
Analysis of DSR Protocol in Event-B

Dominique Méry and Neeraj Kumar Singh

Université Henri Poincaré Nancy 1
LORIA, BP 239, 54506 Vandoeuvre lès Nancy, France

{mery,singhnne}@loria.fr

Abstract. This paper presents an incremental formal development of the Dy-
namic Source Routing (DSR) protocol in Event-B. DSR is a reactive routing
protocol, which finds a route for a destination on demand, whenever commu-
nication is needed. Route discovery is an important task of any routing algorithm
and formal specification of it, itself is a challenging problem. The specification is
performed in a stepwise manner composing more advanced routing components
between the abstract specification and topology. It is verified through a series of
refinements. The specification includes safety properties as set of invariants, and
liveness properties that characterize when the system reaches stable states. We
establish these properties by proof of invariants, event refinement and deadlock
freedom. The consequence of this incremental approach helps to achieve a high
degree of automatic proof. Our approach can be useful for formalizing and devel-
oping other kinds of reactive routing protocols (i.e. AODV etc.).

Keywords: Abstract model, Event-B, Event-driven approach, Proof-based de-
velopment, Refinement, Ad hoc Network.

1 Introduction

Formal models have a valuable role to play in validating requirements and designs for
distributed systems. In a mobile ad hoc networks, nodes move arbitrarily and change
the network topology. Frequently changing topology presents a fundamental challenge
for routing protocols. This paper presents a case study on the Dynamic Source Routing
(DSR) protocol [1]. Reactive routing protocol is generally not dependent on exchanges
of periodic route information and route calculations. Instead, whenever a route is needed
the node has to perform a route discovery before it can send any packet to a destina-
tion node. Our approach is here to specify and formally develop the DSR protocol.
We use an incremental development of the DSR protocol with stepwise refinements in
Event-B [2,3]. Event-B [2,3] is a formal modeling language, which supports refinement
based formal development. We proceed by constructing the proof-based series of mod-
els, where the initial model specifies the system requirements and final model describes
the resulting system.

It is a significant case study in specifying and developing the real routing protocol
algorithms. In routing protocols each host works as a router and constructs a graph
representing the network topology. In this graph, vertices and edges represent routing
nodes and direct connection between nodes, respectively. Each node uses this graph
to find the optimized routing table and determines the correct route from source node

X. Défago, F. Petit, and V. Villain (Eds.): SSS 2011, LNCS 6976, pp. 401–415, 2011.
c© Springer-Verlag Berlin Heidelberg 2011



402 D. Méry and N.K. Singh

to destination node. The main challenging task in route discovery is to find the exact
distribution of nodes in a dynamic network and routing updates after changing network
topology.

To specify the correct desired properties of protocol at abstract level and in carrying
out the development and proofs in subsequent refinement models, is a challenging prob-
lem. This challenging problem comes from the fact that the protocol should function in
dynamically changing environment. The main characteristics of an ad hoc network is
dynamic behavior of the network: nodes can be added and deleted in a dynamic man-
ner. The topology information in all the reactive protocol is only transmitted by nodes
on-demand such as a node wishes to transmit the data packets to a node to which it has
no route, it will generate a route request message that will be flooded in a limited way
to other nodes. A route is considered found when the route request message reaches
either at a destination itself, or at an intermediate node with a valid route entry for the
destination node.

One of the key aspect of our development is to verify stability of the system.
Stability of the system is a most important property of this chaotic networks which
implies correct local view of the current system. Intuitively, in stable states, all nodes
have the maximum knowledge of the environment that can be acquired by route dis-
covery and communication. This notion of system stability is an instance of the general
notion of a stable system property [4].

The models of DSR protocol must be validated to ensure that they meet the require-
ments. Our abstract specification includes events of basic communication protocol. The
nature of the refinement that we verify using Rodin [2] proof tools are safety refinement.
Thus the behavior of final resulting system is preserved by abstract model as well as in
correctly refined models. Proof-based development methods [3] integrate formal proof
techniques in the development of software systems. The main idea is to start modeling
with an abstract model and details are gradually added to the abstract model to produce a
sequence of concrete events. The relationship between two successive models is known
as refinement [3]. The current work intends to explore problems related to the modeling
of distributed systems where an environment is changing dynamically. Moreover, the
stepwise development of the DSR protocol model helps to discover the exact behavior
of basic communication protocol and route discovery protocol in dynamic environment.

The outline of remaining paper organizes as follows. Section 2 describes the model-
ing framework, which outline some general idea of modeling, that we found useful in
this work. In section 3, we describe an informal description of the DSR protocol. Re-
quirements and assumptions are described in section 4. Section 5 explores the formal
development of the DSR protocol using stepwise refinement. Finally, section 6 presents
discussion and conclusion of the work.

2 The Modeling Framework

We will summarize the concepts of the Event-B modeling language developed by
Abrial [5,3] and will indicate the links with the tool called RODIN [2]. Considering
the Event-B modeling language, we notice that the language can express safety proper-
ties, which are either invariants or theorems in a machine corresponding to the system.
Recall that two main structures are available in Event-B:



Analysis of DSR Protocol in Event-B 403

– Contexts express static information about the model.
– Machines express dynamic information about the model, invariants, safety proper-

ties, and events.

An Event-B model defines either a context or a machine. A machine organizes events
modifying state variables and it uses static information defined in a context. These ba-
sic structure mechanisms are extended by the refinement mechanism which provides a
mechanism for relating an abstract model and a concrete model by adding new events
or by adding new variables. This mechanism allows us to develop gradually Event-B
models and to validate each decision step using the proof tool. The refinement rela-
tionship should be expressed as follows: a model M is refined by a model P , when P
is executing M . The final concrete model is close to the behavior of real system that
executes events using real source code. We give details now on the definition of events,
refinement and guidelines for developing complex system models.

