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Preface

The papers in this volume were presented at the 13th International Symposium
on Stabilization, Safety, and Security of Distributed Systems (SSS), held on
October 10–12, 2011 in Grenoble, France.

SSS is an international forum for researchers and practitioners in the design
and development of distributed systems with self-* attributes, such as self-stabi-
lization, self-configuration, self-organization, self-management, self-healing, self-
optimization, self-adaptiveness, self-repair, self-protection, etc. Many researchers
are now focusing on bringing self-* properties into distributed systems. They
mainly aim to tolerate different kinds of undesirable phenomena without human
intervention. Moreover, distributed systems are now at a crucial point in their
evolution, marked by the increasing importance of flexibility, as is the case in
peer-to-peer networks, large-scale wireless sensor networks, mobile ad-hoc net-
works, cloud computing, robotic networks, etc. Also, new applications with self-*
requirements are currently coming up in different fields such as grid and web ser-
vices, banking and e-commerce, e-health and robotics, aerospace and avionics,
automotive, industrial process control, etc.

SSS started as the Workshop on Self-Stabilizing Systems (WSS), the first
two of which were held in Austin in 1989 and in Las Vegas in 1995. Starting in
1995, the workshop began to be held biennially; it was held in Santa Barbara
(1997), Austin (1999), and Lisbon (2001). As interest grew and the community
expanded, in 2003, the title of the forum was changed to the Symposium on
Self-Stabilizing Systems (SSS). SSS was organized in San Francisco in 2003 and
in Barcelona in 2005. As SSS broadened its scope and attracted researchers
from other communities, a couple of changes were made in 2006. It became an
annual event, and the name of the conference was changed to the International
Symposium on Stabilization, Safety, and Security of Distributed Systems (SSS).
The last five SSS conferences were held in Dallas (2006), Paris (2007), Detroit
(2008), Lyon (2009), and NewYork (2010).

This year the Program Committee was organized into several tracks reflecting
most topics related to self-* systems. The tracks were: (i) Ad-Hoc, Sensor, and
Dynamic Networks, (ii) Fault-Tolerance and Dependable Systems, (iii) Overlay
and Peer-to-Peer Networks, (iv) Safety and Verification, (v) Security, (vi) Self-
Organizing and Autonomic Systems, and (vii) Self-Stabilization.

We received 79 submissions from 19 countries. Each submission was reviewed
by at least three Program Committee members with the help of external review-
ers. Out of the 79 submitted papers, 29 papers were selected for presentation.
The symposium also included 10 brief announcements. Selected papers from the
symposium will be published in a special issue of Theoretical Computer Sci-
ence (TCS). This year, we were very fortunate to have two distinguished invited
speakers: Nicola Santoro and Toshimitsu Masuzawa.
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Among the 29 selected papers, we considered 3 papers for special awards. The
best paper award was given to Andrew Berns, Sukumar Ghosh, and Sriram V.
Pemmaraju for “Building Self-Stabilizing Overlay Networks with the Transitive
Cloture Framework”. The best student paper award was shared by Rizal Mohd
Nor, Mikhail Nesterenko, and Christian Scheideler for “Corona: A Stabilizing
Deterministic Message-Passing Skip List”, and Damien Imbs and Michel Raynal
for “The Weakest Failure Detector to Implement a Register in Asynchronous
Systems with Hybrid Communication”.

On behalf of the Program Committee, we would like to thank all the authors
who submitted their work to SSS. We sincerely acknowledge the tremendous
time and effort the Program Vice Chairs and the Program Committee members
invested in the symposium. We are grateful to the external reviewers for their
valuable and insightful comments. We also thank the members of the Steering
Committee for their invaluable advice. We are grateful to the Organizing Com-
mittee members for their time and invaluable effort that greatly contributed to
the success of this symposium.

Organizing this event would not have been possible without the support
of the following organizations: ANR SPADES, CNRS, Elsevier, Grenoble In-
stitute of Technology (INP), INRIA, Japan Advanced Institute of Science and
Technology (JAIST), Lab. MIS (University of Picardie Jules Verne), Springer
(LNCS), University Joseph Fourier (UJF), and VERIMAG. Finally, the pro-
cess of paper submission, selection, and compilation in the proceedings was
greatly simplified by the strong and friendly interface of the EasyChair system
(http://www.easychair.org).

Dedication. We were supposed to organize SSS 2011 at Shinagawa (Tokyo), but
after the terrible earthquake and tsunami that affected Japan and its people,
the consequences on Fukushima Daiichi nuclear power station led us reluctantly
to relocate the symposium to another country. On behalf of our community, we
would like to dedicate SSS 2011 to Japan and its people.

October 2011 Xavier Défago
Franck Petit

Vincent Villain
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Andréa Richa, Christian Scheideler, and Phillip Stevens

Brief Announcement: A Conjecture on Traceability, and a New Class of
Traceable Networks . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 431

H.B. Acharya, Anil K. Katti, and Mohamed G. Gouda

Brief Announcement: A Stabilizing Algorithm for Finding Two
Edge-Disjoint Paths in Arbitrary Graphs . . . . . . . . . . . . . . . . . . . . . . . . . . . . 433

Fawaz M. Al-Azemi and Mehmet Hakan Karaata

Brief Announcement: Towards Interoperability Standards and Services
for Autonomic Systems . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 435

Richard Anthony, Mariusz Pelc, and Haffiz Suahib

Brief Announcement: Distributed Self-organizing Event Space
Partitioning for Content-Based Publish/Subscribe Systems . . . . . . . . . . . . 437

Roberto Beraldi, Adriano Cerocchi, Fabio Papale, and
Leonardo Querzoni

Brief Announcement: A Note on Replication of Documents . . . . . . . . . . . . 439
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Silence Is Golden: Self-stabilizing Protocols

Communication-Efficient after Convergence

Toshimitsu Masuzawa

Graduate School of Information Science and Technology,
Osaka University, Suita 565-0871, Japan

1 Motivation

Self-stabilization is a general paradigm to provide forward recovery capabili-
ties to distributed systems. A self-stabilizing protocol can eventually recover
its intended behavior even when starting from an arbitrary initial configura-
tion, and thus, it has high adaptability to transient faults (e.g., process state
corruptions and message corruptions) and network topology changes. The high
adaptability is usually acquired at the cost of efficiency. A crucial difference in
cost between self-stabilizing and non-self-stabilizing protocols lies in the cost
of communication after reaching a desired configuration. It is quite evident for
static problems, e.g., spanning-tree construction. Self-stabilizing protocols can-
not allow any process to terminate its communication even after converging to
a desired configuration (where a solution of the problem is already obtained),
while non-self-stabilizing ones can eventually allow every process to terminate
all the activity.

Actually, most of self-stabilizing protocols require every pair of neighboring
processes to communicate with each other repeatedly and forever even after
convergence to desired configurations. This leads high communication load and
makes the protocols unacceptable in some situations. Especially, in practical
applications, we can expect that self-stabilizing protocols show their intended
behavior most of the time during their execution. Deviation from the intended
behavior may occur because of transient faults or topology changes but it is
infrequent. Thus, the efficiency after convergence (or during the intended be-
havior) is more important than that during convergence. Nevertheless, only a
few recent papers [1,2,3,4] are dedicated to improving communication efficiency
after convergence.

In this paper, we introduce some complexity measures reflecting communication-
efficiency after convergence of self-stabilizing protocols. We present some results
on possibility and impossibility of communication-efficient protocols for funda-
mental problems.

2 Point-to-Point Communication Model

Devismes et al.[2] and Masuzawa et al.[4] introduced some complexity measures
for communication-efficiency after convergence of self-stabilizing protocols. The
measures are targeting the point-to-point communication model.

X. Défago, F. Petit, and V. Villain (Eds.): SSS 2011, LNCS 6976, pp. 1–3, 2011.
c© Springer-Verlag Berlin Heidelberg 2011



2 T. Masuzawa

A self-stabilizing protocol A is �-h-communication-efficient if every (infi-
nite) execution of A has a suffix where at most h ordered pairs of processes
communicate with each other at every (asynchronous or synchronous) round.
The communication-efficiency reflects the total communication load after con-
vergence but does not consider congestion of the communication. The local-
communication-efficiency is a measure for the local communication load after
convergence; a self-stabilizing protocol A is �-k-locally-communication-efficient
if every (infinite) execution of A has a suffix where every process receives infor-
mation from at most k of its neighbors at every round.

The (local-)communication-efficiency reflects the communication load at every
round, and the communicating process pairs can vary from round to round. The
concept of �-k-stability is introduced to denote the stability of communicating
process pairs; a self-stabilizing protocol A is �-k-stable if every (infinite) execu-
tion of A has a suffix where each process receives information from at most k
neighbors during the execution suffix. From the definition, �-k-stability implies
�-k-local-communication-efficiency.

The followings are some of the results presented in [2,4].

(1) For the problem class containing the maximal independent set problem, there
is no (Δ− 1)-stable protocol, where Δ is the maximum degree of processes.
This implies that at least one process has to keep communicating with all of
its neighbors.

(2) For the maximal independent set problem, there is a�-1-locally-communication-
efficient protocol such that processes not in the independent set receives in-
formation only from one of its neighbors in a suffix of any execution.

(3) For the spanning tree construction, when a unique root is designated, there
exists a �-1-stable self-stabilizing protocol that allows each process, after
convergence, to receive information only from its parent.

(4) For the spanning tree construction, when each process has a unique identifier
but a unique root is not designated, no protocol can allow even a single pair
of neighbors to eventually stop communication between them (i.e., �-o(m)-
communication-efficiency is unattainable, where m is the number of links).

(5) For the spanning tree construction, when each process has a unique identifier
and knows an upper bound N (n ≤ N < 2n) of n a priori (but a unique
root is not designated), there exists a �-2(n − 1)-communication-efficient
protocol that allows each process, after convergence, to receive information
only from its parent and children. The restriction N < 2n on the upper
bound N is the weakest in the sense that �-o(m)-communication-efficiency
becomes unattainable when N = 2n.

The results (3) and (4) bring out the contrast between self-stabilization and
communication-efficient self-stabilization: existence of a unique root is sufficient
for attaining communication-efficiency but existence of unique process identifiers
is not, however, self-stabilizing (but not communication-efficient) spanning-tree
construction is possible with either assumption.
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3 Local-Broadcast Communication Model

Communication-efficiency is more important in wireless networks such as wire-
less sensor networks, since energy consumption is critical in these networks. In
wireless networks, local-broadcast is commonly used for communication; once a
node sends a message, all of its neighbors receive the message. In the distributed
system with local-broadcast communication, reducing the number of processes
that repeatedly broadcast messages is important. Recently, we started studying
the communication-efficiency in the distributed system model[5].

A self-stabilizing protocol A is �-k-broadcast-stable if every execution of A
has a suffix where only k processes locally broadcast messages. Another mea-
sure is the (average) number of processes at every round that locally broadcast
messages. A self-stabilizing protocol A is �-k-average-broadcast-efficient if every
execution of A has a suffix where only k processes locally broadcast messages at
every round on average.

The followings are the results for the synchronous systems presented in [5].

(1) For the minimal connected dominating set problem and the spanning tree
construction problem, no self-stabilizing protocol allows even a single process
to stop broadcasting after convergence, i.e., �-(n − 1)-broadcast-stability
cannot be attained.

(2) For the maximal independent set problem and the minimal dominating set
problem, there exist self-stabilizing protocols such that only the processes in
the set keep broadcasting after convergence.

(3) For all the problems in the above, any �-o(n)-average-broadcast-efficient
protocol has no upper bound on its convergence time (or the number of
rounds required to reach a desired configuration).

(4) For the spanning tree construction problem, there exists a �-1-average-
broadcast-efficient protocol when each process knows the number n of pro-
cesses in the system.
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There has been recently a large number of investigations devoted to the study of
infrastructure-less highly dynamic networks. These include most types of highly-
mobile ad hoc networks, such as pedestrian or vehicular networks, where the
network’s topology may change dramatically over time due to the movement of
the nodes; sensor networks with sleep scheduling, where links only exist when two
neighbouring sensors are awake and have power; and low-density ad hoc networks
made up of satellites, where nodes are most of the time isolated and must rely
on a store-carry-forward mechanism for their communications. These highly dy-
namic networks, variously called delay-tolerant, disruptive-tolerant, challenged,
opportunistic, have in common that the assumption of connectivity does not
necessarily hold, at least with the usual meaning of contemporaneous end-to-end
multi-hop paths between any pair of nodes. The network may actually be dis-
connected at every time instant. Still, communication routes may be available
over time and space, and make broadcast, routing, and distributed computing
feasible.

Not surprisingly, an extensive amount of research has been devoted, mostly
by the engineering community, to the problems of broadcast and routing in such
highly dynamical environment. As part of these research efforts, a number of im-
portant concepts have been identified, and occasionally expressed within a more
general scheme. Interestingly, closely related insights have been obtained in the
investigations being carried out in some apparently unrelated areas of dynamic
systems. This is for example the case of the study of complex real-world networks
ranging from neuroscience or biology to transportation systems or social studies,
e.g., the characterization of the interaction patterns emerging in a social network.
In several cases, differently named concepts identified by different researchers are
actually one and the same concept. Indeed, the concepts discovered in all these
investigations can be viewed as parts of the same conceptual universe; and the
formalisms proposed so far to express some specific concepts can be viewed as
fragments of a larger formal description of this universe. A common point in
all these areas is that the system structure - the network topology - varies in
time. Furthermore the rate and/or degree of the changes is generally too high to
be reasonably modeled in terms of network faults or failures: in these systems
changes are not anomalies but rather integral part of the nature of the system.

This talk describes the current research effort to integrate the vast collection of
concepts, formalisms, and results found. It also reviews the status of the research
on distributed computing in time-varying networks, outlining the challanges,
difficulties and promising directions.
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Abstract. For any non-negative integer K, a K-observer P of a network
N is a set of nodes in N such that each message, that travels at least
K hops in N , is handled (and so observed) by at least one node in P .
A K-observer P of a network N is minimum iff the number of nodes
in P is less than or equal the number of nodes in every K-observer of
N . The nodes in a minimum K-observer of a network N can be used
to monitor the message traffic in network N , detect denial-of-service
attacks, and act as firewalls to identify and discard attack messages. This
paper considers the problem of constructing a minimum K-observer for
any given network. We show that the problem is NP-hard for general
networks, and give linear-time algorithms for constructing minimum or
near-minimum K-observers for special classes of networks: trees, rings,
L-rings, and large grids.

1 Introduction

Every node in a computer network performs a number of traditional tasks: gen-
erating messages, routing and forwarding messages, and consuming messages.
Beside these traditional tasks, some nodes are designated, in a network, to per-
form additional tasks: observing and collecting statistics concerning the message
traffic that goes through each designated node and filtering the message traffic
that goes through each designated node. We refer to those nodes that are des-
ignated, in a computer network, to perform these additional tasks as network
observers.

This paper discusses the problem of how to select the nodes to be designated
network observers in a computer network. We start the discussion by proposing a
criterion, named minimum K-observers for some non-negative integer K, which
can be used to identify the network observers in a computer network.

A K-observer P of a network N is a set of nodes in N such that each message,
that travels at least K hops in N , is handled (and so observed) by at least one
node in P .

Clearly, this definition of a K-observer P depends on the chosen value of K.
On one hand, if the chosen value of K is small (with respect to the total number

X. Défago, F. Petit, and V. Villain (Eds.): SSS 2011, LNCS 6976, pp. 5–18, 2011.
c© Springer-Verlag Berlin Heidelberg 2011
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of nodes n in N), then P is a large set containing most of the nodes in N . For
example, if K = 0, then P is the set of all nodes in N . On the other hand, if the
chosen value of K is large (with respect to the total number of nodes n in N),
then P can be a small set containing few nodes in N . For example, if K = n−1,
then P can be a singleton containing only one node (any node) in N . Also, if
K ≥ n, then P can be the empty set.

Note that if a set P is a K-observer of a network N , then adding more nodes
of N to P does not change the status of P of being a K-observer of N . This
note suggests that we should be more interested in minimum K-observers, rather
than in K-observers, as defined next.

A K-observer P of a network N is minimum iff the number of nodes in P is
less than or equal the number of nodes in every K-observer of N .

Based on this discussion, in order to identify the network observers in a com-
puter network N , one needs to construct a minimum K-observer P of network
N , for some chosen K, and use the nodes in the constructed P as the network
observers in N .

The problem of constructing a minimum K-observer in a network is related,
though not identical, to several established problems in network design:

1. Constructing a node cover in a network
The Node Cover Problem is to find a minimum number of nodes such
that each link is incident to at least one node in the network [9]. The K-
observer problem is more generalized than the Node Cover Problem such
that the Node Cover Problem is the special case of the K-observer prob-
lem when K = 1. Armbruster [3] discusses the Node Cover Problem for
sources and destinations of all paths in the network whereas the K-observer
problem generalizes the Node Cover Problem for a path of length K in the
network.

2. Creating a backbone for communication
A very important problem for wireless networks, the Connected Dominating
Set Problem, is to find a set of nodes that are connected, such that each
node in the network either belongs to this set of nodes or is one hop from
it [19]. A connected dominating set is used for virtual backbones in wireless
networks. Although mobile networks do not have physical backbones, virtual
backbones can be formed to help communication in wireless ad-hoc networks
[2], [17], [12].

3. Placing guards in an art gallery
The Art Gallery Problem is to determine the number of guards necessary to
cover an art gallery, such that every point in the art gallery is guarded by at
least one observer [7]. This problem is equivalent to the Coverage Problem
in the context of wireless sensor networks [10], wireless ad-hoc networks, and
wireless sensor ad-hoc networks [13]. Moreover, this problem is equivalent to
the Dominating Set Problem if guards must be placed on nodes, and only
nodes need to be guarded [9].
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4. The problem of facility location in a network
The Facility Location Problem is to find a place for a facility such that the
distances from customers are minimized [18]. This problem can be regarded
as the Set Cover Problem [11]; it has been discussed in various contexts
such as the placement of monitoring nodes [4], web server replicas [14], and
overlay nodes [16].

The rest of the paper is organized as follows. We begin by proving that our K-
observer problem is NP hard for general networks in Section 2. We then explore
solutions for some special cases: tree networks in Section 3, ring networks in
Section 4, and grid networks in Section 5. We go on to discuss some possible
applications for the K-observer problem, and conclude with a few remarks.

2 The K-Observer Problem

A network N is an undirected graph (V, E), where V is a nonempty set of nodes
and E is a set of undirected links. Each link in E is a set of two distinct nodes
in V . A link {u, v} in a network N is said to be incident at nodes u and v in N .

A path in a network N is a nonempty sequence (u1, u2, . . . , ur) of distinct
nodes in N such that each pair {ui, ui+1} of consecutive nodes in the sequence
constitutes a link in network N .

The length of a path (u1, u2, . . . , ur) in a network is r − 1. For example, the
length of the path (u1) is 0, the length of the path (u1, u2) is 1, and so on.

Let P denote a set of nodes in a network N and let K be a non-negative
integer. Set P is called K-observer of N iff every path of length at least K in N
has at least one node in P .

A K-observer P of a network N is called minimal iff for each node u in P ,
N has a path q of length at least K such that P and q share only one node and
their shared node is u.

A minimal K-observer P of a network N is called minimum iff for every
minimal K-observer Q of network N , the number of nodes in Q is at least the
number of nodes in P .

Let K be a non-negative integer. The K-observer problem is to design an
algorithm that takes as input any network N and produces as output a minimum
K-observer of network N .

An algorithm that solves the K-observer problem, when K = 0, can be de-
signed as follows. This algorithm takes any network N as input and produces
the set of all nodes in N as output. The correctness of this algorithm is based on
the observation that the only 0-observer (and so the only minimum 0-observer)
of a network N is the set of all nodes in N .

Unfortunately, the following theorem states that the K-observer problem, for
any given constant K > 0, is NP-hard, so any algorithm to solve this problem
is very likely to be expensive.
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Theorem 1. The K-observer problem, for any given constant value of K that
is greater than 0, is NP hard.

Proof. We begin our proof by noting that, for the case where K = 1, the K-
observer problem reduces to choosing a minimum number of nodes such that
every path of 1 or more hops i.e. every edge or simple path in the graph has at
least one chosen node. This is the well-known minimum vertex cover problem,
which is of course NP-hard [9].

We will now prove the NP-hardness of the general case by contradiction. If
the K-observer problem is solvable in polynomial time for any value of K greater
than 1 (say K = k), then minimum vertex cover is also solvable in polynomial
time.

Suppose the K-observer problem is polynomial-time solvable for K = k. Given
a network N , we can find its minimum vertex cover as follows.

To each node u of N , we attach a “string” of nodes u1, u2, ...uk−1. These nodes
have no edges incident on them, except the edges that link them to form the
string. We call this modified network, consisting of N as well as the new nodes
and edges added to form strings, network N ′. The node on a string that belongs
to N is called the base node of the string.

We now run the polynomial-time algorithm to find the minimum k-observer
of N ′. Note the size of N ′ is k times, i.e. a constant times the size of N , so this
runs in time polynomial in the size of N also.

Further, we note that as this is the minimum k-observer, it will not contain
more than one member of each ‘string’ (u, u1, ...uk−1). (If there is more than
one member, the one farther away from the base node i.e. u can be unmarked
without breaking the condition that all paths of length k or more have at least
one marked node, so the solution is not minimal and not minimum.) We now
apply a simple linear time transformation: if any node in a string is marked, we
unmark it and mark the base node of the string.

The set of marked nodes is a minimum K-observer of N ′, because it is still a
K-observer (any path using edges from the original N that had a marked node
on it, still has a marked node on it, and any path not using edges from N has a
maximum length of k−1) and it has the same number of nodes as the minimum
K-observer found by our polynomial-time algorithm. It is also a vertex cover of
N (because if there is an edge {u, v} in N such that neither u nor v is marked,
then there is a path {u, v, ...vk−1} of length k in N ′ without any marked nodes,
which is impossible). Thus, we have a vertex cover of size m′, where m′ is the
size of the minimum k-observer of N ′.

Now we note that any vertex cover of N is a k-observer of N ′, as any path
of length k or more must use at least one edge in N and thus contain a marked
node. So if the size of the minimum vertex cover of N is m and the minimum
k-observer of N ′ is m′, we have m ≥ m′. (In other words, the minimum vertex
cover of N being a k-observer of N ′ is at least as large as the minimum k-observer
of N ′.)

Hence the vertex cover we compute, being of size m′ and thus ≤ m, is in
fact the minimum vertex cover (because it is a vertex cover, upper bounded
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by the size of the minimum vertex cover). Thus, if the K-observer problem is
solvable for general graphs for K = k > 1, we have a polynomial time algorithm
for the minimum vertex cover problem, which is NP hard; in other words, the
K-observer problem is NP hard for all K > 0.

Having shown that the K-observer problem is NP hard for general networks,
we present next polynomial time (in fact linear time) algorithms for solving this
problem for special classes of networks such as tree networks, ring networks, and
grid networks.

3 K-Observers of Tree Networks

In this chapter, we solve the K-observer problem for tree networks that have no
cycles. Figure 1 shows an example of a tree network T that has 13 nodes, named
node 0 to node 12, and 12 links.

Next, we describe an algorithm that computes a minimum K-observer for a
tree network. This algorithm takes as input a tree network T and a positive
integer K and returns as output a minimum K-observer P of network T . This
algorithm consists of the following four steps:

Step 1:
Choose any node in T to be the root and add directions to the links in T to
make T a directed tree where the root is a sink node.
Step 2:
Define for each node x in T , a variable named lenx whose range of values is
0 . . .K.
Step 3:
For each node x in T , where the values of the len variables of all predecessor
nodes of x have already been computed, compute the value of lenx as follows:
lenx := 0 if x has no predecessor y whose leny < K

:= leny + 1 if x has exactly one predecessor y whose leny < K
:= leny + 1 if x has two or more predecessors {y, z, . . .} whose

len′s < K and leny is the maximum len among those
predecessors and lenz is the second maximum len
among those predecessors and (leny + lenz + 2) < K

:= K if x has two or more predecessors {y, z, . . .} whose
len′s < K and leny is the maximum len among those
predecessors and lenz is the second maximum among
those predecessors and (leny + lenz + 2) >= K

Step 4:
A minimum K-observer of tree network T is the set of every node x in T
where lenx = K.

Theorem 2. If this algorithm is applied to a tree network T , and a positive
integer K, then the computed set by this algorithm is a minimum K-observer of
network T .
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Fig. 1. Example of a tree network T

To see how this algorithm works, consider the tree network T in Figure 1. In
step 1, we choose node 5 to be the root and we make the root a sink node such
that T becomes a directed tree as shown in Figure 2(a). In step 2, we define a
variable named lenx for every node x in T . In step 3, we compute lenx for every
node x in T . In step 4, we show that the 2-observer of minimal cardinality of T
is {4, 0, 3, 5} in Figure 2(b). In addition to that, we show that the 3-observer of
minimal cardinality of T is {4, 3} in Figure 2(c).

Interestingly, the algorithm works irrespective of the choice of the root. Even if
a leaf node is chosen as the root, the algorithm still correctly computes minimum
K-observers in tree networks.

The time complexity of this algorithm is linear such that it is proportional to
the number of nodes in the input tree network.

This algorithm as described above is centralized. But a distributed version of
this algorithm can be described as follows:

Step 1:
Each node x, that has exactly one neighboring node y in the tree network
T , knows that it is a leaf in T and so it assigns its variable lenx the value 0
and sends the value of its lenx to node y.
Step 2:
After a node y receives the value of lenx from every neighboring node x
except one, say node z, then node y computes the value of its variable leny (as
described in the centralized version of the algorithm) and sends the computed
value of leny to node z.
Step 3:
If a node z receives the value of leny from every neighboring node y, then
node z recognizes that it is the root and computes the value of its variable
lenz(as described in the centralized version of the algorithm).
Step 4:
Every node x, where the value of lenx in K, knows that it is in the computed
minimum K-observer P of the tree network T .
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(a) Making T a directed tree by choosing
node 5 to be the root

(b) A minimum 2-observer of T is
{0, 3, 4, 5}

(c) A minimum 3-observer of T is {3, 4}
Fig. 2. Computing minimum K-observers of T

It is possible that during the execution of this distributed algorithm, two adjacent
nodes y and z compute the values of their respective len variables and send their
computed values to one another. Thus, each of these two nodes first sends its
len value to the other node then receives the len value of the other node. In
this case, the two nodes y and z behave differently depending on whether or not
index y is larger than index z as follows:
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i. The node with the larger index, say node y, ignores the value of variable
lenz that it receives from nodez and keeps the value of its variable leny

unchanged.
ii. The node with the smaller index, node z, recognizes that it is the root and

uses the value of variable leny received from node y to re-compute the value
of its variable lenz.

4 K-Observers of Ring Networks

In this chapter, we solve the K-observer problem for ring networks. Figure 3
shows a ring network with n nodes, named u1, u2, . . . , un, and n links.

Next, we describe an algorithm that computes a minimum K-observer for a
ring network. This algorithm takes as input a ring network R and a positive
integer K and returns as output a minimum K-observer P of network R. This
algorithm consists of the following three steps:

Step 1:
Initially, P := ∅ (the empty set)

Step 2:
if R has at most K nodes then

return the empty K-observer P
terminate the algorithm

else
/* R has at least K + 1 nodes */
continue the algorithm

end if
Step 3:

remove any node, say node u, and its two incident links from network R
/* the resulting network is a tree */
apply the algorithm in Chapter 3 to compute a minimum K-observer Q
of the resulting tree network
P := Q ∪ {u}
return P and terminate the algorithm

Fig. 3. A ring network of n nodes
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Theorem 3. If this algorithm is applied to a ring network R, and a positive
integer K, then the computed set P by this algorithm is a minimum K-observer
of network R.

Note that the time complexity of this algorithm is linear in the number of nodes
in the input ring network R.

Note also that if Step 2 is removed from the above algorithm, then the com-
puted K-observer P of ring R may no longer be minimum. In this case, however,
the number of nodes in P is no more than one over the number of nodes in a
minimum K-observer of R. This suggests the following definition.

Let L be a non-negative integer. A K-observer P of a network N is called
L-bounded iff the number of nodes in P is no more than L of the number of nodes
in a minimum K-observer of network N . (Note that a minimum K-observer of
a network N can now be regarded as a 0-bounded K-observer of N.)

Next, we describe a linear time algorithm that can be used to construct an
L-bounded K-observer for a special class of networks called L-rings.

Let L be a positive integer. A network RR is called an L-ring iff RR has
exactly L ring sub-networks. Note that if every ring sub-network in an L-ring is
collapsed into a single super node then the resulting network is a tree.

An algorithm, for constructing an L-bounded K-observer P for any given L-
ring RR, is as follows. First, identify a node in every ring sub-network in the given
L-ring RR. Let u1, . . . , ux denote the identified nodes, where x ≤ L. Second,
remove the identified nodes and their incident links from the given L-ring RR.
Note that the resulting network is a tree. Third, apply the algorithm in Chapter
3 to compute the minimum K-observer Q of the resulting tree. Compute the L-
bounded K-observer P of the given L-ring RR as follows: P := Q∪{u1, . . . , uL}.

5 K-Observers of Large Grid Networks

In this chapter, we discuss how to construct minimal K-observers for large grid
networks.

Fig. 4. A section of (r + 1) × (r + 1) nodes in a large grid network
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Let d be a large positive integer. A d-large grid network is a network that has
d2 nodes partitioned into 4 corner nodes, 4d−8 border nodes, and middle nodes.
Each corner node has 2 incident links, each border node has 3 incident links,
and each middle node has 4 incident links.

Next, we present a construction of a minimal K-observer of a d-large grid
network D. An interesting point about this construction is that the number of
nodes in the constructed K-observer is O(d) when the value of K is O(d2).

Our construction takes as input a d-large grid network D and a positive integer
K and produces as output a minimal K-observer P of network D. The number
of nodes in the constructed P is O(d2/�√K�). The construction proceeds in the
following three steps.

Step 1:
Initially, P is the empty set.
Step 2:
Partition the nodes in network D into sections, where each section has (r+1)2

nodes as shown in Figure 4. In Step 3 below, we argue that the value of r is
�√K�. From each section, add the 2r + 1 nodes, that form an L-shape in the
section, into set P . Finally, remove the corner node of the L-shape from P .
Step 3:
Any path in network D, whose nodes are not in set P , must be confined to a
single section in D. Thus, the length of the longest path in D, whose nodes
are not in P , is r2 − 1. Therefore, in order to make P a K-observer of D,
the value of r needs to be �√K�.

Theorem 4. If this algorithm is applied to a d-large grid network D and a
positive integer K, then the computed set P by this algorithm is a minimal K-
observer of network D.

Note that the time complexity of this algorithm is linear in the number of nodes
in the input d-large grid network.

So far, we could only prove that the computed K-observer P of network D is
minimal (not minimum). Luckily, we show next that the number of nodes in the
computed P is relatively small when K is O(d2). But first we need to adopt the
following notation.

|P | is the number of nodes in computed set P .
|D| is number of nodes in network D.
section.P is the number of nodes from one section in computed P .
section.D is the number of nodes in one section in network D.

Hence,

|P | = (section.P ∗ |D|)/section.D

= ((2r + 1) ∗ d2)/(r + 1)2

≈ O(d2/r)

≈ O(d2/�
√

K�)
Therefore, if K is O(d2), for example K = d2/10, then |P | is O(d).
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6 Applications

The concept of minimal K-observers of a network is a fundamental idea, as it
is a generalization of the concept of node cover. This is illustrated by the many
applications for which this concept can be put to good use. We mention some of
these applications here.

First, minimal K-observers can be used in constructing optimal connectivity
paths in wireless sensor networks, wireless ad-hoc networks, and wireless ad-hoc
sensor networks. For example, sensor nodes in wireless sensor networks need to
maintain connectivity, but use as little energy as possible [6]. A solution to the
problem would be to designate some particular nodes as targets, so the other
nodes need only get a message to the nearest target node; these special nodes
may have access to high power or bandwidth, and can ensure the message is
rapidly delivered to its final destination. If we select nodes that constitute a
minimal K-observer of the network, and deploy target nodes at these positions,
we can guarantee that we choose an optimal number of target nodes to ensure
that every “low-power” node has a nearby target (within K hops). Similarly,
it may be interesting to choose nodes constituting the minimal K-observer of
a content distribution network or of a disruption tolerant network, and place
caches at these nodes; each cache can serve the nodes in its “zone”, so with a
small number of caches we ensure that every node in the network has access to
a nearby cache.

Secondly, a minimal K-observer of a network can be used to measure and
monitor the network traffic, as it can be considered to form a good number of
well spread-out points at which to measure the parameters of the network, such
as packet loss and packet delay. Such an arrangement of monitors can also be
used for fine-tuning a network; for example, a service provider might deploy
monitors at the nodes of a K-observer in order to identify usage accounting or
bottlenecks.

Thirdly, minimal K-observers can be used to detect and prevent malicious
attacks in the Internet. Thus, if we solve the K-observer problem for a computer
network, it can help us to find the optimal places to place firewalls or filters in the
network [1], to prevent IP prefix hijacking [15], or to defend against distributed
denial of service (DDOS) attacks [3]. Placing “sentry” nodes forming a minimal
K-observer ensures that no localized attack can cascade through the network
without being detected. Determining the minimal K-observer of a network helps
set up many countermeasures to limit the damage done by an attacker. Moreover,
it can be used for digital forensics, to track down the adversary after an attack.

It is natural to ask, given the scope of the K-observer problem, whether there
is any way to get around the fact that it is intractable in general. In this regard,
we note that there exist interesting network topologies (such as trees, rings,
and grids) for which the problem is tractable, so we argue that it should be
possible to take advantage of various such special cases and compute minimal
K-observers (or good approximations thereof) for many networks of practical
importance. The problem of identifying more networks for which finding the
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minimal K-observer is tractable, as well as finding good heuristics and approxi-
mation algorithms, leaves scope for considerable future research.

The other question that must be answered for practical use of the K-observer
problem is, “what is the proper choice of K for this application?” It is clear
that, the smaller the value of K, the better the coverage (outreach, sensitivity
etc.) will be, but as it will require more observer nodes, the solution will be
more expensive. The choice of K is dependent upon the domain. In our future
work, we intend to extend our study to ’adaptive’ systems, where there are
many observers but only a small number (K-observer for large K) are active by
default; in case an interesting phenomenon is detected, more and more observers
are activated (reducing the value of K), improving the resolution precisely when
better coverage is required.

7 Concluding Remarks

This paper introduces the concept of minimum K-observers of computer
networks. Our primary idea is that the nodes in a minimum K-observer of a
network N can be employed as observers of network N . The problem of con-
structing a minimum K-observer for a general network is NP-hard (Section 2),
but we demonstrate that this problem can be solved in linear-time for some spe-
cial classes of networks: trees (in Section 3), rings (in Section 4), and large grids
(in Section 5). Whether the K-observer problem can be solved for Internet-like
networks, as specified in [8] and [5], remains an open, but important, question.
The K-observer problem is useful in deciding the placement of firewalls, sentry
nodes to detect attacks, and so on, and it would be an important contribution
to develop algorithms to solve the K-observer problem (at least near-optimally)
for networks in the Internet.

There is scope for considerable further work in identifying interesting classes
of network for which the K-observer problem is tractable. An important open
question that follows from our work is how to devise good heuristics and approx-
imation algorithms for the K-observer problem. Furthermore, it may be noted
that we have developed our theory for the K-observer problem under the as-
sumption that the network is stable in time and does not change; it would be
interesting to investigate solutions to the problem – and, indeed, to check if the
problem is solvable – for time-dependent networks, such as mobile and vehicular
networks.

We find that the potential applications for the K-observer problem can be
extended from the optimal connectivity for energy efficiency in wireless networks
to the efficient node placement for traffic and to the detection and the prevention
of network attacks in Section 6. We foresee that the K-observer problem will be
helpful to understand and solve many problems in computer networks.
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Abstract. A fault-tolerant and stabilizing simulation of an atomic register is pre-
sented. The simulation works in asynchronous message-passing systems, and al-
lows a minority of processes to crash. The simulation stabilizes in a pragmatic
manner, by reaching a long execution in which it runs correctly. A key element in
the simulation is a new combinatorial construction of a bounded labeling scheme
accommodating arbitrary labels, including those not generated by the scheme it-
self.

1 Introduction

Distributed systems have become an integral part of virtually all computing systems,
especially those of large scale. These systems must provide high availability and re-
liability in the presence of failures, which could be either permanent or transient. A
core abstraction for many distributed algorithms simulates shared memory [3]; this ab-
straction allows to take algorithms designed for shared memory, and port them to asyn-
chronous message-passing systems, even in the presence of failures. There has been
significant work on creating such simulations, under various types of permanent fail-
ures, as well as on exploiting this abstraction in order to derive algorithms for message-
passing systems. (See a recent survey [2].)

All these works, however, only consider permanent failures, neglecting to incorpo-
rate mechanisms for handling transient failures. Such failures may result from incorrect
initialization of the system, or from temporary violations of the assumptions made by
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the system designer, for example the assumption that a corrupted message is always
identified by an error detection code. The ability to automatically resume normal op-
eration following transient failures, namely to be self-stabilizing [9], is an essential
property that should be integrated into the design and implementation of systems.

This paper presents a stabilizing simulation of an atomic register in asynchronous
message-passing systems where a minority of processors may crash. The simulation is
based on reads and writes to a (majority) quorum in a system with a fully connected
graph topology. A key component of the simulation is a new bounded labeling scheme
that needs no initialization, as well as a method for using it when communication links
and processes are started at an arbitrary state. To the best of our knowledge, our scheme
is the first constructive labeling scheme presenting the above properties.

Overview of our simulation. Attiya, Bar-Noy and Dolev [3] showed how to simulate a
single-writer multi-reader (SWMR) atomic register in a message-passing system, sup-
porting two procedures, read and write, for accessing the register. This simple simula-
tion is based on a quorum approach: In a write operation, the writer makes sure that a
quorum of processors (consisting of a majority of the processors, in its simplest variant)
store its latest value. In a read operation, a reader contacts a quorum of processors, and
obtains the latest values they store for the register; in order to ensure that other readers
do not miss this value, the reader also makes sure that a quorum stores its return value.

A key ingredient of this scheme is the ability to distinguish between older and newer
values of the register; this is achieved by attaching a sequence number to each register
value. In its simplest form, the sequence number is an unbounded integer, which is
increased whenever the writer generates a new value. This solution is appropriate for
an initialized system, which starts in a consistent configuration, in which all sequence
numbers are zero, and are only incremented by the writer or forwarded as is by readers.
Pragmatically, a 64-bit sequence number will not wrap around for a number of writes
that lasts longer than the life-span of any reasonable system.

However, when there are transient failures in the system, as is the case in the con-
text of self-stabilization, the simulation starts at an uninitialized state, where sequence
numbers are not necessarily all zero. It is possible that, due to a transient failure, the
sequence numbers hold maximal values when the simulation starts running, and thus,
will wrap around very quickly. Traditionally, techniques like distributed reset [5, 6] are
used to overcome this problem. However, in asynchronous crash-prone environments
the reset may not terminate waiting for the crashed processes to participate. Hence, a
reset invocation will not ensure that the sequence numbers are set to zero.

Our solution is to partition the execution of the simulation into epochs, namely pe-
riods during which the sequence numbers are supposed not to wrap around. Whenever
a “corrupted” sequence number is discovered, a new epoch is started, overriding all
previous epochs; this repeats until no more corrupted sequence numbers are hidden in
the system, and the system stabilizes. In a steady state, after the system stabilizes, it
remains in the same epoch (at least until the sequence number wrap around, which is
unlikely to happen).

This raises, naturally, the question of identifying epochs. The natural idea, of using
integers, is bound to run into the same problems as for the sequence numbers. Instead, we
use a bounded labeling scheme [14, 18] for the epochs; this is a function for generating
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labels (in a bounded domain), that guarantees that two labels can be compared to deter-
mine the largest among them. Existing labeling schemes, however, assume that labels
have specific initial values, and that new labels are introduced only by means of the label
generation function. In contrast, transient failures, of the kind the self-stabilizing simu-
lation must withstand, can create incomparable labels, so it is impossible to tell which is
the largest among them or to pick a new label that is bigger than all of them.

To address this difficulty, we introduce a bounded labeling scheme that allows to de-
fine a label larger than any set of labels, provided that its size is bounded. We assume
links have bounded capacity, and hence the number of epoch labels initially hidden in
the system is bounded.

The writer tracks the set of epoch labels it has seen recently; whenever the writer
discovers that its current epoch label is not the largest, or is incomparable to some existing
epoch label, the writer generates a new epoch label that is larger than all the epoch labels
it has. The number of bits required to represent an epoch label depends on m, the maximal
size of the set, and it is in O(m log m). We ensure that the size of the set is proportional
to the total capacity of the communication links, namely, O(cn2), where c is the bound
on the capacity of each link (expressed in number of messages) and n is the number of
processors, and hence, each epoch label requires O((cn2(log n + log c)) bits.

It is possible to reduce this complexity, making c constant, using a self-stabilizing
data-link protocols for communication among the processors for bounded capacity links
over FIFO and non-FIFO communication links [10, 15].1

We show that, after a bounded number of write operations, the results of reads and
writes can be totally ordered in a manner that respects the real-time order of non-
overlapping operations, so that the sequence of operations satisfies the semantics of
a SWMR register. This holds until the sequence numbers wrap around, as can happen
when the unbounded simulation of [3] is deployed in realistic systems, where all values
are bounded.

Note that the original design of [3] copes with non-FIFO and unreliable links. We as-
sume that our atomic register simulation runs on top of an optimal stabilizing data-link
layer that emulates a reliable FIFO communication channel over unreliable capacity
bounded non-FIFO channels [10].

Related work. Self-stabilizing simulation of an single-writer single-reader atomic shared
register in a message-passing system was presented in [12]. This simulation does not
tolerate processor crashes. More recent papers [11, 19] focused on self-stabilizing sim-
ulation of shared registers from weaker shared registers. Self-stabilizing timestamps
implementations using SWMR atomic registers were suggested in [1, 13]. These simu-
lations already assume the existence of a shared memory, while, in contrast, we simulate
a shared SWMR atomic register in a message-passing system.

2 Preliminaries

A message-passing system consists of n processors, p0, p1, p2, . . . , pn−1, connected by
communication links through which messages are sent and received. We assume that

1 Note that these protocols are also snap-stabilizing—starting in an arbitrary configuration, the
first invoked send operation succeeds to deliver the message.
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the underlying communication graph is completely connected, namely, every pair of
processors, pi and pj , have a communication link of bounded capacity c.

A processor is modeled as a state machine that executes steps. In each step, the
processor changes its state, and executes a single communication operation, which is
either a send message operation or a receive message operation. The communication
operation changes the state of an attached link, in the obvious manner.

The system configuration is a vector of n states, a state for each processors and
2(n2 − n) queues, each bounded by a constant capacity c. Note that in the scope of
self-stabilization, where the system copes with an arbitrary starting configuration, there
is no deterministic data-link simulation that use bounded memory when the capacity
of links is unbounded [12]. Note further that non-FIFO communication links can be
accommodated by mimicking FIFO delivery [10].

An execution is a sequence of configurations and steps, E = (C1, a1, C2, a2 . . .)
such that Ci, i > 1, is obtained by applying ai−1 to Ci−1, where ai−1 is a step of a
single processor, pj , in the system. Thus, the vector of states, except the state of pj , in
Ci−1 and Ci are identical. If the single communication operation in ai−1 is a send oper-
ation from pj to processor pk then sjk in Ci is obtained from sjk in Ci−1 by enqueuing
the message sent in ai−1. If the resulting queue sjk exceeds its size, i.e., |sjk| = c,
then an arbitrary message is deleted from sjk. The rest of the message queues are un-
changed. If the single communication operation in ai−1 is a receive operation of a (non
null) message M , then M (which is the first message to be dequeued from skj in Ci−1)
is removed from skj , all the other queues are unchanged. A receive operation by pj

from pk may result in a null message even when the skj is not empty, thus allowing
unbounded delay for any particular message. Message losses are modeled by allowing
spontaneous message removals from (any place in) the queue. An edge (i, j) is opera-
tional if a message sent infinitely often by pi is received infinitely often by pj .

Atomic register. For the simulation of a single writer multi-reader (SWMR) atomic
register, we assume p0 is the writer and p1, p2, . . . , pn−1 are the readers. There is a
procedure for executing a write operation by p0, and procedures for executing read
operations by the readers.

Each invocation of a read or write operation translates into a sequence of compu-
tation steps, following the appropriate procedure. Concurrent invocations of read and
write operations yield an execution in which the computation steps corresponding to
invocations by different processors are interleaved. An operation op1 precedes an oper-
ation op2 in this execution, if op1 returns before op2 is invoked. Two operations overlap
if neither of them precedes the other.

Each interleaved execution of an atomic register is required to be atomic, namely,
equivalent to an execution in which the operations are executed sequentially and the
order of non-overlapping operations is preserved [4]. As advocated in [7], the above
definition is equivalent to say that the atomic register has to satisfy the following two
properties:

– Regularity. A read operation returns either the value written by the most recent
write operation that completes before the read or a value written by a concurrent
write.
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– No new / old inversions. If a read operation R returns the value of a concurrent
write operation W , then no read operation that is started after R completes returns
the value of a write operation that completes before W starts.

Pragmatically stabilizing atomic register. A message passing system simulates an
atomic register is a r-pragmatically stabilizing, if there exist an integer r′ > r, such
that every execution with r′ write operations has a segment of execution (fragment)
with r write operations that satisfies the atomicity requirements. In particular, a large r
implies the existence of a long segment with the desired behavior. In the sequel, when
no confusing is possible we refer to r-pragmatically stabilizing simply as pragmatically
stabilizing.

Pragmatic stabilization is reminiscent of pseudo-stabilization [9] in the sense that
an execution has a finite number of specification violation during a long execution;
in pseudo-stabilization the length of the long execution is infinite while in pragmatic
stabilization the length considered is practically infinite. Roughly speaking, the use of
the pigeonhole principle ensures that a partition of r′ by the bound on the number of
violations ensures the existence of r.

3 Overview of the Algorithm

3.1 The Basic Quorum-Based Simulation

We describe the basic simulation, which follows the quorum-based approach of [3], and
ensures that our algorithm tolerates (crash) failures of a minority of the processors.

The simulation relies on a set of read and write quorums, each being a majority
of processors.2 The simulation specifies the write and read procedures, in terms of
QuorumRead and QuorumWrite operations. The QuorumRead procedure sends a
request to every processor, for reading a certain local variable of the processor; the
procedure terminates with the obtained values, after receiving answers from proces-
sors that form a quorum. Similarly, the QuorumWrite procedure sends a value to every
processor to be written to a certain local variable of the processor; it terminates when ac-
knowledgments from a quorum are received. If a processor that is inside QuorumRead
or QuorumWrite keeps taking steps, then the procedure terminates (possibly with ar-
bitrary values). Furthermore, if a processor starts QuorumRead procedure execution,
then the stabilizing data link [15, 16] ensures that a read of a value returns a value
held by the read variable some time during its period; similarly, a QuorumWrite(v)
procedure execution, causes v to be written to the variable during its period.

Each processor pi maintains a variable, MaxSeqi, supposed to be the “largest” se-
quence number the processor has read, and a value vi, associated with MaxSeqi, which
is supposed to be the value of the implemented register.

The write procedure of a value v starts with a QuorumRead of the MaxSeqi vari-
ables; upon receiving answers l1, l2, . . . from a quorum, the writer picks a sequence
number lm that is larger than MaxSeq0 and l1, l2, . . . by one; the writer assigns lm to

2 Standard end-to-end schemes [17] can be used to implement the quorum operation in the case
of general communication graph.
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MaxSeq0 and calls QuorumWrite with the value 〈lm, v〉. Whenever a quorum mem-
ber pi receives a QuorumWrite request 〈l, v〉 for which l is larger than MaxSeqi, pi

assigns l to MaxSeqi and v to vi.
The read procedure by pi starts with a QuorumRead of both the MaxSeqj and

the (associated) vj variables. When pi receives answers 〈l1, v1〉, 〈l2, v2〉 . . . from a quo-
rum, pi finds the largest epoch label lm among MaxSeqi, and l1, l2, . . . and then calls
QuorumWrite with the value 〈lm, vm〉. This ensures that later read operations will re-
turn this, or a later, value of the register. When QuorumWrite terminates, after a write
quorum acknowledges, pi assigns lm to MaxSeqi and vm to vi and returns vm as the
value read from the register.

Note that the QuorumRead operation, beginning the write procedure of p0, helps to
ensure that MaxSeq0 holds the maximal value, as the writer reads the biggest accessi-
ble value (directly read by the writer, or propagated to a quorum that will be later read
by the writer) in the system during any write.

Let g(C) be the number of distinct values greater than MaxSeq0 that are accessible
in some configuration C, and let C1, C2, . . . be the configurations in the execution.
Since all the processors, except the writer, only copy values and since p0 can only
increment the value of MaxSeq0 it holds for every i ≥ 1 that

g(Ci) ≥ g(Ci+1) .

Furthermore,
g(Ci) > g(Ci+1) ,

whenever the writer discovers (when executing step ai) a value greater than MaxSeq0.
Roughly speaking, the faster the writer discovers these values, the earlier the system
stabilizes. If the writer does not discover such a value, then the (accessible) portion
of the system in which its values are repeatedly written, performs reads and writes
correctly.

3.2 Epochs

As described in the introduction, it is possible that the sequence numbers wrap around
faster than planned, due to “corrupted” initial values. When the writer discovers that
this has happened, it opens a new epoch, thereby invalidating all sequence numbers
from previous epochs.

Epochs are denoted with labels from a bounded domain, using a bounded labeling
scheme. Such a scheme provides a function to compute a new label, which is “larger”
than any given set of labels.

Definition 1. A labeling scheme over a bounded domain L, provides an antisymmetric
comparison predicate ≺b on L and a function Nextb(S) that returns a label in L,
given some subset S ⊆ L of size at most m. It is guaranteed that for every L ∈ S,
L ≺b Nextb(S).

Note that the labeling scheme of [18], used in the original atomic memory simula-
tion [3], cannot cope with transient failures. Section 4 describes a bounded labeling
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scheme that accommodates badly initialized labels, namely, those not generated by us-
ing Next.

This scheme ensures that if the writer eventually learns about all the epoch labels
in the system, it will generate an epoch label greater than all of them. After this point,
any read that starts after a write of v is completed (written to a quorum) returns v (or a
later value), since the writer will use increasing sequence numbers. The eventual con-
vergence of the labeling scheme depends on invoking Nextb with a parameter S that
is a superset of the epoch labels in the system. Estimating this set is another challenge
for the simulation, as described next.

Guessing Game. We explain the intuition of this part of the simulation through the
following two-player guessing game, between a finder, representing the writer, and a
hider, representing an adversary controlling the system.

– The hider maintains a set of labels H, whose size is at most m (a parameter fixed
later).

– The finder does not know H, but it needs to generate a label greater than all labels
in H.

– The finder generates a label L and if H contains a label L′, such that it does not
hold that L′ ≺b L then the hider exposes L′ to the finder.

– In this case, the hider may choose to add L to H, however, it must ensure that the
size of H remains at most m, by removing another label. (The finder is unaware of
the hiders decision.)

– If the hider does not expose a new label L′ from H, the finder wins this iteration
and continues to use L.

The strategy of the finder is based on maintaining a FIFO queue of 2m labels, meant
to track the most recent labels. The queue starts with arbitrary values, and during the
course of the game, it holds up to m recent labels produced by the finder, which turned
out to be overruled by existing labels (provided by the hider). The queue also holds up
to m labels that were revealed to overrule these labels.

Before the finder chooses a new label, it enqueues its previously chosen label and
the label received from the hider in response. Enqueuing a label that is already in the
queue pushes the label to the front of the queue; if the bound on the size of the queue
is reached, then the oldest label in the queue is dequeued. This semantics of enqueue is
used throughout the paper.

The finder chooses the next label by applying Next, using as parameter the 2m
labels in the queue. Intuitively, the queue eventually contains a superset of H, and the
finder generates a label greater than all the current labels of the hider.

Clearly, when the finder chooses the ith label, i > 0, the 2i items in the front of the
queue consist of the first i labels generated by the finder, and the first i labels revealed
by the hider. This is used to show the following property of the game.

Lemma 1. After at most m + 1 labels, the finder generates a label that is larger than
all the labels held by the hider.

Proof. Note that a response cannot expose a label that has been introduced or previously
exposed in the game since the finder always choose a label greater than all labels in the
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queue. Thus, if the finder does not win when introducing the mth label, all the m labels
that the hider had when the game started were exposed and therefore, stored in the
queue of the finder together with all the recent m labels introduced by the finder, before
the m + 1st label is chosen. Therefore, the m + 1st label is larger than every label held
by the hider, and the finder wins. ��
Note that a step of the hider that exposes more than one label unknown to the finder,
accelerates the convergence to a winning stage.

4 A Bounded Labeling Scheme with Uninitialized Values

Let k > 1 be an integer, and let K = k2 + 1. We consider the set X = {1, 2, .., K} and
let L (the set of labels) be the set of all ordered pairs (s, A) where s ∈ X is called in
the sequel the Sting of the label, and A ⊆ X has size k and is called in the sequel the
Antistings of the label. It follows that |L| =

(
K
k

)
K = k(1+o(1))k.

The comparison operator ≺b among the bounded labels is defined to be:

(sj , Aj) ≺b (si, Ai) ≡ (sj ∈ Ai) ∧ (si �∈ Aj)

Note that this operator is antisymmetric by definition, yet may not be defined for every
pair (si, Ai) and (sj , Aj) in L (e.g., sj ∈ Ai and si ∈ Aj).

We define now a function to compute, given a subset S of at most k labels of L, a
new label which is greater (with respect to ≺b) than every label of S. This function,
called Nextb (see the left side of Figure 1) is as follows. Given a subset of k labels
(s1, A1), (s2, A2), . . . , (sk, Ak), we take a label (si, Ai) that satisfies:

– si is an element of X that is not in the union A1 ∪ A2 ∪ . . . ∪ Ak (as the size of
each As is k, the size of the union is at most k2, and since X is of size k2 + 1 such
an si always exists).

– Ai is a subset of size k of X containing all values (s1, s2, . . . , sk) (if they are not
pairwise distinct, add arbitrary elements of X to get a set of size exactly k).

It is simple to compute Ai and si given a set S with k labels, and can be done in time
linear in the total length of the labels given, i.e., in O(k2) time.

Lemma 2. Given a subset S of k labels from L, (si, Ai) = Nextb(S) satisfies:

∀(sj , Aj) ∈ S, (sj , Aj) ≺b (si, Ai)

Proof. Let (sj , Aj) be an element of S. By construction, sj ∈ Ai and si /∈ Aj , and the
result follows from the definition of ≺b. ��
Timestamps. Each value is tagged with a timestamp—a pair (l, i) where l is a bounded
label, and i is a sequence number, and integer between 0 and a fixed bound r ≥ 1.

The Nexte operator compares between two timestamps, and is described in the
right part of Figure 1. Note that in Line 3 of the code we use S̃ for the set of labels
(with sequence numbers removed) that appear in S. The comparison operator ≺e for
timestamps is:

(x, i) ≺e (y, j) ≡ x ≺b y ∨ (x = y ∧ i < j)

In the sequel, we use ≺b to compare timestamps only by their labels (ignoring their
sequence numbers).
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Nextb

input: S = (s1, A1), (s2, A2), . . . , (sk, Ak): labels set
output: (s, A): label
function: For any ∅ �= S ⊆ X , pick(S) returns arbitrary
(later defined for particular cases) element of S
1: A := {s1} ∪ {s2} ∪ . . . ∪ {sk}
2: while |A| �= k
3: A := A ∪ {pick(X \ A)}
4: s := pick (X \ (A ∪ A1 ∪ A2 ∪ . . . ∪Ak))
5: return (s, A)

Nexte

input: S: set of k timestamps
output: (l, i): timestamp
1: if ∃(l0, j0) ∈ S such that
∀(l, j) ∈ S, (l, j) �= (l0, j0),

(l, j) ≺e (l0, j0) ∧ j0 < r
2: then return (l0, j0 + 1)

3: else return (Nextb(S̃), 0)

Fig. 1. Nextb and Nexte. S̃ is the set of labels appearing in S

5 Putting the Pieces Together

Each processor pi, holds, in MaxTSi, two fields 〈mli, cli〉, where mli is the timestamp
associated with the last write of a value to the variable vi and cli is a canceling times-
tamp possibly empty (⊥), which is not smaller than mli in the ≺b order. The canceling
field is used to let the writer (finder in the game) know an evidence on the existence
of unknown (non smaller) epoch label. A timestamp (l, i) is an evidence for timestamp
(l′, j) if and only if l �≺b l′. When the writer faces an evidence it changes the current
epoch label.

The pseudo code for the read and write procedures appears in Figure 2. Note that in
Lines 2 and 10 of the write procedure, an epoch label is enqueued if and only if it is not
equal to MaxTS0. Note further, that Nexte in Line 5 of the write procedure, first tries
to increment the sequence number of the epoch label in MaxTS0 and if the sequence
number already equals to the upper bound r then p0 enqueues the value of MaxTS0

and uses the updated epochs queue to choose a new value for MaxTS0, which is a new
epoch label Nextb(epochs) and sequence number 0.

write0(v)

1:〈〈ml1, cl1〉, v1〉, 〈〈ml2, cl2〉, v2〉, · · · :=QuorumRead
2:∀i, if mli �= MaxTS0.ml then enqueue(epochs,mli)
3:∀i, if cli �= MaxTS0.ml then enqueue(epochs, cli)
4:if ∀ l ∈ epochs l �e MaxTS0.ml then
5: MaxTS0 := 〈Nexte(MaxTS0.ml ∪ epochs),⊥〉
6:else
7: enqueue(epochs,MaxTS0.ml)
8: MaxTS0 := 〈(Nextb(epochs), 0),⊥〉
9:QuorumWrite(〈MaxTS0, v〉)

Upon a request of QuorumWrite 〈l, v〉
10:if l �= MaxTS0.ml then enqueue(epochs, l)

read

1:〈〈ml1, cl1〉, v1〉, 〈〈ml2, cl2〉, v2〉, · · · :=QuorumRead
2:if ∃m such that clm = ⊥ and
3: (∀ i �= m mli ≺e mlm and cli ≺e mlm) then
4: QuorumWrite〈mlm, vm〉
5: return(vm)
6:else return(⊥)

Upon a request of QuorumWrite 〈l, v〉
7:if MaxTSi.ml ≺e l and MaxTSi.cl ≺e l then
8: MaxTSi := 〈l,⊥〉
9: vi := v
10:else if l �≺b MaxTSi.ml and MaxTSi.ml �= l

then MaxTSi.cl := l

Fig. 2. write(v) and read
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The write of a value v starts with a QuorumRead of the MaxTSi variables, and
upon receiving answers l1, l2, . . . from a quorum, the writer p0 enqueues the epoch la-
bels of the received ml and non-⊥ cl which are not equal to MaxTS0, to the epochs
queue (Lines 1-3). The writer then computes MaxTS0 to be the Nexte timestamp,
namely if the epoch label of MaxTS0 is the largest in the epochs queue and the se-
quence number of MaxTS0 less than r, then p0 increments the sequence number of
MaxTS0 by one, leaving the epoch label of MaxTS0 unchanged (Lines 4-5). Other-
wise, it is necessary to change the epoch label: p0 enqueues MaxTS0 to the epochs
queue and applies Nextb to obtain an epoch label greater than all the ones in the
epochs queue; it assigns to MaxTS0 the timestamp made of this epoch label and a
zero sequence number (Lines 7-8). Finally, p0 executes the QuorumWrite procedure
with 〈MaxTS0, v〉 (Line 9).

Whenever the writer p0 receives (as a quorum member) a QuorumWrite request
containing an epoch label that is not equal to MaxTS0, p0 enqueues the received epoch
label in the epochs queue (Line 10). (Recall the rules for enqueuing the queue from
Section 3.2.)

The read of a reader pi starts with a QuorumRead of the MaxTSj and the (associ-
ated) vj variables (Line 1). When pi receives answers 〈〈ml1, cl1〉, v1〉, 〈〈ml2, cl2〉, v2〉 . . .
from a quorum, pi tries to find a maximal timestamp mlm according to the ≺e oper-
ator from among mli, cli, ml1, cl1, ml2, cl2 . . .. If pi finds such maximal timestamp
mlm, then pi executes the QuorumWrite procedure with 〈mlm, vm〉. Once the Quo-
rumWrite terminates (the members of a quorum acknowledged) pi assigns MaxTSi :=
〈mlm,⊥〉, and vi := vm and returns vm as the value read from the register (Lines 2-5).
Otherwise, in case no such maximal value mlm exists, the read is aborted (Line 6).

When a quorum member pi receives a QuorumWrite request 〈l, v〉, it checks whether
both MaxTSi.ml ≺b l and MaxTSi.cl ≺b l. If this is the case, then pi assigns
MaxTSi := 〈l,⊥〉 and vi := v (Lines 7-9). Otherwise, pi checks whether l �≺b

MaxTSi.ml and if so assigns MaxTSi.cl := l (Line 10). Note that ⊥ ≺b l, for
any l.

Diffusing labels over the data-link. Note that we assume an underlying stabilizing data-
link protocol [9, 15]. The data-link protocol is used for repeatedly diffusing the value of
MaxTS from one processor to another. If the MaxTSi.cl of a processor pi is ⊥ and pi

receives from processor pj a MaxTSj such that MaxTSj.ml �≺b MaxTSi.ml then pi

assigns MaxTSi.cl := MaxTSj.ml, otherwise, when MaxTSj.cl �≺b MaxTSi.ml
then pi assigns MaxTSi.cl := MaxTSj.cl Note also that the writer will enqueue
every diffused value that is different from MaxTS0.ml (similarly to lines 10 of the
reader and the writer, where each of MaxTSj.ml and MaxTSj.cl are considered l).

6 Outline of Correctness Proof

The correctness of the simulation is implied by the game and our previous observations,
which we can now summarize, recapping the arguments explained in the description of
the individual components. Note that the writer may enqueue several unknown epochs
in a single write operation and only then introduce a greater epoch, such a scenario will
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result in a shorter winning strategy in the game as the writer gains more knowledge
concerning the existing (hidden) labels before introducing a new epoch.

In the simulation, the finder/writer may introduce new epoch labels even when the
hider does not introduce an evidence. We consider a timestamp (l, i) to be an evidence
for timestamp (l′, j) if and only if l �≺b l′. Using a large enough bound r on the se-
quence number, we ensure that either there is an execution with r writes in which the
finder/writer introduces new timestamps with no epoch label change, and therefore with
growing sequence numbers, and well-defined timestamp ordering, or a new epoch label
is frequently introduced due to the exposure of hidden unknown epoch labels. The last
case follows the winning strategy described for the game.

The sequence numbers allow the writer to introduce many timestamps, exponential
in the number of bits used to represent r, without storing all of them, as their epoch label
is identical. The sequence numbers are a simple extension of the bounded epoch labels
just as a least significant digit of a counter; this allows the queues to be proportional to
the bounded number of the epoch labels in the system. Thus, either the writer introduces
an epoch label greater than any one in the system, and hence will use this epoch label
to essentially implement a register for an execution of r writes, or the readers never
introduce some existing bigger epoch label letting the writer increment the sequence
number practically infinitely often. Note that if the game continues, while the finder is
aware of (a superset including) all existing epoch labels and introduces a greater epoch
label, there exist an execution of r writes before a new epoch label is introduced.

In the simulation of a SWMR atomic register, following the first write of a timestamp
greater than any other timestamp in the system, with a sequence number 0, to a majority
quorum, any read in an execution with r writes, will return the last timestamp that has
been written to a quorum. In particular, if a reader finds a timestamp introduced by
the writer that is larger than all other timestamps but not yet completely written to a
majority quorum, the reader assists in completing the write to a majority quorum before
returning the read value.

The simulation fails when the set of timestamps does not include a timestamp greater
than the rest. That is, read operations may be repeatedly aborted until the writer writes
new timestamps. Moreover, a slow reader may store a timestamp unknown to the rest
(and in particular to the writer) and eventually introduce the timestamp. In the first case,
the convergence of the system is postponed till the writer is aware of a superset of the
existing timestamps. In the second case, the system operates correctly, implementing
read and write operations, until the timestamp unknown to the rest is introduced.

Each read or write operation requires O(n) messages. The size of the messages
is linear in the size of a timestamp, namely the sum of the size of the epoch label and
log r. The size of an epoch label is O(m log m) where m is the size of the epochs queue,
namely, O(cn2), where c is the capacity of a communication link.

Note that the size of the epochs queue, and with it, the size of an epoch label, is
proportional to the number of epoch labels that can be stored in a system configuration.
Reducing the link capacity also reduces the number of epoch labels that can be “hid-
den” in the communication links. This can be achieved by using a stabilizing data-link
protocol,[10, 15, 16], in a manner similar to the ping-pong mechanism used in [3].
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7 Discussion

We have presented a self-stabilizing simulation of a single-writer multi-reader atomic
register, in an asynchronous message-passing system in which at most half the proces-
sors may crash.

Given our simulation, it is possible to realize a self-stabilizing replicated state ma-
chines [20]. The self-stabilizing consensus algorithms presented in [13] uses SWMR
registers, and our simulation allows to port them to message-passing systems. More
generally, our simulation allows the application of any self-stabilizing algorithm that is
designed using SWMR registers to work in a message-passing system, where less than
the majority of the processors may crash.

Our work leaves open many interesting directions for future research. Note that our
algorithms can be initialized [8] to respect the atomicity requirements for the beginning
of a practically infinite execution. Still one of the most interesting research directions is
to find a stabilizing simulation, which will operate correctly even after sequence num-
bers wrap around, without an additional convergence period. This seems to mandate
a more careful way to track epoch labels, perhaps by incorporating a self-stabilizing
analogue of the viability construction [3].

Acknowledgments. We thank Ronen Kat and Eli Gafni for helpful discussions.
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Abstract. Distributed storage service is one of the main abstractions
provided to the developers of distributed applications due to its capabil-
ity to hide the complexity generated by the messages exchanged between
processes. Many protocols have been proposed to build byzantine-fault-
tolerant storage services on top of a message-passing system, but they
do not consider the possibility to have servers joining and leaving the
computation (churn phenomenon). This phenomenon, if not properly
mastered, can either block protocols or violate the safety of the stor-
age. In this paper, we address the problem of building of a safe register
storage resilient to byzantine failures in a distributed system affected
from churn. A protocol implementing a safe register in an eventually
synchronous system is proposed and some feasibility constraints on the
arrival and departure of the processes are given. The protocol is proved
to be correct under the assumption that the constraint on the churn is
satisfied.

Keywords: Bounded Churn, Safe Register, Byzantine Failures, Even-
tually Synchronous System.

1 Introduction

Dependable storage is a pillar of many complex modern software systems (from
avionics to cloud computing environments) and byzantine-fault-tolerance (BFT)
is one of the main techniques employed to ensure both storage correctness and
highly available accesses. Such properties have to be guaranteed despite any
types of failures, including malicious ones. Availability is achieved by keeping
aligned a fixed number of replicas each one hosted at a separate server.

Looking at large-scale distributed systems such as peer-to-peer systems, in-
terconnected data centers etc., storage implementations have to withstand var-
ious types, patterns, degrees and rates of arrival to and departure of processes
from the system (i.e. they have to deal with churn. As an example, in the con-
text of cloud computing, a storage system is an unmanaged service (e.g. Elastic
Block Store of Amazon1) ensuring high availability. The storage is implemented
through a specific replication pattern where servers hosting replicas are selected
1 http://aws.amazon.com/ebs/
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autonomically from the server cloud. From time to time a cloud provider exe-
cutes maintanance operations on the server cloud, e.g., rollout of security patch
operations, that generates a continuous and unpredictable restarts of servers
that can take hours [1]. Therefore, a rollout operation translates into servers
that join and leave the storage service (i.e., server churn). As a consequence, a
correct and highly available storage has to be ready to autonomously tolerate
servers churn as well as byzantine server behavior.

Note that, the autonomous behavior of servers, characterizing the churn ac-
tion, cannot be considered as a byzantine behavior. Byzantine servers, in fact,
try to make the storage service deviate from its correct behavior either ma-
liciously or accidentally. On the contrary, server behavior in case of join and
leave are well defined: processes are correct, but are temporarily unavailable; as
soon as they come back to be available, they start again to work correctly. It is
easy to see that if the number of servers leaving the storage service is above a
given threshold, data can be lost or compromised, or storage operations cannot
terminate.

In this paper, we consider a distributed system that without churn is composed
of n servers implementing a storage service, then due to the effect of churn up
to J servers can be joining or leaving the service, however such number of serves
is guaranteed never be below n − J and eventually tends to come back to n.
In this environment, we present a BFT implementation of a safe register, which
is able to resist f byzantine failures and a churn of at most J servers (with
J ≤ �n−5f

3 �). The protocol is based on quorums of size n− f − J , and works on
top of a very general system model where churn is non-quiescent (i.e., the system
model alternates infinitely often periods of no churn and periods of churn), and
there is an unknown time t after which communication becomes synchronous
for a period long enough to allow the BFT protocol to progress (eventually
synchronous system). The algorithm presented in this paper can be also seen as
an extension of quorum-based BFT algorithms [15] to ensure tolerance to servers
churn.

Let us finally remark that the model of service implementation presented in
this paper reflects quite well the structure of service implemented in a cloud
environment. In such environment a storage service is configured, by the cloud
provider, to work in a normal working situation with a set of n replicas, defined
at the beginning of the computation. However, such replicas can be affected
by bounded churn due to unpredictable leaves (i.e. crash failures, maintenance
operations etc.) and later on, new replicas can be set up by the provider to
substitute the ones left, with the aim to resume normal working situation. This
is the kind of environment that this paper wants to investigate when considering
the presence of byzantine processes.

The rest of the paper is contributed as follows: in Section 3, we define the
system model. Section 4 provides the safe register specification while in Section
5, we detail the algorithm and the correctness proofs. Section 2 presents the
related works, and finally Section 6 concludes the paper.
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2 Related Work

To the best of our knowledge, this is the first work that addresses the contruction
of a register resisting byzantine failures and churn in a non-synchronous system
based on quorums. In the prior works, we studied the same problem from a
structural point of view [7] and in an environment with crash failures [6].
Byzantine Fault Tolerant Systems Based on Quorums. Traditional solu-
tions to build byzantine storage can be divided into two categories: replicated
state machines [18] and byzantine quorum systems [9], [15], [16]. Replicated state
machines uses 2f + 1 server replicas and require that every non-faulty replica
agrees to process requests in the same order [18]. Quorum systems, introduced
by Malkhi-Reiter in [15], do not rely on any form of agreement they need just
a sub-sets of the replicas (i.e. quorums) to be involved simultaneously. The au-
thors provide a simple wait-freedom implementation of a safe register using 5f
servers. [4] proposes a protocol for implementing a single-writer and multiple-
reader atomic register that holds wait-freedom property with using just 3f + 1
servers. This is achieved at the cost of longer (two phases) read and write oper-
ations. In this paper, our objective has been to design an algorithm that follows
the Malkhi-Reiter’s approach (i.e., single-phase operations), and that is able to
tolerate both f failures and concurrent running join of at most J servers at
any time, using less than 5(f + J) servers. This number of replicas would have
been indeed necessary if we consider churning servers as byzantine processes.
Leveraging from the difference between the behavior of a byzantine server and
a churning one, the algorithm presented in this paper needs just 5f + 3J server
replicas.
Registers under Quiescent Churn. In [14], [11] and [10], a Reconfigurable
Atomic Memory for Basic Object (RAMBO) is presented. RAMBO works on
the top of a distributed system where processes can join and fail by crashing. To
guarantee the reliability of data, in spite of network changes, RAMBO replicates
data at several network locations and defines configurations to manage small and
transient changes. For large changes in the set of participant processes, RAMBO
defines a reconfiguration procedure whose aim is to move the system from an
existing configuration to a new one by changing the membership of the read
quorums and of the write quorums. Such a reconfiguration is implemented by
a distributed consensus algorithm. Thus, the notion of churn is abstracted by a
sequence of configurations.

In [2] Aguilera et al. show that a crash resilient atomic register can be real-
ized without consensus and, thus, on a fully asynchronous distributed system
provided that the number of reconfigurations is finite and thus the churn is qui-
escent. Configurations are managed by taking into account all the changes (i.e.
join and failure of processes) suggested by the participants and the quorums are
represented by any majority of processes. To ensure liveness of read and write
operations, the authors assume that the number of reconfigurations is finite and
that there is a majority of correct processes in each reconfiguration.
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Relationship between the Churn Model and the Crash-Recovery One
In crash-recovery model processes may recover after a crash and each process is
usually augmented with stable storage and, as in the crash failure model, the set
of processes that will be part of the system is known in advance [3]. At a first
glance, our churn model could resemble crash-recovery one (i.e., a server that
leaves and re-joins the regular register computation could be seen as a crash and
a recovery of a process), they differ in several fundamental aspects. In the model
presented in this paper: (1) there is no assumption of initial knowledge about the
set of processes, which will be part of the computation, (2) processes may join the
application at any time, (3) processes may crash and later restart with another
identifier an infinite number of times without relying on stable storage, which
is an extremely important point when considering servers are virtual machines
that can migrate from one physical machine to another one, and then the stable
storage of the former machine could not be available anymore. Therefore the
model presented in this paper is more general than crash recovery one. Let us
finally remark that we are not aware of any BFT protocol working in a crash-
recovery environment.

3 System Model

The distributed system is composed of a universe of clients Uc (i.e. the clients
system) and of a disjoint universe of servers Us (i.e. the servers system). The
clients system is composed of a finite arbitrary number of processes (i.e. Uc =
{c1, c2, . . . cm}) while the servers system is dynamic, i.e. processes may join and
leave the system at their will. A server enters the servers system by executing
the connect() procedure. Such an operation aims at connecting the new pro-
cess to both clients and servers that already belong to the system. A server
leaves the distributed system by means of the disconnect() operation. In the
following, we will assume that the disconnect() operation is a passive operation
i.e., processes do not take any specific actions, and they just stop to execute
algorithms. In order to model processes continuously arriving to and depart-
ing from the servers system, we assume the infinite arrival model (as defined
in [17]). The set of processes that can participate in the servers system (also
called server-system population) is composed of a potentially infinite set of pro-
cesses Us = {. . . si, sj , sk . . .}, each one having a unique identifier (i.e. its index).
However, the servers system is composed, at each time, of a finite subset of the
server-system population. Initially, every server si ∈ Us is in the down state as
soon as si invokes the connect() operation, it changes its state from down to up.
When the server si disconnects itself from the servers system, it changes again
its state coming back to down.

Clients and servers can communicate only by exchanging messages through
reliable and authenticated FIFO channels. In the following, we assume the ex-
istence of a protocol managing the arrival and the departure of servers from
the distributed system, such a protocol is also responsible for the connectivity
maintenance among the processes belonging to the distributed system. As in [15],
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[16], we assume that clients are correct and servers can suffer arbitrary failures.
To simplify the presentation, let us assume the existence of a global fictional
clock not accessible from processes.

Distributed Computation. Several distributed computations run on top of
the distributed system, involve the participation of a subset of the servers set of
the servers system. To simplify the presentation, let us assume that there exists
only one distributed computation run in our system. We identify as Cs(t) the
subset of processes belonging to the servers system Us that are participating in
the distributed computation at time t (i.e. the server-computation set). At time
t0, when the server-computation set is set up, n servers belong to the servers
computation (i.e. |Cs(t0)| = n). A server si, belonging to the servers system that
wants to join the distributed computation has to execute the join Server() oper-
ation. Such an operation invoked at some time t is not instantaneous and takes
time to be executed; how much this time is, depends on the specific implemen-
tation provided for the join Server() operation. However, from time t, when the
server si joins the server-computation set, it can receive and process messages
sent by any other processes, which are participating in the computation, and it
changes its state from up to joining.

When a server sj participating in the distributed computation wishes to leave
the computation, it stops to execute the server protocols (i.e. the leave Server
operation is passive) and comes back to the up state. Without loss of generality,
we assume that if a server leaves the computation and later wishes to re-join, it
executes again the join Server() operation with a new identity.

It is important to notice that (i) there may exist processes belonging to the
servers system that never join the distributed computation (i.e. they execute
the connect() procedure, but they never invoke the join Server() operation) and
(ii) there may exist processes, which even after leaving the servers computation,
still remain inside the servers system (i.e. they are correct, but they stop to
process messages related to the computation). To this aim, it is important to
identify the subset of processes that are actively participating in the distributed
computation and the ones that are joining.

Definition 1 (Joining Servers Set). A server is joining from the time it
invokes the join Server() operation until the time it terminates such operation.
J(t) denotes the set of servers that are execution the join Server() operation at
time t.

In the following, we refer as J the maximum value of J(t) for any t.

Definition 2 (Active Servers Set). A server is active in the distributed com-
putation from the time it returns from the join Server() operation until the time
it leaves. A(t) denotes the set of servers that are active at time t, while A([t, t′])
denotes the set of servers that are active during the whole interval [t, t′] (i.e.
si ∈ A([t, t′]) iff si ∈ A(τ) for each τ ∈ [t, t′]).

A server si changes its state from joining into active as soon as it gets the
join Confirmation event, and remains in such a state until it decides to leave the
server-computation set (thus, coming back to the up state).
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Servers System Us

Servers  Computation Cs

Fig. 1. State-transition diagram of a Correct Server

Note that, at each time t the set of servers participation in the distributed
computation is partitioned into active processes and joining processes. i.e.

Cs(t) = A(t) ∪ J(t)

Servers that obey their specification are said to be correct. On the contrary, a
faulty server can deviate arbitrarily from its specification. We assume at most f
servers can be faulty at any time during the whole computation2. It is important
to note that servers know the values f and J , but they are not able to know
the subset of Cs representing the faulty processes. In Figure 1 it is shown the
state-transition diagram of a correct server.

Non-quiescent Bounded Churn. The servers computation alternates periods
of churn and periods of stability. More specifically, there exist some periods
Tchurn in which servers join and leave the computation, then there exist some
periods Tstability where the computation becomes stable, and no join or leave
operations are triggered. However, no assumption is made about how long Tchurn

and Tstability are.
At time t0 all the servers participating in the server computation are active

(i.e. |A(t0)| = n). Moreover, we assume that the churn affecting the servers
computation is bounded by an integer value J ≥ 0 and the number of servers
participating in the servers computation can change in the interval [(n− J), n]
(i.e. ∀t, |Cs(t)| ∈ [(n−J), n]). Finally, we assume that in the distributed compu-
tation there are always at least n− J active servers (i.e.∀t, |A(t)| ≥ n− J). The
above equality implies that the servers computation is configured to work with
n servers event though it tolerates that up to J servers can leave and later on
they can be replaced by up to J new joining servers. Thus the value J represents
the upper bound on the churn.
2 Note that, f is an upper bound on the number of faulty processes. As a consequence,

during the computation, there may exists periods where less than f byzantine servers
participate in the computation. Moreover, our assumption does not implies that
the set of faulty servers is static but we admit it can change during the whole
computation.
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Let us finally remark that in this churn model, there is no guarantee that a
server remains permanently in the computation and additionally, this model is
general enough to encompass both (i) a distributed computation prone to non-
quiescent churn i.e., there exists a time t ( with t = t0) after which churn holds
forever, and (ii) a distributed system prone to quiescent churn i.e., there exists
a time t after which stability holds forever.

4 Register Specification

A register is a shared variable accessed by a set of processes, i.e. clients, through
two operations, namely read() and write(). Informally, the write() operation up-
dates the value stored in the shared variable while the read() obtains the value
contained in the variable (i.e. the last written value). Every operation issued
on a register is, generally, not instantaneous and it can be characterized by two
events occurring at its boundary: an invocation event and a reply event. These
events occur at two time instants (invocation time and reply time respectively)
according to the fictional global time.

An operation op is complete if both the invocation event and the reply event
occur (i.e. the process executing the operation does not crash between the invo-
cation and the reply).

Given two operations op and op′, their invocation times (tB(op) and tB(op′))
and return times (tE(op) and tE(op′)), we say that op precedes op′ (op ≺ op′)
iff tE(op) < tB(op′). If op does not precede op′, and op′ does not precede op,
then op and op′ are concurrent (op||op′). Given a write(v) operation, the value
v is said to be written when the operation is complete. In case of concurrency
while accessing the shared variable, the meaning of last written value becomes
ambiguous. In this paper, we will consider a single-writer/multiple-reader safe
register which is specified as follows [13]3:

– Termination: If a correct process (either a client or a server) participating
in the computation invokes an operation and does not leave the system, it
eventually returns from that operation.

– Validity: a read() not concurrent with any write() returns the last written
value before its invocation. In the case of concurrency, a read() may return
any value.

As a specialization of the generic model of the computation presented in the
previous Section, we consider in this paper a safe register computation, i.e. the
join Server() operation, executed by servers, has the aim to provide new servers
with the state of the register. Concerning the departures from the computation,
we consider the leave operation as an implicit operation; when a server si leaves

3 Interestingly, safe registers have the same computational power as regular regis-
ters and atomic registers. This means that it is possible to implement a multi-
writer/multi-reader atomic register from single-writer/single-reader safe registers as
shown in [12].
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the computation, it just stops to send and process messages related to the register
computation. To simplify the notation, whenever not strictly necessary, we use
the term join() instead of join Server().

5 Safe Register Implementation

A register is maintained by the set of active servers. No agreement abstraction
is assumed to be available at a server. Clients do not maintain any register
information; they can just trigger operations and interact with servers through
message exchanges. Moreover, we assume that each server has the same role in
the distributed computation (i.e. no server acts as a coordinator) and when it
issues a join() operation at some time t, the server does not leave the computation
before time t + 3δ.

Eventually Synchronous Communication Model. Due to the impossibility
of implementing a register in a fully asynchronous system prone to non-quiescent
churn [5], in this paper we will assume a partial synchronous system, i.e. there
exists a time t after which a synchrony period holds long enough to ensure the
correct progress of protocol implementation. In particular, eventual synchrony
implies that each message sent at some time t′ after t, by a process p, is delivered
within δ time units by every process belonging to the distributed system in the
interval [t′, t′ + δ].

Quorums. The basic idea of the algorithm is to extend the opaque masking
quorums mechanism, defined by Malkhi and Reiter [15], to implement a safe
register in a dynamic distributed system with byzantine failures. In particular,
both join(), read() and write() operations are executed on quorums of servers
participating in the distributed computation of size n − f − J . In this section
we assume for simplicity that all the processes (both clients and servers) know
the values n, f and J . At the end of the Section we discuss how to relax this
assumption.

5.1 A Protocol for Eventually Synchronous System

Each reader client ci maintains the following variables:

– one integer variable, denoted read sni, representing the sequence number to
associate to each read() operation. Initially the variable is set to 0.

– a set variable, denoted as cl repliesi, used to collect answers sent by servers
and initially empty.

Moreover, the writer client cw also maintains:

– two integer variables snw and counti, representing respectively the sequence
number to associate to each write() operation and the number of tentative
write() operations. Initially both the variables are set to 0.
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– an array of sets variable, denoted as write acki[], used to collect the servers
that have acknowledged its last write.

– an array of sets variable, denoted as confirmationi[], used to collect the
servers that have confirmed its last write.

Each server si has the following local variables.

– A set Wi that stores the writers identifiers.
– Two variables denoted registeri and sni; registeri contains the local copy

of the safe register, while sni is the associated sequence number.
– A boolean activei, initialized to false , that is switched to true just after si

has joined the system.
– Two set variables, denoted repliesi and reply toi, that are used in the period

during which si is joining the system. The local variable repliesi contains
the 4-tuple < id, value, sn, r sn > that si has received from other servers
during its join period, while reply toi contains the IDs of servers, which are
joining the system concurrently with si (as far as si knows).

– dl previ is a set where (while it is joining the system) pi records the processes
that have acknowledged its inquiry message, while they were not yet active
(so, these processes were joining the system too). When it terminates its join
operation, pi has to send them a reply to prevent them to be blocked forever.

In order to simplify the pseudo-code notation, let us consider the function
most frequent(replies). Such a function is used by both clients and servers to
select the most frequent pair < val, sn > occurred in the set repliesi. In the
case that more than one pair with the same frequency exist, the function re-
turns the pair having the highest sn.

The join() Operation (Figure 2). The server si broadcasts an inquiry ())

message to inform the other servers, which it is entering the distributed compu-
tation set, and wants to obtain the value of the safe register (line 03).

Then, after it has received “enough” replies (line 04), si selects among the
set of received values, the one occurred with the highest frequency (line 05).
Moreover, si updates its local copy of the register (line 06), it becomes active
(line 07), and sends a reply to the processes in the set reply toi (line 08-10).
It also sends such a reply message to the servers in its dl previ set, in order to
prevent them from waiting forever. In addition to the term < i, registeri, sni >,
a reply message sent to a server sj , from a server si, carries also the read sequence
number r sn that identifies the corresponding request issued by sj .

When si delivers an inquiry(j, r sn), it always sends back a message to pj . It
sends a reply() message if it is active (line 13), and a dl prev() if it not active
yet (line 15). Moreover, in case si is not active, it stores the inquiry received
from sj in the reply toj variable, to remember to answer later, as soon as it
becomes active (line 14).

When si receives a reply(< j, value, sn >, r sn) message from a server sj , if
the reply message is the first answer to its inquiry(i, read sn) message si adds
< j, value, sn, 0 > to the set of replies that it has received so (line 22). On the
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operation join(i):
(01) registeri ← ⊥; sni ← −1; activei ← false; repliesi ← ∅;
(02) reply toi ← ∅; dl previ ← ∅; read sni ← 0;
(03) broadcast inquiry(i, 0);
(04) wait until

(|repliesi| ≥ (n− f − J)
)
;

(05) let < val, sn >← most frequent(repliesi);
(06) if (sn > sni) then sni ← sn; registeri ← val end if
(07) activei ← true;
(08) for each < j, r sn >∈ reply toi ∪ dl previ do
(09) do send reply (< i, registeri, sni >, r sn) to pj

(10) end for;
(11) return(ok).

———————————————————————————————————————
(12) when inquiry(j, r sn) is delivered:
(13) if (activei) then send reply (< i, registeri, sni >, r sn) to pj

(14) else reply toi ← reply toi ∪ {< j, r sn >};
(15) send dl prev (i, r sn) to pj

(16) end if.

(17) when reply(< j, value, sn >, r sn) is received:
(18) if (read sni = r sn) then
(19) if (∃ < j,−,−, r sn >∈ repliesi) then
(20) repliesi ← repliesi/{< j,−,−, r sn >};
(21) endif
(22) repliesi ← repliesi ∪ {< j, val, sn, r sn >};
(23) endif

(24) when dl prev(j, r sn) is received: dl previ ← dl previ ∪ {< j, r sn >}.

Fig. 2. The join() protocol for an eventually synchronous system (code for si)

contrary, si updates the information already received from sj with the new value
(line 20 - 22).

Finally, when si receives a message dl prev(j, r sn), it adds its content to
the set dl previ (line 24), in order to remember that it has to send a reply to sj

when it becomes active (lines 08-10).

The read() Operation (Figure 3). The algorithm for the read() operation is
a simplified version of the join() algorithm. The main difference between the two
algorithms is the “stubborn” re-transmission mechanism used by the read() (lines
03-05). This mechanism is necessary because (i) a read() broadcast message could
not be received both by a leaving server and by a joining one and (ii) a reply
message sent by a leaving server could not reach the client. This might block
the client read protocol that could not reach the expected number of replies
(n − f − J) 4. Resending the read message periodically will ensure that the
message eventually reaches enough servers due to the arrival of either a stability
period or a synchrony period.

Note that, the same problem does no happen during the join() execution
thanks to the dl prev mechanism. When a servers si joins, in fact, its inquiry
is delivered to all the servers belonging to the distributed computation and if

4 Let us recall that the communication primitives work in a best-effort fashion on top
of FIFO channels. Thus, there is no guarantee that a message m sent at some time
t by a process p is delivered to other processes in case p leaves the computation.
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operation read(i):
(01) read sni ← read sni + 1;
(02) cl repliesi ← ∅;
(03) repeat
(04) broadcast read(i, read sni);
(05) until

(
(|cl repliesi| ≥ n− f − J)

(06) let < val, sn >← most frequent(cl repliesi);
(07) if (sn > sni)
(08) then sni ← sn;
(09) valuei ← val
(10) end if;
(11) return(val).

————————————————————————-
when reply(< j, val, sn >, r sn) is delivered:
(12) if (read sni = r sn) then
(13) if (∃ < j,−,−, r sn >∈ cl repliesi) then
(14) cl repliesi ← cl repliesi/{< j,−,−, r sn >};
(15) endif
(16) cl repliesi ← cl repliesi ∪ {< j, val, sn, r sn >};
(17) endif

(a) Client Protocol

when read(j, r sn) is delivered:
(01) if (activei)
(02) then send reply (< i, valuei, sni >, r sn) to pj ;
(03) else reply toi ← reply toi ∪ {< j, r sn >};
(04) end if.

(b) Server Protocol

Fig. 3. The read() protocol for an eventually synchronous system

new processes arrive, they become aware about the join of si due to the dl prev

message.

The write() Operation (Figure 4). Similarly to the read() operation, the
write() is also implemented by repeating the value dissemination until the writer
gets acknowledgements from a quorum of n− f − J processes (lines 06 - 08). In
addition, in order to terminate the write(), the client must also receive confir-
mations that ensure that the n − f − J processes who sent acknowledgements
to the writer, have not left the server computation, and still keep the new value.
Equivalently, the acknowledgement are effectively sent by a quorum of processes
that belongs to the distributed computation for a sufficient long time to correctly
represent the new value (lines 09 - 12).

When a message write(j,< val, sn, num >) is delivered to a server si, it
takes into account the pair (val, sn) if it is more up-to-date than its current pair
and only if the message came from an authenticated channel of one writer (line
01). Then, if si is active, it sends back an ack (i, sn) message to the writer (line
06).
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operation write(v):

(01) sni ← sni + 1; counti ← 0;
(02) ∀k : write acki[k]← ∅;
(03) ∀k : confirmationi[k] ← ∅;
(04) repeat every (Δ) time units
(05) counti ← counti + 1;
(06) while (|write acki[counti]| < n− f − J)) do
(07) broadcast write(i, < v, sni, counti >);
(08) endWhile;
(09) for each (pj ∈ write acki[counti]) do
(10) send confirm (i, sn, counti) to pj .
(11) endFor
(12) until (∃x : |confirmationi[x]| ≥ n− f − J);
(13) return(ok).
——————————————————————————–
when ack(j, sn, num) is received:
(14) if (sn = sni) then
(15) write acki[num]← write acki[num] ∪ {j};
(16) end if.
——————————————————————————–
when confirm ack (j, sn, num) is received:
(17) if (sn = sni) then
(18) confirmationi[num]← confirmationi[num] ∪ {j};
(19) end if.

(a) Client Protocol

when write(j, < val, sn, num >) is delivered:
(01) if (j ∈Wi ∧ (sn > sni))
(02) then sni ← sn;
(03) valuei ← val;
(04) endif;
(05) if (activei)
(06) then send ack (i, sn, num) to pj .
(07) endif
——————————————————————————–
when confirm (j, sn, num) is received:
(08) then send confirm ack (i, sn, num) to pj .

(b) Server Protocol

Fig. 4. write() protocol for an eventually synchronous system

When the client receives an ack (j, sn) message from the server sj , it adds sj

to its set write acki if this message is an answer to its last write operation(line
09).

Finally, when the client receives a confirm ack (j, sn, num), it just takes
into account the confirmation received by server sj .

Correctness Proofs. Due to the lack of space, we report here only the proof
showing the relation among the values of n, f and J ensuring the existence of a
quorum system. Other proofs can be found in [8].

Definition 3. A quorum system Q ⊆ 2|Cs| is a non-empty set of subsets of Cs,
every pair of which intersect. Each Q ∈ Q is called a quorum.
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Definition 4 (Opaque Masking Quorum). Let B ⊂ Cs be the subset of
faulty processes participating in the distributed computation. A quorum system
Q is an opaque masking quorum system if:

– (P1) ∀ Qw, Qr ∈ Q : |(Qw ∩Qr)/B| ≥ |(Qr ∩B) ∪ (Qr/Qw)|
– (P2) ∀ Qw, Qr ∈ Q : |(Qw ∩Qr)/B| > |(Qr ∩B)|
– (P3) ∃ Q ∈ Q : Q ∩B = ∅.

Lemma 1. Let n be the number of processes participating in the distributed com-
putation at any time t and let f be the maximum number of byzantine processes
participating in the computation. If n ≥ 5f + 3J then Q = {|Qi| = n − f − J}
is an opaque masking quorum for the safe register computation.

Proof. Note that, considering a quorum Qi composed of n− f − J processes,
property P3 is always guaranteed. Moreover, P1 implies P2 and thus in the
following we will show only P1.

Let Qw and Qr be respectively two quorums associated to a write(v) operation
op and a read()/join() operation op′.

Let X = (Qr/Qw) be the set of processes belonging to the computation and
not affected from op; the number of this processes is |X | = n− |Qw|.
The quorum Qr can be represented as Qr = X ∪ (Qr ∩ Qw) and considering
that X and Qr ∩ Qw are disjoint sets, we can deduce the following: |Qr| =
|X | + |Qr ∩ Qw| ⇒ |Qr ∩Qw| = |Qr| − |X | = |Qr| − n + |Qw|.

Considering that |Qr| = |Qr| = n− f − J , we get |Qr ∩Qw| = ((n− f − J)−
n + (n− f − J)) = n− 2f − 2J .

Note that, in the worst case, (Qr ∩ B) = B and it is a disjoint set from
(Qr/Qw).

As a consequence, |(Qr ∩B) ∪ (Qr/Qw)| = f + n− (n− f − J) = 2f + J .
Therefore, |(Qw ∩Qr)/B| ≥ |(Qr ∩B) ∪ (Qr/Qw)| ⇒

(n− 2f − 2J) − f ≥ 2f + J ⇒ n ≥ 5f + 3J . �Lemma 1

Theorem 1. Safety. Let us assume that n ≥ 5f + 3J . Given the algorithm in
Figures 2 - 4, then a read() operation that is not concurrent with any write(),
returns the last value written before the read() invocation.

Lemma 2. Let us assume that (1) n ≥ 5f + 3J , and (2) a server that invokes
the join() operation remains in the system for at least 3δ time units. If a server
process si invokes the join() operation, and does not leave the computation, this
join operation terminates.

Lemma 3. Let us assume that (1) n ≥ 5f + 3J , and (2) a server that invokes
the join() operation remains in the system for at least 3δ time units. If a client
ci invokes a read() operation and does not leave the system, this read operation
terminates.

Lemma 4. Let us assume that (1) n ≥ 5f + 3J , and (2) a server that invokes
the join() operation remains in the system for at least 3δ time units. If a client
process ci invokes write() and does not leave, this write operation terminates.
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From Lemma 2, Lemma 3 and Lemma 4 we have:

Theorem 2. Termination. Let us assume that n ≥ 5f+3J . Given the algorithm
in Figures 2 - 4, if a process invokes join(), read() or write (), and does not leave
the system, it terminates its operation.

On the knowledge of n, k and J. The protocol proposed in this section
assumes that all the processes (both clients and servers) participating in the
distributed computation know (i) the maximum number of byzantine servers f ,
(ii) the number n of servers participating in the distributed computation and
(iii) the maximum number of non-active servers J . However, such assumptions
can be weakened considering n and J only known by servers. These values are,
in fact, two configuration parameters of the servers computation defining the
robustness of the service with respect to possible churn.

To this aim, it is possible to modify the read() and the write() implementations
to let servers dynamic behavior be transparent to clients. In particular a server,
before answering to the client, sends a broadcast message to all the other servers,
when the server receives n − f − J of such broadcast messages it can reply to
the client. The client has to wait only for 2f + 1 messages, thus it does not need
to know n and J . The complete protocol is described in [8].

6 Concluding Remarks

In this paper, we have provided an implementation of a distributed storage in the
presence of both servers churn and byzantine servers. In a computation composed
of n servers in normal working condition, the protocol is able to tolerate at most
J joining servers if J ≤ �n−5f

3 �, where f is the maximum number of byzantine
servers. The protocol works in an eventually synchronous environment, so it
keeps safe during arbitrarily long (but finite) periods of asynchrony and churn,
while it is able to quickly terminate as soon as the system gets into synchrony
bounds. In this paper for simplicity the protocol assumed n and J be known by
clients. In [8], we provide a variation of the protocol where a client needs just to
know f while the knowledge about n and J is confined within the servers.

Let us finally remark that we decided to extend Malki-Reiter’s protocol for its
simplicity and because operations are short in time. Other algorithms (e.g. [16])
reduce indeed the number of servers needed for handling f byzantine failures,
however, this is done at the cost of longer (multistep) read and write operations.
When facing a dynamic system, such length matter as the leaving of processes
during read and write operations can impact both their safety and their liveness
as we showed in the paper. We plan to investigate this tradeoff in the future
work trying to lower the overall number of replicas needed to cope with churn.
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Abstract. Population protocols are a communication model for large
sensor networks with resource-limited mobile agents. The agents move
asynchronously and communicate via pair-wise interactions. The original
fairness assumption of this model involves a high level of asynchrony
and prevents an evaluation of the convergence time of a protocol (via
deterministic means). The introduction of some “partial synchrony” in
the model, under the form of cover times, is an extension that allows
evaluating the time complexities.

In this paper, we take advantage of this extension and study a data
collection protocol used in the ZebraNet project for the wild-life tracking
of zebras in a reserve in central Kenya. In ZebraNet, sensors are attached
to zebras and the sensed data is collected regularly by a mobile base
station crossing the area. The data collection protocol of ZebraNet has
been analyzed through simulations, but to our knowledge, this is the first
time, that a purely analytical study is presented. Our first result is that,
in the original protocol, some data may never be delivered to the base
station. We then propose two slightly modified and correct protocols and
we compute their worst case time complexities. Still, in both cases, the
result is far from the optimal.

1 Introduction

Population Protocols (PP) have been introduced [1] as a model of sensor net-
works consisting of very simple mobile agents. In this model, anonymous mobile
agents move asynchronously and any two of them can exchange information and
change their states whenever they are chosen by a scheduler. When this hap-
pens, we say that an event, or a meeting between two moving agents, happens.
Initially, one of the goals of PP was to determine what can be computed in such
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a model with a minimal hypothesis. That is why agents are anonymous, move
asynchronously and have a small memory. No specific assumption is made on
the scheduler, except for a fairness condition that states that an infinitely often
reachable configuration is reached infinitely often. It was shown in [3] that the
computational power of the model is rather limited. Hence, various extensions
were suggested (e.g., [13,7,12,2,5]).

In this paper, we assume a version of the PP model, where an indicator of
“speed”, a cover time, is associated to each agent [5]. A cover time is the mini-
mum number of global events happening in the system for being certain that an
agent has met every other agent. A scheduler schedules global events according
to the cover times. The assumption that an agent communicates with all other
agents periodically, within a finite period, has been experimentally justified for
some types of mobility. Indeed, in the case of human or animal mobility within
a bounded area or with a “home coming” tendency (the tendency to return to
some specific places periodically), the statistical analysis of experimental data
sets confirms this assumption (e.g., [14,16,8]). These data sets concern students
on a campus [10], participants to a network conference [9] or visitors at Disney-
land. All exhibit the fact that the inter-contact time (ICT) between two agents,
considered as a random variable, follows a truncated Pareto distribution. In par-
ticular, this involves that the ICTs, measured in terms of real time, are finite
in practice. Thus, they are also finite when measured in events. So is the cover
time of an agent, which is the maximum of its ICTs measured in events.

The notion of cover times may be viewed as an introduction of “partial syn-
chrony” assumptions [11] in the original PP model (partial - because the cover
times are not assumed to be known by the agents). This extension allows to
compute deterministic time complexities expressed in the number of events (also
called event complexities). This is impossible in the original PP model.

This paper presents, on an example, some techniques for computing the event
complexity of population protocols. The example is a slight modification of an
existing data collection protocol, used by the ZebraNet project [15]. ZebraNet is
a project conducted by the Princeton University and deployed in central Kenya.
It aims at studying populations of zebras using sensors attached to the animals.
This project uses a history-based protocol to deliver the sensed values to a base
station. When an agent x has the possibility to relay its data to other agents,
it may select the one, y, that has recently met the base station more frequently.
The protocol assumes that y will continue meeting the base station frequently
in the near future and will deliver data sooner.

The first result in this paper theoretically shows that the original ZebraNet
protocol does not ensure the delivery of all the values to the base station. There
are infinite executions in which some values cycle between some mobile agents.
The fact that about 10% of the sensed values are lost, as exhibited by the
simulations in [15], is supported here by a formal explanation. To ensure the
delivery without modifying the main structure of the executions, we propose two
slightly modified versions respectively called Modified ZebraNet Protocols 1 and
2 (MZP1 and MZP2). We then provide an analysis of their event complexities
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thanks to the notion of cover times. In both cases, the worst case complexity is
worse than for the algorithm presented in [5] (this algorithm reaches the optimal
worst case complexity in general cases).

2 Model and Notations

The model is as in [5]. Let A be the set of all the agents in the system where |A| =
n and n is unknown to the agents. The Base Station (BS) is a distinguishable
agent with extended resources and which may be also non-mobile.1 In contrast
with BS, all the other agents are finite-state, anonymous and are referred in the
paper as mobile. We denote by A∗ the set of mobile agents. Mobile agents are
enumerated from 1 to n− 1.

Population protocols can be modeled as transition systems. We adopt the
following common definitions (for formal definitions, refer, e.g., to [18]) : state
of an agent (vector of the values of its variables), configuration (a vector of
states of all the agents), transition (atomic step of two communicating agents
and their associated state changes), execution (a possibly infinite sequence of
configurations related by transitions).

An event (x y) is a pairwise communication (meeting) of two agents x and
y. An event corresponds to a transition. Without loss of generality, we assume
that no two events happen simultaneously. A schedule is an infinite sequence of
events. A schedule, together with an initial configuration, uniquely determines
an execution2. By abusing the notation, we often write a sequence of events
to represent both a schedule and the corresponding execution. Intuitively, it is
convenient to see executions as if a scheduler (adversary) “chooses” which two
agents participate in the next event. Formally, a scheduler D is a predicate on
schedules. A schedule of D is a schedule that satisfies the predicate D. For the
sake of simplicity, we assume that all agents start an execution simultaneously
(e.g., on sunrise, according to a clock, or on receipt of a global signal from BS).
The non-simultaneous start is treated, e.g., in [5,6].

Cover Time Property. In the model, each agent x is associated with a positive
integer cvx, called the cover time of x. Agents are not assumed to know the cover
times. We denote by cv the vector of agents’ cover times and by cvmin (resp.
cvmax) the minimum (resp. maximum) cover time in cv.

Definition (Cover Time Property). Given a population A of n agents and
a vector cv of positive integers, a scheduler D (and any of its schedules) is said
to satisfy the cover time property, if and only if, for every x ∈ A, in any cvx

consecutive events of any schedule of D, agent x meets every other agent at least
once.

In the paper, we consider only the schedulers that satisfy the cover time property.
We say that the cover time vector cv is uniform if all its entries are equal, i.e.,
1 BS is required here only by the nature of the data collection problem.
2 We only consider deterministic systems.
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cvmin = cvmax. In this case, we denote by cv the common value of the agents’
cover times.

Data Collection and Convergence. In the context of data collection, an
initial configuration is a configuration in which each mobile agent owns an input
value. Each input value has to be delivered to BS exactly once. When this
happens, we say that a legal configuration is reached. An execution is said to
converge if it reaches a legal configuration. The length of an execution that
converges is the minimum number of events until convergence. The worst case
event complexity of an algorithm is the maximum length of its executions. A
protocol (or an algorithm) is said to converge, if all its executions converge.

When describing an execution, we may annotate each event as follows. The
notation (x y) indicates that there is a transfer from x to y. To specify one of the
values being transferred, v for example, we note (x y)(v). Note that after (x y),
agent x does not keep any copy of the transferred values. Also, the notation (x y)
does not imply that there is no transfer.

For some finite sequences S1, S2, . . . , Sk, their concatenation in the given order
is denoted by S1 · S2 · · ·Sk (or just S1S2 . . . Sk). For any finite sequence S and
any positive integer l, the sequence Sl is the sequence obtained by repeating l
times the sequence S. In addition, the infinite sequence Sω denotes the infinite
repetition of S.

3 Non Convergence of the Original Protocol

In the original ZebraNet data collection protocol [15] that we consider, an agent
chooses, among the agents in its range, the one which is the most likely to meet
BS in a near future, and transfers its values to it. In this paper, we chose to use
the model with pairwise communications, in contrast to the multi-wise commu-
nications possible in ZebraNet. Hence, the ZebraNet Protocol (ZP), Algorithm 1
presented below, is a restricted version of the original ZebraNet protocol. How-
ever, as any execution of ZP is also an execution of the original protocol, the
non convergence of ZP involves the non convergence of the latter.

In ZP, the state of an agent x is defined by integer variables accumulationx

and distancex, an array of data values valuesx
3 and an integer constant decay

that is the same for every agent. The integer variables are initially set to 0. The
array valuesx holds initially the value provided by the sensor (e.g., tempera-
ture or heart-rate). For the sake of simplicity, we assume first that the memory
available for each agent is large enough, so that it can store the values of all the
others. This assumption prevents memory overflows during transfers4.

In Algorithm 1, when an agent x meets BS, its variable accumulationx is
incremented and distancex is reset to 0. When an agent x meets another mobile
agent, its variable distancex is incremented. If distancex becomes larger than
3 We do not define the type of these arrays explicitly.
4 In other words, we assume that agents have an unbounded O (n) memory. The case

of bounded memory is discussed in Sec. 6
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decay, accumulationx is decremented and distancex is reset to 0.5 When an
agent x holds some values in valuesx and meets another mobile agent y, if
accumulationy is strictly greater than accumulationx, then agent x transfers all
its values to agent y. An agent always transfers all its values when it meets BS.

Algorithm 1. ZebraNet Protocol
when x meets BS do

<x transfers valuesx to BS>
accumulationx := accumulationx + 1
distancex := 0

end when
when x meets y �= BS do

if accumulationx < accumulationy ∧ <valuesx is not empty> then
<x transfers valuesx to y>

end if
distancex := distancex + 1
if distancex > decay then

if accumulationx �= 0 then
accumulationx := accumulationx − 1

end if
distancex := 0

end if
end when

It appears that not all executions of ZP converge. Indeed, a value can circulate
between mobile agents without ever being delivered to BS.

Theorem 1 (Non Convergence of ZP). For any population A of n ≥ 4
agents, for any decay ≥ 1, there exist a uniform cover time vector cv and an
execution of ZP that does not converge.

Proof. Consider a population A of n ≥ 4 agents and a constant decay ≥ 1. We
first define specific sequences of events :

– U1 = (1 BS)(2 1)
– V = [(2 3) . . . (2 n− 1)] · [(3 4) . . . (3 n− 1)] · . . . · (n− 2 n− 1)

All mobile agents, except for agent 1, meet each other once.
– W1 = (1 2) . . . (1 n− 1)

Agent 1 meets every other mobile agent once.
– U2 = (2 BS)(1 2)
– W2 = (2 1)(2 3) . . . (2 n− 1)

Agent 2 meets every other mobile agent once.
– Z = (3 BS) . . . (n − 1 BS)

All mobile agents, except for agents 1 and 2, meet BS.
5 For avoiding overflow problems, we assume that the accumulation variables are

periodically reset to 0.
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We choose an integer g such that g · (n − 3) ≥ decay + 1. Now we build a
schedule S as follows :

X = U1 V
g W g

1 U2 W
g
2 Z

S = Xω

By construction, in X , all the agents meet each other at least once. For any
mobile agent x, we choose cvx = cv = |X |. That implies that S satisfies the
cover time property. Precisely, cv = g · (n−3)(n−2)

2 + (2g + 1)(n − 2) + 3.
We claim that the initial value v of agent 2 is never delivered to BS. To

see that, consider what happens when the sequence X is applied to an initial
configuration C0. During U1 = (1 BS)(1 2), agent 1 receives the initial value v
of agent 2. During the sequence V g, only agents 2 to n − 1 are involved, thus,
at the end, agent 1 still holds v. Then comes the sequence W g

1 : agent 1 meets
every other mobile agent g times. Since agents 2 to n− 1 have not met BS yet,
their variables accumulation equal 0 and agent 1 cannot transfer v to any of
them. In addition, since agent 1 is involved in g · (n−2) ≥ decay + 1 (thanks to
the choice of g) meetings, the decay mechanism of ZP implies that at the end
of W g

1 , the variable accumulation1 of agent 1 equals 0.
Therefore, during U2 = (2 BS)(2 1), agent 1 transfers v to agent 2. In W g

2 ,
agent 2 is involved in g · (n−2) ≥ decay + 1 meetings with other mobile agents.
But all their variables accumulation equal 0, hence agent 2 keeps v. Note that
the decay mechanism implies that at the end of W g

2 , the variable accumulation2

of agent 2 equals 0. Finally, during Z, all mobile agents x �∈ {1, 2} meet BS and
increment their variable accumulationx accordingly. Therefore, the application
of the sequence X to an initial configuration C0 leads to a configuration C1 that
satisfies the property P defined as follows :

– agent 2 holds its initial value v
– accumulation1 = accumulation2 = 0
– ∀x ∈ A∗ − {1, 2}, accumulationx = 1

Now, apply X to C1. At the end of U1, agent 1 has received v from agent 2 and
satisfies accumulation1 = 1. During V g, each mobile agent x �= 1 is involved
in g · (n − 3) ≥ decay + 1 meetings. Therefore, thanks to the decay mecha-
nism, at the end of V g, all the agents, except for agent 1, have their variable
accumulation equal to 0. Hence during W g

1 , agent 1 cannot transfer v to any
other mobile agents. In addition, the decay mechanism implies that at the end
of W g

1 , the variable accumulation1 of agent 1 equals 0. Hence, we see that the
same arguments as in the previous paragraph can be applied to the sequence
U2 W

g
2 Z that follows. Thus, the application of the sequence X to C1 leads to a

configuration C2 that also satisfies the property P .
Hence, no matter how many sequences X are applied, the initial value v of

agent 2 is never delivered to BS. ��



Computing Time Complexity of Population Protocols with Cover Times 53

4 Modified ZebraNet Protocol 1

To ensure the convergence, we modify the algorithm by ensuring that a mobile
agent that transfers data to another mobile agent can no longer accept data.
For this purpose, we add a boolean variable activex, initially set to true, that
indicates whether agent x is active or not, and we impose that only active agents
can receive values. Once an active agent has transferred its values to another
mobile agent, it becomes inactive. A formal description of MZP1 is given in
Algorithm 2.

Algorithm 2. Modified ZebraNet Protocol 1
when x meets BS do

<x transfers valuesx to BS>
accumulationx := accumulationx + 1
distancex := 0

end when
when x meets y �= BS do

if accumulationx < accumulationy ∧ activey ∧ <valuesx is not empty> then
<x transfers valuesx to y>
activex := false

end if
distancex := distancex + 1
if distancex > decay then

if accumulationx �= 0 then
accumulationx := accumulationx − 1

end if
distancex := 0

end if
end when

4.1 Convergence of MZP1

We now show that any execution of MZP1 converges. The proof relies on the
fact that the set of active agents cannot increase, so that at some point of any
execution, it remains constant. From that point, there is no transfer between
two mobile agents, and since all mobile agents eventually meet BS (due to the
cover time property), all values are eventually delivered.

Theorem 2 (Convergence of MZP1). MZP1 converges.

Proof. Let E be an execution. We note ACT (k) the set of active agents in the
k-th configuration in E . The sequence (ACT (1), ACT (2), . . . ) is non-increasing,
thus it is eventually constant : ∃k0 ∈ N, ∀k ≥ k0, ACT (k) = ACT (k0). Starting
from the k0-th configuration, there cannot be any further transfer between two
active agents. Otherwise, the set of active agents would decrease. Also, according
to Algorithm 2, there cannot be any transfer from an active agent to another
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inactive agent, nor from an inactive agent to an inactive agent. In other words,
once the set of active agents remains constant, there cannot be any transfer
between two mobile agents. Since all mobile agents meet BS in the next cvmax

events, all the values are eventually delivered. ��

4.2 Upper Bound to the MZP1 Complexity

We compute an upper bound to the number of events needed to collect all the
values at the base station. First we define the notion of path.

Definition (Path followed by a value). Let E be an execution and v be a
value in the system. The path followed by v in E is the sequence (possibly infinite)
of mobile agents that successively carry v.

For example, let x1 be an agent whose initial value is v. It is possible that x1

transfers v to some agent x2, then agent x2 transfers v to some agent x3 which
finally delivers v to BS. In this case, the path followed by v is x1x2x3. Note
that, without the active variable (e.g. in ZP), agent x1 and agent x3 could be
the same.

Theorem 3 (Upper Bound - MZP1). For any population A of n ≥ 3
agents, for any cover time vector cv, and for any decay ≥ 1, any execution
of MZP1 converges in no more than

∑
x∈A∗ cvx events.

Proof. Let E be an execution of MZP1. By Theorem 2, E converges, i.e., all the
values are eventually delivered. Let v be an initial value of some agent x1 such
that v is the last delivered value in E . Consider the path π followed by v in E . It
is of the form x1x2 . . . xk for some k ≥ 1, xk being the agent that delivers v to
BS. Since a mobile agent becomes inactive as soon as it transfers some values,
all the agents appearing in π are different. Hence, we have 1 ≤ k ≤ n− 1. Then
the execution E can be written as the following sequence of events6 :

E =
[
. . . (x1 x2)(v)

]
︸ ︷︷ ︸

e1

[
. . . (x2 x3)(v)

]
︸ ︷︷ ︸

e2

. . .
[
. . . (xk−1 xk)(v)

]
︸ ︷︷ ︸

ek−1

[
. . . (xk BS)(v)

]
︸ ︷︷ ︸

ek

. . .

The subsequence ei starts after the transfer of v from xi−1 to xi and ends with
the transfer of v from xi to xi+1. At the end of ek, v is delivered to the base
station. For all 1 ≤ i ≤ k−1, the length of ei is upper bounded by cvxi , because
xi does not meet BS in ei (at the beginning of ei, xi has received v and transfers
it to xi+1 at the very end of ei). In addition, the length of ek is upper bounded
by cvxk

, because there the first meeting of xk with BS necessarily occurs in the
first cvxk

events that follow the reception of v. As a consequence, the value v is
delivered to BS in less than

∑
x∈π cvx ≤∑x∈A∗ cvx. Since all other values are

delivered before v, E converges in
∑

x∈A∗ cvx events. ��
6 We remind the reader that this is an abuse of notation, refer to Section 2.
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4.3 Lower Bound to MZP1 Complexity

Now we present a lower bound that almost matches the upper bound of the
previous section. For the sake of clarity, we assume a uniform cover time vector
cv. Hence, the upper bound stated in Theorem 3 becomes (n − 1) · cv. In the
sequel, we build an execution that converges in (n − 2) · cv, which is close to
this upper bound.

Theorem 4 (Lower Bound - MZP1). For any population A of n ≥ 4 agents,
for any decay ≥ 1, there exist a uniform cover time vector cv and an execution
of MZP1 that does not converge in strictly less than (n − 2) · cv events.

Proof. We consider a population A of n ≥ 4 agents and a constant decay ≥ 1.
Let g be an integer such that g · (n − 3) ≥ decay + 1. We consider a uniform
cover time vector cv, the value of which is defined later.

We build an execution in which the initial value of agent 1 is successively
carried by every other agent. For each 1 ≤ k ≤ n − 2, we consider a sequence
Ek of length cv in which the value v is transferred from agent k to k + 1, and
another sequence Δ in which agent n− 1 delivers v to BS. Since a schedule
is an infinite sequence, we also consider a repeating pattern Ω and we define
a schedule S = E1E2 · · ·En−2ΔΩ

ω. The difficulty lies in the definition of the
sequences Ek,Δ and Ω so that the schedule S satisfies the cover time property
and the value v is delivered at the end of Δ.

For this purpose, we define specific sequences as follows :

– For 1 ≤ k ≤ n−1, U(k) is a sequence of events in which all the mobile agents,
except for agent k, meet each other once. Hence, each mobile agent (except
for agent k) is involved in n− 3 meetings. We have |U(k)| = (n−3)(n−2)

2 .
– For 1 ≤ k ≤ n − 1, V (k) is a sequence in which agent k meets every other

mobile agent once. We have |V (k)| = n− 2.
– For 1 ≤ p ≤ q ≤ n − 1, Bp

q = (q BS)(q − 1 BS) . . . (p BS) is a sequence in
which each agent x, from q to p, successively meets BS in this order. We
have |Bp

q | = q − p + 1.
– For 1 ≤ p ≤ q ≤ n − 1, Cp

q = [(q q + 1)(q BS)] . . . [(p p + 1)(p BS)] is a
sequence in which each agent x, from q to p, meets its successor x + 1 then
BS. We have |Cp

q | = 2 · (q − p + 1).

First, we look at what happens when sequences such as U(k) or V (k) are re-
peatedly applied. In U(k)g, each mobile agent x �= k is involved in g · (n− 3) ≥
decay+1 meetings. Thus, thanks to the decay mechanism, applying U(k)g to any
configuration of the system makes each non-zero accumulationx, with x �= k, de-
crease at least by one. The same argument shows that applying V (k)g to any con-
figuration makes accumulationk decrease at least by one, unless accumulationk

already equals 0. In other words, the sequences U(k)g and V (k)g help resetting
the variables accumulation.

Now, consider a configuration in which for all x ∈ A∗, accumulationx = 0. In
addition, assume that some mobile agent k, such that 1 ≤ k ≤ n−2, holds a value
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w and that agent k + 1 is active (i.e., it can receive values). Then it is easy to
see that during the sequence Bk+1

n−1 ·C1
k = Bk+2

n−1(k + 1 BS)(k k + 1)(k BS)C1
k−1,

agent k transfers w to k + 1. Moreover, at the end, every accumulationx (with x
a mobile agent) equals 1. In other words, applying Bk+1

n−1 ·C1
k to the appropriate

configuration results in a transfer from agent k to agent k + 1.
We also define, for each 1 ≤ k ≤ n − 2, a “filling” sequence Fk of meetings

between mobile agents. We only require that |Fk| = n − 2 − k (which implies
that Fn−2 = ∅). The purpose of the sequence Fk is to ensure that the length of
Ek is constant (independent of k). Now we are ready to define the sequences Ek

(1 ≤ k ≤ n− 2), Δ and Ω :

Ek = U(k)g(k k + 1)Fk︸ ︷︷ ︸
prologue

·Bk+1
n−1C

1
k︸ ︷︷ ︸

center

·U(k)gV (k)g︸ ︷︷ ︸
epilogue

Δ = U(n− 1)g · (n − 1 BS)

Ω = Bn−1
n−1C

1
n−2 · U(n− 1)gV (n − 1)g ·Δ

Then we set cv = |Ek|. Precisely, we have cv = g·(n−3)(n−2)+(g+2)(n−2)+2.
Proving that the schedule S satisfies the cover time property is not difficult but
tedious. This proof can be found in the appendix of [4]. Instead, we focus on the
circulation of the initial value v of agent 1. Let C1 be an initial configuration.
The prologue of E1 only involves meetings between mobile agents, and, since
each mobile agent has its variable accumulation equal to 0, there is no transfer.
At the end of the center of E1, the previous remarks show that agent 1 has
transferred v to agent 2 and each mobile agent x satisfies accumulationx = 1.
The epilogue of E1 first begins by U(2)g at the end of which, each mobile agent x,
except for agent 2, has its variable accumulationx equal to 0. The epilogue ends
with V (2)g during which there is no transfer from agent 2 to any other mobile
agents (their accumulation being equal to 0). Moreover, at the end of E1, all
mobile agents (including agent 2), have their variable accumulation equal to 0
and agent 2 holds the initial value v of agent 1. Also, only agent 1 has become
inactive. We denote by C2 the configuration at the end of E1.

If we focus on the variables accumulation, we see that the configuration C2

is similar to the configuration C1. Hence, the same arguments show that during
E2, agent 2 transfers v to agent 3. In the resulting configuration C3, all the
agents have their variables accumulation equal to 0 again, and the process can
be iterated. At the end of En−2, agent n− 1 holds the value v. Therefore, the
value v is delivered to BS exactly at the end of Δ = U(n − 1)g(n − 1 BS). In
summary, with the schedule S, the algorithm does not converge before the first
(n − 2) · cv events. ��

5 Modified ZebraNet Protocol 2

As already explained, the non convergence of ZP is due to the fact that a value
can circulate between two or more mobile agents, without ever being delivered to
the base station. To prevent that, in MZP1, we imposed that a mobile agent that
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transfers some values cannot receive the values later. Another way to prevent
cycling of values is to impose that a mobile agent receiving some values cannot
transfer them to any other mobile agent later. For this purpose, an active bit is
also introduced, but with different functionality than in MZP1. The resulting
protocol, called MZP2, is given in Algorithm 3.

