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Abstract. In this paper, the existence of oscillations for a recurrent neural 
network with time delays between neural interconnections is investigated. 
Several simple and practical criteria to determine the oscillatory behavior are 
obtained.  
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1   Introduction 

In [9], Hu and Liu have studied the stability of a class of continuous-time recurrent 
neural networks (RNNs) defined by the following model: 

01
( ) ( ( )) ( ), (0) , 1,2, , .

n

i ij j j i i ij
x t w g x t u t x x i n

=
′ = + = =∑  (1)

The equivalent form of (1) in matrix format is given by 

0( ) ( ( )) ( ), (0) .x t Wg x t u t x x′ = + =   (2)

where 1 2[ , , ]T
nx x x x= is the state vector, ( )ij n nW w ×= is a constant connection 

weight matrix, 1 2( ) [ ( ), ( ), , ( )]T
nu t u t u t u t= is a continuous input vector function 

which is called the time-varying input, 1 1 2 2( ) [ ( ), ( ), , ( )]T
n ng x g x g x g x= is a 

nonlinear vector-valued activation function. Assume that time-varying input 

( )iu t tend to constants iu  as t  tends to infinity, and ( )g ⋅ belongs to the class of 

globally Lipschitz continuous and monotone increasing activation functions. The 
authors established two sufficient conditions for global output convergence of this 
class of neural networks. 

It is known that time-varying inputs ( )u t can drive quickly ( )x t to some desired 

region of the activation space [7]. Apart from discussing of convergence of neural 
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network models, their oscillatory behaviors have also been exploited in many 
applications. For example, combustion-instability control [4], robotic control [10], the 
design of associative memory [13], sleep and walking oscillation modeling [16], wall 
oscillation in wall-bounded turbulent flows [15], oscillations of brain activity [14], 
mixed-mode oscillations in chemistry, physics and neuroscience [2], heat flow 
oscillation [17], oscillation in a network model of neocortex [3], neuronal population 
oscillations during epileptic seizures [11], oscillation in population model [18]. 
biochemical oscillations [5], oscillations in power systems [12]. In reality, time-delay 
neural networks are frequently encountered in various areas, and a time delay is often 
a source of instability and oscillations in a system. This is due to the finite switching 
speed of amplifiers in electronic neural networks or to the finite signal propagation 
time in biological networks. Therefore, in this paper, we discuss the oscillatory 
behavior of the time delay neural network with the time-varying input as follows: 

01
( ) ( ( )) ( ), (0) , 1, 2, , .

n

i ij j j j i i ij
x t w g x t u t x x i nτ

=
′ = − + = =∑  (3)

where ijw , jτ  are constants, in which n corresponds to the number of units in the 

networks, ( ) ( 1,2, , )ix t i n= correspond to the state vectors of the ith neural unit 

at time t, ijw are the synaptic connection strengths, 0 ( 1,2, , )j j nτ > =  

represent delays. The equivalent form of (3) in matrix format is given by 

0( ) ( ( )) ( ), (0) .x t Wg x t u t x xτ′ = − + = x + y = z . 
 

(4) 

where 1 1 2 2( ) [ ( ), ( ), , ( )] .T
n nx t x t x t x tτ τ τ τ− = − − −  We assume that the 

function ( ( )) ( 1,2, , )j jg x t j nτ− = in (3) belong to the class of Lipschitz 

continuous and monotone activation functions; that is, for each jg , there exist 

0jk >  such that  

0 [ ( ) ( )] ( ) ( 1, 2, , ).j j j j j j jg x g y x y k j n< − − ≤ =  
 

(5) 

It should be note that such activation functions may be unbounded. There are many 
frequently used  activation functions that satisfy this condition, for example,  
tanh(x), 0.5(| 1| | 1|)x x+ − − , max(0, x ), and so on. We also assume that the 

time-varying input iu satisfy the following conditions 

lim ( )i i
t

u t u
→∞

= . 
 

(6) 

where iu ( 1, 2, , )i n= are constants, i.e. we assume that lim ( ) .
t

u t u
→∞

=  

Definition 1. A solution of system (3) is called oscillatory if the solution is neither  

eventually positive nor eventually negative. If 1 2( ) [ ( ), ( ), ( )]T
nx t x t x t x t=  is an    

oscillatory solution of system (3), then each component of ( )x t  is oscillatory. 
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2   Preliminary 

Lemma 1 (Lemma 2 in [9]). If (6) is satisfied and there exists a constant vector  
* * * *

1 2[ , , , ]T
nx x x x= such that *( ) 0Wg x u+ = , then given any 0 ,nx R∈ system 