2.1 Modeling Actions over States

The event-driven approach [5,3] is based on the B notation. It extends the methodolog-
ical scope of basic concepts to take into account the idea of formal models. Briefly, a
formal model is characterized by a (finite) list x of state variables possibly modified
by a (finite) list of events, where an invariant I(x) states properties that must always
be satisfied by the variables x and maintained by the activation of the events. In the
following, we summarize definitions and principles of formal models and explain how
they can be managed by tools [2].

Generalized substitutions are borrowed from the B notation. They provide a means
to express changes to state variable values. In its general form, an event has three main
parts, namely a list of local parameters, a guard and a relation over values denotes pre
values of variables and post values of variables. The most common event representa-
tion is (ANY t WHERE G(t, x) THEN x : |(R(x, x′, t)) END). The before–after
predicate BA(e)(x, x′), associated with each event, describes the event as a logical
predicate expressing the relationship linking the values of the state variables just before
(x) and just after (x′) the execution of event e. The form is semantically equivalent to
∃ t· (G(t, x) ∧ R(x, x′, t).

Table 1. Event-B proof obligations

PROOF OBLIGATIONS

– (INV 1) Init(x) ⇒ I(x)
– (INV 2) I(x) ∧ BA(e)(x, x′) ⇒ I(x′)
– (FIS) I(x) ∧ grd(e)(x) ⇒ ∃y.BA(e)(x, y)

Proof obligations (INV 1 and INV 2) are produced by the Rodin tool [2] from events
to state that an invariant condition I(x) is preserved. Their general form follows imme-
diately from the definition of the before–after predicate BA(e)(x, x′) of each event e
(see Table-2). Note that it follows from the two guarded forms of the events that this
obligation is trivially discharged when the guard of the event is false. Whenever this



404 D. Méry and N.K. Singh

is the case, the event is said to be disabled. The proof obligation FIS expresses the
feasibility of the event e with respect to the invariant I .

2.2 Model Refinement

The refinement of a formal model allows us to enrich the model via a step-by-step ap-
proach and is the foundation of our correct-by-construction approach [6]. Refinement
provides a way to strengthen invariants and to add details to a model. It is also used to
transform an abstract model to a more concrete version by modifying the state descrip-
tion. This is done by extending the list of state variables (possibly suppressing some
of them), by refining each abstract event to a corresponding concrete version, and by
adding new events. The abstract (x) and concrete (y) state variables are linked by a glu-
ing invariant J(x, y). A number of proof obligations make sure that (1) each abstract
event is correctly refined by its corresponding concrete version, (2) each new event re-
fines skip, (3) no new event takes control for ever, and (4) relative deadlock freedom is
preserved. Details of the formulation of these proofs follows.

We suppose that an abstract model AM with variables x and invariant I(x) is refined
by a concrete model CM with variables y and gluing invariant J(x, y). If BA(e)(x, x′)
and BA(f)(y, y′) are the abstract and concrete before–after predicates of the same
event, e and f respectively, we have to prove the following statement, corresponding to
proof obligation (1):

I(x) ∧ J(x, y) ∧ BA(f)(y, y′) ⇒ ∃x′ · (BA(e)(x,x′) ∧ J(x′, y′))

Now, proof obligation (2) states that BA(f)(y, y′) must refine skip (x′ = x), generat-
ing the following simple statement to prove (2).

I(x) ∧ J(x, y) ∧ BA(f)(y, y′) ⇒ J(x, y′)

In refining a model, an existing event can be refined by strengthening the guard and/or
the before–after predicate (effectively reducing the degree of nondeterminism), or a
new event can be added to refine the skip event. The feasibility condition is crucial to
avoiding possible states that have no successor, such as division by zero. Furthermore,
this refinement guarantees that the set of traces of the refined model contains (up to
stuttering) the traces of the resulting model. The refinement of an event e by an event f
means that the event f simulates the event e.

The Event-B modeling language is supported by the Rodin platform [2] and has been
introduced in publications [3,5], where the many case studies and discussions about the
language itself and the foundations of the Event-B approach. The language of general-
ized substitutions is very rich, enabling the expression of any relation between states in
a set-theoretical context. The expressive power of the language leads to a requirement
for help in writing relational specifications, which is why we should provide guidelines
for assisting the development of Event-B models.



Analysis of DSR Protocol in Event-B 405

3 Informal Description of DSR Protocol

The DSR protocol is a simple and efficient routing protocol designed specifically to
use in multi-hop wireless ad hoc networks of mobile nodes. It allows the network to be
completely self-organizing and self-configuring, without the need for any existing net-
work infrastructure or administration. In source routing techniques, a sender determines
the complete sequence of nodes through which it forwards the data packet. The sender
explicitly lists this route in the packets header, identifying each forwarding ’hop’ by the
address of the next node to which transmits the data packet on its way to the destination
node. The sender then transmits the packet over its wireless network interface to the
first hop identified in the source route. When a host receives a packet, if this host is
not the destination of the packet, it simply transmits the packet to the next hop iden-
tified in the source route in the packet header. Once the packet reaches its destination,
the packet is delivered to the host. The protocol presented here is explicitly designed
for use in the wireless environment of an ad hoc network. There are no periodic router
advertisements in the protocol. Instead, when a node needs a route to another node, it
dynamically determines one based on a local routing table or a route cached information
and on the results of a route discovery protocol [1]. DSR consists of two mechanisms:
route discovery and route maintenance.