Algorithm 3. Modified ZebraNet Protocol 2
when x meets BS do

<x transfers its values to BS>
accumulationx := accumulationx + 1
distancex := 0

end when
when x meets y �= BS do

if accumulationx < accumulationy ∧ activex ∧ <valuesx is not empty> then
<x transfers its values to y>
activey := false // agent y becomes inactive

end if
distancex := distancex + 1
if distancex > decay then

if accumulationx �= 0 then
accumulationx := accumulationx − 1

end if
distancex := 0

end if
end when

5.1 Upper Bound to MZP2 Complexity

Theorem 5 (Upper Bound - MZP2). For any population A of n ≥ 1
agents, for any cover time vector cv and for any decay ≥ 1, any execution
of MZP2 converges in less than 2 · cvmax events.

Proof. Consider an execution of MZP2 and an agent x with initial value v.
During the first cvmax events, there are two possibilities. Either agent x does
not transfer v to any other mobile agent then, meeting BS, it delivers v. Or,
some mobile agent y has received v from agent x and has become inactive. Hence,
agent y cannot transfer v to any other mobile agent, which implies that agent y
will transfer v to BS during the next cvmax events. In all cases, v is delivered to
the base station in less than 2 · cvmax events. Since v can be any value, we see
that all values are delivered to the base station in less than 2 · cvmax events. ��

5.2 Lower Bound to MZP2 Complexity

Theorem 6 (Lower Bound - MZP2). For any population A of n ≥ 4 agents
and any decay ≥ 1, there exist a uniform cover time vector cv and an execution
of MZP2 that does not converge in strictly less than 2 · cv − 2 events.
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Proof. We consider an integer g such that g · (n−3) ≥ decay +1, and we define
specific sequences as follows :

– U = (3 BS) . . . (n− 1 BS).
Agents 3 to n− 1 meet the base station once.

– V = [(2 3) . . . (2 n− 1)] · [(3 4) . . . (3 n− 1)] · . . . · (n− 2 n− 1)
In V , all mobile agents, except for agent 1, meet each other once.

– W = (1 3) . . . (1 n− 1).
Agent 1 meets every other mobile agent, except for agent 2, exactly once.

– X = U · V g ·W · (2 BS)(1 2)(1 BS)

We build a schedule S by repeating X infinitely many times : S = Xω. We
choose the same cover time, cv = |X |, for all the agents. A simple calculation
shows that cv = 2n − 3 + g · (n−3)(n−2)

2 . It is easy to see that S satisfies the
cover time property.

Now we prove that the execution of MZP2 induced by S does not converge
before the first 2 · cv − 2 events. At the end of the first U in S, agents 3 to
n− 1 have successively met BS and transferred their values to it. Thus, all the
variables accumulationx for 3 ≤ x ≤ n−1 equal 1. Then comes the sequence V g

in which each agent x �= 1 is involved in g · (n−3) ≥ decay+1 meetings. Hence,
thanks to the decay mechanism, at the end of the first V g, every agent x, from
2 to n − 1, has its variable accumulationx reset to 0. As a consequence, there
is no transfer from agent 1 to any other mobile agent during the sequence W
that follows V g. Then during the sequence (2 BS)(1 2)(1 BS), agent 2 receives
the initial value v of 1. From this point, agent 2 cannot transfer v to any other
agent but BS, which is done precisely cv events later (during the event (2 BS)
in the second X of S). Therefore, the value v is delivered to BS exactly after
the (2 · cv − 2)-th events of the schedule. ��

6 Bounded Memory

Up to now, we have assumed that mobile agents have an unbounded (O (n))
memory. In this section, we discuss the case of bounded memory, i.e., a memory
size independent of the number of agents. We assume now that the memory of
an agent can hold at most k values, with k ≥ 1. Both MZP1 and MZP2 can be
adapted to this case. Indeed, any transfer of values is limited by the available
memory and the transfer may be partial. During an event, as much as possible
values are transferred. Note that all values are equivalent for the data collection
problem, thus it is unnecessary to precise which values are actually transferred.
In an adapted MZP1, once an agent has transferred some values, even if the
transfer is only partial, it becomes inactive and cannot receive other values.
For every agent x, the values held by x are stored in a dynamic array valuesx,
whose size is denoted by size(valuesx). By definition, we have size(valuesx) ≤ k.
Algorithm 4 presents an adaptation of MZP1, but the same idea can be applied
to MZP2. For the sake of clarity, we do not present in the code the management



Computing Time Complexity of Population Protocols with Cover Times 59

Algorithm 4. Modified ZebraNet Protocol 1 - Bounded memory
when x meets BS do

<x transfers its values to BS>
accumulationx := accumulationx + 1
distancex := 0

end when
when x meets y �= BS do

count := min(size(valuesx),k − size(valuesy))
if accumulationx < accumulationy ∧ activey ∧ count > 0 then

<x transfers count values to y>
activex := false

end if
distancex := distancex + 1
if distancex > decay then

if accumulationx �= 0 then
accumulationx := accumulationx − 1

end if
distancex := 0

end if
end when

of the dynamic array valuesx. We denote by MZP1-BM (resp. MZP2-BM) the
bounded-memory version of MZP1 (resp. MZP2).

It appears that, for both MZP1 and MZP2, the proofs given in the previous
sections (Sections 4.1, 4.2, 4.3, 5.1 and 5.2) are still applicable. Indeed, the
memory size tightens the constraints on transfers, but do not fundamentally
affect the structures of both MZP1 and MZP2. Still, we sketch the proofs for
MZP1-BM and MZP2-BM.

Theorem 7 (Bounds to MZP1-BM complexity). For any population A
of n ≥ 1 agents, for any cover time vector cv, for any decay ≥ 1, any execution
of MZP1-BM converges in less than

∑
x∈A∗ cvx events.

For any population A of n ≥ 4 agents, for any decay ≥ 1, there exist a
uniform cover time vector cv and an execution of MZP1-BM that does not
converge in strictly less than (n− 2) · cv events.

Proof. The fact that MZP1-BM converges is due to the fact that the set of
active agents cannot increase. As in MZP1, once the set of active agents remains
constant, there cannot be any transfer between any two mobile agents. Since all
mobile agents meet BS in the next cvmax events, the protocol converges.

The upper bound to the complexity of MZP1-BM is computed by looking
at the path followed by the last delivered value v, i.e., the mobile agents that
successively carry v. The memory size does not affect the fact that a mobile
agent in this path cannot appear twice, thanks to the bit active, nor the fact
that a mobile agent x in this path holds v for at most cvx consecutive events.
Thus any execution of MZP1-BM converges in less than

∑
x∈A∗ cvx events.
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The lower bound to MZP1-BM complexity is obtained thanks to the same
schedule described in Section 4.3. Indeed, applying this schedule to an initial
configuration gives an execution in which each agent holds at most one value,
which is compatible with the assumption k ≥ 1. ��

Theorem 8 (Bounds to MZP2-BM complexity). For any population A
of n ≥ 1 agents, for any cover time vector cv, for any decay ≥ 1, any execution
of MZP2-BM converges in less than 2 · cvmax events.

For any population A of n ≥ 4 agents, for any decay ≥ 1, there exist a
uniform cover time vector cv and an execution of MZP2-BM that does not
converge in strictly less than resp. 2 · cv − 2 events.

Proof. During the first cvmax events, an agent x either transfers its initial value v
to BS or to another mobile agent y. In the second case, agent y is then inactive
and cannot transfer v to any other agent, but BS, which is done in the next
cvmax events. Thus MZP2-BM also converges in less than 2 · cvmax events.

The lower bound to MZP2-BM is obtained thanks to the same schedule de-
scribed in Section 5.2. Indeed, applying this schedule to an initial configuration
gives an execution in which each agent holds at most one value, which is com-
patible with the assumption k ≥ 1. ��

7 Conclusion

In this paper, we study the ZebraNet data collection protocol in the context of
Population Protocols. We show that the original version does not converge in all
cases, the problem being the possibility for a value to cycle among the mobile
agents without reaching the base station.

To ensure convergence, we propose slightly modified versions of the original
protocol, MZP1 and MZP2. Notice that MZP1 is a multi-hop protocol. In con-
trast, MZP2 is a two-hop one. Hence, MZP1 approximates better the original
ZebraNet protocol than MZP2. For both modified versions, the worst case com-
plexity is much worse than for the near optimal data collection protocol presented
in [5] (its complexity is less than 2 ·cvmin). However, this protocol assumes that,
when two agents meet, both know which of them has a smaller cover time. We
do not make such an assumption here, but one could consider that the ZebraNet
Protocol is an approximation of the near optimal protocol in the following sense.
An agent that has met BS many times in the past, has intuitively to be fast
and thus, must have a small cover time. Comparing the values of the accumu-
lation variables, when two agents meet, can be viewed as an approximation of
comparing their cover times. This papers shows that this approximation is bad
when the worst case complexity is considered. Note that optimal bounds to the
worst case complexity can be found in [4]; precisely

∑
x∈A∗ cvx − 2 · (n− 2) for

MZP1/MZP1-BM and 2 · cvmax − 2 for MZP2/MZP2-BM. A possible, but
surely difficult extension to this work would be to compute the average complex-
ity of the protocols. Perhaps the gap between the protocol in [5] and the protocols
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MZP1 and MZP2 is not so large when considering average complexity. Such an
analysis would also highlight the role of the memory size.

Another perspective would be to apply our purely analytical methodology
to more intricate data collection protocols, as for instance PROPHET [17], for
which only simulation results are available. For this protocol, as well as for others,
the analytical approach is not supposed to replace simulations, but allows to
obtain some information quickly and with less investment.
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Abstract. Overlay networks are expected to operate in hostile environ-
ments, where node and link failures are commonplace. One way to make
overlay networks robust is to design self-stabilizing overlay networks, i.e.,
overlay networks that can handle node and link failures without any ex-
ternal supervision. In this paper, we first describe a simple framework,
which we call the Transitive Closure Framework (TCF), for the self-
stabilizing construction of an extensive class of overlay networks. Like
previous self-stabilizing overlay networks, TCF permits node degrees to
grow to Ω(n), independent of the maximum degree of the target overlay
network. However, TCF has several advantages over previous work in
this area: (i) it is a “framework” and can be used for the construction of
a variety of overlay networks, not just a particular network, (ii) it runs in
an optimal number of rounds for a variety of overlay networks, and (iii)
it can easily be composed with other non-self-stabilizing protocols that
can recover from specific bad initial states in a memory-efficient fashion.
We demonstrate the power of our framework by deriving from TCF a
simple self-stabilizing protocol for constructing Skip+ graphs (Jacob et
al., PODC 2009) which presents optimal convergence time from any con-
figuration, and requires only a O(1) factor of extra memory for handling
node Joins.

1 Introduction

An overlay network is induced by logical or virtual links constructed over one
or more underlying physical links. The use of virtual links enables designers to
create any topology regardless of the underlying physical network, allowing the
creation of networks with desirable properties, such as low diameter and mean
path length (for efficient routing), low degree (for low memory requirements
and maintenance overhead), low congestion, etc. Fault tolerance in overlay net-
works is an important focus for researchers and practitioners alike. Since nodes
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and links do not typically exist in stable and controlled environments, over-
lay networks must be prepared to handle unexpected node and link failures.
Traditionally, overlay networks are classified into two categories: structured and
unstructured. Unstructured networks have no topological restrictions other than
connectedness, and they are relatively simple to manage. Conversely, structured
networks have “hard” topological constraints and recovery from bad configu-
rations is a key challenge for such networks. As a “toy” example, consider the
Linear network that consists of a path of nodes arranged in the order of node
identifiers. For the Linear network, bad configurations include those in which a
node perceives two neighbors both with smaller IDs or those in which a node has
three or more neighbors. Such bad configurations may be caused by node or link
failures, by a node Join or a node Leave, or by deliberate actions of nodes try-
ing to derive undue performance benefits for themselves. For these reasons, self-
stabilization[3] is extremely relevant in overlay network construction. Recently
the design of self-stabilizing overlay networks has received considerable attention
– examples include algorithms for constructing double-headed radix trees [2], the
Linear network [6], Skip+ graphs [4], and Chord-like networks [5]. The goal
in these papers is to design self-stabilizing algorithms for overlay network con-
struction; these algorithms run on the individual nodes of a weakly-connected
network and, by node actions that include edge-additions and edge-deletions, the
network is transformed into a legal overlay network. In a sense, these algorithms
are taking a walk through the space of all networks defined by a given set of
nodes, starting from a source network that is illegal and ending up at a target
network that is legal. This algorithmic process is conceptually no different from,
for e.g., starting with a (possibly unbalanced) binary search tree and transform-
ing it into a balanced binary search tree (e.g., AVL tree) via a series of local
rotations. However, since we are in a distributed setting, it is appropriate that
the illegality of a network be detected using only local information and fixed
using local actions.

It is worth reemphasizing at the outset that since the edges of an overlay
network are virtual and, in a sense, independent of the underlying physical links,
these edges can be deleted and inserted as a result of program actions, or as a
result of events such as Joins and Leaves. This aspect of our model — the
fact that the network may change repeatedly as the result of algorithm actions
— makes it fundamentally different from other standard models of distributed
computation such as LOCAL and CONGEST [7]. For example, it is easy to see
that Ω(Diam(G)) is a lower bound on the problem of constructing a minimum
spanning tree (MST) of a network G in a distributed setting in the LOCAL
model. However, this lower bound is mainly due to the fact that the underlying
network G has to remain static – once we allow program actions to modify
the underlying network, this lower bound no longer holds and using techniques
described in this paper, it is easy to see that O(log n) rounds suffice for MST
construction, independent of Diam(G). In the current model of computation, two
efficiency metrics seem to make most sense [6]. The first is the traditional worst-
case number of rounds needed to terminate or stabilize (i.e., reach the target
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overlay network), and the second is the the maximum increase in the degree
of a node during algorithm execution. This second measure may be viewed as
the amount of “extra memory” that nodes consume during algorithm execution.
Another view of this measure is as follows. Typically, overlay networks have
small maximum degree (relative to number of nodes in the network) and if we
start off with an illegal overlay network in which all degrees are small, then
the requirement that the maximum node degree increase be bounded forces the
algorithms we construct to travel through the space of only low-degree networks
before reaching its destination overlay network. Ideally, from the point of view of
scalability, both measures should be sublinear, preferably polylogarithmic, in the
number of nodes currently in the network. However, no existing algorithms seem
to have achieved this for non-trivial overlay networks. For example, Jacob et al.
[4] present a self-stabilizing algorithm for building a Skip+ graph in O(log2 n)
rounds (with high probability). However, the worst-case memory requirements
of this algorithm are linear, and the algorithm and its proof of correctness are
both quite complex.

1.1 Our Contributions

In this paper, we first describe a simple framework, which we call the Transitive
Closure Framework (TCF), for the self-stabilizing construction of an extensive
class of overlay networks. This is a “framework” rather than an algorithm and by
instantiating certain subroutines in this framework we can obtain self-stabilizing
algorithms for specific overlay networks. Like previous self-stabilizing overlay
networks, TCF permits node degrees to grow to Ω(n), independent of the maxi-
mum degree of the target overlay network. However, TCF has several advantages
over previous work in this area: (i) it is a “framework” and can be used for the
construction of a variety of overlay networks, not just a particular network, (ii)
it runs in optimal number of rounds for a variety of overlay networks, and (iii) it
can easily be composed with other non-self-stabilizing protocols that can recover
from specific bad initial states in a memory-efficient fashion. We elaborate on
items (ii) and (iii) below.

– We identify a natural parameter of overlay networks, namely the detector
diameter. Consider a set of nodes V , a legal overlay network G = (V,E)
on V , and a faulty network Gf = (V,Ef ) on V . Typically, the diameter of
G, denoted Diam(G), is small relative to |V |, whereas Diam(Gf ) may be
much larger than Diam(G). Now let V ′ ⊆ V denote a set of node that are
“detectors,” i.e., nodes in Gf whose local states alert them to the fact that
the overlay network is faulty (definitions of these notions appear in Sect.
1.2. Assume for now that V ′ is non-empty). The detector diameter D(n) is
the maximum distance in Gf between a non-detector node (i.e., a node in
V \ V ′) and its closest detector and serves as a measure of how well “detec-
tors” are distributed in Gf . We show that any algorithm obtained from TCF
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can transform Gf to G in O(D(n) + logn) rounds, where n = |V |. In
other words, the stabilization time of algorithms obtained from the TCF
is O(D(n) + logn) rounds. To place this in context, we then show a lower
bound: the worst-case self-stabilization time of an algorithm derived from
TCF is bounded below by Ω(Diam(G)). The natural question to ask is:
what is the gap between the lower bound Ω(Diam(G)) and the upper bound
O(D(n)+log n)? It may seem as though D(n) can be as large as Diam(Gf )),
which, as we mentioned earlier, can be much larger than Diam(G). For a wide
variety of overlay networks, we show that the detector diameter D(n) is no
more than Diam(G) + 1, thus showing that the self-stabilization time of al-
gorithms derived from TCF is within an additive logarithmic-factor of the
optimal time.

– The above discussion of the self-stabilization time of TCF ignores the max-
imum node degree increase allowed during recovery by TCF. As mentioned
earlier, TCF requires all node degrees to become Θ(n) during the algorithm
execution before the degrees drop down to their final values in the target
overlay network G. However, to offset this memory-inefficiency we show that
TCF can be easily composed with other, (possibly non-self-stabilizing) over-
lay network protocols that can deal with specific initial states in a memory-
efficient manner. We introduce the Local Repair Framework (LRF), which
allows for the efficient repair of certain failures. To demonstrate this, we cre-
ate a Join protocol for Skip+ graphs that (i) stabilizes from arbitrary initial
configurations in O(D(n) + logn) rounds, while permitting an O(n) degree
increase and (ii) stabilizes from a single-Join state in O(log n) rounds, while
permitting only an O(1) degree increase.

Finally, we demonstrate the power of our framework by deriving from TCF, a
simple self-stabilizing protocol for constructing Skip+ graphs [4]. The Skip+

graph is a locally-checkable extension of Skip graphs [1]. We show that the detec-
tor diameter for an n-node Skip+ graph is O(log n) and therefore our algorithm
runs in O(log n) rounds, exactly matching the lower bound of Ω(logn), which
follows from the well-known fact that the diameter of an n-node Skip+ graph is
Θ(log n). Since a single-node Join operation can be performed in O(log n) rounds
by performing the composition alluded to above, we obtain a self-stabilizing over-
lay network that (i) stabilizes from arbitrary initial configurations in O(log n)
rounds (which is optimal), while permitting an O(n) degree increase and (ii)
stabilizes from a single-Join state in O(log n) rounds, while permitting only an
O(1) degree increase.

1.2 Model

Let V be a set of nodes. We suppose that there are two functions id : V → Z+

and rs : V → {0, 1}∗ that associate with each node in V a unique identifier and a
random bit string. The association of id-values to nodes is adversarial, however
it is assumed that the adversary assigns id-values to nodes without having access
to their rs-values. A family of overlay networks is defined as a mapping ON :
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Λ → G, where Λ is the set of all triples λ = (V, id, rs) and G is the set of
all directed graphs. In other words, the family of overlay networks associates a
unique directed graph ON(λ) ∈ G with each labeled set λ = (V, id, rs) of nodes.
At this point, the only assumption we make about ON is that it is well-defined
for every member λ ∈ Λ.

Let E be an arbitrary set of directed edges on V such that the graph G =
(V,E) is weakly connected. Our goal is to design an algorithm that starts on
any given labeled directed graph (G = (V,E), id, rs) and computes the overlay
network ON(λ), where λ = (V, id, rs). Such an algorithm is a self-stabilizing
algorithm for computing the family of overlay networks ON . We now explain
what it means precisely for an algorithm to compute ON(λ). Each node v ∈ V
maintains, over the course of the algorithm, a set of out-neighbors N(v), as part
of its local state. N(v) is node v’s view of the network that it is part of. Initially,
the sets N(v), for all nodes v ∈ V induce E (the input set of directed edges). We
use S(v) to denote the local state of a node v ∈ V . S(v) consists of N(v) plus
additional local variables that presumably help node v in its computations. We
assume a synchronous message-passing model. In each synchronous round, node
v reads the messages it received in the previous round, updates N(v) if necessary,
and send out messages to all the nodes in N(v). Message sizes are assumed to be
unbounded and typically in each round the messages sent by v consist of the id-
values and rs-values of all the nodes N(v). Note that throughout the algorithm,
node v can communicate with all of its current out-neighbors, i.e., nodes in N(v)
in one round of communication. Since N(v) is continuously changing, which
nodes v is able to communicate with in one round is also continuously changing
as the algorithm executes. As mentioned before, this aspect of our model makes it
fundamentally different from other standard models of distributed computation
such as LOCAL and CONGEST [7].

Let Nλ(v) denote the set of out-neighbors of node v in overlay network ON(λ).
A node v ∈ V is said to be faulty in a particular round if its current set of out-
neighbors N(v) is not equal to Nλ(v). The network is said to be faulty in a
particular round if some node in V is faulty. The goal of our algorithm is to
lead the network into a non-faulty state. Note that a faulty node may not know
that it is faulty. This is because v is only aware of its current 2-neighborhood
and within its 2-neighborhood everything may seem fine. More precisely, let V ′

denote the current 2-neighborhood of v, let id′ and rs′ be the restrictions of id
and rs respectively to V ′, and let λ′ denote the triple (V ′, id′, rs′). Node v may
be able compute its “local” overlay network ON(λ′) and this may be identical to
the edges that v sees in its 2-neighborhood. In such a case, node v has no reason
to believe that it is faulty, though it may be faulty because of other nodes in V
that are outside its 2-neighborhood.

1.3 SKIP+ Graphs

In this paper, we use Skip+ graphs to illustrate the utility of TCF. We define
Skip+ graphs in this section. Skip graphs were first introduced in 2003 by
Aspnes and Shah [1] as a fault-tolerant distributed data structure for efficient
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searching in peer-to-peer systems. In a Skip graph, each node u has a unique
identifier u.id, as well as a random sequence, u.rs. To help with defining Skip

graphs and Skip+ graphs, we provide the following notation, taken with slight
modification from [4].

– prei(u): for any node u and nonnegative integer i, prei(u) denotes the left-
most i bits of u.rs

– pred(u,W ): for any node u and subset W of nodes, pred(u,W ) is the node
in the set W with largest id whose id is less than u.id.

– succ(u,W ): for any node u and subset W of nodes, succ(u,W ) is the node
in the set W with smallest id whose id is more than u.id.

A legal Skip graph consists of levels labeled 0, 1, 2, . . .. At each level i, a node
u is neighbors with at most two nodes: pred(u, {w|prei(w) = prei(u)}) and
succ(u, {w|prei(w) = prei(u)}), assuming such nodes exist. It is shown in [1]
that with high probability (w.h.p.), the degree of each node in a Skip graph
is O(log n) and furthermore there is a simple protocol that can search for a
node in O(log n) rounds. While these are highly desirable properties, a problem
for designing self-stabilizing Skip graphs is that Skip graphs are not locally
checkable. To see this consider Fig. 1. Here, each node believes the topology is
correct, when in fact this is not a legal Skip graph, as there should be an edge
between the leftmost node (id 1) and the rightmost node (id 22) nodes in Level
1. However, these two nodes are unware of the existence of each other and other
nodes in the vicinity are unable to help.

Fig. 1. An illegal Skip graph in which none of the nodes are able to detect a fault

To create a locally-checkable version of the Skip graph, additional links are
needed and this leads us to the definition of Skip+ graphs [4]. In a Skip+ graph,
as in a Skip graph, each node u has a unique identifier u.id, as well as a random
sequence u.rs. Below we present a few additional definitions that we need for
defining Skip+ graphs.

– For node u, nonnegative integer i, and x ∈ {0, 1},
predi(u, x) = pred(u, {w | prei+1(w) = prei(u) · x}). In words, predi(u, x)
is the predecessor for u, selected from all nodes who have the same length-i
prefix as u and whose (i + 1) bit is x.
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Fig. 2. A Skip+ Graph

– For node u, nonnegative integer i, and x ∈ {0, 1},
succi(u, x) = succ(u, {w | prei+1(w) = prei(u) · x}).

– For node u and nonnegative integer i,
lowi(u) = min{predi(u, 0).id, predi(u, 1).id}.

– For node u and nonnegative integer i,
highi(u) = max{succi(u, 0).id, succi(u, 1).id}.

– rangei(u) = [lowi(u), highi(u)].

In a legal Skip+ graph, a node u has edges to all nodes v such that v.id ∈
rangei(u) and prei(u) = prei(v). These nodes v are referred to as the level-i
neighbors of u. A legal Skip+ graph is shown in Fig. 2.

2 Transitive Closure Framework

The Transitive Closure Framework (TCF) is shown in Program 1. TCF uses
a predicate called DETECT and a subroutine called REPAIR – these need to be
instantiated appropriately for specific families of overlay networks. To describe
TCF we first introduce some notation and definitions.

Let λ = (V, id, rs) be a labeled set of nodes. Let G = (V,E) be an arbitrary
directed graph on the set of nodes V . Recall that N(v) is the set of out-neighbors
of v, i.e., {w | (v, w) ∈ E}. For each node v let idv and rsv respectively be the
restrictions of id and rs to N(v). Let N2(v) denote the set of “at most 2-
hop out-neighbors” of v, i.e., {v} ∪ N(v) ∪ {w | (u,w) ∈ E and u ∈ N(v)}.
Let id2

v and rs2
v be the functions id and rs restricted to the set N2(v). Then

G2
v := ON(N2(v), idv, rsv) is the legal overlay network on N2(v). For node v,
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based on its local information, this is the “local” version of the overlay network
it wants to see. Let Ev be the set of all edges that node v is aware of, i.e.,
Ev = {(v, u)|u ∈ N(v)} ∪ {(u,w)|u ∈ N(v)}.
Definition 1. The DETECT predicate at a node v, evaluated over λ2, Ev, is true
exactly when Ev ⊆ E(G2

v); otherwise the DETECT predicate is false. A node v is
called a detector if the DETECT predicate evaluates to true at node v.

For an example of a DETECT predicate, consider the Linear graph again [6].
Here, for a given λ = (V, id, rs), Gλ is a path (v1, v2, . . . , vn) formed by nodes in
V such that v1.id < v2.id < · · · < vn.id. In this case, the DETECT predicate at a
node v is true iff the 2-neighborhood of v does not induce a path (with at most
5 nodes) that is sorted by ids.

Definition 2. Given λ = (V, id, rs), the REPAIR subroutine at node u sets the
out-neighborhood of u to Nλ(u) in one round.

Each node u has an associated boolean variable detectu that becomes true in one
of two ways: (i) when the predicate DETECT is true for u (Line 4) and (ii) when
detectv is true for some neighbor v ∈ N(u) in a previous round (Line 10). detectu
becoming true in the second manner causes the spreading of the “detect =
true” event through the network. As this event spreads through the network, all
nodes for which the boolean variable detect is true participate in the transitive
closure process (Line 9). In other words, each node with detect = true in its
neighborhood, expands its out-neighborhood to include all the out-neighbors of
its out-neighbors (Line 9). Soon enough, every node has detect = true and the
network becomes a clique. At this point (which is detected in Line 5), the ideal
neighborhood of each node can be built using the REPAIR() subroutine (Line 6).

Because algorithms derived from the TCF are initiated by detectors, the ef-
ficiency of these algorithms depends, to a significant extent, on the distribution
of detectors in the network. For overlay networks that are not locally checkable
(e.g., Skip graphs) the presence of even a single detector is not guaranteed when
the network is faulty – this is in fact the primary motivation of Jacob et al. [4] for
defining Skip+ graphs. To formalize the notion of the distribution of detectors,
we define the detector diameter D(n) of any family ON of overlay networks as
follows.

Fix a family of overlay networks ON . Let λ = (V, id, rs) be a labeled set of
nodes and let E be an arbitrary set of directed edges on V such that G = (V,E)
is weakly connected. Think of G as representing a possibly faulty overlay network
and let D ⊆ V be the set of detectors in G. The nodes in D are independent
of any specific algorithm – whether or not a node is a detector depends solely
upon the ideal network configuration (i.e., ON(λ)) and the current network
configuration (i.e., G). Note that D may be empty, either because G = ON(λ)
or because even if G �= ON(λ), no node is able to detect this. If we assume that
ON is a family of locally checkable overlay networks then G �= ON(λ) implies
that D �= ∅. The detector diameter of G with respect to λ, denoted Dλ(G), is the
maximum hop distance in G between any node in V and the closest detector. The
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Program 1. Transitive Closure Framework
Program for process u
Variables: neighborhood N(u), Boolean detectu

in each round do
1. Send N(u), idu, rsu to every neighbor v ∈ N(u)
2. Receive N(v), idv, and rsv from each v ∈ N(u)
3. Compute from this information: λ2 := (N2(v), id2

v, rs2
v) and

Ev := {(v, u)|u ∈ N(v)} ∪ {(u, w)|u ∈ N(v)}
4. detectu ← DETECT(λ2, Ev)∨ detectu

5. if detectu ∧ ∀v ∈ N(u) : (detectv ∧ ({N(v) ∪ v} = {N(u) ∪ u})) then
6. N(u) ← REPAIR(N(u) ∪ u)
7. detectu ← false
8. else if detectu ∨ (

∨
v∈N(u) detectv) then

9. N(u) ← N(u) ∪ {⋃v∈N(u) N(v)} //transitive closure

10. detectu ← true
11. fi
od

implication of this definition is that if the initial state of the system is network
G, then some node v in G is Dλ(G) hops from the closest detector and thus the
TCF algorithm initiated by detectors requires Dλ(G) rounds to reach v. The
detector diameter D(n) of a family ON of overlay networks is the maximum of
Dλ(G) over all λ = (V, id, rs) with |V | = n and all weakly connected, directed
networks G = (V,E). It is worth noting that if random strings are indeed used to
define the family ON of overlay networks, then λ, Dλ, and D(n) are all random
variables.

We are able to show the following upper bound on the self-stabilization time
of TCF.

Theorem 1. The Transitive Closure Framework presented in Program 1 is a
self-stabilizing algorithm for constructing any locally-checkable family of overlay
networks in at most D(n) + log(n) + 1 rounds.

The proof of this theorem is omitted from the paper due to space constraints
and will appear in the full version of the paper. The intuition behind the upper
bound is that it takes D(n) rounds (in the worst case) for all nodes to realize that
the network is faulty. Subsequently, all nodes are participating in the transitive
closure process. This process reduces the diameter of the network by a factor of
2 in each round and as a result the network becomes a clique in an additional
logn rounds.

2.1 A Lower Bound

This section is devoted to the proof of the following lower bound on the stabi-
lization time for constructing locally checkable overlay networks.
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Theorem 2. Let ON denote any family of locally checkable overlay networks
and Diam(ON(n)) denote the maximum diameter of any n-node member of ON .
Any silent self-stabilizing algorithm for constructing ON takes Ω(Diam(ON(n)))
time, in the worst case.

Proof. Let λ = (V, id, rs) with |V | = n. Let G = ON(λ) and suppose that d =
Diam(G). There exists a shortest path consisting of distinct nodes p0, p1, · · · , pd

in the network G. Let V ′ = V \ {p0} and id′ and rs′ be restrictions of id and
rs respectively to V ′. Let λ′ = (V ′, id′, rs′) and G′ = ON(λ′). There are two
cases concerning the distance between nodes p1 and pd in G′.

Case 1: distG′(p1, pd) > d
2 . If the distance between nodes p1 and pd remains

at least d
2 in G′, then we can insert node p0 as a neighbor to node pd. The

network is now faulty, as p0 must be a neighbor of p1 (and vice-versa) in the
ideal configuration. Furthermore, only pd and its immediate neighbors have
knowledge of node p0, and these nodes are at least d

2 away from node p1,
a node that needs to change its local state. Therefore, the self-stabilization
time from such a state is at least d

2 .
Case 2: distG′(p1, pd) < d

2 . Let nodes p1 and pd be closer than d
2 in G′. A node

within d
2 of pd must have then changed its neighborhood from G to G′, or

else the set of nodes within d
2 of pd will not have changed, and p1 remains

at least d
2 from pd. Notice, too, that all nodes within d

2 of pd in G are also
at least d

2 from p1 in G. Therefore, if node p0 is removed from G and the
network is not reconfigured, only node p1 and its immediate neighbors are
detectors, and a faulty node exists at least d

2 away from p1. Thus, removing
p0 from G results in a network from which stabilization takes at least d/2
rounds.

2.2 Bounding the Detector Diameter

Theorem 1 yields an O(D(n) + logn) upper bound on the self-stabilization
time of TCF, whereas Theorem 2 yields an Ω(Diam(ON(n))) lower bound on
the running time of any silent self-stabilizing algorithm. How close are these
bounds to each other? In the following we show that for a wide variety of
overlay networks D(n) and Diam(ON(n)) are asymptotically identical imply-
ing that the upper bound is only an O(log n) additive factor larger than the
lower bound. Another consequence of this is that for overlay networks for which
Diam(ON(n)) = Ω(log n), the upper and lower bounds are identical. We start
by identifying families of overlay networks for which D(n) = O(Diam(ON(n)))
by stating an “axiom” they need to satisfy.

Axiom 1. [Subgraph Monotonicity] Let λ = (V, id, rs) and G = (V,E)
be an arbitrary directed graph on V . For u ∈ V and nonnegative integer k,
let Bk(u) be the set of nodes in G that are at most k hops from u in G. Let
λk(u) = (Bk(u), idk(u), rsk(u)), where idk(u) and rsk(u) are the respective
restrictions of id and rs to Bk(u). If none of the nodes in Bk(u) are detectors
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in G, then G[Bk(u)] (i.e., the subgraph of G induced by Bk(u)) is identical to
ON(λk(u)).

Notice that many overlay networks satisfy subgraph monotonicity, including
Skip+ and Linear networks. In fact, subgraph monotonicity may be an in-
herent property of locally checkable networks, although more investigation is
required to support this possibility.

Theorem 3. Let λ = (V, id, rs) and G = (V,E) be an arbitrary directed graph
on V . Let ON be a family of overlay networks satisfying Subgraph Monotonicity.
Then Dλ(G) ≤ Diam(ON(n)) + 1.

This result is surprising in that Diam(n) may grow quite large compared to the
size of Diam(ON(λ)). However, increasing the diameter of a faulty configuration
simply adds more detectors, meaning worst-case convergence time does not grow
with Diam(n).

We can use Theorem 3 to find the stabilization bounds on certain overlay
networks. Consider, for instance, the Linear graph, which was discussed in
Sect. 2. Prior work in linearization has attempted to achieve a polylogarithmic
convergence time [6]. However, one can easily prove that the Linear graph
satisfies subgraph monotonicity. Therefore, Linear’s convergence time is linear,
and a polylogarithmic convergence time is impossible.

3 TCF for SKIP+ Graphs

To provide an example of how the Transitive Closure Framework can be used to
create a specific topology, we consider the Skip+ graph [4]. As mentioned ear-
lier, the Skip+ graph is a locally-checkable extension of the Skip graph. In the
following section, we describe the Skip+ graph, and show how our TCF instan-
tiates a self-stabilizing algorithm that creates a Skip+ graph within O(log n) of
optimal time.

3.1 The DETECT Predicate and REPAIR Subroutine

For Skip+ graphs, both DETECT and REPAIR follow trivially from the definition of
a Skip+ graph – that is, each node simply computes its range in the ideal Skip+

graph using its 2-neighborhood, and either creates links within this range (with
the REPAIR subroutine) or compares this range with the current 2-neighborhood
(with the DETECT predicate).

3.2 Analysis of the Transitive Closure Framework

To evaluate the performance of the TCF with regards to Skip+ graphs, we
provide the detector diameter D(n). The proof verifying this result will appear
in a future full version of the paper.
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Lemma 1. The detector diameter for the family of Skip+ graphs is D(n) =
L + 1, where L = |rs|.
The Transitive Closure Framework allows us to provide the following theorem,
which is easily derived using Theorem 1.

Theorem 4. The Transitive Closure Framework produces a self-stabilizing over-
lay network algorithm for Skip+ graphs that converges in L + log(n) rounds
(where L is the length of the random sequence).

First note that the Transitive Closure Framework can produce a legal Skip+

graph in O(log n) rounds (when L ∈ O(log n)). This is faster than the original
self-stabilizing Skip+ graph algorithm, which converged in O(log2 n) rounds.
Obviously, the Transitive Closure Framework manages to lower run-time com-
plexity by trading space – specifically, it causes a Θ(n) increase in node degree.
However, this is equivalent to the worst-case performance of some nodes when
using the self-stabilizing Skip+ graph construction in [4].

We can also use our above results to state that in fact our construction is
within O(log n) of optimal (when L ∈ O(log n), the TCF algorithm is optimal).

Corollary 1. By Theorems 2 and 4, the Transitive Closure Framework for
Skip+ graphs runs in O(log n) time, which is optimal.

4 The Local Repair Framework

The Transitive Closure Framework acts like a sledgehammer, initiating a full
network rebuild even if the configuration is only minorly perturbed. However,
there may be faulty configurations that are repairable efficiently, requiring action
by only a small number of nodes (compared to n with TCF), and requiring only
a limited amount of space (compared to Ω(n) for TCF).

Our local repair procedure uses a two-part approach: locally identifying those
configurations that are locally repairable, and then executing the actions to re-
pair these configurations. For a given λ, we identify two components for our
framework: a program RepairON

λ and a set of (potentially) locally-repairable
network configurations RepairableON

λ . Repairableλ is defined in terms of a local
predicate, so that locally repairable configurations may be detected as such.
When ON is understood from the context, we drop ON and simply write
Repairλ and Repairableλ.

Definition 3. Let CanRepairu be a predicate evaluated locally at each node u.
Let Repairableλ = {Gλ : Gλ is weakly connected and ∀v ∈ V : CanRepairv}.

Definition 4. Let Repairλ be a program executed by all nodes in V , and let
Repairk

λ[S] represent the network resulting from executing Repairλ program k
times, starting from configuration S. Repairλ satisfies the following properties:

– Convergence : ∀S ∈ Repairableλ : Repairk
λ[S] /∈ Repairableλ, for some

finite k
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– Connectivity : If S ∈ Repairableλ is weakly connected, then Repairλ[S] is
also weakly connected

Notice that Repairλ is guaranteed to converge to a configuration not in
Repairableλ. This configuration may be correct or faulty. The maximum number
of rounds required for Repairλ to transform any n node network configuration
in G ∈ Repairableλ to ON(λ) is called the repair time RT (n) of Repairλ, while
the maximum number of rounds required to transform any n node network con-
figuration G to a faulty configuration G′ /∈ Repairableλ is called the suppresion
time ST (n) of Repairλ, as it “suppresses” execution of the Transitive Closure
process.

Notice that when Repairableλ = ∅ (CanRepairu = false), our LRF re-
duces to the simple TCF, and RT (n) and ST (n) are 0 (as no local repairs are
recognized). Similarly, when Repairableλ = Gλ (CanRepairu = true), all net-
work configurations are stabilized using Repairλ (this is the approach taken for
prior self-stabilizing overlay networks). In our work, we focus on cases where
Repairableλ is non-empty and does not include all configurations.

4.1 The Local Repair Program

The Local Repair Framework (LRF) is shown in Program 2. Each node u eval-
uates CanRepairu to see if its state is in Repairableλ, and if so, initiates the
local repair program Repairλ. If the set is faulty and not in the Repairableλ set,
then the Transitive Closure process is initiated as before.

Program 2. Local Repair Framework for Process u
Variables: neighborhood N(u), predicate CanRepairu

in each round do
1. if CanRepairu then
2. RepairON

λ ;
3. else if N2(u) �= ON(N2(u)) then
4. Begin executing the TCF ;
5. fi
od

Proving the correctness of LRF follows easily from the definitions and pro-
gram given above. Due to space limitations, proofs of the following lemmas and
theorem will appear in a future full version.

Theorem 5. Program 2 is a self-stabilizing overlay network construction algo-
rithm that can recover from any configuration in at most ST (n)+D(n)+log(n)+1
rounds. Furthermore, a subset of configurations in Repairableλ will reach a cor-
rect network in RT (n) rounds.



Building Self-stabilizing Overlay Networks with the TCF 75

5 Example: JOIN in SKIP+ Graphs

As overlay network membership is expected to be dynamic, accommodating
nodes being added to the system is a commonly-addressed concern in overlay
network algorithms. As with prior research, we assume that a node begins the
Join process by connecting to a single node that is already a member of the
correct network. The goal of Join algorithms are to integrate the node into
the correct network within some efficient amount of time. In this section, we
instantiate our LRF by adding node Joins to Skip+ graphs.

We begin by defining the following predicates that are evaluated locally on
each node u, which we shall use to define Repairableλ, CanRepairu, and
RepairSkip+

λ for Skip+ graphs. For ease of notation, let pre(s1, s2) return the
prefix match between strings s1 and s2, and let |pre(s1, s2)| be the length of the
matching prefix.

1. AllConnectedu := |N(u)| > 1 =⇒ ∀v ∈ N(u) : ∃w �= v ∈ N(u)s.t.v ∈
N(w) ∧ w ∈ N(v)

2. LongerMatchExistsu := ∃w ∈ (N2(u) \N(u))s.t.∀v ∈ N(u) :
|pre(u.rs, w.rs)| > |pre(u.rs, v.rs)|

3. InitiatingJoinu := LongerMatchExistsu ∧AllConnectedu∧
[∀v ∈ N(u) : u /∈ N(v) ∧ON(N(v)) = N(v)∧
(� ∃w ∈ N(u)s.t.|pre(u.rs, v.rs)| = |pre(u.rs, w.rs)|)]

4. CreatingJoinLinksu := AllConnectedu ∧ ¬LongerMatchExistsu ∧ [∀v ∈
N(u) : u /∈ N(v)]

5. JoinCompletedu := [N(u) = ON(N2(u))] ∧ [∀v ∈ N(u) : u ∈ N(v) ∧
ON(N2(u)) ∈ N(v)]

6. JoinDetectedu := [∃v ∈ N(u) : (N2(u) \ {v}) = ON(N2(u) \ v) ∧ (v ∈
ON(N(u))) ∧ (∀x ∈ {N(u) \ON(N2(u))} : x ∈ N(v) ∧ v ∈ N(x))]

The next step in our framework is to define the CanRepairu, which will define
the set Repairableλ.

Definition 5. For Skip+ graphs, let CanRepairu := [(N2(x) = ON(N2(x)))∨
InitiatingJoinx ∨ CreatingJoinLinksx ∨ JoinCompletedx ∨ JoinDetectedx].

We define the Repairλ program for Joins in the Skip+ graph below. The high-
level idea of our joining algorithm is simple. A joining node u traverses the
network searching for the node with the longest prefix match with u’s random
sequence (InitiatingJoinu). Once this node is found, node u adds neighbors
for each level (CreatingJoinLinksu).Once all neighbors have been added, node
u deletes the edges that it used to find the longest prefix match, and makes
the remaining correct edges correct. Nodes in the network will then detect the
presence of a joined node, and make the appropriate changes (JoinDetectedu).

Theorem 6. The Local Repair Framework given in Program 2, instantiated with
the RepairSkip+

λ program from Program 3 and predicate CanRepairu from Defi-
nition 5, is a self-stabilizing algorithm for Skip+ graphs with convergence time
for any configuration at most 3 · L + log(n) + 3 rounds. Joins occur in at most
2 · L + 2 rounds, and require only L extra neighbors for the joining node.
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Program 3. RepairSkip+

λ program for node u
Variables: neighborhood N(u)
in each round do
1. if InitiatingJoinu then

// search for best random sequence match

2. N(u) := N(u) + (x : x ∈ {N2(u) \ N(u)}∧
(∀y �= u ∈ N(u) : |pre(u.rs, x.rs)| > |pre(u.rs, y.rs)|));

3. else if CreatingJoinLinksu then
4. if ON(N2(u)) ∈ N(u) then

// delete edges used to find longest matching random sequence

5. N(u) := N(u) \ {x ∈ N(u) : x /∈ ON(N2(u))};
6. Make all remaining edges in N(u) bidirectional;
7. else

// add links level-by-level

8. N(u) := N(u) ∪ {x : x ∈ ON(N2(u))∧
|pre(u.rs, x.rs)| = max(|pre(u.rs, t.rs|),∀t ∈ N2(u) \ N(u)};

9. fi
10. else if JoinDetectedu then
11. N(u) := ON(N2(u)); // incorporate the joined node

12. fi
od
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Abstract. We propose the notion of active stabilization for computing
systems. Unlike typical stabilizing programs (called passive stabilizing in
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cess by an adversary. We identify the relation between active and passive
stabilization in terms of their behavior and by comparing their cost of
verification. We propose a method for designing active stabilizing pro-
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1 Introduction

A self-stabilizing system [6] ensures that it will recover to a legitimate state even
if it starts executing from an arbitrary state. For this reason, self-stabilization
is often utilized to provide recovery from unexpected transient errors. A typical
self-stabilizing protocol in the literature considers the case where faults perturb
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ensure that the system will recover to a legitimate state with the assumption
that no additional faults will occur. Moreover, by the nature of self-stabilization,
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In this paper, we introduce the concept of active stabilization. To illustrate the
motivation for active stabilization, we begin with the problem of pursuer-evader
games [4]. The intuitive description of one instance of this problem in the context
of sensor networks is as follows: The system consists of a set of computing nodes
with sensors (called just sensors from in the subsequent discussion). Additionally,
the system contains one (or more) pursuers and one (or more) evaders. The
sensors’ task is to organize themselves in a structure that will facilitate the
capture of the evader. For example, one approach to achieve this is to have
the sensors form a tree among themselves that is rooted at the location of the
evader. The goal of the pursuer is to utilize this structure to capture the evader.

In such a system, there can be several faults. For example, the state of sensors
could be corrupted due to false positive and/or false negative readings. More-
over, communication errors, errors in initialization etc. may perturb the sensor
network to an arbitrary state. It is anticipated that such faults are rare and,
hence, we can utilize passive self-stabilization for dealing with such faults; i.e.,
we can assume that faults stop for a long enough time for the sensor network to
stabilize to a legitimate state. However, the network could also be perturbed by
the evader itself. In particular, if the goal of the sensor network is to have a tree
rooted at the evader, then the evader movement is tantamount to perturbation
of the network. Moreover, it may be unreasonable to assume that these faults
eventually stop or that they stop for a long enough time since the evader is
actively trying to perturb the system so that it does not stabilize.

We can view three different contributing factors in such a scenario: (1) the
system, (2) the faults, and (3) the adversary. In particular, the system actions are
responsible for ensuring recovery to legitimate states. The faults are events that
perturb the system randomly and rarely. It is anticipated that the faults could
perturb the system to an arbitrary state, thereby requiring self-stabilization.
However, because these events are rare, one can assume that they stop for a
sufficiently long enough time to allow the system to recover. The adversary
is actively attempting to prevent self-stabilization. However, unlike faults, the
adversary may not be able to perturb the system to an arbitrary state. For
example, in the above scenario, the evader would be able to move within the
vicinity of its original location; i.e., it would not be able to move to a random
location from its initial location. Also, unlike faults, the adversary actions may
never stop. In particular, it would be unreasonable to assume that the adversary
actions stop for a long enough time for the system to stabilize.

Although it is unreasonable to assume that adversary actions would stop for a
long enough time, it is necessary to assume some fairness for the system actions.
In particular, in the pursuer-evader example, it is anticipated that the evader
movement is limited by laws of physics and, hence, the system can take a certain
number (≥ 1) of steps between two steps of the evader.

The main contributions of the paper are as follows:

– We formally define different variations of active stabilization and relate it to
passive stabilization. In particular, we consider the cases where the adversary
(1) cannot lead the system to illegitimate states (called active stabilization),
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(2) can perturb the program outside the legitimate states (called fragile ac-
tive stabilization), and (3) can perturb the program outside the legitimate
states from where the program can recover before the adversary takes an-
other step (called contained active stabilization)

– We study the relation between different types of active stabilization.
– We compare the cost of automated verification of active and passive stabi-

lization.
– The problem in designing an active stabilizing program lies in the fact that

an adversary can disrupt the progress made by the program towards recov-
ering to the invariant. Thus, we propose an approach for designing active
stabilizing programs based on the convergence stair [10].

– Finally, we argue that active stabilization is a powerful and expressive
concept by presenting comparison to fault-contained stabilization [8] and
Byzantine self-stabilization [14]. In particular, we show that if a program is
contained active stabilizing, then it is fault-contained stabilizing. We also
show that a special type of active stabilization in the presence of Byzantine
processes is Byzantine self-stabilization.

Organization of the paper. In Section 2, we introduce the notion of ac-
tive stabilization. We compare different types of passive and active stabilization
in Section 3. The complexity of automated formal methods for active stabiliza-
tion is analyzed in Section 4. Section 5 discusses design methodology for active
stabilizing programs. We compare active stabilization with fault-contained stabi-
lization and Byzantine self-stabilization in Section 6. Finally, we discuss related
work in Section 7 and conclude in Section 8.

2 The Concept of Active Stabilization

A traditional modeling of programs in the literature on self-stabilization includes
a finite set of variables with (finite or infinite) domain. Additionally, it includes
guarded commands [7] that update those program variables. Since these internals
of the program are not relevant in our definition of active stabilization, in our
work, we define program p in terms of its state space Sp and its transitions
δp ⊆ Sp × Sp. Intuitively, the state space can be obtained by assigning each
variable in p a value from its domain.

Definition 1 (Program). A program p is of the form 〈Sp, δp〉 where Sp is the
state space of program p and δp ⊆ Sp × Sp.

Assumption 1 For simplicity of definitions, we assume that program p has at
least one outgoing transition from every state in Sp. If such a transition does
not exist for some state, say s, then we consider the program where transition
(s, s) is added. While this assumption simplifies subsequent definitions since we
do not need to consider terminating behavior of a program explicitly, it is not
restrictive in any way.

Definition 2 (State Predicate). A state predicate of p is any subset of Sp.
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Definition 3 (Closure). A state predicate S of p = 〈Sp, δp〉 is closed in p iff
∀s0, s1 ∈ Sp :: (s0 ∈ S ∧ (s0, s1) ∈ δp) ⇒ (s1 ∈ S).

Definition 4 (Faults). We define faults for program p = 〈Sp, δp〉 to be Sp×Sp;
i.e., the faults can perturb the program to any arbitrary state.

The adversary for program, say adv, is defined in terms of its transitions, say
ap ⊆ Sp ×Sp. Note that, based on the discussion in the introduction, this allows
us to model the limited set of actions the adversary may be allowed to execute.

Definition 5 (Adversary). We define an adversary for program p = 〈Sp, δp〉
to be a subset of Sp × Sp.

Next, we define a computation of the program, say p, in the presence of adversary,
say adv.

Definition 6 (〈p, adv, k〉-computation). Let p be a program with state space
Sp and transitions δp. Let adv be an adversary for program p. And, let k be
an integer greater than 1. We say that a sequence 〈s0, s1, s2, ...〉 is a 〈p, adv, k〉-
computation iff

– ∀j ≥ 0 :: sj ∈ Sp, and
– ∀j ≥ 0 :: (sj , sj+1) ∈ δp ∪ adv, and
– ∀j ≥ 0 :: ((sj , sj+1) �∈ δp) ⇒ (∀l | j < l < j + k :: (sl, sl+1) ∈ δp)

Observe that a 〈p, adv, k〉-computation involves only the transitions of program
p or its adversary adv. Moreover, the adversary is required to execute with fair-
ness to the program; i.e., the program can take at least k− 1 steps between two
adversary steps. This ensures that the adversary cannot simply block the pro-
gram from executing, thereby make it impossible to provide recovery. However,
the adversary is not required to execute and the program can execute forever.

Remark 1 (Fairness among program transitions 1). Since the focus of this pa-
per is on the defining active stabilization based on the interaction between the
program and the adversary, we omit the issue of fairness among program transi-
tions themselves. Specifically, in some instances, we can consider the program to
consist of multiple processes and require that each process executes with some
fairness. In this instance, the above definition can be modified to add an ad-
ditional constraint that identifies fairness conditions. For reasons of space, this
issue is outside the scope of this paper.

Remark 2 (Round-based computations). The definition of 〈p, adv, k〉-computation
is based on the number of steps that a program takes between two adversary
steps. In scenarios where a program consists of multiple processes, a round [15]
based notion is sometimes used. Intuitively, in one round, every process is given
at least one chance to execute. (However, the process may not actually be able
to execute a transition if it was given that chance when none of its transitions
could be executed.) The definition of active stabilization can also be extended
to handle such a case by using rounds instead of steps. This issue is also outside
the scope of this paper.
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Definition 7 (Active stabilization). Let p be a program with state space Sp

and transitions δp. Let adv be an adversary for program p. And, let k be an
integer greater than 1. We say that program p is strong k-active stabilizing with
adversary adv for invariant S iff

– S is closed in p
– S is closed in adv
– For any sequence σ (=〈s0, s1, s2, ...〉 ) if σ is a 〈p, adv, k〉-computation then

there exists l such that sl ∈ S.

The definition of active stabilization requires that the invariant S be closed
in the execution by the adversary; i.e., when the invariant S is reached, the
adversary does not perturb the program outside S. In other words, only a fault
can do so. This requirement can be difficult to satisfy in many programs. For
such programs, we introduce the notion of fragile active stabilization where the
adversary can perturb the program outside the invariant.

Definition 8 (Fragile Active Stabilization). Let p be a program with state
space Sp and transitions δp. Let adv be an adversary for program p. And, let k
be an integer greater than 1. We say that program p is fragile k-active stabilizing
with adversary adv for invariant S iff

– S is closed in p
– For any sequence σ (=〈s0, s1, s2, ...〉 ) if σ is a 〈p, adv, k〉-computation then

there exists l such that sl ∈ S.

Observe that if p is fragile k-active stabilizing with adversary adv for invariant S,
then starting from an arbitrary state, p will reach a state in S even if adversary
adv tries to disrupt it. Moreover, after the program reaches S, the adversary
can still perturb it outside S. However, in subsequent computation, p is still
guaranteed to reach a state in S again. Thus, a fragile active stabilizing program
will reach the invariant infinitely often.

One issue with fragile active stabilization is that after the adversary perturbs
the program from a state in S to a state outside S, there is no bound on how long
it will take to return to S. Our notion of contained active stabilizing programs
addresses this issue by requiring the program to recover to S quickly; i.e., before
the adversary can perturb it again.

Definition 9 (Contained Active Stabilization). Let p be a program with
state space Sp and transitions δp. Let adv be an adversary for program p. And,
let k be an integer greater than 1. We say that program p is contained k-active
stabilizing with adversary adv for invariant S iff

– S is closed in p
– For any sequence σ (=〈s0, s1, s2, ...〉 ) if σ is a 〈p, adv, k〉-computation then

there exists l such that sl ∈ S.
– For any finite sequence α (=〈s0, s1, s2, ...sk〉 ) if s0 ∈ S, (s0, s1) ∈ adv and

(∀j : 0 < j < k : (sj , sj+1) ∈ δp then sk ∈ S.
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Finally, we also define the traditional notion of stabilization. Towards this end,
we define pure-computations of p; i.e., computations where only p is allowed to
execute. Then, we define the standard definition of stabilization, which in this
paper we will call as passive stabilization.

Definition 10 (pure-computation). Let p be a program with state space Sp

and transitions δp. We say that a sequence 〈s0, s1, s2, ...〉 is a pure-computation
iff

– ∀j ≥ 0 :: (sj , sj+1) ∈ δp

Remark 3 (Fairness among program transitions 2). Similar to Remark 1, the
above definition can include fairness requirements.

Definition 11 (Passive stabilization). Let p be a program with state space Sp

and transitions δp. We say that program p is (passive) stabilizing for invariant
S iff

– S is closed in p
– For any sequence σ (=〈s0, s1, s2, ...〉 ) if σ is a pure-computation then there

exists l such that sl ∈ S.

3 Relation between Different Types of Active and Passive
Stabilization

In this section, we study the conceptual relation between different types of stabi-
lization presented in Section 2. In Subsection 3.1, we compare active stabilization
with passive stabilization. Then, in Subsection 3.2, we compare different types
of active stabilization.

3.1 Relation between Active and Passive Stabilization

In this section, we evaluate the relation between active stabilization and passive
stabilization. In particular, we show that any active stabilizing program is also
passive stabilizing. Moreover, we present necessary conditions under which pas-
sive stabilizing programs can be transformed into fragile and contained active
stabilizing programs.

Theorem 1. If there exists k and adv such that program p is k-active stabilizing
with adversary adv for invariant S, then p is passive stabilizing for invariant S.

Proof. Since p is k-active stabilizing with adversary adv for invariant S, ev-
ery 〈p, adv, k〉-computation reaches a state in S. And, by definition, a pure-
computation of p is also a 〈p, adv, k〉-computation. Thus, every pure-computation
of p reaches a state in S (recall that a program can execute adversary transitions
as well). Furthermore, by definition of active stabilization, S is closed in p. It
follows that p is passive stabilizing for invariant S. ��
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Theorem 2. If program p = 〈Sp, δp〉 is passive stabilizing for invariant S and
Sp is finite, then there exists k such that for any adversary adv, p is fragile
k-active stabilizing with adversary adv for invariant S.

Proof. First, by definition of passive stabilization, S is closed in p. Hence, to
prove this theorem, we only need to prove the second constraint in the def-
inition of fragile active stabilization. To this end, we let k = |Sp|. Consider
any 〈p, adv, |Sp|〉-computation. This computation includes a subsequence of size
|Sp| − 1, say α that only includes transitions of p. If α includes any state, say
s such that s �∈ S and s occurs twice in α then there is a pure-computation of
p that starts from s and never reaches S. Thus, α does not include any state
outside S more than once. Hence, by the pigeon hole principle, α contains at
least one state in S. ��
Note that the above theorem does not hold if the state space of p is infinite.
We can illustrate this using a the following simple example. Let the state space
of p be the set Sp = Z≥0 of non-negative integers and the transitions of p be
δp = {(x + 1, x) | x ∈ Z≥0 ∪ {(0, 0)}. Also, let the invariant of p be S = {0}.
Clearly, p is passive stabilizing for invariant S. However, for adversary N ×N ,
the above theorem is not valid.

Also, note that the above theorem will be incorrect if we remove ‘fragile’ from
the statement of the theorem. This is due to the fact that S may not be closed
in the transitions of an arbitrary adversary.

Corollary 1. If program p = 〈Sp, δp〉 is passive stabilizing for invariant S and
Sp is finite, then there exists k such that for any adversary adv, p is contained
k-active stabilizing with adversary adv for invariant S.

Finally, if a program is active stabilizing with some adversary, then the program
is also active stabilizing with a slower adversary. Thus, we have the following
theorem.

Theorem 3. If program p is k-active stabilizing with adversary adv for invari-
ant S and l ≥ k, then p is l-active stabilizing with adversary adv for invariant
S.

3.2 Relation between Active, Fragile Active, and Contained Active
Stabilization

Since ensuring the closure of invariant in the transitions of an adversary can be
unrealistic, we introduced the notion of fragile and contained active stabilization.
In this section, we show that the definition of contained active stabilization and
active stabilization are exchangeable; i.e., given a program p that is contained
k-active stabilizing, we can find a corresponding program p′ that is k-active
stabilizing and vice versa. Thus, these results show that instead of showing a
program to be active stabilizing, one can show that the program is contained
active stabilizing.
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Definition 12 (Rj
(p,adv)(S)). Let S be a state predicate of program p and adv

be an adversary for program p. We define Rj
(p,adv)(S), where j ≥ 0, as follows:

– if j = 0, then
Rj

(p,adv)(S) = S ∪ {s1 | ∃s0 ∈ S : (s0, s1) ∈ adv}.

– if j > 0, then

Rj
(p,adv)(S) = {s1 | ∃s0 ∈ Rj−1

(p,adv)(S) : (s0, s1) ∈ δp}.

Definition 13. Let p be a program with state space Sp and transitions δp. We
define countp to be the program where:

– State space Scountp = Sp × Z≥0, and
– Transitions δcountp = {(〈s0, j〉, 〈s1, j + 1〉) | (s0, s1) ∈ δp}.

Definition 14. Let p be a program with state space Sp and transitions δp. Let
adv be an adversary for program p. We define countadvk

to be the adversary for
countp where:

– Transitions = {(〈s0, j〉, 〈s1, 0〉) | ((s0, s1) ∈ adv) ∧ (j ≥ k)}.

Theorem 4. If program p is contained k-active stabilizing with adversary adv
for invariant S, then countp is k-active stabilizing with adversary countadvk

for
invariant S′ where:

S′ =
⋃∞

l=0{〈s, l〉 | s ∈ Rl
(p,adv)(S)}

Proof. To prove the above theorem, we need to prove the three conditions in the
definition of active stabilization:

1. S′ is closed in countp.
Towards this end, we need to show that if countp executes in any state in S′,
then the resulting state would also be in S′. Let 〈s0, l〉 be a state in S′. Hence,
s0 is included in Rl

(p,adv)(S). By Definition 13, transition of countp is of the
form (〈s0, l〉, 〈s1, l+ 1〉). Furthermore, if (〈s0, l〉, 〈s1, l+ 1〉) is a transition of
countp, then (s0, s1) is a transition of p as well. Hence, by the Definition 12,
s1 is in the set Rl+1

(p,adv)(S). Finally, from Definition of S′, 〈s1, l+ 1〉 is in the
set S′. Thus, S′ is closed in countp.

2. S′ is closed in countadvk
.

Let 〈s, l〉 be a state in S′. If countadvk
can execute in state 〈s, l〉, then l ≥ k.

Hence, by Definition 12, there exists a sequence, 〈s0, s1, ..., sl〉 such that
(1) the first state in the sequence is in S (i.e., s0 ∈ S), (2) the first tran-
sition in the sequence is executed by the adversary (i.e., (s0, s1) ∈ adv),
and (3) subsequent transitions are executed by program (i.e., ∀x|0 < x <
l :: (sx, sx+1) ∈ δp). Furthermore, since l ≥ k and the fact that p is contained
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k-active stabilizing with adv for S, if countadvk
can execute in 〈s, l〉, then

s ∈ S. Moreover, by Definitions 12 and 14, the resulting state is also in S′.
3. For any sequence σ (=〈s0, s1, s2, ...〉 ), if σ is a 〈p, adv, k〉-computation, then

there exists l such that sl ∈ S. This follows trivially from the definition of
contained k-active stabilization. ��

Finally, the following theorem trivially holds from the definition of active and
contained active stabilization.

Theorem 5. If p is k-active stabilizing with adversary adv for invariant S
Then p is contained k-active stabilizing with adversary adv for invariant S.

4 Comparing the Cost of Automated Verification for
Active and Passive Stabilization

The problem of verifying stabilizing programs involves two parts: The first part
relates to proving that in legitimate states (i.e., invariant), the program satisfies
the specification at hand. And, the other part relates to proving that starting
from an arbitrary state, the program recovers to legitimate states. Since the
goal of this section is to compare the cost of verification for passive stabilization
and active stabilization, we only focus on the second part. In other words, we
compare the complexity of verification of convergence for passive and for active
stabilization. We introduce instance of verification for passive and active stabi-
lization. Then, we present the corresponding complexity results.

Instance. A program p = 〈Sp, δp〉 and a state predicate S of p.
Verifying passive stabilization decision problem (VPS). Is p passive
stabilizing for invariant S?

Theorem 6. VPS can be solved in polynomial-time in |Sp|.

Proof. This is a well-known result that can be proved with the following simple
algorithm:

1. Closure property can be trivially verified by considering each transition in
δp.

2. For convergence, if δp included any states outside S where there are no
outgoing transitions, the answer to the decision problem is false. Assuming
that this is not the case, we begin with program q which has the state space
Sq = Sp − S and transitions δq = δp − {(s0, s1) | s0 ∈ S ∨ s1 ∈ S}. Since
we have removed some transitions, q may contain a deadlock state. If so, we
remove that state from Sq and the corresponding transitions that enter and
exit that state. Upon termination, if Sq is empty, p is passive stabilizing for
invariant S. If not, there is a cyclic-computation that does not include any
state in S. In other words, p is not passive stabilizing for invariant S. ��
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Next, we present the results for verification of active stabilization.

Instance. A program p = 〈Sp, δp〉, an adversary adv for p, a state predicate S
of p, and an integer k ≥ 2.
Verifying k-Active Stabilization Decision Problem (VkAS). Is p k-
active stabilizing with adversary adv for invariant S?

Theorem 7. VkAS can be solved in polynomial-time in |Sp|.
Proof. First, as stated earlier, closure proofs can be performed in polynomial
time in |Sp|. The remaining proof is predicated under the assumption that the
closure properties are satisfied. In particular, to prove convergence, we map
the problem of verifying active stabilization to the problem of verifying passive
stabilization. Specifically, we construct program p1 as follows.

p1 = {(s0, s1)| ∃l : l ≥ k − 1 : reach(s0, s1, l) ∨
(∃s2 :: reach(s0, s2, l) ∧ (s2, s1) ∈ adv)}, where

reach(s0, s1, l) denotes that s1 can be reached from s0 by execution of exactly l
transitions of p.

Intuitively, program p1 executes k − 1 or more transitions of program p and
then (optionally) one transition of the adversary. Next, we show that p is k-
active stabilizing with adversary adv for invariant S iff p1 is passive stabilizing
for invariant S

1. ⇒ Let σ be a pure-computation of p1. We construct a corresponding 〈p, adv, k〉-
computation as follows: For each transition (s0, s1) in σ, we replace it by a
sequence (that begins in s0 and ends in s1) of k − 1 or more transitions of
p followed by an optional transition of adv. By construction of p1, this is
always feasible. Let the resulting sequence be σ1. Since σ1 is a 〈p, adv, k〉-
computation, it contains a suffix where all states are in S. Hence, σ also
contains a state in S.

2. ⇐ Let σ be a 〈p, adv, k〉-computation of p. We construct a corresponding
pure-computation of p as follows: If σ contains a transition by the adversary
in the first k transitions, we consider the suffix that begins in the state after
the transition of the adversary. Hence, without loss of generality we can
assume that the first k − 1 transitions in σ are transitions of p. Now, we
obtain a pure-computation of p1 as follows: The initial state in σ1 is the
same as that in σ. Let this state be s0. Now, to obtain the next state in
σ1, we identify the first occurrence of the transition of the adversary in σ.
If such a transition, say (sa, sb), exists then the successor state is sb. If such
a transition does not exist then the successor state is the one obtained by
executing k−1 transitions of p. It follows that σ1 is a pure-computation of p
and, hence, includes a suffix that is entirely within S. Hence, σ also contains
a state in S. ��
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5 Methodology for Designing Active Stabilizing
Programs

In this section, we identify an approach for designing a program to be self-
stabilizing. This approach is based on the convergence stair [10] approach for
designing self-stabilizing programs. In particular, the problem in designing an
active stabilizing program lies in the fact that an adversary can disrupt the
progress made by the program towards recovering to the invariant. However, if
we can prove that the program manages these disruptions in a suitable fashion, it
can be proved that the program is active stabilizing to the adversary. Specifically,
we prove the following theorem.

Theorem 8. Let p = 〈Sp, δp〉 be a program, adv be an adversary for p, and
S0, S1, . . . , Sn be a sequence of state predicates of p. If

– S0 = SP

– ∀j : 0 ≤ j < n : (Sj+1 ⇒ Sj),
– ∀j : 0 ≤ j ≤ n : Sj is closed in p,
– ∀j : 0 ≤ j ≤ n : Sj is closed in adv,
– For any finite sequence α = 〈s1, s2, ..., sk〉, if s1 ∈ Sj and ∀l : 0 < l < k :

(sl, sl+1) ∈ δp then sk ∈ Sj+1.

Then

– p is k-active stabilizing with adversary adv for Sn.

Proof. The closure requirements for active stabilization are trivially satisfied. Re-
garding the last requirement in Definition 7, consider any 〈p, adv, k〉-computation,
say σ. Based on the last constraint in this theorem and definition of 〈p, adv, k〉-
computation, there exists a state, say sa in σ such that sa ∈ S1. Since S1 is
closed in p and adv, all states in the suffix of σ that starts from sa are in S1.
Again, by the same argument, σ contains a state, say sb, in S2, and so on. Thus,
σ contains a state in Sn. ��
The above theorem suggests the following approach to design active stabilizing
programs. First, we identify a sequence of stair predicates S1, S2, . . . , Sn−1 such
that each of these predicates is closed in adv. Then, we ensure that the recovery
from any of these predicates to the next state predicate is achieved before the
adversary can perturb the program. Observe that in this fashion, the adversary
can in fact execute several times before the program reaches the invariant. How-
ever, intuitively, the disruption by the adversary is less than the progress made
by the program.

Moreover, if we focus on last condition in Theorem 8, it only focuses on pure-
computations where the adversary is not allowed to execute. Thus, design of
each stair is equivalent to the design of passive stabilization where the conver-
gence steps are bounded. Thus, each stair of the active stabilizing program can
potentially be constructed out of a collection of passive stabilizing programs.
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6 Relation between Active Stabilization and Other
Stabilization Techniques

In this section, we compare active stabilization with other stabilization tech-
niques, namely fault-contained stabilization and Byzantine self-stabilization in
Subsections 6.1 and 6.2, respectively.

6.1 Fault-Contained Stabilization

The problem of fault-containment stabilization has been studied (e.g., [8, 9, 16])
in the literature to deal with two problems with stabilizing programs. The first
problem is that stabilizing programs do not typically differentiate between an
arbitrary global state and a state that is “almost legitimate” [8]. Hence, the goal
of these algorithms is that if the state is “almost legitimate” then it reaches a
legitimate state within a small number of steps. However, the recovery from an
arbitrary state may take longer. The second problem is that after the program
reaches a legitimate state, there is a high probability that transient faults will
only perturb it to a state that is “almost legitimate” as opposed to an arbitrary
state.

With this intuition, in [8, 9, 16], the authors introduce a notion of limited fault
class, lf p, for program p. lf p is a subset of Sp × Sp. Moreover, if the program is
perturbed by lf p in a legitimate state, a quick recovery is provided if no additional
faults occur. Moreover, if multiple faults from lf p occur or if faults outside lf p

occur then stabilization is still provided. Thus, fault-contained stabilization can
be defined as follows:

Definition 15 (Fault-contained Stabilization). Let p = 〈Sp, δp〉, S be a
state predicate of p, and lf p be a subset of Sp ×Sp. And, let w ≥ 1 be an integer.
p is fault-contained stabilizing for lf p with w steps for invariant S iff

– p is passive stabilizing for invariant S, and
– For every sequence σ = 〈s0, s1, . . .〉, if s0 ∈ S, (s0, s1) ∈ lf p and ∀j > 1 :

(sj , sj+1) ∈ δp then sw ∈ S.

Now, we can show that if p is contained k-active stabilizing then it provides fault-
contained stabilization. Note that the converse of this theorem is not correct since
a fault-contained stabilizing program may not recover to legitimate states if it
is continuously perturbed by faults.

Theorem 9. If p is contained k-active stabilizing with adversary adv for S, then
p is fault-contained stabilizing for adv with k steps for S.

Proof. Follows trivially from Definitions 9 and 15. ��
Corollary 2. If p is k-active stabilizing with adversary adv for S, then p is
fault-contained stabilizing for adv with 1 steps for S.
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6.2 Byzantine Self-Stabilization

While all the formalization in Byzantine self-stabilization work cannot be pre-
sented here, we give a brief approach considered in these papers and its relation
to active stabilization. In [14], the program is viewed in terms of a set of, say
n, processes. Thus, the state of the program is of the form 〈v1, v2, ..., vn〉, where
vj denotes the state of process j. (If channels are used corresponding entry is
added for channel contents as well.) Thus, the state space of the program, (Sp

in Definition 1) is obtained by considering all possible tuples of 〈v1, v2, ..., vn〉,
where the domain of vj depends on the application at hand.

Moreover, some processes can be Byzantine. If process j is Byzantine, it can
change the value of vj arbitrarily. Thus, transitions of p (cf. Definition 1), δp is
of the form: δp = δpg ∪ δpb

, where δpb
denotes the transitions that correspond to

the transitions executed by Byzantine process(es) and δpg denotes the transitions
executed by non-Byzantine processes. Furthermore, δpg and δpb

are disjoint. It is
also assumed that Byzantine processes do not prevent non-Byzantine processes
from executing. However, Byzantine processes can disrupt the recovery process.
Thus, the definition of stabilization in the presence of Byzantine faults is adapted
as follows.

Definition 16. A program p = 〈Sp, δp〉, where δp = δpg ∪ δpb
, is said to be

stabilizing in the presence of Byzantine faults for invariant S iff

– S is closed in p, and
– for any state sequence, say σ, of the form 〈s0, s1, s2, ...〉, if

• ∀j ≥ 0 : (sj , sj+1) ∈ δp

• Number of transitions of δpg is σ is infinite.
– then

• there exists l such that sl ∈ S.

Theorem 10. If program p = 〈Sp, δp〉, where δp = δpg ∪ δpb
is stabilizing in the

presence of Byzantine faults for invariant S, then 〈Sp, δpg 〉 is 2-active stabilizing
with adversary δpb

for S.

Proof. Closure proofs are trivially satisfied from Definition 16. In a 〈〈Sp, δpg 〉, δpb
,

2〉-computation, there is at least one transition of δpg between any two transitions
of δpb

. Hence, the number of occurrences of transitions in δpg is infinite. Hence,
in any 〈〈Sp, δpg 〉, δpb

, 2〉-computation, a state in S is reached. ��
To prove the converse of the above theorem, we recall the standard definition of
transitive closure.

Definition 17 (Transitive Closure). A set of transitions δpb
is transitive

closed iff ∀a, b, c :: ((a, b) ∈ δpb
∧ (b, c) ∈ δpb

) ⇒ ((a, c) ∈ δpb
)

Theorem 11. Let p be a program whose transitions are partitioned in terms of
δpg and δpb

, where δpb
are the transitions executed by Byzantine processes. If

〈Sp, δpg 〉 is 2-active stabilizing with adversary δpb
for S, and δpb

is transitive-
closed, then p is stabilizing in the presence of Byzantine faults for S.
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Proof. The closure proof is trivially satisfied. Consider any computation, say
σ, of p where transitions of δpg execute infinitely often. Consider a compacted
version of σ, say cσ that is obtained as follows: If σ contains two consecutive tran-
sitions, say (sj , sj+1) and (sj+1, sj+2), in δpb

then we replace them by (sj , sj+2).
And, repeat this process until there are no two successive transitions in δpb

. Since
δpb

is transitive closed, cσ is a 〈〈Sp, δpg 〉, δpb
, 2〉-computation. Hence, it includes

a state in S. Thus, σ includes a state in S. ��

7 Related Work

There are several variations of stabilization (denoted by passive stabilization in
this paper) that are considered in the literature. These include fault-containment
stabilization, byzantine stabilization, FTSS, multitolerant stabilization, weak
stabilization, probabilistic stabilization, and nonmasking fault-tolerance.

Fault-containment stabilization refers to stabilizing program that ensure that
if only one (respectively, small number of) fault occurs then quick recovery is
provided to the invariant. Examples of such programs include [8, 16]. Byzan-
tine stabilization refers to stabilizing programs that tolerate the scenario where
a subset of processes is Byzantine. Examples of such programs include [13, 14].
FTSS refers to stabilizing programs that tolerate permanent crash faults. Exam-
ples of such programs include [3]. Multitolerant stabilizing systems ensure that
in addition to stabilization property, the program ensures that the safety prop-
erty is never violated when only a limited class of faults occur. Examples of such
systems include [12]. As discussed in the last two sections, fault-containment sta-
bilization and Byzantine stabilization are closely related to Active stabilization.

Weak stabilization [5, 11], as the name suggests, is a weaker version of stabi-
lization. In weak stabilizing programs, from every state, there is a path to reach
a state in the invariant. However, the program may contain loops that are out-
side legitimate states. In [11], it is shown that under certain fairness condition,
a weak stabilizing program is also a stabilizing program. In probabilistic stabi-
lization, the program recovers to legitimate states with high probability. Finally,
nonmasking fault-tolerance [1, 2] refers to programs where the program recovers
from states reached in the presence of a limited class of faults. However, this
limited set of states may not cover the set of all states.

8 Conclusion

In this paper, we proposed the concept of active stabilization, where program’s
state can be perturbed by faults to any arbitrary state and recovery is accom-
plished in the presence of constant perturbation by an adversary. We introduced
different types of active stabilizing programs depending upon the behavior of the
adversary and the ability of program to recover. We evaluated the cost of verifi-
cation for passive and active stabilization. We also argued that active stabiliza-
tion is a highly expressive concept by presenting comparison to fault-contained
stabilization and Byzantine self-stabilization.
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For future work, we are considering several research directions. We are cur-
rently working on developing efficient techniques for verification of active stabi-
lization as well as results about composition of active stabilizing programs.
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Abstract. In this paper, we consider the problem of formation of a se-
ries of geometric patterns by a network of oblivious mobile robots that
communicate only through vision. So far, the problem has been studied
in models where robots are either assumed to have distinct identifiers or
to be completely anonymous. To generalize these results and to better
understand how anonymity affects the computational power of robots,
we study the problem in a new model in which n robots may share up
to 1 ≤ h ≤ n different identifiers. We present necessary and sufficient
conditions, relating symmetricity and homonymy, that makes the prob-
lem solvable. We also show that in the case where h = n, making the
identifiers of robots invisible does not limit their computational power.
This contradicts a recent result of Das et al. To present our algorithms,
we use a function that computes the Weber point for many regular and
symmetric configurations. This function is interesting in its own right,
since the problem of finding Weber points has been solved up to now for
only few other patterns.

1 Introduction

Robot networks [9] is an area of distributed computing in which the object
of the study is the positional (or spacial) communication paradigm [1]: robots
are devoid of any means of direct communication; instead, they communicate
indirectly through their movements and the observation of the current positions
of their peers. In most of the studies, robots are oblivious, i.e. without any
memory about their past observations, computations and movements. Hence,
as with communication, memory is indirect in some sense, it is collective and
spacial. Since any algorithm must use a kind of memory, resolving problems in the
context of robot networks is the art of making them remember without memory
[7]. But this indirect memory has its limits, and one of the main goals of research
in this field is to precisely characterize the limiting power of obliviousness.

The problem of formation of series of patterns (or patterns formation) is
perhaps the best abstraction that captures the need of robots to have a form of
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memory even when the model does not provide it directly. In this problem, intro-
duced by Das et al. in [5], robots are required to form periodically a sequence of
geometric patterns S = 〈P1, P2, . . . , Pm〉. At each instant, robots should be able
to know, just by observing the environment, which patterns they are about to
form. In [5], the authors study the problem in both anonymous and eponymous
systems. In particular, they show that the only formable series when robots are
anonymous are those in which all the patterns of the series have the same sym-
metricity. In contrast, if robots are endowed with identifiers, nearly all possible
series are formable.

The gap between the two worlds, one in which almost nothing is possible and
another one where everything is possible, illustrates how much anonymity can
be a limiting factor when we are interested to computability. This brings us to
ask the following question: is there a possible model where robots are neither
eponymous nor completely anonymous ? and if so, what are the possible series
we are able to form ? In a recent paper [6], Delporte et al. use a model of “partial
anonymity” which they call homonymy and they apply it to study Byzantine
agreement. In this model, the number of distinct identifiers in the system is given
by a parameter h which may take any value between 1 and n. In the current
paper, we inject this notion of homonymy to the Suzuki-Yamashita model [9,5]
which creates a new model that we call robot networks with homonyms.

Studying the problem of patterns formation in this context allows us to get
a better insight on how the combined effect of anonymity and obliviousness
affects the computational power of robots. We consider series of patterns where
all robots are located in distinct positions and we assume that identifiers are
invisible. Our main result is to prove that for a series S = 〈P1, P2, . . . , Pt〉 to
be formable, it is necessary and sufficient that the number of labels h to be
strictly greater than n

sncd(sym(Pi),sym(Pi+1))
where Pi, Pi+1 are any two successive

patterns of S, sym(P ) denotes the symmetricity of P and sncd(x, y) is equal to
the smallest divisor of x that does not divide y if any, n + 1 otherwise.

To present our algorithms, we use a function that computes the Weber point
[10] for many regular configurations, i.e. all those in which there is a sort of
rotational symmetry around a point. Given a point set P , the Weber point c
minimizes

∑
r∈P distance(x, r) over all points x in the plane. Our result may be

interesting in its own right, since the problem of finding Weber points has been
solved up to now for only few other patterns (e.g. regular polygon [2], a line [4]).

Finally, we consider the case where (n = h = 3) and where multiplicity points
(in which many robots are located) are allowed. In this setting, we prove that
robots are able to form any series of patterns, contradicting a result of [5]. This
has an interesting consequence: it means that making the identifiers of robots
invisible does not limit their computational power in the considered model, i.e.
they can form the same series of patterns as robots with visible identifiers. Due
to space limitations, the description of this last result is provided in the technical
report [3].

Roadmap. The paper is made up of six sections. In Section 2 we describe the
computation model we consider in this paper. Section 3 defines the important
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notions of symmetricity, regularity and their relations with Weber points. In
Section 4 our algorithms for the detection of Weber points are presented. Then,
we prove in Sections 5 and 6 the necessary and sufficient conditions that makes
series of geometric patterns formable in our model. Finally, we conclude the
paper in Section 7. Many proofs are omitted to respect the space limitations.
Please see our technical report [3] for more details.

2 Model

Our model is based on a variation of the ATOM model [9,11] used in [5], to
which we introduce the notion of homonymy [6]. The system is made up of n
mobile robots r1, . . . , rn that communicate only through vision. That is, robots
are devoid of any mean of direct communication, the only way of them to com-
municate is by observing the positions of their peers (a “read”) and by moving in
the plane (a “write”). Each robot is assigned an identifier (or label) taken from
a set of h distinct identifiers {1, . . . , h}. The parameter 1 ≤ h ≤ n is called the
homonymy of the system. The identifier of robot r is denoted by label(r). When
two robots have the same label we say that they are homonymous. Robots are
oblivious in the sense that they do not have any memory of their past observa-
tions, computations and movements. Hence, their actions are based entirely on
their currently observed configuration and their label. Each robot is viewed as
a point in a plane, thus multiple robots may lie in the same location forming a
multiplicity point.

We assume also that robots do not obstruct the vision of each others. Robots
are disoriented, that is, each robot has its own local coordinate system with its
own origin, axis, and unit of length which may change at each new activation.
However, as in [5], we assume that robots share the same notion of clockwise
direction, we say that they have the same chirality.

The execution unfolds in atomic cycles of three phases Look, Compute and
Move. During the Look phase, an activated robot take a snapshot of the environ-
ment using its visual sensors. Then it calculates a destination in the Compute
phase. The chosen destination is based solely on the label of the robot and the
snapshot it obtained in the preceding phase. Finally, In the Move phase, the robot
jumps to its destination. A subset of robots are chosen for execution (activated)
at each cycle by a fictional external entity called a scheduler. We require the
scheduler to be fair i.e. each robot is activated infinitely often. Robots that are
activated at the same cycle execute their actions synchronously and atomically.

Notations. Given two distinct points in the plane x and y, |x, y| denotes the Eu-
clidean distance between x and y, [x, y] the line segment between them and (x, y)
is the line that passes through both of them. Given a third point c, �(x, c, y,�)
denotes the clockwise angle at c from x to y. �(x, c, y,�) is defined similarly.
When the information about orientation can be understood from context, we
may omit the parameters � and �. Note that �(x, c, y,�) denotes both the
angle and its size, the difference between the two notions should be clear from
context. Given a configuration C, its smallest enclosing circle, denoted SEC(C),
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is the circle of minimum diameter such that every point in C is either on or in
the interior of this circle. Given a circle CIR, rad(CIR) and diam(CIR) denote
its radius and diameter respectively. A point p belong to CIR, written p ∈ CIR
if it on or inside CIR. If S is a set, we denote its cardinality by |S|.
Problem Definition. [5] A configuration C of n robots is a set of n elements
{(p1, l1), . . . (pn, ln)} where pi is the position of robot ri and li is its label. The
set of positions L(C) is the set of points occupied by at least one robot in
C. A pattern P is represented by a set of n distinct points {p1, . . . , pn}. Two
patterns are said isomorphic if they can be obtained from each others by way
of translation, rotation and uniform scaling. size(P ) is the cardinality of P . We
say that a system of robots has formed the pattern P if the set of of points of the
current configuration L(C) is isomorphic to P . The Problem of Formation of
Series of Patterns is defined as follows. As input, robots are given a periodic
series of patterns 〈P1, P2, . . . , Pm〉∞. It is required that for each time τ : ∀Pi ∈
S : ∃τi : robots form Pi at time τi.

3 Symmetricity, Regularity and Weber Points

In this section we formally define two metrics that quantify how much configura-
tions of distinct robots may be symmetric: the strongest one, called symmetricity
and the weaker one, called regularity. We then explain how these two notions
relate to Weber points. We start by defining a polar coordinate system which
we use to state our definitions and algorithms.

3.1 Polar Coordinate System

In the remaining of the paper, we express the locations of robots using a local
polar coordinate system based on the SEC of the current configuration and the
position of the local robot[8]. The center c of the coordinate system is common
to all robots and it coincides with the center of the SEC. In contrast, the unit of
measure is local to each robot r and its definition depends on whether the robot
is located on c or not. In the first case, the point (1, 0) of the local coordinate
system of r is any point in the plane that is not occupied by a robot. In the second
case, the point (1, 0) is the current location of r. The positive common clockwise
orientation is provided by the underlying model. Note that (d, θ) denotes the
point located at distance d from c and angle θ.

3.2 Symmetricity

Definition 1 (View). The view of robot r, denoted V(r), is the current con-
figuration expressed using the local polar coordinate system of r.

Notice that since robots are located in distinct positions, our definition of the
view implies that if a robot is located at the center c, then its view is unique,
i.e. it cannot be equal to the view of another robot. Now we define the following
equivalence relation on robots based on their views.
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Definition 2 (�). Given a configuration P , given any two robots r, r′ ∈ P :

(r � r′) ⇔ (V(r) = V(r′))

The equivalence class of r is denoted by [r].

Property 1. [5] Let r ∈ P . If |[r]| > 2, [r] is a set of robots located at the
vertices of a convex regular polygon with |[r]| sides whose center c is the center
of SEC(P ).

Definition 3 (Symmetricity). The symmetricity of a configuration P , de-
noted sym(P ), is the cardinality of the smallest equivalence class defined by �
on P . That is, sym(P ) = min{|[r]| | r ∈ P}. If sym(P ) = m, we say that P is
m-symmetric.

Note that despite the fact that our definition of symmetricity is different from
the one used in [5], it is still equivalent to it when configurations does not contain
multiplicity points, the case in which we are interested in the current paper. The
next lemma follows from our definition of symmetricity and the fact that the
view of a robot located at c is unique.

Lemma 1. If a configuration P of distinct robots is m-symmetric with m > 1,
then no robot of P is located in c.

In the following lemma we prove that if no robot is located at the center of
SEC(P ), then all the equivalence classes have the same cardinality.

Lemma 2. Let P be a configuration of n distinct robots, and let c be the center
SEC(P ). If no robot in P is located at c, it holds that:

∀r, r′ ∈ P : |[r]| = |[r′]| = m

Lemma 3. Let P be a m-symmetric configuration of n distinct points with cen-
ter (of symmetricity) c and with m > 1. There exists a partition of P into
x = n/m subsets S1, . . . , Sx such that each of them is a convex regular polygon
of m sides with center c.

The following lemma will be used by our algorithm for series formation in Section
6 to break the symmetricity of configurations.

Lemma 4. Let P be a m-symmetric configuration of n distinct points with m >
1. If h > n/m, there exists two robots r and r′ such that V(r) = V(r′) and
label(r) �= label(r′).

3.3 Regularity

In this section we formally define a weaker form of symmetry that we call reg-
ularity. In the next section we state its precise relation with symmetricity. We
start by giving some useful definitions:
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Definition 4 (Successor). Given a set P of distinct points in the plane, and
c �∈ P a fixed point. Given some polar ordering of points in P around c. Let us
denote by S(r, c,�) the the clockwise successor of r according to the clockwise
polar ordering of points P around c. The anticlockwise successor of r, denoted
S(r, c,�), is defined similarly.

Formally [8], r′ = S(r, c,�) is a point of P distinct from r such that:

– If r is not the only point of P that lies in [c, r], we take r′ to be the point in
P ∪ [c, r] that minimizes |r, r′|.

– Otherwise, we take r′ such that no other point of P is inside �(r, c, r′,�).
If there are many such points, we choose the one that is further from c.

When the center c and the clockwise orientation are clear from context or mean-
ingless, we simply write S(r, c), S(r,�) or S(q) to refer to the successor of r.

Definition 5 (k-th Successor). The k-th clockwise successor of r around c,
denoted Sk(r, c,�) (or simply Sk(q)) , is defined recursively as follows:

– S0(r) = r and S1(r) = S(r).
– If k > 1, Sk(r) = S(Sk−1(r)).

Definition 6 (String of angles). Let P be a set of distinct points in the plane,
and c �∈ P a fixed point. The (clockwise) string of angles of center c in r, denoted
by SA(r, c,�) is the string α1 . . . αn such that αi = �(Si−1(r), c, Si(r),�).
The anticlockwise string of angles, SA(r, c,�), is defined in a symmetric way.
Again, when the information about the center of the string c and/or its clockwise
orientation is clear from context, we simply write SA(r, c), SA(r,�) or SA(r).

Definition 7 (Periodicity of a string). A string x is k-periodic if there exists
a string w and an integer 1 ≤ k ≤ n/2 such that x = wk. The greatest k for
which x is k-periodic is called the periodicity of x and is denoted by per(x).

The following property states that the periodicity of the string of angles does not
depend on the process in which it is started nor on the clockwise or anticlockwise
orientation.

Lemma 5. Let P be a set of distinct points in the plane, and let c �∈ P be a
point in the plane. The following property holds:

∃m : ∀r ∈ P : ∀d ∈ {�,�} : per(SA(r, c, d)) = m

Theorem 1. Given is a set of points P , a center c �∈ P . There exists an algo-
rithm with running time O(n log n) that computes SA(c).

The lemma means that when it comes to periodicity, the important information
about a string of angles is only its center c. Hence, in the following we may refer
to it by writing SA(c).
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Definition 8 (Regularity). Let P be a set of n distinct points in the plane.
P is m-regular (or regular) if there exists a point c �∈ P such that per(SA(c)) =
m > 1. In this case, the regularity of P , denoted reg(P ), is equal to per(SA(c)).
Otherwise, it is equal to 1. The point c is called the center of regularity.

Theorem 2. Given is a set of points P , a center c �∈ P . There exists an algorithm
with running time O(n log n) that detects if c is a center of regularity for P .

3.4 Weber Points

In this section we state some relations between symmetricity and regularity.
Then we prove that their centers are necessarily Weber points, hence unique
when the configuration is not linear. The following lemma is trivial, its proof is
left to the reader. It states the fact that if a configuration is m-symmetric with
m > 1, it is necessarily m-regular.

Lemma 6. Let P be any configuration with sym(P ) > 1. It holds that reg(P ) =
sym(P ) and the center of regularity of P coincides with its center of symmetricity.

Note that the claim holds only if sym(P ) > 1. In general, reg(P ) ≥ sym(P ).
The next lemma shows in what way the regularity of a configuration can be
strengthened to become a symmetricity.

Lemma 7. Let P be any configuration with reg(P ) = m > 1, and let c be its
center of regularity. There exists a configuration P ′ that can be obtained from P
by making robots move along their radius such that sym(P ′) = m. Moreover, c
is the center of symmetricity of P ′.

The following lemma states that the center of symmetricity of any configuration
P if any is also its Weber point. The same claim was made in [2] in the cases
when sym(P ) = n (equiangular) and sym(P ) = n/2 (biangular). Our proof uses
the same reasoning as theirs.

Lemma 8. Let P be a configuration such that sym(P ) > 1 and let c be its center
of symmetricity. It holds that c is the Weber point for P .

Lemma 9. Let P be a configuration such that reg(P ) = m > 1 and let c be its
center of regularity. It holds that c is the Weber point for P .

The next corollary follows directly from Lemma 9 and the fact that Weber points
are unique.

Corollary 1 (Unicity of c). The center of regularity is unique if it exists.

4 Detection of Regular Configurations

In this section we show how to identify geometric configurations that are regular.
We present two algorithms that detects whether a configuration P of n points
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given in input is m-regular for some m > 1, and if so, they output its center of
regularity. The first one detects the regularity only if m is even, it is very simple
and runs in O(n logn) time. The second one can detect any regular configuration,
provided that m ≥ 3. It is a little more involved and runs in O(n4 logn) time.
We assume in this section that P is not a configuration in which all the points
are collinear.

4.1 Preliminaries

In this section, we state some technical lemmas that help us in the presentation
and the proofs.

Lemma 10. Let P be a regular configuration of n distinct points and let c be
its center of regularity. Let m = reg(P ). The following property holds:

∀r ∈ P : (�(r, c, Sn/m(r,�),�) = 2Π/m) ∧ (�(r, c, Sn/m(r,�),�) = 2Π/m)

The following lemma proves that when a configuration P is m-regular with m
even, then for each point in r ∈ P there exists a corresponding point (Sn/2(r))
that lies on the line that passes through r and c with c being the center of
regularity of P .

Lemma 11. Let P be a regular configuration of n distinct points and let c be
its center of regularity. The following property holds:

(reg(P ) is even) ⇒ (∀r ∈ P : �(r, c, Sn/2(r)) = Π)

4.2 Detection of Even Regularity

Theorem 3. Given P a configuration of n distinct points with n even. There
exists an algorithm (running in O(n log n) steps) that detects if P is m-regular
with m even, and if so, it outputs m and the center of regularity.

4.3 Detection of Odd Regularity

Definition 9 (α-Circle). Given two distinct points x and y and an angle 0 <
α < Π, we say that the circle Cxy is a α-circle for x and y if x, y ∈ Cxy and
there exists a point p ∈ Cxy such that �(x, p, y) = α.

In the following we present three known properties [2] about α-circles.

Property 2. it holds that �(x, p′, y) = α for every point p′ ∈ Cpq on the same
arc as p.

Property 3. If α = Π/2, the α-circle is unique and is called the Thales circle.

Property 4. If α �= Π/2, there are exactly two α-circles. We denote them in the
following by Cxy and C′xy. α = Π/2 can be seen as a special case in which
Cxy = C′xy.
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Definition 10 (Cxy ∩ Cyz). Given Cxy and Cyz, we define their intersection,
denoted Cxy ∩ Cyz, as the point p such that (p �= y) ∧ (p ∈ Cxy) ∧ (p ∈ Cyz). If
p does not exists we write Cxy ∩ Cyz = ∅.

Lemma 12. Let m ≥ 3. Let P be an m-regular configuration of n distinct points
with center c �∈ P . Let x be any point in P , and let us denote by y and z
the points Sn/m(x, c,�) and Sn/m(x, c,�) respectively. Let Cxy, C

′
xy, Cxz , C

′
xz

be the 2Π/m-circles for the pairs of points (x,y) and (x,z). It holds that c ∈
(Cxy ∩ Cxz) ∪ (C′xy ∩Cxz) ∪ (Cxy ∩ C′xz) ∪ (C′xy ∩ C′xz).

Lemma 13. Given 3 ≤ m ≤ n, given P a configuration of n distinct points. Let
x be any point in P The following property holds:

(P is m-regular with center c)

⇔
(∃y, z ∈ P : (x �= y �= z)∧(c ∈ (Cxy∩Cxz)∪(C′xy∩Cxz)∪(Cxy∩C′xz)∪(C′xy∩C′xz)))

Where Cxy, Cxz, C
′
xy, C

′
xz are 2Π/m-circles of the corresponding points.

Theorem 4. Given 3 ≤ m ≤ n, given P a configuration of n distinct points.
There exists an algorithm (running in O(n3 logn)) that detects if P is m-regular,
and if so, it outputs the center of regularity.

Proof. The algorithm is the following. We fix any robot x ∈ P . Then, for every
y ∈ P \{x}, for every z ∈ P \{x, y}, for every c ∈ (Cxy∩Cxz)∪(C′xy∩Cxz)∪(Cxy∩
C′xz) ∪ (C′xy ∩ C′xz), we test if c is a center of regularity (Theorem 2, O(n log n)
time). Lemma 13 guarantees that if P is m-regular, the test will be conclusive for
at least one pair (y, z) of robots. The whole algorithm executes in O(n3 logn):
we browse all the possible pairs (y, z), and for each pair we generate up to
four candidates for the center of regularity, hence we have O(n2) candidates.
Then, O(n log n) time is needed to test each candidate. Note that our algorithm
follows the same patterns as those presented in [2]: generating a restricted set of
candidates (points) and testing whether each of them is a center of regularity.

Theorem 5. Given P a configuration of n distinct points. There exists an algo-
rithm (running in O(n4 logn) steps) that detects if P is m-regular with m ≥ 3,
and if so, it outputs m and the center of regularity.

Proof. It suffices to generates all the divisors m of n that are greater than 2.
Then, for each m, we test if P is m-regular using the algorithm of Theorem 4).
When the test is conclusive, this algorithm return the center of regularity c, so
we can output Regularity m, Center c. If test was inconclusive for every
generated m, we output Not Regular.

Theorem 6. Given P a configuration of n distinct points. There exists an algo-
rithm (running in O(n4 logn) steps) that detects if P is m-regular with m ≥ 2,
and if so, it outputs m and the center of regularity.
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Proof. We combine the algorithms of Theorems 3 and 5. First, we test if P is
m-regular for some even m using the algorithm of Theorem 3 (O(n log n)). If
so, we output m and the center of regularity c which are provided by the called
algorithm. Otherwise, we test odd regularity using the algorithm of Theorem 5
(O(n4 logn)) but by restricting the analysis to only the odd divisors of n (the
even divisors were already tested).

5 Formation of a Series of Geometric Patterns: Lower
Bound

In this section we prove a necessary condition that geometric series have to satisfy
in order to be formable. The condition relates three parameters: the number of
robots in the system n, its homonymy h and the symmetricity of the patterns
to form. It is stated in Theorem 7.

Property 5. [5] For any configuration P of n distinct robots, sym(P ) divides n.

Lemma 14. Let P be a configuration of n distinct robots with symmetricity s,
i.e. sym(P ) = s. For any divisor d of s, if h ≤ n

d , then for any pattern formation
algorithm, there exists an execution where all subsequent configurations P ′ satisfy
sym(P ′) = k · d, k > 1.

Proof. The lemma holds trivially if s = 1, hence we assume in the following that
s > 1. According to Lemma 3, there exists a partition of P into x = n/s subsets
S1, . . . , Sx such that the s robots in each Si occupy the vertices of a regular
convex polygon of s sides whose center is c.

Now, partition each set Si into s
d subsets Ti1, . . . , T(i s

d ) with |Tij | = d for each
i ∈ {1, . . . , x}, j ∈ {1, . . . , s

d}. Each subset Tij is chosen in such a way that the
d robots belonging to it are located in the vertices of a regular convex polygon
of d sides with center c. This choice is possible because d is a divisor of s = |Si|.
For example, let r1, . . . , rs be the robots of Si ordered according to some polar
ordering around c. Ti1 is the set of robots {r1, r( s

d +1), r( 2s
d +1), . . . , r( (d−1)s

d +1)
}.

Clearly, this subset defines a regular polygon of d sides with center c.
There are total of s·x

d = n
d subsets Tij . So we have also a total of n

d concentric
regular polygons of d sides. What is important to notice now is that the robots
in each Tij have the same view.

Since h ≤ n
d , there exists a set of labels |L| = h, and a labeling of robots in P

such that (1) The same label is assigned to the robots that belong to the same
subset Tij . (2) For each label l ∈ L, there exists a robot ri ∈ P such that l is
the label of ri.

Since we assume that algorithms are deterministic, the actions taken by robots
at each activation depend solely on they observed view and their identity (la-
bel). Hence, two robots having the same view and the same label will take the
same actions if they are activated simultaneously. Therefore, the adversary can
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guarantee that the network will always have a symmetricity ≥ d by activating
each time the robots that belong to the same Tij together. This way, we are
guaranteed to have all the subsequent configurations that consists of a set of n

d
concentric regular polygons of d sides. That is, all subsequent configuration have
a symmetricity that is a multiple of d. This proves the lemma.

The following lemma states a necessary condition for a geometric figure Pj to
be formable starting from Pi.

Lemma 15. If the current configuration Pi has symmetricity sym(Pi) = s,
the configuration Pj with symmetricity sym(Pj) = s′ is formable only if (1)
size(Pj) = size(Pi) and (2) h > n

sncd(s,s′) where sncd (read smallest non com-
mon divisor) is equal to the smallest x that divides s but not s′ if any, n + 1
otherwise.

Proof. Assume towards contradiction that (1) h ≤ n
sncd(s,s′) and (2) Pj is

formable. Note that since h ≥ 1, (1) implies that sncd(s, s′) �= n + 1. Oth-
erwise we would have h ≤ 0, contradiction. By definition, sncd(s, s′) �= n + 1
implies that sncd(s, s′) = t divides s but not s′.

According to Lemma 14, for any algorithm, there exists an execution starting
from Pi where all subsequent configurations P ′ satisfy sym(P ′) = k·t, k > 1. But
sym(Pj) = s′ is not multiple of t, hence Pj is never reached in this execution.
This means that Pj is not formable starting from Pi, which contradicts (2).
Hence, the lemma is proved.

Now, we are ready to state the necessary condition for formation of geometric
series. It relates the symmetricity of its constituent patterns and the homonymy
of the system.

Theorem 7. A cyclic series of distinct patterns 〈P1, P2, ..., Pm〉∞ each of size
n is formable only if

∀i ∈ {1, . . . ,m} : h >
n

sncd(sym(Pi), sym(P(i mod m)+1))

Proof. Follows from Lemma 15.

6 Formation of Series of Patterns: Upper Bound

In this section, we present an algorithm that allows robot to form a series of
patterns, provided that some conditions about homonymy and symmetricity are
satisfied. The result is stated in the following theorem:

Theorem 8. A cyclic series of distinct patterns 〈P1, P2, ..., Pm〉∞ each of size
n is formable if and only if

∀i ∈ {1, . . . ,m} : h >
n

sncd(sym(Pi), sym(P(i mod m)+1))

The only if part was proved in Section 5. The remaining of the current section
is devoted to the proof of the if part of the theorem.
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6.1 Intermediate Configurations

During the formation of a pattern Pi (starting from Pi−1), the network may
go through several intermediate configurations. We define in the following four
classes of intermediate patterns A,B, C and D. Each one of them encapsulate
some information that allows robots to unambiguously determine which pat-
tern the network is about to form. This information is provided by a function,
Stretch, which we define separately for each intermediate pattern.

Definition 11 (Configuration of type A). A configuration P of n points is
of type A (called BCC in [5]) if the two following conditions are satisfied:

1. there exists a point x ∈ P such that the diameter of SEC1 = SEC(P ) is a
least ten times the diameter of SEC2 = SEC(P \ {x}).

2. SEC1 and SEC2 intersect at exactly one point called the base-point (BP).

The point x is called the pivot whereas the point on SEC2 directly opposite BP
is called the frontier point (FP ).

Stretch(P ) is equal to � rad(SEC1)
(h+1)·rad(SEC2)

�.

Definition 12 (Configuration of type B(m)). A configuration P of n dis-
tinct robots is of type B(m) (adapted from SCC[m] in [5]) with 1 < m < n, if
the following conditions are satisfied:

1. SEC1 = SEC(P ) has exactly m points on its circumference which form a
regular convex polygon with m sides.

2. Let SEC2 be the SEC of the robots that are not on the SEC1, i.e. SEC2 =
SEC(P \ {r ∈ P | r is on SEC1}). SEC1 and SEC2 are concentric such
that rad(SEC1) > 10 · rad(SEC2).

Stretch(P ) is equal to 1
2 · � rad(SEC1)

(h+1)·rad(SEC2)
�. It can be easily checked that a

given configuration cannot be of both types A and B (their respective SEC2 do
not intersect).

Definition 13 (Configuration of type C(m)). A configuration P of n distinct
robots is of type C(m) with 1 < m < n if 1) it is not of type B and 2) it is m-
symmetric (ref. Definition 3).

Stretch(P ) is computed as follows. Since P is m-symmetric with m > 1,
there exists a partition of P into x = n/m subsets S1, . . . , Sx such that each of
them is a convex regular polygon of m sides with center c (Lemma 3). This means
that each Si defines a circle with center c. Assume w.l.o.g that ∀i ∈ {1 . . . x−1} :
rad(Si) ≤ rad(Si+1). Stretch(P ) = Max{� rad(Si+1)

(h+1)·rad(Si)
� | i ∈ {1 . . . x− 1}}.

Clearly, a configuration of type C cannot be of type A since the former is
symmetric while the latter is not.

Definition 14 (Configuration of type D(m)). A configuration P of n dis-
tinct robots is of type D(m) with 1 < m < n if (1) Points are not all on the
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same line, (2) P is not of type B and (3) P is m-regular but not symmetric
(Sym(P ) = 1).

Stretch(P ) is computed as follows. Let c be the center of regularity. c can
be computed in polynomial time using the algorithm of Section 4 (Theorem 6).
Then for each ri ∈ P , we compute |c, ri|, its distance from c. Assume w.l.o.g.
that ∀i ∈ {1 . . . x− 1} : |c, ri| ≤ |c, ri+1|. Stretch(P ) = Max{� |c,ri+1|

(h+1)·|c,ri|� | i ∈
{1 . . . x−1}}. Note that the stretch of configurations of type C(m) is a particular
case of that of type D(m), but since the former configurations are symmetric, we
can compute their stretch without resorting to the computation of the center of
regularity.

Decoding the stretch. Let F be a one-to-one function [5] that maps each
pattern Pi to a real number ti = F (Pi). If there is a pattern Pi that is of
type A,B, C or D, we exclude the value Stretch(Pi) from the domain of F .
To simplify the proofs, we assume that F (Pi) > 10 for any Pi. When robots
are about to form the pattern Pi, they use intermediate configurations with
stretch ti. By computing the stretch, robots can unambiguously identify which
configuration they are about to form (F−1(ti)).

6.2 Transitions between Configurations

In this section we describe some algorithms that describe some transformations
between patterns.

Lemma 16. Starting from any configuration of type D with stretch t, there ex-
ists an algorithm that builds a configuration of type A with the same stretch.

Lemma 17. Given a sequence of patterns 〈P1, P2, ..., Pm〉∞. Starting from any
configuration of type Pi with stretch sym(Pi) = 1, there exists an algorithm that
builds a configuration of type A with stretch F (Pi+1).

The following two lemmas are from [5].

Lemma 18. Starting from any configuration of type A, it is possible to form
any single pattern.

Lemma 19. Starting from any configuration of type B(m), it is possible to form
any single pattern P such that sym(P ) = k ·m, k > 1.

Lemma 20. Consider a robot network of n robots in configuration Pi. Let sym
(Pi) = m > 1 and sym(Pi+1) = m′. If h > n

sncd(m,m′) , there exists an algo-
rithm that brings the network to a configuration Q such that either Q is of type
B(x), x < sncd(m,m′) or of type A both with stretch F (Pi+1).

The remaining of this section is devoted to the proof of this lemma.
The transformation algorithm is given in Figure 1. It is executed by robots

during their Compute phases until one of the two desired configurations is ob-
tained. Its description is based on the polar coordinate system of Section 3.1.
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Function:
targetSym(k) : The target symmetricity when robots try to form Pk+1
It is equal to the greatest divisor of sym(Pk+1) that is < SNCD(sym(Pk), sym(Pk+1))

Actions:
(1) P ← Observed Configuration
(2) SEC ← Smallest Enclosing Circle(P )
(3) c← Center(SEC)
(4) sym← sym(P )
(5) If (P = Pi) then t← F (Pi+1)
(6) else t← stretch(P ) endif
(7) id← My Identifier
(8) rad← Radius(SEC)
(9) if (sym > 1) ∧ ((sym > targetSym(k)) ∨ (P is not of type B(sym)))
(10) d←Min(|ri, c|; ri ∈ P )
(11) S ← {ri ∈ P | |ri, c| = d}
(12) minV iew ←Min(V (ri); ri ∈ S)
(13) Elected← {ri ∈ S | V (ri) = minV iew}
(14) if (ri ∈ Elected)
(15) return ((t · (h + 1) + id − 1) · rad, 0)
(16) else
(17) return My Position
(18) endif
(19) endif

Fig. 1. Symmetry Breaking

The principal idea is to use identifiers of robots in order to break the symmetry
of configurations. It does so by making robots choose their destination according
to their identity. This way, if two robots with similar views but different iden-
tities are activated simultaneously, their views at the end of the cycle will be
different and the symmetricity decreases.

Let us observe the following four properties about the algorithm:

1. Let c be the center of symmetricity of the initial configuration Pi. Note
that c is therefore a Weber point (Lemma 8). Since the algorithm makes
robots move only through their radius with c (line 15), the Weber point
remains invariant during all the execution. This implies that any succes-
sive regular/symmetric configuration will have necessarily c as its center of
regularity/symmetricity.

2. Again, since robots move only through their radius with c, regularity remains
invariant during all the execution. It is thus equal to reg(Pi). But since
sym(Pi) = m > 1, it holds according to Lemma 6 that reg(Pi) = sym(Pi).
Hence, all the successive configurations will be m-regular, including the final
one. This means that if a configuration P ′ with sym(P ′) is reached, it is of
type D(m).

3. At each cycle, the algorithm chooses a set Elected of robots having the same
view (equivalence class) (lines 10-13).

Since the algorithm is executed only if the current configuration is
m-symmetric (m > 1), it holds according to Lemma 2 that |Elected| = m.
The positions chosen by robots in Elected are located outside the current
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SEC. Hence, moving to these positions cannot increase the symmetricity of
the configuration. It follows that the symmetricity of the configurations can
either decrease or remain the same during the execution.

4. The actions of robots maintain the same stretch during the whole execution,
and it is equal to F (Pi+1) (line 5).

We prove the following claim about the algorithm:

Lemma 21. Given the conditions of Lemma 20, if robots are executing algo-
rithm 1, then there exists a time at which they reach a configuration P ′ with
sym(P ′) < sncd(m,m′).

Property 6. Let m′ be the smallest symmetricity of all the configurations reached
by the execution of the algorithm. According to Lemma 21 m′ < sncd(m,m′).
Let T be the first reached configuration for which sym(T ) = m′. Since all the
configurations reached after T if any have a symmetricity equal to m′ this means
that at each cycle after T is reached, there are m′ robots that are elected to move.

Lemma 22. If sym(T ) = m′ > 1, then either T is of type B(m′) or a configu-
ration of type B(m′) can be obtained from T after one cycle.

Lemma 23. If m′ = 1 and all the points in T are collinear, then either T is of
type A or a configuration of type A can be reached from T be a movement of a
single robot.

Lemma 24. If m′ = 1 and the points in T are not all collinear, then either T
is of type A or D(m)

Proof of Lemma 20 Follows from Lemma 21, Property 6 and Lemmas 23, 24
and 22.

Theorem 9. Consider a robot network of n robots in configuration Pi. Let
sym(Pi) = m > 1 and sym(Pi+1) = m′. If h > n

sncd(m,m′) , there exists an
algorithm that forms Pi+1.

Proof. Follows from Lemmas 18, 19 and 20.

7 Conclusion

In this paper, we considered the problem of formation of series of geometric
patterns. We studied the combined effect of obliviousness and anonymity on the
computational power of mobile robots with respect to this problem. To this end,
we introduced a new model, robots networks with homonyms that encompasses
and generalizes the two previously considered models in the literature in which
either all robots have distinct identifiers or they are anonymous. Our results
suggest that this new model may be a useful tool to get a better insight on how
anonymity interacts with others characteristics of the model to limit its power.

Acknowledgement. The authors would like to thank Shantanu Das for his
generous help and the anonymous referees for their comments and suggestions
to improve the quality of the paper.
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Abstract. In the k-set agreement task each process proposes a value,
and it is required that each correct process has to decide a value which
was proposed and at most k distinct values must be decided. Using topo-
logical arguments it has been proved that k-set agreement is unsolvable
in the asynchronous wait-free read/write shared memory model, when
k < n, the number of processes.

This paper presents a simple, non-topological impossibility proof of
k-set agreement. The proof depends on two simple properties of the im-
mediate snapshot executions, a subset of all possible executions, and on
the well known graph theory result stating that every graph has an even
number of vertices with odd degree (the handshaking lemma).

Keywords: Set agreement, Shared memory, Wait-freedom.

1 Introduction

In a breakthrough result, Fischer, Lynch and Paterson proved [7] that it is im-
possible to solve consensus in the asynchronous message passing system in which
at most one process, which is unknown in advance, can crash. Herlihy [11] and
Loui and Abu-Amara [17] extended this impossibility result to the asynchronous
wait-free read/write shared memory model, where wait-free means that in each
execution all processes but one can fail by crashing. Recall that in the consensus
task, each process proposes a value, and it is required that every correct process
decides on a value proposed by some process and no two correct processes decide
distinct values.

Later, in order to study the border between solvable and unsolvable tasks in
presence of asynchrony and failures, Chaudhuri [6] introduced a natural general-
ization of consensus, called k-set agreement ; in this task, each process proposes a
value and it is required that each correct process decides on a value proposed by
a process and at most k ≥ 1 distinct values are decided. For k = 1, k-set agree-
ment is exactly consensus, and for k = n, the number of processes in the system,
k-set agreement is trivial, since every process can decide on its proposal. The
paper shows that k-set agreement can be solved by a t-resilient asynchronous
algorithm, when t < k. An algorithm is t-resilient, 1 ≤ t ≤ n− 1, if it solves the
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problem even in executions where up to t processes crash. This means that if the
number of failures is strictly smaller than the number of possible decision val-
ues, then k-set agreement is solvable. Chaudhuri [6] also conjectured that k-set
agreement is unsolvable if t ≥ k. For the case k = 1, this conjecture matches the
impossibility of solving consensus, namely, 1-set agreement, with a single crash
failure [11,17]. Notice that for the the wait-free case, i.e., t = n−1, this conjecture
says that only the trivial n-set agreement task has a wait-free solution.

Chaudhuri’s conjecture was proved by Borowsky and Gafni [3], Herlihy and
Shavit [15] and Saks and Zaharoglou [18]. Indeed, these three papers discovered
a strong relationship between distributed computing and topology and used this
topological approach for proving the conjecture of Chaudhuri. Later, Attiya and
Rajsbaum [1] and Herlihy and Rajsbaum [13] presented two other topological
impossibility proofs of k-set agreement. Although these proofs are not extremely
complicated, they use concepts and results that are not widely known by the
distributed computing community; the kind of arguments they use vary from
combinatorial and algebraic to continuous arguments.

This paper presents a simple, non-topological impossibility proof for k-set
agreement. This proof does not demand from the reader any previous knowledge
of topology at all. Very roughly, the proof considers the immediate snapshot (IS)
executions [1,3,4,18] of an algorithm, a subset of all possible executions, and con-
structs a graph, whose vertices are the IS executions, and whose edges connect
two IS executions (vertices) only if they satisfy certain indistinguishability condi-
tions. Then, using the well known handshaking lemma, stating that every graph
has an even number of vertices with odd degree, the proof concludes that there
must be at least one execution in which at least k + 1 values are decided.

We believe that it is valuable to have several proofs of this important result,
since they provide different perspectives on it. In particular, the proof we present
in this paper gives an operational insight into the impossibility of set agreement.
Such a perspective cannot be easily obtained from the known topological impos-
sibility proofs for k-set agreement.

We stress that this paper does not argue that the use of topology for proving
the impossibility of k-set agreement is “artificial”, namely, that topology has
been used before as a “trick” for proving the result. The reader has not to
understand this paper in that way. The fundamental reason why k-set agreement
is not solvable is topological, and more precisely, it has to do with Sperner’s
lemma [10, p. 36]. We strongly encourage the reader to see the connections
between the proof we present here and Sperner’s lemma. Moreover, we believe
that the topological approach to distributed computing must be studied and
extended, since it has been extensively and successfully used in the past for
proving a variety of results (see, for example, [5,8,9,12,14,16]), and it is unlikely
that all these results have non-topological proofs.

The paper is organized as follows. Section 2 describes the asynchronous wait-
free read/write shared memory model. Section 3 presents the subset of IS execu-
tions, which is used for proving the impossibility of k-set agreement in Section 4.
Finally, Section 5 provides an operational perspective of this proof.
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2 Model of Computation

This section describes the standard asynchronous wait-free read/write shared
memory model, considered in this paper, following [1,2].

System and executions. A system consists of n asynchronous sequential processes
p1, . . . , pn. Each process is a deterministic state machine with a (possibly infinite)
set of local states S and two subsets of S called initial states and output states,
respectively. The processes communicate by using a shared memory with a finite
number of single-writer multi-reader atomic registers. No assumption is made
regarding the size of the registers, thus we can assume that process pi has a
single register ri to which it can write its entire state. Process pi has two atomic
operations available to it: writei(v) that writes the value v into ri, and readi(j)
that returns the current value in rj . A step is performed by a single process pi,
which executes one of its two available operations, readi or writei, performs some
local computation and then changes its local state.

A configuration of the system consists of the local states of the processes and
the content of the registers. An initial configuration is a configuration in which
all local states are initial states and all registers are set to a distinguished value
⊥. An output configuration is a configuration in which all local states are output
states.

An execution of the system is a, possibly infinite, alternating sequence of
configurations and steps α = C0, s0, C1, s1, C2, . . ., where C0 is an initial config-
uration and C�+1 is the result of applying the step s� to C�, for � ≥ 0. The view
of a process pi in α, denoted α|pi, is the sequence of pi’s local states in config-
urations C0, C1, . . .. The participating set of an execution α, denoted ps(α), is
the set of processes that take at least one step in the execution.

Two executions α and α′ are indistinguishable for a set of processes P , denoted

α ∼P α′, if all processes in P have the same view in both executions, namely,
∀pi ∈ P, α|pi = α′|pi. In the following section we are interested in pairs of
executions α and α′ that are distinguishable to exactly one process, that is, there

is a process pi such that α|pi �= α′|pi and α ∼Pα′, where P = {p1, . . . , pn} \ {pi}.
In this case, we write α ∼¬pi

α′.

Algorithms. The state machine of a process pi models a local algorithm Ai that
determines pi’s next step. An algorithm A is a collection of local algorithms
A1, . . . , An.

Each process has two distinguished components, input and output, that al-
low the system to model decision tasks. The input component never changes
and cannot contain the distinguished value ⊥. The output component contains
initially ⊥, and once a process reaches a local state in which a non-⊥ value is
written in it, the output component never changes. When that happens, we say
that the process decides. The output states are the states with non-⊥ output
values. If a process decides v in an execution α, we say v is decided in α.

A view of a process pi in a finite execution α is final, if pi decides in α. A
final view of pi in α is minimal if none of its prefixes is final. In other words,
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the minimal final view of pi in α is the prefix of the view of pi up to the first
configuration in which pi decides. A finite execution α is minimal final if the
view of each process in ps(α) is a minimal final; in particular, each participating
process decides in α. For a minimal final execution α, dec(α) is the set of all the
values that are decided in α, and for a process pi ∈ ps(α), dec(α,¬pi) is the set
dec(α) \ {v}, where v is the value that pi decides in α. Note that if two distinct
processes pi and pj decide on the same value v, then dec(α,¬pi) = dec(α,¬pj).

An algorithm A is wait-free if in each execution of A, every process executes a
finite number of steps or decides. Therefore, a process must decide if it executes
an infinite number of steps. We only consider wait-free algorithms.

An algorithm is full-information if a process writes its entire local state in
every write operation. We say that an algorithm is in standard-form if processes
proceed in a sequence of asynchronous rounds. In a round, every process first
executes a write operation and then asynchronously reads all registers. Note that
if there is a wait-free algorithm solving some task, then there is a, possibly inef-
ficient, full-information and standard-form wait-free algorithm solving this task.
Since efficiency is not an issue in this paper, we only consider full-information
and standard-form algorithms.

k-set agreement. In k-set agreement [6], 1 ≤ k ≤ n, each process pi proposes a
value has to decide on a value, such that the following properties hold.

Termination: Each process executes a finite number of steps or decides.
Validity: A decided value is a proposed value.
k-Agreement: At most k different values are decided.

