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Abstract. Evolutionary algorithms generally require a large number of objec-
tive function evaluations which can be costly in practice. These evaluations can
be replaced by evaluations of a cheaper meta-model of the objective functions. In
this paper we describe a multiobjective memetic algorithm utilizing local distance
based meta-models. This algorithm is evaluated and compared to standard mul-
tiobjective evolutionary algorithms as well as a similar algorithm with a global
meta-model. The number of objective function evaluations is considered, and also
the conditions under which the algorithm actually helps to reduce the time needed
to find a solution are analyzed.
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1 Introduction

Many real life optimization tasks require optimizing multiple conflicting objectives at
once. It has been shown and widely accepted that multiobjective evolutionary algo-
rithms (MOEA) are among the best methods for multiobjective optimization. In the
past years several multiobjective evolutionary algorithms [3,12,1] were proposed and
used to deal with these problems. However, most of them require lots of evaluations
of each objective function, which makes them problematic to use for solving real life
problems. These problems may have complex objective functions whose evaluations
are expensive (either in terms of time or money).

The use of the meta-models aims at lowering the number of objective function eval-
uations which are needed to obtain the final solution. The meta-model is a simplified
and cheaper approximation of the real objective function. Meta-models can be used in
several ways to augment the multiobjective evolutionary algorithms. In one of the first
approaches [10] its authors used the NSGA-II [3] and replaced the objective functions
with their meta-models. In [7] and [8] authors describe an aggregate meta-model based
on various SVM architectures. Although the memetic variant is also possible in mul-
tiobjective setting, only a few references were found in the literature which deal with
meta-model assisted multiobjective memetic algorithms [5].

The paper is organized as follows: In the next section 2. The tests and their results
are described in sections 3 and 4. Section 5 concludes the paper and provides ideas for
future research.
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2 Algorithm Description

In one of our previous papers [9] we proposed a multiobjective memetic algorithm with
aggregate meta-model (ASM-MOMA). This algorithm was able to reduce the number
of required evaluations of the objective functions by the factor of 5 to 10 on most prob-
lems. ASM-MOMA uses a single global meta-model trained after each generation as a
fitness function during the local search.

In this paper, we propose a new variant of ASM-MOMA with local models instead of
a single global one. We call this variant LAMM-MMA. The main difference between
LAMM-MMA and other multiobjective evolutionary algorithms is the addition of a
special memetic operator, which performs local search on some of the newly generated
individuals (the generation of the new individuals is handled by the respective MOEA
to which is this operator added). The operator uses the meta-model constructed based
on previously evaluated points in the decision space, for which the values of objective
functions are known. The meta-model is trained to predict the distance to the currently
known Pareto front. Moreover, as an addition to ASM-MOMA, in LAMM-MMA the
points do not not have the same weight, as those that are closer to the locally optimized
one are considered more important during the model building phase, see Equation 1 for
details.

The main idea is that points closer to the known Pareto front are more interesting
during the run of the algorithm and the memetic operator moves the individuals closer
to the Pareto front. The purpose of the meta-model is not to precisely predict the value
but rather provide a general direction in which the memetic search should proceed. To
obtain a training set for the meta-models we also added an external archive of individ-
uals with known objective values. This archive is updated after each generation when
new individuals are added and at the same time the archive is truncated to ensure it
does not grow indefinitely – random individuals are removed to match the limit on the
number of individuals, see [9] for analysis of this approach.

The following sections detail the important parts of the algorithm. The main loop is
essentially a generic MOEA with added memetic operator. We train a dedicated model
for each individual I which shall be locally optimized by the memetic operator. For
such an individual I we create a weighted training set

TI =
{
〈(xi, yi), wi〉|yi = −d(xi, P ), wi =

1
1 + λd(xi, I)

}
(1)

where d(x, y) is the Euclidean distance of individuals x and y in the decision space,
P is the set of non-dominated individuals in the archive and d(x, P ) is the distance of
individual x to the closest point in the set P . λ is a parameter which controls the locality
of the model, larger values of λ lead to more local model, whereas lower values lead to
more global one.

