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Abstract. Mycobacterium tuberculosis is a pathogenic bacterium that
poses serious threat to human health. Inference of the protein interac-
tions of M. tuberculosis will provide cues to understand the biological
processes in this pathogen. In this paper, we constructed an integrated
M. tuberculosis H37Rv protein interaction network by machine learning
and ortholog-based methods. Firstly, we developed a support vector ma-
chine (SVM) method to infer the protein interactions by gene sequence
information. We tested our predictors in Escherichia coli and mapped
the genetic codon features underlying protein interactions to M. tuber-
culosis. Moreover, the documented interactions of other 14 species were
mapped to the proteome of M. tuberculosis by the interolog method. The
ensemble protein interactions were then validated by various functional
linkages i.e., gene coexpression, evolutionary relationship and functional
similarity, extracted from heterogeneous data sources.

1 Introduction

M. tuberculosis is the causative agent that causes tuberculosis and leads to lesions
in lungs and other organs. Tuberculosis is the second leading cause of death in
infectious diseases. An extensive protein-protein interaction (PPI) network of M.
tuberculosis can lead to more comprehensive screens of its cellular operations. To
date, genome-wide experimental and computational systems for studying PPIs in
M. tuberculosis is not available [1]. It is urgently necessary to develop approaches
capable of converting available genomic data into functional information for
M. tuberculosis. E. coli is one of the best model systems to study bacterial
physiology, with well-characterized interactome, genome and transcriptome [2].
Interaction features can be learned by machine learning methods, such as support
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vector machines (SVMs) [3], and also it is common to predict protein interactions
from known interactions of other organisms by interolog method [4].

Genetic information in the form of codons, i.e. tri-nucleotide sequences, spec-
ifies amino acid sequence in the polypeptide during the synthesis of proteins. It
is well known that codon usage is correlated with expression level [5]. Genetic
codons will be selected as the sequence features in the learning of interaction
patterns. Moreover, the corresponding orthologs of interacting proteins in other
organisms will provide more information about the potential interaction map-
pings by comparative genomics.

In this work, we developed a systematic method combining heterogeneous data
sources to infer a comprehensive protein interaction network in M. tuberculosis.
The codon features of interacting protein pairs are detected and used to train
an SVM classifier. Moreover, the interactions from other 14 species are mapped
to M. tuberculosis by the interolog method. The available data from multiple
levels including gene coexpression and evolutionary relationship to functional
similarity are implemented to assess these predicted interactions by confidence
significance. The predicted protein interaction network as well as the proposed
method provide a framework for the functional specificities study of M. tubercu-
losis.

2 Methods

2.1 Framework of Prediction

The protein interactions were predicted by two main pipelines. Firstly, we built
the protein interaction network of M. tuberculosis from codon features of inter-
acting proteins in E. coli by machine learning approach. The integrated interac-
tion maps and gene sequences of E. coli were retrieved from EcID [2]. The ORFs
of M. tuberculosis were derived from the laboratory strain H37Rv. We used the
information of protein interaction network of E. coli to train an SVM classifier
to get the genetic codon features underlying the interacting pairs. The interac-
tions in M. tuberculosis were then predicted by the trained SVM predictor with
the genetic codons of ORFs in gene sequences of M. tuberculosis. Secondly, we
inferred the protein interactions of M. tuberculosis by interolog method from the
documented protein interactions in 14 species. We collected these interactions
from IntAct [6] and DIP [7] and the M. tuberculosis orthologs of these interologs
were identified by BLAST [8]. The homologs of two interacting proteins will be
identified as the predicted interactors. As for the validation of predicted results,
we tested our method in E. coli. Three pieces of available information of M. tu-
berculosis, i.e., gene expression profiling, evolutionary relationship from ortholog
database and functional similarity, were used to evaluate the prediction results.

2.2 Validation from Multiple Resources

We implemented multiple available resources to access the constructed PPI
network in M. tuberculosis. The confidence of interactions was evaluated by
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three extra data sources, namely, gene expression, evolutionary relationship and
functional similarity. Firstly, we identified the Pearson correlation coefficients
(PCC) of gene coexpression of pairwise proteins in the predicted network. We
downloaded the gene expression data of M. tuberculosis from NCBI GEO (ID:
GSE9776). Secondly, we presented the evaluation of evolutionary relationship be-
tween the predicted interacting proteins. Clusters of orthologous groups (COGs)
were delineated by comparing protein sequences encoded in complete genomes,
representing major phylogenetic lineages. Each COG consists of individual pro-
teins or groups paralogs from at least 3 lineages and thus corresponds to an
ancient conserved domain. The maximum of COG value between two groups in
which the interacting proteins located were regarded as the value representing
their evolutionary relationship. Thirdly, Gene Ontology (GO) similarity between
the predicted pairs were identified to evaluate their functional relationship. We
used semantic similarity measures [9] to evaluate the similarity of GO term lists
corresponding to the interacting proteins.