We now define a trivial task T that will be used in the impossibility proof of
k-set agreement. Indeed, in Section 4 we shall see that every wait-free algorithm
that solves T possesses a property which implies that there is no algorithm that
solves k-set agreement for k < n.

In the task T each process pi proposes a value and each process has to decide
a value such that the termination and validity properties of k-set agreement
are satisfied. Obviously, T is wait-free solvable: Each process can just decide it
proposal, or each process can decide the smallest proposed value it sees in the
shared memory. The following lemma is immediate from the definition of k-set
agreement and T .

Lemma 1. Any wait-free algorithm that solves k-set agreement for some k, 1 ≤
k ≤ n, also solves T .

3 Immediate Snapshot Executions

Consider a full-information and standard-form wait-free algorithm. The imme-
diate snapshot executions of this algorithm form a subset of all its possible
executions. The executions in this set have a structure that makes them easier
to analyze.
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An immediate snapshot (IS) execution [1,3,4,18] is modeled by a sequence of
non-empty sets of processes α = s1, . . . , sl, . . .. Processes in sl first perform, one
by one, a write operation and then read all registers. Intuitively, the processes
execute a concurrent write followed by a concurrent atomic snapshot of the
shared memory. If pi ∈ sl, then we say that pi is active in the l-th set of α.

Since we only consider wait-free algorithms, we can restrict our attention
to minimal final IS executions, namely, each process executes computation steps
until it decides. Indeed, each process decides in the last round in which it is active.
We sometimes write α as a concatenation of sequences of sets, i.e., α = α1 α2,
where α1 = s1 s2 . . . s� and α2 = s�+1 s�+2 . . . st.

For example, α = {p, q} {r} denotes an IS execution made of 2 sets. Processes
p and q are active in the first set and r is active in the second one. Observe that
p and q see each other, but do not see r because it executes steps of computation
after p and q read the whole memory.

Although IS execution are well-structured they still have uncertainty, as the
following example shows. In addition to the execution α described in the previous
paragraph, consider the IS execution α′ = {p} {q} {r}. Note that p only sees itself
in α′ while sees itself and q in α. The reader can verify that the views of q and
r are the same in α and α′. Therefore, α ∼¬p

α′.
For a sequence α = s1 s2 . . . st of sets of processes and a process pi, we write

pi /∈ α if pi /∈ s� for every �, 1 ≤ � ≤ t, . Alternatively, we say that pi does not
appear in α. Also, for pi and r ≥ 1, we let {pi}r denote the sequence containing
r times the set {pi}.

Formally, we say that a process pi is unseen in an IS execution α = s1 s2 . . . st

if and only if there exists �, 1 ≤ � ≤ t − 1, such that pi /∈ sx, 1 ≤ x ≤ � and
sy = {pi}, � < y ≤ t. Therefore, if pi is unseen in α, then α = α′ {pi}r, for
some r ≥ 1 and α′, such that pi /∈ α′. Intuitively, pi is unseen in α since every
step of pi occurs after all other processes decided. A process pi is seen in an IS
execution α if it is not unseen in α.

Lemmas 2 and 3 below are from [1]. They capture two properties about the
uncertainty in minimal final IS executions. They will be used in the impossibility
proof of k-set agreement presented in the following section. Lemma 2 is Lemma
3.3 in [1] and Lemma 3 is a restatement of Lemma 3.4 in [1].

Lemma 2. If a process pi is unseen in a minimal final IS execution α, then
there is no minimal final IS execution α′ such that α ∼¬pi

α′.

Lemma 3. Let α be a minimal final IS execution in which a process pi is seen.
Then there is a unique minimal final IS execution α′ such that α ∼¬pi

α′.

Let A be a wait-free algorithm. For any given collection C of inputs to the
processes, let S be the set containing all minimal final IS executions of A in
which the processes start with inputs C. For a subset P of processes, let PSP (S)
be the set containing all executions in S with participating set P . If there is no
ambiguity, we write PSP instead of PSP (S).
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For a proper subset of processes P and a process p /∈ P , the next lemma shows
that there is a one-to-one correspondence between the executions in PSP and
the executions in PSP∪{p} in which p is unseen.

Lemma 4. For every proper subset of processes P and a process pi /∈ P , the
following properties hold:

1. For every execution α ∈ PSP there is a unique execution α′ ∈ PSP∪{pi}
such that pi is unseen in α′ and α is equal to the maximal prefix of α′ in
which pi does not appear.

2. For every execution α ∈ PSP∪{pi} such that pi is unseen in α, PSP contains
the maximal prefix α′ of α in which pi does not appear.

Proof. First let us consider an execution α ∈ PSP . Since A is asynchronous wait-
free, α can be extended to a minimal final execution α′ with ps(α′) = P ∪ {pi},
namely, α′ = α {pi}r, for some r ≥ 1. Thus α′ ∈ PSP∪{pi}. Note that pi is unseen
in α′ because by hypothesis pi /∈ α. In addition, α is the maximal prefix of α′ in
which pi does not appear. Moreover, α′ is unique because A is deterministic.

Now let us consider an execution α ∈ PSP∪{pi} such that pi is unseen in α.
We have that α = α′ {pi}r, for some r ≥ 1 and pi /∈ α′. Note that α′ is the
maximal prefix of α in which pi does not appear. Moreover, α′ ∈ PSP because,
by hypothesis, each process that appears in α′ executes steps of computation
until it decides, namely, it is a minimal final IS execution with ps(α′) = P . ��

4 Impossibility of k-Set Agreement

This section is devoted to proving the impossibility of the k-set agreement task
in the asynchronous wait-free read/write shared memory model (Theorem 1).
The core of the proof is Lemma 6, roughly showing that every wait-free algo-
rithm solving the task T (defined in Section 2) maintains an invariant concerning
the number of its executions in which � distinct processes decide � distinct val-
ues. Indeed this lemma can be regarded as the operational counterpart of the
Sperner’s lemma [10, p. 36]. Then, using Lemma 1 and the invariant in Lemma 6,
we conclude that k-set agreement is not wait-free solvable.

Let A be a wait-free algorithm that solves T . Consider n distinct input values
v1, . . . , vn and let S be the set containing all minimal final IS executions of A in
which process pi has input vi, 1 ≤ i ≤ n.

Recall that PSP is the set of all executions in S with participating set P .
The next simple lemma directly follows from the validity property of T , and it
is used in the proof of Lemma 6 below.

Lemma 5. For every subset of processes P and for every execution α ∈ PSP ,
dec(α) contains only the inputs of processes in P .

When P = {p1, . . . , pt}, 1 ≤ t ≤ n, we write PSt instead of PSP .

Lemma 6. For all t, 1 ≤ t ≤ n, PSt contains exactly an odd number of execu-
tions α1, . . . , α2q+1, q ≥ 0, such that dec(αj) = {v1, . . . , vt}, 1 ≤ j ≤ 2q + 1.
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Intuitively, the proof of Lemma 6 proceeds by constructing a graph G using
the executions in PSt as vertices and putting an edge between two executions
α, α′ ∈ PSt if and only if at most one process distinguishes between them and at
least t− 1 distinct values are decided in α and α′. The graph G also contains an
“imaginary” vertex v∗, which is defined in such a way that it has odd degree. This
guarantees that G contains at least one vertex with odd degree. All other vertices
of G with odd degree, if they exist, correspond to the executions of PSt in which
the values v1, . . . , vt are decided. Let M be the set containing all vertices of G
with odd degree except v∗. Using the well known handshaking lemma, stating
that every graph has an even number of vertices with odd degree,1 the proof
finally concludes |M ∪ {v∗}| is even, hence |M | is odd, which proves the lemma.

Proof (of Lemma 6). We proceed by induction on t. For t = 1, PS1 only contains
p1’s solo execution, that is, PS1 only contains α = {p1}r, for some r ≥ 1.
Obviously, p1 must decide v1 in α, which proves the base of the induction. Now
suppose that the lemma holds for t, 1 ≤ t ≤ n− 1. We prove it holds for t + 1.

We define a graph G = (V,E) whose vertices are the executions in PSt+1,
plus an additional vertex v∗, that is, V = PSt+1 ∪ {v∗}. The edges of G are
defined as follows (recall that vi is the input of process pi).

– For every pair of executions α, α′ ∈ PSt+1, (α, α′) ∈ E if and only if there
is a process pi such that α ∼¬pi

α′ and dec(α,¬pi) = {v1, . . . , vt}; hence,
dec(α′,¬pi) = {v1, . . . , vt}.

– For every execution α ∈ PSt+1, (v∗, α) ∈ E if and only if pt+1 is unseen in
α and dec(α,¬pt+1) = {v1, . . . , vt}.

Fig. 1 depicts an example of the graph G constructed in the inductive step t = 2
for a one-round algorithm for three processes p, q and r. In the algorithm, a
process decides its proposal if it sees less than 2 processes. Otherwise, if it sees
that its proposal is not the largest one, then decides the smallest proposal, and
it decides the second smallest proposal in any other case. In Fig. 1 the inputs for
p, q and r are 1, 2 and 3, respectively, and process r corresponds to pt+1. In each
execution, above each process it appears the value that the process decides in
that execution. Observe that there is an edge between executions α = {p} {q, r}
and α′ = {p, q, r} because, first, α ∼¬p

α′ (p sees no other process than itself in α
while it sees q and r in α′), and second, q and r decide 1 and 2, respectively,
in α. Also there is an edge between v∗ and α = {p, q} {r} because r is unseen
in α and p and q decide 1 and 2. Finally, note that there is no edge between
α = {p, q, r} and α′ = {r} {p, q} because although α ∼¬r

α′, both p and q decide 1
in α.

For the rest of the proof, let deg(v) denote the degree of a vertex v of G.
Below, we prove the following properties about the degrees of the vertices in G.

1. deg(v∗) is odd.
1 This result is a consequence of Euler’s observation that for every graph G = (V, E),∑

v∈V deg(v) = 2 |E|.
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2. For all α ∈ PSt+1 = V \ {v∗}:
(a) If dec(α) = {v1, . . . , vt+1}, then deg(α) = 1.
(b) If dec(α) = {v1, . . . , vt}, then deg(α) = 2.
(c) Otherwise, deg(α) = 0.

These properties, can be use to derive the induction step, together with the next
well-known result of graph theory.

Handshaking Lemma. Every graph has an even number of vertices with odd
degree.

1 2 2
{p} {q} {r}

1 1 2
{p} {q, r}

2 1 2
{q} {p} {r}

v∗ 1 1 2
{p, q, r}

1 2 2
{p, q} {r}

2 1 2
{q} {p, r}

1 3 1
{p} {r} {q}

2 3 1
{q} {r} {p}

3 1 1
{r} {p, q}

1 3 1
{p, r} {q}

2 3 1
{q, r} {p}

3 2 1
{r} {q} {p}

3 1 1
{r} {p} {q}

Fig. 1. Graph associated with a 3-process 1-round algorithm

The vertices of G with odd degree are exactly M ∪ {v∗}, where M is the
set that contains every execution α ∈ PSt+1 such that dec(α) = {v1, . . . , vt+1}.
Thus, by the Handshaking Lemma, |M ∪ {v∗}| is even, hence |M | is odd. We
now prove the properties of the degrees.

deg(v∗) is odd. Consider an execution α ∈ PSt. By Lemma 4(1), there is a
unique execution α′ ∈ PSt+1 such that pt+1 is unseen in α′ and α is equal to
the maximal prefix of α′ in which pt+1 does not appear. Conversely, by Lemma
4(2), for every execution α ∈ PSt+1 such that pt+1 is unseen in α, PSt contains
the maximal prefix α′ of α in which pt+1 does not appear.

By the induction hypothesis, we have that PSt contains exactly an odd
number of executions α1, . . . , α2q+1, q ≥ 0, such that dec(αj) = {v1, . . . , vt},
1 ≤ j ≤ 2q + 1. Thus for every αj , 1 ≤ j ≤ 2q + 1, there is a unique execution
α′j ∈ PSt+1 such that pt+1 is unseen in α′j and αj is a prefix of α′j . Hence,
(v∗, α′j) ∈ E, since dec(α′j ,¬pt+1) = {v1, . . . , vt} because dec(αj) = {v1, . . . , vt}.
Moreover, these are all the edges adjacent to v∗ because, as explained above,
there is a one-to-one correspondence between the executions of PSt and the
executions of PSt+1 in which pt+1 is unseen. Therefore, deg(v∗) is odd.

For every execution α ∈ PSt+1, if dec(α) = {v1, . . . , vt+1}, then deg(α) = 1
Since |dec(α)| = |{v1, . . . , vt+1}| = t+ 1 and |ps(α)| = |{p1, . . . , pt+1}| = t+ 1, it
follows that for every v ∈ {v1, . . . , vt+1}, there is exactly one process in α that
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decides v. Let p denote the process that decides vt+1 in α. Thus, dec(α,¬p) =
{v1, . . . , vt}. We identify two subcases: p is unseen in α or p is seen in α.

If p is unseen in α, then, by Lemma 4(2), PSP contains the maximal prefix α′

of α in which p does not appear, where P = {p1, . . . , pt+1} \ {p}. Observe that
dec(α′) = {v1, . . . , vt}. Lemma 5 and the assumption that each pi has a distinct
input vi, imply that P = {p1, . . . , pt+1} \ {p} = {p1, . . . , pt}, hence p = pt+1.
Therefore, pt+1 is unseen in α and dec(α,¬pt+1) = {v1, . . . , vt}, because as
explained above dec(α,¬p) = {v1, . . . , vt}. By definition of G, (v∗, α) ∈ E.

We claim that (v∗, α) is the only edge that is adjacent to α. First, there
is no execution α′ ∈ PSt+1 such that α ∼¬q

α′ with q = pt+1, by Lemma 2.
Second, for every process q ∈ {p1, . . . , pt}, dec(α,¬q) �= {v1, . . . , vt} because for
each v ∈ {v1, . . . , vt+1} there is exactly one process in α that decides v, and q
decides on a value in {v1, . . . , vt}. These two observations imply that there is no
α′ ∈ PSt+1 such that (α, α′) ∈ E, and hence deg(α) = 1.

For the second subcase, namely, p is seen in α, there is only one execution α′ ∈
PSt+1 such that α ∼¬q

α′, by Lemma 3. Then (α, α′) ∈ E, because dec(α,¬p) =
{v1, . . . , vt}.

The edge (α, α′) is the only edge that is adjacent to α: We have that for every
q ∈ {p1, . . . , pt}, dec(α,¬q) �= {v1, . . . , vt} because for each v ∈ {v1, . . . , vt+1}
there is exactly one process in α that decides v, and q decides a value of
{v1, . . . , vt}. Therefore, there does not exist a α′′ ∈ PSt+1 such that α′′ �= α′

and (α, α′′) ∈ E. Hence we get deg(α) = 1.

For every α ∈ PSt+1, if dec(α)={v1, . . . , vt}, then deg(α)=2. Since |dec(α)|=
|{v1, . . . , vt}| = t and |ps(α)| = |{p1, . . . , pt+1}| = t + 1, we get that there must
be a value v̄ ∈ {v1, . . . , vt} such that there are two distinct processes q1, q2 ∈
{p1, . . . , pt+1} that decide v̄ in α. Therefore, for each i ∈ {1, 2}, dec(α,¬qi) =
{v1, . . . , vt}. Also observe that v̄ is the unique value of {v1, . . . , vt} that has that
property.

We identify three subcases: q1 is unseen and q2 is seen in α, q1 is seen and q2
is unseen in α, and both q1 and q2 are seen in α. Note that it is impossible that
both q1 and q2 are unseen.

Consider first the subcase q1 is unseen and q2 is seen in α. The argument is
similar to the one in the previous case. If q1 is unseen in α, then, by Lemma
4(2), PSP contains the maximal prefix α′ of α in which q1 does not appear,
where P = {p1, . . . , pt+1} \ {q1}. Observe that dec(α′) = {v1, . . . , vt}. Thus,
by Lemma 5 and the assumption that each pi has a distinct input vi, we get
P = {p1, . . . , pt+1} \ {q1} = {p1, . . . , pt}, and hence q1 = pt+1. Therefore, pt+1 is
unseen in α and dec(α,¬pt+1) = {v1, . . . , vt}, because dec(α,¬q1) = {v1, . . . , vt}.
Hence (v∗, α) ∈ E.

For q2, by Lemma 3, there is an execution α′ ∈ PSt+1 such that α ∼¬q2
α′. Then

(α, α′) ∈ E, because dec(α,¬q2) = {v1, . . . , vt}.
We claim that (v∗, α) and (α, α′) are the unique edges adjacent to α. First,

for q1, there is no execution α′′ ∈ PSt+1 such that α ∼¬q1
α′′, by Lemma 2. Second,

for q2, there is no α′′ �= α′ such that α ∼¬q2
α′′, by Lemma 3. And third, for every
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process q ∈ {p1, . . . , pt+1} distinct from q1 and q2, dec(α,¬q) �= {v1, . . . , vt}
because q decides on a value in {v1, . . . , vt} and, as mentioned above, there is
no other process in {p1, . . . , pt+1} that decides the same value as q. Therefore,
deg(α) = 2.

The subcase in which q1 is seen and q2 is unseen in α is symmetric to the
previous one.

For the third subcase, that is, q1 and q2 are seen in α, for each i ∈ {1, 2} there
is an execution α′i ∈ PSt+1 such that α ∼¬qi

α′i, by Lemma 3. Then (α, α′i) ∈ E,
because dec(α,¬qi) = {v1, . . . , vt}. As in the first subcase, it can be easily proved
that there is no extra edge that is adjacent to α. Hence deg(α) = 2.

Otherwise, deg(α) = 0. We have two subcases: |dec(α)| < t, or |dec(α)| = t and
dec(α) �= {v1, . . . , vt}. In both subcases, for every process p ∈ {p1, . . . , pt+1},
dec(α,¬p) �= {v1, . . . , vt}, hence it follows from the definition of G that
deg(α) = 0. ��
Theorem 1. There is no wait-free algorithm that solves k-set agreement for
k < n.

Proof. Suppose that there is a wait-free algorithm A that solves k-set agreement,
for some k, 1 ≤ k ≤ n− 1. By Lemma 1, A solves T . Consider n distinct input
values v1, . . . , vn and let S be the set containing all minimal final IS executions
of A in which process pi has input vi, 1 ≤ i ≤ n. Consider the set PSk+1(S),
namely, the set containing all executions in S with participating set p1, . . . , pk+1.
By Lemma 6, PSk+1(S) contains an execution α such that |dec(α)| = k+1. But
this contradicts the fact that A solves k-set agreement, since the k-agreement
property means that in all executions α ∈ PSk+1(S), |dec(α)| ≤ k. ��

5 An Operational Perspective

From an operational perspective we can think of the proof of Lemma 6, and
hence the impossibility proof of k-set agreement, in the following way.

The induction hypothesis of the proof states that there is an odd number of
minimal final IS executions α1, . . . , α2q+1, q ≥ 0, such that for each α ∈ S =
{α1, . . . , α2q+1}, ps(α) = {p1, . . . , pk} and dec(α) = D = {v1, . . . , vk}, where vi

is the input of pi, 1 ≤ i ≤ k. Namely, k processes decide k distinct values in α.
As explained in the proof, each α ∈ E can be extended to a minimal final IS
execution γ1 such that ps(γ1) = {p1, . . . , pk+1} and pk+1 is unseen in γ1. Thus,
α is the maximal prefix of γ1 in which pk+1 does not appear, hence pk+1 decides
after all processes p1, . . . , pk decide in γ1. Moreover, dec(γ1,¬pk+1) = D because
dec(α) = D. Let us fix α and γ1.

Then, taking advantage of the uncertainty related to IS execution, what the
proof essentially does is to produce a path P in the graph G that starts in γ1.
If |dec(γ1)| = k + 1, then P only contains γ1. Otherwise, |dec(γ1)| = |D| = k
and the proof looks for an execution γ2 such that there is a process p such that
γ1 ∼¬p

γ2, and hence dec(γ2,¬p) = D. If there is no such execution γ2 then P
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only contains γ1, otherwise γ2 is appended to P and the procedure continues by
considering γ2 instead of γ1.

In the end we get a path P = γ1, γ2, . . . , γs, such that s ≥ 1 and for each i,
1 ≤ i ≤ s−1, there is a process p such that γi ∼¬p

γi+1 and dec(γi,¬p) = D. What
is important to notice is that the last execution (vertex) γs of P holds either
|dec(γs)| = k + 1, or |dec(γs)| = |D| = k and pk+1 is unseen in γs. In the second
case we have that the maximal prefix α′ of γs in which pk+1 does not appear,
belongs to S. Therefore, in some sense, the path P “matches” α (the maximal
prefix of γ1 in which pk+1 does not appear) to α′. For example, in the graph
in Fig. 1, the sequence of IS executions {p q} {r}, {q} {p} {r} matches {p q} to
{q} {p}. However, only an even number of execution of S can be matched in this
way, and since |S| is odd, we get that there must be a path that matches an
α ∈ S to an execution in which k+ 1 values are decided. In Fig. 1, the path that
starts at {p} {q} {r} and ends at {q} {r} {p}, matches {p} {q} to {q} {r} {p}.

Finally, an execution γ with |dec(γ)| = k + 1, that is not matched to an
execution in S, is matched to an execution γ′ with |dec(γ′)| = k + 1. In Fig. 1,
{q r} {p} is matched to {r} {q} {p}.
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Abstract. Consensus is the paradigmatic problem in fault-tolerant dis-
tributed computing: it requires network nodes that communicate by mes-
sage passing to agree on common value even in the presence of (benign
or malicious) faults. Several algorithms for solving Consensus exist, but
few of them have been rigorously verified, much less so formally. The
Heard-Of model proposes a simple, unifying framework for defining dis-
tributed algorithms in the presence of communication faults. Algorithms
proceed in communication-closed rounds, and assumptions on the faults
tolerated by the algorithm are stated abstractly in the form of communi-
cation predicates. Extending previous work on the case of benign faults,
our approach relies on the fact that properties such as Consensus can be
verified over a coarse-grained, round-based representation of executions.
We have encoded the Heard-Of model in the interactive proof assistant
Isabelle/HOL and have used this encoding to formally verify three Con-
sensus algorithms based on synchronous and asynchronous assumptions.
Our proofs give some new insights into the correctness of the algorithms,
in particular with respect to transient faults.

1 Introduction

Fault-tolerant distributed computing is the art of making separate computing
nodes cooperate for achieving a common objective, even in the presence of faults.
In particular, the Consensus problem assumes that every node initially proposes
some value, and requires that nodes eventually choose a common value among
the proposed ones. Fault-tolerant distributed algorithms are often subtle, both
in their operational design and in the assumptions they make, including the
underlying model of communication and the kinds and numbers of faults they
tolerate. Benign faults prevent processes from receiving expected messages, but
do not affect the contents of messages received; these may be caused e.g. by
process crashes or link breaks. Malicious faults are more severe as they are aimed
to model any type of (process and link) malfunctioning, including corrupted
process states and corrupted messages. It is well known [8] that Consensus is
unsolvable in a fully asynchronous model of communication if at least one node
may fail by crashing, but that it can be solved in partially synchronous models [6]
even in the presence of malicious faults.
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Given the subtle differences between communication and fault models, it is
all too easy to make erroneous claims about what algorithms actually achieve,
and formal statements and proofs about algorithms appear crucial for compar-
ing them. Surprisingly, few rigorous correctness proofs exist in the literature,
and even fewer of them have been fully checked with the help of formal verifi-
cation methods and tools [18,13]. We believe that this lack of formal analysis
is largely due to the absence of widely accepted frameworks in which models of
computation and faults can be expressed and compared.

Charron-Bost and Schiper [5] proposed the Heard-Of (HO) model as a sim-
ple, unifying framework for defining distributed algorithms that operate in the
presence of benign communication faults. In this model, computations are struc-
tured in rounds: during every round, each process first sends messages, then re-
ceives messages from other processes, and finally makes a local state transition.
Rounds are communication-closed layers in the sense that processes receive mes-
sages solely sent at the round they currently execute. The round-based structure
of the HO model greatly facilitates the design and understanding of distributed
algorithms: an algorithm is simply specified by defining a message sending func-
tion and a next-state function, for every process and round. This operational
description is then complemented by imposing communication predicates on ex-
ecutions, which restrict the kinds of faults that the algorithm tolerates. It has
been shown [5] that common communication and fault models can be represented
within the HO model. In previous work [3,4] we have proved that important cor-
rectness properties such as Consensus can be verified over a “coarse-grained”
model of executions in which rounds are executed atomically, and have applied
this result for formally verifying algorithms in the HO model, using model check-
ing and interactive theorem proving. Independently, Tsuchiya and Schiper [19,20]
also proposed the use of symbolic model checking for verifying HO algorithms.

In the meantime, the HO model has been augmented for supporting malicious
communication faults [2], and it is this extension that we refer to when we speak
of the HO model in the following. Extending [4], we show in this paper that
the reduction theorem that allows us to consider only round-based executions
remains valid in the presence of malicious faults. We present an encoding of the
HO model in the interactive theorem prover Isabelle/HOL [16]. We have used
this encoding to formally prove the correctness of three algorithms for achieving
Consensus in the presence of malicious faults: the UT ,E ,α and AT ,E ,α algorithms
from [2], and the well-known Exponential Information Gathering (EIGByz f )
algorithm [1,15]. The overall approach to verification is quite similar for all three
algorithms. In particular, the EIGByz f algorithm could be transposed “as is” in
the HO model, although it was originally introduced in a traditional model that
caters for faults of processes. We show that EIGByz f tolerates certain transient
faults, which could not be expressed by the original model. The precise, yet
abstract representation of hypotheses on allowed faults in the HO model lets us
not only express such faults but also analyze precisely to which property each
hypothesis contributes. The full Isabelle theories are available on the Web1.

1 http://www.loria.fr/~debrat/

http://www.loria.fr/~debrat/
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The paper is structured as follows: Section 2 reviews the HO model, formally
defines fine-grained and coarse-grained executions, states the fundamental re-
duction theorem, and formally defines the Consensus problem. Our encoding of
the HO model in Isabelle is described in Section 3. Its application to the verifica-
tion of the three algorithms we consider appears in Section 4. Section 5 discusses
related work and concludes the article.

2 The Heard-of Model for Distributed Algorithms

Computations in the HO model are composed of rounds, in which processes
exchange messages, take a step, and then proceed to the next round. In the
parlance of Elrad and Francez [7], each round is a communication-closed layer in
the sense that any message sent in a round can be received only in that round.
Communication faults are abstractly represented in the HO model by means of
heard-of sets (HO) that indicate which links are alive, thus capturing message
omissions, and safe heard-of sets (SHO) that indicate which links are safe, thus
capturing message corruption.

2.1 A Round-Based Computational Model

We suppose that we have a finite, nonempty set Π of process identifiers (or
simply processes) and a set of messages M . By including a designated empty
message in M that processes use to indicate absence of useful information, we
may assume that each process sends a message to every process in Π , in each
round. We denote the cardinality of Π by N > 0, let ⊥ /∈ M be a placeholder
indicating that no message has been received, and write M⊥ = M ∪ {⊥}. To
each p in Π , we associate a process specification Procp = (Statesp , Initp ,Sp ,Tp)
whose components are the following:

– Statesp is a set of p’s states, and Initp ⊆ Statesp is a nonempty subset of
initial states of process p,

– for each integer r ∈ N, a message-sending function S r
p : Statesp ×Π → M ;

– for each integer r ∈ N, a next-state function T r
p : Statesp ×M Π

⊥ → Statesp .

The next-state function T r
p takes as its arguments the current state of process p

and a mapping from (sender) processes to messages or ⊥, and returns the next
state of p.2 In particular, the HO model is built on the assumption of point-to-
point communications, and the next-state function definition is such that in its
second argument, received messages are indexed by Π . The collection of process
specifications Procp is called an algorithm on Π .

As an example of an HO algorithm, a specification of the UT ,E ,α algorithm
introduced in [2], appears as Algorithm 1. We consider a nonempty set V , with

2 For notational simplicity, we assume here that T r
p is a function, but all results carry

over to the case of next-state relations (i.e., non-deterministic processes) [3], which
are accommodated by our Isabelle representation.
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Algorithm 1. The UT ,E ,α algorithm
1: Initialization:
2: xp ∈ V ; initially xp = vp { vp is the initial value of p }
3: votep ∈ V ∪ {?}; initially votep = ?
4: decidep ∈ V ∪ {null}; initially decidep = null

5: Round r = 2φ
6: Sr

p : send 〈 xp 〉 to all processes

7: Tr
p : if received > T values equal to v with v ∈ V then votep := v

8: Round r = 2φ + 1
9: Sr

p : send 〈 votep 〉 to all processes

10: Tr
p : if received > α messages with value v ∈ V then xp := v else xp := v0

11: if received > E messages with value v ∈ V then decidep := v
12: votep := ?

a specific element v0 ∈ V ; the two values ? and null are assumed not to be
in V . Each process p maintains three variables xp , votep , and decidep initialized
to some value in V , ?, and null , respectively. At each round r , every process p
sends xp or votep to all, depending whether r is odd or even. Then, provided
that p receives sufficiently many messages with the same value in V , p updates
xp , votep , or decidep . The algorithm thus involves three threshold values T , E ,
and α, which are basic parameters of how it executes.

2.2 Executing HO Algorithms

Each process of an HO algorithm executes an infinite sequence of rounds, which
are numbered consecutively, starting with round 0. At the beginning of each
round r , process p first emits messages to all processes, computed according
to the message sending function S r

p . It then waits for messages to arrive for
round r before it executes a state transition according to the next-state function
T r

p , based on its current state and the messages it has just received, and starts
a new round.

We define executions with respect to a given collection of initial states (one
per process) and a given receive history μ : Π ×N×Π → M⊥ that specifies, for
each pair p, q of processes and each round r ∈ N, the message μ(p, r , q) that p
receives from q at round r . The initial states, and the receive history determine,
for each p ∈ Π , the sequence of p’s states. Then we define, for each p ∈ Π and
round r ∈ N, the heard-of set

HO(p, r) = {q ∈ Π : μ(p, r , q) �= ⊥},
and the safe heard-of set

SHO(p, r) = {q ∈ Π : μ(p, r , q) = S r
q (sq , p)}

where sq is q’s state at the beginning of round r . Both sets specify the discrep-
ancy between what should be sent and what is actually received. As for the benign
case [5], we make no assumption on the reason why μ(p, r , q) may be different
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from S r
q (sq , p): it may be due to an incorrect sending by q, an incorrect reception

by p, or due to the corruption by the link. Obviously, SHO(p, r) ⊆ HO(p, r), and
HO(p, r) \ SHO(p, r) is the set of processes q whose messages for p in round r
are corrupted.

Assumptions on the underlying system model and communication network,
such as the degree of synchronism and the failure model, are formally expressed
by communication predicates P ⊆ (Π × N → 2Π × 2Π), and the correctness of
an algorithm is asserted relative to a certain communication predicate P . Note
that communication predicates may refer to the (S)HO sets at different rounds
and can therefore express assumptions about transient faults. As discussed in [5],
standard failure models with various degrees of synchronism can be represented
in this way: the weaker the communication predicate is, the more freedom the
system has to provide heard-of and safe heard-of sets, and the harder it will be
to achieve coordination among processes in the corresponding failure model. As
an example, the following communication predicate guarantees that no process
receives more than α corrupted messages in any round, but that every process
receives more than β correct messages at each round:

Pα,β :: ∀p ∈ Π, ∀r ∈ N : |HO(p, r) \ SHO(p, r) | ≤ α ∧ |SHO(p, r) | > β

It is worth noting that, with α = 0 and β = −1, only benign faults may occur,
i.e., all received messages carry the expected content:

Pbenign :: ∀p ∈ Π, ∀r ∈ N : HO(p, r) = SHO(p, r)

2.3 Two Models of Executions

We define two models of execution, whose relationship will be explored further:
the fine-grained model and the coarse-grained model. Both are based on the
notion of (global) configuration which is a tuple of process and channel states,
one per component. The state of any component c in configuration σ is denoted
σ(c). An initial configuration is one in which the state of each process p is in
Initp , and the state of each channel is the empty set. The two models differ in
the nature of the atomic steps which take a configuration to the next one.

Fine-grained executions. Each process p can execute three types of atomic ac-
tions that may change the state of p itself and the state of the channels incident
on p: the sending of a message, the reception of a message, or an internal action.
Only internal actions modify the process state, and process states at the end of
round r do not depend on the order in which messages are received at round r .
An event e consists of the execution of a single action by a process.

In the (classical) fine-grained model of execution, configuration σ′ is a suc-
cessor configuration of σ if there exists some event e that takes σ to σ′. By the
definition of process specification, the pair (σ, σ′) determines a unique event e,
and we say that (σ, σ′) corresponds to e.

A fine-grained execution of an algorithm is then defined to be an ω-sequence
σ0σ1 . . . of configurations where σ0 is an initial configuration, σi+1 is a successor
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configuration of σi for all i ∈ N, and for each p ∈ Π there are infinitely many
i ∈ N such that (σi , σi+1) corresponds to some event by p. The last condition
specifies a condition of (local) progress for each process; since p can execute
a local transition ending round r only if it has sent messages to all processes
and has received messages from all q ∈ HO(p, r), this condition implies the
existence of sufficiently many transitions of type message sending and reception.
Obviously, each fine-grained execution defines a unique receive history.

Coarse-grained executions. We now define an execution model of HO algorithms
that is based on the much coarser abstraction where entire rounds are the unit of
atomicity. A coarse-grained execution is an ω-sequence σ0σ1 . . . of configurations
such that

– σ0 is an initial configuration, and
– at every step, all processes make a transition according to their next-state

function and messages they have received: there exists a receive history μ
such that for all p ∈ Π and all r ∈ N,

σr+1(p) = T r
p

(
σr (p), μr

p

)
where μr

p =
(
q ∈ Π �→ μ(p, r , q)

)
.

In words, the state σr+1(p) is computed according to the next-state function T r
p

from the state σr (p), and the messages that p receives at round r . A step of a
coarse-grained execution thus encapsulates a move by each process. Channels are
considered empty in each configuration σr of such a round-by-round execution
since messages can be received only in the rounds for which they have been sent.

2.4 A Reduction Theorem

We now present a basic theorem, which asserts that in our model, the fine-grained
and coarse-grained execution semantics are indistinguishable from the point of
view of any process. Given a (fine-grained or coarse-grained) execution ρ and a
process q ∈ Π , we define the q-view ρq of ρ for process q as the sequence of q’s
local states in ρ. More precisely, for a fine-grained or a coarse-grained execution
ρ = ρ0ρ1 . . ., the q-view is simply

ρq = ρ0(q) ρ1(q) . . .

Any two executions ρ1 and ρ2 can be compared with respect to the views that
they generate for the processes in Π . We say that two executions ρ1 and ρ2 are
q-equivalent (for q ∈ Π) if ρq

1  ρq
2 where  denotes stuttering equivalence [12],

i.e. if their q-views agree up to finite repetitions of states. We call ρ1 and ρ2

locally equivalent, written ρ1 ≈ ρ2, if they are q-equivalent for all q ∈ Π .
The following theorem asserts that fine-grained and coarse-grained executions

generate the same set of local views.

Theorem 1. For any fine-grained execution ξ of an HO algorithm, there exists
a coarse-grained execution σ of the same algorithm for the same receive history
such that σ ≈ ξ, and vice-versa.
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The proof of this theorem given in [4] for benign faults extends to the more gen-
eral context of malicious faults since it is based on some commutativity properties
(among events) which do not depend on the fault model.

Theorem 1 can be used to verify linear-time properties of HO algorithms
that are expressed in terms of local views of processes, and that are insensitive
to specific interleavings. Formally, we say that a property P is local if for any
(coarse- or fine-grained) executions ρ1 and ρ2 such that ρ1 ≈ ρ2 we have ρ1 |= P
iff ρ2 |= P , i.e., ρ1 satisfies P iff ρ2 does. As an immediate consequence of
Theorem 1, we obtain the following corollary:

Corollary 2. If P is a local property, then σ |= P holds for all coarse-grained
executions σ of an algorithm if and only if ξ |= P also holds for all fine-grained
executions ξ of the same algorithm.

Having to verify a given property just for all coarse-grained executions repre-
sents a significant reduction because coarse-grained executions afford a simpler
representation of the system state (channels are all empty), and because fewer
interleavings of events and fewer (types of) transitions must be considered.

We now indicate a sufficient syntactic criterion for determining when a for-
mula of LTL-X, i.e., linear-time temporal logic without the next-time operator
expresses a local property.3 We assume that the set of state variables that appear
in formulas is of the form V =

⋃
p∈Π Vp where Vp∩Vq = ∅ for different processes

p �= q, and such that any state s ∈ Σp of a process p ∈ Π uniquely determines
the values of the variables in Vp .

We say that a formula ϕ is a p-formula, for p ∈ Π , if it contains only state
variables from Vp . It is easy to see that p-formulas are local properties, as are
first-order combinations of p-formulas, for possibly different processes p ∈ Π .
However, temporal combinations of p-formulas are in general not local because
they can express the simultaneity of local states of different processes, or assert
temporal relations between states of processes [3].

2.5 The Consensus Problem

In this paper, we concentrate on the well-known agreement problem, called Con-
sensus, regarded as the fundamental problem that must be solved to implement
a fault-tolerant system by replication. We assume that the state variables Vp

include variables xp and decidep . The intuitive idea is that at the beginning of
an execution the variable xp holds the initial value of process p. Variable decidep ,
initially null , represents the decision taken by process p in the sense that decidep

is updated to the value v �= null when process p decides value v .
Consensus is specified as the conjunction of the following formulas of LTL-X,

which are all local according to the criterion introduced in Section 2.4.

Integrity. Any decision value must be among the initial values.

∀v : v �= null ∧
( ∨

p∈Π

♦(decidep = v)
)
⇒

∨
q∈Π

xq = v .

3 LTL-X formulas are stuttering invariant [17].
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Irrevocability. A process that has decided must never change its decision value.

∀v : v �= null ⇒ �
(
decidep = v ⇒ �(decidep = v)

)
Agreement. The agreement property requires that if any two processes decide,

they decide on the same value.

∀v ,w : v �= null ∧ w �= null
∧

∨
p,q∈Π

(
♦(decidep = v) ∧ ♦(decideq = w)

)
⇒ v = w .

Termination. The preceding properties are all safety properties; the sole live-
ness property requires that all processes eventually decide.

♦(decidep �= null).

Contrary to classical approaches, the HO model does not flag processes as be-
ing faulty [5], and the above Consensus specification makes no exception: all
processes must decide the same initial value of some process. Such a strong
specification is not trivially unsolvable. Indeed, since there is no deviation from
the next-state functions, processes may not take arbitrary steps, such as deciding
arbitrary values. In the following, we formally prove that three HO algorithms
solve the above strong Consensus specification under suitable communication
predicates, thus demonstrating how the algorithms prevent every process from
being contaminated by corrupted messages.

3 Representing the Heard-of Model in Isabelle

The uniform presentation of algorithms in the HO model by message-sending
and next-state functions, and of system models by communication predicates, is
attractive for formal verification, and the ability to verify these algorithms over
coarse-grained executions significantly reduces the state space. Indeed, several
algorithms solving Consensus under benign faults that were presented in [5] have
been verified (for fixed-size instances) using model checking techniques [19,20,3].
Malicious faults, however, may introduce an infinite number of arbitrary values,
making model checking prohibitive. We now describe our encoding of the HO
model in the interactive proof assistant Isabelle/HOL [16], which allows us to
verify arbitrary instances of algorithms.

3.1 Representing Algorithms and Communication Predicates

In the Isabelle model, the set Π of processes is represented by a type variable
′proc. We will constrain ′proc below so that it can only be instantiated by types
with finitely many values. Similarly, the type variables ′pst and ′msg serve to rep-
resent the sets of local process states and messages, and corresponding concrete
types will be defined for particular algorithms. Assignments of HO (or SHO)
sets to processes are of type.
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type synonym ′proc HO = ′proc → ′proc set ,

i.e., functions from processes to sets of processes. The computational model is
represented using Isabelle’s locale mechanism: models of concrete algorithms are
obtained as instances of the locale, whereas generic properties of the HO model
can be proved within the locale and will be inherited by every instance.

locale SHOAlgorithm =
fixes

initState :: [(′proc :: finite), ′pst ] → bool and
sendMsg :: [nat , ′proc, ′proc, ′pst ] → ′msg and
nextState :: [nat , ′proc, ′pst , (′proc ⇀ ′msg), ′pst ] → bool and
commPerRd :: [′proc HO , ′proc HO ] → bool
commGlobal :: [nat → ′proc HO ,nat → ′proc HO ] → bool

The interface of the Isabelle locale representing HO algorithms is shown above.
It takes five parameters: initState represents a predicate (boolean function)
such that initState p s is true iff s is an initial state of process p. (In Is-
abelle/HOL, function application is denoted by juxtaposition.) Similarly, the
parameters sendMsg and nextState formally represent the message-sending and
next-state functions S r

p and T r
p . For convenience, the communication predicate

associated with the algorithm is split into a predicate commPerRd , which is
evaluated at every round, and a predicate commGlobal , evaluated globally over
ω-sequences of HO and SHO collections (cf. the definition of SHORun below).

3.2 Defining Coarse-Grained Executions

By Theorem 1, it is enough to verify Consensus algorithms over coarse-grained
executions only, and we represent just these in Isabelle. As explained in Sec-
tion 2.3, a coarse-grained execution is an ω-sequence of configurations, each of
which is a function of type ′proc → ′pst . Since channels are empty in every
configuration of a coarse-grained execution, they need not be modeled.

In an initial configuration, every process is in an initial state:

definition initConfig where initConfig cfg ≡ ∀p. initState p (cfg p).

Configuration cfg ′ is a possible successor of configuration cfg at round r of an
execution, given assignments HO and SHO of HO (resp., SHO) sets if for every
process p there exists a vector μ of incoming messages compatible with HO and
SHO such that the states of p before and after the transition and the message
vector μ satisfy the nextState predicate.

definition nextConfig where nextConfig r cfg HO SHO cfg ′ ≡
∀p. ∃m ∈ msgsVectors r p cfg HO SHO . nextState r p (cfg p) m (cfg ′ p)

where the set of possible message vectors is defined as

definition msgsVectors where msgsVectors r p cfg HO SHO ≡
{m. (∀q. q ∈ SHO p ←→ m q = Some (sendMsg r q p (cfg q))) ∧

(∀q. q ∈ HO p ←→ m q �= None)}
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In words, vector m is compatible with HO and SHO if for all processes q in
p’s HO set, m q �= None,4 and moreover, for q in p’s SHO set, m q equals the
message that q sent to p for the current round according to the sendMsg function.
Because the value m q is unconstrained for processes q ∈ (HO p) \ (SHO p),
any type-correct value may be received from these processes.

We now define a predicate characterizing executions of an HO algorithm, rela-
tive to collections HOs and SHOs , as infinite sequences of configurations c0c1 . . .
where c0 is an initial configuration, for all r , configuration cr+1 is a successor of
cr , and the Heard-Of collections satisfy the communication predicate.

definition SHORun where SHORun rho HOs SHOs ≡
initConfig (rho 0)

∧ ∀r . nextConfig r (rho r) (HOs r) (SHOs r) (rho (Suc r))
∧ ∀r . commPerRd (HOs r) (SHOs r)
∧ commGlobal HOs SHOs

4 Verifying Concrete Algorithms

We outline how different Consensus algorithms can be represented and verified
as instances of the locale SHOAlgorithm introduced previously.

4.1 Modeling and Verifying Non-synchronous Algorithms in
Isabelle

Biely et al. [2] introduce two non-synchronous Consensus algorithms tolerat-
ing malicious faults: the UT ,E ,α algorithm introduced in Section 2.1, and a
one-round algorithm called AT ,E ,α. We instantiate the generic Isabelle locale
SHOAlgorithm for these algorithms and verify their correctness.

Figure 1 shows the representation of UT ,E ,α in Isabelle. We begin by declaring
an anonymous type Proc of processes that is assumed to be finite. We then in-
troduce the parameters T , E and α and indicate the assumed relations between
them. Process states are represented as a record pstate, and messages are simi-
larly represented as a data type msg. The definitions of the initial state predicate
and the message-sending function are straightforward. Observe that the x field
of initial states is left unconstrained, hence the initial value of processes may be
any type-correct value. The definition of the next-state relation is split into two
cases depending on the round number being even or odd.

The communication predicate for the UT ,E ,α algorithm, as specified in [2], is
defined as the conjunction of the two following predicates:

definition Ute commPerRd where Ute commPerRd HO SHO ≡
∀p. card ((HO p) \ (SHO p)) ≤ alpha

∧ card (SHO p) > N + 2 ∗ alpha − E − 1
∧ card (SHO p) > T

4 Isabelle’s None corresponds to the pseudo-value ⊥ /∈ M introduced in Section 2.
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typedecl Proc
axiomatization where procFinite : finite (UNIV :: Proc set)
abbreviation N ≡ card (UNIV :: Proc set) – cardinality of the set of processes

axiomatization T :: nat and E :: nat and α :: nat where
E − α > N ÷ 2 and T − α > N ÷ 2 and E < N and T < N

consts defaultv :: ′val

record ′val pstate =
x :: ′val
vote :: ′val option
decide :: ′val option

datatype ′val msg =
Val ′val

| Vote ′val option

definition step where step r ≡ r mod 2

definition initState where
initState p st ≡ vote st = None ∧ decide st = None

definition sendMsg where
sendMsg r ≡ if step r = 0 then Val(x st) else Vote(vote st)

definition next0 where
next0 r p st msgs st ′ ≡

(∃v . card{q . msgs q = Some (Val v)} > T ∧ st ′ = st(|vote := Some v |))
∨ ((¬∃v . card{q . msgs q = Some (Val v)} > T ) ∧ st ′ = st(|vote := None|))
definition next1 where
next1 r p st msgs st ′ ≡

vote st ′ = None
∧ (∃v . card {q . msgs q = Some (Vote (Some v))} > α ∧ x st ′ = v) ∨

((¬∃v . card {q . msgs q = Some (Vote (Some v))} > α) ∧ x st ′ = defaultv)
∧ (∃v . card {q . msgs q = Some (Vote (Some v))} > E ∧ decide st ′ = Some v) ∨

((¬∃v . card {q . msgs q = Some (Vote (Some v))} > E ) ∧ decide st ′ = decide st)

definition nextState where nextState r ≡ if step r = 0 then next0 r else next1 r

Fig. 1. Isabelle representation of the UT ,E ,α algorithm

definition phase where phase r ≡ r div 2
definition Ute commGlobal where
Ute commGlobal HOs SHOs ≡ ∀r . ∃φ > phase r . ∃r ′. ∃π. ∀p.

r ′ = 2 ∗ φ+ 1
∧ π = HOs r ′ p ∧ π = SHOs r ′ p
∧ card (SHOs (r ′ + 1) p) > T ∧ card (SHOs (r ′ + 2) p) > E

The “round-by-round” predicate Ute commPerRd is just the predicate Pα,β in-
troduced in Section 2.2 for β = max(N + 2α − E − 1,T ). It ensures the safety
properties of the algorithm. The “global” predicate Ute commGlobal is used to
prove termination. It requires that there are infinitely many phases φ such that
(1) the HO and SHO processes for all processes are identical in the second step
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of phase φ and (2) the cardinality of the SHO sets for all processes exceeds T
(resp., E ) in the first (resp., second) step of the subsequent phase.

Finally, we declare UT ,E ,α to be an instance of the generic locale for SHO
algorithms described in Section 3. This is achieved by the following Isabelle
command, which instantiates the parameters of the locale SHOAlgorithm by the
operators defined for the UT ,E ,α algorithm.

interpretation SHOAlgorithm
initState sendMsg nextStateUte commPerRd Ute commGlobal

by unfold locales

We have used Isabelle to formally prove the correctness of UT ,E ,α (for an arbi-
trary number of processes). The proof is based on the informal proof given in [2],
which we have split into a sequence of lemmas. Our main contribution is that
we have been able to carry out a formal proof of a non-synchronous algorithm
tolerating malicious faults with reasonable effort (the overall size of the verbose
Isar proof script is under 900 lines, including comments). This would not have
been possible without the high level of abstraction provided by the HO model.
Based on the machine-checked proof, we can confidently assert the correctness
of UT ,E ,α.

Theorem 3. The UT ,E ,α algorithm solves Consensus under the communication
predicate specified by Ute commPerRd and Ute commGlobal .

The AT ,E ,α algorithm, introduced together with UT ,E ,α in [2], is represented in
Isabelle in an analogous way. It is a one-round HO algorithm in which a decision
is taken immediately if a sufficient number of identical messages is received.
UT ,E ,α and AT ,E ,α differ in the algorithmic structure and rely on different

communication predicates. In particular,AT ,E ,α has a simpler “round-by-round”
predicate but a more elaborate “global” predicate:

definition Ate commPerRd where
Ate commPerRd HO SHO ≡ ∀p. card ((HO p) \ (SHO p)) ≤ α

definition Ate commGlobal where
Ate commGlobal HOs SHOs ≡

∀r p. ∃r ′ > r . card (HOs r ′ p) > T
∧ ∀r p. ∃r ′ > r . card (SHOs r ′ p) > E
∧ ∀r . ∃r ′ > r . ∃π1 π2. card π1 > E − α ∧ card π2 > T ∧

∀p ∈ π1. HOs r ′ p = π2 ∧ SHOs r ′ p = π2

These two predicates require that:

– the number of corrupted messages in each round is never greater than α,
– T and E thresholds are passed infinitely often, for every process,
– infinitely often, there exists a sufficiently big set π1 of processes whose HO

and SHO sets are all identical to some set π2 that passes the T threshold.

We have again formally proved in Isabelle the correctness of the AT ,E ,α algo-
rithm under this communication predicate. Despite the differences in the algo-
rithms and the predicates, the effort required for carrying out the two proofs is
quite comparable.
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4.2 Verifying a Synchronous Algorithm

Our third case study is the well-known EIGByz f [1,15] algorithm, which decides
after f + 1 rounds and is designed for synchronous system models. Encoding
EIGByz f in the HO model is straightforward. We have proved in Isabelle that
the algorithm solves Consensus under the communication predicate defined by
the round-by-round predicate R(r) and the global predicate G, defined as

R(r) ::
∣∣∣∣ ⋂
p∈Π

SHO(p, r)
∣∣∣∣ >

N + f
2

G ::
∣∣∣∣ ⋂
p∈Π,r∈N

SHO(p, r)
∣∣∣∣ ≥ N − f .

EIGByz f was designed for synchronous systems with reliable links and at most
f faulty processes. In such a system, every process receives the correct message
from at least the non-faulty processes at every round, and therefore the predicate
G is satisfied. The standard correctness proof for EIGByz f [1,15] assumes that
N > 3f , and therefore N−f > N+f

2 . Since moreover, for any r ∈ N, we obviously
have( ⋂

p∈Π,r ′∈N

SHO(p, r ′)
)
⊆
( ⋂

p∈Π

SHO(p, r)
)
,

it follows that any execution of EIGByz f where N > 3f also satisfies ∀r : R(r).
The standard correctness hypotheses thus imply our communication predicates.

However, our proof shows that EIGByz f can indeed tolerate more transient
faults than the standard bound can express. For example, consider the case
where N = 5 and f = 2. Our predicates are satisfied in executions where two
processes exhibit transient faults, but never fail simultaneously. Indeed, in such
an execution, every process receives four correct messages at every round r , hence
R(r) holds. Also, G is satisfied because there are three processes from which
every process receives the correct messages at all rounds. By our correctness
proof, it follows that EIGByz f then achieves Consensus, unlike what one could
expect from the standard correctness predicate. This observation underlines the
interest of expressing assumptions about transient faults, as in the HO model.

Finally, it is worth noting that, unlike UT ,E ,α and AT ,E ,α, no assumption on
the sets HO(p, r) \ SHO(p, r) is ever required for the correctness of EIGByz f :
our predicates for EIGByz f are expressed in terms of the SHO sets only. In
other words, the conditions ensuring the correctness of EIGByz f only specify
how links must be both safe and live. However, contrasting with UT ,E ,α and
AT ,E ,α, which are correct under round-by-round conditions, EIGByz f requires
a global predicate on the sequence of rounds (namely, G). Such global predicates
on just the safe heard-of sets actually correspond to what is classically called
the “synchronous approach”.

5 Related and Future Work

Despite the crucial need for rigorous correctness proofs, especially in the con-
text of fault-tolerance, few distributed algorithms have been formally verified.
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Moreover, formal verification of these algorithms mostly concerns benign faults
(e.g., [19,20,3]) or even assumes that no fault may occur (e.g., [9,10]). We are
aware of a few contributions addressing formal verification of distributed al-
gorithms in the context of malicious faults, but all of them consider perfectly
synchronous systems (e.g., [14,18]), with the exception of recent work by Lam-
port [13]. Lamport gives a formal safety proof of a variant on the Paxos algorithm
that tolerates Byzantine faults (i.e., processes may deviate from their transition
function). This algorithm, like most non-synchronous Consensus algorithms de-
signed to tolerate malicious faults, assumes that processes can authenticate their
communications, for example based on the use of digital signatures. A digital sig-
nature for process p is an extra information that p can add to any of its outgoing
messages in order to prove that the message really originated at p, even if it has
been relayed by several other processes. This informal description actually refers
to the semantics of messages, and as pointed out by Lynch [15], no formal defi-
nition of malicious faults with authentication has ever been given. We therefore
contend that relying on properties of authenticated messages represents a gap
in the proof of an algorithm that uses them. Since neither AT ,E ,α, UT ,E ,α, nor
EIGByz need authentication, we have been able to formally verify each of these
Consensus algorithms in the context of malicious (communication) faults.

The Heard-Of model, in which we have carried out our work, lets us describe
different algorithms, designed for different communication and fault models, in
a uniform way. We verified three Consensus algorithms (UT ,E ,α, AT ,E ,α and
EIGByz f ) that tolerate malicious faults in our encoding of the HO model in
the interactive proof assistant Isabelle/HOL, and we are confident that other
algorithms can be verified with similar effort. Our proofs are at least an order of
magnitude shorter than proofs for comparable algorithms under benign faults,
such as the correctness proof for DiskPaxos [11] in Isabelle/HOL. This difference
is essentially due to the higher level of abstraction gained through the use of the
HO model, which allows us to consider only coarse-grained executions.

In future work, we would like to extend the framework to also cover malicious
(Byzantine) transition faults. Although transition faults are indistinguishable
from malicious communication faults to other processes in the network, the def-
inition of Consensus has to be adapted, since no requirements can be placed
on faulty processes. We are also interested in the representation of and formal
reasoning about properties such as authentication, atomic broadcast or weak-
interactive consistency in the HO model.
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Abstract. We explore the capability of a network of extremely lim-
ited computational entities to decide properties about any of its sub-
networks. We consider that the underlying network of the interacting
entities (devices, agents, processes etc.) is modeled by a complete in-
teraction graph and we devise simple graph protocols that can decide
properties of some input subgraph provided by some preprocessing on
the network. The agents are modeled as finite-state automata and run
the same global graph protocol. Each protocol is a fixed size grammar,
that is, its description is independent of the size (number of agents) of
the network. This size is not known by the agents. We propose a simple
model, the Mediated Graph Protocol (MGP) model, similar to the Pop-
ulation Protocol model of Angluin et al., in which each network link is
characterized by a state taken from a finite set. This state can be used
and updated during each interaction between the corresponding agents.
We provide some interesting properties of the MGP model among which
is the ability to decide properties on stabilizing (initially changing for a
finite number of steps) input graphs and we show that the MGP model
has the ability to decide properties of disconnected input graphs. We
show that the computational power within the connected components is
fairly restricted. Finally, we give an exact characterization of the class
GMGP, of graph languages decidable by the MGP model: it is equal
to the class of graph languages decidable by a nondeterministic Turing
Machine of linear space that receives its input graph by its adjacency
matrix representation.

1 Introduction

Consider an application that allows users to make voice calls over the Internet
by executing a software agent. The software agents are organized in a peer-
to-peer overlay network. Suppose that in order to achieve certain quality of
service levels, statistical data have shown that each agent must have at most
k concurrent incoming voice-traffic flows. We assume that the software agents
are quite limited: each agent has a constant number of bits of memory and two
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agents can communicate only when they are required to forward voice traffic.
We also assume that agents have access to a global storage in which very limited
information can be stored. In this setting, software agents have no control over
their interactions: users come and go, and requests for voice calls are made by
the users. We assume that the underlying pattern of interactions guarantees a
fairness condition on the interactions: every pair of agents in the network is
repeatedly allowed to exchange control information for their users to have voice
calls.

Under these assumptions, there is a simple protocol ensuring that every agent
eventually contains the correct answer. Each agent stores a counter (0, 1, . . . , k+
1, where k is a constant) signifying the number of active incoming traffic flows.
The global storage service stores 1 bit for each possible pair of interacting agents.
Initially, all agents have their counter set to 0 and each bit of the global storage
is set to 1. When two agents interact, e.g., to forward voice traffic, if the bit
corresponding to this interaction is 1, then the receiving agent increases its
counter by one and the corresponding bit is set to 0. If the bit is 0, then nothing
happens (the incoming flow has been already counted). If some counter reaches
the value k+1, then an alert state is propagated to the population and eventually,
all agents are informed of the existence of a potential bottleneck in the network
and can take appropriate actions.

Now consider the question of whether the overlay network is fully connected
or not. Is there a protocol to answer such questions without any assumptions
about the size of the network? In this work, we focus on the following question:
what properties of the underlying network can be computed by populations of
computationally restricted, interacting entities? We are interested in the levels
of knowledge that such systems can achieve regarding their own properties and
characteristics, in other words, to what extent they can become self-aware. Such
knowledge can be used to optimize the system’s overall behavior w.r.t. resource
usage, performance, etc., and to adapt to changing conditions concerning internal
changes (e.g., a topology change) and context changes (e.g., a modification of
user behavior).

2 Previous Work

In [3], Angluin et al. introduced the Population Protocol (PP) model, which
captures the notion of computation by a population of extremely limited com-
municating agents. In this model, the system consists of a collection of agents,
represented as finite-state machines. The agents exchange information via pair-
wise interactions, which they are unable to predict or control. Via these interac-
tions, the system organizes its computation and provides complex behavior as a
whole. In [3,4], the computational power of the model was studied and has been
proved to be exactly the class of semilinear predicates, consisting of all predicates
definable by first-order logical formulas of Presburger arithmetic (see, e.g., [10]).
The capability of the model to decide graph properties of restricted interaction
graphs was explored in [2].



The Computational Power of Simple Protocols for Self-awareness on Graphs 137

In an attempt to enhance the basic model, an interesting variation was pro-
posed in [7], called the Mediated Population Protocol (MPP) model, in which the
population is also capable of storing constant size information for each pairwise
interaction. This extension is fitting for modeling more complex systems where
relations are formed between the interacting entities and the information gener-
ated concerning these relations is required in each interaction of the respective
entities. For example, biological and artificial neural networks concern networks
of interconnected simple processing elements that exhibit complex global behav-
ior determined by the connections between them. These connections (synapses)
can store parameters called “weights” that influence the outcome of the com-
putations. In [6], it was proven that, in complete graphs, the MPP model is
computationally equivalent to a Nondeterministic Turing Machine (NTM) of
O(n2) space that computes symmetric predicates.

In [8], the Graph Decision Mediated Population Protocols (GDMPPs) were in-
troduced, which are essentially MPPs without input, that may run on any graph
from a specified family, trying to decide some property of that graph. GDMPPs
were proven unable to compute any nontrivial property of disconnected input
graphs. For introductory texts to the area of population protocols the interested
reader is referred to [5,12,1].

3 Our Results - Roadmap

In Section 4, we give a formal definition of the proposed model, (MGP), provide
an example protocol illustrating the computation of the model and present some
important definitions that are used throughout this work. We then (Section 5)
present some fundamental properties of the new model. In particular, we extend
(Sec. 5.1) the MGP model to allow the input graph to oscillate for a finite
number of steps. This extension then allows us (Sec. 5.2) to compose protocols.
In Sec. 6, we present a protocol (Sec. 6.1) that decides whether the input graph is
connected and we then extend this idea (Sec. 6.2) and show that the new model is
able to compute properties of disconnected input graphs, something that neither
the PP nor the GDMPP model were capable of. By studying the computations in
each connected component, we provide a first indication that in unrestricted (not
necessarily complete) connected graphs the computational power dramatically
drops. In Sec. 7, we give an exact characterization of the computational power of
the MGP model, which is the class of all graph properties decidable by a NTM of
linear space that takes as input the adjacency matrix of the input graph. Finally,
in Sec. 8, we conclude and discuss some future research directions.

4 A Formal Model: Mediated Graph Protocols

A Mediated Graph Protocol (MGP) consists of a finite set of agent states Q,
where q0, q1 ∈ Q are the initial agent states, an output function O : Q → {0, 1}
mapping agent states to binary outputs, a finite set of edge states S, where
s0, s1 ∈ S are the initial edge states, and a transition function δ : Q×Q× S →
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Q×Q× S. If δ(a, b, s) = (a′, b′, s′) we call (a, b, s) → (a′, b′, s′) a transition and
we define δ1(a, b, s) = a′, δ2(a, b, s) = b′, δ3(a, b, s) = s′.

An MGP runs on an interaction graph G = (V,E), where V is a population
and E is an irreflexive binary relation on V . Throughout this work, we assume
that this graph is complete, so that an MGP may run on any Kn = (V,E), where
|V | = n and E = V 2\{(u, u) | u ∈ V }.

We assume that the initial states of the agents and the edges of the network
are specified by some function ι : V ∪ E → {q0, q1, s0, s1}, which is not part of
the protocol but models some preprocessing on the network. ι is called a network
initialization function if ι(e) ∈ {s0, s1} for all e ∈ E, ι(u) = q1 if u is incident
to at least one edge in s1 according to E and ι(u) = q0 otherwise, for all u ∈ V .
Given an interaction graph Kn = (V,E) and a network initialization function
ι, we may define the subgraph of Kn specified by ι as Gι[Kn] = (V ′, E′), where
V ′ = {u ∈ V | ι(u) = q1} and E′ = {e ∈ E | ι(e) = s1}. Gι[Kn] is the input
graph to the protocol.

A (network) configuration is a mapping C : V ∪ E → Q ∪ S specifying the
agent state of each agent in the population and the edge state of each edge in
the interaction graph. Note first that a network initialization function ι spec-
ifies the initial configuration. Let C and C′ be configurations, and let u, υ
be distinct agents. We say that C goes to C′ via encounter e = (u, υ), de-
noted C

e→ C′, if C′(u) = δ1(C(u), C(υ), C(e)), C′(υ) = δ2(C(u), C(υ), C(e)),
C′(e) = δ3(C(u), C(υ), C(e)), and C′(z) = C(z), ∀z ∈ (V − {u, υ}) ∪ (E − {e}),
that is, C′ is the result of the interaction of the pair (u, υ) under configuration C
and is the same as C except for the fact that the states of u, υ, and (u, υ) have
been updated according to δ1, δ2, and δ3, respectively. Note that each interaction
(u, υ) is an ordered pair that is each agent has a distinct role in the interaction,
u that of the initiator and υ that of the responder. We say that C can go to
C′ in one step, denoted C → C′, if C e→ C′ for some encounter e ∈ E. We
write C

∗→ C′ if there is a sequence of configurations C = C0, C1, . . . , Ct = C′,
such that Ci → Ci+1 for all i, 0 ≤ i < t, in which case we say that C′ is reach-
able from C. The transition graph T (A, G) of an MGP A running on G is a
directed graph whose nodes are all possible configurations and whose edges are
all possible transitions on those nodes.

An execution is a finite or infinite sequence of configurations C0, C1, C2, . . . ,
where C0 is an initial configuration and Ci → Ci+1, for all i ≥ 0. The interactions
are chosen by an adversary who is not a part of the protocol and can make
any scheduling assumption on the interaction pattern as long as it keeps the
execution fair. Fairness is a restriction imposed on the adversary to prevent it
from avoiding a possible step forever. There are various notions of fairness for
the protocols we study. In this work, we use the notion of strong global fairness,
according to which an infinite execution is fair if for every pair of configurations
C and C′ such that C → C′, if C occurs infinitely often in the execution, then
so does C′ (cf. [9]). A computation is an infinite fair execution. The output of
any agent u under configuration C is O(C(u)).
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Due to the constant size descriptions of MGPs (Q and S are finite), the proto-
cols we study are uniform (independent of the population size) and anonymous
(agents can’t store unique identifiers).

In this work, we are interested in determining properties of the subgraph that
is specified by the network initialization function. To formalize this, let H be
the family of all simple directed graphs with no isolated nodes. Note that H
also includes disconnected graphs whose connected components have at least
two nodes. A graph language is any L ⊆ H.

Definition 1. We say that an MGP A stably decides a graph language L if, for
any complete interaction graph Kn = (V,E), any network initialization function
ι, and any computation of A on Kn beginning from the initial configuration
specified by ι, all agents eventually output 1 (accept) if Gι[Kn] ∈ L and 0 (reject)
otherwise. A graph language is said to be stably decidable by the MGP model
(or MGP -decidable) if there is an MGP A that stably decides it.

We call a protocol A a stabilizing output graph MGP if, in any computation
of A, all agents’ outputs and edges’ states eventually stop changing. We de-
fine GMGP to be the class of all stably decidable graph languages by the
MGP model. We denote by LGNSPACE the class of all decidable graph lan-
guages by a NTM of linear space which receives the input graph by its ad-
jacency matrix representation. We denote by SEM the class of semilinear
predicates.

As a simple illustration, we formalize a version of the count-(k+1)-in-neighbors
protocol that was outlined in the introduction (for k = 2). The set of agent states
is Q = {q0, q1, q2, q3, q4} and the set of edge states is S = {s0, s1}. The output
function O maps all states except q4 to 0 and the state q4 to 1. The transition
function δ is defined as follows: if i < 4 and j < 3 then δ(qi, qj , s1) = (qi, qj+1, s0);
if i = 4 or j ≥ 3 then δ(qi, qj , s1) = (q4, q4, s0); if i = 4 or j = 4 then
δ(qi, qj , s0) = (q4, q4, s0). All remaining transitions leave all three components
unaffected.

Assume now that the agents are u1, u2, u3, u4. Since the interaction graph is
complete, the edges are (1, 2), (1, 3), (1, 4), (2, 1), (2, 2), . . . , (4, 3). Let the initial
configuration, as described by some network initialization function, be
((q1, q1, q1, q0), {(1, 2), (1, 3), (2, 3)}), where the tuple describes the state of each
agent and the set contains the s1 edges and is used for simplicity.

Consider now the following possible computation: ((q1, q1, q1, q0), {(1, 2), (1, 3),

(2, 3)}) (2,3)−→ ((q1, q1, q2, q0), {(1, 2), (1, 3)}) (4,3)−→ ((q1, q1, q2, q0), {(1, 2), (1, 3)})
(1,2)−→ ((q1, q2, q2, q0), {(1, 3)}) (2,3)−→ ((q1, q2, q2, q0), {(1, 3)}) (4,1)−→ ((q1, q2, q2, q0),

{(1, 3)}) (1,3)−→ ((q1, q2, q3, q0), {}). In the last configuration, all agents output 0,
and this configuration is output stable in the sense that, from that point on,
no agent can change its output. So, in this case, the protocol rejects the in-
put graph that was specified by the network initialization function and this is a
correct decision because none of its nodes has more than 2 in-neighbors.
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5 Properties of MGPs

We present some useful properties of the model that will help us unfold its
computational potential. Let L−1 = {H | ∃G ∈ L such that H is the inverse of
G} 1 be the inverse of a language L.

Theorem 1 (Closure). GMGP is closed under union, intersection, comple-
ment, and inversion.

5.1 MGPs with Stabilizing Input Graphs

In this section, we define the stabilizing input graphs MGP (SIMGP) model
(similar to the PP model with stabilizing inputs [2]), in which the initial state
of each agent and edge of the interaction graph (and thus the input graph) may
change finitely many times before it stabilizes to a final value. Here, we consider
the computational capabilities of the MGP model when the network initialization
function is working in parallel (and not as a preprocessing on the network) with
the execution of an MGP, as if another protocol eventually designates the input
graph for an MGP. We are interested in stably deciding membership of the
stabilized input graph in a graph language. Intuitively, one can think of the case
where we are concerned about properties of a dynamic overlay network (which
could be a result of a protocol running on a complete network infrastructure,
e.g., a peer-to-peer network over the Internet) where the overlay can initially
change but eventually stabilizes.

In a similar way to that of [2], let each agent/edge store its current initial state
(which corresponds to the initial value given by ι) to a special component of its
state. This state is available to the agent/edge at every computation step and
may change arbitrarily (all the possible values, however, constantly belong to
{s0, s1} for the edges and to {q0, q1} for the agents) between any two subsequent
steps. The transition function is now of the form δ : ((Q × {q0, q1}) × (Q ×
{q0, q1}) × (S × {s0, s1})) → (Q × Q × S) and a configuration is a mapping
C : V ∪E → (Q×{q0, q1})∪(S×{s0, s1}) taking into account the current initial
states of the agents and edges.

In the next theorem, we show that every MGP-decidable language is stably
decidable even if the input graph is initially changing for a finite number of
steps. To do so, we construct a protocol similar to the one presented in [6,11].
That protocol is also executed on complete interaction graphs. It constructs a
correctly labeled spanning pseudo-path subgraph of the interaction graph and
then exploits this construction to simulate a NTM on its input assignment.
Informally, a pseudo-path graph is a straight line with arbitrary link directions.
The agents become ordered according to this line and all the remaining edges of
the complete interaction graph (those that are not part of the line) form the tape
cells of the TM. These can be visited in an ordered fashion due to the ordering
of the agents. Let L be any graph language:
1 Let G = (V, E) be a simple digraph and K the irreflexive subset of V 2. Then the

inverse or complement of G is defined as H = (V, K\E).
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Theorem 2. L is stably SIMGP-decidable iff it is MGP-decidable.

Proof. The straight direction holds trivially due to our focus on languages of
stabilized input graphs. For the inverse, let A be an MGP that stably decides L.
We can construct an SIMGP B which consists of protocol A and the protocol of
[6] (see above) running in parallel so that the population can be organized into
a pseudo-path graph. This construction ends in a finite number of interactions
with the reinitialization of A’s execution and can be used to perform further
reinitializations whenever the input graph changes. Since the input graph sta-
bilizes, A will eventually be executed correctly given the stabilized graph as
input. ��

5.2 Composition of MGPs

We will now present another interesting property of MGPs. According to this
property, which we call MGP-composition, given two MGPs A and B, where A
is a stabilizing output graph MGP, we can compose the two protocols to a new
protocol D. D will have the same output as B as if the latter was running on
the stabilizing input graph defined by A’s execution. B’s input graph, provided
by A’s execution, is stabilizing since the edges’ states eventually stabilize (by
A’s definition) and A’s outputs 0 and 1 can be trivially mapped to initial agent
states q0 and q1 respectively. The property is formalized below:

Theorem 3. For any two MGPs A,B where A is a stabilizing output graph
MGP, there is an MGP D which is a composition of A and B, has as input the
input graph of A and as output the output of B running on the stabilized input
graph provided by A.

Proof. From Theorem 2, we have that B can be replaced by a stabilizing input
graphs protocol B′ that runs on the stabilizing graph defined by A and works
exactly like B running on the same graph. ��

6 Disconnected Graphs

We now discuss the capability of our model to decide languages on disconnected
graphs. Neither the PP model [2] nor the GDMPP model [8] are capable of
supporting this feature. We here exploit the complete infrastructure to commu-
nicate information between the connected components of the disconnected input
graph and make a decision according to the exchanged information. In Sec. 6.1,
we present a simple protocol that can decide whether the input graph is a con-
nected graph and, in Sec. 6.2, we generalize the idea to prove that any semilinear
predicate on the multiset of decisions of any GDMPP running on the connected
components (where the decision of each component is counted only once) that
constitute the input graph is stably decidable.
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6.1 Deciding Connectivity

In this section, we present an MGP CP that decides the language LC = {G |
G is a connected graph}.

Protocol 1. Connectivity Protocol (CP)
1: Q = {q0, q1, t, t

′, l, l′}, S = {s0, s1},
2: O(q0) = 0, O(q1) = 0, O(t) = 1, O(t′) = 0, O(l) = 1, O(l′) = 0,
3: δ:

a single leader is generated
(q1, q1, s1) → (l, t, s1)

the single leader turns all nodes of the input graph it can reach to followers
(l, t, s1) → (t, l, s1), (t, l, s1) → (l, t, s1), (l, q1, s1) → (t, l, s1), (q1, l, s1) →
(l, t, s1)

the single leader turns all nodes that do not belong to the input graph to
followers of a single leader
(l, q0, s0) → (l, t, s0)

two single leaders meet in the same connected component of the input
graph; one is turned to follower
(l, l, s1) → (l, t, s1)

two non-adjacent single leaders meet in the same connected component
of the input graph or in different connected components (in the case of
disconnected input graph); they become non-unique leaders
(l, l, s0) → (l′, l′, s0)

the non-unique leaders turn non-leaders into their followers
(l′, t, s1) → (t′, l′, s1), (t, l′, s1) → (l′, t′, s1), (l′, q1, s1) → (t′, l′, s1),
(q1, l

′, s1) → (l′, t′, s1), (l′, q0, s0) → (l′, t′, s0), (l′, t, s0) → (l′, t′, s0)

any two leaders meet in the same component; one single leader remains
(l′, l, s1) → (l, t, s1), (l, l′, s1) → (l, t, s1), (l′, l′, s1) → (l, t, s1)

any two leaders meet in different components; both become non-unique
(l′, l, s0) → (l′, l′, s0), (l, l′, s0) → (l′, l′, s0)

a single leader restores all followers of multiple leaders to followers of single
leaders
(l, t′, s0) → (l, t, s0), (l, t′, s1) → (t, l, s1), (t′, l, s1) → (l, t, s1)

Theorem 4. Protocol CP stably computes LC for any input graph Gι[Kn] on
the complete interaction graph Kn.

Proof. As can be observed by the description of Protocol 1 each connected com-
ponent elects a leader which eventually becomes unique for the component.
Therefore, if there are more than one connected components, their leaders will
interact via an s0 edge and all agents will be informed that there are at least 2
components in the input graph and will output 0. If no such interaction takes
place, all agents output 1. ��
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6.2 Computing Graph Languages on Disconnected Graphs

In this section, we are interested in languages that describe properties of discon-
nected input graphs, that is, graphs with > 1 connected components. We use
the term “connected components” for weakly-connected components as well.
We are not interested in components consisting of a single agent (input graphs
with isolated nodes). To achieve this, we propose a construction which combines
the functionality of four MGPs that allow information exchange between the
connected components by exploiting the complete underlying infrastructure. In
what follows, we give a description of these protocols.

First, we have the spanning pseudo-path graph protocol described in Section
5.1 that is required for the composition of protocols. We will call it RP (Reini-
tialization Protocol since it is mainly used to reinitialize the execution of the
composed protocols).

Then, there is a Leader Election MGP (LE) that practically runs on the con-
nected components of the input graph (leaving all q0 agents of the population
intact). LE = {QLE, SLE , δ}, where QLE = {q0, q1, l, f}, SLE = {s1} and δ
has the following transitions: (q1, q1, s1) → (l, f, s1) in which a leader is gener-
ated; (l, q1, s1) → (f, l, s1) and (q1, l, s1) → (l, f, s1) via which the leader turns
non-leaders to followers; (l, f, s1) → (f, l, s1) and (f, l, s1) → (l, f, s1) which
allow the leader state to move among the agents of a connected component;
(l, l, s1) → (l, f, s1) which removes multiple leaders. Interactions between agents
not defined by the previous transitions are ineffective (leave the states of both
agents unchanged).

Lemma 1. LE eventually elects a unique, constantly moving leader in each
connected component of the input graph.

Proof. The functionality is similar to the one of Protocol 1 of Sec. 6.1 with-
out the interactions between leaders of different connected components. The
remaining leader moves constantly due to the transitions (l, f, s1) → (f, l, s1)
and (f, l, s1) → (l, f, s1). ��
The third protocol is a parameter to the composition. It can be any MGP that
works only within the connected components (effective interactions take place
only between agents linked with s1 edges). This protocol, that we call BGP
(Basic Graph Protocol) hereafter, is practically a GDMPP [8] since it runs on
any connected graph (instead of a complete one). BGP runs in parallel with LE
within the connected components of the input graph and decides the same graph
property within each component. This means that, once all components of the
input graph stabilize w.r.t. BGP ’s execution, all agents within each component
will output 1 if the component satisfies the property and 0 otherwise. Obviously,
agents of different components may have different outputs.

The parallel execution of LE and BGP ends up with a unique moving leader
in each connected component, all other agents are followers and every agent
knows the decision of BGP for the component it belongs to. An agent that is
not part of the input graph (q0) is not affected and outputs by default 0. For
each connected component of the input graph:
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Definition 2. We call an agent representative of the component if it is the
unique leader and its output w.r.t. BGP has stabilized.

In other words, once the number of leaders stops changing and BGP stabilizes,
the unique leader of each connected component becomes a representative (the
elected agent that bears the decision of the component w.r.t. the graph property
that BGP decides). Note that regardless of the movement of the leader state
within each component, once BGP stabilizes, the leader’s output w.r.t. BGP
remains the same no matter which agent is the leader.

The final protocol is also a parameter to the composition and is practically
a population protocol (see [2]) running on the population of representatives.
We call this protocol REP (REpresentative Protocol) and it runs in parallel
with RP , LE and BGP . Since the interaction graph of MGPs is complete the
representatives’ population will be fully connected via the s0 edges. The inputs
of REP will be the outputs (decisions on the satisfiability of the graph property)
of the agents w.r.t. BGP . We consider that effective interactions w.r.t. to REP
can take place only between the representatives (via s0 edges) of the population.
In addition, we demand that whenever a representative moves to a neighboring
agent within its component (since the leaders constantly move), it also copies its
REP -state component to that agent. We consider that the output of REP is the
output of the whole composition and we extend REP so that the representatives
propagate their state when interacting with q0 agents. In this way, all agents
(the followers in each component due to representatives’ movement and the q0
agents due to the previous extension) will eventually have in their REP -state
components the contents of the representatives’ REP -state components.

The Composition of the Protocols: The composition is similar to the one
described in Section 5.2. Firstly, RP constructs the spanning pseudo-path graph
of the interaction graph reinitializing all other protocols during the process, then
LE and BGP run in parallel to generate the representatives reinitializing REP ,
and finally, REP runs on the population of the representatives. We call the pro-
tocol resulting from the previous composition GLADIS (Graph LAnguages on
DIsconnected graphS ). Since BGP and REP can be any GDMPP and PP, re-
spectively, we denote the composition as GLADIS(BGP,REP ). The conclusion
of this section is captured by the Theorem 5.

For all G, denote by NG,L the number of components of G that belong to a
language L and by NG,L the number of those that do not.

Theorem 5. Let L be a GDMPP-decidable language. Let p be a semilinear pred-
icate on IN2. Then L′ = {G | p(NG,L, NG,L) = 1} is MGP-decidable.

Proof. GLADIS(BGP,REP ) takes an input graph given by some network ini-
tialization function and computes any semilinear predicate (due to REP ) on the
decisions (outputs of BGP ) of the connected components (each component’s
decision is counted only once) of this input graph concerning any GDMPP-
decidable graph property (since BGP is a essentially a GDMPP). ��
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The applications of Theorem 5 are various, depending on the BGP and
REP we use. Given a GDMPP-decidable graph language, e.g., L = {G |
G contains at least one 2-cycle } (the decidability of L was an important ques-
tion left open by [8]; in fact, it turns out that L is decidable even by PPs), we
can now answer questions about predicates on the number of components that
satisfy L; questions like whether at least 25% of the components contain some
2-cycle. Whether the whole graph contains some 2-cycle can be simply decided
by an OR population protocol on the representatives’ population.

A fair question that arises is: what graph properties are stably decidable
by the GDMPPs running on the components of the input graph? The exact
computational power of the GDMPP model has not been characterized yet [8].
We approach the answer indirectly, by extending the notion of input graphs
to vertex-labeled input graphs (whose labels are taken from a finite set X and
are assigned by ι) and by considering computations on the multisets of the
labels. These are, in fact, computations performed by any MPP (see [7]) on any
connected graph given as input the multiset of labels. We call the corresponding
computational class MPU. We provide the following exact characterization of
MPU.

Theorem 6. MPU = SEM.

Proof. Let p ∈ MPU be computable by an MPP A. A still computes p if we
restrict our attention on star graphs, which consist of 1 internal node of degree
n and n external nodes of degree 1. The latter situation can be simulated by a
PP, running on complete graphs, with a unique leader in its initial configuration
since the leader can play the role of the internal node and also can safely (since
external nodes have no effective interactions with each other) store the states of
the edges on the external nodes. The latter, in turn, can be simulated by a PP (as
we have proved recently) which is the composition of a leader election protocol,
that elects a leader while leaving the inputs unaffected, and the stabilizing inputs
implementation of a PP, whose transition function is the same as the simulated
protocol, extended appropriately by ineffective transitions. ��
The consequences of the above theorem are twofold. First of all, the GDMPP
model on unrestricted connected graphs seems to be computationally weak; this
is a first step towards answering a major question left open by [8]. Secondly, this
characterization, if compared to the one for the MGP model that is provided
in the following section, shows that the MGPs seem to be significantly more
powerful than the GDMPPs.

7 An Exact Characterization: GMGP = LGNSPACE

In this section, we will develop an MGP that is capable of simulating a linear-
space NTM on input Gι[Kn] = (V ′, E′). In this manner, we establish that any
graph language L ∈ LGNSPACE is stably decidable by the MGP model, or
equivalently that LGNSPACE ⊆ GMGP. By showing that the inverse is also
possible, we conclude that the inclusion holds with equality.
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Now, consider the following 3-component initial configuration: According to
the first component, called the label, there is a unique spanning correctly labeled
pseudo-path subgraph L = (V,A) of a complete interaction graph Kn.2 The
second component stores the values of some network initialization function ι
and is called the membership indicator. The third component is the (simulation)
tape and has initially the value �k for some predetermined constant k.

Lemma 2. There is an MPP that in any computation on Kn, beginning from
such a configuration, stores the input graph Gι[Kn] in the leftmost cells of the
tape and halts in a finite number of steps having preserved the initial states of
both the label and the membership indicator components.

Proof. We use the protocol of [6,11] that constructs a spanning pseudo-path
graph of Kn, L which allows the orderly visit of Kn’s edges and the full use
of the distributed memory of the population. To store the adjacency matrix,
we visit the edges in an orderly fashion and store each time the distances of
the two ends of the visited edge. The distance of an agent is the length of the
unique pseudo-path from the fixed leader endpoint of L to that agent. Thus, the
distance of both ends of a visited edge can be stored in two O(n) counters which
are the indexes of the entry corresponding to the edge on the adjacency matrix.
If the visited edge belongs to the input graph, then a 1 is stored in the O(n2)
distributed memory and 0 otherwise. ��
Now the exact characterization follows easily:

Theorem 7. GMGP = LGNSPACE.

8 Conclusions - Future Research Directions

Many interesting issues arise by the findings of our work. The ability of the new
model to use its complete network infrastructure enables us to compose protocols
and decide graph properties of disconnected graphs. The additional memory
provided by the extra edges of the complete interaction graph gives an important
advantage to MGPs in comparison to GDMPPs. However, extra nodes do not
seem to help: after all, in our model, the worst-case interaction graph of any input
graph is itself made complete. Various questions arise from the above conclusions.
How would the computability be affected if we had allowed more memory in
each agent or each edge? Which interaction graph topologies allow the full use
of the distributed memory? Do we truly require a complete interaction graph
to decide graph languages in disconnected graphs or a connected infrastructure
would suffice? How can we exploit the presence of extra nodes for increasing the
computational power?

Acknowledgements. We would like to specifically thank Theofanis Raptis for
his useful comments throughout the writing of this work.
2 Note that, by definition of a correctly labeled pseudo-path subgraph, it holds that

for all e ∈ E − A, e is inactive.
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Abstract. We propose two self-stabilizing algorithms for tree networks. The first
one computes a special label, called guide pair of each process P in O(h) rounds
(h being the height of the tree) using O(δP log n) space per process P , where δP

is the degree of P and n the number of processes in the network. Guide pairs have
numerous applications, including ordered traversal or navigation of the processes
in the tree. Our second self-stabilizing algorithm, which uses the guide pairs com-
puted by the first algorithm, solves the ranking problem in O(n) rounds and has
space complexity O(b+δP log n) in each process P , where b is the number of bits
needed to store a value. The first algorithm orders the tree processes according
to their topological positions. The second algorithm orders (ranks) the processes
according to the values stored in them.

Keywords: Self-stabilization, tree networks, tree labeling, ranking problem.

1 Introduction

Self-stabilization [4,5] is a versatile property, enabling an algorithm to withstand tran-
sient faults in a distributed system. A distributed algorithm is self-stabilizing if, after
transient faults hit the system and place it in some arbitrary global state, the system
recovers without external intervention in finite time.

An ordered tree T is a rooted tree, together with an order (called a left-to-right or-
der) on the children of every node. In this paper, we give two self-stabilizing distributed
algorithms for ordered trees. None of the two algorithms assumes knowledge of the size
of the network n, or of a known upper bound of n, although, as it is usual in the litera-
ture, we assume that each process can store an integer in the range 1..n, using O(log n)
space. We choose the ordered tree topologies because results in such topologies can
be easily extended to arbitrary rooted networks by composing our solutions with any
existing self-stabilizing spanning tree construction algorithm (see [5] for the literature).
However, the meaning of “traversing” or “ranking” processes in a general network is
not clear.
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Fig. 1. Guide pairs

Our first algorithm, GUIDE, com-
putes a guide pair for each process
P , which we write as P.guide =
(P.pre ind, P.post ind), whereP.pre ind
and P.post ind are the rank of P in the
preorder and reverse postorder traversal,
respectively, of the ordered tree. Figure
1 shows an example of ordered tree la-
beled with guide pairs. The guide pairs
provide a labeling scheme that can be
used for various applications [7]. In this
work, we use these labels to navigate in
the tree T . We can define a partial order-
ing on the guide pairs as follows: We say
(i, j) ≤ (k, �) if i ≤ k and j ≤ �. Then,
A process Q is a member of the subtree
TP rooted at P if and only if P.guide ≤
Q.guide. The guide pairs can be used to
implement routing between any two pro-
cesses of the tree. If the two nodes satisfy
the above partial ordering, then the rout-
ing path simply follows the list of ances-
tors/descendants. Otherwise, the routing
must be established via the nearest com-
mon ancestor.

Our second algorithm, RANK, uses GUIDE, hence shows another application
of guide pairs. The input of our second algorithm is a value P.weight, of some or-
dered type, for each process P . RANK computes the rank of each process, which
is defined to be the index of that process if all processes were sorted by their
weights.

1.1 Contributions

GUIDE has time complexity O(h) rounds, where h is the height of T . The time com-
plexity of RANK is O(n) rounds. The space complexity of GUIDE in each process P
is O(δP logn), where δP is the degree of P . RANK, which uses GUIDE as a subrou-
tine, has space complexityO(b+ δP log n) in each process P , where b is the number of
bits needed to store a value. GUIDE and RANK are self-stabilizing. GUIDE is silent,
that is, it eventually reaches a terminal configuration where all actions of all processes
are disabled. RANK correctly computes the rank of every process within O(n) rounds.
Unless the weights change, the ranking do not change once the system stabilizes. How-
ever, the algorithm repeatedly computes them to detect possible change of weights. If
the weights do not change, the repeated computation of RANK will be transparent to
the application that uses the output of RANK.
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1.2 Related Work

The notion of guide pairs appeared first in [7], but that solution is not self-stabilizing.
To the best of our knowledge, there exist no self-stabilizing algorithms for computing
the guide pairs.

The only self-stabilizing solution to the ranking problem was given in [2]. This algo-
rithm works in rooted trees. Like ours, that algorithm is not silent. Moreover, it assumes
that each process has a unique identifier in the range 1..n. The algorithm stabilizes in
Ω(n2) rounds using O(log n) space per process. The ranking problem is related to the
sorting problem. There exist numerous self-stabilizing solutions to sorting in a tree, e.g.,
[9,8,1]. However, all those previous problems are quite different than ours.

1.3 Roadmap

In the next section, we present the model we use throughout this paper. In Section
3, we present our self-stabilizing silent algorithm for computing guide pairs. In Sec-
tion 4, we present our self-stabilizing algorithm for the ranking problem, which uses
the guide pairs. Because of space limitations, the proofs have been omitted. See the
technical report online (http://www-verimag.imag.fr/˜devismes/WWW/
rapports/trRank.pdf).

2 Preliminaries

Let G = (V,E) be an undirected graph, where V is a set of nodes and E is a set
of undirected edges linking nodes. Two nodes P,Q ∈ V are said to be neighbors if
{P,Q} ∈ E. The set of P ’s neighbors is denoted by N(P ). The degree of P i.e.,
|N(P )|, is denoted by δP . G = (V,E) is a tree if it is connected and acyclic. A tree
T can be rooted at some node, meaning that one of its nodes Root is distinguished as
the root (all other nodes are anonymous). In a rooted tree T , we denote by P.par, the
parent of node P in T : If P = Root , then P.par = P ; otherwise P.par = Q, where
Q is the neighbor of P that is the closest from the root (in this case, P is said to be a
child of Q in T ). Let Chldrn(P ) = {Q ∈ N(P ) : Q.par = P}, the children of P in
the tree T . An ordered tree is a rooted tree T , together with an (local) order (called
a left-to-right order) on the children of every node. We denote by ≺P the local order
relation among the children of node P . Let P1, P2, . . . Pm be the children of the root of
T in the left-to-right order. We denote by Ti be the subtree rooted at any Pi. Finally, we
denote by Q ∈ Ti the fact that node Q is a node of Ti.

We model our network topology as an ordered tree T = (V,E), where V is a set of
n nodes representing processes and E is a set of edges, each representing the ability of
two processes to communicate directly. (We will use the terms “node” and “process”
interchangeably.) We denote by h(P ) the height of process P in T , i.e., its distance to
the root. We denote by h the height of T , i.e., maxP∈V h(P ).

2.1 Computational Model

We consider the locally shared memory model, introduced by Dijkstra [4]. In this
model, communications are carried out by locally shared variables. Each process has

http://www-verimag.imag.fr/~devismes/WWW/rapports/trRank.pdf
http://www-verimag.imag.fr/~devismes/WWW/rapports/trRank.pdf
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the finite set of shared variables (henceforth, referred to as variables) whose domains
are finite. A process P can read its own variables and that of its neighbors, but can write
only to its own variables. We assume that every process P can read the local names of
its neighbors, so that if Q ∈ N(P ), P can tell, for example, whether Q.par = P . Each
process writes its variables according to its (local) program. A distributed algorithm
is a collection of n programs, each one operating on a single process. The program of
each process is a finite set of actions 〈label〉 :: 〈guard〉 �→ 〈statement〉. Labels are
only used to identify actions in the discussion. The guard of an action in the program
of a process P is a Boolean expression involving the variables of P and its neighbors.
The statement of an action of P updates one or more variables of P . An action can be
executed only if it is enabled, i.e., its guard evaluates to true. A process is said to be
enabled if at least one of its actions is enabled.

Let A be a distributed algorithm operating of a network of topology G. The values
of A’s variables at some process P define A’s (local) state of P in G. A configuration
of A in G is an instance of A’s states of all processes in G. In the following, if there is
no ambiguity, configurations of A in G will be simply denoted by configurations.

Let �→ be the binary relation over configurations of A in G such that γ �→ γ′ if and
only if it is possible for the network of topology G to change from configuration γ to
configuration γ′ in one step of A. An execution of A is a maximal sequence of config-
urations � = γ0γ1 . . . γi . . . such that γi−1 �→ γi for all i > 0. The term “maximal”
means that the execution is either infinite, or ends at a terminal configuration in which
no action of any process is enabled. Each step γi �→ γi+1 consists of one or more en-
abled processes executing an action. The evaluations of all guards and executions of all
statements of those actions are presumed to take place in one atomic step; this model is
called composite atomicity [5].

We assume that each step from a configuration to another is driven by a scheduler,
also called a daemon. If one or more processes are enabled, the scheduler selects at
least one of these enabled processes to execute an action. We assume that the scheduler
is weakly fair, meaning that, every continuously enabled process P is selected by the
scheduler within finite time.

We say that a process P is neutralized in the step γi �→ γi+1 if P is enabled in γi and
not enabled in γi+1, but does not execute any action between these two configurations.
The neutralization of a process represents the following situation: at least one neighbor
of P changes its state between γi and γi+1, and this change effectively makes the guard
of all actions of P false.

We use the notion of round. The first round of an execution �, noted �′, is the minimal
prefix of � in which every process that is enabled in the initial configuration either
executes an action or becomes neutralized. Let �′′ be the suffix of � starting from the
last configuration of �′. The second round of � is the first round of �′′, the third round
of � is the second round of �′′, and so forth.

2.2 Self-stabilization and Silence

In the following, we define a specification as a set of executions. We said that an exe-
cution � satisfies the specification SP if � ∈ SP .
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A distributed algorithmA is self-stabilizing with respect to the specification SP in a
network of topology G if and only if there exists a set of configurations C such that:

1. Every execution of A in a network of topology G starting from a configuration in
C satisfies SP (closure).

2. Every execution ofA in a network of topologyG eventually reaches a configuration
in C (convergence).

All configurations of C are said to be legitimate, all other configurations are said to be
illegitimate.

We say that an algorithm is silent [6] if each of its executions is finite. In other
words, starting from an arbitrary configuration, the network will eventually reach a
configuration where no process is enabled.

2.3 Composition

To simplify the design of our algorithms, we use a variant of the well-known collateral
composition [10]. Roughly speaking, when we collaterally compose two algorithmsA
and B, A and B run concurrently and B uses the outputs of A in its executions. In the
variant we use, we modify the code of B so that a process executes an action of B only
when it has no enabled action in A.

Let A and B be two algorithms such that no variable written by B appears in A.
The hierarchical collateral composition [3] of A and B, noted B ◦ A, is the algorithm
defined as follows:

1. B ◦ A contains all variables of A and B.
2. B ◦ A contains all actions of A.
3. For every action “Li :: Gi �→ Si” of B, B ◦ A contains the action “Li ::
¬D ∧Gi �→ Si” where D is the disjunction of all guards of actions in A.

The following sufficient condition is given in [3] to show the correctness of the com-
posite algorithm:

Theorem 1. The composite algorithm B ◦ A self-stabilizes to specification SP in a
network of topology G assuming a weakly fair scheduler if the following conditions
hold: (i) in a network of topology G, Algorithm A is a silent algorithm under a weakly
fair scheduler; (ii) in a network of topology G, Algorithm B stabilizes to SP under a
weakly fair daemon, starting from any configuration where no action of A is enabled.

3 Computing Guide Pairs

3.1 Guide Pairs

Given an ordered tree T , the guide pair of a node P in T is the pair of integers i and j
such that i and j are, respectively, the rank of P in the preorder and reverse postorder
traversal of T . Below, we define these notions. Recall that we denote by P1, P2, . . . Pm

the children of the root of T in the left-to-right order, and we denote by Ti be the subtree
rooted at any Pi. The preorder traversal of T is defined, recursively, as follows:
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1. Visit the root of T .
2. For each i from 1 to m in increasing order, visit the nodes of Ti in preorder.

Postorder traversal T is similarly defined:

1. For each i from 1 to m in increasing order, visit the nodes of Ti in postorder.
2. Visit the root of T .

Preorder traversal is top-down, while postorder traversal is bottom-up. However, we can
also traverse T in reverse postorder, which is top-down, as follows.

1. Visit the root of T .
2. For i from m to 1 in decreasing order, visit the nodes of Ti in reverse postorder.

If a node P is the ith node of T visited in a preorder traversal of T , we say that the
preorder rank of P is i. If a node P is the jth node of T visited in a reverse postorder
traversal of T , we say that the reverse postorder rank of P is j. Write pre ind(P ) and
post ind(P ) for the preorder rank and reverse postorder rank of P , respectively. We de-
fine the guide pair of P to be the ordered pair guide(P ) = (pre ind(P ), post ind(P )).
Figure 1 shows an ordered tree where each process is labeled with its guide pair.

If (i, j) and (k, �) are guide pairs, we write (i, j) ≤ (k, �) if i ≤ k and j ≤ �. Thus,
the set of guide pairs is partially ordered by ≤.

Remark 1. [Property 2 in [7]] If P and Q are nodes of an ordered tree T , then
guide(P ) ≤ guide(Q) if and only if P is an ancestor of Q.

3.2 Algorithm GUIDE

Algorithm GUIDE is a hierarchical collateral composition of two algorithms: GUIDE
= CGP ◦ COUNT, where both COUNT and CGP (for Compute Guide Pairs) use P.par
as input in the program of every process P . Note that P.par either designates the actual
parent link of P or is computed by a distributed spanning tree algorithm with which
GUIDE must be composed using the hierarchical collateral composition.

Algorithm COUNT. COUNT acts as a bottom-up wave that computes the number of
processes in each subtree. In COUNT, each processP has only one variable:P.subcount.
Moreover, each process P can compute the following function: Subcount(P ) = 1 +∑

Q∈Chldrn(P ) Q.subcount. Thus, the program of P consists of the following
action:

SetCnt :: P.subcount �= Subcount(P ) �→ P.subcount ← Subcount(P )

Lemma 1. COUNT is self-stabilizing and silent, converges within h+1 rounds from an
arbitrary initial configuration to a legitimate configuration where P.subcount = |{Q ∈
TP }| for all processes P , and works under the weakly fair scheduler.
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Algorithm CGP. Using the values of subcount computed by COUNT, each process
P evaluates in CGP for each of its children Q the number of processes before Q in
the preorder and reverse postorder traversal of the tree T , respectively (using Actions
SetChldPrePred and SetChldPostPred, respectively). Then, reading these values
from its parent, each process, except the root, can compute its guide pair (using Ac-
tions SetPreInd and SetPostInd). The guide pair of the root is (1, 1) (see Actions
SetPreInd and SetPostInd for the root).

Variables of CGP. In CGP, each process maintains several variables. First, the follow-
ing array variable enables each non-root process to know its index in the local left-to-
right order of its parent:

1. P.chld[i] ∈ N(P ) ∪ {⊥}, for all 1 ≤ i ≤ δP . This array is maintained by Action
SetChld. For all 1 ≤ i ≤ |Chldrn(P )|, P.chld[i] is set to the ith child in P ’s local
ordering of N(P ), while for all |Chldrn(P )| < i ≤ δP , P.chld[i] is set to ⊥.1

Then, CGP uses the following additional variables:

2. P.pre ind, P.post ind, integers. In stabilized state, they contain the preorder and re-
verse postorder ranks of P , respectively. Thus, we will write P.guide =
(P.pre ind, P.post ind), the guide pair of P .

3. P.chld pre pred[i], P.chld post pred[i], integer, defined for all 1 ≤ i ≤ |δP |:
– For all 1 ≤ i ≤ |Chldrn(P )|, P.chld pre pred[i] is set to the number of prede-

cessors of the ith child of P (that is, P.chld[i]) in the preorder traversal of T ;
and P.chld post pred[i] is set to the number of predecessors of the ith child of
P in the reverse postorder traversal of T .

– For all |Chldrn(P )| < i ≤ δP , P.chld pre pred[i] and P.chld post pred[i] are
set to 0.

Hence, each process P computes its guide pair to be

(P.par.chld pre pred[j] + 1, P.par.chld post pred[j] + 1)

where P is the jth child of its parent in left-to-right order.

Functions of CGP. Based on the previous variables, each process P can compute the
following functions:

– my order(P ). If P is not the root and there exists i, 1 ≤ i ≤ δP.par, such that
P.par.chld[i] = P , then my order(P ) returns i. If the values of P.par.chld did not
stabilize, my order(P ) returns 1.
Once the system has stabilized, my order(P ) returns the index of the non-root pro-
cess P in the local left-to-right order of its parent.

– Chld index(Q) = |{Q′ ∈ Chldrn(P ) : Q′ ≺P Q}|+ 1. It returns the index of the
child Q of process P in the local left-to-right order of P .

1 Actually, cells from index |Chldrn(P )| + 1 to δP are useless. However, as the tree may be
obtained by a spanning tree construction, we cannot know the number of children of P in
advance, but this number is bounded by δP .
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– Eval chld(i) returns the local name of the ith child of P . That is,
if ∃Q ∈ Chldrn(P ) such that Chld index(Q) = i, then Eval chld(i) returns
Q; otherwise, Eval chld(i) returns⊥.

– Eval chld pre pred(i). If i = 1, then Eval chld pre pred(i) returns P.pre ind;
else if 2 ≤ i ≤ |Chldrn(P )|, then Eval chld pre pred(i) returns
P.chld pre pred[i− 1] + P.chld[i− 1].subcount; otherwise it returns 0.
Once the system has stabilized, Eval chld pre pred(i) returns the number of pre-
decessors of the ith child of P in the preorder traversal of T .

– Eval chld post pred(i). If i = |Chldrn(P )|, then Eval chld post pred(i)
returns P.post ind; else if 1 ≤ i < |Chldrn(P )|, then Eval chld post pred(i)
returns P.chld post pred[i + 1] + P.chld[i + 1].subcount; otherwise
Eval chld post pred(i) returns 0.
Once the system has stabilized, Eval chld post pred(i) returns the number of
predecessors of the ith child of P in the reverse postorder traversal of T .

Actions of CGP. Actions of CGP are given below. To simplify the presentation, we
assume priorities on actions, and list them below in the order from the highest to the
lowest priority. If several actions are enabled simultaneously at a process, only the one
of the highest priority can be executed. In other words, the actual guard of any action
“L :: G �→ S” of process P is ¬D ∧ G, where D is the disjunction of the guards of
all actions at P that appear before in the text.

For every process P :

SetChld :: ∃i ∈ [1..δP ], �→ ∀i ∈ [1..δP ],

P.chld[i] �= Eval chld(i) P.chld[i]← Eval chld(i)

SetChldPrePred :: ∃i ∈ [1..δP ], �→ ∀i ∈ [1..δP ],

P.chld pre pred[i] �=
Eval chld pre pred(i) P.chld pre pred[i]←Eval chld pre pred(i)

SetChldPostPred :: ∃i ∈ [1..δP ], �→ ∀i ∈ [1..δP ],

P.chld post pred[i] �=
Eval chld post pred(i) P.chld post pred[i]←Eval chld post pred(i)

For the root process Root only:
SetPreInd :: Root .pre ind �= 1 �→ Root .pre ind ← 1

SetPostInd :: Root .post ind �= 1 �→ Root .post ind ← 1

For every non-root process P only:
SetPreInd :: P.pre ind �=1+P.par.chld pre pred[my order(P )]

�→ P.pre ind←1+P.par.chld pre pred[my order(P )]

SetPostInd :: P.post ind �=1+P.par.chld post pred[my order(P )]

�→ P.post ind←1+P.par.chld post pred[my order(P )]
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Overview of CGP. We now give an intuitive explanation of how CGP computes the
values of P.pre ind for all P . The values of P.post ind are computed similarly.

Suppose that P is the ith process visited in a preorder traversal of T . Then i is the
correct value of P.pre ind. CGP works by computing the number of predecessors of
P , i.e., the number of processes visited before P is visited. Let us call that number
Num Preorder Preds(P ). It is the correct value of P.pre ind − 1.

Num Preorder Preds(Root) = 0; otherwise, Num Preorder Preds(P ) is computed
by P.par and stored in the variable P.par.chld pre pred[j], where P is the jth child
of P.par in left-to-right order. In order to compute these values for all its children,
P.par must have computed its own value of pre ind, as well as the sizes of all of
its subtrees. If j = 1, then Num Preorder Preds(P ) = P.par.pre ind, since P.par
is the immediate predecessor of its leftmost child in the preorder visitation. Thus,
P.par.chld pre pred[1] ← P.par.pre ind. P.par.chld pre pred[2] is obtained by adding
the size of the leftmost subtree of P.par to P.par.chld pre pred[1], since all members
of that subtree are predecessors of the second child of P.par.

In general, the number of predecessors of P is equal to P.par.pre ind plus the
sum of the sizes of the leftmost j − 1 subtrees of P.par. The values of the array
P.par.chld post pred are computed from right to left, similarly. P then executes:

P.pre ind ← P.par.chld pre pred[j] + 1
P.post ind ← P.par.chld post pred[j] + 1

Theorem 2. GUIDE is self-stabilizing and silent, computes the guide pairs of all pro-
cesses in O(h) rounds from an arbitrary initial configuration, and works under the
weakly fair scheduler.

4 Rank Ordering

In this section, we give an algorithm, RANK, that uses guide pairs to solve the ranking
problem on an ordered tree, T . We are given a value P.weight for each process P in T .
(For convenience, we assume that the weights are integers.) The problem is to find the
rank of each P . If P1, P2, . . . , Pn is the list of processes in T sorted by weight, then i
is the rank of Pi. We allow ties to be broken arbitrarily, but deterministically.

Our algorithm RANK is a hierarchical collateral composition of two algorithms:
RANK = CRK ◦ GUIDE. RANK computes the rank of each process P in T , and sets
the variable P.rank to that value. RANK is self-stabilizing, and requires O(n) rounds
and O(b + δP logn) space for each process P .

4.1 Overview of CRK

Flow of Packages. The key part of the algorithm CRK is the flow of packages. Each
package is an ordered pair x = (x.value, x.guide), where x.value is its value and
x.guide is its guide pair. We identify a package with its guide pair. Moreover, for every
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two packages, x and y, we have x ≥ y (resp. x > y) if and only if x.value ≥ y.value
(resp. x.value > y.value).

Each package has a home process (the node from which the package is originally
issued), although its location can be at any process in the chain between its home and
the root. The guide pair of a package is the same as the guide pair of its home process,
and its value is either the weight of its home process or the rank that CRK will assign
to its home process.

Each process P initiates its flow of packages by creating an up-package whose value
is P.weight. This up-package then moves to the root by successive copying. The flow of
packages is organized so that packages with smaller weights reach the root before pack-
ages with larger weights, in a manner similar to the standard technique for maintaining
min-heap order in a tree.

After the root copies an up-package from a child, it creates a down-package with
the same home process as the up-package, but whose value is a number (a rank) in the
range 1..n. The root maintains a counter so that the first down-package it creates has
value 1, the second value 2, and so forth. Each down-package then moves back to its
home process by copying. When its home process copies a down-package, it assigns,
or re-assigns, its rank to be the value of that package.

The purpose (in fact even the name) of the guide pair is now obvious. It is used to
guide the down-package to its home process.

Since the root copies up-packages in weight order, it creates down-packages in that
same order. The ith down-package created by the root will carry rank i and will use the
same guide pair as the ith up-package copied by the root. Its home process will then be
the process whose weight is the ith smallest in T .

When the root detects that it has created all down-packages, it initiates a broadcast
wave which resets the variables of CRK (except the rank and weight variables) and
starts a new epoch.

Redundant Packages. In our model of computation, if a variable of a process P is
copied by a neighborQ, it also remains at P . In the algorithm CRK, each process P can
be home to at most one package, but we cannot avoid the existence of multiple copies of
that package (up and/or down). We handle that problem by defining a package variable
currently held by a process (not necessarily its home process, rather any process on
the chain from its home to the root) as being either active or redundant. A redundant
package can freely be overwritten, but not an active package.

If x is an up-package currently held by some process Q which is not the root, then x
is redundant if x has already been copied by Q.par. If x is an up-package currently held
by the root, then x is redundant if the root has already created a down-package with the
same guide pair as x. Any other up-package is active.

If x is a down-package held by some process Q which is not its home process, then
Q is redundant if it has been copied by some child of Q. (The child that copies x must
be the process whose subtree contains the home process of x.) If x is a down-package
held by its home process P , then x is redundant if P.rank is equal to the value of x. This
indicates that P has already copied its rank from x, or that P.rank was correct before x
arrived. Any other down-package is active.
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Status Waves. As it is typical for distributed algorithms which are self-stabilizing, but
not silent, CRK endlessly repeats the calculation of the ranks of the processes in T . We
call one (complete) pass through this cycle of computations an epoch. At the end of
each epoch, the variables of CRK at all processes, other than the variables for weight
and rank, are reset for the next epoch. If an epoch has a clean start, it will calculate
the correct rank for each process. Subsequent epochs will simply recalculate the same
value, and P.rank will never change again.

On the other hand, in case of an arbitrary initial configuration, it is possible for
incorrect values of rank to be calculated, but eventually a configuration will be reached
when the next epoch will get a clean start.

This system is controlled by the status variables of the processes. At the beginning
of an epoch, a broadcast wave starting from the root changes the status of every process
from either 0 or 4 to 1, and all variables of CRK except rank and weight are set to their
initial values. When this wave reaches the leaves of T , a convergecast wave changes
the status of all processes to 2. All computation of the ranking algorithm, as discussed
above, takes place while processes have status 2. After the root has created the last
down-package, it initiates a broadcast wave where the status of all processes changes to
3. The return convergecast wave then changes the status of all processes to 4, and when
this wave reaches the root, the new epoch begins.

Status zero is used for error correction. If any process detects that the current epoch
is erroneous, it changes its status to 0. Status 0 spreads down the tree, as well as up the
tree unless it meets a process whose status is 1. If Root .status becomes 0 (and all its
children have status 0 or 4), then Root initiates a status 1 broadcast wave starting a new
epoch. However, this may cause an endless cycle of 0 and 1 wave, going up and down
the tree, respectively. We solve this problem by adding a special rule for the non-root
processes. If P.status = 0 and P.par.status = 1, the status 0 wave cannot move up;
instead, the status 0 wave moves down followed by status 1 wave.

4.2 Formal Definition of CRK

Variables of CRK. Let P be any process. P.par, P.guide, and P.weight are inputs
of CRK. Then, the output of CRK is P.rank, an integer. To compute this output, P
maintains the following additional variables:

1. P.up pkg and P.down pkg are respectively of package type (that is, a guide pair
and an integer) or ⊥ (undefined).
If P.up pkg (resp. P.down pkg) is defined, then its home process is some Q ∈ TP .

2. P.started, Boolean.
This variable indicates whether P has already generated its up-package during this
epoch. (P.up pkg may or may not still contain that up-package.)

3. P.up done, Boolean.
It indicates whether all processes in TP have created their own up-package in the
current epoch and whether TP contains no active up-package. (Active up-packages
whose home processes are in TP could exist at processes above P .)

4. P.status ∈ [0..4].
Status variables are used to control the order of computation and to correct errors.
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Finally, Root contains the following additional variable:

5. Root .counter ∈ N
This incrementing integer variable assigns the rank to packages. It is initialized to
be 0 every time a new epoch begins.

Predicates of CRK. The predicate Clean State(P ) below indicates if P is in a good
initial or “clean” state.

Clean State(P ) ≡ P.up pkg = ⊥ ∧ P.down pkg = ⊥ ∧ ¬P.started ∧ ¬P.up done

The four following predicates are used for error detection:

Is Consistent(P, g) ≡ g = P.guide ∨ ∃Q ∈ Chldrn(P ), g ≥ Q.guide

Guide Error(P ) ≡ (P.up pkg �= ⊥ ∧ ¬Is Consistent(P, P.up pkg.guide)) ∨
(P.down pkg �= ⊥ ∧ ¬Is Consistent(P, P.down pkg.guide))

Status Error(P ) ≡ (P.status ∈ {1, 3} ∧ P.par.status �= P.status) ∨
(P.status ∈ {2, 4} ∧ ∃Q ∈ Chldrn(P ), Q.status �= P.status) ∨
(P.status �= 0 ∧ P.par.status = 0) ∨
(P.status �∈ {0, 1} ∧ ∃Q ∈ Chldrn(P ), Q.status = 0)

Error(P ) ≡ Status Error(P ) ∨
(¬Clean State(P ) ∧ P.status = 1) ∨
(Guide Error(P ) ∧ P.status = 2) ∨
(P.up done ∧ ¬P.started ∧ P.status = 2) ∨
(P.up done ∧ P.status = 2 ∧ ∃Q ∈ Chldrn(P ),¬Q.up done)

We say that a guide pair g is consistent with P if the predicate Is Consistent(P, g) is
true. If Is Consistent(P, g) is false, g is the guide pair of no process in the subtree
of P . Guide Error(P ) = true means that P holds a package whose home is not in
the subtree of P . The predicate Status Error(P ) indicates whether P detects that its
status is inconsistent with those of its neighbors. Status errors are always the result of
arbitrary initializations; eventually, Status Error(P ) will become false and will remain
false forever for all P . Finally, the predicate Error(P ) detects error in the context of the
current wave.

The four following predicates are used for flow control:

Up Redundant(P ) ≡ (P �= Root ∧ P.up pkg �= ⊥ ∧ P.par.up pkg �=⊥ ∧ P.par.up pkg ≥ P.up pkg) ∨
(P = Root ∧ P.up pkg �=⊥ ∧ P.down pkg �= ⊥ ∧ P.down pkg.guide=P.up pkg.guide)

Down Ready(P ) ≡ P.down pkg = ⊥ ∨ (P.down pkg �= ⊥∧
(P.down pkg.guide �= P.guide ∧ ∃Q ∈ Chldrn(P ), Q.down pkg = P.down pkg) ∨
(P.down pkg.guide = P.guide ∧ P.rank = P.down pkg.value))

Can Start(P ) ≡ ¬P.started ∧ (P.up pkg = ⊥ ∨ Up Redundant(P )) ∧ ∀Q ∈ Chldrn(P ),
(¬Up Redundant(Q) ∨Q.up done) ∧ (Q.up pkg > (P.weight, P.guide) ∨Q.up done)

Can Copy Up(P, Q) ≡ Q ∈ Chldrn(P ) ∧ (Q.up pkg �= ⊥ ∧ ¬Up Redundant(Q)) ∧
(P.up pkg = ⊥ ∨ Up Redundant(P )) ∧
(P.started ∨ (P.weight, P.guide) > Q.up pkg) ∧ ∀R ∈ Chldrn(P ),
R.up done ∨ (¬Up Redundant(R) ∧ (R.up pkg ≥ Q.up pkg ∨R.up done)
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P.up pkg is redundant if Up Redundant(P ) is true. Down Ready(P ) states whether
P.down pkg is redundant or undefined, and thus P can create or copy a new down-
package. Can Start(P ) decides whether P can create its own package, that is, if P
can set P.up pkg to (P.weight, P.guide). Can Copy Up(P ) indicates whether P can
copy Q.up pkg to P.up pkg. We note that P can evaluate Up Redundant(Q) for any
Q ∈ Chldrn(P ).

Predicate Up Done(P ) below decides whether all processes in TP have created their
own up-package in the current epoch and whether TP contains no active up-package.
The evaluation of Up Done(P ) gives the correct value for P.up done.

Up Done(P ) ≡ P.started = true ∧ Up Redundant(P ) ∧ ∀Q ∈ Chldrn(P ),Q.up done

Actions of CRK. Actions of CRK are given below. To simplify the design, we assume
that the actions of CRK use the same priorities as those of CGP.

For the root process Root only:

Err :: Error(Root) �→ Root.status← 0

NewEpoch :: Root.status ∈ {0, 4} ∧ �→ Root.status← 1; counter ← 0
∀Q ∈ Chldrn(Root), Root.up pkg← ⊥; Root.down pkg← ⊥

Q.status ∈ {0, 4} Root.started←false; Root.up done←false

ConvCast :: Root.status = 1 ∧ �→ Root.status← 2
∀Q ∈ Chldrn(Root), Q.status = 2

CreateUpPkg :: Root.status = 2 ∧ Can Start(Root) �→ Root.up pkg.value← Root.weight
Root.up pkg.guide← Root.guide
Root.started ← true

CopyUpPkg :: Root.status = 2 ∧ �→ Root.up pkg← Q.up pkg,
∃Q ∈ Chldrn(Root), Q = min≺Root

{R ∈ Chldrn(Root),
Can Copy Up(Root, Q) Can Copy Up(Root, R)}

EndUpPkg :: Root.started ∧ Up Redundant(Root) ∧ �→ Root.up done← true
∀Q ∈ Chldrn(Root), Q.up done

CreateDownPkg :: Down Ready(Root) ∧ �→ counter ← counter + 1
Root.up pkg �= ⊥∧ Root.down pkg.value← counter
¬Up Redundant(Root) Root.down pkg.guide← Root.up pkg.guide

SetRank :: Root.down pkg �= ⊥∧ �→ Root.rank ← Root.down pkg.value
Root.down pkg.guide = Root.guide ∧

Root.down pkg.value �= Root.rank

BroadCast :: Root.status = 2 ∧ �→ Root.status← 3
Root.up done ∧ Down Ready(Root)

EndEpoch :: Root.status = 3 ∧ �→ Root.status← 4
∀Q ∈ Chldrn(Root), Q.status = 4
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For every non-root process P only:
Err :: Error(P ) �→ P.status← 0

NewEpoch :: P.par.status = 1 ∧ P.status ∈ {0, 4} ∧ �→ P.status← 1
∀Q ∈ Chldrn(P ), Q.status ∈ {0, 4} P.up pkg← ⊥

P.down pkg← ⊥
P.started← false
P.up done← false

ConvCast :: P.status = 1 ∧ ∀Q ∈ Chldrn(P ), Q.status = 2 �→ P.status← 2

CreateUpPkg :: P.status = 2 ∧ Can Start(P ) �→ P.up pkg.value← P.weight
P.up pkg.guide← P.guide
P.started← true

CopyUpPkg :: P.status = 2 ∧ �→ P.up pkg← Q.up pkg,
∃Q ∈ Chldrn(P ), Can Copy Up(P, Q) Q = min≺P

{R ∈ Chldrn(P ),
Can Copy Up(P, R)}

EndUpPkg :: P.started ∧ Up Redundant(P ) ∧ �→ P.up done← true
∀Q ∈ Chldrn(P ), Q.up done

CopyDownPkg :: Down Ready(P ) ∧ �→ P.down pkg← P.par.down pkg
P.par.down pkg �= ⊥∧

P.par.down pkg �= P.down pkg ∧
Is Consistent(P, P.par.down pkg)

SetRank :: P.down pkg �= ⊥∧ �→ P.rank← P.down pkg.value
P.down pkg.guide = P.guide ∧

P.down pkg.value �= P.rank

BroadCast :: P.par.status = 3 ∧ P.status = 2 ∧ �→ P.status← 3
∀Q ∈ Chldrn(P ), Q.status = 2 ∧ Down Ready(P )

EndEpoch :: P.status = 3 ∧ ∀Q ∈ Chldrn(P ), Q.status = 4 �→ P.status← 4

The actions above achieve three tasks. They are (1) error correction, (2) epochs, and (3)
ranking computation (using the flow packages).

Error Correction. Action Err performs the error correction. If one process detects any
inconsistency among its state and that of its neighbors, it initiates a reset of the network
by changing its status to 0. This reset is contagious as previously explained.

Epochs. A new epoch starts by a reset initiated by Action NewEpoch at the root: If
Root .status is either 0 or 4, and every child of Root has status 0 or 4, then Root broad-
casts the status 1 and resets to a clean state.

When status 1 reaches the leaves, a convergecast wave starts and changes the status
of all processes to 2 by Action ConvCast, so that actual ranks computation can begin.

When Root detects that there are no more up-packages in the tree, and it already
sent every down-package, it initializes a broadcast of status 3 by Action BroadCast.
Note that there could still be active down-packages below Root , but there could not
be any active up-packages. Thus, Root is finished with its tasks for the current epoch.
Non-root process P propagates the status 3 by Action BroadCast after sending all
its down-packages. There could still be active down-packages below P , but no active
up-packages. Since P.par.status = 3, P knows that its job for this epoch is done.

Once status 3 reaches the leaves, a convergecast of status 4 is initialized and propa-
gated by Action EndEpoch. When Root changes to status 4, the current epoch is done,
and Root initiates a new one.
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Ranking computation. The computation of the ranking is bottom-up and starts when
the convergecast of status 2 starts at the leaves. The flow of up-packages is organized
using CreateUpPkg and CopyUpPkg, that is, a process either inserts its own package
in the flow or copy some package coming from a child by ensuring that packages are
moved up in ascending order of weight. Once a process P has detected that TP has no
active up-package, it sets P.up done to true by Action EndUpPkg. Root initializes the
broadcast of status 3 only after Root .up done switches to true.

Upon receiving a new up-package (that is, Root .up pkg is active), if Root .down pkg
is available (that is, it is either ⊥ or redundant), Root is enabled to create a new down-
package to send down to the home of its up-package by CreateDownPkg. If counter =
i, then Root .up pkg is the ith up-package copied or created by Root , its weight is the
ith smallest weight in the network, and i will become the value of the down-package.

