Shengchao Qin
Zongyan Qiu (Eds.)

Formal Methods
and Software Engineering

13th International Conference
on Formal Engineering Methods, ICFEM 2011
Durham, UK, October 2011, Proceedings

LNCS 6991

@ Springer

Lecture Notes in Computer Science

Commenced Publication in 1973
Founding and Former Series Editors:
Gerhard Goos, Juris Hartmanis, and Jan van Leeuwen

Editorial Board

David Hutchison

Lancaster University, UK
Takeo Kanade

Carnegie Mellon University, Pittsburgh, PA, USA
Josef Kittler

University of Surrey, Guildford, UK
Jon M. Kleinberg

Cornell University, Ithaca, NY, USA
Alfred Kobsa

University of California, Irvine, CA, USA
Friedemann Mattern

ETH Zurich, Switzerland
John C. Mitchell

Stanford University, CA, USA
Moni Naor

Weizmann Institute of Science, Rehovot, Israel
Oscar Nierstrasz

University of Bern, Switzerland
C. Pandu Rangan

Indian Institute of Technology, Madras, India
Bernhard Steffen

TU Dortmund University, Germany
Madhu Sudan

Microsoft Research, Cambridge, MA, USA
Demetri Terzopoulos

University of California, Los Angeles, CA, USA
Doug Tygar

University of California, Berkeley, CA, USA
Gerhard Weikum

Max Planck Institute for Informatics, Saarbruecken, Germany

6991

Shengchao Qin Zongyan Qiu (Eds.)

Formal Methods
and Software Engineering

13th International Conference
on Formal Engineering Methods, ICFEM 2011
Durham, UK, October 26-28, 2011

Proceedings

@ Springer

Volume Editors

Shengchao Qin

Teesside University
School of Computing
Borough Road
Middlesbrough

Tees Valley TS1 3BA, UK
E-mail: s.qin@tees.ac.uk

Zongyan Qiu

Peking University

School of Mathematical Sciences
Beijing, 100871, China

E-mail: zyqiu@pku.edu.cn

ISSN 0302-9743
ISBN 978-3-642-24558-9
DOI 10.1007/978-3-642-24559-6

e-ISSN 1611-3349
e-ISBN 978-3-642-24559-6

Springer Heidelberg Dordrecht London New York

Library of Congress Control Number: 2011937705

CR Subject Classification (1998): D.2.4, D.2, D.3, F.3,F4.1, C.2

LNCS Sublibrary: SL 2 — Programming and Software Engineering

© Springer-Verlag Berlin Heidelberg 2011

This work is subject to copyright. All rights are reserved, whether the whole or part of the material is
concerned, specifically the rights of translation, reprinting, re-use of illustrations, recitation, broadcasting,
reproduction on microfilms or in any other way, and storage in data banks. Duplication of this publication
or parts thereof is permitted only under the provisions of the German Copyright Law of September 9, 1965,
in its current version, and permission for use must always be obtained from Springer. Violations are liable
to prosecution under the German Copyright Law.

The use of general descriptive names, registered names, trademarks, etc. in this publication does not imply,
even in the absence of a specific statement, that such names are exempt from the relevant protective laws
and regulations and therefore free for general use.

Typesetting: Camera-ready by author, data conversion by Scientific Publishing Services, Chennai, India

Printed on acid-free paper

Springer is part of Springer Science+Business Media (www.springer.com)

Preface

Formal engineering methods have been extensively studied over decades. Various
theories, techniques, and tools have been proposed, developed, and applied in
the specification, design, verification, and validation of software systems or in the
construction of such systems. The challenge now is how to integrate them to ef-
fectively deal with large-scale and complex systems, e.g., cyber-physical systems,
for their sound and efficient construction and maintenance. This requires us to
improve the state of the art by researching effective approaches and techniques
for integration of formal methods into industrial engineering practice.

The now long-established series of International Conferences on Formal En-
gineering Methods has provided a forum for those interested in the application
of formal methods to computer systems. This volume contains the papers pre-
sented at ICFEM 2011, the 13th International Conference on Formal Engineering
Methods, held during October 26-28, 2011 in Durham, UK.

There were 103 submissions from 28 countries. Each paper was reviewed by
at least three Program Committee members. After extensive discussion, the Pro-
gram Committee decided to accept 40 papers. The program also included three
invited talks by Jifeng He, from East China Normal University, Peter O’Hearn,
from Queen Mary, University of London, and Shaz Qadeer, from Microsoft Re-
search. One invited paper and two abstracts are also included here.

ICFEM 2011 was organized mainly by the School of Computing, Teesside
University. We acknowledge the financial support from our main sponsors, in-
cluding Teesside University, Microsoft Research, and Formal Methods Europe.
We thank our honorary chairs Cliff Hardcastle and Marc Cavazza for their sup-
port and our conference chairs Cliff Jones and Phil Brooke for their hard work
during the organization of ICFEM 2011. Special thanks should be given to An-
gela Ackerley and Mandie Hall for their help on logistics including finance and
registration.

We are grateful to all members of the Program Committee and external
reviewers for their hard work. We would also like to thank all the authors of
the invited and submitted papers, and all the participants of the conference.
They are the main focus of the whole event. The EasyChair system was used to
manage the submissions, reviewing, and proceedings production. We would like
to thank the EasyChair team for a very useful tool.

August 2011 Shengchao Qin
Zongyan Qiu

Honorary Chairs

Marc Cavazza
Cliff Hardcastle

General Chairs

Phil Brooke
CIiff Jones

Program Chairs

Shengchao Qin
Zongyan Qiu

Program Committee

Bernhard K. Aichernig

Keijiro Araki
Farhad Arbab
Richard Banach
Nikolaj Bjorner
Jonathan P. Bowen
Michael Butler
Andrew Butterfield
Ana Cavalcanti
Aziem Chawdhary
Wei-Ngan Chin
Florin Craciun
Thao Dang

Jim Davies

Dino Distefano
Jin-Song Dong
Zhenhua Duan
Colin Fidge

J.S. Fitzgerald
Leo Freitas
Joaquim Gabarro
Stefania Gnesi
Anthony Hall

Organization

Teesside University
Teesside University

Teesside University
Newcastle University

Teesside University
Peking University

TU Graz

Kyushu University

CWI and Leiden University
University of Manchester
Microsoft Research

Museophile Limited

University of Southampton
University of Dublin

University of York

University of Edinburgh

National University of Singapore
National University of Singapore
VERIMAG

University of Oxford

Queen Mary, University of London
National University of Singapore
Xidian University

Queensland University of Technology
Newcastle University

Newcastle University

Universitat Politecnica de Catalunya
ISTI-CNR

Independent Consultant

VIII Organization

Tan J. Hayes
Mike Hinchey
Zhenjiang Hu
Michael Jackson
Thierry Jéron
Gerwin Klein
Laura Kovacs
Kim G. Larsen
Peter Gorm Larsen
Michael Leuschel
Xuandong Li
Shaoying Liu
Zhiming Liu
Tiziana Margaria
Dominique Mery
Stephan Merz
Huaikou Miao
Peter Miiller
Jun Pang
Matthew Parkinson
Geguang Pu
Shengchao Qin
Zongyan Qiu
Augusto Sampaio
Thomas Santen
Wuwei Shen
Marjan Sirjani
Bill Stoddart
Jing Sun

Jun Sun

Meng Sun

Kenji Taguchi
Tetsuo Tamai
Yih-Kuen Tsay
T.H. Tse

Viktor Vafeiadis
Miroslav Velev
Laurent Voisin
Hai H. Wang

Ji Wang
Linzhang Wang
Heike Wehrheim
Jim Woodcock
Hongli Yang
Wang Yi

University of Queensland

Lero

NIIT

Independent Consultant

Inria Rennes - Bretagne Atlantique
NICTA and UNSW

TU Vienna

Aalborg University

Aarhus School of Engineering
University of Diisseldorf

Nanjing University

Hosei University

UNU/IIST

University of Potsdam

Université Henri Poincaré Nancy 1 and LORIA
INRIA Lorraine

Shanghai University

ETH Zurich

University of Luxembourg
Micrsosoft Research

East China Normal University
Teesside University

Peking University

Federal University of Pernambuco
European Microsoft Innovation Center
Western Michigan University
Reykjavik University

Teesside University

The University of Auckland
Singapore University of Technology and Design
Peking University

AIST

University of Tokyo

National Taiwan University

The University of Hong Kong
MPI-SWS

Aries Design Automation

Systerel

University of Aston

NUTD

Nanjing University

University of Paderborn
University of York

Beijng University of Technology
Uppsala University

Naijun Zhan
Jian Zhang

Hong Zhu
Huibiao Zhu

Publicity Chairs

Jonathan P. Bowen

Jun Sun
Huibiao Zhu

Organization IX

Institute of Software, Chinese Academy
of Sciences

Institute of Software, Chinese Academy
of Sciences

Oxford Brookes University

East China Normal University

Museophile Limited
Singapore University of Technology and Design
East China Normal University

Local Organization Committee

Angela Ackerley
Phil Brooke
Steve Dunne
Mandie Hall
Shengchao Qin

Steering Committee

Keijiro Araki, Japan

Jin Song Dong, Singapore
Chris George, Canada
Jifeng He, China

Mike Hinchey, Ireland
Shaoying Liu (Chair), Japan
John McDermid, UK

Tetsuo Tamai, Japan

Jim Woodcock, UK

Sponsors

Formal Methods Europe (FME)
Microsoft Research Limited
Teesside University

Teesside University
Teesside University
Teesside University
Teesside University
Teesside University

X Organization

Additional Reviewers
Aboulsamh, Mohammed

Andriamiarina, Manamiary Bruno

Andronick, June
Anh Tuan, Luu
Bauer, Sebastian
Bertolini, Cristiano
Bertrand, Nathalie
Besova, Galina
Blanchette, Jasmin Christian
Bodeveix, Jean-Paul
Bu, Lei

Carmona, Josep
Chen, Chunging
Chen, Liqgian

Chen, Xin

Chen, Zhenbang
Colley, John
Cong-Vinh, Phan
Cos, Andreea Costea
Costea, Andreea
Daum, Matthias
Dongol, Brijesh

Du, Yuyue
Edmunds, Andrew
Falcone, Ylies
Ferrari, Alessio
Ferreira, Joao F.
Gao, Ping
Gherghina, Cristian
Gotsman, Alexey
Greenaway, David
Hallerstede, Stefan
Hallestede, Stefan
Hayes, Ian

Hayman, Jonathan
He, Guanhua

Heisel, Maritta
Jaghoori, Mohammad Mahdi
Khakpour, Narges
Khamespanah, Ehsan
Kong, Weigiang
Kreitz, Christoph
Kumazawa, Tsutomu
Kusakabe, Shigeru
Le, Quang Loc

Legay, Axel

Li, Yuan Fang
Liu, Yang
Magzzanti, Franco
Mcneile, Ashley
Meinicke, Larissa
Mochio, Hiroshi
Morisset, Charles
Moscato, Mariano
Nakajima, Shin
Nogueira, Sidney
Nyman, Ulrik
Olsen, Petur
Omori, Yoichi
Orejas, Fernando
Petersen, Rasmus Lerchedahl
Plagge, Daniel
Sabouri, Hamideh
Sewell, Thomas
Singh, Neeraj
Snook, Colin
Song, Songzheng
Stainer, Amelie
Stewart, Alan
Struth, Georg
Tiezzi, Francesco
Timm, Nils
Tounsi, Mohamed
Tsai, Ming-Hsien
Walther, Sven
Wang, Jackie
Wang, Shuling
Wang, Zheng
Welch, James
Wijs, Anton

Wu, Bin
Yamagata, Yoriyuki
Yatsu, Hirokazu
Zhang, Chenyi
Zhang, Pengcheng
Zhao, Yongxin
Zheng, Man Chun
Zheng, Manchun
Zhu, Jiaqi

Table of Contents

Invited Talks

Towards a Signal Calculus for Event-Based Synchronous Languages 1
Yongzin Zhao and He Jifeng

Reasoning about Programs Using a Scientific Method 14
Peter W. O’Hearn

Poirot—A Concurrency Sleuth....... i 15
Shaz Qadeer

Formal Models

Context-Based Behavioral Equivalence of Components in Self-Adaptive
SYSEEINS . . ottt 16
Narges Khakpour, Marjan Sirjani, and Ursula Goltz

Towards a Practical Approach to Check UML/fUML Models
Consistency Using CSP i e 33
Islam Abdelhalim, Steve Schneider, and Helen Treharne

The Safety-Critical Java Mission Model: A Formal Account 49
Frank Zeyda, Ana Cavalcanti, and Andy Wellings

Is There Evolution Before Birth? Deterioration Effects of Formal
Z Specifications 66
Andreas Bollin

Asynchronous Communication in MSVL 82
Dapeng Mo, Xiaobing Wang, and Zhenhua Duan

Model Checking and Probability

Verification of Orchestration Systems Using Compositional Partial
Order Reduction 98
Tian Huat Tan, Yang Liu, Jun Sun, and Jin Song Dong

Domain-Driven Probabilistic Analysis of Programmable Logic

Controllers . . oot 115
Hehua Zhang, Yu Jiang, William N.N. Hung, Xiaoyu Song, and
Ming Gu

XII Table of Contents

Statistical Model Checking for Distributed Probabilistic-Control
Hybrid Automata with Smart Grid Applications
Joao G. Martins, André Platzer, and Jodo Leite

PRTS: An Approach for Model Checking Probabilistic Real-Time

Hierarchical Systems
Jun Sun, Yang Liu, Songzheng Song, Jin Song Dong, and
Xiaohong Li

Specification and Development

Integrating Prototyping into the SOFL Three-Step Modeling
ApPpProach
Fauziah binti Zainuddin and Shaoying Liu

A Deterministic Interpreter Simulating a Distributed Real Time System
Using VDM . ..o
Kenneth Lausdahl, Peter Gorm Larsen, and Nick Battle

On Fitting a Formal Method Into Practice
Rainer Gmehlich, Katrin Grau, Stefan Hallerstede,
Michael Leuschel, Felixz Losch, and Daniel Plagge

A Formal Engineering Approach to High-Level Design of Situation
Analysis Decision Support Systems
Roozbeh Farahbod, Viadimir Avram, Uwe Gldsser, and Adel Guitouni

Security

Conformance Checking of Dynamic Access Control Policies............
David Power, Mark Slaymaker, and Andrew Simpson

A Knowledge-Based Verification Method for Dynamic Access Control
Policies
Masoud Koleini and Mark Ryan

Validation of Security-Design Models Using Z
Nafees Qamar, Yves Ledru, and Akram Idani
Formal Verification

Mutation in Linked Data Structures...........
Ewen Maclean and Andrew Ireland

Contract-Based Verification of Simulink Models......................
Pontus Bostrom

Table of Contents XIII

Exploiting Abstraction for Efficient Formal Verification of DSPs with
Arrays of Reconfigurable Functional Units 307
Miroslav N. Velev and Ping Gao

Architectural Verification of Control Systems Using CSP 323
Joabe Jesus, Alexandre Mota, Augusto Sampaio, and Luiz Grijo

Symbolic Execution of Alloy Models............ 340
Junaid Haroon Siddiqui and Sarfraz Khurshid

Cyber Physical Systems

Distributed Theorem Proving for Distributed Hybrid Systems 356
David W. Renshaw, Sarah M. Loos, and André Platzer

Towards a Model Checker for NesC and Wireless Sensor Networks 372
Manchun Zheng, Jun Sun, Yang Liu, Jin Song Dong, and Yu Gu

Formal Analysis of a Scheduling Algorithm for Wireless Sensor
NetWOTKS oottt e 388
Maissa Elleuch, Osman Hasan, Sofiéne Tahar, and Mohamed Abid

An Abstract Model for Proving Safety of Multi-lane Traffic

MANOGUVIES . . o ettt et e et e e e e e 404
Martin Hilscher, Sven Linker, Ernst-Ridiger Olderog, and
Anders P. Ravn

Event-B

Formal Derivation of a Distributed Program in Event B............... 420
Alezei Iliasov, Linas Laibinis, Elena Troubitsyna, and
Alexander Romanovsky

From Requirements to Development: Methodology and Example 437
Wen Su, Jean-Raymond Abrial, Runlei Huang, and Huibiao Zhu

Reasoning about Liveness Properties in Event-B 456
Thai Son Hoang and Jean-Raymond Abrial

Verification, Analysis and Testing

Extracting Significant Specifications from Mining through Mutation
Testing . ..o 472
Anh Cuong Nguyen and Siau-Cheng Khoo

Developer-Oriented Correctness Proofs: A Case Study of Cheneys
Algorithm. ... 489
Holger Gast

XIV Table of Contents

Static Analysis of String Values......... 505
Giulia Costantini, Pietro Ferrara, and Agostino Cortesi

A Theory of Classes from the Theoretical Foundations of LePUS3 522
Jonathan Nicholson

Differencing Labeled Transition Systems 537
Zhenchang Xing, Jun Sun, Yang Liu, and Jin Song Dong

Refinement

Developing a Consensus Algorithm Using Stepwise Refinement. 553
Jeremy W. Bryans

Refining Nodes and Edges of State Machines 569
Stefan Hallerstede and Colin Snook

Managing Complexity through Abstraction: A Refinement-Based
Approach to Formalize Instruction Set Architectures 585
Fangfang Yuan, Stephen Wright, Kerstin Eder, and David May

A Language for Test Case Refinement in the Test Template

Framework 601
Mazximiliano Cristid, Diego Hollmann, Pablo Albertengo,
Claudia Frydman and Pablo Rodriguez Monetti

Theorem Proving and Rewriting

Automating Algebraic Methods in Isabelle 617
Walter Guttmann, Georg Struth, and Tjark Weber

Term Rewriting in Logics of Partial Functions 633
Matthias Schmalz

Synchronous AADL and Its Formal Analysis in Real-Time Maude. 651
Kyungmin Bae, Peter Csaba Olveczky, Abdullah Al-Nayeem, and

José Meseguer

Author Index 669

Towards a Signal Calculus for
Event-Based Synchronous Languages

Yongxin Zhao and He Jifeng*

Shanghai Key Laboratory of Trustworthy Computing,
Software Engineer Institute,
East China Normal University, Shanghai, China
jifeng@sei.ecnu.edu.cn

Abstract. A theory of programming is intended to support the practice of pro-
gramming by relating each program to the specification of what it is intended to
achieve. Our intention is to develop a signal calculus for event-based synchronous
languages used for specification and programming of embedded systems. In this
paper, we mainly tackle conceptually instantaneous reactions, i.e., zero-time re-
actions. The delay-time reactions will be investigated in the follow-up work. To
explore the semantic definition of instantaneous reactions (I-calculus), a set of
algebraic laws is provided, which can be used to reduce all instantaneous reac-
tions to a normal form algebraically. The normal form, surprisingly, exposes the
internal implicit dependence explicitly. Consequently, that two differently written
reactions happen to mean the same thing can be proved from the equations of an
algebraic presentation.

1 Introduction

A theory of programming is intended to support the practice of programming by re-
lating each program to the specification of what it is intended to achieve. A similar
diversity of presentation is seen in a theory of programming, which has to explain the
meaning of the notations of a programming language. The methods of presenting such a
semantic definition may be classified under three headings, i.e., denotational, algebraic
and operational.

The great merit of algebraic method is as a powerful tool for exploiting family re-
lationships over a wide range of different theories. Algebra is well suited for direct
use by engineers in symbolic calculation of parameter and structure of an optimal de-
sign. Algebraic proofs by term rewriting are the most promising way in which comput-
ers can assist in the process of reliable design. As in previous years, many researchers
have applied algebraic method to investigate a large number of paradigms of computing
[[L213144519]. But it seems that no one deals with signal-centric synchronous calculus
from a algebraic perspective. Our intention is to develop a signal calculus for event-
based synchronous languages used for the specification and programming of embedded
systems.

* Corresponding author.

S. Qin and Z. Qiu (Eds.): ICFEM 2011, LNCS 6991, pp. l 2011.
(© Springer-Verlag Berlin Heidelberg 2011

2 Y. Zhao and H. Jifeng

In this paper, we mainly tackle conceptually instantaneous reactions, i.e., zero time
reactions. The delay-time reactions will be investigated in the follow-up work. Tech-
nically, signals are means of communications and synchronisations between different
parts of systems (agents) and between a agent and its environment. Our calculus adopts
the so-called synchronous hypothesis, i.e., instantaneous reaction to signals and im-
mediate propagation of signals in each time-instant. Note that the reaction here has to
be deterministic, i.e., in every reaction, for a given set of input signals, it generates a
unique set of output signals. Due to the synchronous hypothesis, each signal is consis-
tently seen as present or absent by all agents. Thus the logical coherence of signal status
leads to the semantic challenges. Further, agents can interact with each other since all
generated signals are immediate sensed by all agents. As a result, the internal implicit
dependence enhances the difficulty to search for an algebraic semantics.

To explore the semantic definition of the instantaneous reactions (I-calculus), a set
of algebraic laws is provided, which can be used to reduce all reactions to a normal
form algebraically. Consequently, that two differently written programs happen to mean
the same thing can be proved from the equations of an algebraic presentation. More
importantly, the internal implicitly dependence is exposed explicitly after transforming
all reactions into normal forms.

The remainder of the paper is organized as follows. Section 2 gives a brief introduc-
tion to pure signals and event guards. We present our [-calculus and informally interpret
the meanings of reactions in Section 3. A set of algebraic laws is provided in Section
4. The normal form for I-calculus is presented in Section 5. We prove that all reactions
can be algebraically reduced to a normal form. Section 6 refers to the related work and
discusses the future work.

2 Pure Signals and Event Guards

In this section, we investigate broadcast signals and introduce event guards for later
discussion. In our framework, we confine ourselves to pure signals which only carry
the present or absent information of signals for the purpose of precise definition and
mathematical treatmentl.

Signals are means of communications and synchronisations between different agents
and between a agent and its environment. In general, a signal denoted by its name has
two types of statuses, i.e., either presence or absence. By default, signals are absent. A
signal is present if it is an input signal that appears in the input or it is emitted as the
result of an execution of the reaction. Given a signal s, we write s*, s~ to indicate the
presence and absence respectively.

Here an event is modeled as a set of signals with status. The function sig(l) defines
the set of signals (just names) which the event [embodies, e.g., sig(l) = {s,t}, where
| = {s*7 t~}. Note that the event in our calculus should be consistent, i.e., the status
of any signal referring to the same event should be unique, which is captured by the
formal definition: Vs € sig(l) @ sT & 1V s~ ¢ I. Hence we employ notation I(s) to
represent the status of signal s in event /. Finally, compatible events are defined below.

! Actually, the restriction is not critical; those signals which carry values of arbitrary types can
be converted into our signal calculus.

Towards a Signal Calculus for Event-Based Synchronous Languages 3

Definition 1 (Compatible). Events [y and Iy are compatible if they agree with on the
status of all common signals, i.e., Vs € sig(l1) N sig(lz) e l1(s) = la(s). We denote it
by compatible(ly, l3).

Further, we introduce event guards to synchronise the behaviors of agents and the nota-
tion of event guards is given as follow:

gu=e€|0|st|s |g-glg+gly

Now we give the meanings of event guards in Table 1. In actual, an event guard is
identified as a set of events which can trigger the guard. Almost all event guards have
the usual meanings and the definitions are straightforward. Intuitively, g defines all
events which cannot give rise to the occurrence of any event in g.

Table 1. The Meanings of Event Guards

€] =ar Event [0] =q 0 [s7] =ar {l|sT €I Al € Event}
[s7]=ar {l|s™ €lnl€ Event} [g1+ g2] =ar [92] U [g2]
lor - g2] =ar {l1 U2 |11 € [g1] Al2 € [g2] A compatible(l1,12)}
[9] =4 Event\[g]

In the sequel, we give a detailed discussion about event guards. Some algebraic laws
about guards are listed in the following and proofs that the laws are sound with respect
to semantics definition are straightforward.

Multiply - is idempotent, commutative, associative and distributes through addition
+. It has) as its zero and ¢ as its unit.

(multi—1) g-g =g (- idemp)
(multi —2) ¢1:92 = g2 1 (- comm)
(multi—3) g1-(92-93) = (91-92) 93 (- assoc)
(multi — 4) g-(h1+he) = g-h1+g-h (- — + distrib)
(multi—5) 0-g =0 (- — 0 zero)
(multi—6) ¢-g =g (- — e unit)
Addition + is idempotent, commutative, associative. It has () as its unit and € as its zero.
(add—1) g+g =g (4 idemp)
(add—2) gi+92 = g2+ (4+ comm)
(add —3) g1+ (92+93) = (91 +92) +93 (+ assoc)
(add—4) O0+g =g (+ — 0 unit)
(add—5) €e+g =¢ (+ — € zero)
(add—6) g+l-g=g (4 up-closed)

Generally, we say event e; can give rise to event e, if e; O es. Thus event e can give
rise to guard g iff the event can give rise to an event in g. Recall from the definition that

4 Y. Zhao and H. Jifeng

if an event can give rise to a guard, a larger event can also give rise to the guard. Thus
the order relation over guards is given straightforward as follows:

Definition 2. g1 D g2 =4r [91] 2 [92]-
Here, we also give a syntactical relation over guards.

Definition 3. We write g1 > g2 if there exists g such that g1 = g2 + g, where hy = ho
indicates hy and hs are syntactically identical.

In the following part,we use s € ¢,s ¢ ¢ to indicate, in syntactical, s is present and
absent in g respectively. Thus the guard g can be expressed as g1 + g2 - sT + g3 - 57,
where s € g1, g2, g3. Further, we introduce the definition up-closed, which is crucial
for our definition of normal form and is inspired by the construction of Smyth power
domains [[6]14].

Definition 4 (Up-Closed). An event guard g is (syntactically) up-closed if Vg’ e g’ C
g9=9 =g

Definition 5. Given an event guard g, define T g =q4r > {g' | ¢’ C g}.

Corollary 1. T g is up-closed and if h is up-closed and g C h, we have Tg C h, i.e,
T g is the small up-closed guard containing g.

Corollary2. ¢ = Tg
Finally, we define textual substitutions g[g’ /s~] and g[g’/s™] to derive new guards.

Definition 6 (Textual Substitution). The textual substitutions g[g’/s™), glg’/s™] are
defined as g1 + g2 - ' + g3 -5~ and g1 + g2 - s + g3 - g’ respectively if g = g1 + g2 -
st +93-s57, where s ¢ g1, 92, 93-

Lemma 1. For g C g1+ go, there exists a decomposition g = g+ g4 such that g5 C g1
and g5 C go.

The proof may be easily validated by taking every event of guard into consideration.

3 Instantaneous Reactions: I-Calculus

In this section, we present the I-calculus for the event-based synchronous languages,
which mainly tackle conceptually instantaneous reactions, i.e., zero time reactions. The
syntax of I-calculus is given as follows:

To= s || L|g&I|I\s|T| T

Where, ¢ is an event guard and !s is an emission of signal s. The function ems(I) defines
the set of the generated signals of reaction I.

The meanings of all reactions are accord with the common intuitions. Informally,
each reaction may sense the presence of input signals and generate output signals. The

Towards a Signal Calculus for Event-Based Synchronous Languages 5

reaction !s emits signal s and terminates immediately; II does nothing but terminates
successfully. | represents the worst reaction which leads to a chaotic state. The reaction
g& I behaves like I when the guard g is fired, otherwise it behaves like the reaction I7.
The reaction I\s declares signal s as a local signal and the emission of s becomes
invisible to outside. I; || Io immediately starts I; and I5 in parallel. Note that [; and Io
can interact with each other.

Example 1. Let I} = s &!so || (55 - s7)&!s3 || s5 & L.

Given an input signal sy, the guard s} can be triggered; thus signal s, is emitted imme-
diately; at the time, the guard s;r - sf is also satisfied and then s3 is generated. Hence,
I would react to input signal s by emitting se and ss. For input signal s3, I becomes
chaotic since ss is absent in input signals and no reaction can generate it.

Example 2. Let Iy = sT&!so || (s3 - s7)&!s3 || s4 & L.

Given an input signal s1, intuitively both signals so and s3 will be generated according
to the above computation. However the reaction actually enters into chaos state since
s3 activates the reaction L.

As can be seen from these examples, the computation of an reaction is proceeded step
by step. When input signals are given, we first inspect which guards are triggered. If the
guard is fired, the involved reaction will generate the corresponding signals. Then with
the generated signals, we repeat the computation until no new guard can be fired.

Indeed, the computation is tedious and subtle, which is mainly caused by the internal
implicit dependence. We intend to search for a method of exposing the dependence
explicitly. The algebra is obviously well suited to reveal the dependence since term
rewriting (algebraic laws) preserves the equivalence of reactions.

4 Algebraic Semantics

In the section, we explore the algebraic semantics for I-calculus whose foundation is
based on abstract algebras. The basic idea of the algebraic approach to semantics is to
use algebraic axioms to describe the characteristic properties of the primitives and the
combinators. Algebra is well-suited for direct use by engineers in symbolic calculation
of parameters and the structure of an optimal design. Algebraic proof by term rewriting
is the most promising way in which computers can assist in the process of reliable
design [[10]. From the point of view of language utility it is desirable to develop as
much laws as possible, and make the laws as widely applicable as possible. Hence we
state the laws in such a way.

4.1 Parallel

The parallel is commutative and associative. Consequently, the order of parallel com-
position is irrelevant.

6 Y. Zhao and H. Jifeng

par-1 6L | = L|| L (|| comm)
par-2 (1| I2) || Is = LI |[(12 | I3) (I assoc)

The parallel is idempotent, due to deterministic behavior of reactions.

par-3 I|I =1 (|| ¢demp)
Reactions L and IT are the zero and the unit of parallel composition respectively.
par-4 L ||I =1 (|| = L zero)
par-5 | I =1 (|| = II unit)
4.2 Guard

The following law enables us to eliminate nested guards.

guard-1 ¢1&(g2&l) = (91-92)&I (& multi)

Event guards with same reaction can be combined.

guard-2 g &1 || go&l = (g1+g2)&I (& add)

The event guard distributes through the parallel.

guard-3 g&(I1 || I2) = g&I || g& 1o (& — || distrib)
Reaction (&I behaves like IT because its guard can never be fired.

guard-4 (&I = II (& — 0 top)
Reaction e& I always activates the reaction 1.

guard-5 &I =1 (& — € buttom)

Reaction g&II never emits signals.

guard-6 g&II = II (& — II void)

4.3 Concealment

The concealment is commutative and the order is not critical.

conc-1 (I\s)\t = (I\t)\s (\ comm)

\ s distributes backward over || when one component does not mention signal s.

conc-2 (I1 || I2)\s = ({1\s) || Io providedthats & Is (\ — || quasi-distrib)

\ s distributes backward over guarded reaction if s does not appear in the guard g.

conc-3 (g&I)\s = g&(I\s) providedthats ¢ g (\ — & quasi-distrib)

Towards a Signal Calculus for Event-Based Synchronous Languages 7

4.4 Primitives

When reaction s~ &!s is triggered it behaves like L since it violates the logical coher-
ence between the environment assumptions (i.e., absence of signal s) and the effect of
emission of signal s

prim - 1 sT&ls = s &L (logical coherence)

Reaction st &!s behaves like II because emission of s does not change the statues of s.

prim-2 sT&ls = sT&I (axiom unit)

4.5 Dependence

A guard g also triggers the reaction sT& 1 if it can generate signal s. The following law
is crucial for our algebraic approach since it expose the internal dependence explicitly.

depend-axiom g&!s || sT&I = g&!s| (sT + g)&I

4.6 Additional Laws

The following law illustrates how to eliminate the concealment.
conc-4 (g&!s || I)\s = I[g/sT,g/s”] providedthats ¢ gand s ¢ ems(I)

Where, the textual substitutions I[g/s "] and I[g/s™] can only proceed on guards.

The laws are listed above capture the properties of all primitives and the combinators.
Definitely, on one hand, all the laws are consistent, i.e., no conflict can be deduced
in terms of the laws. On the other hand, we advocate the laws are complete, i.e., all
reactions can be reduced to a normal form defined below with the help of the laws.

Example 3. Let I = ((s{ + s3 - s3)&!sa || 55 &!s4)\s2.

We illustrate how to eliminate the concealment.

I=((sf +s3-s3)&!sa || 55 &!s4)\52 {guard-2}
= (s7&!s2 || 55 - s3&!s2 || 55 &!sq)\s2 {prim-2}
= (57 &!sy || 55 &!sq)\s2 {conc-4}
= 51&!s4

5 Normal Form for I-Calculus

In the section, we investigate the normal form (unified and restricted form) for I-calculus
and we prove all reactions can be algebraically reduced to normal forms. Thus addi-
tional properties of I-calculus can be simply deduced by showing them to be valid just
for normal forms. The behavior equivalence of two reactions depends on the equiva-
lence of their corresponding normal forms. More importantly, the normal form of an
reaction actually exposes the internal dependency explicitly and captures the interfer-
ences in advance. Intuitively, all parallel sub-reactions in a normal form can react to
environment input signals simultaneously if the input would not lead to chaos.

8 Y. Zhao and H. Jifeng

Definition 7 (Normal Form). The reaction || men gm&!sm || h& L is a norm form for
I-calculus if it satisfies the two conditions below, where all g; and h are up-closed
guards, the index set M is finite and all signals s; (i € M) are different.

(1).Ym,ne M,ge(g-sF Cgm=9-9n Cgm)N(g-sF Sh=g-gn Ch).
(2).Vm € M, Im * S, ChC Im-

Theorem 1. g&1 || h& L = (g + h)&I || h& L

Proof
(9+h)&l || h& L (guard-2 and 3)
= g&I || h&(I'|| 1) (par-4)
= g&I || hé&L

Theorem 2. g&!s = g&!s|| (g-s7)&L

Proof
g&ls
= (g+g-s7)&ls (guard-2)
= g&ls| g -s &L

The two theorems ensure the satisfiability of condition (2). Thus, for any m, we can
always add guard g¢,, - s, into h and h into g,,, respectively without affecting the equiv-
alence of reactions.

The objective of the following part is to show that all reactions in I-calculus can be
reduced to normal forms. Our first step is to show that all primitives can be reduced to
normal forms.

Theorem 3. The primitive reactions L, II and!s can be reduced to normal forms.

Proof: Easily, the following computations are validated by algebraic laws.
1L =e&Ll =|mem Te&lsm || Te&kL,
I =0&1L = ||memP&!sy, || 0&L and
ls =e&kls = e&ls || s~ &L=Te&ls || Ts7&L a

Consequently, all primitives can be reduced to normal forms. Now we are going to
prove that normal forms are closed under the combinators, i.e., g&I, I\s and I || T
since all primitive commands are already normal forms.

Lemma 2. The reaction I = ||menmgm&!sm || h& L can be reduced to normal form
if condition (1) is already satisfied, i.e., Ym,n € M,ge (g- s}t C gm = g-gn C
gm) AN (g~ st Ch=g-gn Ch), whereall s; (i € M) are different, all g; (i € M)

and h are up-closed guards.

Proof: We directly construct the normal form I’ which is equivalent with 1.
Leth' = h+ ZneMgn S, G = gm + W and I’ = || e gl &lsm || K & L.
Firstly, we show that I and I’ are algebraically equivalent. Easily,

Towards a Signal Calculus for Event-Based Synchronous Languages 9

I = ||memgm&!sy || h&L {thm 2 and guard-2}
Imerrgm&'sm || (W43, crr 9n - 5,)&L {thm 1 and guard-2}
= |lmenm (gm + h')&!sy || & L
lmergpm&lsm || h'&L
=

Next we prove that I’ is a norm form, i.e., I’ satisfies the conditions of normal form.
Obviously, we have Vm € M, g, - s, C h' C g/, since g, - s, C h'. i.e., reaction
I’ satisfies condition (2). Then we only need to prove I’ also satisfies condition (1)
Vm,n € M,ge(g-s, C g =9-9,Cgn)AN(g-s5 Ch = g-g, CH).
Equivalently, we show the construction from I to I’ conserves the condition (1).

Suppose that g-s;7 C b’ for given n, there exists a decomposition g = h1+ .., 91
such that by - s}t C hand forany i in M, g, - s;7 C g; - s; . Thus we get g} - s;7 C g;
and g; C s; . Hence hy - g, € h C h/ and g - g, C g, are obtained by the premise.
Obviously, g, - gn C g; -s; C K/ is validated; that is g - g, C h’. Consequently,
99 =9 9gn+g-h Ch.

Similarly, given m and n, suppose that g - s, C g/, there exists a decomposition
g = g'+g®suchthat g'-s} C g, and g?-s;7 C h'. Consequently, g' - g,, C gm C g,
and g% - g, C W' C g/, are obtained. Thus we have g - ¢/, = g1 - g + 9% - gn +g- I C

/ _|_ h/ _ /
In a word, I’ is a normal form since I’ satisfies all the conditions of normal forms,
i.e., I can be reduced to normal form. O

Lemma 3. The reaction I = ||nenpn&!sy || &L can be equivalently reduced to the
form I = || menmgl,&!'sm || W & L which satisfies condition (1)¥m,n € M, ge(g-s;, C
9 =99 C g)N (g-st Ch =g-g., Ch) wherealls; (i € M) are different,
all g’ (i € M) and h' are up-closed guards.

Proof: see appendix. O
Theorem 4. The statement g& 1 can be reduced to a normal form if I is a normal form.

Proof: Let I = ||meMgm&!Sm ” h& L

Then,
g&l = g&(HmEMgm&!Sm || h&i) {guard-3}
= ||memg&(gm&!sm) || g&(h& L) {guard-1}
= llmer (g - sm)&!spm || (g - h)& L
According to Lemma 4 and 3, g& I can be reduced to normal form. O

Theorem 5. The statement I\ s can be reduced to a normal form if I is a normal form.

Proof: Let I = ||;cxgi&!s; || h&!L

Then,

I\s = (liexgi&!si || g&L)\s {guard-2}
= (g1&!s || g2&ls || g3&!s |lick gi&!s; || h&L)\s {prim-1 and prim-2}
= (1&!s || (h+ g3)&L || ickrgi&!s;i)\s {conc-4}
= (h+g3)lg1/s,91/s71&L

| liexrgilgr /s, 91/ 1&s;

10 Y. Zhao and H. Jifeng

Where, K’ = K — {i| s; = s}, s € g1, 92 = g2 - s*, and g3 = g3 - s~. According to
Lemma 4 and 3, T\ s can be reduced to normal form. O

Theorem 6. The statement I, || I can be reduced to a normal form if both I and I
are normal forms.

Proof: Let I1 = |liengi&!s; || h& L, I = ||jes9;&!s} || & L. Without loss of gen-
erality, we assume that N N J = ().

Then,
L[| 12 = (liengidels || h&e L) || (Il 595885 [| h'& L)
= |lkerxgr&!sk || (b + H)& L

Where, K = NW J, gy = gi, sy = s; if K € N and gy, :g;-,sk = s;ifk e J.
According to Lemma 4 and 3, [; || I3 can be reduced to normal form. a

Theorem 7. All reactions can be reduced to normal forms.
Proof: From Theorem 1-4.
In actual, the proof not only demonstrates that all reactions can be reduced to normal

forms, but also shows how to translate a reaction into normal form using a unifying
approach.

Example 4. Let I = s7 &!so || s3&!s3 || s3 &!s1

We illustrate how to reduce [into normal form.

I =s7&!sy | s5&!s3 || sd&!sy {depend-1}
= s7&!sa || (s7 + s5)&!s3 || s5&!s1 {depend-1}
= sy &!sa || (s7 + s3)&!ss || (s7 + 85 + s)&!sy {thm-2}
= s7&!sq || (s] + s5)&!s3 || (s7 + 54 + s7)&!s;

| (s7 + 55 -s3)&L {thm-1}
= (s] + 55 +573)&!s1 || (s7 + 55 - 55)&!s0
|| (s7 + s3)&!s3 || (s + 55 - s5)&L {corollary-1}

=(Ts7+ Tsi+ Ts?{)&!sl || (Ts7+ Tsq- 1535)&!so
| (Ts7+ Ts3)&!ss || (1s7+ 155 Ts5)&L

Thus the behavior equivalence of two differently written reactions depends on the equiv-
alence of their corresponding normal forms since we have prove that all reactions, how-
ever deeply structured, can be reduced to a normal form. Obviously, two reactions in
normal form are behaviorally equivalent if they have the same algebraic form. The fol-
lowing definition captures the intuition.

Definition8. NFy, = NF, iff h = W and Vi € M e g} = g;, where NF} =
llieamgi&!s; || h& L and NF5 = ||;emgi&!s; || h' &L are normal forms.

As advocated in the above, normal form exposes the internal dependence explicitly.
Consequently, the computation is straightforward for reactions in normal form rather
than tedious computations for general algebraic forms. In particular, the computation
for emission set of reaction is surprisedly simple, as shown in theorem 8.

Theorem 8. For input signals S and reaction NF = |;epg:&!s; || h&L in normal
form, we have ems(NF) = {s; e hhe€ giNe={tT |t e S}}

Towards a Signal Calculus for Event-Based Synchronous Languages 11

6 Discussion

Here we give a discussion on the related work with our study on the signal calculus.
Edward er al. presented the tagged signal model [[11] to explore the design of computa-
tional framework, where each signal represents a collection of value-tag pair. The set of
tags is usually partially ordered set (poset). Thus the tagged signal model maintains the
strict causality, which ensure determinacy under certain essential technical conditions.