Route Discovery: Whenever a source needs to communicate to a destination and does
not have a route in its routing table, it broadcasts a route request (RREQ) message to
find a route. Each neighbor receives the RREQ and (if it has not already processed the
same request earlier) appends its own address to the address list in the RREQ and re-
broadcasts the packet. This process continues until either the maximum hop counter is
exceeded (and RREQ is discarded) or the destination is reached. In the latter case, the
destination receives the RREQ, appends its address and generates a route reply packet
(RREP) back towards the source using the reverse of the accumulated route [1].

Route Maintenance: Route maintenance is used to manage (cache, expire, switch
among) previously discovered routes. Each node along the route, when transmitting
the packet to the next hop, is responsible for detecting next connected link. When the
retransmission and acknowledgement mechanism detects that the link is broken, the de-
tecting node returns a route error packet (RERRP) to the source of the packet. The node
will then search its route cache to find if there is an alternative route to the destination
of this packet. If there is one, the node will change the source route in the packet header
and send it using this new route. When a route error packet (RERRP) is received or
overheard, the link in error is removed from the local route cache, and all routes which
contain this hop must be truncated at that point [1]. The source can then attempt to use
any other route to the destination that is already in its route cache, or can invoke route
discovery again to find a new route.

4 Requirements and Assumptions

The protocol must work in an environment where the status of links may change at any
time. If the environment changes sufficiently rapidly, then links reported as down may
actually be up and vice versa. Hence the local routing table may bear little relationship



406 D. Méry and N.K. Singh

to the actual network topology. To tackle this problem, we focus on the limiting, and
most important, case of the algorithm’s behavior: its behavior when the environment is
sufficiently quiescent. In this case, we expect that the local routing table will eventually
“stabilize” to states of the actual global topology. According to the basic graph theory,
any graph can be decomposed into a collection of strongly-connected components. Our
main system requirements are:

System Requirement 1: Data packet must be transmitted successfully from source
node to destination node in a dynamic ad hoc network.

System Requirement 2: If the environment is inactive for a sufficiently long time then
communication stabilizes and each node has the correct view of the links between all
nodes in its connected subnetwork.

System Requirement 3: Route discovery protocol must discover a new route from the
connected network where the status of links may change at any time.

Before developing the formal model of DSR protocol, we have some assumptions as
follows:

– There are finite numbers of nodes or hosts.
– There are directed, one-way links between some pairs of distinct nodes. Links may

come up and go down at any time.
– Nodes are communicating by broadcasting where node (x) sends a message to other

node (y) when they are directly connected.
– When a link goes down, any message sent on it and not yet received are lost. This

reflects that communication is asynchronous. There is a delay between message
transmission and reception, and messages can be lost during this time interval.

– The hosts do not continuously move so rapidly as to make the flooding of every
packet.

5 Formal Development

DSR protocol development is expressed in an abstract and general way. We describe the
incremental development of DSR protocol in two phases as basic communication pro-
tocol and route discovery protocol. We develop the six models related by refinements.
The initial model formalizes our system requirements and environmental assumptions,
whereas the subsequent models introduce design decisions for the resulting system.

Initial Model : To specify basic communication protocol of data packet sending, receiv-
ing, losing, and network topology changes using some initial events (sending, receiving,
losing, remove link and add link).

Refinement 1 : Introducing store and forward architecture for data packets passing
from source node to destination node.
Refinement 2 : Introducing local routing table.
Refinement 3 : Introducing route discovery protocol to discover a new route.
Refinement 4 : Provides more detail information about route discovery protocol.
Refinement 5 : Introducing sequence numbers for tracking fresh route request packets
information.



Analysis of DSR Protocol in Event-B 407

5.1 The Context and Initial Model

We define a carrier set ND of network nodes. It is finite and is represented by an axiom
(axm1). The network is supported by a directed graph g built on ND, is defined by
an axiom (axm2). An axiom (axm3) specifies that there is no self loop connection
in the network means any node is not directly connected to itself. Axioms (axm4 and
axm5) represent that the total functions map from a carrier set Msg to a set of nodes
ND. The constants source and target are two necessary fields of a data packet for pre-
senting source and destination references. An additional constant (closure) is defined
by axioms(axm6 − axm9) that formalizes the transitive closure of binary relations
between a set of nodes (ND). Note that ”;” denotes forward relational composition.

axm1 : finite(ND)
axm2 : g ⊆ ND × ND
axm3 : id(ND) ∩ g = ∅

axm4 : source ∈ Msg → ND
axm5 : target ∈ Msg → ND

axm6 : closure ∈ (ND ↔ ND) → (ND ↔ ND)
axm7 : ∀r ·r ⊆ closure(r)
axm8 : ∀r ·closure(r); r ⊆ closure(r)
axm9 : ∀r, s·r ⊆ s ∧ s; r ⊆ s ⇒ closure(r) ⊆ s

In abstract model, we formalize behavior of the basic communication protocol and
dynamic environment where links may go ups and down at any time. New variables
sent, got and lost (inv1 − inv3) are introduced to represent the set of sending data
packets by any source node, successfully received data packets by any destination node
and lost data packets due to network failure, respectively. A variable ALinks (i.e active
link) represents a set of links that currently up and keeps up-to-date information about
all adding and removing links in the network. An invariant (inv5) represents a safety
property and states that all the received and lost data packets are subset of the sending
data packets.