The new active down-package is propagated to its home process by successive copy-
ing using Action CopyDownPkg. When it reaches its home process P , the value field of
that package contains the correct value of the rank of P , so P updates P.rank using
Action SetRank, if necessary.

Theorem 3. RANK is self-stabilizing, computes the ranking of all processes in O(n)
rounds from an arbitrary initial configuration, and works under the weakly fair sched-
uler.
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Abstract. The advances of deep submicron VLSI technology pose new
challenges in designing robust systems, which can in principle be ad-
dressed by approaches established in fault-tolerant distributed systems
research. This paper is the first step in an attempt to develop a very
robust high-precision clocking system for hardware designs like systems-
on-chip for critical applications. It is devoted to the design and the cor-
rectness proof of a novel Byzantine fault-tolerant self-stabilizing pulse
synchronization protocol, which facilitates a direct implementation in
standard asynchronous digital logic. Despite the severe implementation
constraints, it offers optimal resilience and smaller complexity than all
existing pulse synchronization protocols.

Keywords: clock synchronization, Byzantine faults, self-stabilization.

1 Introduction and Related Work

With today’s deep submicron technology running at GHz clock speeds [19], dis-
seminating the high-speed clock throughout a very large scale integrated (VLSI)
circuit, with negligible skew, is difficult and costly [2,3,11,23,27]. Systems-on-
chip are hence increasingly designed globally asynchronous locally synchronous
(GALS) [4], where different parts of the chip use different local clock signals.
Two main types of clocking schemes for GALS systems exist, namely, (i) those
where the local clock signals are unrelated, and (ii) multi-synchronous ones that
provide a certain degree of synchrony between local clock signals [28,31].

GALS systems clocked by type (i) permanently bear the risk of metastable
upsets when conveying information from one clock domain to another. To explain
the issue, consider a physical implementation of a bistable storage element, like
a register cell, which can be accessed by read and write operations concurrently.
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It can be shown that two operations occurring very closely to each other can
cause the storage cell to attain neither of its two stable states for an unbounded
time [22]. Although the probability of a single upset is very small, one has to
take into account that every bit of transmitted information across clock domains
is a candidate for an upset. Elaborate synchronizers [8,20,26] are the only means
for achieving an acceptably low probability for metastable upsets here.

This problem can be circumvented in clocking schemes of type (ii): Common
synchrony properties offered by multi-synchronous clocking systems are bounded
precision, i.e., bounded maximum offset in the number of clock transitions of any
two local clock signals, and bounded accuracy, i.e., bounded difference of the local
clock rate and the rate of progress of real time. Type (ii) clocking schemes are
particularly beneficial from a designers point of view, since they combine the
convenient local synchrony of a GALS system with a global time base across
the whole chip. It has been shown in [25] that these properties indeed facilitate
metastability-free high-speed communication across clock domains.

The decreasing structure sizes of deep submicron technology also resulted in
an increased likelihood of chip components failing during operation: Reduced
voltage swing and smaller critical charges make circuits more susceptible to
ionized particle hits, crosstalk, and electromagnetic interference [5,17]. Fault-
tolerance hence becomes an increasingly pressing issue in chip design. Unfor-
tunately, faulty components may behave non-benign in many ways. They may
perform signal transitions at arbitrary times and even convey inconsistent infor-
mation to their successor components if their outgoing communication channels
are affected by a failure. This forces to model faulty components as unrestricted,
i.e., Byzantine, if a high fault coverage is to be guaranteed.

The darts fault-tolerant clock generation approach [14,16] developed by some
of the authors of this paper is a Byzantine fault-tolerant multi-synchronous
clocking scheme. darts comprises a set of modules, each of which generates
a local clock signal for a single clock domain. The darts modules (nodes) are
synchronized to each other to within a few clock cycles. This is achieved by
exchanging binary clock signals only, via single wires. The basic idea behind
darts is to employ a simple fault-tolerant distributed algorithm [32]—based
on Srikanth & Toueg’s consistent broadcasting primitive [29]—implemented in
asynchronous digital logic. An important property of the darts clocking scheme
is that it guarantees that no metastable upsets occur during fault-free executions.
For executions with faults, metastable upsets cannot be ruled out: Since Byzan-
tine faulty components are allowed to issue unrelated read and write accesses by
definition, the same arguments as for clocking schemes of type (i) apply. How-
ever, in [12], it was shown that the probability of a Byzantine component leading
to a metastable upset of darts can be made arbitrarily small.

Although both theoretical analysis and experimental evaluation revealed many
attractive additional features of darts, like guaranteed startup, automatic adap-
tion to current operating conditions, etc., there is room for improvement. The
most obvious drawback of darts is its inability to support late joining and
restarting of nodes, and, more generally, its lack of self-stabilization properties.
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If, for some reasons, more than a third of the darts nodes ever become faulty,
the system cannot be guaranteed to resume normal operation even if all failures
cease. Even worse, simple transient faults such as radiation- or crosstalk-induced
additional (or omitted) clock ticks accumulate over time to arbitrarily large skews
in an otherwise benign execution.

Byzantine-tolerant self-stabilization, on the other hand, is the major strength
of a number of protocols [1,6,10,18,21] primarily devised for distributed systems.
Of particular interest in the above context is the work on self-stabilizing pulse
synchronization, where the purpose is to generate well-separated anonymous
pulses that are synchronized at all correct nodes. This facilitates self-stabilizing
clock synchronization, as agreement on a time window permits to simulate a syn-
chronous protocol in a bounded-delay system. Beyond optimal (i.e., �n/3� − 1,
c.f. [24]) resilience, an attractive feature of these protocols is a small stabiliza-
tion time [1,6,18,21], which is crucial for applications with stringent availability
requirements. In particular, [1] synchronizes clocks in expected constant time in
a synchronous system. Given any pulse synchronization protocol stabilizing in a
bounded-delay system in expected time T , this implies an expected (T +O(1))-
stabilizing clock synchronization protocol.

Note that existing synchronization algorithms, in particular those that do not
rely on pulse synchronization, have deficiencies rendering them unsuitable in our
context. For example, they have exponential convergence time [10], require the
relative drift of the nodes’ local clocks to be very small [7,21], provide low syn-
chronization precision [21] or make use of linear-sized messages [6]. Furthermore,
standard distributed systems’ models do not account for metastability.

In this paper, we describe and prove correct the novel FATAL pulse syn-
chronization protocol, which facilitates a direct implementation in standard
asynchronous digital logic. It self-stabilizes within O(n) time with probability
1− 2n−f , in the presence of up to f = �n/3� − 1 Byzantine faulty nodes, and is
metastability-free by construction after stabilization in failure-free runs. While
executing the protocol, non-faulty nodes broadcast a constant number of bits
in constant time. In terms of distributed message complexity, this implies that
stabilization is achieved after broadcasting O(n) messages of size O(1), improv-
ing by factor Ω(n) on the number of bits transmitted by previous algorithms.1

The protocol can sustain large relative clock drifts of more than 10%, which is
crucial if the local clock sources are simple ring oscillators (uncompensated ring
oscillators suffer from clock drifts of up to 9% [30]). If the number of faults is not
overwhelming, i.e., a majority of at least n − f nodes continues to execute the
protocol in an orderly fashion, recovering nodes and late joiners (re)synchronize
in constant time. All this is achieved against a powerful adversary that, at time
t, knows the whole history of the system up to time t + ε (where ε > 0 is
infinitesimally small) and does not need to choose the set of faulty nodes in
advance.

1 We remark that [21] achieves the same complexity, but considers a much simpler
model. In particular, all communication is restricted to broadcasts, i.e., all nodes
observe the same behaviour of a given other node, even if it is faulty.
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2 Model

Our formal framework will be tied to the peculiarities of hardware designs, which
consist of modules that continuously2 compute their output signals based on
their input signals. Following [13,15], we define (the trace of) a signal to be a
timed event trace over a finite alphabet S of possible signal states: Formally,
signal σ ⊆ S × R+

0 . All times and time intervals refer to a global reference time
taken from R+

0 , that is, signals describe the system’s behavior from time 0 on.
The elements of σ are called events , and for each event (s, t) we call s the state
of event (s, t) and t the time of event (s, t). In general, a signal σ is required to
fulfill the following conditions: (i) for each time interval [t−, t+] ⊆ R+

0 of finite
length, the number of events in σ with times within [t−, t+] is finite, (ii) from
(s, t) ∈ σ and (s′, t) ∈ σ follows that s = s′, and (iii) there exists an event at
time 0 in σ.

Note that our definition allows for events (s, t) and (s, t′) ∈ σ, where t < t′,
without having an event (s′, t′′) ∈ σ with s′ �= s and t < t′′ < t′. In this case, we
call event (s, t′) idempotent. Two signals σ and σ′ are equivalent, iff they differ
in idempotent events only. We identify all signals of an equivalence class, as they
describe the same physical signal. Each equivalence class [σ] of signals contains a
unique signal σ0 having no idempotent events. We say that signal σ switches to
s at time t iff event (s, t) ∈ σ0. The state of signal σ at time t ∈ R+

0 , denoted by
σ(t), is given by the state of the event with the maximum time not greater than
t.3 Because of (i), (ii) and (iii), σ(t) is well defined for each time t ∈ R+

0 . Note
that σ’s state function in fact depends on [σ] only, i.e., we may add or remove
idempotent events at will without changing the state function.

Distributed System. A distributed system is a finite set of n nodes V =
{1, . . . , n}. Each node i comprises a number of input ports , namely Si,j for each
node j, an output port Si, and a set of local ports , introduced later on. An
execution of the distributed system assigns to each port of each node a signal.
For convenience of notation, for any port p, we refer to the signal assigned to
port p simply by signal p. We say that node i is in state s at time t iff Si(t) = s
and that node i switches to state s at time t iff signal Si switches to s at time t.

To enable nodes to communicate (that is, exchange their state), we assume the
existence of channels between them: for each pair of nodes i, j, output port Si is
connected to input port Sj,i by a FIFO channel from i to j with maximum delay
d > 0.4 Note that this includes a channel from i to i itself. The channel from node
i to j is said to be correct during [t−, t+] iff there exists a function τi,j : R+

0 → R+
0 ,

called the channel’s delay function, such that: (i) τi,j is continuous and strictly
increasing, (ii) ∀t ∈ [t−, t+] : 0 ≤ τi,j(t) − t < d, and (iii) for each t ∈ [t−, t+],
(s, t) ∈ Sj,i ⇔ (s, τ−1

i,j (t)) ∈ Si, where τ−1 is the inverse of τ |[t−,t+], i.e., τ
restricted to [t−, t+]. Node i observes node j in state s at time t if Si,j(t) = s.

2 In sharp contrast to classic distributed computing models, there is no computation-
ally complex discrete zero-time state-transition here.

3 Whenever referring to σ, we will talk of the signal, not the state function.
4 W.r.t. O-notation, we normalize d ∈ O(1), as all time bounds depend linearly on d.
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Clocks and Timeouts. Nodes are never aware of the current reference time
and we also do not require it to resemble Newtonian “real” time. Rather we
allow for physical clocks that run arbitrarily fast or slow, as long as their speeds
are close to each other in comparison. One may hence think of the reference
time as progressing at the speed of the currently slowest correct clock. In this
framework, nodes essentially make use of bounded clocks with bounded drift.

Formally, clock rates are within [1, ϑ] (with respect to reference time), where
ϑ > 1 is constant and ϑ − 1 is the (maximum) clock drift. A clock C is a
continuous, strictly increasing function C : R+

0 → R+
0 mapping reference time to

local time. Clock C is said to be correct during [t−, t+] ⊆ R+
0 iff we have for any

t, t′ ∈ [t−, t+], t < t′, that t′ − t ≤ C(t′)−C(t) ≤ ϑ(t′ − t). Each node comprises
a set of clocks assigned to it, which allow the node to estimate the progress of
reference time.

Instead of directly accessing their clocks, nodes have so-called timeout ports
of watchdog timers. A timeout is a triple (T, s, C), where T ∈ R+, s ∈ S, and C
is a clock, say of node i. Each timeout (T, s, C) has a corresponding timeout port
TimeT,s,C , being part of node i’s local ports. Signal (T, s, C) is Boolean, that is,
its possible states are from the set {0, 1}. We say that timeout (T, s, C) is correct
during [t−, t+] ⊆ R+

0 iff clock C is correct during [t−, t+] and the following holds:

1. For each time ts ∈ [t−, t+] when node i switches to state s, there is a time
t ∈ [ts, τi,i(ts)] such that (T, s, C) is reset, i.e., (0, t) ∈ TimeT,s,C . This is a
one-to-one correspondence, i.e., (T, s, C) is not reset at any other times.

2. For a time t ∈ [t−, t+], denote by t0 the supremum of all times from [t−, t]
when (T, s, C) is reset. Then it holds that (1, t) ∈ TimeT,s,C iff c(t)− c(t0) =
T . Again, this is a one-to-one correspondence.

We say that timeout (T, s, C) expires at time t iff TimeT,s,C switches to 1 at
time t, and it is expired at time t iff TimeT,s,C(t) = 1. We will omit the clock C
from the notation and simply write (T, s) for both the timeout and its signal.

A randomized timeout is a triple (D, s, C), where D is a bounded random dis-
tribution on R+

0 , s ∈ S is a state, and C is a clock. Its corresponding timeout port
TimeD,s,C behaves very similar to the one of an ordinary timeout, except that
whenever it is reset, the local time that passes until it expires next—provided
that it is not reset again before that happens—follows the distribution D. For
the purpose of this abstract, we give a simplified formal definition here. A ran-
domized timeout (D, s, C) is correct during [t−, t+] ⊆ R+

0 , if C is correct during
[t−, t+] and the following holds:

1. For each time ts ∈ [t−, t+] when node i switches to state s, there is a time
t ∈ [ts, τi,i(ts)] such that (D, s, C) is reset, i.e., (0, t) ∈ TimeD,s,C . This is a
one-to-one correspondence, i.e., (D, s, C) is not reset at any other times.

2. For a time t ∈ [t−, t+], denote by t0 the supremum of all times from [t−, t]
when (D, s, C) is reset. Let μ : R+

0 → R+
0 denote the density of D. Then

P [TimeD,s,C switches to 1 during [t0, t]] =
∫ t

t0

μ(C(t)− C(t0)) dτ.
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We will apply the same notational conventions to randomized timeouts as we do
for regular timeouts.

We remark that these definitions allow for different timeouts to be driven by
the same clock, implying that an adversary may derive some information on the
state of a randomized timeout before it expires from the node’s behaviour, even
if it cannot directly access the values of the clock driving the timeout. This is
crucial for efficient implementability, as nodes require one clock only.

Memory Flags. Another kind of node i’s local ports are memory flags. For
each state s ∈ S and each node j ∈ V , memory flag Memi,j,s is a local port of
node i. It is used to memorize whether node i has observed node j in state s
since the last reset of the flag. We say that node i memorizes node j in state s
at time t if Memi,j,s(t) = 1. Formally, we require that signal Memi,j,s switches
to 1 at time t iff node i observes node j in state s at time t and Memi,j,s is not
already in state 1. The times when Memi,j,s is reset , i.e., when signal Memi,j,s

switches to 0, are specified by node i’s state machine, which is introduced next.

State Machine. It remains to specify how nodes switch states and when they
reset memory flags. We do this by means of state machines that may attain
states from the finite alphabet S. Node i’s state machine is specified by (i) the
set S, (ii) a function tr, called the transition function, from T ⊆ S2 to the set
of Boolean predicates on the alphabet consisting of expressions “p = s” (used
for expressing guards), where p is a local or input port of i and s is a possible
state of signal p, and (iii) a function re, called the reset function, from T to the
power set of the node’s memory flags.

Intuitively, the transition function specifies the conditions (guards) under
which a node switches states, and the reset function determines which memory
flags to reset upon the state change. Formally, let P be a predicate on node i’s
input and local ports. We define P holds at time t by structural induction: If
P is an element of the above alphabet, i.e., p = s, then P holds at time t iff
p(t) = s. Otherwise, if P is of the form ¬P1, P1 ∧ P2, or P1 ∨ P2, we define P
holds at time t in the straightforward manner.

We say node i follows its state machine during [t−, t+] iff the following holds:
Assume node i observes itself in state s ∈ S at time t ∈ [t−, t+], i.e., Si,i(t) = s.
Then, for each (s, s′) ∈ T , both:

1. Node i switches to state s′ at time t iff tr(s, s′) holds at time t and i is not
already in state s′.5

2. Node i resets memory flag m at some time within [t, τi,i(t)] iff m ∈ re(s, s′)
and i switches to state s′ at time t. This correspondence is one-to-one.

A node may also run several state machines in parallel. In this case, Si simply
is the product of the individual machine’s output signals, and the different state
machines interact by means of the delayed signal Si,i only.

A node is defined to be non-faulty during [t−, t+] iff during [t−, t+] all its
timeouts and randomized timeouts are correct and it follows (all of) its state

5 If more than one guard tr(s, s′) can be true concurrently, break ties arbitrarily.
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machine(s). In contrast, a faulty node may change states arbitrarily. While a
faulty node may be forced to send consistent states to all other nodes if its
channels remain correct, there is no way to guarantee that this still holds if
channels are faulty.6

Metastability. In our discrete system model, the effect of metastability is cap-
tured by the lacking capability of state machines to instantaneously take on new
states: Node i decides on state transitions based on the delayed status of port
Si,i instead of its “true” current state Si. This non-zero delay from Si to Si,i

bears the potential for metastability, as a successful state transition can only
be guaranteed if the transition guard remains stable during this delay at least.
Hence, we define that node i ∈ V is metastability-free during [t−, t+] with respect
to one of its state machines M , iff for any time t ∈ [t−, t+] when i switches to a
state s of M , the infimum t′ of times in (t, t+] when i switches to some state s′

of M satisfies t′ > τi,i(t).

3 The FATAL Pulse Synchronization Protocol

In this section, we present our self-stabilizing pulse generation algorithm, which
will be stated in terms of state machines, as introduced in the previous section. Its
goal is to generate synchronized, well-separated pulses that occur upon switching
to a distinguished state accept. For a set of nodes W ⊆ V and a set E of channels,
we formally define an algorithm to be a (W,E)-stabilizing pulse synchronization
protocol with skew Σ and accuracy bounds T−, T+ stabilizing within time T with
probability p iff the following holds: Given that during [t−, t+] ⊇ [t−, t−+T +Σ]
nodes in W are non-faulty and channels in E correct, with probability at least p
a time ts ∈ [t−, t−+T ] exists so that, denoting by ti(k) the kth time when node i
switches to accept after ts (ti(k) = ∞ if no such time exists), for all i, j ∈W , and
k ∈ N, (i) ti(1) ∈ (ts, ts + Σ), (ii) |ti(k) − tj(k)| ≤ Σ if max{ti(k), tj(k)} ≤ t+,
and (iii) T− ≤ |ti(k + 1)− ti(k)| ≤ T+ if ti(k) + T+ ≤ t+.

Since the ultimate goal of the pulse generation algorithm is to stabilize a system
of darts clocks, we introduce an additional port dartsi, for each node i, which
is driven by node i’s darts instance. As for other state signals, its output raises
flag Memi,darts, to which for simplicity we refer to as dartsi as well. Note that
the darts signals are of no concern to the liveliness or stabilization of the pulse
algorithm itself; rather, they are control signals from the darts components that
help in adjusting the frequency of pulses to the speed of the darts clocks once the
system as a whole has become stable. Details can be found in [9].

Basic Cycle. The full algorithm makes use of a rather involved interplay
between conditions on timeouts, states, and thresholds to converge to a safe state
despite a limited number of faulty components. As our approach is difficult to
present in a bulk, we break it down into pieces. Moreover, to facilitate giving
intuition about the key ideas of the algorithm, in this section we assume that
there are f < n/3 faulty nodes, and all the remaining n−f nodes are non-faulty
6 Note that a single physical fault may cause such a behaviour.
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Fig. 1. Overview of the core routine of node i’s self-stabilizing pulse algorithm

within [0,∞) (where of course the time 0 is unknown to the nodes). We further
assume that channels between non-faulty nodes (including loopback channels)
are correct within [0,∞). First, we present the basic cycle that is repeated every
pulse once a safe configuration is reached. It consists of the states accept, sleep,
sleep → waking, waking, ready, and propose in the given order (see Fig. 1).

We employ graphical representations of the state machine of each node i ∈ V .
States are represented by circles containing their names, while transition (s, s′) ∈
T is depicted as an arrow from s to s′. The guard tr(s, s′) is written as a label
next to the arrow, and the reset function’s value re(s, s′) is depicted in a rect-
angular box on the arrow. To keep labels simple we make use of abbreviations.
We write T instead of (T, s) if s is the state that node i leaves if the condi-
tion involving (T, s) is satisfied. Threshold conditions like “≥ f + 1 s ”, where
s ∈ S, abbreviate Boolean predicates that reach over all of node i’s memory
flags Memi,j,s, where j ∈ V , and are defined in a straightforward manner. If
in such an expression we connect two states by “or”, e.g., “≥ n − f s or s′ ”
for s, s′ ∈ S, the summation considers flags of both types s and s′. Thus, it is
equivalent to

∑
j∈V max{Memi,j,s,Memi,j,s′} ≥ f + 1. For any state s ∈ S, the

condition Si,j = s, (respectively, ¬(Si,j = s)) is written in short as “j in s”
(respectively, “j not in s”). If j = i, we simply write “(not) in s”. We write
“true” instead of a condition that is always true. Finally, re(·, ·) always requires
to reset all memory flags of certain types, hence we write, for example, propose
if all flags Memi,j,propose are to be reset.

We now briefly introduce the basic flow of the algorithm once it stabilizes, i.e.,
once all n− f non-faulty nodes are well-synchronized. Recall that the remaining
up to f ≤ "n/3# faulty nodes may produce arbitrary signals on their outgoing
channels. A pulse is locally triggered by switching to state accept. Thus, assume
that at some time all non-faulty nodes switch to state accept within a time
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window of 2d, i.e., a valid pulse is generated. Supposing that T1 ≥ 3ϑd, these
nodes will observe, and thus memorize, each other and themselves in state accept
before T1 expires. This makes timeout T1 the critical condition for switching to
state sleep. From state sleep, they will switch to states sleep → waking, waking,
and finally ready, where the timeout (T2, accept) is determining the time this
takes, as it is considerably larger than ϑ(ϑ+ 2)T1. The intermediate states serve
the purpose of achieving stabilization, hence we leave them out for the moment.
Note that upon switching to state ready, nodes reset their propose flags and
dartsi. Thus, they essentially ignore these signals between the most recent time
they switched to propose before switching to accept and the subsequent time
when they switch to ready. This ensures that nodes do not take into account
outdated information for the decision when to switch to state propose. Hence,
it is guaranteed that the first node switching from state ready to state propose
again does so because T4 expired or because T3 expired and its darts memory
flag is true. Due to the constraint min{T3, T4} ≥ ϑ(T2 + 4d), we are sure that all
non-faulty nodes observe themselves in state ready before the first one switches to
propose. Hence, no node deletes information about nodes that switch to propose
again after the previous pulse. No non-faulty node can switch to state accept
before it memorizes at least n− f nodes in state propose, as the accept flags are
reset upon switching to state waking. Therefore, at least n − 2f ≥ f + 1 non-
faulty nodes are in state propose when the first node switches to accept again.
Hence, the rule that nodes switch to propose if they memorize f + 1 nodes in
states propose will take effect, i.e., the remaining non-faulty nodes in state ready
switch to propose after less than d time. Another d time later all non-faulty
nodes in state propose will have become aware of this and switch to state accept
as well, as the threshold of n − f nodes in states propose or accept is reached.
Thus the cycle is complete and the reasoning can be repeated inductively.

Main Algorithm. We proceed by describing the main routine of the pulse
algorithm in full. Alongside the main routine, several other state machines run
concurrently and provide additional information to be used during recovery.

The main routine is graphically presented in Fig. 1, together with a very sim-
ple second component whose sole purpose is to simplify the otherwise overloaded
description of the main routine. Except for the states recover and join and ad-
ditional resets of memory flags, the main routine is identical to the basic cycle.
The purpose of the two additional states is the following: Nodes switch to state
recover once they detect that something is wrong, that is, non-faulty nodes do not
execute the basic cycle as outlined in Section 3. This way, non-faulty nodes will not
continue to confuse others by sending for example state signals propose or accept
despite clearly being out-of-sync. There are various consistency checks that nodes
perform during each execution of the basic cycle. For example, no non-faulty node
may be in state propose for more than a certain amount of time before switching
to state accept. Therefore, nodes will switch from propose to recover when time-
out T5 expires. Similarly, when in state ready, nodes expect others not to be in
state accept for more than a short period of time, as a non-faulty node switching
to accept should imply that every non-faulty node switches to propose and then
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to accept shortly thereafter. This is expressed by the second state machine com-
prising two states only. If a node is in state ready and memorizes f + 1 nodes in
state accept, it switches to suspect. Subsequently, if it remains in state ready until
a timeout of 2ϑd expires, it will switch to state recover.

Nodes can join the basic cycle again via the second new state, called join. Since
the Byzantine nodes may “play nice” towards f + 1 or more nodes still executing
the basic cycle, making them believe that system operation continues as usual, it
must be possible to join the basic cycle again without having a majority of nodes
in state recover. On the other hand, it is crucial that this happens in a sufficiently
well-synchronized manner, as otherwise nodes could drop out again because the
various checks of consistency detect an erroneous execution of the basic cycle.

In part, this issue is solved by an additional agreement step. In order to enter
the basic cycle again, nodes need to memorize n − f nodes in states join (the
respective nodes detected an inconsistency), propose (these nodes continued to
execute the basic cycle), or accept (there are executions where nodes reset their
propose flags because of switching to join when other nodes already switched to
accept). Since there are thresholds of f + 1 nodes memorized in state join both
for leaving state recover and switching from ready to join, all nodes will follow
the first one switching from join to propose quickly, just as with the switch from
propose to accept in an ordinary execution of the basic cycle. However, it is
decisive that all nodes are in states that permit to participate in this agreement
step in order to guarantee success of this approach.

As a result, still a certain degree of synchronization needs to be established
beforehand, both among nodes that still execute the basic cycle and those that do
not. For instance, if at the point in time when a majority of nodes and channels
become non-faulty, some nodes already memorize nodes in join that are not,
they may switch to state join and subsequently propose prematurely, causing
others to have inconsistent memory flags as well. Again, Byzantine faults may
sustain this amiss configuration of the system indefinitely.

So why did we put so much effort in “shifting” the focus to this part of the
algorithm? The key advantage is that nodes outside the basic cycle may take into
account less reliable information for stabilization purposes. They may take the
risk of metastable upsets (as we know it is impossible to avoid these during the
stabilization process, anyway) and make use of randomization. In fact, to make
the above scheme work, it is sufficient that all non-faulty nodes agree on a point
in time to reset the memory flags for states join and sleep → waking as well as
certain timeouts, while guaranteeing that no node is in these states close to the
respective reset times. Except for state sleep → waking, all of these timeouts,
memory flags, etc. are not part of the basic cycle at all, thus nodes may enforce
consistent values for them when they agree on such a resynchronization point.
Conveniently, the use of randomization also ensures that it is quite unlikely that
nodes are in state sleep → waking close to a resynchronization point, as the
consistency check of having to memorize n− f nodes in state accept in order to
switch to state sleep guarantees that the time windows during which non-faulty
nodes may switch to sleep make up a small fraction of all times only.
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Consequently, the remaining components of the algorithm deal with agreeing
on resynchronization points and utilizing this information in an appropriate way
to ensure stabilization of the main routine. We describe this connection to the
main routine first. It is done by another, quite simple state machine, which runs
in parallel alongside the core routine. It is the machine having three states that
is depicted in the upper left corner of Fig. 2.

Its purpose is to reset memory flags in a consistent way and to determine
when a node is permitted to switch to join. In general, a resynchronization point
(locally observed by switching to state resync) triggers the reset of the join and
sleep → waking flags. If there are still nodes executing the basic cycle, a node
may become aware of it by observing f+1 nodes in state sleep → waking at some
time. In this case it switches from state passive, which it entered at the point
in time when it locally observed the resynchronization point, to state active,
which enables an earlier transition to state join. This is expressed by the rather
involved transition rule tr(recover, join): T6 is much smaller than T7, but T6 is
of no concern until the node switches to state active and resets T6.7

It remains to explain how nodes agree on resynchronization points.

Resynchronization Algorithm. The resynchronization routine is specified in
Fig. 2 as well. It is a lower layer that the core routine uses for stabilization
purposes only. It provides some synchronization that is very similar to that of
a pulse, except that such “weak pulses” occur at random times, and may be
generated inconsistently after the algorithm as a whole has stabilized. Since the
main routine operates independently of the resynchronization routine once the
system has stabilized, we can afford the weaker guarantees of the routine: If it
succeeds in generating a “good” resynchronization point merely once, the main
routine will stabilize deterministically.

Definition 1 (Resynchronization Points). Given W ⊆ V , time t is a W -
resynchronization point iff each node in W switches to state supp → resync in
the time interval (t, t + 2d). A W -resynchronization point is called good if no
node from W switches to state sleep during (t− (ϑ + 3)T1, t) and no node is in
state join during [t− T1 − d, t + 4d).

In order to clarify that despite having a linear number of states (suppi, i ∈ V ),
this routine can be implemented using constant-bit channels only, we generalize
our description of state machines as follows. If a state is depicted as a circle
separated into an upper and a lower part, the upper part denotes the local state,
while the lower part indicates the signal state to which it is mapped. A node’s
memory flags then store the respective signal states only, i.e., remote nodes do
not distinguish between states that share the same signal.

The basic idea behind the resynchronization algorithm is the following: Every
now and then, nodes will try to initiate agreement on a resynchronization point.
This is the purpose of the small state machine in the lower left corner of Fig. 2. As

7 The condition “not in dormant” ensures that the transition is not performed because
of being in state resync a long time ago, while there was no recent switch to resync.
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the time when a node switches to init is determined by the randomized timeout
R3, which we choose to be distributed over a large interval, it is impossible to
predict when it will expire, even with full knowledge of the execution up to the
current point in time.

Consider now the state machine displayed on the right of Fig. 2. To understand
how the routine is intended to work, assume that at the time t when a non-faulty
node i switches to state init, all non-faulty nodes are not in any of the states supp →
resync, resync, or supp i, and at all non-faulty nodes the timeout (R2, supp i) has
expired. Then, no matter what the signals from faulty nodes or on faulty channels
are, all non-faulty nodes will be in one of the states supp j, j ∈ V , or supp → resync
at time t+ d. Hence, they will observe each other (and themselves) in one of these
states at some time smaller than t+ 2d. These statements follow from the various
timeout conditions of at least 2ϑd and the fact that observing node i in state init
will make nodes switch to state supp i if in none or supp j, j �= i. Hence, all of them
will switch to state supp → resync during (t, t + 2d), i.e., t is a resynchronization
point. Since t follows a random distribution that is independent of the remaining
algorithm and, as mentioned earlier, most of the times nodes cannot switch to state
sleep and it is easy to deal with the condition on join states, there is a large prob-
ability that t is a good resynchronization point. Note that timeout R1 makes sure
that no non-faulty node will switch to supp → resync again anytime soon, leaving
sufficient time for the main routine to stabilize.

The scenario we just described relies on the fact that at time t no node is
in state supp → resync or state resync. We will choose R2 $ R1, implying
that R2 + 3d time after a node switched to state init all nodes have “forgotten”
about this, i.e., (R2, supp i) is expired and they switched back to state none
(unless other init signals interfered). Thus, in the absence of Byzantine faults,
the above requirement is easily achieved with a large probability by choosing
R3 as a uniform distribution over some interval [R2 + 3d,R2 + Θ(nR1)]: Other
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nodes will switch to init O(n) times during this interval, each time “blocking”
other nodes for at most O(R1) time. If the random choice picks any other point
in time during this interval, a resynchronization point occurs. Even if the clock
speed of the clock driving R3 is manipulated in a worst-case manner (affecting
the density of the probability distribution with respect to real time by a factor
of at most ϑ), we can just increase the size of the interval to account for this.

However, what happens if only some of the nodes receive an init signal due
to faulty channels or nodes? If the same holds for some of the subsequent supp
signals, it might happen that only a fraction of the nodes reaches the threshold
for switching to state supp → resync, resulting in an inconsistent reset of flags
and timeouts across the system. Until the respective nodes switch to state none
again, they will not support a resynchronization point again, i.e., about R1

time is “lost”. This issue is the reason for the agreement step and the timeouts
(R2, supp j). In order for any node to switch to state supp → resync, there
must be at least n − 2f ≥ f + 1 non-faulty nodes supporting this. Hence, all
of these nodes recently switched to a state supp j for some j ∈ V , resetting
(R2, supp j). Until these timeouts expire, f + 1 ∈ Ω(n) non-faulty nodes will
ignore init signals on the respective channels. Since there are O(n2) channels,
it is possible to choose R2 ∈ O(nR1) such that this may happen at most O(n)
times in O(n) time. Playing with constants, we can pick R3 ∈ O(n) maintaining
that still a constant fraction of the times are “good” in the sense that R3 expiring
at a non-faulty node will result in a good resynchronization point.

Analysis and Results. Due to lack of space, we had to relegate the detailed
formalization and analysis of our algorithm to [9]. We will hence only briefly
summarize our major results, along with the required constraints. With λ :=√

(25ϑ− 9)/(25ϑ) ∈ (4/5, 1), we need:

T1 ≥ ϑ4d T2 ≥ (3ϑ + 1 − 1/ϑ)T1 + T5
T3 ≥ (2ϑ2 + 3ϑ − 1)T1 − T2 + ϑ(T6 + 5d) T4 ≥ T3
T5 ≥ (ϑ2 + ϑ − 2)T1 + ϑ(T2 + T4 + 9d) − T6 T6 ≥ ϑ((ϑ + 1)T1 + T2 + 6d)
T7 ≥ (ϑ − 1)T2 + ϑ((1 + 2/ϑ − ϑ)T1 + T4 + T5 + T6 + 10d) R1 ≥ ϑ(T7 + (4ϑ + 8)d)
R2 ≥ 2ϑ(R1 + (ϑ + 2)T1 + T2/ϑ + (8ϑ + 9)d)(n − f)/(1 − λ) R3 = uniformly distributed on
ϑλ ≤ (T2 − (4ϑ3 + 28ϑ2 + 4ϑ)d)/(T2 − (8ϑ2 + ϑ)d) [ϑ(R2 + 3d), ϑ(R2 + 3d) + 8(1 − λ)R2]

This system is solvable for any ϑ < ϑmax ≈ 1.247 with T1, . . . , T7, R1 ∈ O(1)
and R2 ∈ O(n). Furthermore, the system must satisfy the following property
during a given time interval [t−, t+]: There is a subset W ⊆ V of size at least
n− "n/3− 1# such that during [t− − (ϑ(R2 + 3d) + 8(1 − λ)R2) − d, t+] (i) all
nodes i ∈W are non-faulty, and (ii) all channels Si,j , i, j ∈W , are correct.

A safe configuration is reached once all nodes in W switch to accept within
3d: Time t is a stabilization point (quasi-stabilization point) iff all nodes i ∈ W
switch to accept within [t, t + 2d) ([t, t + 3d)).

Theorem 1. Suppose t is a quasi-stabilization point. Then (i) all nodes in W
switch to accept exactly once within [t, t+3d), and (ii) there will be a stabilization
point t′ ∈ (t+(T2 +T3)/ϑ, t+T2+T4 +5d) satisfying that no node in W switches
to accept in the time interval [t+3d, t′) and that (iii) each node i’s, i ∈W , states
of the basic cycle ( accept, sleep, sleep → waking, waking, ready, and propose)
are metastability-free during [t + 3d, t′ + 4d).
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By induction, we see that if for |W | ≥ n−"n/3−1# we can show the existence of a
quasi-stabilization point t ∈ [t−, t+], then for any E ⊇W 2 the protocol is (W,E)-
stabilizing with skew 2d and accuracy bounds (T2 + T3)/ϑ − 2d and T2 + T4 +
7d. As it is impossible to guarantee metastability-freedom during stabilization,
our remaining statements argue about metastability-free executions only, i.e.,
provided that metastability does not occur, the system will stabilize.

Theorem 2. Denote by Ê3 := ϑ(R2 + 3d) + 8(1−λ)R2 + d. For any k ∈ N and
any time t ∈ [t−, t+ − (k + 1)Ê3], with probability at least 1− (1/2)k(n−f) there
will be a good W -resynchronization point in [t, t + (k + 1)Ê3].

A good resynchronization point ensures sufficient consistency of nodes’ memories
for the main routine (Fig. 1) to stabilize deterministically.

Theorem 3. Let Tk := (k + 2)Ê3 + R1/ϑ for k ∈ N. Then, with probability at
least 1−1/2k(n−f), a stabilization point in [t−, t−+Tk] exists, and the algorithm
stabilizes within time Tk plus longest timeout.
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Abstract. We present novel results on and efficient deterministic as well
as randomized synchronous message-passing distributed algorithms for
generalized graph alliances, a new concept incorporating and expanding
previous ones. An alliance is here a group of nodes of a connected net-
work or a population fulfilling certain thresholds for their neighbourhood.
More precisely, every node outside and inside the alliance must have a
minimum number of neighbours inside the alliance. A threshold function
defining this number may be specific to each node. We are interested
in finding minimal alliances of generalized type: the threshold function
might be any. We also investigate conditions in which it is possible to
have anonymity, a praised property in population protocols.

Keywords: graph alliances, distributed algorithms, minimality, popu-
lation protocols.

1 Introduction

In this paper we investigate the problem of determining minimal alliances in
connected networks with bidirectional communication channels. We represent
such alliances in networks by special sets of nodes of finite and simple connected
graphs whose nodes are linked by undirected edges denoting processors. This
problem comprises classical well-known problems as dominating sets [18, 20]
in networks and arises every time it remains crucial for every node to have
a minimum number of neighbours inside a group of nodes called the alliance.
This number may be specific to each node. Thus, alliances expand the notion of
dominating sets: for an alliance to be a dominating set, it suffices for each node
outside the alliance to have at least a neighbour inside the alliance.

We introduce a new definition of alliance which incorporates and expands
previous ones: (f, g)-alliance. More specifically, every node outside and inside an
(f, g)-alliance must have a minimum number of neighbours inside the alliance.
This number is defined by the threshold function f for nodes outside it and by
the threshold function g for nodes inside it. Some examples of such alliances
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include previously studied ones such as the global defensive and global offensive
alliances [17, 26]. The global defensive alliance sets f to 1 and g equal to the
majority of neighbours, while the global offensive alliance sets f equal to the
majority of neighbours and g to 0.

We direct our attention to distributed algorithms which enable us to identify
those structural sets in an autonomic manner. Whenever possible, anonymity is
adopted. To that end, we make use of randomization. We are mainly interested
in retrieving minimal (f, g)-alliances.

Alliances have several applications which range from problems of population
protocols [2] such as voting [21] and spread of disease [10] to server allocation
in computer networks [13, 14] and replica caching in database and operating
systems [15, 16]. Encountering such minimal structural sets is thus of utmost
importance for a variety of problems in distributed computing, in particular
those concerning population protocols [1] and optimal object placement [4].

Related Work
Here we concentrate on finding minimal alliances instead of minimum ones, as
this is known to be a NP-complete task for many existing types of alliances
[12, 17]. Though our alliance concept is here extended, one may easily construct
a variation of the proofs of [12, 17], which only consider restricted classes of
alliances.

In [26] Srimani and Xu use the classical self-stabilization paradigm proposed
by Dolev, Dijkstra and Schneider [8, 9, 25] to derive protocols for two specific
types of alliances: defensive and offensive alliances. Though efficient, both algo-
rithms require a sequential model of computation which is neither autonomic
nor distributed: an extern central daemon schedules one node at a time cycli-
cally, that is, exactly one in each round according to some total ordering. To
derive a distributed version, a transformer is required, but then both algorithms
must be id-based. Not surprising as a total ordering of the nodes is needed. Be-
sides, the defensive alliance algorithm provides only a 1-minimal alliance, which
is not necessarily minimal, since the only given guarantee is that the removal
of one single node makes the set not a defensive alliance anymore. Our work,
however, has a total new approach and it is focused on finding minimal sets of
(anonymous, if possible) nodes which correspond to a new concept expanding
while including previous ones at the same time. Hence, instead of looking at self-
stabilization algorithms for two particular types of alliances such as in [26], we
focus on synchronous distributed algorithms specially built to discover minimal
(f, g)-alliances, in an anonymous environment whenever possible.

There are also some special numbers which have a very close and direct rela-
tion to the structural properties presented by alliances. For instance, the mini-
mum size of an (f, g)-alliance with f = k and g = 0 for every node is known as the
k-domination number, and was previously studied by researchers in [24]. There
one may also verify results and references on the k-tuple domination number,
which corresponds to a variation of an (f, g)-alliance where f = k and g = k−1.

Other examples of related special numbers are studied within the context
of population protocols such as voting and spread of disease. For instance, in
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[5, 6, 7], the authors define two numbers, irrf (G) and rf (G), which comprise
the minimum cardinality of a set so that every other node converges to the very
same initial proposed value (equal to 1) by that set. If a node is not allowed
to change after converging to this value, then irrf (G) determines the minimum
cardinality, otherwise rf (G) does. Clearly, the connectivity of nodes outside the
set to nodes inside the set plays here a major role, just as f in (f, g)-alliances.

Our Contributions
We introduce a novel alliance definition which generalizes previous notions: the
(f, g)-alliance. It relies on two threshold functions f and g which characterize the
required number of neighbours inside the alliance. The new concept incorporates
old ones, while broadening the possibilites. More precisely, we present in the next
sections:

– an extended alliance definition called the (f, g)-alliance
– a sufficient property for minimal (f, g)-alliances
– an anonymous quadratic-time deterministic synchronous message-passing

distributed algorithm to find some (f, g)-alliance for any f and any g
– an id-based quadratic-time deterministic synchronous message-passing dis-

tributed algorithm to find a minimal (f, g)-alliance for any f and any g
– an id-based linear-time deterministic synchronous message-passing

distributed algorithm to find a minimal (f, g)-alliance where f ≥ g
– an anonymous randomized synchronous message-passing distributed algo-

rithm to find a minimal (f, g)-alliance where f ≥ g

Our set of results shows how beautiful (f, g)-alliances might be.

Outline of Paper
In Section 2 we introduce our definitions and specify the model of computa-
tion. We also prove there a sufficient property for minimal (f, g)-alliances. In
Section 3, we introduce an efficient quadratic id-based deterministic distributed
algorithm for finding minimal (f, g)-alliances for any f and any g. In Section 4
we discuss why the results from Srimani and Xu [26] have their own limitations
and show why deterministic distributed message-passing algorithms for minimal
(f, g)-alliances cannot be anonymous if f and g are any, or even under the restric-
tion f ≥ g. This result is due to the minimality requirement, as verified previ-
ously in Section 3: an anonymous quadratic deterministic distributed algorithm
exists if we simply want to find any (f, g)-alliance instead of a minimal one. In
Section 5 we present a faster linear id-based deterministic distributed algorithm
for finding minimal (f, g)-alliances with f ≥ g (thus including global offensive
alliances as well as any alliance with g = 0). This algorithm is a warm-up for
the next one in Section 6, where we finally show an anonymous randomized dis-
tributed algorithm for finding minimal (f, g)-alliances with f ≥ g. We close with
Section 7 where conclusions are drawn and some open problems are suggested.

2 Model and Definitions

We consider connected networks represented by graphs whose nodes denote pro-
cessors and whose edges denote bidirectional communication links. The model of
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computation is here a message-passing synchronous one: Each node operates in
a round of same time size, computing locally, sending messages to its neighbours
and receiving messages from its neighbours.

An alliance is nothing more than a group of nodes with enough influence
outside and inside the group: There are enough neighbours belonging to the
group for each node outside the group as well as for each node inside the group.
Thus, an alliance comprises the key set of well-connected nodes for a successful
performance. This notion can be precisely defined, as follows.

Let G be a finite, simple, connected and undirected graph, V (G) be the set of
vertices of G, E(G) be the set of edges of G, n(G) = |V (G)| = n be the order of G
and D(G) be the diameter of G. Let NG(u) be the open neighbourhood of vertex
u of G (that is, u itself is not included) and dG(u) = |NG(u)| be the degree of
vertex u of G. For a set S ⊆ V (G) and a vertex u ∈ V (G), dG(u, S) = |NG(u)∩S|
is defined to be the degree of vertex u regarding S.

The set of all functions f : A→ B from a set A to a set B is here denoted by
BA. If f, g ∈ BA and f(u) ≥ g(u) for every u in A, then we simply write f ≥ g.
For a pair (f, g) of functions in N

V (G)
0 , a set ∅ �= S ⊆ V (G) is defined to be an

(f, g)-alliance if

– dG(u, S) ≥ f(u) for every vertex u in V (G) \ S (property 1) and
– dG(u, S) ≥ g(u) for every vertex u in S (property 2).

Hence, our definition makes use of two threshold functions: the first one f for
nodes outside the alliance and the second one g for nodes inside the alliance.
Clearly, if dG ≥ g, then the set V (G) is itself an (f, g)-alliance for any f .

A dominating set of a graph G is a (1, 0)-alliance of G. A global offensive
alliance of G is a

(⌈
dG(u)+1

2

⌉
, 0
)

-alliance of G. A global defensive alliance of

G is a
(

1,
⌈

dG(u)+1
2

⌉)
-alliance of G. Hence, both global offensive and global

defensive alliances of G are dominating sets of G. In fact, any (f, g)-alliance is a
dominating set of G if and only if f ≥ 1.

An (f, g)-alliance is minimal, if no proper subset is an (f, g)-alliance. Similarly,
an (f, g)-alliance S is 1-minimal, if there is no vertex u in S for which S \ {u} is
an (f, g)-alliance. Clearly, every minimal (f, g)-alliance is 1-minimal.

In the next, we establish some results about minimal and 1-minimal (f, g)-
alliances. Not every 1-minimal (f, g)-alliance is a minimal one. For instance, a
global defensive alliance may be 1-minimal but not minimal, as remarked in [26].
However, it is possible to characterize some sufficient property on both threshold
functions f and g of the (f, g)-alliance so that this actually holds, as we do in
the following.

Lemma 1. Let G be a graph and let f, g ∈ N
V (G)
0 . If f ≥ g, then a 1-minimal

(f, g)-alliance is minimal.

Proof: Let f ≥ g and let S be a 1-minimal (f, g)-alliance. For contradiction, we
assume that S is not minimal. Let the (f, g)-alliance S′ be a proper subset of S.
Let x be a vertex in S \ S′ and let S′′ = S \ {x}. Every vertex u in V (G) \ S′′
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belongs to V (G) \ S′ and hence satisfies dG(u, S′′) ≥ dG(u, S′) ≥ f(u). Every
vertex u in S′ satisfies dG(u, S′′) ≥ dG(u, S′) ≥ g(u). Finally, every vertex u in
S′′ \ S′ belongs to V (G) \ S′ and hence satisfies dG(u, S′′) ≥ dG(u, S′) ≥ f(u) ≥
g(u). Hence S′′ is an (f, g)-alliance, which implies the contradiction that S is
not 1-minimal. �

The given sufficient property for 1-minimal (f, g)-alliances to be minimal is par-
ticularly interesting and useful: it has a practical impact. This result allows an
improvement from quadratic to linear in the algorithmic complexity for finding
minimal (f, g)-alliances, as to be seen in Section 3 and Section 5.

3 Minimal (f, g)-Alliances

In this section, we show how to efficiently get a minimal (f, g)-alliance out of any
given (f, g)-alliance. This reduces the problem of finding efficiently a minimal
(f, g)-alliance to the problem of finding efficiently an (f, g)-alliance.

Fortunately, as we discovered, one can design an anonymous pre-processing
algorithm to efficiently find an (f, g)-alliance: we establish below how to construct
an (f, g)-alliance out of V (G). Of course, this pre-processing algorithm is just
needed if it is not known a priori if V (G) itself can be used. For instance, if
dG ≥ g, then the set V (G) is itself an (f, g)-alliance for any f and may be used
as a starting point for encountering a minimal (f, g)-alliance in graph G.

In the next, we present both algorithms, which provide together an id-based
quadratic synchronous message-passing distributed algorithms to find minimal
(f, g)-alliances for any f and any g. Note that, as from Lemma 2 of Section 4,
there is no anonymous deterministic synchronous message-passing distributed
algorithm to find minimal (f, g)-alliances if f and g are any, or even if f ≥
g. However, if the minimality (or the deterministic) requirement is removed,
anonymity is possible: take as an example Theorem 1.a in the next (or the
randomized algorithm in Theorem 3 of Section 6).

Theorem 1. Let G be a graph and let f, g ∈ N
V (G)
0 .

a) There is a quadratic-time anonymous synchronous message-passing
distributed algorithm (i.e., the Quad Get Input South Zone) that computes
deterministically an (f, g)-alliance contained in V (G).

b) There is a quadratic-time id-based synchronous message-passing distributed
algorithm (i.e., the Quad Valid Input South Zone) that computes determin-
istically a minimal (f, g)-alliance contained in a given (f, g)-alliance.

Proof: a) In the beginning, each node belongs to set T , initially equal to V (G). At
each round, every node v ∈ T leaves T if and only if dG(v, T ) < g(v). If v leaves
T , it sends a broadcast to all other nodes. If at some point a node v ∈ V (G) \ T
is such that dG(v, T ) < f(v), the algorithm ends after it broadcasts a message
setting T = ∅: that is, there is no (f, g)-alliance. Otherwise, if this never happens,
there is a round in which at every node of V (G) no broadcast is received with
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the announcement of the removal of a node from T , and the algorithm ends with
T as the (f, g)-alliance. The algorithm is shown in the next.

Every phase is composed of the following two steps:

– [Step 1] (Initialization, only in the very first phase:)
Every vertex v in G sends a message to all its neighbours.
(So every vertex discovers its degree in the graph. If degrees are considered
to be initially known, this step is not necessary.)
(Initially, T = V (G) and every node in G knows about it, as well as the
order of G: |V (G)| = n(G).)

– [Step 2]
Every u ∈ T that
• satisfies dG(u, T ) < g(u)

leaves T and updates all other nodes about its removal from T with a LEFT
broadcast message. If no LEFT broadcast message is received during Step
2, all nodes in T send an YES broadcast message. The algorithm ends, and
if some YES broadcast message was heard, all nodes know that S �= ∅,
otherwise all nodes know that S = ∅.
Every u ∈ V (G) \ T such that
• satisfies dG(u, T ) < f(u)

broadcasts a message NO expelling everybody out of T (so that we have
T = ∅) and ending the algorithm.

Clearly, if a node does not satisfy dG(v, T ) < g(v) when T is set to V (G), it must
be outside any (f, g)-alliance as dG(v, V (G)) ≥ dG(v, T ). Thus, after the first
round, any (f, g)-alliance must be contained in T . This argument is iterated as
many times as it gets necessary to satisfy dG(v, T ) ≥ g(v) (property 2) to every
node v ∈ T or to break dG(v, T ) ≥ f(v) (property 1) to some node v ∈ V (G)\T . If
there is no (f, g)-alliance inG, the algorithm ends with T = ∅. If there is any (f, g)-
alliance S in G, at some round no broadcast annoucing the removal of a node from
T is heard and the algorithm ends with S = T . Since the algorithm can clearly
be implemented to run in quadratic time as a broadcast takes O(D(G)) ≤ O(n)
time and there are at most n phases, the proof is complete. �

b) Let S be a given (f, g)-alliance. For every vertex u ∈ S, let the set Su arise
from S \ {u} by iteratively removing vertices v from the current set Tu (starting
with S \ {u}) that satisfy dG(v, Tu) < g(v). Now we compute if there is a proper
set of S which is an (f, g)-alliance as well. (Note that the computation to verify
if this possible proper set of S belongs to any of the different sets Tu is done
simultaneously for every different u ∈ V (G).) The algorithm is as follows.

Every phase is composed of the following two steps:

– [Step 1] (Initialization, only in the very first phase:)
Every vertex v in G sends to all nodes its ID and if it belongs to S.
For all u ∈ S, every vertex v in G initially belongs to Tu if it belongs to S
and v �= u. Otherwise, it does not.
(Thus, every vertex v in G for all u ∈ S knows whether or not it belongs to
Tu as well as whether or not every other vertex in G belongs to Tu.)
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– [Step 2]
For every u in V (G), every vertex v ∈ V (G) \ Tu such that
• satisfies dG(v, Tu) < f(v)

broadcasts a message ending the algorithm negatively for Su = Tu.
For every u in V (G), every vertex v in Tu that
• satisfies dG(v, Tu) < g(v)

leaves Tu and updates all other nodes about its removal from Tu with a
broadcast message.
If Tu = ∅, the algorithm ends negatively for Su = Tu.
If no broadcast message concerning a removal from Tu is received during
Step 2, the algorithm ends positively for Su = Tu.

If the algorithm ends positively for S∗u for some u∗ ∈ S, then it is restarted now
with S = S∗u as initial input. That means S∗u is the new candidate for a minimal
(f, g)-alliance.

If it ends negatively for Su for all u ∈ S, then S is a minimal (f, g)-alliance.
Clearly, every (f, g)-alliance S′ that is a subset of S \ {u} must also be a

subset of Su. Since dG(·, Su) ≥ dG(·, S′), this implies that S \ {u} contains an
(f, g)-alliance if and only if Su is an (f, g)-alliance. Altogether, we obtain that if
Su is not an (f, g)-alliance for every u in S, then S is a minimal (f, g)-alliance
and if S∗u is an (f, g)-alliance for some u∗ in S, then S is not a minimal (f, g)-
alliance. In this last case, to find the minimal (f, g)-alliance we have to iterate the
algorithm using S∗u instead of S and so on. Again, since the algorithm can clearly
be implemented to run in quadratic time as a broadcast takes O(D(G)) ≤ O(n)
time and there are at most n phases, the proof is complete. �

Corollary 1. Let G be a graph and let f, g ∈ N
V (G)
0 . There is an efficient

quadratic-time id-based synchronous message-passing distributed algorithm (i.e.,
the Quad South Zone) that computes deterministically a minimal (f, g)-alliance
contained in V (G).

Proof: The proof follows immediately from Theorem 1: the algorithm is given by
the combination of the one which finds an (f, g)-alliance out of V (G), namely
Quad Get Input South Zone in Theorem1.a, with the one which calculates a min-
imal (f, g)-alliance given an (f, g)-alliance, namely Quad Valid Input South Zone
in Theorem1.b. Though the earlier is anonymous, Quad South Zone is id-based as
the later is eponymous. �

4 Srimani and Xu’s Algorithm

Srimani and Xu proposed in [26] two self-stabilizing deterministic distributed al-
gorithms under a weak daemon model called the central daemon [3], where only
one processor may execute an atomic step at one time, for the computation of

– a minimal global offensive alliance and in a graph G with anonymous nodes
and

– a 1-minimal global defensive alliance in a graph G with nodes uniquely iden-
tified.
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Both algorithms share the same problem of working only under the central dae-
mon. Furthermore, while there are transformers preserving the self-stabilization
property [3] which translate the central daemon into a distributed daemon, where
any number of processors may execute an atomic step simultaneously as in a dis-
tributed algorithm, those require unique identifiers.

Hence, our objective in the next sections is to present distributed algorithms
(that is, under the distributed daemon) to find minimal alliances (instead of 1-
minimal) of a more general and broader type ((f, g)-alliances) in network graphs
where, if possible, node identifiers are not needed (that is, nodes are anony-
mous). More precisely, the distributed algorithms are to be run in a message-
passing synchronous model of computation. Anonymity is a cherished property
in various applications, including in population protocols. As nothing in life is
for free, a new element is introduced to achieve that deed: as is to be seen, in
the following sections we make use of randomization in order to avoid unique
identifiers so that we are able to build such distributed algorithms on anonymous
networks.

We will now explain in detail why such a restriction to the central daemon
applies for the algorithm computing a minimal global offensive alliance in [26].
A similar argument may be achieved for the 1-minimal global defensive alliance
algorithm in [26]. The algorithm maintains a set S and relies on two rules that
are iteratively applied by the individual vertices of the graph:

– Rule R1, which causes a vertex u that does not belong to S to join S, and
– Rule R2, which causes a vertex u that belongs to S to leave S.

The proof of the convergence statement (cf. Theorem 2 in [26]) considers the
number X of edges uv of G with |{u, v} ∩ S| = 1. The authors claim that one
application of R1 does not decrease X while one application of R2 increases X .
Since X is bounded by the number m(G) of edges of G, the number of appli-
cations of R2 is bounded by m(G) and since an application of R1 increases the
cardinality of S by 1, the number of applications of R1 after the last application
of R2 is bounded by the number n(G) of vertices.

The problem with this argument is that it implicitly assumes that the nodes
act one after the other, i.e. it implicitly assumes some underlying schedule which
breaks the symmetry of the nodes. If nodes are allowed to act simultaneously,
the claimed properties of R1 and R2 do no longer hold and the algorithm fails.
The simplest example is G = K2 and S = V (G). If both vertices of G act
simultaneously, they will both apply R1, then R2, then R1, and so forth, i.e. X
does not change and the algorithm never stabilizes.

In fact one can easily construct the following result for synchronous distributed
systems and daemons, which corresponds to the impossibility of leader election.

Lemma 2. There is no (self-stabilizing or not) deterministic, anonymous, and
synchronous message-passing distributed algorithm for the computation of a min-
imal global offensive (resp. defensive) alliance.
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Proof: Applied to the complete graph of order n in which all vertices are initially
in the same state, the algorithm would have to select a set of order exactly

⌈
n
2

⌉
.

Since all vertices are initially in the same state and dispose of the very same
local information, they will behave exactly the same and hence all remain in the
same state. Therefore, the algorithm can never complete its task. �

5 Faster Id-Based Deterministic Synchronous Distributed
Minimal (f, g)-Alliance Algorithm for f ≥ g

In this section we describe a faster linear id-based deterministic synchronous
distributed algorithm that determines a minimal (f, g)-alliance in G for any
f ≥ g. Hence, both global offensive alliances and dominating sets are com-
prised as special cases. This algorithm, named Linear f ≥ g South Zone, does
not need so many iterations as Quad South Zone from Corollary 1, ending up
much more earlier, more precisely, in linear time. To that end, we take advan-
tage of the restriction f ≥ g, under which 1-minimality implies minimality by
Lemma 1.

A set S that is an (f, g)-alliance is maintained. Initially, S is simply V (G) if
dG ≥ g, as in the case of global offensive alliances where g = 0. If not, then it
is not possible to find such an (f, g)-alliance in G, as f ≥ g, and the algorithm
terminates negatively with the empty set. Note that Quad Get Input South Zone
may be used for that purpose: if f ≥ g, it even has a linear complexity due to the
existence of only a single phase. (If f ≥ g, in the first phase, either it terminates
with all nodes of V (G) staying in T or it terminates with T = ∅.) Nevertheless,
instead of calling it, we incorporate the necessary checks in the initialization.

We assume that each vertex u of G has an individual ID number id(u) ∈ N0

such that the IDs define a proper colouring of G, i.e. adjacent vertices have
distinct IDs. Hence, all ids must not be distinct, but rather there has to be
enough different ids to define a colouring.

The algorithm Linear f ≥ g South Zone proceeds in synchronous message-
passing rounds which we call here phases. In each phase either S is not minimal
and at least one vertex u in S leaves S such that S \ {u} is still an (f, g)-alliance
or S is minimal and nothing changes. There are exactly n phases.

Every phase is composed of the following seven steps:

– [Step 1] (Only in the very first phase:)
For every u ∈ V (G) that
• satisfies dG(u) ≥ g(u)

sends to all its neighbours its ID number,
and every u ∈ V (G) that
• satisfies dG(u) < g(u) (and thus, dG(u) < f(u), as f ≥ g)

broadcasts a message ending the algorithm negatively with S = ∅.
(If there is no broadcast message terminating the algorithm with S = ∅, then
S = V (G) initially, and all nodes know their neighbours’ ID numbers.)
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– [Step 2]
Every vertex u ∈ S that
• satisfies dG(u, S) ≥ f(u)

sends to all its neighbours (inside and outside S) a CONSENT message
signaling that it wants to leave S.

– [Step 3]
Every u ∈ S that
• satisfies dG(u, S) > g(u)

sends an OK message to all neighbours from which it received a CONSENT
in Step 2.
Every u �∈ S that
• satisfies dG(u, S) > f(u)

sends an OK message to all neighbours from which it received a CONSENT
in Step 2.

– [Step 4]
Every u ∈ S that
• receives OK messages from all its neighbours (inside and outside S) in

Step 3
sends to all its neighbours (inside and outside S) a NEW CONSENT mes-
sage.

– [Step 5]
Every u ∈ S sends NEW OK messages to as most as possible from its
dG(u, S) − g(u) neighbours inside S of smallest ID numbers from whom
a NEW CONSENT message was received in Step 4.
Every u /∈ S sends NEW OK messages to as most as possible from its
dG(u, S) − f(u) neighbours inside S of smallest ID numbers from whom
a NEW CONSENT message was received in Step 4.

– [Step 6]
Every u ∈ S that
• receives NEW OK messages from all its neighbours (inside and outside
S) in Step 5

sends to all its neighbours in S its ID number.
– [Step 7]

Every u ∈ S that
• sent its ID number during Step 6 and
• did not receive during Step 6 an ID number that is smaller than his own

leaves S and updates all neighbours about its removal from S.
After n phases, the algorithm ends.

Theorem 2. Let G be a graph and let f, g ∈ N
V (G)
0 . Let S be an (f, g)-alliance

in G with f ≥ g. The algorithm Linear f ≥ g South Zone is such that:

a) If S is minimal, then applying the seven steps of a phase in constant time
changes nothing (S remains the same) and the algorithm ends in linear time.
(Termination)

b) If S is not minimal, then applying the seven steps of a phase in constant time
produces a proper subset ofS which is itself an (f, g)-alliance inG. (Correctness)
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Proof: a) If the (f, g)-alliance S is minimal, then every node u ∈ S is necessary
in S to guarantee: dG(v, S) ≥ f(v) for some vertex v in V (G) \ S (property 1)
or dG(v, S) ≥ g(v) for some vertex v in S (property 2). That means that every
removal of a u ∈ S either breaks (property 1) or (property 2). If (property 1)
breaks with the removal of u, then u either does not satisfy dG(u, S) ≥ f(u)
in Step 2 or does not receive either an OK message in Step 3 or a NEW OK
message in Step 5 from some neighbour outside S, so u does not send its ID
number in Step 6. If (property 1) holds but (property 2) breaks with the removal
of u, then u does not receive either an OK message in Step 3 or a NEW OK
message in Step 5 from some neighbour inside S. Anyway, no node u ∈ S sends
its ID number during Step 6. Hence, S remains the same from that point on
until the n-th phase is reached in linear time, as each phase is done in constant
time since nodes only communicate with neighbours. �

b) If the (f, g)-alliance S is not minimal, due to Lemma 1, where we determined
that if f ≥ g every 1-minimal alliance is also minimal, we have that: at least one
node, namely the node u∗ in S such that S \ {u∗} is an (f, g)-alliance in G and
id(u∗) is minimum among its neighbours in S, leaves S. That follows from Step 2
and Step 3, where all nodes u ∈ S, such that S \ {u} satisfies both property 1 and
property 2, what includes u∗, are considered: dG(u, S) = dG(u, S \ {u}) ≥ f(u)
(Step 2) and dG(v, S\{u}) ≥ f(v) for all v ∈ NG(u)∩V (G)\S as well as dG(v, S\
{u}) ≥ g(v) for all v ∈ NG(u) ∩ S (Step 3) . (Remember: the neighbourhood is
open.) Besides, node u∗ is also considered in Step 5, which takes into consideration
smallest IDS to verify both property 1 and property 2 for S\{u∗}: dG(v, S\{u∗}) ≥
dG(v, S \A) ≥ f(v) for all v ∈ NG(u∗) ∩ V (G) \ S where {u∗} ⊆ A ⊆ NG(v) ∩ S
as well as dG(v, S \ {u∗}) ≥ dG(v, S \ A) ≥ g(v) for all v ∈ NG(u∗) ∩ S where
{u∗} ⊆ A ⊆ NG(v) ∩ S. This is due to the minimality of id(u) and again the
fact that S \ {u∗} is an (f, g)-alliance (thus satisfying not only property 1 but also
property 2). Hence, node u∗ itself is included in the considered nodes in Step 6.
Finally, u∗ leaves S due to the minimality of id(u∗) in Step 7, each step being
done in constant time due to neighbour communication. �

Corollary 2. Let G be a graph and let f, g ∈ N
V (G)
0 . There is a fast linear-time

id-based synchronous message-passing distributed algorithm (i.e., the Linear f ≥
g South Zone) that computes deterministically a minimal (f, g)-alliance con-
tained in V (G) for any f ≥ g.

Proof: The proof follows immediately from Theorem 2 and Theorem 1.a: due to
Theorem 1.a, after linear time the algorithm either terminates with no (f, g)-
alliance if it is not possible to have one, or provides an initial S = V (G) which
is an (f, g)-alliance in G with f ≥ g . Theorem 2 then guarantees us that in
constant time, if S is not minimal, a phase produces a proper subset of S, and
otherwise, if S is minimal, nothing changes. Thus, as there are n phases, after a
linear time the algorithm ends with a minimal S. �
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6 Anonymous Randomized Synchronous Distributed
Minimal (f, g)-Alliance Algorithm for f ≥ g

In this section we describe Random f ≥ g South Zone, an anonymous random-
ized and synchronous message-passing distributed algorithm that determines a
minimal (f, g)-alliance in G for any f ≥ g, including global offensive alliances.

Initially, as in the last section, S is simply V (G) if dG ≥ g, as in the case of
global offensive alliances where g = 0. If not, as before, such an (f, g)-alliance
does not exist. As in the last section, the algorithm maintains a set S that is
an (f, g)-alliance. However, contrary to the algorithm in Section 5, we will not
make use of ID numbers but assume instead that each vertex has a random bit
generator that produces “1” and “0” with probability 1/2.

The algorithm proceeds in synchronoud rounds, which we call here phases. In
each phase either S is not minimal and with positive probability at least one
vertex u in S leaves S such that S \ {u} is still an (f, g)-alliance or S is minimal
and nothing changes. Furthermore, the algorithm ends if no broadcast message
with the removal of a node is heard during the last X phases, where X may be
either a known constant or better, a polynomial in the order of V (G). The larger
X , the more probable the algorithm ends with a minimal (f, g)-alliance.

Every phase is composed of the following six steps:

– [Step 1] (Only in the very first phase:)
For every u ∈ V (G) that
• satisfies dG(u) < g(u) (and thus, dG(u) < f(u), as f ≥ g)

broadcasts a message ending the algorithm negatively with S = ∅.
(If there is no broadcast message terminating the algorithm with S = ∅, then
S = V (G) initially.)

– [Step 2]
Every u ∈ S that
• satisfies dG(u, S) ≥ f(u)

produces a random bit x, and if x = 1, sends to all its neighbours (inside
and outside S) a CONSENT message signaling that it wants to leave S.

– [Step 3]
Every u ∈ S sends an OK message to a random set with the largest possible
size up to dG(u, S) − g(u) of neighbours in S from whom a CONSENT
message was received.

– [Step 4]
Every u /∈ S sends an OK message to a random set with the largest possible
size up to dG(u, S) − f(u) of neighbours in S from whom a CONSENT
message was received.

– [Step 5]
Every u in S that
• receives an OK message from all its neighbours (inside and outside S)

sends to all its neighbours in S a message.
– [Step 6]

Every vertex u in S that
• sent a message during Step 5 and
• did not receive during Step 5 a message
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leaves S and updates all other nodes about its removal from S with a broad-
cast message.

If no broadcast message is received during Step 6 since the last X phases,
the algorithm ends.

Theorem 3. Let G be a graph and let f, g ∈ N
V (G)
0 . Let S be an (f, g)-alliance

in G with f ≥ g. The algorithm Random f ≥ g South Zone is such that:

a) If S is minimal, then applying the six steps of a phase ends the algorithm
after the X next phases. (Termination)

b) If S is not minimal, then with positive probability applying the six steps of a
phase produces a proper subset of S. (Correctness With Positive Probability)

Proof: Analogous to Theorem 2. �

7 Conclusions and Open Problems

In this paper we investigated (f, g)-alliances: alliances under a general definition
which make use of two threshold functions, f and g. As seen, an alliance is
nothing more than a central group of nodes to which every other node should
be minimally connected to, more precisely, by having a minimum number of
neighbours inside the alliance. This group of nodes thus play a more powerful
and influential role inside the network, being core for example to problems such as
voting and disease spread, where connectivity to a main group makes a difference.

It remains as an open problem how results on (f, g)-alliances would get im-
pacted if a distance of k would to be considered instead of a distance of 1 [11]. For
instance, determining fast distributed algorithms for certain types of alliances
could prove useful in multicast systems [27] and message routing in sparse ta-
bles [22]. A few partial results for some specific alliances are already known. For
instance, the problem of finding a k-dominating set, which extends the problem
of finding a dominating set, has already been investigated by some researchers.
Though finding such a minimum k-dominating set is NP-Hard [12], some charm-
ing ideas for efficient distributed algorihms were proposed in [19, 23]. It would
be interesting to know as well a bit more about the effect of the k-distance on
(f, g)-alliances or any other of its subtypes, including the global defensive and
global offensive alliances.
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Social Market: Combining Explicit and Implicit
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Abstract. The pervasiveness of the Internet has lead research and ap-
plications to focus more and more on their users. Online social networks
such as Facebook provide users with the ability to maintain an unprece-
dented number of social connections. Recommendation systems exploit
the opinions of other users to suggest movies or products based on our
similarity with them. This shift from machines to users motivates the
emergence of novel applications and research challenges.

In this paper, we embrace the social aspects of the Web 2.0 by con-
sidering a novel problem. We build a distributed social market that com-
bines interest-based social networks with explicit networks like Facebook.
Our Social Market (SM) allows users to identify and build connections
to other users that can provide interesting goods, or information. At
the same time, it backs up these connections with trust, by associating
them with paths of trusted users that connect new acquaintances through
the explicit network. This convergence of implicit and explicit networks
yields TAPS, a novel gossip protocol that can be applied in applications
devoted to commercial transactions, or to add robustness to standard
gossip applications like dissemination or recommendation systems.

1 Introduction

The advent of Online Social Networks (OSN) has shifted the core of Internet
applications from devices to users. Explicit social networks like Facebook , or
LinkedIn enable people to exploit real-world connections in an online setting.
Collaborative tagging applications such as delicious , CiteULike, or flickr form
dynamic implicit networks of users on the basis of their online activities, interest
profiles, or search queries. Users can not only access and introduce new available
content but they become themselves accessible through the online infrastructure.
Existing online social networks can be grouped into two main categories: explicit
and implicit. In explicit networks, users explicitly determine which other users
they should be connected to. In Facebook or MySpace, they issue and accept
friendship requests. In Twitter , they decide that they wish to follow the tweets
of specific users. In all cases, the topology of the resulting network reflects the
choices of users and often consists of links that already exist between real people.
Explicit networks are therefore very useful in reinforcing and exploiting existing
connections but provide little support for discovering new content [3,1]. Implicit
networks fill this gap by taking an opposite approach which allows users to
discover new content, and acquaintances [4].
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Specifically, implicit networks form dynamic communities by collecting infor-
mation about collateral activities of users, such as browsing websites or tagging
documents, URLs, or pictures. A given user may or may not be aware of the
other members of her own communities depending on the target application.
Other users should be clearly visible if the purpose of the application is to dis-
cover new people, while they may be hidden for the sake of privacy when they
are simply being used as proxies to access new interesting content. In either
case, the ability to establish new social connections is key to identifying new
and useful data.

Recent years have seen the emergence of a significant number of research
efforts and applications exploring the power of each of these two paradigms.
Nonetheless, a lot more can be achieved if both approaches are combined into
a single framework. Consider the following example. John, who lives in London,
bought two electronic tickets for a classical-music concert in Paris, a concert
version of Berenice by Handel, but an unexpected event makes him and his
friend unable to travel to Paris to attend the concert. The concert is tomorrow
and John would like to sell the tickets to someone who can actually attend the
event. Unfortunately, while John has many friends interested in classical music,
they are all based in the United Kingdom. He does know a few people in Paris,
but they are mostly colleagues or friends he met while traveling and who do
not share his musical tastes. He tries calling a few of them but his best bet is
Joseph, who claims to have a friend whose parents often go to classical-music
concerts. Unfortunately, this friend of Joseph’s is out of town and Joseph does
not know how to reach his parents. As a last resort, John posts a message on
a French classical music forum, linking to an EBay ad. However, none of the
classical music fans on the forum are responsive enough and some of them even
become suspicious that the electronic ticket being sold by this new forum user
is actually a fake.

John’s problem would be very easy to solve if he was able to contact someone
that, albeit not knowing him directly, was at the same time interested in the
concert and would trust him enough to buy an electronic ticket from him. This
is exactly what can be achieved by combining the discovery potential of implicit
networks, with the real-world guarantees provided by trusted social links in
explicit ones. While implicit networks do not convey any kind of trust, explicit
links almost always carry some kind of trust properties resulting from being
friends, coworkers and so on.

In our example, the implicit network allows John to identify people that could
be interested in the concert. Among these, he discovers François, a music teacher
from Paris who is trying to buy two tickets for one of his students and himself.
A cross check on the explicit network then allows John to assess François’s
trustworthiness. He finds out that François is actually the cousin of a French
colleague of his wife. This allows the two to gain confidence in each other and
thus complete a safe transaction without external help.

Combining the discovery capabilities of implicit networks with the trust and
confidence that are inherent in friendship relationships is useful not only in
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the context of commercial transactions but also in applications like information
dissemination, or recommendation. Consider a distributed news dissemination
system [6]. Users receiving an unusual news item will be more likely to be in-
terested in it if the source or the user that forwarded it is associated with some
level of trust. Similarly, recommendation systems can take into account the trust
of users in other people’s opinions.

The power of combining explicit and implicit social networks, however, has a
cost. First, the enormous amount of information necessary to manage user pro-
files requires significant storage capacity as well as computing power to determine
who the best users are for a given transaction. Second, the associated costs are
equally enormous and can only be afforded by a few very large companies, and
this, in turn, brings significant privacy problems. Modifications in the terms of
service of websites like Facebook have already caused public uproars in multiple
occasions. Most people are rightfully upset at the idea that their personal data
may be collected by a company and sold to third parties for whatever reasons.
The most promising way to continue to use personalized information is therefore
to develop scalable decentralized solutions.

A class of protocols that appear to be particularly suited for this purpose
are those based on the gossip paradigm. Initially introduced in the context of
distributed databases, gossip protocols have rapidly shown their applicability in a
large number of applications including data dissemination, overlay maintenance,
and more recently social networks. In this paper, we extend existing work on
interest-based gossip overlays [4] and propose Social Market, a solution for the
identification of trusted social acquaintances.

Our main contribution in Social Market is TAPS (Trust-Aware Peer Sam-
pling), a novel protocol that operates by directly incorporating trust relation-
ships extracted from an explicit social network into the gossip-based overlay.
This provides each user with a set of neighbors that are not only useful but
that can also benefit from a high degree of trust. Through extensive simula-
tions, we show that Social Market and TAPS achieve performances that are
comparable to those obtained by protocols equipped with global system knowl-
edge, while limiting the diffusion of sensitive trust information. This makes our
solution directly applicable to situations like the social transaction example de-
scribed above. Moreover, our results open new directions for making existing
gossip-based applications more robust in the presence of unreliable users.

2 System Model and Problem Definition

Social Market (SM) is a novel distributed application enabling users to iden-
tify previously unknown social acquaintances that, at the same time, are simi-
lar to them and can be trusted through a chain of explicit social connections,
the trusted path. Selecting similar users is crucial when searching for the right
people for a given transaction, but also when building recommendation or data-
dissemination systems. Trust enables the implementation of transactions without
external help and increases users’ confidence in recommendation results.
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We consider a system consisting of a set of users equipped with interconnected
computing devices that enable them to exchange information in the form of mes-
sages. Each user is associated with a user profile that characterizes her interest,
her past behavior, her geographical location, and whatever other information
the user wishes to add. The profile is essentially a vector of strings that can
represent, for example, URLs, words, or phrases. We refer to each such string
as a keyword. Each keyword in a profile is also associated with a counter, its
weight, which counts how many times the keyword has been added to the pro-
file. The weight basically measures how relevant a given keyword is with respect
to the other keywords in the profile. Keywords can be added by the user, they
can be extracted from her browsing history, as well as from her interaction with
Social Market. To simplify notation, we refer to a user and her profile with the
same symbol u ∈ U , where U is the universe of all user profiles. Profiles can be
compared with each other using a standard similarity metric. Even though our
solution can operate using any similarity metric, in the following, we make use
of the well known cosine similarity [19], which measures normalized overlap.

Sim(u1, u2) = cos(u1, u2) =
u1u2

||u1|| · ||u2||
Users interact with Social Market by proposing items that they wish to exchange
with other users. An item can be, for example, an object to sell, an object to
buy, but it can also be a question that is being asked and that needs an answer.
When a user u creates an item, she associates it with an item profile, similar
to what is done in [2]. Structurally, an item profile is identical to a user profile.
Upon creation, the system initializes the item profile to the corresponding user
profile. The user then completes the creation by selecting which keywords from
this profile clone should be kept, which should be removed, and which, if any,
new keywords should be added.

In the example of Section 1, John creates an item for the Handel concert
in Paris. Prompted with a profile that contains, among other things: computer
science, cycling, mountaineering, violin, rock, and classical music, John decides
to keep only violin and classical music in the item profile. He then adds two
more keywords, Paris and Handel, and decides to keep only the latter in his
user profile as he’s not interested in being notified about other items associated
with Paris. Once an item has been created, the goal of Social Market is to lead
this item to meet other users who

– (i) are interested in the item,
– (ii) can be trusted and can trust the creator of the item,
– (iii) can be reached through a trusted path on the social network (Figure 1a).

To make this possible, Social Market users can create explicit social links. While
similar to friendship links in systems like Facebook, SM links also have an addi-
tional feature: trust. Upon establishing a link, users declare how much they trust
each other by specifying a value in (0, 1]. The value of the trust link is similar
to the degree of friendship/confidence specified in some existing social networks
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such as CouchSurfing1. In particular, if user A assigns a value close to 0 to the
link to a user B, it does not necessarily mean that A completely distrusts B,
but it may simply mean that A does not know B enough to express a positive
opinion.

In the following, we present our solution to address Social Market’s goals. In
this version of our work, we assume that two explicit friends always agree on a
trust value for the link they share. This yields an undirected social graph with arc
weights between 0 and 1. Extensions to the directed case as well as mechanisms
to guarantee high levels of privacy and resilience to attacks are outside the scope
of this paper and will be the subject of our future work.

3 Social Market

Identifying users that, at the same time, are interested in an item and towards
whom it is possible to identify a trusted path requires an effective protocol to
group users according to these two conflicting requirements. Recent research on
gossip-based protocols has shown their effectiveness in building overlays that
cluster nodes or users according to some distance function or similarity metric.
In this section, we extend this research by presenting a novel protocol capable
to provide each user or item with a set of neighbors that have highly similar
profiles and to which there is a trusted social path. Because users and items are
treated identically by our protocol, we refer to both with the term node.

(a) Importance of a trusted path: A se-
lects C, rather than B or D as a neigh-
bor even if it has a lower similarity
value because it is reachable through
a trusted path (high-trust links).

(b) Exchange of trust information (top)
and Short circuiting of trusted paths
(bottom)

Fig. 1

3.1 Background: Gossip-Based Implicit Networks

Protocols for gossip-based clustering generally consist of two layers. The bottom
one is a random peer sampling protocol (RPS) [11] which provides each node
with a continuously changing view of the network. The properties of the RPS
are such that the resulting topology, that is the union of all the RPS views, can
1 www.couchsurfing.org is a social community supporting the exchange of accommo-

dation between its users.
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be assimilated to a random graph. This makes the RPS effective in maintaining
a connected overlay in the presence of disconnections and arrivals of new nodes.
The top layer is also a gossip-based overlay maintenance protocol and is based
on a variation of [20]. Specifically, at each gossip exchange, a node selects its
neighbors by choosing those with the best similarity values.

Social Market exploits a similar protocol structure. Instead of a random peer-
sampling layer, it applies our novel trust-aware peer-sampling protocol, TAPS.
TAPS provides the clustering protocol with candidate nodes that not only have
similar interests but that can also be trusted. The clustering protocol then uses
this information to select those that offer the best compromise between trust
and interest similarity as shown in Figure 1a.

To summarize, each node maintains three data structures: the explicit view,
the TAPS view, and the cluster view. The explicit view contains the node’s
explicit friends, while the other two are maintained by the TAPS and clustering
protocols as described in the following.

3.2 Trust-Aware Peer Sampling

TAPS follows the general structure of a peer-sampling protocol described in [11].
Its goal is to populate the TAPS view with an ever-changing set of references
to other nodes. Periodically, each node contacts a node selected from its TAPS
view and the two exchange subsets of their respective views.

In a standard peer-sampling protocol, each view entry contains at least in-
formation on how to contact the corresponding node (eg. IP address and port),
and an age or timestamp value indicating when the information in the entry was
generated. In TAPS, we introduce additional fields. First, as in [4], we add a user
profile. This makes it possible to cluster similar nodes together by computing
the cosine similarity of their profiles. In addition, we include an inferred trust
value, and a trusted path. The inferred trust value indicates the trust that a node
can have in another node. If the other node is a friend in the explicit network,
then the trust value corresponds to the one agreed upon when the friendship
relationship was established. Otherwise, it is an inferred value that depends on
the path that the trust information has taken during the gossip dissemination,
the trusted path.

Trust Propagation. Each edge in a trusted path carries some amount of uncer-
tainty about the trustworthiness of the target node even if all the nodes in the
path fully trust each other. To model this, we define the inferred trust of a path
as the product of the trust values of its edges, weighted by a trust transitivity
coefficient, τ , expressing how much a node values other nodes’ recommendations.
Given a path u1, u2..., un with trust values t1,2, t2,3..., tn−1,n, the inferred trust
between u1 and un is

t̃1,n = τn−2
i=n−1∏

i=1

ti,i+1,

Lower τ values cause trust to decay faster with path length. For example, with
τ = 0.7 trust decays from 1 to 0.49 in only three hops.
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The ability to perform trust inference is what makes TAPS the perfect can-
didate for building our Social Market application. In the following we describe
the mechanisms that enable trust inference to be implemented in the context of
a gossip-based overlay protocol.

Initialization and View Exchanges. An inference process can only produce results
if it starts from some reliable initial values. In TAPS, these values are those
that have been agreed upon at the creation of explicit friendship relationships.
We therefore initialize the TAPS view by inserting one entry for each explicit
neighbor. During the course of the protocol, these entries are exchanged with
entries received from other nodes. Initially nodes providing new entries will be
the node’s explicit friends, then the node’s friends’ friends, and so on.

As the gossip process evolves, nodes collaborate in computing inferred trust
values. Consider a node A exchanging profiles with another node B as shown
in the top diagram of Figure 1b. A sends B a subset of its view as well as the
value it has for tAB, the inferred trust between A and B. B uses this information
to update the inferred trust values before adding the nodes to its own view.
Specifically, let tAX be the trust A has in X, then B computes its own trust for
X, tBX , as follows. First it verifies if it already has a value for tAB. If so, it keeps
the highest value between the received one and its own. It then uses the selected
tAB, to compute tBX as

tBX = τtABtAX .

During the course of dissemination, a node A will inevitably receive multiple ref-
erences for the same node X . Each of these may arrive from a different neighbor
and carry a different trust value. In the presence of multiple trust values for the
same reference, a node always selects the largest. However, two references for the
same node may also contain slight differences in the node’s profile, and in this
case, the node should keep the most recent information. To balance these two
needs, when A receives a reference to a node X , it chooses the highest trust value
between the one in its view and the one it received, and combines it with the
most recent profile. Because τ < 1, choosing the largest trust value guarantees
that nodes always selects the most direct trust values, thus converging towards
shorter and shorter trusted paths. Nonetheless, some nodes may still be unable
to infer the trust of other nodes through the best social paths.

To enhance the chances of a successful trust inference, a node initiates gossip
exchanges not only towards nodes in its TAPS view but also to those in its
explicit neighbors. These additional gossip exchanges are executed every Texp

TAPS cycles and cause nodes to exchange entries from the unions of their TAPS
and explicit views. Explicit-view exchanges increase the probability that nodes
can infer trust through the shortest available paths.

Managing Trust Paths. When exchanging trust information with each other,
nodes also update the associated path information. Specifically, when a node A
receives a reference to node X from node B, it computes the associated path
pAX by concatenating pAB and pBX . Maintaining paths up to date is not only
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necessary to enable users to enforce correct transactions in the social market
application, but it is also useful to correct the degradation of trust values caused
by possible loops in the inferred paths.

Consider the situation depicted in the bottom diagram of Figure 1b. Node
X holds a reference to D with a trust value tXD and a path going through Y
and sends it to A. Node A should combine this with the trust value it has for
node X , tAX , also obtained through Y . However, this would lead to a path that
uselessly goes twice through node Y and once through X .

Node A can prevent this by short circuiting the path, thus computing a more
accurate trust value. The problem is that the information received from X only
contains the identifiers of the nodes in the path and not their trust values.
Including such values in the path would allow the re-computation of trust, but
at the cost of disclosing trust information to third parties.

We therefore replace the re-computation of trust with the computation of a
lower bound. Specifically, A knows that the aggregated impact on trust of the
segment Y X cannot be greater than τn, n being the number of useless links in
the path, each link being counted once for each time it is traversed (n=2 in this
case). It can therefore conclude that the trust value of node D as seen from A,
TAD is at least:

tAD ≥ tXDtAX

τn

.This makes it possible to increase the accuracy of trust inference without dis-
seminating private trust information to third parties.

3.3 Clustering Trusted Nodes

Our Trust-Aware Peer Sampling protocol provides each node with a continuously
changing set of nodes along with their inferred trust values. This constitutes a
source of information for our clustering protocol, a variation of the well-known
Vicinity protocol [20]. This protocol maintains a cluster view that collects the
nodes that offer the best compromise between trust and similarity.

Filling the Cluster View. In order to fill its cluster view, each node periodically
selects the node with the oldest timestamp and exchanges the content of its view
with it. Upon receipt of another node’s view, a node X combines the received
view, its own view, and its own TAPS view, and selects the entries that are
associated with the best trade-off between similarity and trust. Specifically, for
each entry N , X computes a score sXN as follows

sXN = Sim(X,N)2−εtXN
ε, ε ∈ [0, 2]

where ε, the trust weight, determines the importance of trust in the trade-off.
To speed up convergence, nodes also update their cluster views when they

receive new information through the TAPS protocol. In this case, they simply
combine the received TAPS view with the current cluster view and extract the
nodes with the best trade-off between trust and similarity. The selected nodes
replace those that were previously in the cluster view.



Social Market: Combining Explicit and Implicit Social Networks 201

Trust Verification. The decentralized nature of our trust-inference protocol can
allow nodes to cheat on their trust values when communicating with nodes that
are not direct friends. For example, in Figure 1b (bottom), node D could try to
enter A’s cluster by making A believe that it has a high-trust link to node Y.

To prevent this, each node verifies the trust values of the entries in its cluster
view, once they have remained in the view for at least c cycles.2 To achieve this,
A asks D to forward a verification message back to A along the trusted path.
The message starts with a trust value of 1. Nodes along the path multiply the
message’s value by τ and by their trust for the node they received the message
from. Y thus multiplies 1 by τtY D in the example. In the absence of colluding
nodes, this process causes the verification message to reach A with the correct
value for tAD thereby invalidating D’s cheating attempts.

4 Evaluation

We evaluated the effectiveness of our approach by means of extensive simulations
on several data traces obtained from real social networks. In the following we
first present the details of our setting, and then discuss our results.

4.1 Setting

We evaluated our protocol on real data traces consisting of 3000 users extracted
from the Facebook and Digg social websites. The Facebook trace3 contains
friendship links and a list of social interactions. To obtain a treatable subset
for our experiments, we first cleaned up the trace by removing all users that had
only one friendship link, as they would be too isolated to benefit from our so-
cial platform. We then selected the user with the largest number of interactions
and proceeded in a spiral fashion by selecting her friends, then the friends of
her friends, and so on, until we reached 3000 users. We associated each of these
users with a random user profile from the Digg social network. We obtained
these profiles by crawling Digg in late 2010.

Friendship links in the Facebook trace and profiles in the Digg trace provided
the base explicit links and profiles for our experiments. On top of them, we built
several traces by varying the trust patterns between the nodes. We distinguish
our traces into two groups: binary and multi-valued. In both, we made the as-
sumption that the number of interactions between two nodes is a measure of
trust (this assumption is not part of the protocol itself).

Binary Traces. In binary traces we assigned a binary trust value to each link
in the data set. Specifically, we sorted the friends of each user according to the
number of interactions she had with them. Then, for a user with |N | friends, we
assigned a trust value of 1 to the β|N | directed links with the largest number of

2 Similar to [4], we choose c = 5.
3 Network A at http://current.cs.ucsb.edu/facebook/index.html

http://current.cs.ucsb.edu/facebook/index.html
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interactions. Because, this process creates asymmetric trust values, we then set
the symmetric trust value of each link as the logical OR of the two asymmetric
values. These lead to the proportions of trusted links depicted in Figure 2a.

Multivalued Traces. While binary traces provide a simple experimental setting,
reality tends to be more complex. Thus, we also considered traces with trust
values of 1, 0.8, 0.5, and 0. Similar to the binary case, we sorted each user’s
friends by the number of interactions and assigned a trust value of 1 to the top
γ1|N |, a value of 0.8 to the following γ0.8|N | and so on, leading to the three
traces shown in Figure 2b.

4.2 Terms of Comparison

We compared the performance of our Social-Market solution against several
alternatives. First, we considered best, an ideal system that, powered with global
knowledge, always provides each user with the set of neighbors that offer the
best combination of similarity and trust. This allows us to assess TAPS’s ability
to reach similar results in a decentralized way. Then we considered oracle: this
consists of a standard similarity-based implicit network [4], augmented with an
oracle that provides each user with the best trusted path to her neighbors. Oracle
therefore maximizes profile similarity at the cost of possibly lower trust values.

We also compared against two variations of our protocol. Full-trust is a ver-
sion in which nodes exchange complete trust information along with trusted
paths. This makes it possible to short-circuit long paths more accurately than
as described in Section 3.2 at the cost of disclosing trust values. Full-Trust is
only shown in multi-valued traces as it is equivalent to TAPS in binary ones.
TAPS no-bound is instead a version of TAPS in which nodes do not attempt
to short-circuit cycles thus yielding less accurate trust computation. Finally, un-
less otherwise specified, we ran our simulations using default values for τ and ε.
τ = 0.75 provides a good balance between trust decay and path length ( 0.56 at 3
hops, 0.23 at 6). ε = 1 gives instead a fair tradeoff between trust and similarity.

4.3 Results

Impact of Trust Density. We start our performance comparison by examining
the results obtained in the various traces with a trust transitivity of τ = 0.75.
Our results, depicted in Figure 2c, show the average score values in the cluster
views with TAPS as well as with its competitors as percentages of best ’s scores.
TAPS’s performance is either comparable or better than that obtained by Or-
acle with the use of global knowledge. As expected, TAPS is particularly good
whenever the social network has a limited proportion of high-trust links (binary-
0.4 and multi-valued-1 and -2). This can be explained by observing that Oracle
always selects the nodes with the best cosine similarity and is therefore penalized
in networks where the density of high-trust links is lower. With smaller τ values,
we observed that TAPS outperforms Oracle in all the considered traces.
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Name β % 1 % 0
Binary-0.4 0.4 53.5 46.5
Binary-0.6 0.6 71.3 28.7
Binary-0.7 0.7 80.7 19.3
Binary-0.8 0.8 89.3 10.7

(a) Binary Traces

Name % 1 % 0.5 % 0.25 % 0
MultiValued-1 41.3 23.8 23.4 11.5
MultiValued-2 57.4 27.9 13.3 1.4
MultiValued-3 76.2 12.3 10.1 1.4

(b) Multi-valued Traces (c) Impact of trust density

Fig. 2. Trust values distribution for different traces (left), impact of trust density (right)

Impact of Trust Transitivity. Figure 3 confirms the above observation by exam-
ining the impact of trust transitivity, τ , on performance in the binary-0.8 (left)
and in the multi-value-1 traces. Results show that the performance of TAPS is
particularly good when trust decays faster. A faster decay gives more importance
to nodes that are closer in the social network even if they may have poorer sim-
ilarity values. This suggests that a protocol like TAPS becomes more and more
important when it is being used for important transactions and in situations in
which people can tolerate only limited amounts of risk.

(a) binary (b) multi-valued

Fig. 3. Impact of τ in the binary (left) and multi-valued (right) traces

With very high values of τ trust decays more slowly. In this case, an proto-
col like Oracle that first finds the most similar nodes and then searches for a
trusted path may be viable. However, it should be noted that Oracle achieves
this through global knowledge. A distributed protocol to compute trusted paths
would probably be either very costly or ultimately equivalent to TAPS in net-
works characterized by a high trust density. Moreover, such a protocol would
remain inapplicable in situations where the density of trusted links is low, as
shown in Figure 2c.
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Impact of Trust Weight. Next, we evaluate the impact of the trust-weight factor
on the performance of TAPS and its competitors. Figure 4 shows the result in
the binary (left) and multi-valued (right) traces respectively. Both plots show
that the benefits of a protocol like TAPS become more important as more weight
is placed on the trust between nodes. With values of ε above 1, TAPS performs
better than Oracle even when considering its no-bound version.

(a) binary (b) multi-valued

Fig. 4. Impact of ε in the binary (left) and multi-valued (right) traces

In addition, the plots show that the importance of short-circuiting cyclic paths
is greater when the value of ε is small. This is because smaller values make it
possible for the protocol to select nodes that are farther away in the social
network, which, in turn, makes the presence of cycles more likely.

Graph Properties of TAPS. To better understand the behavior of TAPS, we
conclude our evaluation by examining the properties of the TAPS overlay from
a graph-theoretical perspective. First we observe that convergence speed is com-
parable to that obtained with standard protocols: views reach 90% of their scores
within 15 cycles and completely converge after 80. Then we examine our TAPS
and clustered overlays in terms of clustering coefficient and in-degree distribution
to assess how close they are, respectively, to a random and a clustered graph.

Figure 5a shows the cumulative distributions of the local clustering coefficients
of the nodes in our TAPS, and cluster views (TAPS and TAPS-cluster) and
compares them to those of a standard peer sampling protocol (RPS) and a
standard clustering protocol that does not consider trust (RPS-cluster). The plot
(in logarithmic scale) shows that, according to expectations, the TAPS topology
is slightly more clustered, and thus less uniformly random, than a standard RPS
topology. Conversely, our cluster topology is slightly less dense than the one
based on pure similarity.

The in-degree distribution shown in Figure 5b also shows some differences with
respect to traditional protocols. In this case, the difference is more accentuated
between TAPS and the RPS than for the corresponding clustered overlays. The
in-degree distribution of TAPS is in fact slightly skewed because nodes that are
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(a) clustering coefficient (log scale) (b) in-degree

Fig. 5. Cumulative distributions of the local clustering coefficients (left) and of the
in-degree (right) distributions for TAPS-based and standard protocols

not trusted by many others tend to have fewer neighbors. This is indeed a desirable
property as untrusted nodes could potentially harm the system through illicit be-
haviors. Moreover, while these differences are inherent in the trust-dependence of
the TAPS overlay, their small absolute value suggests that TAPS could probably
replace traditional protocols in a number of applications.

5 Related Work

The concept of trust in explicit social networks has been exploited in domains
ranging from peer-to-peer security to recommendation systems. SybilGuard [23]
and SybilLimit [22] propose protocols that exploit trust relationships between
friends to protect peer-to-peer systems from sybil attacks. Reliable Email [9]
uses a similar approach to build an email-whitelisting system based on friend-
to-friend relationships, while Ostra [18] exploits social trust to limit the incidence
of unwanted communication in messaging and content-sharing systems.

NABT [15] proposes the use of trust between friends to prevent freeriding
behaviors using a more efficient form of tit-for-tat based on indirect trust rela-
tionships. NABT’s credit-based approach can be viewed as a basic form of trust
inference between friends of friends. A more advanced approach to trust-inference
is adopted by SUNNY [14], a centralized protocol that takes into account both
trust and confidence to build a Bayesian network. Even if SUNNY is centralized,
its confidence-based idea could lead to interesting improvements for TAPS.

A number of research efforts have instead investigated the use of trust links
to improve the performance of recommendation systems. [21] uses an approach
similar to that of [14], while TrustWalker [10] combines trust and item-based
collaborative filtering. TaRS [17] builds a recommendation system capable of
operating both with global and with local trust metrics. Global trust metrics [7]
predict a global reputation value for each node. Local trust metrics [16], on the
other hand, take an approach similar to ours and compute trust values that are
dependent on the target user.
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Despite the mole of work on social trust, Social Market is, to the best of our
knowledge, the first system to propose the use of trust relationships to build a
decentralized interest-based marketplace. Similarly, TAPS is the first attempt
to combine explicit and implicit social networks into a single gossip protocol.
Existing research on gossip protocols has addressed a number of problems in-
cluding data dissemination [5], aggregation [13], and overlay construction and
maintenance [12,20]. In this context, the two contributions that are most closely
related to our work are [8], which uses gossip to disseminate news in explicit
networks, and [4], which proposed the use of gossip for implicit ones.

6 Conclusions and Future Directions

We presented Social Market (SM), a novel distributed application designed to
enable trusted collaborative actions between similar people in a social-network
environment. We proposed a solution to the challenges posed by SM in the form
a novel trust-aware peer-sampling protocol, TAPS, which creates an RPS-like
overlay taking into account the mutual trust expressed by users when joining
an explicit social network. Our experimental results show that, combined with a
clustering protocol, TAPS is highly effective in providing users with high-quality
implicit acquaintances that not only share similar interests but are also reachable
through a verifiable trusted path. This makes Social Market a promising plat-
form for the development of decentralized user-to-user transactions and warrants
further investigation into the use of trust to secure existing gossip protocols.

Our promising results encourage us to extend Social Market and TAPS in
a number of ways. First, we are examining the possibility of using asymmetric
trust values as opposed to symmetric ones. This would make it possible to render
trust information more private as users would not need to disclose to their friends
the trust they have for them. Second, even though the gossip nature of TAPS
makes it inherently self healing, we are considering solutions to maintain the
quality of trust paths even during churn by having nodes rely on trusted peers to
disseminate information while disconnected. Finally, we plan to explore the use of
multiple redundant trusted paths as a way to limit the effects of colluding nodes,
which cannot be tolerated by this version of the protocol. These improvements
will enable us to integrate TAPS in our existing prototype applications as a way
to reinforce the trust of users in disseminated information, recommendations, and
ultimately in the implementation of a real-world social-market platform.
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Abstract. Dynamic analysis of malicious software (malware) is a powerful tool
in countering modern threats on the Internet. In dynamic analysis, a malware sam-
ple is executed in a controlled environment and its actions are logged. Through
dynamic analysis, an analyst can quickly obtain an overview of malware behav-
ior and can decide whether or not to indulge into tedious manual analysis of the
sample. However, usual dynamic analysis exposes the Internet to the threats of
an executed malware (like portscans) because advanced concealment techniques
of malware often require full Internet access. For example, a missing link to the
Internet or the unavailability of a specific server often causes the malware to not
trigger its malicious behavior. In this paper, we present TRUMANBOX, a tech-
nique to emulate relevant parts of the Internet to enhance dynamic malware anal-
ysis. We show that TRUMANBOX not only prevents many threats but also enlarges
the scope of the types of malware that can be analyzed dynamically.

1 Introduction

Since the amount of malicious programs is increasing day by day, many different ap-
proaches have been developed to analyze malware. Until recently, the standard
approach to malware analysis was based on static methods, i.e., disassembling the bi-
nary and manual reverse engineering. Modern malware increasingly thwarts such anal-
ysis through refined encryption and obfuscation methods. Therefore, dynamic analysis
methods offer a promising approach to analyze malicious software.

In dynamic analysis, the actual execution of a malware sample is an important part of
the analysis process. However, executing malware exposes the runtime environment to
malicious activity. Especially malicious outgoing network traffic induced by the corre-
sponding malware samples in execution is a critical issue. Simply preventing any access
to the Internet, however, is also not feasible in many cases since malware often needs
Internet access to trigger and exhibit its malicious behavior (that is to be analyzed).
For example, the unavailability of a specific command and control server often causes
certain bots to remain silent.

1.1 Related Work

The issues of preventing outgoing malicious traffic from an analysis platform are similar
to those experienced with honeypots [10,12]. Briefly spoken, a honeypot is electronic
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X. Défago, F. Petit, and V. Villain (Eds.): SSS 2011, LNCS 6976, pp. 208–222, 2011.
c© Springer-Verlag Berlin Heidelberg 2011



TRUMANBOX: Improving Dynamic Malware Analysis by Emulating the Internet 209

bait that can be used for malware capture, i.e., a resource on the Internet whose use lies
in the fact that it is compromised. Especially high-interaction honeypots, i.e., those that
emulate full systems, are a threat to an analysis network. To protect the environment
from malicious traffic, a honeynet is separated from the Internet by a Honeywall [3].
A Honeywall typically is an OSI layer-2 bridging device with different capabilities in
logging and filtering. Often, such a device is called an extrusion prevention system.

HONEYD is a simulation framework that allows to instrument thousands of IP ad-
dresses with virtual honeypots running corresponding network services [11]. Due to the
simplicity of configuration, simulation of huge networks can be set up within minutes
and huge networks can be simulated with high-performance. Even though HONEYD is
very flexible in its configuration, it is static in the way that services are only listening
on predefined IP addresses and on static ports that need to be specified in advance.

As mentioned above, we focus on extrusion prevention not during malware capture
but rather during malware analysis. In particular, we are interested in dynamic mal-
ware analysis, i.e., running malware within a protected “sandbox” environment like
CWSANDBOX [13] and ANUBIS [2,7] which log system calls and thereby create traces
of the visible behavior of that malware. As mentioned above, running malware makes it
necessary to simulate parts of the network to stimulate certain behavior. One system that
does this is the Botnet Evaluation Environment (BEE) [1], a testbed for evaluating bots
and botnets in a self-contained environment based on Emulab [5]. Emulab is a platform
for creating virtual network nodes, which can emulate operating systems or applications
after being equipped with a corresponding image. Overall, BEE offers services such as
IRC, DNS, and DHCP. These services are available on certain IP addresses connected
to the virtual network, and outgoing traffic is redirected to these services. For example,
any IRC request independent from the original destination address will contact the IRC
server deployed within the network. As this network translation is implemented on the
client, this approach requires control of the clients. We overcome this drawback in our
work, as we will see later on.

Last we want to mention INetSim [6], a very powerful network simulation suite,
particularly regarding the number of different services implemented. However, INetSim
assumes that protocols always use their “correct” port (e.g., HTTP on port 80), which
is not a valid assumption when analyzing malware.

1.2 Contributions

The challenge is to find a trade-off between taking the risk of infecting third party
systems and a reduced behavior of malware by preventing or restricting outgoing traffic.
In this paper, we present the design, implementation, and evaluation of TRUMANBOX,
a system that provides novel flexibility in malware analysis.

The idea of TRUMANBOX is to emulate the most commonly used Internet services
on one physical machine in an easily configurable way. Like Honeywall, the system is
inserted into the Internet connection as a transparent network bridge. Like BEE, the sys-
tem emulates network nodes to provide services like IRC. However, unlike Honeywall,
BEE, and INetSim, the system (1) dispatches all supported service requests – indepen-
dent from destination IP address and TCP port – to the corresponding local service, and
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(2) uses a heuristic pattern matching approach to identify protocols when they are used
on non-standard ports. This means that with TRUMANBOX, any service can be bound
to every available port.

TRUMANBOX also offers a flexible set of working modes that range from a behavior
analogous to Honeywall to a full Internet emulation that does not need real Internet con-
nectivity at all. The overall goal of these functions is to keep malware running as long as
possible, without actually contacting the Internet, or at least restricting/controlling out-
going traffic, to prevent malicious interactions with third-party systems. From the view
of an analyst, especially the full emulation mode is a notable feature of TRUMANBOX,
since it allows comprehensive malware analysis without Internet access.

To summarize, our contributions are twofold:

– We present the design and implementation of TRUMANBOX, a novel and flexible
tool to support dynamic malware analysis. TRUMANBOX has been implemented
under Linux and is freely available [4].

– We evaluate TRUMANBOX and show that it offers additional flexibility to mal-
ware analysis not offered by other existing tools. For example, in full emulation
mode, we found that in 98 out of 154 test cases (malware samples) the traffic re-
ports include at least the same information we would obtain by using a sandbox
environment like ANUBIS and CWSANDBOX. Furthermore, 36 TRUMANBOX re-
ports even included network traffic which was not logged by these sandbox envi-
ronments at all. Note that these results were achieved without connection to the
Internet.

1.3 Roadmap

This work is outlined as follows: In Section 2, we provide background on different
techniques used in our implementation. In Section 3, we describe the actual system. We
evaluate the system in Section 4 and conclude in Section 5.

2 Technical Background

We now give some technical background that is important for the understanding of
TRUMANBOX in Section 3.

2.1 Naming Conventions

Since TRUMANBOX is a bridge with emulation capabilities, we use two network in-
terface cards (NICs) in our machine, one to the client side we want to “provide” with
the emulation and one to the outside network infrastructure, e.g., the Internet. We name
those NICs eth1 and eth0, respectively (see Fig. 1). The logical bridge device con-
taining these interfaces as so-called bridge-ports is called br0. The client is usually a
computer running the malware (possibly within a malware analysis sandbox), however,
the network structure on the client side can vary.
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Fig. 1. Naming conventions

2.2 Bridging and (Re-)directing Data

While technically TRUMANBOX is a transparent bridge, it also has to behave as a router
if traffic is redirected within the Internet emulation. A transparent bridge has usually no
IP address of its own and thus cannot be detected by common port or network scanning
tools, enabling a stealthy and transparent device for intercepting network data traffic.

Fig. 2 provides a simplified view about how a packet passes through the Linux kernel
for the case of bridging the two available network interfaces. First, the incoming packets
pass the BROUTING chain in the broute table, where, based on the destination MAC
address, it will be decided to pass the packet to OSI layer-3 (IP protocol), to drop it, or
to bridge it, i.e., which is an OSI layer-2 forwarding to the other interface. This decision
depends on whether the destination MAC aims at connecting to our machine, a machine
on the same side, or one that is known to be on the other side of the bridge, respectively.
In case the location of the system with the corresponding MAC address is unknown, the
packet is flooded over all forwarding bridge ports. Given this complex chain, there are
multiple ways in which interception can be done, as we now explain.

We chose to intercept packets at the end of the PREROUTING chain in the nat table.
The next hook, i.e., the FORWARD chain in the filter table of ebtables, is already part
of the forwarding mechanism, hence it would be too late to intercept the packets using
this or one of the following hooks. So we finally use appropriate iptables rules to create
the possibility of data redirection.

However, using the iptables command, our bridge needs an IP address to which data
can be redirected. Therefore, we have to configure an IP address to our logical interface
br0. Since bridges usually do not have an IP address, we also have to take further steps
for maintaining stealthiness.

Since the IP address of TRUMANBOX is needed only for internal packet forwarding,
no other machine needs access to our system using the IP protocol. Therefore, we drop
all incoming ARP broadcasts by using ebtables. In this way, our system stays invisible
to the client side, while we can still access it remotely from the other interface pointing
to the Internet. This is important, as we will need outgoing communication for certain
modes of our implementation, as discussed later on.
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Fig. 2. Simplified data-packet traverse through the Linux kernel of a bridge

2.3 Extracting Non-altered Header Information

Combining the techniques introduced so far, we obtain a transparent bridge that can
redirect bypassing traffic to itself. Unfortunately, we loose original TCP header infor-
mation during this process because the destination IP address and (optionally) the TCP
port are changed. So we had to employ a technical trick: We kept the PREROUTING
chain in the mangle table (see Fig. 2) in which the non-altered header information is still
visible. We then use the QUEUE target in iptables to hand data-packets to the userspace.
To access the data (in particular the original header information of the packet), we use
the library libipq [8] and then hand back the packet to the kernel. Furthermore, we
store the information about original destination in a global variable and can use this
information in the dispatching phase.

3 TRUMANBOX

3.1 Approach

Combining the techniques presented in Section 2, we can setup TRUMANBOX as a
transparent (stealthy) bridge, redirecting selected (or all) bypassing traffic to itself.
Thus, any outgoing malicious traffic can be avoided. In order to trick malware and
have its malicious activities still being performed, we need to provide the impression
of Internet connectivity. For this purpose, standard services like HTTP, FTP, IRC, and
SMTP servers are provided (almost) in their standard configuration, e.g., standard lis-
tening port, etc., locally on TRUMANBOX.

To overcome static protocol identification driven by the TCP destination port, we
provide more flexibility by a hybrid protocol identification. Certain malicious programs
use non-standard ports for their communication, some malware samples even use stan-
dard protocols on a different standard port, e.g., HTTP on port 21 or FTP on port 80.
To overcome this problem, we have a dispatching service running on a certain port
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where all bypassing connections are redirected to. The dispatching service maps new
connections to the local standard services, as described in Section 3.2, depending on
the protocol in use. Information on the original destination, e.g., IP address, TCP port,
etc., are extracted for further processing. The connection mapping/dispatching is done
in respect to preserving the possibility of intercepting and manipulating payloads.

To improve the emulation provided by TRUMANBOX, we allow adjustment of the
amount of outgoing traffic by providing two different modes (see Fig. 3):

1. Full Emulation requires no Internet access at all and provides the client with a
rather static and simple emulation of the Internet.

2. Half Proxy requires access to the Internet; however, TRUMANBOX only uses this
to gather additional information to improve the emulation, e.g., by fetching banner
information from the originally targeted destination.

Independent of the actual mode in use, the client never interacts with the Internet di-
rectly, but only communicates with services provided locally on the TRUMANBOX.
DNS is not affected by the mode. Instead, it can be configured separately in order to
en-/disable proper domain name resolution to corresponding IP addresses, during the
analysis process.

Fig. 3. Connection modes

Even though the half proxy mode appears to be an enhanced full emulation, there
are reasons for having both modes implemented. In certain environments, execution of
malware on a computer with full Internet access might be no option due to legal obli-
gations. While execution without Internet access might result into no malicious actions
being triggered, TRUMANBOX in full emulation may satisfy trigger conditions to ren-
der dynamic analysis being successful. Another scenario is dynamic analysis of, for
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instance, malicious software trying to reach for a command and control server that is
not online anymore. Again, full emulation can improve dynamic analysis results. How-
ever, half proxy mode might be adequate when we are aware of the fact that investigated
malware samples do not perform any malicious actions but downloading files and con-
tacting the command and control servers.

More details on the applications of TRUMANBOX are available in Section 4.

3.2 Implementation Details

Header Extraction. Even though our dispatching approach, which will be discussed in
detail in the following, has some advantages, e.g., in terms of easily redirecting traffic,
there is also one major drawback: it does neither preserve the original destination IP
address nor the destination port. However, this information is important in postprocess-
ing of dynamic malware analysis. Therefore, we have to extract the data as described
in Section 2.3. Once, the information is extracted, it is used for logging and (in half
proxy mode) for gathering further information from the original destination host, as for
example service banners.

Dispatching. The core of our implementation is the dispatching function. Its process-
ing starts as soon as a new connection has been established to the local port it is listening
on, e.g., TCP/UDP port 400. Right after accepting the new connection request (A), a
second connection (B) is established depending on the protocol of the incoming connec-
tion and the mode the TRUMANBOX is currently running. In the following, payloads are
forwarded between A and B. Depending on the mode of operation, certain alterations
of payload and execution of additional functions are triggered by a successful match of
predefined patterns against the payload. We will explain these different manipulations
later when discussing the mode of operation they occur in.

Hybrid Protocol Identification. In order to handle more than only one connection, we
create a new process for every incoming connection. Since establishing the second con-
nection (B) also depends on the protocol of the incoming connection (A), we somehow
have to identify it. The common identification by considering the TCP destination port
is not strong enough for our purposes because data connections initiated by malware
often use non-standard ports. Therefore, we strengthen the traditional protocol identifi-
cation by implementing a payload protocol identification which is applied first. These
two algorithms in combination form our hybrid protocol identification: First we identify
new connections by observing the payload; if this fails, we examine the destination port
to determine the protocol in use.

To use the first payload of a connection for protocol identification, we first have to
distinguish between server-first-sending (SFS) and client-first-sending (CFS) protocols.
For example, in HTTP and IRC usually the client sends the first payload, hence these
are CFS protocols. SMTP and FTP start with a payload sent by the server (often called
the “banner” or “welcome message”), hence, these are examples for SFS protocols.

Given the first payload of a new connection, we use the patterns listed in Table 1
to determine the protocol. Here we do not distinguish between SFS and CFS proto-
cols, since this would be an unnecessary restriction. Rather, we stay generic to also be
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capable of recognizing possible modifications of SFS protocols to corresponding CFS
versions. If all these methods fail, we try to determine the protocol by considering the
destination port even though, particularly in malware analysis, this is not reliable in all
cases.

Table 1. Payload patterns determining the protocol

Protocol Pattern (at the beginning) Pattern (somewhere)
HTTP "GET /"
IRC "NICK "
FTP "220 " "ftp" (case insensitive)
SMTP "220" "mail" OR "smtp" (case insensitive)

Sometimes there is no payload coming over the incoming connection which makes
protocol identification harder. We can alleviate this in half proxy mode of TRUMAN-
BOX, as we explain below.

Full Emulation Mode. The goal of full emulation mode is to emulate the Internet
without any access to the Internet. This is probably the most challenging of our modes:
we want to prevent any kind of data connection (apart from possibly DNS) to the In-
ternet without letting the client (i.e., the malware) become aware of it. Therefore, we
provide local services as generic as possible and redirect the connection requests of the
client to our machine. If outgoing DNS traffic has to be avoided as well, we are forced
to also set up a local DNS service which resolves requested hostnames to predefined IP
addresses.

Since responses of our generic services are static, it is quite easy to fingerprint TRU-
MANBOX, so this mode is not meant to trick a human intruder or some malware which
uses methods to verify the authentication of the server to contact. For instance, a rather
simple method of detecting TRUMANBOX is to send requests to unreachable servers. In
full emulation mode, TRUMANBOX always responds with a valid reply as if the orig-
inally targeted server is online. Since the attacker does not expect a response at all, he
might realize that some interception is going on. A further approach could be to in-
vestigate the content of received responses. Whenever an attacker requests a specific
file from a webserver, e.g. an update of a malware executable, TRUMANBOX returns
fake content since in full emulation mode, it is not allowed to contact the Internet to
get the originally requested file. As a consequence, TRUMANBOX returns data the at-
tacker most probably does not expect. If the attacker examines the returned data, e.g. by
calculating the hash value of the received content and comparing it with the expected
value, he will notice that the received data is not what he requested. In case the attacker
detects that TRUMANBOX is in place, he might simply stop his actions on the com-
promised system so that we would not be able to gather any more information. One
possible countermeasure, at least during malware investigation, is to set up a commu-
nication channel between TRUMANBOX and the system performing malware samples.
Whenever a sample does not perform any activity after a reply of TRUMANBOX, the
malware is restarted and TRUMANBOX acts in a different way, e.g. does not grant access
to an FTP server this time.
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In summary, the advantage of full emulation is clearly that we do not need a connec-
tion to the Internet. Hence, we could also use this mode in an offline analysis environ-
ment.

Half Proxy Mode. All services running within TRUMANBOX are set up in their basic
configuration. Thus, server responses will correspond to the defaults which most likely
differ from the original server a certain connection request was aiming to contact. In full
emulation mode, an attacker might therefore try to fingerprint the network environment.
To overcome this problem, we introduced the half proxy mode by substituting certain
service features using access to the Internet. For example, if there is no initial payload on
the client side, we establish a connection to the Internet trying to fetch the banner from
the original server. In case of FTP, the last step is extended to also test if anonymous
login is provided. The resulting information is then used for protocol identification.

As a result, an attacker is not able to identify TRUMANBOX by sending requests
to unreachable servers since TRUMANBOX contacts the originally targeted servers and
acts exactly the same way. Yet, detecting TRUMANBOX by investigating received re-
sponses is still possible because the current implementation of TRUMANBOX does not
forward the original file content to the attacker. However, future versions of TRUMAN-
BOX will support this feature so that attackers always get the expected file content and
investigations of that data will not reveal any information whether TRUMANBOX is in
place.

3.3 Extensions to Half Proxy Mode

The following functionality is mainly based on half proxy mode. These functions show
how incremental improvements can be done in certain situations to improve the “real-
ity” of the emulation.

Replaying FTP and SMTP Banners: Assuming RFC conform behavior, FTP or SMTP
are SFS protocols where payloads are sent first from server to client. Thus, we already
fetch banner or welcome messages from the original server during the protocol iden-
tification by payload. All gathered banners are stored locally in a cache (a plain text
file named with the IP address and the TCP port number of the corresponding server).
By checking the cache before contacting the original server, we avoid unnecessary data
traffic.

Emulation Efforts on FTP and HTTP: FTP or HTTP connections are particularly chal-
lenging since the corresponding servers usually provide a complex and unknown di-
rectory structure that the client may wish to access. For example, a client may try to
access http://example.org/path/to/file. We handle this as follows: After
accepting the incoming connection, we identify the protocol by matching the GET /
pattern in the first payload sent by the client. After parsing the URL, we on the fly create
a filesystem structure in our webserver’s base directory according to the request we just
received. We do not aim at serving the content the client expects in the requested path,
even though this could be easily be done in half proxy mode. Our interest is to track
what a client is doing. With our approach, we get an overview of the client’s behavior

http://example.org/path/to/file
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on the contacted server. Assuming the client does not send false requests to verify being
connected to the server it was intending to connect to, we will learn something about
the remote side and the filesystem structure provided there.

FTP User Authentication vs. Anonymous Login: Supporting FTP in our emulation,
we need to reason whether to grant anonymous login or rather require a valid user-
name/password combination. In the latter case, we also have to define which credentials
are to be accepted and which ones are invalid.

Reviewing our aim to provide an emulation as close to reality (here: the Internet) as
possible and also driving a mode that allows us to access the original server, we decide
to provide both anonymous login and user authentication, depending on what the orig-
inal server requires. This is simply done by extending our “fetch the banner” function
by a check if, in case of an FTP server, anonymous login is granted. If so, we provide
the same and let anonymous login attempts pass. Otherwise, we grant access with any
arbitrary login. Even though this might lead to logging a lot of invalid FTP logins we
cannot use for further investigation, we hope to also gather valid account data we can
use to login ourselves into the original server, for example, to fetch further malicious
binaries for analyses. Again, this can be done either manually or in an automated man-
ner by extending our program with functions accordingly. Note that manually processed
investigations may be restricted to a certain time slot because logins might expire or get
deactivated if the client becomes aware of our interception.

In case of a non-anonymous login, we stick to our approach of not using highly
customized configurations but rather extending our payload alteration. Therefore, we
just setup our FTP server with one valid login, where the corresponding username and
password is known to TRUMANBOX. Any login attempt is then altered to the valid
username and password combination. By logging the unmodified login data, we try to
gather valid account data for the original server we may use for further investigation.
Unfortunately, this approach lacks in handling false login testing, i.e., it is easy for
the malware to fingerprint TRUMANBOX by using random combinations of login and
password. We can detect such behavior by extending the login payload alteration to
recognize if interaction just stops after a successful login and during the next execution
of the malware preventing a login to the same server using the same credentials. This
idea requires conditionally repeated execution of a malware on the client side.

IRC Session Logging and Emulation: For IRC sessions, issues regarding logging have
to be considered. When logging the whole communication the log can become very
long. In particular long sequences of PINGs and PONGs which are often used for alive
testing during an IRC session do not improve our analyses. The alternative is to use
a whitelist of patterns. Both logging techniques enable us to replay the login process
on the original server and thus gather information, for example, about botnets. One
possible application is to feed botnet monitoring programs like botspy [9] with the
collected information.

3.4 Logging

During the runtime of TRUMANBOX, all incoming payloads and header information
are logged to plaintext files named with the IP address and TCP port of the destination
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target. For this reason, we have to perform outgoing DNS traffic, namely DNS requests,
to get this information accurately. If the requested full qualified domain name (FQDN)
cannot be resolved, we are faced with a new challenge, but for now we assume that the
domain can be resolved. The log files are stored in the subfolders ftp, http, irc, and smtp
– respectively the protocol of the connection. At the beginning of every new connection
attempt, we add a timestamp to the log file that helps us to determine time and date of
the logged information. Later, we can use the connection information specified in the
filename in combination with the corresponding file content to replay a login or just
analyze the traffic directed to that machine.

