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Abstract. Gene association plays important roles in complex genetic
pathology of cancer. However, development of methods for finding cancer-
related gene associations is still in its infancy. Based on a biological con-
cept of gene association module (GAM) comprising a center gene and its
expression-related genes, this paper proposes a gene association detec-
tion model called kernel GAM (kGAM). In the model, we assume that
the expression of the center gene can be predicted by the expression-
related genes. Based on defining a cost function, a kernel ridge regression
algorithm is developed to solve the kGAM model. Finally, to identify a
compact GAM for a given center gene, a heuristic search procedure is de-
signed. Experimental results on three publicly available gene expression
data sets show the effectiveness and efficiency of the proposed kGAM
model in identifying cancer-related gene association patterns.
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1 Introduction

Genes in a cell working together and functioning in a coordinated manner plays
an important role in the generation of cellular phenotypes and fine coordination
between gene activities is essential for the formation of a signaling pathway
[12,17]. These coordinated activities are manifested in the form of correlated
expression levels of genes [2,3]. Therefore, it is critical and necessary to detect
and utilize gene associations to understand complex genetic diseases. Another
motivation of this work is that, although the large volume of gene expression data
have been accumulated and are available online, it is still difficult and challenging
to mine biological knowledge from these data in terms of methodology [10].
Generally, there are two main challenges in analyzing gene expression data: the
complexity of invisible biological systems and the non-typical features of gene
expression data including high noise, high-dimensionality but small sample size.
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Many studies on various model systems have suggested that a gene can be
combinatorially regulated by a relatively small number of transcription factors
simultaneously or under different conditions, leading to strikingly complex pat-
terns of gene expression. From these findings, we abstract a gene association
structure, named gene association module (GAM), which consists of a center
gene and its associated (unnecessarily regulating or regulated) elements (genes).
In the GAM, the links, only appearing between the center gene and its associated
genes, represent the influence of the associated elements on the center gene. As
a hub topology, the GAM has been found to be universal in biological systems
due to its robustness and sparseness for signal transduction [13,4,6].

In this paper, based on the GAM structure, we develop a kernel GAM model
(kGAM) for detecting cancer-related complex gene associations. In the model,
the main idea is to use the associated genes to regress the expression of the center
gene. To characterize the model, a cost function is defined as the regression error.
The cost function allows determining the structural parameters of the kGAM and
potentially provides a way to use kGAMs to classify cancer. To find a compact
GAM for a given center gene, a heuristic compact-kGAM searching procedure
is developed based on the cost function.

In experimental section, we collect three publicly available real-world gene
expression data sets, binary or multi-class, to evaluate the performance of the
proposed method in detecting gene association patterns. To evaluate the cancer
classification performance of the proposed model, we also implement and apply
several previous classification methods including Fisher discriminant analysis
(FDA), K nearest neighbor(KNN), support vector machines with linear kernel
(linear-SVM) and radial basis function kernel (rbf-SVM) to these data sets, and
their classification accuracies are compared with those of our model.

2 Methods

2.1 kernel Gene Association Model

Considering a gene association structure composed of a center gene g and p
associated elements (genes), we assume that the expression of the center gene
can be predicted by the associated genes. Let y denote the expression level of
gene g and x = [x1, x2, · · · , xp] the expression levels of the p associated genes,
such kind of gene association structure can be linearly modeled as:{

ŷ = f(x) = AxT + b
y = ŷ + ε

(1)

where A = [a1, a2, · · · , ap], b is a constant and ε ∼ N(0, 1). The element ai

measures the association of gene i on the center gene g, and its positive value
denotes an expression promotion on gene g while its negative value denotes an
expression repression.

For such a structure, we define a cost function E as

E =
1
2
(ŷ − y)2 =

1
2
(ĀP̄ )2 (2)
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where Ā = [A,−1, 1] is referred to as an extended association coefficient vector
and P̄ = [x1, x2, · · · , xp, y, b] as an extended expression profile. From Eq.2, the
cost function is dependent on the internal relationship of the structure. Given an
expression profile sample, only when the association pattern implicity embedded
in it, instead of the explicit gene expression values, agrees with the internal
relationship will the value of the cost function approach zero. This agrees with
the fact that the coordination between the genes, rather than the expression
values themselves, plays a crucial role in determining gene activity, and the cost
function reflects the level of this activity.