Esterel [12115] is an imperative synchronous language having a textual syntax some-
what along the lines of Pascal. Its distinguishing feature is the rich set of signal handing
constructs for reactive programming [[16]. The main semantic challenges addressed in
[ZU13U17]] is the issue of causality. To solve the challenge, many research efforts are ad-
dressed to develop a diversity of constructive semantics for Esterel [12], e.g., construc-
tive behavioral semantics, constructive operational semantics and constructive circuits.

Essentially, our signal calculus is inspired by the Esteral language. We intend to
translate all Esteral statements into our calculus. For example, present s™ then emit ¢;
else emit t5 can be expressed as sT &t || s~ &!t5 in our calculus. Further, the sequential
operator is, intentionally, not involved in this paper. In fact, all sequential instantaneous
reactions can be embraced in our calculus. For instance, the sequential g&!t ; h&l!s is
equivalentto g&!t || (g- (hle/tT,0/t7])+g-h)&!s . In other words, the extension with
the sequential compositional would not enhance the expressiveness of the calculus.

In future, we will complete the signal calculus by introducing delay-time reactions.
We believe that the zero-time reactions and delay-time reactions are orthogonal. Thus
the extension is straightforward. The head normal form for signal calculus has the form:

NF = NF, || |lien 9i&(pause; NF)

Where N F} is the normal form of I-calculus. The reaction pause means it pauses in
the current instant and terminates in the next instant. The head norm form indicates that
in every instant, the reaction first instantaneously reacts to the input signals and then
selects the appropriate delay-time branch in the light of the guards.

Acknowledgement. This work was supported by National High Technology Research
and Development Program of China (No. 2011AA010101), National Basic Research
Program of China (No. 2011CB302904), National Natural Science Foundation of China
(No. 61021004), Doctoral Program Foundation of Institutions of Higher Education of
China (No. 200802690018). The authors also gratefully acknowledge support from the
Danish National Research Foundation and the National Natural Science Foundation
of China (Grant No. 6106113054 1) for the Danish-Chinese Center for Cyber Physical
Systems. Yongxin ZHAO is also supported by ECNU Reward for Excellent Doctors in
Academics (XRZZ2010027).

References

1. Goguen, J., Thatcher, J., Wagner, E., Wright, J.: Initial algebra semantics and continuous
algebra. Journal of the ACM 24(1), 68-95 (1977)

2. Bergstra, J.A., Klop, J.W.: Algebra of communicating processes with abstraction. Theoretical
Computer Science 37(1), 77-121 (1985)

12 Y. Zhao and H. Jifeng

3. Hennessy, M.C.: Algebraic Theory of Processes. MIT Press, Cambridge (1988)

4. Roscoe, A.W., Hoare, C.A.R.: The Laws of OCCAM Programming. Theoretical Computer
Science 60, 229-316 (1977/1988)

5. Baeten, J.C.M., Weijland, W.P.: Process Algebra. Cambridge Tracts in Theoretical Computer
Science. Cambridge University Press, Cambridge (1990)

6. Libkin, L.: An elementary proof that upper and lower powerdomain constructions commute.
Bulletin EATCS 48, 175-177 (1992)

7. Berry, G., Gonthier, G.: The Esterel synchronous programming language: Design, semantics,
implementation. Science of Computer Programming (SCP) 19(2), 87-152 (1992)

8. He, J., Hoare, C.A.R.: From Algebra to operational semantics. Information Processing Let-
ter 46 (1993)

9. Maddux, R.D.: Fundamental study Relation-algebraic semantics. Theoretical Computer Sci-
ence 160, 1-85 (1996)

10. Hoare, C.A.R., He, J.: Unifying Theories of Programming. Prentice Hall International Series
in Computer Science. Prentice-Hall, Englewood Cliffs (1998)

11. Lee, E.A., Sangiovanni-Vincentelli, A.: A framework for comparing models of computation.
IEEE Transactions on Computer-Aided Design of Integraed Circuits and Systems 17(12),
1217-1229 (1998)

12. Berry, G.: The Constructive Semantics of Pure Esterel (1999) Draft version, ftp://
ftp-sop.inria.fr/meije/esterel /papers/constructiveness3.ps.gz

13. Tini, S: Structural Operational Semantics for Synchronous Languages. PhD thesis, Diparti-
mento di Informatica, Universita degli Studi di Pisa, Pisa, Italy (2000)

14. Mclver, A K., Morgan, C.C.: Probabilistic power domains (in preparation)

15. Potop-Butucaru, D., Edwards, S.A., Berry, G.: Compiling Esterel. Springer, Heidelberg
(2007)

16. Shyamasundar, R.K., Ramesh, S.: Real Time Programming: Languages, Specification and
Verifcations. World Scientific Publishing, Singapore (2009)

17. Mousavi, M.: Causality in the Semantics of Esterel: Revisited. Electronic Proceedings in
Theoretical Computer Science 18, 32-45 (2010)

Appendix

Proof of Lemma 4

Here we equivalently construct the expected form. Naturally, we can always demand
that all signals s; (: € N) are different, i.e., Vm,n € N e (m # n = s, # s,) and
all g; (¢ € M) and h are up-closed guards since reactions are equivalent with respect to
up-closed guards. Otherwise we can equivalently transform I by removing p,,&!s,, and
substituting (p,, + pn)&!sm and N\{n} for p,,&!s,, and N respectively. Thus we get
I = |liemgi&!s; || h&L, where all s; (i € M) are different, all g; (: € M) and h are
up-closed guards.

Define G =4 {(gi,si) | i € M}. For any k from M, let g = gj, and Gy, =
G\{(gx,sk)}, we build H} = {g-gi | I(gi,si)) € GrLeg-s;7 C g2} and g} =
a5 +deH; g.In general, if g, # g, ' (1 < r), construct H; ™' = {g-g; | I(gi,5:) €
Greg-si C gi}and gZH =g, + ZQGH;+1 g. Obviously, the construction must
terminate after at most | M/ | times construction, i.e., there exists 1 < jj, < [M| such that
gk = i’“fl. Thus we have Vi € M, ge g-si C gl* = g-g; C gi* and gj* C g} for
0<m <n <.

ftp://ftp-sop.inria.fr/meije/esterel/papers/constructiveness3.ps.gz
ftp://ftp-sop.inria.fr/meije/esterel/papers/constructiveness3.ps.gz

Towards a Signal Calculus for Event-Based Synchronous Languages 13

We also build 27" in a similar way. Let h° = h and G}, = G, we construct H} =
{9-9i|3gi,si)) € GrLog-si C g)}and gl = g + deHi g. In general, if
gr # g, ' (1 < r), we construct H; 1 = {g-g; | 3(gi,5:) € GrLeg-si C gi}
and g; ' = gf + deH}:H g. In the same reason, there exists 1 < j, < |M| such that
gih = gff’fl. Thus we have Vi € M,ge g- s C gf;" =g-9; C gih and g}' C gy for
0<m<n<jh

Firstly, we show that the construction conserves the equivalence of reactions. For
any k € M and 0 < r, < jy, define I;* = g;*&l!sy, || I. We state that Vk € M,0 <
ry < e Iy = I

Ik = gk&lsy || 1 {depend-1 and guard-2}
= (g," + deH’:kH 9)&lsy || I {Defof H;* "' and g;* '}
=g &y || T = IFT

Consequently, YO < 7,7, < jp, I'* = I'*. Similarly, define I™* = h™&L || I and
VO <y, 1 < gp, I = I is validated.
Let I' = ||licargl* &!s; || h7" & L. We state that T = I’ by the following proof,

I' = |liemgl &lsi || W& L {guard-4}
= lliear (g" + gi)&!s; || (A" + h)& L {guard-2}
= llien(g] &!s; || I) || (R &L || T) {proved}

= iear(gi⪕ | I) || (h&e L || T)

= llienrgilels; || h&L || I

=I|I=1I
Finally, we prove I’ satisfies the condition (1) Ym,n € M,ge (g- st C gin =
g-glm C giyA(g- st C hin = g-glm C hin). We first prove the statement
VO< 7 < jm,geg-st Cgin = g-g" C gin for given m and n by mathematical
induction.

Basis When r = 0, obviously Vg e g - 5. C g C g g, C gir.

Induction Step Assume thatr = [(0 < | < j,,),Vgeg-s} C gin = g-gl C gir.
When r = [+1, suppose g-s;5, C gin, we have H5H = {g-g; | 3(gi, 5:) € Gmeg-si C
gt} and gtt1 = gl + dean-f—l g- Recall that Vg’ - g; € HLFL g - s; C g.,. Thus
g-9 -g; C glris validated since g - g’ - s; C g - gL, C g/». Hence, g - gi}1 =
g g, +g- Zg'e HlH g’ C gl According to the principle of mathematical induction,
V0 <7 < jm,Vge(g-s) Cgin = g-g", C glr).In particular, Vg e (g- s}, C gin =
0- gl € gir). | o

Similarly, we can prove Vg g - s;, C hih = g - glm C hin.

The proof is done and I’ = ||;enrg] &!s; || hin & L satisfies the conditions. O

Reasoning about Programs Using a Scientific
Method

Peter W. O’Hearn

Queen Mary University of London

Abstract. Reasoning about programs has traditionally been done us-
ing deductive reasoning, where mathematical logic is used to make proofs
that connect programs with specifications. In this talk I describe an ap-
proach where an automated reasoning tool approaches program code as
a scientist would in the natural world. Instead of just deductive logic,
versions of abductive reasoning (generation of new hypotheses) and in-
ductive generalization are used in an iterative fashion to discover specifi-
cations that partly describe what programs do, starting from bare code.
The resulting specifications are partial or conservative, but the infer-
ence/discovery aspect makes it much easier to approach large code bases,
quickly, than with the traditional deductive-only approach.

The underlying program logic in this work is separation logic, a logic
for reasoning about the way that programs use computer memory, and
the inference method attempts to discover a logical assertion describing
the program’s footprint: the collection of cells that it touches. Aiming
for the footprint provides a strategy to select compact specifications,
amongst the enormity of all potential specifications (which would be too
many to consider). After describing the inference techniques, I report on
experience using a software tool that automates the method, which has
been applied to large code bases.

This talk is based on joint work with Cristiano Calcagno, Dino Dis-
tefano and Hongseok Yang.

S. Qin and Z. Qiu (Eds.): ICFEM 2011, LNCS 6991, p. 14, 2011.
© Springer-Verlag Berlin Heidelberg 2011

Poirot—A Concurrency Sleuth

Shaz Qadeer

Microsoft Research
qadeer@microsoft.com

Abstract. Concurrent programming is difficult. The challenges are
foundational: unlike sequential control flow, asynchronous control flow is
difficult to understand and reason about. Not surprisingly, even expert
programmers find it difficult to write concurrent software. We desper-
ately need software engineering techniques and tools to move concurrent
programming from black art to a rigorous engineering discipline. I believe
that automated tools that reduce the cognitive burden of reasoning about
concurrency can help tremendously in improving the productivity of con-
current programmers. In collaboration with my colleagues at Microsoft
Research, I have developed Poirot (http://research.microsoft.com/
en-us/projects/poirot/), a tool for answering semantic queries about a
concurrent program by statically searching over its executions. Poirot
exploits sequential encodings of concurrent semantics, structural under-
and over-approximations for sequential control flow, and advances in
automated theorem proving to search concurrent program executions
efficiently. Poirot is being used in many different applications—bug de-
tection, program understanding, and symbolic debugging. This lecture
will present both a demonstration and an explanation of the techniques
underlying the search engine inside Poirot.
Poirot is joint work with Akash Lal and Shuvendu Lahiri.

S. Qin and Z. Qiu (Eds.): ICFEM 2011, LNCS 6991, p. 15, 2011.
© Springer-Verlag Berlin Heidelberg 2011

Context-Based Behavioral Equivalence of
Components in Self-Adaptive Systems

Narges Khakpour!:2, Marjan Sirjani®, and Ursula Goltz!

LIPS, Technical University of Braunschweig, Germany
2 Tarbiat Modares University, Iran
3 Reykjavik University, Iceland
khakpour@ips.cs.tu-bs.de

Abstract. An important challenge to realize dynamic adaptation is
finding suitable components for substitution or interaction according to
the current context. A possible solution is checking behavioral equiva-
lence of components in different contexts. Two components are equivalent
with respect to a context, if they behave equivalently in that context. In
this work, we deal with context-specific behavioral equivalence of Pob-
SAM components. PobSAM is a flexible formal model for developing and
modeling evolving self-adaptive systems. A PobSAM model is a collec-
tion of actors, views, and autonomous managers. Autonomous managers
govern the behavior of actors by enforcing suitable context-based poli-
cies. Views provide contextual information for managers to control and
adapt the actors behavior. Managers are the core components used to
realize adaptation by changing their policies. They are modeled as meta-
actors whose configurations are described using a multi-sorted algebra
called CA. The behavior of mangers depends on the context in which
they are executing. In this paper, we present an equational theory to
reason about context-specific behavioral equivalence of managers inde-
pendently from actors. To this end, we introduce and axiomatize a new
operator to consider the interaction of managers and the context. This
equational theory is based on the notion of statebased bisimilarity and
allows us to reason about the behavioral equivalence of managers as well
as the behavioral equivalence of the constitutes of managers (i.e., policies
and configurations). We illustrate our approach through an example.

1 Introduction

Today’s complex systems often need to operate in dynamic, open and heteroge-
neous environments, so they must be able to adapt themselves at run-time to
handle varying resources, user mobility, changing user needs, and system faults.
PobSAM (Policy-based Self-Adaptive Model) [§] is a flexible formal model to
develop, specify and verify self-adaptive systems which uses policies as the fun-
damental mechanism to govern the system behavior. A PobSAM model is com-
posed of a collection of autonomous managers, views and actors. Autonomous
managers are meta-actors responsible for monitoring and handling events by
enforcing suitable policies. Each manager has a set of configurations where one

S. Qin and Z. Qiu (Eds.): ICFEM 2011, LNCS 6991, pp. 16-32, 2011.
© Springer-Verlag Berlin Heidelberg 2011

Context-Based Behavioral Equivalence of Components 17

of the configurations is active at a time. The manager changes its active con-
figuration dynamically in response to the changing circumstances according to
adaptation policies. The managers monitor actors through views, i.e. views pro-
vide contextual information for the managers. One of the distinguished advan-
tages of PobSAM is that it allows us to modify the configurations (or policies) of
managers at runtime. This feature makes PobSAM a suitable model to develop
evolving self-adaptive systems.

In dynamic environments such as ubiquitous computing world, many sys-
tems must cope with variable resources (bandwidth, server availability, etc.),
system faults (servers and networks going down, failure of external components,
etc.), and changing user priorities (high-fidelity video streams at one moment,
low-fidelity at another, etc.) [3]. In such environments, the system requires to
continue running with only minimal human intervention, and the component
assessment and integration process must be carried out automatically. We refer
to the component assessment as the problem of identifying a component with
desired behavior that can replace another component or can be used for interac-
tion in a specific context. A possible solution to this problem relies on detecting
the behavioral equivalence of a particular component with desired behavior and
a candidate component that could maintain that behavior. Generally, we cate-
gorize the behavioral equivalence of two components as context-independent or
context-specific. The context of a component is defined as the environment in
which the component is running. T'wo components that are context-independent
equivalent behave equivalently in any environment, while the equivalence of two
components that are context-specific equivalent, depends on the environments
in which they are running.

Managers are the main components to control and adapt the system behavior
in PobSAM. Thus, it is an important issue to analyze the behavioral equiva-
lence of managers when studying the dynamic replacement and interaction of
components for software adaptation. In order to ensure the correctness of the
whole system behavior, we have to provide approaches to analyze the behavioral
equivalence of the original manager and the adapted one.

Contribution. We previously proposed PobSAM in [§] which has a formal
foundation that employs an integration of algebraic formalisms and actor-based
models. The actors of PobSAM are modeled using actor-based models while the
algebra CA (Configuration Algebra) is proposed to specify the configurations
of managers. Due to the fact that the managers control and adapt the system
behavior using dynamic policies which are context-dependent rules, the behavior
of a manager depends on the context in which it is enforcing policies. We must
investigate context-specific behavioral equivalence of managers. Furthermore, we
can modify the policies and the configurations of a manager dynamically. Thus,
this equational theory should allow us to reason about context-specific behav-
ioral equivalence of policies and configurations as well. In this paper, we develop
an equational theory to analyze context-specific behavioral equivalence of man-
agers, based on a notion of behavioral equivalence called statebased bisimula-
tion. The context of managers is specified by a labeled state transition system.

18 N. Khakpour, M. Sirjani, and U. Goltz

The context interacts with the managers by synchronous message passing. We
extend CA with a new operator to consider the interaction of managers and
the context. Then, we present the axioms for this operator to check behav-
ioral equivalence of managers. In our equational theory, we can reason about
context-specific behavioral equivalence of policies, configurations and managers
separately. As the manager may evolve by changing its policies or configurations,
this theory allows us to only reason about the modified constitutes without the
need to check the whole model of the system. An important advantage of this
equational theory is that it analyzes the behavioral equivalence of the manager
layer independently from the actor layer using the context.

The remainder of this paper is organized as follows. In Section [we introduce
an example to illustrate our approach. In Section [B] we have a brief review on
PobSAM. Section [deals with modeling our case study in PobSAM. We intro-
duce the notion of statebased bisimulation in Section[Bl An equational theory is
proposed to check context-specific behavioral equivalence of managers in Section
[6l In Section [l we give a summary of related work and Section B presents our
conclusions.

2 Illustrating Example

We use a simple example borrowed from [16] to illustrate our approach. In this
example, a team of collaborating unmanned autonomous vehicles (UAVs) are
used for a search and rescue operation. Assume a person with a body sensor
network (BSN) is wounded in an area and needs help. The BSN sends a help
message to a mission commander. A mission is defined by the commander to save
the wounded person: one or more UAVs with video cameras act as surveyors and
others perform a communication relay function. The UAVs are required to adapt
their behavior according to the changes of the environment. According to the
role of a UAV in the mission, a set of policies is used by that UAV to control its
behavior. However, the role of a UAV is not fixed, and subsequently, the policies
used to control the UAV behavior must change dynamically. For instance, the
video camera of a surveyor may break down and that surveyor would act as a
communication relay. Thus, various sets of policies are defined for a UAV and
one of those sets of policies is active at a time, i.e. adaptation is performed by
changing the set of policies used to control the UAV behavior.

3 PobSAM

A PobSAM model is composed of three layers:

— The actor layer is dedicated to the functional behavior of the system and
contains computational entities.

— The view layer consists of view variables that provide an abstraction of the
actors’ states for the managers. A view variable is an actual state variable,
or a function or a predicate applied to state variables of actors.

Context-Based Behavioral Equivalence of Components 19

— The main layer of PobSAM is the manager layer containing the autonomous
managers. Managers control the behavior of actors according to the prede-
fined policies. A manager may have different configurations and dynamic
adaptation is performed by switching among those configurations. A con-
figuration consists of two classes of policies: governing policies and adap-
tation policies. A manager directs the actor behavior by sending messages
to the actors according to governing policies. Adaptation policies are used
for dynamic adaptation by switching among configurations. However, the
adaptation cannot be done immediately and when the system reaches a safe
state, the manager switches to the new configuration. A new mode of oper-
ation called adaptation mode is introduced in which a manager runs before
switching to the new configuration. There are two kinds of adaptations called
loose adaptation and strict adaptation. Under loose adaptation, the manager
handles events in the adaptation mode by enforcing the governing policies
of old configuration, while in the strict adaptation mode all the events are
postponed until the system passes the adaptation mode safely.

A manager is defined as a tuple m = (V,,, Cp, Cinit), with Cy, the (finite) set
of configurations of m, ¢init € Cy, its initial configuration, and V;, the (finite)
set of view variables observable by m. A configuration ¢ € C,, is defined as
¢ ={(g,p), where g = {g1, ..., gn} and p indicate the governing policy set and the
adaptation policies of ¢, respectively. The constants T and L stand for “True”
and “False”, respectively.

Governing Policies. A simple governing policy g;=(o,e,¥)ea, 1 < i < n con-
sists of priority o € N, event e € E where F is an assumed set of possible events,
condition ¢ (a Boolean term) and an action a. The actions in the governing
policies are specified using an algebra CA® defined as follows. We let a,a’,a”
denote action terms, while an (atomic) action « could be an internal action, an
output action (a!) in form of r.msg (i.e. sending the message msg to actor r),
or an in(g%lt action (a?).
a=aad | al|d | a||ld | a+d | ¢:—a | a] ol | a? | 4,

Thus an action term can be a sequential composition (;), a parallel composi-
tion (]|), a left parallel composition (|| which is as || but the first action that is
performed comes from the left operand), a non-deterministic choice (+), or a
conditional choice (¢ :— a). Moreover, we have the special constant d, as the
deadlock action for governing policies. Operator precedences are assigned, from
highest precedence to the lowest, to the conditional choice, the parallel com-
position operators, the sequential composition and the non-deterministic choice
operators. Whenever a manager receives an event e, it identifies all simple gov-
erning policies that are triggered by that event , i.e. are of the form (o, e,))ea
for some o, ¥, and a. For each of these activated policies, if the policy condition
1 evaluates to true and there is no other triggered governing policy with priority
higher than o, then action a is executed. Table [[] shows CA® axioms.

Adaptation Policies. Adaptation policies are specified using the algebra CAP
as follows:

20 N. Khakpour, M. Sirjani, and U. Goltz

Table 1. Action Algebra CA“®

a+ad =ad +a Al a|d=da AP1
(a+a)+a" =a+(a+d") A2 (ald)]a" =al (a]a") AP2
ata=a A3 (a+d)| " = (a]| a”)+ (d'|| a”) AP3
a+6y,=a A4 al|d =ald+d]|a AP4
0g;a =g A5 alla=woa AP5
(a+a);a" =a;a” +ad';a” A6 (aga)|| @ =a;5(a] a) AP6
(a;a’);a" = a;(a’;a”) A7

T:—a=a Cl L:—a=9¢ C2
p:—(atd)=¢dp:—>a+d:—a C3 ¢:— (a;a') =¢:—a;d C4
p:— (W :—a)=(@pAY):—a C5 (dVY):—ma=¢d:—a+1:—aC6
p:—d=20¢ C7 ¢:—all d =¢:— (a]) C8

pd:ef <0,€,¢,/\7¢>°C|p@p | 5?

which consists of priority o € N, event e € E, and a condition ¥ (a Boolean term)
for triggering the adaptation. Moreover, condition ¢ is a Boolean term indicating
the conditions for applying the adaptation, A is the adaptation type (loose,
denoted L, or strict, denoted T), and c is the new configuration. Informally,
simple adaptation policy (o, e, ¥, A, ¢p)ec indicates that when event e occurs and
the triggering condition v holds, if there is no other triggered adaptation policy
with priority higher than o, then the manager evolves to the strict or loose
adaptation mode as given by A\. When the condition ¢ is true, it will perform
adaptation and switch to the configuration c¢. The adaptation policy of a manager
is defined as composition(@) of the simple adaptation policies. Furthermore, d,
indicates the unit element for the composition operator.

4 Formal Modeling of Collaborating UAVs

Figure [shows the PobSAM model of a UAV partially. This model contains
actors motor, video camera, GSM and infrared sensors where Rebeca[ld]
specification of motor is given in figure [[l Rebeca is an actor-based model used
to specify the actor layer in [8]. The view layer has a number of views denoting
the current location, speed, energy level etc of UAVs. As an example, the view
UAVispeed indicates the speed of UAV1 which reflects the value of the statevar
speed of actor UAVimotor.

A UAV has a manager named UAVCntrlr for controlling different compo-
nents of the UAV. A UAVCntrlr has three different configurations including
surveyorConf, idleConf and relayConf. It enforces different sets of policies
in each configuration to control the behavior of UAV. For instance, the configura-
tion surveyorConf contains the adaptation policies {p1,p2} and the governing
policy set {g1,g2,g3}. Assume a situation that the video camera of a surveyor
breaks down and we need to use this UAV as a relay. We define the adaptation
policy p1 which informally states that “when the video camera is broken down, if

Context-Based Behavioral Equivalence of Components 21

the wounded person has not been found and the UAV has required capability to
act as a relay, it should switch to the relayConf configuration”. We specify this
policy formally as follows in which brokencamera is an event. The view variable
canRelay indicates if the UAV has required capability to act as a relay, and the
view variable success denotes whether the wounded person has been found or
not.

P1 def (1, brokenCamera, —success A canRelay, T, T)erelayCon f

The simple governing policy gl states that when the wounded person is
found, the UAV must request his health information from his BSN and send
a “success” message to the commander. The algebraic form of this policy

is g1 def (1, found(z,y), T)e ay where found(z,y) denotes an event that the
wounded person has been found at location (z,y), and

a1 = BSN .reqHealthinfo()? ||

relayl.send(success(x,y), commander)!

5 Statebased Bisimulation

In PobSAM, the managers are running concurrently with the actors; the com-
putation at the actor layer is reflected at the view layer, the state changing of
the view layer leads to triggering and enforcing policies by the managers. Sub-
sequently, the enforcement of policies results in new computations to be done at
the actor layer. We specify the context based on specification of the view layer,
the actor interfaces and possibly the interfaces of other managers. Given the for-
mal specification of a context, we check the behavioral equivalence of managers
in that context. A context is defined as follows:

Definition 1. A context is defined as tuple T, = (V,S.,s%, AL, A, A" —)
where

— V =Av1,...,u,} is the set of view variables.

— S, is the set of states where a state s € S, is of the form (vi,...,v,).

— 89 is the initial state.

— AL ACO and A2 are disjoint sets of input, output and internal actions where
A= ALUAQ UAH .

— —.C S, x A, x S, is the set of transitions.

In this paper, we extend CA® with a new operator, called CA%. We present a
context-specific behavioral equivalence theory for CA%. Then we use this basic
theory to reason about context-specific behavioral equivalence of policies, con-
figurations and managers. We define the operational meaning of CAg terms by a
transition system with data whose states are pairs of a CA® term and a context
state. Let A denote the set of CA® terms. The set of all pairs over A xS, is
denoted by Saxs.. We define a state transition system with data as follows:

22 N. Khakpour, M. Sirjani, and U. Goltz

manager UAVCntrlr
{
statevars {
}
configurations{
surveyorConf=[p1,p2] [gl,g2,g3];
//definition of relayConf and idleConf configurations

policies{

pllstrict]:on brokenCamera if (!success && canRelay)

switchto relayConf when true priority 1 ;

gl : on found(x,y) if true do

(BSN.reghealthinfo() || relay.send(success(x,y),commander))
priority 1 ;

//definition of governing and adaptation policies

}
}
views {

byte UAVlispeed as UAVlmotor.speed;

//definition of other views

Actors {

reactiveclass motor() {
knownobjects {}
statevars{public byte speed; }
msgsrv forward() {

L
msgsrv stop() {

//definition of other message servers
}
//definition of other reactive classes

}

Fig. 1. The Partial PobSAM Model of a UAV

Definition 2. A state transition system with data defined over the context T,
is T(a,s%) = (Saxs, ,— , A, AP A" (a,s9)) where Saxs, is a set of states,

r%cC

(a,s%) is the initial state, —C Saxs, X Ax Saxs, and A= A UA° U AH .

It worth mentioning that A. C A, AL C AT, A9 C A9 and AY C AH. We use
a notion of bisimilarity called statebased bisimulation [5] for expressing context-
specific behavioral equivalence of CAg terms defined as follows:

Definition 3. Statebased Bisimulation A binary relation R C Saxsg, X
Saxs. is a statebased bisimulation iff for all (r,s),(q,s) € Saxs, with
((r,s),(q,5)) € R:
— whenever (r,s) = (', 8") for some o € A and (', s'), then, for some ¢, also
(a,5) = (¢',s") and ((",8), (¢, ")) € R.
— Conversely, whenever (q,s) = (¢',s") for some a € A and (¢', '), then, for
some ', also (r,8) ~ (r',s") and ((r',s'),(¢,s")) € R.

Context-Based Behavioral Equivalence of Components 23

A pair (r,s) € Saxs, is statebased bisimilar with a pair (r/,s") € Saxs. with
respect to the context Tt, written by (r,s) <4 (r',s") iff s =5’ and there is a
statebased bisimulation containing the pair ((r,s), (7, s")).

A state transition system with data T'(r, s) = (Saxs, ,— ,Al, A%, AH (r s))
is statebased bisimilar with the transition system with data
T(qa S/) = <SA><SU s —' aAllv A/Oa A/H) (qa S/)>a written by T(h S) <:>Tu T(qa S/)
iff (r,s) <1 (¢,s'). Furthermore, two closed terms r , q over CA® are
statebased bisimilar with respect to the context T, written by r <, g, iff
T(r,s) <, T(q,s) for all s € S.

6 Context-Specific Behavioral Equivalence

In this section, we use the notion of statebased bisimulation to reason about
context-specific behavioral equivalence of managers and their constituents. We
introduce a new operator (©) to consider interactions of managers and the con-
text. The axiom system of CA“ is extended to check statebased bisimulation of
CA% terms. Then, context-specific behavioral equivalence of policies, configura-
tions and managers are defined based on the proposed equational theory for CAg,.

6.1 Context-Specific Behavioral Equivalence of Actions

In our model, the context and the managers run concurrently and interact by
synchronous message passing. Since the conditions of an action are evaluated
over the context state, therefore the concrete action carried out by the manager
depends on the context. There are three types of computation steps: (i) the
manager and the context synchronize on their shared input-output actions, (ii)
the context performs an internal action, or (iii) the manager performs an internal
action. In the cases (i) and (iii), the conditions of the action are evaluated over
the state of context. We introduce the operator © to compute the concrete action
done by a manager, regarding the interactions of the manager and a context.
Let a denote a term of CA® which must be performed by a manager, and
T. = (V,S,,s%, AL A9 AF —.) denote an arbitrary context. Assume the cur-
rent state of context is s € S, and the manager starts the enforcement of action
a. The operator O(a) gives the concrete action performed by the manager as
the result of performing action a when the context starts its execution in state
sc € Sc. The structural operational semantics of CA% extended is described by
the transition rules given in Figure[2in addition to the transition rules proposed

in [§]. The transition a Wl 7 means that a can evolve to o by performing
action oo under condition ¢.

Figure [l presents the axioms for © in which o/ € AH. This axiom system to-
gether with the axioms of Table [I] are used to check context-specific behavioral
equivalence of actions. We can formulate action a in form of a = 3", a; using
the axioms presented in Table [Il where term a; is the sequential composition
of conditional actions (i.e. of the form ¢ :— «). Thus, we give the axioms for
conditional choice, non-deterministic choice and sequential composition opera-
tors. Due to the lack of space, we restrict ourselves to present axioms for output

24 N. Khakpour, M. Sirjani, and U. Goltz

aM\/ s g a 9, vV s s
o os(¢p) =T LTRI1 o os(¢p) =T LTR2
Os(a) — v/ Os(a) %/
a [¢]a! a s i} s a [pla? o s a_g) o
os(¢) =T LTR3 os(¢) =T LTR4

O:(a) = Oy (a’) Os(a) = O, (a)

’ ’
s s ﬂ((a:a'?/\aa—!>a')\/(a:a'!/\aa—7>a'))

Os(a) = O (a)
[Pl

a——a

Os(a) = Os(a’)

LTR5
os(¢) =T LTR6

Fig. 2. Transition rules for the operator ©

and internal actions. A number of axioms similar to TA3-4 are defined for input
actions. TA2 asserts that non-deterministic choice of two actions a and o’ from
state s is equivalent to either execution of a or execution of a’ from state s. In
axioms TA3-6, the fist term }°, ./ .,y @ (a) describes the case that an internal
action (o) is executed by the context, and a will be evaluated from the next
state of the context (s'). If the condition of an action is evaluated to false (i.e.,
os(1)), action d, is executed. Moreover, if 1) is evaluated to true in state s, (i)
execution of ¢ :— a! in state s can result in performing simple action a by syn-
chronization with a? of the context (TA3), (ii) execution of ¢ :— «a!;a in state
s results in execution of simple action « synchronized with «? in the context,
followed by execution of a from next state s’ (TA4), (iii) execution of ¢ :— « in
state s can result in performing the internal action e by the manager (TA5), (iv)
execution of ¥ :— «; a in state s leads to execution of internal action «, followed
by execution of a from state s (TAG).

Proposition 1. (Congruence) Let a1, az, ay and afy be terms of CA®, 9
be an arbitrary boolean formula and T, = (V,S.,s% AL A9 AH —.) indi-
cate the context. If for all s € Sc, Os(ar) &1 Os(ay) and Os(az) &1, Os(ay),
then for all s € S., Og(a1+az) <1 Os(ai+ay), Os(ayr ;5 az) <q Os(a) 5 ay),
Os (Y = a1) &, O5(Y :— ay), and Os(ay [| az) S, Os(ay || az) -

Proof. See [1].

Theorem 1. (Soundness) Let T. = (V,S.,s%, AL, A9 A® —.) be a con-
text, and a and da' indicate two arbitrary terms of CA®. If for all s € S,
CA® 4+ (TA1 — TAG) F O4(a) = Oy(a’) then Os(a) and O(a’) are statebased
bisimilar with respect to Tc, i.e. Os(a) <1, O (a’).

Proof. See [1].

6.2 Context-Specific Behavioral Equivalence of Governing Policies

We have presented an axiomatized operator to check context-specific behavioral
equivalence of actions in Section We use this proposed equational theory

Context-Based Behavioral Equivalence of Components 25

O,(6a) = 6o TA1 Os(a+a’) =Os(a) + Os(a’) TA2

Os(¢p :— al) = Z(s,a’,s’) Oy (Y :— al) + Z(s,a?,s/) {?a Z:Eig z I TA3

Os(Y:—alsa)=3 v Os(¥:—al;a) +

a; Og(a) os()=T
Z(s,a?,s’) {5@ O,S(w) - L TA4
0.0 1=) = S O + {5 707 A3

a; Os(a) os(¥)

T
Qs(w s a) = Z(Sﬂal7sl) @S, (w s a) + {60 O’s(¢) 1 TA6

Fig. 3. Axioms of the operator O,

to reason about context-specific behavioral equivalence of governing policies.
A simple governing policy is a set of actions performed by a manager. Two
simple governing policies are equivalent if and if they are activated by the same
transitions of the context and their enforcement results in the same sequences
of actions done by the manager.

Definition 4. Let T, = (V, S.,s%, AL, A2, A®) denote an arbitrary context.
Two simple governing policies g1 = {01,e,11)0a1 and go = (02,¢e,12)0as are

TC .
equivalent with respect to T., denoted by g1 = go, if for all t = (s1,q, $3) €=,

(i) t =1(91,9) &t = 7(92,9) where 7(gi,g),i = 1,2, indicates the triggering
conditions of g; and g denotes the governing policy set of manager [9].

(i) Os,(a1) = Os, (az)

To reason about the behavioral equivalence of governing policy sets, we formu-
late the behavior of a governing policy set as a CA® term. Then, we use the
axiom system of CAg to check the equivalence of corresponding action terms.
Therefore, context-specific behavioral equivalence of two governing policy sets is
reduced to checking context-specific behavioral equivalence of their correspond-
ing action terms.

Definition 5. Let g and ¢’ indicate two arbitrary governing policy sets and
T. = (V,Sc, 80, ALLAQ, A2 —) be an arbitrary context. The function W(g,t)
returns the action term due to the enforcement of the governing policy set g,
when the transition t occurs [9]. We say g and g’ are equivalent with respect to

T, denoted by g = g/, iff for all t = (51,0, 53) €, O, (¥(g,1)) = O, ((g', 1)).
Example 1. Suppose a situation that relay; becomes overloaded. The messages

of a number of the surveyors which are transmitted by this relay should be trans-
mitted through the low-loaded relays. To this end, first we have to find those

26 N. Khakpour, M. Sirjani, and U. Goltz

event(missenend)!
relayer2.send(msg)?
event(brokencamera)!
BSN.reqHealthinfo()!
relayerl.send(msg)?
event(found)!

relayerl.send(msg)?
event(missenend)!
event(found)!
relayer2.send(msg)?
BSN.reqHealthinfo()!
event(brokencamera)!

discharge
empty

Fig. 4. The context of surveyori(Tsurv)

surveyors which transmit their messages through relay;. Assume that the sur-
veyors communicate with the relays only in the case that the wounded person is
found. In order to check if a surveyor transmits its messages through relay;, we
check context-specific behavioral equivalence of its governing policies for trans-

mitting data, and the simple governing policy go def (1, found(z,y), T)e as
where as def BSN .reqHealthinfo()? || relayl.send(msg)!. This simple policy

states that when the wounded person is found, the information should be trans-

mitted through relay;.

Suppose surveyor; has the simple governing policy ¢1 def

(1, found(z,y), T)e ay where
a; e BSN .reqHealthinfo()? || (lowenergy :— relay2.send(msg)!

+-lowenergy :— relayl.send(msg)!)

Figure @ shows the abstract context of surveyor; (Tsyr») which has three states
full (full energy), med (medium energy) and empty (no energy). Furthermore,
{ found, brokencamera, missionend} C A? indicate the event set, charge is an
input action, and discharge is an internal action. We should check context-
specific behavioral equivalence of g1 and go with respect to Ts,,. Both policies
are triggered in the states full and med in which the condition lowenergy does
not hold and event found is activated. Hence, we must check the equations
Orun(ar) = Opui(az) and Oned(ar) = Omed(az) (Definition). For the sake of
readability, let’s denote relayl.send(msg) and relay2.send(msg) by a1 and aq
respectively. According to the axiom systems in Table [l and Figure [3]

O (—lowenergy :— 1! + lowenergy :— ao!) TA2

O (—lowenergy :— a1!) + Oy (lowenergy :— ao!) TA3AS

Ti—o+1l:i—a+

Omed(—lowenergy :— aq! + lowenergy :— as!) CrC2

a1 + Oped(—lowenergy :— aq! + lowenergy :— as!) (1)

Context-Based Behavioral Equivalence of Components 27

and
@full(all) =1+ Qmed(al!) (2)

It is trivial to prove that
Omed(—lowenergy :— aq! + lowenergy :— as!) = Opea(ar!) (3)

and subsequently, the equation Oy (a1) = Opuulaz) is concluded from equa-
tions (1)-(3). According to Theorem [I] the actions of g; and go are statebased
bisimilar with respect to the context Ty, if they are activated in state full.
Similarly, we can prove that the actions of g; and go are statebased bisimilar
when they are activated in state med. We conclude that g; and g» are equiv-
alent according to Definition [4 Therefore, surveyor; always transmits its data
through relay;.

6.3 Context-Specific Behavioral Equivalence of Adaptation Policies

Informally, two simple adaptation policies are equivalent if and only if (a) they
are activated by the same transitions of the context, (b) their enforcement leads
to switching to the identical adaptation modes and configurations, and (c) the
manager switches to the new configuration in the same set of context states:

Definition 6. Suppose T. = (V, S, s%, AL, A9 AH —.) be an arbitrary context.
Two adaptation policies p1 = (01, e1,¥1, A1, ¢1)®c1 and py = (02, €2,12, Ao, P2)

T . .,
co are equivalent with respect to T., denoted by p1 = pa, if for all transitions
t= (513 «, 52) €E—e,

(i) t = 1(p1,p) & t = 7(p2,p) where 7(pi,p),i = 1,2, gives the triggering con-
ditions of p; and p is the adaptation policy of the manager,
(ii) c1 = co and A\ = Aa,
(iti) s’ |= ¢1 < 8’ = ¢ for all reachable states ' € S. from sa, where there is a
path such as o between so and s', and for all 8" € o, " ¥ ¢1 V ¢ .

Similar to governing policies, enforcement of adaptation policies leads to a se-
quence of actions carried out by the manager. We say two adaptation policies
are equivalent with respect to context T, if their enforcement in a system with
context T, leads to the same sequence of actions carried out by the manager.
We introduce the operator {2 which gives the actions done by the manager to
apply an adaptation policy. Let p indicate an adaptation policy of a manager,
and p; = (0,e,9, A\, $) ® ¢ denote an arbitrary simple adaptation policy of p, i.e.
p=p; ®p’. The function 2(p;, p) returns a CA® term due to enforcing p;, where
7(pi, p) denotes the triggering conditions of p;:

T(pi, p) :— event(e)?; tostrict(); ¢ :— switch(c) A=T
Q(pi,p) = 7(pi,p) :— event(e)?; toloose(); ¢ :— switch(c) A= 1
da pi = 6;0

The action tostrict() denotes an internal action performed by the manager
to evolve to the strict adaptation mode, toloose() denotes an internal action

28 N. Khakpour, M. Sirjani, and U. Goltz

for evolving to loose adaptation mode, and switch(c) is an internal action for
switching to configuration c. Furthermore, the behavior of an adaptation policy
p=p1 D...Dp, is defined as follows:

Q)= > 2pip)

1<i<n

Given the behavior of adaptation policies as CA® terms, we use context-
specific behavioral equivalence theory of CA% to reason about their behavioral
equivalence.

