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Abstract. We propose the notion of active stabilization for computing
systems. Unlike typical stabilizing programs (called passive stabilizing in
this paper) that require that the faults are absent for a long enough time
for the system to recover to legitimate states, active stabilizing programs
ensure recovery in spite of constant perturbation during the recovery pro-
cess by an adversary. We identify the relation between active and passive
stabilization in terms of their behavior and by comparing their cost of
verification. We propose a method for designing active stabilizing pro-
grams by a collection of passive stabilizing programs. Finally, we compare
active stabilization with fault-contained stabilization and stabilization in
the presence of Byzantine faults.
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1 Introduction

A self-stabilizing system [6] ensures that it will recover to a legitimate state even
if it starts executing from an arbitrary state. For this reason, self-stabilization
is often utilized to provide recovery from unexpected transient errors. A typical
self-stabilizing protocol in the literature considers the case where faults perturb
the system to an arbitrary state. Subsequently, the goal of the protocol is to
ensure that the system will recover to a legitimate state with the assumption
that no additional faults will occur. Moreover, by the nature of self-stabilization,
even if faults occur during recovery, the system will still recover to a legitimate
state as long as faults do not occur forever (or they stop for a long enough time).
We call such self-stabilization as passive stabilization since faults play a dormant
role during the recovery process.
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In this paper, we introduce the concept of active stabilization. To illustrate the
motivation for active stabilization, we begin with the problem of pursuer-evader
games [4]. The intuitive description of one instance of this problem in the context
of sensor networks is as follows: The system consists of a set of computing nodes
with sensors (called just sensors from in the subsequent discussion). Additionally,
the system contains one (or more) pursuers and one (or more) evaders. The
sensors’ task is to organize themselves in a structure that will facilitate the
capture of the evader. For example, one approach to achieve this is to have
the sensors form a tree among themselves that is rooted at the location of the
evader. The goal of the pursuer is to utilize this structure to capture the evader.

In such a system, there can be several faults. For example, the state of sensors
could be corrupted due to false positive and/or false negative readings. More-
over, communication errors, errors in initialization etc. may perturb the sensor
network to an arbitrary state. It is anticipated that such faults are rare and,
hence, we can utilize passive self-stabilization for dealing with such faults; i.e.,
we can assume that faults stop for a long enough time for the sensor network to
stabilize to a legitimate state. However, the network could also be perturbed by
the evader itself. In particular, if the goal of the sensor network is to have a tree
rooted at the evader, then the evader movement is tantamount to perturbation
of the network. Moreover, it may be unreasonable to assume that these faults
eventually stop or that they stop for a long enough time since the evader is
actively trying to perturb the system so that it does not stabilize.

We can view three different contributing factors in such a scenario: (1) the
system, (2) the faults, and (3) the adversary. In particular, the system actions are
responsible for ensuring recovery to legitimate states. The faults are events that
perturb the system randomly and rarely. It is anticipated that the faults could
perturb the system to an arbitrary state, thereby requiring self-stabilization.
However, because these events are rare, one can assume that they stop for a
sufficiently long enough time to allow the system to recover. The adversary
is actively attempting to prevent self-stabilization. However, unlike faults, the
adversary may not be able to perturb the system to an arbitrary state. For
example, in the above scenario, the evader would be able to move within the
vicinity of its original location; i.e., it would not be able to move to a random
location from its initial location. Also, unlike faults, the adversary actions may
never stop. In particular, it would be unreasonable to assume that the adversary
actions stop for a long enough time for the system to stabilize.

Although it is unreasonable to assume that adversary actions would stop for a
long enough time, it is necessary to assume some fairness for the system actions.
In particular, in the pursuer-evader example, it is anticipated that the evader
movement is limited by laws of physics and, hence, the system can take a certain
number (≥ 1) of steps between two steps of the evader.

The main contributions of the paper are as follows:

– We formally define different variations of active stabilization and relate it to
passive stabilization. In particular, we consider the cases where the adversary
(1) cannot lead the system to illegitimate states (called active stabilization),
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(2) can perturb the program outside the legitimate states (called fragile ac-
tive stabilization), and (3) can perturb the program outside the legitimate
states from where the program can recover before the adversary takes an-
other step (called contained active stabilization)

– We study the relation between different types of active stabilization.
– We compare the cost of automated verification of active and passive stabi-

lization.
– The problem in designing an active stabilizing program lies in the fact that

an adversary can disrupt the progress made by the program towards recov-
ering to the invariant. Thus, we propose an approach for designing active
stabilizing programs based on the convergence stair [10].