The complexity of biological systems suggests that gene associations may
not proceed in a linear manner. We introduce a nonlinear kernel function to
approximate the expression value y of the center center in Eq.1, and the resulting
gene association structure is referred to as the kernel gene association model
(kGAM). The kernel function is constructed as follows. We first consider such a
kind of nonlinear transformation

Φ(x) = [φ1(xTe1), φ2(xTe2), · · · , φp(xT ep)]T , (3)

where φi, i=1, 2, · · · , p represents a nonlinear function, ei = [eij ; i, j=1, 2, · · · , p]T

and eij =
{

1 i = j
0 i �= j

. We use the sigmoid function and form φi as

φi(x) =
(
1 + exp(−β(xi−μi

σi
)2)

)−1

, i = 1, 2, · · · , p (4)

where μi and σi are the location and width parameters, respectively, which can
be estimated as the mean and standard deviation of gene expression levels, and
β ∈ (0, 1] is a constant. As a result, by combining Eqs.3 and 4, we construct the
kernel function as:

κ(x, z) =
p∑

i=1

(Logsig(β, xi)Logsig(β, zi)) (5)

The parameter β is referred to as the kernel parameter, which controls the ap-
proximation to gene associations.

To efficiently solve the above gene association model, we introduced a ridge
parameter 0 < λ < 1 to impose a sparsity constraint on the values of the asso-
ciation coefficients. The ridge parameter controls the relative trade-off between
the sparsity constraint and data approximation fidelity, and a proper value of
it will compensate for the information insufficiency so that an effective solution
can be found. For the kGAM model, we use the kernel ridge regression technique
[14,7] to solve its parameter, A, and the kernel parameter β is optimally chosen
by varying its value among (0,1).

2.2 kGAM-Based Cancer Classification and the Searching of a
Compact kGAM

As described above, the cost function in Eq.2 reflects the association information
encapsulated in a kGAM, and will approach zero when the expression profile of a
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sample agrees with the internal relationship of the kGAM. This property can be
used to design a association-based cancer classification rule as follows. Consider
C sample classes, and for each class, with the center gene g and its p associated
genes, a kGAM model, Hi, i = 1, 2, · · · , C, has been built, respectively. For a
given test sample t, we predict its class to be

c = arg min
i
{Ei(t)} (6)

where Ei are the cost functions associated to kGAMs Hi.
There is little or no knowledge about how many genes known truly correlated

to a given center gene. To find a compact kGAM for a given center gene from
a gene pool, we present a heuristic searching procedure. Simply speaking, the
procedure begins with, and iteratively searches and attaches the element most
associated with the center gene to the list of associated genes. Because gene
networks tend to be sparse and only a small group of genes are involved in a
particular biological process, the search procedure would converge within a small
number of steps, and has a low computational cost.

3 Experimental Results

To evaluate the proposed approach, we collected three publicly available gene
expression data sets, two binary datasets, Golub data [9], Singh data [16], and
one multi-class dataset, Armstrong data [1]. The three data sets each have a
standard training/test split [9,16,1]: For the Golub data, the training and test
sets contain 38 and 34 samples, respectively; 102 and 34 samples for the Singh
data; and 77 and 15 samples for the Armstrong data.

We analyzed the three data sets based on the standard splits: the training sets
are used to detect significant kGAMs and construct classifiers, and the test sets
are used for validation. In order to avoid the influence of noisy genes to cancer
classification, only 200 genes, with the highest signal-to-noise ratio (SNR) [9] for
the binary datasets or the highest variance between samples for the multi-class
data set, were used for performance evaluation in our experiments. For each
dataset, we tried the 50 genes with the highest SNR/variance values as center
genes to search for significant kGAMs for cancer classification.