Definition 7. Let p and p' indicate two arbitrary adaptation policy and
T. = (V,8., 8% AL A9 A2 —.) be an arbitrary context. We say p and p'

are equivalent with respect to T., denoted by pgp’, iff for all s € S,
TC
Os(22(p)) = Os(£2(p')).

6.4 Context-Specific Behavioral Equivalence of Configurations and
Managers

A configuration consists of a set of governing policies and a set of adaptation
policies. As mentioned above, we can change the configurations of a manager
dynamically. Therefore, we require a theory to assure that the behavior of a
configuration is equivalent to the behavior of a desired configuration, with re-
spect to a context. In order to reason about the behavioral equivalence of two
configurations, we reason about the behavioral equivalence of their governing
policies as well as the behavioral equivalence of their adaptation policies:

Definition 8. Let ¢ = (g,p) and ¢ ={(¢',p’) be two arbitrary configurations,
and T, = (V, S, s0, AL, A9, AH) denote an arbitrary contest. We say c Ly

Cyr ¢
o Te T,
iffg =g andp=p.
Example 2. Consider a situation that surveyor; breaks down, and should be
replaced by another UAV with surveying capabilities, named UAV5. Hence, we
should check if the current configuration of UAV, (¢') is equivalent to the config-
uration of surveyori (c) with respect to context Ty, shown in Figuredl Suppose
both surveyor; and UAV5 have the same set of governing policies, i.e. g Toure o1
where ¢ indicates the governing policy set of surveyor; and g’ denotes the gov-
erning policy set of UAV,. Thus, we need to check the behavioral equivalence
of their adaptation policies with respect to Tsyr,. Let p and p’ indicate the
adaptation policies of surveyor; and UAVsy, respectively, defined as follows:

p = (1, brokencamera, ~lowenergy, T, T)erelayConf @
(1, missionend, T, L, T)eidle ®
(1, found, lowenergy, L, T)eidle

p’ = (1,brokencamera, T, T, T)erelayConf &
(1, missionend, T, L, T)eidle

Context-Based Behavioral Equivalence of Components 29

We formulate p and p’ in terms of CA® terms as follows:

2(p) = -lowenergy :— event(brokencamera)?; tostrict(); switch(relayConf) +
T :— event(missionend)?; toloose(); switch(idleConf) +
1 :— event(found)?; toloose(); switch(idleConf)

Q(p") = T :— event(brokencamera)?; tostrict(); switch(relayConf) +

T :— event(missionend)?; toloose(); switch(idleConf)

For the sake of readability, we show §2(p) and 2(p) by a and a’, respectively.
When the context is in state “full”, if the events “discharge” and “found’
are raised, non of the policies p and p’ are triggered, however both policies are
activated when the events “brokencamera” and “missionend”’ are raised:

Osui(a)=0Opuu(a’) = event(brokencamera); Omeq (tostrict(); switch(relayConf)) +

event(missionend); Omea(toloose(); switch(idleConf))

It is trivial to prove that Oned(2(p)) = Omea(2(p’)) and
Ocmpty (£2(p)) = Ocmpty (2(p’)). Consequently, according to definition [7 it

is concluded that p L p’. According to definition [§ we conclude that surveyor;
and UAV; are substitutable,

pEp T

T =c=c
c 7

g=9

Checking context-specific behavioral equivalence of two managers is the most
important part of our behavioral equivalence theory. As mentioned above, a
manager runs one of its configurations at a time, and switches between the con-
figurations to perform dynamic adaptation. Informally, two managers are be-
havioral equivalent with respect to T, iff (i) the managers have equivalent initial
configurations with respect to T, and (ii) switching from equivalent configura-
tions leads to the equivalent configurations in both managers. We reason about
the equivalence of managers in terms of behavioral equivalence of their simple
configurations:

Definition 9. Let m = (Viy, C, Cingt) and m' = (Vi , C' CL 1) be two managers
with configuration sets C = {c1,...,cx} and C' = {d,...,c}, }, initial config-
urations cinit € C and d,,,, € C', and set of views Vi, and Vi, respectively.
Furthermore, T, = (V,S.,s9, AL, A9, AT —) indicates an arbitrary contet.
We say m and m' are equivalent with respect to context T,., written by m Loy ,
(i) Cinit L Chnits (1) for each equivalent configurations ¢; € C' and c; e, i
the manager m switches from c; to cy, the manager m' must switch from c} to

T, .
¢; € C' where ¢, = ¢} and vice versa.

30 N. Khakpour, M. Sirjani, and U. Goltz

Ezxample 3. Let surveyor; has the capability to search areas
with chemical hazards. The manager of this UAV is defined as
survCntrlr = (V, {survcon f, hazardconf,relayconf}, survconf) where con-
figuration survconf is used to search areas without hazardous chemicals,
hazardconf is used to search areas with hazards, and relayconf is used for
acting as a relay. Let the situation that surveyor; has to be replaced by a
UAV with the manager survCntrlr’ = (V, {survconf’, relayconf'}, survcon f’).
Let T, denote the context of survCntrir and survCntrlr’. Assume we have

surveconf L surveon f' and relayconf L relayconf’, if the surveying area is
not contaminated with hazardous chemicals. This is due to the fact that the
adaptation policies of survconf and relayconf for switching to hazardconf
are not triggered, and switching is done between survconf and relayconf.

Therefore, according to Definition B we conclude survCnitrir L survCntrir.
It worth mentioning that if we use theses two UAVs in another context, they
might not behave equivalently.

7 Related Work

Although process algebra is used for structural adaptation (e.g. see [2], [12]),
however to the best of our knowledge process algebraic approaches have not
been used for behavioral adaptation. Zhang et al. [I9] proposed a model-driven
approach using Petri Nets for developing adaptive systems. They also presented
a model-checking approach for verification of adaptive system [20/18] in which
an extension of LTL with "adapt” operator was used to specify the adaptation
requirements. Furthermore, authors in [I4JT] used labeled transition systems to
model and verify embedded adaptive systems. In [I0], a generic classification of
the policy conflicts are presented for PobSAM models and temporal patterns
expressed in LTL are provided to detect each class of conflicts. We studied the
comparison of existing work in the area of formal verification of adaptive systems
and PobSAM in [g].

The issue of component substitutability has already been addressed in lit-
erature with the purpose of checking compatibility of a new component with
other components (e.g. [11]), substituting a component with another component
with the equivalent behavior (e.g. [17]), replacing a component such that the
reconfigured system preserves a specific property etc. Some approaches specify
the components behavior by modeling the components interfaces while a few
approaches are concerned with specifying the internal behavior of components,
as we have done in this work. We use specification of components interfaces to
build and specify the context of managers. Among the existing approaches, [17]
uses a formalism named component-interaction automata to specify the behavior
of components interfaces. They define a notion of equivalence on these automata
in addition to a composition operator to prove substitutability and indepen-
dent implementability properties. In a similar work, [6] specifies the components
behavior using max/plus automata and defines four kinds of substitutivity con-
sidering QoS aspects. However, the main difference compared to our work is

Context-Based Behavioral Equivalence of Components 31

that they do not consider data states of components. Furthermore, to the best
of our knowledge, none of the approaches for checking behavioral equivalence of
components are based on a process algebraic formalism. The existing approaches
model the components behavior using automata-based or LTS formalisms. Due
to the fact that PobSAM has a different formal foundation, it requires special
analysis techniques such as the equational theory presented in this paper which
is not provided by other existing work.

Schaeffer-Filho et al. [13] use Alloy Analyzer [2] for formal specification and
verification of policy-based systems, however they are not concerned with be-
havioral equivalence of components. Moreover, Georgas et al [4] uses policies as
a mechanism for structural adaptation in robotic domain, but this work has no
formal foundation.

8 Conclusions

In this paper, we presented an equational theory to analyze context-specific be-
havioral equivalence of policies, configurations and managers in PobSAM models
based on the notion of statebased bisimilarity. Given the context as a labeled
state transition system, we analyze context-specific behavioral equivalence of the
manager layer independently from the actor layer. To this aim, we introduced
and axiomatized an operator to consider interactions of the managers and the
context. We demonstrated the approach using an example for search and rescue
operations.

Acknowledgments. This work was funded by the NTH School for IT
Ecosystems. NTH (Niedersachsische Technische Hochschule) is a joint univer-
sity consisting of Technische Universitat Braunschweig, Technische Universitat
Clausthal, and Leibniz Universitat Hannover.

References

1. Adler, R., Schaefer, I., SchLule, T., Vecchie, E.: From model-based design to for-
mal verification of adaptive embedded systems. In: Butler, M., Hinchey, M.G.,
Larrondo-Petrie, M.M. (eds.) ICFEM 2007. LNCS, vol. 4789, pp. 76-95. Springer,
Heidelberg (2007)

2. Bradbury, J.S., Cordy, J.R., Dingel, J., Wermelinger, M.: A survey of self-
management in dynamic software architecture specifications. In: Proceedings of
1st ACM SIGSOFT Workshop on Self-managed Systems, pp. 28-33. ACM, New
York (2004)

3. Garlan, D., Cheng, S.-W., Schmerl, B.R..: Increasing system dependability through
architecture-based self-repair. In: WADS, pp. 61-89 (2002)

4. Georgas, J.C., Taylor, R.N.: Policy-based self-adaptive architectures: a feasibility
study in the robotics domain. In: Proceedings of the 2008 International Workshop
on Software Engineering for Adaptive and Self-managing Systems, SEAMS 2008,
pp. 105-112. ACM, New York (2008)

32

10.

11.

12.

13.

14.

15.

16.

17.

18.

19.

20.

N. Khakpour, M. Sirjani, and U. Goltz

Groote, J.F., Ponse, A.: Process algebra with guards: Combining hoare logic with
process algebra. Formal Asp. Comput. 6(2), 115-164 (1994)

Heam, P.-C., Kouchnarenko, O., Voinot, J.: Component simulation-based substi-
tutivity managing qos aspects. Electron. Notes Theor. Comput. Sci. 260, 109-123
(2010)

Khakpour, N.: Context-based behavioral equivalence of components in self-
adaptive systems. Technical report, Technical Report of TU Bruanschweig (2011)
Khakpour, N., Jalili, S., Talcott, C.L., Sirjani, M., Mousavi, M.R.: Pobsam: Policy-
based managing of actors in self-adaptive systems. Electr. Notes Theor. Comput.
Sci. 263, 129-143 (2010)

Khakpour, N., Jalili, S., Talcott, C.L., Sirjani, M., Mousavi, M.R.: Formal modeling
of evolving adaptive systems (submitted, 2011)

Khakpour, N., Khosravi, R., Sirjani, M., Jalili, S.: Formal analysis of policy-based
self-adaptive systems. In: SAC, pp. 2536-2543 (2010)

Legond-Aubry, F., Enselme, D., Florin, G.: Assembling contracts for components.
In: Najm, E., Nestmann, U., Stevens, P. (eds.) FMOODS 2003. LNCS, vol. 2834,
pp. 35-43. Springer, Heidelberg (2003)

Mateescu, R., Poizat, P., Salaun, G.: Adaptation of service protocols using pro-
cess algebra and on-the-fly reduction techniques. IEEE Transactions on Software
Engineering 99(prePrints) (2011)

Schaeffer-Filho, A., Lupu, E., Sloman, M., Eisenbach, S.: Verification of policy-
based self-managed cell interactions using alloy. In: Proceedings of the 10th
IEEE International Conference on Policies for Distributed Systems and Networks,
POLICY 2009, pp. 37-40. IEEE Press, Los Alamitos (2009)

Schneider, K., Schuele, T., Trapp, M.: Verifying the adaptation behavior of em-
bedded systems. In: Proceedings of the 2006 International Workshop on Self-
adaptation and self-managing Systems, SEAMS 2006, pp. 16-22. ACM, New York
(2006)

Sirjani, M., Movaghar, A., Shali, A., de Boer, F.S.: Modeling and verification of
reactive systems using rebeca. Fundam. Inform. 63(4), 385-410 (2004)

Sloman, M., Lupu, E.C.: Engineering policy-based ubiquitous systems. Comput.
J. 53(7), 1113-1127 (2010)

Cerna, 1., Varekova, P., Zimmerova, B.: Component substitutability via equivalen-
cies of component-interaction automata. Electron. Notes Theor. Comput. Sci. 182,
39-55 (2007)

Zhang, J., Cheng, B.H.C.: Specifying adaptation semantics. ACM SIGSOFT Soft-
ware Engineering Notes 30(4), 1-7 (2005)

Zhang, J., Cheng, B.H.C.: Model-based development of dynamically adaptive soft-
ware. In: Proceedings of the 28th International Conference on Software Engineer-
ing, ICSE 2006, pp. 371-380. ACM, New York (2006)

Zhang, J., Goldsby, H., Cheng, B.H.C.: Modular verification of dynamically adap-
tive systems. In: Proceedings of the 8th ACM International Conference on Aspect-
oriented Software Development, pp. 161-172 (2009)

Towards a Practical Approach to Check
UML /fUML Models Consistency Using CSP

Islam Abdelhalim, Steve Schneider, and Helen Treharne

Department of Computing, University of Surrey
{i.abdelhalim,s.schneider,h.treharne}@surrey.ac.uk

Abstract. This work provides an underpinning for a systems modelling
approach based on UML and fUML together. It uses UML state diagrams
as a starting point for modelling system object behaviour abstractly, then
refining each state diagram by adding the implementation decisions in a
form of a fUML activity diagram. Maintaining behavioural consistency
between each UML state diagram and its corresponding fUML activity
diagram is an important but difficult task. In this paper we introduce a
framework that automates checking such consistency in a practical way.

The framework is based on formalizing these diagrams into the pro-
cess algebra CSP to do trace refinement checking using FDR2. One of
the main contributions in this work is that we transform FDR2 out-
put (counter-example in case of inconsistency) back to the UML/fUML
model in a way that allows the modeller to debug the consistency prob-
lem. To be able to provide this kind of interactive feedback, the gener-
ated CSP model is augmented with traceability information. A case tool
plugin based on the Epsilon model management framework has been
developed to support our approach.

1 Introduction

The fUML (Foundational subset for Executable UML) standard [I] has been
developed by the OMG (Object Management Group) to allow for the execution
of models. This implies having more complete and precise models which in many
cases lead to complicated models that include implementation decisions. How-
ever, complicated models are hard to read, browse, understand and maintain.
Moreover, checking consistency between such models and their specifications
(modelled as abstract models) is a very difficult task. In contrast, abstract mod-
els are not complicated, but they cannot be used for model execution.

To get the benefits of both (abstract and concrete models), the modeller starts
with an abstract model and then refines it by adding more implementation detail
until reaching a concrete one. This concept in the UML/fUML domain can be
applied by initially modelling a system using UML in an abstract way and then
refining the model to reach a concrete f{UML model.

In the formal methods domain it is a common task to check consistency be-
tween abstract and concrete models using model checkers or theorem provers.
However, this is not the case in the UML/fUML domain. Case tools that are

S. Qin and Z. Qiu (Eds.): ICFEM 2011, LNCS 6991, pp. 33 , 2011.
© Springer-Verlag Berlin Heidelberg 2011

34 1. Abdelhalim, S. Schneider, and H. Treharne

used to draw the diagrams are concerned mainly with syntactical checking (i.e.,
checks if the UML/fUML diagram meets the UML/fUML standard specifica-
tion). To import refinement into the UML/fUML domain, we are proposing a
framework that allows checking UML/fUML model consistency. This framework
is based on formalizing UML/fUML models into the CSP (Communicating Se-
quential Processes) [2] formal language, then performing formal model checking
using FDR2 (the Failures-Divergences Refinement tool) [3]. If FDR2 detects an
inconsistency it will generate a counter-example which shows a trace that led
to this inconsistency. To completely isolate the modeller from dealing with the
formal methods domain, our framework reflects this counter-example back to
the UML/fUML model (through a model debugger).

Although checking consistency between semi-formal models (e.g., UML) has
been addressed many times in the literature [4J5] using formal methods, to our
knowledge, this paper is the first attempt to check consistency between non-
executable and executable semi-formal models. Also the provision of a modeller
friendly consistency checking feedback resulting from the model checking is one
of the main contributions in this paper.

We differentiate between two types of model inconsistency based on the clas-
sification in [0]. First, intra-model inconsistency, which occurs if two (or more)
diagrams with different types are not consistent (e.g., a state diagram and a
related sequence diagram in the same UML model). Second, inter-model incon-
sistency, which occurs if two (or more) diagrams with the same type are not
consistent (e.g., a version of a state diagram and a refined version represented
as a state diagram as well). Our work is a combination of these two kinds of
inconsistency because we start by modelling the object behaviour as an UML
state diagram and refine it to a fUML activity diagram that represents the same
object behaviour augmented with more implementation detail. Hence, we will
refer to this as behavioral consistency.

The formalization is done automatically by transforming UML/fUML dia-
grams into CSP processes. We made use of Epsilon [7] as one of the avail-
able MDE (Model Drive Engineering) frameworks to support the transformation
based on available UML2 [§], f{UML [I] and CSP [9] meta-models. Epsilon is one
of several components that build up our framework which has been implemented
as a MagicDraWE [10] plugin to allow modellers to seamlessly use our approach
during the system modelling process.

The approach has been tested using the Tokeneer ID Station [I1] case study.
A group of UML state and fUML activity diagrams have been developed and the
consistency between them has been verified using our approach. Our previous
paper [12] focused on checking deadlock between Tokeneer fUML communicated
objects, however; in this work we have checked refinement between Tokeneer
fUML activity and state diagrams. This work also considers the modeller-friendly
checking feedback which was not addressed in [12]. Due to limitations of space

! MagicDraw is an (award-winning) architecture, software and system modeling case
tool. It also supports additional plugins to increase its functionalities.

Towards a Practical Approach to Check UML/fUML Models Consistency 35

we will include a simple example (Microwave Oven from [13]) to illustrate the
main concepts through the paper.

We assume the reader of this paper has an understanding of the UML2 stan-
dard, CSP and FDR2.

The rest of this paper is organised as follows. In Section[2], we give a background
to the f{UML standard and the CSP syntax used in this paper. In Section[3] we give
an overview of our approach and its main components. In Section] we describe
the Model Formalizer component and how it works. In Section Bl we describe how
consistency is checked between particular UML and fUML diagrams. In Section[6],
we describe how we provide the modeller with helpful feedback through a Formal-
ization Report and the Model Debugger. In Section [d, we outline the implemen-
tation of the approach. Finally, we discuss related work and conclude in Sections
8 and 9 respectively.

2 Background

2.1 fUML

As defined by the OMG, fUML is a standard that acts as an intermediary be-
tween “surface subsets” of UML models and platform executable languages. The
fUML subset has been defined to allow the building of executable models. Code-
generators can then be used to automatically generate executable code (e.g., in
Java) from the models. Another option is to use model-interpreters that rely
on a virtual machine to directly read and run the model (e.g., f{UML Reference
Implementation [14]).

The fUML standard includes class and activity diagrams to describe a system’s
structure and behaviour respectively. Some modifications have been applied to
the original class and activity diagrams in the UML2 specification [I5] to meet
the computational completeness of f{UML. The modifications have been done by
merging/excluding some packages in UML2, as well as adding new constraints,
such as:

— Variables are excluded from fUML because the passing of data between ac-
tions can be achieved using object flows.

— Opaque actions are excluded from fUML since, being opaque, they cannot
be executed.

— Value pins are excluded from fUML because they are redundant due to the
use of value specifications to specify values.

The operational semantics of fUML is an executable model with methods written
in Java, with a mapping to UML activity diagrams. The declarative semantics
of fUML is specified in first order logic and based on PSL (Process Specification
Language) [16].

UML/fUML Example
Throughout this paper we use a simple example of a microwave oven that con-
sists of two classes: Controller and Heater. Figure [l shows the state machine

36 1. Abdelhalim, S. Schneider, and H. Treharne

(Controller SD) that represents the Controller active object behaviour. The ob-
ject can be in one of three different states (DoorOpen, ReadyToCook and Cook-
ing) based on the incoming events (doorClosed, buttonPressed, ...). For example,
if the object was in the ReadyToCook state and the buttonPressed event hap-
pened, it will enter the Cooking state.

(Controller_sD L‘)

doorClosed [ReadyToCook | buttonPressed

{ DoorOpen J { Cooking J

timerTimesout

doorOpened

doorOpened

Fig.1. UML State Diagram of the Microwave Controller

As a result of refining the Controller state digram by adding some imple-
mentation detail, we obtain the Controller f{UML activity diagram depicted in
Figure Pl The added implementation detail include:

— Setting the value of the class attributes (e.g., setting isCooking attribute to
FALSE using the valueSpecification and addStructuralFeature Value actions).

— Sending signals (equivalent to the state diagram events) to objects (e.g.,
sending stopHeaterSignal to the Heater object).

— Representing the object internal decisions (e.g., timer expiration).

Although we do not include all the implementation details for this object it is
obvious that the executable model is more complicated. Our experience with
modeling large systems showed that checking consistency between those two
kinds of models (abstract and concrete) manually is a challenging task.

2.2 CSP

CSP is a modelling language that allows the description of systems of interacting
processes using a few language primitives. Processes execute and interact by
means of performing events drawn from a universal set . Some events are of
the form c.v, where ¢ represents a channel and v represents a value being passed
along that channel. Our UML/fUML formalization considers the following subset
of the CSP syntax:

Pi:=aq—P | c?lz—Pz) | dv—P | POP,
|P1|_|P2|P1 || P2|P\A
AB

| let]\71:})17 ey Nn:Pn within Nz

Towards a Practical Approach to Check UML/fUML Models Consistency 37

activity Controller_AD (selfObj : Controller, heaterObj : Heater))

(<<va|ueSpecificanon>>\
‘ Value(FALSE) ‘

selfObj : Controller ":‘ isCooking ‘
Accept

(doorOpened,
buttonPressed)

doorOpenedSignal buttonPressedSignal

{ ¢

W

Send

heaterObj : Heater }_,

(startHeater)

Send N
(stopHeater) _~
/

(<<valueSpecmca(ion>>\
Accept ‘ value(TRUE) ‘

,,,,r:\” (doorClosed)

’7.) (<<addStructuralFeatu reValue»\‘
Ealfobi: C J >":1 isCooking

timerExpired ' timerNotExpired

Send \
(timerTimesout) _~

Accept
> (timerTimesOut,
doorOpened)

doorOpenedSignal timerTimesoutSignal

Fig. 2. fUML Activity Diagram of the Microwave Controller

The CSP process ¢ — P initially allows event a to occur and then behaves
subsequently as P. The input process c?z — P(z) will accept a value z along
channel ¢ and then behaves subsequently as P(z). The output process clv — P
will output v along channel ¢ and then behaves as P. Channels can have any
number of message fields, combination of input and output values.

The choice P; O P; offers an external choice between processes P; and Ps
whereby the choice is made by the environment. Conversely, P; M Py offers an
internal choice between the two processes.

The parallel combination P; || Pa executes P; and Py in parallel. P; can

A B

perform only events in the set A, Py can perform only events in the set B, and
they must simultaneously engage in events in the intersection of A and B.

The hiding operation P \ A describes the case where all participants of all
events in the set A are described in P. All these events are removed from the
interface of the process, since no other processes are required to engage in them.
The let ... within statement defines P with local definitions N; = P;.

Traces Model

Processes in CSP interact with their environment (another process, user, or
combination of both) through events in their interface. A process P is refined
by a process @ if the set containing all the possible traces that can be generated

38 1. Abdelhalim, S. Schneider, and H. Treharne

from process @ is a subset (or equals) of those traces of P. This definition can
be expressed as: P Ct Q.

3 Approach Overview

To automate the formalization and the feedback process, we have designed a
framework that facilitates this functionality and at the same time isolates the
modeller completely from the formal methods domain (CSP). Figure [shows
the architecture of this framework and the modeller interaction points.

UML
Meta-model

Formalization fUML } csP
Meta-model : Meta-model

uMmL
State Diagram

—
fumL
Modeller Activity Diagram

CSP-to-UML/fUML
Mapping Table

Model
Formalizer

CSP

Model
Debugger

Counter
Fig. 3. Approach Architecture

Initially the modeller uses a case tool (e.g., MagicDraw) to draw the UML
state diagrams and the corresponding fUML activity diagram for each active
class in the system. To check consistency between the UML/fUML diagrams,
the modeller should initiate the checking process. As a first step the diagrams
will be converted to the XMI (XML Metadata Interchange) [I7] format, thus it
can be read by any MDE framework.

The Model Formalizer then processes the input diagrams and transforms them
to a CSP script based on a group of transformation rules and the input UML2
[8], f{UML [I] and CSP [J] existing meta-models. In case there is a problem
in the formalization process, the Model Formalizer generates a Formalization
Report with the error cause(s). The Model Formalizer also generates a CSP-to-
UML/fUML mapping table which maps each CSP event ID to its corresponding
ID for the UML/fUML element.

The generated CSP script subsequently used as an input to FDR2 that per-
forms the consistency automatic checking. If there is a consistency problem
FDR2 generates a counter-example which includes the traces (sequence of events)
that led to the problem.

In case of inconsistency, the Model Debugger can be used by the modeller to
trace the consistency problem source. In order to do that, the Model Debugger

Towards a Practical Approach to Check UML/fUML Models Consistency 39

reads the counter-example and makes use of the CSP-to-UML/fUML mapping
table to reflect the traces on the displayed diagrams in the case tool. The modeller
can deal with the Model Debugger using GUI (Graphical User Interface) controls
(step forward, step backward, breakpoints, etc.).

Having consistent UML/fUML diagrams will make the code generation (or
model interpretation) a safer and direct process, because the modeller will be
confident that the generated code from the fUML model is compatible with the
system UML model.

4 The Model Formalizer

The Model Formalizer mainly transforms a source model (UML/fUML dia-
grams) into a formal representation (CSP script). We used Epsilon as an MDE
framework to handle the transformation in two stages; firstly, a Model-to-Model
transformation from the UML/fUML model to CSP model using ETL (Epsilon
Transformation Language) [18] and secondly a Model-to-Text transformation
from the generated CSP model to a CSP script using EGL (Epsilon Generation
Language) [I8]. Epsilon also requires the source/target models’ meta-models, so
we used the available UML2 meta-model [§] as well as the CSP meta-model used
in our previous work [9].

The ETL script consists mainly of a group of transformation rules, part of
them related to the UML state diagram elements (4 rules) and the others re-
lated to the fUML activity diagram elements (11 rules). Figure dl shows a simple
rule (to clarify the concept) which is used to transform a state machine (e.g.,
Controller SD) to a CSP localized process (e.g., Controller SD Proc). The fig-
ure includes the ETL rule which can be understood by referring to the included
UML and CSP meta-models segments.

Rule(1) | StateMachine_To_MainProcess Corresponding Meta-model
Controller_SD StateMachine
UML . .
Controller_SD_Proc = let ProcessExpression ProcessID
CSP - name: String
within STATE_2 processExpression TprocessID
ProcessAssignment
rule StateMachine_To_MainProcess
transform sm : SD!StateMachine
to pid : CSP!ProcessID,
. | :
ETL ¢ pa : CSP!ProcessAssignment [process
Rule pa.processID := pid; LocalizedProcess
pa.processExpression := localProc;
pid.name = sm.name +'_Proc";

Fig. 4. Rule(1) for Transforming State Machines to CSP Localized Processes

40 1. Abdelhalim, S. Schneider, and H. Treharne

The model elements can be accessed using the variables SD and CSP with
the ‘I’ operator. The localProc variable represents the main Localized Process that
all other sub-processes belongs to it. By executing this rule two CSP elements
will be created (instances from: ProcessID and ProcessAssignment) and added
to the CSP model. The reader can refer to [I§] for more detail about the Epsilon
languages and to a previous paper [12] for all the fUML activity diagram mapping
rules.

After applying the ETL rules to the UML state diagram shown in Figure [
and then applying the EGL script to the result, the CSP process in Figure
will be generated. According to Rule(1) in Figure[d the state machine has been
translated into a localized CSP process. Each state is translated to a CSP sub-
process (e.g., ReadyToCook state translated to the process STATE 2). The
inState event is used to identify the current active state (ST1, ST2, etc.) which
will be used for traceability. The accept event represents signals (e.g., doorClosed,
buttonPressed, etc.) reception by the object to change its state.

Controller SD Proc (selfObj) = let
STATE 1 = inState!ST1 —
accept!selfObjldoorClosed — STATE 2

STATE 2 = inState!ST2 — (
accept!selfObj!doorOpened — STATE 1
O

accept!selfObjlbuttonPressed — STATE 3)

STATE 3 = inState!ST3 — (
accept!selfObjltimerTimesout — STATE 2
O

accept!selfObj!doorOpened — STATE 1)
within STATE 2

Fig.5. The Corresponding CSP Process for the Microwave Controller UML State
Diagram

Applying the ETL rules followed by the EGL script on the fUML activity
diagram, shown in Figure 2, will result in the CSP process shown in Figure [6l
The main activity is translated to a localized CSP process, Controller AD Proc,
where each node inside it is translated to a sub-process. The first three processes
AC1, AC2 and ACS correspond to the first three actions of the Controller AD.
AC1 and AC?2 represent the Value Specification and Add Structural Feature
Value actions respectively by setting var to FALSE and passing it AC?2 which
sets the isCooking attribute (structural feature) to the passed value.

According to the fUML standard, the AcceptEvent action registers the ex-
pected signals to a list (called waiting event accepters) and then waits for the
signals. This logic was implemented in AC5 using the registerSignals event, then

Towards a Practical Approach to Check UML/fUML Models Consistency 41

Controller AD Proc (selfObj, heaterObj) = let
AC1 = valueSpec!selfObjTvar : FALSE!NID1 — AC2(var)
AC2(var) = addStructFitrVallselfObjlisCookinglvar! NID3 —
ACH

AC5 = registerSignals!selfObjlrpl! NID5 — (
accept!selfObjldoorOpenedSignal — ...
O

accept!selfObjlbuttonPressedSignal — AC12)

AC12 = send!selfObj!heaterObj!startHeaterSignal!NID9 — ...

ND2 = timerNotFExpired!selfObj — ...
[l
timerFExpired!selfObj — ...
within AC1

Fig. 6. Fragment of the Corresponding CSP Process for the Microwave Controller
fUML Activity Diagram (up to decision node for timer expiry)

the accept event. Any decision node with a control flow incoming edge is trans-
lated to a non-deterministic choice. Hence, process ND2 corresponds to the timer
expiry decision node. Some of the events include an ID parameter (e.g., NID1),
this ID will be used for traceability explained in Section

Unlike our previous work [I2/19], we do not consider inter-object communica-
tion in this paper. However, our formalization includes all the needed information
to conduct inter-object behaviour analysis in the future. This is the reason for
formalizing elements that will not affect the behavioural consistency checking
(e.g., formalizing the SendSignal action in AC12). Nevertheless, our formaliza-
tion does not cover all aspects and properties of the UML/fUML standards as
we just focus on the elements included in the used case study (Tokeneer).

5 Behavioural Consistency Checking

Having the two kinds of diagrams (UML state diagram and fUML activity di-
agram) formalized into CSP makes the behavioural consistency checking using
FDR2 a direct process. We use FDR2 to handle the model checking based on
the traces refinement semantic model [2]. From one point of view of the process
execution, one process is consistent with another if its behaviour are allowed by
the other. Compared to other semantic models (e.g., stable failures), this one is
sufficient to check if the two UML/fUML diagrams are behaviorally consistent.

Initially, the generated CSP script was augmented (by the Model Formalizer)
with the following assertion to let FDR2 check the refinement between the two
CSP processes. ¢0 and h0 represent instances of the Controller and Heater

42 1. Abdelhalim, S. Schneider, and H. Treharne

classes respectively. The set hiddenFEvents includes all the events except the
accept event.

Controller SD Proc (c0) Cr
Controller AD Proc (c0, h0) \ hiddenFEvents

However, in the case of an inconsistency, the generated counter-example (a trace
leading to this inconsistency) by FDR2 includes the sequence of events from the
Controller AD Proc process. As will be described in Section[f] having the traces
from one side is not enough for the Model Debugger to highlight the inconsistency
problem on the corresponding UML/fUML diagrams. We also need to retrieve
the states that the specification has passed through. To overcome this issue, we
introduce an additional process Controller SD TR.

The Controller SD TR process is a copy of the Controller AD Proc ex-
cept that it stops when any accept event other than those allowed by the
Controller AD Proc process happens. For example, the sub-process STATE 2
in Controller SD TR is generated as follow:

STATE 2 = inState!ST2 — (
accept!selfObjldoorOpened — STATE 1
O
accept!selfObjlbuttonPressed — STATE 3
O
accept!selfObj?z — STOP)

The refinement check (assertion) we now perform is:

Controller SD Proc (c0) Cr
(Controller AD Proc (c0, h0) || Controller SD TR (c0)) \ hiddenEvents

{|accept|}

The parallel combination above represents a process that follows the states in the
Controller SD Proc process, but without affecting the refinement checking. This
representation of the refinement assertion has solved the pre-described issue of
debugging, as now the generated counter-example by FDR2 includes the states of
the two main processes (Controller SD Proc and Controller AD Proc) which
are needed to construct the appropriate feedback to the modeller. To show the
effect of this technique, in the Controller fUML activity diagram in Figure [2,
assume that the modeller (by mistake) connected the edge coming out from
the Accept(doorClosed) action to the Send(stopHeater) action instead of the
Value(FALSE) action. After the formalization and performing the refinement
checking using FDR2, the generated counter-example is as follow:

Towards a Practical Approach to Check UML/fUML Models Consistency 43

<valueSpec.self0bj.FALSE.NID1,
addStructFtrVal.selfObj.isCooking.FALSE.NID3,
registerSignals.selfObj.rpl.NID5,
inState.ST2,

accept.self0bj.doorOpenedSignal,
send.selfObj.heaterObj.stopHeaterSignal.NID8,
registerSignals.selfObj.rp2.NID6,
inState.ST1,

accept.self0bj.doorClosedSignal,
send.self0Obj.heaterObj.stopHeaterSignal.NID8,
registerSignals.self0Obj.rp2.NID6,
inState.ST2,

accept.selfObj.doorClosedSignal>

The idea of using Controller SD TR derived from Controller SD Proc to track
the states in the specifications, is one of this paper’s contributions. We could not
have been able to see the inState event in the above trace without this.

6 Formalization and Model Checking Feedback

The modeller will be provided with two kinds of feedback after the formaliza-
tion process or behavioural consistency checking. The following sections describe
them with respect to the framework components.

6.1 Formalization Report

The first kind of feedback represents the success or failure of the formalization
process and it is presented to the user through a Formalization Report. In our
approach, not all UML/fUML diagrams can be formalized. They have to fulfill
minimum requirements in order to be formalized. These requirements include
the existence of certain elements and the assignment of certain properties. For
example, the Model Formalizer cannot formalize a UML state diagram that
does not include a connected pseudo state, because this will prevent the Model
Formalizer from setting the initial CSP sub-process in the within clause. Another
example is not assigning the name of an edge emerging from a decision node in
a fUML activity diagram. To be able to check the formalization ability of each
diagram (“is formalizable?”), each transformation rule is divided into two parts.
The first part checks for the required elements/assignments, and if met, the
second part performs the transformation. Otherwise, a formalization error is
reported to the modeller that guides him to the missing items.

6.2 Model Debugger

The second kind of feedback is provided in case of inconsistency and it represents
the counter-example generated by FDR2. This feedback is provided to the mod-
eller through the Model Debugger. As mentioned in Section [3 the Model Debug-

44

P” MagicDraw UML 16.5 - UML_FM_2011_EXAMPLE_V0.1.mdzip [H:\PhD\Magic Draw\]

1. Abdelhalim, S. Schneider, and H. Treharne

: Fle Edt View Layout Diagrams Options Tools

ARl=) =AW

Analyze Teamwork ‘window Help

.. 2o o) 5 e O) 6 CliEAS

[0 %

|5 conoler s x

L=}

i il il il

JFis

(Cortraller_SD[Cortroller 5D]
El.. doorClosed

——®

| ReadyToCook ’»

‘ DoorOpen

Cooking ‘

doarOpened

dodroperied ©

Model Debugger ¢
H>[e[]

<[m

jiroomy

-

[

[

W=

&

&
]
=.
abo
=
.

BIn 1000 s MU0 #] OB

5

e -

F o
3 H

TR

«

<

Cor

niroller_AD > | 4 b
M il il é JERAR i e m
[astivity Controller_AD(s=ff0bj : Controller, heaterObj :H eater) |

, @

<valueSpecifioations>
Value (FALSE)

&

aluezs

== OB : Cortraller isCooking

Accept
(doorOpened,
buttonPressed)

doorOpensdsignal ¥
£
A,
Send
(stopHeater)

buttonP!

]
or]
L]

<<values

Accept valu

(doorClosed)

L3

=ffObj : Cortroller

S
(start

s=addStrust
is'

‘ timerExpired

)

Send
(timer Timesout)
- |
>

B

I m

Ready

=]]

Fig. 7. Screen shot of MagicDraw Running Compass

ger component allows the modeller to interactively debug the consistency prob-
lem visually on the displayed UML /fUML activity diagram using GUT controls.
The controls allow the modeller to step forward/backward (i.e., move within the
sequence of traces of the counter-example with one trace forward/backward).
Whilst the modeller is navigating through the events of the counter-example,
the corresponding UML/fUML elements of the events are highlighted on the dis-
played diagrams to help him locate the source of the inconsistency. Also he can
put a breakpoint on one of the UML/fUML elements and execute all events until
reaching this element. Figure [7] shows the GUI controllers (inside the Model De-
bugger toolbar) and how the UML/fUML elements are highlighted (surrounded
by a coloured square) in the diagrams.

The Model Debugger cannot work without the data that has been collected
during the formalization and the model checking processes. As mentioned in
Section [l the Model Formalizer generates an ID for the CSP processes’ events.
It also generates the CSP-to-UML/fUML mapping table which holds the CSP
events IDs and their corresponding UML /fUML element IDs (long alphanumeric
references generated by MagicDraw). Table [l shows a sample of this table which
helps the Model Debugger to know which UML/fUML elements to highlight
given the CSP event ID included in the counter-example. It should be clear
now why we formulated the assertion statement (in Section [l to force FDR2
to include the state diagram CSP process (Controller SD TR) traces in the
counter-example.

Towards a Practical Approach to Check UML/fUML Models Consistency 45

Table 1. Sample CSP-to-UML/fUML Mapping Table

CSP Event ID UML/fUML Element ID
ST2 16 4 8a0lc6 129197859 209692 741
NID3 16 4 80a01c6 128715854 342172 469

We consider providing the model checking results through a Model Debugger
to be another contribution of our work.

7 Approach Implementation

We have implemented our approach as a MagicDraw plugin called “Compass”
(Checking Original Models means Perfectly Analyzed Systems). To use Compass,
the modeller should first model the system objects’ behaviour using UML state
diagrams, then refine each diagram (by adding more implementation details) by
modelling the same behaviour using an fUML activity diagram. At this point,
the modeller can use Compass to start the consistency checking between the two
kinds of diagrams and get the feedback as described in Section

Figure[lshows a screen shot of MagicDraw during debugging an inconsistency
problem using the Model Debugger toolbar. The screen shows the Microwave
controller UML state diagram and its corresponding fUML activity diagram with
two highlighted elements (ReadyToCook state and isCooking action). There is
also another window that shows the executed traces (states and actions). This
is not included in the screen shot due to lack of space.

We would argue that implementing the approach in a form of a plugin to
an already existing case tool is more practical for several reasons. Compared
to a standalone formalization application, a plugin will allow for having a single
integrated modelling environment. Also modifying the plugin to work with other
case tools is a straightforward task, which means that the plugin can be made
available for several case tools. This in turn will allow the modeller who is already
using a certain case tool not to change his modelling environment to check his
models (or even re-check legacy models).

8 Related Work

Much research work has been done on formalizing UML models to check different
properties. For example, the authors in [20/19/12] used such formalizations to
make sure that their UML models are deadlock free. Others, such as [2T122],
used the formalization to check certain safety properties in the input models.

Intra-model consistency (i.e., are the diagrams of the same model consistent?)
can be checked by formalization as well. Zhao et al. [23] followed that concept by
checking consistency between the UML state diagram and its related sequence
diagrams using Promela as a formal language.

46 1. Abdelhalim, S. Schneider, and H. Treharne

Graw et al. [5] proposed inter-model consistency through checking refinement
between abstract and more detailed UML state and sequence diagrams depend-
ing on ¢cTLA (compositional Temporal Logic of Actions) as a formal representa-
tion. Ramos et al. [4] proposed formalizing UML-RT into Circus to prove that
the model transformation preserved the original model semantics.

Most of the reviewed works in this field performs the model transformation
automatically (from UML to the formal language). Some of these work depended
on MDE tools to do the transformation. Varrd et al. in [24] summarized a com-
parison between eleven different MDE tools used to transform from UML activity
diagrams into CSP (UML-to-CSP case study [25]), as part of the AGTIVE’07
tool contest. Also Treharne et al. [9] used the Epsilon framework to transform
UML state diagrams to CSP||B.

