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Abstract. A Chaotic neural network model with Morlet wavelet function self-
feedback is proposed by introducing Morlet wavelet function into self-feedback 
of chaotic neural network. The analyses of the optimization mechanism of the 
networks suggest that Morlet wavelet function self-feedback affects the original 
Hopfield energy function in the manner of the sum of the multiplications of 
Morlet wavelet function to the state, avoiding the network being trapped into 
the local minima. The energy function is constructed, and the sufficient 
condition for the networks to achieve asymptotical stability is analyzed and is 
used to instruct the parameter set of the networks for solving traveling salesman 
problem (TSP). Simulation researches on 10-city TSP indicate that the proposed 
networks can find the optimal solutions of combinatorial optimization 
problems. 
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1   Introduction 

Chaotic neural networks (CNNs) can acquire the ability to escape from the local 
minima of the energy function by introducing chaotic search mechanism into the 
original Hopfield neural network (HNN) [1-7]. Different from external chaos, chaotic 
search mechanism in CNN is generated by the self-feedback item of CNN. Besides, 
CNN possesses abundant dynamics characteristics and can traverse every point of the 
system by chaotic search. However, CNN cannot be easy to converge to a point 
steadily. Hence, Chen and Aihara have proposed a transient chaotic neural network 
(TCNN) with chaotic simulated annealing (CSA) by introducing a linear self-feedback 
into the original HNN and reducing the self-feedback connection weight exponentially. 
It is ensured that the TCNN has transient chaotic search behavior and can converge to a 
point steadily. In addition, it overcomes the limitation of HNN which is not enough for 
the network to escape from the local minima. In the theory, Chen and Aihara have 
proven that the TCNN is asymptotical stability. This paper proposes a novel TCNN 
model with Morlet wavelet function self-feedback which has new characteristics 
different from linear self-feedback network. This paper analyzes the effect of energy 
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modifier item by Kwok unified framework theory, constructs energy function of the 
network, and further analyzes stability of the proposed network. The analysis of the 
energy function suggests that the proposed network model is asymptotical stability 
under the given conditions. The simulations of 10-city TSP suggest that the proposed 
chaotic neural network has a good optimal performance. 

2   TCNN With Morlet Wavelet Function Self-feedback 

The proposed TCNN with Morlet wavelet function self-feedback can be described as 
follows. 
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where ix is the output of neuron i ; iy is the internal state of neuron i ; ijw  is the 

connection weight from neuron j  to neuron i , ij jiw w= ; iI is an input bias of 

neuron i ; 0I  is a positive parameter; k  is a damping factor of nerve membrane 

( 0 1k< < ); iz  is the self-feedback connection weight; β  is the damping factor of iz . 

The single neuron of the proposed TCNN model can be described as follows: 

1
( )

1 exp( ( ) )
x t

y t ε
=

+ −
 (7)

0( 1) ( ) ( ) ( ( ), ( ), ( ) )y t ky t z t s t u t x t Iφ+ = − −  (8)

( 1) (1 ) ( )s t s tβ+ = −  (9)

( 1) 4 ( )(1 ( ))u t u t u t+ = −  (10)

( 1) (1 ) ( )z t z tβ+ = −  (11)

2( , , ) exp{ [( ) / ] / 2} cos[5( ) / ]s u x x u s x u sφ = − − ⋅ − ( 0, 1 1)s u> − < <  (12)

In order to make the neuron behave transient chaotic behavior, the parameters are set 
as follows: 
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=1/11ε = , (1)y =0.283, k =0.3, 0I =0.55, β =0.0005, (1)s =1.5, (1)u =0.5, (1)z =0.35 

The state bifurcation figures and the time evolution figures of the maximal Lyapunov 
exponent are respectively shown as Fig.1. 

 

Fig. 1. State bifurcation figure and the maximal Lyapunov exponents of the single neuron 

Seen from the above state bifurcation figures, the neuron behaves a transient 
chaotic dynamic behavior. The single neural unit first behaves the global chaotic 
search, and with the decrease of the value of iz , the reversed bifurcation gradually 

converges to a stable equilibrium state. After the chaotic dynamic behavior 
disappears, the dynamic behavior of the single neural unit is controlled by the 
gradient descent dynamics. When the behavior of the single neural unit is similar to 
that of Hopfield, the network tends to converge to a stable equilibrium point. 