Provided with the logging structure just outlined, we now have to decide which in-
formation to log. To be prepared for different logging strategies, we have implemented
a switch deciding to either log everything or just log those information matching certain
patterns, where patterns are basically protocol directives we expect to appear together
with interesting information, e.g., the patterns NICK, USER, and PASS.

4 Evaluation

We now investigate the practical use of the TRUMANBOX approach.

4.1 Testbed and Evaluation Setting

We set up a testbed to analyze the capability of TRUMANBOX to detect malicious net-
work traffic generated by 300 randomly selected samples taken from the ANUBIS [2,7]
database. Our testbed consists of a Windows 7 system which executes samples in a vir-
tual Windows XP machine and a system running Ubuntu 11.04 which is exclusively
used for TRUMANBOX and the local HTTP, FTP, IRC, and SMTP services. The first
network interface of TRUMANBOX is connected to the Internet, while the second inter-
face points to the Windows 7 system. The two interfaces of TRUMANBOX are bridged
so that all outgoing traffic caused by the ANUBIS samples has to pass TRUMANBOX

and can be investigated.
We used this setting to run TRUMANBOX in full emulation and half proxy mode to

observe network traffic from malware samples executed on the virtual machine within
a two minute lifespan. In the evaluation, we compared the TRUMANBOX logs with
the ANUBIS sandbox reports from the database that were created running the malware
sample with full Internet access.

4.2 Full Emulation Mode

Our main focus was to evaluate the full emulation mode because it does not require an
Internet connection. Interestingly, we were able to show that TRUMANBOX is still able
to collect valuable information from the network traffic to improve analysis of malware.
We ran the sample set of 300 samples from the ANUBIS database in our virtual Windows
XP machine. Table 2 outlines the results we observed.

Out of the 300 randomly selected samples, merely 154 samples generated network
traffic at all. The other 146 samples did not attempt to perform any network activities.
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Table 2. Evaluation results of the 300 investigated ANUBIS samples

Positive network traffic #
TRUMANBOX log and ANUBIS report cover the same information 98
Additional HTTP information in TRUMANBOX log 12
Additional IRC information in TRUMANBOX log 4
Additional FTP information in TRUMANBOX log 20
Total positive 134

Negative network traffic #
No IRC but HTTP traffic in TRUMANBOX log 1
No FTP but HTTP and IRC traffic in TRUMANBOX log 3
Undetected/Invalid IRC format 9
Less HTTP information in TRUMANBOX log 7
Total negative 20

Sum positive and negative 154

Overall #
Number of samples generating network traffic 154
Number of samples not generating network traffic 146
Overall number of samples 300

We can only guess that either these samples do not generate network traffic at all or the
network functions were just not triggered for unknown reasons.

When taking a look at the TRUMANBOX log files of the remaining 154 samples per-
forming network activities, our tool was able to collect the same information which is
stated in the ANUBIS reports for 98 samples. These samples cover various HTTP re-
quests, FTP connections, and IRC traffic. However, the TRUMANBOX log files do not
include one particular type of data: since we do not access the Internet in full emulation
mode and thus cannot fetch information from the originally targeted servers, all IRC
channel topics are unknown to TRUMANBOX. Channel topics of command and control
servers often include URLs which are downloaded once malware joins the channel. The
majority of ANUBIS reports cover network traffic of such HTTP and FTP downloads. In
full emulation, TRUMANBOX certainly is not able to provide these download URLs to
the investigated samples, thus the log files do not include this type of traffic. Neverthe-
less, all other network activities targeting HTTP, FTP, and IRC were logged accordingly
and resemble the data in the ANUBIS reports.

One of the 154 samples did not establish an IRC connection next to HTTP GET
requests although the ANUBIS report included information about a command and con-
trol server. Furthermore, three of the 154 samples did not establish FTP connections
next to HTTP and IRC traffic, although the ANUBIS reports covered details about FTP
connections. We can only guess that the IRC and FTP functions were not triggered for
unknown reasons.

Furthermore, nine samples did not use the proper IRC protocol so that TRUMANBOX

either did not redirect the connection to the local running IRC server or the IRC server
refused the connection. Some of the samples used commands like

CK [DE|WinXP|15718] 0 * :mIRC 6.17
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instead of NICK and USER, others simply did not send the NICK command. We spec-
ulate that the malware samples perform this non-standard conform communication in
order to bypass protocol-based detection of malware communication.

Seven of the 154 samples generated fewer HTTP requests as stated in the ANU-
BIS reports. On the one hand, we guess that some of the HTTP GET requests were
just not triggered for unknown reasons. On the other hand, some malware expects the
downloaded content to be valid, e.g., executable files. However, we do not provide the
malware with the exact data it expects since we would need to connect to the Internet
to get those files. If a malware tries to download a file, performs a check, and notices
that it did not get the proper file, it might stop performing further HTTP requests. Yet,
some of the investigated malware samples exactly did the opposite and tried to connect
to various other download locations. As a result, 12 of the 154 ANUBIS samples per-
formed more requests than stated in the ANUBIS reports, and we were able to extract
information about these backup web and command and control servers in an automated
way. This includes details about several other domains providing the same malicious
file, but also information about completely different filenames and URLs.

Furthermore, four of the 154 samples revealed more details about IRC connections
compared to the corresponding ANUBIS reports. The TRUMANBOX log files provide
more information about IRC channels (because of network downtime of the originally
targeted server) and commands performed by the malware. Even a connection to a pre-
viously unknown command and control server was established.

Overall, we achieved the best results with the FTP protocol. 20 out of the 154 TRU-
MANBOX log files provided more information about FTP connections than the corre-
sponding ANUBIS reports. In the majority of cases, more uploads, downloads, and other
file operations were logged by TRUMANBOX. Some samples sent the wrong FTP cre-
dentials to the target server, so ANUBIS was not able to log any FTP traffic except the
unsuccessful login attempt. Since TRUMANBOX redirects the FTP connection to our
local FTP server which accepts all login information regardless of the credentials sent
by the malware, the samples were able to log in and perform various file operations. A
further advantage of running a local FTP server lies in the fact that we can access and
analyze all uploaded files in the FTP directory without extracting the file content from
the network traffic logs.

Unfortunately, connection attempts to SMTP servers were not initiated by any of the
300 randomly selected samples, so neither ANUBIS reports nor TRUMANBOX log files
included any details about SMTP connections. However, we expect to achieve similar
results compared to the other network protocols.

4.3 Half Proxy Mode

In half proxy mode, TRUMANBOX redirects all traffic coming from the virtual machine
to our local services, whereas TRUMANBOX itself tries to connect to the originally tar-
geted servers to fetch banners and other information. Thus, the malware receives exactly
the same information as it would get when it is directly connected to the Internet. As a
consequence, TRUMANBOX log files contain exactly the information which is already
covered by the ANUBIS reports. However, in some cases, TRUMANBOX log files in-
clude even more information, for example, when a command and control server is not
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reachable anymore. Using ANUBIS, the malware sample does not perform any commu-
nication when the connection attempt failed. In contrast, the connection is redirected to
our local running IRC service when using TRUMANBOX, which is available the whole
time. Hence, the malware performs its regular communication with our service which is
then logged to the TRUMANBOX report. We found that operating TRUMANBOX in half
proxy mode results in receiving at least the same information we would obtain by using
a “sandbox” environment like ANUBIS and CWSANDBOX. In special cases like down-
times of command and control servers or invalid FTP credentials sent by the malware,
TRUMANBOX is capable of obtaining more information about the performed steps of a
malware sample.

5 Conclusion

We presented TRUMANBOX, an approach to improve dynamic malware analysis by em-
ulating the Internet. We presented the design and implementation of TRUMANBOX and
performed an evaluation. In conclusion, the full emulation mode offered by TRUMAN-
BOX provides us with the opportunity to obtain all information retrieved by “sandbox”
environments in most cases. Due to the fact that we do not access the Internet at all,
some of the reports, however, might only include parts of the traffic logged by tools ac-
cessing the Internet. Yet, TRUMANBOX is effective when the originally targeted servers
are unavailable or when malware samples perform failed login attempts.

There are many possible improvements that may be implemented in the freely avail-
able source code of TRUMANBOX [4]. For example, full emulation mode can be im-
proved by making it less static, e.g., by randomizing server responses. Also, to thwart
fingerprinting attempts by random login and password guessing, a mechanism for con-
ditionally repeated execution of a malware on the client side would be useful. However,
this would require a communication channel to the client side. Also, to improve the
analysis of IRC channels, TRUMANBOX might send self-generated NICK random
commands when it detects the lack of NICK in the first payload sent to the IRC server.
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X. Défago, F. Petit, and V. Villain (Eds.): SSS 2011, LNCS 6976, pp. 223–237, 2011.
c© Springer-Verlag Berlin Heidelberg 2011



224 O. Hermoni et al.

1 Introduction

On-line communication occupies a great part of the daily lives of many people,
increasing the popularity of peer-to-peer (P2P) systems, as we use them to chat,
talk, share files, etc. Anonymous systems have thus become an important area of
research [1], [4], [6], [7], [9], [14], [23] and [24] and implementation [8]. Anonymity
in P2P file sharing means that an adversary cannot link participating users to
the content they share. Note that an adversary can act as a user, and therefore,
the users must also remain hidden with respect to one another.

A weakness common to many existing anonymity solutions is that they do
not provide (or even consider) anonymity for all participating users, namely, for
the publisher, the server and the reader. Solutions such as those given in [4], [22]
and [26] provide anonymity to the reader but they do not protect the server that
stores the document. Publishing solutions such as [7] and [16] provide anonymity
for the publisher and the reader, but they do not protect the server(s) that stores
the index.

In this paper we describe two anonymous P2P file sharing networks. Our so-
lutions are based on indexing by a global hash function, dispersal of information,
and anonymity tunnels. The indexing mechanism allows us to find documents
without the need for an index server. Dispersal of information makes our so-
lutions more resistant to node failure and denial of service attacks. Anonymity
tunnels are widely used both in theory and in practice. Tor [8], for example,
uses circuits (i.e. tunnels) to provide anonymity. A tunnel is an ordered set of
nodes where each node has auxiliary information identifying its predecessor and
successor in the tunnel.

The first solution – Rendezvous Tunnel for Anonymous Publishing (RTAP)
– is extensively explained in this paper. In RTAP, the anonymity of all users is
achieved by using three anonymity tunnels (Figure 1), separated into two types
of anonymity tunnels.

The publishing and reading tunnels are sender anonymity tunnels. A sender
anonymity tunnel is designed to protect the anonymity of the message’s sender.
For example, in Figure 1, the entrance node U1 does not know the identity
of the publisher P (or the reader R), since they communicate through a sender
anonymity tunnel. However, the publisher P (or the reader R) knows the identity
of the entrance node U1. Anonymity of a sender anonymity tunnel is usually
achieved using a Mix [4] based protocol. The third tunnel is a rendezvous tunnel,
which is quite different. U1 initiates the tunnel and each node extends the tunnel
by randomly choosing its successor. Hence, the initiator of the tunnel does not
know the identity of the user at the end of the tunnel and vice versa (U1 does
not know the identity of the server, and the server does not know the identity
of U1). The reading and the publishing tunnels protect the anonymity of the
reader and the publisher, respectively, whereas the rendezvous tunnel protects
the anonymity of the server. This solution holds for a semi-honest adversary.

Servers in RTAP store shares of documents, such that each share is published
and retrieved through a rendezvous tunnel constructed between the server and
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an address given by a hash of the document’s name. To publish a document, the
publisher first divides the document into shares. For each share, the publisher
finds the address of the entrance node to the tunnel. Next, the publisher uses
anonymous communication (publishing tunnel) to send the share to the entrance
node of the rendezvous tunnel. Then a random walk is used to build the ren-
dezvous tunnel and to send the share to the server. The reader that wants to
retrieve the document behaves similarly. The reader finds the addresses of the
entrance nodes to the rendezvous tunnels by hashing the document’s name and
the shares’ numbers. The reader then uses anonymous communication (reading
tunnel) to reach the entrance of the tunnels, retrieves the shares anonymously,
and reconstructs the document.

The second solution uses Tor [8] to provide anonymity in a P2P file sharing
network. Similar to RTAP, in this solution (which is outlined in Section 5),
documents are divided into shares. Each share is published and retrieved through
three anonymity tunnels. The publishing and the reading tunnels are regular Tor
tunnels, whereas the rendezvous (server) tunnel is a Tor’s hidden services tunnel.
This scheme copes with the same adversary as that assumed in Tor.

The main advantage of the first solution over the second solution is that in
addition to publisher, server, and reader anonymity, the first solution provides
document anonymity. Document anonymity (see definition in Section 4) means
that the server does not have information on the content it holds. The main
advantage of the second solution compared to the first solution is that it is re-
sistant to attacks by a more powerful adversary. Specifically, the second solution
maintains anonymity against the same adversary that is assumed in Tor.

Fig. 1. Three-tunnel system. The publishing and the reading tunnels are sender
anonymity tunnels.

Related Work. The core concept of providing Internet anonymity goes back to
the early days of the public network and has been extensively studied ever since.
Chaum [4] proposed using an intermediary proxy (relay server or Mix) whose
aim is to hide reader identity from the server. Later works developed Chaum’s
approach by deploying predefined or ad-hoc paths.
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Previous works can be divided into two categories. The first category includes
approaches that provide a high degree of anonymity but whose costs include
high communication overhead (e.g. [1], [5] and [9]) to ensure predefined traffic
statistics. In practice, such solutions require continuous communication, hence
the statistics do not reveal activities.

The Dining Cryptographers network [5] is an anonymous broadcast proto-
col based on the dining cryptographers problem. DC-net provides very strong
sender and receiver anonymity but at the cost of broadcast. Due to this expen-
sive broadcast communication, the scheme suffers from poor scalability and is
unsuitable for large-scale use. The amount of communication can be reduced
relative to DC-nets by using Xor-Trees [9].

Buses [1] also consider the anonymity of the sender and the receiver. Inspired
by the observation that public transit buses hide the movement patterns of
passengers. In the buses scheme, passengers are pieces of information that are
allocated seats in a bus that traverses the network. Buses aim to hide the traffic
patterns and to prevent an external adversary from forming a link between two
communicating parties. This scheme provides sender-receiver unlinkability at the
cost of traffic even when no information is transferred. However, the sender must
know the intended receiver and vice versa, and therefore, the anonymity of both
sender and receiver with respect to each other are not supported.

The second category consists of approaches based on the assumption that
traffic patterns do not reveal information, and they provide different levels of
anonymity with correspondingly different levels of communication overhead. The
Java Anon Proxy [2] (JAP or WebMIXes) provides anonymity by using cascades
– fixed tunnels that are shared among all users. A user of JAP selects a cascade
to communicate with another user. As such, users are aggregated into larger
anonymity sets. However, user anonymity is not well maintained outside of the
cascade.

Onion Routing [26] uses a fixed, predefined path that is essentially a list of
intermediate proxies leading to the destination. The major advantage of onion
routing is that relays cannot unravel the information received or determine the
destination address. Tor [8], is an advanced, low-latency scheme that improves
the original Onion Routing, is a tunnel-based system that constructs circuits in
stages, extending the circuit one hop at a time. Tor provides sender anonymity
and sender-receiver unlinkability. In addition, Tor provides receiver anonymity
through rendezvous points and hidden services. The main shortcoming of Tor’s
hidden services is that they are provided by the content owner, i.e., Tor does
not consider publishing. In this work we address this limitation by publishing
the content. Another related solution is the tunnel-based scheme CIAS [24],
a low latency P2P scheme that provides anonymity for senders and receivers
while adhering to strict and low bounds of delay, communication and bandwidth
overheads. However, CIAS also does not consider publisher anonymity.

The works described above were designed to provide anonymity and unlinka-
bility to the reader and to the server of a message. But none of them consider
P2P networks with anonymous publishing phases. Freenet [6], a solution that
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addresses this problem, provides some degree of server and publisher anonymity.
When a user requests a document, it uses a document identifier to send the
query without being aware of the server’s identity or location. The weakness of
Freenet is that the tunnel length is not controlled by the user. The tunnel may
be as short as one node, and an adversary that controls the tunnel can revoke
the anonymity of the reader, the server and the publisher.

A different technique used to provide anonymity employs secret sharing
schemes to break data items into several parts and distribute them among dif-
ferent servers. In Publius [16], the content is encrypted by a key and stored in a
fixed set of servers. The encryption key is shared by Shamir’s secret sharing and
distributed to the servers. Retrieval comprises reconstructing the key, retriev-
ing the encrypted document, and decrypting it. Publius does consider publisher
anonymity, however, the documents are stored in a static list of available servers,
and the index is not protected. Another approach that uses secret sharing is De-
niability [14], taking a different approach, instead of trying to hide the identity
of the users, the deniability technique blurs the connection between pieces of
information and their meanings.

Free Haven [7] is an anonymous publishing system, comprises several servers,
known as servnets, which agree to store and provide documents for anyone. The
identities of these servnets are publicly known, and communication is carried
out over a Mix-based communication layer. Free Haven provides a certain level
of publisher, reader and document anonymity, but it lacks server anonymity.

Organization. Section 2 discusses the system settings while Section 3 describes
the solution. We give an anonymity analysis of our system in Section 4. A de-
scription and analysis of the Tor-based solution is briefly given in Section 5.

2 Settings and Requirements

Participants. In P2P file sharing networks, information is stored in units called
documents. The publisher of a document is the entity that placed the document
in the system. The server of a document is an entity that stores and distributes
the document. Readers retrieve documents from servers.

Name-Index. Document retrieval in any system relies on a mapping from the
name of the retrieved object to the index of its location in the system. The
name-index mapping enables a user to find the location of a specific document.
Usually the name-index mapping is stored in a database or databases called index
server(s). However, the index server is a threat to anonymity on several levels.
First, if the adversary monitors the name-index server, the anonymity of the
users that communicate with it (the publisher that publishes a new document
in the index and the reader that searches for a document) may be compromised.
Moreover, if the name-index mapping includes controversial content, legal pro-
cedures may be invoked against the owner of the index server.
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Our system design has no name-index server, index mapping is performed
locally by the publishers and the readers themselves. The documents in the
system are divided into shares, such that each share in the system has a three-
parameters index entry. First, the entrance node to a tunnel, denoted by U1.
Second, U1’s session identification tag, denoted by ID1. And the reader’s seed
(which is used to encrypt the share) denoted by s0. The publisher (and later the
reader) calculates the index entry according to the document name docname and
the share number (see Algorithm 1).

The seed and the session identification tag are calculated by using a global
hash function, whereas the the entrance node is calculated by a Distributed Hash
Table (DHT), e.g., chord [25]. DHT receives a key as an input and outputs an
identifier of a node. The DHT in our system maps the document name to the
entrance node rather than to the location of the server itself (the conventional
way to use DHT), in order to provide server anonymity.

Anonymity Model. In this work, we design a system that provides anonymity
to all participants in a P2P file-sharing network: the publishers, the servers,
and the readers. Several types of anonymity can be defined with respect to P2P
networks. We adopt the definitions and terms of Pfitzmann and Hansen [20]
combined with the terminology of Dingledine at al. [7] to define the anonymity
of participating users (see formal definitions in Section 4). Reader anonymity
means that an adversary has no way of knowing which reader on the network
has retrieved a particular document. Server anonymity means an adversary has
no way of knowing which server on the network has served this document or
currently stores it. Document anonymity means that a server does not know
which documents it is storing. Publisher anonymity means that an adversary
has no way of knowing which user on the network has published a particular
document. Note that the users also maintain their anonymity with respect to
each other. For example, the reader maintains its anonymity even when retrieving
a document from a server, such that the server does not know the reader’s
identity and vice versa. In particular, a server functioning as a reader does not
know whether the document it retrieved came from itself.

According to the terminology of [20], anonymity means that a user is uniden-
tifiable within a group of users, the anonymity set. The unlinkability of items
(e.g., users, messages) means that an attacker cannot sufficiently distinguish
whether the items are related. Sender-receiver unlinkability protects against the
adversary that is neither the sender nor the receiver of the message.

Adversary Model. In anonymous P2P networks, the participating entities, the
server, the reader, and the publisher do not want their identities to be revealed.
The adversary’s goal is to link specific content to a participating user in the
system and as such to identify the user.

Similar to other schemes for anonymous networks, the adversary in our model
is assumed to be semi-honest, which means that the adversary can control nodes
in the network but is obligated to follow the algorithm. We assume that the
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adversary can control at most t network nodes, where t is smaller than the
total number of nodes. We also assume that the communication patterns and
statistics do not reveal information, i.e., the statistics and patterns of message
traffic are distributed in a fixed (say normal) distribution. Such an assumption
is used when mixes schemes [4] are employed, for example, when mixes are used
and only one message is sent in the entire network; in such a case, the identities
of the sender and of the receiver are obviously revealed.

3 RTAP Architecture

In this section we explain our solution via the steps the publisher takes to pub-
lish a document (Algorithms 1-2) and the steps the reader takes to retrieve a
document (Algorithms 3-6). For each algorithm we explain in short the goals of
the algorithm and we give a pseudo code. In Section 4 we analyze and prove the
anonymity of the solution.

There are two phases in this solution. The first phase is the publication, in
which the publisher sends encrypted shares to the servers. During the second
phase, retrieval, the reader retrieves the shares from the servers and reconstructs
the document.

The overall flow of the solution is as follows. First, the publisher divides the
document into shares using an (n, k) Information Dispersal Algorithm (IDA)
[21]. IDA divides a document into n shares, such that each subset of k shares
out of the n shares (n > k) is sufficient to reconstruct the document. For each
share, the publisher then uses hash functions to build the index mapping. Next,
the publisher encrypts the share and sends it to the entrance node through a
sender anonymity tunnel, the publishing tunnel. The entrance node encrypts
the share, initiates a random walk, and sends the encrypted share through the
rendezvous tunnel to the server. Each node along the rendezvous tunnel encrypts
the share and forwards it to the server.

A reader, that wants to retrieve the document operates in a similar manner.
For each share, the reader constructs the index in the same way, and then uses
a sender anonymity tunnel (the reading tunnel) to query the entrance node,
which forwards the query message to the server through the rendezvous tunnel.
As soon as the query arrives at the server, the server sends the share back
along the rendezvous tunnel. Each user along the rendezvous tunnel decrypts
the share. Using the reading tunnel, the entrance node then sends the share
to the reader, which decrypts the share. As soon as enough shares have been
successfully retrieved, the reader reconstructs the document.

3.1 Publication

Dividing and Sending the Document : In the first part of the publication phase
(Algorithm 1) the publisher divides the document into shares, for each share it
creates an index entry, finds the entrance node, encrypts the share, and by using
a sender anonymity tunnel, it sends the encrypted share to the entrance node.
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Algorithm 1. Dividing and sending the document

1: Publisher:
2: {sh1, sh2, · · · , shn} ← IDA(d) {dividing the document into n shares}
3: for j = 1 to n do
4: U1 ← DHT (docname||j); {entrance node}
5: ID1 ← hash1(docname||j); {entrance node’s ID}
6: s0 ← hash2(docname||j); {reader seed}
7: ˆshj ← shj ⊕ G(s0); {encrypt the share with reader seed}
8: anon send(insertShareMsg(ID1, ˆshj , length)) to U1; {send the

encrypted share to U1 through a publishing tunnel, the rendezvous tunnel is of
length length}

9: end for

Insert Share Message: The goal of the second part of the publication phase
(Algorithm 2) is to build the rendezvous tunnel. During construction of the
rendezvous tunnel, the share is sent to the server. Each node i encrypts the
share and forwards the message to the next node along the rendezvous tunnel
until the share arrives at the server.

Algorithm 2. Insert Share Message
1: Node i :
2: receive(insertShareMsg(ID, ŝh, length);
3: if length > 0 then
4: lastNode ← FALSE; {this is not the last node}
5: si ← random(); {node’s session key}
6: ŝh ← ŝh ⊕ G(si); {encrypt the share with session key}
7: Ui+1 ← DHT (random()); {choose at random the next node along the

rendezvous tunnel}
8: IDi+1 ← hash1(random()); {next node’s session ID}
9: send(insertDocMsg, IDi+1, ŝh, length − 1) to Ui+1; {forward the message

along the rendezvous tunnel}
10: else
11: lastNode ← TRUE; {this is the server}
12: save ŝh; {the server saves the encrypted share}
13: end if

3.2 Retrieval

The retrieval phase comprises four stages (Algorithms 3-6) – First the reader
recalculates the index and sends a query to the entrance node of each share.
Second, the query traverses the tunnel to the server. Then the server replies and
sends the share to the reader. Finally, when enough shares have been collected,
the reader decrypts the shares and reconstructs the document.



Rendezvous Tunnel for Anonymous Publishing 231

Initiate Queries: The reader calculates the index and sends query messages to
the entrance nodes through the reading tunnels.

Algorithm 3. Initiate Queries

1: Reader:
2: for each share j do
3: U1 ← DHT (docname||j);
4: ID1 ← hash1(docname||j);
5: s0 ← hash2(docname||j); {the index entry}
6: anon send(queryMsg, ID1) to U1; {send a query message to U1 through a

reading tunnel}
7: end for
8: GoTo Algorithm 6;

Query Message: Each node i along the rendezvous tunnel forwards the query
message to the server.

Algorithm 4. Query Message
1: Node i :
2: receive(queryMsg);
3: if lastNode == FALSE then
4: send(queryMsg, IDi+1) to Ui+1; {forward the query message to the next node

in the tunnel}
5: else
6: GoTo Algorithm 5;
7: end if

Share Response Message: The server sends the share to the reader through the
rendezvous tunnel. The entrance node sends the share to the reader.

Algorithm 5. Share Response Message

1: Node i :
2: if lastNode == TRUE then
3: send(shareRspnsMsg, IDi, ŝh) to Ui−1;
4: else
5: receive(shareRspnsMsg);
6: ŝh ← ŝh ⊕ G(si); {remove the session key si}
7: send(shareRspnsMsg, IDi, ŝh) to Ui−1;. {nodes forward the message back to

U1. Node U1 sends the share to the reader through the reading tunnel}
8: end if

Reconstruct the Document : The reader collects the shares and reconstructs the
document as soon as enough (k) shares were collected.
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Algorithm 6. Reconstruct the Document

1: Reader:
2: receive(shareRspnsMsg);
3: sh ← ŝh ⊕ G(s0); {the reader reconstructs the shares}
4: insert sh to {shares} {the reader collects the shares}
5: if |{shares}| = k then
6: d ← IDA−1({shares}) {the reader reconstructs the document}
7: end if

4 Anonymity Analysis

In this Section we provide a short anonymity analysis. The anonymity definitions
are derived from Pfitzmann and Hansen [20] and the Free haven project [7]. A
more complete analysis appears in a technical report [12].

Definitions
• Anonymity Set – Anonymity set is the set of all possible subjects. The
anonymity set of the publisher is the group of all currently active publishers in
the system. The anonymity set of the reader is the the group of all currently
active readers in the system. The anonymity set of the server is the the group
of all currently active servers in the system.
• Publisher Anonymity – The publisher of a document d is anonymous if any
polynomially bound adversary, given the choice of two possible active publishers,
cannot identify the correct publisher with probability greater than 1/2+ε, where
ε is a negligible function of the adversary’s input length.
• Reader Anonymity – The reader of a document d is anonymous if any
polynomially bound adversary, given the choice of two possible active readers,
cannot identify the correct reader with probability greater than 1/2 + ε.
• Server Anonymity – The server of a document d is anonymous if any poly-
nomially bound adversary, given the choice of two possible active servres, cannot
identify the correct server with probability greater than 1/2 + ε.
• Document Anonymity – The server maintains document anonymity if the
server can not deduce the content of the document it stores.

Anonymity Framework. We prove that our scheme provides anonymity to
publisher, reader, and server given the following assumptions.

A path between a publisher (or reader) and a server can be logically divided
into two parts: the nodes from the publisher (or reader) to U1 and the nodes
from U1 to the server. Let t be a system parameter, and assume each of the two
parts in each path includes at least t+1 nodes. Thus, if a path has T nodes then
T ≥ 2t + 2.

Assume that an adversary controls at most t nodes along the path between
the publisher (or reader) and the server. Furthermore, assume that the adver-
sary is semi-honest and static. In other words, the adversary follows protocol
specifications exactly and controls the same subset of parties throughout the
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execution of a protocol. Assume further, that the adversary obtains information
only through the execution of the protocols of Section 3.

Given such an adversary, we prove the anonymity of each user even if the
adversary controls t nodes, including the other two users. For example, we prove
the anonymity of the server even if the adversary controls both the publisher
and the reader. We prove anonymity by showing that the adversary cannot dis-
tinguish between a user that processes (i.e. serves or reads) a document that the
adversary recognizes and a user that processes a completely unrelated document.

Note that a more powerful adversary, e.g. one that correlates the timing of
packets in different parts of a path between publisher, reader, and server may
be able to learn information that is unavailable to our adversary.

Notation. We follow standard notation and definitions for multi-party secure
computation, [10], [11]. Let Π be a protocol for T parties to compute a function
g. The input of the i-th party is denoted xi and the output of the i-th party is
gi(x1, . . . , xT ). An adversary controls a set of parties denoted by I and receives
the “view” of every party in I. The view of a party includes its input, output
and all intermediate messages that it receives.

In the case we investigate, T ≥ 2t+ 2, the publisher’s input is (d, dname), the
reader’s input is dname and all other parties do not have an input. The output
of a reader is d. For every node Ui in the rendezvous tunnel nodes, the output
includes (i, si, IDi, IDi+1) and the length of the tunnel. The output of the server
is d

⊕
i G(si).

Let X and Y be two ensembles of probability distributions on binary strings.
We say that X and Y are computationally indistinguishable and use the notation
X

c≡ Y if any polynomial time algorithm can distinguish between X and Y with
only negligible probability.

Anonymity Claims. Regarding which nodes the adversary controls, consider
several nodes which are contiguous along the tunnel. The protocol ensures that if
the adversary controls these nodes then it knows that they are part of the same
tunnel. However, the tunnel has at least t+1 nodes on each of its legs (publisher
to U1, reader to U1 and U1 to server). If all the nodes that an adversary controls
are contiguous then the adversary can not be sure that two users (either publisher
and server or reader and server) are communicating and thus can not link them.
Furthermore, in this case the adversary does not have any information on a user
beyond the fact that it is acting as a publisher or a reader or a server. Thus,
when all corrupted nodes are contiguous then anonymity is maintained.

Theorem 1. Assume the existence of pseudo-random generators. Let an adver-
sary control at most t nodes in the network. For any two nodes that the adversary
controls, which are not connected by contiguous corrupt nodes in a single tunnel,
the adversary can not distinguish whether the nodes are part of the same pub-
lishing / reading tunnel for a document d or part of two tunnels for a document
d and a document d.
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Theorem 2. Assume the existence of pseudo-random generators. Let an adver-
sary control at most t nodes in a network. Given the view of its nodes during the
Algorithms 1-2 for a document d, the adversary does not obtain any information
on d beyond the information it had prior to the protocol.

Theorem 3. Assume the existence of pseudo-random generators and let an ad-
versary control at most t nodes in a network. Given view of the adversary’s
nodes during execution of all protocols in Section 3 for a document d the scheme
maintains publisher, reader, server and document anonymity.

Proof Sketch. Publisher and reader anonymity are naturally derived from the
sender anonymity tunnels they use. The publisher and the reader that commu-
nicate with the entrance node U1, always do so behind the protection of a sender
anonymity tunnel. If we assume a strong sender anonymity tunnel such as Tor
[8], the anonymity of the reader and the publisher is as strong as the tunnel they
use to communicate with U1.

We prove server anonymity based on Theorems 1 and the discussion at the
beginning of the section. If the adversary controls t contiguous nodes in the ren-
dezvous tunnel of d it is unable to identify the server since it has no information
on the server’s actions. In this case the anonymity set includes all servers in the
network, not just the active servers.

If the adversary’s nodes are not contiguous along the tunnel then Theorem
1 claims that the adversary can not distinguish between the messages of two
different documents. Hence, the identity of a server serving d remains hidden.

Document anonymity is proved by Theorem 1 and Theorem 2. Document
anonymity is a relevant concept only when the adversary controls the server.
Theorem 2 claims that the adversary does not obtain any knowledge about the
document during the publication phase. Since the adversary controls the server,
it does not control all the nodes along the tunnel and is unable to distinguish
between d and d in the server. Hence we obtain document anonymity.

5 Tor Based Solution

RTAP provides anonymity in a semi-honest model. We now describe a solution
based on Tor that provides anonymity to three participants in a P2P file sharing
network against a more powerful adversary. Specifically, our scheme gives the
same anonymity assurance as Tor itself and is secure against the same adversary
assumed in Tor. Tor’s adversary is assumed to be able to observe, generate, mod-
ify, delete, or delay some fraction of network traffic. Moreover, the adversary can
operate or compromise some fraction of the onion routers (for more details, see
[8] Subsection 3.1 and Section 7). Later works showed some of the vulnerabilities
inherent in Tor [18], [19] and [15].

Tor has two operating modes, the first of which is the sender anonymity tun-
nel that was designed to protect the anonymity of the sender of a message.
In a sender anonymity tunnel where recipient identity is known by the sender,
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anonymity is achieved by using a Mix [4] based protocol. The second operating
mode of Tor is its hidden services, which were designed to allow content owners
to provide their content anonymously. A content owner that wants to provide
its content builds a Tor tunnel to an introduction point and publishes the in-
troduction point in a global directory. Note that in Tor’s hidden services, the
publisher and the server are the same entity while in a P2P file sharing network,
the publisher and the server may be separate entities.

Dissociation of the publisher from the server that stores its content is ac-
complished by each server in the system building one (or more) hidden services
tunnel to an introduction point (see the right part of Figure 2). The servers then
publish the introduction points for use by publishers.

Fig. 2. Three-tunnel system. The publishing and the reading tunnels are sender
anonymity tunnels, while the server uses Tor’s hidden services.

The overall flow of the solution is as follows. First, the publisher divides the
document into shares using an (n, k) IDA [21]. Then, for each share, the publisher
uses hash functions and a DTH to build the index mapping. Next, the publisher
encrypts the share and sends it to the entrance node, U1, through a Tor sender
anonymity tunnel, the publishing tunnel. The entrance node encrypts the share,
selects at random an introduction point and sends the encrypted share through
the hidden services tunnel to the server. The server stores the share.

A reader that wants to retrieve the document operates in a similar manner. For
each share, the reader constructs the index using hash functions and a DHT, and
uses a sender anonymity tunnel (the reading tunnel) to query the entrance node.
The entrance node forwards the query message to the server through the hidden
services tunnel. As soon as the query arrives at the server, it sends the share
back along the tunnel. The entrance node decrypts the share, uses the reading
tunnel, and sends the share to the reader. The reader then decrypts the share. As
soon as enough shares have been successfully retrieved, the reader reconstructs
the document. Note that the publisher and the reader perform essentially the
same algorithms used in RTAP.

Discussion. The Tor based solution provides anonymity to all three partici-
pants in the P2P file sharing network. This solution copes with the adversary
assumed in Tor. Publisher anonymity is achieved by the publishing tunnel while
reader anonymity is achieved by the reading tunnel. Finally, server anonymity is
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achieved by the hidden services tunnel. An adversary that can compromise the
anonymity of the publisher/reader/server in the proposed solution can compro-
mise the anonymity of a Tor user.

As described above, a DHT is used to determine U1, the entrance node to the
server (U1 forwards the messages to the server through the introduction point).
If we do not use U1, the publisher (and the server) must communicate directly
with the introduction point. In this case, our efforts to cope with an inefficient ex-
haustive dictionary attack may lead to the server deducing the content it stores.
In such a event, document anonymity does not hold as the server determines
the introduction point during the hidden services tunnel construction. The in-
troduction of U1 forces a more complicated attack against document anonymity,
combining control of U1 and the server and an inefficient exhaustive dictionary
attack. Note that in RTAP document anonymity cannot be compromised.
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Abstract. Remote Method Invocation (RMI), Java’s remote procedure
call implementation, provides a mechanism for designing distributed Java
technology-based applications. It allows methods to be invoked from
other Java virtual machines, possibly at different hosts. RMI uses lock-
based concurrency control, which suffers from distributed deadlocks,
livelocks, and scalability and composability challenges. We present Snake-
DSTM, a distributed software transactional memory (D-STM) that is
based on the RMI as a mechanism for handling remote calls and trans-
actional memory for distributed concurrency control, as an alternative
to RMI/locks. Critical sections are defined as atomic transactions, in
which reads and writes to shared, local and remote objects appear to
take effect instantaneously. The novelty of Snake-DSTM is in manipu-
lating transactional memory by moving control to remote nodes, rather
than remote nodes’ data being copied to the node at which the trans-
action runs. Transaction metadata is detached from the transactional
context, and the dynamic two phase commitment protocol (D2PC) is
employed to coordinate the voting process among participating nodes
toward making distributed transactional commit decisions. We propose
a simple programming model using (Java 5) annotations to define crit-
ical sections and remote methods. Instrumentation is used to generate
code at class-load time, which significantly simplifies user-space end code.
No changes are needed to the underlying virtual machine or compiler.
We describe Snake-DSTM’s architecture and implementation, and re-
port on experimental studies comparing it against competing models
including RMI with mutual exclusion and read/write locks, distributed
shared memory (DSM), and dataflow-based D-STM. Our studies show
that Snake-DSTM outperforms competitors by up to 12× on different
workloads using a 120-node system.

1 Introduction

Lock-based concurrency control suffers from drawbacks including deadlocks, live-
locks, lock convoying, and priority inversion. In addition, it has scalability and
composability challenges [10]. These difficulties are exacerbated in distributed
systems with nodes, possibly multicore, interconnected using message passing
links, due to additional, distributed versions of their centralized problem coun-
terparts [12]. Transactional memory (TM) promises to alleviate these difficulties.
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In addition to providing a simple programming model, TM provides performance
comparable to highly concurrent, fine-grained locking [13,11]. In TM, atomic
sections are defined as transactions in which reads and writes to shared objects
appear to take effect instantaneously. A transaction maintains its read set and
write set, and at commit time, checks for conflicts on shared objects. If con-
flicts are detected, the transaction rolls-back its changes and retries; otherwise,
the changes are made to take effect. Numerous multiprocessor TM implemen-
tations have emerged in software (STM) [29], in hardware (HTM) [11], and in
a combination (Hybrid TM) [17]. Distributed STM (or D-STM) implementa-
tions also exist. Examples include Cluster-STM [5], D2STM [7], DiSTM [14],
and Cloud-TM [22]. Communication overhead, balancing network traffic, and
network failures are additional concerns for D-STM.

Previous research on D-STM has largely focused on the dataflow model [32,18],
in which objects are replicated (or migrated) at multiple nodes, and transactions
access local object copies. Using cache coherence protocols [12,8,35], consistency
of the object copies is ensured. However, this model is not suitable in applica-
tions (e.g., P2P), where objects cannot be migrated or replicated due to object
state dependencies, object sizes, or security restrictions. A control flow model,
where objects are immobile and transactions invoke object operations via remote
procedure calls (RPCs), is appropriate in such instances.

This paper focuses on the design and implementation of D-STM based on
Java’s Remote Method Invocation (RMI) mechanism. We are motivated by the
popularity of the Java language, and the need for building distributed systems
with concurrency control, using the control flow model. Support for distributed
computing in Java is provided using RMI since release 1.1. However, distributed
concurrency control is (implicitly) provided using locks. Besides, the RMI archi-
tecture lacks the transparency required for distributed programming, supporting
a remote method requires defining an interface, skeleton and stub objects, plus
changing the prototype to throw remote exceptions and extending special base
class UnicastRemoteObject. We present Snake-DSTM, an RMI/D-STM im-
plementation that uses D-STM for distributed concurrency control in (RMI’s)
control flow model, and exports a simpler programming model with transpar-
ent object access. Using (Java 5’s) annotations, and our instrumentation engine,
a programmer can define remote objects (or methods), and define atomic sec-
tions as transactions, in which reads and writes to shared (local and remote)
objects appear to take effect instantaneously. Distributed atomicity, object reg-
istration, and remote method declarations are handled transparently without
any changes to the underlying virtual machine or compiler. Our experimental
studies show that Snake-DSTM outperforms RMI with read/write locks by as
much as 12times on a broad range of transactional workloads, and shows com-
parable performance to distributed shared memory, and dataflow D-STM. To
the best of our knowledge, this is the first D-STM design and implementation
in the control flow model, and constitutes the paper’s contribution.

Snake-DSTM is freely available as part of the HyFlow project [23,24], which
is producing a Java D-STM framework for the design, implementation, and
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evaluation of D-STM algorithms and mechanisms, under both control flow and
dataflow. We hope this will increase momentum in the TM community in D-STM
research.

The rest of the paper is organized as follows. We overview past and related
efforts in Section 2. In Section 3, we detail the Snake-DSTM design and imple-
mentation and underlying mechanisms. In Section 5, we experimentally evaluate
Snake-DSTM against competing distributed programming models and report
results. We conclude in Section 6.

2 Related Work

The high popularity of the Java language for developing large, complex systems
has motivated significant research on distributed and concurrent programming
models. DISK [30] is a distributed Java Virtual Machine (DJVM) for network of
heterogenous workstations, and uses a distributed memory model using multiple-
writer memory consistency protocol. Java/DSM [34] is a DJVM built on top of
the TreadMarks [2] DSM system. JESSICA2 [36] provides transparent memory
access for Java applications through a single system image (SSI), with support for
thread migration for dynamic load balancing. These implementations facilitate
concurrent access for shared memory. However, they rely on locks for distributed
concurrency control, and thereby suffer from (distributed) deadlocks, livelocks,
lock-convoying, priority inversion, non-composability, and the overhead of lock
management.

TM, proposed by Herlihy and Moss [11], is an alternative approach for shared
memory concurrent access, with a simpler programming model. Memory trans-
actions are similar to database transactions: a transaction is a self-maintained
entity that guarantees atomicity (all or none), isolation (local changes are hidden
till commit), and consistency (linearizable execution). TM has gained significant
research interest including that on STM [29], HTM [11], and HyTM [17]. STM
has relatively larger overhead due to transaction management in software and
architecture-independence. HTM has the lowest overhead, but assumes architec-
ture specializations. HyTM seeks to combine the best of HTM and STM.

Similar to multiprocessor STM, D-STM was proposed as an alternative to
lock-based distributed concurrency control. In [12], Herlihy et. al. classified dis-
tributed execution models into control-flow and dataflow models. In the control-
flow model [4,16,31], objects are immobile and transactions invoke object
operations through remote calls, resulting in a distributed locus of control flow
movement — “distributed thread” [21] — for a transaction. On the other hand,
in the dataflow model [32,18], objects are replicated (or migrated) at multiple
nodes, and transactions access local copies. While the dataflow model preserves
the locality of reference principle, it is not applicable in many cases in which
objects cannot be transferred due to state, size, or security restrictions. Ex-
ample dataflow D-STM implementations include Cluster-STM [5], D2STM [7],
DiSTM [14], and Cloud-TM [22]. Communication overhead, balancing network
traffic, and network failure models are additional concerns for such designs. These
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implementations are mostly specific to a particular programming model (e.g., the
partitioned global address space or PGAS model [1]) and often need compiler
or virtual machine modifications (e.g., JVSTM [6]), or assume specific architec-
tures (e.g., commodity clusters). While dataflow D-STM has been intensively
studied, relatively little efforts have focused on applying TM concepts under the
control-flow model.

Snake-DSTM is a control-flow D-STM implementation, based on the Java
RMI mechanism for supporting remote procedure calls. Unlike [1,6], it doesn’t
require any changes to the underlying virtual machine or compiler, as it uses
embedded library as a JVM agent, which is loaded at runtime.

3 System Overview

3.1 System Model

We consider an asynchronous distributed system model, similar to Herlihy and
Sun [12], consisting of a set of N nodes N1, N2, ....., Nn, communicating through
weighted message-passing links. We assume that each shared object has an
unique identifier. We use a grammar similar to the one in [9], but extend it
for distributed systems.

A transaction is a sequence of instructions that are guaranteed to be executed
atomically. Any object changes within transactional code must appear to take
effect instantaneously. Each transaction has an unique identifier, and is invoked
by a node (or process) in a distributed system of N nodes. A transaction can be
in one of three states: active, busy, and aborted, or committed. When a transaction
is aborted, it is retried by the node again using a different identifier.

Objects are resident at their originating nodes. Every object has, one “owner”
node that is responsible for handling requests from other nodes for the owned
object. Any node that wants to read from, or write to an object, contacts the
object’s owner using a remote call. A remote call may in turn make other remote
calls, which construct, at the end of the transaction, a global graph of remote
calls. We call this graph, a call graph.

3.2 Programming Model

The Java RMI specifications require defining a Remote interface for each re-
motely accessible class, and modifying class signatures to throw remote excep-
tions. Server side should register the implementation class, while client uses a
delegator object that implements the desired Remote interface.

In our model, a programmer annotates remotely accessible methods with the
@Remote annotation, and critical sections are defined as methods annotated with
@Atomic. An object that contains at least one @Remote method is named remote
object, and it must implement the IDistinguishable interface to provide our
registry with a unique object identifier. Remote objects register themselves au-
tomatically at construction time, and are populated to other node registries. A
transactional object is one that defines one (or more) @Atomic methods. Atomic
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1 public class SearchAgent implements I D i s t i n gu i s h ab l e {
2 public Object ge t Id ( ) {
3 return id ;
4 }
5 @Remote
6 @Atomic{ r e t r i e s = 10}
7 public L i s t search ( S t r ing keyword ) {
8 L i s t found = new LinkedList ( ) ;
9 // search at ne i ghbors

10 for ( S t r ing ne ighbor : ne ighbors ) {
11 SearchAgent remoteAgent = Locator . open ( ne ighbor ) ;
12 found . addAll ( remoteAgent . s earch ( keyword ) ) ;
13 }
14 . . . . // search at l o c a l database
15 return found ;
16 }
17 }

Fig. 1. A P2P agent using an atomic remote TM method

annotation can be, optionally, parametrized by the maximum number of transac-
tional retries. Currently, we support the closed nesting model [20], which extends
the isolation of an inner transaction until the top-level transaction commits. We
“flatten” nested transactions into the top-level one, resulting in a complete abort
on conflict, or allow partial abort of inner transactions.

Transactional or remote objects are accessed using locators. Traditional ob-
ject references cannot be used in a distributed environment. Further, locators
monitor object accesses and act as early detectors for possible transactional con-
flicts. Objects can be located (or opened) in read-only or read-write modes. This
classification permits concurrent access for concurrent read transactions.

Figure 1 shows a distributed transactional code example. A peer-to-peer (P2P)
file sharing agent atomically searches for resources and return a list of resources
owners to the caller node. The agent may act recursively and propagate the
call to a set of neighbor agents. At the programming level, no locks are used,
the code is self-maintained by retrying on failures, and atomicity, consistency,
and isolation are guaranteed (for the search transaction). Composability is also
achieved: any other atomic method can be called within the higher-level atomic
search operation. A conflicting transaction is transparently retried. Note that
the location of the agents is hidden from the program. It is worth noting that
other distributed programing models such as DSM or dataflow D-STM cannot
be used in such applications, as an agent must search files at its node. This is
an example of objects with system-state property.

4 Implementation

Figure 2 shows a layered architecture of our implementation. Similar to the
official RMI design, we have the three layers of: 1) Transport Layer, where
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actual networking and communication handling is performed, 2) Remote Ref-
erence Layer, which is responsible for managing the “liveliness” of the remote
objects, and 3) Stub/Skeleton Layer, which is responsible for managing the re-
mote object interface between hosts. Additionally, we define an Object Access
Layer, which provides the required transparency to the application layer. Local
and remote objects are accessed in an uniform manner, and a dummy object is
created to delegate calls to the RMI stub. Transactional code is maintained by a
Transaction Manager module, which provides distributed atomicity and mem-
ory consistency for applications. As described in Section 4.1, an Instrumentation
Engine is responsible for load-time code modifications, which is required for the
Transaction Manager and Object Access Layer.

foo(x)

foo(x,
  context)

foo(x, 
  context, id)

XYZ

IProxy_XYZ

Remote Reference Layer (RRL)

Transport
Layer (TL)

Transport
Layer (TL)

foo(x, 
    context)

foo(x, 
   context, id)

XYZ

Proxy_XYZ

Network

Object Access Layer (Locator)

Application

Transaction Manager

Fig. 2. Snake-DSTM layered architecture overview

4.1 Instrumentation Engine

Java Instrumentation provides a run-time ability to modify and generate byte-
code at class load-time. We exploited this feature to modify class code at runtime,
add new fields, modify annotated methods to support remote and transactional
behavior, and generate helper classes. We built our engine as an extension of
the Deuce (multiprocessor) STM [15]. We consider a Java method as the basic
annotated block. This approach has two advantages. First, it retains the famil-
iar programming model, where @Atomic replaces synchronized methods and
@Remote substitutes for RMI calls. Secondly, it simplifies transactional memory
maintenance, which has a direct impact on performance. Transactions need not
handle local method variables as part of their read or write sets.

Our Instrumentation Engine works in two phases; the first phase processes
remote objects. For any class with one (or more) methods annotated as @Remote,
a Remote interface is generated with the remote method’s signature. Further, a
delegator class that implements the Remote interface is generated to work as the
RMI-client stub. The original class constructors are modified to register objects
at the object registry and populate object IDs to other nodes. That has two
purposes: i) objects are accessed with a reference of the same type, so objects
and object proxies are treated equally and transparently; and ii) no changes
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to remote method signatures are required, as the modified signature versions
are defined by delegator generated code. This phase simplifies the way remote
objects are accessed, and reduces the burden of writing complex code.

The second phase handles transactional code generation. This transformation
occurs as follows:

– Classes. A synthetic field is added to represent the state of the object as
local or remote. The class constructor(s) code is modified to register the
object with the Directory Manager at creation time.

– Fields. For each instance field, setter and getter methods are generated to
delegate any direct access for these fields to the transaction context. Class
code is modified accordingly to use these methods.

– Methods. Two versions of each method are generated. The first version is
identical to the original method, while the second one represents the trans-
actional version of the method. During the execution of transactional code,
the second version of the method is used, while the first version is used
elsewhere.

– @Atomic methods. Atomic methods are duplicated as described before,
however, the first version is not similar to the original implementation. In-
stead, it encapsulates the code required for maintaining transactional behav-
ior, and it delegates execution to the transactional version of the method.

Figure 3 shows part of the instrumented version of a SearchAgent class defined
in Figure 1.

4.2 Distributed Software Transactional Memory

Supporting shared memory-like access in distributed systems requires an addi-
tional level of indirection. Each transaction must preserve memory consistency,
and must expose its local changes instantaneously. In order to do that, old or
new values of modified objects must be stored at local-transaction buffers till
commit time. Two strategies can be used to achieve this: i) undo-log [17], where
changes are made to the main object, while old values are stored in a sepa-
rate log; and ii) write-buffer [10], where changes are made to transaction-local
memory and written to the main object at commit time. Both strategies are ap-
plicable in the distributed context. However, (distributed) transactions cannot
move between nodes during their execution with all these metadata (undo-logs
or write-buffers) due to high communication costs. Instead, transaction meta-
data must be detached from the transaction context, while keeping the minimal
information mobile with the transaction. In Snake-DSTM, we implemented both
approaches. Using a distributed mechanism for storing transaction read-set and
write-set, distributed transactions are managed with minimum amount of mobile
data (e.g. transaction id, priority). The complete algorithm and more implemen-
tation details are available in a technical report [26].

Before (and after) accessing any transactional object field, the transaction is
consulted for read (or written) value. A transaction builds up its write and read
sets, and handles any private buffers accordingly. At commit time, a distributed
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1 // Generated Remote in te r face

2 interface $HY$ ISearchAgent

3 extends Remote , S e r i a l i z a b l e {
4 public Li s t search ( Object id , ControlContext context , S t r i ng

keyword ) throws RemoteException ;

5 . . . .

6 }
7 // Generated Proxy de l e ga tor stub

8 class $HY$ Proxy SearchAgent

9 extends UnicastRemoteObject

10 implements $HY$ ISearchAgent {
11 . . . .

12 }
13 public class SearchAgent implements ID i s t i n gu i s hab l e {
14 // Remote Proxy re fe re ce

15 $HY$ ISearchAgent $HY$ proxy ;

16 // Modified construc tor

17 SearchAgent ( S t r i ng id ) {
18 . . . .

19 DirectoryManager . r e g i s t e r ( id , this ) ;

20 }
21 // Synthe t ic dup l i ca t e method

22 public Li s t search ( S t r i ng keyword , Context c ) {
23 i f ( $HY$ proxy!=null ) // Invoke remote c a l l

24 return $HY$ proxy . search ( id , c , keyword ) ;

25 . . . . // execute c a l l l o c a l l y

26 }
27 // Orig ina l method instrumented

28 public Li s t search ( S t r i ng keyword ) {
29 //Transaction ac t i v e thread

30 Context context = ContextDelegator . g e t In s tanc e ( ) ;

31 boolean commit = true ;

32 L i s t r e s u l t = null ;

33 for ( int i =10; i >0; −−i ) {
34 // I n i t i a l i z e transac t ion

35 context . i n i t ( ) ;

36 try{
37 r e s u l t=search ( keyword , context ) ; //Try execute

38 } catch ( Transact ionException ex ) {
39 commit = fa l se ; //Aborted

40 } catch ( Throwable ex ) {
41 throwable = ex ; //Appl icat ion Exception

42 }
43 i f ( commit ) {
44 i f ( context . commit ( ) ) {
45 i f ( throwable == null )

46 return r e s u l t ; //Committed

47 throw ( IOException ) throwable ; //Rethrow Exception

48 }
49 } else {
50 context . r o l l b a c k ( ) ; //Rol lback

51 commit = true ;

52 }
53 }
54 throw new Transact ionException ( ) ; //Maximum Retr ies

55 }
56 }

Fig. 3. Instrumented version of SearchAgent class
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Undo Log (Eager-Pess)
On Write

If(owned) resolve
set owned by me
Backup and Change in master copy

On Read
If(owned) resolve
Read value and version

Try Commit
Validate reads (version < current)

On Commit
Increment owned versions
Release owned

On Rollback
Undo changes for owned
Release owned

Write Buffer (Lazy-Opt)
On Write

Change in private copy
On Read

If(in Write Set) read local value
else read master copy value
Read version

Try Commit
Acquire ownership of write-set
Validate reads (version < current)

On Commit
Write values to main copy
Increment owned versions
Release owned

On Rollback
Discard local changes

Fig. 4. Snake D-STM implementations

validation step is required to guarantee consistent memory view. In this phase,
transaction originator nodes trigger a voting request to the participating nodes.
Each node uses its portion of write and read sets to make its local decision.
If validation succeeds on all nodes, the transaction is committed; otherwise, an
abort handler rolls-back the changes. During the validation phase, the transac-
tion state is set to busy, which ensures that a transaction cannot be aborted. This
helps in ensuring the correctness of the validation (i.e., all nodes unanimously
agree on the transaction to be committed and the transactions to be aborted),
and also, it prevents transactions at later stages from being aborted by newly
started ones.

Figure 4 shows our two implementations of the Snake-DSTM: write-buffer
and undo log. Objects use verrsioned lock to enable ownership and validation.
Try Commit procedure is used during the voting to make sure that all nodes are
ready to commit.

4.3 Distributed Contention Management

Two transactions conflict if they concurrently access the same object, and one
of them is a write transaction. Upon detecting a conflict, a contention manage-
ment policy (CM) is used to resolve this situation (arbitrarily or priority-based)
e.g., one of the transactions is stalled or aborted and retried. A wide range of
transaction contention management policies has been studied for non-distributed
STM [28,27]. We classify CMs into three categories: 1. Incremental CM (e.g.,
Karma, Eruption, Polka), where the CM builds up the priorities of the trans-
actions during transaction execution; 2. Progressive CM (e.g., Kindergarten,
Priority, Timestamp, Polite), which ensures a system-wide progress guarantee
(i.e., at least one transaction will proceed to commit); and 3. Non-Progressive
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CM (e.g., Backoff, Aggressive), which assumes that conflicting transactions will
eventually complete, however, livelock situations can occur.

As mentioned earlier, in the control flow model, a distributed transaction Tx

is executed over multiple nodes. Under Incremental CM, Tx can have different
priorities at each node. This is because, a transaction builds its priority during
its execution over multiple nodes. Under this behavior, a live-lock situation can
occur. Consider transactions Tx and Ty with priorities Px, P ′y and P ′x, and Py

at nodes N1 and N2, respectively. It is clear that, if P ′x > Py and P ′y > Px, then
both transactions will abort each other, and this will continue forever. The lack
of a central store for transactional priorities causes this problem. However, hav-
ing such a central store will significantly increase the communication overhead
during transaction execution, causing a system bottleneck. Non-Progressive CM
shows comparable performance for non distributed STM [3]. Nevertheless, our
experiments show that it cannot be extended for D-STM due to the expensive
cost of retries (see [26]).

4.4 Global Commitment Protocol

In the control flow model, a remote call on an object may trigger another remote
call to a different object. The propagated access of objects forms a call graph,
which is composed of nodes (i.e., sub-transactions) and undirected edges (i.e.,
calls). This graph is essential for making a commit decision. Each participating
node may have a different decision (on which transaction to abort/commit)
based on conflicts with other concurrent transactions. Thus, a voting protocol is
required to collect votes from nodes, and the originating transaction can commit
only if it receives an “yes” message from all nodes. By default, we implement the
D2PC protocol [19], however, any other protocol may substitute it. We choose
D2PC, as it yields the minimum possible time for collecting votes [19], which
reduces the possibility of conflicts and results in the early release of acquired
objects. Furthermore, it balances the overhead of collecting votes by having a
variable coordinator for each vote.

5 Experimental Evaluation

Distributed Benchmarks. We developed a set of distributed benchmarks to
evaluate Snake-DSTM against competing models including: i) classical RMI,
which uses mutual exclusion locks and read/write locks with random timeout
mechanism to handle deadlocks and livelocks; ii) distributed shared memory
(DSM), which uses the Home directory protocol such as Jackal [33]; and iii)
distributed dataflow STM implementation [25]. Our benchmark suite includes
a distributed version of the vacation benchmark from the STAMP benchmark
suite [37] (vacation) and two monetary applications (bank and loan).

Testbed. We conducted our experiments on a multiprocessor/multicomputer
network comprising of 120 nodes, each of which is an Intel Xeon 1.9GHz proces-
sor, running Ubuntu Linux, and interconnected by a network with 1ms end-to-
end delay. Each node invokes 50-200 sequential transactions. In a single
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experiment, we thus executed 6-24 thousands transactions, and measured the
throughput for each concurrency model, for each benchmark. Our experiments
shows that Snake-DSTM write-buffer implementation outperforms undo-log im-
plementations under all benchmarks. The reason for this is that undo-log pes-
simistic approach incur relatively larger number of retries, which in turn increases
objects requests over the network. In this section we focus on Snake-DSTM write-
buffer results against other concurrency models.
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Fig. 5. Snake-DSTM speedup for a distributed benchmark suit over 120-node system

Evaluation. Figure 51 shows the relative throughput speedup achieved by
Snake-DSTM over other concurrency models on the benchmarks. We observe
that Snake-DSTM outperforms all other models under loan and vacation (the
speedup ratio ranges between 1.3× and 12.8×). Under Bank benchmark only two
nodes are involved into the transfer transaction, so Snake-DSTM overhead (vot-
ing, validation and versioning) outweighs the performance gain for this simple
transaction, relative to RMI.

Using the Loan benchmark, transaction execution time was 200ms under
ideal conditions. Six different objects were accessed per each transaction, issu-
ing twenty remote calls. Figure 6(a) shows the scalability of Snake-DSTM under
increasing number of nodes, and using 50% and 10% read-only transactions. Fig-
ure 6(b) shows the throughput under increasing number of participating objects
in each transaction (transaction execution time under no contention is 350ms in
this experiment). Greater the number of accessed objects, higher the algorithm
overhead, and higher the number of remote calls per each transaction (e.g., a
transaction of twelve objects issues 376 remote object calls during its execution).

From Figure 6(a), we observe that Snake-DSTM outperforms classical RMI us-
ing mutual exclusion locks (RMI-Locks), and also using read/write locks

1 High and low indicate the benchmark contention which is controlled by either in-
creasing write transactions or reducing the number of objects
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(RMI-R/W), by 180% at high contention (10% reads), and by 150% at normal
contention (50% reads). Though RMI with read/write locks shows better per-
formance at a single point (6 nodes) due to the voting protocol overhead, yet, it
suffers from performance degradation at increasing loads. It worth noting that
the y-axis represents the nodal throughput, which means that in Figure 6(a)
Snake-DSTM sustains almost the same nodal throughput with increasing the
objects contention.

 0

 2

 4

 6

 8

 10

 6  12  18  24  30  36  42

T
hr

ou
gh

pu
t (

T
ra

ns
ac

tio
ns

/S
ec

)

Number of nodes

Snake-DSTM (10%)
Snake-DSTM (50%)

RMI-Locks
RMI-R/W Locks (10%)
RMI-R/W Locks (50%)

 5

 10

 15

 20

 25

 30

 35

 2  4  6  8  10  12

T
hr

ou
gh

pu
t (

T
ra

ns
ac

tio
ns

/S
ec

)

Number of Objects

Snake-DSTM
RMI-R/W Locks

Fig. 6. Throughput of Loan benchmark: a) under increasing number of nodes, b) using
pure read transactions over 12 nodes, and variable object count per transaction

Figure 6(b) uses the no-contention situation (100% reads) to compare the
overhead of Snake-DSTM and RMI-R/W. At small number of shared objects
per transaction, the TM overhead outweighs the provided concurrency, and both
Snake-DSTM and RMI-R/W incur the same overhead. With increasing num-
ber of objects, Snake-DSTM outperforms RMI-R/W by 50%. Notice that the
throughput degradation is not due to contention (100% reads), but it is because
the transaction execution time is different (more objects at each data point), so
the relevance of this figure is the relative implementation overhead of RMI and
Snake-DSTM appraoches.

Figure 7(a) compares control-flow and dataflow D-STM implementations us-
ing the Bank Benchmark, where the end-to-end latency is changed, due to net-
work conditions or object size. Figure 7(b) shows the effect of increasing the
number of calls per a single remote object on Snake-DSTM throughput. This
experiment illustrates the trade-off between employing locality of reference under
dataflow model, and invoking remote calls at immobile objects using control-flow
model. The best strategy is application based, which leaves a space for having
both models in use.

End-to-end delay plays an important role in the design of distributed systems.
We can decompose it into: network delay (propagation, processing, transmission,
and queuing delay) and JVM delay (serialization, marshaling, and type checking).
We define the object-to-parameter ratio (ρ) as the ratio of the end-to-end delay
incurred in sending an object to the end-to-end delay incurred in sending the re-
mote call parameters for this object. For example, ρ=2, when sending an object
requires double the end-to-end delay of sending parameters of a remote call.
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under increasing number of calls per object

Figure 7(a) shows the effect of end-to-end delay on throughput when ρ=1 (i.e.,
sending the object is equivalent to sending the remote call parameters). Here,
only one call is issued per any remote object within a transaction, which means
that, for an application with ρ=4, the throughput of the dataflow flow model
should be compared to the control-flow throughput multiplied by four. Similarly,
for an application that invokes four calls per each object within a transaction,
the equivalent control-flow throughput is divided by four.

Figure 7(b) demonstrates the effect of not employing locality of reference: in
the control flow model, each remote call incurs a round-trip network delay. As
shown in the figure, it reduces throughput by 25% for four to eight calls. This
should be considered in environments with high link latency.

6 Conclusions

We presented Snake-DSTM, a high performance, scalable, distributed STM
based on the control flow execution model. Our experiments show that Snake-
DSTM outperforms other distributed concurrency control models, with accept-
able number of messages and low network traffic. Control flow is beneficial under
non-frequent object calls or when objects must be immobile due to object state
dependencies, object sizes, or security restrictions. Our implementation shows
that Snake-DSTM provides comparable performance to classical distributed con-
currency control models, and exports a simpler programming interface, while
avoiding dataraces, deadlocks, and livelocks.

The HyFlow project provides a testbed for the TM research community to
design, implement, and evaluate algorithms for D-STM. HyFlow is publicly avail-
able at hyflow.org.
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Abstract. In this paper we propose the first proactive co-operative link
self-healing (POLISH) scheme, in which the secure link compromised in
WSNs automatically self-heals with time, without the help of a server.
Our scheme updates a secure link using the random data transmitted
from the neighboring sensor nodes, based on the idea of the POSH
scheme. It is necessary to newly take the security of a link between
sensors into consideration in our scheme since such security is not con-
sidered in the POSH scheme. We conduct analytical evaluation and a
simulation experiment for our scheme, and the results indicate that our
scheme is very effective in self-healing.

1 Introduction

Wireless Sensor Networks (WSNs) consist of small, battery-operated, limited
memory and limited computational power sensor nodes. Hence, most of existing
pairwise key establishment schemes in WSNs are not based on public key cryp-
tography. One of the most popular schemes, referred to as RKP (Random Key
Pre-distribution) in this paper, was first proposed by Eschenauer and Gligor [4]
and has been applied to many schemes. These basic probabilistic schemes are
pairwise key pre-distribution schemes based on symmetric key cryptography.
However, the security of the whole network in such schemes degrades with time
when there is an attacker. An attacker who corrupts several sensors can obtain
a set of the pairwise symmetric keys. If the attacker is continuously corrupting
sensors, they will eventually learn all the pairwise symmetric keys, and all newly
deployed sensors will establish links that will immediately be compromised. This
is a non-desirable property.

The WSNs are usually deployed to operate for a long period of time. Avail-
ability is very important to long-term use of WSNs under the presence of an
attacker. Actually, we can find several schemes [2,5,6,10], which maintain avail-
ability of the secure link. Link composed of a pairwise symmetric key in WSNs.
These schemes are called resilient multiphase WSNs, in which a link self-heals
against node-capture attacks by redeploying a sensor node when the battery of a
sensor is depleted. However, as far as we know, any efficient scheme which main-
tains availability of the secure link between sensor nodes requires the help of a
server. It is thus desirable that the link self-heal against node-capture attacks to
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c© Springer-Verlag Berlin Heidelberg 2011
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maintain availability without the help of a server. Self-healing of a secure link is
the property that the compromised link recovers in a WSN.

In this paper, we propose the first proactive co-operative link self-healing
(POLISH) scheme, in which the secure link compromised in a WSN automat-
ically self-heals with time, without the help of a server. Our scheme updates
a secure link using the random data transmitted from the neighboring sensor
nodes, based on the idea of the POSH scheme. The POSH scheme self-heals the
secret key for encrypting the sensed data on a sensor node for the purpose of
data survival. In our scheme, a link self-heals in two steps: first, two neighboring
sensors are self-healed, and then the link between these sensors is self-healed. It
is necessary to newly take the security of a link between sensors into consider-
ation in our scheme since such security is not considered in the POSH scheme.
Furthermore, our scheme has an advantage that the probability of establishing
a secure link is 100%. In addition, we conduct analytical evaluation and a sim-
ulation experiment for our scheme, and the results indicate that the proposed
scheme is very effective in self-healing. Our scheme is both effective and efficient,
as supported by analytical and simulation results.

The rest of this paper is organized as follows. In the next section we present
related work on pairwise key distribution schemes with self-healing property for
WSNs. Some preliminaries are provided in Section 3, and we review the POSH
scheme in Section 4. We explain our scheme in detail in Section 5, analyze its
security and efficiency in Section 6, and compare the POLISH scheme with the
previous RoK scheme in Section 7. We finally conclude this paper in Section 8.

2 Related Work

One of the most popular schemes, referred to as RKP in this paper, was proposed
by Eschenauer and Gligor [4], which has been applied to many schemes. These
probabilistic pairwise key pre-distribution schemes are efficient because they are
not based on public key cryptography. However, these schemes do not have self-
healing feature of a link, and thus the ratio of the compromised links reaches
100% as time passes against node-capture attacks.

Castelluccia and Spognardi [2] have proposed the RKP scheme with self-
healing property, named RoK scheme, for multiphase WSNs, in which a link self-
heals against node-capture attacks by redeploying a sensor node (with server’s
help) when the battery of a sensor is depleted. The RoK scheme improves the
security of the RKP scheme by limiting the lifetime of the keys, and by refreshing
keys. Some recent schemes improve the resiliency of the RoK scheme. Yilmaz
et al. [10] proposed a more resilient scheme than the RoK scheme to speed up
the self-healing process. Kalkan et al. [6] proposed a zone-based RKP (Zo-RoK)
scheme which combines the best parts of Du et al.’s scheme [3] and the RoK,
and improves the resiliency of the RoK. Furthermore, Ito et al. [5] proposed
a strongly-resilient polynomial-based random key pre-distribution scheme for
multiphase WSNs (RPoK): a private sub-key is not directly stored in each sensor
node by applying the polynomial-based scheme to the RoK scheme.
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There is another drawback in the RKP scheme; the probability of establishing
a secure link is not 100%. We recall the basic pairwise key pre-distribution
scheme, polynomial-based key pre-distribution scheme [1] which was proposed
prior to the RKP scheme and which maintained the probability of establishing
a secure link at 100%. To pre-distribute pairwise keys in the polynomial-based
key pre-distribution scheme, a setup server randomly generates t-degree f(x, y)
over a finite field Fq, where it has the symmetrical property of f(x, y) = f(y, x).

As for self-healing of the secret key for the purpose of data survival, the POSH
scheme [8] and the DISH scheme [7] have been proposed by Pietro et al. and Ma
et al., respectively. These schemes use key evolution and sensor cooperation to
self-heal the secret key which encrypts the sensed data on a sensor node, for the
purpose of data survival. These schemes involve each sensor sharing an initial key
with the sink (base station). At any time, sensors are either occupied (red), sick
(yellow) or healthy (green). The self-healing of a sensor means that a sick sensor
becomes healthy. The POSH and the DISH schemes update a secret key using
the random data transmitted from other sensor nodes. That is, if at least one
of the sensor nodes which send random data is not corrupted, the compromised
secret key is updated and then is self-healed.

3 Preliminaries

3.1 Notation

n : Total number of sensors (i.e., Size of network)
si : Sensor i

IDi : Index of si

m : Number of links with neighboring sensors
r : Round index (i.e., fixed-length time slot)

Kr
i,j : Pairwise symmetric key (secure link) between si and sj at round r
Sr

i : Seed of si at round r
cri�

: �-th contribution received by si at round r
Gr : Set of green sensors at round r
Y r : Set of yellow sensors at round r
Rr : Set of red sensors (= k) at round r

GLr : Set of green links at round r
RLr : Set of red links at round r

q : Large prime number
H : Secure hash function H : {0, 1}∗ → {0, 1}q

f(x, y) : Bivariate t-degree polynomial at over a finite field Fq

3.2 Requirements

The following requirements need to be considered when designing a link self-
healing scheme in WSNs.
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Highly-Secure Connectivity. After deployment, two sensors share a pairwise
symmetric key to establish a secure link. This probability is called secure connec-
tivity. Highly-secure connectivity is required in a pairwise symmetric key scheme
in WSNs.

High Resiliency. Sensor nodes may be deployed in public or hostile locations
in many applications. The resiliency (self-healing) means that the ratio of com-
promised links is suppressed low even if the adversary regularly/continuously
corrupts sensor nodes of the network. This feature is achieved by security prop-
erties, forward and backward secrecy1. Resiliency is estimated by the ratio of
links that are not compromised by the capture of nodes.

Restricted Resources. It is required that the WSNs consist of small, battery-
operated devices with limited memory and limited computational power.

3.3 System and Network Assumptions

Time is divided into equal and fixed rounds. Round synchronization can be im-
plemented. The network is connected at all times. Any two sensors can commu-
nicate either directly or indirectly, via other sensors. Each sensor can perform
cryptographic hashing and polynomial execution and has a unique ID. Also,
each sensor has a Pseudo-Random Number Generator (PRNG) initialized with
a unique secret seed. A sensor re-initializes secret seed values in any round.

3.4 Adversarial Model

We refer to the adversary as ADV from here on. ADV’s main goal is to learn as
many sensor secrets (keys or other key material) as possible, and hence ADV is
only interested in learning the secrets of sensors when it compromises/captures.
ADV knows the entire topology of the WSNs. Such adversary model is usually
employed in the previous schemes [4,2,10,6,5]. ADV can create a table of sensor
secrets and share it. This might be later used to decrypt encrypted communica-
tion. Furthermore, ADV does not stay at one local place for stealthy operation
and then does not interfere with sensor’s behavior, i.e., it does not delete, delay
or introduce messages. ADV also eavesdrops on communication from the sensor
through wireless transmission. Note that ADV leaves no trace behind (e.g., he
does not establish an sniffing tool somewhere in WSNs).

Time is divided into equal and fixed rounds. At the end of each round, ADV
randomly picks a subset of k sensors to be compromised in the following round
(ADV preferentially aims at a green sensor). At the start of each round, the ADV
releases the subset from the previous round and compromises the new subset.
ADV is unable to monitor and record all communication at the same time as
described in [7,8].
1 These security properties are defined in [8]. Forward secrecy means that ADV can-

not learn any keys used to decrypt and/or authenticate before compromise, and
backward secrecy means that ADV cannot learn any keys used to decrypt and/or
authenticate after compromise.
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All green contributions 
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Fig. 1. Sensor state transition diagram [8]

4 The POSH Scheme

4.1 Overview

Pietro et al. have proposed a proactive co-operative self-healing (POSH) scheme
for data survival on a sensor. A sensor si encrypts its sensed data in round r by
using secret key Kr

i . A sensor whose current key is known to ADV can regain
security and compute a new key unknown to ADV, if it obtains at least one
“infusion” of secure randomness from a peer sensor whose randomness is not
currently compromised. Each sensor shares a secret key K1

i with the sink in the
first round 1. ADV breaks into k = |Rr| sensors and reads all keys. At any time,
we identify three sets of sensors:

– Red sensors (Rr) are currently occupied by ADV in round r.
– Yellow sensors (Y r) are those that have been compromised in some round
r′ < r, and their current keys are known to ADV in round r.

– Green sensors (Gr) are those that have either never been compromised, or
which have regained their security by round r.

The main point of the POSH scheme is for sensors, at each round, to provide
each other with contributions derived from their PRNG-s. Each sensor, hav-
ing received some such contributions, uses them together with its prior keys to
compute a key for the next round. Specifically, each sensor produces a certain
number of contributions and recipient IDs using its PRNG, and sends each value
to them. In more detail, to update its key at the end of round r, si computes:

Kr+1
i = H(Kr

i ||cri1 ||...||criσ
), r ≥ 1, (1)

where σ is the number of received contributions, and cri�
is the �-th contribu-

tion received during current round. This key evolution holds both forward and
backward security. Note that all contributions generated by red and yellow sen-
sors are known to ADV. On the other hand, contributions by green sensors are
unknown to ADV. Thus, if a yellow sensor receives a single contribution from a
green sensor, ADV cannot learn the former’s next key. Note that a green sensor
cannot become a yellow sensor directly. The state transition diagram of a single
sensor is shown in Fig. 1.
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4.2 Boundary of Security Evaluation in POSH

To evaluate the healing rate of secret key for data encryption, the POSH scheme
analyzes the number of green sensors in any round. The secret key Kr

i is used as
a secure link between a sensor si and the sink at round r since the sink knows
all the secret keys of sensors. However, we cannot directly achieve the secure
link between sensors by the POSH scheme, since the security of a link between
sensors is not considered in the POSH scheme.

5 The Proposed Scheme

In this section we propose the POLISH (Proactive co-Operative LInk Self-
Healing) scheme. The primary aim of our scheme is to decrease the compromised
ratio of links against node-capture attacks without help of a server, that is, links
compromised in WSNs automatically self-heal with time. Our scheme updates a
link using the random data transmitted from the neighboring sensors, based on
the idea of the POSH scheme. Although our protocol is very simple like POSH,
more importantly, our security evaluation is not achieved easily, i.e., it is neces-
sary to newly take the security of a link between sensors into consideration in
our scheme since such security is not considered in the POSH scheme.

A link self-heals in two steps: first two neighboring sensors are self-healed, and
then the link between these sensors is self-healed. A major difference between
POSH and POLISH is the security analysis of a link. While the POSH scheme
in a sense treats the secure link between a sensor and a powerful sink, the
POLISH scheme treats the secure link between sensors. In addition, our scheme
uses a bivariate t-degree polynomial, and thus an attacker has to capture (t+ 1)
polynomial shares during a limited period of time (i.e., at round 1) in order to
corrupt a link.

ADV breaks into k = |Rr| sensors to read the pairwise symmetric keys and
secret seeds of PRNG in Rr, and to monitor all the communication of Rr. At
any time, we identify three sets of sensors (refer to Section 4) and two sets of
links, as follows:

– Red links (RLr) are those that have been compromised in some round r′ < r
and the pairwise symmetric key of the link is known to ADV in round r.

– Green links (GLr) are those that have either never been compromised or
regained their security in round r.

Note that, in our scheme, a red sensor si at round r means that ADV knows
a seed Sr

i . If si becomes red in round r′ and is self-healed at the end of round
r > r′, then ADV can compute the contributions of si from round r′ to r.

5.1 The Protocol

Setup. To predistribute pairwise keys, the setup server randomly generates a
bivariate t-degree polynomial f(x, y) over a finite field Fq, such that it has the
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property of f(x, y) = f(y, x). For each sensor si, the setup server computes a
polynomial share of f(x, y), that is, f(x, IDi). Each sensor can use a secure hash
function, a polynomial and a PRNG with a unique secret seed. Note that the
secure degree t of polynomial is dependent on the number of adversary at each
round. For instance, if we set t ≥ 10 as the secure degree of polynomial when we
assume k = 10, then ADV cannot recover f(x, y).

Key Establishment. For any two sensors si and sj , the sensor si can compute
the key f(IDj, IDi) by evaluating f(x, IDi), and the sensor sj can compute
the same key f(IDi, IDj) = f(IDj, IDi) by evaluating f(x, IDj). As a result,
sensors si and sj can establish a pairwise symmetric key K1

i,j = f(IDi, IDj) in
the first round (round 1). After key establishment, si deletes all the coefficients
of a polynomial.

Key and Seed Update. The neighboring sensors si and sj have a pairwise
symmetric key K1

i,j (secure link) when they are deployed at the beginning of the
first round (round 1). At the beginning of round r, si produces m pseudo-random
values (contributions) using its PRNG for m neighboring sensors, and sends them
to the neighboring sensors using a secure link. Note that all the contributions
that si sends are different. Then, each sensor receives contributions from the
neighboring sensors during round r. The recipient uses two contributions as
inputs to the secure hash function used for key update. To update the secure
link at the end of round r, si computes:

Kr+1
i,j = H(Kr

i,j ||criη
||crjλ

), (2)

where criη
is the η-th contribution that si received at round r and crjλ

is the λ-th
contribution that sj received at round r. Both si and sj delete Kr

i,j after key
updating.

Furthermore, each sensor updates a seed of PRNG using m contributions,
which are all contributions received by the neighboring sensors. To update the
seed Sr

i at the end of round r, si computes2:

Sr+1
i = H(Sr

i ||cri1 || · · · ||crim
) (3)

After seed updating, si deletes Sr
i . A seed is updated in every round, and then

m contributions are generated by PRNG with such new seed.

Remark. In the POSH scheme, each sensor receives contributions from sensors
which are randomly chosen in WSNs. On the other hand, in our scheme, each
sensor receives contributions from neighboring sensors. The probability that a
contribution will be intercepted on the way by ADV may become high in the
POSH scheme, since a contribution can be sent from a sensor which is far from
the recipient.

5.2 The Link State

A link self-heals in two steps: first two neighboring sensors are self-healed, and
then the link between them is self-healed. A sensor state follows the transition
2 The update of a PRNG seed is similar to [9].
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Fig. 2. Link state transition diagram

diagram in Fig. 1. According to the state of a sensor we can generate the seven
kinds of link states as described in Fig. 2 (i.e., GLr = {G(G)G} and RLr =
{G(R)G, G(R)Y, Y(R)Y, Y(R)R, G(R)R, R(R)R}). A link state is constituted
by a pair of sensors and their common link. For example, G(R)Y means that
two neighboring sensors of green and yellow are connected by the red link. The
conditions of transition are as follows:

1. Double-compromised condition means that both of two neighboring sensors
are compromised.

2. Single-compromised condition means that either of two neighboring sensors
is compromised.

3. None-compromised condition means that neither of two neighboring sensors
is compromised.

4. Single-contributed condition means that either of two neighboring sensors
receives at least one “secure contribution”.

5. Double-contributed condition means that both of two neighboring sensors
receive at least one secure contribution.

Note that the secure contribution is a green contribution which is not intercepted
by ADV.

A red link remains red if a red sensor is within the wireless communication
range of both of two sensors which constitute the red link. On the other hand,
a green link remains green as long as both of two sensors which constitute the
green link are green. We notice that even if two sensors are green, the link be-
tween them can be also red (i.e., G(R)G). A green link (G(G)G) can be changed
from two states G(R)G and G(R)Y when single-contributed. G(R)G becomes
G(G)G when one of two neighboring sensors receives a secure contribution from
the other. G(R)Y becomes G(G)G when the yellow sensor Y receives a secure
contribution from this green sensor G. G(R)Y becomes G(G)G when Y receives
at least one secure contribution from other green sensors except this G.
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rary attackers

6 Analysis

6.1 Evaluation by Simulation

We evaluate the ratio of red links against continuous attackers to show the
resiliency of our scheme, and we also evaluate the ratio of red links against
temporary attackers to show the self-healing capabilities of our scheme. For
ease of exposition and without loss of generality, we assume that the time slots
(rounds) when sensors are compromised have the same duration and are syn-
chronized.

Simulation Setup. The simulations are implemented in C on Windows XP
SP3. All the simulations are repeated 1,000 times, and the results show the
average values. To simplify the security analysis, we modeled the network as
a grid of sensors of size n = 400 (20 × 20). We assume that the number of
neighbors of each sensor is constant and equal to four (m=4). We can imagine
a torus structure. Thus, the number of all links in WSN becomes 800. We also
assume that the network topology does not change over time. The number k of
ADV is 5, 10, 50 and 100 in every round.

Simulation Details. We evaluate the security of our scheme by the number of
red links when ADV can compromise k sensors from the set Gr in any round. At
the first round (round 1), n green sensors are deployed. We consider two different
types of attackers: continuous attackers and temporary attackers. A continuous
attacker keeps compromising sensors at constant rate from the deployment of the
first round of sensors to the end of the network. In contrast, temporary attacker
compromises sensors during a limited period of time, from round 5 to round 14
in our simulations. We then counted, in each round, the number of red links and
computed the ratio. With the continuous attacker, we ran the simulation until:
(1) the WSN has no more green sensors or (2) |Rr| reaches a steady state.
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Simulation Results. This section presents the results of our simulations for
the different types of attackers. Fig. 3 displays the ratio of red links against
continuous attackers. The ratio of red links reaches 100% when k ≥ 62. For
example, the ratio of red links is suppressed to 5.1% with k = 5, 10% with
k = 10, 52% with k = 50 and 100% with k = 100, depicted in Fig. 3. The results
for the temporary attacker are collected in Fig. 4. The action interval of the
attacker (from generation 5 to generation 14) is denoted with the label “Adv.
activity”. We simulate a network with the same settings as the network used for
the continuous attacker. Fig. 4 illustrates the self-healing property of our scheme
as soon as ADV stops its activity, and the ratio of the red links starts decreasing
at once. A link self-heals in only about three rounds. Note that once the ratio
of red links becomes 1, the ratio remains 1 even when ADV stops its activity.

6.2 Analytical Model

Unlike the POSH scheme, a sensor in our scheme receives contributions from
neighboring sensors, that is, a sensor receives m contributions. Note that the
state transition of a sensor is the same as in the POSH scheme. In our scheme,
it is necessary to consider the contributions from two-hop neighboring sensors.
The contributions from neighboring sensors may be eavesdropped on by two-
hop neighboring sensors. In this case, a green sensor is not self-healed even if
it gets a contribution from a green sensor (refer to an example in Appendix
??). Let (1 − (1 − pRr)m−1) be the probability that at least one sensor of two-
hop neighboring sensors is red, that is, the probability that a green sensor’s
contribution is eavesdropped on by ADV (i.e., red sensor) which is within the
wireless communication range of the green sensor. To become a green sensor
(from yellow), the yellow sensor needs to be linked with at least one green sensor
among neighboring sensors, and also a red sensor must not be within the wireless
communication range of that green sensor. Thus, the probability of a yellow
sensor not becoming green can be expressed as follows:

Pr′ =
m∑

i=0

(
m
i

)
pi

Gr(1− pGr)m−i(1− (1− pRr )m−1)i, (4)

where pGr = |Gr|
n−1 , pY r = |Y r |

n−1 and pRr = |Rr|
n−1 . The expected number of green

sensors at round r is the same as in the POSH scheme, as follows3:

E[|Gr+1|] = |Gr|+ (1− Pr′)|Y r| − |Rr| (5)

To evaluate the link-healing rate of our scheme, we analyze the number of green
links by evaluating the state of sensors in any round, i.e., the number of G(G)G in
Fig. 5. The partial state transition diagram of a link is shown in Fig. 5, in which
only the transition required to analyze the number of green links is depicted.

3 Since we assume that ADV corrupts only the green sensor (i.e., INF-ADV in [8]),
we can use not inequality but an equation.
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Fig. 5. Partial link state transition diagram

That is, we consider only the input and the output of G(G)G and G(R)G. Let
α1, α2, β, γ1, γ2 and γ3 be the number of link state transition (use not probability
but a number.) and let RLr

G(R)G ⊂ RLr be a set of the link state G(R)G. This
figure shows that the expected number of green links in round r is:

E[|GLr+1|] = |GLr|+ α1 + α2 − β, (6)

where α1 = (1 − (1 − (1 − pRr )m−1)2)|RLr
G(R)G|, α2 = (1 − Pr′)|Y r|pα2 and

β = |Rr|pβ. α1 is the number of green links between two green sensors changed
from RLr

G(R)G. This transition occurs if neither of the green sensors is linked
with a red sensor. Let pα2 be the probability that a sensor needs to be linked with
at least one green sensor of the neighboring sensors, and also that a red sensor
must not be within the wireless communication range of that green sensor. α2

is the number of green links between two green sensors, changed from red links
between a green sensor and a yellow sensor. Let pβ be the probability that at
least one green sensor in GLr is corrupted. Hence, β is the number of red links
between two red sensors, or between a yellow sensor and a red sensor changed
from GLr, since ADV corrupts only the green sensors and the number of ADV
is |Rr| in any round.

The number of red links between two green sensors is estimated in Fig. 5 as
follows:

E[|RLr+1
G(R)G|] = |RLr

G(R)G| − α1 + γ1 + γ2 − γ3, (7)

where γ1 = (1 − Pr′)|Y r|pγ1 , γ2 = (1 − Pr′)|Y r|pγ2 and γ3 = |Rr|pγ3 . Let pγ1

be the probability that a sensor is linked with a green sensor, and also that a
red sensor must not be within the wireless communication range of that green
sensor. Let pγ2 be the probability that a sensor is linked with a yellow sensor
which becomes green. Moreover, let pγ3 be the probability that at least one green
sensor in RLr

G(R)G is corrupted.
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Fig. 6. Comparison of the analytical results and simulation results against continuous
attackers

Let μ be the ratio of |GLr| in a set of two neighboring green sensors which
are linked each other, i.e., μ = |GLr|

|GLr|+|RLr
G(R)G|

. We show the probability of pα2 ,

pβ, pγ1 , pγ2 and pγ3 as follows:

pα2 =
m∑

i=0

(
m
i

)
(pGr(1 − pRr)m−1)i(1− pGr(1− pRr )m−1)m−ii

pβ =
m∑

i=0

(
m
i

)
(pGrμ)i(1 − pGrμ)m−ii

pγ1 =
m∑

i=0

(
m
i

)
(pGr(1 − (1− pRr )m−1))i(1− pGr(1− (1− pRr )m−1))m−ii

pγ2 =
m∑

i=0

(
m
i

)
((1 − Pr′)pY r )i(1 − (1− Pr′)pY r )m−ii

pγ3 =
m∑

i=0

(
m
i

)
(pGr(1 − μ))i(1− pGr(1 − μ))m−ii

Fig. 6 shows a comparison of the analytical results and the simulation results.
Note that the simulation results are the same as in Fig. 3. We found that our
analytical results well matched the simulation results of our scheme.

6.3 Secure Connectivity

Our scheme has an advantage that the probability of establishing a secure link is
100%, since a sensor si has a polynomial f(x, IDi) and also shares the pairwise
symmetric key Kr

i,j = f(IDj , IDi) with sj in the first round (round 1). After
that the pairwise symmetric key of each link is updated, and hence the secure
connectivity is 100% at every round.
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Fig. 8. Comparison of the simulation re-
sults against continuous attackers (k = 5)

6.4 Efficiency of POLISH

We discuss computational cost, communication cost and the size of memory
in the POLISH scheme. Let R and H be the PRNG and hashing operations,
respectively, and also let |q| be the size of the contribution, ID, the output of
hashing and the coefficient of a polynomial. The computational cost of each
sensor in a round is mR + (m + 1)H . Note that it is required for si to assign
the value of IDj to a polynomial f(x, IDi) to share the pairwise symmetric key
only in the first round (round 1). The communication cost of each sensor in a
round is 2m|q| which includes the contributions of transmission and reception.
Note that si needs to obtain IDs from m neighboring sensors in round 1. In order
to setup data of a sensor at the first round, si requires a seed, the ID and the
coefficient of a polynomial, i.e., the size of memory on a sensor requires (t+3)|q|
in total. After key establishment, si deletes all the coefficients of a polynomial,
but m pairwise symmetric keys whose sizes are m|q| are generated. Thus, the
amount of memory on a sensor can save (t + 1−m)|q|. This means that si can
keep the contributions of transmission and reception if (t+ 1) ≥ 3m. Therefore,
our scheme is efficient and is suitable for WSNs which constitute sensors with
both limited memory and limited computational power.

7 Comparison

The POLISH scheme is the first proactive co-operative link self-healing scheme,
without the help of a server. On the other hand, the previous link self-healing
schemes need server’s help, called resilient multi-phase WSNs. A multiphase
WSN is a network where a sensor is redeployed with server’s help when its battery
is depleted. Although multiphase WSNs and our scheme are quite different in
that the help of a server is necessary, we dare to compare our scheme with
the previous scheme. We especially compare the RoK scheme with our scheme
regarding security (the ratio of sick links) and efficiency since the RoK scheme
is efficient and representative in multiphase WSNs.



266 T. Iida, A. Miyaji, and K. Omote

7.1 Security

We compare the resiliency of our scheme with that of the RoK scheme by simu-
lation experiments. For a fair comparison, the same size of memory is assumed
between both schemes. When the length of key ring is 250 (i.e., ω = 250), the
total number of keys in the RoK scheme is just 500 which is the same parameters
as [2]. When each size of key is 160 bits (|q| = 160 bits), at least 10kB memory
is required in the RoK scheme. In our scheme, (t + 1 − m)|q| bits memory is
required as described in Section 6.4, more concretely, 20(t− 3) bytes memory is
necessary when we follow the same simulation parameters as Section 6.1. We set
t = 497 as the degree of polynomial from the standpoint of fairness. Actually,
we can set t = 5 as the secure degree of polynomial when k = 5. In this case
ADV cannot recover the polynomial.

We evaluate the ratio of red links against continuous attackers. A red link
implies the compromised link in the RoK scheme. The network topology of both
simulation is the same, in which a grid of sensors of size n = 400 and a sensor
does not move over time. Fig. 7 and Fig. 8 are the comparisons of the simulation
results between the RoK scheme and our scheme when the number of ADV
is 1 and 5, respectively. In the RoK scheme, we simulate sensors expiration
by assigning to each sensor a random expiration date, chosen according to a
Gaussian distribution with mean μ = 50.0 rounds and with standard deviation
σ = 16.7 whose parameters are the same as [2], and also with μ = 10.0 and with
σ = 3.33. When the sensor expiration becomes short in the RoK scheme, the
ratio of red links also decreases as described in Fig. 7 and Fig. 8. However, it is
difficult to lower the ratio of red links substantially since this is contrary to the
battery extension of sensor life which the WSNs aim at.
Remark. In [2] the compromised ratio (i.e., the ratio of red links) is evaluated
as a probability that a link is “indirectly” compromised by ADV. On the other
hand, we evaluate all the number of red links in both schemes in this simulation.
Since we re-evaluate the RoK scheme by the total red links, the ratio of red links
of the RoK scheme in Fig. 7 and Fig. 8 becomes a little higher than the original
results.

7.2 Efficiency of Key Update

Both the RoK scheme and our scheme update keys and key materials at every
round. We think that it is important to especially reduce the size of memory
since the amount of computations and communications is not so frequent (i.e.,
they are executed at the beginning of each round). While the key materials are
updated only by each sensor in the RoK scheme, keys and key materials are
updated by cooperation of the neighboring sensors in our scheme. Hence more
communications are required in our scheme but more memory is required in the
RoK scheme.

Since most links are compromised in the RoK scheme when k = 5 as described
in Fig. 8, we consider k ≤ 5 as the number of ADVs. We thus set t = 5 in
order that at most five ADVs cannot recover the polynomial of our scheme.
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Furthermore, we set m = 4, |q| = 160 bits and ω = 250. The computational cost,
the communication cost and the size of memory in our scheme are mR+(m+1)H ,
(t + 1 − m)|q| and 2m|q|, respectively, by Section 6.4. On the other hand, the
computational cost and the size of memory in the RoK scheme are 2H and
2w|q|, respectively, and then the communication cost is not necessary for the
update of key materials. As a result, although a little computation and a little
communication are required in our scheme, the size of memory is much lower
than the RoK scheme.

8 Conclusion

We have proposed the POLISH scheme, in which together with key evolution, our
scheme provides both forward and backward security of a link in the presence of
an adversary. Both analytical and simulation results show that our scheme is very
effective. Our simulation shows that POLISH based network that is continuously
attacked is resilient when k < 62 (n = 400 and m = 4). Our simulation also
shows that a network that is temporarily attacked automatically self-heals in
only about three rounds. Furthermore, we found that our analytical results well
matched the simulation results of our scheme.
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Abstract. This paper introduces an asynchronous crash-prone hybrid system
model. The system is hybrid in the way the processes can communicate. On the
one side, a process can send messages to any other process. On another side,
the processes are partitioned into clusters and each cluster has its own read/write
shared memory. In addition to the model, a main contribution of the paper con-
cerns the implementation of an atomic register in this system model. More pre-
cisely, a new failure detector (denoted MΣ) is introduced and it is shown that,
when considering the information on failures needed to implement a register, this
failure detector is the weakest. To that end, the paper presents an MΣ-based al-
gorithm that builds a register in the considered hybrid system model and shows
that it is possible to extract MΣ from any failure detector-based algorithm that
implements a register in this model. The paper also (a) shows that MΣ is strictly
weaker than Σ (which is the weakest failure detector to implement a register in
a classical message-passing system) and (b) presents a necessary and sufficient
condition to implement MΣ in a hybrid communication system.

Keywords: Asynchronous message-passing system, Atomic register, Distributed
algorithm, Failure detector, Fault-tolerance, Hybrid communication, Necessity
proof, Process crash, Shared memory system, Weakest failure detector.

1 Introduction

1.1 Atomic Register

Among the objects that allow concurrent processes to exchange information and coop-
erate to a common goal, the atomic register is certainly the most fundamental. Such an
object (let us denote it REG) provides the processes with two operations REG.read()
and REG.write(v). The read operation provides the invoking process with the value of
the object, while the write operation associates a new value v with the object.

Atomicity [9,11] means that the (possibly concurrent) read and write operations is-
sued on a register appear as if they have been executed sequentially, and this “witness
sequence” is (1) legal (a read returns the value written by the closest write that precedes
it in this sequence) and (2) respects the real time occurrence order on the operations (if
the operation op1 terminates before an operation op2 starts, op1 appears before op2 in
the witness sequence). Let us observe that concurrent operations can be ordered in any
way as long as the legality property stated in item (1) is satisfied.
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1.2 Building an Atomic Register in a Message-Passing System

Simulating a register in an asynchronous system. In an asynchronous message-passing
system, the processes communicate by sending and receiving message through channels
and there are assumptions neither on the speed of processes nor on message transmis-
sion delays.

If the system is reliable, it is easy to build an atomic register on top of an asyn-
chronous message-passing system. This is no longer the case if processes can crash.
Let n be the number of processes that compose the system and t be a model parameter
that defines an upper bound on the number of processes that may crash. Algorithms that
build an atomic register object despite asynchrony and up to t < n/2 process crashes
are described in [1].

An important result is proved in [1], namely, there is no algorithm implementing an
atomic register in asynchronous message-passing systems where t ≥ n/2. The intuition
that underlies this impossibility is that, due to asynchrony and the fact that t ≥ n/2,
the system can appear as being partitioned, in such a way that each partition considers
that the processes in the other partition have crashed (while they actually have not). The
reader interested by a pedagogical introduction to these issues will consult [2,12,13].

The failure detector approach to circumvent the “t ≥ n/2” impossibility The failure
detector approach [4,5] has been introduced to circumvent impossibility results. It con-
sists in enriching each process of an unreliable asynchronous system with an additional
device (sometimes called “oracle”) that provides it with hints on process failures. Ac-
cording to the type and the quality of these hints, several classes of failure detectors can
be defined.

The class of quorum failure detectors, denoted Σ, has been introduced by Delporte-
Gallet, Fauconnier and Guerraoui in [6]. (A quorum is a set of processes. Quorums
have first been introduced by Gifford [7].) It is shown in [3,6] that Σ is the weakest
class of failure detectors that allow building an atomic register object in asynchronous
message passing systems despite any number of process crashes (i.e., in systems where
t = n− 1). “Weakest” means that Σ captures the minimal information on failures that
has to be known by the processes in order to implement a register. The definition of Σ
is given below. It is important to notice that, due to the results of [1] and [6], it follows
that Σ cannot be implemented in asynchronous message-passing systems despite any
number of crashes.

1.3 Content of the Paper

Towards new system models. The advent of multicore architectures where processors
share a common memory and the design of clusters (where, for example, each cluster is
a multicore system) communicating by message-passing opens the door for the design
of new computing models where processes communicate both by shared memory (intra-
cluster communication) and message passing (point-to-point communication).

Context and content of the paper. This paper is on the construction of atomic registers
in hybrid models (such as the one previously described). It has several contributions.
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– The paper first introduces a simple asynchronous crash-prone model which captures
the previous intra-cluster and point-to-point communication types (the meaning of
m will be defined later). This system model is denoted SM MPn,m[∅].

– The paper then introduces a new failure detector, denoted MΣ, and
• Presents and proves correct an algorithm that builds an atomic register in the

system model SM MPn,m[MΣ] (SM MPn,m[∅] enriched with MΣ),
• Shows that MΣ is the weakest information on failures SM MPn,m[∅] has to

be enriched with in order an atomic register can be implemented.
– The paper finally shows that MΣ is strictly weaker than Σ. It also presents a neces-

sary and sufficient condition to implementMΣ in a hybrid communication system.

Roadmap. The paper is made up of 7 sections. Section 2 presents the computation model
SM MPn,m[∅]. The new failure detector class MΣ is introduced in Section 3. Then,
Section 4 presents an algorithm that builds an atomic register in SM MPn,m[MΣ] and
Section 5 shows thatMΣ is optimal. Section 6 presents a necessary and sufficient condi-
tion to implementMΣ in a hybrid communication system. Finally, Section 7 concludes
the paper.

2 A Hybrid Communication System Model

2.1 System Model with Hybrid Communication

Process model. The system comprises n processes denoted p1, . . . , pn. Each process
pi is asynchronous (i.e., it proceeds to an arbitrary speed) and sequential (it executes
one step -base action- at a time). Π = {1, . . . , n} is the set of process identities.

A process can crash. A crash is a premature halt (after it has crashed, if it ever does,
a process issues no more step). Let t be the upper bound on the number of processes
that are allowed to crash. We assume here t = n − 1 (this is sometimes the wait-free
process model).

Progress condition. In the following we are interested in a system model whose algo-
rithms satisfy the wait-freedom progress condition [8]. When considering an algorithm
implementing an atomic register REG , this means that a process that does not crash
must return from all its invocations of the operations REG.read() and REG.write().

Message-passing communication Processes can send and receive messages through re-
liable channels. It is assumed that any pair of processes is connected by a bidirectional
channel. Channels are reliable but asynchronous. Reliable means that messages are nei-
ther corrupted, nor duplicated nor lost. Asynchronous means that, albeit finite, message
transfer delays are arbitrary.

The sending and the reception of a message are atomic steps. The processes can
also use a broadcast operation, but this operation is not atomic (if a process crashes dur-
ing a broadcast, an arbitrary subset of the processes receive the corresponding
message).
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Partially shared memory communication. The n processes are partitioned into m, 1 ≤
m ≤ n, non-empty subsets P [1], . . . , P [m] called clusters (i.e., ∪1≤x≤mP [x] = Π and
∀x, y : (x �= y) ⇒ (P [x] ∩ P [y] = ∅)).

Inside each cluster x, 1 ≤ x ≤ m, the processes in P [x] share a common read/write
memory denoted MEMx . MEMx is composed of a set of atomic 1WMR (single-
writer/multi-reader) registers (this assumption is without loss of generality as multi-
writer/multi-reader atomic registers can be built on top single-writer/multi-reader atomic
registers [2,11,12]). For notational convenience, we use an index/array notation for ev-
ery register of MEMx : if i ∈ P [x], MEM x[i] can be written only by pi and read by all
processes in P [x] (if i /∈ P [x], MEM x[i] is meaningless and pi cannot access MEM x).

Two examples of partially shared memory are depicted in Figure 1 where the com-
munication channels are not depicted. In both cases, we have n = 7 and m = 3 but the
partitions are different.

p2 p3 p4 p5 p6 p7p1 p1 p2 p3 p4 p5 p6 p7

︸︷︷︸ ︸︷︷︸ P [3]P [2]P [1] ︸︷︷︸ P [2] P [3] ︸︷︷︸P [1]︸︷︷︸ ︸︷︷︸

MEM 1 MEM 3MEM 2 MEM 3MEM 2MEM 1

Fig. 1. Two examples of partially shared memories

Notation. As already indicated in the introduction, SM MPn,m[∅] is used to denote
the previous base wait-free hybrid distributed computing model. In the following ∅ will
be replaced by a failure detector to denote the corresponding enriched model. In Figure
1 we have two instances of SM MP7,3[∅].

Two particular cases. The two extreme cases m = 1 and m = n are particularly
interesting. The case m = 1 corresponds to the case where all processes share a
common read/write memory. In that case, as the read/write communication model is
stronger than the message-passing model, message-passing communication becomes
useless and, consequently, SM MPn,1[∅] is the classical shared memory model.

When m = n, there is a single process in each partition and for each x, 1 ≤ x ≤ n,
MEM x boils down to the local memory of a single process. Hence, SM MPn,n[∅] is
the classical send/receive message-passing model.

2.2 An Atomic Register Cannot Be Built in SM MPn,m[∅] when m > 1

Theorem 1. 1 < m ≤ n. It is impossible to build an atomic register in SM MPn,m[∅].

Proof. The proof is a simple reduction to the impossibility theorem stating that there
is no wait-free implementation of a register in an asynchronous send/receive message-
passing system [1,2,13].
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To that end, let us assume that there is an algorithm A that builds a register in
SM MPn,m[∅] and consider its executions in SM MPn,m[∅] where, in each parti-
tion, all processes but one crash before taking any step. As A is wait-free, it follows
that the m > 1 remaining processes implement an atomic register in the system model
SM MPm,m[∅], i.e., in a pure message-passing system model. This contradicts the ex-
istence of algorithm A and concludes the proof. �Theorem 1

3 A New Failure Detector Class

3.1 Failure Pattern and Failure Detector

The underlying time model is the set N of natural integers. This time notion is not
accessible to the processes. It can only be used from an external observer point of view
to state or prove properties. Time instants are denoted τ , τ ′, etc.

Formal definitions. The notions introduced here are from [5].
A failure pattern is a function F () such that F (τ) denotes the set of processes that

have crashed by time τ . As crashes are stable, we have ∀ τ : F (τ) ⊆ F (τ + 1). Given a
run, let F be the set of processes that crash in that run (these are the faulty processes)
and C the set of processes that do not crash (these are the correct processes). We have
F = ∪τF (τ) and C = Π \ F .

A failure detector history H with range R is a function from Π × N to R whose
meaning can be interpreted as follows: H(i, τ) is the output of the considered failure
detector at process pi at time τ .

A failure detector (FD) D with rangeR is a function that maps each failure pattern
F () to a non-empty set of failure detector histories with range R. D(F ) is the set of
behaviors (possible failure detector histories) thatD can exhibit when the failure pattern
is F .

On the operational side. From an algorithm point of view, a failure detector can be
seen as a distributed device that provides each process pi with a read-only local variable
whose value at time τ is H(i, τ).

3.2 The Failure Detector Class Σ

As already indicated, this failure detector class [6] is the class of the weakest fail-
ure detectors that allow an atomic register to be implemented in the base send/receive
message-passing system model. Using the formalism introduced in Section 2, this means
that SM MPn,n[Σ] is the weakest failure detector-based system model in which an
atomic register can be built.

The range of Σ is the set of all non-empty subsets of processes (2Π \ ∅). Let Σi be
the read-only local variable provided to pi by Σ. Such a local output is called a quorum.
This failure detector class is defined by the two following properties where Στ

i denotes
the value of Σi at time τ , i.e., Στ

i = H(i, τ).
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– Intersection. ∀ i, j ∈ Π, ∀ τ, τ ′ : Στ
i ∩Στ ′

j �= ∅.
– Liveness. ∃ τ : ∀ τ ′ ≥ τ : ∀ i ∈ C : Στ

i ⊆ C.

The intersection property states that any two quorums taken at any times intersect. This
property prevents partitioning and is used to maintain the consistency of the atomic
register. The liveness property states that eventually a quorum contains only correct
processes. This property is used to allow a process to stop waiting for messages from
crashed processes. Because any two majorities always intersect, it is easy to see that Σ
can be easily implemented in a message-passing system in which a majority of process
never crashes.

3.3 The Failure Detector Class MΣ

Definition. This failure detector class is for the system model SM MPn,m[Σ]. It con-
sists of all the failure detectors that satisfy the following properties where the quorum
MΣi is the local output at process pi and MΣτ

i its value at time τ .

– Intersection. ∀ i, j ∈ Π, ∀ τ, τ ′ :
∃x, k, � : (x ∈ [1..m]) ∧ (k ∈MΣτ

i ) ∧ (� ∈MΣτ ′
j ) ∧ (k, � ∈ P [x]).

– Liveness. ∃ τ : ∀ τ ′ ≥ τ : ∀ i ∈ C : MΣτ
i ⊆ C.

The liveness property is the same as the one of Σ. The intersection property is more
general. It states that any pair of quorums (whose values are taken at any times) is
such that each one contains a process and these two, processes share the same common
memory. This can be seen as an “indirect” intersection:MΣi andMΣj are not required
to intersect “directly” but must include processes that share the same memory.

Particular cases. Let us first consider the case m = 1 (the model is then the classical
base read/write shared memory model). In that case, there is a single shared memory
(MEM 1) and taking always MΣi = {i} for each pi, both properties are always sat-
isfied. Hence, there is a trivial implementation of MΣ in SM MPn,1[∅] which means
that MΣ adds no computational power when m = 1. This is in perfect agreement
with the fact that SM MPn,1[∅] is the base read/write shared memory model in which
atomic register are given for free.

Let us now consider the case m = n (the model is then the classical send/receive
message-passing model). In that case, there is a single process per cluster x (e.g., P [x]
contains only px). It follows that, for the intersection property to be true, we need to
have ∀ i, j ∈ Π, ∀ τ, τ ′ : ∃k : (k ∈MΣτ

i )∧(k ∈MΣτ ′
j ), i.e., ∀ i, j, ∀ τ, τ ′ : MΣτ

i ∩
MΣτ ′

j �= ∅. Hence, when considering m = n, MΣ boils down to Σ, which means that
SM MPn,n[MΣ] and SM MPn,n[Σ] define the same computational model.

4 MΣ is Sufficient: Building an Atomic Register in
SM MPn,m[MΣ]

This section presents and proves correct an algorithm that builds an 1WMR atomic
register in SM MPn,m[MΣ]. The writer is denoted pw. The atomic register that is
constructed is denoted REG .
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The algorithm, described in Figure 2, is a simple adaptation to the hybrid model of
the algorithm described in [1] that builds an atomic register in a message-passing system
where a majority of processes are correct. As already indicated, while the operation send
is atomic, the operation broadcast is not.

This algorithm is not designed with efficiency in mind. Its aim is only to show that an
atomic register can be built in SM MPn,m[MΣ], and consequently show that MΣ is
sufficient. (Let us remember that, when m = 1, the underlying message-passing system
can be easily simulated on top of the shared memory.)

The variables implementing the atomic register REG . Let pi be a process and x its
cluster (i.e., i ∈ P [x]). Process pi stores its “local copy” of REG in MEM x[i]. More
precisely, this base register has two fields MEM x[i].val (which stores the last value of
REG know by pi) and MEM x[i].sn (which stores the corresponding sequence num-
ber).

The variables in italics with subscript s are variables that are local to process ps.
These local variables are used to generate local sequence numbers.

The operation REG.write(v). This operation (which can be issued only by pw) first
associates a new sequence number (snw) with its current invocation (line 01). Then, it
sends the message WRITE(v, snw) to all the processes to inform them on the new write
(line 02). When, MΣw is such that pw has received a matching acknowledgment from
each of its processes, the operation returns ok and terminates (lines 02-04).

Let pi be a process such that i ∈ P [x]. When pi (pi can be pw) receives a message
WRITE(v, seqnb) from a process pj it updates MEM x[i] if this message carries a more
recent write (line 12). Moreover, pi always sends by return an acknowledgment carrying
seqnb (line 13) to inform pj that its “local copy” of REG has now a sequence number
which is ≥ seqnb.

The operation REG.read(). This operation proceeds in two phases. In the first phase
(lines 05-08), pi broadcasts a message READ(r sni) where r sni is used to identify all
its read invocations (lines 05-06) and waits until MΣi contains only processes from
which pi has received a matching acknowledgment (line 07).

When a process pk receives such a message READ(r sn) from a process pj , it com-
putes the most recent value of REG stored in the cluster shared memory MEM x, i.e.,
such that k ∈ P [x] (lines 14-15) and sends back to pj this most recent value (line 16).

Finally, pi determines the most recent value of REG it has received from the pro-
cesses in MΣi (line 08). That value will be returned by the read operation (line 11),
but before, pi has to execute the second phase (lines 08-10) whose aim is ensure that no
overwritten value is ever returned by a read operation. To that end, pi simulates a write
of the value it is about to return.

Theorem 2. Let 1 ≤ m ≤ n. The algorithm described in Figure 2 is wait-free con-
struction of a 1WMR atomic register in SM MPn,m[MΣ].

Due to page limitation, the proof can be found in [10].
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operation REG .write(v): % This code is only for the single writer pw %
(01) snw ← snw + 1;
(02) broadcast WRITE(v, snw);
(03) wait until

(
MΣw is such that ∀ j ∈ MΣw: pw has received ACK(snw) from pj

)
;

(04) return(ok).
———————————————————————————————————
% The code snippets that follow are for every process pi, 1 ≤ i ≤ n %
% Moreover, the value x denotes pi’s partition number i.e., x is such that i ∈ P [x] %

operation REG .read():
(05) r sni ← r sni + 1;
(06) broadcast READ(r sni);
(07) wait until

(
MΣi is such that ∀ j ∈ MΣi: pi has rec. VAL(v, sn, r sni) from pj

)
;

(08) 〈v, sn〉 ← (〈v, sn〉 | VAL(v, sn, r sni) rec. ∧ � sn′ > sn : VAL(−, sn′,−) rec.);
(09) broadcast WRITE(v, sn);
(10) wait until

(
MΣi is such that ∀ j ∈ MΣi: pi has received ACK(sn) from pj

)
;

(11) return(v).

Task T1: when WRITE(v, seqnb) is received from pj :
(12) if (MEMx [i].sn < seqnb) then MEMx [i] ← 〈v, seqnb〉 end if;
(13) send ACK(seqnb) to pj .

Task T2: when READ(r sn) is received from pj :
(14) mem ← {MEMx [k] such that k ∈ P [x]};
(15) 〈v, sn〉 ← (mem[k] | �� : mem[�].sn > mem[k].sn);
(16) send VAL(v, sn, r sn) to pj .

Fig. 2. Building an atomic 1WMR register SM MPn,m[MΣ]

5 MΣ is Necessary

5.1 MΣ is the Weakest FD for a Register in a Hybrid Communication Model

The previous section has shown that an atomic register can be built in SM MPn,m[MΣ],
thereby showing that enriching SM MPn,m[∅] with MΣ is sufficient (from an “infor-
mation on failures” point of view) when one wants to build an atomic register. This sec-
tion addresses the necessity side. It shows that any failure detectorD such that an atomic
register can be built in SM MPn,m[D] provides enough information on failures in order
MΣ can be built in SM MPn,m[D].

Let D be any failure detector such that there is an algorithm A that allows building
an atomic register in SM MPn,m[D]. The proof of the “necessity” part consists in
showing that it is possible to build a failure detector of the class MΣ from A executed
in SM MPn,m[D]. In the failure detector parlance, we say that it is possible to “extract”
Σ from A. In a very interesting way, the proposed extraction algorithm is the one we
have presented in [3,13] (forΣ) but its proof is different. Hence, the current paper shows
that the extraction algorithm introduced in [3] has a generic dimension with respect to
failure detectors.
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5.2 Bonnet-Raynal’s Extraction Algorithm

This section presents Bonnet-Raynal’s extraction algorithm introduced in [3] where
it is assumed that the underlying D-based algorithm A builds an atomic register in
SM MPn,m[D]. Albeit not new, this presentation is needed for completeness of the
minimality proof.

Arrays of atomic registers. Let Q be a non-empty set of processes, and REGQ[1..n]
an array of n atomic registers (initialized to [⊥, . . . ,⊥]), such that each atomic register
REGQ[x] is implemented by the n-process algorithm A executed only by |Q| threads,
each one associated with a process of Q.

A simple register-based algorithm. Let WRQ be the following register-based algorithm
(also called a task) where each process pi such that i ∈ Q executes the following
algorithm (where regi[1..n] is an array local to pi):

algorithm WRQ:
REGQ[i].write(�); for each x ∈ {1, ..., n} do regi[x] ← REGQ[x].read() end for.

The process pi first writes the value & in its entry of the array REGQ, and then reads
asynchronously all its entries. The REGQ[i].write(&) and REGQ[x].read() opera-
tions are provided to the processes by the previous algorithm A. (Let us notice that
the value obtained by a read is irrelevant. As we will see, what is important is the
fact that REGQ[x] has been written or not.) A corresponding run of WRQ is de-
noted EQ. In that run, no process outside Q sends or receives messages related to the
task WRQ.

Let us remember that C is the set of identities of the processes that are correct in the
considered run. Let us observe that, as the underlying failure detector-based algorithm
A that builds a register is correct, if the set Q contains all the correct processes (i.e.,
C ⊆ Q), EQ is such that every correct process terminates the task WRQ. In the other
cases, i.e., for the tasks WRQ such that ¬(C ⊆ Q), EQ is such that a process of Q either
terminates WRQ, or blocks forever, or crashes. (This depends on the actual failure
pattern, the outputs of the underlying failure detector D used by the algorithm A, and
the code of A. As an example, let us consider the task WRQ, and two correct processes
pi and pj such that i ∈ Q and j /∈ Q. Let thi,Q be the thread of pi involved in Q.
As j /∈ Q, the thread thj,Q does not exist. The thread thi,Q can block forever when it
executes A to read or write a register of REGQ[1..n] if, due to the output of D and the
code of A, it is directed to wait for a message from thj,Q -that does not exist-.1).

Running concurrently 2n − 1 tasks. The extraction algorithm considers the 2n − 1
distinct tasks WRQ where Q is a non-empty set of 2Π . To that end, each process pi

manages 2n−1 threads, one for each subset Q such that i ∈ Q. Let us notice that the
crash of a process pi entails the crash of all its threads.

1 A similar blocking can happen when the processes use an underlying Ω-based algorithm [4]
and, in the considered run, the correct process that is eventually elected as a leader does not
participate in the algorithm.
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The extraction algorithm. The algorithm that extracts Σ is described in Figure 3. Let
us recall that the aim is to provide each process pi with a local variable Σi such that the
(Σx)1≤x≤n variables satisfy the intersection and liveness properties of Σ.

To that end, each process pi manages two local variables: a set of sets of process
identities, denoted quorum setsi, and a queue denoted queuei. The aim of the set of
sets quorum setsi is to contain all the sets Q such that pi terminates WRQ (task T 1),
while queuei is managed in such a way that eventually the correct processes appear in
it before the faulty processes (tasks T 2 and T 3).

The idea is to select an element of quorum setsi as the current output of Σi.
As we will see in the proof, given any pair of processes pi and pj , any quorum in
quorum setsi has a non-empty intersection with any quorum in quorum setsj ,
thereby supplying the required intersection property.

The main issue is to ensure the liveness property of Σi (eventually Σi has to contain
only correct processes) while preserving the intersection property. This is realized with
the help of the local variable queuei as follows: the current output of Σi is the set (quo-
rum) of quorum setsi that appears as being the “first” in queuei. The formal definition
of “first element of quorum setsi with respect to queuei” is stated in the task T 4. To
make it easy to understand, let us consider the following example. Let quorum setsi =
{{3, 4, 9}, {2, 3, 8}, {1, 2, 4, 7}}, and queuei =< 4, 8, 3, 2, 7, 5, 9, 1, · · · >. The set
S = {2, 3, 8} is the first set of quorum setsi with respect to queuei because each of
the other sets {3, 4, 9} and {1, 2, 4, 7} includes an element (9 and 7, respectively) that
appears in queuei after the elements of S. (In case several sets are “first”, any of them
can be selected). The notion of first quorum is used to ensure the liveness of Σ, i.e., the
set Σi of any correct process pi eventually contains only correct processes.

Remark 1. Initially quorum setsi contains the set {1, . . . , n}. As no set of processes
is ever withdrawn from quorum setsi (task T 1), quorum setsi is never empty. More-
over, it is not necessary to launch the task WR{1,...,n} in which all the processes

Init: quorum setsi ← {{1 . . . , n}}; queuei ←< 1, . . . , n >;
for each Q ∈ (2Π \ {∅, {1, . . . , n}}) do

if (i ∈ Q) then launch a thread associated with the task WRQ end if end for.
% Each process pi participates concurrently in all the tasks WRQ such that i ∈ Q %

Task T1: when pi terminates in the task WRQ: quorum setsi ← quorum setsi ∪ {Q}.

Task T2: repeat periodically broadcast ALIVE(i) end repeat.

Task T3: when ALIVE (j) is received:
suppress j from queuei; enqueue j at the head of queuei.

Task T4: when pi reads Σi:
let m = minQ∈quorum setsi (maxx∈Q(rank[x])) where rank[x] = rank of x in queuei;
return (a set Q such that maxx∈Q(rank[x]) = m).

Fig. 3. Extracting Σ from a FD-based algorithm A that implements a register (code for pi)
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participate. This is because, as the underlying failure detector-based algorithm A (that
implements a register) is correct, it follows that all the correct processes terminate in
the task WR{1,...,n}. This case is directly taken into account in the initialization of
quorum setsi (thereby saving the execution of the task WR{1,...,n}).

Remark 2. A simple examination of the extraction algorithm shows that (1) both the
variables queuei and quorum setsi are bounded, and (2) messages carry bounded val-
ues, from which it follows that the construction is bounded.

5.3 Minimality of MΣ

Theorem 3. Let 1 ≤ m ≤ n. MΣ is the weakest failure detector SM MPn,m[∅] has
to be enriched with in order an atomic register can be built.

Proof. Let D be any failure detector such that there is an algorithm A that builds an
atomic register in SM MPn,m[D]. The proof consists in showing that, given such an
algorithm A, the algorithm described in Figure 3 builds a failure detector MΣ.