– Finally, we argue that active stabilization is a powerful and expressive
concept by presenting comparison to fault-contained stabilization [8] and
Byzantine self-stabilization [14]. In particular, we show that if a program is
contained active stabilizing, then it is fault-contained stabilizing. We also
show that a special type of active stabilization in the presence of Byzantine
processes is Byzantine self-stabilization.

Organization of the paper. In Section 2, we introduce the notion of ac-
tive stabilization. We compare different types of passive and active stabilization
in Section 3. The complexity of automated formal methods for active stabiliza-
tion is analyzed in Section 4. Section 5 discusses design methodology for active
stabilizing programs. We compare active stabilization with fault-contained stabi-
lization and Byzantine self-stabilization in Section 6. Finally, we discuss related
work in Section 7 and conclude in Section 8.

2 The Concept of Active Stabilization

A traditional modeling of programs in the literature on self-stabilization includes
a finite set of variables with (finite or infinite) domain. Additionally, it includes
guarded commands [7] that update those program variables. Since these internals
of the program are not relevant in our definition of active stabilization, in our
work, we define program p in terms of its state space Sp and its transitions
δp ⊆ Sp × Sp. Intuitively, the state space can be obtained by assigning each
variable in p a value from its domain.

Definition 1 (Program). A program p is of the form 〈Sp, δp〉 where Sp is the
state space of program p and δp ⊆ Sp × Sp.

Assumption 1 For simplicity of definitions, we assume that program p has at
least one outgoing transition from every state in Sp. If such a transition does
not exist for some state, say s, then we consider the program where transition
(s, s) is added. While this assumption simplifies subsequent definitions since we
do not need to consider terminating behavior of a program explicitly, it is not
restrictive in any way.

Definition 2 (State Predicate). A state predicate of p is any subset of Sp.
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Definition 3 (Closure). A state predicate S of p = 〈Sp, δp〉 is closed in p iff
∀s0, s1 ∈ Sp :: (s0 ∈ S ∧ (s0, s1) ∈ δp) ⇒ (s1 ∈ S).

Definition 4 (Faults). We define faults for program p = 〈Sp, δp〉 to be Sp×Sp;
i.e., the faults can perturb the program to any arbitrary state.

The adversary for program, say adv, is defined in terms of its transitions, say
ap ⊆ Sp ×Sp. Note that, based on the discussion in the introduction, this allows
us to model the limited set of actions the adversary may be allowed to execute.

Definition 5 (Adversary). We define an adversary for program p = 〈Sp, δp〉
to be a subset of Sp × Sp.

Next, we define a computation of the program, say p, in the presence of adversary,
say adv.

Definition 6 (〈p, adv, k〉-computation). Let p be a program with state space
Sp and transitions δp. Let adv be an adversary for program p. And, let k be
an integer greater than 1. We say that a sequence 〈s0, s1, s2, ...〉 is a 〈p, adv, k〉-
computation iff

– ∀j ≥ 0 :: sj ∈ Sp, and
– ∀j ≥ 0 :: (sj , sj+1) ∈ δp ∪ adv, and
– ∀j ≥ 0 :: ((sj , sj+1) �∈ δp) ⇒ (∀l | j < l < j + k :: (sl, sl+1) ∈ δp)

Observe that a 〈p, adv, k〉-computation involves only the transitions of program
p or its adversary adv. Moreover, the adversary is required to execute with fair-
ness to the program; i.e., the program can take at least k − 1 steps between two
adversary steps. This ensures that the adversary cannot simply block the pro-
gram from executing, thereby make it impossible to provide recovery. However,
the adversary is not required to execute and the program can execute forever.

Remark 1 (Fairness among program transitions 1). Since the focus of this pa-
per is on the defining active stabilization based on the interaction between the
program and the adversary, we omit the issue of fairness among program transi-
tions themselves. Specifically, in some instances, we can consider the program to
consist of multiple processes and require that each process executes with some
fairness. In this instance, the above definition can be modified to add an ad-
ditional constraint that identifies fairness conditions. For reasons of space, this
issue is outside the scope of this paper.