The sets got and lost are disjoint (inv6) since a data
packet cannot be simultaneously both received and lost.
We include events modeling, atomic transfer of the data
packets between moving nodes, successfully receiving of
the data packets by destination node, losing of the data
packets due to network failure and dynamic changing in
network topology.

inv1 : sent ⊆ Msg
inv2 : got ⊆ Msg
inv3 : lost ⊆ Msg
inv4 : ALinks ∈ ND ↔ ND
inv5 : got ∪ lost ⊆ sent
inv6 : got ∩ lost = ∅

EVENT sending
ANY s,t,data msg

WHERE
grd1 : data msg ∈ Msg
grd2 : data msg /∈ sent
grd3 : s ∈ ND ∧ t ∈ ND ∧ s = t
grd4 : source(data msg) = s
grd5 : target(data msg) = t

THEN
act1 : sent := sent ∪ {data msg}

END

There are five significant events in our abstract
model. An event sending represents the sending of
a data packet (data msg) from a source node (s) to
a destination node (t). Guards of this event state that
a new data packet (data msg) is sending from the
source node (s) to the destination node (t) and both
source and destination are different nodes. An event
receiving represents for successful receiving of the
data packet (data msg) by the destination node (t).

A guard (grd1) of receiving states that the sending data packet (data msg) is a mem-
ber of sent and the data packet is not received by either got or lost variables. The data
packet (data msg) has correct references of the source node (s) and the destination
node (t) is represented by a guard (grd2).



408 D. Méry and N.K. Singh

EVENT receiving
ANY s,t,data msg
WHERE

grd1 : data msg ∈ sent \ (got ∪ lost)
grd2 : source(data msg) = s∧

target(data msg) = t
THEN

act1 : got := got ∪ {data msg}
END

EVENT losing
ANY s,t,data msg
WHERE

grd1 : data msg ∈ sent \ (got ∪ lost)
grd2 : source(data msg) = s ∧

target(data msg) = t
grd3 : s �→ t /∈ closure(ALinks)

THEN
act1 : lost := lost ∪ {data msg}

END

An event losing represents loss of data packets due to network failure or suddenly
powered off of any node or moving of node to new location, and disconnected from
the network. Guards state that the sending data packet (data msg) is not received by
either got or lost variables and there is not any valid connected route from the source
node (s) to the destination node (t). Guard grd3 states that a data packet never gets the
destination (t) node when path is broken.

EVENT add link
ANY x,y
WHERE

grd1 : x �→ y /∈ ALinks
grd2 : x = y

THEN
act1 : ALinks := ALinks ∪ {x �→ y}

END

EVENT remove link
ANY x,y
WHERE

grd1 : x �→ y ∈ ALinks
grd2 : x = y

THEN
act1 : ALinks := ALinks \ {x �→ y}

END

There is no more fixed infrastructure in wireless ad hoc network and every node in
the network works as router and all nodes move from one place to other place without
giving any information, so network link information always changes. For modeling
this dynamic behavior in the system we have proposed the two events add link and
remove link. Some new arbitrary links come up and some old links are removed from
the network. New links are added to the set of ALinks and old link are removed from
the set ALinks (if it is not existing). This event always keeping up-to-date information
of the ad hoc network.

5.2 First Refinement : Store and Forward Architecture

In the abstract model, we have presented that the data packets have been transferred in
an atomic step from the source node to the destination node. But in real protocol the
data packet is transferred hop by hop from the source node (s) to the destination node
(t). So our goal is to model the store and forward architecture, where all nodes are not
directly connected, and a data packet must pass through a number of intermediate nodes
before reaching to the destination node. We introduce a new variable gstore as binary
relation between ND and Msg is represented by invariant (inv1).

inv1 : gstore ∈ ND ↔ Msg
inv2 : ∀i·i ∈ ND ∧ i ∈ dom(gstore) ⇒ (got ∪ lost) ∩ gstore[{i}] = ∅

inv3 : ran(gstore) ∪ (got ∪ lost) = sent
inv4 : ∀i·i ∈ ND ⇒ gstore[{i}] ⊆ sent

inv5 : ∀m·m ∈ Msg ∧ m /∈ sent⇒
(

m /∈ got ∧ m /∈ lost ∧
(∀i·i ∈ ND ⇒ i �→ m /∈ gstore)

)

inv6 : ∀m, i, j ·i �→ m ∈ gstore ∧ j �→ m ∈ gstore ⇒ i = j



Analysis of DSR Protocol in Event-B 409

In the network, any data packet is stored by either got ∪ lost or in local variable
gstore by any node is represented by invariant (inv2). Invariant (inv3) represents a set
of total distributed data packets (ran(gstore) ∪ (got ∪ lost)) in the network is equal
to the sending data packets (sent). Each sending data packet is belonging from the set
of sending data packets (sent) is given in invariant (inv4). Next invariant (inv5) states
that a new data packet is not a member of the network distributed data packets if it is
not member of the sending data packets (sent). Same data packet is not mapped by
two different nodes in relation (gstore) is represented by last invariant (inv6), means
a node cannot store contradictory information about the same data packet.