Proof of the intersection property
The proof is by contradiction. Let us first observe that the set Σi returned to a process pi

is a set of quorum seti (that contains the set {1, . . . , n} -initial value- plus all the sets
Q such that pi terminates WRQ). Let us assume that there are two sets Q1 and Q2 such
that (1) Q1, Q2 ∈

⋃
1≤j≤n(quorum setj), and (2) ∀ x, k, � : (k ∈ Q1 ∧ � ∈ Q2) ⇒

({k, �} �⊆ P [x]). Let us notice that the first item means that Q1 and Q2 can be returned
to some processes as their local value for Σ. The second item means that at least one of
k and � is not in P [x], from which we conclude that the processes in Q1 and Q2 cannot
communicate via the shared memory cluster P [x].

Let pi be a process that terminates WRQ1 and pj a process that terminates WRQ2

(due to the “contradiction” assumption, such processes do exist). Using the fact that
the system is asynchronous, let us construct the runs EQ1 and EQ2 associated with
WRQ1 and WRQ2 as follows. If any, the messages sent by the processes of Q1 to the
processes of Q2, when they execute A to implement each register of the array REGQ1 ,
are delayed for an arbitrarily long period (until pi has added Q1 to quorum seti and pj

has addedQ2 to quorum setj). And similarly for the messages sent by the processes of
Q2 to the processes of Q1 when they execute A for each register of the array REGQ2 .

Let us observe that, in the concurrent runs EQ1 and EQ2 , the algorithm A that is
executed only by (1) the processes of Q1 in EQ1 to build the registers REGQ1 [1..n],
and (2) only the processes of Q2 in EQ2 to build the registers REGQ2 [1..n], is fed with
the same outputs of the underlying failure detector D. Since (a) pi ∈ Q1 and pj ∈ Q2,
and (b) ∀ x, k, � : (k ∈ Q1 ∧ � ∈ Q2) ⇒ ({k, �} �⊆ P [x]), pi does not write to
REGQ2 [i] and pj does not write to REGQ1 [j]. Thus, pi reads ⊥ from REGQ1 [j], and
pj reads ⊥ from REGQ2 [i].

Let us construct a run EQ12 , where Q12 = Q1 ∪ Q2, that is a simple merge of
EQ1 and EQ2 defined as follows. In this run, the algorithm A (that involves only the
processes in Q12 and implements the array of registers REGQ12 [1..n]) is fed with the
same failure detector outputs as the ones supplied to the concurrent runs EQ1 and EQ2 .
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Moreover, the messages from Q1 to Q2 and from Q2 to Q1 are delayed as in EQ1

and EQ2 . So, pi (resp., pj) receives the same messages and the same outputs from the
underlying failure detector in EQ12 and EQ1 (resp., EQ2 ).

– On the one side, we have the following. As the process pi receives the same mes-
sages and the same failure detector outputs in both EQ12 and EQ1 , it follows that
REGQ1 [1..n] and REGQ12 [1..n] contain the same values. Consequently, pi reads
⊥ from REGQ12 [j]. Similarly, pj reads ⊥ from REGQ12 [i].

– On the other side we have the following. In EQ12 , the process pi writes & into
REGQ12 [i] and the process pj writes & into REGQ12 [j]. Moreover, one of these
operations terminates before the other. Without loss of generality, let us assume
that the write by pi terminates before the write by pj . Consequently, pj reads
REGQ12 [i] after it has been written. Due to the atomicity of that register, it fol-
lows that pj obtains the value & when it reads REGQ12 [i].

The second item contradicts the first one. It follows that the initial assumption
(existence of a failure detector-based algorithm A that builds a register, Q1, Q2 ∈⋃

1≤j≤n(quorum setj) and ∀ x, k, � : (k ∈ Q1 ∧ � ∈ Q2) ⇒ ({k, �} �⊆ P [x])) is
false, from which we conclude that at least one of the two assertions stated at the be-
ginning of the proof (namely (1) Q1, Q2 ∈

⋃
1≤j≤n(quorum setj) and (2) ∀ x, k, � :

(k ∈ Q1 ∧ � ∈ Q2) ⇒ ({k, �} �⊆ P [x])) is false, which completes the proof of the
intersection property of MΣ.

Proof of the liveness property
As far as the liveness property is concerned, let us consider the task WRC (recall that
C is the set of correct processes). As the underlying failure detector-based algorithm
A that implements the registers REGC [1..n] is correct (assumption), each correct pro-
cess pi terminates its REGC [i].write(&) and REGC [x].read() operations in EC . Con-
sequently, in the extraction algorithm, the variable quorum seti of each correct process
pi eventually contains the set C.

Moreover, after some finite time, each correct process pi receives ALIVE(j) mes-
sages only from correct processes. This means that, at each correct process pi, all the
correct processes eventually precede the faulty processes in queuei. Due to the def-
inition of “first set of quorum seti with respect to queuei” stated in the task T 4,
it follows that, from the time C has been added to quorum seti, the quorum Q se-
lected by the task T 4 is always such that Q ⊆ C, which proves the liveness property
of MΣ. �Theorem 3

5.4 MΣ is Strictly Weaker Than Σ When m < n

Theorem 4. Let m < n. The model SM MPn,m[MΣ] is strictly weaker than the
model SM MPn,m[Σ].

Proof. To prove the theorem we have to show that (a) it is possible to build MΣ in
SM MPn,m[Σ] and (b) it is impossible to build Σ in SM MPn,m[MΣ] when m < n.

– Proof of Item (a). For any i and τ , let us define MΣτ
i = Στ

i . As Στ
i ∩Στ ′

j �= ∅, it

follows that that ∃k ∈ MΣτ
i ∩MΣτ ′

j and there is trivially a partition x such that
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k ∈ P [x] which proves the intersection property of MΣ. The liveness property of
MΣ follows directly from its Σ counterpart.

– Proof of Item (b). The proof is by contradiction. let us assume that there is a wait-
free algorithm A that builds Σ in SM MPn,m[MΣ] when m < n.
As m < n, there is a partition P [x] and a pair of processes pi and pj such that
i, j ∈ P [x] (i.e., pi and pj belong to the same memory partition x). Let us consider
a run in which pi and pj are correct and all the other processes crash before taking
any step. As i, j ∈ P [x], ∀ τ, τ ′, MΣτ

i = {i} and MΣτ ′
j = {j} are correct local

outputs of MΣ (they satisfy its intersection and liveness properties).
Let us suppose that, while it is executing A, pj pauses during an arbitrary long but
finite period during which pi runs solo and (due to asynchrony) receives no message
from pj . As ∀ τ we have MΣτ

i = {i}, pi cannot distinguish this execution of A
from the one in which it is the only correct process. Hence, after some finite time,
because it is wait-free, A has to output {i} at pi in order the liveness property of Σ
be satisfied. Hence, there is a time τi such that Στi

i = {i}.
Let us now suppose that, after time τi, pi pauses for an arbitrary long but finite
period during which pj runs solo and (due to asynchrony) receives no message
from pi. It follows from the same reasoning as before that there is a time τj at
which we have Στj

j = {j}.
It follows that Στi

i ∩Στj

j = ∅, and the intersection property of Σ is violated which
concludes the proof of the theorem. �Theorem 4

Remark. Let us observe from the second part of the previous proof (Item b) that, when
the processes of all but one memory clusters crash, MΣ is too week to give informa-
tion on failures. Moreover, the next corollary follows from the previous theorem when
we consider the case m = 1 (read/write shared memory model in which MΣ can be
trivially implemented).

Corollary 1. Σ cannot be built from atomic registers only.

6 On the Implementability of MΣ Despite Asynchrony and
Failures

When m = n (pure asynchronous message-passing system), MΣ boils down to Σ and
it is known that Σ can be implemented in a pure message-passing asynchronous system
where a majority of processes are correct. Hence, the question: Is there a necessary and
sufficient condition C on n, m and a system parameter associated with failures such
that MΣ can be implemented in SM MPn,m[C] (where SM MPn,m[C] denotes the
system model SM MPn,m[∅] restricted to the runs where C is satisfied)? This section
presents such a necessary and sufficient condition C.

Notion of a faulty cluster. Let us say that a cluster x is faulty in a run if all processes
of P [x] are faulty in that run. Let t, 1 ≤ t < m be the upper bound on the number of
faulty clusters.

The next theorem shows that C ≡ (t < m/2) is a necessary and sufficient condition
to implement MΣ in SM MPn,m[∅].
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Theorem 5. Let COND be the set of all the predicates on n, m and t, C′ ∈ COND
and C = (t < m/2). MΣ can be built in SM MPn,m[C′] if and only if C′ ⇒ C.

Proof. The proof of the theorem is made up of two parts: (a) MΣ can be built in all
the runs in which C is satisfied and (b) MΣ cannot be built in all the runs in which C
is not satisfied.

Proof of Item (a). The algorithm described in Figure 4 buildsMΣ in SM MPn,m[t<
m/2]. Initially, each process pi initializes MΣi to Π (the set of all process identities).
Then, repeatedly, pi broadcasts a message ALIVE(i), waits until it has received a mes-
sage from (m − t) processes belonging to different clusters and sets MΣi to set of
processes. It is easy to show that the intersection and liveness properties of MΣ are
satisfied.

– Let us first observe that, due to the assumption t < m/2, no correct process remains
blocked forever in the wait statement. Moreover, after some finite time, a correct
process receives message only from correct processes. It follows directly from these
two observations that, after some finite time, MΣi contains only correct processes
which is the liveness property of MΣ.

– ∀ i, j ∈ Π, ∀ τ, τ ′, let us consider the values of MΣτ
i and Στ ′

j . It follows from t <
m/2 that Στ

i contains processes belonging to a majority of clusters, and similarly
for Στ ′

j . As any two majorities intersect, we conclude that there is cluster x such

that k ∈MΣτ
i ∧� ∈MΣτ ′

j ∧{k, �} ⊆ P [x] which proves the intersection property
of MΣ.

MΣi ← Π ;
repeat forever

broadcast ALIVE(i);
wait until

(
messages received from processes in (m − t) different clusters

)
;

MΣi ← the set of processes from which messages have been received at previous line
end repeat.

Fig. 4. Building MΣ in SM MPn,m[t < m/2] (code of pi)

Proof of Item (b). Considering that t ≥ m/2, let us partition the set of clusters in two
sets QC1 and QC2 (i.e., QC1 ∩ QC2 = ∅ and QC1 ∪ QC2 = ∪1≤x≤mP [x]). Due to
asynchrony it is possible to delay for an arbitrary long period all the messages from the
processes in QC1 to the processes in QC2 and all the messages from the processes in
QC2 to the processes in QC1. Then, the processes in QC1 cannot distinguish the case
where the processes in QC2 have crashed or are only very slow and similarly for the
processes of QC2 with respect to the processes of QC1. The impossibility follows from
this classical partitioning argument. �Theorem 5

7 Conclusion

This paper has introduced a new distributed computing model with hybrid commu-
nication (any pair of processes can communicate by asynchronous message-passing
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and processes are partitioned into clusters in which they can communicate through a
read/write shared memory). The paper has investigated the minimal information on
failures that allows an atomic register to be implemented in such a hybrid communica-
tion model. This minimal information on failures is captured by a new failure detector
denoted MΣ (which generalizes the failure detector Σ). The paper has also presented
a necessary and sufficient condition on the number of faulty shared memory clusters
that, when satisfied, allows MΣ to be implemented despite the net effect of asynchrony
and failures. The paper has also shown that, while Σ is the weakest failure detector that
allows a register to be implemented in a pure asynchronous message-passing system, it
cannot be implemented from registers only.

As suggested by a referee, it would be interesting to investigate a parameterized
definition of Σ where the parameter would be a cluster partition of the system.
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Abstract. We consider a simple network model for economic agents
where each can buy commodities in the neighborhood. Their prices may
be initially distinct in any node. However, by assuming some rules on
new prices, we show that the distinct prices will converge to unique by
iterating buy and sell operations. First, we present a protocol model
in which each agent always bids an arbitrary price in the difference be-
tween his own price and the lowest price in the neighborhood, called max
price difference. Next, we derive the condition that price stabilization
occurs in our model. Furthermore, we consider game (auction) theoretic
price determination by assuming that each agent’s value is uniformly dis-
tributed over the max price difference. Finally, we perform a simulation
experiment. Our model is suitable for investigating the effects of network
topologies on price stabilization.

Keywords: multiagent model, price determination, game (auction) the-
ory, Bayesian-Nash equilibrium.

1 Introduction

Motivation. Conventionally, the topics of price determination have been dis-
cussed in the context of microeconomics approach. Figure 1 shows supply and
demand curves, where an equilibrium occurs at the intersection of them — if the
price is higher (resp. lower) than the equilibrium, there is excess supply (resp.
excess demand) and thus the price moves to the equilibrium. At the equilibrium
price, the quantity of goods sought by consumers is equal to the quantity of
goods supplied by producers. Neither consumers nor producers have an incentive
to alter the price or quantity at the equilibrium. Thus, the price determination
has been considered as an abstract, theoretical model which explains a market
mechanism. To know a detailed process to the equilibrium, we need more sophis-
ticated model, e.g., multiagent approach, which gives us another insight into the
price determination.

Recently, the topics of price fluctuation have been discussed in the context of
multiagent approach. In minority games [3], or artificial financial markets [20],
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Fig. 1. Supply and Demand

the macroscopic behavior arises from interactions governed by micro-rules of
agents. Such an idea is reasonable because economic phenomena are brought
about by each person’s business activities. Thus, the price fluctuation has been
considered as an abstract, experimental model which explains a market mecha-
nism. The price determination, however, has not been theoretically revealed by
the multiagent approach as far as we know.

We can construct a price determination model by applying the idea of sta-
bilization to the multiagent approach. The self-stabilization has been originally
studied as the recovery from transient faults in distributed systems. From any
initial state, self-stabilizing algorithms eventually lead to a legitimate state with-
out any aid of external actions. We notice that the properties of self-stabilization
resemble those of price determination in convergence to a stable state without
external influences. For example, a self-stabilizing consensus algorithm is associ-
ated with the price determination because every agent eventually has the same
agreement.

If we consider the behavior of the economic agents as a distributed system,
we can develop a new model for the economy. So we construct a network model
consisting of nodes and edges as cities and their links to neighbors, respectively.
Each node contains an agent which represents people in the city. Any interaction
among agents is governed by micro-rules, that is, the agents who want to buy
a commodity make bids to their neighboring nodes. Then, the agents who want
to sell the commodity accept the highest bid, like an auction. By iterating these
rules, the prices will reach an equilibrium.

Related Work. The classical theory of price determination in microeconomics is
introduced, e.g., in [21,22]. We review the theory from multiagent points of view.
Though several economic network models have been already known [2,10,14],
such models contain a bipartite structure [10,14] or traders who play intermedi-
ary roles [2]. Agent-based stabilization has been discussed in [1,6,11,13]. Unlike
our staying agents, their ideas are to use mobile agents for the purpose of stabi-
lization. The agents in our model may need to know how to win in an auction.
The auction theory using bidding mechanisms is argued in [17,19]. It is useful
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in designing protocols by what price we should make a bid. Several kinds of
game theoretic flavors have appeared in self-stabilization, e.g., time complexity
analysis [9], strategies with optimal complexity [5], relationships between Nash
equilibria and stabilization [7,12], and strategies in algorithms [15]. This paper
appends an auction approach to such a trend. Our protocol in Section 3 can be
considered as a kind of consensus algorithm. The consensus algorithm in decen-
tralized systems is described in [18], and its self-stabilizing version is described
in [8,4].

Contributions. We consider a new network model for economic agents where
each can buy and sell commodities in the neighborhood. Such a network model
is useful for investigating price behavior in microeconomics. First, we present
a protocol in which each agent always offers a fixed price without considering
other bidders’ strategies. Then, we consider how to determine a bidding price by
using Bayesian-Nash equilibrium. Finally, we perform a simulation experiment
which reveals the effects of network topologies.

The rest of this paper is organized as follows. Section 2 states our model.
Section 3 shows that a condition such that our protocol can stabilize distinct
commodity prices. Section 4 investigates the bidding rate by game (auction)
theory. Then, Section 5 shows some simulation results which reveal the effects
of network topologies. Finally, Section 6 concludes the paper.

2 Model

Our system can be represented by a connected network G = (V,E), consisting
of a set of nodes V and edges E, where the nodes represent cities and a pair of
neighboring nodes (cities) is linked by an edge. Let Ni be a set of neighboring
nodes of i ∈ V , and let N+

i = Ni ∪ {i}. We assume that each node i ∈ V has a
commodity and its initial price may be distinct. Let Pi(t), or denoted by Pi, be
the commodity price at node i for the time step t ∈ T = (0, 1, 2, . . .), Each node
i ∈ V has exactly one representative agent ai who always stays at i and can buy
commodities in the neighborhood Ni. The buy operation is executed as follows.

Each agent ai assigns a value vk
i (t), or denoted by vk

i , to the commodity
of any neighboring node k, where the value means the maximum amount an
agent is willing to pay. Agent ai compares its own commodity price Pi with
the neighboring price Pk. If the cheapest price in Ni is Pk (< Pi), the agent ai

wants to buy it and submits a bid bki (t), or denoted by bki , to node k, where bki is
determined by a strategy S(vk

i ). We call such Pi−Pk a max price difference. We
consider vk

i (t) = Pi(t) for any k ∈ Ni because he can buy it at the price Pi(t) in
his node.

After accepting bids from Nk, agent ak contracts with all agents who submit-
ted the highest price. Then, ak passes the commodity to the contracted agents
and sets Pk(t + 1) to the highest price, called a sell operation. We do not take
the carrying cost of commodities into consideration but focus on the change of
prices. In this way, at every time, any price is updated if necessary. The state
Σi of each node i ∈ V is represented by the commodity price Pi(t).
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We assume a synchronous model, that is, every agent periodically (for each
round) exchanges messages and knows the states of neighboring agents. The
global state of all nodes is called a configuration. The set of all configurations is
denoted by Γ = Σ1 × Σ2 × · · · × Σ|V |. An atomic step consists of reading the
states of neighboring agents, a buy/sell operation, and updating its own state.
Then, a configuration is changed from cj ∈ Γ into cj+1 ∈ Γ (or cj+1 is reached
from cj) by the atomic step. An execution E is a sequence of configurations
E = c0, c1, . . . , cj , cj+1, . . . such that cj+1 ∈ Γ is reached from cj ∈ Γ .

3 Protocol Design

In this section, we consider a protocol model, called ArbitraryBid, in which
each agent ai always makes a bid bki (Pk(t) ≤ bki ≤ Pi(t)) to an agent ak ∈ N+

i

with the lowest price in the neighborhood.

ArbitraryBid

– Each agent ai makes a bid with an integer price

bki (t) ∈ [Pk(t), Pi(t)]

to node k ∈ N+
i which has the lowest-price commodity in N+

i . The agent ak

contracts with the neighboring ai who has submitted the highest bid. That
is, the commodity price at node k becomes

Pk(t + 1) := max
i∈Nk

bki (t).

– If ai accepts no bidding from Ni and ai’s bid is accepted by some neighboring
ak, the price at time t + 1 will be cut to

Pi(t + 1) := bki (t).

– If several agents make bids to node k with the same highest price, agent ak

makes deals with all of them.

Example 1. Figure 2 shows an example of our network system consisting of 4
nodes V = {0, 1, 2, 3}. At time t, the prices of commodities are (P0(t), P1(t), P2(t),
P3(t)) = (50, 10, 110, 70) as shown in Figure 2(a). Each agent ai wants to buy
the commodity if its price is lower than Pi(t), i.e., Pi(t) > minj∈Ni Pj(t). Thus,
agent a2 makes a bid to node 0 with price 80 ∈ [50, 110]. Likewise, agents a0 and
a3 make bids to node 1 and node 0, respectively. Then, a2’s bid and a0’s bid are
successful, a2 (resp. a0) makes a contract with a0 (resp. a1).

At time t + 1, the prices become (P0(t + 1), P1(t + 1), P2(t + 1), P3(t + 1)) =
(80, 30, 80, 70) as shown in Figure 2(b). Since agent a2 accepted no bids from N2

and a2’s bid b02 was accepted by agent 0, the price is cut to 80 (= b02(t)) at time
t + 1. ��
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1 0

2 3

bid=55

bid=30

bid=80
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1 0

2 3

(b)

Fig. 2. An Illustration of Protocol ArbitraryBid

We are concerned with whether or not the commodity prices eventually con-
verge to the same one even if they are initially distinct. So we define the legiti-
macy of a configuration as follows.

Definition 1 (legitimate configuration). A configuration is legitimate if ev-
ery commodity has the same price. ��
In [16], we developed a protocol in which every agent bids the half of max price
difference in his neighborhood. Then, we showed that the protocol achieves price
stabilization. Here, we consider a condition such that any protocol satisfying the
framework of ArbitraryBid achieves price stabilization.

Let Ct ⊆ V be the set of nodes that have updated their prices from time
t to t + 1. Let the highest price be Pmax(t) = maxi∈Ct Pi(t), and the lowest
price be Pmin(t) = mini∈Ct Pi(t). Furthermore, let diff (t) = maxi∈Ct Pi(t) −
mini∈Ct Pi(t).

The following lemma proves that the protocol ArbitraryBid is free from
deadlocks.

Lemma 1. The protocol ArbitraryBid is deadlock-free. That is, there exist
some nodes in Ct as long as the configuration is illegitimate.

Proof. Suppose that the configuration is illegitimate at time t. Then, there is a
pair of neighboring nodes i, j ∈ V such that Pi(t) = maxk∈Nj Pk(t) and Pj(t) =
mink∈Ni Pk(t), where Pi(t) − Pj(t) is the max price difference, are satisfied. In
this case, agent ai makes a bid to node j and agent aj accepts the price. Since
Pj(t) is increased at time t + 1, j ∈ Ct holds. ��
Suppose that agents ai and aj make bids to node k. We say that bids have the
same order as values if vk

i ≤ vk
j implies bki ≤ bkj for the commodity of node k.

Next, we show that the bids having the same order as values is necessary for
price stabilization.
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Lemma 2. If bids do not always have the same order as values, price stabiliza-
tion is not guaranteed.

Proof. Suppose that there is an agent ai who has the maximum value for the
commodity in the node k. That is, vk

i ≥ vk
j holds for any node j ∈ Nk. If he

always bids with the lowest price in the neighborhood (bki < bkj ), he loses and
thus the price Pi does not change. So the price stabilization is not guaranteed.

��
The following theorem further shows that an additional condition leads to the
price stabilization.

Theorem 1. Suppose that bids have the same order as values. If any contract
price lies between buyer’s price and seller’s price, price stabilization occurs.

Proof. Let vk
i (t) = Pi(t) = Pmax(t). Let node k with mink∈Ni Pk(t) have the

minimum price in the neighborhood. Since bids have the same order as values,
the bidding price of agent ai is the highest one in Nk. Thus agent ai can contract
with ak. It means Pmax(t) = Pi(t) > Pi(t+ 1). Since no other agents make bids
greater than Pmax(t), we have Pmax(t) > Pmax(t + 1). The similar argument
holds for Pmin(t). Thus we have

diff (t) > diff (t + 1). (1)

This means price stabilization occurs. ��
If any contract price does not lie between buyer’s price and seller’s price, price
stabilization is not guaranteed. It is intuitively clear because the inequality (1)
may not be satisfied.

4 Best Bidding Price

In this section, we consider how to determine a bidding price by using Bayesian-
Nash equilibrium [17,22], which is useful for the game with incomplete informa-
tion, e.g., a sealed-bid auction. Suppose that each agent’s value is uniformly
distributed on [α, β] (independent and identically distributed). Then, the distri-
bution function is F (x) = h(x− α), where h = 1/(β − α). Let Y be the highest
of B−1 values. Then, Y is the highest order statistic of the values, and thus the
distribution function of Y , denoted by G(x), is G(x) = F (x)B−1. In addition,
let g(x) be the density function of G(x).

Agent ai’s strategy S(vk
i ) against B−1 bidders, where B at time t is denoted

by B(t), is derived as follows. For simplicity, vk
i is denoted by v here. Notice

that the expression (2), introduced in [17], is described in our appendix. We
consider that the Krishna’s solution [17] for the case of single-unit demand can
be applicable to our model. This is because an agent ai at node i actually means
people in the city i and each of them has a single-unit demand.
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S(v) =
1

G(v)

∫ v

α

yg(y)dy (2)

=
1

{h(v − α)}B−1

∫ v

α

yhB−1(B − 1)(y − α)B−2dy

=
B − 1

(v − α)B−1

{[
y(y − α)B−1

B − 1

]v

α

−
∫ v

α

(y − α)B−1

B − 1
dy

}

=
1

(v − α)B−1

{
v(v − α)B−1 −

[
(y − α)B

B

]v

α

}

= v − 1
B(v − α)B−1

{(v − α)B − 0}

= v − v − α

B

We would like to examine whether or not above strategy satisfies our condition
in Theorem 1.

First, for the orders of bids and values, suppose vk
i ≤ vk

j holds.

bkj − bki = S(vk
j )− S(vk

i )

= (vk
j −

vk
j − α

B
)− (vk

i −
vk

i − α

B
)

= (vk
j − vk

i )(1− 1
B

) ≥ 0.

Thus bki ≤ bkj holds.
Next, for the bidding price,

S(vk
i )− α = vk

i −
vk

i − α

B
− α = (vk

i − α)(1 − 1
B

) > 0.

On the other hand, it is clear that

vk
i − S(vk

i ) = vk
i − (vk

i −
vk

i − α

B
) =

vk
i − α

B
> 0.

Thus, we have α < S(vk
i ) < vk

i . Now we obtain the following theorem.

Theorem 2. In our protocol ArbitraryBid, suppose that each agent ai con-
fronting B− 1 bidders repeatedly makes a bid to the lowest-price node k ∈ Ni by
strategy

S(vk
i (t)) = vk

i (t)− vk
i (t)− Pk(t)

B
= Pi(t)− Pi(t)− Pk(t)

B
.

Then, price stabilization occurs. ��
Actually, the problem in our model is to know the precise number of bidders B.
Though the maximum number of bidders to node i is Ni, some of them place
bids to other neighboring nodes.



290 J. Kiniwa and K. Kikuta

Estimation Methods. We compare the following two methods which enable
us to estimate the number of bidders B.

1. A method is to use B in the previous step by assuming that the number of
bidders to the neighboring node can be known.

2. Another method is to estimate B by assuming that the value of each agent
is uniformly distributed over the same interval.

Method 1 uses the previous information based on the idea that the situation does
not suddenly change in time. For example, suppose agent ai wants to estimate
B(t) at node j. Then ai just substitutes B(t − 1) for B(t). Method 2 uses the
neighboring information of prices based on the idea that the situation does not
suddenly change in location. More precisely, let gapi be the difference between
the maximum price in Ni and the minimum price in Ni. Let gj be the difference
between the maximum price in Ni and the price of node j. Then, agent ai

estimates the number of bidders at node j to be

B = int

(
gj

max(gapi, 1)
·Nj

)
,

where “int” means the truncation to integer and gapi = 1 is substituted for
gapi = 0.

5 Simulation

Here we present some simulation results. Our questions are :

– How different topologies have influence on price stabilization ?
– Which method is more appropriate for the estimation of B, Method 1 or

Method 2 ?

Table 1 describes some parameters. We repeated the experiment up to Tr = 500
trials, where a trial ends with one equilibrium, and obtained averaged results. A
varying parameter is the number of nodes, changed from 100 to 500, and others
are fixed.

Table 1. Parameters

Meaning Symbol Values

Number of trials Tr 500

Number of nodes |V | 100 — 500

Agent i’s initial price Pi(0) random integer in [1, 100]

Agent i’s bid bk
i (max price difference)/2
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Fig. 3. Equilibrium prices

Effects of Topologies For the first question, we consider four kinds of graphs,
a line graph, a grid graph, a random k-link graph, and a complete graph. Then,
we compare the equilibrium prices and the number of steps until stabilization
on the graphs. The random k-link graph is defined as a circle with randomly
selected k edges.

Figure 3 shows the equilibrium prices for four kinds of graphs. In general,
large-degree nodes tend to reach convergence because they can easily find a
maximal-price node and a minimal-price node in the neighborhood. Then, they
rapidly converge to an equilibrium.

The low price nodes can easily win contracts, while the high price nodes cannot
easily win contracts because there are not so many agents who want to buy at
the nodes. Thus, the equilibrium price tends to become higher and higher if the
stabilization time is long.

Figure 4 shows the number of steps for stabilization for the four kinds of
graphs. Obviously, a line graph needs much longer time than other graphs to
reach an equilibrium. The reason is that the path for spreading the price is
limited. It is also reasonable that a grid graph for a large number of nodes needs
longer time than complete/random 100-link graphs. Since the grid graph has
only local links, it takes somewhat long time to propagate the price movement
for a large number of nodes.

Estimation of B. For the second question, we consider two kinds of graphs,
a random k-link graph, and a complete graph. To evaluate the methods, we use
the following expression

U =
∑
i∈V

(
ei(B)− ai(B)

Ni

)2

,
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Fig. 4. Number of steps for stabilization

Fig. 5. Estimation of number of bidders

where ei(B) and ai(B) are the estimation of B and the actual result of B,
respectively. We collect the value of U in each step and take an average of them.
Notice that U represents a deviation from the actual number of bidders, and its
range is 0 ≤ U ≤ |V |.

Figure 5 shows the difference between the methods for two graphs. Method 2
is effective in a random k-link graph, where k = |V |/5, rather than a complete
graph. On the other hand, method 1 is effective in a complete graph rather than
a random k-link graph. Since the error rate is about 5% for the k-link graph,
Method 2 could be useful.
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6 Conclusion

In this paper we considered a new network model for the price stabilization. The
model shows that the self-stabilization has a wide application to various areas.
First, we presented a protocol model in which every bidding price is between the
max price difference. Then we provided the condition that price stabilization
occurs in our model. Next, we investigated how to determine the bidding price
by using Bayesian-Nash equilibrium. Finally, we presented simulation results. In
summary, our network model reveals the following facts.

– The price stabilization occurs in our model if bids have the same order as
values and any contract price lies between buyer’s price and seller’s price.

– Dense networks are easy to reach an equilibrium because there are multiple
paths for spreading the prices. Thus, the equilibrium prices in such networks
tend to be low.

– For the best bidding, the Bayesian-Nash solution needs the number of bidders
B. Regarding the estimation of B, our method 2 would be useful for a random
k-link graph, while our method 1 is useful for a complete graph.

Our goal is to construct a good multiagent protocol which enables us to simulate
a realistic social system. Then, we could analyze and estimate several economic
phenomena. Our future work includes investigating an asynchronous system and
developing other protocols.
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and Culture of Japan.
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Appendix

Suppose there are B bidders for an auction. Agent i wins the auction whenever
he submits the highest bid b. Let Y be the highest of B−1 values except for agent
i. Then, agent i wins whenever S(Y ) < b or equivalently, whenever Y < S−1(b).
Let G(v) be the distribution of Y and let g be its density. Since we assume that
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each agent’s value is independently and identically distributed on some interval
[α, β], the expected payoff of agent i is

G(S−1(b))(v − b) + (1−G(S−1(b))) · 0.

We would like to maximize the expected payoff G(S−1(b))(v−b). Differentiating
the payoff with respect to v gives

g(S−1(b))
S′(S−1(b))

(v − b)−G(S−1(b)) = 0. (3)

At a symmetric equilibrium, b = S(v) holds. Thus, (3) yields

G(v)S′(v) + g(v)S(v) = vg(v)

or equivalently,
d

dv
(G(v)S(v)) = vg(v)

Since S(α) = 0, we have

S(v) =
1

G(v)

∫ v

α

yg(y)dy.
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Abstract. Distributed systems with churn, or dynamic distributed sys-
tems, allow the processes to join and leave the system at will. In this
paper, we present a new consistency condition for shared read-write reg-
isters which is based on multi-writer regularity, but allows for the likeli-
hood of the register to lose its state with some probability; we call this a
dynamic regular register. We then describe an algorithm for implement-
ing a dynamic regular register using copies of the register distributed
among the processes. When a process joins the system, it attempts to
obtain an up-to-date copy of the data from other processes. Copies of
the register are updated by broadcasting information. To model the dy-
namicity of the system with churn, we use a continuous-time birth-death
process which is a special case of continuous-time Markov processes.
Then, we analyze the probability and the time duration that the dy-
namic regular register system keeps its state, given the joining rate and
the leaving rate of the processes.

Keywords: Dynamic Regular Register, Dynamic Systems, Churn, Reg-
ister, Multi-Writer Regularity, Markov Process.

1 Introduction

Distributed systems with churn, or dynamic distributed systems, are increas-
ingly deployed as a result of ever-growing wireless communication infrastructure
and mobile computing entities, such as robots, vehicles, laptops, and hand-held
computers. In a dynamic system, processes can begin and stop participating in
the computation as they wish, i.e., the membership of the active processes in
the system dynamically changes. In this paper, we specify a new consistency
condition for a dynamic regular register which is appropriate for sharing data in
a dynamic system.

Consider, for example, a mobile application that needs to exchange informa-
tion among the present participants via shared objects. One example is search-
and-rescue type applications, in which location information is shared among the
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processes to subdivide them into disjoint search areas. Another example is dy-
namic sensor applications, where the sensor data need to be shared among the
participating sensor nodes. Whoever is participating at that moment should be
able to update the information. Each process keeps a copy of the shared object.
When a process wants to participate in the dynamic mobile application, it first
needs to join the system. Upon successfully joining the system, the process is
now considered active and can participate in the application by invoking opera-
tions on the shared objects. Here, an important, challenging problem is to keep
the shared data consistent among the dynamically changing members without
relying on a centralized server. Furthermore, the system should be able to warn
the user of the application when there is a chance that the state of the shared
object may be lost.

Contributions. We first specify a new type of shared register system with a
new consistency condition, called dynamic regular register that allows for the
likelihood of the register to lose its state with some probability. Then, we model
the churn of the dynamic regular register system using a continuous-time birth-
death process which is a special case of continuous-time Markov processes. We
then analyze the probability that the system may lose the state of the dynamic
regular register at some point in time in the future and how long the system
would be able to keep the state of the register, given the churn parameters of
the system, such as the joining rate and the leaving rate of the processes. To
the best of our knowledge, this is the first work to specify a dynamic regular
register (or, more generally, dynamic register) and to analyze and predict the
probabilistic guarantee for maintaining the state of such registers in a system
with churn.

Multi-writer Regular Registers and Synchrony Assumption. Because
read/write registers provide the fundamental semantics of querying and updating
shared data, we focus on a shared read/write register. Motivated by, for example,
a data sharing application in mobile ad hoc networks, we assume a multi-writer
multi-reader register. Furthermore, by considering such applications running on
smart phones or high-end hand-held computers, we assume a synchronous mes-
sage passing system where the processes have access to the synchronized clocks
of the devices and the message transmission bounds are known.

Regularity has been increasingly studied because concurrent operations are
dealt with in a more relaxed way than with linearizability (or atomicity). In the
case of a single writer, a register is defined to be regular if every read returns the
value written either by an overlapping write or by the most recent write that pre-
cedes the start of the read [13]. Recently, implementation of single-writer/multi-
reader regular registers in dynamic systems was studied in [4, 5]. In this paper,
we also focus on regularity, however we consider multi-writer/multi-reader reg-
ular registers. The multi-writer regularity condition we adopt in this paper is
a multi-writer version of Lamport’s regularity condition [13] that is tailored to
synchronous systems (more details are in Sect. 3); see [20] for a study of multi-
writer versions of regularity for asynchronous systems. Here, our assumption of
synchronous systems allows us to use the process clock time combined with the
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process ID as the timestamp of an operation invocation. Throughout the paper,
we will sometimes denote the multi-writer regularity condition we use as “mw-
regularity.” Also, we will sometimes use the simpler form “dynamic register” or
simply “the system” to denote the dynamic regular register system.

2 Related Work

Dynamic distributed systems with unbounded number of processes have been
studied in numerous papers, for example, [1, 16]. The first theoretical study on a
distributed protocol that involves infinitely many processes can be found in [8].
The position paper [3] proposes issues and difficulties in defining a dynamic
distributed system considering a simple data aggregation problem. Anceaume
et al. [2] propose a framework for defining and comparing the self-organizing
properties of dynamic systems. All these works provide rigorous theoretical un-
derstanding of dynamic distributed systems.

Most closely related to our work is the implementation of regular registers
in dynamic distributed systems in [4, 5]. The similarities of our work to those
previous works are the focus on regular registers and the synchrony assumption
with reliable broadcast and the timely delivery assumption – in our work, we
call it “reliable δ-broadcast” as explained in the next section. The differences
are that, in [4, 5], an analysis is given under a discrete-time execution scenario,
assuming that there are at least a certain number of active processes at all times.
There, two discrete-time functions λ(t) and μ(t) are employed. The function λ(t)
returns the number of processes that invoke the join operation at time t and μ(t)
the number of processes that leave the system at time t. Then, the main result is
to give an upper bound on μ(t) to guarantee the conditions for regular registers
in the system. In our work we specify a new consistency condition for dynamic
regular register and analyze the probabilistic guarantee and the prediction of
the duration that the dynamic regular register system will keep the state given
a joining rate and a leaving rate, assuming a more realistic continuous-time
execution model.

There have been other shared register implementations for mobile ad hoc net-
works, e.g. [7, 9, 15, 19], that also rely on a reliable deterministic broadcast
primitive, which is similar to our reliable δ-broadcast assumption. The Geo-
Quorums algorithm in [7] adapts ideas from RAMBO [9, 15] to implement an
atomic register using geographically-based quorums.. The geo-register abstrac-
tion in [19] is somewhat analogous to the dynamic membership abstraction of
our dynamic regular register, but, in the former, a given geographic region serves
as the boundary for process participation, whereas, in the latter, there is no such
physical boundary for process participation as long as the process is interested
in taking part in the dynamic register system. These papers concentrate on
worst-case analyses, while our paper does a probabilistic analysis.

It is not surprising that there is a rich literature that studies the dynamic
nature of peer-to-peer (P2P) systems and networks. However, the focus is mostly
on the dynamics of the topology of the P2P networks; see for example, [11,
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12, 14]. Various churn models in dynamic P2P systems are proposed in [11].
In [12], the authors propose a recovery scheme for dynamic P2P systems so
as to remain fully functional (i.e., maintains desirable properties such as low
peer degree and low network diameter) in spite of a powerful adversary which
continuously adds and removes peers. The scheme is based on constructing an
efficient distributed hash table which is resilient to churn. In [14], the resilience
of dynamic, k-regular (i.e., each node maintains k neighbors) P2P networks
is studied using a simple node-failure model based on user lifetimes, using a
continuous-time Markov analysis. In [17], an incentive-based scheme is proposed
that encourages nodes to help others in order to improve the weights they need
to continue receiving downloads. Such incentive-based strategy can be employed
in a future direction of our work in this paper in that when the expected lifetime
approaches zero, the incentivizing strategy may delay some processes leaving the
system so as to prolong the lifetime of the dynamic register.

3 The Dynamic Regular Register System Model

We consider a dynamic system that allows the processes to join and leave the
system at will. After successfully joining, the process becomes active, that is,
participates in the computation. We are interested in sharing information among
the participating processes by querying and updating a shared register. The state
of the shared register consists of its value, initially defined to be ⊥.

We assume a synchronous message passing system in which each process has
access to a synchronized clock (for example, of the hand-held device on which
the process is running), and there is a fixed, known upper bound on the message
delay. We assume a reliable δ-broadcast where the dissemination of a broadcast
message takes at most δ time, i.e., if a message m is broadcast by a process p
at time t and p does not leave the system by t + δ, m is delivered unmodified,
exactly once, to all the processes that are in the system throughout the interval
[t, t + δ]. We also assume a reliable δ′-point-to-point communication where a
message sent by a process to a process p at time t is received unmodified, exactly
once, by p by time t+ δ′ if p does not leave the system by t+ δ′. We assume that
δ ≥ δ′ and both δ and δ′ are known to the processes. For simplicity, we assume
that local computation takes zero time. Furthermore, we assume that there are
no process failures – either benign or malicious.

We specify four operations for the dynamic register system: join, read, write
and leave. By invoking the join operation, a process gets the current state of the
register and becomes active. A join returns done. A read() operation returns
the value of the register. A write(v) operation updates the state of the register
with the value v and returns ack. There is no constraint on how many processes
can read or write the register, although a process is allowed to have at most one
operation pending at a time. We specify the leave operation by process i as the
time when process i ceases to be active in the system. Thus, each of the three
operations – join, read and write – has its invocation time t and response time
t′, t ≤ t′, however, the leave operation simply occurs at a certain point in time.
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We define an execution on the register in a dynamic system as an infinite se-
quence of operation invocations and responses on the register by all the processes
in the system; the real time of occurrence is associated with each invocation and
response.

Ideally, a read should return “the most recent value” written to the register.
However, there are a couple of wrinkles that need to be smoothed out in looking
more closely at this ideal. First, because a read can overlap with a write and
writes can overlap with each other, we need to be more precise about what values
we allow to be returned by a read. Given an execution, we define the “legal”
values for a read as follows:

Definition 1. For read r, let w be the write, among all writes that end before r
begins, whose invocation time is the latest, breaking ties with process ids. Then
the set of legal values for r consists of the value written by w and the values
written by any writes that overlap r.

Requiring every read to return a legal value provides a consistency condition that
is a multi-writer version of Lamport’s regularity condition [13] and is tailored to
synchronous systems; see [20] for a study of multi-writer versions of regularity
for asynchronous systems.

The second wrinkle is the possible absence of any writes that can provide
legal values for a read. Because of the dynamic nature of the system, during
one part of the execution there can be many active processes, whereas during
another part of the execution there may be no active processes (called a dormant
period).

The latter (dormant period) is a case when the state of the shared data may
be lost, that is, if a newly joined process right after the dormant period invokes
a read operation and there are no overlapping writes, it will return the initial
value ⊥ which is not a legal value. However, even after the dormant period, if the
newly joined process first invokes a write operation or it invokes a read operation
and there is an overlapping write, then it is possible for reads to return legal
values.

We define an era as a maximal length subsequence of an execution in which the
number of active processes is positive. In other words, an era begins at the first
time after a dormant period when at least one process becomes active and ends
at the first time the number of active processes becomes 0. Thus, an execution
may consist of one era or can be a series of more than one eras.

Furthermore, we assume the following conditions on the executions:

[EX1] In every interval between the end of a write and the beginning of another
write in which no write is pending, the number of reads that are contained in
this interval (as well as the number of reads before the first write) is bounded
by a constant κ.

[EX2] Each process executes one read operation right after becoming active.
[EX3] Each process executes at least one write operation.
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Now we specify a dynamic regular register as a shared multi-writer, multi-
reader register in which legal values are guaranteed to be returned with some
probability based on the churn of the system (more details are below).

[DR1] Every operation invocation in every execution has a matching response.
[DR2] (Existence of Era) Every execution consists of one or more eras, in which

the expected length of the era, as measured in real-time, is positive.
[DR3] (Probabilistic MW-Regularity) Suppose that the execution satisfies [EX1],

[EX2] and [EX3]. Then there exists ε in (0,1) such that every read returns
a legal value with probability at least 1− ε. If a read returns a value that is
not legal, then that value must be the initial value ⊥.

We say that a read is “successful” if it returns a legal value, and “unsuccessful”
if it returns ⊥.

Roughly speaking, [DR2] specifies maximal time intervals – called eras – dur-
ing which there is at least one active process. The condition [DR3] ensures that
during an era, a read can return the legal value of the register with probability
greater than 0.

4 The Algorithms

As specified in the previous section, there are four basic operations for a dynamic
regular register R: join and leave to manage the membership and read and write
to share information using the shared register. Upon joining R successfully, the
process becomes “active” and can “participate” in R by invoking the register
operations read and write and responding to inquiry messages of other joining
processes.

The leave event is performed implicitly, for example, if the user simply closes
the application that was using R or turns off her hand-held device, the system
R may not distinguish the difference between the intentional act of leaving and
a clean crash (of a process without a pending operation). Thus, we do not need
an algorithm for the leave event.

Below, we describe the algorithms for join, read and write, which are modified
versions of those in [5]. The two main differences are: (i) the construction of
timestamps to suit the multi-writer register, and (ii) a simplified join operation.
Every process pi in R maintains the following local variables:

1. vali: the value of the local copy of the register. Initially ⊥.
2. tsi: a timestamp that is in the form of a pair (the process clock time : the

process ID); this timestamp is accompanied to the value vali whenever pi

invokes a write operation.
3. activei: a boolean variable indicating whether pi has successfully joined R

(and so is now active) or not. It is set to true upon successfully completing
the joining operation. Initially false.
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4. recvdi: a set of received messages as response to pi’s broadcast message
inquire. Initially ∅.

5. replyi: a set of process ID’s, to whom pi needs to send reply messages once
pi becomes active. Initially ∅.

The first two variables (vali, tsi) are used to maintain the state of the local copy
of the register. The remaining three variables are used only in the join operation.

The Join Operation. When a process wants to actively participate in updating
and accessing the state of the register, the process needs to join the system.
Joining the system requires every process to get up-to-date state of the register by
broadcasting an inquiry message. Before broadcasting an inquiry message, the
process waits δ time so that a possibly concurrent write that is broadcast shortly
before the beginning of this join operation can be delivered to all active processes
in the system by the reliable δ-broadcast assumption. Then, after broadcasting
the inquiry message, the process waits 2δ time so that it receives the replies to
its inquiry from all active processes in the system. While waiting, the process
updates the state of its local copy of the register with the value accompanied by
the largest timestamp in lexicographic order and becomes “active” by setting the
local variable active. Once a process becomes active, it can send reply messages
to the inquirys of other processes, and invoke read or write operations on the
register. The pseudocode is given as Algorithm 1.

Algorithm 1. Join Operation and Event Handling for Process pi

1: vali := ⊥, tsi := −1, activei := false, recvdi := ∅, replyToi := ∅
2: wait(δ)
3: broadcast(inquiryi)
4: wait(2δ)
5: activei := true

6: for all j ∈ replyToi do
7: send (reply 〈vali, tsi〉) to pj

8: end for
9: return done

10:
11: when (reply 〈v, ts〉) is received:
12: if tsi < ts then
13: (vali, tsi) := (v, ts)
14: end if
15:
16: when (inquiryj) is delivered:
17: if activei then
18: send (reply 〈vali, tsi〉) to pj

19: else
20: replyToi := replyToi ∪ j
21: end if
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The Read and Write Operations. When a process pi invokes a read, vali is
returned immediately, thus the time needed for a read operation is zero. When
a process pi invokes a write(v), a new value for tsi is constructed and (write

〈v, tsi〉) message is broadcast, and then it waits δ time so that, by the reliable δ-
broadcast assumption, the write message is delivered to other processes. Thus, a
write operation takes δ time to return. The pseudocode is given as Algorithm 2.

Algorithm 2. Read and Write Operations for Process pi

1: when read() is invoked: return vali
2:
3: when write(v) is invoked:
4: tsi := (clock time : i)
5: vali := v
6: broadcast(write 〈v, tsi〉)
7: wait(δ)
8: return ack

9:
10: when (write 〈v, ts〉) is delivered:
11: if tsi < ts then
12: (vali, tsi) := (v, ts)
13: end if

Remark. If a process pi invokes the join at time t, then pi becomes active at time
t+ 3δ. Recall that pi invokes a read r at time t+ 3δ. Assume there are no writes
that overlap r. Let w be the write with the largest timestamp in lexicographic
order among all the writes that return during the time interval [t, t + 3δ). If r
and w belong to the same era, then we claim that r returns the value written
by w. Indeed, if w returns in [t, t + δ), then pi receives that value through
broadcast(inquiryi) at line 3 of Algorithm 1. If w returns in [t+ δ, t+ 3δ), then
pi receives the value due to lines 10–13 of Algorithm 2, which proves our claim.

5 The Analysis

In this section, we analyze the behavior of a dynamic register R. We freely use
the theory of continuous-time Markov chains in this analysis, see for example [6,
10, 21, 22] for more background.

Let us consider an arbitrary arrival stream of processes pi for i ∈ {1, 2, 3, . . .}.
We denote by ti the arrival time of the process pi, that is, the time when the
process pi issues a join command. Suppose that si denotes the time that the
process pi spent in the system before leaving. In other words, the process pi is
in the system from the arrival time ti to the departure time ti + si.

Let Ni(t) denote the indicator variable for the ith process in the system, that
is Ni(t) = 1 for all times t in the range ti ≤ t < ti + si, and Ni(t) = 0 otherwise.
Even though a process might join and leave the system and later join once again,
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for simplicity, we count it each time as a new process. This is why the support
of the indicator variable Ni(t) is an interval.

Let Ai(t) denote the indicator variable that process pi is active at time t, that
is, Ai(t) = 1 if process pi is active at time t and Ai(t) = 0 otherwise. Recall that
a join operation takes 3δ time units before the process becomes active. Therefore,
Ai(t) = 1 if and only if t is contained in the interval [ti + 3δ, ti + si).

Let N(t) and A(t) respectively denote the number of processes and the number
of active processes in the system at time t. Then

N(t) =
∞∑

i=1

Ni(t) and A(t) =
∞∑

i=1

Ai(t).

We model the dynamic register system R with the help of a Markov chain. Let
us suppose that the arrival of the processes pi is governed by a Poisson process
with arrival rate λ. In other words, 1/λ is the mean time between arrivals. More
precisely, for a sufficiently small positive real number h, we have

i) Pr[exactly one process arrives in [t, t + h)] = λh + o(h),
ii) Pr[no process arrives in [t, t + h)] = 1− λh + o(h),

iii) Pr[more than one process arrive in [t, t + h)] = o(h).
Once a process has successfully joined the dynamic register system R, it is

assumed that it is active for a non-zero amount of time and then it leaves R. We
assume that this time duration of a process being active can be modeled by an
exponential distribution with parameter μ. We refer to the parameter μ as the
leaving rate.

Therefore, the Markov chain modeling the number of active processes in the
dynamic register system R can be described by the state transitions.
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If we express this in the form of an infinitesimal generator matrix Q, we obtain

Q =

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

−λ λ
μ −(λ + μ) λ

2μ −(λ + 2μ) λ
. . . . . . . . .

kμ −(λ + kμ) λ
. . .

. . .
. . .

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

(1)

The transition matrix P (t) is given by P (t) = etQ. The probability that the
system will transition from state i to state j within time t is given by Pij(t) :=
(P (t))ij .

Theorem 1. Suppose that a dynamic register system has arrival rate λ and
leaving rate μ. Then the fraction of the time that a joining process finds the
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system in the dormant period, without active processes, converges in probability
to e−λ/μ.

Proof. The limiting probabilities of a continuous Markov chain with infinitesimal
generator matrix P given by (1) exist, are independent of the initial value m,
and are given by

lim
t→∞Pmn(t) = e−λ/μ

(
λ

μ

)n/
n!,

see for instance [6, page 58]. Let Cmn(t) denote the time spent by this Markov
process in the state n starting from state m during the interval (0, t]. Then the
fraction of the time that the system has n active processes is determined by the
limiting probability; specifically, we have

lim
t→∞

(∣∣∣∣Cmn(t)
t

− e−λ/μ

(
λ

μ

)n/
n!
∣∣∣∣ > ε

)
= 0

due to the general result [6, Theorem 4.1.3]. Substituting n = 0 in the last
equation yields the claim. ��
Recall that the era of a dynamic register is defined as the first time the number
of active processes becomes 0 when starting with m ≥ 1 active processes. The
era of a dynamic register can also be modeled by a continuous-time Markov
chain, now with state transition diagram
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Thus, the Markov chain modeling one era has an absorbing state 0. If we examine
the behavior of this Markov chain only at the transition times, ignoring the
waiting time in each state, then we obtain an associated discrete-time Markov
chain, called the embedded Markov chain. In this case, the embedded Markov
chain has the transition probability matrix (see [21, Section 5.1])⎛

⎜⎜⎜⎝
1 0 0 0 · · ·
d1 0 u1 0 · · ·
0 d1 0 u1 · · ·
...

...

⎞
⎟⎟⎟⎠

with dn = nμ/(λ + nμ) and un = λ/(λ + nμ) for all n ≥ 1.

Theorem 2. Let R be a dynamic regular register system. Suppose that the ar-
rival of the processes in the system R can be modeled by a Poisson process with
arrival rate λ, and the time each process stays active while using R is exponen-
tially distributed with rate μ. Then the mean duration of an era starting with m
active processes and ending with 0 active processes is given by

∞∑
n=1

λn−1

n!μn
+

m−1∑
k=1

k!μk

λk

∞∑
j=k+1

λj−1

j!μj
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In particular, the mean duration of an era is at least (eλ/μ − 1)/λ.

Proof. Without loss of generality, let us assume that the beginning of an era
starts at time t = 0, so that there are A(0) = m active processes. Let

Zm = inf{t > 0 : A(t) = 0}
denote the time to the end of this era. Our goal is to calculate the mean duration
Wm = E[Zm] of this era. In other words, Wm is the mean time one has to wait
until zero processes are active.

Let us consider the states following the first transition. The mean waiting time
in state m ≥ 1 is 1/(λ+mμ). The system will transition from m to m+ 1 active
processes with probability λ/(λ + mμ), and from m to m − 1 active processes
with probability mμ/(λ+ mμ). Therefore, we obtain the recurrence relation

Wm =
1

λ + mμ
+

λ

λ + mμ
Wm+1 +

mμ

λ + mμ
Wm−1 (2)

for all m ≥ 1.
Let us denote by Dm = Wm−Wm+1 the difference in mean time to absorption

when starting with a different number of active processes. The differences Dm

have the advantage that one can rewrite the recurrence relation (2) in the more
pleasing form

Dm =
1
λ

+
mμ

λ
Dm−1,

as one can readily check by substituting the definition of Dm into the latter
expression. If we iterate these expressions, then we obtain

D1 =
1
λ

+
μ

λ
D0,

D2 =
1
λ

+
2μ
λ
D1 =

1
λ

+
2μ
λ2

+
(2μ)μ
λ2

D0,

D3 =
1
λ

+
3μ
λ2

+
(3μ)(2μ)

λ3
+

(3μ)(2μ)μ
λ3

D0,

...

Dm =
m∑

i=1

1
λ

m∏
j=i+1

iμ

λ
+

⎛
⎝ m∏

j=1

jμ

λ

⎞
⎠D0.

The latter expression can be simplified to

Dm =
m∑

i=1

1
λ

cm
ci

+ cmD0, (3)

where the coefficient ci is given by ci = i!μi/λi for all i in the range 1 ≤ i ≤ m.
Since D0 = W0 −W1 = −W1, it follows from equation (3) that

1
cm

Dm =
1
cm

(Wm −Wm+1) =
m∑

i=1

1
λci

−W1.
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One can show that limm→∞ 1
cm

(Wm−Wm+1) = 0 holds. Hence, letting m→∞,
we get

W1 =
∞∑

n=1

1
λcn

=
∞∑

n=1

λn−1

n!μn
= (eλ/μ − 1)/λ (4)

By substituting equations (4) and (3) into the equality

Wm = W1 −
m−1∑
k=1

Dk,

we obtain the claim. ��
Due to the stochastic nature of a dynamic register, one might worry that a
process joining at time t will not be able to read the current register content,
because all active processes might have left before the joining process becomes
active and reads the register value at time t + 3δ. The next theorem calculates
the probability of this event.

Theorem 3. Suppose that a dynamic register has n active processes at time t.
Suppose that the time before an active process leaves the dynamic register is
exponentially distributed with parameter μ. Then the probability that the current
era ends before time t + 3δ is given by (1− e−3δμ)n.

Proof. Suppose that p1, . . . , pn are the active processes in the system at time t.
Let Y1, . . . , Yn be the random variables respectively describing the leaving time
of process p1, . . . , pn. Then the probability that the era ends before time t + 3δ
is given by

Pr[max{Y1, Y2, . . . , Yn} < t + 3δ | Y1 ≥ t, . . . , Yn ≥ t]
= Pr[Y1 < t + 3δ, . . . , Yn < t + 3δ | Y1 ≥ t, . . . , Yn ≥ t]
= Pr[Y1 < t + 3δ | Y1 ≥ t]n = Pr[Y1 < 3δ]n = (1− e−3δμ)n.

Here we have used the definition of a maximum and the fact that exponentially
distributed random variables are memoryless. ��
Let us illustrate this theorem with a small example.

Example 1. Suppose that the active processes remain in the dynamic register
system on average for 1/μ = 5 minutes, and let δ = 56 ms. Then

Pr[era ends before t + 3δ|1 active process at time t] < 0.0005599
Pr[era ends before t + 3δ|2 active process at time t] < 3.2× 10−7

Pr[era ends before t + 3δ|8 active process at time t] < 10−26

Thus, if there are eight or more active processes, then the join operation will be
as reliable as current CMOS gates, which have an error rate of 10−25.

We define the “lifetime” of a process to be the time during which the process is
active in the system.
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Theorem 4. Suppose a dynamic register system has arrival rate λ and leaving
rate μ. Then the probability that an era spans just the lifetime of a single process
and there are no further active processes throughout this era is given by μ/(μ+λ).

Proof. The arrivals of active processes are governed by a Poisson process with
arrival rate λ. Let T1 (resp., T2) denote the time the first (resp., second) process
in this era becomes active. The interarrival times between processes becoming
active are exponentially distributed with mean 1/λ. The duration L1 during
which the first process remains active is exponentially distributed with rate μ.
The probability that the first era ends before the second process becomes active
is given by

Pr[first era ends before second process becomes active] = Pr[L1 < T2 − T1].

We have Pr[L1 < T2 − T1] = μ/(μ + λ), see [18, Section 5.2.3]. This is precisely
the probability that the era spans just a single process. ��

After the first write, all subsequent reads in the same era are successful. If
the initial read of a process (cf. [EX2]) is unsuccessful, the process does not
need further (redundant) reads until the first write operation in the era occurs,
since the write is broadcast in Algorithm 2. Thus, we assume, without loss of
generality, that a process makes at most one unsuccessful read.

Theorem 5. Suppose that a dynamic register has arrival rate λ and leaving
rate μ, and the three conditions [EX1], [EX2] and [EX3] are satisfied. Then
Algorithms 1 and 2 implement the dynamic regular register.

Proof. If a join operation is invoked at time t, then it returns done at time
t+ 3δ. A read operation returns the value of the register immediately. If a write
operation is invoked at time t, then it returns ack at time t+ δ. Therefore, the
condition [DR1] is satisfied.

Since eλ/μ > 1 for all arrival rates λ and leaving rates μ, the duration of an
era is at least (eλ/μ− 1)/λ > 0 by Theorem 2. Therefore, condition [DR2] holds.

Recall that a read is unsuccessful if it returns the initial value of the register;
otherwise, the read is successful. An unsuccessful read can only happen (i) if
not preceded by a write in the same era and (ii) overlapping writes did not yet
update the local variable of the reading process. After the first successful read
operation, all subsequent read operations of the era are successful.

Let us denote by S the random variable describing the time of the beginning
of an era. Let T denote the random variable describing the time that elapses
until the first write is issued within this era, that is, S + T denotes the time of
the first write within this era. Let X denote the number of unsuccessful reads
during (S, S+T ]. The probability of an unsuccessful read is given by ε. The reads
of the arriving processes are independent, as they only depend on the arrival of
the process. Therefore, εκ ≤ Pr[X = n] for all n in the range 0 ≤ n ≤ κ.

The probability Pr[X = n] coincides with the probability that n processes
arrive during (S, S + T ] conditioned on the fact that not more than κ processes
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arrive during this interval. Let us denote by {N(t) | t ≥ 0} the counting process
underlying the arrival of active processes. We have

εκ ≤ Pr[X = n] = Pr[N(S + T )−N(S) = n|N(S) = 1 and N(S + T ) ≤ κ]

for all n in the range 0 ≤ n ≤ κ. We omit calculating the latter probability
due to lack of space, but simply note that it follows from Theorem 4 that 0 <
Pr[X = 0] < 1. Therefore,

εκ ≤ max
0≤n≤κ

Pr[X = n] =: α < 1

It follows that the probability ε of an unsuccessful read is bounded by ε < α1/k,
hence ε < 1. Therefore, we can conclude that [DR3] holds. ��

6 Conclusions

In this paper we defined a new consistency condition for the dynamic regular
register, gave a set of simple algorithms that implement the dynamic regular
register, and analyzed the expected lifetime of the dynamic register until the
state of the register may be lost. We also analyzed the probability of the dor-
mant period (with no active process in the system) happening when the join
operation takes 3δ time, and illustrated this probability with a small example
with a realistic value for δ = 56ms. The example calculation tells us an interest-
ing observation that as long as there are some small number of active processes
at any point in time, the dynamic register system will be able to sustain its state
with high probability, even when the churn is rather high (average active time
of a process being only 5 minutes).

References

1. Aguilera, M.K.: A pleasant stroll through the land of infinitely many creatures.
SIGACT News Distributed Computing Column 35, 36–59 (2004)
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Abstract. Bounding the impact of transient small-scale faults by self-stabilizing
protocols has been pursued with independent objectives: Optimizing the system’s
reaction upon topological changes (e.g. super-stabilization), and reducing system
recovery time from memory corruptions (e.g. fault-containment). Even though
transformations adding either super-stabilization or fault-containment to exist-
ing protocols exist, none of them preserves the other. This paper makes a first
attempt to combine both objectives. We provide a transformation adding fault-
containment to silent self-stabilizing protocols while simultaneously preserving
the property of self-stabilization and the protocol’s behavior in face of topologi-
cal changes. In particular, the protocol’s response to a topology change remains
unchanged even if a memory corruption occurs in parallel to the topology change.
The presented transformation increases the memory footprint only by a factor of
4 and adds O(1) bits per edge. All previously known transformations for fault-
containing self-stabilization increase the memory footprint by a factor of 2m/n.

1 Introduction

In the absence of faults, self-stabilizing [4] protocols converge to fault-free configu-
rations in finite time, without any external intervention, and regardless of the initial
configuration. Afterwards, they remain fault-free until the next fault. In result, self-
stabilizing protocols recover from transient faults of any scale or nature. Transient faults
may be memory corruptions but also topology changes. Hence, self-stabilizing proto-
cols are suitable for dynamic systems, provided that topology changes don’t occur too
frequently. However, in self-stabilizing research, protocols are often only optimized
with respect to their worst-case stabilization time, but not with respect to their response
to small-scale transient faults. This issue has been addressed by super-stabilization [5]
and fault-containment [6].

Super-stabilizing protocols are self-stabilizing, i.e. they tolerate any of transient fault.
In addition they provide certain guarantees during convergence after a topology change,
provided that the configuration prior to the topology change was legitimate. For exam-
ple, Blin et al. [1] give a super-stabilizing protocol, that guarantees a loop-free construc-
tion of a spanning tree after a topology change. This is especially desirable if the tree
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is used for routing purposes. Likewise, self-stabilization has been enhanced with fault-
containment to obtain protocols recovering from memory corruptions of a single node
in very short time in addition to recovering from transient faults of larger scale or differ-
ent nature (e.g. topology changes) [6,9]. Protocols are known, for which the corruption
of a single bit of a legitimate configuration can lead to the disruption of the local states
of 50% of the system’s nodes (examples are given in [6,9]). Due to limited knowledge,
nodes in the neighborhood of the corrupted node cannot identify faulty information
and allow this information to spread to their state and then to farther away nodes. This
process is called contamination. Transformations adding fault-containment to existing
silent self-stabilizing protocols [6,9] exist. They maintain backups of each node’s local
state in the neighborhood. Using these backups, a node can recover the value of its local
state prior to the memory corruption. To circumvent contamination, nodes wait until all
neighbors have completed their recovery attempt. These transformations store backups
on every neighbor of a node. Hence, the average number of backups stored per node is
2m/n. To save memory, lowering the number of backups is desirable.

Dolev and Herman [5] assume that the distributed system is equipped with a mecha-
nism to detect topology changes. However, we argue that the variables used for this
purpose must be regarded as subject to memory corruptions when designing fault-
containing protocols. It is an open question, whether it is feasible to reliably detect
topology changes in spite of memory corruptions. All known transformations for fault-
containment do not solve this problem. They use a specific technique to recover from an
insufficient number of backups which breaks in face of topology changes. Instead, they
should gracefully handle the case in which backups become unreachable by a topology
change.

Our Contribution. This paper describes a transformation to add fault-containment to
any silent self-stabilizing protocol. The transformed protocol is still self-stabilizing but
also recovers from the corruption of a single node’s local state in constant time. The
transformation preserves the behaviour of the untransformed protocol with respect to
topology changes, no matter whether an additional memory corruption happens in par-
allel to the topology change. At the same time, the number of backups distributed among
the neighbors of each node is limited to a constant. The transformation focuses on
topology changes that add or remove a single edge. More severe topology changes are
discussed in Section 4. The given transformation shows, that reliably detecting topol-
ogy changes in spite of memory corruption is feasible. However, the implementation is
complex and there are many special cases to take care of.

1.1 Related Work

This section focuses on work related to super-stabilization and resilience against topo-
logical faults in general. A comprehensive overview of work related to resilience against
memory corruptions can be found in [9].

Dolev and Herman [5] introduce the concept of super-stabilization. Formally, a self-
stabilizing protocol is called super-stabilizing with respect to class Λ of topology
changes if all configurations following a legitimate configuration satisfy a passage pred-
icate even in case of a single class Λ topology change. The passage predicate usually
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specifies some desired safety property. Topology changes include edge removal and
edge additions. Node crashes or recoveries are modelled as removal and addition of all
adjacent edges. To keep track of topology changes, Dolev and Herman allow the pro-
tocols to define so-called interrupt statements. These are executed immediately after a
topology change and prior to other regular moves. However, this mechanism is assumed
to be intrinsic to the distributed system. It is unclear whether a protocol that uses such
interrupt routines can be transformed into a protocol that does not. Super-stabilizing
protocols not relying on interrupt routines exist, e.g. the super-stabilizing spanning tree
protocol given in [5]. Another example is the protocol for loop-free spanning tree con-
struction by Blin et al. [1].

Herman [7] and Katayama et al. [8] consider super-stabilization (that is maintaining
a safety property after a transient fault) in the context of memory corruption of a sin-
gle node. The given protocols are not designed to be super-stabilizing with respect to
topology changes. Since the safety property can easily be violated by a memory cor-
ruption, the authors allow the protocols to violate it once. Despite its similarity to fault-
containment, the focus seems to be on satisfying the safety property, while the focus of
fault-containment is fast repair of corruptions without any additional guarantees.

Datta et al. describe a self-stabilizing protocol for leader-election in dynamic net-
works [2] offering distinct features in response to transient topological faults: If pos-
sible, it re-elects a node that was a leader prior to the topology change. Furthermore,
during recovery from a topology change, no node changes its choice of leader more than
once. The topology changes can be of arbitrary scale, provided that they happen in a
legitimate configuration. However, no topology changes may occur during stabilization.
This subject is discussed by Derhab and Badache [3]. Their leader-election protocol is
self-stabilizing even if topological changes occur frequently during stabilization.

Pectu and Faltings published a self-stabilization protocol for multiagent combinato-
rial optimization [11]. They describe two extensions: one to make the protocol fault-
containing and one to make it super-stabilizing with respect to topology changes.
However, it is unclear whether both extensions can be combined, and whether they re-
main functional in case a memory corruption happens in parallel with a topology change.

1.2 Model of Computation

A distributed system is described by an undirected graph (V,E) where V is the set of
nodes and E ⊆ V ×V is the set of edges (also called topology). Let n = |V |,m = |E|,
and Δ denote the maximal degree of the graph. Pairs of nodes connected by an edge
are called neighbors. The set of neighbors of node v is denoted by N(v) and N [v] :=
N(v) ∪ {v}. Each node v ∈ V executes a number of protocols. If node v executes
protocolX , then the tuple (v,X) is called an instance ofX . Node v designates a set of
variables to protocolX constituting the local state of instance (v,X). The local states of
all instances on node v constitute the local state of node v. The local states of all nodes
constitute the configuration of the system. Each protocol consists of a set of rules of the
form guard −→ statement where guard is a Boolean predicate. Nodes communicate
using locally shared memory; guards and statements may reference all variables within
N [v], no matter which protocol they belong to. However, statements must only modify
those variables of node v which are designated to the instance the statement belongs to.
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A rule is called enabled, if its guard evaluates to true. An instance (resp. node) is called
enabled, if any of its rules (resp. instances) is enabled. The execution of statements is
controlled by a scheduler, which operates in steps. This paper focuses on the central
scheduler. In the i-th step, it non-deterministically selects an enabled node si ∈ V to
make a move. No fairness assumptions are made. During its move, the node inspects all
instances, one by one, in arbitrary order. If an instance is enabled, the node executes the
statements of one enabled rule of that instance. Using [10] the transformation can be
shown to work under the distributed scheduler. However, due to space limitations, this
is omitted.

An execution e = 〈c0, c1, c2, . . .〉 is a sequence of configurations, where c0 is called
the initial configuration and ci is the configuration after the i-th step. Topology changes
are assumed to happen in between steps. The dynamic topology of the system is de-
scribed by the sequence 〈E0, E1, E2, . . .〉, where each Ei is a set of edges. The set
Ei−1 describes the topology before and during the i-th step. E0 is also called the initial
topology. In other words, if the current configuration is ci−1, the current topology is
Ei−1, and the node si makes a move, then this yields ci. Time is measured in rounds.
The first round of e and the corresponding topology sequence is finished if every node
enabled in c0 either had the chance to make a move or has been disabled due to a move
of a neighboring node or a topology change. All further rounds are derived recursively
by applying the definition of the first round to the suffix of e which starts at the last
configuration of the first round.

Let L denote a Boolean predicate that decides whether a configuration is legiti-
mate with respect to the corresponding topology. A distributed system is called self-
stabilizing if, in the absence of topology changes and memory corruptions, any exe-
cution reaches a legitimate configuration after a finite number of steps (convergence)
and once a legitimate configuration is reached all subsequent configurations are also
legitimate (closure). A silent self-stabilization protocol guarantees that all nodes be-
come disabled eventually. Let P be a protocol that is self-stabilizing with respect to
the Boolean predicate LP . Without loss of generality, it is assumed that P uses only
a single variable v.p on node v. The transformation adds additional variables to each
node’s local state. Those variables are called secondary. The variable v.p of the origi-
nal protocolP is called primary. By the distinction of primary and secondary variables,
any configuration is split up into an ordered pair of a primary configuration and a sec-
ondary configuration. The primary configuration is called legitimate with respect to the
corresponding topology, if LP is satisfied.

A single topology change is defined to be the removal or addition of any number
of edges, or any combination thereof. Let Λ be an arbitrary class of topology changes.
The tuple (E, c) is called (Λ, k)-faulty, if a topology E′ and a configuration c′ exist,
such that c′ is legitimate with respect to E′ and either E differs from E′ in a single
topology change of class Λ, c differs from c′ in the variables of k nodes, or both. In-
formally, it is said that c is (Λ, k)-faulty. Note that in following, this paper focuses on
the class Λ which describes the removal or addition of a single edge and k = 1, i.e.
the corruption of the local state of a single node. The transformed protocol is called
(Λ, 1)-fault-containing if for each connected component, after O(1) rounds, starting
in a (Λ, 1)-faulty configuration, the transformed protocol (1) is able to reverse the
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memory corruption such that it shows the same reaction as the untransformed protocol
P in response to the topology change or (2) reaches a legitimate primary configura-
tion if no topology change has happened. The containment time denotes the number of
rounds needed until (1) or (2) holds. The number of nodes per connected component
that change their primary state during the containment time is called contamination
number. The fault-gap is the number of rounds it takes until the transformed protocol
reaches a legitimate configuration when started in a (Λ, 1)-faulty configuration. A no-
table exception from (1) holds, if connected components of two or fewer nodes existed
prior to the topology change. In general, it is impossible to determine the values of the
local states prior to a memory corruption within such components. In such cases, the
behaviour of the transformed protocol after a topology change matches the behaviour of
protocol P in response to the topology change happening in a legitimate configuration
different from the one prior to the memory corruption.

The algorithms in this paper evaluate guards of protocol P which is to be trans-
formed. For that matter, we define the Boolean predicateGP (v), which checks whether
P is currently enabled for node v. However, two variants GP (v : x,⊥) and GP (v :
x, u : y) of this predicate are defined in Section 2.3 to resolve certain special cases.
Furthermore, it is assumed that each node executes a fixed and a dynamic set of pro-
tocols. These sets determine which instances exist. The dynamic set allows it to spawn
and delete instances at runtime. The function K (v) returns the set of protocols that node
v is currently executing, e.g.X ∈ K (v) if and only if (v,X) has been spawned and was
not deleted yet. Memory corruption of the dynamic set can (1) delete any number of in-
stances or (2) spawn additional instances with arbitrary variable values. In addition to
that, a memory corruption may perturb all variables of any instance (static or dynamic).

2 The Transformation

Figure 1 shows the three layer architecture of the transformation described in this paper.
The upper layer implements fault detection and repair. In case no faults are detected or
all faults have been repaired, the upper layer starts executing protocol P , the protocol
to be transformed. Per node, the upper layer keeps backups of each node’s primary
state on three adjacent nodes. The backups allow to detect and repair faults in most
cases. However, the main challenges arise from nodes with less than three neighbors
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and backups becoming unavailable due to topology changes. For such nodes, the middle
layer provides up to 2 additional backups. The lower layer decides to which nodes the
backups are distributed. However, the lower layer is not in the focus of this paper and is
seen as a black box. It is assumed to be a silent self-stabilizing protocol which provides
its output in form of two functions described in Sections 2.1 and 2.2.

Roughly speaking, the transformation attempts to restore the corrupted primary states
to the values prior to the memory corruption. If that is successful, the transformed pro-
tocol inherits the behaviour of protocol P concerning topology changes. Note that at
least two backups are needed to decide whether a single memory corruption has af-
fected the primary state of node v or one of the backups. This cannot be satisfied in
any case. The worst case is that v is part of a connected component of only one or
two nodes after an edge removal. In the following, such components are called minor
components. The resolution of this case is described in Section 2.3. If v is not part of a
minor component after the edge removal, it can be ensured that two backups are reach-
able within the 2-hop neighborhood. Certainly, this is satisfied in the trivial case, that
3 backups exist within the 1-hop neighborhood of v before the edge removal. In case
that N(v) = {a, b}, backups are kept on a, b, and on one neighbor of each a and b.
If N(v) = {a}, then backups are kept on node a and two nodes adjacent to a. The
backups at 2-hop distance are called satellite backups. The middle layer is responsible
for creating, updating, and deleting satellite backups. Note, that the topology may not
permit to distribute the backups as described (e.g. if N(v) = {a} but a has only one
neighbor). However, in case of such a topology it suffices to store backups on the avail-
able nodes. We ask the reader to verify, that after removing an arbitrary single edge, at
least 2 backups are reachable within the 2-hop distance of node v or, if that is not the
case, node v has become part of a minor component. It is worth mentioning, that the
addition of an edge which connects a former minor component to another component
of the system is equally challenging. Within a minor component, one cannot establish
the necessary redundancy to reverse a memory corruption. Hence, other means of repair
have been implemented. They are described in Section 2.3.

2.1 Upper Layer

To implement the upper layer, a technique similar to [9] is used. The technique is based
on the notion of cells. Cell Cv , v ∈ V is constituted by the so-called center instance
(v,Q) and all so-called responding instances (u,Rv), u ∈ N(v). Individual responding
instances may temporarily not exist. Note that protocolRv is parameterized. In fact, all
instances (v,Ru) with v ∈ V and u ∈ N(v) may exist. ProtocolQ andRv implement a
query-response mechanism, the so-called dialog, between the center and all responding
instances. The repair mechanism is implemented in form of two procedures actionQ
and actionRv which are called by Q and Rv. Due to the lack of space, the implemen-
tation of protocolsQ and Rv is omitted. The rules ofQ and Rv can be found in [9] and
are informally described in this section. Note that in [9], a static topology is assumed
and no explicit rules for adjusting to topology changes are given. A naive approach
would result in self-stabilizing behaviour, but would not show the fault-containing be-
haviour desired. This section describes a dialog implementation which is more resilient
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against topology changes and provides an enhanced repair mechanism by refining the
predicates used by the guards of Q and Rv and the procedures actionQ and actionRv .

Two cellsCv andCu are neighbors, if v and u are neighbors. Each cell is a distributed
implementation of the state-machine shown in Figure 1. The dialog mechanism allows
for implementing each transition of the state-machine as one invocation of actionRv (u)
for each responding instance (u,Rv) followed by one invocation of actionQ(v). This
way, actionRv can provide information about v’s 2-hop neighborhood which is then
used by the fault repair implemented in actionQ. The given dialog-implementation sat-
isfies the important requirement, that each individual cell starts with the first transition
from PAUSED to REPAIRED when starting in a (Λ, 1)-faulty configuration. Also, the
dialog of Cv can be delayed temporarily depending on the state of neighboring cells.
This mechanism allows to execute any fault repair strictly prior to any moves of proto-
col P . Premature execution of P would lead to contamination, since P is assumed to
be non-fault-containing.

In the following, the four states of the state-machine are called positions, in order
to avoid confusion with the notion of local states. (v,Q) maintains a variable v.s stor-
ing the current position within the state-machine. In order to change the current posi-
tion, (v,Q) first sets the variable v.q to the desired position. The pair (v.s, v.q) is said
to be a query for a transition from v.s to v.q if v.q 	= v.s. Otherwise, the pair said
to be a pause at position v.s. Each responding instance (u,Rv) maintains a so-called
response-variable u.rv which is set to the value of v.q in order to acknowledge a query
by (v,Q). Along with setting u.rv, actionRv (u) is called. If all responding instances
acknowledge, then Cv is called dialog-acknowledged and (v,Q) finishes the current
transition by setting v.s := v.q and invoking actionQ(v). Note, that queries for a tran-
sition not shown in Figure 1 and pauses at a position other than PAUSED are invalid. So
if v.s 	= PAUSED, then (v,Q) must ask for another transition straight away. While the
dialog progresses, cell Cv remains in a dialog-consistent state, that is (v.s, v.q) is either
a valid query or a valid pause and each response-variables is equal to either v.s (ac-
knowledgement of the previous query) or v.q (acknowledgement of the current query).
A cell is called dialog-paused, if (v.s, v.q) is a valid pause and if all response variables
are equal to PAUSED as well. Any non-dialog-consistent cell Cv performs a reset to
position PAUSED: First, (v,Q) sets both v.s and v.q to PAUSED. Then all responding
instances follow this call for a reset and set their response-variable to PAUSED as well.
After the reset, the cell is dialog-paused and hence dialog-consistent. To make the dia-
log of a cell more resilient against topology changes, it is allowed to continue even if not
all of v’s neighbors execute an instance of Rv. However, cells without any response-
instances are said to be incomplete and are considered non-dialog-consistent. Hence,
they perform a reset as described above. If the current position is v.s = PAUSED, then
Cv wait for all missing instances of Rv to spawn. These concepts are formalized by the
following predicates:

incomplete(v) ≡ N(v) 	= ∅ ∧ R(v) = ∅
validQuery(v) ≡ v.q = (v.s+ 1) mod 4

dialogConsistent(v) ≡ (v.s = v.q = PAUSED ∨ validQuery(v)) ∧
¬incomplete(v) ∧ ∀u ∈ R(v) : u.rv ∈ {v.s, v.q}
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dialogPaused(v) ≡ v.s = v.q = PAUSED ∧ ¬incomplete(v) ∧
∀u ∈ R(v) : u.rv = PAUSED

dialogAcknowledged(v) ≡ validQuery(v) ∧ ¬incomplete(v) ∧
(∀u ∈ R(v) : u.rv = v.q) ∧ (v.s = PAUSED ⇒ R(v) = N(v))

where R(v) = {u ∈ N(v) | Rv ∈ K (u)} denotes the set of all neighbors of v that
execute an instance of Rv. Incomplete cells occur in particular if a topology change
adds an edge that connects a single node to an existing graph component or if the only
instance of Rv within Cv is deleted by a memory corruption. The dialog reset ensures
that cells execute the first transition of state-machine before any other, as desired. We
assume, that a node is enabled if it does not execute all expected response instances and
that these are spawned as soon as the node is selected by the scheduler, but only if the
corresponding cell is at position PAUSED. Similarly, nodes delete all instances (v,Ru)
with u 	∈ N(v). When spawned, the local state of each instance (u,Rv) is initialized
such that u.rv = PAUSED and u.cv = ⊥.

Each responding-instance (u,Rv) maintains a variable u.cv which either stores a
backup of v.p or is equal to ⊥. The latter indicates that currently no backup is stored.
Certainly, memory corruptions can also delete a backup by setting u.cv to ⊥. Further-
more, it is assumed that a value of ⊥ occupies only O(1) bits in the local state of u.
The lower layer provides the desired backups distribution in form of a (deterministic)
function bd(v). It returns a set of at most 3 neighbors of v which are the ones to store the
backups. Whenever Cv is dialog-paused and (v,Q) detects a mismatch between bd(v)
and the current backup distribution, a new cycle of the state-machine is started by set-
ting v.q := REPAIRED. During the subsequent transition from EXECUTED to COPIED,
the given implementation of actionQ and actionRv updates the variable v.cptr with
the current value of bd(v) and all responding-instances delete or update their back-
ups, depending on whether v.cptr points at them. Note that for notational convenience,
any reference to a non existing variable u.cv (i.e. Rv 	∈ K (u)) is assumed to yield
⊥. Furthermore, a cycle is started, if v is enabled with respect to P . The following
start-condition formalizes the above:

startCondQ(v) ≡ GP (v) ∨ v.cptr 	= bd(v) ∨
(∃u ∈ N(v) : u ∈ v.cptr ∧ u.cv 	= v.p) ∨
(∃u ∈ N(v) : u 	∈ v.cptr ∧ u.cv 	= ⊥)

As mentioned earlier, the dialog of cell Cu is delayed under certain conditions in order
to keep node u from executing P prematurely. A responding instance (v,Ru) simply
delays its acknowledgement if u.q = EXECUTED and as long as an inconsistency in
Cv is detected. For the purpose of the latter, we define a predicate repaired(v). If this
predicate is satisfied, then Cv will not attempt any further repair of v.p. Otherwise, a
repair of v.p by Cv is still pending. A backup with a value equal to v.p is called confir-
mation. Clearly, repaired(v) should be true if Cv is copy-consistent which means that
at least one backup exists and all existing backups are confirmations. However, at po-
sitions REPAIRED and EXECUTED, Cv is expected to be non-copy-consistent. In this
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Procedure actionQ(v)
Nodes: v is the current node

if v.q = REPAIRED then
v.o := oldNID(v)
if |N(v)| = 1 and ∃u ∈ R(v) : u.dv = SINGLE then nodePairResetQ(v, u)
else if ∃u ∈ R(v) : u.cv = v.p ∨ u.dv = KEEP then keep value of v.p
else if ∃u,w ∈ R(v) : u �= w ∧ u.cv = w.cv ∧ u.cv �= ⊥ then v.p := u.cv
else if ∃u ∈ R(v) : u.cv �= ⊥ ∧ u.dv = UPDATE then v.p := u.cv
else if |N(v)| ≥ 2 and ∃u ∈ R(v) : u.id = v.o ∧

u.dv ∈ {SINGLE,MINOR} then nodePairResetQ(v, u)
else if |N(v)| = 1 and

∃u ∈ R(v) : u.dv = MINOR then nodePairResetQ(v, u)
else compute new value of v.p such that ¬GP (v : v.p,⊥)

if v.q = EXECUTED then
v.cptr := bd(v)
if |N(v)| = 1 and ∃u ∈ N(v) : u.dv = SINGLE then keep value of v.p
else if GP (v) then execute a move of P

Procedure actionRv (u)
Nodes: u is the current node, v is the center node

if v.q = REPAIRED then
if |N(u)| = 1 then u.dv := SINGLE

else if ∃w ∈ N(u) : w �= u ∧ w.sbu,v = v.p then u.dv := KEEP

else if u.cv �= ⊥ and
∃w ∈ N(u) : w �= u ∧ w.sbu,v = u.cv then u.dv := UPDATE

else if noBackups(u) and repaired(u) and v.id = u.o then u.dv := MINOR

else if (¬noBackups(u) or ¬repaired(u)) and
v.id = oldNID(u) then u.dv := MINOR

else u.dv := NONE

if v.q = COPIED then
if u ∈ v.cptr then create or update variable u.cv := v.p
else delete variable u.cv

Procedure nodePairResetQ(v, u)
Nodes: v is the current node, u is a neighbor of v

if enabled(v : v.p, u : u.p) then
if ∃x : ¬enabled(v : x, u : u.p) then v.p := x
else if �y : ¬enabled(v : v.p, u : y) then

compute new value of v.p such that ∃y : ¬enabled(v : v.p, u : y)
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case, repaired(v) indicates whether Cv will be copy-consistent once it has completed
the transition to COPIED.

copyConsistent(v) ≡ (∀u ∈ R(v) : u.cv = ⊥ ∨ u.cv = v.p) ∧
(N(v) 	= ∅ ⇒ ∃u ∈ R(v) : u.cv = v.p)

repaired(v) ≡ copyConsistent(v) ∨ (dialogConsistent(v) ∧
(v.s = REPAIRED ∨ (v.s = EXECUTED ∧

(N(v) 	= ∅ ⇒ v.cptr ∩R(v) 	= ∅))) ∧
(∀u ∈ R(v) : (u ∈ v.cptr ∧ u.rv = COPIED)⇒ u.cv = v.p) ∧
(∀u ∈ R(v) : (u 	∈ v.cptr ∧ u.rv = COPIED)⇒ u.cv = ⊥))

Like in our previous work, repaired(v) is designed to be a stable predicate, i.e. once it
is true it remains true under the execution of the transformed protocol. For this to be the
case, bd(v) must return at least one neighbor of v at all times. If necessary, bd(v) may
(deterministically) choose an arbitrary neighbor of v.

Recall how the repair-mechanism is implemented by the transition from PAUSED to
REPAIRED: first, actionRv (u) is invoked for all u ∈ N(v). Subsequently, actionQ(v)
is invoked. Clearly, the value of v.p must not be changed if a confirmation is found.
Confirmations within the 1-hop neighborhood are detected by actionQ itself. Confirm-
ing satellite backups are detected by actionRv (u) which sets the so-called decision-
variable u.dv to KEEP. If sufficiently many backups are reachable and v.p has been
corrupted, then two backups with an equal value can be found. Again, such a pair of
backups is either detected by actionQ itself or, if it includes a satellite backup, it is
detected by actionRv (u) which sets u.dv to UPDATE. In these cases, v.p is updated us-
ing the backups. It is worth mentioning, that a confirmation might actually be a forged
backup, i.e. a backup which did not exist before the memory corruption. Forged confir-
mations actually have a beneficial effect and there is no reason to detect them.

If none of that succeeds, then it can be concluded that either (1) the topology change
was an edge removal and node v is now part of a minor component or (2) the topology
change added an edge and node v was part of a minor component prior to the topology
change. This is discussed in Section 2.3.

2.2 Middle Layer

The middle layer is responsible for maintaining the satellite backups. We present an
implementation based on the cell technique which has already been used in the upper
layer. To avoid name clashes with the upper layer, names and variables are annotated
by a (M) superscript. Like the cells of the upper layer, each cell C(M)

v , v ∈ V consists

of the instances (v,Q(M)) and (u,R(M)
v ) which implement a query-response dialog.

However, the corresponding state-machine is much simpler and consists of two transi-
tions between two states. Also, the corresponding procedures action(M)

Q and action(M)
Rv

differ. Recall that the middle layer must not delete, create, or update any satellite back-
ups as long as a repair attempt by the upper layer is still pending. Again, the technique
of delaying acknowledgements is used to achieve this.
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Each node u ∈ V maintains a variable u.sc. It is expected to hold u.sc = 0 if
|N(u)| ≥ 3, u.sc = 1 if |N(u)| = 2, and u.sc = 2 if |N(u)| = 1. It denotes, how
many satellite backups u expects to be reachable via each of its neighbors. It is assumed
that u is enabled as long as u.sc does not have the expected value and that u adjusts
the value as soon as it is selected by the scheduler. At the end of the first transition of
the state-machine, the center-instance of C(M)

v updates the variable v.sbptr . For each
u ∈ N(v) with a non-zero u.sc, v.sbptr contains the pointers to those neighbors of v
which are to store the backups of u’s primary state. The lower layer provides the desired
distribution of the satellite backups in form of the function sbd(v, u) which returns a set
of neighbors of v, excluding u. The function may access u.sc to determine how many
satellite backups are to be created. During the second transition of the state-machine, the
responding-instances then create, update, or delete the satellite backups. The satellite
backup of u.p held by (w,R(M)

v ) is stored in in the variable w.sbv,u. If (w,R(M)
v ) does

not hold a satellite backup of u.p, then it is said that w.sbv,u = ⊥. Note that cell C(M)
v

does not manage the satellite backups of node v’s primary state. Instead, it maintains
the satellite backups for all u ∈ N(v).

A responding instance (w,R(M)
v ) delays its acknowledgements as long as repaired

(w) is false. When starting in a (Λ, 1)-faulty configuration, this prevents the middle

layer from prematurely modifying any satellite backups. CellC(M)
v starts a new cycle of

the state-machine if for some neighbor u ∈ N(v) a mismatch between u.sc, sbd(v, u)
and the current distribution of the satellite backups is detected or simply if a satellite
backup is out of date.

2.3 Detecting New Edges Near Minor Components

During the design of this transformation, it turned out (probably counter intuitional)
that the collapse of an edge is rather easy to compensate compared to the addition of
an edge. The core problem arises from nodes that have been part of a minor component
prior to the addition of an edge. For other nodes, at least two backups are reachable
and can be used to determine the original values of the primary states prior to a memory
corruption. In particular, if a node has been part of a minor component, then the memory
corruption may delete the only backup in existence, or even worse it may add a forged
backup within the 2-hop neighborhood of the node.

In case that no confirming backup is found, the implementation tries to detect the
edge added by the topology change. The implemented detection is successful if the
minor component consist of two nodes. The result is reported to both nodes and they
reset their local states such that they would be disabled with respect to P if the new
edge did not exist. The detection of minor components consisting of a single node prior
to the topology change is implemented as a fallback solution: if all other tests fail, then
it is assumed that the node had no neighbors prior to the topology change. The node
performs a reset of its primary state, such that the node would be disabled with respect
to P if there were no adjacent edges. For that purpose we define predicateGP (v : x,⊥),
which evaluatesGP (v) in a virtual topology and configuration with no edges adjacent to
v and in which the primary state of v is equal to x. Similarly, predicateGP (v : x, u : y)
evaluatesGP (v) in a virtual topology and configuration in which u is the only neighbor
of v and in which the primary states of v and u are equal to x and y respectively.
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Let u and v denote two nodes that formed a minor component before the topology
change. Assume that the topology change has added new edges adjacent to v. The case
that nodes u and v were not affected by the memory corruption can be ignored. In this
case, u.cv is a confirmation of v.p and v.cu is a confirmation of u.p and so neither
v nor u change their primary state during repair. So assume that either u or v was
affected by a memory corruption. Then v uses the following logic to identify node u
among its neighbors: If v sees exactly one backup of its own primary state within the
1-hop neighborhood, then it must be u.cv. It doesn’t matter whether the backup was
corrupted or not. Its mere existence identifies node u. If v sees no backup within its
1-hop neighborhood, then the memory corruption must have affected node u, but not
the local state of v. In this case, node v stores a backup of exactly one of its neighbors,
namely node u.

A more detailed discussion is needed, to show that the tests performed by node v
identify the former minor component as long as required, that is until it holds for both
cells v and u, that the cell is repaired or there is a confirmation of its primary state.
Recall that responding nodes may delay their acknowledgments during the transition
REPAIRED → EXECUTED. Due to this synchronization mechanism between neighbor-
ing cells, cell v cannot update its backups unless cell u is repaired. Hence, the parts
of the tests that are based on backups within cell v are guaranteed to work as long as
needed. The second part of the detection is partly based on (the non-existence of) back-
ups of cells neighboring to v. Let (v, w) be an edge added by the topology change. As
soon as cell v is repaired, cell w can update the variable v.cw. The detection ceases to
work: Node u is not the only node anymore, for which v stores a backup. Even worse,
cell w can start a new cycle, during which w can execute a move of P . After this, the
situation is completely symmetrical from the point of view of node v. Hence, before
cell v becomes repaired, actionQ(v) stores the result of the detection in the variable
v.o for later use. Procedure actionRu(v) uses the memorized value when appropriate.

The following function implements the detection as described above and returns the
Id of the neighbor that presumably was part of the minor component prior to the topol-
ogy change. The quantifier ∃! denotes “there exists exactly one”. In case the detection
is unsuccessful, the value⊥ is returned.

noBackups(v) ≡ ∀u ∈ N(v) : u.cv = ⊥

oldNID(v) :=

⎧⎨
⎩
u.id if ∃!u ∈ N(v) : u.cv 	= ⊥
w.id if noBackups(v) ∧ ∃!w ∈ N(v) : v.cw 	= ⊥
⊥ otherwise

Once a former minor component of two nodes has been detected, both nodes try to
perform a reset. They do that by calling procedure nodePairResetQ. It first tries to
determine which of the two nodes needs to change its primary state to disable protocol
P on both nodes. If only one node’s memory was corrupted, then it is always sufficient
that only one node changes its primary state. nodePairResetQ correctly detects that,
using the following predicate:

enabled(v : x, u : y) ≡ GP (v : x, u : y) ∨GP (u : y, v : x)
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However, the same procedure is also used, to speed up stabilization of a connected com-
ponent that contains only two nodes. In this case the node which calls nodePairResetQ
first, detects whether both primary states need to be resetted. If that is the case, then
it adjusts its own primary state such that a value exists, with which its neighbor (that
calls nodePairResetQ second) can disable both nodes with respect to P . Otherwise,
only one node adjusts its primary state. Note that in order to work under the dis-
tributed scheduler, nodePairResetQ needs to be modified such that it performs sym-
metry breaking based on node identifiers.

3 Analysis

This section gives an overview over the space and time complexity of the transforma-
tion. Since the exact memory consumption per node depends on the backup distribution
computed by the lower layer, we give an upper bound on the average space consumed
per node. Consider that according to the model defined Section 1.2, the three layers
run in parallel in the sense that one round covers one round of each individual layer.
A configuration is legitimate if all three layers have terminated. In particular, the ter-
mination of the upper layer guarantees that P has terminated as well and the primary
configuration is legitimate.

Let T stab
L (T stab

P resp.) denote the stabilization-time of the lower layer (protocol P
resp.). Furthermore, let T fgap

L denote the fault-gap of the lower layer for a (Λ, 1)-faulty
initial configuration. Similarly, T fgap

P denotes the fault-gap of protocol P for a (Λ, 0)-
faulty initial configurations (in [5] it is called super-stabilization time). The following
Theorem summarizes the main result of this paper:

Theorem 1. The transformed protocol is self-stabilizing with a stabilization time of
O(1) + max{9T stab

P , T
stab
L } rounds. Furthermore, it is (Λ, 1)-fault-containing with a

fault-gap of O(1) + max{9T fgap
P , T fgap

L }, containment-timeO(1), and contamination-
number 2. The average size of the space required per node is O(m/n + SP + SL),
where SP + SL denotes the average size of the space required per node by the lower
layer and protocol P . Implementations of a lower layer exist, such that both T stab

L and
T fgap
L are constant.

Furthermore, the transformation provides (∅, 1)-fault-containment in the sense of [6,9],
i.e. a memory corruption but no topology change occurs. The fault-gap is then lowered
to O(1) + T̂ fgap

L where T̂ fgap
L denotes the fault-gap of the lower layer for (∅, 1)-faulty

initial configurations. Simple implementations of the lower layer which randomly select
neighbors are feasible and provide constant T stab

L , T fgap
L , and T̂ fgap

L .
Due to the lack of space, only a short sketch of the proofs is given. First, consider the

fault-gap and stabilization time: In parallel with the stabilization of the lower layer, the
cells of the upper layer execute rounds of protocol P . Hence, the lower layer and the
primary states stabilize in parallel. The redesign of the upper layer preserved all major
properties of our previous design. In particular, all cells of the upper layer become
dialog-consistent and repaired after a constant number of rounds. Every 9 rounds, the
upper layer has finished one round of P . After the lower layer has terminated, the cells
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of the upper layer may have to move the backups to their final destinations. When both
layers have terminated, the middle layer can finalize the distribution of the satellite
backups. These final adjustments take a constant number of rounds.

To show that the composition of the three layers terminates within a finite number
of steps, we first show that the upper layer terminates in a finite number of steps un-
der the assumption that the variables of the lower layer do not change. Similarly, we
are able to show that the middle layer terminates in a finite number of steps under the
assumption that the variables of neither the lower nor the upper layer change. In con-
clusion, the composition of all three layers terminates after a finite number of steps
under the assumption that the lower layer terminates after a finite number of steps. The
proof that the upper layer terminates follows the same strategy than the proof given in
[9]. The important stepping stones are that dialogConsistent(v) and repaired(v) are
stable predicates, and that each cell becomes dialog-consistent and repaired within a
finite number of moves of the cell. The proof concludes with its main argument that the
number of modifications of a primary state (either by repair or by a move of P ) and
hence the number of cycles per cell is bounded by a function of n and the worst-case
stabilization time (in steps) of protocol P . Similar arguments hold for the middle layer
since it reuses the cell technique.

The variables of protocols Rv and R(M)
v , with the exception of backups, consume

a few bits per edge. Per node, at most three copy-variables and two satellite backups
are created. The variables of protocolsQ andQ(M) consume a constant number of bits,
with the exception of the set of pointers stored by Q(M). Per node, there exist at most
two entries in this set. Thus, the average space requirement per node isO(m/n+SP +
SL).

4 Final Remarks

Once a legitimate configuration has been reached, the transformed protocol recovers
from a memory corruption within a constant number of rounds, even if a single edge
has been added or removed simultaneously. However, we believe that this also holds for
the crash and the recovery of a node. When a node crashes, then for each of its neigh-
bors sufficiently many backups remain reachable or the neighbor is part of a minor
component. Also the addition of multiple edges adjacent to the same node was taken
into account during the design of the transformation. In particular the detection of for-
mer minor components remains functional. Furthermore, the transformation can handle
the removal of more than one edge, if more backups per node are created. Backups on
all nodes within 2-hop distance of each node are sufficient to handle the removal of any
number of edges. However, topology changes that add and remove edges at the same
time remain problematic in some cases.

The given transformation is also resilient against certain topology changes that hap-
pen during stabilization. The transformed protocol then shows the same behaviour as
the original protocol P . For edge additions, this is always the case. For edge removals it
must hold that all affected cells are repaired prior to the topology change and that those
cells are still repaired after the topology change. The likelihood that this condition is
met increases, if the lower layer selects multiple responding-nodes per cell for backup
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storage during stabilization. It takes cells at most one full cycle, that is a constant num-
ber of rounds, to adapt to the new topology. Then the transformed protocol is ready to
handle another topology change.

We are not aware of methods to further reduce the space overhead without increasing
the time-complexity of the transformation. We conjecture that three backups do not
suffice to guarantee the bounds described in Theorem 1. However, it seems feasible to
reduce the average O(m/n) bits per node for storing the dialog-variables to O(logΔ)
bits while increasing the time-complexity of the transformation by a factor of O(Δ).

Advanced implementations of the lower layer are considered an open problem. While
the lower layer can be used to compute backup distributions that meet specific design
goals of a distributed system, a general goal of the lower layer is to avoid high con-
centrations of backups on individual nodes, i.e. the lower layer should produce uniform
backup distributions. That is considered to be future work.
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Abstract. We describe the practical application of self-stabilization to
a safety-critical system. The Ohio Coal Research Center (OCRC) at Ohio
University has a fuel-cell laboratory that uses explosive and poisonous
gases. The lab is located in and uses the ventilation system of a large
campus building that houses offices, other labs, and classrooms. The
OCRC fuel cell lab safety system seeks to protect lab and other building
personnel in the event of a gas leak. We present the system and the use
of self-stabilization to ensure that, in the presence of actual or potential
hazards, the lab converges to as safe a state as possible. It is responds to
environmental conditions such as gas leaks and is tolerant to faults that
affect the system’s sensors and actuators.

1 Introduction

The United States is rich in coal, but since much of it is high in sulphur, it is
difficult to generate electricity without using expensive techniques to trap the
sulphur emissions. The Ohio Coal Research Center (OCRC) at Ohio University
has undertaken a project to use gasified high-sulphur coal for fuel cells to generate
electricity without combustion while effectively scrubbing the sulphur from the
exhaust stream. These are 150–200% more efficient than current methods of
converting coal to electricity, promising improved efficiency with lower grade
coal. This contrasts with existing fuel cells that use gasified coal but require
that the sulphur be removed before use.

To work on the problem, OCRC has established a fuel cell research laboratory
on the campus of Ohio University. Fuel cells are fabricated and used in the lab for
experimental testing. A fuel cell experiment, which can run for several hundred
hours, is provided with a custom mixture of gases that simulate a particular kind
of gasified coal. While some of the gases are benign, others, including hydrogen,
hydrogen sulfide and carbon monoxide, are explosive and/or toxic. Protecting
people and property from these hazards in the event of leak or equipment failure
is critical.

Given that venting to the outside were practical, it would suffice to provide a
sufficient exhaust airflow along with gas level monitors. However, a decision by
the University administration dictated that exhaust from the lab be vented into
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the building exhaust system, which also serves classrooms, faculty offices, and
departmental and college administration offices. Hence hazardous gases from the
lab could enter the building exhaust. As a demonstration, we simulated a failure
of the building exhaust and observed positive airflow via the exhaust vents into
areas outside the lab, showing that that hazardous gases, if present, could be
pushed into other building spaces.

In response, we developed a self-stabilizing safety monitoring and control sys-
tem for the lab. We developed fault models for sensors, actuators and the net-
work, and used these to analyze the effect of faults on safety. The system has
been deployed for over six years, with a generally positive experience. Recent
results of experimental fuel cell work conducted in the lab are given in [7,1]. In
[5], we described the safety system for professionals in the coal industry. A study
of the safety system is in [2] and an expanded version of this paper is in [4].

Our approach is that of safe stabilization [3]. After the environment has
stopped changing, we want to stabilize in such a way that in any program pre-
/post-state pair, the post-state is not less safe than the pre-state. However, this
is not always possible, as we discuss in Section 4.

In the rest of this paper, we describe the instrumented lab and discuss the
use of self-stabilization to manage it.

2 The OCRC Fuel Cell Lab

A schematic of the lab is shown in Fig. 1. See the Appendix for photos. This
gives the physical placement of the various cabinets, ventilation systems, and
alarms. Sensors for airflow are located near the fans, sensors for gas are located
in the gas and fuel cell test stand cabinets and in the ceiling.
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Fig. 1. Lab Layout
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There are several ventilation systems present. On the left are central supply
and exhaust. Under normal conditions, these provide the main ventilation for the
lab. Because of the extreme toxicity of hydrogen sulfide, a special scrubber and
exhaust system located in the hydrogen sulfide cabinet runs continuously and
vents outside. In the event of central system ventilation failure, local lab supply
and exhaust fans can be enabled. These are intended for temporary backup use
only and hence are enabled only when necessary.

The interface to the central exhaust includes a booster fan to push lab air into
the exhaust, along with a vent gate. If the central exhaust fails, the vent gate
can be closed to keep lab air from being pushed into other parts of the building.

There are visual and audible status indicators. The visual indicator is a green-
yellow-red light that indicates safe, possibly dangerous and dangerous lab status,
respectively. The audible status indicator is a horn that sounds periodically when
not safe, with a shorter period indicating dangerous.

There is an operator information and control panel that consists of a touch-
screen display showing the lab status, including detailed sensor/actuator status,
and that permits an operator to log in for administrative control.

3 Safety System Design

Overall, the goal of the safety system is to prevent harm to people or property
while still permitting fuel cell experiments to run. Specifically, it was designed
to satisfy the following safety objectives. (a) Control the system to the safest
possible state; when possible, without making it less safe while doing so. (b)
Maintain a safety margin by alerting detected equipment failures so repairs can
be effected before other failures or environment conditions further compromise
safety.

In addition, it was designed with the following operational objectives. (a) Al-
low operators to put the system into test mode in which faults can be injected
without affecting fuel cell experiments. (b) Allow an administrator to change key
behaviors of the system, such as threshold levels for sensors or responses to venti-
lation conditions without modifying the programs. (c) Be secure to unauthorized
access.

In designing the system we had the choice between focusing on state or
events. In aerospace, nuclear and and other safety-related engineering fields,
event-oriented fault tree analysis is commonly used; see [6] for example. This
approach focuses on undesired effects in subsystems with a view to understand-
ing their causes as well as likelihood of occurring. In our case, the causes of faults
are simple (equipment fails in some way) and are easy for operators to identify.
We’re more interested in the fact of a fault and in available options to control it
to a safer state, so a state-based approach is more suitable.

The system is generally untimed as this simplifies reasoning. However, as a
practical system it must take time into account. Once a fan has turned on,
for example, we need to wait until it has had time to actually start. If we take
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a sensor reading too soon, we will falsely detect that the fan is off and hence
assume a fault. In the implementation we handle this by atomically changing
a fan’s status to Unknown and starting a timer. When the timer expires, the
fan’s status is changed to that of the sensor readings. The same holds for the
vent gate. Similarly, when detecting gas concentrations, we require that a con-
centration such as High be maintained for a specified period of time before the
concentration is reported; this avoids altering on transient concentrations that
are safely evacuated. The use of time is isolated to the components that need
it so that the system as a whole can be regarded as untimed. For simplicity of
presentation in this paper we suppress time by assuming atomicity.

Normally, the decision to address a potential safety concern is made on the
basis of likelihood of occurrence, severity and cost. Not having reliability data,
especially for older equipment, we treated each potential fault as equally likely,
so many of the sensors are duplicated. Under the assumption that only one fails,
this eliminates false negatives (missing a hazard) but does admit false positives
(wrongly detecting a hazard). We considered triplicating sensors to avoid false
positives, but in the end, project managers decided that the cost of replication
did not justify the potential inconvenience.

3.1 Safety System Major Components

We took a hierarchical, component-oriented approach to system design. This re-
duced complexity, made it easier to isolate undesirable behavior, and simplified
verification by allowing a compositional approach. The architecture is shown in
Fig. 2. Arrows indicate the flow of information. For example, Lab Control pro-
vides information to Notification Control but not vice versa. Across the bottom
of the figure are the various sensor components that monitor air flow, gas con-
centration, and the like. Above those are the control components that assess the
overall status and determine responses (Lab Control), enact changes in air flow
(Ventilation Control), notify lab staff (Notification Control) and so forth.

The system is distributed across a local area network. The box labeled “NI
Compact FieldPoint” in the figure shows the components in that node. Notifi-
cation Control is on a separate PC, as is Operator Information & Control. As
shown in the figure, the original plan integrated test stands, partly for safety
but more for experiment management. However, funding and schedule limita-
tions precluded implementation, so we do not consider them further.

Inputs to the system are handled by sensor components that discretize the
values (giving gas concentrations, for example, in the range {None, Trace, Low,
Med, High}) and detect faults (such as sensor disconnection). The control com-
ponents seek to maintain safety by adjusting ventilation, controlling experiments
and notifying personnel of actual and potential safety issues. For example, if the
environment risk severity level is high enough due to gas concentrations, the Lab
Control component will try to isolate the lab from the rest of the building while
also notifying lab personnel.
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Fig. 2. Safety System Architecture

In the following sections we characterize the components and give guarded
command programs for key items. We assume interleaving semantics with
fairness.

Sensor Components. Sensor components produce both a sensor reading and
a severity code based on fault detection. These contribute to an overall system
severity level. For example, in a duplicated pair of sensors, if one is disconnected
(or failed), the fault severity is 1 (low, indicating that attention is required but
personnel safety is not compromised). If the remaining sensor indicates a high
concentration of gas, then the gas severity is 4 (highest, indicating that the
building should be evacuated immediately).

We give detail for the hydrogen gas sensor component as representative of
the other sensor components. Fault actions that can occur are to change sensor
readings (sensor inaccuracy), or to disconnect a sensor. A connected sensor’s
output is reported as a discrete value in the total order {None, Trace, Low,
Med, High} according to a definition of gas concentrations. As noted above,
acceptable transients of gas concentration can occur (when changing a gas bottle,
for example), so values of Trace or higher must be maintained for a specified
period of time before they are reported.

Gas sensors are duplicated to increase reliability. A voting component reports
a composite value from discretized sensors and assesses fault severity as shown in
the component actions for the hydrogen component, HmR, Fig. 3 . For example,
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In: HmR0 (hydrogen sensor 0), HmR1 (hydrogen sensor 1); 
Out: HmR.Status, HmR.Severity 
1 ( i::HmRi.Status Disc)  HmR0.Status=HmR1.Status
       HmR.Status, HmR.Severity := HmR0.Status, 0; 
2 ( i::HmRi.Status Disc)  HmR0.Status HmR1.Status
  HmR.Status, HmR.Severity := 

max(HmR0.Status,HmR0.Status), 2; 
3 ( i::HmRi.Status=Disc)  ( j::HmRj.Status Disc)
  HmR.Status, HmR.Severity := HmRj.Status, 1; 
4 i::HmRi.Status=Disc
  HmR.Status, HmR.Severity := Disc, 2; 

Fig. 3. Hydrogen Sensor Component (HmR)

action 3 handles the case that one sensor is disconnected. In this case, gas level
status is that of the connected sensor and a fault severity of 2, indicating a
moderate emergency level. When sensors disagree (action 2), the higher value
is selected as that is more hazardous. Here and elsewhere, when there is a fault
involving duplicated sensors, the status selected is the most hazardous. This can
result in false positives, which are inconvenient, but avoid false negatives, which
could be deadly.

Other equipment sensors are handled similarly, producing discrete values
along with fault detection. These sensors are duplicated. For network moni-
toring, each node exchanges heartbeats with neighbors to detect disconnection.

In: FmR (hydrogen sulfide sensor), XmR (carbon monoxide sensor), 
HmR (hydrogen sensor), VC (ventilation control), LxC (lab fan x 
[supply, exhaust, booster]), LGC (vent gate), TR (network monitor) 
GasStatus() max({FmR.Status}  {XmR.Status}  {HmR.Status}) 
SeverityGas() 0, if GasStatus() = None 

1, if GasStatus() = Trace 
2, if GasStatus() = Low 
3, if GasStatus() = Med 
4, if GasStatus() = High 

SeverityGasFault max({FmR.Severity}  {XmR.Severity} 
{HmR.Severity}

SeverityVC() 0, if VentSafety() = Safe 
1, if VentSafety() = NotLocal 
2, if VentSafety() = UnsafeLab 
4, if VentSafety() = UnsafeStocker 

SeverityLxC() 0, if x::LxC.Fail = None 
1, if x::LxC.Fail  {FailOn, FailOff} 

SeverityLGC() 0, if LGC.Fail = None 
1, if LGC.Fail  {FailOpen, FailClose} 

SeverityTR() 0, if TR.Status = Connected 
3, if TR.Status = Disc 

Severity() max of all Severity functions above 

Fig. 4. Lab Control (LC) Functions
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In: LC function inputs. Out: LC.VMode, LC.Emergency, LC.LocalAlert 
//Set mode for VC 
1 SeverityGas()  1 LC.VMode := Auto; 
2 SeverityGas() > 1) LC.VMode := Local; 
//Set emergency level, local alert and experiment status 
3 Severity() = 0 LC.Emergency, LC.LocalAlert 

:= None, Green; 
4 Severity() = 1 LC.Emergency, LC.LocalAlert := Low, Green; 
5 Severity() = 2 LC.Emergency, LC.LocalAlert := 

Moderate, Yellow; 
6 Severity() = 3 LC.Emergency, LC.LocalAlert 

:= Urgent, Red; 
7 Severity() = 4 LC.Emergency, LC.LocalAlert 

:= Evacuate, Red; 

Fig. 5. Lab Control (LC)

Lab Control (LC). The lab control component evaluates the environmental
severity implied by sensors and fault detection and seeks to maintain safety
by adjusting ventilation and by altering personnel as shown in Figs. 4 and 5.
For ventilation, there are two modes available (actions 1-2). In Auto mode, the
building’s exhaust should be used if available and otherwise the local exhaust; in
Local mode, the lab should be isolated, using local exhaust. This value is input
to Ventilation Control, VC. Alerting (actions 3-7) assesses the severity and sets
an emergency level for notification in {None, Low, Moderate, Urgent, Evacuate},
sets the color of a light outside the lab in {Green, Yellow, Red}, sounding an
alarm if not Green, and sets experiment status to Run or Stop. These values are
input to Notification Control, NC, and to the status lights and local alarm.

Ventilation Control (VC). This component adjusts ventilation according to
the assessment of Lab Control; see Figs. 6 and 7. In all cases, the component
tries to use the central building supply, reverting to local supply if necessary.
For Auto mode, if there is a problem with central supply, it will use the local
supply fan. If the central exhaust fails, it will go to Local mode. In Local mode,
whether specified by Lab Control or required by central exhaust failure, it will
isolate the lab with the vent gate and use the local exhaust fan.

In actions 3 and 4, VC checks whether the mode should be Local or Central,
using the function CkMode(). For example, while we might want Local mode
(LC.VMode = Local), it might be that the vent gate has failed on (see Local-
CkMode()); if supply, exhaust and booster are OK, then Central configuration
is the safest.

Note that VentSafety() depends in part on ventilation configuration, so actions
of VC can change the value of VentSafety() and hence the value of Severity(),
potentially causing LC to make a change of ventilation mode. VentSafety() has a
value of Safe if actuation is correct; NotLocal when local is required but actuation
failure makes it impossible, but ventilation is adequate; UnsafeLab if improper
ventilation but the lab is isolated from the main building; and UnsafeCentral if
improper ventilation and the lab is not isolated.



The OCRC Fuel Cell Lab Safety System 333

In: KSR (central supply fan), LSC (lab supply fan), KER (central 
exhaust fan), LEC (lab exhaust fan), LGC (vent gate), LBC (booster 
fan), LC (lab control) 

Control Functions 
//check supply is OK 
SpOK() true, if (KSR.Status = On  LSC.Ctrbl  {Ctrbl, FailOn}) 

false, otherwise 
//check exhaust OK 
ExOK() true, if KER.Status = On  LEC.Ctrbl  {Ctrbl, FailOff} 

false, otherwise 
Mode functions 

//check possible mode if local desired 
LocalCkMode() Central, if LGC.Ctrbl = FailOpen  SpOK()  ExOK() 

LBC.Ctrbl  {Ctrbl, FailOn} 
Local, otherwise 

//check possible mode if auto desired 
AutoCkMode() Central, if LGC.Ctrbl  {Ctrbl, FailOpen}  SpOK()  ExOK() 

LBC.Ctrbl  {Ctrbl, FailOn} 
Local, otherwise 

//check possible mode 
CkMode() LocalCkMode(), if LC.VMode = Local 

AutoCkMode(), if LC.VMode = Auto 
Safety Functions 

//supply safety 
SpSafe() Safe, if KSR.Status = On  LSC.Status = On 

Unsafe, otherwise 
//exhaust safety 
ExSafe() KSafe, if (LGC.Status = Open  LEC.Status = Off  KER.Status = On 

LBC.Status = On) 
LSafe, if (LGC.Status = Close  LEC.Status = On) 
Unsafe, otherwise 

//overall ventilation safety 
VentSafety() Safe, if (SpSafe() = Safe  ((LC.VMode = Auto  ExSafe()  Unsafe) 

(LC.VMode = Local  ExSafe() = LSafe))) 
NotLocal, elseif (LC.VMode = Local  SpSafe() = 

Safe  ExSafe() = KSafe) 
UnsafeLab, elseif (LGC.Status = Close)
else UnsafeCentral; 

Fig. 6. Ventilation Control (VC) Functions

In: VC function inputs. Out: VC.LECtrl (set lab exhaust fan), 
VC.LBCtrl (set booster fan), VC.LGCtrl (set vent gate), VC.LSCtrl 
(set local supply fan). 
//Set local supply off if central supply on & vice versa 
1 KSR.Status = Off VC.LSCtrl = On; 
2 KSR.Status = On VC.LSCtrl = Off; 
//Set exhausCt / booster fan & vent gate per possible mode 
3 CkMode() = Local VC.LECtrl, VC.LBCtrl, VC.LGCtrl 

:= On, Off, Close; 
4 CkMode() = Central VC.LECtrl, VC.LBCtrl, VC.LGCtrl 

:=  Off, On, Open; 

Fig. 7. Ventilation Control (VC)

Note also the interaction between Severity() and VentSafety(). If Severity()
≤ 1, LC will set LC.VMode to Auto; otherwise it will set it to Local, since an
isolated lab is safer for higher severity levels. Suppose that Local configuration
cannot be achieved due to a fault but Central configuration can be achieved. If
Severity() ≤ 1, Central mode will result in VentSafety() = Safe; but if Severity()
> 1, it will result in VentSafety() = NotLocal, which is less safe.
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In: VC.LGCtrl, LGR.Status (lab gate sensor). Out: LGC.Fail, 
LGC.Ctrbl, LGC.Status. Local: LGC.Fail 
1 VC.LGCtrl = LGR.Status  LGC.Fail = None 
  LGC.Fail, LGC.Ctrbl, LGC.Status := None, Ctrbl, VC.LGCtrl; 
2 (VC.LGCtrl = LGR.Status = Open  LGC.Fail  None) 

(VC.LGCtrl = Close  LGR.Status = Open) 
  LGC.Fail, LGC.Ctrbl, LGC.Status := FailOpen, FailOpen, Open; 
3 (VC.LGCtrl = LGR.Status = Close  LGC.Fail  None) 

(VC.LGCtrl = Open  LGR.Status = Closed) 
  LGC.Fail, LGC.Ctrbl, LGC.Status 

:= FailClose, FailClose, Closed; 

Fig. 8. Exhaust Vent Gate Control (LGC)

Lab Fans (LxC) and Exhaust Vent Gate (LGC) Controls The lab fans
are exhaust (LEC), supply (LEC) and booster (LBC). When VC wants to isolate
the lab in Local configuration, it tries to close the vent gate and turn the lab
exhaust fan on; this seals the lab from the rest of the building. Actuation failure
may prevent this from happening. A control component such as that for the
exhaust vent gate LGC (Fig. 8) detects these faults. In action 1, if the VC
desired control VC.LGCtrl (Open or Close) is the same as that actuated then
there is no failure, it is controllable and the status is as desired. In action 2 if
VC desires Close but the status is Open, then the gate has failed open so it is
no longer controllable but FailOpen.

The component includes a latch, LGC.Fail. Suppose LGC.Ctrbl is FailOpen
and subsequently it is controlled to Open. In this case, LGC.Fail will ensure that
LGC.Ctrbl remains FailOpen rather than changing to Ctrbl. An operator must
check and clear the fault once the equipment has been fixed. Fault detection
results are passed back to Lab Control for severity assessment. The lab fan
components are similar to the gate component.

Notification Control (NC) and Operation Information & Control (OC).
Notification Control takes input from Lab Control and as appropriate sends
emails and places phone calls.

Operator Information & Control displays lab status information, including
gas and fan status. There are multiple access levels with different privileges,
controlled by fingerprint scanning combined with username/password. Operators
use it to start/stop the system and enter a test mode to simulate faults.

4 Safety System Stabilization

We begin with some definitions. A computation is an infinite sequence of system
state. A variable in the system terminates when a computation suffix stutters
the same variable value. A component or a function terminates when its vari-
ables have terminated; the system as a whole terminates when all variables have
terminated. In a terminal state, guards can be enabled but no changes to the
state take place.
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For stabilization, our major concern is ensuring that the system reaches a
state that is as safe as possible for personnel in the lab and the surrounding
building. This includes notifications. In Fig. 2 we see that information flow is
mostly one-way; an inspection of the programs assures us that if Ventilation
Control and Lab Control stabilize, notification will be correct. Hence we focus
on stabilization of ventilation, which has the potential for a cycle.

Our major concern is stabilization of Ventilation Control, VC. Under the
normal assumption that the environment has stopped changing, we want VC to
terminate in a state in which ventilation is as safe as possible. To define this
we use the function VentSafety() from Fig. 6 which yields a total order {Safe,
NotLocal, UnsafeLab and UnsafeCentral} from most safe to to least safe. We
characterize the function is as follows, where “elseif” means previous conditions
do not hold.

– Safe, if the supply is safe (central or local supply is on, or both) and one of
the following is true

• Desired ventilation mode is Auto and central exhaust is safe (gate is
open, central exhaust is on, booster is on, lab exhaust is off )

• Desired ventilation mode is Local and lab exhaust is safe (gate is closed,
local exhaust is on and central exhaust is off)

– NotLocal, elseif desired ventilation mode is Local, supply is safe and central
exhaust is safe

– UnsafeLab, elseif vent gate is closed
– else UnsafeCentral

Safe means that the system has achieved the desired ventilation control. NotLo-
cal means that though desired ventilation is Local, the system is using central
ventilation. UnsafeLab means ventilation is unacceptable (a supply or exhaust
problem) but the vent gate is closed so that the lab is isolated from the rest of
the building. UnsafeCentral means that ventilation is unacceptable and the vent
gate is open, so hazardous gasses if present could be admitted into the building.
A state is the “safest controllable state” if, given the value of VentSafety() in
that state, it is not possible to control to another state in which VentSafety() is
safer.