Remark 2 (Round-based computations). The definition of 〈p, adv, k〉-computation
is based on the number of steps that a program takes between two adversary
steps. In scenarios where a program consists of multiple processes, a round [15]
based notion is sometimes used. Intuitively, in one round, every process is given
at least one chance to execute. (However, the process may not actually be able
to execute a transition if it was given that chance when none of its transitions
could be executed.) The definition of active stabilization can also be extended
to handle such a case by using rounds instead of steps. This issue is also outside
the scope of this paper.
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Definition 7 (Active stabilization). Let p be a program with state space Sp

and transitions δp. Let adv be an adversary for program p. And, let k be an
integer greater than 1. We say that program p is strong k-active stabilizing with
adversary adv for invariant S iff

– S is closed in p
– S is closed in adv
– For any sequence σ (=〈s0, s1, s2, ...〉 ) if σ is a 〈p, adv, k〉-computation then

there exists l such that sl ∈ S.

The definition of active stabilization requires that the invariant S be closed
in the execution by the adversary; i.e., when the invariant S is reached, the
adversary does not perturb the program outside S. In other words, only a fault
can do so. This requirement can be difficult to satisfy in many programs. For
such programs, we introduce the notion of fragile active stabilization where the
adversary can perturb the program outside the invariant.

Definition 8 (Fragile Active Stabilization). Let p be a program with state
space Sp and transitions δp. Let adv be an adversary for program p. And, let k
be an integer greater than 1. We say that program p is fragile k-active stabilizing
with adversary adv for invariant S iff

– S is closed in p
– For any sequence σ (=〈s0, s1, s2, ...〉 ) if σ is a 〈p, adv, k〉-computation then

there exists l such that sl ∈ S.

Observe that if p is fragile k-active stabilizing with adversary adv for invariant S,
then starting from an arbitrary state, p will reach a state in S even if adversary
adv tries to disrupt it. Moreover, after the program reaches S, the adversary
can still perturb it outside S. However, in subsequent computation, p is still
guaranteed to reach a state in S again. Thus, a fragile active stabilizing program
will reach the invariant infinitely often.

One issue with fragile active stabilization is that after the adversary perturbs
the program from a state in S to a state outside S, there is no bound on how long
it will take to return to S. Our notion of contained active stabilizing programs
addresses this issue by requiring the program to recover to S quickly; i.e., before
the adversary can perturb it again.

Definition 9 (Contained Active Stabilization). Let p be a program with
state space Sp and transitions δp. Let adv be an adversary for program p. And,
let k be an integer greater than 1. We say that program p is contained k-active
stabilizing with adversary adv for invariant S iff

– S is closed in p
– For any sequence σ (=〈s0, s1, s2, ...〉 ) if σ is a 〈p, adv, k〉-computation then

there exists l such that sl ∈ S.
– For any finite sequence α (=〈s0, s1, s2, ...sk〉 ) if s0 ∈ S, (s0, s1) ∈ adv and

(∀j : 0 < j < k : (sj , sj+1) ∈ δp then sk ∈ S.
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Finally, we also define the traditional notion of stabilization. Towards this end,
we define pure-computations of p; i.e., computations where only p is allowed to
execute. Then, we define the standard definition of stabilization, which in this
paper we will call as passive stabilization.

Definition 10 (pure-computation). Let p be a program with state space Sp

and transitions δp. We say that a sequence 〈s0, s1, s2, ...〉 is a pure-computation
iff

– ∀j ≥ 0 :: (sj , sj+1) ∈ δp

Remark 3 (Fairness among program transitions 2). Similar to Remark 1, the
above definition can include fairness requirements.

Definition 11 (Passive stabilization). Let p be a program with state space Sp

and transitions δp. We say that program p is (passive) stabilizing for invariant
S iff

– S is closed in p
– For any sequence σ (=〈s0, s1, s2, ...〉 ) if σ is a pure-computation then there

exists l such that sl ∈ S.

3 Relation between Different Types of Active and Passive
Stabilization

In this section, we study the conceptual relation between different types of stabi-
lization presented in Section 2. In Subsection 3.1, we compare active stabilization
with passive stabilization. Then, in Subsection 3.2, we compare different types
of active stabilization.