Providing modeller friendly feedback to report the model checking results has
been addressed only a few times in the literature. The authors in [26127] pro-
posed presenting the model checking results (e.g., counter-example) as an object
diagram that represents a snapshot of the system during the error. Alternatively,
the authors in [2829] proposed compiler style-errors with valuable feedback.

None of the reviewed works has been concerned with checking consistency be-
tween non-executable and executable semi-formal models (e.g., UML and fUML).
Similarly, providing the formalization feedback interactively through a model de-
bugger has not been developed.

9 Conclusion and Future Work

An approach to check behavioural consistency between UML state diagrams and
their corresponding fUML activity diagrams has been presented in this paper.
The approach depends on a framework that formalizes the UML/fUML diagrams
automatically into CSP and then uses FDR2 to handle the model checking. In
the case of inconsistency, the framework reflects FDR2 output (counter-example)
to the original UML/fUML model through the Model Debugger.

We have developed an implementation of this framework as a MagicDraw
plugin called Compass. Compass made use of the Epsilon MDE framework to
translate the UML/fUML diagrams into a CSP script in two stages (Model-to-
Model then Model-to-Text).

The practicality of this approach comes from several aspects. First, by its
attempt to check consistency between non-executable and executable models,
which we believe will be very important as f{UML spreads within the normal soft-
ware development process. Second, we believe that providing the model checking
results through the Model Debugger is more helpful in identifying the source of
the problem instead of just showing an object diagram to the modeller. Finally,
by implementing the approach as a plugin to a case tool and depending on an
MDE framework instead of writing our formalizer from scratch.

Validating the approach’s functionality and applicability was achieved by ap-
plying it on a non-trivial case study (Tokeneer). Using MagicDraw and Compass
during the system modelling helped to identify several inconsistencies between the
UML abstract state diagrams and their corresponding fUML activity diagrams.

Towards a Practical Approach to Check UML/fUML Models Consistency 47

As future work, we will consider inter-object interaction to provide a similar

framework that checks deadlocks and other behavioural properties. We will also
aim to provide additional feedback to the user as a UML sequence diagram which
visualizes the counter-examples as object interactions. Finally, we will upgrade
the Model Debugger to consider the case of having more than one counter-
example generated by FDR2.

Acknowledgments. Thanks to the anonymous referees for their constructive
comments.

References

o]

10.
11.

12.

13.

14.
15.
16.

17.
18.

. OMG: Semantics of a foundational subset for executable UML models (fUML) -

Version 1.0 (February 2011), http://www.omg.org/spec/fuml/

. Schneider, S.: Concurrent and Real-Time Systems: the CSP Approach. Wiley,

Chichester (1999)

. Formal Systems Oxford: FDR 2.91 manual (2010)
. Ramos, R., Sampaio, A., Mota, A.: A semantics for UML-RT active classes via

mapping into circus. In: Steffen, M., Tennenholtz, M. (eds.) FMOODS 2005. LNCS,
vol. 3535, pp. 99-114. Springer, Heidelberg (2005)

. Graw, G., Herrmann, P.: Transformation and verification of Executable UML mod-

els. Electron. Notes Theor. Comput. Sci. 101, 3-24 (2004)

. Hnatkowska, B., Huzar, Z., Kuzniarz, L., Tuzinkiewicz, L.: A systematic approach

to consistency within UML based software development process. In: Blekinge Insti-
tute of Technology, Research Report 2002:06. UML 2002. Workshop on Consistency
Problems in UML-based Software Development, pp. 16-29 (2002)

. Epsilon Project, http://www.eclipse.org/gmt/epsilon/
. UML2 Project, http://www.eclipse.org/modeling/mdt/7project=uml?2
. Treharne, H., Turner, E., Paige, R.F., Kolovos, D.S.: Automatic generation of inte-

grated formal models corresponding to UML system models. In: Oriol, M., Meyer,
B. (eds.) TOOLS EUROPE 2009. Lecture Notes in Business Information Process-
ing, vol. 33, pp. 357-367. Springer, Heidelberg (2009)

MagicDraw case tool, http://www.magicdraw.com/

Barnes, J., Chapman, R., Johnson, R., Widmaier, J., Cooper, D., Everett, B.:
Engineering the tokeneer enclave protection software. In: 1st IEEE International
Symposium on Secure Software Engineering (March 2006)

Abdelhalim, I., Sharp, J., Schneider, S.A., Treharne, H.: Formal Verification of
Tokeneer Behaviours Modelled in f{UML Using CSP. In: Dong, J.S., Zhu, H. (eds.)
ICFEM 2010. LNCS, vol. 6447, pp. 371-387. Springer, Heidelberg (2010)

Mellor, S.J., Balcer, M.J.: Executable UML, A Foundation for Model-Driven Ar-
chitecture. Addison-Wesley, Reading (2002)

OMG: fUML Reference Implementation, http://portal.modeldriven.org
OMG: Unified modeling language (UML) superstructure (version 2.3) (2010)
Gruninger, M., Menzel, C.: Process Specification Language: Principles and Appli-
cations. Al Magazine 24(3), 63-74 (2003)

Metadata Interchange (XMI), X, http://www.omg.org/spec/XMI/

Dimitrios kolovos, L.R., Paige, R.: The Epsilon Book

http://www.omg.org/spec/fuml/
http://www.eclipse.org/gmt/epsilon/
http://www.eclipse.org/modeling/mdt/?project=uml2
http://www.magicdraw.com/
 http://portal.modeldriven.org
http://www.omg.org/spec/XMI/

48

19.

20.

21.

22.

23.

24.

25.

26.

27.

28.

29.

1. Abdelhalim, S. Schneider, and H. Treharne

Turner, E., Treharne, H., Schneider, S., Evans, N.: Automatic generation of CSP ||
B skeletons from xUML models. In: Fitzgerald, J.S., Haxthausen, A.E., Yenigun,
H. (eds.) ICTAC 2008. LNCS, vol. 5160, pp. 364-379. Springer, Heidelberg (2008)
Ng, M.Y., Butler, M.: Towards formalizing UML state diagrams in CSP. In: Cerone,
A., Lindsay, P. (eds.) 1st IEEE International Conference on Software Engineering
and Formal Methods, pp. 138-147. IEEE Computer Society, Los Alamitos (2003)
Hansen, H.H., Ketema, J., Luttik, B., Mousavi, M., van de Pol, J.: Towards model
checking Executable UML specifications in mCRL2. In: ISSE, pp. 83-90 (2010)
Balser, M., Baumler, S., Reif, W., Thums, A.: Interactive verification of UML state
machines. In: Davies, J., Schulte, W., Barnett, M. (eds.) ICFEM 2004. LNCS,
vol. 3308, pp. 434-448. Springer, Heidelberg (2004)

Zhao, X., Long, Q., Qiu, Z.: Model checking dynamic UML consistency. In: Liu,
Z., Kleinberg, R.D. (eds.) ICFEM 2006. LNCS, vol. 4260, pp. 440-459. Springer,
Heidelberg (2006)

Varré, D., Asztalos, M., Bisztray, D., Boronat, A., Dang, D.H., Geiss, R., Greenyer,
J., Gorp, P.V., Kniemeyer, O., Narayanan, A., Rencis, E., Weinell, E.: Transfor-
mation of UML Models to CSP: A Case Study for Graph Transformation Tools.
In: Schiirr, A., Nagl, M., Zindorf, A. (eds.) AGTIVE 2007. LNCS, vol. 5088, pp.
540-565. Springer, Heidelberg (2008)

Bisztray, D., Ehrig, K., Heckel, R.: Case Study: UML to CSP Transformation. In:
Applications of Graph Transformation with Industrial Relevance (2007)

Cabot, J., Clarisé, R., Riera, D.: Verifying UML/OCL operation contracts. In:
Leuschel, M., Wehrheim, H. (eds.) IFM 2009. LNCS, vol. 5423, pp. 40-55. Springer,
Heidelberg (2009)

Shah, S.M.A., Anastasakis, K., Bordbar, B.: From UML to Alloy and back again.
In: MoDeVVa 2009: Proceedings of the 6th International Workshop on Model-
Driven Engineering, Verification and Validation, pp. 1-10. ACM, New York (2009)
Thierry-Mieg, Y., Hillah, L.M.: UML behavioral consistency checking using instan-
tiable Petri nets. In: ISSE, vol. 4(3), pp. 293-300 (2008)

Planas, E., Cabot, J., Gémez, C.: Verifying action semantics specifications in UML
behavioral models. In: van Eck, P., Gordijn, J., Wieringa, R. (eds.) CAiSE 2009.
LNCS, vol. 5565, pp. 125-140. Springer, Heidelberg (2009)

The Safety-Critical Java
Mission Model: A Formal Account

Frank Zeyda, Ana Cavalcanti, and Andy Wellings

University of York, Deramore Lane, York, YO10 5GH, UK
{Frank.Zeyda,Ana.Cavalcanti,Andy.Wellings}@cs.york.ac.uk

Abstract. Safety-Critical Java (SCJ) is a restriction of the Real-Time
Specification for Java to support the development and certification of
safety-critical applications. It is the result of an international effort from
industry and academia. Here we present the first formalisation of the
SCJ execution model, covering missions and event handlers. Our formal
language is part of the Circus family; at the core, we have Z, CSP, and
Morgan’s calculus, but we also use object-oriented and timed constructs
from the OhCircus and Circus Time variants. Our work is a first step in
the development of refinement-based reasoning techniques for SCJ.

Keywords: Circus, real-time systems, models, verification, RT'SJ.

1 Introduction

Safety-Critical Java (SCJ) [II] restricts the Java API and execution model in
such a way that programs can be effectively analysed for real-time requirements,
memory safety, and concurrency issues. This facilitates certification under stan-
dards like DO-178B, for example. It also makes possible the development of
automatic tools that support analysis and verification.

SCJ is realised within the Real-Time Specification for Java (RTSJ) [2I]. The
purpose of RTSJ itself is to define an architecture that permits the develop-
ment of real-time programs, and SCJ reuses some of RT'SJ’s concepts and actual
components, albeit restricting the programming interface. SCJ also has a specific
execution model that imposes a rigid structure on how applications are executed.

The SCJ specification, as designed by the JSR 302 expert group, comprises
informal descriptions and a reference implementation [§]. As a result, analysis
tools have been developed to establish compliance with the SCJ restrictions [20].

In this paper, we complement the existing work on SCJ by presenting a formal
model of its execution framework in a Circus-based language. The Open Group’s
informal account of SCJ [§] relies on text and UML diagrams, and our objective is
to formalise the execution model. Circus [5] is a refinement notation for state-rich
reactive systems. Its variants cover, for instance, aspects of time and mobility.
We use its object-oriented variant, OhCircus, as our base notation.

Our formal model first elicits the conceptual behaviour of the SCJ frame-
work, and secondly illustrates the translation of actual SCJ programs into their
OhCircus specifications in a traceable manner. For now, we ignore certain aspects

S. Qin and Z. Qiu (Eds.): ICFEM 2011, LNCS 6991, pp. 4 2011.
© Springer-Verlag Berlin Heidelberg 2011

50 F. Zeyda, A. Cavalcanti, and A. Wellings

of SCJ, such as the memory model, which we discuss in a separate paper [7],
and scheduling policy. Our focus is the top-level design and execution of SCJ
programs, and its primary framework and application components.

The SCJ framework as designed in Java is a reflection of a general program-
ming paradigm. It embeds a particular view of data operations, memory, and
event-based versus thread-based designs [22]. Our model identifies the fundamen-
tal concepts of SCJ at a level where it can be regarded itself as a programming
language. The fact that it can be realised on top of Java and the RT'SJ is a bonus.
It is conceivable, however, to implement specific support based on other main-
stream languages, or even define an entirely new language, and formalisation is
conducive to the development of such a language which is our future ambition.

What we present here is a precise semantics for core elements of SCJ. It
enables formal verification of SCJ applications beyond the informal validation of
statically checkable properties currently available [20]. OhCircus provides a notion
of refinement, and our work is an essential first step to justify development and
verification methods that can produce high-quality SCJ implementations.

Our work also highlights the need for a particular integration of Circus vari-
ants. Their Unifying Theories of Programming (UTP) [13] foundation facilitates
this work. The UTP is a uniform framework in which the semantics of a vari-
ety of programming paradigms can be expressed and linked. UTP theories have
already been presented for Circus and Circus Time [16/18], and also for object-
orientation [I7] and the SCJ memory model [7]. We thus identify the Circus
variant necessary to formalise SCJ programs. The design of the semantic model
establishes the right level of detail for reasoning about SCJ, and determines
where the added expressiveness of Java should be ignored.

Finally, our work guides the construction of a platform for reasoning. Our
models are free from the noise that originates from the expressiveness of Java.
They allow us to reason about SCJ programs using refinement-based techniques.
For verification, we can construct models of particular programs, and use the
Circus and UTP techniques for reasoning. For development, we can start from
an abstract specification, and develop implementations that follow the structure
and respect the restrictions of our models.

In the next section, we introduce the SCJ framework and a case study used
throughout as an example. We also provide a brief overview of our formal nota-
tion. In Section [3 we present our models and modelling approach. In Section [,
we discuss our contributions and some related work.

2 Preliminaries

In this section we present first the SCJ execution model and introduce an exam-
ple: an automotive cruise controller. Afterwards, we present Circus and OhCircus.

2.1 Safety-Critical Java

SCJ recognises that safety-critical software varies considerably in complexity.
Consequently, there are three compliance levels for SCJ programs and framework

The Safety-Critical Java Mission Model: A Formal Account 51

Engine Throttle Wheel Shaft
Sensor Actuator Sensor
)
“engine_on ~ : N P .
i engine_off) | set_voltage!v } { wheel_shaft *
—»
= Interrupt External
Cruise Control System Events o
start_acceleration ‘
stop_acceleration | - . ~
resume | { brake_engaged | [top_gear_engaged ’
B {_brake_disengaged | ! top_gear_disengaged |
Lever
Brake Sensor Gear Sensor
Sensor

Fig. 1. ACCS interactions

implementations. In this work, we are concerned with Level 1, which, roughly,
corresponds in complexity to the Ravenscar profile for Ada [4]. Level 1 applica-
tions support periodic event handlers and aperiodic event handlers.

The SCJ programming model is based on the notion of missions. They are
sequentially executed by an application-specific mission sequencer provided by a
safelet, the top-level entity of an SCJ application. All these concepts are realised
by either interfaces or abstract classes. Namely, they are the Safelet interface,
and the abstract classes MissionSequencer and Mission (see Fig.[).

A Level 1 mission consists of a set of asynchronous event handlers; both peri-
odic and aperiodic handlers are supported. Each aperiodic handler is associated
with a set of events: firing of one of them causes the handler method to be sched-
uled for execution. Periodic event handlers, on the other hand, are controlled by a
timer. Event handlers are also provided through abstract classes whose handling
method must be implemented by concrete subclasses (see Fig.[2).

A Cruise Control System. As an example of an SCJ program, and to illus-
trate our modelling approach, we present an implementation of Wellings’ auto-
motive cruise control system (ACCS) in [21] that uses SCJ Level 1.

The goal of an ACCS is to automatically maintain the speed of a vehicle
to a value set by the driver; in Fig.[ll we give an overview of its main compo-
nents and commands. Explicit commands are given by a lever whose positioning
corresponds to the following instructions: activate, to turn on the ACCS if the
car is in top gear, and maintain (and remember) the current speed; deactivate,
to turn off the ACCS; start accelerating, to accelerate at a comfortable rate;
stop accelerating, to stop accelerating and maintain (and remember) the cur-
rent speed; and resume to return to the last remembered speed and maintain it.
Implicit commands are issued when the driver changes gear, operates the brake
pedal, or switches on or off the engine. The ACCS is deactivated when the driver
changes out of top gear, presses the brake pedal, or switches the engine off.

The speed of the vehicle is measured via the rotation of the shaft that drives
the back wheels. The shaft generates an interrupt for each rotation, which causes
an event being fired and an associated handler being scheduled for execution.

52 F. Zeyda, A. Cavalcanti, and A. Wellings

«interface» MissionSequencer Mission
Safelet — — — —
- +getNextMission() : Mission +initialize() : void
+setUp() - void +cleanup() : void
+tearDown() : void +requestTermination() : void
+getSequencer() : MissionSequencer +terminationPending() : boolean
+missionMemorySize() : long
[/\

!
«instantiates» «instantiates»

|
MainSafelet ,,,,,,,,,,>| MainMissionSequencer |» ————————— W

| «instantiates» |

N !
AperiodicEventHandler PeriodicEventHandler Q—' ThrottleController |
+handleAsyncEvent() : void +handleAsyncEvent() : void
+register() : void +register() : void

CruiseControl

+engineOn() : void
‘ ‘ +topGearEngaged() : void

{ { \
|WheelShaft| |Engine| | Gear | | Brake | | Lever k%mctivate():void
Q +deactivate() : void ...
| I

Fig. 2. UML class diagram for the cruise controller

The actual speed of the car depends on the throttle position, which is deter-
mined by the depression of the accelerator pedal and a voltage supplied by the
ACCS. The combination of these values is performed outside the ACCS.

Sensors detect external happenings and generate appropriate interrupts, as
illustrated in Fig.[Il These interrupts are reflected in the SCJ program by the
firing of SCJ events that correspond to the possible happenings. For the setting
of the throttle voltage, communication of the new voltage value to the ACCS
components is realised in the program using a hardware data register.

Fig.Bl presents a UML class diagram that gives an overview of the design
of the ACCS as an SCJ Level 1 safelet. As said above, Safelet is an inter-
face, and the classes MissionSequencer,Mission, AperiodicEventHandler and
PeriodicEventHandler are abstract. They are part of the SCJ API developed
on top of the RTSJ API to capture the SCJ programming model.

MainSafelet is the entry point for the application. It provides the method
getSequencer () that returns the mission sequencer. The other two methods
setUp() and tearDown() are provided for initialisation and cleanup tasks. The
MainMissionSequencer class constructs instances of the Mission class, by im-
plementing getNextMission(). Concrete subclasses of Mission have to im-
plement the initialize() and missionMemorySize() methods. The former
creates the periodic and aperiodic event handlers of the mission. The handlers
register themselves with the mission by way of the register () method.

Both periodic and aperiodic handlers implement handleAsyncEvent () to
specify their behaviour when the handler is released. The two extra methods
requestTermination() and terminationPending() cannot be overridden; they
allow for the mission to be terminated by one of the handlers.

Fig.B2l does not show all components of the SCJ API. There are eight classes
that realise the mission framework, twelve classes in the handler hierarchy, five
classes that deal with real-time threads, seven classes concerned with scheduling,

The Safety-Critical Java Mission Model: A Formal Account 53

and ten classes for the memory model. The formal model that we present here
abstracts from all these details of the realisation of the SCJ Level 1 programming
paradigm in Java. We capture the main concepts of its novel execution model.
This enables reasoning based on the core components of the SCJ paradigm.

2.2 Circus and OhCircus

The Circus language [0] is a hybrid formalism that includes elements from Z [19],
CSP [12], and imperative commands from Morgan’s calculus [I5]. Several exam-
ples are provided in the next section: see Fig.[l Bl [6l and [7 for instance.

Like in CSP, the key elements of Circus models are processes that interact with
each other and their environment via channels. Unlike CSP, Circus processes may
encapsulate a state. The definition of a Circus process hence includes a paragraph
that identifies the state of the process using a Z schema.

The behaviour of a process is defined by its main action (which may refer-
ence local actions, introduced for structuring purposes). The language of actions
includes all constructs from CSP, such as Skip and Stop, input and output pre-
fixes, sequencing, parallelism, interleaving and hiding, as well as operations to
modify the state. Parallelism and interleaving are parametrised in terms of the
state components that each parallel action can modify to avoid potential write
conflicts. State operations can be specified either by Z operation schemas or
guarded commands. We explain the details of the notation as needed.

OhCircus [6] extends Circus with an additional notion of class. Unlike pro-
cesses, objects can be used in arbitrary mathematical expressions. The permissi-
ble notation for OhCircus class methods includes all schema operations, guarded
commands, and some additional notations used to instantiate new data objects,
invoke methods, access object fields, and support inheritance.

Processes describe the active behaviour of the model (or of its components),
including the whole system. Classes model passive data objects and operations
performed on them. In the following section we present our model for SCJ pro-
grams. The notation we use is OhCircus. We, however, use a few action operators
of the Circus Time [18] variant, and object references from our previous SCJ mem-
ory model in [7]. The latter is specified at the level of the Unifying Theories of
Programming [I3], the semantic framework of Circus and its extensions.

3 Framework and Application Models

Our model of SCJ factors into two dimensions: a generic framework model, and
an application model that corresponds to a particular concrete SCJ program. We
specify the semantics of safelets, the mission sequencer, missions, and aperiodic
as well as periodic event handlers. To illustrate the application model, we make
use of the cruise controller application as it was presented in the previous section.

Fig.Bl presents an overview of the structure of the model of a typical SCJ
application — here the cruise controller. Each of the five top-level boxes refers
to a process that realises a specific component of the SCJ programming model.
We label these boxes with the process names. Arrows indicate the channels on

54 F. Zeyda, A. Cavalcanti, and A. Wellings

o~ o . .
@ = Framework Process | ..) = Application Process lil = Data Object Engine
] (EventHandlerFW)
. o =
MainSafelet MainMissionSequencer 9
e] < = ;
SafeletFwW MissionSequencerFW m g g Environment
start_sequencer A 4&\ 2 5 ~
I [i I Y 5[5
15 € £ ? K] ° = 2 oo
2 H H 2] - ° s
L gl g I 3. -
’ gl |8 (N 2 H i EngineApp }
done_sequencer 3 |2 N) /
£ & Aggregates Data Object
,,,,,,,,,,,,,,,,,,,,,,,,,,,,,, - h
{ MainMissionSequencerApp } ‘ EngineClass
ﬁﬁ.:ﬁieiﬁ 15 T T s
_~ s 15 ¢ w18 sl s [s| |2
isati 5 |8 |§ 218l 1= |8l (& 1B B
ThrottleController Synchronisations al (g |% gl O(E| El B |B| [B| |2
£ gl |E I I - A
EventHandlerFW el | s 8 (8 g (g |g] |E
u ThrottleControllerinit . obj g IS 5 w g HICI K] 3
=1 -4 bd L - L4t - tJd L
B
5 s I requestTermCall.m MainMission
I
2 8 | > (——\ —
a 5 5 . requestTermRet.m (MissionFW)
[I & —
I: 8 H s P =
H = 2l
° s |2 S start_handler . h E € E £ < 4 8] (XX
3 H] 3] 3 3 3 3 <
k] ¥ (— gl El g 2 2 I
. stop_handler . h K] g g § 2| H
5 — 3 s H £] o £
o L = = 3 b 3 g o
o (| £ £ 5 < ® w H
Aggregates Data Object done_handler . h °L s
— | -
ThrottleControllerClass ‘ | 0 MainMissionApp
activate_handlers N,

Fig. 3. Structure of the model the SCJ cruise controller

which the components communicate. For instance, the processes MainSafelet and
MainMissionSequencer communicate on start sequencer and done sequencer.

The model of the application is obtained by parallel composition of the top-
level processes, and by hiding all but the external channels. These define the
interface of the system; for example, we define the event engine on to represent
the happening that occurs when the engine is switched on.

Each top-level process is itself defined by the parallel composition of a generic
framework process (suffix FWW), and a process that is in direct correspondence
with the Java code (suffix App). We have an instance of the EventHandlerFW
framework process for each handler. To obtain the model of an existing SCJ
program, we can follow the strategy explained below to construct the App pro-
cesses, and use the FW processes as defined later on; except only that, in the
case of a handler App process, we need to be aware of the events the handler is
bound to, and declare channels to represent them.

The following provides the definition of the MainSafelet process.

channelset MainSafeletChan =
{ setUpCall, setUpRet, tearDownCall, tearDownRet [}

process MainSafelet =
(SafeletE'W [MainSafeletChan | MainSafeletApp) \ MainSafeletChan

The channels on which framework and application process communicate are
hidden (operator \) Here, these are setUpCall, setUpRet, tearDownCall, and
tearDouwnRet. Above, a channel set MainSafeletChan is defined to contain all

The Safety-Critical Java Mission Model: A Formal Account 55

these channels. In the definition of MainSafelet, it is used to define the synchro-
nisation set of the parallelism (operator [...]), and the set of channels to be
hidden. The synchronisation set defines the channels over which communication
requires synchronisation between the two parallel processes.

We differentiate between channels that represent framework events, and chan-
nels that represent method calls. Channels suffixed with Call and Ret encode
method calls. Method calls are in some cases modelled by channel communica-
tions rather than mere OhCircus data operations to allow the framework pro-
cesses to trigger or respond to those calls. A call to requestTermination(), for
instance, has to interact with the mission framework process. We then require a
Call and a Ret channel for this method.

In the following we specify each of the top-level processes.

3.1 Safelet Model
The framework process SafeletFW for a safelet is given below; it has no state.

process SafeletFW = begin
SetUp = setUpCall — setUpRet — Skip
Execute = start sequencer — done sequencer — Skip
TearDown = tearDownCall — tearDownRet — Skip
® SetUp ; FEzecute ; TearDown

end

The main action, which is given at the end after the ®, sequentially executes the
SetUp, Execute and TearDown local actions. They correspond to the initialisation,
execution, and cleanup phases of the safelet. SetUp and TearDown synchronise in
sequence (prefixing operator —) on the setUp[Call/ Ret] and tearDown[Call/ Ret]
channels, before terminating (basic action Skip). The synchronisations model calls
to the methods setUp() and tearDown() of the Java class. Since the methods
are parameterless and do not return any values, the communications through the
channels are just synchronisations: there is no input or output. The methods them-
selves are specified in the application process as exemplified below: the framework
process defines the flow of execution, and the application process defines specific
program functionality. Execute raises two framework events: start sequencer to
start the mission sequencer, and done sequencer to detect its termination. These
channels are exposed by the Safelet component (that is, not hidden in its definition
as shown above), and their purpose is to control the MissionSequencer component
which we specify later on.
We now present the application process for the safelet in our example.
process MainSafeletApp = begin

setUpMeth = setUpCall — Skip ; setUpRet — Skip

tearDownMeth = tearDownCall — Skip ; tearDownRet — Skip

Methods = 1 X ® setUpMeth ; X

® Methods A tearDownMeth

end

56 F. Zeyda, A. Cavalcanti, and A. Wellings

process MissionSequencerFW = begin
Start = start sequencer — Skip
Ezecute = 1 X ® getNextMissionCall — getNextMissionRet ? next—
if next # null — start mission . next — done mission . next — X
| next = null — Skip
fi
Finish = end sequencer app — end mission fw — done sequencer — Skip
® Start ; Execute ; Finish
end

Fig. 4. Mission sequencer framework process

The specification is trivial here since setUp() and tearDown() in MainSafelet
do not contain any code in the ACCS implementation. More important is the
modelling approach, which we adopt in all application processes. A local action
Methods recursively (operator w) offers a choice of actions that correspond to
methods of the SCJ class; the choice is exercised by the associated framework
process. For the safelet application process, the only action offered by Methods is
setUpMeth. In the main action, we have a call to Methods. Termination occurs
when there is a call to the tearDown() method. In the main action, this is
captured by an interrupt (operator A) that calls the tearDownMeth action.

A method action, here setUpMeth or tearDownMeth, synchronises on the
channel that represents a call to it, setUpCall or tearDownCall, for instance, and
then executes actions that correspond to the method implementation. Since, as
already mentioned, setUp () and tearDown() in MainSafelet do not contain any
code, in our example above, these actions are just Skip. At the end the method
action synchronises on the channel that signals the return of the call, setUpRet
or tearDownRet, for instance. If the method has parameters or returns a value,
the call and return channels are used to communicate these values. Examples of
our encoding of parametrised methods are shown below.

3.2 Mission Sequencer Model

The mission sequencer process (Fig.[]) communicates with the safelet process to
determine when it has to start, and to signal its termination.

The main action executes Start to wait for the mission sequencer to be started,
which is signalled by a synchronisation on start sequencer. Afterwards, execu-
tion proceeds as specified by a recursion in the action Ezecute. In each iteration,
it synchronises on the channels getNextMissionCall and getNextMissionRet to
obtain the next mission via next. This corresponds to a call to the SCJ method
getNextMission (). Since it returns a (mission) object, getNextMissionRet takes
as input a value next of type Missionld (containing identifiers for the missions
of an application). A special mission identifier null is used to cater for the case
in which the method returns a Java null reference to signal that there are no
more missions to execute. In Fzecute, a conditional checks the value of next. If
it is not null, synchronisations on start mission . next and done mission . next

The Safety-Critical Java Mission Model: A Formal Account 57

are used to control the Mission process (defined later on) that manages exe-
cution of the particular mission next, and then FEzecute recurses (calls X) to
handle the next mission. Otherwise, Frecute finishes. At the end, in the Finish
action, synchronisation on end sequencer app is used to terminate the mission
sequencer application process. Next, synchronisation on end mission fw termi-
nates the mission framework process. Finally, synchronisation on done sequencer
acknowledges to the safelet process that the mission sequencer has finished.
For our example, the mission sequencer application process is as follows.

process MainMissionSequencerApp = begin
state MainMissionSequencerState == [mission done : BOOL]
Init = mission done := FALSE
getNextMissionMeth = getNextMissionCall—
if mission done = FALSE——
mission done := TRUE ; getNextMissionRet ! MainMissionld — Skip
| - mission done = FALSE — getNextMissionRet ! null — Skip
fi
Methods = 4 X ® getNextMissionMeth ; X
® [nit ; (Methods A\ end sequencer app — Skip)
end

This is a more complete illustration of our approach to modelling SCJ classes as
Circus processes. The member variables of the class become state components. In
the above example, we have one state component mission done corresponding
to a variable of the same name in the SCJ class MainMissionSequencer. We
define a free type BOOL ::= TRUE | FALSE to support boolean values in Z.

The action Init specifies the constructor. Other method actions are named
after the methods of the class. In the case of the mission sequencer application
class modelled above, we have just the method getNextMission().

The main action of an application process is always of the above shape: a call
to Init, if present, and a call to Methods, with an interrupt that allows a control-
ling process to terminate it via a special event (here end sequencer app). In the
case of the safelet application process discussed earlier, the special termination
event corresponded also to a call to its tearDown () method.

In MainMissionSequencerApp, the specification of getNextMissionMeth is in
direct correspondence with the code of getNextMission(). We have a con-
ditional that, depending on the value of mission done updates its value and
outputs (returns) the next mission or null. The difference is that, instead of rep-
resenting a mission by an object, we use constants of type Missionld. In our ex-
ample, since we have only one mission, we have just one constant MainMissionld.

We omit the definition of the process MainMissionSequencer, which is a paral-
lel composition of MissionSequencerFW and MainMissionSequencerApp, similar
to that used to define MainSafelet at the beginning of this section.

3.3 Mission Model

The purpose of a mission process, defined by a parallelism between the mission
framework process and an associated mission application process, is to create the

58 F. Zeyda, A. Cavalcanti, and A. Wellings

process MissionF'W = begin
state MissionFWState == [mission : Missionld, handlers : F HandlerId)]
Init == [MissionFWState' | mission’ = null A handlers’ = @]
Start = Init ; start mission ? m — mission :== m
AddHandler = val handler : HandlerId ® handlers := handlers U {handler}
Initialize = initializeCall . mission—
add handler?h — (AddHandler(h); X)

puxe (o
initializeRet . mission — Skip

StartHandlers = ||| h : handlers ® start handler . h — Skip
StopHandlers = ||| h : handlers ® stop handler . h — done handler . h — Skip
Execute = StartHandlers;activate handlers — stop handlers — StopHandlers
Cleanup = cleanupCall . mission — cleanupRet . mission — Skip
Finish = end mission app . mission — done mission . mission — Skip
® (uX ® Start ; Initialize ; Execute ; Cleanup ; Finish; X)

A end mission fw — Skip

end

Fig. 5. Mission framework process

mission’s event handlers, execute the mission by synchronously starting them,
wait for their termination, and afterwards finish the mission. It also allows the
termination of the mission by a handler at any point.

Fig.Bl presents the framework process for mission execution. Its state has two
components: the identifier mission of the mission being executed, if any, and its
finite set handlers of handlers. The handlers are identified by values of a type
Handlerld. The action Init is a standard Z operation to initialise the state. The
declaration MissionFWState' introduces dashed versions of the state component
names (mission’ and handlers’) to represent the values of the components after
initialisation. Init defines that, initially, there is no mission executing, so that
the value of mission is null, and therefore, the set of handlers is empty.

In the main action, we use again the modelling pattern where we have a se-
quence of actions that define the different phases of the entity life-cycle, here
a mission. In the case of the mission framework process, a recursion perpetu-
ally calls this sequence of actions, because this process controls all missions in
the program, and so repetitively offers its service. Termination of the service is
determined by the mission sequencer process using the channel end mission fw.

The Start action initialises the state and waits for the mission sequencer to
start a mission. Since this framework process can handle any mission, Start uses
start mission to take a mission identifier m as input, and records it in mission.
Finish uses that mission identifier to terminate the application process for the
mission with a synchronisation on end mission app . mission, and to signal to
the mission sequencer that the mission has finished with done mission . mission.

The Safety-Critical Java Mission Model: A Formal Account 59

The Initialize action models the initialisation phase which is initiated by the
framework calling the initialize() method. It is specified using a recursion
which continually accepts requests from the mission application process, through
the channel add handler, to add a handler A to the mission (this is achieved by
the parametrised action AddHandler). Besides, the application process may use
the event initialiseRet . mission to terminate Initialize at any time.

In the action Fzecute, first of all, all handlers are started with a call to the ac-
tion StartHandlers. It uses synchronisations start handler.h to start in interleav-
ing (operator |||) all handlers h recorded in the state. The processes corresponding
to the handlers h synchronise with the mission process on start handler.

The handlers do not immediately become active after they are started. For
that, the action Start uses a channel activate handlers. All handler processes
synchronise on it, but only those that previously synchronised on start handler
proceed to execute their active behaviour. In this way, we ensure that handlers
can be initialised asynchronously, but have to start execution synchronously.

Termination of the handlers is initiated by the mission application process
with a synchronisation on stop handlers, raised by the action corresponding to
requestTermination(). After that, Execute calls the action StopHandlers. For
each handler h of the mission, StopHandlers uses stop handler.h to stop it, and
then waits for the notification done handler.h that it actually terminated.

Finally, the Cleanup action calls the action of the mission application pro-
cess corresponding to its cleanup() method. In what follows we discuss the
application process, using the ACCS MainMission class as example.

Action methods are encoded as before; the model for initialize() is differ-
ent, though, since it not only results in the creation of data objects, but also
provides information to the framework about the handlers that have been cre-
ated. Below we include an extract of its specification for the ACCS model.

initializeMeth = initializeCall . MainMissionld —
var...; speed : SpeedMonitorClass;
throttle : ThrottleControllerClass;
cruise : CruiseControlClass; ... ®
throttle := new ThrottleControllerClass(speed, . . .);
ThrottleControllerInit | throttle — Skip;
add handler . ThrottleControllerHandlerld — Skip
cruise := new CruiseControlClass(throttle, speedo);
engine := new EngineClass(cruise, ...);
Enginelnit ! engine — Skip;
add handler . EngineHandlerld — Skip ; ...
initializeRet . MainMissionld — Skip

This formalises the declaration of local variables speed, throttle, and so on for
handler objects. These variables have a class type, and are initialised using its
constructor. For instance, throttle := new ThrottleControllerClass(speed, . ..) is
a reference assignment to throttle of an object of class ThrottleControllerClass
defined by its constructor, given speed and other parameters.

An important observation is that a handler is characterised not merely by
(framework and application) processes, but also by a data object. In Fig.[] this

60 F. Zeyda, A. Cavalcanti, and A. Wellings

is indicated by boxes in the processes for handlers. Accordingly, we need to
establish a connection between the data object and the process that aggregates
it. This is achieved via a designated channel with suffix Init. The application
process uses this channel to retrieve the data object it is connected to.

A pair of Java statements that create and register a handler with the current
mission is, therefore, translated to one assignment and two communications.
As already explained, the assignment constructs the handler’s data object and
assigns it to the appropriate local variable. Next, we have a communication like
Throttle ControllerInit ! throttle, which outputs a reference to the data object to
the handler process. Finally, to record the handler as part of the mission, we
have a communication like add handler . ThrottleControllerHandlerld. In the
program this corresponds to a call to register () on the handler object.

We note, however, that not all data objects need to be wrapped in a process.
For example, the CruiseControlClass object does not need to be associated with
a process since the framework does not need to directly interact with it. It is
used to aggregate other objects and has a direct translation as an OhCircus class.

Another method of a mission application class that needs special encoding
is requestTermination(); it also needs to communicate with the framework
process as it raises the stop handlers event. All other action methods, like, for
instance, the action for the missionMemorySize () method, and the main action
are as already explained and exemplified for application processes.

3.4 Handler Models

As already noted, the application process for a handler associates application
events to it. On the other hand, the specification of the framework process is
similar for periodic and aperiodic handlers. In Fig.[6l we sketch the generic frame-
work process for an event handler. It is parametrised by an identifier that must be
provided when the framework process is instantiated for a particular handler. For
the engine handler, for example, we use EventHandlerFW (EngineHandlerId).

The state component active of the EventHandlerFW records if the handler
is active in the current mission or not. The main action defines an iterative
behaviour that is interrupted and terminated by the event end mission fw,
which, as mentioned before, indicates the end of the mission execution.

Each iteration defines the behaviour of the handler during a mission. First, the
state is initialised using Init. Afterwards, the handler waits to be started using
the StartHandler action in external choice (operator O) with a synchronisation
on activate handlers, offered by ActivateHandlers. The action StartHandler syn-
chronises on a particular start handler event determined by the handler iden-
tifier. Afterwards, it also offers a synchronisation on activate handlers (calling
ActivateHandlers), which always occurs prior to entering the execution phase.

If the start handler event occurs before activate handlers, the value of active
is TRUE. In this case, the handler calls the action DispatchHandler. It raises the
enter dispatch event to notify the application process that it has to enter the
handler’s dispatch loop in which it starts responding to the external events asso-
ciated with it. The dispatch loop is interrupted after the stop handler . handler

The Safety-Critical Java Mission Model: A Formal Account 61

process FEventHandlerFW = handler : HandlerId ® begin
state EventHandlerFWState == [active : BOOL]
Init == [EventHandlerFWState ' | active’ = FALSE]

StartHandler = start handler . handler — active := TRUE
ActivateHandlers = activate handlers — Skip

DispatchHandler = enter dispatch—
stop handler . handler — leave dispatch — Skip
nX e Init;

((StartHandler ; ActivateHandlers) O ActivateHandlers);
L4 if active = TRUE — DispatchHandler

| active = FALSE — Skip

fi

A end mission fw — Skip

end
Fig. 6. Framework process for event handlers

event, by synchronising on leave dispatch. If active is FALSE, the handler pro-
cess skips, as in this case the handler is not part of the current mission.

As already said, the application processes for handlers are factored into a
data object modelled by an OhCircus class, and a process that aggregates it and
releases the handler. Fig.[l presents the OhCircus class for the Engine Java class.
The correspondence is direct, with member variables defined as state compo-
nents, and the constructor defined in the initial paragraph. For methods, the
only difference is that events are not treated as objects: we use event identi-
fiers. So, handleAsyncEvent takes an event identifier as a value parameter, and
compares it to the identifiers of the events that are handled in the class.

The application process for a handler lifts its data objects to a process that
can interact with the other components of the model. We present in Fig.Bl the
process for the engine handler. The object for the handler is recorded in its state
component obj. The Init action initialises it with the object input through the
constructor call channel: here, the channel Enginelnit of type EngineClass.

The handleAsyncEventMeth action simply executes the corresponding data
operation. We cannot adopt exactly this model when handleAsyncEvent () han-
dles an output event. For instance, the throttle controller handler process has to
carry out communications set wvoltage ! v. In such cases, we cannot represent the
method by just a call to a data operation like in Fig.[8, but have to encode it by
an action. The handleAsyncEventMeth of the application process, in this case,
reflects directly the Java code, but outputs a value in the correct external channel
where in Java we have a device access to achieve the hardware interaction.

Since a handler the used by several missions, the application process re-
peatedly initialises (Init), executes (Ezecute), and terminates (Terminate) it.
Execution waits for the enter dispatch event, and then enters a loop that repeat-
edly waits for the occurrence of one of the external events associated with the

62 F. Zeyda, A. Cavalcanti, and A. Wellings

class EngineClass = begin
state EngineState == [private cruise : CruiseControlClass]

initial Enginelnit = val cruise? : CruiseControlClass ® cruise := cruise?
public handleAsyncEvent = val event : Eventld ®
if event = EOnEvtld — cruise.engineOn()
[| event = EOffEvtld — crutse.engineOff ()
fi
end

Fig. 7. OhCircus class for the Engine handler

process EngineApp = begin
state EngineState == [0bj : EngineClass]
Init = Enginelnit? o — obj := o
handleAsyncEventMeth = vale : Eventld ® obj.handleAsyncEvent(e)
Ezecute = enter dispatch — Dispatch
Dispatch =
HX e
leave dispatch — Skip

0O

engine on — handleAsyncEventMeth(EOnEvtid)
O ;) X

engine off — handleAsyncEventMeth(EOffEvtld)
I_l t : 0..EngineDeadline ® wait t
Terminate = done handler . EngineHandlerId — Skip
® (uX ® Init; Execute; Terminate; X) A end mission fw — Skip

end

Fig. 8. Application process for the Engine handler

handler. In our example, these are engine on and engine off. When such an
event occurs, Dispatch calls the handleAsyncEventMeth action. The subsequent
nondeterministic wait captures the permissible amount of time the program
may take to execute it. The dispatch loop is abandoned when the leave dispatch
event occurs. Termination that follows raises a particular done handler . h event
to notify the mission framework process that the handler has terminated.

