling the XCore ISA in Event-B
	Summary
	Conclusion
	References

	A Language for Test Case Refinement in the Test Template Framework
	The Process of Model-Based Testing
	The Test Template Framework
	A Method for Test Case Refinement
	Fastest Test Case Refinement Language
	An Example of a Refinement Rule
	The Basic Structure of a Refinement Rule
	Refinement Laws
	More Examples and Features

	A Case Study
	Related Work
	Conclusions
	References

	Theorem Proving and Rewriting.
	Automating Algebraic Methods in Isabelle
	Introduction
	Preliminaries
	Warm-Up: Three Proofs in Kleene Algebra
	Modal Semirings and Kleene Algebras
	Dynamic Algebras and Segerberg's Formula
	Termination and Löb's Formula
	Hoare Logic
	Discussion and Conclusion
	References

	Term Rewriting in Logics of Partial Functions
	Introduction
	Abstract Syntax
	Types and Terms
	An Example Signature

	Semantics
	Isabelle/HOL
	Option Types
	Denotations of Types and Terms
	An Example Structure
	Substitutions

	Term Rewriting
	Rewriting Terms to Equivalent Terms
	Directed Rewriting
	Rewriting Subterms
	Safety
	Practical Relevance

	Proving User Supplied Rules Sound
	Related Work
	Conclusions and Future Work
	References

	Synchronous AADL and Its Formal Analysis in Real-Time Maude
	Introduction
	Preliminaries on AADL, Real-Time Maude, and PALS
	Synchronous AADL
	An Avionics Example
	Real-Time Maude Semantics of Synchronous AADL
	Formal Analysis of Synchronous AADL Models
	Verifying the Active Standby System
	The SynchAADL2Maude Tool
	Related Work
	Concluding Remarks
	References

	Author Index