3.1 Relation between Active and Passive Stabilization

In this section, we evaluate the relation between active stabilization and passive
stabilization. In particular, we show that any active stabilizing program is also
passive stabilizing. Moreover, we present necessary conditions under which pas-
sive stabilizing programs can be transformed into fragile and contained active
stabilizing programs.

Theorem 1. If there exists k and adv such that program p is k-active stabilizing
with adversary adv for invariant S, then p is passive stabilizing for invariant S.

Proof. Since p is k-active stabilizing with adversary adv for invariant S, ev-
ery 〈p, adv, k〉-computation reaches a state in S. And, by definition, a pure-
computation of p is also a 〈p, adv, k〉-computation. Thus, every pure-computation
of p reaches a state in S (recall that a program can execute adversary transitions
as well). Furthermore, by definition of active stabilization, S is closed in p. It
follows that p is passive stabilizing for invariant S. �
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Theorem 2. If program p = 〈Sp, δp〉 is passive stabilizing for invariant S and
Sp is finite, then there exists k such that for any adversary adv, p is fragile
k-active stabilizing with adversary adv for invariant S.

Proof. First, by definition of passive stabilization, S is closed in p. Hence, to
prove this theorem, we only need to prove the second constraint in the def-
inition of fragile active stabilization. To this end, we let k = |Sp|. Consider
any 〈p, adv, |Sp|〉-computation. This computation includes a subsequence of size
|Sp| − 1, say α that only includes transitions of p. If α includes any state, say
s such that s �∈ S and s occurs twice in α then there is a pure-computation of
p that starts from s and never reaches S. Thus, α does not include any state
outside S more than once. Hence, by the pigeon hole principle, α contains at
least one state in S. �
Note that the above theorem does not hold if the state space of p is infinite.
We can illustrate this using a the following simple example. Let the state space
of p be the set Sp = Z≥0 of non-negative integers and the transitions of p be
δp = {(x + 1, x) | x ∈ Z≥0 ∪ {(0, 0)}. Also, let the invariant of p be S = {0}.
Clearly, p is passive stabilizing for invariant S. However, for adversary N × N ,
the above theorem is not valid.

Also, note that the above theorem will be incorrect if we remove ‘fragile’ from
the statement of the theorem. This is due to the fact that S may not be closed
in the transitions of an arbitrary adversary.

Corollary 1. If program p = 〈Sp, δp〉 is passive stabilizing for invariant S and
Sp is finite, then there exists k such that for any adversary adv, p is contained
k-active stabilizing with adversary adv for invariant S.

Finally, if a program is active stabilizing with some adversary, then the program
is also active stabilizing with a slower adversary. Thus, we have the following
theorem.

Theorem 3. If program p is k-active stabilizing with adversary adv for invari-
ant S and l ≥ k, then p is l-active stabilizing with adversary adv for invariant
S.

3.2 Relation between Active, Fragile Active, and Contained Active
Stabilization

Since ensuring the closure of invariant in the transitions of an adversary can be
unrealistic, we introduced the notion of fragile and contained active stabilization.
In this section, we show that the definition of contained active stabilization and
active stabilization are exchangeable; i.e., given a program p that is contained
k-active stabilizing, we can find a corresponding program p′ that is k-active
stabilizing and vice versa. Thus, these results show that instead of showing a
program to be active stabilizing, one can show that the program is contained
active stabilizing.
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Definition 12 (Rj
(p,adv)(S)). Let S be a state predicate of program p and adv

be an adversary for program p. We define Rj
(p,adv)(S), where j ≥ 0, as follows:

– if j = 0, then
Rj

(p,adv)(S) = S ∪ {s1 | ∃s0 ∈ S : (s0, s1) ∈ adv}.
– if j > 0, then

Rj
(p,adv)(S) = {s1 | ∃s0 ∈ Rj−1

(p,adv)(S) : (s0, s1) ∈ δp}.

Definition 13. Let p be a program with state space Sp and transitions δp. We
define countp to be the program where:

– State space Scountp = Sp × Z≥0, and
– Transitions δcountp = {(〈s0, j〉, 〈s1, j + 1〉) | (s0, s1) ∈ δp}.