The points which are closer to the individual I are more important during the training
of the model. This distance weighting adds some locality to the models trained for each
individual. The training set is constructed in such a way, that for the individuals closer to
the currently known Pareto front the meta-model should return larger values. This fact
is used during the local search phase (which uses the meta-model as a fitness function).
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Table 1. Times needed for training and evaluation of selected meta-models, in seconds

Model Training (Tt) Evaluation (Tm)

Linear regression 0.142 8.46 × 10−7

Support vector regression 0.328 7.14 × 10−7

Multilayer perceptron 3.75 1.80 × 10−5

In the local search phase we use another evolutionary algorithm (this time it is only
a single objective one) to find better points in the surroundings of each individual. The
algorithm runs only for a few generations and it uses only meta-model evaluations. The
newly found individuals are placed back to the population. During the initialization
of the local search the individual which should be optimized is inserted in the initial
population and its variables are perturbed to create the rest of the initial population.

The algorithm uses quite large number of meta-model evaluations and even trainings.
This might lead to significant overhead. To find out how large this overhead is, we run
a few benchmarks (archive size/training set size of 400 individuals, Intel Core i7 920
(2.87Ghz) processor and 6GB RAM). Table 2 shows the results. We can see that the
evaluations are faster than the training by several orders of magnitude and that each
training takes only a fraction of a second. Even if there are 100 trainings per generation,
it would mean an overhead of roughly 15 to 30 seconds per generation, which still might
be faster than a single evaluation of the real objective function. Therefore the overhead
of the training and evaluation is easily compensated by the reduced evaluations of the
objective functions.

3 Test Setup

We tested our approach on the widely used ZDT [11] benchmark problems. These prob-
lems are all two dimensional, and we used 15 variables for each of them. In the local
search phase we used various meta-models: namely multilayer perceptron, support vec-
tor regression, and linear regression. All the models use default parameters from the
Weka framework [6] (which we used to run the experiments).

Table 2. Parameters of the multiobjective algorithm

Parameter MOEA value Local search value

Stopping criterion 50,000 objective evaluations 30 generations
Population size 50 50

Crossover operator SBX SBX
Crossover probability 0.8 0.8

Mutation operator Polynomial Polynomial
Mutation probability 0.1 0.2

Archive size 400 –
Memetic operator probability 0.25 –

Meta-model locality parameter λ – 1
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See Table 2 for the parameters of the main multiobjective algorithm and the internal
single-objective algorithm.

As the base multiobjective evolutionary algorithm we used the NSGA-II and ε-IBEA
with Simulated Binary Crossover [2] and Polynomial Mutation [4]. In the local search
phase we used a simple single objective evolutionary algorithm with the same operators
and the meta model as the fitness function.

To compare the results we use a measure we call Hratio, it is defined as the Hratio =
Hreal

Hoptimal
, where Hreal is the hypervolume of the dominated space attained by the al-

gorithm and Hoptimal is the hypervolume of the real Pareto set of the solutions. As the
Pareto set is known for all the ZDT problems, we can compute this number directly.
We use the vector 2 = (2, 2) as the reference point in the hypervolume computation.
All points that do not dominate the reference point are excluded from the hypervolume
computation. We compare the median number of function evaluations needed to attain
the Hratio of 0.5, 0.75, 0.9, 0.95, and 0.99 respectively.

4 Results

Table 3 shows the results of our algorithm compared to original ε-IBEA and ASM-
MOMA. IBEA denotes the original ε-IBEA. LR, SVM, and MLP stands for the model
used: linear regression, support vector regression and multilayer perceptron respec-
tively. G denotes the single global model of ASM-MOMA and L stands for the local
models as described in this paper.

The numbers in the table represent the median number of objective function evalu-
ations needed to reach the specified Hratio value. Twenty runs for each configuration
were made.

From the results, we can see that the global models generally significantly decrease
the number of required function evaluations, and the local models are even better than
the global ones. Generally, linear regression gives better results than support vector
regression and multilayer perceptrons. It probably creates simpler models which indi-
cate the right general direction in which the local search should proceed. Moreover, we
can see that the results of local models are almost always better than those of a sin-
gle global model, thus we recommend using the faster models, i.e. linear regression or
support vector regression instead of multilayer perceptrons.