In the case of an application process for a periodic handler, the only difference
is in Dispatch. It does not wait for external events and calls handleAsyncEvent ()
when an internal timer event release occurs. An additional parallel action Release
generates the timer events. It is given below for ThrottleController.

Release =
(UX ® (release — Skip » 0) ; wait ThrottleControllerPeriod ; X)
A leave dispatch — Skip

The Safety-Critical Java Mission Model: A Formal Account 63

The Circus Time wait ¢ action waits for the end of the period before terminat-
ing, and the » operator specifies that the release event happens immediately
afterwards. ThrottleControllerPeriod is a constant that specifies the period of
the handler. (We have one such constant for each periodic handler.)

4 Conclusions

As far as we know, what we presented here is the first formalisation of the SCJ
paradigm. Our models capture the essence of its design, and are an essential asset
for analysis and development techniques for SCJ programs based on refinement.

To validate the models, we have translated them for FDR. The CSP trans-
lation encapsulates all Circus state into process parameters. Timing aspects are
ignored, and so is the detailed application-level behaviour of handlers. We en-
sured that simple interaction scenarios do not result in a deadlock, and also that
the mechanism for starting and terminating missions works as expected.

The direct correspondence between SCJ programs and our models enables
automation in both directions. The framework processes are the same for all
programs. The application processes use a fixed modelling pattern. The formal-
isation of the model-generation strategy discussed here, and the development of
an associated tool, is work in progress. What remains to be done is to formalise
the translation rules, and we believe this can be done in a compositional manner
to facilitate their implementation using visitors. The tool will allow us to tackle
larger industrial examples like those in Kalibera et al.’s benchmark [14].

The SCJ also incorporates a region-based memory model with restrictions
on access to support safe dynamic memory management, and associated static
verification techniques. We have abstracted from this here, but refined versions
of our model will incorporate the language features we have formalised else-
where [7]. For this we will further introduce constructs into the language that
make explicit the memory areas in which objects are allocated. Importantly, this
does not impact on any of the models presented earlier: they remain valid.

There are many approaches and tools to reason about object-oriented pro-
grams and Java [3[I], but they do not cater for the specificities of concurrency
in SCJ. Brooke et al. present a CSP specification for a concurrency model for
Eiffel (SCOOP) [2]. Their CSP specification shares some basic ideas with our
Circus models, but is necessarily more complex due to its generality.

Kalibera et al.’s work in [I4] is concerned with scheduling analysis and race
conditions in SCJ programs, but it does not use proof-based techniques. Instead,
exhaustive testing and model-checking is applied. Annotation-based techniques
for SCJ can be found in [2009]. In [20] annotations are used to check for com-
pliance with a particular level of SCJ, and for safe use of memory. Haddad et
al. define SafeJML [9], which extends JML [3] to cover functionality and timing
properties; it reuses existing technology for worst-case execution-time analysis in
the context of SCJ. Our model is a conceivable candidate to justify the soundness
of checks supported by the annotations and carried out by the tools.

Our long term goal is the definition of refinement-based techniques for de-
veloping SCJ programs. Like in the Circus standard technique, we will devise a

64 F. Zeyda, A. Cavalcanti, and A. Wellings

refinement strategy to transform centralised abstract Circus Time models into an
SCJ model as described here. The development of this strategy, and the proof
of the refinement rules that it will require are a challenging aspect of this en-
deavour. This involves the identification of refinement and modelling patterns.
All this shall also provide further practical validation of our model.

Acknowledgements. This work is funded by the EPSRC grant EP/H017461/1.
We have discussed our models with Chris Marriott, Kun Wei, and Jim Woodcock.

References

1. Beckert, B., Hahnle, R., Schmitt, P.H. (eds.): Verification of Object-Oriented Soft-
ware. LNCS (LNAI), vol. 4334. Springer, Heidelberg (2007)

2. Brooke, P., Paige, R., Jacob, J.: A CSP model of Eiffel’s SCOOP. Formal Aspects
of Computing 19(4), 487-512 (2007)

3. Burdy, L., Cheon, Y., Cok, D.R., Ernst, M.D., Kiniry, J.R., Leavens, G.T., Leino,
K.R.M., Poll, E.: An overview of JML tools and applications. Software Tools for
Technology Transfer 7(3), 212-232 (2005)

4. Burns, A.: The Ravenscar Profile. ACM SIGAda Ada Letters XIX, 49-52 (1999)

5. Cavalcanti, A., Sampaio, A., Woodcock, J.: A Refinement Strategy for Circus. For-
mal Aspects of Computing 15(2-3), 146-181 (2003)

6. Cavalcanti, A., Sampaio, A., Woodcock, J.: Unifying classes and processes. Software
Systems and Modeling 4(3), 277-296 (2005)

7. Cavalcanti, A., Wellings, A., Woodcock, J.: The Safety-Critical Java Memory
Model: A Formal Account. In: Butler, M., Schulte, W. (eds.) FM 2011. LNCS,
vol. 6664, pp. 246-261. Springer, Heidelberg (2011)

8. The Open Group. Safety Critical Java Technology Specification. Technical Report
JSR-302, Java Community Process (January 2011)

9. Haddad, G., Hussain, F., Leavens, G.T.: The Design of SafeJML, A Specification
Language for SCJ with Support for WCET Specification. In: JTRES. ACM, New
York (2010)

10. Harwood, W., Cavalcanti, A., Woodcock, J.: A Theory of Pointers for the UTP.
In: Fitzgerald, J.S., Haxthausen, A.E., Yenigun, H. (eds.) ICTAC 2008. LNCS,
vol. 5160, pp. 141-155. Springer, Heidelberg (2008)

11. Henties, T., Hunt, J., Locke, D., Nilsen, K., Schoeberl, M., Vitek, J.: Java for
Safety-Critical Applications. In: SafeCert (2009)

12. Hoare, C.A.R.: Communicating Sequential Processes. Prentice-Hall, Englewood
Cliffs (1985)

13. Hoare, C.A.R., Jifeng, H.: Unifying Theories of Programming. Prentice-Hall,
Englewood Cliffs (1998)

14. Kalibera, T., Parizek, P., Malohlava, M.: Exhaustive Testing of Safety Critical
Java. In: JTRES. ACM, New York (2010)

15. Morgan, C.C.: Programming from Specifications, 2nd edn. Prentice-Hall, Engle-
wood Cliffs (1994)

16. Oliveira, M., Cavalcanti, A., Woodcock, J.: A UTP Semantics for Circus. Formal
Aspects of Computing 21(1-2), 3-32 (2009)

17.

18.

19.

20.

21.

22.

The Safety-Critical Java Mission Model: A Formal Account 65

Santos, T., Cavalcanti, A., Sampaio, A.: Object-Orientation in the UTP. In: Dunne,
S., Stoddart, B. (eds.) UTP 2006. LNCS, vol. 4010, pp. 18-37. Springer, Heidelberg
(2006)

Sherif, A., Cavalcanti, A., Jifeng, H., Sampaio, A.: A process algebraic framework
for specification and validation of real-time systems. Formal Aspects of Comput-
ing 22(2), 153-191 (2009)

Spivey, J.: The Z Notation: A Reference Manual. Prentice-Hall, Englewood Cliffs
(1992)

Tang, D., Plsek, A., Vitek, J.: Static Checking of Safety Critical Java Annotations.
In: JTRES, pp. 148-154. ACM, New York (2010)

Wellings, A.: Concurrent and Real-Time Programming in Java. Wiley, Chichester
(2004)

Wellings, A., Kim, M.: Asynchronous event handling and safety critical Java. In:
JTRES, ACM, New York (2010)

Is There Evolution Before Birth?
Deterioration Effects of Formal Z Specifications

Andreas Bollin

Software Engineering and Soft Computing, AAU Klagenfurt, Austria
Andreas.BollinCaau.at
http://www.aau.at/tewi/inf/isys/sesc

Abstract. Formal specifications are not an exception for aging. Furthermore,
they stay valid resources only in the case when they have been kept up to date
during all evolutionary changes taking place. As specifications are then not just
written once, an interesting aspect is whether they do also deteriorate or not. In
order to answer this question, this paper addresses the issues on various kinds
of changes in the development of formal specifications and how they could be
measured. For this, a set of semantic-based measures is introduced and then used
in a longitudinal study, assessing the specification of the Web-Service Definition
Language. By analyzing all 139 different revisions of it, it is shown that speci-
fications can deteriorate and that it takes effort to keep them constantly at high
quality. The results yield in a refined model of software evolution exemplifying
these recurring changes.

1 Introduction

Would you step into a house when there is a sign saying “Enter at your own risk”? I
assume not, at least if it is not unavoidable. Well, the situation is quite comparable to a
lot of software systems around. Our standard software comes with license agreements
stating that the author(s) of the software is (are) not responsible for any damage it might
cause, and the same holds for a lot of our hardware drivers and many other applications
around. Basically, we use them at our own risk.

I always ask myself: “Would it not be great to buy (and also to use) software that
comes with a certificate of guarantee instead of an inept license agreement?” Of course,
it would and it is possible as some companies demonstrate. It is the place where formal
methods can add value to the development process. They enable refinement steps and
bring in the advantages of assurance and reliable documentation.

The argument of quality is not just an academic one. Formal methods can be used in
practice as companies using a formal software development process demonstrate [23].
Formal modeling is also not as inflexible as one might believe. Changing requirements
and a growing demand in software involve more flexible processes and it is good to see
that a combination of formal methods and the world of agile software development is
possible [2]. This enables the necessary shorter development cycles, but, and this is the
key issue, it also means to start thinking about evolution right from the beginning.

The questions that arise are simple: (a) Do our formal specifications really change or
evolve, and (b) if this is the case, can we detect or even measure these changes? The ob-
jective of the paper is to answer these two questions. In a first step it demonstrates that

S. Qin and Z. Qiu (Eds.): ICFEM 2011, LNCS 6991, pp. 66 2011.
(© Springer-Verlag Berlin Heidelberg 2011

http://www.aau.at/tewi/inf/isys/sesc

Evolution Before Birth? — Deterioration Effects of Formal Z Specifications 67

formal specifications are not an exception for aging. Section 2 tries to make developers
more receptive to this topic. And in the second step it demonstrates that there might
be deterioration effects when formal specifications are undergoing constant changes.
For this, Section 3 briefly introduces a set of measures that are suitable for assessing Z
specifications, and Section 4 takes a closer look at 139 revisions of a large Z specifi-
cation. Due to the lessons learned, a refined model of software evolution is suggested
in Section 5. Finally, Section 6 summarizes the findings and again argues for a careful
attention of the refined model of (specification) evolution.

2 Perfection or Decay

A formal specification describes what a system should do and as such it can be used
to argue about the correctness of a candidate system. But a specification is not per se a
“correct” mapping of the requirements. It needs time to create a first, useful version and,
as there are affinities with traditional software development, this section starts with the
model of software evolution. This model is then the basis for a — necessary — refinement,
as is shown later in Section 5.

2.1 Back to the Roots

Let us start again with the analogy above: Why does one enter a house even without
bothering about its safety? The answer is simple: normally, one trusts in the original
design, the statics, the teams that built it and the officials that did the final checks. The
trust stays the same when the house is going to be renovated, when the interior changes
and when some walls are broken down (or new ones are erected). One naturally assumes
that the old plans have been investigated and that structural engineers took a look at it.
The same holds for our software systems. There is an overall design, there are teams
that build and modify it and there are teams that test it before being sold. We trust in
their professionalism. A change in requirements and needs then leads to a change in this
software — it is undergoing a “renovation” process that we might call software evolution.

Bennet and Rajlich [1]] introduced a staged model to describe this process in more
details (see Fig.[I). Starting with the initial development and the first running version,
evolutionary changes happen, leading to servicing phases and then, finally, to the phase-
out and close-down versions of the software. In their article the authors also point out
the important role of software change for both, the evolution and servicing phases. In
fact, effort is necessary at every step of the phase to keep up with the quality standards
and for keeping alive our trust in it.

Taking a closer look at our analogy of building/reconstructing a house it can be
observed that there is also a chain (or network) of trust. The visitor (or owner) of the
house counts on the construction company, they by themselves trust in the quality of the
building materials they use, and the team that builds the house trusts in the architects
(just to mention some of the links). When our evolving software is undergoing changes,
then there is a similar chain of trust and dependencies.

This is now the place where formal methods come into play. To keep the trust, a
change in the software has to be preceded by changes in the design documents and with

68 A. Bollin

Initial Development

First running
version
Evolution Changes
/—

\ A

Evolution Version 1

Servicing Patches

&~

Evolution new & Servicing Version 1
version

Phase-out Version 1

Evolution Changes

s | Close-down Version

Servicing Patches 1
Evolution Version 2 ——————
" &~
1
Evolutipn new Servicing Version 2
ver?ion
I
; Phase-out Version 2

.| Close-down Version

Evolution Version n 2

Fig. 1. The versioned staged model of Bennett and Rajlich [1]]. Starting with the initial develop-
ment and the first running version evolution is about to begin. The goal of the evolution phase is
to adapt the software to ever changing user requirements or changes in the operating environment.
When substantial changes are not possible anymore (at least not without damages to the system),
then the servicing phase starts. Only small tactical changes are applied. When no more servic-
ing is done, then the phase-out starts. Finally, with the close-down phase, the users are directed
towards a new version.

it a change in the software specifications. One can also put it the other way round: when
the architect does not update his or her plans, then future renovations are (hopefully)
impeded.

2.2 The Role of Formal Design

Writing down requirements in a keen way is necessary, and the use of formality is
not new in this respect. In their article Black et.al point out that formal methods have
already been used by Ada Lovelace’s and Charles Babbage’s work on the analytical
engine when they verified the formulas [2]. Since then several success stories of the use
of formal methods have been published [812812312|11]. However, traditional formal
design is commonly seen as something that is just happening at the beginning, and
most of us are tempted to think about the development of just one formal model.

As the analogy above demonstrates, this viewpoint is probably not correct. When
drawing up a plan, an architect does not only draw a single version. He or she starts
with a first version, modifies it, and plays around with it. Several versions are assessed
and, finally, discussed with the customer. The plans are, in addition to that, revised
when the building is changed later on. The same holds for formal specifications. Their

Evolution Before Birth? — Deterioration Effects of Formal Z Specifications 69

advantages not only lie in verification and validation considerations. They form the
basis for incrementally pinning down the most important requirements (and eventually
ongoing refinement steps). Only when kept up to date during evolutionary changes, they
act as valid sources for comprehension activities. So, our formal specifications are (and
should be) constantly changing during the software development phases. To think in
terms of “‘write-once languages” (as already addressed in [16, p.243]) is for sure not
appropriate.

During the last three decades there have been several advances in the field of formal
software development. Specification languages were standardized and then also adapted
to the world of object oriented programming. By the time new languages arise. Alloy is
such an example that also allows for simulation and graphical feedback [[13]. However,
the main focus of the tools and languages around rests on support for writing the one
and correct model (and on proving properties of it). Contrarily, in our working group
we have been focusing on servicing and comprehension aspects instead [21/17]], and in
the last years these efforts led to a concept location model and a tool for visualization,
slicing and clustering of Z specifications [4]. The resulting tools and techniques will
now be used in order to find out whether (and to which extent) formal specifications do
change during evolutionary activities.

3 On the Search for Measures

Formal specifications (like program code) might age during modifications and it needs
effort to antagonize it. The effects of a modification should be measured in order to
steer the course of change. This means to assess the specification (among other docu-
ments) at every refinement step and to consider the effect on various parameters of the
specification. Looking at size-based measures only (which can be calculated easily) is
for our objectives not enough. When talking about various aspects of deterioration we
are more interested in measuring effects on the specifications’ quality!

3.1 Specification Measures

The majority of specification metrics used in projects belongs to the class of size/quantity
based measures. Most popular is counting lines of specification text, which, apart from

looking at the time needed to write the specification, was also used as the basis to

monitor the often-cited CICS/ESA project of IBM [9]]. Counting specific specification

elements is possible, too. Vinter et. al propose to count the type and number of logical

constructs in Z specifications [25]. By a small case-study they demonstrate that these

measures might correlate with the complexity of the specification. However, up to now

a quantitative assessment of the approach is missing. Nogueira et. al suggest to use two

measures expressing the complexity of each operator in the system and to calculate

them by counting input and output data related to the operators [[18]]. Their experiences

are based on a small case-study using HOPE as a specification language and Modula-

2 for its implementation. Alternatively, Samson et. al suggest to count the number of
equations in a module or per operation [24]. They observed that the number of equa-

tions required to define an operator is frequently equal to the cyclomatic complexity of
code based on the specification.

70 A. Bollin

Complexity considerations are relevant, but within the scope of this work quality
measures are needed. Due to the declarative nature of the formal specifications under
investigation, such measures (usually based on control- and data-flow) are, unfortu-
nately, rare. The above mentioned approaches of Samson et. al or Nogueira et. al can
be seen, if at all, just as possible approximations to quality considerations. But, there is
one approach that could be used as a starting point. By looking at (and analyzing) the
references to state variables in operations, Carrington et. al try to identify states of a
module and to relate them to the top-level modular structure of an implementation [6].
With this, they are introducing the notion of cohesion within a module. They do not
relate it to the quality of a specification, though, but the next section demonstrates that
not so much is missing.

3.2 Slice-Based Coupling and Cohesion Measures

As mentioned in the previous section, it is hard to find suitable quality measures for for-
mal specifications. However, for programming languages there are several approaches
around. Recently, Meyers and Binkley published an empirical study demonstrating the
use of slice-based measures for assessing the quality of 63 C programs [15]. Their
study is based on the following situation: In a system different relations between differ-
ent components can be detected. These relations make up part of the class of semantic
complexity. When taking the information flow within and between these components as
quality indicators, then the dual measures of coupling and cohesion are quite descriptive
when assessing the quality of a program.

A practical way to calculate the needed measures is to make use of slices. Weiser
[2627] already introduced five slice based measures for cohesion, and three of them
have later on been formally defined by Ott and Thuss [20]: Tightness, Coverage, and
Overlap. Coupling, on the other hand, was defined as the number of local information
flow entering and leaving a procedure, and Harman demonstrated in [[10] that it can be
calculated by the use of slices, too.

According to [[15, 2:6-2:7], Tightness relates the number of statements common to all
slices to the length of the module. It favors concise single thought modules where most
of the statements are part of all the slices and thus affect all of the outputs. Coverage
on the other hand relates the lengths of the slices to the length of the entire module.
It favors large slices but does not require them to overlap and thus to indicate single
thought modules. As an example, a module containing two independent slices would
result in a value for Coverage of 0.5 but a value for Tightness of 0.0. Overlap measures
how many statements are common to all the slices and relates the number to the size
of all slices. The result is a measure that is not sensitive to changes in the size of the
module, it is only related to the size of the (single) common thought in the module.
Coupling between two modules is calculated by relating the inflow and outflow of a
module (with respect to other modules in the program). Inflow and outflow are also
calculated by making use of slices. Inter-procedural slices yield those statements of a
module that are “outside”, and, when examining these sets of statements mutually, their
relation can be treated as “information flow”. The exact semantics behind the measures
(including the definitions and some impediments in calculating them) are explained in
more details in the paper of Meyers and Binkley [15]].

Evolution Before Birth? — Deterioration Effects of Formal Z Specifications 71

Table 1. Coupling and cohesion-related measures for Z specifications as introduced in [3[]. SP
is the set representing all slices SP; of a schema % in a Z specification ¥. SP;, is the Slice
Intersection, representing the set of all predicates that are part of all slices. SU represents the
Slice Union of all the slices.

Measure Definition Description

Tightness T(¥,) ! SP"T’Ef“w ! Tightness 7 measures the number of
predicates included in every slice.

Coverage Cov(¥, 1)) Iy ||S£i “ Coverage compares the length of

all possible specification slices SP;
(SP; € SP(¥, 1)) to the length of).
Overlap O(W, 1)) D 'SP"'i’S(: |’w) ! Overlap measures how many pred-
icates are common to all n possi-
ble specification slices SP; (SP; €

SP(¥,).
Inter — Schema Flow KSU(IﬁZY)Pw*)‘ Inter-Schema flow F measures the
F (s, va) ' number of predicates of the slices in

14 that are in ;.
Inter — Schema Coupling © (Wetba) ‘mlilfbﬁ%%) 1“al Inter-Schema coupling C computes

C (s, %a) the normalized ratio of the flow in

both directions.
i1 C(iy) |l

Schema Coupling x(1:) S

Schema Coupling x is the weighted
measure of inter-schema coupling of

i and all n other schemas.

3.3 Specification Slicing

Slicing can be applied to formal specifications, too. The idea was first presented by
Oda and Araki [[19] and has later been formalized and extended by others [7/3l29]. The
basic idea is to look for predicates that are part of pre-conditions and for predicates
that are part of post-conditions. The general assumption is that (within the same scope)
there is a “control” dependency between these predicates. “Data dependency”, on the
other hand, is defined as dependency between those predicates where data is potentially
propagated between them. With this concept, slices can be calculated by looking at a
(set of) predicates at first and then by including all other dependent predicates.
Recently, sliced-based coupling and cohesion measures have then been mapped to
Z by taking the above definitions of Meyers and Binkley as initial points (see Table 1]
for a summary). Based on the calculation of slice-profiles which are collections of all
possible slices for a Z schema, the following measures have been assessed in []:

— Tightness, measuring the number of predicates included in every slice.

— Coverage, comparing the length of all possible slices to the length of the specifica-
tion schema.

— Overlap, measuring how many predicates are common to all n possible specification
slices.

72 A. Bollin

Table 2. Pearson, Spearman, and Kendall Tau test values (including significance level p) for the
correlation of size and slice-based Z specification measures. Values | R | € [0.8 — 1.0] in the
mean are classified as strongly correlated, values | R | € [0.5—0.8) are classified as moderately
correlated, and values | R | € [0.0 — 0.5) are treated as weakly correlated.

Metric Comparison (n=1123)
Sig. Pearson Spearman Kendall
Measure 1 Measure2 R p R p R p
Strong Tightness Coverage 0.830 .000 0.907 .000 0.780 .000
Moderate Tightness Overlap 0.809 .000 0.749 .000 0.623 .000
Size (LOS) Coupling 0.589 .000 0.686 .000 0.494 .000
Size (LOS) Overlap -.557 .000 -.543 .000 -.415 .000
Size (LOS) Tightness -.541 .000 -.551 .000 -.415 .000
Coverage Overlap 0.531 .000 0.566 .000 0.437 .000
Weak Coupling Overlap -.343 .000 -.315 .000 -.239 .000
Size (LOS) Coverage -.284 .000 -.447 .000 -.326 .000
Coupling Tightness -.272 .000 -.262 .000 -.191 .000
Coupling Coverage 0.006 .829 -.102 .000 -.070 .000

— Coupling, expressing the weighted measure of inter-schema coupling (the normal-
ized ratio of the inter-schema flow — so the number of predicates of a slice that lay
outside the schema — in both directions).

In [5]] it was shown that the measures are very sensitive to semantic changes in Z-schema
predicates and that the changes of the values are comparable to their programming
counterparts. This includes all types of operations on the specification, especially the
addition, deletion or modification of predicates. The next and missing step was to look
at a larger collection of sample specifications and assessing their expressiveness. The
major objective was to find out which of the measures describe unique properties of a
Z specification and which of them are just proxies for e.g. the lines of specification text
count (LOS).

In the accompanying study more than 12, 800 lines of specification text in 1,123 Z
schemas have been analyzed and the relevant results of the analysis of the measures
are summarized in Table 2l The table shows that three tests have been used: Pearson’s
linear correlation coefficient, Spearman’s rank correlation coefficient, and Kendall’s
Tau correlation coefficient. The objective was to find out whether each of the measures
represents some unique characteristic of the specification or not.

The Pearson’s correlation coefficient measures the degree of association between the
variables, but it assumes normal distribution of the values. Though this test might not
necessarily fail when the data is not normally distributed, the Pearson’s test only looks
for a linear correlation. It might indicate no correlation even if the data is correlated in
a non-linear manner. As knowledge about the distribution of the data is missing, also
the Spearman’s rank correlation coefficients have been calculated. It is a non-parametric
test of correlation and assesses how well a monotonic function describes the association
between the variables. As an alternative to the Spearman’s test, the Kendall’s robust
correlation coefficient was used as it ranks the data relatively and is able to identify
partial correlations.

Evolution Before Birth? — Deterioration Effects of Formal Z Specifications 73

The head to head comparison of the measures in Table 2] shows that the slice-based
measures are not only proxies for counting lines of specification text. In fact, most of
the pairs do have a weak or moderate correlation only. So, besides the size of the spec-
ification, one can select Coverage, Overlap, and Coupling as descriptors for properties
of the specification, but, e.g., skip Tightness as it has the highest values of correlation
to most of the other measures.

Meyers and Binkley suggested another measure based on the sizes of the generated
slices and called it “deterioration” [15]. This measure has also been mapped to Z in [3]]
and the basic idea goes back to a simple perception: the less trains of thoughts there are
in one schema, the clearer and the sharper is the set of predicates.

When a schema deals with many things in parallel, a lot of (self-contained) predi-
cates are to be covered. This has an influence on the set of slices that are to be generated.
When there is only one “crisp” thought specified in the schema, then the slice intersec-
tions cover all the predicates. On the other hand, when there are different thoughts
specified in it, then the intersection usually gets smaller (as each slice only regards de-
pendent predicates). A progress towards a single thought should therefore appear as a
convergence between the size of the schema and the size of its slice-intersection, a di-
vergence could indicate some “deterioration” of the formal specification. This measure
seems to be a good candidate for checking our assumption whether specifications do
age qualitatively or not, and it defined as follows:

Definition 1 Deterioration. Let ¥ be a Z specification, 1); one schema out of n schemas
in W, and SP;,(1);) its slice intersection. Then Deterioration (6(¥)) expresses the av-
erage module size in respect to the average size of the slice intersections SP;,. It is
defined as follows:

221:1 | 1!]1' | - | SPint(wa 1!]!) |

() = ;

Please note that the term “deterioration” as introduced in this paper is neither positive
nor negative and one single value of deterioration is of course not very expressive. It
just tells about how crisp a schema is. It does not allow for a judgement about the
quality of the schema itself. Of course, we could state that all values above a pre-defined
value x are to be treated as something unwanted, but it depends on the problem at
hand whether we can (and should) allow for such schemas. In all, it merely makes
sense to look at the differences in deterioration between two consecutive versions of the
specification and thus to introduce the notion of Relative Deterioration. This measure
can be defined in such a way that the relative deterioration is greater than zero when
there is a convergence between schema size and slice intersection, and it is negative,
when the shears between the sizes get bigger, indicating some probably unintentional
deterioration. Relative Deterioration is defined as follows:

Definition 2 Relative Deterioration. Let ¥,,_1 and W, be two consecutive versions of a
Z specification W. Then the relative deterioration (p(W,—1,¥,)) withn > 1 is calculated
as the relative difference between the deterioration of W,,_1 and W,. It is defined as
follows:

74 A. Bollin

4 Evaluation

With the set of measures at hand and the reasonable suspicion that specifications do age
this paper is now taking a closer look at the development of a real-world specification
and the effect of changes onto the measures introduced in Section 3.

4.1 Experimental Subject

One of the rare, big publicly available Z specifications is the specification of the Web
Service Definition Language (WSDL) [22]. The document specifies the Web Services
Description Language Version 2.0, which is an XML language for describing Web ser-
vices. Besides natural language guidance, the specification defines the core language
that is used to describe Web services based on an abstract model of what the service of-
fers. Additionally, it specifies the conformance criteria for documents in this language.
The reason for focusing on this specification is that, with 2004 onwards, a concur-
rent versioning system (CVS) has been used. WSDL 1.0 is not available in Z, but from
November 2004 till the final release in 2007 139 versions have been checked in. The
first revision is an adoption of WSDL 1.0, and then, successively, functionality has been
added, modified, or deleted. The final revision contains 814 predicates (distributed over
1,413 lines of Z text).

This specification is now used so check whether, due to maintenance operations,
there are drastic changes in the measures and whether deterioration can be detected or
not. The strategy is simply to look at the changes (as documented in the code and in the
CVS log files) and to compare them to the obtained values.

4.2 The Study

As a first step the CVS log was analyzed. This provided some insights to the types of
changes that occurred on the way to the final release. Though there have been several
changes influencing the events, the following sections and revisions are noticeable and
are considered in more details:

— Up to Revision 1.005 there is a mapping of WSDL version 1.0 to Z. Only minor
changes to the specification happen.

— Between revisions 1.005 —1.007 there are mostly structural enhancements. Finally,
model extensions take place.

— Atrevisions 1.020ff there are several refactoring steps and noticeable extension.

— Atrevisions 1.045ff there are several smaller changes to some of the concepts.

— At revisions 1.090ff there are massive extensions to the model and new concepts
are introduced.

— Between revisions 1.096 — 1.104 the concepts in the model are simplified.

Evolution Before Birth? — Deterioration Effects of Formal Z Specifications 75

3 [6] [20 [a6] [o1] 27
30
= 25
el
=
S 20
£
I
5 15
=
I
D 10
=}

0 10 20 30 40 50 60 70 80 90 100 110 120 130 140
Revision

Fig. 2. Deterioration for the 139 revisions of the WSDL specification. When the value of de-
terioration increases, then more predicates (not closely related to each other) are introduced to
schemas. This is not bad per se, but it is a hint towards a decrease in cohesion values.

— Atrevisions 1.127ff there are change requests and, thereinafter, removing features
leads to a structural refactoring.

Up to revision 1.092 the interventions consisted mainly of adding new concepts (in
our case Z schemas) to the specification. After revision 1.095 there are solely change
requests, leading to a refactoring of the specification. Really massive changes took place
at revisions 1.046 and 1.091.

When taking another closer look at the CVS log and the code, a specific strategy
for keeping the specification constantly at a high level of quality can be detected. The
recurring steps of a change request were:

1. Refactoring of the actual version.
2. Adding, removing, or modifying a concept.
3. Update of the natural language documentation.

The interesting question is now whether our measures introduced in Section 3] are able
to reflect these changes and whether the measures of deterioration are able to display
these changes.

4.3 Results

At first let us take a closer look at the measure called deterioration. Fig. 2l presents
the value for all 139 revisions in the CVS. This figure indicates that the specification
remarkably changes at revisions 1.046 and 1.091. In fact, the CVS log also documents
the changes.

As absolute values (as in Fig.[2)) do not perfectly describe the influence of a change,
the notion of relative deterioration has been introduced in Section[3l Fig.Bpresents the
value of it for all 139 revisions. Positive values indicate that the difference between the
schema sizes and their slice intersections is reduced; such a deviation is assumed to be
positive in respect to deterioration as the slice intersection is a measure of how strong

76 A. Bollin

6 20 46 91 127

0.400

0.300

0.200
5
e 0.100
i
.g 0.000 ~ N
£ 0100 0 (] 20 30 0 60 70 80 100 110 120 | 130 140
o
£ -0.200
S
©
o -0.300
o

-0.400

-0.500

-0.600

Revision

Fig. 3. The change in deterioration is better visible when looking at the relative deviation over
the time. A positive value indicates an increase in cohesion, while a negative value indicates a
decrease in the values of cohesion.

the predicates are interwoven in a schema. On the other hand, negative values indicate
negative effects.

When taking again a look at Fig. [3| (especially between revisions 1.020 and 1.046),
then the above mentioned strategy of change requests gets noticeably visible. A change
is implemented by a structural improvement first (to be seen as a positive amplitude),
and then it is followed by the introduction of the new concept, in most cases indicated
by a negative amplitude in the diagram.

Let us now analyze the influence of a change onto the qualitative values of coupling
and cohesion. By looking at Fig. Bl we see that the value for overlap decreases (on
average) a bit. This indicates that, with time, the number of predicates, common to
other slices, gets lower. Single Z schemas seem to deal with more independent thoughts.
Refactoring these thoughts into separate schemas (which happened e.g. at revisions
1.020 and 1.127) helped a bit to improve the structure of the specification again.

The value of coverage follows more or less the fluctuation of overlap — but not at all
revisions to the same extent. On the long run it definitely increases. Coverage tells us
about how crisp a schema is, and in our case the developers of the specification did not
manage to keep this property stable.

Finally, coupling refers to the flow between different schemas in the specification.
Though the value fluctuates, the developers managed to keep coupling quite stable on
the long run. Fig. @also shows that the value fluctuates with the values of cohesion, but
not necessarily to the same extent, and not necessarily inversely (as would be assumed
to be normal).

Though with the WSDL specification there is only one experimental subject, the
results seem to substantiate that the measures are suitable for assessing this Z specifica-
tion. The measures called deterioration and relative deterioration reflect the aging of the
system quite well, and the measures for coupling and cohesion (a) do indicate structural
changes and (b) also seem to explain some of the semantic changes in the specification.

Evolution Before Birth? — Deterioration Effects of Formal Z Specifications 77

[6] [20 [46] [o1] 27
0.8
pococane
(]
5 /
k=] ‘ ’
3)eedectectachaakaak y—
<
o
(&)
g ~~~~~ ++ Overlap
©
%ﬂ - Coverage
% Coupling
o
(]
60 80 100 120 140

Revision

Fig. 4. The values of cohesion (expressed by the measures of overlap and coverage) and coupling
for the 139 revisions of the WSDL specification. In most cases the values are subject to the same
changes. However, at revisions 1.006 and 1.044 we observe changes into different directions, too.

5 An Extended Model of Evolution

As has been shown in Section specifications keep on changing. Either one is still
in the process of finding the most suitable version for our requirements, or one is mod-
ifying them due to changes in our projects’ software systems. With that, a second look
at the software evolution model in Fig. [Ilis quite helpful — as one comes down to the
following statement so far:

There is also evolution before the birth of the running version of the software system.

Fig. 3l tries to exemplify this for the initial and evolutionary versions of the soft-
ware. In this figure the original model has been extended by refining the boxes of the
evolutionary versions. Documents and requirements have been added so that formal
specifications are made explicit (as they do belong to the set of necessary documents).
They are, depending on the changing requirements, also changed. These changes either
happen before one has a first running version of the software or afterwards.

The implications of this (refined) picture are manifold and should be considered
when using formal specification languages in the software development lifecycle:

— Suitable size- and quality-based measures should be defined. This ensures that
changes in the various documents — including formal specifications — can be de-
tected and assessed. The slice-based measures introduced above are just an example
of how it could be done for a specific specification language. For other languages
the ideas might be reused. It might also be necessary to define new measures. How-
ever, the crucial point is that there is a measurement system around.

— Points of measurement should be introduced at every change/refinement loop. This
ensures that the effects of changes can be assessed, and that the further direction of
the development can be steered. The example of WSDL shows that already during
the initial development changes have effects and that it takes effort to keep a specifi-
cation constantly at a pre-defined level of quality. One can assume that WSDL is not
an exception and that the observation also holds for other specification documents.
By making use of a measurement system one is at least on the safe side.

78 A. Bollin

/ / Changes / Refinement
Initial - D
Requirements | = | (Spec./Design)
Fixed Requirements FB(Ed DeS|gn_and
ocumentation
4
1 Initial el
Requirements D i - Initial D
Changing Requirements First running version
4 Evolution
Y rr » Changes
Requirements Documentation Evolution
Version 1 Set 1 Version 1 / Servicing
r 4 r 4 - Patches
Al Servicing
Version 1
Requirements new version Documents new version Evolution new version
\ T \ T \ T

Fig. 5. A refined and extended look at the versioned stage model. Starting with a first set of initial
requirements several versions of documents are created. Requirements are refined, and formal
specifications are (among other design documents) also changed and modified. When the design
is fixed, development is about to begin. Due to evolutionary changes after this phase, the existing
documentation — including specifications and design documents — is (and has to be) changed,
too. The term “evolutionary change of a formal specification” is used in a rather general sense.
Apart from the classification of system types of Lehman [14], the figure illustrates that essential
changes might happen to documents before and after delivery.

— The terms “Fixed Design and Documentation” just designate the conceptual border
between the initial development phase and the first running version. Nevertheless,
changes to the documents happen before and after this milestone in the project (as
evolution is about to begin). The previously introduced measure points should also
be defined for the evolutionary phases, and measures should be collected during all
the evolutionary changes and servicing activities (influencing the documents and
specifications).

Basically, the extended model of software evolution makes one property of specification
(and other documents) explicit: they are no exception to aging. With this, it is obvious
that measures, at the right point and extent, help in answering the question of what
happened and, eventually, of what can be done for preventing unwanted deterioration
effects.

6 Conclusion

We started with the observation that formal specifications — documents important in the
very early phases of software development and later on during maintenance — might be
changed more often than commonly expected and that the changes are not necessarily
positive. We wanted to verify this observation, and so we mapped existing semantic-
based measures to Z specification and used them to analyze a large real-world specifi-
cation. The lessons learned so far are manifold.

Evolution Before Birth? — Deterioration Effects of Formal Z Specifications 79

1. Firstly, there was no suitable measurement system around. In order to understand
and to assess changes, new measures had to be developed. These measures, care-
fully mapped to Z specifications, have been evaluated by making use of a large set
of sample specifications. They are maybe not representative for all specifications
around, but the statistical tests helped us in gaining at least basic confidence in the
results for Z.

2. Secondly, changes onto formal specifications definitely might influence the values
of the measures and there is the chance that their effects are underestimated. There
is no model that enunciates this situation, which is also the reason why we borrowed
from the model of evolution and refined it to cover the phases before, within, and
after initial development. A closer look at the evolution of the WSDL specification
seems to confirm the observation mentioned at the beginning of the paper: formal
specifications are not just written once. They are modified, are extended, and they
age.

3. Finally, the measures of coupling and cohesion (and with them deterioration and
relative deterioration) seem to be a good estimate for a qualitative assessment of
a specification. They are easy to calculate and seem to point out a possible loss in
quality.

With that, we are able to answer our two questions that have been raised at the end of
Section[I} specifications evolve and this evolution can be observed by simple semantics-
based measures. The refined and extended model of evolution as presented in Section
is a good image of what happens when developing our systems.

The results of this contribution are interesting insofar as it turned out that, for the
full benefits of a formal software development process, it makes sense to permanently
take care of the quality of the underlying formal specification(s). Even when declarative
specification languages are used, this can easily be done by defining suitable measures
and by using them to constantly monitor the quality of the whole system. The goals for
future work now include (a) taking a closer look at other formal specifications in order
to verify and consolidate the findings, (b) investigating the correlation of the specifi-
cation measures to code-based measures in order to come up with different prediction
models, and (c) incorporating the refined model of software evolution into a formal
software development process model that also considers cultural differences between
the different stakeholders in a project.

Overall, the results are encouraging. Formal specifications are not necessarily re-
stricted to the early phases of a software development process. When treated carefully
(and kept up to date) they may help us in producing software systems that can be trusted,
even when changed.

Acknowledgment. I am grateful to the reviewers of the FM 2011 conference and to
my colleagues at AAU Klagenfurt, especially to Prof. Mittermeir, who helped me with
fruitful discussions and reflections on this topic.

80

A. Bollin

References

10.

11.

12.

13.

14.

15.

16.

17.

18.