Definition 14. Let p be a program with state space Sp and transitions δp. Let
adv be an adversary for program p. We define countadvk

to be the adversary for
countp where:

– Transitions = {(〈s0, j〉, 〈s1, 0〉) | ((s0, s1) ∈ adv) ∧ (j ≥ k)}.
Theorem 4. If program p is contained k-active stabilizing with adversary adv
for invariant S, then countp is k-active stabilizing with adversary countadvk

for
invariant S′ where:

S′ =
⋃∞

l=0{〈s, l〉 | s ∈ Rl
(p,adv)(S)}

Proof. To prove the above theorem, we need to prove the three conditions in the
definition of active stabilization:

1. S′ is closed in countp.
Towards this end, we need to show that if countp executes in any state in S′,
then the resulting state would also be in S′. Let 〈s0, l〉 be a state in S′. Hence,
s0 is included in Rl

(p,adv)(S). By Definition 13, transition of countp is of the
form (〈s0, l〉, 〈s1, l + 1〉). Furthermore, if (〈s0, l〉, 〈s1, l + 1〉) is a transition of
countp, then (s0, s1) is a transition of p as well. Hence, by the Definition 12,
s1 is in the set Rl+1

(p,adv)(S). Finally, from Definition of S′, 〈s1, l + 1〉 is in the
set S′. Thus, S′ is closed in countp.

2. S′ is closed in countadvk
.

Let 〈s, l〉 be a state in S′. If countadvk
can execute in state 〈s, l〉, then l ≥ k.

Hence, by Definition 12, there exists a sequence, 〈s0, s1, ..., sl〉 such that
(1) the first state in the sequence is in S (i.e., s0 ∈ S), (2) the first tran-
sition in the sequence is executed by the adversary (i.e., (s0, s1) ∈ adv),
and (3) subsequent transitions are executed by program (i.e., ∀x|0 < x <
l :: (sx, sx+1) ∈ δp). Furthermore, since l ≥ k and the fact that p is contained
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k-active stabilizing with adv for S, if countadvk
can execute in 〈s, l〉, then

s ∈ S. Moreover, by Definitions 12 and 14, the resulting state is also in S′.
3. For any sequence σ (=〈s0, s1, s2, ...〉 ), if σ is a 〈p, adv, k〉-computation, then

there exists l such that sl ∈ S. This follows trivially from the definition of
contained k-active stabilization. �

Finally, the following theorem trivially holds from the definition of active and
contained active stabilization.

Theorem 5. If p is k-active stabilizing with adversary adv for invariant S
Then p is contained k-active stabilizing with adversary adv for invariant S.

4 Comparing the Cost of Automated Verification for
Active and Passive Stabilization

The problem of verifying stabilizing programs involves two parts: The first part
relates to proving that in legitimate states (i.e., invariant), the program satisfies
the specification at hand. And, the other part relates to proving that starting
from an arbitrary state, the program recovers to legitimate states. Since the
goal of this section is to compare the cost of verification for passive stabilization
and active stabilization, we only focus on the second part. In other words, we
compare the complexity of verification of convergence for passive and for active
stabilization. We introduce instance of verification for passive and active stabi-
lization. Then, we present the corresponding complexity results.

Instance. A program p = 〈Sp, δp〉 and a state predicate S of p.
Verifying passive stabilization decision problem (VPS). Is p passive
stabilizing for invariant S?

Theorem 6. VPS can be solved in polynomial-time in |Sp|.

Proof. This is a well-known result that can be proved with the following simple
algorithm:

1. Closure property can be trivially verified by considering each transition in
δp.

2. For convergence, if δp included any states outside S where there are no
outgoing transitions, the answer to the decision problem is false. Assuming
that this is not the case, we begin with program q which has the state space
Sq = Sp − S and transitions δq = δp − {(s0, s1) | s0 ∈ S ∨ s1 ∈ S}. Since
we have removed some transitions, q may contain a deadlock state. If so, we
remove that state from Sq and the corresponding transitions that enter and
exit that state. Upon termination, if Sq is empty, p is passive stabilizing for
invariant S. If not, there is a cyclic-computation that does not include any
state in S. In other words, p is not passive stabilizing for invariant S. �
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Next, we present the results for verification of active stabilization.

Instance. A program p = 〈Sp, δp〉, an adversary adv for p, a state predicate S
of p, and an integer k ≥ 2.
Verifying k-Active Stabilization Decision Problem (VkAS). Is p k-
active stabilizing with adversary adv for invariant S?