3.1 Detection of kGAMs for the Three Data Sets

The association coefficients capsulated in a kGAM reflect the gene association
patterns in cancer classes. Fig. 1 shows the association coefficients in three
kGAMs with “Human common acute lymphoblastic leukemia antigen (CALLA)”
being the center gene, for the three classes of the Armstrong data set. Note that,
to highlight significant association differences, the three kGAMs are simplified
by trimming the association coefficients less than 5% of the maximal values to
0. A number of studies have shown that the CALLA gene plays a potential role
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as a functional neutral endopeptidase in both normal and malignant lymphoid
function. In particular, the gene associates with a number of small secreted pep-
tides whose abnormal misfolding and aggregation may be a cause of a number
of diseases [15]. As shown in Fig. 1, the three kGAMs identified suggest that the
gene is differently regulated in the three leukemia cancer classes. For the three
kGAMs, the TOP2B gene with Accession no. 36571 at is most closely associated
with the CALLA gene. The TOP2B gene encodes a DNA topoisomerase, which
can control and alter the topological states of DNA during transcription [5].
The three kGAMs disclose that the TOP2B gene represses the expression of the
CALLA gene in all the three leukemia classes, as shown in Fig. 1. Some associ-
ated genes exhibit remarkably different effects on the CALLA gene in the three
leukemia classes. For example, the gene with Accession no. 40797 at, known as
ADAM10, promotes the expression of the CALLA gene in Class 2 while represses
in Class 3; the gene with Accession no. 1602 at, known as PRKCI (Protein kinase
C, iota), promotes the expression of the CALLA gene in Classes 1 and 2 while no
significant impact occurs in Class 3. The PRKCI gene has been found to control
the dynamics of microtubules within the early secretory pathway [8], and the
ADAM10 gene to encode a sheddase, which performs cleaving of the membrane
proteins and plays a role in a number of peptide hydrolysis reactions [18].
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Fig. 1. Association patterns (maximum of the association coefficients is 9) captured
in a kGAM model for the three cancer classes of the Armstrong data. The red lines
represent negative expression association, the green lines represent positive expression
association, and the length of lines represent the association strength. These associated
genes have significantly different effects on the hub gene CALLA in the three cancer
classes, and these differences in turn determine the characteristics of the three classes.
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A kGAM encapsulates a stable association pattern common to a particular
cancer class, and its cost function measures how a sample disagree with the class
in association patterns. For samples belonging to the class, the values of the cost
function will remain low due to the similar association pattern. To illustrate
this property, Fig.2 shows the distribution of the cost values of the three classes
for the Armstrong data set. From this figure, it can be seen that most of the
samples in each class have a low cost value (less than 10−4) according to the
corresponding cost functions.
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Fig. 2. Distribution of the cost values of the kGAMs found for the three cancer classes
of the Armstrong data. The red doted lines are the fitting curves with 4-degree poly-
nomial function. PD is short for probability density.

3.2 Evaluation of the Classification Performance of the kGAM
Model

To further show the power of the kGAM model in capturing gene association pat-
terns, we applied the kGAMs identified above to classify cancer according to the
kGAM classification rule. Table 1 summarizes the classification accuracies on the
test sets by three kGAMs for each of the three data sets. For comparison, based
on the same genes as the three kGAMs contained, several conventional meth-
ods were implemented to classify the three data sets, which include two support
vector machines (SVMs) with linear (linear-SVM) and radial basis function (rbf-
SVM) kernels (http://sourceforge.net/projects/svm/), k(k=3))-nearest neighbor
(KNN) and Fisher linear discriminant (FLD). The regularization parameter of
the linear-SVM was optimally chosen from the range {212, 211, · · · , 2−1, 2−2},
and the two parameters of the rbf-SVM, regularization factor and kernel width,
were optimized based on a two-dimensional grid search technique within the
ranges, {212, 211, · · · , 2−1, 2−2} and {24, 23, · · · , 2−9, 2−10}. For the multi-class
problem, the voting strategy [11] is used along with these previous methods to
make optimal classification decision. The results by the conventional methods
are compared with ours in Table 1. From Table 1, it can be seen that our kGAM
models achieve much better classification accuracies than the other methods,
irrespective of the binary problems or the multi-class problem.
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Table 1. Comparison of classification accuracies between our kGAM model and several
conventional methods for the Golub (binary), Singh (binary) and Armstrong (3-class)
data

Datasets Methods kGAM I kGAM II kGAM III

Golub data kGAM model 1 1 0.97
rbf-SVM 0.94 0.97 0.94
linear-SVM 0.91 0.97 0.88
KNN 0.94 0.88 0.85
FLD 0.88 0.88 0.85

Singh data kGAM model 1 0.97 1
rbf-SVM 0.94 0.91 0.91
linear-SVM 0.91 0.76 0.91
KNN 0.91 0.87 0.97
FLD 0.38 0.60 0.48

Armstrong data kGAM model 1 1 0.93
rbf-SVM 0.93 0.86 0.80
linear-SVM 0.73 0.60 0.73
KNN 0.87 0.80 0.80
FLD 0.67 0.53 0.47

4 Conclusion

We have proposed a model (kGAM) for detecting cancer-related gene associa-
tions. The model can flexibly approximate complex association patterns between
genes and overcome the problem of small sample in microarray data analysis.
The proposed approach was evaluated on three publicly available microarray
data sets. The experimental results show the effectiveness and efficiency of the
proposed approach in both capturing gene associations. Future work will fo-
cus on the optimal construction of the kGAM model and applications on more
real-world microarray data sets.
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