A new event forward introduces in this refinement, is used to transfer the data pack-
ets between two connected neighbouring nodes in the route. First two guards represent
that a new sending data packet is not received by got ∪ lost, and intermediate nodes x
and y are directly connected. Third and fourth guards state that a destination node is t
of a data packet (data msg), and an intermediate node x is not the destination node (t).
Last two guards represent that the data packet (data msg) is stored at the node x, not
at the node y. In this refinement, we introduce some new guards and actions in events
sending, receiving and losing.1

EVENT forward
ANY t,x,y,data msg
WHERE

grd1 : data msg ∈ sent \ (got ∪ lost)
grd2 : x �→ y ∈ ALinks
grd3 : target(data msg) = t
grd4 : x = target(data msg)
grd5 : x �→ data msg ∈ gstore
grd6 : y �→ data msg /∈ gstore

THEN
act1 : gstore := (gstore \ {x �→ data msg})∪

{y �→ data msg}
END

EVENT sending
⊕ grd7 : s �→ data msg /∈ gstore
⊕ act2 : gstore := gstore∪

{s �→ data msg}
EVENT receiving

⊕ grd4 : t �→ data msg ∈ gstore
⊕ act2 : gstore := gstore\

{t �→ data msg}
EVENT losing

⊕ grd4 : x �→ data msg ∈ gstore
⊕ act2 : gstore := gstore\

{x �→ data msg}

Note that, together with the events sending, receiving, losing, remove link,
add link and forward from initial model and all defined invariants establish System
Requirement 1.

5.3 Second Refinement : Routing Update

In this refinement, we introduce a routing table or a route cache for updating the route
information from the dynamic changing network. In the DSR protocol any node updates
the local routing table, when a node wants to send data packets to any destination node
and a route is not available in a local routing table. We define a new variable alinks as
alinks ∈ ND → (ND ↔ND), and it represents that the routing information is stored
by each node. The local routing table (alinks) always keeps some stale links information
due to continue changing of nodes location in the ad hoc network. We introduce a new
event update routing table for updating the routing table. First two guards of this event
represent that the path is not existing between a source node (s) to a destination node (t).
A set of links, which generates a route from the source node (s) to any other node (x) is
represented as a strongly connected graph by last three guards (grd3− grd5). An action

1 ⊕ : To add a new guard and an action. , � : To remove an old guard and an action



410 D. Méry and N.K. Singh

(act1) of update routing table states that the set of nodes E updates their local routing
table using a variable (routeSet). We introduce local routing table variable alinks and
some new guards in all other events of basic communication protocol.

EVENT update routing table
ANY s,t,E,routeSet
WHERE

grd1 : s ∈ ND ∧ t ∈ ND
grd2 : s �→ t /∈ closure(alinks(s))
grd3 : routeSet ∈ ND ↔ ND
grd4 : E ⊆ {x|x ∈ ND∧

s �→ x ∈ closure(ALinks)}
grd5 : routeSet ⊆ closure(E � ALinks)

THEN
act1 : alinks := alinks �− (λn·n ∈ E|alinks(n)∪

routeSet)
END

EVENT sending
⊕ grd8 : s �→ t ∈ closure(alinks(s))
⊕ act2 : gstore := gstore∪

{s �→ data msg}
EVENT losing

� grd3 : s �→ t /∈ closure(ALinks)
⊕ grd5 : s �→ t /∈ closure(alinks(x))

EVENT forwarding
⊕ grd7 : y �→ t ∈ closure(alinks(x))

One of the key aspects of our de-
velopment strategy is to specify a
so-called observer event [4]. This
event (stabilize) has no effect on
this system state itself as its ac-
tion is skip. Rather, its guard is
used to define the notion of a sta-
ble state of the system.

EVENT stabilize
ANY
WHERE

grd1 : ∀x, y ·x �→ y ∈ ALinks ⇔ x �→ y ∈ alinks(y)
grd2 : ∀n, m·m �→ n ∈ closure(ALinks)⇒

(∀k·(k �→ m ∈ alinks(n) ⇔ k �→ m ∈ alinks(m)))
THEN

skip
END

First guard of event stabilize represents that every node y knows the correct status of
all connected links, i.e., y has detected all environment changes with respect to connected
links. The next guard represents that if there is a path from a node m to n, then n has
the same (up) information as m for all connected links to m. Hence, the observer event
fires in those states where nodes know the correct status of their neighbors and this status
has already been propagated through the network along all links. Intuitively, in stable
states, all nodes have the maximum knowledge of the environment that can be acquired
by route discovery and communication. We say that the system is in stable state when
observer event (stabilize) can fire.2 A central property that we proved is as follows:

Theorem 1 (Stability implies correct local view). If the system is stable, then for any
strongly-connected component G in the network and any node n in G, n has the correct
view of the status (up) of all links in G.

We formulate this theorem in Event-B as follows, where guardStablize refers to
the guards of the observe event (stabilize).

guardStablize
⇒(∀G·(∀f, l·f ∈ G ∧ l ∈ G ∧ f = l ⇒ f �→ l ∈ closure(ALinks))

⇒(∀n·n ∈ G
⇒G � alinks(n) � G = G � ALinks � G)

Here, a set of nodes G defines a strongly-connected component of the graph whose
edge relation defines by ALinks, when for every distinct pair of node f and l in G, then
f �→ l ∈ closure(ALinks). The operators � and � respectively restrict the domain

2 This notion of system stability is an instance of the general notion of a stable system property
[7,4],which is a property P is true of any reachable state s then P is true of all states reachable
from s.



Analysis of DSR Protocol in Event-B 411

and the range of relation to a set. The theorem itself constitutes part of the proof of
System Requirements 2. Namely, in a stable state, each node has the correct view of
all links in its strongly-connected components.