Theorem 7. VkAS can be solved in polynomial-time in |Sp|.
Proof. First, as stated earlier, closure proofs can be performed in polynomial
time in |Sp|. The remaining proof is predicated under the assumption that the
closure properties are satisfied. In particular, to prove convergence, we map
the problem of verifying active stabilization to the problem of verifying passive
stabilization. Specifically, we construct program p1 as follows.

p1 = {(s0, s1)| ∃l : l ≥ k − 1 : reach(s0, s1, l) ∨
(∃s2 :: reach(s0, s2, l) ∧ (s2, s1) ∈ adv)}, where

reach(s0, s1, l) denotes that s1 can be reached from s0 by execution of exactly l
transitions of p.

Intuitively, program p1 executes k − 1 or more transitions of program p and
then (optionally) one transition of the adversary. Next, we show that p is k-
active stabilizing with adversary adv for invariant S iff p1 is passive stabilizing
for invariant S

1. ⇒ Let σ be a pure-computation of p1. We construct a corresponding 〈p, adv, k〉-
computation as follows: For each transition (s0, s1) in σ, we replace it by a
sequence (that begins in s0 and ends in s1) of k − 1 or more transitions of
p followed by an optional transition of adv. By construction of p1, this is
always feasible. Let the resulting sequence be σ1. Since σ1 is a 〈p, adv, k〉-
computation, it contains a suffix where all states are in S. Hence, σ also
contains a state in S.

2. ⇐ Let σ be a 〈p, adv, k〉-computation of p. We construct a corresponding
pure-computation of p as follows: If σ contains a transition by the adversary
in the first k transitions, we consider the suffix that begins in the state after
the transition of the adversary. Hence, without loss of generality we can
assume that the first k − 1 transitions in σ are transitions of p. Now, we
obtain a pure-computation of p1 as follows: The initial state in σ1 is the
same as that in σ. Let this state be s0. Now, to obtain the next state in
σ1, we identify the first occurrence of the transition of the adversary in σ.
If such a transition, say (sa, sb), exists then the successor state is sb. If such
a transition does not exist then the successor state is the one obtained by
executing k−1 transitions of p. It follows that σ1 is a pure-computation of p
and, hence, includes a suffix that is entirely within S. Hence, σ also contains
a state in S. �
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5 Methodology for Designing Active Stabilizing
Programs

In this section, we identify an approach for designing a program to be self-
stabilizing. This approach is based on the convergence stair [10] approach for
designing self-stabilizing programs. In particular, the problem in designing an
active stabilizing program lies in the fact that an adversary can disrupt the
progress made by the program towards recovering to the invariant. However, if
we can prove that the program manages these disruptions in a suitable fashion, it
can be proved that the program is active stabilizing to the adversary. Specifically,
we prove the following theorem.

Theorem 8. Let p = 〈Sp, δp〉 be a program, adv be an adversary for p, and
S0, S1, . . . , Sn be a sequence of state predicates of p. If

– S0 = SP

– ∀j : 0 ≤ j < n : (Sj+1 ⇒ Sj),
– ∀j : 0 ≤ j ≤ n : Sj is closed in p,
– ∀j : 0 ≤ j ≤ n : Sj is closed in adv,
– For any finite sequence α = 〈s1, s2, ..., sk〉, if s1 ∈ Sj and ∀l : 0 < l < k :

(sl, sl+1) ∈ δp then sk ∈ Sj+1.

Then

– p is k-active stabilizing with adversary adv for Sn.

Proof. The closure requirements for active stabilization are trivially satisfied. Re-
garding the last requirement in Definition 7, consider any 〈p, adv, k〉-computation,
say σ. Based on the last constraint in this theorem and definition of 〈p, adv, k〉-
computation, there exists a state, say sa in σ such that sa ∈ S1. Since S1 is
closed in p and adv, all states in the suffix of σ that starts from sa are in S1.
Again, by the same argument, σ contains a state, say sb, in S2, and so on. Thus,
σ contains a state in Sn. �
The above theorem suggests the following approach to design active stabilizing
programs. First, we identify a sequence of stair predicates S1, S2, . . . , Sn−1 such
that each of these predicates is closed in adv. Then, we ensure that the recovery
from any of these predicates to the next state predicate is achieved before the
adversary can perturb the program. Observe that in this fashion, the adversary
can in fact execute several times before the program reaches the invariant. How-
ever, intuitively, the disruption by the adversary is less than the progress made
by the program.