. Bennet, K., Rajlich, V.: Software Maintenance and Evolution: a Roadmap. In: ICSE 2000:

Proceedings of the Conference on The Future of Software Engineering, pp. 73-89. ACM,
New York (2000)

. Black, S., Boca, P.P.,, Bowen, J.P., Gorman, J., Hinchey, M.: Formal Versus Agile: Survival

of the Fittest. IEEE Computer 42(9), 37-54 (2009)

. Bollin, A.: Specification Comprehension — Reducing the Complexity of Specifications. Ph.D.

thesis, AAU Klagenfurt (April 2004)

. Bollin, A.: Concept Location in Formal Specifications. Journal of Software Maintenance and

Evolution — Research and Practice 20(2), 77-105 (2008)

. Bollin, A.: Slice-based Formal Specifiation Measures — Mapping Coupling and Cohesion

Measures to Formal Z. In: Mufioz, C. (ed.) Proceedings of the Second NASA Formal
Methods Symposium, NASA/CP-2010-216215, NASA, Langley Research Center, pp. 24—
34 (April 2010)

. Carrington, D., Duke, D., Hayes, 1., Welsh, J.: Deriving modular designs from formal spec-

ifications. In: ACM SIGSOFT Software Engineering Notes, vol. 18, pp. 89-98. ACM, New
York (1993)

. Chang, J., Richardson, D.J.: Static and Dynamic Specification Slicing. Tech. rep., Depart-

ment of Information and Computer Science, University of California (1994)

. Clarke, E.M., Wing, J.M.: Formal Methods: State of the Art and Future Directions. Tech.

rep., Carnegie Mellon University, CMU-CS-96-178 (1996)

. Collins, B.P., Nicholls, J.E., Sorensen, I.H.: Introducing formal methods: the cisc experience

with z. In: Mathematical Structures for Software Engineering, pp. 153—164. Clarendon Press,
Oxford (1991)

Harman, M., Okulawon, M., Sivagurunathan, B., Danicic, S.: Slice-based measurement of
coupling. In: Proceedings of the [EEE/ACM ICSE workshop on Process Modelling and Em-
pirical Studies of Software Evolution, pp. 28-32. IEEE Computer Society Press, Los Alami-
tos (1997)

Hierons, R.M., Bogdanov, K., Bowen, J.P., Cleaveland, R., Derrick, J., Dick, J., Gheo-
rghe, M., Harman, M., Kapoor, K., Krause, P., Liittgen, G., Simons, A.J.H., Vilkomir, S.,
Woodward, M.R., Zedan, H.: Using formal specifications to support testing. ACM Comput.
Surv. 41(2), 1-76 (2009)

Hinchey, M., Jackson, M., Cousot, P., Cook, B., Bowen, J.P., Margaria, T.: Software engi-
neering and formal methods. Communications of the ACM 51(9), 54-59 (2008)

Jackson, D.: Software Abstractions - Logic, Language, and Analysis. The MIT Press,
Cambridge (1996)

Lehman, M.M.: On understanding laws, evolution, and conservation in the large-program
life cycle. Journal of Systems and Software 1(1), 213-221 (1979)

Meyers, T.M., Binkley, D.: An Empirical Study of Slice-Based Cohesion and Coupling Met-
rics. ACM Transactions on Software Engineering and Methodology 17(1), 2:1-2:27 (2007)
Mittermeir, R.T., Bollin, A.: Demand-Driven Specification Partitioning. In: Boszérményi, L.,
Schojer, P. (eds.) JIMLC 2003. LNCS, vol. 2789, pp. 241-253. Springer, Heidelberg (2003)
Mittermeir, R.T., Bollin, A., Pozewaunig, H., Rauner-Reithmayer, D.: Goal-Driven Com-
bination of Software Comprehension Approaches for Component Based Development. In:
Proceedings of the ACM Symposium on Software Reusability Software Engineering Notes,
SSR 2001, Software Engineering Notes, vol. 26, pp. 95-102. ACM Press, New York (2001)
Nogueira, J.C., Luqi, Berzins, V., Nada, N.: A formal risk assessment model for software
evolution. In: Proceedings of the 2nd International Workshop on Economics-Driven Software
Engineering Research, EDSER-2 (2000)

19.

20.

21.

22.

23.

24.

25.

26.

27.

28.

29.

Evolution Before Birth? — Deterioration Effects of Formal Z Specifications 81

Oda, T., Araki, K.: Specification slicing in a formal methods software development. In: 17th
Annual International Computer Software and Applications Conference, pp. 313-319. IEEE
Computer Society Press, Los Alamitos (1993)

Ott, L.M., Thus, J.J.: The Relationship between Slices and Module Cohesion. In: 11th In-
ternational Conference on Software Engineering, pp. 198-204. IEEE Computer Society, Los
Alamitos (1989)

Pirker, H., Mittermeir, R., Rauner-Reithmayer, D.: Service Channels - Purpose and Trade-
offs. In: COMPSAC 1998: Proceedings of the 22nd International Computer Software and
Applications Conference, pp. 204-211 (1998)

Roberto Chinnici, S.M., Moreau, J.J., Ryman, A., Weerawarana, S.: Web Services Descrip-
tion Language (WSDL) Version 2.0 Part 1: Core Language (2007),
http://www.w3.0rg/TR/wsd1l20

Ross, P.E.: The Exterminators. IEEE Spectrum 42(9), 3641 (2005)

Samson, W., Nevill, D., Dugard, P.: Predictive software metrics based on a formal specifica-
tion. Information and Software Technology 29(5), 242-248 (1987)

Vinter, R., Loomes, M., Kornbrot, D.: Applying software metrics to formal specifications:
A cognitive approach. In: 5th International Symposium on Software Metrics, pp. 216-223.
IEEE Computer Society Press, Bethesda (1998)

Weiser, M.: Program slices: formal, psychological, and practical investigations of an auto-
matic program abstraction method. Ph.D. thesis, University of Michigan (1979)

Weiser, M.: Program slicing. In: Proceedings of the 5th International Conference on Software
Engineering, pp. 439-449. IEEE Press, Piscataway (1982)

Woodcock, J., Davis, J.: Using Z: Specification, Refinement, and Proof. Prentice-Hall Inter-
national Series in Computer Science. Prentice Hall, Hemel Hempstead (1996)

Wu, E,, Yi, T.: Slicing Z Specifications. ACM SIGPLAN Notices 39(8), 3948 (2004)

 http://www.w3.org/TR/wsdl20

Asynchronous Communication in MSVL*

Dapeng Mo, Xiaobing Wang, and Zhenhua Duan™

Institute of Computing Theory and Technology,
and ISN Laboratory Xidian University,
Xi’an, 710071, P.R. China
zjmdp@foxmail.com, {xbwang,zhhduan}@mail.xidian.edu.cn

Abstract. Projection Temporal Logic (PTL) is a sound formalism for specify-
ing and verifying properties of concurrent systems. The modeling, simulation
and verification language MSVL for concurrent systems is an executable sub-
set of PTL. However, asynchronous communication, a key component of model-
ing distributed system, has not been implemented in MSVL. This paper presents
asynchronous communication techniques for MSVL to improve its capability for
modeling and verifying distributed systems. First, a process structure is defined;
then a channel structure and two pairs of communication commands are formal-
ized; finally, an example of asynchronous communication for the contract signing
protocol is demonstrated.

1 Introduction

Temporal logics [[112l3]] have been put forward as a useful tool for specifying and veri-
fying properties of concurrent systems, and widely applied in many fields ranging from
software engineering to digital circuit designs. Projection Temporal Logic(PTL)[4] is an
extension of Interval Temporal Logic (ITL) and a useful formalism for system verifica-
tion. The Modeling, Simulation and Verification Language (MSVL)[5]] is an executable
subset of PTL and it can be used to model, simulate and verify concurrent systems. To
do so, a system is modeled by an MSVL program and a property of the system is spec-
ified by a Propositional Projection Temporal Logic (PPTL) formula. Thus, whether or
not the system satisfies the property can be checked by means of model checking with
the same logic framework.

As the complexity of distributed systems increases, a formal language for modeling
and verification is desired. Although MSVL has been used to model, simulate and ver-
ify a number of concurrent systems, it could not be employed to model an asynchronous
distributed system because asynchronous communication techniques have not been im-
plemented in MSVL. For this reason, asynchronous communication construct is to be
formalized.

* This research is supported by the National Program on Key Basic Research Project of China
(973 Program) Grant No.2010CB328102, National Natural Science Foundation of China un-
der Grant Nos. 60910004, 60873018, 91018010, 61003078 and 61003079, SRFDP Grant
200807010012, and ISN Lab Grant No. 201102001,Fundamental Research Funds for the Cen-
tral Universities Grant No. JY10000903004.

** Corresponding author.

S. Qin and Z. Qiu (Eds.): ICFEM 2011, LNCS 6991, pp. 82201 1.
(© Springer-Verlag Berlin Heidelberg 2011

Asynchronous Communication in MSVL 83

Channel structure is commonly found in temporal logic languages due to its im-
portance to describe asynchronous distributed systems. In ASDL[6], any two distinct
services are impliedly connected by two unidirectional channels. It is a simple and
straightforward approach to implement asynchronous communication technique. For
XYZ/E[T], a channel is defined as a variable that can be a parameter of a process. This
approach is flexible, but conflicts may occur when more than one process accesses a
same channel at the same time. Roger Hale has implemented asynchronous communi-
cation technique for Tempura based on a shared buffer and two primitive operations[§].
The buffer is a single slot in which one message can be stored at a time. Communication
in CCS[9] and CSP[10] is synchronous and there are no message buffers linking com-
municating agents, but asynchronous communication can be modeled by introducing
buffer agents between two communicating entities. These approaches above provide us
a great many ideas to implement asynchronous communication technique in MSVL.

The main contributions of this paper are as follows: 1. A process structure is defined
to describe behaviors of systems. In this way, two or more processes can form a larger
system with a clear structure; 2. To establish links among processes, a channel structure
is presented. Channels are buffers to transport messages; 3. Communication commands,
which are executed by processes to send or receive messages, are formalized. After all
works above have been done, asynchronous communication is possible and a number of
asynchronous concurrent systems can be modeled, simulated and verified with extended
MSVL.

To inspect the practicability of our works, an example of electronic contract signing
protocol is modeled and verified by the extended MSVL. Processes are used to describe
all parties that participate in the protocol and channels are defined to connect all pro-
cesses;then all processes run in parallel to model the protocol. With some properties
specified by PPTL formulas, whether or not the protocol satisfies them are checked.

The paper is organized as follows: In section 2, the syntax and semantics of PTL are
presented. In section 3, the language MSVL is briefly introduced. The formal definitions
of the process structure and asynchronous communication are formalized in section 4.
In section 5, an electronic contract signing protocol is modeled and verified with the
extended MSVL. Conclusions are drawn in the final section.

2 Projection Temporal Logic

2.1 Syntax

Let IT be a countable set of propositions, and V' be a countable set of typed static and
dynamic variables. B = {true, false} represents the boolean domain and D denotes
all the data we need including integers, strings, lists etc. The terms e and formulas p are
given by the following grammar:

ex=v|Qe| el fler,...,em)
pu=mler=ez | Pler,....em) | p|p1Ap2|Fv:p|Op|Op]|
(P1y-- - Dm)PH P

84 D. Mo, X. Wang, and Z. Duan

I[v] = si[v] = L[]
(0,0, k+1,)[e] ifk < j

Z[Oe] = nil otherwise
_(o,i,k=1,j4)[e] ifi <k
Z[©e] = nil otherwise
) f(Zlex], ..., Zlem]) if I[en] # nil forall h
Lif(er,-.. em)] = nil otherwise

Fig. 1. Interpretation of PTL terms

where m € II is a proposition, and v is a dynamic variable or a static variable. In
flei,...,em) and P(ey,...,ey), f is a function and P is a predicate. It is assumed
that the types of the terms are compatible with those of the arguments of f and P.
A formula (term) is called a state formula (term) if it does not contain any temporal
operators (i.e.(),© and prj); otherwise it is a temporal formula (term).

2.2 Semantics

A state s is a pair of assignments (I,,, I;,) where for each variable v € Vdefines s[v] =
I,,[v], and for each proposition 7 € II defines s[r] = I,[n]. I,[v] is a value in D or
nil (undefined), whereas I,[r] € B. An interval 0 =< sg, s1,--- > is a non-empty
(possibly infinite) sequence of states. The length of o, denoted by |o|, is defined as w
if o is infinite; otherwise it is the number of states in o minus one. To have a uniform
notation for both finite and infinite intervals, we will use extended integers as indices.
That is, we consider the set Ny of non-negative integers and w, N,, = Ny U {w}, and
extend the comparison operators, =, <, <, to N, by considering w = w, and for all ¢ €
No,i < w. Moreover, we define < as < —{(w,w)}. With such a notation, o(;,_; (0 <
i = j < |o]) denotes the sub-interval < s;,...,s; > and o(k)(0 < k =< |o]|) denotes
< Sk, ...y 8)o| >. The concatenation of o with another interval (or empty string) o’ is
denoted by o-¢’. To define the semantics of the projection operator we need an auxiliary
operator for intervals. Let 0 =< sg, 1, -- > be an interval and 71, . . ., r;, be integers
(h > 1)suchthat0 <7y <ry <--- <7y < |o|. The projection of o onto 71, ..., 7p is
the interval (called projected interval), o | (r1,...,7h) =< St,, Sty, .- ., Sy, >, Where
t1,...,t; is obtained from 7y, . . ., r;, by deleting all duplicates. For example,

< S0, 51, 52, 53, 54 >l (03072327233) =< 89, 52,53 >

An interpretation for a PTL term or formula is a tuple I = (0,4, k, j), where 0 =<
S0, 81, -+ > is an interval, ¢ and k£ are non-negative integers, and j is an integer or
w, such that i < k < j < |o|. We use (0,1, k,j) to mean that a term or formula is
interpreted over a subinterval o ;. ;) with the current state being sy. For every term e, the
evaluation of e relative to interpretation I = (o, 4, k, j) is defined as I[e], by induction
on the structure of a term, as shown in Fig[Il where v is a variable and eq, . .., e, are
terms.

Asynchronous Communication in MSVL 85

empty def O true more def —empty

halt(p) = O(empty < p) keep(p) = O(=empty — p)
fin(p) = O(empty —p) skip = —empty

zo=e & Ozx=e zi=e © skip Nxo=e
len(0) Lo empty len(n) et Olen(n —1)(n > 0)

Fig. 2. Some derived formulas

The satisfaction relation for formulas |= is inductively defined as follows.

—

T |= mif sg[n] = IF[n] = true.

2. 1): €1 = €9 ifI[el] = I[eg].

3. Z | P(e1,...,en) if P is a primitive predicate other than = and, for all h, 1 <
h < m,Zlep] # nil and P(Zle1],...,Z[em]) = true.

4. T = —pifZ £ p.

50 TEp ApifT EprandZ = po.

6. Z |= o : pif for some interval o’ which has the same length as o, (07,4, k,j) = p
and the only difference between o and ¢’ can be in the values assigned to variable
v at k.

7. T = Qpifk < jand (0,i,k +1,4) = p.

ITkEQpifi< kand (0,i,k—1,7) Ep.

9.7 &= (p1,-..,pm)prj q if there exist integers k = rg < r; < ... < 71 <

j such that (o,4,79,m) E p1, (0,711-1,71-1,71) | p (for 1 < I < m), and

(¢’,0,0,|0’]) = g for one of the following o”:

@) rm <jand o' =al(ro, s Tm) O(rp iy)

(b) 7, = jand o’ =cl(rg,...,r) forsome 0 < h < m.

®©

A formula p is said to be:

satisfied by an interval o, denoted o |= p, if (0, 0,0, |0]) E p.
satis fiable if o = p for some o.

valid, denoted = p, if 0 = p for all .

equivalent to another formula ¢, denoted p = ¢, if = (p < q).

Ll e

_ . f
The abbreviations true, false, A\, — and < are defined as usual. In particular, true &

PV =P and false X P AP for any formula P. Also some derived formulas is

shown in FigDl

3 Modeling, Simulation and Verification Language

The Language MSVL with frame[l1] technique is an executable subset of PTL and
used to model, simulate and verify concurrent systems. The arithmetic expression e and
boolean expression b of MSVL are inductively defined as follows:

ex=n|z|Qzx|OQz|eyoper(op::=+|—|*|/|mod)
bu=true| false|eg =e1|eg <er|—b|byAb

86 D. Mo, X. Wang, and Z. Duan

where n is an integer and x is a variable. The elementary statements in MSVL are de-
fined as follows:

Assignment: r=e

P-I-Assignment: z <= e

Conditional: ~ if bthen p else g f (b—p)A(-b—q)
While: while b do p dof (b Ap)* ANO(empty — —b)
Conjunction: pAgq

Selection: pVq

Next: Op

Always: Op

Termination: empty

Sequential: p;q

Local variable: dx :p

State Frame: Ibf(x)

Interval Frame: frame(x)

Parallel: pllq f p A (g;true) V g A (p;true)
Projection: (p1y---sDm)PTJ q

Await: await(b) def (frame(z1) A -+ A frame(zy)) ADO(empty < b)

where x; € Vj, = {z|z appears in b}

where = denotes a variable, e stands for an arbitrary arithmetic expression, b a boolean
expression, and pi,...,pm, p and g stand for programs of MSVL. The assignment
x =e,x < e, empty, lbf(z), and frame(z) can be regarded as basic statements and
the others composite ones.

The assignment = e means that the value of variable = is equal to the value of
expression e. Positive immediate assignment = < e indicates that the value of x is
equal to the value of e and the assignment flag for variable z, p,, is true. Statements
of if b then p else q and while b do p are the same as that in the conventional im-
perative languages. p A ¢ means that p and ¢ are executed concurrently and share all
the variables during the mutual execution. p V ¢ means p or q are executed. The next
statement (O)p means that p holds at the next state while [Jp means that p holds at all the
states over the whole interval from now. empty is the termination statement meaning
that the current state is the final state of the interval over which the program is exe-
cuted. The sequence statement p; ¢ means that p is executed from the current state to
its termination while ¢ will hold at the final state of p and be executed from that state.
The existential quantification 3z : p intends to hide the variable = within the process
p. Ibz(x) means the value of z in the current state equals to value of z in the previous
state if no assignment to = occurs, while frame(z) indicates that the value of vari-
able x always keeps its old value over an interval if no assignment to x is encountered.
Different from the conjunction statement, the parallel statement allows both the pro-
cesses to specify their own intervals. e.g., len(2)||len(3) holds but len(2) A len(3) is
obviously false. Projection can be thought of as a special parallel computation which
is executed on different time scales. The projection (p1, ..., pm) prj ¢ means that g is
executed in parallel with py, ..., p,, over an interval obtained by taking the endpoints

Asynchronous Communication in MSVL 87

of the intervals over which the p;s are executed. In particular, the sequence of p;s and ¢
may terminate at different time points. Finally, await(b) does not change any variable,
but waits until the condition b becomes true, at which point it terminates.

An MSVL interpreter has been implemented in Microsoft Visual C++. An MSVL
program can be transformed to a logically equivalent conjunction of the two formulaes,
Present and Remains. Present consists of immediate assignments to program vari-
ables, output of program variables, true, false or empty. It is executed at the current
state. The formula Remains is what is executed in the subsequent state (if any). The
interpreter accepts well-formed MSVL programs as its input and interprets them in a
serial states. If a program is reduced to true, it is satisfiable and a model is found,
otherwise it has no model.

The interpreter can work in three modes: modeling, simulation and verification. In
the modeling mode, given the MSVL program p of a system, all execution paths of
the system are given as an Normal Form Graph (NFG)[5] of p. A correct path ends
with a bicyclic node as shown in Fig[3(a)} Under the simulation mode, an execution
path of the system is output according to minimal model semantics[[12] of MSVL. With
the verification mode, given a system model described by an MSVL program, and a
property specified by a PPTL formula, it can automatically be verified whether or not
the system satisfies the property, and the counterexample will be pointed out if the
system does not satisfy it. A satisfiable path ends with a circular node as shown in
Fig[3(b)| while an unsatisfiable path ends with a terminative node as shown in Fig[3(c)}

@) &)
Zalll 3y z < 3 = < 3 -
(a) (b) (©)

Fig. 3. Three types of nodes

4 Asynchronous Communication

4.1 Process

In[10], a process stands for the behavior pattern of an object. A service can be viewed
as a computational entity in[6]]. Similarly, we use a process to describe the manner of an
object. Furthermore, process is a reasonable structure when several MSVL statements
run in parallel and each independently determines the interval length. The introduc-
tion of the process structure simplifies and modularizes programming so that a compli-
cated system can be separated into several processes. Besides, processes are viewed as
communication entities and make the implementation of asynchronous communication
more feasible.

88 D. Mo, X. Wang, and Z. Duan

The process structure consists of two parts: declaration part and calling part. The
declaration part has three components: process name, formal parameters and process
body. The calling part consists of process name and actual parameters.

Let ProcN ame be the name of a process, and P, P;, P, be MSVL statements. z, y
are variables, and ¢, d denotes channel variables. The formal definitions of process are
shown below:

& {Pro Body}

t=e|PLAP | PLVP |OP|OP|32:P| P || P |
if bthen Py else Py | Pi; Py | while bdo P | frame(z) |
send(c, e) | receive(d,y) | empty

proc ProcName(x)

Pro Body def

ProcName(y) def (y/x)Pro BodyprocName

Where proc is a key word, and Proc Body is the main body of a process. The state-
ment ProcName(y) refers to call the process ProcName with the actual parameter
y. The semantic of ProcName(y) is to replace the value of all z’s in the main body
of ProcName by the value of y. The statement send(c,) represents to send a mes-
sage(value of expression e) to channel ¢ while the statement receive(d, y) means to
receive a message from channel d and assign it to the variable y.

4.2 Channel

Channel communication can be synchronous or asynchronous. For synchronous com-
munication, a receiver blocks until a compatible party is ready to send. As to asyn-
chronous communication, a communicating party can start a sending or receiving
activity at any time without consideration of the state of the other party, because there
is a buffer between them.

Before presenting formal definitions, we firstly give informal descriptions of channel
communication. In MSVL, a channel is a bounded First-In-First-Out (FIFO) list where
a message can be inserted at one end and received sequentially at the other. Sending a
message equals appending it to the tail of the channel; receiving a message is to remove
the head of the channel. Only when there is at least one empty place available in the
channel will a sending activity be successful, otherwise waiting for an empty place
or terminating the sending activity may be selected. A similar procedure applies to a
receiving activity. As formal parameters in the declaration of a process can be channel
variables, we can transfer a defined channel variable as the actual parameter to the
formal parameter when calling a process. Then the process can access the channel to
transport messages.

A channel is regarded as a bounded FIFO list and its declaration is given below:

chn c(n) L ¢ —<> Amaze =n
where chn is a key word and chn ¢(n) declares channel ¢ with a capacity of n. Here ¢
is an empty list, and maz. is a static variable that represents the capacity of list c. Some
list operators make it behave like a bounded FIFO.

Any process can access a channel if the channel is visible in its scope. Hence, the
number of processes that a channel can connect is not restricted. Obviously, conflicts

Asynchronous Communication in MSVL 89

may happen when more than one process accesses a same channel at the same time
and therefore some exclusion algorithms are necessary. Unfortunately, the algorithms
based on hardware instructions are not workable since atomic operations are incapable
of being expressed in MSVL, and the algorithms related to software are so complicated
that they will make MSVL programs in confusion and barely intelligible. According to
our experience, attaching exactly one process to each end of a channel will be a wise
choice.

4.3 Communication Commands

For simplicity, we firstly introduce two predicates as follows:

isfull(c) = |c] = max.

isempty(c) le] =0

— isfull(c) evaluates to true if channel c is full, otherwise false.
— isempty(c) evaluates to true if channel ¢ is empty, otherwise false.

Let x be an output expression, and y be an input variable, and ¢ be a channel variable.
Communication commands are defined as follows:
def o
send(c,r) = await(lisfull(c));c:=c < x>

def

receive(c, y) await(lisempty(c)); y := head(c) A ¢ := tail(c)

— The command send(c,x) will block until ¢ has at least one empty place. If ¢ is
not full at current state, x can be inserted into the tail of ¢ at the next state, other-
wise await(lisfull(c)) statement will be executed repeatedly at the next state in
accordance with the semantic of awazt structure.

— If c is not empty at current state, the message at the head of ¢ will be removed and
assigned to the variable y at the next state, otherwise await(lisempty(c)) state-
ment will be executed at the next state.

— The length of intervals of the two commands is 1 at least if the predicates is full
and isempty are false at the initial state. The length, however, may be infinite if
the predicates are always true.

An example is demonstrated to illustrate the use of send and receive.

Example 1. A and B are two processes, and variable c¢ is a channel between them. The
pointer symbols * and & are defined in[[13]. The MSVL program is given in Fig 4l

— state so: A gets ready to append z to the tail of ¢ at the next state. B will execute
await(lisempty(c)) statement again at the next state, since there is no message in
c at the current state.

— state s1: A puts z at the tail of ¢ and then terminates. B prepares to get x at the next
state since is at the head of c at the current state.

— state so: B removes x from c and assigns it to the variable y. Then B terminates.

90 D. Mo, X. Wang, and Z. Duan

proc P(ch) = {existsx : {
frame(z) and x = 1 and send(*xch, x)}
b
proc Q(ch) = {existsy : {
frame(y) andy = 0 and receive(xch,y)}

}7
frame(c) and chn ¢(1) and (P(&c)||Q(&c))

So S1 S2
|]]
P: x=1 x=1
Q: y=0 y=0 y=1
c=<> c=<1> c=<>
W= @B PIF &R 7
ol proc P(ch)={exists x:{frame(x) and x=1 and sendi*ch,x)}}:
progran proc 0(ch)={exists y:{frame(y) and y=0 and receive(*sh,7)}}:f o
« frame(c) and chn c(l) and (P(sc)|I1Q(&c)) n
a 1
* [Node 0 : frame(c) and chn c[1] and(P(&d] || Q(2c)) e
Node 1: [exists x:{empty and *ch=*ch.<x> and frame[x]} || exists y:{[awaitllisempty[*d| 2
Node 2 : frame(c) and exists y:{frame[y] and empty and y=hd(*ch] and *ch=tI[*ch]} @
Node 3 : Hold A

Edge 0: c=nil [Node 0->Node 1)
Edge 1: c=<1> [Node 1->Node 2]
Edge 2: c=<> [Node 2->Node 3]

Fig. 4. Example of send and receive

While modeling a distributed system with timing constraints, some party may have to
time out, which happens frequently in communication, to give up waiting if its request is
not responded for a long time. The commands send and receive do not terminate until
the predicates is full and isempty become false, which implies they are not capable of

handling timeout mechanism in these systems. Hence, another pair of communication
commands is provided:

put(c, x) def if(lisfull(c)) then {c:=c <z >}
else{skip}

get(c,y) def if(lisempty(c)) then {y = head(c) A ¢ := tail(c) }
else{ skip }

We replace the await structure by i f —else structure. If the predicate is full or isempty
is true, skip is executed. This pair of commands enable us to deal with timeouts in
modeling the systems with timing constraints while the commands send and receive
are convenient to describe the other systems. An appropriate selection should be made
according to the features of the system.

Asynchronous Communication in MSVL 91

5 An Application

5.1 An Example of Electronic Contract Signing Protocol

The crux of a commercial transaction is usually an exchange of one item for another.
More specifically, electronic contract signing can be considered as a fair exchange of
digital signatures to the same contract.

An electronic contract signing protocol allows n parties to sign a contract over net-
works. As the protocol relates to all parties’ benefits, some critical properties need to be
ensured, e.g., fairness[14]. Fairness denotes that either all parties obtain a signed con-
tract, or nobody does. A trust third party(77" P) is necessary to guarantee the fairness,
which is proved by Pagnina and Gartner in 1999[15].

The most straightforward contract signing protocol uses a 7T P that first collects
all signatures and then distributes the decision signed or failed. But as the third party
has to be involved in all protocol executions it might easily become a reliability and
performance bottleneck. To avoid such a bottleneck, optimistic protocols which do
not involve a T'T'P in the normal, exception-less case but only involve it in the pres-
ence of faults or in the case of dishonest parties who do not follow the protocol are
researched.

The optimistic multi-party contract signing protocols can run on synchronous or
asynchronous networks. Basically, ”synchronous”[14] means that all parties have syn-
chronized real-time clocks, and that there is a known upper bound on the network de-
lays. The most widely synchronous protocol is described in [16]], which is to be modeled
and verified with extended MSVL below. ”Asynchronous”[[14] means that there are no
assumptions on clock synchronization and network delays. This means more precisely
that a communication allows parties to respond at arbitrary times or infinite network de-
lay. The first asynchronous optimistic multi-party contract signing protocol is described
in[14]. Nevertheless, the protocols for asynchronous networks are more expensive. An
improved version presented in[17]] requires 2 rounds with the premise that the number
of dishonest parties is less than half parties. Unfortunately, it cannot be predicted.

Before we present the protocol, some assumptions are listed as follows:

1. There is an active-time limit ¢, after which all parties are guaranteed that the state
of the transaction is not changed. Requests for exceptions must be made before
an earlier deadline. Hence, all parties have to synchronize the clocks in order to
agree on the active-time limit as well as to compute local timeouts within rounds.
In our model, we assume clocks of all parties are synchronized and each party may
decide independently when to time out, and each step runs within a reasonable time
limit.

2. The channels between the 77" P and all other parties are reliable according to the
conclusion that Pagnina and Gartner drew in 1999, whereas other channels may be
unreliable. Namely, messages are delivered eventually between 77" P and any other
party, but the reliability of message passing cannot be guaranteed in other cases.

3. As already mentioned, 77" P is involved in case of exceptions. Exceptions in the
protocol mainly develop in two forms: receiving invalid signatures and losing

92

D. Mo, X. Wang, and Z. Duan

messages, which respectively are caused by dishonest parties and unreliable net-
works. For the simplicity of modeling, both of the two forms are regarded as some
party’s not sending message to others. Therefore once a message is received, it
always represents a valid signature signed by the sender.

The protocol consists of main protocol and recovery protocol. If all parties are hon-
est and no message is lost, the recovery protocol will not be involved. The details are
described as follows[16]:

The Main Protocol

— The First Round

e P;sends mp; ;) = sign;(1, c) to other parties

e From all message of type my; j, P; tries to compile vector My = (myy y), - - -,
m[lm,]). If this succeeds and each my; ;) is a valid signature, then P; enters the
second round, otherwise P; waits for a message from 77T P.

— The Second Round

e P;sends mpy ;) = sign;i(2, c) to other parties

e From all message of type m3 j, P; tries to compile vector My = (mjz 1), - - -,
m[gm,]). If this succeeds and each m, j is a valid signature, then P; decides
signed and stops, otherwise P; sends 13 ;=sign;(3, M1) to T'T P and waits
for reply.

The Recovery Protocol

— TTP:If TT P receives at least one message m 3 ; which contains a full and consis-

tent M, then TT P sends My, = signu,(My) to all parties, and each P; receiving
this decides signed, otherwise 77 P does not send anything, and each P; waiting
for a message from T'T'P decides failed if none arrives, or signed in case My, is
received, and stops.

Some explanations of the protocol are listed as follows:

1.

The vector My and My, are equivalent, and they both refer to a valid contract.
Assume an honest party get a valid contract. If this happens because of M;y,,, then
TTP has distributed it to all parties, and all honest parties decide signed. Now
assume an honest party V' accepts because of Ms. As My contains all P;’s signature
mi2,q) P; successfully complied M in round 1. If P; received M3 in Round 2 it
decides signed. Otherwise it initiates an recovery, which is necessarily answered by
Myyp, and P; decides signed.

In a synchronous network, each P; waiting for a message from 7T P can correctly
decide failed when times out, however, it would not be effective in a asynchronous
network, as a party could not decide whether a message was not sent, or just not
delivered yet.

Asynchronous Communication in MSVL 93

Fig. 5. Protocol structure for three parties

5.2 Modeling, Simulation and Verification with MSVL

Especially, we assume that three parties plan to sign a contract over a synchronous
network by executing the protocol. 77" P is included to deal with exceptions. We focus
largely on the procedure of the protocol, and all messages are simplified as strings. The
MSVL code of the protocol and the executable file of the interpreter can be downloaded
by visiting http://ictt.xidian.edu.cn/example.zip

An analysis of possible execution paths is made according to the number of parties
who fail to send messages in the first round. Not sending messages is caused by two
reasons mentioned above.

— Situation 1: All parties send messages to others in the first round. There are 2% = 8
cases in all, according to whether the three parties send messages or not in the
second round. In any case, all parties can gain a signed contract eventually.

— Situation 2: Two of them send messages but the third one fails to send in the first
round. Then the third one sends a recovery request to 77" P in the second round,
therefore all parties will get a signed contract broadcasted by T'T'P. There are
C2x2=6 cases in all.

— Situation 3: Only one party sends messages in the first round, nobody can success-
fully compile M; to enter the second round, then all parties will time out in waiting
for T'T'P’s broadcast. Hence, there are C§=3 cases in all.

— Situation 4: All parties fail to send messages in the first round. Nobody can enter
the second round and there is 1 case in all.

There are 18 cases in all according to the analysis above. We run the program with
extended MSVL interpreter under modeling mode and all 18 execution paths are shown
in Figl@l Due to the fact that some paths are too long to completely show in the figure,
we use suspension points to represent part of them. In the modeling mode, the bicyclic
nodes merely represent a successful modeling procedure since some nodes stand for a
successful signing and the others represent a failed signing.

http://ictt.xidian.edu.cn/example.zip

94 D. Mo, X. Wang, and Z. Duan

.~y
=
s
e
Lt
s
.
i
e
[

&
SR

iphpies

5
ok

Fig. 7. Verification result of property(T)

Before verifying the properties fairness and optimism, we need to specify them by
PPTL formulas. Then all works of the verification can be done automatically by means
of model checking with the MSVL interpreter.

— A fairness property

definel : conty ="nil";
define m : conty = "nil”;
define n : conts ="nil”;
define p : cont; =" signed”;
define q: conty =" signed”;
define r : conts = "signed”;

fin((p and q and r) or (I and m and n)) (D

Asynchronous Communication in MSVL 95

i
&
i
i

@ piaigd

Fig. 9. Verification result of an unsatisfied PPLT formula

The proposition cont; = ” signed” means P; has got a valid contract while cont; =
”nil” implies P; has failed to get a valid contract. Therefore the property (1) implies
either all parties obtain a signed contract, or nobody does at final states. All 18 paths
ended with circular nodes in Fig[7lshow that the protocol satisfies the property (I).
An optimism property

define d : opt; = 1;
define e : opty = 1;
define f:opts = 1;
define g :opt =1;

fin((d and e and f) — g) 2

The proposition opt; = 1 means P; has compiled vector M successfully. The
proposition opt = 1 indicates TT'P is not involved. Therefore the property (2)
implies 7T P will not participate if all parties can compile vector M at final states.
Fig[8lindicates the protocol satisfies the property @).

96 D. Mo, X. Wang, and Z. Duan

— An unsatisfiable PPTL formula
fin(p and q and r) (3

The formula (3) means all parties will obtain a valid contract at final states. Apparently,
the formula is unsatisfiable in accordance with the analysis above. Some cases will lead
to a situation that nobody gets a valid contract. Fig [0]shows the protocol does not satisfy
the formula (3)).

6 Conclusion

In this paper, we have discussed the implementation of asynchronous communication
technique in MSVL. The formal definitions of process structure, channel structure and
communication commands are presented. This enables us to model and verify concur-
rent systems with asynchronous communications. In addition, an example of optimistic
multi-party contract signing protocol has been employed to show how our method
works. Its fairness and optimism have been proved satisfiable with extended MSVL.
In contrast, an unsatisfiable property has also been checked and all counterexamples
have been pointed out. In the future, we will further investigate the operational and ax-
iomatic semantics of MSVL with asynchronous communication. In addition, we will
also try to model and verify some larger example to our approach.

Acknowledgment. We would like to thank Miss Qian Ma and Miss Xia Guo for their
useful help. In particular, Guo’s help on MSVL interpreter and Ma’s suggestion on the
verification example are very appreciated.

References

1. Pnueli, A.: The temporal semantics of concurrent programs. In: Proceedings of the 18th IEEE
Symposium Foundations of Computer Science, pp. 46—67 (1997)

2. Karp, Alan, R.: Proving failure-free properties of concurrent systems using temporal logic.
ACM Trans. Program. Lang. Syst. 6, 239-253 (1984)

3. Cau, A., Moszkowski, B., Zedan, H.: Itl and tempura home page on the web,
http://www.cse.dmu.ac.uk/STRL/ITL/

4. Tian, C., Duan, Z.: Propositional projection temporal logic, buchi automata and w-regular ex-
pressions. In: Agrawal, M., Du, D.-Z., Duan, Z., Li, A. (eds.) TAMC 2008. LNCS, vol. 4978,
pp- 47-58. Springer, Heidelberg (2008)

5. Duan, Z., Tian, C.: A unified model checking approach with projection temporal logic. In:
Liu, S., Araki, K. (eds.) ICFEM 2008. LNCS, vol. 5256, pp. 167-186. Springer, Heidelberg
(2008)

6. Solanki, M., Cau, A., Zedan, H.: Asdl: A wide spectrum language for designing web services.
In: WWW, pp. 687-696 (2006)

7. Tang, Z.: Temporal Logic Program Designing and Engineering, vol. 1. Sicence Press, Beijing
(1999)

8. Hale, R.: Programming in Temporal Logic. Cambridge University, Cambridge (1988)

9. Milner, R.: A Calculus of Communicating Systems. Springer, Heidelberg (1980)

http://www.cse.dmu.ac.uk/STRL/ITL/

10.
11.

12.

13.

14.

15.

16.

17.

Asynchronous Communication in MSVL 97

Hoare, C.A.R.: Communicating sequential processes (August 1978)

Duan, Z., Koutny, M.: A framed temporal logic programming language. Journal Computer
Science and Technology 19(3), 341-351 (2004)

Duan, Z., Yang, X., Koutny, M.: Framed temporal logic programming. Science of Computer
Programming 70, 31-61 (2008)

Duan, Z., Wang, X.: Implementing pointer in temporal logic programming languages. In:
Proceedings of Brazilian Symposium on Formal Methods, Natal, Brazil, pp. 171-184 (2006)
Baum-waidner, B., Waidner, M.: Optimistic asynchronous multi-party contract signing
(1998)

Pagnia, H., Gartner, F.C.: On the impossibility of fair exchange without a trusted third party.
Darmstadt University of Technology, Tech. Rep. Technical Report: TUD-BS-1999-02 (1999)
Asokan, N., Baum-waidner, B., Schunter, M., Waidner, M.: Optimistic synchronous multi-
party contract signing (1998)

Baum-Waidner.: Optimistic asynchronous multi-party contract signing with reduced number
of rounds (2001)

Verification of Orchestration Systems
Using Compositional Partial Order Reduction™

Tian Huat Tan?!, Yang Liu?, Jun Sun?, and Jin Song Dong2

1 NUS Graduate School for Integrative Sciences and Engineering
tianhuat@comp.nus.edu.sg
2 School of Computing, National University of Singapore
{liuyang, dongj s}@comp .nus.edu.sg
3 Singapore University of Technology and Design
sunjun@sutd.edu.sg

Abstract. Orc is a computation orchestration language which is designed to
specify computational services, such as distributed communication and data ma-
nipulation, in a concise and elegant way. Four concurrency primitives allow pro-
grammers to orchestrate site calls to achieve a goal, while managing timeouts,
priorities, and failures. To guarantee the correctness of Orc model, effective ver-
ification support is desirable. Orc has a highly concurrent semantics which in-
troduces the problem of state-explosion to search-based verification methods like
model checking. In this paper, we present a new method, called Compositional
Partial Order Reduction (CPOR), which aims to provide greater state-space re-
duction than classic partial order reduction methods in the context of hierarchical
concurrent processes. Evaluation shows that CPOR is more effective in reducing
the state space than classic partial order reduction methods.

1 Introduction

The advent of multi-core and multi-CPU systems has resulted in the widespread use of
concurrent systems. It is not a simple task for programmers to utilize concurrency, as
programmers are often burdened with handling threads and locks explicitly. Processes
can be composed at different levels of granularity, from simple processes to complete
workflows. The Orc calculus [17] is designed to specify orchestrations and wide-area
computations in a concise and structured manner. It has four concurrency combinators,
which can be used to manage timeouts, priorities, and failures effectively [17]. The
standard operational semantics [29] of Orc supports highly concurrent executions of
Orc sub-expressions. Concurrency errors are difficult to discover by testing. Hence, it
is desirable to verify Orc formally. The highly concurrent semantics of Orc can lead to
state space explosion and thus pose a challenge to model checking methods.

In the literature, various state reduction techniques have been proposed to tackle the
state space explosion problem, including on-the-fly verification [[15], symmetry reduc-
tion [7U11], partial order reduction (POR) [8l22/12128/5123]], etc. POR works by ex-
ploiting the independency of concurrently executing transitions in order to reduce the

* This research is supported in part by Research Grant IDD 11100102 of Singapore University of
Technology and Design, IDC and MOE2009-T2-1-072 (Advanced Model Checking Systems).

S. Qin and Z. Qiu (Eds.): ICFEM 2011, LNCS 6991, pp. 98-}14]2011.
© Springer-Verlag Berlin Heidelberg 2011

Verification of Orchestration Systems 99

Q_pe
s o)

Before POR After POR

Fig. 1. Partial Order Reduction Fig. 2. Hierarchical Concurrent Processes

number of possible interleavings. For example, consider the transition system in Fig-
ure [T where ; and ¢, are independent transitions. This means that executing either #17,
or fot; from state s; will always lead to state so. POR will detect such independency,
and choose only #; 7, for execution, thus reducing the explored state space. Classic POR
algorithms, such as [281218122ll5]], work by identifying a subset of outgoing transitions
of a state which are sufficient for verification. In this paper, we denote such subsets as
ample sets — see [I815]].

Many concurrent systems are designed using a top-down architecture, and concur-
rent processes are structured in a hierarchical way. In Figure Bl process P contains
subprocesses P; (i = 1, 2, etc.) that are running concurrently. Moreover, each process
P; also contains subprocesses Pj; (j = 1, 2, etc.) that are running concurrently. We refer
to concurrent processes of this kind as hierarchical concurrent processes (HCP). There
are many real-life examples of HCP. Consider a browser that supports tabbed brows-
ing. Multiple browser windows could be opened at the same time, each browser window
could contain multiple opened tabs, and each opened tab could download several HTML
elements in parallel. Orc processes provide another example of HCP.