5.4 Third Refinement : Route Discovery Protocol

The route discovery protocol is an important and complex refinement of this model. We
define two carrier sets rrq and rrp of route request packets and route reply packets, re-
spectively. Two extra constants source rrq, and target rrq represent the total function
maps a set of route request packets rrq to a set of nodes ND, for storing the source and
destination references in each route request packet. A new constant (source rrp) rep-
resents the total function maps a set of route reply packets rrp to a set of nodes ND for
initializing the source node for each route reply packet. Two new variables bcast rrq
and network rrp are defined as a subset of route request packets (rrq) and route reply
packets (rrp), respectively.

axm1 : source rrq ∈ rrq → ND
axm2 : target rrq ∈ rrq → ND
axm3 : source rrp ∈ rrp → ND
inv1 : bcast rrq ⊆ rrq
inv2 : network rrp ⊆ rrp

The route request packet identifies the node, referred
to as the destination node of the route discovery, for
which route is requested. If the route discovery is
successful then the source node receives a route re-
ply packet listing a sequence of network hops through
which it may reach to the destination node.

Two new events broadcast rrq and received rrq are introduced in this refinement
of the route discovery protocol. The event broadcast rrq broadcasts a route request
packet for discovering a route to any destination node. First two guards (grd1 − grd2)
of this event represent that the route is not existing between the source node (s) to the
destination node (t). Next guard presents type of rrq pkt. Last three guards (grd4 −
grd6) state that each new route request packet rrq pkt have references of the source
node (s) and the destination node (t), then the route request packet rrq pkt is broadcast-
ed by initial node for discovering a new route.

EVENT broadcast rrq
ANY s, t, rrq pkt
WHERE

grd1 : s ∈ ND ∧ t ∈ ND
grd2 : s �→ t /∈ closure(alinks(s))
grd3 : rrq pkt ∈ rrq
grd4 : rrq pkt /∈ bcast rrq
grd5 : source rrq(rrq pkt) = s
grd6 : target rrq(rrq pkt) = t

THEN
act1 : bcast rrq := bcast rrq ∪ {rrq pkt}

END

EVENT received rrq
ANY t, rrq pkt, rrp pkt
WHERE

grd1 : t ∈ ND
grd2 : rrq pkt ∈ bcast rrq
grd3 : target rrq(rrq pkt) = t
grd4 : source rrq(rrq pkt) = t
grd5 : rrp pkt /∈ network rrp

THEN
act1 : network rrp := network rrp∪

{rrp pkt}
act2 : bcast rrq := bcast rrq \ {rrq pkt}

END

A new event received rrq returns a route reply packet rrp pkt to the initial node
with discovered route information from the network. Guards (grd1−grd4) of this event
state that the broadcasted route request packet (rrq pkt) is received by the destination
node (t) and the source node (s) of the route request packet is not same as the destination
node (t). Last guard states that the returning route reply packet (rrp pkt) is not already
received by the route requesting node. Actions of this event state that the destination
node returns the route reply packet (rrp pkt) to the initial node and remove the route
request packet (rrq pkt) from the network.



412 D. Méry and N.K. Singh

Note that, together with the events broadcast rrq, received rrq and update rout−
ing table from initial model and all invariants establish System Requirement 3.

5.5 Fourth Refinement : Continue Route Discovery Protocol

The route discovery protocol discovers route in the several steps. An address of the
original initiator of the request and the target of the request, each route request packet
contains a route record, where it is accumulated a record of the sequence of hops taken
by the route request packet as it is propagated through the ad hoc network during this
route discovery. A new variable (route record rrq) is declared to store the link infor-
mation at the time of propagation of a route request packet from one node to other node.
If the route request receiver node is not the target node then it add the link information
to the route record (route record rrq) of the route request packet (rrq pkt) and again
broadcasts it. Similarly, other new variable (route record rrp) used to store the a link
information which is collected from the route request packet, when a destination node
returns a route reply packet to the initial node. Two more invariants (inv3, inv4) are
introduced as safety properties, which represent that the sequence of accumulated node
information and the route record information is a subset of all the connected nodes to
the source node and a subset of connected links from the source node to all other nodes.

inv1 : route record rrq ∈ rrq → (ND ↔ ND)
inv2 : route record rrp ∈ rrp → (ND ↔ ND)
inv3 : ∀rp, al, s·s ∈ ND ∧ rp ∈ rrp ∧ al ⊆ ND × ND ∧ al ∈ dom(closure)⇒

dom(route record rrp(rp)) ⊆ {x·s �→ x ∈ closure(al)|x}
int4 : ∀al, E, rp·E ⊆ ND ∧ rp ∈ rrp ∧ al ⊆ ND × ND ∧ al ∈ dom(closure)⇒

route record rrp(rp) ⊆ closure(E � al)

EVENT forward broadcast
ANY x, y, rrq pkt
WHERE

grd1 : x ∈ ND ∧ y ∈ ND
grd2 : x �→ y ∈ alinks(x)∧

x �→ y ∈ alinks(y)
grd3 : rrq pkt ∈ bcast rrq
grd4 : source rrq(rrq pkt) = y
grd5 : target rrq(rrq pkt) = y

THEN
act1 : route record rrq(rrq pkt) :=

route record rrq(rrq pkt) ∪ {x �→ y}
act2 : bcast rrq := bcast rrq ∪ {rrq pkt}

END

EVENT update routing table
� grd4 : E ⊆ {x|x ∈ ND∧

s �→ x ∈ closure(ALinks)}
� grd5 : routeSet ⊆ closure(E � ALinks)
⊕ grd3 : E =

dom(route record rrp(rrp pkt))
⊕ grd4 : routeSet =

route record rrp(rrp pkt)
EVENT received rrq

⊕ grd6 : s �→ t ∈
closure(route record rrq(rrq pkt))

⊕ grd7 : route record rrp(rrp pkt) =
route record rrq(rrq pkt)

A new event forward broadcast introduces for broadcasting a route request packet
to neighboring nodes, when any node is not the destination node for a route discovery
process. First two guards state that node x is directly connected with node y and this
information is stored by a local routing table of nodes x and y. Next guard (grd3)
states that a route request packet (rrq pkt) is already broadcasted and last two guards
(grd4, grd5) state that node y is not either source or destination nodes of the route
request packet. Two actions of this event, add a new link information (x �→ y) as a route
record of the route request packet rrq pkt, and again broadcasts it continue for route
discovery process. This process is repeated many times, until the destination node does
not receive the route request packet. In this refinement, we introduce some new guards
and remove some old guards from events update routing table and received rrq.