Moreover, if we focus on last condition in Theorem 8, it only focuses on pure-
computations where the adversary is not allowed to execute. Thus, design of
each stair is equivalent to the design of passive stabilization where the conver-
gence steps are bounded. Thus, each stair of the active stabilizing program can
potentially be constructed out of a collection of passive stabilizing programs.
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6 Relation between Active Stabilization and Other
Stabilization Techniques

In this section, we compare active stabilization with other stabilization tech-
niques, namely fault-contained stabilization and Byzantine self-stabilization in
Subsections 6.1 and 6.2, respectively.

6.1 Fault-Contained Stabilization

The problem of fault-containment stabilization has been studied (e.g., [8, 9, 16])
in the literature to deal with two problems with stabilizing programs. The first
problem is that stabilizing programs do not typically differentiate between an
arbitrary global state and a state that is “almost legitimate” [8]. Hence, the goal
of these algorithms is that if the state is “almost legitimate” then it reaches a
legitimate state within a small number of steps. However, the recovery from an
arbitrary state may take longer. The second problem is that after the program
reaches a legitimate state, there is a high probability that transient faults will
only perturb it to a state that is “almost legitimate” as opposed to an arbitrary
state.

With this intuition, in [8, 9, 16], the authors introduce a notion of limited fault
class, lf p, for program p. lf p is a subset of Sp × Sp. Moreover, if the program is
perturbed by lf p in a legitimate state, a quick recovery is provided if no additional
faults occur. Moreover, if multiple faults from lf p occur or if faults outside lf p

occur then stabilization is still provided. Thus, fault-contained stabilization can
be defined as follows:

Definition 15 (Fault-contained Stabilization). Let p = 〈Sp, δp〉, S be a
state predicate of p, and lf p be a subset of Sp ×Sp. And, let w ≥ 1 be an integer.
p is fault-contained stabilizing for lf p with w steps for invariant S iff

– p is passive stabilizing for invariant S, and
– For every sequence σ = 〈s0, s1, . . .〉, if s0 ∈ S, (s0, s1) ∈ lf p and ∀j > 1 :

(sj , sj+1) ∈ δp then sw ∈ S.

Now, we can show that if p is contained k-active stabilizing then it provides fault-
contained stabilization. Note that the converse of this theorem is not correct since
a fault-contained stabilizing program may not recover to legitimate states if it
is continuously perturbed by faults.

Theorem 9. If p is contained k-active stabilizing with adversary adv for S, then
p is fault-contained stabilizing for adv with k steps for S.

Proof. Follows trivially from Definitions 9 and 15. �
Corollary 2. If p is k-active stabilizing with adversary adv for S, then p is
fault-contained stabilizing for adv with 1 steps for S.
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6.2 Byzantine Self-Stabilization

While all the formalization in Byzantine self-stabilization work cannot be pre-
sented here, we give a brief approach considered in these papers and its relation
to active stabilization. In [14], the program is viewed in terms of a set of, say
n, processes. Thus, the state of the program is of the form 〈v1, v2, ..., vn〉, where
vj denotes the state of process j. (If channels are used corresponding entry is
added for channel contents as well.) Thus, the state space of the program, (Sp

in Definition 1) is obtained by considering all possible tuples of 〈v1, v2, ..., vn〉,
where the domain of vj depends on the application at hand.

Moreover, some processes can be Byzantine. If process j is Byzantine, it can
change the value of vj arbitrarily. Thus, transitions of p (cf. Definition 1), δp is
of the form: δp = δpg ∪ δpb

, where δpb
denotes the transitions that correspond to

the transitions executed by Byzantine process(es) and δpg denotes the transitions
executed by non-Byzantine processes. Furthermore, δpg and δpb

are disjoint. It is
also assumed that Byzantine processes do not prevent non-Byzantine processes
from executing. However, Byzantine processes can disrupt the recovery process.
Thus, the definition of stabilization in the presence of Byzantine faults is adapted
as follows.

Definition 16. A program p = 〈Sp, δp〉, where δp = δpg ∪ δpb
, is said to be

stabilizing in the presence of Byzantine faults for invariant S iff

– S is closed in p, and
– for any state sequence, say σ, of the form 〈s0, s1, s2, ...〉, if

• ∀j ≥ 0 : (sj , sj+1) ∈ δp

• Number of transitions of δpg is σ is infinite.
– then

• there exists l such that sl ∈ S.