(3) has a unique solution 0( , )x t x= defined on [0, )+ ∞ , where ( ) .ij n nW w ×=  

Thus, under the conditions of Lemma 1 hold, if we set  

*
1 2( ) ( ) ; ( ) [ ( ), ( ), , ( )]T

nu t u t u z t z t z t z t x x= − = = − . (7) 

then system (3) can be transformed to the following equivalent system 

*
0( ) ( ( )) ( ), (0) .z t Wf z t u t z x xτ′ = − + = −           (8) 

where *( ) ( )f z g z x= + *( )g x− satisfies that (0) 0.f =  

Lemma 2. If the matrix W is a nonsingular matrix, then system (8) has a unique 
equilibrium point. 

Proof. An equilibrium point * * * *
1 2[ , , , ]T

nz z z z= is a constant solution of the 

following algebraic equation 

* *( ) 0Wf z u+ = .                         
 

(9) 

Noting that (9) holds for any t, from (6) and the definition of ( ) ( )u t u t u= − , if t is 

sufficiently large, it implies that * 0.u = Meanwhile W is a nonsingular matrix, from 

(9) we get. *( ) 0.f z =  Noting that ( )f z  is a continuous monotone activation 

function, there exists only one *z such that  *( ) 0.f z =   Since (0) 0,f =   so the 

unique equilibrium point *z  is exactly 0. Since system (8) is an equivalent system of 
(3), hence, the oscillatory behavior of system (8) implies that the oscillatory behavior 
of system (3). Therefore, in the following we only deal with the oscillatory behavior 
of the unique equilibrium point of system (8). Noting that (0) 0.f =   and   is a 

continuous monotone activation function, then in a sufficiently small neighborhood of 

zero point, there exist 0 ( 1,2, , )j jk j nβ< ≤ = , a sufficiently small constant 

(0 1)ε ε<  such that   

( ) ( ) ( ( )) ( ) ( ) ( 1,2, , )j j j j j j j j jz t f z t z t j nβ ε τ τ β ε τ− − ≤ − ≤ + − =  

hold. According to [1, 6], the oscillatory behavior of system (8) about equilibrium 
point equals to the oscillation of the following system about zero point: 

1
( ) ( ) ( ) ( ), 1, 2, , .

n

i j ij j j ij
z t w z t u t i nβ ε τ

=
′ = ± − + =∑  

 

(10) 
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3   Oscillation Analysis 

Theorem 1. Suppose that the matrix W is a nonsingular matrix and system (8) has 
a unique equilibrium point.  Let 1 2, , , nρ ρ ρ  represent the characteristic 

values of matrix ( )j ij n nB wβ ×= . Assume that there exists at least an jρ   such 

that  0, {1,2, , }.j j nρ > ∈  Then the unique equilibrium point of system (8) 

is unstable, and system (8) has a oscillatory solution. 

Proof. Sinceε is a sufficiently small constant, the oscillatory behavior of system (10) 
is the same as the following  

1
( ) ( ) ( ), 1, 2, , .

n

i j ij j j ij
z t w z t u t i nβ τ

=
′ = − + =∑        

 

(11) 

From condition (6), when t  is sufficiently large, ( )i i iu t u δ= ± , where iδ  are 

sufficiently small positive constants. This means that when t is sufficiently large, 

( )i i i i iu t u uδ δ= ± − = ± . Therefore, if we neglect ( )iu t in system (11), and get 

the following system: 

1
( ) ( ), 1,2, , .

n

i j ij j jj
z t w z t i nβ τ

=
′ = − =∑  

 
(12) 

We claim that system (12) has an oscillatory solution implies that system (11) has an 

oscillatory solution. Because the unique equilibrium point * * * *
1 2[ , , , ]T

nz z z z=    

in system (12) is unstable. Then for the sufficiently small positive constant ε , 
*z ε± is still neither eventually positive nor eventually negative. 

Since 1 2, , , nρ ρ ρ  are characteristic values of B, the characteristic equation of (12) 

can be written as 
1

( ) 0i

n

i
i

e λτλ ρ −

=

− =∏ . This means that for each i we get 

0, 1, 2, , .i
ie i nλτλ ρ −− = =                

 

(13) 

There is at least one characteristic value of (13) larger than zero. Noting that the 
characteristic equation (13) is a transcendental equation, the characteristic values may 
be complex numbers. However, there still exists a real positive root under our 

assumptions. Since for some {1,2, , }, 0jj n ρ∈ > , we consider function of 

λ for this j as follows: 

( ) .j

jh e λτλ λ ρ −= −  
 

(14) 

Obviously, ( )h λ is a continuous function of λ , and (0) 0.jh ρ= − <  Noting that 

delay 0jτ > . Then je λτ−
tends to zero as λ tends to positive infinity. Therefore, 
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there exists a suitable large * 0λ >   such that  * *( )h λ λ= −  
*

0.j

je
λ τρ − >  By 

means of the mean value theorem, there exists an *(0, )λ λ∈  such that 

( ) 0.h λ =   In other words, λ is a positive characteristic value of system (14). This 

means that equation (13) has a positive characteristic value. Therefore, the unique 
equilibrium point of (12) is unstable, which implies that system (8) has an oscillatory 
solution. 