3   Energy Function 

Analysis of the energy function is very important for the study of nonlinear dynamics 
systems, and through such an analysis, we can easily observe how the sigmoid 
function self-feedback affects the optimization performance of the proposed CNN. In 
this section, One is the unified framework theory that allows the construction and 
comparison of various models from the basic HNN by the introduction of an energy 
modifier. The other is Lyapunov stability analysis that we use to investigate the 
asymptotical stability of the proposed CNN model. Moreover, the unified framework 
theory is applied to construct the energy function for the Lyapunov stability analysis 
in this section. 
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3.1   Energy Modifier of CNN 

Based on the unified framework, the energy function can be described as follows: 

HopE E H= +  (13)
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Where HopE  is the energy function of HNN, H  is the energy modifier, the 

connection weight matrix W is symmetric, TW W=  and 0iiw = . For the proposed 

CNN model, the energy modifier can be described as 
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In the following, we apply the unified framework to verify (15) is the energy modifier 
of the proposed CNN: 
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Hopfied. Applying Euler discretization, (12) can be rewritten as 
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where tΔ  is the time step. If the following relationships are satisfied:  

1 tk τ
Δ= − ， tα = Δ ， 1

t
λ = Δ  (18)

Then (17) is equal to (2). Therefore, (17) is a reasonable energy modifier of the 
proposed CNN. 

Using the mean value theorem, (11) can be rewritten as 
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where 0 ( )i ix x t< < . As seen from (19), the equation form of the energy modifier is a 

linear combination of sigmoid function and states. 
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3.2   Asymptotical Stability 

In the following, a computational energy function of the proposed CNN is constructed 
by applying the unified framework theory [11] and is proven to be asymptotically 
stable by applying Lyapunov stability theory. 

Applying the unified framework discussed, the energy function can be described as  
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then, the energy function can be described as 
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where TW W= , 0iiw = . Before analyzing the asymptotical stability of the discrete 

system containing (1) and (2), (1) and (2) are first combined into one equation as 
follows [1]: 
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Applying the mean value theory, several equations can be described as follows: 
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where 2 2( )i i ii x t xη η θ Δ⎡ ⎤⎣ ⎦= + ， 20 1η≤ ≤ 。 
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The detailed analysis of the asymptotical stability is shown as follows: 
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Substituting (17) and (19)-(22) into ( ( 1)) ( ( ))E X t E X tα α+ − , we have 
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4   Application to 10-City TSP 

A solution of TSP with N cities is represented by N N× -permutation matrix, where 

each entry corresponds to the output of a neuron in a network with N N× lattice 

structure. Assume ijx to be the neuron output that represents city i in visiting order j . 

A computational energy function can be described as: 
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where 0 inix x= and , 1 1i n ix x+ = . 1W and 2W are the coupling parameters 

corresponding to the constraints and the cost function of the tour length, respectively. 

xyd is the distance between city x and city y . 

This paper adopts the following 10-city unitary coordinates: 
(0.4, 0.4439), ( 0.2439, 0.1463), ( 0.1707, 0.2293), ( 0.2293, 0.716), ( 0.5171, 

0.9414), (0.8732, 0.6536), (0.6878, 0.5219), ( 0.8488, 0.3609), ( 0.6683, 0.2536),  
( 0.6195, 0.2634). 

The shortest distance of the 10-city is 2.6776. 
The parameters of the network are set as follows: 

1W = 1, 2W = 1, k = 1, 0I = 0.75, (1)z = 0.1, ε = 0.2, α = 0.8, (1)u = 0.5, 

(1)s = 1.8. 

Table 1. Results of 1000 different initial conditions for each value β  on 10-city TSP 

β  RGM(%) RLM(%) RIS(%) AIC 

0.01 68.9 31.1 0.0 86 

0.005 76.9 23.1 0.0 126 

0.004 80.0 20.0 0.0 147 

0.003 84.9 15.1 0.0 172 

0.002 89.8 10.2 0.0 212 

0.001 100 0.0 0.0 252 

0.0009 96.9 3.1 0.0 282 

0.0008 96.4 3.6 0.0 299 

0.0007 95.9 4.1 0.0 317 

0.0006 95.5 4.5 0.0 352 

0.0005 94.5 5.5 0.0 420 

0.0004 89.7 10.3 0.0 564 
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1000 different initial conditions of iy are generated randomly in the region [0, 1] for 

different β . The results are summarized in Table1, the column ‘RGM’, ‘RLM’, ‘RIS’ 

and ‘AIC’ respectively represents the rate of global minima, the rate of local minima, 
the rate of infeasible solutions and average iterations for convergence. 

As seen from Table1, the CNN with sigmoid function self-feedback can solve the  
10-city TSP effectively and find the global optimal solution with 1000 different initial 

conditions when β  is 0.008. With the increase of the value of β  when 0.008β > , 
 the value of ‘RGM’ becomes small although it has a better constringency speed. At the 
same time, with the decrease of the value of β  when 0.008β < , the value of ‘ 
AIC’ becomes large although it has a better optimization effect. 

5   Conclusion 

The proposed CNN with sigmoid function self-feedback can acquire the ability to 
enhance the optimization and avoid trapping into local minimum. The analysis of the 
energy function of the proposed CNN with sigmoid function self-feedback indicates 
that there exists an energy modifier affecting the localized characterization ability of 
the proposed CNN. In addition, the stability analysis suggests that the proposed CNN 
with sigmoid function self-feedback can achieve asymptotical stability. The 
simulations on continuous function optimization problems and TSP indicate that  
the sigmoid function self-feedback has a better optimization ability. 
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