Classic POR algorithms, such as [28l12l82215]], assume that local transitions within
the participated processes are dependent. In the context of HCP (Figure 2)), if POR is
applied on process P, transitions within processes P, P2, etc. will be considered as
local transitions, and be assumed to be dependent. Nevertheless, many local transitions
may be independent. In this work, we propose a method called Compositional Partial
Order Reduction (CPOR), which extends POR to the context of HCP. CPOR exploits
the independency within local transitions. It applies POR recursively for the hierarchical
concurrent processes, and several possible ample sets are composed in a bottom-up
manner. In order to apply CPOR to Orc, we first define the HCP structure of an Orc
process. Subsequently, based on the HCP structure, we established some local criteria
that could be easily checked by CPOR algorithm. Experimental results show that CPOR
can greatly reduce the explored state space when verifying Orc models.

Paper Outline. Section[2]introduces Orc language. Section [3|elaborates on CPOR and
shows how it can be applied to Orc models. Sectiond] gives several experimental results.
Section 1 surveys the related work. Finally, Section [discusses the extensibility of
CPOR with possible future work and concludes the paper.

100 T.H. Tan et al.

2 Orchestration Language Orc

2.1 Syntax

Orc is a computation orchestration language in which multiple services are invoked to
achieve a goal while managing time-outs, priorities, and failures of services or commu-
nication. Following is the syntax of Orc:

Variable x ::= variable name
Value m = value
Parameter p = x|m
Expression E ::= M(p) — site call
| E|E — parallel
| E>x>E — sequential
| E<x<E — pruning
| EE — otherwise

Site. The simplest Orc expression is a site call M(p), where M is the service’s name
and p is a list of parameters. Sites are the basic units of Orc language. A site can be an
external service (e.g. Google site) which resides on a different machine. For example,
Google(“Orc”) is an external site call that calls the external service provided by Google
and its response is the search results for keyword “Orc” by the Google search engine.
A site can also be a local service (e.g. plus site) which resides on the same machine. For
example, a site call plus(1, 1) calls the local plus service and its response is the sum-
mation of the two arguments. Since a site in Orc is essentially a service, henceforth, we
would use the term sife and service interchangeably. Some services maintain a state,
those services are denoted as stateful services. An example is Buffer site, which pro-
vides the service of First-In-First-Out (FIFO) queue. We denote the data structure that
constitutes the state of a stateful service as state object of the stateful service. A site call
(e.g. a dequeue operation on Buffer site) for a certain stateful service may change the
corresponding state object (e.g. a FIFO queue). Thus, multiple site calls with the same
arguments to the same stateful service might result in different responses. Services that
do not have any state are called stateless services. An example is plus site, which takes
two numbers as input and returns their summation. Multiple calls with the same argu-
ments to a stateless service will always result in the same response.

Combinators. There are four combinators: parallel, sequential, pruning, and otherwise
combinators. The parallel combinator F | G defines a parallel expression, where ex-
pressions F' and G execute independently, and its published value can be the value
published either by F or by G or both of them. The sequential combinator F > x > G
defines a sequential expression, where each value published by F initiates a separate
execution of G wherein x is bound to the published value. The execution of F'is then
continued in parallel with all these executions of G. The values published by the se-
quential expression are the values published by the executions of G. For example,
(Google(“Orc”) | Yahoo(“Orc”)) > x > Email(addr,x) will call Google and Ya-
hoo sites simultaneously. For each returned value, an instance of x will be bound to it,
and an email will be sent to addr for each instance of x. Thus, up to two emails will
be sent. If x is not used in G, F > G can be used as a shorthand for F > x > G.

Verification of Orchestration Systems 101

The pruning combinator F < x < G defines a pruning expression, where initially F
and G execute in parallel. However, when F needs the value of x, it will be blocked
until G publishes a value to bind x and G terminates immediately after that. For ex-
ample, Email(addr,x) < x < (Google(“Orc”) | Yahoo(“Orc”)) will get the fastest
searching result for the email sending to addr. If x is not used in F, F < G can
be used as a shorthand for F < x < G. The otherwise combinator ' ; G defines
an otherwise expression, where F executes first. The execution of F is replaced by G
if F halts without any published value, otherwise G is ignored. For example, in the
expression (Google(“Orc”) ; Yahoo(“Orc”)) > x > Email(addr,x), Yahoo site is
used as a backup service for searching “Orc” and it will be called only if the site call
Google(“Orc”) halts without any result for “Orc”.

Functional Core Language (Cor). Orc is enhanced with functional core language
(Cor) to support various data types, mathematical operators, conditional expressions,
function calls, etc. Cor structures such as conditional expressions and functions are
translated into site calls and four combinators [17]. For example, conditional expres-
sion if E then F else G, where E, F, and G are Orc expressions would be translated into
expression (if (b) > F | if (~ b) > G) < b < E before evaluation.

Example - Metronome. Timer is explicitly supported in Orc by introducing time-
related sites that delay a given amount of time. One of such sites is Rtimer. For exam-
ple, Rtimer (5000) > “Orc” will publish “Orc” at exactly 5 seconds. Functional core
(Cor) defines functions using the keyword def. Following is a function that defines a
metronome [[17], which will publish a signal value every ¢ seconds. signal is a value in
Orc that carries no information. Note that the function is defined recursively.

def metronome(t) = (signal | Rtimer(t) > metronome(t))

The following example publishes “tick’ once per second, and publishes “tock’ once per
second after an initial half-second delay.

(metronome(1000) > “tick”) | (Rtimer(500) >> metronome(1000) > “tock”)

Thus the publications are “tick tock tick - - -” where “tick” and “tock” alternate each
other. One of the properties that we are interested is whether the system could publish
two consecutive “tick”s or two consecutive “tock”s which is an undesirable situation.
In order to easily assert a global property that holds throughout the execution of an Orc
program, we extend Orc with auxiliary variables. The value of an auxiliary variable
could be accessed and updated throughout the Orc program. Henceforth, we will sim-
ply refer to the extended auxiliary variables as global variables. A global variable is
declared with the keyword globalvar and a special site, $GUpdate, is used to update a
global variable. We augment the metronome example with a global variable tickNum,
which is initialized to zero. tickNum is increased by one when a “tick” is published, and
is decreased by one when a “tock” is published.

globalvar tickNum = 0

def metronome(t) = (signal | Rtimer(t) > metronome(t))

(metronome(1000) > $GUpdate({tickNum = tickNum + 1}) > “tick”)

| (Rtimer(500) > metronome(1000) > $GUpdate({tickNum = tickNum — 1})
> “tock™)

102 T.H. Tan et al.

With this, we are allowed to verify whether the system could publish two consecutive
“tick”’s or two consecutive “tock”s by checking the temporal property such that whether
the system is able to reach an undesirable state that satisfying the condition (tickNum <
0V tickNum > 1).

2.2 Semantics

This section presents the semantic model of Orc based on Label Transition System
(LTS). In the following, we introduce some definitions required in the semantic model.

Definition 1 (System Configuration). A system configuration contains two compo-
nents (Proc,Val), where Proc is a Orc expression, and Val is a (partial) variable valua-
tion function, which maps the variables to their values.

A variable in the system could be an Orc’s variable, or the global variable which is
introduced for capturing global properties. The value of a variable could be a primitive
value, a reference to a site, or a state object. The three primitive types supported by
Orc are boolean, integer, and string. All variables are assumed to have finite domain.
Two configurations are equivalent iff they have the same process expression Proc and
same valuation function Val. Proc component of system configuration is assumed to
have finitely many values.

Definition 2 (System Model). A system model is a 3-tuple S = (Var, initg, P), where
Var is a finite set of global variables, initg is the initial (partial) variable valuation
function and P is the Orc expression.

Definition 3 (System Action). A system action contains four components (Event, Time,
EnableSiteType, EnableSiteld). Event is either publication event, written \m or internal
event, written T. EnableSiteType, EnableSiteld are the type and unique identity of the
site that initiates the system action. Time is the total delay time in system configuration
before the system action is triggered.

Every system action is initiated by a site call, and we extend the system action defined
in [29] with two additional components, EnableSiteType and EnableSiteld, to provide
information for CPOR. A publication event !m communicates with the environment
with value m, while an internal event 7 is invisible to the environment. There are three
groups of site calls. The first two groups are site calls for stateless and stateful services
respectively. And the third are the site calls for $GUpdate which update global vari-
ables. These three groups are denoted as stateless, stateful, and GUpdate respectively,
and those are the possible values for EnableSiteType. Every site in the system model is
assigned a unique identity which ranges over non-negative integer value. Discrete time
semantics [29] is assumed in the system. 7ime ranges over non-negative integer value
and is assumed to have finite domains.

Definition 4 (Labeled Transition System (LTS)). Given a model S = (Var, initg, P),
let X denote the set of system actions in P. The LTS corresponding to S is a 3-tuple
(C,init,—), where C is the set of all configurations, init € C is the initial system
configuration (P, initg), and — C C x X x C is a labeled transition relation, and its
definition is according to the operational semantics of Orc [29)].

Verification of Orchestration Systems 103

To improve readability, we write ¢ % ¢’ for (c,a,c’) € —. An action a € X is enabled
in a configuration ¢ € C, denoted as ¢ £, iff there exists a configuration ¢ € C, such
that ¢ % ¢’. An action a € ¥ is disabled in a configuration ¢ = (P, V), where ¢ € C, iff
the action a is not enabled in the configuration c, but it is enabled in some configurations
(P, V"), where V' # V. Act(c) is used to denote the set of enabled actions of a configu-
ration ¢ € C, formally, for any ¢ € C, Act(c) = {a € ¥ | ¢ %}. Enable(c, a) is used to
denote the set of reachable configurations through an action a € X’ from a configuration
¢ € C, thatis, forany ¢ € C and a € ¥, Enable(c,a) = {c' € C | ¢ % ¢'}. Enable(c)
is used to denote the set of reachable configurations from a configuration ¢ € C, that is,
for any ¢ € C, Enable(c) = {c' € Enable(c,a) | a € X'}. Ample(c) is used to denote
the ample set (refer to Section B)) of a configuration ¢ € C. AmpleAct(c) is defined as
the set of actions that caused a configuration ¢ € C transit into the configurations in
Ample(c), that is, for any ¢ € C, AmpleAct(c) = {a € X | ¢ % ¢,/ € Ample(c)}.
PAct(c) is used to denote the set of enabled and disabled actions of a configuration c,
and Act(c) C PAct(c). We use TS to represent the original LTS before POR is applied
and TS to represent the reduced LTS after POR is applied. TS, is used to represent
the LTS (before any reduction) that starts from ¢, where c is a configuration in 7S. An
execution fragment | = co <> ¢1 <3 ... of LTS is an alternating sequence of configu-
rations and actions. A finite execution fragment is an execution fragment ending with a
configuration.

We are interested in checking the system against two kinds of properties. The first
kind is deadlock-freeness, which is to check whether there does not exist a configura-
tion ¢ € Cin TS such that Enable(c) = &. The second kind is temporal properties that
are expressible with LTL without Next Operator (LTL-X) [5]]. For any LTL-X formula
¢, prop(¢) denotes the set of atomic propositions used in ¢. In the metronome example
which augmented with a global variable tickNum, prop(¢)={ (tickNum < 0), (tickNum >
1)}. An action a € X' is ¢-invisible iff the action does not change the values of propo-
sitions in prop(¢) for all ¢ € C in TS.

2.3 Hierarchical Concurrent Processes (HCP)

The general structure of a hierarchical concurrent process P is shown graphically using
a tree structure in Figure [3l Henceforth, we denote such a graph as a HCP graph, or
simply HCP if it does not lead to ambiguity.

Level 0
Level 1

Level 2

Level n-1

Leveln

Fig. 3. The general structure of HCP

104 T.H. Tan et al.

Figure 3] shows that process Py contains subprocesses Py, P, etc that are running
concurrently. Process P; in turn contains subprocesses P11, P12, etc that are running
concurrently. This goes repeatedly until reaching a process P, which has no subpro-
cesses. Each process P in the hierarchy will have its associated level, starting from level
0. A process without any subprocess (e.g. process P,) is denoted as terminal process,
otherwise the process is denoted as non-terminal process. Furthermore, process Py at
level 0 is denoted as global process, while processes at level i, where i > 0, are denoted
as local processes. The parent process of a local process P’ is a unique process P such
that there is a directed edge from P to P’ in the HCP graph. When P is the parent process
of P/, P’ is called the child process of P. Ancestor processes of a local process P’ are
the processes in the path from global process to P’. Descendant processes of process P
are those local processes that have P as an ancestor process.

An Orc expression P could be viewed as a process that is composed by HCP. This
could be formalized by constructing the HCP according to syntax of P, assigning pro-
cess identity to each sub-expression of P, and defining how the defined processes evolve
during the execution of expression P. In the following, we illustrate this in detail. An
Orc expression can be either a site call or one of the four combinators and their cor-
responding HCPs are shown in Figure @l A site call is a terminal process node, while
each of the combinators has either one or two child processes according to their seman-
tics (refer to Section 2), and the HCPs of respective child process nodes are defined
recursively. We denote expressions A and B as LHS process and RHS process for each
combinators in Figure[For example, a pruning combinator (A < x < B) contains two
child nodes because its LHS process and RHS process could be executed concurrently.
Each of the process nodes in HCP is identified by a unique process identity (pid), and
node values in HCP are prefixed with their pid (e.g. po, p1, etc.). In Figure[3] an expres-
sion (S1 < S2) | (S3 < S4), where S1, Sa, S3, and Sy are site calls, could be viewed as
a process composed by HCP of three levels.

(Poi(S1<<8,)1(S5<<8S4)
(PoA1B) (PoA <x<B)(PoA>x>BYPoA B) Pi:S:i<< 8,0P2Ss<< 8y

Site Call Parallel Pruning Sequential Otherwise (S1 << S2)1(8S3 << S4)

Fig. 4. HCP of general Orc Expressions Fig. 5. An example

Consider a transition (P, V) % (P', V'), where a is some action. We abuse the no-
tation by using P and P’ to denote the HCPs before and after the transition. In fact, P’
could have different tree structures from P, and processes could be added or deleted in
P’. In order to have a clear relation of processes between P and P/, we define the relation
of processes between P and P’ over each rule of the operational semantics of Orc [27],
some of which are presented in Figure [6] for illustration purpose. There are two HCPs
under each rule. HCPs on the left and right are the HCPs before and after triggering
the action initiated by respective rules. Two process nodes on different HCPs belong to
the same process if they have the same pid value, and an arrow is used to relate them.
Processes that could only be found in HCP on the right or left are the processes that
are newly added or deleted respectively. In SEQ1YV, the transition of f to f’ produces an

Verification of Orchestration Systems 105

SYM1 SEQ1V ASYM2V DEF

Po:f'lg G’uf>x>®@2f>x>g\[m/xg> G’of<x<®<P| m/x]f)(Po (p) ><P1 [p/x].)
@@@@

Fig. 6. Relation of Processes between P and P’

A = (userdb.put(“userl”) | userdb.put(“user2”)) < userdb < Buffer()
B = (flightdb.put(“CX510”) | flightdb.put(“CX511”)) < flightdb < Buffer()

Fig. 7. Execution of Orc process P = A | B

output value m, and notation [m/x].g is used to denote that all the instances of variable
x in g are replaced with value m.

A site S is private in P1[P], if the reference of site S could not be accessed by all
processes other than process P; and its descendant processes under HCP graph of global
process P. Otherwise, site S is shared in process P1[P]. A site S is permanently private
in P1]c], if for any configuration ¢’ = (P’, V') that is reachable by c, if P’ has P; as its
descendant process, site S must be private in process P1[P’].

The example in Figure [7] shows an Orc process P = A | B. Variables userdb and
Sflightdb will be initialized to different instances of site Buffer, which provides the ser-
vice of FIFO queue. In process A, two string values userl and user2 are enqueued in
the buffer referenced by userdb concurrently. Buffer site that is referenced by userdb
is private in A[P], since userdb could only be accessed by process A. Now consider
at some level j of HCP graph of global process P, where j > 1, we have processes
P;, = userdb.put(“userl”) and P;, = userdb.put(“user2”). Buffer site that is refer-
enced by userdb is shared in P;, [P], since userdb could be accessed by P;, which is not
a descendant process of P}, .

3 Compositional Partial Order Reduction (CPOR)

The aim of Partial Order Reduction (POR) is to reduce the number of possible orderings
of transitions by fixing the order of independent transitions as shown in Figure[Il The
notion of indepedency plays a central role in POR, which is defined below by follow-
ing [13].

Definition 5 (Independency). Two actions a; and as in an LTS are independent if for
any configuration c such that ay, as € Act(c):

1. as € Act(c1) where c¢1 € Enable(c,a1) and a1 € Act(co) where co € Enable(c,as),
2. Starting from c, any configuration reachable by executing a; followed by as, can also
be reached by executing as followed by a;.

Two actions are dependent iff they are not independent.

Given a configuration, an ample set is a subset of outgoing transitions of the configura-
tion which are sufficient for verification, and it is formally defined as follow:

106 T.H. Tan et al.

Definition 6 (Ample Set). Given an LTL-X property ¢, and a configuration ¢ € C in
TS, an ample set is a subset of the enable set which must satisfy the following condi-
tions [J)]:

(A1) Nonemptiness condition: Ample(c) = & iff Enable(c) = @.

(A2) Dependency condition: Let co <> ¢1 3 ... % ¢, 5 t be a finite execution frag-
ment in TS. If a depends on some actions in AmpleAct(c), then a; € AmpleAct(c) for
some 0 <i<n.

(A3) Stutter condition: If Ample(c) # Enable(c), then any oo € AmpleAct(c) is ¢-
invisible. .

(A4) Strong Cycle condition: Any cycle in TS contains at least one configuration ¢ with
Ample(c)=Enable(c).

To be specific, reduced LTS generated by the ample set approach needs to satisfy con-
ditions A1 to A4 in order to preserve the checking of LTL-X properties. However, for
the checking of deadlock-freeness, only conditions Al and A2 are needed [12]. Hence-
forth, our discussion will be focused on the checking of LTL-X property, but the reader
could adjust accordingly for the checking of deadlock-freeness.

Conditions Al, A3, and A4 are relatively easy to check, while condition A2 is the
most challenging condition. It is known that checking condition A2 is equivalent to
checking the reachablity of a condition in the full transition system TS [§]]. It is desirable
that we could have an alternative condition A2’ that only imposes requirements on the
current configuration instead of all traces in TS, and satisfaction of condition A2’ would
guarantee the satisfaction of condition A2. Given a configuration ¢, = (P, V,), and P,
as a descendant process of P,, with associated configuration ¢; = (Py, V), we define a
condition A2’ that based solely on ¢, and its soundness will be proved in Section[3.3]

(A2’)Local Criteria of A2. For all configurations ¢, € Ample(cy) and ¢, = (pa, va)
the following two conditions must be satisfied:

(1) The enable site for the action a that enable ¢, must be either stateless site, or stateful
site private in p,[P,];

(2) p, is not a descendant process of the RHS process of some pruning combinators or
the LHS process of some sequential combinators.

Notice that we define an ample set as a set of enabled configurations rather than a set of
enabled actions like [5]]. The reason is due to in references like [5]], action-deterministic
system is assumed. This entails that for any configuration ¢ € C and any actiona € Y, ¢
has at most one outgoing transition with action a, formally, ¢ L dande S ¢ implies
¢’ = ¢”. Therefore, the enabled configurations could be deduced by the enabled actions.
Nonetheless, an Orc system is not action-deterministic, the main reason is because some
events in Orc are internal events that are invisible to the environment. By defining ample
set as a set of configurations, with their associated enabled actions, the requirement of
action-deterministic system is no longer needed.

3.1 Classic POR and CPOR

Classic POR methods assume that local transitions of a process are dependent, and
in the context of HCP, it means that actions within individual processes from level 1

Verification of Orchestration Systems 107

No POR Classic POR CPOR
P 1P, D Pl P, (rir)
N 12

CVIQ Y= Y4 x ! Y i ¥
(0 <91P[@<<3)1P.] (1121 P:(P1](stop << e(w <3 1P <<3)] Pziﬂ 12)1 Pz)@ «<3) P2>

Fig. 8. LTS of Orc Process P = (P1 | P2),P1 = ((1]2) < 3),P2 = (4 < 6)

onwards are simply assumed to be dependent. In Figure [§] three LTSs of the process
P are given. No POR shows the set of all initial transitions of process P; classic POR
shows how the state-space of a parallel composition can be reduced when its component
processes are independent; and CPOR reduces the initial actions further by examining
internal process structure. For simplicity, system configuration is represented only by
process expression. When no POR is applied, all interleavings of transitions are con-
sidered, and there are five branches after the initial state. When the classic POR is
applied, since P; and P2 are active processes, assume that it checks process P; first.
All transitions of P; are assumed to be dependent by the classic POR. For this reason
the resulting ample set of Pis {((1 <« 3) | P2),((2 < 3) | P2),((1 | 2) | P2)},
which is a valid ample set after checking for conditions A1-A4. Therefore, there are
three branches from initial state when classic POR is applied. Different from clas-
sic POR, when CPOR is applied, POR is again applied to process (1 | 2). We de-
fine Amples(P) as a set of ample sets of process P that satisfy conditions Al and A2,
but yet to be checked for conditions A3 and A4. Amples((1 | 2)) = {{1},{2}} and
Amples(P1) is Amples((1 | 2)) after restructuring by the semantics of Py, which is
{{1 « 3},{2 <« 3}}. Amples(P) is Amples(Py) after restructuring by the semantics of
P, whichis {{1 < 3| P2},{2 < 3 | P2}}. Each ample set in Amples(P) will then be
checked for conditions A3 and A4, and both ample sets turn up to be valid, therefore
the ample set {1 < 3 | P2} is chosen nondeterministically to be the returned value.
Thus there is only a single branch after the initial state when CPOR is applied. There
are a total of 31, 14 and 5 states for LTS of process P in the situations where no POR,
classic POR and CPOR are applied respectively.

3.2 CPOR Algorithm

In this section, we discuss the procedures for CPOR as given in Algorithm [l CAmple
returns an ample set which is a subset of enabled configurations from the configura-
tion ¢ = (P,V), and Visited is the stack of previously visited configurations. Each
configuration ¢, in the ample set, where ¢, = (Proc, Val), is associated with an ac-
tion a, = (Event, Time, EnableSiteType, EnableSiteld), which caused the transition
from ¢ to ¢,, that is ¢ La, c,. Henceforth, we use the dot-notation such as c¢,.Proc,
cq.Event, etc to denote the component values of ¢, as well as the component values
of its associated action a,. P.Amples (line 2) is a set that stores ample set candidates
that satisfy conditions Al and A2, but yet to check for conditions A3 and A4. Proce-
dure enableSubProcs(P) (line 3) returns the set of enabled child processes according
to HCP graph of Orc expressions P as shown in Figure @] with an exception that for
sequential process Ps = A > x > B, it returns an empty set {} instead of {A}, and
for pruning process P, = A < x < B, it returns {A} instead of {A, B}. This exception

108 T.H. Tan et al.

is applied in order to satisfy the condition A2’(2). Procedure fillAmpleRec(P, V) (line
17) retrieves the ample set candidates under valuation V and assigns it to P.Amples.
In line 18, Enable(c) where ¢ = (P, V) gives the set of all enabled configurations
from the configuration c¢. Procedure checkA2Local(config) checks whether configu-
ration config satisfies A2’(1). Procedure isPrivate (line 32) checks whether the site
with config.EnableSiteld as unique identity is private in Proc[Pg] where Proc is the
process component of config and Pg is the argument P of procedure CAmple pro-
vided by user, which is the global process that has Proc as descendant process. The
checking is done by syntax analysis. In Orc, P is a terminal process (line 20) iff it
is a site call. Procedure composeAmples(P, sP,V) (line 26) combines sP.Amples back
into P.Amples under valuation V. Procedure reformAmples (sP.Amples, P) (line 27) re-
structures configurations within sp.Amples by operational semantics of Orc. For ex-
ample, consider P = (1 +x < x < 2), and sP = 2. After making a transition,
sP.Amples = {{c}}, where c is the configuration (stop, @) with c.Event =12 . After
restructuring by reformAmples(sP.Amples, P), ¢ becomes (1 + 2, &), and c.Event = T,
according to rule ASYM2V as stated below.
(2,9) Z (stop, @)
14+x<x<2,2)>(1+2,2)

When P = sP, reformAmples(sP.Amples, P) will simply return sP.Amples. Subse-
quently, ample sets that are empty sets are filtered away (line 28). We continue on
the discussion of procedure CAmple. To analyze whether an ample set ample is valid,
the algorithm checks whether all configurations within satisfy conditions A3 and A4
(line 9, 10). If it turns out to be true, a valid ample set is found, and it will be returned
immediately (line 14, 15). If no valid ample set has been found in line 3-15, all the
enabled configurations from current configuration ¢ = (P, V) will be returned (line
16). Regarding checking of condition A3 (line 9), there are two kind of actions that
might not be ¢-invisible, which are actions that contain publication events or actions
that involved the update of global variables. Consider the metronome example, if we
are checking property like whether !tick event can be executed infinitely often, an ac-
tion a with a.Event =!tick is not ¢-invisible. Another example is when we are checking
whether fickNum < 0 is true in all situations, where tickNum is a global variable, an
action a with a.EnableSiteType = GUpdate is not ¢-invisible.

[ASYM2V |

3.3 Soundness

Lemma 1. Given any two actions a; and as in the system, and let s1 and so be the
enable sites of actions ay and as respectively. If sites s1 and so are not descendant
processes of the RHS process of some pruning combinators and state objects of sites s1
and sy are disjoint, then action a; is independent of action as.

Proof. Actions a; and a3 are dependent only when (a) action a; could disable ac-
tion az or vice versa or (b) starting from the same configuration, transitions ajas and
asay could result in different configurations. Situation (a) could happen if site s; could
possibly modify the state object of site so or vice versa, or when sites s; and s, are the
descendant processes of the RHS process of some pruning combinators. For the latter

Verification of Orchestration Systems 109

1 procedure CAmple(P, V, Visited)

2 P.Amples := @,

3 foreach sP € enableSubProcs(P) do // B2’ (2)
4 fillAmpleRec(sP,V);

5 composeAmples(P,sP,V);

6 foreach ample € P.Amples do

7 validAmple := true;

8 foreach config € ample do

9 if — config satisfies A3 // A3
10 V config € Visited // A4
11 then

12 validAmple = false;

13 break;

14 if validAmple then

15 return ample;

16 return Enable((P,V));

17 procedure fillAmpleRec(P,V)
18 P.Amples := {{config : Enable((P,V))

19 | checkA2Local(config)}}; // A2 (1)
20 if P is terminal process then

21 composeAmples(P,P,V);

22 else

23 foreach sP € enableSubProcs(P) do

24 fillAmpleRec(sP, V);

25 composeAmples(P, sP,V);

26 procedure composeAmples(P,sP,V)
27 P.Amples := P.Amples U reformAmples(sP.Amples, P);
28 P.Amples := P.Amples \ {@}; // Al

29 procedure checkA2Local(config)

30 return(config.EnableSiteType is stateless V
31 config.EnableSiteType is stateful N\
32 isPrivate(config.EnableSiteld)) ;

Algorithm 1: CAmple

case, consider x < x < (s1 | s2), if site s; published a value, site so will be disabled
immediately. Nevertheless, this case is ruled out by the assumption. Condition (b) could
happen when sites s; and s contain a common state object which they may modify and
depend on. Therefore, conditions (a) and (b) are the results of having a common state
object between sites s; and so. This implies that if sites s; and sy have disjoint state
objects, actions a; and a are independent to each other. Uend.

110 T.H. Tan et al.

Lemma 2. Given a configuration ¢ = (P, V), and process Py as a descendant process
of P. If Py is not a descendant process of the LHS process of some sequential combina-
tors, then a site S that is private in P1[P), is permanently private in P1c] as well.

Proof. We prove by inspecting each rule in the operational semantics of Orc [29]]. Only
rule SEQ1V of operational semantics of Orc is possible to transfer the site reference
from a process p to other processes, while retaining process p. Consider HCPs under
rule SEQ1V in Figurelf] a site S that is private in P1[Po] may not be private in P1[P2],
since P3 might have the access to the reference of site S. Therefore, if we exclude
this situation by assuming P; is not a descendant process of the LHS process of some
sequential combinators, we prove the lemma. O end.

We define several notions here. Given a configuration ¢, = (P, V,), and P, as a descen-
dant process of P,, with associated configuration ¢y = (Pq, V). (ch is defined as the set
of configurations reachable by ¢, in LTS; P, is definedas {P | ¢ = (P,V) Ac € C. };
HCP(P,,) is defined as the HCPs for each global process in P, ; H,, is defined as the
union of processes within each HCP in HCP(P,,); H.,[P,] is the set of processes that
contain process P, and its corresponding descendant processes in respective HCPs in

HCP(P,,), and H,, [P4] C HL,.

8

Lemma 3. If an action a € Act(c,) satisfies A2’ then the action is independent of any
action b € Act(c’), where ¢’ = (P',V'), such that P' = H. /H., [P}, and V' is any
valuation.

Proof. Assume an action a € Act(cy) satisfies A2’, and assume the action is dependent
to an action b € Act(c¢’). Let sites s, and s, be the enable sites of actions a and b
respectively. By A2°(1), site s, is a stateless site or stateful site that is private in p,[Pg].
Site s, could not be a stateless site since a stateless site does not have a state object,
and thus action a is trivially independent to any actions in the system by Lemma 1
and A2’(2). Therefore, site s, is a stateful site that is private in p,[P,]. By Lemma 2
and A2’(2), site s, is also permanently private in p,[c,| . By definition, state objects of
site s, and s, are disjoint. By Lemma 1 and A2’(2), actions a and b are independent, a
contradiction. O end.

Theorem 1. If any action a € Act(cy) satisfies A2’, then AmpleAct(c,) = Act(c,q) sat-
isfies A2 for all traces in TS,,.

Proof. Assume any action a € Act(c,) satisfies A2’, and AmpleAct(c,) = Act(c,) does

not satisfies A2 for some traces in 7S,,. This means that there exists a finite execution

a ac an Ap+1 .
fragment] = ¢ = ¢; = ... =% ¢, 5 ... ,where actions ay,...,a, € Act(cs)

and action a,+1 depends on some actions in AmpleAct(c,) = Act(cq). Since Lemma 3
holds, action a,11 must be from PAct(c4)/Act(c,), we denote the enable site of action
ap+1 as S,+1. Since site 5,41 is disabled initially in ¢y, it means that it is enabled later
by a site call from a process p’ € H, /H., [P,]. For sites in process Py, site calls from a
process p’ € H., /H, [P4] could only enable the sites that are shared in p4[Py], where P,
is the global process of p’. We denote the set of state objects of the sites that are shared
in pd[Pig] as Dypare, and state object of S,,11 is in Dyjge. On the other hand, by Lemma
2 and A2’(2), any action a € Act(c,) is enabled by a site that is permanently private in

Verification of Orchestration Systems 111

Dalcg]. By definition, state object of the enable site of any action a € Act(cs) must not
be found in Dy,.. Therefore, action a,-1 is independent to all actions in Act(cy) by
Lemma 1 and A2’(2), a contradiction. O end.

Theorem 2. Algorithm CAmple is sound.

Proof. To show the soundness of the algorithm, we need to show that the returned am-
ple set satisfies conditions A1-A4. Checking of condition A1l is done at line 28. Con-
ditions A3 and A4 are checked at the global process level (line 9, 10) at CAmple since
they are only concerned with the property of global process configurations, i.e. whether
their actions are ¢-invisible and whether they have been visited before. By Theorem 1,
satisfaction of condition A2’ leads to satisfaction of condition A2. Condition A2’(1)
is checked at line 19. Condition A2’(2) is guaranteed by constraining the procedure
enableSubProcs(P) (line 3) not to return LHS process of a sequential process and RHS
process of a pruning process. O end.

4 Evaluation

Our approach has been realized in the ORC Module of Process Analysis Toolkit (PAT)
[1]]. PAT is designed for systematic validation of distributed/concurrent systems using
state-of-the-art model checking techniques [25l26]]. It can be considered as a frame-
work for manufacturing model-checkers. The data are obtained with Intel Core 2 Quad
9550 CPU at 2.83GHz and 4GB RAM. ORC module supports verification of deadlock-
freeness and Linear Temporal Logic (LTL) [24] property base on [21]]. In Table [[I (A),
three situations are compared: CPOR is the scenario where Compositional POR ap-
proach as described in Section [3is applied; POR is the scenario where the classic ap-
proach of POR that only considered the concurrency of processes at level 1 is applied;
No POR/CPOR is the scenario where neither POR nor CPOR is applied. In the table, v/
and X means the property is satisfied and violated respectively. The results are omitted
(shown as “-”) for states and times, if it takes more than eight hours for verification.

Model Concurrent Quicksort is a variant of the classic quicksort algorithm and em-
phasizes its concurrent perspective, as described in [[18]. For model Concurrent Quick-
sort, size denotes the number of elements in the array to be sorted. Property (1.1) is used
to verify whether elements in the array will eventually be sorted, and once sorted, it will
remain sorted. Model Readers-Writers Problem is a famous computer science problem
as described in [9], for which size denotes the number of readers. Property (2.1) ver-
ifies whether the model is possible to reach a state that violates the mutual exclusion
condition. Model Auction Management is the case study in [2] which includes the use
of external services. Please refer to [27]] for the details of modeling external services in
our work. Property (3.1) is used to verify that if an item has a bid on it, it will eventu-
ally be sold; Property (3.2) is used to verify that every item is always sold to a unique
winner. Part (B) is the comparison of the effectiveness of our model checker for Orc
and that of the model checker Maude [3l4]. Figures for number of rewrites and time
usage for Maude model checker are from [4], which was run under 2.0GHz dual-core
node with 4GB of memory. The experiments show that CPOR provides greater-scale
reduction than classic POR for HCPs. In addition, our implementation with CPOR is
more efficient than Maude [3/4].

112 T.H. Tan et al.
Table 1. Performance evaluation on model checking Orc’s model

(A) Comparing difterence POR methods

States Time(s)

Model Property Size = CPOR POR No POR/CPOR CPOR POR No POR/CPOR
Concurrent 2 v 58 1532 10594 0.08 1.13 5
Quicksort (1.1) 3 v 69 3611 36794 0.11 8.48 74

5 v 237 - - 0.68 - -

. 2 X 106 1645 7620 0.07 1.12 4
Rea‘;fgsl;g;:ters @D 3 x 12 18247 142540 0.11 14.86 101
10 X 472 - - 0.49 - -

Auction 3.1) N.A. v 869 - - 0.6 - -
Management 3.2) N.A. v 883 - - 0.75 - -

(B) Comparing Our Model Checker and Maude
States/Rewrites Time(s)

Model Property Our Maude Our Maude

(3.1) v 869 7052663 0.6 144

Auction Management 5)} ¢e3 g613539 075 19.8

5 Related Work

This work is related to research on applying POR to hierarchical concurrent systems.
Lang et al. [20], proposed a variant of POR using compositional confluence detec-
tion. The proposed method works by analyzing the transitions of the individual process
graphs as well as the synchronization structure to identify the confluent transitions in
the system graph. Transitions within the individual process graphs (at level 1) are as-
sumed to be dependent, thus all possible transitions will be generated for individual
process graphs. While in our work, we further exploit the independency within each
process recursively. Basten et al. [6]], proposed an approach to enhance POR via pro-
cess clustering. The proposed method combines processes (at level 1) in clusters, and
applies partial order reduction at proper cluster-level to achieve more reduction. Krimm
et al. [19], proposed an approach to compose the processes (at level 1) of an asyn-
chronous communicating system incrementally, and at the same time apply POR for
the generated LTS. Both approaches of [6] and [19] have the assumption that the local
transitions of each process (at level 1) are dependent. To the best of the author’s knowl-
edge, there is no existing work that applies POR in the context for HCP. The reason
for not including orthogonal approaches such as [20/6/19] for comparisons in Sectiond]
is because they optimized POR by restructuring or leveraging the information of pro-
cesses at level 1, while CPOR is aimed to extend POR for HCP. This means that they
could be similarly used to optimize CPOR, in the same way they are used to optimize
classic POR.

This work is also related to research on verifying Orc. Liu et al. [10], proposed an
approach to translate the Orc language to Timed Automata, and use model checker
like UPPAAL for verification. However, no reduction is considered. Alturki et al. [2.3]],
proposed an approach to translate the Orc language to rewriting logic for verification.
An operational semantics of Orc in rewriting logic is defined, which is proved to be

Verification of Orchestration Systems 113

semantically equivalent to the operational semantics of Orc. To make the formal anal-
ysis more efficient, a reduction semantics of Orc in rewriting logic is further defined,
which is proved to be semantically equivalent to the operational semantics of Orc in
rewriting logic. We have compared the efficiency of our model checker with theirs in
Sectiondl

6 Conclusion

In this paper, we proposed a new method, called Compositional Partial Order Reduction
(CPOR), which aims to provide the reduction with a greater scale than current partial
order reduction methods in the context of hierarchical concurrent processes. It has been
used in model checking Orc programs. Experiment results show that CPOR provide
significant state-reduction for Orc programs. There are many languages other than Orc
that could have the structure of HCP such as process algebra languages (e.g. CSP [[14])
or service orchestration languages (e.g. BPEL [[16]]). Similar to classic POR method, the
main challenge of applying CPOR for a language is to find an appropriate local criteria
of A2 for that language. In addition, Algorithm [I in the paper needs to be adjusted
according to the semantics of the specific language. As for future works, we would
further evaluate CPOR by applying it for verifying programs in other languages.

References

1. PAT: Process Analysis Toolkit, http: //www.comp.nus.edu.sg/~pat/research/

2. AlTurki, M., Meseguer, J.: Real-time rewriting semantics of orc. In: PPDP, pp. 131-142
(2007)

3. AlTurki, M., Meseguer, J.: Reduction semantics and formal analysis of orc programs. Electr.
Notes Theor. Comput. Sci. 200(3), 25-41 (2008)

4. AlTurki, M., Meseguer, J.: Dist-Orc: A Rewriting-based Distributed Implementation of Orc
with Formal Analysis. Technical report, The University of Illinois at Urbana-Champaign
(April 2010), https://www.ideals.illinois.edu/handle/2142/15414

5. Baier, C., Katoen, J.P.: Principles of Model Checking. The MIT Press, Cambridge (2007)

6. Basten, T., Bosnacki, D.: Enhancing partial-order reduction via process clustering. In: ASE,
pp- 245-253 (2001)

7. Clarke, E.M., Filkorn, T., Jha, S.: Exploiting Symmetry In Temporal Logic Model Checking.
In: Courcoubetis, C. (ed.) CAV 1993. LNCS, vol. 697, pp. 450-462. Springer, Heidelberg
(1993)

8. Clarke, E.M., Grumberg, O., Peled, D.A.: Model Checking. The MIT Press, Cambridge
(2000)

9. Courtois, P.J., Heymans, F., Parnas, D.L.: Concurrent control with “readers” and “writers”.
Commun. ACM 14(10), 667-668 (1971)

10. Dong, J.S., Liu, Y., Sun, J., Zhang, X.: Verification of computation orchestration via timed
automata. In: Liu, Z., Kleinberg, R.D. (eds.) ICFEM 2006. LNCS, vol. 4260, pp. 226-245.
Springer, Heidelberg (2006)

11. Emerson, E.A., Sistla, A.P.: Utilizing Symmetry when Model-Checking under Fairness As-
sumptions: An Automata-Theoretic Approach. ACM Transactions on Programming Lan-
guages and Systems (TOPLAS) 19(4), 617-638 (1997)

http://www.comp.nus.edu.sg/~pat/research/
 https://www.ideals.illinois.edu/handle/2142/15414

114

12.

13.

14.

15.

16.

17.

18.

19.

20.

21.

22.

23.

24.

25.

26.

27.

28.
29.

T.H. Tan et al.