Theorem 2. If the matrix W is a nonsingular matrix and system (8) has a unique 
equilibrium point. Suppose that the following conditions hold:  

1
1,

0, max( | |) 0,i ii i ii j ij
i n

j j i

w w wβ β β δ
≤ ≤ = ≠

< + = − <∑  1eδτ >  
 

(15) 

where  1 2min{ , , }.nτ τ τ τ=  Then system (8) has an oscillatory solution.  

Proof.  From system (12), assume,  for the sake of contradiction,  there exists a  
*t such that for *t t> , we always have  | ( ) | 0 ( 1, 2, , ).iz t i n> =  Noting that  

0,i iiwβ <  then for 
*t t>  and 1, 2, ,i n= , we get 

1,
| ( ) | | ( ) | | | | ( ) |i i ii i i j ij j jj j i
z t w z t w z tβ τ β τ

= ≠
′ ≤ − − + ⋅ −∑  

 
(16) 

therefore, 

1 1
| ( ) | | ( ) |

n n

i i ii i
z t z tδ τ

= =
′ ≤ − −∑ ∑  

 
(17) 

It is easily to see from (17) that lim ( ) 0i
t

z t
→∞

= . Otherwise, suppose that 

lim ( ) 0i
t

z t c
→∞

= > . Then there exists a sufficiently large 0 ( )it τ> such that when 

0 it t τ> − we have ( ) 0.5 .iz t c>  By integrating both sides of (17) from 0t to t , we 

get 

0 0

0
1 1 1

(| ( ) | | ( ) |) | ( ) | | ( ) |
i

i

ttn n n

i i i i i
i i it t

z t z t z s ds z s ds
τ

τ

δ τ δ
−

= = =−

− ≤ − − = −∑ ∑ ∑∫ ∫  
 

(18) 

 

namely, 

0

0
1 1

| ( ) | | ( ) |
2

i

i

tn n

i i
i it

c
z t n ds z t

τ

τ

δ
−

= =−

+ ⋅ ≤∑ ∑∫           
 

(19) 
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Noting that  

0
2

i

i

t

t

c
n ds

τ

τ

δ
−

−

⋅ → ∞∫  as t → ∞ , and the right hand of (19) is a 

constant. This contradiction implies that lim ( ) 0.i
t

z t
→∞

=  Again integrating both sides 

of (17) from 0 ( )it τ> to +∞ , we get 

1 1

0 | ( ) | | ( ) |
n n

i i i
i it

z t z s dsδ τ
+∞

= =

− ≤ − −∑ ∑∫  (20) 

Namely, 
1 1

| ( ) | | ( ) | .
n n

i i i
i it

z t z s dsδ τ
+∞

= =

≥ −∑ ∑∫  Set 1 2min{ , , }nτ τ τ τ= ,  then 

for each iτ  we have it tτ τ− ≥ − , hence  

1 1 1

| ( ) | | ( ) | | ( ) |
n n n

i i i i
i i it t

z t z s ds z s ds
τ

δ τ δ
+∞ +∞

= = =−

≥ − ≥∑ ∑ ∑∫ ∫      
 

(21) 

Set
1

( ) | ( ) |
n

i
i

y t z t
=

=∑ , then ( ) 0y t ≥  and from (21) we get ( ) ( ) .
t

y t y s ds
τ

δ
+∞

−

≥ ∫   

Define a sequence as follows: 

0 1

( ) ( ) ( ) , ,

( ) ( ), ( )

( ) , .

k

t
k

k

t

y t y T s ds t T

t y t t

s ds t T

τ

τ

δ ξ
ξ ξ

δ ξ

+∞

−
+ +∞

−

⎧
− + ≤⎪

⎪= = ⎨
⎪ >⎪⎩

∫

∫
 

 

 

(22) 

 
 

For t T> by induction we can easily to see that 

0 1( ) ( ) ( ) 0.kt t tξ ξ ξ≥ ≥ ≥ ≥ ≥  Therefore, lim ( )k
k

tξ ξ
→∞

= exists, and ξ is an 

eventually positive bounded solution of the following equation: 

( ) ( ), .y t y t t Tδ τ′ = − − >  (23) 

Thus, the characteristic equation of (23) has a real root which is negative. 