Analysis of DSR Protocol in Event-B 413

5.6 Fifth Refinement : Sequence Number

In this last refinement, we introduce a constant seqNo as seqNo ∈ rrq → N1 for rep-
resenting a sequence number stored in each route request packet. The sequence number
is set by the initiator from a locally-maintained sequence number. In order to detect du-
plicate route requests received packets, each node in the ad hoc network maintains a list
of the route request packet that it has recently received on any route request. The route
request thus propagates through the ad hoc network until it reaches the destination node,
which then replies to the initiator. The original route request packet is received only by
those nodes within wireless transmission range of the initiating node, and each of these
nodes propagates the request if it is not the target and if the request does not appear to
this host to be redundant. Discarding the request as well as recently seen request packet
because the address of node is already listed in the route record guarantees that no sin-
gle copy of the request can propagate around a loop [1]. A new variable store rrq is
declared as store rrq ∈ ND → P(rrq), which represents a recently seen request table
by each nodes. The recently seen request table keeps all visited route request packets
information.

A new event forward broadcast skip is used to discard the route request packet
when the request packet is already stored by the recently seen request table (store rrq).
This event is refinement of the event forward broadcast. Guard (grd5) of this event
states that route request packet (rrq pkt) is already received by a node y and it is stored
by the recently seen request table (store rrq). Last guard states that the sequence num-
ber (seqNo) of the received route request packet is already stored by the recently seen
request table (store rrq) of a node y.

EVENT forward broadcast skip
ANY x, y, rrq pkt
WHERE

grd1 : x ∈ ND ∧ y ∈ ND ∧ x �→ y ∈ alinks(x)
grd2 : rrq pkt ∈ bcast rrq
grd3 : source rrq(rrq pkt) = y
grd4 : target rrq(rrq pkt) = y
grd5 : rrq pkt ∈ store rrq(y)
grd6 : seqNo(rrq pkt) ∈

{p·p ∈ store rrq(y)|seqNo(p)}
THEN

skip
END

EVENT broadcast rrq
⊕ act2 : store rrq(s) := store rrq(s)∪

{rrq pkt}
EVENT forward broadcast

⊕ grd6 : rrq pkt /∈ store rrq(y)
⊕ grd7 : seqNo(rrq pkt) /∈

{p·p ∈ store rrq(y)|seqNo(p)}
⊕ act3 : store rrq(y) := store rrq(y)∪

{rrq pkt}

When route request initiator node (s) broadcasts the route request packet (rrq pkt),
the route request packet is stored in the recently seen request table (store rrq), which is
represented by an extra action in the event broadcast rrq. Two extra guards (grd6, grd7)
and an action (act3) are introduced in the event forward broadcast. The guards
state that a new request packet (rrq pkt) is received by a node y and sequence num-
ber (seqNo) of route request packet is different from the recently seen request table
(store rrq). The action (act3) states that the intermediate node y stores the route re-
quest packet (rrq pkt) by the recently seen request table (store rrq).

5.7 Proof Statistics

Table-2 is expressing the proof statistics of the formal development of DSR protocol
in the Rodin tool. These statistics measure the size of the model, the proof obligations



414 D. Méry and N.K. Singh

generated and discharged by the Rodin platform, and those interactively proved. The
complete development of the DSR protocol results in 104(100%) proof obligations,
in which 83(80%) are proved completely automatically by Rodin tool. The remaining
20(20%) proof obligations are proved interactively by Rodin tool. In the model, many
proof obligations are generated in first refinement due to introduction of store and for-
ward architecture for a data packet passing in the dynamic network.

In order to guarantee the correctness of these
behaviors, we have established various in-
variants in stepwise refinement. The step-
wise refinement of the DSR protocol helps
to achieve a high degree of automatic proof.

Table 2. Proof statistics

Model Total number Automatic Interactive
of POs Proof Proof

Abstract Model 16 16(100%) 0(0%)
First Refinement 37 20(55%) 17(45%)
Second Refinement 15 13(91%) 2(9%)
Third Refinement 5 5(100%) 0(0%)
Fourth Refinement 19 17(89%) 2(11%)
Fifth Refinement 12 12(100%) 0(0%)
Total 104 83(80%) 21(20%)

6 Discussion and Conclusion

Discussion: We have found some works on using model checkers and theorem provers
to verify properties of routing protocol by O.Wibling et al. [8] and relatively few case
studies (e.g., [4,9]) using formal methods to develop different kinds of protocols. Yang
et al. [10] have presented both safety and liveness properties of the DSR protocol. The
proofs have been mechanically checked using theorem proving tool Isabelle/HOL. An-
other paper [11] presents a validation model for the DSR protocol using SDL and con-
cludes that Route Request table correctly updated after receiving RREP.