Theorem 10. If program p = 〈Sp, δp〉, where δp = δpg ∪ δpb
is stabilizing in the

presence of Byzantine faults for invariant S, then 〈Sp, δpg 〉 is 2-active stabilizing
with adversary δpb

for S.

Proof. Closure proofs are trivially satisfied from Definition 16. In a 〈〈Sp, δpg 〉, δpb
,

2〉-computation, there is at least one transition of δpg between any two transitions
of δpb

. Hence, the number of occurrences of transitions in δpg is infinite. Hence,
in any 〈〈Sp, δpg 〉, δpb

, 2〉-computation, a state in S is reached. �
To prove the converse of the above theorem, we recall the standard definition of
transitive closure.

Definition 17 (Transitive Closure). A set of transitions δpb
is transitive

closed iff ∀a, b, c :: ((a, b) ∈ δpb
∧ (b, c) ∈ δpb

) ⇒ ((a, c) ∈ δpb
)

Theorem 11. Let p be a program whose transitions are partitioned in terms of
δpg and δpb

, where δpb
are the transitions executed by Byzantine processes. If

〈Sp, δpg 〉 is 2-active stabilizing with adversary δpb
for S, and δpb

is transitive-
closed, then p is stabilizing in the presence of Byzantine faults for S.
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Proof. The closure proof is trivially satisfied. Consider any computation, say
σ, of p where transitions of δpg execute infinitely often. Consider a compacted
version of σ, say cσ that is obtained as follows: If σ contains two consecutive tran-
sitions, say (sj , sj+1) and (sj+1, sj+2), in δpb

then we replace them by (sj , sj+2).
And, repeat this process until there are no two successive transitions in δpb

. Since
δpb

is transitive closed, cσ is a 〈〈Sp, δpg 〉, δpb
, 2〉-computation. Hence, it includes

a state in S. Thus, σ includes a state in S. �

7 Related Work

There are several variations of stabilization (denoted by passive stabilization in
this paper) that are considered in the literature. These include fault-containment
stabilization, byzantine stabilization, FTSS, multitolerant stabilization, weak
stabilization, probabilistic stabilization, and nonmasking fault-tolerance.

Fault-containment stabilization refers to stabilizing program that ensure that
if only one (respectively, small number of) fault occurs then quick recovery is
provided to the invariant. Examples of such programs include [8, 16]. Byzan-
tine stabilization refers to stabilizing programs that tolerate the scenario where
a subset of processes is Byzantine. Examples of such programs include [13, 14].
FTSS refers to stabilizing programs that tolerate permanent crash faults. Exam-
ples of such programs include [3]. Multitolerant stabilizing systems ensure that
in addition to stabilization property, the program ensures that the safety prop-
erty is never violated when only a limited class of faults occur. Examples of such
systems include [12]. As discussed in the last two sections, fault-containment sta-
bilization and Byzantine stabilization are closely related to Active stabilization.

Weak stabilization [5, 11], as the name suggests, is a weaker version of stabi-
lization. In weak stabilizing programs, from every state, there is a path to reach
a state in the invariant. However, the program may contain loops that are out-
side legitimate states. In [11], it is shown that under certain fairness condition,
a weak stabilizing program is also a stabilizing program. In probabilistic stabi-
lization, the program recovers to legitimate states with high probability. Finally,
nonmasking fault-tolerance [1, 2] refers to programs where the program recovers
from states reached in the presence of a limited class of faults. However, this
limited set of states may not cover the set of all states.

8 Conclusion

In this paper, we proposed the concept of active stabilization, where program’s
state can be perturbed by faults to any arbitrary state and recovery is accom-
plished in the presence of constant perturbation by an adversary. We introduced
different types of active stabilizing programs depending upon the behavior of the
adversary and the ability of program to recover. We evaluated the cost of verifi-
cation for passive and active stabilization. We also argued that active stabiliza-
tion is a highly expressive concept by presenting comparison to fault-contained
stabilization and Byzantine self-stabilization.
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For future work, we are considering several research directions. We are cur-
rently working on developing efficient techniques for verification of active stabi-
lization as well as results about composition of active stabilizing programs.
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