From e λτλ δ −= − has a negative root, so that 0λ− > , then using formula of  

xe ex≥ , ( 0)x > , we obtain that 
( )

1
e e

e
λτδτ δτ λτ δτ

λτ λτ

− −= ≥ =
− −

, which 

contradicts assumption (15). The result follows. 
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4   Simulation Results 

Example 1.  Consider the following three-neuron system  
 

1 1 2 3

2 1 2 3

3 1 2 3

18 ( ) 0.2 ( ) 1.2 ( ) 0.5 (1 ) ,

2 ( ) 6.4 ( ) 0.1 ( ) 1.5 (1 ) ,

0.24 ( ) 6 ( ) 12 ( ) 2.5 (1 ).

x g x g x g x t t

x g x g x g x t t

x g x g x g x t t

′ = − + − + +⎧
⎪ ′ = − − + + +⎨
⎪ ′ = − + − + +⎩

 

 
 

(24) 

where  ( ) ( ( )), 1, 2,3.i i ig x g x t iτ= − =  Let ( ) 0.5 (| 1| | 1|).g x x x= × + − −  

For function ( ),g x we can select 1 2 3 1,β β β= = =  then 1 11 18,wβ = −  

2 22 6.4,wβ = −  3 33 12.wβ = −  
1,1 3

max( | |) 4.3.i ii j ijj j ii
w wβ β δ

= ≠≤ ≤
+ = − = −∑  

From (24), ( )0.5,  1.5,  2.5 .u = When we select 1 1,τ = 2 2,τ = 3 4,τ = and   

1 2 33, 6, 12,τ τ τ= = = respectively, the conditions of Theorem 2 are satisfied. 

System (24) generates oscillations (Fig.1A and Fig.1B).  
 

Example 2. Consider the following four-neuron system 

1 1 2 3 4 1

2 1 2 3 4 2

3 1 2 3 4 3

4 1 2 3 4 4

6.8 ( ) 0.2 ( ) 0.2 ( ) 0.5 ( ) ( )

2.4 ( ) 8.5 ( ) 0.2 ( ) 0.1 ( ) ( )

0.25 ( ) 0.3 ( ) 3.8 ( ) 1.2 ( ) ( )

1.6 ( ) 0.2 ( ) 0.2 ( ) 4.2 ( ) ( )

x g x g x f x f x u t

x g x g x f x f x u t

x g x g x f x f x u t

x g x g x f x f x u t

′ = − + − + +⎧
⎪ ′ = − + − +⎪
⎨ ′ = + − − +⎪
⎪ ′ = + − − +⎩

 

 

 

(25) 

 

 

Fig. 1A. Oscillation of the equilibrium point, u=(0.5, 1.5, 2.5), 
Solid line X1(t), dashed line: X2(t), dotted line: X3(t), delays: 1, 2, 4. 

 

Fig. 1B. Oscillation of the equilibrium point, u=(0.5, 1.5, 2.5), 
Solid line X1(t), dashed line: X2(t), dotted line: X3(t), delays: 3, 6, 12. 
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where ( ) arctan( ), ( ) tanh( ),g x x f x x= =  we can select 1 2 3 4β β β β= = =  

1,=  then the characteristic values of 4 4( )j ijB wβ ×= are 0.2020, -3.9043, -6.8447, 

-8.7530. It is known that a characteristic value 0.2020>0. When 1 2( ), ( ),u t u t 3( ),u t  

4 ( )u t are taken the values  and 
2 2 2 2 2 2 2 2(2 (1 ) , 4 (1 ) ,6 (1 ) , 4 (1 ))t t t t t t t t+ + + +  respectively, we select 

1 2 3 41, 2, 2, 1τ τ τ τ= = = = , the conditions of Theorem 1 are satisfied. System 

(25) generates oscillations (Fig.2A and Fig.2B). 

 

Fig. 2A. Oscillation of the second neuron output, 
u= (2, 0, 2, 0), delays: 1, 2, 2, 1. 

 

Fig. 2B. Oscillation of the second neuron output, 
u= (2, 4, 6, 5), delays: 1, 2, 2, 1. 

5   Conclusion 

This paper discusses the oscillatory behavior for a recurrent neural network with time 
delays between neural interconnections and time-varying input. By using continuous 
and monotone increasing activation function and continuous time-varying inputs, two 
criteria to guarantee oscillations of global output have been proposed.  
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