This paper contributes to incremental formal development of the DSR protocol using
proof-based refinement. The specification is performed in a stepwise manner composing
more advanced routing components between the abstract specification and topology.
An incremental development helps to verify consistency and correctness of the system.
This formal model is designed according to the requirements of the DSR protocol, and
provides main characteristics of ad hoc network in form of dynamic networks: nodes
can be added and deleted in a dynamic manner. We have introduced several invariants as
safety properties to verify the system and introduce liveness properties that characterize
when the system reaches stable states. All these invariants are useful to generate the
test cases from formal models, which can be used for testing like route discovery, route
updating and response time etcetera.

Conclusion: We have presented a case study for formalizing and reasoning about the
DSR protocol in Event-B. Formal development of the DSR protocol is presented in
two phases as basic communication protocol and route discovery protocol. In basic
communication protocol, we consider the data packets are passing from source node to
destination node in changing network. The route discovery protocol is used to find the
route from initial node to a destination node. We formalize several different develop-
ments, each highlighting different aspects of the problem, making different assumptions
and establishing different properties. We consider the case of dynamic environment and
express properties for holding the stable states. We have explained our approach for de-
veloping DSR protocol using refinement, which allow us to achieve a very high degree
of automatic proof. The powerful support is provided by the Rodin tool. Rodin proof



Analysis of DSR Protocol in Event-B 415

is used to generate the proof obligations and to discharge those obligations automati-
cally and interactively. Our approach is the methodology of separation of concerns: first
prove the algorithm at an abstract level; then gradually introduce the peculiarity of the
specific protocol.

What is important about our approach is that the fundamental properties, we have
proved at the beginning, namely the reachability and the uniqueness of a solution, are
kept through the refinement process (provided, of course, the required proofs are done).
Our different developments reflect not only the many facets of the problem, but also that
there was a learning process involved in understanding the problem and its solution. It
seems to us that this sort of approach is highly ignored in the literature of protocol
developments [10,11] where, most of the time, things are presented in a flat manner
directly at the level of the final protocol itself. In addition, the proposed methodology is
generic and can be easily applied to other routing protocols for an ad hoc networks. It
can also be applied to large-scale system and to extended ad hoc networks like reactive
routing protocols.

Acknowledgments. Work of Neeraj Kumar Singh is supported by grant awarded by
the Ministry of University and Research.

References

1. Johnson, D.B., Maltz, D.A.: Dynamic Source Routing in Ad Hoc Wireless Networks. In:
Mobile Computing. The International Series in Engineering and Computer Science, vol. 353,
pp. 153–181. Springer, US (1996) ISSN 0893-3405

2. Project RODIN: Rigorous open development environment for complex systems (2004),
http://rodin-b-sharp.sourceforge.net/ (2004-2007)

3. Abrial, J.R.: Modeling in Event-B: System and Software Engineering. Cambridge University
Press, Cambridge (2010)

4. Hoang, T.S., Kuruma, H., Basin, D.A., Abrial, J.R.: Developing Topology Discovery in
Event-B. In: Leuschel, M., Wehrheim, H. (eds.) IFM 2009. LNCS, vol. 5423, pp. 1–19.
Springer, Heidelberg (2009)

5. Cansell, D., Méry, D.: The Event-B Modelling Method: Concepts and Case Studies, pp. 33–
140. Springer, Heidelberg (2007); See [12]

6. Leavens, G.T., Abrial, J.R., Batory, D.S., Butler, M.J., Coglio, A., Fisler, K., Hehner, E.C.R.,
Jones, C.B., Miller, D., Jones, S.L.P., Sitaraman, M., Smith, D.R., Stump, A.: Roadmap for
enhanced languages and methods to aid verification. In: Proceedings of the 5th Inter. Conf.
on Generative Programming and Component Engineering (GPCE), pp. 221–236 (2006)

7. Lynch, N.A.: Distributed Algorithms. Morgan Kaufmann, San Francisco (1996)
8. Wibling, O., Parrow, J., Pears, A.: Automatized Verification of Ad Hoc Routing Protocols,

pp. 343–358. Springer, Heidelberg (2004)
9. Abrial, J.R., Cansell, D., Méry, D.: A Mechanically Proved and Incremental Development of

IEEE 1394 Tree Identify Protocol. Formal Asp. Comput. 14(3), 215–227 (2003)
10. Yang, H., Zhang, X., Wang, Y.: A Correctness Proof of the DSR Protocol. In: Cao, J., Sto-

jmenovic, I., Jia, X., Das, S.K. (eds.) MSN 2006. LNCS, vol. 4325, pp. 72–83. Springer,
Heidelberg (2006)

11. Cavalli, A., Grepet, C., Maag, S., Tortajada, V.: A Validation Model for the DSR Protocol.
In: Proceedings of the 24th ICDCSW 2004, vol. 7, pp. 768–773. IEEE Computer Society,
Los Alamitos (2004)

12. Bjørner, D., Henson, M.C. (eds.): Logics of Specification Languages. EATCS Textbook in
Computer Science. Springer, Heidelberg (2007)

http://rodin-b-sharp.sourceforge.net/

	Analysis of DSR Protocol in Event-B
	Introduction
	The Modeling Framework
	Modeling Actions over States
	Model Refinement

	Informal Description of DSR Protocol
	Requirements and Assumptions
	Formal Development
	The Context and Initial Model
	First Refinement : Store and Forward Architecture
	Second Refinement : Routing Update
	Third Refinement : Route Discovery Protocol
	Fourth Refinement : Continue Route Discovery Protocol
	Fifth Refinement : Sequence Number
	Proof Statistics

	Discussion and Conclusion
	References