We begin with a lemma that shows that LC terminates and use that to show
that VC stabilizes to the safest controllable state. Note that stabilization is from
an arbitrary state, so transient state corruption is tolerated.

Lemma 1. LC terminates.

Proof. Assuming the environment has stopped changing, SeverityGas() will not
change, so LC.VMode will terminate. Begin with a state in which LC.VMode
has terminated. An action of VC may attempt to actuate a fan or the gate
and thereby detect a fault, possibly raising the value of Severity(). Since the
environment has stopped changing, Severity() will not decrease and eventually
there will be no change to Severity() due to detected faults. VentSafety() depends
only on LC.VMode and equipment status variables, so it terminates.
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There is no cycle involving the variables of Severity() with LC.Emergency and
LC.LocalAlert, so Severity() terminates and hence LC terminates. �
Theorem 2. VC stabilizes to the safest controllable state.

Proof. We begin by fixing a value of LC.VMode and show that VC stabilizes
by terminating in the safest state. The stabilization can take up to two steps:
first VC tries to set ventilation as desired; but a new fault can be detected if,
for instance, VC tries to open the vent gate but finds that it does not do so. In
that case, VC will choose another ventilation configuration and terminate.

First we note that since the environment does not change, component KSR
(central supply fan sensor) terminates with a value of On or Off and so VC.LSCtrl
terminates. Similarly KER (central exhaust fan sensor) terminates. From the
lemma we know that LC terminates.

Given a computation, begin in a state in which these components have ter-
minated. We next show that VC.LECtrl, VC.BCtrl and VC.GCtrl terminate.
These are assigned by VC actions 3 and 4, and will change only if CKMode()
changes. CKMode() depends on LSC.Ctrbl, LEC.Ctrbl, LGC.Ctrbl, KSR.Status
and KER.Status. The latter two variables have terminated so we consider the
first three, beginning with LGC. Recall that for simplicity we assume that ac-
tuation of the gate and detection of the status are atomic. Suppose VC action 3
is enabled. If the gate is controllable (LGC.Ctrbl = Ctrbl) and there is no fault
then the gate will be closed and value on which CKMode() depends will not
change. If the gate is FailOpen or FailClose there will again be no change in the
value. However, if LGC.Ctrbl = Ctrbl, there could be an undetected fault such
as a gate or sensor failure. In this case, if the gate status is open, the attempt to
close it will trigger detection the fault and LGC.Ctrbl will be set to FailOpen.
Once LGC.Ctrbl is set to other than Ctrbl there will be no further change. A
similar reasoning holds for action 4 and for the LSC.Ctrbl and LEC.Ctrbl vari-
ables. Since the variables on which CkMode() depends terminate, these variables
terminate; and further, LSC, LEC and LGC terminate.

Now we consider VentSafety() in VC’s terminal state. Suppose VentSafety()
is NotLocal but that, for the sake of contradiction, it is possible to control the
ventilation to Safe. VentSafety() = NotLocal means LC.Mode = Local, SpSafe()
= Safe and ExSafe() = KSafe. To control to VentSafety() = Safe, we need to
control to ExSafe() = LSafe. If LocalCkMode() = Local then VC action 3 is
enabled and should result in ExSafe() = LSafe; if it does not, there is an ac-
tuation fault, violating our assumption that we can control ventilation to Safe.
If LocalCkMode() = Central then Lgc.Ctrbl = FailOpen, again violating the
assumption. By similar reasoning on other values of VentSafety() we conclude
that it terminates in the safest state for a fixed value of LC.VMode.

Hence we conclude that VC stabilizes to the safest controllable state. �

Now we consider whether the system stabilization safely: does the stabilization
process take VentSafety() from a safer to less safe value? In the fault-free case, VC
stabilizes in a single step, by switching between Local and Central configurations.
For example, suppose that ventilation is in Central configurtion, and suppose
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that a gas concentration has changed Severity() to 2 so that VentSafety() is
NotLocal. In this case VC will control to Local configuration and in the next
state, VentSafety() will be Safe, so we meet the condition for safe stabilization.
The same holds for all other cases except two, in which safe stabilization does
not hold.

If VC is Safe in Central configuration, LC may specify Local mode depending
on Severity(), bringing the system to NotLocal. In, response VC will try to
control to Local configuration. If previously undetected faults prevent this, the
resultant state can be UnsafeLab or UnsafeCentral depending on whether the
vent gate closed or not, passing from a safer to a less-safe state. VC will revert to
Central configuration and the terminal state will be NotLocal. There is a similar
scenario when VC is Safe in Local configuration and LC specifies Auto mode: the
attempt to switch to Central configuration fails, resulting is less safety until it
switches back to Local configuration. This is unavoidable since actuation faults
can be detected only when there is an attempt to actuate. Hence we have the
following result.

Theorem 3. VC stabilization is safe with the exceptions noted.

5 Safety System Implementation and Evaluation

5.1 Implementation

The safety system was implemented using National Instruments’ LabView soft-
ware along with associated sensor and actuator interface hardware, chosen for
quality, support, integration and industry acceptance.

Most of the components are represented by a finite state machine that defines
inputs and outputs in comma-separated tables, and likewise the parameters for
sensor thresholds and timers. These are input directly. A system administrator
can modify a table whose behavior will be enacted when the system restarts.
In fact, some time after the system was deployed, phosphene gas was substi-
tuted for hydrogen sulphide in the syngas mixture. The administrators replaced
the appropriate sensors and modified the associated tables, accomplishing the
modification without changing program code.

The main controller is a National Instruments Compact Fieldpoint (CFP),
selected as the most reliable among alternatives. As shown in Fig. 2, notification
control and operator control are on separate PCs. The computers are connected
via a private Ethernet network. The notification PC also has a separate Ethernet
interface with Internet connectivity for email notification. We used Voiceguide
for telephone notification.

The major implementation issue turned out to be sensing whether a fan is on
or off. Air flow meters seemed natural, but the ones we tested required precise
positioning in the airstream that would be difficult to maintain. We chose air
pressure meters—manometers—instead, but variations in the airflow dynamics
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in the ventilation system made it difficult to determine reliable thresholds that
would let us know whether a fan was on or off. We took measurements over a 24
hour period, adjusting the dynamics in various ways, and were able to establish
initial thresholds.

5.2 Evaluation

After completing the system, the choice of a state-oriented stabilization ap-
proach seems natural. Failures, when they occur, are pretty obvious and the
main concern is responding so as to maximize safety. The system stabilizes from
an arbitrary state so it tolerates transient state corruption. The component-
based approach corresponds naturally to the physical components and the logic
is self-contained and easy to compose. Overall, stabilization is a natural fit for
this kind of system.

The system has been and continues to be tested in several ways.

– From time to time it is put into test mode and failures are simulated using
the Operator Information & Control component. These all succeed.

– Sensors have to be calibrated periodically, accomplished by applying test gas
to the sensor nose. This results (correctly) in detection of trace levels of gas
and, since calibration is one sensor at a time, in sensor disagreement.

– Personnel in the lab itself must wear a personal gas monitor that measures
hydrogen sulfide, hydrogen and carbon monoxide. These readings have al-
ways been consistent with the safety system.

– When connecting and disconnecting test stands, small amounts of gas can
be released. This is detected by the system.

On one occasion, by chance, a technician misaligned a gas fitting, resulting in a
release of gas. This was detected by both the personal monitor and the safety
system.

The decision not to triplicate sensors appears to be sound. There has been no
case to date of a false positive caused by a faulty sensor value.

We have found modeling errors where the system specification was flawed. The
main issue centers around the building exhaust. The system correctly determines
whether the central exhaust fan is on or off. However, belts can wear, resulting in
a decrease in airflow, and at the threshold, the system can cycle between Central
and Local configurations, sending out email notifications when it does so. Had
we been aware of this issue, we could have modeled fan sensing by including a
hysteresis zone between on and off, requiring it to pass through the zone before
changing state. This should have the effect of reducing or eliminating the cycling.

A minor issue is that email notification is too sensitive, sometimes sending
out a stream of similar but not identical emails.

These modeling errors could be handled by changing the system. But on the
whole, after years of operation, the conclusion of lab personnel is that the system
has worked well, fulfilling its original mandate.
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Appendix: Lab Photos

Fig. 9. The OCRC Fuel Cell Lab

Fig. 10. Operator Information and Control Touch-Screen Panel
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Université de Rennes 1, France
{achour,raynal,Julien.Stainer}@irisa.fr

Abstract. The k-set agreement problem is a coordination problem where each
process is assumed to propose a value and each process that does not crash has
to decide a value such that each decided value is a proposed value and at most
k different values are decided. While it can always be solved in synchronous
systems, k-set agreement has no solution in asynchronous send/receive message-
passing systems where up to t ≥ k processes may crash.

A failure detector is a distributed oracle that provides processes with addi-
tional information related to failed processes and can consequently be used to
enrich the computability power of asynchronous send/receive message-passing
systems. Several failure detectors have been proposed to circumvent the impossi-
bility of k-set agreement in pure asynchronous send/receive message-passing sys-
tems. Considering three of them (namely, the generalized quorum failure detector
Σk, the generalized loneliness failure detector Lk and the generalized eventual
leader failure detector Ωk) the paper investigates their computability power and
the relations that link them. It has three mains contributions: (a) it shows that the
failure detector Ωk and the eventual version of Lk have the same computational
power; (b) it shows that Lk is realistic if and only if k ≥ n/2; and (c) it gives an
exact characterization of the difference between Lk (that is too strong for k-set
agreement) and Σk (that is too weak for k-set agreement).

Keywords: Asynchronous message-passing system, Distributed computability,
Equivalence, Eventual leader, Failure detector, Fault-tolerance, Impossibility,
Quorum, Realistic failure detector, Reduction, k-Set agreement, Theory.

1 Introduction

On failure detectors. Let us observe that in asynchronous systems where the only means
for processes to communicate is using send/receive message-passing, no process is able
to know if another process has crashed or is only very slow. The concept of a failure de-
tector originates from this simple observation. A failure detector is a device (distributed
oracle) whose aim is to enrich a distributed system by providing alive processes with
information on failed processes [5]. Several classes of failure detectors can be defined
according to the type of information on failures they provide to processes (see [15] for
an introduction to failure detectors).
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The k-set agreement problem This problem, that has been introduced by S. Chaudhuri
[7], is a coordination problem that generalizes the consensus problem. It can be defined
as follows [7,14]. Each process proposes a value and every non-faulty process has to
decide a value (termination) in such a way that any decided value is a proposed value
(validity) and no more than k different values are decided (agreement). The problem
parameter k defines the coordination degree: k = 1 corresponds to its most constrained
instance (consensus) while k = n − 1 corresponds to its weakest non-trivial instance
(called set agreement).

Let t be the model parameter that denotes the upper bound on the number of pro-
cesses that may crash in a run, 1 ≤ t < n. If t < k, k-set agreement can be triv-
ially solved in both synchronous and asynchronous systems: k predetermined processes
broadcast the values they propose and a process decides the first proposed value it re-
ceives. Hence, the interesting setting is when k ≥ t, i.e., when the number of values
that can be decided is smaller or equal to the maximal number of processes that may
crash in a run.

Algorithms that solve the k-set agreement problem in synchronous message-passing
systems when k ≤ t are presented in [17]. These algorithms are based on a sequence
of synchronous communication rounds. It is shown in the three books previously refer-
enced that " t

k #+ 1 rounds are necessary and sufficient to solve k-set agreement. (This
lower bound is still valid in more severe failure models such as general omission failures
[17].)

For crash-prone asynchronous systems (be the communication medium a read/write
shared memory or a send/receive message-passing network) the situation is different,
namely, the k-set agreement problem has no solution when t ≥ k [4,11,19].

The cases k = 1 and k = n− 1 in message-passing systems When k = 1, as already
indicated k-set agreement boils down to consensus, and it is known that the failure de-
tector denoted Ω is the weakest to solve consensus in asynchronous message-passing
systems where t < n/2 [6]. Ω ensures that there is an unknown but finite time after
which all the processes have the same non-faulty leader (before that time, there is an
anarchy period during which each process can have an arbitrarily changing leader). This
lower bound result is generalized in [9] where the failure detector Σ is introduced and
it is shown that the pair 〈Σ,Ω〉 is the weakest failure detector to solve consensus in
message-passing systems when t < n. This means that Σ is the minimal additional
power (as far as information on failures is concerned) required to overcome the bar-
rier t < n/2 and attain t ≤ n − 1. Actually, the power provided by Σ is the minimal
one required to implement a shared register in a message-passing system [3,9]. Σ pro-
vides each process with a quorum (set of process identities) such that the values of any
two quorums (each taken at any time) intersect, and there is a finite time after which
any quorum includes only correct processes. Fundamentally, Σ prevents partitioning.
A failure detector 〈Σ,Ω〉 outputs a pair of values, one for Σ and one for Ω.

The Loneliness failure detector (denoted L) has been proposed in [10] where it is
proved that it is the weakest failure detector for solving (n − 1)-set agreement in the
asynchronous message-passing model. Such a failure detector provides each process
p with a boolean (that p can only read) such that the boolean of at least one process
remains always false and, if all but one process crash, the boolean of the remaining
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process becomes and remains true forever. It is important to notice that, albeit surpris-
ingly, the weakest failure detector for (n − 1)-set agreement is not the same in the
read/write shared memory model (where it is Ωn−1) and the send/receive message-
passing model (where it is L).

Unfortunately, the weakest failure detector for k-set agreement when 1 < k < n− 1
in message-passing asynchronous crash-prone systems is not yet known. The interested
reader will find an introductory survey on failure detectors suited to k-set agreement in
[18].

Content of the paper. Among the failure detectors for k-set agreement, 1 ≤ k ≤ n− 1,
that have been proposed in the past few years, this paper investigates the relations on
three of them, namely the ones denoted Lk, Ωk and Σk (their precise definitions are
given in Section 3). The failure detector Ωk, introduced in [13], is a generalization of
Ω (Ω1 is Ω).

The failure detector Lk , introduced in [1], is a generalization of L. It allows the k-
set agreement problem to be solved in message-passing despite asynchrony and any
number of process crashes. Unfortunately, Lk has been proved to be (a little bit) too
strong to solve k-set agreement. Hence, the question “How much stronger is it?”

The failure detector Σk, introduced in [2], is a generalization of Σ. It is shown in [2]
that Σk is necessary (but unfortunately not sufficient) to solve k-set agreement. Hence,
the question “How much weaker is it?” It is also shown in [2] that Σn−1 and Ln−1 are
equivalent (they provide processes with the same computational power).

Answering the two previous questions seems difficult as it would provide us with key
elements to obtain the weakest failure detector for asynchronous message-passing k-set
agreement. Hence, we consider a more modest question in this paper whose answer
will help us better understand and pave the way to the discovery of the weakest failure
detector for message-passing k-set agreement. The question is “Which is the property
that has to be added to Σk in order to obtain exactly Lk?” To be more explicit let Xk

be this property. Answering this question means solving the equation 〈Σk, Xk〉  Lk

where Xk is the unknown and “” means “have the same computational power”. This
paper has three contributions.

– It first focuses on the implementability of Lk in a synchronous system. Let us re-
member that a failure detector is realistic if it can be implemented in a synchronous
system [8]. The paper shows that k ≥ n/2 is a necessary and sufficient requirement
for Lk to be realistic.

– It then answers the previous question by giving Xk.
– It finally shows that the “eventual” version ofLk, which we denote �Lk, is nothing

else than Ωk. (“Eventual” means that the properties defining Lk are required to be
satisfied only after some finite time).

Roadmap. The paper is made up of 7 sections. Section 2 presents the base computation
model and the k-set agreement problem. Section 3 introduces the failure detectors in
which we are interested, i.e., Σk, Lk and Ωk. The next three sections are the contri-
butions of the paper: Section 4 is on the realism of Lk, Section 5 solves the equation
〈Σk, Xk〉  Lk, while Section 6 shows that �Lk and Ωk are equivalent. Finally, Sec-
tion 7 concludes the paper.
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2 Base Computation Model and k-Set Agreement

2.1 Computation Model

Process model. The system consists of a set of n sequential processes denoted p1, ...,
pn. Π = {1, . . . , n} is the set of process identities. Each process executes a sequence of
(internal or communication) atomic steps. A process executes its code until it possibly
crashes (if it ever crashes). After it has crashed, a process executes no more step. A
process that crashes in a run is said faulty in that run, otherwise it is correct. Given a
run, C and F denote the set of processes that are correct and the set of processes that are
faulty, respectively. Up to t = n− 1 processes may crash in a run, hence, 1 ≤ |C| ≤ n.

Communication model. The processes communicate by executing atomic communica-
tion steps which are the sending or the reception of a message. Every pair of processes
is connected by a bidirectional channel. The channels are failure-free (no creation, al-
teration, duplication or loss of messages) and asynchronous (albeit the time taken by a
message to travel from its sender to its receiver is finite, there is no bound on transfer
delays). The notation “broadcast MSG TYPE(m)” is used as a (non-atomic) shortcut for
“for each j ∈ Π do send MSG TYPE(m) to pj end for”.

Underlying time model The underlying time model is the set N of natural integers. As
we are in an asynchronous system, this time notion is not accessible to processes (hence,
the model is sometimes called time-free model). It can only be used from an external
observer point of view to state or prove properties. Time instants are denoted τ , τ ′, etc.

Notation. The previous asynchronous crash-prone message-passing system model is
denotedAMP [∅]. AMP stands for “AsynchronousMessage-Passing”; ∅ means the
“base” system (not enriched with a failure detector).

2.2 The k-Set Agreement Problem

As already indicated, the k-set agreement problem (1 ≤ k ≤ n) has been introduced by
Soma Chaudhuri [7]. It generalizes the consensus problem (that corresponds to k = 1).
It is defined as follows. Each process proposes a value and has to decide a value in such
a way that the following properties are satisfied:

– Termination. Every correct process decides a value.
– Validity. A decided value is a proposed value.
– Agreement. At most k different values are decided.

3 The Failure Detectors Ωk, Σk and Lk

This section presents the three failure detectors we are interested in. (People interested
in the underlying assumptions and algorithms to implement failure detectors in asyn-
chronous systems can consult Chapter 7 of [16].)

The system model AMP [∅] enriched with any of these failure detectors A is de-
noted AMP[A]. A failure detector provides each alive process pi with a read-only
local variable, say xxxi. The value of xxxi at time τ is denoted xxxτ

i .



Relations Linking Failure Detectors 345

3.1 The Eventual Leadership Failure Detector Ωk

The failure detectorΩk has been introduced in [13]. Its local output at pi is a set denoted
leadersi . Ωk is defined by the two following properties (where LD ⊆ Π).

– Validity. ∀i, ∀τ : (leadersτ
i ⊂ Π) ∧ (|leadersτ

i | = k).
– Eventual leadership. ∃ LD , ∃ τ : LD∩C �= ∅ ∧ ∀τ ′ ≥ τ, ∀i ∈ C : leadersτ ′

i = LD .

Validity means that the values of leadersi are k process identities. Eventual leadership
states that, after some unknown but finite time, all correct processes have the same set
of leaders and at least one of these leaders is a correct process. Before all processes are
provided with the same set of leaders, there is possibly an unknown but finite anarchy
period during which the sets leadersi have arbitrary values.

The failure detector from which Ωk originates is Ω (which is the same as Ω1). As
already noticed, Ω has been introduced in [6] where it is shown to be the weakest fail-
ure detector to solve consensus in message-passing systems with a majority of correct
processes. It has later been shown in [9] that 〈Σ,Ω〉 is the weakest failure detector to
solve consensus for t = n− 1.

3.2 The Quorum Failure Detector Σk

The failure detector Σk has been introduced in [2]. It is a generalization of the failure
detector Σ (called quorum failure detector) introduced in [9] where it is shown to be
the weakest failure detector to implement a register in AMP[∅] (Σ1 is Σ).

The local output at pi of Σk is a set qri (called quorum) that satisfies the following
properties.

– Liveness. ∃ τ : ∀ i ∈ C, ∀ τ ′ ≥ τ : qrτ ′
i ⊆ C.

– Intersection. Let I = {idx}1≤x≤k+1 ⊂ Π be a multiset (or bag) of k + 1 process
identities. Let T = {τx}1≤x≤k+1 be a multiset of k + 1 time instants. ∀ I, ∀ T :
∃ i, j ∈ [1..k + 1] : (i �= j) ∧ (qrτi

idi
∩ qrτj

idj
�= ∅).

The liveness property states that the quorum of a correct process eventually includes
only correct processes. The intersection property states that any set of k + 1 quorums,
whose values are taken at any times, contains two intersecting quorums. This means
that the intersection property prevents processes to partition in more than k subsets.
It is shown in [2] that Σk is necessary when one wants to solve k-set agreement in
AMP[∅].

3.3 The Loneliness Failure Detector Lk

The Lk family introduced in [1] is a generalization of the failure detector L proposed in
[10] where it is shown that L is the weakest failure detector for (n − 1)-set agreement
in asynchronous message-passing systems. Ln−1 is L.

The local output at pi of Lk is a boolean variable alonei that satisfies the following
two properties (after a process pi has crashed, we have alonei = false by definition).

– Stability. ∃K ⊂ Π : (|K| = n− k) ∧ (∀ i ∈ K, ∀ τ : aloneτ
i = false).

– Loneliness. (|C| ≤ n− k) ⇒ (∃ i ∈ C, ∃τ : ∀ τ ′ ≥ τ : aloneτ ′
i = true).
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Stability states that the boolean variables of at most k processes can take the value
true, while the loneliness property states that, if at least k processes crash, then there
is a finite time after which there is a correct process pi whose boolean variable alonei

remains forever equal to true. An algorithm solving the k-set agreement problem in
AMP[Lk] is described in [1,18]. It is also shown in [1] that, for 1 < k < n− 1, Lk is
not the weakest failure detector for k-set agreement in AMP [∅].

4 On the Implementability of Lk in a Synchronous System

This section addresses the realism of Lk, i.e., its implementability in a synchronous
distributed system.

Synchronous distributed system. Synchrony is an abstraction that encapsulates (and
hides) specific timing assumptions. A synchronous system provides the processes with
a global clock r called round number which entails the progress of the computation.
The processes progress simultaneously from round to round. During a round, a process
sends a message to all processes, receives messages from other processes and executes
local computation. The fundamental property associated with a synchronous system is
that a message sent by a process during a round r is received by the other processes
during the very same round r. (More information on synchronous systems can be found
in the book [17] that is entirely devoted to such systems.)

Let SMP denotes a Synchronous Message-Passing system made up of n pro-
cesses, in which up to t = n− 1 processes may crash.

BuildingLk in SMP when k ≥ n/2. Algorithm 1 presents the code of such a construc-
tion for a process pi. Initially, alonei is false. Then, during each round r, pi broadcasts
a message ALIVE(i) to inform the other processes that it was alive at the beginning of
round r (line 04). Then, pi receives round r messages and updates rec idsi accordingly
(line 05). Finally, if rec idsi contains at most n− k process identities, pi sets alonei to
true (line 06).

(01) init alonei ← false;
(02) when r = 1, 2, ... do
(03) begin synchronous round
(04) broadcast ALIVE(i);
(05) rec idsi ← { j such that ALIVE(j) received during the current round };
(06) if (|rec idsi | ≤ n − k) then alonei ← true end if
(07) end synchronous round.

Algorithm 1. Building Lk in SMP when k ≥ n/2 (code for pi)

Lemma 1. Let k ≥ n/2. Algorithm 1 builds a failure detector Lk in SMP .

Proof. Proof of the stability property. Let r be the first round during which a process
pi sets alonei to true. This means that at least k processes have crashed before sending
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their round r message to pi. Consequently, at most n − k processes will ever set their
boolean alonei to true. As k ≥ n/2 ⇒ n− k ≤ k, it follows that at least k processes
will never set their boolean variables to true which proves the property.

Proof of the loneliness property. If k or more processes crash during a run, for each
correct process pi, there is a round r such that pi receives at most n − k messages at
every round r′ ≥ r, from which it follows that, from round r, alonei remains forever
equal to true. �Lemma 1

Lemma 2. It is not possible to build Lk in SMP when k < n/2.

Proof. Assuming by contradiction that there is a synchronous algorithm A that builds
Lk (with k < n/2) in SMP , let us consider a run rk+1 of A in which the processes
p1, p2, ..., pk have initially crashed. It follows from the loneliness property (guaranteed
by A) that there is a process (say pk+1) whose boolean alonek+1 becomes eventually
true and remains afterward forever equal to true.

Let us now consider a second run rk+2 of A that is identical to rk+1 until alonek+1

becomes and remains forever equal to true and such that, after that round, pk+1 crashes.
As previously, it follows from the loneliness property (guaranteed by A) that there is
a process (say pk+2) whose boolean alonek+2 becomes and remains forever equal to
true. It is possible to continue to design similar runs rk+3, etc., until rn (in each rx,
k + 1 ≤ x ≤ n, x− 1 processes crash).

Hence, in the run rn, n − k processes pj have set their boolean variable alonej to
true. As k < n/2 ⇒ n−k > k, this contradicts the fact that the algorithmA guarantees
the stability property ofLk, namely, at most k processes never set their boolean variable
to true. A contradiction from which the lemma follows. �Lemma 2

The next theorem follows from Lemma 1 and Lemma 2.

Theorem 1. k ≥ n/2 is a necessary and sufficient condition for Lk to be realistic.

Let us notice that the failures detectors P (perfect failure detector) [5], Σ, Σk, Ω, Ωk

are realistic.

5 Relating Lk and Σk

This section determines the property that has to be added to Σk (which is necessary to
solve k-set agreement) in order to obtain exactly Lk. Let Xk be this property. Hence,
this section solves the equation 〈Σk, Xk〉  Lk where Xk is the unknown and A  B
means “AMP[A] and AMP [B] have the same computational power”.

5.1 The Property Xk

Xk is designed to work with Σk. It is defined by the following property where qri is
the output of Σk at pi.

– Loneliness. (|C| ≤ n− k) ⇒ (∃ i ∈ C, ∃τ : ∀ τ ′ ≥ τ : qrτ ′
i = {i}).
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Hence, Xk requires that, when at least k processes are faulty, there a time instant at
which the quorum of a correct process forever contains only itself.

The next theorem follows directly from the lemmas 3 and 4 that are proved in the
next two sections.

Theorem 2. AMP[Lk] and AMP[〈Σk, Xk〉] have the same computational power.

5.2 Building Lk in AMP[〈Σk, Xk〉]
Algorithm 2 presents a very simple algorithm that builds Lk in AMP[〈Σk, Xk〉]. The
output alonei of each process pi is initialized to false and is set to true if the predicate
qri = {i} becomes satisfied at least once.

init alonei ← false;
when qri = {i}: alonei ← true .

Algorithm 2. Building Lk in AMP[〈Σk, Xk〉]

Lemma 3. Algorithm 2 builds Lk in AMP[〈Σk, Xk〉].
Due to page limitations, the reader will find the proof in [12]. (It is worth noticing that
this proof does not use the liveness property of Σk.)

5.3 Building 〈Σk, Xk〉 in AMP[Lk]

Underlying principle and description of the algorithm Algorithm 3 relies on the obser-
vation of the predicate qri = {i} that it makes stable (once satisfied, it remains forever
satisfied).

The variable qri of each process is initialized to Π in order not to compromise the
intersection property. Then, if alonei becomes true, pi sets qri to {i} (line 03) and,
from then on, qri will keep that value forever and pi repeatedly informs of it the other
processes by broadcasting a message ALONE(i).

When it receives ALONE(j) from another process (line 04), pi learns that qrj is
keeping forever the value {j}. If qri �= {i}, pi updates accordingly qri to {i, j} in
order to preserve the intersection property of Σk (line 05).

Independently of its other statements, pi repeatedly informs the other processes that
it is alive (task T 1 where messages ALIVE(i) are broadcast forever). This triggers coor-
dination among the processes even if no boolean alonei becomes equal to true. Its aim
is to ensure the liveness property of Σk.

The task T 2 is associated with the processing of the ALIVE(j) received by pi. When
it has received such messages from (n− k) distinct processes, if qri has not stabilized
on {i}, pi resets qri to the set containing i and the processes from which alive messages
have been received.

Lemma 4. Algorithm 3 builds 〈Σk, Xk〉 in AMP [Lk].
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(01) init: qri ← Π ; start T1, T2.

(02) when alonei becomes equal to true :
(03) qri ← {i}; repeat forever broadcast ALONE(i) end repeat.

(04) when ALONE(j) with j �= i is received:
(05) if (qri �= {i}) then qri ← {i, j} end if.

(06) task T1: repeat forever broadcast ALIVE(i) end repeat.

(07) task T2:
(08) repeat forever
(09) wait until

(
new ALIVE(j) messages with j �= i received from n − k processes

)
;

(10) let proci = the set of n − k processes from which messages have been received;
(11) if (qri �= {i}) then qri ← {i} ∪ proci end if
(12) end repeat.

Algorithm 3. Building 〈Σk, Xk〉 in AMP [Lk]

Proof. Proof of the liveness property of Σk and the loneliness property of Xk.
Let A be the set of correct processes pi whose boolean variable alonei takes the value
true. Due to line 02, each process pi of A sets qri to {i} and, due to lines 05 and 11, it
follows that qri remains forever equal to {i}, We consider two cases.

– Case 1: There are k or more faulty processes (|C| ≤ n− k).
As |C| ≤ n − k, it follows from the loneliness property of Lk that A �= ∅ which
establishes the loneliness property of Xk.
It follows from line 03 that each process pi of A broadcasts forever the message
ALONE(i) and from line 05 that, after all the messages ALONE() sent by faulty
processes have been received, no process pj will add the identity of a faulty process
to its quorum qrj at line 05. Moreover, after k processes have crashed, the task T 2
of each correct process pi not in A eventually remains blocked forever at line 09
and pi will never add faulty processes to qri at line 11. Consequently, there is a
time after which no faulty process will ever be added to the quorum qri of a correct
process from which we conclude that there is a time after which the quorum qri of
any correct process pi contains only its identity or its identity plus the identity of
another process of A. This concludes the proof of the liveness property of Σk when
|C| ≤ n− k.
Remark. Let us observe that eventually any correct process pi of A is such that
qri = {i} while any process pi not in A is such that qri = {i, j} where pj is a
process of A that can change with time. In the paragraph that follows the proof, the
set A is called kernel.

– Case 2: There are less than k faulty processes (|C| > n− k).
As |C| > n−k, there are at least (n−k+1) correct processes that forever broadcast
messages ALIVE() (line 06) and consequently no process will ever block forever at
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line 09. Hence, every correct process pi that does not belong to A will infinitely
often updates qri to sets of (n− k + 1) correct processes (line 11). Moreover, after
it has received the last message ALONE() sent by a faulty process, pi no longer
includes a faulty process in its quorum qri at line 05. It follows that there is a time
after which the quorum of a correct process contains only correct processes which
proves the liveness property of Σk. The loneliness property of Xk follows trivially
from ¬(|C| ≤ n− k).

Proof of the intersection property of Σk.
Let us assume by contradiction that there is a set of quorum values {qj}1≤j≤k+1 com-
puted by the algorithm that are such that ∀j1 �= j2 : qj1 ∩ qj2 = ∅. Let P be the set of
identities of the processes from which these k + 1 quorum values have been obtained.
As, for any process pi, we always have i ∈ qri (lines 01, 03, 05 and 11), it follows that
|P | = k + 1.

Let us assume without loss of generality that P = {1, 2, . . . , k + 1} and qj has
been computed by pj . The value of each qj has been computed at line 03, 05 or 11 (it
cannot be the initial value qrj = Π because that quorum value would intersect any
other quorum and our contradiction assumption would not be satisfied).

Let B ⊆ P the set of processes whose quorum values have been computed at line
03 or 05. Hence, each of these quorum values contains a process px whose boolean
variable alonex has taken the value true. It then follows from the stability property of
Lk that at most k processes px can have alonex = true, from which we conclude that
0 ≤ |B| ≤ k. It follows from B ⊆ P , |P | = k + 1 and 0 ≤ |B| ≤ k that P \B �= ∅.

Let i ∈ P \ B. Due to the definition of B, pi has computed qi at line 11 and,
consequently, we have |qi| = n− k + 1. As ∀j1, j2 ∈ P : (j1 �= j2) ⇒ (qj1 ∩ qj2 = ∅)
and ∀i ∈ P : i ∈ qi, we have qi∩(P \{i}) = ∅. It follows that |qi| ≤ |Π |−|P \{i}| =
n − k which contradicts |qi| = n − k + 1 and concludes the proof of the intersection
property of Σk. �Lemma 4

A property of 〈Σk, Xk〉 The loneliness property of Xk is (|C| ≤ n − k) ⇒ (∃ i ∈
C, ∃τ : ∀ τ ′ ≥ τ : qrτ ′

i = {i}). Actually, Algorithm 3 ensures a stronger property, that
we call strong loneliness, defined as follows.

– Strong loneliness. (|C| ≤ n−k) ⇒ (∃τ : ∀τ ′ ≥ τ, ∀ i ∈ C : (∃ j ∈ qrτ ′
i : ∀ τ ′′ ≥

τ : qrτ ′′
j = {j})).

When |C| ≤ n − k, let us call kernel the set of processes pi that after some time have
forever qri = {i} (this is the set called A in the proof of the liveness property of Σk and
the loneliness property of Xk in Lemma 4). As it requires that, after some time, each
correct process pi either belongs to the kernel or has a quorum containing a process of
the kernel (which can change with time) it is easy to see that strong loneliness property
implies loneliness defined by Xk.

As far as the other direction is concerned we have the following. As algorithm 3
ensures strong loneliness, it follows from Lemma 3 and Lemma 4 that this stronger
property is implicitly contained in 〈Σk, Xk〉.
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6 Relating Lk and Ωk

This section shows that a simple and pretty natural weakening of the stability of Lk

gives rise to a new failure detector which is equivalent to Ωk. This establishes a strong
relation linking Lk and Ωk.

6.1 The Failure Detector �Lk

Weakening the stability property of Lk from perpetual to eventual gives rise to the
failure detector �Lk. Hence, �Lk is defined by the following properties.

– Eventual stability. ∃τ , ∃K ⊂ Π : (|K| = n− k)∧ (∀ i ∈ K, ∀ τ ′ ≥ τ : aloneτ ′
i =

false).
– Loneliness. (|C| ≤ n− k) ⇒ (∃ i ∈ C, ∃τ : ∀ τ ′ ≥ τ : aloneτ ′

i = true).

Hence, when compared to Lk, �Lk ensures the boolean variables of at least n − k
processes remains forever equal to false only after an unknown but finite time.

The next two sections show that �Lk and Ωk are equivalent in AMP [∅], i.e., �Lk

can be built in AMP [Ωk] and Ωk can be built in AMP [�Lk]. The next theorem
follows directly from the lemmas 5 and 7 that are proved in the next two sections.

Theorem 3. AMP[�Lk] andAMP [Ωk] have the same computational power.

6.2 Building �Lk in AMP[Ωk]

Algorithm 4 is a very simple construction of �Lk in AMP [Ωk]. The boolean alonei

of each process pi is initialized to false . Then, a process pi repeatedly updates it to true
or false according to the fact that its identity appears or does not appear in the local
output leadersi currently provided by its underlying failure detector Ωk.

init alonei ← false;
repeat forever alonei ← (i ∈ leadersi ) end repeat.

Algorithm 4. Building �Lk in AMP [Ωk] (code for pi)

Lemma 5. Algorithm 4 builds �Lk in AMP [Ωk].

Proof. Let τ be a finite time after which all faulty processes have crashed and there is a
set LD of k process identities such that LD∩C �= ∅, ∀ i ∈ C, ∀ τ ′ ≥ τ : leadersτ ′

i = LD .
(Due to the eventual leadership property of Ωk, τ and LD do exist.) It follows from the
algorithm that, after τ , each process pi with i ∈ LD∩C executes forever alonei ← true
(Observation O1) while each process pi with i ∈ C \ LD executes forever alonei ←
false (Observation O2). Let τ ′ ≥ τ be a time instant at which each correct process pi

has updated at least once its boolean variable alonei.
Proof of the eventual stability property of �Lk. Let K = Π \ LD (hence |K| =

n− k). For the faulty processes of K , let us remember that, by definition, the boolean
variable alonex of a crashed process px is equal to false . The correct processes pi

of K are such that i ∈ C \ LD and it follows from observation O2 that the boolean
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variables of all correct processes in C\LD remain forever equal to false after τ ′. Hence,
we have ∃τ ′′ ≥ τ ′, ∃K : (|K| = n−k) ∧ (∀ i ∈ K, ∀ τ ′′′ ≥ τ ′′ : aloneτ ′′′

i = false),
which proves the eventual stability property of �Lk.

Proof of the loneliness property of �Lk. Let us observe that, due to Ωk, C∩LD �= ∅,
hence ∃i ∈ C ∩ LD . It then follows from observation O1 that, after τ ′, pi forever
executes alonei ← true which concludes the proof. �Lemma 5

6.3 Building Ωk in AMP[�Lk]

Underlying principle. The idea of the algorithm is the following. We know from �Lk

that there is a finite time after which there is a set X of at least n− k processes pi that
will no longer have their boolean alonei equal to true. The algorithm strives to capture
the complementary set Y of X in order to have Y in the final output LD of Ωk. Let us
observe that we have the following when Y has been captured. If k or more processes
are faulty, it follows from the loneliness property of �Lk that there is a correct process
pi whose boolean becomes and remains true forever, hence we have i ∈ Y and we can
take any LD such that Y ⊆ LD . If less than k processes are faulty, it is relatively easy
for the correct processes to agree on any set of k processes (as any such set includes a
correct process).

A list of all subsets of size k. Let us consider all possible subsets of k processes.
Moreover, let us order all of them according to lexicographical ordering when con-
sidering each subset as a sorted array. Hence, the set {1, 2, . . . , k − 1, k} is the first,
{1, 2, . . . , k − 1, k + 1} the second, etc., until the set {n − k + 1, . . . , n − 1, n} that
is the last one. Let L be this sorted list of all subsets of size k. Moreover, let L′ be
the list L where {1, 2, . . . , k − 1, k} is defined as the successor of the last subset
{n− k + 1, . . . , n− 1, n}.
Finally, let next �d(sbst) be the function that returns the subset that follows sbst in L′.

Local variables. To attain their goal, the processes execute asynchronous rounds. The
local variable ri contains the current round number of pi. The current local output com-
puted by pi to implement Ωk is kept in the local variable leadersi .

Each process pi manages a set called next seti. This set contains all the pairs
(r, leaders) received by pi. The aim of this set is to allow the processes to proceed in
the very same order from the pair (1, {1, 2, . . . , k−1, k}), to the pair (1, {1, 2, . . . , k−
1, k + 1}), etc., until the pair (1, {n − k + 1, . . . , n − 1, n}) during the first round,
then from (2, {1, 2, . . . , k − 1, k}) until (2, {n− k + 1, . . . , n− 1, n}) during the sec-
ond round, etc., until they stop during a round r on the very same pair (r, leaders) and
define accordingly LD = leaders .

Behavior of a process pi. Algorithm 5 describes the behavior of a process pi. Let us
first observe that, if no correct process pi ever receives a message ALONE(j), we can
conclude from the eventual stability property of �Lk that less than k processes are
faulty. Then no message is ever exchanged among the correct processes pi and they all
agree on leadersi = LD = {1, 2, . . . , k} (that contains at least one correct process)
and Ωk is trivially implemented. Let us now consider the general case. Each time it
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(01) init leadersi ← {1, 2, . . . , k}; ri ← 1; next seti ← ∅;
(02) repeat forever if (alonei) then broadcast ALONE(i) end if end repeat.

(03) when ALONE(j) is received: if (j /∈ leadersi ) then broadcast NEXT(ri, leadersi ) end if.

(04) when NEXT(r, leaders) is received for the first time:
(05) broadcast NEXT(r, leaders);
(06) next seti ← next seti ∪ {(r, leaders)};
(07) while

(
(ri, leadersi ) ∈ next seti

)
do

(08) leadersi ← next �d(leadersi );
(09) if (leadersi = {1, 2, . . . , k}) then ri ← ri + 1 end if
(10) end while.

Algorithm 5. Building Ωk in AMP [�Lk] (code for pi)

reads true from alonei, process pi broadcasts a message ALONE(i). When it receives
a message ALONE(j) such that pj is not currently in leadersi , process pi broadcasts
NEXT(ri, leadersi) (line 03). This message is to indicate to the others processes that
its current set leadersi seems not to be the final one and consequently pi demands the
others processes to try the next candidate leader set obtained from the list L′.

When pi receives a message NEXT(r, leaders) for the first time, it forwards it to all in
case the sender crashed during its broadcast (line 05) and saves it in next seti (line 06).
Then if the current pair (ri, leadersi) belongs to next seti (line 07), pi progresses to
the next candidate set of the list L′ (line 08). If the new value of leadersi is {1, . . . , k},
all the elements of L have been tried during round ri and consequently pi progresses to
the next round (line 09) to try again the elements of L with the aim to stop on one of
them.

Let (r1, leaders1) < (r2, leaders2)
def
= (r1 < r2) ∨ ((r1 = r2) ∧ (leaders1 <

leaders2)
)

(where leaders1 < leaders2 is the order of the sorted list L).

Lemma 6. Let pi be a correct process. Let ri = r and leadersi = �d . Process pi has
received and broadcast all the messages NEXT(r′, �d ′) such that (r′, �d ′) < (r, �d).

Proof. Due to lines 08-09, when modified, the new value of the pair (ri, leadersi ) is
the direct successor pair, according to the order defined on these pairs. If follows from
this observation and the initial value of the pair (ri, leadersi) (namely, (1, {1, . . . , k}))
that, when (ri, leadersi) = (r, �d), the pair (ri, leadersi) has taken all the pair values
(r′, �d ′) such that (1, {1, . . . , k}) ≤ (r′, �d ′) < (r, �d).

Let us now observe that the pair (ri, leadersi) progresses to its next value only when
its current value belongs to the set next seti (line 07). Moreover, a pair (r′, �d ′) is
added to next seti only when a message NEXT(r′, �d ′) is received by pi for the first
time, and this message is then systematically forwarded to all (lines 04-07).

It follows that, when (ri, leadersi ) = (r, �d), pi has received and broadcast all the
messages NEXT(r′, �d ′) such that (1, {1, . . . , k}) ≤ (r′, �d ′) < (r, �d). �Lemma 6

Lemma 7. Algorithm 5 builds Ωk in AMP [�Lk].
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Proof. Let us first observe that the values taken by any set leadersi are the subsets of
size k defined in the list L. The validity property of Ωk follows trivially.

Let Π1 denote the set of processes that broadcast an infinity of messages ALONE().
It follows from the eventual stability property of �Lk that there is a finite time τ1 after
which at least n − k boolean variables alonei remain forever equal to false , hence
|Π1| ≤ k. Moreover, there is a time τ2 ≥ τ1 from which (a) all received messages
ALONE() are from processes of Π1 and (b) no process broadcasts at line 03 a message
NEXT(r, ld) with Π1 ⊂ ld (this follows from the predicate used in the if statement of
line 03).

Let (r0, �d0) be the greatest pair such that Π1 ⊆ �d0 and there is a message
NEXT(r0, �d0) that entailed an update of leadersi at some correct process pi (line 08).
If there is no such pair, let (r0, �d0) = (0, α) where next �d(α) = {1, . . . , k}. Let
(r1, �d1) be the smallest pair such that (r0, �d0) < (r1, �d1) and Π1 ⊂ �d1.

It follows from the definition of (r0, �d0) and Lemma 6 that all NEXT(r, �d) mes-
sages such that (r, �d) ≤ (r0, �d0) have been sent by correct processes from which we
conclude that each correct process pi eventually updates leadersi to next �d(�d0).

If Π1 �⊂ leadersi at some correct process pi, it follows from the definition of Π1

that pi eventually receives a message ALONE(j) sent by pj such that j ∈ Π1 \ leadersi .
When it receives such a message (line 03), process pi broadcasts NEXT(−, leadersi).
It follows that, for each pair (r, �d) such that (r0, �d0) < (r, �d) < (r1, �d1), each
correct process broadcasts (at line 03 or line 05) a message NEXT(r, �d). Moreover,
once all these messages have been received, the correct processes pi eventually agree
on the same set leadersi = �d1 and no longer broadcast NEXT(−,−) messages.

If there are k or more faulty processes, the loneliness property of �Lk implies that
Π1 ∩C �= ∅ and consequently �d1 contains at least one correct process. If there are less
than k faulty processes, as |�d1| = k, �d1 contains at least one correct process, which
concludes the proof of the lemma. �Lemma 7

7 Conclusion

This paper has investigated the computability power and explored the relations linking
three failure detectors that have been proposed to solve the k-set agreement problem
in asynchronous crash-prone message-passing systems. (The k-set agreement problem
is a coordination problem that generalizes the consensus problem.) These three failure
detectors are the generalized quorum failure detector Σk, the generalized loneliness
failure detector Lk and the generalized eventual leader failure detector Ωk.

The paper has (a) shown that the failure detector Ωk and the eventual version of
Lk have the same computational power; (b) shown that Lk is realistic if and only if
k ≥ n/2; and (c) given an exact characterization of the difference between Lk and
Σk. Hence, this paper provides us with a better understanding of these failure detectors
in the quest for the weakest failure detector to solve the k-set agreement problem in
asynchronous message-passing crash-prone systems.

Acknowledgments. The authors want to thank F. Bonnet, M. Biely, P. Robinson and
U. Schmid for constructive comments.
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Abstract. We present Corona, a deterministic self-stabilizing algorithm
for skip list construction in structured overlay networks. Corona oper-
ates in the low-atomicity message-passing asynchronous system model.
Corona requires constant process memory space for its operation and,
therefore, scales well. We prove the general necessary conditions limiting
the initial states from which a self-stabilizing structured overlay network
in message-passing system can be constructed. The conditions require
that initial state information has to form a weakly connected graph and
it should only contain identifiers that are present in the system. We for-
mally describe Corona and rigorously prove that it stabilizes from an
arbitrary initial state subject to the necessary conditions. We extend
Corona to construct a skip graph.

1 Introduction

In a peer-to-peer overlay network, each process can communicate with any other
peer process over the underlying network as long as the process is aware of the
peer’s identifier. These identifier records form the network topology. Peer-to-peer
networks are effective for distributed information storage, group communication
and large scale computations. The amount of research literature on this subject
is extensive [2,3,4,6,13,16,22,23,25].

The skip list [20] is a popular peer-to-peer topology as it allows efficient search
and quick topology updates. Specifically, both identifier search as well as process
deletion or addition in a skip list take O(log n) steps, where n is the number of
nodes. A skip list may be either randomized or deterministic. While the random-
ized version may be simpler to implement, the deterministic one provides firm
search and topology update bounds as well as greater assurance against failures,
malicious behavior and unfavorable topology changes.

A skip list may not be sufficiently robust against node crashes. Indeed, a
single node failure may disconnect the skip list. Neither is a skip list particu-
larly suitable for concurrent searches. The standard measures of robustness and
concurrency are expansion and congestion [4]. The expansion and congestion of
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the skip list are O(1/n) and Ω(n) respectively. A skip list extension, the skip
graph [3], significantly improves these metrics.

Peer-to-peer systems may include millions of nodes. At such scale, fault-
tolerance and topology maintenance become a major concern. Self-stabilization [11]
may be a particularly suitable failure recovery approach for peer-to-peer sys-
tems [1,19] as it is oblivious to the exact nature of the fault. As soon as the
influence of the fault stops, regardless of the state in which this fault leaves the
system, its self-stabilization is guaranteed to return it to a correct state.

Due to the large initial state space, self-stabilization programs require careful
correctness proofs. If practical low atomicity communication models, such as the
message-passing system, are considered such proofs may become difficult both
to construct and to verify. Furthermore, a large initial state space may lead to
excessive process memory demands during stabilization, especially during initial
linearization: topological sorting of the processes [19].

Our Contribution. In this paper we present Corona: a self-stabilizing deter-
ministic skip list construction algorithm in message-passing systems. To the best
of our knowledge Corona is the first such algorithm.

Before describing Corona, we prove two necessary conditions for the existence
of a self-stabilizing solution to any overlay network problem. The conditions
limit the possible initial states in two ways: the state information must form
a weakly connected graph, and the states should not include identifiers that
are not present in the system. Subject to these restrictions, we rigorously prove
Corona to correctly stabilize from an arbitrary initial state.

Instead of struggling to counteract the large state space of message passing
systems, we are able to use the low-atomicity model to our advantage: the chan-
nels are employed as extra identifier storage space. This allows us to keep the
Corona design relatively straightforward and to linearize processes using process
memory that is independent of the system size. We extend Corona to build skip
graphs and to accommodate topology updates.

Related Literature. There is a large body of literature on how to efficiently
maintain peer-to-peer networks. Most of the results focus on preserving the
overlay network in the legal set of states. Relatively few studies address the
self-stabilization of such networks. Due to the topology being part of system
state, the majority of classic self-stabilizing techniques are not applicable to
peer-to-peer networks.

Let us survey the publications in self-stabilization of peer-to-peer networks. A
few papers address simple topologies. The Iterative Successor Pointer Rewiring
Protocol [10] and the Ring Network [24] organize the nodes in a sorted ring.
Onus et al. [18] linearize a network into a sorted linked list. However, they use
a simplified synchronized communication model for their algorithm.

There are several studies of more sophisticated structures. Hérault et al. [14]
describe a self-stabilizing spanning tree algorithm. Caron et al. [8] present a
Snap-Stabilizing Prefix Tree for Peer-to-Peer systems while Banchi et al. [7]
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show stabilizing peer-to-peer spatial filters. However, none of these structures
approach the congestion and expansion of a skip graph. Clouser et al. [9] pro-
pose a deterministic self-stabilizing skip list for shared register communication
model. Gall et al. [12] discuss models that capture the parallel time complexity of
locally self-stabilizing networks that avoids bottlenecks and contention. Jacob et
al. [21] generalize insights gained from graph linearization to two dimensions and
present a self-stabilizing construction for Delaunay graphs. In another paper, Ja-
cob et al. [15] present a self-stabilizing, randomized variant of the skip graph and
show that it can recover its network topology from any weakly connected state
in O(log2 n) communication rounds with high probability in a simple, synchro-
nized message passing model. In [5] the authors present a general framework for
the self-stabilizing construction of any overlay network. However, the algorithm
requires the knowledge of the 2-hop neighborhood for each node and involves
the construction of a clique. In that way, failures at the structure of the overlay
network can easily be detected and repaired.

2 Model, Notation and Definitions

Peer-to-Peer Networks. A peer-to-peer overlay network program consists of
a set N of n processes with unique identifiers. A process can communicate with
any other process as long as it has a record of its identifier. The communication
is by passing messages through channels.

Peer-to-peer networks often require ordering the processes in a sequence ac-
cording to their identifiers. Two processes a and b are consequent, denoted
cnsq(a, b), if (∀c : c ∈ N : (c < a) ∨ (b < c)). That is, two consequent pro-
cesses do not have an identifier between them. For the sake of completeness,
we assume that −∞ is consequent with the smallest id process in the system.
Similarly, the largest id process is consequent with +∞.

Graph terminology helps us in reasoning about peer-to-peer networks. A link
is a pair of identifiers (a, b) defined as follows: either message message(b) car-
rying identifier b is in the incoming channel of process a, or process a stores
identifier b in its local memory. See Figure 2 for illustration. Note that a thus
defined link is directed. In referring to such a directed link (a, b), we always state
the predecessor process a first and the successor process b second. The length
of a link (a, b) is the number of processes c such that a < c < b. Note that the
length of (a, b) is zero if cnsq(a, b) is true. The length of (−∞, a) is zero if a is
the smallest id in the system, it is n otherwise. Similarly, the length of (b,+∞)
is zero if b is maximum and n otherwise. The process connectivity graph CP is
the graph formed by the links of the identifiers stored by the processes. A chan-
nel connectivity multigraph CC includes both locally stored and message-based
links. Self-loop links are not considered. By this definition, CP is a subgraph
of CC. Note that besides the processes, CC and CP may contain two nodes
+∞ and −∞ and the corresponding links to them. Graph CP captures current
network connectivity information the set of processes possesses. CC reflects the
connectivity data that is stored implicitly in the messages in communication
channels. Again, refer to Figure 2 for an example of both graph types.
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Computation Model. Each process contains a set of variables and actions.
A channel C is a special kind of variable whose values are sets of messages.
We assume that the only information a message carries is process identifiers.
We further assume that a message carries exactly one identifier. The identifiers
are defined. That is, a message cannot carry ∞. Channel message capacity is
unbounded. Messages cannot be lost. The order of message receipts does not
have to match the order of transmission. That is, the channels are not FIFO.
Due to this, we treat all messages sent to a particular process as belonging to a
single incoming channel.

An action has the form 〈guard〉 −→ 〈command〉. guard is either a predicate
over the contents of the incoming channel or true. In the latter case the predicate
and corresponding action are timeout. command is a sequence of statements
assigning new values to the variables of the process or sending messages to other
processes.

Program state is an assignment of a value to every variable of each process
and messages to each channel. A program state may be arbitrary, the messages
and process variables may contain identifiers that are not present in the network.
An identifier is existing if it is present in the network. An action is enabled in
some state if its guard is true in this state. It is disabled in this state otherwise.
A timeout action is always enabled. We consider programs with timeout actions,
hence, in every state there is at least one enabled action.

A computation is an infinite fair sequence of states such that for each state
si, the next state si+1 is obtained by executing the command of an action that
is enabled in si. This disallows the overlap of action execution. That is, action
execution is atomic. We assume two kinds of fairness of computation: weak
fairness of action execution and fair message receipt. Weak fairness of action
execution means that if an action is enabled in all but finitely many states of the
computation then this action is executed infinitely often. Fair message receipt
means that if the computation contains a state where there is a message in a
channel, the computation also contains a later state where this message is not
present in the channel.

We focus on programs that do not manipulate the internals of process iden-
tifiers. Specifically, a program is compare-store-send if the only operations that
it does with process identifiers is comparing them, storing them in local process
memory and sending them in a message. That is, operations on identifiers such
as addition, radix computation, hashing, etc. are not used. In a compare-store-
send program, if a process does not store an identifier in its local memory, the
process may learn this identifier only by receiving it in a message. A compare-
store-send program cannot introduce new identifiers to the network, it can only
operate on the ids that are already there. If a computation of a compare-store-
send program starts from a state where every identifier is existing, each state of
this computation contains only existing identifiers.

A state conforms to a predicate if this predicate is true in this state; oth-
erwise the state violates the predicate. By this definition, every state conforms
to predicate true and none conforms to false. Let A and B be predicates over
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program states. Predicate A is closed with respect to the program actions if every
state of the computation that starts in a state conforming to A also conforms to
A. Predicate A converges to B if both A and B are closed and any computation
starting from a state conforming to A contains a state conforming to B.

Problems. The overlay network problem maps each set of identifiers to a set of
acceptable process connectivity graphs. For example, for every set of processes,
the linearization problem specifies exactly one graph where each process is linked
with its consequent processes.

Linearized overlay networks simplify process search. When discussing a lin-
earized network, processes with identifiers greater than p are to the right of p,
while processes with identifiers smaller than p are to the left of p. That is, we
consider processes arranged in the increased order of identifiers from left to right.
See Figure 2 for an illustration.

The process search time in a simple linearized network is proportional to
its size. This may not be acceptable in large-scale networks. Shortcut links are
added to accelerate navigation. In a deterministic skip list, these links are created
recursively by levels. The zero (bottom) level is the linearized list of processes.
In a k-l skip list, a node a has a link to node b at level i if a and b are between k
and l hops away at level i− 1. For example, in a 1-2 skip list, a and b are linked
at level i if they are no more than three and no less than two hops away at level
i− 1. Refer to Figure 4 for an example of a 1-2 skip list.

In the k-l skip list construction problem, a set of processes is mapped to the
set of possible skip lists. Note that in a linearization problem the set of identifiers
uniquely determines the connectivity graph. In case of k-l skip list construction,
depending on which processes participate at each level, the same list of identifiers
may form several possible skip lists. Hence, the skip list construction problem
specifies multiple acceptable CP graphs for a single set of processes.

We define the two problem properties below to aid us in formally stating the
necessary conditions for the existence of a solution. An overlay network problem
is single component if it maps every set of processes to a weakly connected pro-
cess connectivity graph. Intuitively, a single component network overlay problem
prohibits a program from separating the network into multiple components. The
linearization and skip list construction problem are single component.

An overlay network problem PG is disconnecting if there is at least one set
of processes S such that for every channel connectivity graph CP to which PG
maps S, there is a cut set CS such that |CS| < n− 1 which disconnects S. Note
that such a cut set exists for any graph except for a completely connected one.
Essentially, a disconnecting network overlay problem requires that in at least one
case the desired channel connectivity graph is not completely connected. Again,
both the linearization and skip list construction problem are disconnecting.

Problem Solutions. A program PG satisfies or solves a problem PR from
a predicate P if, for every set S, every computation of PG that starts in a
state conforming to P contains a suffix with the following property. The channel
connectivity graph CP is the same in every state of this suffix and this CP is
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one of the graphs to which PR maps S. That is, starting from the initial state
in P , the solution has to implement at least one of the required CP s.

Program stabilization is graph-identical if every computation of a stabilizing
program contains a suffix where CC contains the same links as CP . Such pro-
gram generates CC links that are already present in CP . If a process of such
program receives a message, this message carries an identifier that the recipient
process already stores and the process ignores the message.

A program is unconditionally stabilizing (or just stabilizing) if it solves the
problem from P ≡ true. That is, every computation of a stabilizing program,
regardless of the initial state, contains a correct suffix. Unconditional stabiliza-
tion may be too strong for a program to possess. A program is conditionally
stabilizing if P �≡ true. That is, such program stabilizes from a limited set P of
states.

We define two special cases of conditionally stabilizing programs. A program
is weakly channel-connectivity stabilizing if it stabilizes only from the initial
states where the channel-connectivity graph is weakly connected. A program is
existing identifier stabilizing if it stabilizes only from states where every identifier
is existing.

3 Necessary Conditions

The necessary conditions stated in this section show that common overlay net-
work topology specifications prohibit the existence of unconditionally stabilizing
solutions. The necessary conditions are that initially the channel connectivity
graphs need to be connected and non-existing identifiers are not present.

The proofs for these conditions rely on the lemma below. Intuitively, the
lemma states that for the processes to form a connected topology they have to
be at least weakly connected initially.

Lemma 1. If a computation of a compare-store-send program starts in a state
where the channel connectivity graph CC is disconnected, the graph is discon-
nected in every state of this computation.

Proof: Let us consider, without loss of generality, a program state where the
connectivity graph contains two components C1 and C2. Assume the opposite:
the computation starting from this state contains states where the two compo-
nents of CC are connected. Let us consider the first such state s1. In this state
there must be two process a ∈ C1 and b ∈ C2 that are neighbors. Assume the
link is from a to b. That is, (a, b) ∈ CC.

Since si is the first connected state, this link does not belong to CC in the
preceding state si−1. Since the program is compare-store-send, the new link can
not appear in the process memory, it must be due to a message sent to a by
another process c in state si−1. A message to a carrying b can only be sent by a
process c that has links to both a and b in si−1.

Since (c, a) ∈ CC, c belongs to the same component C1 as a in si−1, and since
(c, b) ∈ CC, c belongs to the same component C2 as b in si−1. This means that
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C1 and C2 are weakly connected in a state si−1 that precedes si. However, we
assumed that si is the first state where the two components are connected. This
contradiction proves the lemma. �

Theorem 1. If a compare-store-send self-stabilizing program is a solution to a
single-component overlay network problem, this program must be weakly channel-
connectivity stabilizing.

Proof: Assume the opposite. That is, there is a self-stabilizing program PG
that solves a single-component overlay network problem PR and it is not weakly
channel-connectivity stabilizing.

Since PG is a solution to PR, for each set S, every computation of PG
contains a suffix with the prescribed CP . Since PG is not necessarily weakly
channel-connectivity stabilizing, this holds true for computations starting from
a state where CC is disconnected. Program PG is a compare-store-send pro-
gram. According to Lemma 1, if its computation starts from a state where CC
is disconnected, it is disconnected in every state of this computation. Since CP
is a subgraph of CC, it has to be disconnected in every state of this computa-
tion as well. However, PR is single-component. Since PR is single component,
it maps every set of processes S to a weakly connected process CP . This means
that, contrary to our initial assumption, PR is not a solution to PG. Hence the
theorem. �

Theorem 2. If a graph-identical compare-store-send program is a stabilizing so-
lution to a single-component disconnecting overlay network problem, this program
must be existing identifier stabilizing.

Proof: Assume the opposite. Let PG be a compare-store-send program that
is a graph-identical self-stabilizing solution to a single-component disconnecting
overlay network problem PR. Since PR is disconnecting, there is a set of pro-
cesses S such that for every connectivity graph, there is a cut set that disconnects
this graph.

Consider a computation σ of PG with set S. Let CP be the process connec-
tivity graph to which this computation converges. Let CS be the cut set that
separates S into two subsets S1 and S2. Since PG is graph-identical, σ contains
a suffix where, in every state, CC has the same links as CP . Let s1 be the first
state of this suffix.

We examine a set of processes S1 ∪ S2 and construct a state of the program
for this set as follows. The state of every process in S1 ∪ S2 and its incoming
channel is the same as in the initial state of σ. In addition, the incoming channels
of each process a belonging to S1 ∪ S2 in this state contain the messages that
are sent to a by processes in CS. From this state, we execute the actions of PG
for processes S1 ∪ S2 in the same sequence as in σ. The presence of messages
from processes in CP allows us to do that. After this procedure we arrive at
a state s2. We then execute the actions of PG in arbitrary fair manner. Thus
constructed sequence is a computation of PG.
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Note that each process of S1 ∪ S2 has the same state in s1 and s2. Since CS
was a cut set of CP in s1, there are no links between processes of S1 and S2

in either s1 or s2. This means that CP is disconnected in s2. Graph CC has
the same links as CP in s1. This means that CC is disconnected in s2 as well.
According to Lemma 1, both CC and CP are disconnected in every state of this
computation past s2.

However, PG is supposed to be a solution to PR. Problem PR is single
component. This means our constructed computation has to contain a suffix
where CP is weakly connected in every state. This contradiction proves the
theorem. �

4 Linearization

Problem Statement. In the linearization problem, each set of processes is
mapped to the following process connectivity graph CP . Each process p in CP
contains exactly two outgoing links: p.r and p.l. The links conform to the fol-
lowing predicate LP :

(∀a, b ∈ N : a < b : cnsq(a, b) ⇔ ((a.r = b) ∧ (b.l = a)))

The predicate states that two processes are neighbors if and only if they are
consequent.

l-Corona Description. Each process p maintains two variables r and l as
required by the problem specification. The range of each variable are the process
identifiers respectively to the left and to the right of p. That is, r can only
store identifiers that are greater than p, while l – less than p. The value of
each variable may be undefined. In this case it is equal to respectively −∞ and
+∞. If non-existent identifiers are not present in the initial state of the program
computation, the l variable of the smallest id process and the r variable of the
largest id process are always set to −∞ and +∞ respectively.

Each process p of l-Corona contains two actions: a receive-action and a time-
out action. The receive action is enabled when there is a message in the incoming
channel p.C. The operation of the action depends on the id carried by the mes-
sage. If id is greater than p, it is compared to r. If id is less than r, then p
discovered a closer right neighbor. Process p then forwards the old right neigh-
bor identifier to the new process and reassigns its variable r. However, if the
received id is no less than r, then the current right neighbor of p is no further
away than id. In this case p sends id for process r to process. If r is not ini-
tialized, it is assigned the received id. The identifier that is smaller than p is
handled similarly. The timeout action sends the process identifier to its left and
right neighbors. An example computation of l-Corona is shown in Figure 2.

Correctness Proof. Due to the lack of space the actual proofs in this section
are relegated to the technical report [17].

Observe that due to the operation of the algorithm, in case a < b, link (a, b)
can only be replaced by a link (a, c) such that a < c < b. Likewise, link (b, a)
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process p
variables

r, // right identifier, greater than p
l // left identifier, less than p

actions
message(id) ∈ p.C −→

receive message(id)
if id > p then

if id < r then
if r < +∞ then

send message(r) to id
r := id

else
send message(id) to r

if id < p then
if id > l then

if l > −∞ then
send message(l) to id

l := id
else

send message(id) to l
true −→

if r < +∞ then send message(p) to r
if l > −∞ then send message(p) to l

Fig. 1. Linearization component of Corona (l-Corona)

can only be replaced by (b, c) such that a < c < b. That is, a link in CP can
only be shortened. An example of CP link shortening is shown in Figure 2: the
link (b, d) is shortened to (b, c) in transition from 2(a) to 2(b). Note that every
process in CP contains exactly two outgoing links. One is pointing to the left,
the other — to the right.

Similarly, in case a < b, a link (a, b) ∈ CC \CP can be replaced only by a link
(c, b) such that a < c < b. In the other direction, a link (b, a) ∈ CC \ CP can
be replaced only by a link (c, a) such that a < c < b. Again, the link in CC can
only be shortened. For example, link (c, a) ∈ CC \ CP in Figure 2 is shortened
to (b, a) in transition from 2(c) to 2(d). Note that unlike CP , a process may
contain more than two outgoing links in CC \ CP . And, while some links are
shortened, longer ones may be added by timeout actions.

Lemma 2. If a computation of l-Corona starts from a state where CC contains
a path from process a to b, then in every state of this computation, there is a
path from a to b as well.

Lemma 3. If a computation of l-Corona starts in a state where for some process
a there are two links (a, b) ∈ CP and (a, c) ∈ CC \CP such that a < c < b, then
this computation contains a state where there is a link (a, d) ∈ CP where d ≤ c.

Similarly, if the two links (a, b) ∈ CP and (a, c) ∈ CC \CP are such that b <
c < a, then this computation contains a state where there is a link (a, d) ∈ CP
where d ≥ c.

Intuitively, Lemma 3 states that if there is a link in the incoming channel of a
process that is shorter than what the process already stores, then, the process’
links will eventually be shortened. The proof is by simple examination of the
algorithm.
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CC \ CP

CP

a′ b′ c′ d′

a b c d

(a) initial state

a′ b′ c′ d′

a b c d

(b) b receives message
with c, updates b.r, and
forwards d to c

a′ b′ c′ d′

a b c d

(c) d receives message
with b, updates d.l

CC \ CP

CP

a′ b′ c′ d′

a b c d

(d) c receives message with a, for-
wards it to b; c receives d, updates
c.r

a′ b′ c′ d′

a b c d

(e) b receives message
with a, updates b.l; b
times out and sends its
id to a; c times out and
sends it id to d

a′ b′ c′ d′

a b c d

(f) a receives message
with b, updates a.r,
forwards c to b; d re-
ceives message with c,
updates d.l, forwards b
to c; when these mes-
sages are received, the
network is linearized

Fig. 2. Example computation of l-Corona. To simplify the picture each process is rep-
resented by two nodes. The primed nodes are the process’ incoming channel. Solid lines
denote identifiers stored in l and r of each process. Dashed lines are identifiers in the
incoming channel.

Lemma 4. If a computation of l-Corona starts in a state where for some process
a there is an edge (a, b) ∈ CP and (a, c) ∈ CC \ CP such that a < b < c, then
the computation contains a state where there is a link (d, c) ∈ CP , where d ≤ b.

Similarly, if the two links (a, b) ∈ CP and (a, c) ∈ CC \CP are such that c <
b < a, then this computation contains a state where there is a link (d, c) ∈ CP ,
where d ≥ b.

Intuitively, the above lemma states that if there is a longer link in the channel,
it will be shortened by forwarding the id to its closer successor.

Lemma 5. If a computation of l-Corona starts in a state where for some pro-
cesses a, b, and c such that a < c < b (or a > c > b), there are edges (a, b) ∈ CP
and (c, a) ∈ CC, then the computation contains a state where either some edge
in CP is shorter than in the initial state or (a, c) ∈ CP .

Lemma 6. If a computation starts in a state where there is a link (a, b) ∈ CP ,
then the computation contains a state where some link in CP is shorter than in
the initial state or there is a link (b, a) ∈ CP .

Lemma 7. If the computation is such that if (a, b) ∈ CP then (b, a) ∈ CP in
every state of the computation, then this computation contains a suffix where
((a, b) ∈ CP ) ⇒ ((a, b) ∈ CC)
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Lemma 7 states that if CP does not change in a computation then eventually,
the links in CP contain all the links of CC.

Lemma 8. Let CP is strongly connected in some state of the system. Let also
for every pair of processes a and b in this state, if (a, b) ∈ CP then also (b, a) ∈
CP . In this case, this state satisfies LP .

Theorem 3. Program l-Corona is a weakly channel-connectivity existing iden-
tifier stabilizing solution to the linearization problem.

5 Skip List Stabilization

Problem Statement. The problem maps each set of processes to a set of valid
1-2 skip lists. In each skip list the bottom level is linearized and for each level
i > 0, the following predicate SL holds: any two processes a and b are neighbors
at level i if the distance between a and b at level i− 1 is no less than 2 and no
more than 3 hops.

s-Corona Description. Each level of s-Corona has two sub-levels: status deci-
sion sublevel — sd-Corona, and neighbor linking sublevel sn-Corona.

sd-Corona of level i uses neighborhood information of level i− 1 to determine
the status of a process at level i. Depending on whether the process participates
at level i, the process status is either up or down. If a process is down at level i
it is down at all levels above i. On the basis of this information sn-Corona links p
with its left and right neighbor at level i. sn-Corona of level i does not influence
the operation of sd-Corona at level i. If process p is up, sn-Corona inspects
i − 1 neighbors three hops away from p to determine the nearest up neighbor
and connects it to p. To ensure overall CC connectivity preservation sn-Corona
sends itself the link to the previous neighbor at level 0 for l-Corona to handle.
The stabilizing implementation of sn-Corona is relatively straightforward. We,
therefore, do not present it and focus on sd-Corona instead.

sd-Corona Description. sd-Corona operates similarly at each level. At every
level it maintains a set of variables that belong to only this level. At level i,
process p of sd-Corona makes use of the identities p.(i−1).l and p.(i−1).r of its
respective left and right neighbors at level i − 1. sd-Corona at level i does not
change these identities. Therefore, they are assumed constant for the operation
of sd-Corona at this level.

At level i, process p of sd-Corona maintains two status variables: p.i.st and
p.i.str. The values for both are up and down. Variable p.i.st stores the status
of p itself. Variable p.i.str keeps the status of the right neighbor of p. The status
of the rightmost and leftmost process at level i are fixed as up and down
respectively and are considered constant.

The idea of sd-Corona is to ensure that no two consequent neighbors are up
and no three of them are down. To break symmetry in deciding who of the
neighbors should change status, the decision of the right neighbor is favored.
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process p
constants

p.(i− 1).r, p.(i− 1).l // identifiers of right and left neighbors at level i− 1
variables

p.i.st, // own status at level i, either up or down
// constant and set to up for process with highest id
// constant and set to down for process with lowest id

p.i.str // status of right neighbor
actions

message(status) ∈ p.C from p.(i− 1).r −→
receive message(status),
p.i.str := status,
if (p.i.st = up) ∧ (p.i.str = up) then

p.i.st := down

message(status) ∈ p.C from p.(i− 1).l −→
receive message(status),
if (status = down) ∧ (p.i.st = down) ∧ (p.i.str = down) then

p.i.st := up

true −→
if p.(i− 1).r < +∞ then send message(p.i.st) to p.(i− 1).r,
if p.(i− 1).l > −∞ then send message(p.i.st) to p.(i− 1).l

Fig. 3. Status decision component of skip list part of Corona (sd-Corona)

sd-Corona has three guards. The timeout guard sends the status of p to its
neighbors. The two receive guards process messages from the left and right neigh-
bors of p. If p receives a status value from its right neighbor, it updates p.i.str
and its own status. If both p and its right neighbor are up then p changes its
status to down. If p receives a message from its left neighbor and discovers that
its neighbors and itself are down, it changes its own status to up. The operation
of s-Corona is illustrated in Figure 4.

a b c d e f g h i

(a) initial state

a b c d e f g h i

(b) at level 0, processes d and

h receive messages that their

right neighbors are up, they

change their statuses to down

a b c d e f g h i

(c) at level 0, e receives mes-

sage from f that its status is

up and changes its own status

to down; f and i are linked at

level 1

a b c d e f g h i

(d) at level 0, d receives mes-

sages that both c and e are

down and changes its status to

up, links with neighbors at level

1

a b c d e f g h i

(e) at level 1, i receives message

from f that its status is down,

updates its own status to up

a b c d e f g h i

(f) at level 2, i links with b

Fig. 4. Example computation of s-Corona. For simplicity, neighbor links are always
assumed bidirectional.
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Correctness Proof. Due to the lack of space the actual proofs in this section
are relegated to the technical report [17].

Lemma 9. If process a at level i of sd-Corona changes its status st only a finite
number of times in the computation, then this computation contains a suffix
where every message in the outgoing channel of a carries the same value as
a.i.st and b.i.str = a.i.st for the left neighbor b of a.

Proposition 1. If, in some computation, none of the processes at some level i
change their status, then this computation also contains a suffix where for each
process a, a.i.r and a.i.l point to the nearest up process at this level and do not
change.

Lemma 10. If in some computation none of the processes at some level i − 1
change their right and left neighbors, then this computation also contains a suffix
where none of the processes at level i change their status.

Lemma 11. In each computation of s-Corona, every process p changes its status
and its left and right neighbors only finitely many times.

Theorem 4. s-Corona is a weakly channel-connectivity existing identifiers sta-
bilizing solution to the 1-2 skip list construction problem.

6 Skip Graph

In closing we would like to describe the extension of Corona to skip-graph. The
skip list may not be robust or convenient for concurrent searches. Indeed, a
failure of a single top-level node may disconnect the system. A k-l skip graph [3],
the processes at level i− 1 that do not participate at level i, form an alternative
list at level i. The process continues recursively both at the main as well as at
the alternative list. That is, each list splits into several at each level. This way,
most nodes have links at all levels of the skip graph. This property makes skip
graphs more robust and better suited for concurrent searchers than skip lists.

Corona can be extended to construct a skip-graph. For that, Corona has to
run two instances of sn-corona at each level i. The main instance operates as
before, while the alternative instance constructs an alternative list out of the
nodes that do not participate in the main list. Note that in the 1-2 skip list,
one alternative list can always be constructed. An instance of sd-Corona at level
i+1 runs each of the lists. The process of splitting into main and alternative list
continues iteratively on each thus formed list. No changes are required in either
l-Corona or sd-Corona.
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Abstract. In device networks, trust must often be established in the field despite
limited a priori knowledge of the network and the possibility of adversaries in the
network environment. This paper presents a solution to the problem of bootstrap-
ping trust that is minimal in the sense that it circumvents ongoing maintenance
of security material. Specifically, security material is communicated to members
of a device group just once by using zero knowledge identification in a new and
efficient way, whereby devices in the group may henceforth securely verify each
other as well as initialize mutual keys for confidentiality without needing to up-
date that security material over time. In its basic form, the solution uses a base
station to communicate the security material for group membership verification.
The solution allows for scaling by letting the base station hierarchically delegate
the task of bootstrapping to subordinate trusted nodes.

Keywords: Device Networks, Trust, Bootstrap, Zero-Knowledge, Diffie-Hellman,
Secure Group Membership, Key Distribution.

1 Introduction

System security today relies essentially on the use of shared keys. Key management
however incurs significant human involvement. For the case of device networks—whose
numbers, size, and day-to-day influence is growing rapidly—it is impractical to sustain
the status quo. Solutions that automate and/or reduce key management are therefore
important.

An extreme position is to explore solutions that use no shared keys. Along these lines,
recent work, including some of ours [18,3], has considered the alternative of eschewing
shared keys via physical layer security. The central idea is to realize a seminal result
from information theory [22], which has been underexploited in practice to date, via a
number of physical primitives for realizing security properties such as confidentiality,
authentication, etc. without relying on shared keys.

Nonetheless, consideration of bootstrapping these physical primitives for security
reveals an interesting chicken-and-egg problem: Even though physical primitives them-
selves do not use shared keys, bootstrapping —as well as maintaining and restoring—
security material for enabling physical primitives itself assumes that inter-node trust
relationships have been established beforehand. For example, instantiation of confiden-
tiality, say using dialog codes [3], assumes a mechanism by which the sender and the
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receiver can authenticate each other and agree to launch cooperative jamming. Shared
keys may be used for bootstrapping confidential communications. Alternatively, we
could use physical signatures/fingerprints as the security material for authentication, if
we wished to avoid shared keys. But in that case, the instantiation of physical signa-
tures in turn assumes there is a mechanism for coordination between nodes that trust
each other whereby the signature is learned. In sum, bootstrapping of shared-key-free
physical primitives itself assumes shared keys!

For what sorts of trust relationships, then, should we bootstrap a device with shared
keys? One is a device’s trust in the network that it itself is to be a part of. And two,
its trust in one or more devices in the network with which it is to communicate as part
of some common application. While the former can be bootstrapped before devices are
deployed, the latter is typically bootstrapped after devices are deployed, as which partic-
ular devices will end up communicating with each other is often not known a priori. In
any case, both of these sorts can be abstracted as trust in some group of devices. And the
shared keys established for the former can be used to establish shared keys for the latter.

Our Contributions. In this paper, we present a solution to the problem of trust boot-
strapping in device networks. As our goal includes reducing the key management over-
head, we adopt the position that all of the shared key material available a priori for trust
establishment is in some sense minimal. In particular, for the first sort of trust, nothing
is needed a priori, since this can be performed pre-deployment. For the latter sort of
trust, we show that it suffices for each device to share pre-deployment only two keys
with a well known device, namely the base station. These two keys are persistent; i.e.,
they do not need to be updated.

The security of using shared keys typically degrades over time. The idea central
to our eschewing the need to update these two pre-shared keys is to use them in a zero
knowledge fashion. More specifically, we use them with a zero knowledge identification
scheme, to serve as the basis for communicating security material and thereby to enable
the sharing of secrets. Our solution is distinguished by the following properties:

– In its basic form, it uses a base station to communicate to group members the rel-
evant security material (i.e., group permissions). A straightforward extension of
it allows for scaling by letting the base station hierarchically delegate the task of
bootstrapping to subordinate trusted nodes.

– It is collusion resistant in the sense that compromising any device j does not com-
promise the network’s ability to bootstrap devices other than j with new group
permission security material.

– It uses standard cryptographic constructs, so it is flexible enough to allow plug in
of different realizations of these constructs, including ones which are more efficient
or are more secure.

– It uses these constructs in a non standard, efficient way. That is, it uses zero knowl-
edge (ZK) identification schemes to communicate group permission secrets, and to
construct Diffie-Hellman keys (DH) without exchanging key parts. The secret lies
in the order and the way of verifying the ZK proof, which involves the use of the two
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pre-shared keys. To the best of our knowledge, ZK schemes have not been used in
this way before. Efficiency follows from eschewing the need for many rounds in
the ZK scheme as well as reducing the overhead of DH.

– It bootstraps trust in levels, by developing a trust hierarchy wherein trust can prop-
agate top down.

Organization of the Paper. In Section 2, we describe the system and adversary model,
and present the problem of bootstrapping trust. We then present our solution in terms
of a trust hierarchy and corresponding protocols, in Section 3. In Section 4, we discuss
implementation issues, performance costs and distinctive properties. We contrast our
work with related work in Section 5. Finally, in Section 6, we make concluding remarks
and discuss future work.

2 System Model and the Trust Bootstrap Problem

Network Model. Given is a set of device nodes and a base station (BS). Nodes can com-
municate with one another and with BS; communication with BS may involve one or
more hops. The network is a programmable “fabric” in the sense that multiple applica-
tions (aka, groups) may coexist. Associated with each application is a subset of network
nodes, which are to execute that application. We assume that application groups are not
known a priori, i.e., before the network is deployed.

Attacker Model. Our attack model includes the Dolev-Yao attacker: the attacker can
overhear, intercept, and synthesize any message but is limited by the constraints of the
cryptographic methods used. In addition, our attack model includes the compromise of
any node. When a node is compromised, its state and all of its secrets and programs are
available to the attacker. The attacker may use the material and programs of its own,
for instance, to collude with other compromised nodes and/or impersonate other nodes.
During a protocol execution, the attacker may execute multiple instances of the proto-
col scheduled in an arbitrary way. We assume however that BS cannot be compromised.

Trust Bootstrap Problem. Given is a subset of nodes, G, in the network W . Required
is a protocol to initialize security materials (e.g., shared keys) in each node in G so that
only nodes in G can successfully test each other’s membership in G. That is, a node j
can prove that j is in G to a node i only if j is in G and, conversely, i can verify that j is
in G only if i is a member of G, thus, trusted nodes in G can authenticate communica-
tions from other trusted nodes in G.

Solution Considerations. Standard approaches to establish a secure group include (i)
using pre-shared keys or keying materials, (ii) group nodes exchanging information
with their immediate neighbors, or (iii) group nodes exchanging information with com-
putationally robust nodes, for example, BS. The number of pre-shared keys per device
typically depends on the size of the network, so scalability can be a problem with pre-
shared keys. The idea of random key distribution yields indeterministic solutions in
terms of sufficing for groups, which makes it unsuitable for our case since node groups
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are not known a priori. The approach of exchanging information with immediate neigh-
bors is inappropriate given the system model, since nodes can not trust any other node
in the fabric a priori. The approach of using BS is feasible, in part because the BS is
always trusted. The use of BS however risks becoming a bottleneck and a single point
of failure. Ideally, one would like to design alternatives where BS can delegate its task
to nodes it trusts so as to reduce the overhead of potentially multi-hop communications
as well as to obtain robustness to BS failure.

3 Zero Knowledge Approach for Bootstrapping Trust

Our bootstrapping approach makes use of pre-shared keys in the following minimal
sense. Every node shares a symmetric key with BS just once. BS uses this key to de-
liver group permission secrets to the node. The node in turn can use these permissions
to establish trust with other nodes in the groups. If a pre-shared key is used to directly
encrypt information, its security degrades over time and so it should not be used indefi-
nitely. For the security of the key to be preserved forever, our approach builds upon that
of Zero Knowledge (ZK).

Table 1. Notation

i, j Nodes in W
BS Base station
r, n Randoms
S, v Main secrets, unique and private to each node
g Group permission secret, local and private to members of G
k(m) Encryption of m using a symmetric key k
α Group generator
x Large prime that is global and public
t Time stamp
f , T Special purpose functions
ka Diffie-Hellman key part, constructed using the secret exponent a
ka,b Diffie-Hellman key, constructed using the secret exponents a and b

Recall the standard form of the ZK identification schema [8,5], cf. Figure 1: In
ZK[r,n,S], a prover P sends a commit, f (r) where f is a one way function, and then
based on receiving the challenge n from the verifier V, sends a response f (r,n,S) to
V in order to prove to V that P knows S. This process does not reveal any knowledge
including S beyond the validity of the proof to any node other than P.

Using ZK lets us guarantee that the symmetric key shared between BS and each node
does not degrade over time. More specifically, our solution extends the standard ZK
identification schema to also securely communicate group permission secrets to nodes
in G. Moreover, our solution is designed such that BS is not aware of group/pairwise
keys established within the groups, but rather just the permission secrets that enable
nodes to authenticate their membership in the group.
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Fig. 1. Zero-Knowledge Identification Schema: ZK[r,n,S]

3.1 Trust Levels: The Architecture

Our solution bootstraps trust in levels, resulting in a trust hierarchy. At the top of the
hierarchy is BS, which represents the device network. Lower levels of the hierarchy
correspond to trust in members of groups and/or subgroups in the superset of groups G
in W . Corresponding to the levels in the hierarchy are different types of secrets, namely:
main, permission, group, and pairwise, defined as follows.

Main Secrets. Each node j has two unique secrets, v and S, that j shares with the BS.
These are persistent secrets that can be used to bootstrap j any number of times for
membership in a number of groups of W .

Permission Secrets. Each group G, G ∈G, has a single unique secret g shared by all
nodes ∈ G, which is used solely for authenticating membership in G. The group per-
mission secret g is not used directly for encrypting any exchanges, hence it can be used
infinitely in G as long as nodes of G are not compromised.

Group Secrets. Each group G, G ∈G, has zero or more secrets, Ŝ, that are shared by
all or some nodes j ∈ G, and used say to authorize service requests, provide services,
relay communications, receive results, or instantiate physical primitives. Nodes may use
these secrets explicitly in encryption, hence they may need to update them from time to
time.

Pairwise Secrets. Each node pair, i, j ∈ G, has zero or more pairwise keys. Again,
nodes may use these secrets explicitly in encryption, hence they may need to update
them from time to time.

First Level of Trust (TL1). For each node j, j and BS can mutually authenticate.

– TL1 is established pre-deployment by configuring j with the main secrets v and S
shared by the BS.

– S is used in a ZK way only, s.t. while j is capable of extracting knowledge from the
ZK proof using S, for all nodes other than j, the proof is zero knowledge. Also v is
never used directly in any exchanges.
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Fig. 2. Levels of Trust

– BS can use the main secrets to deliver permission secrets to j for joining a group
G ∈G.

Second Level of Trust (TL2). For each node j, nodes in G ∈G can authenticate j iff j
is in G, based on TL1:

– TL2 is established in the field, based on knowing the permission secret g.
– g can be updated if some node of G is (suspected of being) compromised.
– BS maintains the permission secrets of each defined group G ∈G.

Third Level of Trust (TL3). For each node pair i, j ∈ G, i and j can establish group
secrets and/or pairwise secrets, based on TL2.

– TL3 is established in the field.
– Group secrets, Ŝ, can be communicated as part of the authentication of i by j, or

alternatively using pairwise keys.
– Pairwise keys can be used to update g as needed.

3.2 Setup and Secrets Generation

– ZK and DH parameters: Depending on the particular ZK and DH protocol realiza-
tions chosen (i.e., ECC vs standard), relevant parameters are generated. The param-
eters are global and generated pre-deployment.

– S: A node’s symmetric secret, pre-configured and shared with BS. The security
properties of S are dependent on the particular ZK scheme realization that is se-
lected.

– v: A symmetric randomly chosen secret, 1≤ v≤ x−1, that is pre-configured in the
node and shared with BS.

– g: Let x be the DH large prime. The permission secret g, 1≤ g≤ x−1, is generated
by BS for any new group G.

– kr j : For each node j, a static DH key part is generated pre-deployment using some
random secret exponent, r j. This is used only in TL3 to reduce the overhead of DH.
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3.3 Trust Protocols

TL1 is established pre-deployment, hence every node j in W is capable of verifying BS
exchanges. Nonetheless, any node i, i �= j, may be able to verify a BS exchange to j but
would not be able to extract any knowledge from it.

A Protocol Using TL1 to Establish TL2. The following protocol uses the secrets S
and v established in TL1 to establish TL2 by communicating the permission secret g of
a group G ∈G to node j.

r′ = T (r) (1)

TL2 Protocol

BS −→ j : ZK[r,n,S] ; kr′,v(g, j,n,t)

Fig. 3. TL2 Protocol

Let T be some transformation mapping a random number from one range to another
while preserving the randomness property. To bootstrap a node j, the protocol uses a
standard ZK identification session, ZK[r,n,S] between BS and j. The ZK commit in
terms of the random r along with the challenge n and main secret S formulates the BS
response. As shown in Figure 3, BS sends along with the ZK response, an encrypted
message, kr′,v(g, j,n,t), to j containing the permission secret g along with some other
parameters to tie the message to the proof. The encryption key kr′,v is a DH key, for-
mulated using r′ and v as the secret exponents. Note that none of the DH key parts are
exchanged in public. r′, the value of the ZK random r mapped onto the DH ring using
T , along with the precomputed DH key part using v, will never be known except to j.
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j uses its main secret S to extract r during the proof verification process. Note that S is
known only to j and BS, thus for all nodes other than j, the proof is zero knowledge.
j then uses r′, along with its local precomputed key part in terms of v, to construct the
key kr′,v for decrypting kr′,v(g, j,n,t).

Property 1. The value of r′ is random in the DH range: [1,x−1].

Theorem 1. The zero knowledge property of ZK[r,n,S] is preserved by Protocol TL2.

Proof Outline. Assume the existence of an efficient oracle O that, given an encrypted
message, returns the key used for encryption. An adversary Â could query O for kr′,v
(g, j,n, t) and be given kr′,v. Note that the key’s exponent, r′.v, would be some random in
the DH ring, since both r′ and v are randoms. Finding r′.v implies solving the Discrete
Log problem, which is assumed to be intractable. We hence have a contradiction that
proves the hypothesis.

Theorem 2. It is computationally hard to deduce the secret v of any node j regardless
of how many times Protocol TL2 is executed.
The proof of Theorem 2 closely follows that of Theorem 1.

A Protocol Using TL2 to Establish TL3. TL3 lets a node in G prove its membership
to any other member node. This allows members of G to exchange group and pairwise
secrets as need be.

TL3 Protocol

i −→ j : kri , kri,g(i, j,t, Ŝ)

Node i sends a message encrypted with a DH key kri,g constructed using g and its
private random ri corresponding to its precomputed static DH key part kri . Note that the
DH key part in terms of g is never communicated in the clear, hence, only G’s nodes are
capable of composing the key kri,g. This simple one-way exchange serves for two-way
membership authentication due to the ability of both i and j to successfully construct
such a key. Note that we do not require that nodes store the DH key parts of other nodes,
so, i has to send its precomputed key part along with the membership proof. Ŝ, a group
secret communicated from i to j can be used in a number of ways. Note also that based
on successful membership authentication, i and j can establish a pairwise key using the
precomputed DH key parts.

4 Implementation and Analysis

In this section, we propose possible realizations of Protocol TL2 using different ZK
identification schemes that cater to devices which are resource constrained or which
demand a high level of security. We then develop a simple cost model for estimating the
overheads of Protocols TL2 and TL3. Finally, we discuss the distinctive properties of
our solution, towards arguing that the potential merits of our approach justify the cost
overheads, which per se are not high.
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4.1 Protocols Realizations

We consider three realizations for Protocol TL2. One uses the Guillou-Quisquater (GQ)
ZK identification scheme [9], which is based on the hardness of the RSA problem, the
other two use the Elliptic Curve (ECC) versions of Schnorr (SC) [21,19] and Okamoto’s
(OK) ZK [4,15] identification schemes, which are based on the discrete log assumption.
The base versions of GQ-ZK and SC-ZK are known for their efficiency, while OK-ZK
scheme is known for its security features. Device and deployment constraints would
dictate which of these to use in particular contexts.

GQ TL2 Protocol. GQ-ZK requires some parameters that are global to the network: w,
the RSA modulus, and e, a prime RSA exponent. Local parameters include the node’s
main secret S∈ Zw

∗ that is shared with BS. α is the chosen public DH generator. Let T be
some transformation scaling randoms in the range [1,w−1] to the range [1,x−1] while
preserving the randomness property. Note that numerous efficient implementations exist
for similar transformations, also based on how both ranges compare, the transformation
can be as simple as taking the modulus, i.e. mod x. In our protocol, BS acts as a prover
while a node j, which is to be bootstrapped to join a group G, is the verifier. In the
protocol, detailed below, BS selects a random r ∈ Zw

∗ and sends a commitment to j
which replies back with the challenge n. Finally BS sends its response to the challenge
along with an encrypted message. The key used for encryption can be viewed as another
challenge because it is not known to the node (i.e. not pre-shared), nor is it based on
any key parts communicated in the clear. This key is constructed in terms of r′ and
v, where r′ is the mapping of r onto the DH group using T . Hence, the only way j
could construct this key is to use its secret S to extract the random from the BS proof.
Let R be the commit, C be the response, and D ≡ Se(modw). The GQ-ZK acceptance
condition then is Ce ≡ RDn(mod w). In our protocol, acceptance is reduced to checking
if R≡ re(mod w), which is attributed to j’s ability to learn r from the proof.

Protocol for TL2 establishment: GQ version

BS −→ j : re (mod w)

j −→ BS : n

BS −→ j : rSn (mod w), kr′,v(g, j,n,t)

ECC-SC TL2 Protocol. ECC-SC global parameters include: q, which specifies the fi-
nite field, a,b, which define an elliptic curve, P, a point on the curve of order x, and
the cofactor h. Let D = −S.P, where S is a main secret of j. The SC-ZK standard ver-
ification would be: if C.P + n.D = R accept else reject, where C is the response, R is
the commit and n is the challenge. On the other hand, our protocol uses S to extract r
and verify that R = r.P. j then uses its secret v.P1 and performs a single multiplication
by r to derive the challenge key kr,v. Notice that in this protocol version, ECC-DH is
used, where P1 is a public high order base point of the aforementioned chosen curve. If
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we choose the order of P1 to be the same as P, then Property 2 would be a necessary
condition for correctness, since we require anonymity of the key parts composing kr,v.
Note that in this case, no transformations would be needed for r. A safer option though
would be to choose a different order for P1, then a scaling transformation, similar to the
one used in the GQ TL2 Protocol, would be needed to map r from the range defined by
the order of P to that of P1.

Property 2. For DH generators P1 and P of order x, given r.P for some index r, it is
hard to find r.P1 without knowledge of r.

kr,v = r.v.P1 (2)

Protocol for TL2 establishment: ECC-SC version

BS −→ j : r.P

j −→ BS : n

BS −→ j : Sn+ r (mod x), kr,v(g, j,n,t)

ECC-OK TL2 Protocol. For OK-ZK, the public global parameters are q, which speci-
fies the finite field, a,b, which define an elliptic curve, P1 and P2, points on the curve of
order x, and the cofactor h. In this case, our protocol uses a pair (S1,S2) as a main secret.
Let D =−S1.P1−S2.P2, a node j accepts the proof iff C1.P1 +C2.P2 + n.D = R, where
C1 and C2 are the ZK responses of BS, R is the commit and n is the challenge. Here, we
have two randoms r1,r2, so one choice would be to use a function f that maps the two
randoms into a single random. This single random is then used by the node to construct
the DH key, kr′,v, for decrypting the message kr′ ,v(g, j,n,t). Note that it is safe to choose
order x for the DH base point P3, since even if a trivial isomorphic mapping from P1

and P2 onto the group generated by P3 exists, then based on the DH assumption, given
r1.P3 and r2.P3 it would be hard to compute r′.P3, assuming f is not a trivial addition
for example. Note that it is also hard to extract r1.P1 and r2.P2 from the commit in the
first place.

r′ = f (r1,r2) (3)

kr′,v = r′.v.P3 (4)

Protocol for TL2 establishment: ECC-OK version

BS −→ j : r1.P1 + r2.P2

j −→ BS : n

BS −→ j : S1n+ r1 (mod x), S2n+ r2 (mod x), kr′,v(g, j,n,t)
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Security Features of the Realizations. OK-ZK is provably secure against imperson-
ation under active and passive attacks. GQ-ZK and SC-ZK schemes are known for their
efficiency, and also to be secure against impersonation under passive attacks, assuming
honest verifiers. In addition, in [6], the authors extend the results of GQ-ZK to include
security against active attacks based on the assumed security of RSA under one more
inversion. The authors also provide such a proof for SC-ZK based on a correspond-
ing discrete-log related assumption, they further extend their proof to establish security
against impersonation under concurrent attack for both schemes. In our protocols, we
only change the order in which the node verifies the proof, such that using S, the node
can extract the random and verify it against the commitment. Next, the node uses the
extracted random to construct the challenge key for decrypting the group permission
message. Note that no key parts are sent in the clear, and the challenge key is con-
structed using the ZK random and the main secret v.

4.2 Performance Evaluation

Our trust hierarchy uses ZK identification, DH key agreement protocol and symmetric
encryption/decryption. In evaluating the performance of protocols TL2 and TL3, if one
were to consider a baseline for comparison which used only symmetric keys explicitly,
one would have to model the cost of operations which are performed on an ongoing ba-
sis to update these keys. Rather than do so, we focus on estimating the overheads of ZK
and DH as they are used by the protocols. We show how the choice of the cryptographic
constructs and the pre-calculation of some values can decrease the expected overhead.

We define a cost function Ψ for Protocol TL2. The cost of establishing TL2 for a
node j in group G is given by the following equation.

Ψ j(G) = δZK + δDH + δsym (5)

Where δZK ,δDH ,δsym define the costs of ZK identification scheme, DH key construc-
tion, and symmetric encryption/decryption, respectively. The cost of establishing TL2
for a group G of n nodes is given by:

Ψ(G) = Π j
nΨ j(G) (6)

Next, we define a cost function ω for Protocol TL3. The cost of establishing TL3 for a
node j relative to a group G of n nodes is given by:

ω j(G) = δDH + δsym (7)

Assuming ECC-ZK and ECC-DH, we can express δZK and δDH in terms of the number
of scalar point multiplications. Let Γ be the cost of performing a single scalar point mul-
tiplication. Using static pre-computed DH key parts brings down δDH to a single ECC
point multiplication (δDH = Γ). In ZK schemes, we are interested in the verifier load
share only, which is the node to be bootstrapped. The verification of SC-ZK requires two
point multiplications (δZK = 2Γ), while OK-ZK requires four (δZK = 4Γ). This totals
to an overhead of three point multiplications for ECC-SC TL2 (Ψ j(G) = 3Γ + δsym),
versus five for ECC-OK TL2 (Ψ j(G) = 5Γ + δsym). TL3 has an overhead of a single
point multiplication (ω j(G) = Γ + δsym). Note that for TL2, a node can have some
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pre-computed S.n values, where S is one of the node’s main secrets, and n is the ZK
challenge, hence bringing down the overhead to two point multiplications for ECC-SC
TL2 (Ψ j(G) = 2Γ + δsym), versus three for ECC-OK TL2 (Ψ j(G) = 3Γ + δsym).

Several optimized implementations exist for point multiplications [20]. For exam-
ple, an elliptic curve implementation over a 192-bit prime field for MICAz motes [11]
yielded a full scalar multiplication in 0.71 sec (5.20 Â· 106 cycles) when the base point
is fixed and known a priori. Note that we are not restricting the protocols to specific
ZK schemes, instead, the realizations serve to demonstrate the flexibility of adapting
different constructs to the basic schema.

4.3 Features and Merits

Lastly, we discuss some of the distinguishing features of our bootstrap approach and
the related protocols.

ZK Made More Efficient. ZK protocols have lighter computational requirements than
public key protocols since ZK uses an iterative process involving lighter transactions,
thereby achieving its result with one to two orders of magnitude less computing power.
A typical implementation might require 20–30 modular multiplications that can be opti-
mized to 10–20 with pre-calculation. This is much faster than RSA [2]. In our protocols,
more specifically in Protocol TL2, we use ZK in a way that makes a single round suffi-
cient.

Theorem 3. One ZK round is sufficient for TL2 establishment.

Proof. For example, assume GQ-ZK. Let R be the commit defined in terms of the ran-
dom r, C be the response, and D ≡ Se (mod w). The GQ-ZK acceptance condition is
Ce ≡ RDn (mod w). An adversary Â trying to impersonate BS to some node j can guess
the challenge and prepare a commit: RD−n using its guess. Â would then send r as the
response. If Â’s guess was correct, then j would successfully verify the ZK proof, and
the extracted value would be: r.S−n. Nonetheless, Â would fail to construct the chal-
lenge key that j would derive. This is because, for Â, this key uses the extracted value
r.S−n, which involves the unknown secret S, along with v, which is also unknown.

DH with No Public Exchanges. Our protocols do not transfer key parts explicitly, yet
the recipient node is capable of building a one time session key with BS to extract the
permission secret at no additional overheads except for the extra bits of information sent
and the single point multiplication (for ECC-DH). So even if an attacker launches a tim-
ing attack on the exchanges, the computing time cannot be related to particular values,
since no key parts are sent in the clear. In TL3, we relax our requirements slightly by
assuming that one of the key parts is known, nonetheless, the other key part involving
g is never communicated in the clear, again elevating the security of the scheme.

Collusion Resistance. We define collusion resistance as follows: For all nodes j in W ,
the compromise of j does not affect the network’s ability to bootstrap any other node i.

For example, if BS shares the same key with all nodes in W , then the compromise
of a single node directly affects the network’s ability to bootstrap any other node, since
the compromised node can easily learn the communicated secrets. On the other hand,
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if nodes share unique secrets with BS, but symmetric key or public key primitives are
used, then if those keys were not periodically updated, they can degrade over time, and
a compromised node which gets actively involved in intercepting the messages sent to
other nodes could successfully compromise the nodes’ secrets.

Theorem 4. The bootstrap approach is collusion resistant.

Proof. For each node j, j shares unique main secrets with BS, that are used in a zero
knowledge way. Based on the assumption that keys used in ZK schemes do not degrade
over time, along with Theorem 1 and Theorem 2, we can conclude that no nodes other
than j can learn any of j’s main secrets during the bootstrap of j, so these secrets can
be used indefinitely to bootstrap j with new group secrets.

Scalability. Our bootstrap approach is made scalable by allowing BS to delegate trust
to a selected set of nodes in group G, which in turn act as a trusted base (TB) for that
group. The delegation of trust can be achieved by communicating the permission secret
g to a selected set of nodes forming the TB of G, following which, BS computes and
maintains the key part kg in terms of g while permanently deleting g. BS can then use kg

to grant permissions to G that are verifiable only by TB of G. Once a node’s membership
has been verified by a TB node, selected security materials are communicated to this
node, consecutively, the node becomes a member of the subgroup of G holding those
secrets. It should be noted that if G spans the whole network, the trusted base of G
can be viewed as a set of base stations, each of which are capable of bootstrapping any
node j in the network. This hierarchical delegation of trust enables the scalability of the
proposed bootstrap approach while emphasizing the independence of the trust levels.

5 Related Work

There is rich literature on ZK identification schemes. ZK research in the context of
resource constrained networks has focused on optimizing the implementation of these
schemes. An illustrative example [1] is a modified version of the Guillou-Quisquater
(GQ) identification scheme that is used in conjunction with the ÎŒTESLA protocol
[16] to authenticate the base station using a group of nodes. Another example [10] re-
fines the Feige-Fiat-Shamir ZK scheme to reduce the number of challenge-response
rounds so as to speed up the authentication process; the refinement uses bursts of par-
allelism while maintaining serial execution of Feige-Fiat-Shamir in order to preserve
the ZK property. Efficient hardware implementation of the ZK identification schemes
have been presented in the context of authenticating RFID-tags [21,4]. To the best of our
knowledge, however, none of the existing works in the ZK literature on device networks
have considered the use of ZK for communicating security material, as we have for the
purpose of communicating group permissions as part of the bootstrapping process.

A variety of efforts have attempted to examine the use of public key cryptography in
resource constrained networks [17,14,13], and many have focused on the special case
of ECC [20,12]. There are a few effort related to optimizing DH implementations for
device networks [11,12]. To the best of our knowledge, again, we are not aware of
previous work that makes use of DH keys in conjunction with the ZK identification
scheme such that key agreement can be accomplished without explicit exchange of key
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parts. The approach of assuming pre-shared key parts between individual nodes and BS
has been used previously [7], to update the mutual keys by regularly broadcasting fresh
key parts, but this lacks authentication. Moreover, unlike our protocol, the updates are
sent in the clear, which is vulnerable to timing attacks, especially if the same key part
is to be used by all nodes in the network.

6 Conclusions and Future Work

We have argued that bootstrapping device networks motivates new constraints for ini-
tializing trust. The model we have proposed assumes that just a couple of secrets are
pre-shared between the base station and each node in the field. Our solutions avoid the
need to update these secrets over time by using them in a zero knowledge way to grant
group permissions to nodes. This is achieved by extending the standard ZK identifica-
tion schema so that the ZK proof can be used to communicate secrets to a group node,
while preserving the zero knowledge property with respect to non-group nodes. The
extension is a form of DH key agreement that instead of exchanging key parts, relies
solely on the ZK proof and a single pre-shared secret. We proposed a protocol suite
for the evolution of trust in levels which could lead up to the instantiation of physical
primitives, thereby yielding a system where key management is largely automated and
rarely invoked.

We are investigating whether a single pre-shared secret can suffice. For the case
where a group member is suspected of being compromised, we are investigating ongo-
ing management of group secrets that provides a lightweight way of revoking trust such
that the revoked node cannot determine that it is being removed from a group. A poten-
tial approach would be to use this node to inform group members of the trust revocation
and to propagate new permission secrets to them, without it knowing that it is acting
as a mediator between BS and the intended group. Thus, our method could maintain
symmetry between adding and revoking trust. Finally, we are investigating the incorpo-
ration of trust models in our protocols so that a dynamic trust metric is maintained for
each node and its ability to gain various secrets depends on this metric.
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Abstract. Replicating data under Eventual Consistency (EC) allows
any replica to accept updates without remote synchronisation. This en-
sures performance and scalability in large-scale distributed systems (e.g.,
clouds). However, published EC approaches are ad-hoc and error-prone.
Under a formal Strong Eventual Consistency (SEC) model, we study suf-
ficient conditions for convergence. A data type that satisfies these con-
ditions is called a Conflict-free Replicated Data Type (CRDT). Replicas
of any CRDT are guaranteed to converge in a self-stabilising manner,
despite any number of failures. This paper formalises two popular ap-
proaches (state- and operation-based) and their relevant sufficient con-
ditions. We study a number of useful CRDTs, such as sets with clean
semantics, supporting both add and remove operations, and consider in
depth the more complex Graph data type. CRDT types can be composed
to develop large-scale distributed applications, and have interesting the-
oretical properties.
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1 Introduction

Replication and consistency are essential features of any large distributed system,
such as the WWW, peer-to-peer, or cloud computing platforms. The standard
“strong consistency” approach serialises updates in a global total order [10].
This constitutes a performance and scalability bottleneck. Furthermore, strong
consistency conflicts with availability and partition-tolerance [8].

When network delays are large or partitioning is an issue, as in delay-tolerant
networks, disconnected operation, cloud computing, or P2P systems, eventual
consistency promises better availability and performance [17,21]. An update ex-
ecutes at some replica, without synchronisation; later, it is sent to the other
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replicas. All updates eventually take effect at all replicas, asynchronously and
possibly in different orders. Concurrent updates may conflict; conflict arbitration
may require a consensus and a roll-back.1

This weaker consistency is considered acceptable for some classes of applica-
tions. However, conflict resolution is hard. The literature offers little guidance on
designing a correct optimistic system. Ad-hoc approaches are brittle and error-
prone; witness for instance the concurrency anomalies of the Amazon Shopping
Cart [3].

We propose a simple, theoretically-sound approach to eventual consistency.
Our system model, Strong Eventual Consistency or SEC, avoids the complex-
ity of conflict resolution and of roll-back. Conflict-freedom ensures safety and
liveness despite any number of failures. It leverages simple mathematical prop-
erties that ensure absence of conflict, i.e., monotonicity in a semi-lattice and/or
commutativity. A trivial example is a replicated counter, which (assuming no
overflow) converges because its increment and decrement operations commute.
In our conflict-free replicated data types (CRDTs), an update does not require
synchronisation, and CRDT replicas provably converge to a correct common
state. CRDTs remain responsive, available and scalable despite high network
latency, faults, or disconnection.

Non-trivial CRDTs are known to exist: for instance, we previously published
Treedoc, a sequence CRDT for co-operative text editing [14]. Our aim here is to
expand our knowledge of the principles and practice of CRDTs. We claim the
following contributions for this paper:

– A solution to the CAP problem, Strong Eventual Consistency (SEC).
– Formal definitions of Strong Eventual Consistency (SEC) and of CRDTs.
– Two sufficient conditions for SEC.
– A strong equivalence between the two conditions.
– We show that SEC is incomparable to sequential consistency.
– Description of basic CRDTs, including integer vectors and counters.
– More advanced CRDTs, including sets and graphs.

We refer the interested reader to a separate technical report [18] for further detail
and for a comprehensive portfolio of CRDT designs.

2 System Model

We consider a system of processes interconnected by an asynchronous net-
work. The network can partition and recover. We assume a finite set Π =
{p0, . . . , pn−1} of non-byzantine processes. Processes in Π may crash silently;
a crashed process may remain crashed forever, or may recover with its memory
intact. A non-crashed process is said correct.
1 A conflict is a combination of concurrent updates, which may be individually correct,

but that, taken together, would violate some invariant.
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2.1 State-Based Object

In this section we specify replicated objects in the so-called state-based style.
The intuition is illustrated in Figure 1. Executing an update modifies the state
of a single replica. Every replica occasionally sends its local state to some other
replica, which merges the state thus received into its own state. In this way,
every update eventually reaches every replica, either directly or indirectly.

With no loss of generality, we consider a single object with one replica at each
process. An object is a tuple (S, s0, q, u,m). The replica at process pi has state
si ∈ S, called its payload; the initial state is s0. A client of the object may read
the state of the object via query method q and modify it via update method u.
Method m serves to merge the state from a remote replica. A method (whether
q, u or m) executes at a single replica.

Systems that deliver every update to every replica eventually in a fault-
tolerant manner are well-known in the literature, for instance gossip or anti-
entropy approaches [5,13]. For simplicity, we will assume hereafter a fully con-
nected communication graph, where every arc is a fair-lossy channel. Infinitely
often, the replica at pi sends (if it is correct) its current state to pj ; replica pj (if
it is correct) merges the received state into its local state by executing method
m.

A method whose precondition is satisfied is said enabled. We assume that an
enabled method executes as soon as it is invoked. Method executions at some
replica are numbered sequentially from 1. The kth method execution at replica
i will be noted fki (a), where f is either q, u or m, and a denotes the arguments.
We note Ki(f) the ordinal of execution f at replica i, i.e., Ki(fkj (a)) = k for
i = j, and is undefined otherwise. (Abusing notation somewhat, we may drop
subscripts, superscripts and/or arguments when there is no ambiguity.)

The states of a replica are numbered sequentially incrementing with each
method execution. Thus, replica i has initial state s0i = s0. Before its kth exe-
cution of a method it has state sk−1

i , and ski afterwards. We note the transition
sk−1
i • fki (a) = ski .

We define state equivalence s ≡ s′ if all queries return the same result for s
and s′. A query has no side-effects, i.e., (s • q) ≡ s.
Definition 1 (Causal History (state-based)). We define the object’s
causal history C = [c1, . . . , cn] (where ci goes through a sequence of states
c0i , . . . , c

k
i , . . . ) as follows. Initially, c0i = ∅, for all i. If the kth method execution

at i is: (i) a query q: the causal history does not change, i.e., cki = ck−1
i ; (ii) an
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update (noted uki (a)): it is added to the causal history, i.e., cki = ck−1
i ∪{uki (a)};

(iii) a merge mki (sk
′
i′ ), then the local and remote histories are unioned together:

cki = ck−1
i ∪ ck′i′ .

We say that an update is delivered at some replica when it is included in the
causal history at that replica. An update u happened-before u′ iff u is deliv-
ered when u′ executes: u→ u′ def= u ∈ ck−1

j , where u′ executes at replica pj
and Kj(u′) = k. Updates are concurrent if neither happened-before the other:
u ‖ u′ def= u 	→ u′ ∧ u′ 	→ u. Note that the causal history is a formal reasoning
device, which is normally not needed in a concrete implementation.

Given our communication assumptions, we can conclude that, in a state-based
object, every update is eventually delivered to all replicas. However, this is not
sufficient to ensure that replicas converge. For instance, if the merge method m
is a no-op, an update executed at some replica has no effect on other replicas,
and they will never converge.

2.2 Strong Eventual Consistency

Informally, eventual consistency means that replicas eventually reach the same
final value if clients stop submitting updates. We capture this intuition as follows:

Definition 2 (Eventual Consistency (EC))
Eventual delivery: An update delivered at some correct replica is eventually

delivered to all correct replicas: ∀i, j : f ∈ ci ⇒ ♦f ∈ cj.
Convergence: Correct replicas that have delivered the same updates eventually

reach equivalent state: ∀i, j : �ci = cj ⇒ ♦�si ≡ sj.
Termination: All method executions terminate.

Several EC systems will execute an update immediately, only to discover later
that it conflicts with another, and to roll back to resolve this conflict [20]. This
constitutes a waste of resources, and in general requires a consensus to ensure
that all replicas arbitrate conflicts in the same way. To avoid this, we require a
stronger condition:

Definition 3 (Strong eventual consistency (SEC)). An object is Strongly
Eventually Consistent if it is Eventually Consistent and:
Strong Convergence: Correct replicas that have delivered the same updates

have equivalent state: ∀i, j : ci = cj ⇒ si ≡ sj.

2.3 State-Based Convergent Replicated Data Type (CvRDT)

We now propose a sufficient condition for strong convergence in state-based
objects. A join semilattice (or just semilattice hereafter) is a partial order ≤
equipped with a least upper bound (LUB) � for all pairs: m = x � y is a Least
Upper Bound of {x, y} under ≤ iff ∀m′, x ≤ m′∧y ≤ m′ ⇒ x ≤ m∧y ≤ m∧m ≤
m′. It follows that � is: commutative: x� y = y � x; idempotent: x� x = x; and
associative: (x � y) � z = x � (y � z).
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Definition 4 (Monotonic semilattice object). A state-based object,
equipped with partial order ≤, noted (S,≤, s0, q, u,m), that has the following
properties, is called a monotonic semi-lattice: (i) Set S of payload values forms
a semilattice ordered by ≤. (ii) Merging state s with remote state s′ computes
the LUB of the two states, i.e., s •m(s′) = s � s′. (iii) State is monotonically
non-decreasing across updates, i.e., s ≤ s • u.
Theorem 1 (Convergent Replicated Data Type (CvRDT)). Assuming
eventual delivery and termination, any state-based object that satisfies the mono-
tonic semilattice property is SEC.

For lack of space, we omit the proof that is presented in a companion technical
report [19]. A CvRDT converges towards the LUB of the most recent updates.
We require that x ≤ y ∧ y ≤ x⇒ x ≡ y.

2.4 Op-Based Commutative Replicated Data Type (CmRDT)

Alternatively to the state-based style, a replicated object may be specified
in the operation-based (or op-based) style. An op-based object is a tuple
(S, s0, q, t, u, P ), where S, s0 and q have the same meaning as above (respectively
state domain, initial state and query method). An op-based object has no merge
method; instead an update is split into a pair (t, u), where t is a side-effect-free
prepare-update method and u is an effect-update method. The prepare-update
executes at the single replica where the operation is invoked (its source). At
the source, prepare-update method t is followed immediately by effect-update
method u, i.e., fk−1

i = t ⇒ fki = u. (If this were not true, there would be no
causality between successive updates.)

The effect-update method executes at all replicas (said downstream). The
source replica delivers the effect-update to downstream replicas using a commu-
nication protocol specified by the delivery relation P , explained below.

We use the same notations for states and causal history as above, except that
now f can refer to any of q, t or u. Both queries and prepare-update methods
are side-effect-free, i.e., s • q ≡ s • t ≡ s.
Definition 5 (Causal History (op-based)). An object’s causal history C =
{c1, . . . , cn} is defined as follows. Initially, c0i = ∅, for all i. If the kth method
execution at i is: (i) a query q or a prepare-update t, the causal history does not
change, i.e., cki = ck−1

i ; (ii) an effect-update uki (a), then cki = ck−1
i ∪ {uki (a)}.

An update is said delivered at a replica when the update is included in the
replica’s causal history. Update (t, u) happened-before (t′, u′) iff the former is
delivered when the latter executes: (t, u)→ (t′, u′)⇔ u ∈ ck−1

j , where t′ executes
at pj and k = Kj(t′). The definition of concurrent updates remains as above.

We assume an underlying reliable causally-ordered broadcast communica-
tion protocol, i.e., one that delivers every message to every recipient exactly once
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and in an order consistent with happened-before. Such protocols are a standard
feature of distributed systems; they do not require consensus and they deliver
to all correct processes as long as any network partition eventually recovers (as
we assumed earlier). It follows that two updates that are related by happened-
before execute at all replicas in the same sequential order: (t, u) → (t′, u′) ⇒
∀i,Ki(u) < Ki(u′). However, concurrent updates may be delivered in any order.

Definition 6 (Commutativity). Updates (t, u) and (t′, u′) commute, iff for
any reachable replica state s where both u and u′ are enabled, u (resp. u′) remains
enabled in state s • u′ (resp. s • u), and s • u • u′ ≡ s • u′ • u.
Clearly, a sufficient condition for convergence of an op-based object is that all
its concurrent operations commute. An object satisfying this condition is called
a Commutative Replicated Data Type (CmRDT).
P is a delivery precondition, i.e., effect-update method u is enabled only if

the precondition is satisfied. We interpret this temporally, i.e., delivery of u at
replica i may delayed, until P (si, u) is true. Therefore, for liveness, we now have
the added obligation to prove that delivery is eventually enabled. Therefore
we restrict our scope to preconditions for which causally-ordered broadcast is
sufficient to ensure P .

Theorem 2 (Commutative Replicated Data Type (CmRDT)). Assum-
ing causal delivery of updates and method termination, any op-based object that
satisfies the commutativity property for all concurrent updates, and whose deliv-
ery precondition is satisfied by causal delivery, is SEC.

The proof is presented in [19].

3 Some Results

3.1 Fault-Tolerance and the CAP Theorem

The CAP theorem states that it is impossible to simultaneously ensure strong
consistency (C), availability (A) and tolerate network partition (P) [8]. As, net-
work faults unavoidably occur in a large-scale environment, a real system must
sacrifice either consistency or availability. Availability is often the top priority in
practice [3]: does this mean giving up all consistency guarantees?

No: SEC provides a solution. A SEC replica is always available for both reads
and writes, independently of network conditions. Any communicating subset of
replicas of a SEC object eventually converges, even if partitioned from the rest
of the network. SEC is weaker than strong consistency but nonetheless provides
the well-defined guarantee of strong eventual convergence.

SEC provides an extreme form of fault tolerance, as a SEC object tolerates
up to n − 1 simultaneous crashes. Remarkably, SEC does not require to solve
consensus.
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3.2 CvRDTs and CmRDTs are Equivalent

Operation-Based Emulation of a State-Based Object

Theorem 3 (CmRDT emulation). Any SEC state-based object can be emu-
lated by a SEC op-based object of a corresponding interface.

Proof. Given a CvRDT represented by tuple (S,≤, s0, q, u,m), we emulate it by
a CmRDT object (S, s0, q, t, u′, P ), which we specify hereby.

State and query of CvRDT can be directly stored and processed by emulating
CmRDT using the same definitions. A prepare-update t(a) has the same interface
(accepts the same domain of arguments and returns the same domain of value)
as an update u(a). It records the result of applying update u(a) on a copy of
current replica state s: s′ = s • u(a); return value of u(a) is passed to the client.
Recorded state s′ is used as an argument of an actual effect-update u′(s′), which
is delivered to all replicas by the underlying protocol of CmRDT. Precondition
P is unrestricted and enables delivery at any time. Effect-update u′(s′) merges
received state using original CvRDT method: s • u′(s′) def= s •m(s′).

Since merge always commutes, then updates u′(s′) commute and since the
communication is reliable, we have a CmRDT with strong eventual consistency,
which propagates all updates of emulated CvRDT.

State-Based Emulation of an Operation-Based Object. State-based em-
ulation of an operation-based object essentially formalises the mechanics of an
epidemic reliable causal broadcast.

Theorem 4 (CvRDT emulation). Any SEC op-based object can be emulated
by a SEC state-based object of a corresponding interface.

Proof. Given a CmRDT represented by tuple (S, s0, q, t, u, P ), we emulate it by
a CvRDT object ((S × U × U),≤, (s0,∅,∅), q′, u′,m), which we specify hereby.

Without loss of generality, we assume that each invocation uki is unique across
replicas and set U denotes all possible updates. CvRDT’s state is then defined
as a triple (sm,M,D), where sm is a state of emulated CmRDT, M and D are
two add-only sets of, respectively, known and delivered updates. A relation ≤ is
defined as following: (sm,M,D) ≤ (s′m,M ′, D′)

def= M ⊆M ′ ∧D ⊆ D′.
A query q′(a) has the same interface as q(a); we define it as a trivial delegation

to q(a) on the CmRDT, sm • q(a). An update u′(a) has the same interface as
prepare-update t(a). It first delegates the invocation to prepare-update t(a) of
the CmRDT that in turn triggers effect-update u(a), which becomes a locally
known update. Finally, u′(a) uses a recursive function d to process updates:

d(sm,M,D) def=

{
d(sm • u(a),M,D ∪ {u(a)}) if ∃u(a) ∈M \D : P (sm, u(a))
(sm,M,D) otherwise

Hence, u′(a) is defined as: (sm,M,D) • u′(a) def= d(sm • t(a),M ∪ {u(a)}, D).
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Finally, merge m takes a union of known messages and processes available
updates: (sm,M,D) •m(s′m,M ′, D′)

def= d(sm,M ∪M ′, D).
Since the emulation ensures that messages are delivered exactly once to each

replica’s embedded object, in the appropriate order, and since the CvRDT con-
forms to SEC criteria, the embedded CmRDT instance is also SEC.