Godefroid, P.: Partial-Order Methods for the Verification of Concurrent Systems. LNCS,
vol. 1032. Springer, Heidelberg (1996)

Haékansson, J., Pettersson, P.: Partial order reduction for verification of real-time components.
In: Raskin, J.-F., Thiagarajan, P.S. (eds.) FORMATS 2007. LNCS, vol. 4763, pp. 211-226.
Springer, Heidelberg (2007)

Hoare, C.A.R.: Communicating Sequential Processes. International Series on Computer Sci-
ence. Prentice-Hall, Englewood Cliffs (1985)

Holzmann, G.J.: On-the-fly model checking. ACM Comput. Surv. 28(4es), 120 (1996)
Jordan, D., Evdemon, J.: Web Services Business Process Execution Language Version 2.0.
(April 2007), http://www.oasis-open.org/specs/#wsbpelv2.0

Kitchin, D., Quark, A., Cook, W., Misra, J.: The orc programming language. In: Lee, D.,
Lopes, A., Poetzsch-Hefftter, A. (eds.) FMOODS 2009. LNCS, vol. 5522, pp. 1-25. Springer,
Heidelberg (2009)

Kitchin, D., Quark, A., Misra, J.: Quicksort: Combining concurrency, recursion, and mutable
data structures. Technical report, The University of Texas at Austin, Department of Computer
Sciences

Krimm, J.-P., Mounier, L.: Compositional state space generation with partial order reductions
for asynchronous communicating systems. In: Graf, S. (ed.) TACAS 2000. LNCS, vol. 1785,
pp. 266-282. Springer, Heidelberg (2000)

Lang, F., Mateescu, R.: Partial order reductions using compositional confluence detection.
In: Cavalcanti, A., Dams, D.R. (eds.) FM 2009. LNCS, vol. 5850, pp. 157-172. Springer,
Heidelberg (2009)

Liu, Y.: Model Checking Concurrent and Real-time Systems: the PAT Approach. PhD thesis,
National University of Singapore (2010)

Peled, D.: Combining partial order reductions with on-the-fly model-checking. In: Dill, D.L.
(ed.) CAV 1994. LNCS, vol. 818, pp. 377-390. Springer, Heidelberg (1994)

Peled, D.: Ten years of partial order reduction. In: Vardi, M.Y. (ed.) CAV 1998. LNCS,
vol. 1427, pp. 17-28. Springer, Heidelberg (1998)

Sistla, A.P., Clarke, E.M.: The complexity of propositional linear temporal logics. J.
ACM 32(3), 733-749 (1985)

Sun, J., Liu, Y., Dong, J.S., Pang, J.: PAT: Towards flexible verification under fairness. In:
Bouajjani, A., Maler, O. (eds.) CAV 2009. LNCS, vol. 5643, pp. 709-714. Springer, Heidel-
berg (2009)

Sun, J., Liu, Y., Roychoudhury, A., Liu, S., Dong, J.S.: Fair model checking with process
counter abstraction. In: Cavalcanti, A., Dams, D.R. (eds.) FM 2009. LNCS, vol. 5850, pp.
123-139. Springer, Heidelberg (2009)

Tan, T.H., Liu, Y., Sun, J., Dong, J.S.: Compositional Partial Order Reduction for Model
Checking Concurrent Systems. Technical report, National Univ. of Singapore (April 2011),
http://www.comp.nus.edu.sg/pat/fm/cpor/CPORTR.pdf

Valmari, A.: The state explosion problem. In: Petri Nets, pp. 429-528 (1996)

‘Wehrman, I., Kitchin, D., Cook, W., Misra, J.: A timed semantics of orc. Theoretical Com-
puter Science 402(2-3), 234-248 (2008)

http://www.oasis-open.org/specs/#wsbpelv2.0
 http://www.comp.nus.edu.sg/pat/fm/cpor/CPORTR.pdf

Domain-Driven Probabilistic Analysis of
Programmable Logic Controllers

Hehua Zhang!, Yu Jiang?, William N.N. Hung?®, Xiaoyu Song®*, and Ming Gu*

1 School of Software, TNLIST, Tsinghua University, China
2 School of Computer Science, TNLIST, Tsinghua University, China
3 Synopsys Inc., Mountain View, California, USA
4 Dept. ECE, Portland State University, Oregon, USA

Abstract. Programmable Logic Controllers are widely used in industry.
Reliable PLCs are vital to many critical applications. This paper presents
a novel symbolic approach for analysis of PLC systems. The main com-
ponents of the approach consists of: (1) calculating the uncertainty char-
acterization of the PLC systems, (2) abstracting the PLC system as a
Hidden Markov Model, (3) solving the Hidden Markov Model using
domain knowledge, (4) integrating the solved Hidden Markov Model
and the uncertainty characterization to form an integrated (regular)
Markov Model, and (5) harnessing probabilistic model checking to ana-
lyze properties on the resultant Markov Model. The framework provides
expected performance measures of the PLC systems by automated ana-
lytical means without expensive simulations. Case studies on an indus-
trial automated system are performed to demonstrate the effectiveness
of our approach.

Keywords: PLC, Hidden Markov Model, Probabilistic Analysis.

1 Introduction

Programmable Logic Controllers are widely used in industry. Many PLC appli-
cations are safety critical. There are a lot of studies on the modeling and ver-
ification of PLC programs. Most of them transfer PL.C programs to automata
[BI9/1] or Petri nets [7]. Formal methods [T6J6lT4]are also proposed for analysis.
Most of these methods consider the static individual PLC program that is iso-
lated from its operating environment and verify some functional properties based
on traversing the transferred model. The existent deterministic analysis of PLC
programs are valuable, but the uncertain errors caused by noise, environment,
or hardware should not be neglected [11].

In this paper, we present a symbolic framework for the formal analysis of PL.C
system We develop a probabilistic method to model the inherent uncertainty
property of the PLC system. Then, we abstract the PLC system as a Hidden
Markov Model, and generalize the Baum-Welch algorithm to solve the Hidden

! This research is sponsored in part by NSFC Program (N0.91018015,
No.60811130468) and 973 Program (No.2010CB328003) of China.

S. Qin and Z. Qiu (Eds.): ICFEM 2011, LNCS 6991, pp. 115, 2011.
© Springer-Verlag Berlin Heidelberg 2011

116 H. Zhang et al.

Markov Model using domain knowledge of its dedicated operating environment.
After that, we combine the solved Hidden Markov Model with uncertainty char-
acterization of the PLC system to form an integrated Markov model. We harness
probabilistic model checking to analyze properties on the regular Markov Model
through PRISM [8]. Our framework also allows us to obtain some performance
measures of the PL.C system, such as the reliability and some other time related
properties. Case studies demonstrate the effectiveness of our approaches.

2 Preliminaries

Ladder diagram (LD) is a widely used graphical programming language for
PLCs. The language itself can be seen as a set of connections between logi-
cal checkers (contacts) and actuators (coils). If a path can be traced between
the left side of the rung and the output, through asserted contacts, the rung is
true and the output coil storage bit is asserted true. If no path can be traced,
then the output coil storage bit is asserted false. Fig. [l shows a simple ladder
program with some common instructions. It is made up of four ladder rungs.

The symbol —| |— is a normal open contact, representing a primary input.
When the value of SWj is 1, the contact stays in the closed state, and the current
flows through the contact. The symbol —|/|— is a normal close contact. When
the value of SWj is 0, the contact stays in the closed state, and the current flows
through the contact. —| | — | |— represents a serial connection of two kinds of
contacts. Similarly, in the third rung, b; and V3 are connected in parallel. When
at least one value of them is 1, the current can flow through the trace. There is
also a timer instruction in Fig. [l More details can be found in [I0].

S By < swa 3
e e
Vi 1*|,,'|
[W]
1y SWa L %o
| G
= /1
4] T e Vi
ol S
41 ’_‘
L | Ledv) T
, I I I I TON & —(S)
A0y 0
| /1 =

Fig. 1. A simple ladder

The simplest Markov model is the Markov chain which is a random process
with the property that the next state depends only on the current state. It
models the state of a system with a random variable that changes over time. A
discrete time Markov model can be defined as a tuple <S, m, A, L>, where

Domain-Driven Probabilistic Analysis of Programmable Logic Controllers 117

e S ={5;---Sn}is aset of states. We use ¢; to denote the state of the system
at time t(t € NT).

e m = {m - -my} is the initial state distribution, where m; = Pr[g; = S;] is
the probability that the system state at time unit 1 is S;.

o A={a;;}(Vi,j € N) is the state transition probability matrix for the system
and a;; = Prigi+1 = Sj|lq = Si].

e [is a set of atomic propositions labeling states and transitions.

In a regular Markov model, the state is directly visible to the observer, and
therefore the state transition probabilities are the only parameters. This model
is too restrictive to be applicable to many problems of interest. Here, we extend
the concept of Markov model to include the case where the observation is a
probabilistic function of the state. In a Hidden Markov Model, the state is not
directly visible, but the output, dependent on the state, is visible. Each state
has a probability distribution over the possible output observations. Hence the
sequence of observations generated by a hidden Markov model gives certain
information about the sequence of states.

Formally, a Hidden Markov Model is defined as a tuple M = <S, O,m, A, B, L>.
The items S, m, A and L are defined as above. The remaining two items of the
tuple are defined as:

e O ={0;1---Oyp} is a set of observations that the system can generate. We
use v; to denote the observation generated by the system at time t(t € NT).

e B = {b;;} is the observation state probability matrix of the system: b;;, =
Privy = Oglq: = Si](VS; € S,VO,, € O), which means the probability that
the system generates observation Oy in state S;.

Given an observation sequence), = 0103 - - - Oy, in our framework, we need to
consider the following problem:

e How to adjust the model parameters A, B to maximize Pr(Q,|M).

The problem has been solved by an iterative procedure such as the Baum-Welch
method [2I5] and equivalently the EM method [4] or gradient techniques [12]. In
this paper, we generalize Baum-Welch method with additional weights.

3 Symbolic Framework

We present a symbolic framework for the formal analysis of PLC systems. The
framework is applicable from the implementation process to the deployment
process of the system. It contains three main procedures: (1) Uncertainty char-
acterization of a PLC ladder program, which can reflect the inner quality of
the system. (2) Hidden Markov Model construction and its solution, which can
reflect the actual operating environment of the PLC system. (3) Reward based
probabilistic model checking to analyze the performance properties of the system
on the integrated Markov model. The components of the framework are shown
in Fig.

118 H. Zhang et al.

Uncertainty
calculation
PLC HMM HMM Markov PRISM
system modeling solution model modeling
Domain Property
knowledge analysis

Fig. 2. Validation Process

3.1 Modeling Uncertainty of PLC Systems

In a PLC, the program is executed through periodic scanning. In each cycle, the
inputs are first sampled and read. Then, the program instructions are executed.
Finally, the outputs are updated and sent to the actuators. The uncertainty
characterization calculation refers to evaluating the effects of errors caused by
input sampling and program execution. The sampling error happens when the
actual input is 1 (or 0), but the sensor samples a 0 (or 1). Program execution
error happens when the output of each ladder logic is 1 (or 0), mainly for the
AND logic (a Ab) and OR logic (a V b), but the actual output of the logic
execution turns out to be 0 (or 1). The probability of these two kinds of errors
depends on noise, environment, hardware, etc.

The uncertainty calculation can be divided into three steps. We first define the
output of each rung on the logic checkers and the output of instructions such as
timer and counter. They are connected by ladder logic (aAb, aVb). Then, we build
an abstract syntax tree (AST) for the output expression, with which we can give
a topological sort for each ladder logic (A(a,b), V(a,b)). Finally, we can use the
third algorithm presented in the technical report [17] to process each node in the
abstract tree, until we arrive at the root node. The uncertainty characterization
of this ladder rung can be described as follows:

f(o) = P°P.(0 — 1)+ P}P.(1 — 0)

The first factor denotes the probability that the output of this ladder rung should
be 0 (denoted by P?), but the root node of the abstract syntax tree propagates
a P.(0 — 1) error. The second factor is similar. An example is shown in Fig. [3
Because each ladder logic diagram may have many ladder rungs, we can get the
following theorem:
Theorem 1. The uncertainty characterization of the whole PLC system f is

=N

lefl_‘[(l*f(o)n)
i=1

Where f(0),, means the uncertainty characterization of the n-th ladder rung.

Domain-Driven Probabilistic Analysis of Programmable Logic Controllers 119

- T@H’H—csﬂ F0)=EpO0—)+pp,4-0)

Translate (ladder) /A xID
;o AST (EXP) / \
A (3L 7T L L) \ n

Xy

Fig. 3. Uncertainty Calculation

3.2 Construction of Hidden Markov Model

Unlike the previous methods which consider an individual PLC program that is
isolated from its operating environment, we construct a Hidden Markov Model
(HMM) to reflect the control principle of the whole PLC system. Our model
manifests the dynamic characteristics of all the possible execution paths of the
PLC system. The HMM depicts how the PLC system transfers from one state
to another with a hidden probability.

As mentioned in Section 2] a HMM can be defined as a tuple <S, O,m, A, B, L>.
We abstract the PLC system as a tuple. S is the set of normal states of the PLC
system. Each state of the PLC system is composed of the states of the physical
devices which are actuated by the PLC ladder program. Then, each state of the
PLC system can be identified by the primary outputs of the PLC ladder rungs.
O contains the observations corresponding to the state set S. It is a probabilistic
function of the state and can be abstracted from basic functional requirements
and from events corresponding to the physical outputs of the system. L is a
set of atomic propositions {L} labeling states and transitions. Since the PLC
works in a periodic scanning manner and there may be timer instructions in the
ladder logic diagram, we extend the label with time attribute to reflect the time
property of the PLC system. The recursive syntax of the label is defined as:

L—I|T|O; I — I0|I1|0]1; T —neNT

It is composed of three components. The first component I is the sequence of
the primary inputs of the PLC ladder program. The sequence will determine
the outgoing transitions of each state. The second component T' is the time
attribute related to the timer instructions in the ladder program, which means
the corresponding state S; transfers to state S; with a time delay T'. The value
of T is a positive integer NT. O is the set of observations that the primary input
will trigger in the dedicated state S; of the transition.

120 H. Zhang et al.

3.3 Solving the Hidden Markov Model

After we obtain the knowledge about the PLC systems’ observations, states, and
transitions among those states, we need to solve the unknown parameters of the
HMM, especially for the parameters of the state transition probability A. We
give two methods to solve the HMM by using three kinds of domain knowledge.
If the domain knowledge is from a domain expert or the runtime monitoring
method, the problem can be addressed by the extended Baum-Welch algorithm.

Extended Baum-Welch Method. The extended Baum-Welch algorithm is
based on two kinds of domain knowledge. The first kind of knowledge relies
on domain expert. In a particular application, this can be done by asking the
domain expert to directly provide a set of sequences of the PLC system’s obser-
vations. The observation sequences are representative of the expert’s knowledge
of the PLC system’s actual operating environment. The second kind of domain
knowledge is from runtime monitoring. If the PLC has been deployed on the
system, the system is already in use, we can observe the execution of the system
many times to attain the observations.

After we get the observation sequence O(O10s - - - O;Oy410¢42 - - - Or) of the
HMM from time unit 1 to T', we need to adjust the model parameters M (A, B,)
to maximize the probability of the observation sequence. The Baum-Welch al-
gorithm applies a dynamic programming technique to estimate the parameters.
It makes use of a forward-backward procedure based on two variables:

(i) = P(O102 - -- Oy, qp = Si| M) Bi(i) = P(Ot410442 - - - Orl|g. = Si, M)

oy (i) is the probability of the partial observation sequence O10s--- Oy, and
system model is in state S; at time unit t, and G;(¢) is the probability of the
partial observation sequence from ¢ 4 1 to the end, given state S; at time unit ¢
and the model M. We compute the parameter a;; as follows:

(1) B¢ ()

Ye(i) = P(q; = SilO, M) = N
;at(i)ﬁt(i)

~:(2) is the probability of the system in state S; at time t, given the observation
sequence O and the model M.

at(1)aijbj(O¢11)Bev1(4)
N N
5 % ()b (O Bess ()

= 1

&(i,5) = P(qr = Si, que1 = 5|0, M) =

»a
<
Il

&:(4, §) is the probability of the system in state S; at time t and in state S; at
time t+1, respectively, with M and O. b;(O¢41) denotes the probability that the
system is in state j, and the observations is O;1.

Domain-Driven Probabilistic Analysis of Programmable Logic Controllers 121

Then, the expected number of all the transitions from S; and the transi-
tions from S; to S; can be defined as EtT:_ll ~: (%) and ZtT:_ll &t (i, 4), respectively.
The expected number of observing observation Oy in state S; can be defined
as ZtT=1,u,,=Ok (7). For a single observation sequence, the iterative calculation
formulas for state transition and observation probabilities can be defined as:

T—1 T
RACT) > (i)
t=1 t=1,v,=0;
@ij = p_q (bij =" o
V¢1) > e(d)
t=1 t=1

The numerator of a;; denotes the expected number of transitions from state .S; to
S;, the denominator of a;; denotes the expected number of transitions going out
of state S;. The numerator of b;; denotes expected number of times in state .S;
and observing symbol O;, the denominator of b;; denotes the expected number
of times in state .S;.

For different observation sequences Os = [0!,0?--- 0%], where O% = [OF,
Ok ... Ok] is the kyj, observation sequence, the other symbols are similar. We need
to adjust the model parameter of model M to maximize P(Os|M). We extend the
method presented in [13] with a weight W}, for each OF. W}, is the frequency of the
sequence OF. We define P, = P(O*|M) and P(Os|M) = Hﬁzl P Wy. Then, the
iterative calculation formulas for state transition and observation probabilities
can be changed to:

u 1 =t k(: & 1 L k(-
> pow, 2 &i(05]) > opw, 2 ()
k=1 t=1 k=1 t=1,v,=0;
= g T-1 bij = k T
2 paw, 2 () > piv, X G
k=1 t=1 k=1 t=1

The meaning of the numerator and denominator of the extended formulas are the
same with the original formula described above. Then, we can choose an initial
model M = (A, B, 7) and use the initial model to compute the right side of the
iterative calculation formulas. Once we get the new model M = (A, B,), we can
use M to replace M and repeat this procedure until the probability of observation
sequence P(Os|M) and P(Os|M) are equal or |P(Os|M) — P(Os|M)| < 0, 0 is
the precision limit you want.

With these two methods, we can build the solved HMM to show the real
operating environment in an particular application. We can get value of the state
transition matrix, each element a;; is also identified with a label L, L — I/T/O.

3.4 Construction of Combined Regular Markov Model

The uncertainty characterization of the PLC system itself shows the inherent
behaviors of the system, which evaluates the effects of the errors from input
sampling and the errors from program execution. The solved HMM shows the
operating environment of the system in a particular application with the use of

122 H. Zhang et al.

normal states and the transitions. Then, we construct a new Markov model to
combine these two properties.

The first step is to add the abnormal state caused by the uncertainty charac-
terization. Since the system would go into an abnormal state from any normal
states, we build an abnormal state (U) for all normal states (.S,). When a normal
state transits to an abnormal state, it can be recovered by the system itself or
by human intervention, and reset to the initial state. We also need to add these
two kinds of transitions into the solved HMM. Then, we can get all the nodes
and transitions of the new Markov model M.

The second step is to initiate the transition matrix of the new model M’.
We need to assign values to different transitions. The probability of a normal
state transmitting to the abnormal state depends on the value of the uncertainty
calculation. The recovering transitions depends on the design of the system or
the workers. After we add these states and transitions to the matrix A, the value
of a;; based on operating environment needs to be adjusted, by multiplying with
a coefficient. The matrix A and A’ are given by:

aoo(l = f) ann(1 = f) ... aon(1 = f) f

Z?E Z(ﬁ Z?:) ao(l = f) ann(l—f) ... arn(1—f) f
Gy s - o (1=) ans(— f) o am(l— f) f
TUo 0 0 1— 7100

In the new matrix, the last row and the last column are for the abnormal state U,
the remaining rows and columns are for the normal states S,,. The probability
from the normal states to the abnormal state is f, which is the value of the
uncertainty characterization. We know that the error probability is the same for
all the normal states, because uncertainty characterization f is the inner quality
of the PLC ladder program. The recovering transition probability from abnormal
state U to the initial state is 7y, The system will remain in the abnormal state
with a probability 1 — 7y in case of some uncertainty that can-not be recovered
by the system or the operators. The transition probability between the normal
states is a;;(1 — f). a;; is the transition probability between the normal states
when the system is without uncertainty. The result of a;; multiplied by the
coefficient 1 — f is the transition probability combined with the uncertainty
characterization.

Theorem 2. The new transition matrix A" satisfies the property of regular
Markov model

Proof. According to the solved HMM’s matrix A:agg + ag1 + - + agn =1

ago + agy + -+ ag, = aoo(1 — f) +aot(1 = f) + -+ aon(1 = f) + f
= ago + ao1 - - + @on — (@00 + ao1 -+ +aon)f + f
=1+f—-f=1 O

The new Markov model combines the inherent property and the operating envi-
ronment of the PLC system. It closely mimics the actual execution of the PLC in

Domain-Driven Probabilistic Analysis of Programmable Logic Controllers 123

real life applications. Based on this model, we can analyze the runtime properties
of the PLC system using model-checking technology.

3.5 Property Analysis with PRISM

After building the integrated Markov model, we can perform probabilistic model
checking using PRISM [§]. First, we need to specify the Markov model in PRISM
modeling language. Second, the rewards used to specify additional quantitative
measures of interest should be added into the model. Finally, we specify the
properties about the PLC system.

A PRISM model comprises a set of modules which represent different as-
pects of the system. The behavior of the PRISM model is specified by guarded
commands. Synchronization between different modules can be implemented by
augmenting guarded commands with action labels. We now describe the com-
bined Markov model <Sl77r/7A/, L/> in PRISM manner. The module is derived

from the transition matrix A" of the model. We declare a variable S, whose value
range from [0, n+1]. Then, we build a label command for each arrow of the
matrix A on this variable.

LS =i—(ay:S =04 (a,;, : 8 =1)+...(a,,: S =n)+(f: 5 =n+1)

Then, we focus on extending the model with rewards. There are two kinds of
rewards and the structure is:

rewards "reward name” component endrewards

The component for state rewards is guard : reward and the component for
transitions is [Label] guard : reward. The guard is a predicate over the state
variables, Label is the command label in each module, and the reward is a real-
valued expression that will assign quantitative measures we care about the states
and the transitions that are satisfied with the guard.

In the domain of PLC system, the main properties we care about are the tim-
ing and the reliability of the system. So, we define two representative rewards
for the model. The first is about the time property. It can be derived from the
element T' of the transition label L. We add a reward component [L;]| true : T
for each transition into the reward. The reward reflects the elapsed time of each
transition in the model. The other is a state reward. We associate a number 1
to all the normal states with the reward component S : 1. These can be used
to get the long-run availability of the system. We can also define other kinds of
reward, such as power consumption of each transition and state.

After we describe the probabilistic model and rewards in PRISM manner,
we can analyze some properties of the model. We can specify the properties in
PRISM’s specification language. We can use the P and S operator to specify
quantitative time instant or long-run properties respectively. For example, we
can use the following specification to describe the execution state of the PLC
system in the long-run (U denote the abnormal state of the system, S denote
the normal state of the system):

124 H. Zhang et al.

Property 1: S_;[IU], the probability that the PLC system is not in failure
in the long-run.

We can extend the above property with bounded variant of time. The following
two properties specifications describe the reliability of the PLC system in a time
period:

Property 2: P=?[G[O’ﬂ U], the probability that the PLC system has no
error during ¢ time units.

We can also use the R operator to get the expected value defined in terms of a
reward structure. We can get many performance measures of the system. Based
on the two rewards defined above, we specify two properties about time:

Property 3: R-g-—2[C<!], the cumulative time of the system being in
normal states during the ¢ time units.

Property 4: Ryp»—7[F U] : the cumulative time of the system passed
before the first uncertainty state happens.

4 Case Studies

We apply our framework to an actual industrial PLC system which was originally
published in [I5]. The system is shown in Fig. @l It consists of three pistons
(A4, B,C) which are operated by solenoid valves (V1, V2, V3). Each piston has
two corresponding normally open limit sensor contacts. Three push buttons are
provided to start the system (switch STW1), to stop the system normally (switch
SW2) and to stop the system immediately in emergency (switch SW3). In a
manufacturing facility [I5], such piston systems can be used to load/unload
parts from a machine table, or to extend/retract a cutting tool spindle, etc.

Piston A is controlled by valve V;. When the value of V3 is 1 and the piston is
at the left side, the piston will move from left to the right, and the movement is
denoted by AT. When the value of V; is 0 and the piston is at the right side, the
piston will move back to the left side, and the movement is denoted by A~. We
can see that the movement of A will affect the value of sensors (ag, a1). Initially,
piston A is at the left side and the normally open sensor contact ag is closed.
Hence, the value of ag is 1, a; is 0. When V) turns out to be 1 at this time, the
piston will move to the right side (AT). Then, the open sensor contact ag will
break and the sensor contact a; will close. Hence, the value of ag changes to 0
and a; changes to 1, automatically. We can use this property to design ladder
programs to control the system.

There are many PLC ladder programs that can be used to control this system.
Let us see the example in Fig. [l The ladder program is the same as the third
ladder diagram in [I5]. It contains four ladder rungs, which includes 8 primary
input contacts (SW1,SW3, ag, a1, bo, b1, co, c1). SW1 and SW3 are changed by
human operation, the others are automatically changed by movements of the
pistons. We can construct an automata model for the operating principle of the
PLC system. The state is denoted by the outputs of the ladder. The system has

Domain-Driven Probabilistic Analysis of Programmable Logic Controllers 125

Sy S A a
Vo | — I 4
sensor
B

sensor

L

Fig. 4. Industrial automated system originally published in [15]

|
HI

six normal states (Sp, S1, Se, S3, S, S5), and an uncertainty state corresponding
to the all kinds of failure caused by the uncertainty characterization. The six
normal states are the states of the Hidden Markov Model. In the Fig. B each
normal state has some corresponding observations linked by dotted line. In this
system, the four states have only one corresponding observation and state Ss
has 3 corresponding observations. The transitions are labeled with the primary
input sequences. The time unit for each transition is 1 time unit except that
the transition between state S3 and Sy is 6 time units. We introduce the control
theory of the model with more detail below.

At first, the system is in a blank state named Sy. In this state, the pistons
stay at the left side. So, the values of (ag, a1, bo,b1,co,c1) are (1,0,1,0,1,0).
In the first execution cycle of the PLC system, when the worker press the start
switch(SW1), the system is activated. The values of (V1, Vo, V5, T') are (1,0, 0, 0).
The piston A will move to the right side(A™). The values of (ag, a1, bg, b1, co, ¢1)
change to (0,1, 1,0, 1,0). The second execution cycle, the values of (V1, Va, V3, T)
are (1,1,0,0). The piston B will move to the right side(B™). The values of
(ao, a1, bo, b1,co,c1) changes to (0,1,0,1,1,0). The third execution cycle, the
values of (V1,Va,V3,T) are (0,1,1,0). The piston A will move back to the left
and the piston C will move to the right side simultaneously (A~C™). The values
of (ag, a1, bo, b1, co, c1) changes to (1,0,1,0,0, 1). If we press SW3, the pistons B
and A will move to the left side (A~ B~). The fourth execution cycle, since the
value of ¢; and ag are 1, the timer instruction is activated. In the next five time
units, the value for output (V1, Vs, V3, T) will not change. Then, the system will
keep static for five time units. At the sixth time units, the values of (V1, Vo, V3, T)
are (0,0,0,1). Then, Pistons B and C will move to the left side (B~C~). The
values of (ag, a1, bo, b1, co, ¢1) changes to (1,0,1,0,1,0).

We can build the Hidden Markov Model for the PLC system using the oper-
ating principle presented in Fig. Bl The states of the Hidden Markov Model are
the normal states in the automata. The transition Label L between two hidden
states is also derived from the figure. Element I is the eight primary inputs on
the automata label. Element T is the time for each state transition of the original

126 H. Zhang et al.
S5
{A){B-AL{B-C1 | vk
N T:0 ¢
| SWEL swas sm;f swi=l Swi=l
Y — y,

S0 SWi=1. SW3=0 SieL. S il swasO
0100100 S1 ey S2 o b0-0.t
He0pl0dD VTlgo al=1p1-0c10" V:;.U 21=1b1=1,1=0"

: \ | SWi=1. SW3=0
' : =1,h0=1,00=1
A+ 20=1, ¥
{ } {B+} 21=0,b1=0,c1=0

.\5‘.\'3=1

\\
53

Vi1l

T:0

{A-E+}

Uncer-

fainty,
SWi-1, TWasl
SWi=1. SW3=0
all=1,60-1,00=0_ S4
a1=0p0d-1 | 000
T1
B

Fig. 5. Work theory

automata. The set of Observations is composed of the content in the rectangle
of the Fig.[Bl Hence, we can get the matrix A, B for the hidden markov model:

So S1 S2 Sz Si Ss AT BT CtTA=- B C~ A~ B A~
So aoo @o1 ao2 ao3 aos aos So boo bo1 bo2 bos boa bos
S1 a0 a1 ai2 a13 a14 ais S1 bio bir b1z biz bia bis
A = | Sz a20 a21 a2 a3 azs azs B =] S2 b2 bar b2 b2z b2y bos
S3 aszo a31 az2 as3 ass ass S3 bzo ba1 b3z bss bzs bs3s
S4 @40 Q41 Q42 G43 Q44 Q45 Sy bao bar b3z baz baa bus
S5 aso as1 as2 G53 454 As55 Ss bso bs1 bs2 bss bsa bss

The element a3 means the probability that the state Sy transmit to state Ss.
The element b1y means the probability that we can observe that piston A moves
to the right when the system is in state S7. The semantic of the other elements
are the same.

There is a real-life application that the operating environment of the sys-
tem is representative of one movement sequence O: [AT, BY CTA~ B~C~].
Hence, we need to solve the matrix A and B using the Baum-Welch algorithm
or by simulation to get a maximum P(O|M). Then, we need to combine the
solved Hidden Markov Model M with the uncertainty state caused by the un-
certainty characterization. We assume that the sampling error for each primary
input contacts is 0.05, and the execution error for each ladder logic unit is 0.3.
Using the method in Section .1l the uncertainty characterization of the PLC
system is 9.80%. That means the system will go into an uncertainty state with
probability 0.098 from any normal states. The system will recover to the initial
state with probability 0.9 from the uncertainty state. The combined matrix is
as follows:

Domain-Driven Probabilistic Analysis of Programmable Logic Controllers 127

So S1 S2 S3 Sa U
So 0 0.902 0 0 0 0.098
S1 0 0 0902 O 0 0.098

A =50 0 0 0902 0 0.098
S3 0 0 0 0 0.902 0.098
Sy 0 0902 0 0 0 0.098
Uo09 0 0 0 0 0.1

For a more complex example, whose operating environment is representative
of three kinds of observation sequences. The observation sequences O1, Oz, and
O3 are [AT, A7), [AT, BT, B~ A7) and [AT, Bt A—C™, B~C~], respectively. In
one thousand observations, O; appear 200 times, Os appear 200 times, and
O3 about 600 times. Then, we use the Baum-Welch algorithm for multiple ob-
servation sequences described in Section B3] and combined it with uncertainty
characterization as follows:

So S1 S22 S3 Si S5 U

So 0 0902 0 0 0 0 0.098
S1 0 0 0722 0 0 0.180 0.098
A = S2 0 0 0 0.677 0 0.2250.098
Ss 0 0 0 0 0902 0 0.098
Sy 0 0902 0 0 0 0 0.098
S5 0.902 0 0 0 0 0 0.098
u 09 0 0 0 0 0 01

We can describe the model of this example in PRISM as described in Section
We extend the model with rewards to help us analyze the system. The time
property is derived from the time element T of the Markov model transition label
L. In addition, we present a reward power for each state. The reward denote the
power consumption for valid piston movements in each state.

At last, we can initiate some properties that we care about the system model.
The first property is based on the reward oper, and denote the long term avail-
ability of the system. The second property is based on the reward time, and
denote the first time that it is in failure. The third property is based on the
reward power, and denote the valid power consumption during 1000 time units.

- S:7[S < 6] R{”time”}:? [F S = 6] R{”power”}:?[CSIOOO]

We can do more experiments on the system presented in [I5]. There are four
ladder programs presented in that paper. Although the four PLC programs have
the same sampling error and execution error probability, their inner property are
different due to different arrangements of primary inputs and logic executions.
We set the input sampling error probability to 0.05 and change the value of
execution error probability, denoted by e. Using the method presented in Section
B.Il we can obtain the uncertainty characterization for the four ladder programs
in Table [l

128 H. Zhang et al.

Table 1. Uncertainty Characterization

ladder e =0.01e=0.056=01e=0.15=02e=025¢=0.3
ladderl 0.67% 16.87% 13.67% 12.54% 10.23% &8.69% 5.51%
ladder2 0.70% 17.63% 13.89% 13.21% 11.82% 10.57% 6.62%
ladder3 1.08% 28.04% 25.36% 24.57% 22.03% 21.18% 9.80%
ladder4 1.15% 30.13% 26.51% 25.82% 24.65% 22.83% 10.94%

Table 2. Uncertainty Characterization By Random Simulation

ladder e =0.01e=0.05e=01e=0.15e=02e=025¢=0.3
ladderl 0.69% 17.02% 13.82% 12.66% 10.29% &.75% 5.54%
ladder2 0.74% 17.82% 14.05% 13.35% 11.91% 10.63% 6.67%
ladder3 1.12% 28.22% 25.51% 24.71% 22.14% 21.27% 9.89%
ladder4 1.21% 30.37% 26.68% 25.98% 24.78% 22.95% 11.16%

Table 3. Property Results

property env U=0.01 U=0.03 U=0.05 U=0.07 U=0.09 U=0.1 U=0.15 U=0.2 U=0.25
oper 1 0989 0968 0947 0.928 0.909 0.900 0.857 0.818 0.783

oper 2 0990 0971 0952 0.934 0917 0.908 0.868 0.830 0.795
time 1 233 98 43 32 27 21 18 8 6
time 2 198 73 38 30 23 21 13 9 7
power 1 1462 1391 1325 1261 1200 1171 1032 908 797
power 2 1234 1181 1130 1081 1034 1011 903 804 714

We have also devised random simulations to confirm the correctness of the
uncertainty characterization. The values get by random simulations is presented
in Table[2l A more visual representation for ladder3 is shown in Figltl

In the following, we will show how operating environment affect the perfor-
mance of one PLC system. We use the example described in Fig. [Tl which is also
the same as the third ladder diagram in [15]. We have described two operating
environment examples above, which are denoted by two sets of observation se-
quences. We compare the three properties in these two operating environment
with the help of PRISM. The results are shown in Table B

From Table Bl we can see the long term availability for the second example
(env=2) is always better than the first example. The first failure time for the
second example come faster than the first one. The total number of valid piston
movements for the first operating environment is bigger than the second. A
more visual representation is shown in Fig[I8@ (the green line is for the second
application environment). We can come to the conclusion that: for the same PLC
system, properties of the system are different in different application operating
environment.

Domain-Driven Probabilistic Analysis of Programmable Logic Controllers 129

30 T T T T T S T]] PR S p—
calculation —+—— ey, example? —
25 = Tie=——g, simulation 095 - ® d
: : : SO ¥,
5 : : : : : Z oap hot-n] 4
g : : : : : <
g
5 08
0 i i i i i P
0 005 01 015 02 025 03 075 ’ . ’ !
0 005 01 015 02 025 03
error-probability uncertainty
Fig. 6. uncertainty simulation Fig. 7. Long-term availability
250 T T T T T 1500 T T T T
examplel —+ S examplel ——
axampla? 1400 " exampled
mr . 1300 o
] » ‘-\
" E RIS b
F 0 £ ounof
= E
=2 & g w000
EowW0r 7
= £ w0 -
\. .
50 -) BOD - .
S 700 -
o I I i — s—— - 00 L I I L I
0 005 01 015 a2 025 03] 005 01 015 02 025 03
uncertanty uncertanty
Fig. 8. Failure-Time Fig. 9. Total-movements

5 Conclusion

This paper presents a symbolic framework for the formal analysis of PLC sys-
tems. The framework is based on the uncertainty calculation of the PLC system
itself and the Hidden Markov Model of the whole PLC system. We solve the
Hidden Markov Model by extending the Baum-Welch algorithm or simulation
to reflect the particular operating environment of the system’s application. With
the help of PRISM we can perform probabilistic model checking on the combined
Markov Model. The techniques used in our framework allows us to obtain ex-
pected performance measures of the PLC system, which are more accurate and
closer to the real-world run-time state, by automated analytical means. We can
compare the performance of different PLC system designs for an particular ap-
plication. Our future effort focus on the automatic techniques that transfer PL.C
into Hidden Markov Model and a more accurate calculation of the uncertainty
characterization of PLC.

130

H. Zhang et al.

References

10.

11.

12.

13.

14.

15.

16.

17.

. Bauer, N., Engell, S., Huuck, R., Lohmann, S., Lukoschus, B., Remelhe, M., Sturs-

berg, O.: Verification of PLC Programs Given as Sequential Function Charts.
In: Ehrig, H., Damm, W., Desel, J., Grole-Rhode, M., Reif, W., Schnieder, E.,
Westkamper, E. (eds.) INT 2004. LNCS, vol. 3147, pp. 517-540. Springer, Heidel-
berg (2004)

. Baum, L.E., Sell, G.R.: Growth transformations for functions on manifolds. Pacific

Journal of Mathematics 27(2), 211-227 (1968)

. Canet, G., Couffin, S., Lesage, J.J., Petit, A., Schnoebelen, P.: Towards the au-

tomatic verification of PLC programs written in instruction list. In: Proc. IEEE
Conf. Systems, Man and Cybernetics, Nashvill, TN, USA, pp. 2449-2454 (October
2000)

. Dempster, A., Laird, N., Rubin, D., et al.: Maximum likelihood from incomplete

data via the EM algorithm. Journal of the Royal Statistical Society. Series B
(Methodological) 39(1), 1-38 (1977)

. Ephraim, Y., Dembo, A., Rabiner, L.R.: A minimum discrimination information

approach for hidden Markov modeling. IEEE Transactions on Information The-
ory 35(5), 1001-1013 (2002)

. Frey, G., Litz, L.: Formal methods in PLC programming. In: Proc. IEEE Conf.

Systems, Man, and Cybernetics, vol. 4, pp. 2431-2436 (2000)

. Hanisch, H.-M., Thieme, J., Luder, A., Wienhold, O.: Modeling of PLC behaviour

by means of timed net condition/event systems. In: IEEE Int. Symp. Emerging
Technologies and Factory Automation (EFTA), pp. 361-369 (1997)

. Hinton, A., Kwiatkowska, M., Norman, G., Parker, D.: PRISM: A tool for auto-

matic verification of probabilistic systems. In: Hermanns, H. (ed.) TACAS 2006.
LNCS, vol. 3920, pp. 441-444. Springer, Heidelberg (2006)

. Willems, H.X.: Compact timed automata for PLC programs. Technical report csi-

r9925, University of Nijmegen, Computing Science Institute (1999)

International Electrotechnical Commission (IEC): IEC 61131-3 Standard (PLC
Programming Languages), 2.0 edn. (2003)

Johnson, T.L.: Improving automation software dependability: A role for formal
methods? Control Engineering Practice 15(11), 1403-1415 (2007)

Levinson, S., Rabiner, L., Sondhi, M.: An introduction to the application of the
theory of probabilistic functions of a Markov process to automatic speech recogni-
tion. The Bell System Technical Journal 62(4), 1035-1074 (1983)

Rabiner, L.: A tutorial on hidden Markov models and selected applications in
speech recognition. Proceedings of the IEEE 77(2), 257286 (1989)

Rausch, M., Krogh, B.H.: Formal verification of PLC programs. In: Proc. American
Control Conference (1998)

Venkatesh, K., Zhou, M., Caudill, R.J.: Comparing ladder logic diagrams and petri
nets for sequence controller design through a discrete manufacturing system. IEEE
Transactions on Industrial Electronics 41(6), 611-619 (1994)

Younis, M.B., Frey, G.: Formalization of existing PLC programs: A survey. In:
Proc. Computational Engineering in Systems Applications, CESA (2003)

Zhang, H., Jiang, Y., Hung, W.N.N.,; Yang, G., Gu, M.: On the uncertainty char-
acterization of programmable logic controllers (2011),
http://web.cecs.pdx.edu/~song/research/paper_hehua_final_2.pdf

http://web.cecs.pdx.edu/~song/research/paper_hehua_final_2.pdf

Statistical Model Checking for Distributed
Probabilistic-Control Hybrid Automata with
Smart Grid Applications

Jodo Martins™?, André Platzer®, and Jodo Leite?

! Computer Science Department, Carnegie Mellon University, Pittsburgh PA
{jmartins,aplatzer}@cs.cmu.edu
2 CENTRIA and Departamento de Informética, FCT, Universidade Nova de Lisboa
jleite@di.fct.unl.pt

Abstract. The power industry is currently moving towards a more
dynamical, intelligent power grid. This Smart Grid is still in its in-
fancy and a formal evaluation of the expensive technologies and ideas
on the table is necessary before committing to a full investment. In this
paper, we argue that a good model for the Smart Grid must match
its basic properties: it must be hybrid (both evolve over time, and per-
form control/computation), distributed (multiple concurrently executing
entities), and allow for asynchronous communication and stochastic be-
haviour (to accurately model real-world power consumption). We pro-
pose Distributed Probabilistic-Control Hybrid Automata (DPCHA) as a
model for this purpose, and extend Bounded LTL to Quantified Bounded
LTL in order to adapt and apply existing statistical model-checking tech-
niques. We provide an implementation of a framework for developing
and verifying DPCHAs. Finally, we conduct a case study for Smart Grid
communications analysis.

1 Introduction

The ultimate promise of the Smart Grid is that of a more stable, energy-efficient,
adaptable, secure, resilient power grid, while delivering cheaper electricity. Cur-
rently, energy consumption follows fairly predictable patterns that need to be
very closely matched by power generation (otherwise blackouts or damage to
the infrastructure may occur). There are peak hours (e.g., people arrive home
on a hot summer day and turn on the AC), and low hours (e.g., during the
night). Certain power generators run permanently at 100% capacity, providing