3 Results

3.1 Performance of Predictor

E. coli is one of the best characterized organisms and has been served as a
model system to study many aspects of bacterial physiology [2]. The positive
and negative sets of protein interactions in E. coli were designed to test the
performance of our codon-based prediction methods. The genome and proteome
of E. coli were downloaded and prepared for the interacting sets as well as all
known opening reading frames (ORFs). The distance of two ORFs in terms of
usage of codon c is defined as dij(c) = |fi(c) − fj(c)|, where fi(c) and fj(c)
are relative frequencies of codon c in ORF i and ORF j. By codon definition,∑

k fi(ck) = 1 and
∑

k fj(ck) = 1 for k = 1, 2, ..., 64 in all codons. There are
14058 pairs of interactions and 27882 pairs of non-interactions in 4227 proteins
of E. coli. A five-fold cross validation process is implemented in these pairs.
Figure 1 shows the performance of prediction results by the SVM predictor
using genetic codon features. There are several codons corresponding to the same
amino acid in genetic code. The prediction performance of merging the frequency
of these degenerate codons (‘codon-mer’) is also shown in Figure 1. The details
of prediction precision and accuracy are listed in Table 1. The results provide
evidences for the effectiveness and efficiency of predicting protein interactions
from the genetic codons by machine learning method.

Table 1. Prediction performances of the codon-based SVM predictor in E. coli.

Feature ACC SN SP PRE AUC

Codon 0.9003 0.7576 0.9486 0.8327 0.9507
Codon-mer 0.9595 0.8986 0.9801 0.9386 0.9835
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Fig. 1. ROC curves of the five-fold cross validation predictions in E. coli.

3.2 Protein Interactions in M. tuberculosis

To explore protein interactions in M. tuberculosis, we used the formerly trained
SVM classifier to infer the interactions of M. tuberculosis by the codon message
of ORFs in gene sequence level. Based on the genetic codons of M. tuberculo-
sis H37Rv, we predicted 12,899 interactions in 3,266 proteins. Furthermore, the
known protein interactions of other species were mapped to the proteome of M.
tuberculosis by interolog method. We collected the documented interactions of 14
species from PPI databases, IntAct and DIP, and the sequence features of inter-
acting proteins were transferred into the M. tuberculosis proteome by ortholog
detection. Table 2 lists the detailed prediction results by interolog method. The
known protein interactions were also included in our inferred interactome of M.
tuberculosis. So far, we also found 530 pairs of protein interactions of M. tubercu-
losis from various databases, such as BIND [10] and Reactome [11]. Combining
with these known interactions, we built a comprehensive protein interaction map
totally with 46,119 interactions of 3,465 proteins in M. tuberculosis.

3.3 Validation Results

Protein interacting pairs are identified with close relationship with gene coex-
pression, coevolution, similar GO annotations. To every predicted interacting
pairs of M. tuberculosis, we collected these available heterogeneous data sources
to annotate them. Firstly, we annotated the predicted pairs by their correspond-
ing PCC of gene coexpression. For comparison, we calculated the corresponding
correlation values of these same-size random selected protein pairs. Every pre-
diction was then annotated by a coexpression value in gene expression profiling.
Figure 2 (a) shows the boxplot of coexpression values in the predictions. From
Figure 2, we identified that the coexpression values in the predicted interacting
pairs tend to be more correlated when compared to that of random selected ones.
Secondly, we identified the evolutionary relationship of the interacting proteins
by COG information. The interacting proteins were detected in their own COG
individually. Figure 2 (b) shows the boxplot of evolutionary relationship values in
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Table 2. Details of predicted protein interactions in M. tuberculosis

Species Database Original PPI Predicted PPI Percentage (%)
By machine Learning
E. coli ECID 14,058(positive)+ 12,899 27.97

27,882(negative)
By interolog
Escherichia coli IntAct 14,158 16,468 35.71
Campylobacter jejuni IntAct 11,870 7,674 16.64
Treponema pallidum IntAct 3,744 324 0.70
Synechocystis IntAct 2,625 2,481 5.38
Myxococcus xanthus IntAct 384 253 0.55
Synechocystis sp. IntAct 219 220 0.48
Rickettsia sibirica IntAct 282 24 0.05
Streptococcus pneumoniae IntAct 193 47 0.10
Drosophila melanogaster DIP 22,650 1,558 3.38
Saccharomyces cerevisiae DIP 21,769 2,701 5.86
Caenorhabditis elegans DIP 3,979 229 0.50
Homo sapiens DIP 1,485 84 0.18
Mus musculus DIP 287 36 0.06
Rattus norvegicus DIP 69 2 0.15
Total: 46,119 interactions in 3,465 proteins (with 530 known PPIs)

the predicted interacting pairs and that of the same-size random selected protein
pairs. Every predicted interaction gets a confidence of evolutionary relationship.
Thirdly, we calculated the functional similarities underlying these predicted in-
teractions. We detected the semantic similarity between the GO term pairs of
interacting proteins. The boxplots of the three values of GO similarities, i.e., cel-
lular component (‘CC’), molecular function (‘MF’) and biological process (‘BP’),
in random pairwise proteins and that in predicted pairs are shown in Figure 2
(c), (d) and (e), respectively. The predicted interactions have higher functional
similarity than random ones, which further provides evidence for the accuracy
of our results.
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Fig. 2. Boxplot of coexpression (a), coevoluation (b) and cofunction values (c)–(e) of
the predicted interactions and that of the same-size random selected protein pairs
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4 Conclusion

In conclusion, we established a novel framework to integrate genomic data to
infer PPIs in M. tuberculosis. We predicted the protein interactions in M. tu-
berculosis by an SVM based classifier by genetic codons. And the documented
protein interactions from various species were also mapped to the proteome of
M. tuberculosis by interolog method. The information from gene expression, evo-
lutionary and functional relationship provided reliable measures of evaluation of
our predictions. Our framework can easily be extended to infer the large-scale
protein interactions in other species. These predicted interactions provide a valu-
able reference of interactome for M. tuberculosis research. The PPIs are available
at: http://www.aporc.org/doc/wiki/MTBPPI.
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