On ZDT1 the global model was able to reduce the number of function evaluations
to reach the Hratio = 0.95 by a factor of 6.8 (LR) and the local model reduced it
further, yielding the reduction factor of 7.3 for LR and even 7.7 with the SVM. For
the Hratio = 0.99 the reductions are not that large, but we can still see the number
decreased by the factor of almost 4. In this case, local models did not improve the
result.

On ZDT2 the results improved largely even for the Hratio = 0.99. ASM-MOMA
reduced the required number of objective function evaluations 8.4 times (SVM), while
LAMM-MMA was able to reduce it almost 9 times with the same model and 9.6 times
with the LR as the model.

Reaching the Hratio = 0.99 was a problem for the original ε-IBEA on ZDT3, but
both ASM-MOMA and LAMM-MMA were much more successful, both reducing the
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Table 3. Median number of function evaluations needed to reach the specified Hratio on ZDT1
test problem

ZDT1 ZDT2
Hratio 0.5 0.75 0.9 0.95 0.99 0.5 0.75 0.9 0.95 0.99

IBEA 7400 13750 18200 20000 25550 750 2050 5150 7800 13000
IBEA-LR-G 1450 2500 2800 2950 7450 350 550 750 900 1650
IBEA-SVM-G 1400 2050 2700 3100 6850 350 550 850 1050 1550
IBEA-MLP-G 1800 2550 4000 4600 10100 450 650 950 1200 2700
IBEA-LR-L 1300 1900 2400 2750 7500 300 500 700 850 1350
IBEA-SVM-L 1350 1900 2350 2600 7100 350 550 800 1000 1450
IBEA-MLP-L 1400 1850 2450 3250 9650 350 550 750 900 1400

ZDT3 ZDT6
Hratio 0.5 0.75 0.9 0.95 0.99 0.5 0.75 0.9 0.95 0.99

IBEA 650 1550 5400 8150 33350 10300 13650 18400 23150 34050
IBEA-LR-G 350 550 850 950 1300 3050 6500 13400 17600 32100
IBEA-SVM-G 350 550 850 1000 1300 3000 7250 14100 19250 34150
IBEA-MLP-G 450 800 1100 1250 1800 3500 7250 13250 18900 32450
IBEA-LR-L 350 450 750 900 1300 3050 6850 13050 18750 31400
IBEA-SVM-L 400 650 850 1050 1450 3000 6500 12650 17850 32550
IBEA-MLP-L 400 650 950 1150 1600 3400 7050 13300 18200 32950

number of evaluations over 25 times. For the Hratio = 0.95 (which is not that difficult
for ε-IBEA) we can see again reduction factors of 8.5 and 9 for ASM-MOMA and
LAMM-MMA respectively (LR in both cases).

ZDT6, as in our previous paper [9], proved to be the most difficult problem. Although
we can see reductions by the factor of 3.5 for the Hratio = 0.5, this factor drops and
there are only slight reductions of 6% for the Hratio = 0.99. Note that LAMM-MMA
again provided better reductions for this value, even though, the difference is not very
large. Dealing with the difficulty of this problem is a motivation for further research.

5 Conclusions

In this paper we presented a memetic evolutionary algorithm for multiobjective opti-
mization with local meta-models. We showed that the local models give better results
than a single global model, usually reducing the number of needed function evaluations
by another 10%. Although this difference may seem rather small it may greatly reduce
the associated costs in practical tasks. We also showed that the algorithm is usable even
for problems with quite simple objective functions, which take only milliseconds to
evaluate, thus making it more widely usable. However, some problems are still diffi-
cult to solve with LAMM-MMA, and these provide the motivation for further research.
Another open question is whether real life problems are among those easily solvable,
or not.

We will continue the work on memetic multiobjective algorithms with aggregate
meta-models. One of the goals is the reduction of the number of times the model
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is trained which is a problem especially for more expensive local models. These are
trained multiple times in each generation. One possibility could be to cluster the in-
dividuals before the model is constructed and create a single local model for all the
individuals in the cluster. Another open question is the effect of the degree of locality
(represented by the λ parameter) on the evolution convergence speed and the possibility
to change this parameter adaptively.
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