Note that the emulating object forms a monotonic semilattice over domain S ×
U × U . Calling or delivering an operation adds it to the relevant message set,
and therefore advances the state in the partial order. The merge method m is
defined to take the union of theM sets and (possibly) updating D, and is thus a
LUB operation. This construction is similar to Wuu and Bernstein’s log covered
in Section 4.2.

3.3 SEC is Incomparable to Sequential Consistency

A state-based replica executes a sequence of query, update, and merge methods.
In addition to its sequential behaviour, a CRDT specifies concurrent behaviours
that must satisfy the strong convergence property. As we show now, this permits
executions that would be impossible in a sequentially-consistent system.

Consider a Set CRDT S with operations add(e) and remove(e). Immediately
after add(e), the state will satisfy e ∈ S; after remove(e) the state satisfies e /∈ S.
In a sequential execution, the last update wins, e.g., after remove(e) → add(e)
the state satisfies e ∈ S. Concurrent adds or removes of different elements are
independent, e.g., after add(e) ‖ remove(e′) the state satisfies e ∈ S ∧ e′ /∈ S.

There is a choice of alternative semantics for concurrent updates of the same
element. When concurrently adding and removing the same element, the add
could win, or the remove could win, or the update of the replica with the highest
IP address could win, or the state might be reset to a distinguished state ⊥, and
so on. All these alternatives satisfy the strong convergence condition, and any
of them may be reasonable for some application.

Let us consider the add-wins alternative: after add(e) ‖ remove(e) the state
satisfies e ∈ S. Now consider the following scenario. Replica p0 executes the se-
quence add(e); remove(e′). Concurrently, replica p1 executes add(e′); remove(e).
Then, replica p3 merges the state from p0 and p1. According to the concurrent
specification, the final state at p3 satisfies e ∈ S ∧ e′ ∈ S. Such a state would
never occur in a sequentially-consistent execution, in which either remove(e) or
remove(e′) must be last. Thus, there is a SEC object that is not sequentially
consistent.

Now consider the converse. In the absence of crashes, a sequentially-consistent
object is SEC. Indeed, sequential consistency is defined by a single order of
operations, after which all replicas must terminate with the same state. However,
in the general case, sequential consistency requires consensus, which cannot be
solved in the presence of n − 1 crashes. Therefore, SEC is incomparable with
sequential consistency.
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4 Example CRDTs

We now recall some basic CRDTs that are known in the existing literature,
which we will later compose to build higher-level objects. We will use state- or
op-based specifications as most convenient. Generally, we find the state-based
style more compact and easier to reason about formally, whereas the op-based
style is often convenient for implementation.

4.1 Integer Vectors and Counters

Consider the state-oriented specification of a vector-of-integers object:
(Nn, [0, . . . , 0],≤n, [0, . . . , 0], value, inc,maxn). Vectors v, v′ ∈ Nn are (partially)
ordered by v ≤n v′ ⇔ ∀j ∈ [0..n − 1], v[i] ≤ v′[i]. A query invocation value()
returns a copy of the local payload. An update inc(i) increments the payload
entry at index i, that is, s • inc(i) = [s′[0], . . . , s′[n− 1]] where s′[j] = s[j] + 1 if
i = j and s′[j] = s[j] otherwise. Merging two vectors takes the per-index maxi-
mum, i.e., s •maxn(s′) = [max(s[0], s′[0]), . . . ,max(s[n− 1], s′[n− 1])]. We omit
the proof that it is a CRDT.

If each process pi is restricted to incrementing its own index inc(i), this is the
well-known vector clock [11].

An increment-only integer counter is very similar; the only difference being
that query invocation value() of a vector in state v returns |v| def=

∑
j v[j]. We

construct an integer counter that can be both incremented and decremented, by
basically associating two increment-only counters I and D, where incrementing
increments I and decrementing increments D, whereas value() returns |I| − |D|.
The ordering method ≤ is defined as (I,D) ≤ (I ′, D′) def= I ≤n I ′ ∧D ≤n D′.

4.2 U-Set, Map and Log

Another simple CRDT construct is an add-only set object (S,⊆
,∅, value, add(e),∪). The payload is any set; sets are ordered by inclu-
sion. A query value() returns a copy of the local payload. Update add(e) adds
element e to the set, i.e., s • add(e) = s∪ {e}. It is well-known that sets ordered
by ⊆ form a semi-lattice with ∪ as the LUB operator. It is clearly monotonic
by the definition of add. Therefore, the add-only set is a CRDT.

Wuu and Bernstein build further CRDTs by combination of these basic com-
ponents [23]. They propose a set with both add and remove operations by asso-
ciating two add-only sets A and R; adding an element adds it to A, removing it
adds it to R; query value() returns the set difference A\R. (R is often called the
tombstone set. A client is allowed to remove only an element that is currently in
A). Note that they assume that every element is unique and added only once;
we call their construct U-Set [18]. Wuu and Bernstein derive their Dictionary
data type from U-Set in the obvious way.

A Log is a replicated object, whose payload contains a set (initially empty)
of (event, timestamp) pairs. It assumes that each process maintains a vector clock
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in the usual manner [11]. When an event e occurs at process i, the process invokes
update add(e); the update method updates the vector clock (say, to state v) and
adds the pair (e, v) to the set. The timestamp ensures that each entry is unique.
The merge method takes the union of the local and a remote set.

To avoid unbounded growth, Wuu and Bernstein propose a distributed
garbage collection algorithm that discards unneeded entries. In order to tol-
erate n − 1 crashes, only an entry that has been delivered to all processes may
be discarded. If vector clock entry vi[j] = k, this implies that process i has
delivered all k first events of process pj . Each replica maintains in its payload
a copy of all remote vector clocks; for each remote site, the merge procedure
keeps the largest version. Then, a replica may discard a log entry as soon as
its timestamp is less than all the remote vector clocks. This algorithm does not
require a consensus, but it is live only if no process is crashed. However, this
may be acceptable, since the liveness of garbage collection does not impact the
correctness of the main algorithm.

This algorithm may be adapted to other data types, for instance to discarding
the A and R entries of a removed element in the U-Set.

5 Directed Graph CRDT

Now let us examine how one would design a more complex data type: a Directed
Graph CRDT. Graphs are an important general-purpose data structure. Some
important applications and algorithms work on graphs, e.g., shortest-path or
web page-rank.

5.1 Thought Experiment
To motivate our graph design, consider the “thought experiment” of designing
a web search engine. The search engine uses a directed graph representing the
web structure. This graph may be used, among other things, to compute page
rank. Such an application processes large amounts of data and performs many
updates. For efficiency and scalability, processing should be asynchronous; for
responsiveness, processing should be incremental, as fast as each page is crawled.
Processing should not require any synchronisation, e.g., transactions. A CRDT
could be ideal.

We start with a Set CRDT containing some initial URLs to be crawled. A
number of crawler processes run in parallel; each one removes some URL from
the set and downloads it. (It might happen that the same page is downloaded
twice but this does not impact correctness.)

When a crawler finds a new page, it executes the corresponding addVertex .
For every page, it parses the links that it contains, comparing it with the page’s
previous version, if any, and executes the corresponding addArc and removeArc
invocations. Finally, the URLs of the linked pages are added to the set to be
crawled. Note that addArc must work even if the page at the tail of the arc has
not yet been found (it might not even exist), but such an arc is not functional; a
lookup of the corresponding arc should fail. Similarly if a node has been removed,
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payload set V , A -- sets of pairs { (element e, unique-tag w), . . . }
initial ∅,∅ -- V : vertices; A: arcs

query lookup (vertex v) : boolean b
let b = (∃w : (v,w) ∈ V )

query lookup (arc (v′, v′′)) : boolean b
let b = (lookup(v′) ∧ lookup(v′′) ∧ (∃w : ((v′, v′′), w) ∈ A)

update addVertex (vertex v)
prepare (v) : w

let w = unique() -- unique() returns a unique value
effect (v, w)

V := V ∪ {(v, w)} -- v + unique tag
update removeVertex (vertex v)

prepare (v) : R
pre lookup(v) -- precondition
pre � ∃v′ : lookup((v, v′)) -- v is not the head of an existing arc
let R = {(v, w)|∃w : (v, w) ∈ V } -- Collect all unique pairs in V containing v

effect (R)
V := V \R

update addArc (vertex v′, vertex v′′)
prepare (v′, v′′) : w

pre lookup(v′) -- head node must exist
let w = unique() -- unique() returns a unique value

effect (v′, v′′, w)
A := A ∪ {((v′, v′′), w)} -- (v′, v′′) + unique tag

update removeArc (vertex v′, vertex v′′)
prepare (v′, v′′) : R

pre lookup((v′, v′′)) -- arc(v′, v′′) exists
let R = {((v′, v′′), w)|∃w : ((v′, v′′), w) ∈ A}

effect (R) -- Collect all unique pairs in A containing arc (v′, v′′)
A := A \R

Fig. 3. Directed Graph Specification (op-based)

all arcs incident to the node disappear. In this way, the behaviour of our CRDT
will be consistent with that of web pages, which are allowed to contain non-
functional URLs. Once the linked page is created, the link become relevant, e.g.,
for navigation and for page-rank computation.

In the web application, the graph is very large; sending the state between
replicas and merging would be very costly. Therefore, we choose an op-based
approach.

5.2 Design Alternatives for Arc Removal

A directed graph is a pair of sets (V,A), called vertices and arcs respectively,
such that A ⊆ V × V . Updates must maintain the invariant that the head and
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tail vertices of an arc both exist. Therefore, adding an arc to A has the precon-
dition that its two vertices are in V ; conversely, a vertex may be removed only
if it supports no arc; these are preconditions to prepare-update. Furthermore,
the system must ensure that concurrent addArc(v′, v′′) ‖ removeVertex(v′) do
not violate the invariant. Several alternatives may be considered: (i) Give prece-
dence to removeVertex(v′): all edges to or from v′ are removed as a side effect.
This is easy to implement, by hiding any arc that includes a removed vertex.
(ii) Give precedence to addArc(v′, v′′): if either v′ or v′′ has been removed, it
is restored. This requires recreating nodes that have being explicitly deleted.
(iii) removeVertex(v′) is delayed until all concurrent addArc operations have
executed. This requires synchronisation which violates the goals of asynchrony
and fault tolerance. There is no perfect choice. Hereafter, we choose Option (i)
because it is adequate in our application scenario.

5.3 Graph Specification

Figure 3 shows our specification for a Directed-Graph CRDT. We prove that
this object is indeed a CmRDT in [19].

This CRDT maintains two sets internally, one for the vertices and one for the
arcs. To add a vertex v, the prepare-update method creates a unique identifier,
w, and the effect-update method adds the pair (v, w) to the set of vertices.
With this approach, each vertex has an unique internal identifier. If the same
vertex is added twice, the two additions will be distinguished by their two unique
identifiers. A lookup will mask the duplicates.

To remove vertex v, the prepare-update computes the set R of pairs that
contain v, i.e., all copies known in the source replica; the effect-update method
removes this same set R from the set of vertices in all replicas. As operations
are delivered in causal order, when the effect-update method executes in some
replica, for each pair in R, the correspondent addVertex operations has already
executed. Thus, unlike the state-based solution of Section 4.2, a set need not
keep tombstones.

If the same vertex is removed and added concurrently, the addVertex wins, as
the new unique identifier is not included in the set computed by the remove’s
prepare-update. This approach is consistent with a sequential execution, as the
a vertex can removed only if it is observed. The same approach is used for
arcs.

To remove a vertex, the source replica checks that the vertex is observed, and
also that it is not the head of any existing arc. Conversely, to add an arc, its
head node must exist, but there is no check for existence of the tail. The lookup
method will mask the existence of such an arc. However, if the tail is added
later, then the arc becomes visible. Similarly, concurrent updates may remove a
vertex that is the head of an arc. However, the lookup method will mask such
an arc.
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6 Comparison with Previous Work

Eventual consistency has been an active topic of research in highly-available,
large-scale asynchronous systems [17,21]. Contrary to much previous work [3, for
instance], we take a formal approach grounded in the theory of commutativity
and semilattices.

The state-based approach was invented for register-like objects, where the
only update operation is assignment. It is in wide use in file systems such as
NFS, AFS or Coda, and in key-value stores such as Dynamo [3] and Riak. Op-
based approaches are used when the cost of transferring state is too high, e.g.,
databases, and when operation semantics are important, e.g., cooperative sys-
tems such as Bayou [13] or IceCube [15].

Although the CRDT concept was identified only recently, related designs have
been published before. Johnson et. al. invented the LWW-Register [9]. They
propose a database of registers that can be created, updated and deleted, using
the last-writer-wins (LWW) rule to arbitrate between concurrent changes. LWW
ensures a total order of operations, at the cost of losing concurrent updates.

Concurrent editing uses the related concept of Operational Transformation
(OT), due to Ellis and Gibbs [7]. To ensure responsiveness, a local operation ex-
ecutes immediately. Operations are not designed to commute; however, a replica
receiving an update transforms it against previously-executed concurrent up-
dates to achieve a similar result. OT algorithms for a decentralised architecture
have been proposed; Oster et al. show that most of them are incorrect [12]. We
believe that designing for commutativity from the start is cleaner and simpler.

The foundations of CvRDTs were introduced by Baquero and Moura [1]. We
extend their work with CmRDTs and with a number of new results. The CRDT
concept was invented by Shapiro and Preguiça on their work on Treedoc, a
Sequence CRDT for concurrent editing [14]. Logoot is another Sequence CRDT
that supports an undo mechanism based on a CRDT Counter [22].

Roh et al. [16] independently developed the related concept of Replicated
Abstract Data Type. They generalise LWW to a partial order of updates, which
they leverage to build several LWW-style classes.

Burckhardt and Leijen propose the Concurrent Revisions programming model
for shared abstract data types, in which a forked revision runs in isolation until
it joins again. Join is based on a three-way merge function [2]. They show that
simple sequential merge functions exist for ADTs built upon Abelian groups. We
have also demonstrated the relation between CRDTs and sequential consistency
in a similar, but more loosely-coupled, replication model.

Ducourthial et al. study algebraic structures with specific properties in order
to solve self-stabilisation problems [6]. They propose the so-called r-operator for
“silent” tasks [4]. Strong convergence can be seen as as a silent task, given a
limited number of disturbing updates. However, there are differences between
the two approaches. Whereas a self-stabilising system must tolerate arbitrary
memory corruption, a shared mutable object should change state durably only
by executing update operations. Furthermore, whereas CvRDT states constitute
a monotonic semi-lattice, the r-operator requries a total order.
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7 Conclusion

We presented the concept of a CRDT, a replicated data type for which some sim-
ple mathematical properties guarantee eventual consistency. In the state-based
style, the successive states of an object should form a monotonic semilattice,
with merge computing a least upper bound. In the op-based style, concurrent
operations should commute. Assuming only that the communication subsystem
ensures eventual delivery (in causal order for op-based objects), CRDTs are
guaranteed to converge towards a common, correct state, without requiring any
synchronisation.

We presented some simple CRDT examples, such as sets, and detailed how to
create a directed Graph CRDT, which might be used in a large-scale web search
engine. Our data types have a clean and deterministic semantics in the presence
of concurrent updates.

Eventual consistency is a critical technique in many large-scale distributed
systems, including delay-tolerant networks, sensor networks, peer-to-peer net-
works, collaborative computing, cloud computing, and so on. However, work on
eventual consistency was mostly ad-hoc so far. Although some of our CRDTs
were known before in the literature or in the folklore, this is the first work to
engage in a systematic study. We believe this is required if eventual consistency
is to gain a solid theoretical and practical foundation.

Future work is both theoretical and practical. On the theory side, this will
include understanding the class of computations that can be accomplished by
CRDTs, the complexity classes of CRDTs, the classes of invariants that can
be supported by a CRDT, the relations between CRDTs and concepts such as
self-stabilisation and aggregation, and so on. On the practical side, we plan to
implement the data types specified herein as a library, to use them in practical
applications, and to evaluate their performance analytically and experimentally.
Another direction is to support infrequent, non-critical synchronous operations,
such as committing a state or performing a global reset. We will also look into
stronger global invariants, possibly using probabilistic or heuristic techniques.
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Abstract. This paper presents an incremental formal development of the Dy-
namic Source Routing (DSR) protocol in Event-B. DSR is a reactive routing
protocol, which finds a route for a destination on demand, whenever commu-
nication is needed. Route discovery is an important task of any routing algorithm
and formal specification of it, itself is a challenging problem. The specification is
performed in a stepwise manner composing more advanced routing components
between the abstract specification and topology. It is verified through a series of
refinements. The specification includes safety properties as set of invariants, and
liveness properties that characterize when the system reaches stable states. We
establish these properties by proof of invariants, event refinement and deadlock
freedom. The consequence of this incremental approach helps to achieve a high
degree of automatic proof. Our approach can be useful for formalizing and devel-
oping other kinds of reactive routing protocols (i.e. AODV etc.).

Keywords: Abstract model, Event-B, Event-driven approach, Proof-based de-
velopment, Refinement, Ad hoc Network.

1 Introduction

Formal models have a valuable role to play in validating requirements and designs for
distributed systems. In a mobile ad hoc networks, nodes move arbitrarily and change
the network topology. Frequently changing topology presents a fundamental challenge
for routing protocols. This paper presents a case study on the Dynamic Source Routing
(DSR) protocol [1]. Reactive routing protocol is generally not dependent on exchanges
of periodic route information and route calculations. Instead, whenever a route is needed
the node has to perform a route discovery before it can send any packet to a destina-
tion node. Our approach is here to specify and formally develop the DSR protocol.
We use an incremental development of the DSR protocol with stepwise refinements in
Event-B [2,3]. Event-B [2,3] is a formal modeling language, which supports refinement
based formal development. We proceed by constructing the proof-based series of mod-
els, where the initial model specifies the system requirements and final model describes
the resulting system.

It is a significant case study in specifying and developing the real routing protocol
algorithms. In routing protocols each host works as a router and constructs a graph
representing the network topology. In this graph, vertices and edges represent routing
nodes and direct connection between nodes, respectively. Each node uses this graph
to find the optimized routing table and determines the correct route from source node
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to destination node. The main challenging task in route discovery is to find the exact
distribution of nodes in a dynamic network and routing updates after changing network
topology.

To specify the correct desired properties of protocol at abstract level and in carrying
out the development and proofs in subsequent refinement models, is a challenging prob-
lem. This challenging problem comes from the fact that the protocol should function in
dynamically changing environment. The main characteristics of an ad hoc network is
dynamic behavior of the network: nodes can be added and deleted in a dynamic man-
ner. The topology information in all the reactive protocol is only transmitted by nodes
on-demand such as a node wishes to transmit the data packets to a node to which it has
no route, it will generate a route request message that will be flooded in a limited way
to other nodes. A route is considered found when the route request message reaches
either at a destination itself, or at an intermediate node with a valid route entry for the
destination node.

One of the key aspect of our development is to verify stability of the system.
Stability of the system is a most important property of this chaotic networks which
implies correct local view of the current system. Intuitively, in stable states, all nodes
have the maximum knowledge of the environment that can be acquired by route dis-
covery and communication. This notion of system stability is an instance of the general
notion of a stable system property [4].

The models of DSR protocol must be validated to ensure that they meet the require-
ments. Our abstract specification includes events of basic communication protocol. The
nature of the refinement that we verify using Rodin [2] proof tools are safety refinement.
Thus the behavior of final resulting system is preserved by abstract model as well as in
correctly refined models. Proof-based development methods [3] integrate formal proof
techniques in the development of software systems. The main idea is to start modeling
with an abstract model and details are gradually added to the abstract model to produce a
sequence of concrete events. The relationship between two successive models is known
as refinement [3]. The current work intends to explore problems related to the modeling
of distributed systems where an environment is changing dynamically. Moreover, the
stepwise development of the DSR protocol model helps to discover the exact behavior
of basic communication protocol and route discovery protocol in dynamic environment.

The outline of remaining paper organizes as follows. Section 2 describes the model-
ing framework, which outline some general idea of modeling, that we found useful in
this work. In section 3, we describe an informal description of the DSR protocol. Re-
quirements and assumptions are described in section 4. Section 5 explores the formal
development of the DSR protocol using stepwise refinement. Finally, section 6 presents
discussion and conclusion of the work.

2 The Modeling Framework

We will summarize the concepts of the Event-B modeling language developed by
Abrial [5,3] and will indicate the links with the tool called RODIN [2]. Considering
the Event-B modeling language, we notice that the language can express safety proper-
ties, which are either invariants or theorems in a machine corresponding to the system.
Recall that two main structures are available in Event-B:
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– Contexts express static information about the model.
– Machines express dynamic information about the model, invariants, safety proper-

ties, and events.

An Event-B model defines either a context or a machine. A machine organizes events
modifying state variables and it uses static information defined in a context. These ba-
sic structure mechanisms are extended by the refinement mechanism which provides a
mechanism for relating an abstract model and a concrete model by adding new events
or by adding new variables. This mechanism allows us to develop gradually Event-B
models and to validate each decision step using the proof tool. The refinement rela-
tionship should be expressed as follows: a model M is refined by a model P , when P
is executing M . The final concrete model is close to the behavior of real system that
executes events using real source code. We give details now on the definition of events,
refinement and guidelines for developing complex system models.

2.1 Modeling Actions over States

The event-driven approach [5,3] is based on the B notation. It extends the methodolog-
ical scope of basic concepts to take into account the idea of formal models. Briefly, a
formal model is characterized by a (finite) list x of state variables possibly modified
by a (finite) list of events, where an invariant I(x) states properties that must always
be satisfied by the variables x and maintained by the activation of the events. In the
following, we summarize definitions and principles of formal models and explain how
they can be managed by tools [2].

Generalized substitutions are borrowed from the B notation. They provide a means
to express changes to state variable values. In its general form, an event has three main
parts, namely a list of local parameters, a guard and a relation over values denotes pre
values of variables and post values of variables. The most common event representa-
tion is (ANY t WHERE G(t, x) THEN x : |(R(x, x′, t)) END). The before–after
predicate BA(e)(x, x′), associated with each event, describes the event as a logical
predicate expressing the relationship linking the values of the state variables just before
(x) and just after (x′) the execution of event e. The form is semantically equivalent to
∃ t· (G(t, x) ∧ R(x, x′, t).

Table 1. Event-B proof obligations

PROOF OBLIGATIONS

– (INV 1) Init(x) ⇒ I(x)
– (INV 2) I(x) ∧ BA(e)(x, x′) ⇒ I(x′)
– (FIS) I(x) ∧ grd(e)(x) ⇒ ∃y.BA(e)(x, y)

Proof obligations (INV 1 and INV 2) are produced by the Rodin tool [2] from events
to state that an invariant condition I(x) is preserved. Their general form follows imme-
diately from the definition of the before–after predicate BA(e)(x, x′) of each event e
(see Table-2). Note that it follows from the two guarded forms of the events that this
obligation is trivially discharged when the guard of the event is false. Whenever this



404 D. Méry and N.K. Singh

is the case, the event is said to be disabled. The proof obligation FIS expresses the
feasibility of the event e with respect to the invariant I .

2.2 Model Refinement

The refinement of a formal model allows us to enrich the model via a step-by-step ap-
proach and is the foundation of our correct-by-construction approach [6]. Refinement
provides a way to strengthen invariants and to add details to a model. It is also used to
transform an abstract model to a more concrete version by modifying the state descrip-
tion. This is done by extending the list of state variables (possibly suppressing some
of them), by refining each abstract event to a corresponding concrete version, and by
adding new events. The abstract (x) and concrete (y) state variables are linked by a glu-
ing invariant J(x, y). A number of proof obligations make sure that (1) each abstract
event is correctly refined by its corresponding concrete version, (2) each new event re-
fines skip, (3) no new event takes control for ever, and (4) relative deadlock freedom is
preserved. Details of the formulation of these proofs follows.

We suppose that an abstract modelAM with variables x and invariant I(x) is refined
by a concrete modelCM with variables y and gluing invariant J(x, y). If BA(e)(x, x′)
and BA(f)(y, y′) are the abstract and concrete before–after predicates of the same
event, e and f respectively, we have to prove the following statement, corresponding to
proof obligation (1):

I(x) ∧ J(x, y) ∧ BA(f)(y, y′) ⇒ ∃x′ · (BA(e)(x,x′) ∧ J(x′, y′))

Now, proof obligation (2) states that BA(f)(y, y′) must refine skip (x′ = x), generat-
ing the following simple statement to prove (2).

I(x) ∧ J(x, y) ∧ BA(f)(y, y′) ⇒ J(x, y′)

In refining a model, an existing event can be refined by strengthening the guard and/or
the before–after predicate (effectively reducing the degree of nondeterminism), or a
new event can be added to refine the skip event. The feasibility condition is crucial to
avoiding possible states that have no successor, such as division by zero. Furthermore,
this refinement guarantees that the set of traces of the refined model contains (up to
stuttering) the traces of the resulting model. The refinement of an event e by an event f
means that the event f simulates the event e.

The Event-B modeling language is supported by the Rodin platform [2] and has been
introduced in publications [3,5], where the many case studies and discussions about the
language itself and the foundations of the Event-B approach. The language of general-
ized substitutions is very rich, enabling the expression of any relation between states in
a set-theoretical context. The expressive power of the language leads to a requirement
for help in writing relational specifications, which is why we should provide guidelines
for assisting the development of Event-B models.
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3 Informal Description of DSR Protocol

The DSR protocol is a simple and efficient routing protocol designed specifically to
use in multi-hop wireless ad hoc networks of mobile nodes. It allows the network to be
completely self-organizing and self-configuring, without the need for any existing net-
work infrastructure or administration. In source routing techniques, a sender determines
the complete sequence of nodes through which it forwards the data packet. The sender
explicitly lists this route in the packets header, identifying each forwarding ’hop’ by the
address of the next node to which transmits the data packet on its way to the destination
node. The sender then transmits the packet over its wireless network interface to the
first hop identified in the source route. When a host receives a packet, if this host is
not the destination of the packet, it simply transmits the packet to the next hop iden-
tified in the source route in the packet header. Once the packet reaches its destination,
the packet is delivered to the host. The protocol presented here is explicitly designed
for use in the wireless environment of an ad hoc network. There are no periodic router
advertisements in the protocol. Instead, when a node needs a route to another node, it
dynamically determines one based on a local routing table or a route cached information
and on the results of a route discovery protocol [1]. DSR consists of two mechanisms:
route discovery and route maintenance.

Route Discovery: Whenever a source needs to communicate to a destination and does
not have a route in its routing table, it broadcasts a route request (RREQ) message to
find a route. Each neighbor receives the RREQ and (if it has not already processed the
same request earlier) appends its own address to the address list in the RREQ and re-
broadcasts the packet. This process continues until either the maximum hop counter is
exceeded (and RREQ is discarded) or the destination is reached. In the latter case, the
destination receives the RREQ, appends its address and generates a route reply packet
(RREP) back towards the source using the reverse of the accumulated route [1].

Route Maintenance: Route maintenance is used to manage (cache, expire, switch
among) previously discovered routes. Each node along the route, when transmitting
the packet to the next hop, is responsible for detecting next connected link. When the
retransmission and acknowledgement mechanism detects that the link is broken, the de-
tecting node returns a route error packet (RERRP) to the source of the packet. The node
will then search its route cache to find if there is an alternative route to the destination
of this packet. If there is one, the node will change the source route in the packet header
and send it using this new route. When a route error packet (RERRP) is received or
overheard, the link in error is removed from the local route cache, and all routes which
contain this hop must be truncated at that point [1]. The source can then attempt to use
any other route to the destination that is already in its route cache, or can invoke route
discovery again to find a new route.

4 Requirements and Assumptions

The protocol must work in an environment where the status of links may change at any
time. If the environment changes sufficiently rapidly, then links reported as down may
actually be up and vice versa. Hence the local routing table may bear little relationship
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to the actual network topology. To tackle this problem, we focus on the limiting, and
most important, case of the algorithm’s behavior: its behavior when the environment is
sufficiently quiescent. In this case, we expect that the local routing table will eventually
“stabilize” to states of the actual global topology. According to the basic graph theory,
any graph can be decomposed into a collection of strongly-connected components. Our
main system requirements are:

System Requirement 1: Data packet must be transmitted successfully from source
node to destination node in a dynamic ad hoc network.

System Requirement 2: If the environment is inactive for a sufficiently long time then
communication stabilizes and each node has the correct view of the links between all
nodes in its connected subnetwork.

System Requirement 3: Route discovery protocol must discover a new route from the
connected network where the status of links may change at any time.

Before developing the formal model of DSR protocol, we have some assumptions as
follows:

– There are finite numbers of nodes or hosts.
– There are directed, one-way links between some pairs of distinct nodes. Links may

come up and go down at any time.
– Nodes are communicating by broadcasting where node (x) sends a message to other

node (y) when they are directly connected.
– When a link goes down, any message sent on it and not yet received are lost. This

reflects that communication is asynchronous. There is a delay between message
transmission and reception, and messages can be lost during this time interval.

– The hosts do not continuously move so rapidly as to make the flooding of every
packet.

5 Formal Development

DSR protocol development is expressed in an abstract and general way. We describe the
incremental development of DSR protocol in two phases as basic communication pro-
tocol and route discovery protocol. We develop the six models related by refinements.
The initial model formalizes our system requirements and environmental assumptions,
whereas the subsequent models introduce design decisions for the resulting system.

Initial Model : To specify basic communication protocol of data packet sending, receiv-
ing, losing, and network topology changes using some initial events (sending, receiving,
losing, remove link and add link).

Refinement 1 : Introducing store and forward architecture for data packets passing
from source node to destination node.
Refinement 2 : Introducing local routing table.
Refinement 3 : Introducing route discovery protocol to discover a new route.
Refinement 4 : Provides more detail information about route discovery protocol.
Refinement 5 : Introducing sequence numbers for tracking fresh route request packets
information.
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5.1 The Context and Initial Model

We define a carrier set ND of network nodes. It is finite and is represented by an axiom
(axm1). The network is supported by a directed graph g built on ND, is defined by
an axiom (axm2). An axiom (axm3) specifies that there is no self loop connection
in the network means any node is not directly connected to itself. Axioms (axm4 and
axm5) represent that the total functions map from a carrier set Msg to a set of nodes
ND. The constants source and target are two necessary fields of a data packet for pre-
senting source and destination references. An additional constant (closure) is defined
by axioms(axm6 − axm9) that formalizes the transitive closure of binary relations
between a set of nodes (ND). Note that ”;” denotes forward relational composition.

axm1 : finite(ND)
axm2 : g ⊆ ND ×ND
axm3 : id(ND) ∩ g = ∅

axm4 : source ∈ Msg→ND
axm5 : target ∈Msg→ND

axm6 : closure ∈ (ND↔ND)→ (ND↔ ND)
axm7 : ∀r ·r ⊆ closure(r)
axm8 : ∀r ·closure(r); r ⊆ closure(r)
axm9 : ∀r, s·r ⊆ s ∧ s; r ⊆ s⇒ closure(r) ⊆ s

In abstract model, we formalize behavior of the basic communication protocol and
dynamic environment where links may go ups and down at any time. New variables
sent, got and lost (inv1 − inv3) are introduced to represent the set of sending data
packets by any source node, successfully received data packets by any destination node
and lost data packets due to network failure, respectively. A variable ALinks (i.e active
link) represents a set of links that currently up and keeps up-to-date information about
all adding and removing links in the network. An invariant (inv5) represents a safety
property and states that all the received and lost data packets are subset of the sending
data packets.

The sets got and lost are disjoint (inv6) since a data
packet cannot be simultaneously both received and lost.
We include events modeling, atomic transfer of the data
packets between moving nodes, successfully receiving of
the data packets by destination node, losing of the data
packets due to network failure and dynamic changing in
network topology.

inv1 : sent ⊆ Msg
inv2 : got ⊆ Msg
inv3 : lost ⊆Msg
inv4 : ALinks ∈ ND↔ND
inv5 : got ∪ lost ⊆ sent
inv6 : got ∩ lost = ∅

EVENT sending
ANY s,t,data msg

WHERE
grd1 : data msg ∈ Msg
grd2 : data msg /∈ sent
grd3 : s ∈ ND ∧ t ∈ ND ∧ s �= t
grd4 : source(data msg) = s
grd5 : target(data msg) = t

THEN
act1 : sent := sent ∪ {data msg}

END

There are five significant events in our abstract
model. An event sending represents the sending of
a data packet (data msg) from a source node (s) to
a destination node (t). Guards of this event state that
a new data packet (data msg) is sending from the
source node (s) to the destination node (t) and both
source and destination are different nodes. An event
receiving represents for successful receiving of the
data packet (data msg) by the destination node (t).

A guard (grd1) of receiving states that the sending data packet (data msg) is a mem-
ber of sent and the data packet is not received by either got or lost variables. The data
packet (data msg) has correct references of the source node (s) and the destination
node (t) is represented by a guard (grd2).
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EVENT receiving
ANY s,t,data msg
WHERE

grd1 : data msg ∈ sent \ (got ∪ lost)
grd2 : source(data msg) = s∧

target(data msg) = t
THEN

act1 : got := got ∪ {data msg}
END

EVENT losing
ANY s,t,data msg
WHERE

grd1 : data msg ∈ sent \ (got ∪ lost)
grd2 : source(data msg) = s ∧

target(data msg) = t
grd3 : s �→ t /∈ closure(ALinks)

THEN
act1 : lost := lost ∪ {data msg}

END

An event losing represents loss of data packets due to network failure or suddenly
powered off of any node or moving of node to new location, and disconnected from
the network. Guards state that the sending data packet (data msg) is not received by
either got or lost variables and there is not any valid connected route from the source
node (s) to the destination node (t). Guard grd3 states that a data packet never gets the
destination (t) node when path is broken.

EVENT add link
ANY x,y
WHERE

grd1 : x �→ y /∈ ALinks
grd2 : x �= y

THEN
act1 : ALinks := ALinks ∪ {x �→ y}

END

EVENT remove link
ANY x,y
WHERE

grd1 : x �→ y ∈ ALinks
grd2 : x �= y

THEN
act1 : ALinks := ALinks \ {x �→ y}

END

There is no more fixed infrastructure in wireless ad hoc network and every node in
the network works as router and all nodes move from one place to other place without
giving any information, so network link information always changes. For modeling
this dynamic behavior in the system we have proposed the two events add link and
remove link. Some new arbitrary links come up and some old links are removed from
the network. New links are added to the set of ALinks and old link are removed from
the set ALinks (if it is not existing). This event always keeping up-to-date information
of the ad hoc network.

5.2 First Refinement : Store and Forward Architecture

In the abstract model, we have presented that the data packets have been transferred in
an atomic step from the source node to the destination node. But in real protocol the
data packet is transferred hop by hop from the source node (s) to the destination node
(t). So our goal is to model the store and forward architecture, where all nodes are not
directly connected, and a data packet must pass through a number of intermediate nodes
before reaching to the destination node. We introduce a new variable gstore as binary
relation between ND and Msg is represented by invariant (inv1).

inv1 : gstore ∈ ND↔Msg
inv2 : ∀i·i ∈ ND ∧ i ∈ dom(gstore)⇒ (got ∪ lost) ∩ gstore[{i}] = ∅

inv3 : ran(gstore) ∪ (got ∪ lost) = sent
inv4 : ∀i·i ∈ ND⇒ gstore[{i}] ⊆ sent

inv5 : ∀m·m ∈ Msg ∧m /∈ sent⇒
(

m /∈ got ∧m /∈ lost ∧
(∀i·i ∈ ND⇒ i �→ m /∈ gstore)

)
inv6 : ∀m, i, j ·i �→ m ∈ gstore ∧ j �→ m ∈ gstore⇒ i = j



Analysis of DSR Protocol in Event-B 409

In the network, any data packet is stored by either got ∪ lost or in local variable
gstore by any node is represented by invariant (inv2). Invariant (inv3) represents a set
of total distributed data packets (ran(gstore) ∪ (got ∪ lost)) in the network is equal
to the sending data packets (sent). Each sending data packet is belonging from the set
of sending data packets (sent) is given in invariant (inv4). Next invariant (inv5) states
that a new data packet is not a member of the network distributed data packets if it is
not member of the sending data packets (sent). Same data packet is not mapped by
two different nodes in relation (gstore) is represented by last invariant (inv6), means
a node cannot store contradictory information about the same data packet.

A new event forward introduces in this refinement, is used to transfer the data pack-
ets between two connected neighbouring nodes in the route. First two guards represent
that a new sending data packet is not received by got ∪ lost, and intermediate nodes x
and y are directly connected. Third and fourth guards state that a destination node is t
of a data packet (data msg), and an intermediate node x is not the destination node (t).
Last two guards represent that the data packet (data msg) is stored at the node x, not
at the node y. In this refinement, we introduce some new guards and actions in events
sending, receiving and losing.1

EVENT forward
ANY t,x,y,data msg
WHERE

grd1 : data msg ∈ sent \ (got ∪ lost)
grd2 : x �→ y ∈ ALinks
grd3 : target(data msg) = t
grd4 : x �= target(data msg)
grd5 : x �→ data msg ∈ gstore
grd6 : y �→ data msg /∈ gstore

THEN
act1 : gstore := (gstore \ {x �→ data msg})∪

{y �→ data msg}
END

EVENT sending
⊕ grd7 : s �→ data msg /∈ gstore
⊕ act2 : gstore := gstore∪

{s �→ data msg}
EVENT receiving
⊕ grd4 : t �→ data msg ∈ gstore
⊕ act2 : gstore := gstore\

{t �→ data msg}
EVENT losing
⊕ grd4 : x �→ data msg ∈ gstore
⊕ act2 : gstore := gstore\

{x �→ data msg}

Note that, together with the events sending, receiving, losing, remove link,
add link and forward from initial model and all defined invariants establish System
Requirement 1.

5.3 Second Refinement : Routing Update

In this refinement, we introduce a routing table or a route cache for updating the route
information from the dynamic changing network. In the DSR protocol any node updates
the local routing table, when a node wants to send data packets to any destination node
and a route is not available in a local routing table. We define a new variable alinks as
alinks ∈ ND→ (ND↔ND), and it represents that the routing information is stored
by each node. The local routing table (alinks) always keeps some stale links information
due to continue changing of nodes location in the ad hoc network. We introduce a new
eventupdate routing table for updating the routing table. First two guards of this event
represent that the path is not existing between a source node (s) to a destination node (t).
A set of links, which generates a route from the source node (s) to any other node (x) is
represented as a strongly connected graph by last three guards (grd3− grd5). An action

1 ⊕ : To add a new guard and an action. , � : To remove an old guard and an action
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(act1) of update routing table states that the set of nodesE updates their local routing
table using a variable (routeSet). We introduce local routing table variable alinks and
some new guards in all other events of basic communication protocol.

EVENT update routing table
ANY s,t,E,routeSet
WHERE

grd1 : s ∈ ND ∧ t ∈ ND
grd2 : s �→ t /∈ closure(alinks(s))
grd3 : routeSet ∈ ND↔ND
grd4 : E ⊆ {x|x ∈ ND∧

s �→ x ∈ closure(ALinks)}
grd5 : routeSet ⊆ closure(E � ALinks)

THEN
act1 : alinks := alinks �− (λn·n ∈ E|alinks(n)∪

routeSet)
END

EVENT sending
⊕ grd8 : s �→ t ∈ closure(alinks(s))
⊕ act2 : gstore := gstore∪

{s �→ data msg}
EVENT losing
� grd3 : s �→ t /∈ closure(ALinks)
⊕ grd5 : s �→ t /∈ closure(alinks(x))

EVENT forwarding
⊕ grd7 : y �→ t ∈ closure(alinks(x))

One of the key aspects of our de-
velopment strategy is to specify a
so-called observer event [4]. This
event (stabilize) has no effect on
this system state itself as its ac-
tion is skip. Rather, its guard is
used to define the notion of a sta-
ble state of the system.

EVENT stabilize
ANY
WHERE

grd1 : ∀x, y ·x �→ y ∈ ALinks⇔ x �→ y ∈ alinks(y)
grd2 : ∀n, m·m �→ n ∈ closure(ALinks)⇒

(∀k·(k �→ m ∈ alinks(n)⇔ k �→ m ∈ alinks(m)))
THEN

skip
END

First guard of event stabilize represents that every node y knows the correct status of
all connected links, i.e., y has detected all environment changes with respect to connected
links. The next guard represents that if there is a path from a node m to n, then n has
the same (up) information as m for all connected links to m. Hence, the observer event
fires in those states where nodes know the correct status of their neighbors and this status
has already been propagated through the network along all links. Intuitively, in stable
states, all nodes have the maximum knowledge of the environment that can be acquired
by route discovery and communication. We say that the system is in stable state when
observer event (stabilize) can fire.2 A central property that we proved is as follows:

Theorem 1 (Stability implies correct local view). If the system is stable, then for any
strongly-connected component G in the network and any node n in G, n has the correct
view of the status (up) of all links in G.

We formulate this theorem in Event-B as follows, where guardStablize refers to
the guards of the observe event (stabilize).

guardStablize
⇒(∀G·(∀f, l·f ∈ G ∧ l ∈ G ∧ f �= l⇒ f �→ l ∈ closure(ALinks))
⇒(∀n·n ∈ G
⇒G � alinks(n) � G = G � ALinks � G)

Here, a set of nodes G defines a strongly-connected component of the graph whose
edge relation defines by ALinks, when for every distinct pair of node f and l in G, then
f �→ l ∈ closure(ALinks). The operators � and � respectively restrict the domain

2 This notion of system stability is an instance of the general notion of a stable system property
[7,4],which is a property P is true of any reachable state s then P is true of all states reachable
from s.
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and the range of relation to a set. The theorem itself constitutes part of the proof of
System Requirements 2. Namely, in a stable state, each node has the correct view of
all links in its strongly-connected components.

5.4 Third Refinement : Route Discovery Protocol

The route discovery protocol is an important and complex refinement of this model. We
define two carrier sets rrq and rrp of route request packets and route reply packets, re-
spectively. Two extra constants source rrq, and target rrq represent the total function
maps a set of route request packets rrq to a set of nodes ND, for storing the source and
destination references in each route request packet. A new constant (source rrp) rep-
resents the total function maps a set of route reply packets rrp to a set of nodesND for
initializing the source node for each route reply packet. Two new variables bcast rrq
and network rrp are defined as a subset of route request packets (rrq) and route reply
packets (rrp), respectively.

axm1 : source rrq ∈ rrq→ND
axm2 : target rrq ∈ rrq→ND
axm3 : source rrp ∈ rrp→ND
inv1 : bcast rrq ⊆ rrq
inv2 : network rrp ⊆ rrp

The route request packet identifies the node, referred
to as the destination node of the route discovery, for
which route is requested. If the route discovery is
successful then the source node receives a route re-
ply packet listing a sequence of network hops through
which it may reach to the destination node.

Two new events broadcast rrq and received rrq are introduced in this refinement
of the route discovery protocol. The event broadcast rrq broadcasts a route request
packet for discovering a route to any destination node. First two guards (grd1− grd2)
of this event represent that the route is not existing between the source node (s) to the
destination node (t). Next guard presents type of rrq pkt. Last three guards (grd4 −
grd6) state that each new route request packet rrq pkt have references of the source
node (s) and the destination node (t), then the route request packet rrq pkt is broadcast-
ed by initial node for discovering a new route.

EVENT broadcast rrq
ANY s, t, rrq pkt
WHERE

grd1 : s ∈ ND ∧ t ∈ ND
grd2 : s �→ t /∈ closure(alinks(s))
grd3 : rrq pkt ∈ rrq
grd4 : rrq pkt /∈ bcast rrq
grd5 : source rrq(rrq pkt) = s
grd6 : target rrq(rrq pkt) = t

THEN
act1 : bcast rrq := bcast rrq ∪ {rrq pkt}

END

EVENT received rrq
ANY t, rrq pkt, rrp pkt
WHERE

grd1 : t ∈ ND
grd2 : rrq pkt ∈ bcast rrq
grd3 : target rrq(rrq pkt) = t
grd4 : source rrq(rrq pkt) �= t
grd5 : rrp pkt /∈ network rrp

THEN
act1 : network rrp := network rrp∪

{rrp pkt}
act2 : bcast rrq := bcast rrq \ {rrq pkt}

END

A new event received rrq returns a route reply packet rrp pkt to the initial node
with discovered route information from the network. Guards (grd1−grd4) of this event
state that the broadcasted route request packet (rrq pkt) is received by the destination
node (t) and the source node (s) of the route request packet is not same as the destination
node (t). Last guard states that the returning route reply packet (rrp pkt) is not already
received by the route requesting node. Actions of this event state that the destination
node returns the route reply packet (rrp pkt) to the initial node and remove the route
request packet (rrq pkt) from the network.
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Note that, together with the events broadcast rrq, received rrq and update rout−
ing table from initial model and all invariants establish System Requirement 3.

5.5 Fourth Refinement : Continue Route Discovery Protocol

The route discovery protocol discovers route in the several steps. An address of the
original initiator of the request and the target of the request, each route request packet
contains a route record, where it is accumulated a record of the sequence of hops taken
by the route request packet as it is propagated through the ad hoc network during this
route discovery. A new variable (route record rrq) is declared to store the link infor-
mation at the time of propagation of a route request packet from one node to other node.
If the route request receiver node is not the target node then it add the link information
to the route record (route record rrq) of the route request packet (rrq pkt) and again
broadcasts it. Similarly, other new variable (route record rrp) used to store the a link
information which is collected from the route request packet, when a destination node
returns a route reply packet to the initial node. Two more invariants (inv3, inv4) are
introduced as safety properties, which represent that the sequence of accumulated node
information and the route record information is a subset of all the connected nodes to
the source node and a subset of connected links from the source node to all other nodes.

inv1 : route record rrq ∈ rrq→ (ND↔ ND)
inv2 : route record rrp ∈ rrp→ (ND↔ND)
inv3 : ∀rp, al, s·s ∈ ND ∧ rp ∈ rrp ∧ al ⊆ ND ×ND ∧ al ∈ dom(closure)⇒

dom(route record rrp(rp)) ⊆ {x·s �→ x ∈ closure(al)|x}
int4 : ∀al, E, rp·E ⊆ ND ∧ rp ∈ rrp ∧ al ⊆ ND ×ND ∧ al ∈ dom(closure)⇒

route record rrp(rp) ⊆ closure(E � al)

EVENT forward broadcast
ANY x, y, rrq pkt
WHERE

grd1 : x ∈ ND ∧ y ∈ ND
grd2 : x �→ y ∈ alinks(x)∧

x �→ y ∈ alinks(y)
grd3 : rrq pkt ∈ bcast rrq
grd4 : source rrq(rrq pkt) �= y
grd5 : target rrq(rrq pkt) �= y

THEN
act1 : route record rrq(rrq pkt) :=

route record rrq(rrq pkt) ∪ {x �→ y}
act2 : bcast rrq := bcast rrq ∪ {rrq pkt}

END

EVENT update routing table
� grd4 : E ⊆ {x|x ∈ ND∧

s �→ x ∈ closure(ALinks)}
� grd5 : routeSet ⊆ closure(E � ALinks)
⊕ grd3 : E =

dom(route record rrp(rrp pkt))
⊕ grd4 : routeSet =

route record rrp(rrp pkt)
EVENT received rrq
⊕ grd6 : s �→ t ∈

closure(route record rrq(rrq pkt))
⊕ grd7 : route record rrp(rrp pkt) =

route record rrq(rrq pkt)

A new event forward broadcast introduces for broadcasting a route request packet
to neighboring nodes, when any node is not the destination node for a route discovery
process. First two guards state that node x is directly connected with node y and this
information is stored by a local routing table of nodes x and y. Next guard (grd3)
states that a route request packet (rrq pkt) is already broadcasted and last two guards
(grd4, grd5) state that node y is not either source or destination nodes of the route
request packet. Two actions of this event, add a new link information (x �→ y) as a route
record of the route request packet rrq pkt, and again broadcasts it continue for route
discovery process. This process is repeated many times, until the destination node does
not receive the route request packet. In this refinement, we introduce some new guards
and remove some old guards from events update routing table and received rrq.



Analysis of DSR Protocol in Event-B 413

5.6 Fifth Refinement : Sequence Number

In this last refinement, we introduce a constant seqNo as seqNo ∈ rrq→N1 for rep-
resenting a sequence number stored in each route request packet. The sequence number
is set by the initiator from a locally-maintained sequence number. In order to detect du-
plicate route requests received packets, each node in the ad hoc network maintains a list
of the route request packet that it has recently received on any route request. The route
request thus propagates through the ad hoc network until it reaches the destination node,
which then replies to the initiator. The original route request packet is received only by
those nodes within wireless transmission range of the initiating node, and each of these
nodes propagates the request if it is not the target and if the request does not appear to
this host to be redundant. Discarding the request as well as recently seen request packet
because the address of node is already listed in the route record guarantees that no sin-
gle copy of the request can propagate around a loop [1]. A new variable store rrq is
declared as store rrq ∈ ND→ P(rrq), which represents a recently seen request table
by each nodes. The recently seen request table keeps all visited route request packets
information.

A new event forward broadcast skip is used to discard the route request packet
when the request packet is already stored by the recently seen request table (store rrq).
This event is refinement of the event forward broadcast. Guard (grd5) of this event
states that route request packet (rrq pkt) is already received by a node y and it is stored
by the recently seen request table (store rrq). Last guard states that the sequence num-
ber (seqNo) of the received route request packet is already stored by the recently seen
request table (store rrq) of a node y.

EVENT forward broadcast skip
ANY x, y, rrq pkt
WHERE

grd1 : x ∈ ND ∧ y ∈ ND ∧ x �→ y ∈ alinks(x)
grd2 : rrq pkt ∈ bcast rrq
grd3 : source rrq(rrq pkt) �= y
grd4 : target rrq(rrq pkt) �= y
grd5 : rrq pkt ∈ store rrq(y)
grd6 : seqNo(rrq pkt) ∈

{p·p ∈ store rrq(y)|seqNo(p)}
THEN

skip
END

EVENT broadcast rrq
⊕ act2 : store rrq(s) := store rrq(s)∪

{rrq pkt}
EVENT forward broadcast
⊕ grd6 : rrq pkt /∈ store rrq(y)
⊕ grd7 : seqNo(rrq pkt) /∈

{p·p ∈ store rrq(y)|seqNo(p)}
⊕ act3 : store rrq(y) := store rrq(y)∪

{rrq pkt}

When route request initiator node (s) broadcasts the route request packet (rrq pkt),
the route request packet is stored in the recently seen request table (store rrq), which is
represented by an extra action in the event broadcast rrq. Two extra guards (grd6, grd7)
and an action (act3) are introduced in the event forward broadcast. The guards
state that a new request packet (rrq pkt) is received by a node y and sequence num-
ber (seqNo) of route request packet is different from the recently seen request table
(store rrq). The action (act3) states that the intermediate node y stores the route re-
quest packet (rrq pkt) by the recently seen request table (store rrq).

5.7 Proof Statistics

Table-2 is expressing the proof statistics of the formal development of DSR protocol
in the Rodin tool. These statistics measure the size of the model, the proof obligations
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generated and discharged by the Rodin platform, and those interactively proved. The
complete development of the DSR protocol results in 104(100%) proof obligations,
in which 83(80%) are proved completely automatically by Rodin tool. The remaining
20(20%) proof obligations are proved interactively by Rodin tool. In the model, many
proof obligations are generated in first refinement due to introduction of store and for-
ward architecture for a data packet passing in the dynamic network.

In order to guarantee the correctness of these
behaviors, we have established various in-
variants in stepwise refinement. The step-
wise refinement of the DSR protocol helps
to achieve a high degree of automatic proof.

Table 2. Proof statistics

Model Total number Automatic Interactive
of POs Proof Proof

Abstract Model 16 16(100%) 0(0%)
First Refinement 37 20(55%) 17(45%)
Second Refinement 15 13(91%) 2(9%)
Third Refinement 5 5(100%) 0(0%)
Fourth Refinement 19 17(89%) 2(11%)
Fifth Refinement 12 12(100%) 0(0%)
Total 104 83(80%) 21(20%)

6 Discussion and Conclusion

Discussion: We have found some works on using model checkers and theorem provers
to verify properties of routing protocol by O.Wibling et al. [8] and relatively few case
studies (e.g., [4,9]) using formal methods to develop different kinds of protocols. Yang
et al. [10] have presented both safety and liveness properties of the DSR protocol. The
proofs have been mechanically checked using theorem proving tool Isabelle/HOL. An-
other paper [11] presents a validation model for the DSR protocol using SDL and con-
cludes that Route Request table correctly updated after receiving RREP.

This paper contributes to incremental formal development of the DSR protocol using
proof-based refinement. The specification is performed in a stepwise manner composing
more advanced routing components between the abstract specification and topology.
An incremental development helps to verify consistency and correctness of the system.
This formal model is designed according to the requirements of the DSR protocol, and
provides main characteristics of ad hoc network in form of dynamic networks: nodes
can be added and deleted in a dynamic manner. We have introduced several invariants as
safety properties to verify the system and introduce liveness properties that characterize
when the system reaches stable states. All these invariants are useful to generate the
test cases from formal models, which can be used for testing like route discovery, route
updating and response time etcetera.

Conclusion: We have presented a case study for formalizing and reasoning about the
DSR protocol in Event-B. Formal development of the DSR protocol is presented in
two phases as basic communication protocol and route discovery protocol. In basic
communication protocol, we consider the data packets are passing from source node to
destination node in changing network. The route discovery protocol is used to find the
route from initial node to a destination node. We formalize several different develop-
ments, each highlighting different aspects of the problem, making different assumptions
and establishing different properties. We consider the case of dynamic environment and
express properties for holding the stable states. We have explained our approach for de-
veloping DSR protocol using refinement, which allow us to achieve a very high degree
of automatic proof. The powerful support is provided by the Rodin tool. Rodin proof
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is used to generate the proof obligations and to discharge those obligations automati-
cally and interactively. Our approach is the methodology of separation of concerns: first
prove the algorithm at an abstract level; then gradually introduce the peculiarity of the
specific protocol.

What is important about our approach is that the fundamental properties, we have
proved at the beginning, namely the reachability and the uniqueness of a solution, are
kept through the refinement process (provided, of course, the required proofs are done).
Our different developments reflect not only the many facets of the problem, but also that
there was a learning process involved in understanding the problem and its solution. It
seems to us that this sort of approach is highly ignored in the literature of protocol
developments [10,11] where, most of the time, things are presented in a flat manner
directly at the level of the final protocol itself. In addition, the proposed methodology is
generic and can be easily applied to other routing protocols for an ad hoc networks. It
can also be applied to large-scale system and to extended ad hoc networks like reactive
routing protocols.

Acknowledgments. Work of Neeraj Kumar Singh is supported by grant awarded by
the Ministry of University and Research.
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Abstract. This paper presents a dynamic overlay network based on
the De Bruijn graph which we call Linearized De Bruijn (LDB) network.
The LDB network has the advantage that it has a guaranteed constant
node degree and that the routing between any two nodes takes at most
O(log n) hops with high probability. Also, we show that there is a sim-
ple local-control algorithm that can recover the LDB network from any
network topology that is weakly connected.

1 Introduction

Peer-to-peer networks (P2P) are characterized by their lack of centralized control
and scalability. While such qualities make them highly versatile, they also make
it difficult to design efficient routing algorithms that do not break down under
high network flux. One approach to designing a P2P network is to start with a
classical family of graphs which has all the qualities desired for the P2P network.
Then, one would try to design a dynamic variant of this family of graphs that
is able to accommodate any number of peers and that can handle a high rate
of joining and leaving peers. Such an approach is used in the design of the P2P
networks presented, e.g., in [18], [21], [19], [16], and [15].

A general approach to transform classical families of graphs into dynamic P2P
networks was formalized by Naor and Wieder in [16] and is called the continuous-
discrete approach. The basic idea of this approach is to first transform a classical
family of graphs into an infinite-size network in a continuous space that preserves
essential properties of these graphs. The communication algorithms needed can
be easily understood and designed under this space. Following this, one must
simply find a way to transform the network from the continuous to the dynamic
discrete domain that preserves the basic properties of the network as well as
these algorithms. However, while this approach yields P2P networks that are
easy to maintain and to use as long as the topology stays in the desired form, it
is not clear how these networks can recover from a misconfigured topology.
� Supported in part by NSF awards CCF-0830791 and CCF-0830704.
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In this work, we present the Linearized De Bruijn (LDB) network, which
is based on a discretization of a continuous variant of the classical De Bruijn
network, and which preserves the static network’s O(log n) routing time and
constant node degrees. Moreover, the LDB network is self-stabilizing in the sense
that it can recover from any case in which the topology is still weakly connected.
Recall that a directed graph G is called weakly connected if for any pair of nodes
v, w there is a path in G from v to w when considering all edges to be undirected.
Other dynamic variants of the De Bruijn network have been proposed in the
literature before (e.g., [16]), but none of them is self-stabilizing.

This paper is organized as follows. In Section 2, we present the related work in
the literature and Section 3 defines the structure of the LDB network. We then
present our routing algorithm in Section 4 and prove its logarithmic bound. Sec-
tion 5 presents the self-stabilization results for the LDB while Section 6 describes
and analyzes join and leave operations. Section 7 concludes the paper and also
presents some lines for future work.

2 Related Work

Our work expands on that of Naor and Wieder in [16]. Both our construction
and their distance-halving network are based on a continuous extension of the
De Bruijn graph to the unit interval. However, our self-stabilizing construction
provides additional fault-tolerance while maintaining constant node degree. Naor
and Wieder’s first construction has constant average degree w.h.p. but does
not offer a way to recover from faults. They also suggest a construction which
offers stronger results with regards to fault tolerance, but requires an increase
in the average degree to Θ(log n). The De Bruijn network has also been used
as the basis for several other peer-to-peer networks, including [1], [7], [11], and
[14]. These constructions also achieve logarithmic routing and constant average
degree w.h.p., but none of them is self-stabilizing.

Various self-stabilizing overlay networks have been designed in recent years.
Cramer and Fuhrmann [5] present a self-stabilizing ring network and Caron et
al. [3] describe a Snap-Stabilizing Prefix Tree for Peer-to-Peer systems. Onus
et al. [17] present a linearization technique to transform an arbitrary connected
network into a sorted list. Our paper is based on this technique and shows how
to extend it to dynamic De Bruijn networks. Clouser et al. [4] propose another
variant of the linearization technique to construct a deterministic self-stabilizing
skip list. Jacob et al. [10] generalize the linearization technique to two dimen-
sions and present a self-stabilizing construction for Delaunay graphs. In another
paper, Jacob et al. [9] present a self-stabilizing variant of the skip graph and
show that it can recover its network topology from any weakly connected state
in O(log2 n) communication rounds with high probability. Gall et al. [8] discuss
models that capture the parallel time complexity of locally self-stabilizing net-
works that avoids bottlenecks and contention. Recently, Kniesburges et al. [13]
showed how to obtain a self-stabilizing Chord network. In [2] the authors present
a general framework for the self-stabilizing construction of any overlay network.
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However, the algorithm requires the knowledge of the 2-hop neighborhood for
each node and involves the construction of a clique. In that way, failures at the
structure of the overlay network can easily be detected and repaired. All of the
constructions above that result in networks of low diameter and high expan-
sion (such as the skip graphs) result in a logarithmic degree while our network
guarantees a constant degree.

3 The Linearized De Bruijn Network

The d-dimensional De Bruijn graph is an undirected graph G = (V,E) with node
set V = {0, 1}d and an edge set E in which every node with label (x1, . . . , xd) ∈
{0, 1}d is connected to the nodes (0, x1, . . . , xd−1) and (1, x1, . . . , xd−1). When
letting d → ∞ and interpreting every label (x1, . . . , xd) as x =

∑d
i=1 xi/2i, the

node set converges to U = [0, 1) and the edge set to the family F = {f0, f1} of
functions

f0(x) = x/2 and f1(x) = (1 + x)/2 .

Thus, (U,F ) represents a continuous form of the De Bruijn graph. The question
is how to transform this continuous form into a dynamic discrete form for any
number of peers. We propose the following form.

Definition 1. The Linearized De Bruijn network (LDB) G = (V,E) is a di-
rected graph where the node set V can be partitioned into the set of real nodes
VR and a set of virtual nodes VV . Each real node v ∈ VR has a real-valued label1

in the interval (0, 1); in addition, each v ∈ VR hosts two virtual nodes in VV : a
left virtual node, l(v), with label v

2 and a right virtual node, r(v), with label v+1
2 .

The collection of all real and virtual nodes v ∈ V is arranged in sorted order of
their labels, and (v, w) ∈ E if and only if v and w are consecutive in the linear
ordering (linear edges) or w is a virtual node of v (virtual edges).

The definition above reflects the ideal, stable state of the LDB, and our goal
is to provide a self-stabilizing mechanism to get to that state from any weakly
connected graph. Note that the virtual edges between a real node v and its
virtual nodes l(v) and r(v) are static throughout the self-stabilization process as
all these nodes are hosted by v, so v can maintain them directly. These virtual
edges actually constitute the edges of the continuous De Bruijn construction. In
addition to that, v may have a collection of non-virtual edges that start at v,
l(v) or r(v) and that eventually are to be transformed into the linear edges in
the definition. As we will see, the combination of virtual and linear edges will
allow De Bruijn-like routing in the LDB.

In the following, we will say that a node v is to the right (resp., left) of a
node w whenever the label of v is greater (resp., smaller) than the label of
w. Given a (real or virtual) node v, we define N(v) as the neighborhood of v,
which consists of all (real and virtual) nodes that can be reached via non-virtual
edges from v. In other words, N(v) represents the current knowledge of v of
1 We may indistinctly use v to denote a node or its label, when clear from the context.
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the other nodes in the network. We define pred(v) = max{w ∈ N(v) | w < v}
and succ(v) = min{w ∈ N(v) | w > v}. In the ideal state, pred(v) and succ(v)
represent the linear edges of v, while in the non-ideal case, pred(v) and succ(v)
may just be candidates for v’s linear edges.

Analogous to the consistent hashing approach [12], we assume that the real
nodes are assigned to points in (0, 1) in a pseudorandom manner, so we can
assume that the real nodes are distributed uniformly at random over the interval
(0, 1). Note that in the LDB network every real node has a degree of at most 8
(two linear edges for each of v, l(v) and r(v), all hosted by node v, plus the two
virtual edges (v, l(v)) and (v, r(v))). As the LDB network organizes the nodes
in a sorted list (in the ideal state), it may be used similar to [12] to construct a
distributed hash table.

4 Routing Algorithm

In this section, we outline the algorithm we will use when routing from a node v to
a destination node w in the LDB network. In order to implement our algorithm,
we must first get a good estimate for c logn/n (in this paper, all logarithms are
to the base 2) for a constant c. For this we use the following lemma adapted from
[20]. Recall that the n real nodes are distributed uniformly and independently
at random over (0, 1).

Lemma 1. Let I(j) ⊆ (0, 1) be any interval of size (1/2)j starting at a real
node and let N(j) be the number of real nodes in I(j). For any constant c > 1
there is a constant ε ∈ (0, 1) (that can be arbitrarily small depending on c) so
that w.h.p.2 it holds: if |I(j)| < (1 − ε)(c logn)/n then j > N(j)/c − logN(j)
and if |I(j)| > (1 + ε)(c logn)/n then j < N(j)/c− logN(j).

Proof. Suppose that |I(j)| < (1− ε)c logn/n for some constant ε > 0. For δ > 0
with (1−δ)2 = (1−ε) it follows from the Chernoff bounds that N(j) = αc logn for
some α ≤ 1− δ w.h.p. given that c is large enough compared to δ (resp. ε). Also,
N(j) ≥ 1 as I(j) starts at a real node, so α ≥ 1/(c logn). As (1− δ)2c logn/n <
αc logn/nα for any 1/(c logn) ≤ α ≤ 1−δ if n is sufficiently large, it follows that
in this case |I(j)| < N(j)/2N(j)/c and therefore j > N(j)/c− logN(j). Thus, it
holds that as long as |I(j)| < (1 − ε)(c logn/n), j > N(j)/c − logN(j) w.h.p.
The other side is shown in a similar way. ��
The lemma allows us to accurately estimate c logn/n which will be helpful for
defining appropriate intervals to identify shortcuts in the routing: starting with
a real node v, go to the right until a point x is reached so that for the interval
I(j) = [v, x) it holds that j < N(j)/c − logN(j) for the first time. According
to the lemma, it holds for this interval that |I(j)| is within (1 − ε)(c logn)/n
and (1 + ε)(c logn)/n w.h.p. Similar bounds also hold if I(j) is required to end
at a real node as the distance between two consecutive real nodes in (0, 1) can
2 With high probability, that is, with probability at least 1 − 1/nc, for some constant

c > 0.
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be shown to be at most (εc logn)/n w.h.p. (given that c is sufficiently large
compared to ε) so that the deviation from (c logn)/n increases to a factor of at
most (1± 2ε). The lemma also allows us to accurately estimate logn: let I(j) be
defined as above. Then j is within logn− log logn− log c− log(1± ε) and hence
j + log j + log c is equal to logn up to some small additive constant independent
of c w.h.p.

We can interpret the nodes x0, x1, . . . , xk in the definition below as the first
k nodes one would have followed when routing on the continuous De Bruijn
network from node v0 to a destination given by a node whose highest order k
bits are bk−1, . . . , b0.

Definition 2. Let b0, ..., bk−1 be a sequence of bits and v0 ∈ (0, 1). We define
a sequence of ideal De Bruijn hops x0, ..., xk recursively by x0 = v0 and xi+1 =
xi/2 if bi = 0 and xi+1 = (1 + xi)/2 if bi = 1.

The routing algorithm is presented in Algorithm 1 and proceeds in three basic
stages. Throughout the algorithm, v represents the node at which the message
to be routed is currently located. First (Lines 1 – 12), the algorithm determines
a close estimation of logn (according to Lemma 1) so that it can determine
how many bits of the destination it needs to fix while emulating the classic De
Bruijn routing. It also defines the intervals Ti: Ti = [i/2j, (i + 1)/2j) for some
integer j with 1/2j ∈ [(1 − ε)c logn/n, (1 + ε)2c logn/n]. As we will show later,
these intervals are chosen so that our algorithm visits each of these intervals at
most once during the routing. The second stage (Lines 13 – 34) is where the
network actually uses the virtual edges to emulate routing in the continuous
De Bruijn network. Starting from the least significant bit chosen to be fixed
and proceeding towards the most significant bit in the destination address, the
network will follow the left virtual edge or the right virtual edge depending on
whether the bit is a 0 or 1, respectively. It must then proceed linearly from
the current virtual node to find a new real node v from which to perform a De
Bruijn hop (Lines 21 – 28). If the routing process detects that a later ideal De
Bruijn hop, xk, (as in Definition 2) is in the same interval Ti as the message to
be routed (Line 17; we will show that we can always find such a valid xk, which
matches the respective bits of the destination in at least one more position, in
the interval Ti, w.h.p.), it may skip ahead and proceed from the current node
v as if it has already fixed all the less significant matching bits between the
destination and xk. Finally (Lines 35 – 37), the message moves linearly from xκ

towards the destination address.
Figure 1 illustrates some of the variables and actions taken by our algorithm,

where vk is equal to node v at the start of iteration k (a virtual node unless
k = 0), yk (resp., yk′) is the value of the real node v found at the end of
the while loop in Lines 26 – 28 in iteration k (resp., iteration k′ immediately
preceding iteration k), xk is as defined in Line 17 in iteration k, Tik

is equal to
the interval Ti in iteration k.

Before we show a hop bound of O(log n) for the routing, we state and prove
some basic facts.
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Algorithm 1. Routing in the LDB
1: v = v0

2: N = 1
3: repeat
4: v = succ(v)
5: if v is a real node then
6: N = N + 1
7: end if
8: until log (1/|v − v0|) ≤ N/c − log N
9: j = �log (1/|v − v0|)�

10: κ = j + log j + log c
11: In the following let Ti = [i(1/2)j , (i + 1)(1/2)j ] for all 0 ≤ i < 2j and let bi be the

(κ − i)th bit of the destination address
12: Fix x0, ..., xκ recursively as in Definition 2 based on b0, ..., bκ−1 and initial point

v0

13: v = v0

14: k = 0
15: while k �= κ do
16: Let i be such that v ∈ Ti

17: k = max{k : xk ∈ Ti}
18: if k = κ then
19: Break
20: end if
21: if v is left of the midpoint of Ti then
22: Let next(x) = succ(x) for all nodes x
23: else
24: Let next(x) = pred(x) for all nodes x
25: end if
26: while v is a virtual node do
27: v = next(v)
28: end while
29: if bk = 0 then
30: v = l(v)
31: else if bk = 1 then
32: v = r(v)
33: end if
34: end while
35: while v �= destination node do
36: v = pred(v) or v = succ(v), whichever is closer to the destination.
37: end while
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Definition 3. Let I be some interval in (0, 1). We define Ψ(I) = {x ∈ (0, 1) :
x/2 ∈ I or (x + 1)/2 ∈ I}. If I is some collection of intervals in (0, 1) then we
define Ψ(I) =

⋃
I∈I Ψ(I).

Lemma 2. Let I be some interval in (0, 1). The total length of the collection of
intervals in I ∪ Ψ(I) is at most 3|I|.
Proof. Suppose I = (i1, i2) is an interval with length l. If I ⊆ (0, 1/2) or I ⊆
(1/2, 1), then Ψ(I) is just some interval in (0, 1) with length 2l. If 1/2 ∈ I, then
I = IL ∪ IR where IL = (i1, 1/2] and IR = [1/2, i2), and Ψ(I) = Ψ(IL) ∪ Ψ(IR)
which has length less than or equal to 2l. Thus in general, if I has length l, the
length of Ψ(I) ≤ 2l and in particular, the length of I ∪ Ψ(I) is at most 3l. ��
Corollary 1. Let I be some collection of intervals in (0, 1). Then the length of
the collection of intervals in I ∪ Ψ(I) is at most three times the length of the
collection of intervals in I.

The following lemma will prove useful for giving an upper bound on the length
of a routing path.

Lemma 3. Let I be a collection of intervals with total length at most p log n
n for

some constant p. Then w.h.p. the number of nodes in I is O(log n).

Proof. A node is in an interval in I if there is a real node in an interval in
D = I ∪ Ψ(I). So we must show that the number of real nodes in D, which has
total length at most 3p log n

n , is bounded by (1 + a) log n, for some constant a,
with high probability. Let v1, ..., vn be the real nodes in the network. For each
vi, define

Xi =
{

1 : vi ∈ D
0 : vi /∈ D

Note that E[
∑n

i=1 Xi] ≤ 3p logn. So for 3p(1 + a′) = (1 + a) we have

P [D has more than (1 + a) logn real nodes] = P [
n∑

i=1

Xi ≥ (1 + a′)3p logn]

≤ e
−3a′2p log n

3

= n−p′a′2
,

where p′ = p/ ln 2. The inequality follows from standard Chernoff bounds. ��
Now we are ready to prove that the logarithmic length of a routing path holds
with high probability.

Theorem 1. The number of edges on the routing path from a source node v to
a destination node w in the LDB network G is O(log n), w.h.p.

Proof. First we bound the number of hops performed during Lines 1 – 12. By
Lemma 1 the length of the interval traversed to calculate j is O(log n/n), so
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from Lemma 3 it follows that the number of hops traversed in Lines 1 – 12 is
O(log n).

Next we bound the number of hops performed in the middle stage of the
algorithm, Lines 13 – 34. In each iteration of loop beginning on Line 15 we have
a value of k determined at Line 17, an associated xk, an interval Tik

from Line
16, a node from which we begin, which we call vk, and a real node whose virtual
node we hop to at the end of the iteration (Lines 26 – 28) which we call yk, and
an interval Sk = [vk, yk] (or [yk, vk]). Note that, by definition, vk ∈ Tik

and xk

always exist (since we can always take k = 0) — we will actually show below that
the sequence of indices k computed in the while loop is strictly increasing w.h.p.,
implying that the sequence of xk’s found by our algorithm strictly increases the
number of most significant bits matched to b0, . . . , bk−1. We will also show that
yk also belongs to Tik

w.h.p., implying that Sk ⊆ Tik
w.h.p. Figure 1 illustrates

yk′ , vk, yk, xk and Tik
, where k′ was the value of k chosen on the iteration prior

to k.

Fig. 1. An example of one iteration of the main routing loop

Claim. At every iteration k it holds w.h.p. that k > k′, where k′ was the value
of k in the previous iteration of the while loop, and yk ∈ Tik

.

Proof. Note that on the first iteration of the loop, xk = vk = yk, so the claim
holds.

Now suppose k > 0 and that the claim holds for the iteration prior to the
current iteration, when k was equal to k′. Either vk = l(yk′) or vk = r(yk′ ),
which implies xk′+1 = l(xk′) or xk′+1 = r(xk′ ) respectively. In either case,
since yk′ and xk′ are both in Tik′ and each Ti has length (1/2)j and is offset
from 0, xk′+1 ∈ Tik

, implying that k ≥ k′ + 1. Furthermore, if yk /∈ Tik
then

|Sk| ≥ c logn/2n since we move in the direction from vk to the midpoint of Tik

in Lines 26 – 28. Since by definition there are no real nodes in the interior of Sk,

P [|Sk| ≥ c logn/2n] ≤
(

1− c logn
2n

)n

< e−(c log n)/2 = n−c′/2,

where c′ = c
ln 2 . Thus w.h.p. yk ∈ Tik

. ��
Since we always take k to be maximum index such that xk ∈ Tik

(Line 17), this
also implies that the message will never return to an interval after leaving it,
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else we would have xl ∈ Tik
with l > k, a contradiction. Hence, since yk ∈ Tik

implies that Sk ⊆ Tik
, we have that all Sk’s are disjoint w.h.p.

Let S =
⋃
Sk. We will bound the total length of S w.h.p. Assume |S| > 2c log n

n .
Since each Sk contains only one real node by definition, there is a set of real nodes
V0 of size at least n− κ such that no node in V0 falls in S. We have

P [no v ∈ V0 falls in S] ≤ (1− 2c logn
n

)n−κ

≤ exp((
−2c logn

n
) · (n− 2κ))

= exp(−2c logn) · exp(
4cκ logn

n
)

= O(
1

n2c′ )

for c′ = c
ln 2 , since κ = logn + Θ(1). Thus w.h.p. |S| ≤ 2c log n

n .
Then according to Lemma 3, w.h.p. the number of virtual nodes in S is

O(log n). Since the Si’s were shown to be disjoint w.h.p., this implies that the
number of hops taken before Step 32 of the algorithm is O(logn) w.h.p.

Finally, we bound the number of hops in Lines 35 – 37. After taking the final
virtual hop we arrive at vκ, which we know is in the same interval, Tiκ as xκ.
Thus |vκ − xκ| ≤ c log n

n . Furthermore, since xκ shares its more significant κ bits
with the destination, w, we have

|xκ − w| ≤ (1/2)κ = (1/2)log n+c′ =
2−c′

n
.

Thus after all bits have been fixed, with high probability, the packet will be
at a distance from its destination which is O( c log n

n ). Hence by Lemma 3 the
total number hops between the current location and the destination is O(log n)
w.h.p. ��

5 Self-Stabilization

We use the standard synchronous message passing model already used by Onus
et al. [17]: the time steps are synchronized and all messages sent out at time
step t arrive at their destinations before the beginning of time step t + 1. That
is, no messages are ever in transit at the beginning of a new time step so that
we do not have to worry about old messages that are still in the system. In
addition to that we assume that there are no fake or outdated node identifiers
in the system at any time. If so, we would have to worry about failure detectors
which we do not want to do here to keep the treatment simple. We also assume
that during the self-stabilization process the node set does not change. While
joining nodes would be of no danger and would only delay the time needed till
the self-stabilization process finishes, leaving nodes would cause outdated node
identifiers, which we are not considering here.
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Given the assumptions above, we show that the LDB network can self-stabilize
from any initial state in which the nodes form a weakly connected graph. In the
absense of any outside means that would allow disconnected nodes to recon-
nect, the assumption that the graph be initially weakly connected is necessary
for the self-stabilization mechanism to ensure that at the end all nodes in the
system form the desired topology. In the following, whenever we use the word
“connected”, it means “weakly connected”.

Our self-stabilization mechanism builds on and extends the linearization tech-
nique of Onus et al. [17] as well as Kniesburges et al. [13]: in each time step,
each node v with left neighbors u� < u�−1 < ... < u1 and right neighbors
w1 < w2 < ... < wr replaces every edge (v, ui) with i > 1 with (ui−1, ui) and
every edge (v, wi) with i > 1 with (wi−1, wi) by contacting the corresponding
neighbors (i.e., it linearizes its neighborhood which explains the name of the
technique as well as the name LDB we gave to our network). Also, it asks u1 to
establish (u1, v) and w1 to establish (w1, v). Due to our message passing model,
all notifications sent out by v in order to establish these edges can be received
and processed by its neighbors so that their neighborhoods include the new edges
at the beginning of the next time step. As shown in [13] (Section 3.1.2), for any
weakly connected graph G of size n, at most O(n) time steps are needed by the
linearization rule above to transform G into a bi-directed sorted list. However,
we have to deal here with the problem that we cannot let the virtual edges par-
ticipate in the linearization of v, l(v) and r(v) as otherwise we would never reach
a stable network (because v would continually introduce l(v) and r(v) to its clos-
est neighbors). Thus, the linearization should only be applied to the non-virtual
edges of v, l(v) and r(v) for all nodes v.

Suppose now that we start with some arbitrary directed network G = (V,E)
that is weakly connected, where V includes the real as well as the virtual nodes.
Let E′ ⊆ E be the set of all non-virtual edges and let G′ = (V,E′). Since the
linearization does not include the virtual edges, the possibility remains that G′

is not connected even though G is connected. To stabilize from this state to the
desired LDB topology, we introduce a light-weight probing algorithm for each
node v to determine if there is a path along the non-virtual edges leading from
v to v’s virtual nodes. We will show that by performing both the probing and
the linearization algorithms, a network in any weakly connected state (over both
virtual and non-virtual edges) will converge to the LDB in O(n) steps.

5.1 Linear Probing

Let x ∈ V be a real node. At each time step, x will probe for its left and right
virtual node. The probing for the left virtual node is given in Algorithm 2, and
the probing for the right virtual node works in an analogous way. The following
property immediately follows from Algorithm 2.

Lemma 4. For every real node v and every graph G′ = (V,E′) formed by the
non-virtual edges, the probing of v for l(v) or r(v) terminates in at most 3n
steps.
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Algorithm 2. Probing in the LDB
1: y = pred(x)
2: while y is a virtual node do
3: if y = l(x) then
4: Exit
5: else if pred(y) does not exist then
6: Establish a non-virtual edge between x and l(x)
7: Exit
8: else
9: y = pred(y)

10: end if
11: end while
12: y = l(y)
13: while y < l(x) do
14: if succ(y) does not exist then
15: Establish a non-virtual edge between x and l(x)
16: Exit
17: end if
18: end while
19: if y �= l(x) then
20: Establish a non-virtual edge between x and l(x)
21: end if

In the stable state, i.e., the ideal LDB network has been established, the probing
is also very light-weight as stated in the next lemma, which follows from the fact
that the real and virtual nodes are distributed uniformly at random in (0, 1).

Lemma 5. In the ideal LDB network with labels chosen uniformly at random
for the real nodes it holds that for every real node v, the expected length of the
path travelled by its probe to l(v) and r(v) is a constant.

Hence, in the stable state, the linearization rule together with the probing rule
only involves an expected constant number of steps to check the correctness of
the LDB network. Thus, any faults can be detected quickly.

5.2 Convergence of Linearization with Linear Probing

Finally, we prove that linearization with linear probing quickly converges to the
desired LDB topology.

Theorem 2. Using linearization together with linear probing, any weakly con-
nected network (over virtual and non-virtual edges) will converge to the LDB
network within O(n) time steps.

Proof. Let G = (V,E) be the graph containing all virtual and non-virtual edges
and G′ = (V,E′) the the graph containing only the non-virtual edges. We need
a sequence of lemmas to prove the theorem. The first lemma shows that weak
connectivity is preserved for any pair of nodes.



Self-Stabilizing De Bruijn Networks 427

Lemma 6. Consider any connected component C in G′. If C is connected at
the beginning of step t, then C is also connected at the beginning of step t + 1.

Proof. As we do not have any fake or outdated node identifiers, the linearization
rule will only perform transformations that preserve connectivity for the non-
virtual edges (namely, the neighborhood of each node is transformed into a sorted
list). As the probing mechanism may only create additional non-virtual edges,
the connectivity property of C will be preserved. ��
Lemma 7. If G is connected but G′ is not connected, then there must be a real
node v that is not connected to l(v) or r(v) in G′.

Proof. Suppose that G is connected and every real node v ∈ V is connected to
l(v) and r(v) in G′ but G′ is not connected. Let C1, . . . , Ck be the connected
components in G′, k ≥ 2. As these are connected in G, there must exist a real
node v in some Ci with l(v) or r(v) being in Cj for some j �= i. However, that
contradicts our assumption that all real nodes are connected to their left and
right virtual nodes in G′ which completes the proof. ��
Now we are ready to prove an upper bound on the number of steps it takes until
G′ is weakly connected.

Lemma 8. If G is connected, then it takes at most O(n) steps until G′ is con-
nected.

Proof. Suppose that G′ is initially not connected. Then it follows from Lemma 7
that there must be a real node v that is not connected to l(v) or r(v) in G′.
W.l.o.g. we assume that v is not connected to l(v). Then we follow the left
probing of v till it reaches a real node or ends before reaching one. In the latter
case v establishes a non-virtual edge to l(v), so v is in the same connected
component of G′ as l(v). Otherwise, let v′ be the real node reached by the
probing of v. Suppose that v’s probe is not able to reach l(v) from l(v′). Then v
establishes a non-virtual edge to l(v) and also in this case v and l(v) are in the
same connected component in G′. Hence, it remains to consider the case that
v’s probe succeeds in reaching l(v) from l(v′). Then it follows from Lemma 4
that after O(n) steps l(v) and l(v′) are in the same connected component in G′.
As Lemma 6 guarantees that v and v′ remain in the same connected component
of G′, it follows that if v′ and l(v′) are in the same connected component of G′

after O(n) steps, so are v and l(v). Therefore, instead of focussing on the probe
initially sent out by v, we focus on the probe initially sent out by v′. Continuing
with the same arguments for v′ as for v, it either holds that v′ is connected to
l(v′) after O(n) steps or there is a node v′′ with the property that v′′ is in the
same connected component as v′ and l(v′′) is in the same connected component
as l(v′) after O(n) steps. In the latter case we switch to v′′ and consider its
initial probe for l(v′′). Continuing with these arguments, we must end up with a
real node w that is in the same connected component as v after O(n) steps, and
w is connected to l(w) in G′ after O(n) steps, which is in the same connected
component as l(v) after O(n) steps. Hence, after O(n) steps v is connected to
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l(w) in G′. Since this argument applies to all nodes v that are initially not
connected with l(v) in G′, the lemma follows. ��
Finally, we need the following lemma, which has already been shown in [13].

Lemma 9. If G′ is connected, then the linearization rule ensures that after O(n)
steps G′ forms a bi-directed sorted list.

As it is known that the bi-directed sorted list is the only stable structure of the
linearization rule [17] and in that case the linear probing will not add any further
edges, the theorem follows. ��

6 Join and Leave

We rely on the self-stabilization rules above to ensure that we can have very
simple join and leave operations and still maintain the network structure. When
a node v joins a network via a node w, it simply establishes a non-virtual edge
between w and each of v, l(v), and r(v). Then our self-stabilization mechanism
will ensure that the nodes will be placed in their proper location in O(n) rounds.
Other join operations are possible, such as using the routing algorithm to place
the nodes more quickly within the network, but they are not discussed here. Since
the self-stabilization rules can repair the network from any weakly connected
state, our simple join mechanism can handle arbitrary concurrent join operations,
which can be quite tricky to handle with a dedicated join operation. Also, notice
that the routing mechanism will still work correctly while nodes are joining for
two reasons: (1) the routing just relies on the virtual edges and the edges specified
by pred and succ to proceed,and (2) joining nodes will only affect the pred and
succ values of the nodes already in the system when they reached their right
place.

When a node v leaves the network, v must simply introduce pred(v) and
succ(v) to one another and the same for l(v) and r(v). Following this, the network
will immediately be in a correct state with no additional work.

Finally, we show that if a node leaves without properly introducing its neigh-
bors, the network will remain weakly connected with very high probability. So
we know that the self-stabilization algorithms will still be able to return the
network to a proper state.

Theorem 3. Let G be an LDB network and let v be a real node in G. If there ex-
ists a real node w ∈ G such that l(v) < w < r(v), then the graph G−{v, l(v), r(v)}
is weakly connected.

Proof. Partition (0, 1) into four regions R1 = (0, l(v)), R2 = (l(v), v), R3 =
(v, r(v)), R4 = (r(v), 1). Assume w < v. The case where w > v is symmetric.
First note that from the linearization edges all nodes in a single region Ri are
connected. Also note that any region with at least one virtual node but no
real nodes is connected to another region, since each virtual node must have an
incoming edge from a real node. Since w < v, w

2 < v
2 . Thus l(w) ∈ R1, and so
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R2 is connected to R1. If there is a real node u in R3 ∪ R4, then consider two
cases:

Case 1: v ≤ 1
2 . Then v < w+1

2 = r(w) < r(v), so R3 is connected to R1 and
R2. If u ∈ R3 then r(u) > r(v) so R3 is connected to R4 and so the whole graph
is connected. If u ∈ R4 then l(u) < r(v) so R4 is connected to R1 ∪R2 ∪R3.

Case 2: v ≥ 1
2 . Then u

2 < v. If u ∈ R3 then this implies R3 is connected to
R1 ∪ R2. Also, since u > v, r(u) > r(v) so R3 is connected to R4 and thus the
entire graph is connected. If u ∈ R4 then R4 is connected to R1∪R2 and if there
is a real node y ∈ R3 then r(y) ∈ R4 so the entire graph is weakly connected. ��
Corollary 2. If a node v leaves in the LDB with no further action, the network
remains weakly connected with probability 1− 1

2n−1 .

Proof. The interval between l(v) and r(v) has length 1
2 . By Proposition 3 the

network will be weakly connected if there are no real nodes in (l(v), r(v)), which
has probability 1

2n−1 . ��

7 Conclusion

In this paper we presented the first self-stabilizing dynamic overlay network
construction based on a De Bruijn graph, which also retains the main attrac-
tive properties of the classical De Bruijn construction, namely, logarithmic time
routing and constant node degree. As future work, we believe that our approach,
which uses an underlying sorted list of the nodes in order to aid in the network
routing and self-stabilization, can also be generalized for other popular topolo-
gies, in particular ones that follow the continuous-discrete approach by Naor and
Wieder.
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Abstract. The problem of reconstructing the topology of a network,
given a set of hop-by-hop traces of packet paths through it, is called
’network tracing’. Unfortunately, there are only a few known classes of
networks (trees and odd rings) that are traceable, i.e. that have the prop-
erty that a unique network topology can be reconstructed from a trace
set. Here, we suggest a property that may be the reason such networks
are traceable, and use it to identify a new class of traceable networks.

1 Introduction

Many applications improve performance by using network locality; hence, knowl-
edge of the network topology is important, but not readily available. There have
been many attempts to map networks, such as Rocketfuel [2]; these mappers
use Traceroute to obtain hop-by-hop paths between known start and end nodes,
called terminals, then reconstruct a candidate topology that contains the known
paths.

Unfortunately, this approach leads to wildly inaccurate maps. In a trace, every
node other than the (known) terminals may refuse to reveal its IP address, so
nodes are anonymous; some nodes have many IP addresses (eg. for multi-homing)
hence there is aliasing; and many nodes and edges do not appear in the trace
set at all.

In our previous work [1], we demonstrated that even if we can ensure com-
plete coverage, knowledge of aliases, and consistent routing, a single anonymous
or irregular (sometimes-anonymous) node can make it impossible to uniquely
reconstruct a general network from a trace set. Networks are traceable (i.e. can
be uniquely reconstructed from their trace sets) despite the presence of irregular
nodes if the topology of the network is known to be a tree or an odd ring.

In our present work, we make a conjecture as to the property of trees and odd
rings that makes them traceable (possible to uniquely identify from a trace set),
and report on our progress toward proving the correctness of our conjecture.
Using this conjecture, we identify a new class of traceable network.
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2 The Unique Path Length Conjecture

We begin by noting that a trace set only reveals the distance between nodes
along one path (the path of the trace). But this is disproportionately important
for a tree network, where there is exactly one path between any two nodes; the
algorithm to trace a tree network identifies the nodes using their distances from
two terminals, and if there were many paths between the same two nodes, there
would be multiple nodes with the same distances to both terminals.

What of odd rings? In any ring, there are two paths between any two nodes
a and c; if we take rings with a third node b, there is a path from a to c passing
through b, and a path that does not pass through b. In answer, we note that
in addition to which terminals it runs between, a trace has another defining
characteristic: its length. In an odd ring, there is exactly one path of a given
length between any two nodes. (Let |abc| denote the length of the arc connecting
a to c through b, and |ab′c| the length of the other arc from a to c. In a ring where
|abc| = |ab′c|, the total length of a circuit around the ring, i.e. |abc| + |ab′c|, is
even - and even rings are known to not be traceable.)

In fact, the algorithm to trace odd rings does make use of this characteristic.
In the algorithm, we begin by fixing a terminal node a and marking the nodes of
one trace (a...b) randomly around the ring (clockwise or counterclockwise). Next,
we place all remaining traces with terminal node a on the ring. For such a trace
(a...c), we choose the opposite direction as (a...b) if |ac|+|ab|+|bc| = ring.length,
and the same direction as (a...b) otherwise. At the end, all the terminal nodes are
placed, and we can fill in any missing labels using the fact that there is only one
path of a given length between terminals (so if, say, x is 2 hops from terminal y
along the arc (y...z) of length 5, this uniquely specifies its position on the ring).

Based on the above discussion, we suggest the following conjecture.

Conjecture 1. A network is traceable if, given any two nodes in N and a length
l, there is no more than one path of length l connecting these nodes in the net-
work.

We are currently investigating the truth of this conjecture. We have found the
encouraging partial result that another class of network satisfying the given
condition, unicyclic networks in which the length of the cycle is odd, are also
traceable (provided that all nodes shared by a tree and the cycle are terminal,
and the terminal nodes are regular).
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Introduction. Given two distinct nodes s and t of a directed graph G = (V,E),
where V is the set of nodes and E is the set of arcs, the problem of identifying
two edge-disjoint paths from s to t is to identify two distinct paths Q1 and Q2

from s to t such that Q1 and Q2 share no common arc.
As presented in [2], identifying edge-disjoint paths has a wide range of applica-

tions in various areas including VLSI layout, reliable network routing, secure mes-
sage transmission, and network survivability. For instance, edge-disjoint paths can
be used for secure transmission as follows. The simple expedient of breaking up
data into several shares and sending them along the disjoint paths makes it diffi-
cult for an adversary with bounded eavesdropping capability to intercept a trans-
mission or tamper with it. Alternatively, the same crucial message can be sent over
multiple edge-disjoint paths in a network that is prone to message losses to avoid
omission failures, or information on the re-routing of traffic along non-faulty dis-
joint paths can be provided in the presence of faults in some disjoint paths. Other
applications of disjoint paths include network coding to provide 1 +N protection
against single link failures in optical hypercube networks, where N is the dimen-
sion of the network. Moreover, edge-disjoint paths between two processes, present
additional benefits, such as allowing a process to establish communication with
a process by distributing the communication load in the network on two edge-
disjoint paths without congesting communication channels.

The concept of stabilization was introduced by Dijkstra in [1]. A system is
referred to as a stabilizing system if it eventually enters a legitimate configuration
regardless of the current configuration in a bounded number of steps and the
system state remains legitimate thereafter. In addition, stabilizing system are
able to withstand transient faults. We view a fault that perturbs the state of the
system but not its program as the transient fault. Furthermore, many stabilizing
systems are adaptive to topology changes in the form of addition/removal of
processes and links.

Considerable effort has been devoted to the design of sequential and dis-
tributed algorithms for finding edge-disjoint paths. A simple sequential algorithm
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for identifying k disjoint paths based on network flow and shortest augmented
path is presented in [5]. A more efficient implementation of [5] is given in [6]. [3]
presented a distibuted algorithm to solve a closely related problem of identifying
two disjoint paths based on the concept of kernel. Another distributed algorithm
for disjoint paths between a pair of nodes has been proposed in [4] that reduced
[5] approach into the problem of finding minimal shortest path instead of aug-
mented path. Moreover, the first self-stabilizing distributed algorithm for finding
disjoint paths in mesh networks is presented in [2].

In this paper, we present a stabilizing algorithm for finding two edge-disjoint
paths problem for directed graphs based on Suurballe’s algorithm, as presented
in [5]. Two edge-disjoint paths are optimal with respect to the sum of their path
lengths. The algorithm identifies two edge-disjoint paths Q1 and Q2 in three
concurrent phases, namely, first shortest-path phase, second shortest-path phase
and edge-disjoint phase. The progress in a phase is made only after the previous
phase has terminated. In the first shortest-path phase, a shortest path P1 from
s to t in G is identified. In the second shortest-path phase, a shortest path P2

from s to t in G2 is identified, where G2 is the same as G with P1 reversed.
Edge-disjoint phase combine paths P1 and P2, after the removal of all oppositely
directed pairs of arcs, to form G3 containing only two edge-disjoint paths Q1 and
Q2 that are also paths in G. A pair of arcs, say (a, b) ∈ P1 and (c, d) ∈ P2, are
oppositely directed if and only if b = c and a = d.

The algorithm finds Q1 and Q2 in O(D) rounds, where D is the diameter
of the graph G. A round is an execution sequence in which the slowest process
executes one step during a defined period of time. The state space complexity
of the algorithm is O(log n) bits per process. Since the algorithm is stabilizing,
it withstand transient faults. In addition, the proposed algorithm is capable of
dealing with topology change in the form of addition/removal of arcs and nodes
as well as changes in the directions of arcs. Although the proposed algorithm
works only on directed graphs, its undirected version can be obtained by adding
two arcs for each undirected edge in opposite directions. The implementation of
such a variation of the algorithm is easy under a realistic model.
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Abstract. This paper advocates a generic, standardised approach to
the problem of interoperability and proposes introduction of a centralised
Interoperability Service (IS) with which Autonomic Managers (AM) reg-
ister their management interests and capabilities, using a standardised
management description language. A fuzzy mapping technique is used
to identify potential conflicts of management interest in a conflict-risk
model. The main contribution of this work is that the interoperability
support is integrated into autonomic components making them interop-
erability ready in advance of their deployment.

Keywords: interoperability, autonomic systems, systems stability.

1 Introduction

The popularity of Autonomic Computing is driving expansion into diverse ap-
plication domains and increasing the variety and number of functionalities that
can be automatically managed within a given system. Thus, for many current
and near-future AMs, it is not safe to assume isolated management operation; it
will be increasingly common for multiple AM to coexist in any moderately sized
computer system. Unplanned coexistence, or unexpected interactions could arise
for many reasons, including the multivendor nature of many large systems. These
interactions can take many forms, but fall into two classes: direct conflicts occur
where two AMs attempt to manage the same explicit resource and indirect con-
flicts arising when AMs control different resources, but the management effects
of one have an undesirable impact on the management function of the other.
AMs are supposed to work with no or limited human intervention, and it is
generally not possible to predict all run-time scenarios, including the presence of
other AMs, in advance at design time. Therefore we propose a universal Inter-
operability Service (IS) based solution which automatically detects and resolves
conflicts between independently-developed IS-compliant AMs leading ultimately
to a safe co-existence or even co-operation of various AMs.

2 Interoperability Service Interfaces

We propose an Interoperability Service (IS) which is responsible for detecting pos-
sible conflicts of management interest, and granting or withholding management
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rights to specific AMs as appropriate. A number of communication interfaces are
specified, and form three groups:

1. IS-AM interaction is supported by two interfaces.
IAdvertise {Advertise, Unregister, Heartbeat} is used by AMs to signal
joining, leaving and heartbeat messages to the IS. IInteroperate {Run,
Stop, Suspend, Resume, Throttle} is used to receive directives from the IS.
The AM developer uses the IS API to map these directives onto the AM-
internal behaviour.

2. IS-IS interaction is facilitated by a single interface.
ICommunicate {Forward, Locate, Elect, SetISLevel, GetISLevel} supports
hierarchical operation, necessary in large or complex systems when AMs
operate at different levels within a system and may be involved in local or
system-wide conflicts.

3. The IS provides an external management interface.
IConfigure {SetMode, GetMode, SetSensitivity, GetSensitivity, StatusRe-
port} is a configuration and reporting interface which allows external system
management utilities to perform system-specific configuration and generate
status reports and statistics.

3 A Management Description Language

The foremost role of the IS is to facilitate interoperability amongst (unknown
in advance) AMs which have been developed independently of each other, and
thus do not directly support interoperability amongst themselves. The standard
management description should include Category (mandatory) to identify the
AM’s domain of interest, Zone (mandatory) to differentiate between specific
management functions, Impact Factor (mandatory) to express the strength of
the management influence (where 0 < IF ≤ 1), Scope (mandatory) defining
local or global impact, Specificity (optional) to express the extent of manager
operation, Trigger (optional) expressing of temporal aspects such as period-
icity or operating timescale, Parameter (optional) identifying specific context
parameters, Envelope (optional) expressing the number of dimensions of control
freedom.

4 Conflict Detection

Conflict detection is based on comparing a newly registering AM’s manage-
ment description with those of the already registered AMs to determine a sim-
ilarity measure. A dynamically configurable weighted conflict threshold (0 <
ThreshC ≤ 1) is used to tune the conflict detection sensitivity (via SetSensitiv-
ity, on IConfigure). A potential conflict is detected if the similarity measure of a
pair of vectors exceeds ThreshC . The sensitivity level can be configured at run
time as necessary. This enables some systems to operate with very low tolerance
to potential manager conflicts, whereas in other domains a higher tolerance can
lead to benefits of having a greater number of AMs working simultaneously.
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Context and Motivations. Publish/subscribe systems have commonly been
divided in two large families on the basis of their event-selection model [2]: topic-
based and content-based systems. The former trade reduced subscription expres-
siveness with simpler implementations and higher performance. Conversely, the
latter allow to accurately map published data in a complex event schema on top of
which expressive subscriptions can be defined, but incur the cost of more complex
implementations that delivers reduced performance on large distributed settings.
System developers are thus faced with a choice about which kind of system is best
suited to the target application. A common solution to this dilemma lies in the
event space partitioning [4] technique: the event schema is partitioned in a num-
ber of subspaces that are then statically mapped to topics. The partitioning must
be globally known and subscribers are expected to subscribe those topics where
subspaces that have a non-empty intersection with their content-based subscrip-
tions have been mapped. Undesired events (false positives) can be filtered out at
the receiver side. The event space partitioning granularity strongly affects the per-
formance of such systems: if it is excessively coarse-grained too much resources are
wasted to deliver false positives, while if it is too fine-grained the number of top-
ics that will be generated, and that must be managed by the topic based system,
could easily become huge. Current solutions [3] provide sub-optimal approxima-
tions that are calculated offline and then statically applied to the system.

Contribution. We propose a self-organizing algorithm that builds and dynami-
cally adapts at run-time an event space partitioning that eventually provides
subscribers with a desired level of performance (i.e. percentage of false positives
below a specified threshold) while striving to limit the number of topics that must
be managed. The novelty of our solution lies in its ability to work on the basis
of run-time performance indices measured by subscribers. Each subscriber moni-
tors the ratio between the false positives (an event notified to the subscriber that
does not match any of its content-based subscriptions) and the total number of
events received for each topic it is subscribed to. If this ratio raises above a pre-
defined global threshold TFP the subscriber starts a procedure for partitioning
the subspace mapped to that topic. At the end of this procedure it updates its
topic subscriptions and starts again monitoring performance statistics. Figure 1
� This work was partially supported by the BLEND and SOFIA European projects

and by the DOTS-LCCI Italian project.
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Fig. 1. A partitioned event space with the corresponding partitioning tree

shows an example based on a two dimensions event space with attributes X and
Y ; the light dotted lines represent a possible partitioning on the event space where
two subscriptions S1 and S2 has been defined; the right side of the figure offers
a representation of the corresponding partitioning tree, the data structure hosted
in a distributed fashion at the subscriber side to keep track of the current par-
titioning. Each node in the tree corresponds to a partition (or subspace). The
root node corresponds to an initial single partition that matches the whole event
space. Each partition can be subdivided in multiple sub-partitions that are rep-
resented in the tree as children nodes. Two topics are defined for each node in
the tree: a data topic and a control topic. The former is used to diffuse events
while the latter is used to diffuse information about the partitioning. The proposed
algorithm can be embedded within an architectural component that provides a
content-based publish/subscribe interface and leverages services offered by a plain
topic-based system. Simulation-based experiments show that (i) the proposed al-
gorithm converges to a stable event space partitioning in a limited amount of time,
(ii) it adapts the partitioning with bounded oscillations even in presence of abrupt
changes in the workload, (iii) the obtained partitioning provides the desired level
of performance and (iv) the associated cost (average number of subscribed topics
per subscriber) is lower than the cost required by a static partitioning as long as
the desired performance threshold is kept low (i.e. performance similar to a pure
content-based system with no false positives). A detailed description of the algo-
rithm and an extensive experimental evaluation are available in [1].
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Abstract. We prove one combinatorial result which we found useful in investi-
gations of replication of documents in various storage systems like P2P systems
or clouds.

1 Main Result

Let U be a fixed set of cardinality N = n · a and let {Ui}i=1,...,n be a fixed partition
of U into sets of cardinality a, i.e.

⋃n
i=1 Ui = U , Ui ∩ Uj = ∅ for i �= j and |Ui| = a

for each i. Suppose that we are successively and randomly removing distinct elements
from the set U , let ω1, ω2, . . . be a realization of this process and let

KN,a = min{k : (∃i)(Ui ⊆ {ω1, . . . , ωk})} .

Theorem 1. Let a ≥ 1. Then

E (KN,a) = (N + 1)
Γ
(
1 + 1

a

)
Γ
(

N
a + 1

)
Γ
(

N
a + 1 + 1

a

) (1)

and

lim
N→∞

std (KN,a)
E (KN,a)

=

√
Γ
(
1 + 2

a

)
Γ 2
(
1 + 1

a

) − 1 . (2)

In this Theorem Γ denotes the Euler Gamma function, i.e. the standard generalization
of the factorial function. By E (X) we denoted the expected value of X and by std (X)
we denoted the standard deviation of X .

Remark 1. We proved Theorem 1 using the inclusion-exclusion principle, some known
binomial tautologies and the Rice method described in [1].

Corollary 1. E (KN,a) = a
1
aΓ
(
1 + 1

a

)
N1− 1

a + O
(

1

N
1
a

)
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Obviously E (KN,1) = 1. For a = 2 we can obtain from (1) the following closed
formula E (KN,2) = 2N/

(
N
N
2

)
and the approximation formula E (KN,2) =

√
π
2

√
N −

1
3 + O

(
1√
N

)
. Notice that, this formula is very close to the analogical formula for the

the classical birthday paradox (see [1]). For a = 3 we get E (KN,3) = 3
√

3Γ (4
3 )N

2
3 +

O
(

1
3√N

)
≈ 1.2879N

2
3 + O

(
1

3√N

)
and so on. Our formulas are similar to Klamkin

and Newman’s formulas from [2] for a generalization of the classical birthday paradox.
Let cv (a) = limN→∞ std (KN,a) /E (KN,a). It is easy to check that the function

cv (a) is decreasing. From (2) we can deduce the following result.

Corollary 2. cv (a) = π√
6

1
a + O

(
1
a2

)
Therefore the random variables KN,a are becoming more and more concentrated with
the increase of the parameter a.

2 Discussion

One of the techniques to increase the durability of documents stored in P2P systems
is to store several copies of each document. The replication mechanism called Global
Policy uses to store multiple copies of each document fixed family of independent hash
function (see e.g. [3]). In the Buddy Policy each document is stored in some set of nodes
of fixed cardinality (see [4] for details).

When we interpret the set U from the previous section as a collection of nodes in a
P2P system then the random variable KN,a models the resistance of the system based
on the Buddy Policy with blocks of size a on nodes failure. We see, for example, that
when a = 2 then a simultaneous failure of

√
N nodes is dangerous for the system with

high probability. But when a = 3 then a failure of
√
N nodes should not lead to loss of

documents - problem occurs after a simultaneous failure of approximativelyN
2
3 nodes.

Similar results for the Global Policy applied to the Chord P2P system where obtained
and discussed in [5].
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3 Technicolor

In this paper, we summarize the core ideas of our stable and robust membership
protocol, which is fully decentralized. After convergence, each node of the overlay
graph has expected in- and out-degrees scaling logarithmically with the size
of the network (around 2 ln(n)), and that the diameter of the overlay graph
remains at ln(n)

ln(2 ln(n)) + O(1). Our protocol restores the desirable properties of
the overlay network from an arbitrary state, which might result from a massive
but temporary disruption.

Our membership protocol has the following properties, summarized by state of
the art work [3]: (M1) small neighborhood sets, regarding system size (here loga-
rithmic); (M2) load balance, as we provide in-degrees for nodes that match their
out-degree (here logarithmic); (M3) uniform random neighborhood per node (we
provide a random graph); (M4) spatial independence, meaning that neighbors
of a node are independently chosen. Our work does not aim at providing ag-
gressively (M5) temporal independence, as we update neighborhoods only when
needed, instead of continuously doing it. Due to churns and optimizations, the
resulting graph eventually converges towards this property.

One recurrent problem with state of the art work on membership management
is that the out-degree of nodes must be given as a parameter of the system. If
out-degrees are set at too high for the current network size, useless overhead is
generated. On the other hand, too low of a value can cause the network diameter
to increase dramatically. Maintaining out-degree that evolves with the size of the
system usually requires continuous monitoring of the system, computing the size
of the group, and adjusting the value of the out-degree parameter on all nodes
as needed. Our protocol is designed to operate without such an input.

1 Overview of the Membership Protocol

The heart of our protocol is the Balancing protocol, which causes convergence
of both diameter and degree by churning the edges. Edges are either active or
passive; passive edges are those which have been marked for subsequent deletion.

Edges are continually removed or marked as passive and new edges are con-
tinually added. The Balancing protocol marks an edge (x, y) to be passive only
if it determines that there is a detour of (x, y), namely a path from x to y which
uses only active edges and does not use the edge (x, y). If it does not find such
a detour, it increases the out-degree of x.
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Fig. 1. Distribution of out-degrees compared to SCAMP, resulting from 105 joins

The Balancing protocol is designed to search extensively for a detour of (x, y)
if the essential out-degree of x is large, and to severely limit that search if x has
small out-degree. Thus, a dynamic equilibrium is achieved, where the essential
out-degree of every node tends to oscillate around the average. Simultaneously,
the local balancing protocol keeps the essential in-degree to within a constant
(not a constant factor) of the essential out-degree.

The Balancing protocol is also designed so that, when equilibrium is achieved,
the average out-degree of each node will be approximately 2 ln(n), and yet there
is never a need for any node to compute the value of n. It also achieves the desired
diameter merely by the fact that all edges, including “bad” edges, will eventually
be removed, while the new edges that are added tend to be randomly placed,
and hence “good.” The diameter of the subgraph consisting of all nodes and
just the active edges, thus converges to approximately the diameter of a random
directed graph of the same cardinality and degree, which is ln(n)

ln(2 ln(n)) +O(1) [1].
Whenever a new node joins, our protocol causes the number of edges in the

graph increase by d + 2, where d is approximately the average degree of each
node. The parameter d is not known in advance, but corresponds to the de-
gree of a node randomly chosen in the graph at join time. Figure 1 presents
degree distribution of both our protocol and SCAMP [2]. SCAMP is another
membership protocol that does not need system size as an input, but that lacks
self-stabilization properties. Whenever a node leaves, our protocol does not de-
crease the number of edges immediately (it creates new edges in reaction). The
Balancing mechanism then compensates, causing the graph to converge to an
average degree of approximately 2 ln(n).
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1 Introduction

Sorting values on a chain of processes is a well-known problem, and a number of al-
gorithms has been published [1,2]. We consider here a generalization of this problem,
where the processes that have values, called major processes, are separated from each
other by any number of intermediate processes, called relay processes, which do not
have their own values, although they can read and write the major values while doing
their job of relaying those values.

More precisely, we consider a chain network of n processes. Some of those pro-
cesses, including the two end processes, are major processes, and the rest are relay
processes. We call this structure a skip chain. The problem is then to sort the values
held by the major processes. We call this problem the skip chain sorting problem.

We propose a silent self-stabilizing distributed algorithm for the skip chain sorting
problem. Our algorithm is written in the locally shared memory model and works under
an unfair daemon. Its stabilization time is O(md) rounds, where m is the number of
major processes and d is the maximum number of processes in the chain from one major
process to the next. Note that md = O(n) if the spacing between major processes is
roughly equal.

2 Formal Statement of the Problem

We are given a chain of processes. Some of those processes, including the two end
processes (which we call L and R) are major processes, and the rest are relay processes.
We call this structure a skip chain. We assume that only major processes have values,
and the problem is to sort those values. The specification of the skip chain sorting
problem is given below.

1. In an arbitrary configuration of a skip chain, there is a canonical value V (x) asso-
ciated with each major process x. This value may or may not be stored at x.

2. At each step, the multiset of canonical values does not change, although the canon-
ical values of two different major processes can be exchanged.

3. Every computation eventually results in a legitimate configuration, where the fol-
lowing conditions hold:
(a) The canonical values of the major processes are in increasing order from left

to right.
(b) The canonical value of each major process x is stored at x.
(c) No action is enabled.

� The full version of this paper is available at tinyurl.com/3dydywq. This work has been
partially supported by the ANR project ARESA2.
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We assume that n is the number of processes in the chain, m is the number of major
processes, and d is the relay chain length, which is the maximum number of processes
in the chain from one major process to the next. For example, if all processes are major
processes, then d = 2, and d = n if only the two end processes are major.

3 Overview of the Solution

We give an algorithm, skip chain sort (SCS) essentially a distributed version of the
well-known algorithm bubblesort, which satisfies the requirements listed above.

SCS is self-stabilizing, which implies that it converges to a legitimate configuration
regardless of the initial configuration. Given any skip chain S, let C be the set of all
configurations of SCS on S. A certain subset N ⊆ C consists of what we call normal
configurations. These configurations are those where the states of all processes are cor-
rect, except that the canonical values may not be sorted. N is closed under the actions
of SCS and is an attractor of C.

The first phase of SCS, which we call error correction, results in a normal configu-
ration. The second phase of SCS sorts the canonical values of the major processes, and
eventually halts in a legitimate configuration, where each major process stores its own
canonical value, and no process is enabled to execute.

Every major process x, except L, contains two embedded relay processes, which we
call x.l relay and x.r relay (at the end, each major node stores its canonical value in its
right relay); L contains only one embedded relay process, L.r relay. We call the other
relay processes free relay processes. If x is any process, then we define Right Major(x)
and Left Major(x) to be the nearest major processes to the right and left of x (if any)
respectively.

If x is a major process, we define the right relay chain of x to be the chain of relay
processes starting with x.r relay and ending with Right Major(x).l relay; the left relay
chain of x is simply defined to be the right relay chain of Left Major(x).

Two values can only be swapped by a major process if it holds both. If x is a major
process and y = Right Major(x), then V (x) and V (y) can be compared, and possi-
bly swapped, by y. The mechanism is to move V (x) along the right relay chain of
x to y.l relay, while V (y) is at y.r relay. The values are then compared and possibly
swapped. Afterward, the new value of V (x) can move back to x, while the new value of
V (y) can move to Right Major(y). After at most

(
n
2

)
such comparisons, the canonical

values will be sorted.
SCS uses color waves to control the movement of the values along the relay chains.

A value moves to the left at the crest of a wave of color 0, and to the right at the crest
of a wave of color 1. Two additional colors, 2 and 3, complete the color wave cycle to
avoid ambiguity between waves. Additionally, there is an “error color,” E.

When the canonical values are sorted, a silence wave, generated by the rightmost
process, moves to the left, eventually causing all execution to cease.
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Contribution. We propose a concurrent partial snapshot algorithm (CSS algorithm) 
to extend a previously proposed sub-snapshot algorithm (SSS algorithm) [2] by intro-
ducing a method of merging multiple snapshots that are concurrently initiated by dif-
ferent nodes. In earlier work [5,6], efficient merging algorithms have already been in-
troduced for CL algorithm. On the other hand, the main issue of our merging 
algorithm is to cope with dynamic situations based on SSS algorithm. Since the SSS 
algorithm is an extension of Chandy-Lamport snapshot algorithm (CL algorithm) [1], 
it allows large-scale and dynamic situations in snapshots. A dynamic situation means 
that nodes can join and leave freely during the execution of a snapshot algorithm. A 
snapshot algorithm for the dynamic situation has also been proposed [4]; however in 
this algorithm, nodes must stop sending application messages during its execution of 
the snapshot algorithm. Moreover, for concurrent snapshots, it has to cancel a portion 
of snapshot algorithms. Our algorithm has successfully removed these restrictions. 

Basic Idea of CSS Algorithm. In SSS algorithm [2], each node maintains a set of 
node IDs, called a dependency set (DS). The DS includes the IDs of nodes that the 
node has communicated with, and it is reset at each checkpoint of the node. The DSs 
of the nodes involved in a snapshot are collected by the initiator and are used to dy-
namically decide the group by which to use in taking a partial consistent snapshot. In 
CSS algorithm, among multiple initiators, one initiator is elected as the main initiator, 
and it collects DSs from the other initiators and dynamically decides the group of the 
nodes whose checkpoints constitute a consistent merged partial snapshot. 

The merging procedure is as follows. When a 
node executing CSS algorithm receives a snapshot 
request (marker) from another initiator directly or 
indirectly, which we call a collision, the node in-
forms its current main initiator of the collision. If the 
initiator has not decided the group, the two snapshots 
are regarded as concurrent ones and merged into a 
single snapshot. One of the initiators is elected as the 
main initiator of the resultant snapshot. If collisions 
occur simultaneously, synchronization is necessary 

 
Fig. 1. Release of Deadlock 



446 Y. Kim et al. 

 

for consistent merging. We also introduce a release mechanism for synchronization based 
on a predefined priority among the nodes to avoid deadlock (Fig. 1). 
 

 

Fig. 2. Execution of CSS algorithm Fig. 3. CSS transformed into SSS 

Execution of CSS Algorithm. Figure 2 illustrates the execution of CSS algorithm. 
nodeb and noded initiate snapshots. A collision occurs on nodec, and it informs nodeb 
of the collision. nodeb, the current main initiator of nodec, has not decided the group, 
and these two executions of the snapshot algorithm are merged. By a predefined 
priority among nodes’ IDs, nodeb becomes the main initiator of the merged snapshot. 
At *ckpt, nodeb receives the DSs that noded has collected and thus can decide the 
group of the snapshot, because all received DSs are closed: {id | received DS(id)} = 
∪DS(id), where DS(id) is DS maintained by the node of id. Then, nodeb sends a mes-
sage for terminating the algorithm to the members. Note that noded was not involved 
in communication related to nodec when nodec started the snapshot algorithm, and the 
group of snapshot is determined dynamically. 

Correctness. The consistency of snapshots by CSS algorithm is proved by transform-
ing an execution of CSS algorithm (Fig. 2) into the execution of SSS algorithm (Fig. 
3), whose consistency has already been proved [3]. For an execution of CSS algo-
rithm, we introduce a virtual initiator and dummy application messages so that the 
merged snapshots can be treated as a snapshot initiated by a single initiator. 
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Abstract. A so-called single system image (SSI) allows threads in a
distributed shared memory (DSM) system to access data and other re-
sources in a location transparent manner. In this brief announcement,
we present our ongoing research towards fault-tolerant algorithms that
locate objects in such systems. In particular, we build our algorithms
on a multi-version, object-based software transactional memory (STM)
system, in which objects form a sequence of immutable object versions.
Our algorithms are fully decentralized and allow resources to be added
and removed at run-time without disturbing the application.

Today, computers grow in parallelism not in single core processing speed. Still,
many programmers are not yet used to genuinely parallel programming. Many
prefer concepts like distributed shared memory that keep up the traditional
system model. However, location transparency and access latency optimization
are conflicting goals.

In our work, we found STM to be a promising paradigm to hide latency
and increase parallelism in large scale distributed systems. STM can be viewed
as if data is processed in thread-local memory and only published when the
transaction commits. A conflict resolution mechanism ensures the commit to be
atomic, however, at the expense of potentially rolling back the transaction if its
atomicity has been violated by concurrent transactions.

The details of the thread-local processing and the commit protocol depend on
the STM system. We base our work on the DecentSTM algorithm [1], a multi-
version, object-based STM. There, a transaction creates copies of all objects
it modifies. These copies become the respective objects’ new versions when the
transaction commits. A fully decentralized consensus protocol resolves conflicting
commits while the committing thread may proceed speculatively.

At first sight, creating copies might seem to create undue overhead. But cur-
rent hardware creates copies in the caches anyway. Thus, if we assume that
future processors support transactional memory and explicit cache control, our
proposed copying does not create additional overhead.

As a result of DecentSTM’s mode of operation, objects are in fact sequences of
immutable object versions. Only the meta data, which is attached to the object
versions, is modified as part of the consensus protocol and our proposed object
location algorithm. As we have shown previously [2], outdated object versions
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can serve as checkpoints and thereby provide fault-tolerance, for example, in face
of failing memory chips. For this idea to be viable, we need a fault-tolerant way
to locate objects and retrieve a consistent – if not current – snapshot of their
contents.

In our system, objects are virtual entities, which manifest in memory via their
versions. Thus, upon access, our system needs to resolve an object reference to
an object version. In general, there are two straight forward ways to resolve a
reference: Most DSM systems are single-version systems; they use the storage
location as reference, i.e. they use a trivial mapping, which is easy to implement,
but fragile in face of hardware failures. Other DSM systems use a resolver that
maintains a mapping between references and storage location. Such a mapping
is more flexible; for example, it can easily handle object migrations; but it is not
fault-tolerant unless the system explicitly creates and consistently maintains
redundancy.

Our system exploits the fact that our STM consensus protocol already pro-
vides consistency. We use the storage location of an object version as a reference
to the object. Thereby, we spare an explicit resolver service, and, more impor-
tantly, we spare the effort to keep the redundancy consistent. This mechanism
works as follows:

When a transaction reads an object, it creates a thread-local copy. If it has
modified the object, it must publish the modification as new version of that
object upon commit. Thereby, the system creates vertical redundancy. Even if
the transaction has not modified the object, it may nevertheless publish the data
and thereby create horizontal redundancy.

The DecentSTM consensus protocol requires the node that wants to publish
a new version to communicate with the node that stores the previous head
version of the object. As part of this protocol, both object versions reference
each other. Furthermore, as we already mentioned, we use the object version’s
storage location as an object reference. Thus, when a transaction reads an object,
it can directly contact one of its versions. If that version has been overwritten
since the reference was created, the request is forwarded to the node that stores
the object’s current head version. As a result, the requesting transaction obtains
a copy of the referenced object and the storage location of a potential further
version of the object. Conversely, if the requestor is willing to contribute to
horizontal redundancy, the responding node keeps the requestor’s address so
that it can hand it out to transactions that request the object afterwards. These
addresses accumulate so that – after a while – object references are sets of
redundant pointers to different versions (or copies) of the same object.
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Abstract. We study the problem of deterministic gossiping in unknown
ad-hoc bidirectional radio networks, when nodes can have polynomially
large labels. We present a deterministic protocol which takes
O(n lg2 n lg lg n) rounds, improving upon the previous best result for the
problem by Gasienec, Potapov, Pagourtizis [Deterministic Gossiping in
Radio Networks with Large labels, Algorithmica 47(1) (2007), pp 97-117],
by a O(lg n) factor.

Keywords: Gossiping, Unknown radio networks, Large labels.

1 Introduction

We study the problem of deterministic gossiping in unknown bidirectional radio
networks, when nodes can have large labels, for synchronous model. In every
round, a node can act only as a transmitter or a receiver. Whether a node is
actually able to receive a message or the message sent by it is received by another
node depends on the following feature of radio networks: If two in-neighbors of
a node transmit any message in the same round, then a collision occurs and the
receiving node receives nothing. It is assumed that nodes only know the number
of nodes in network. This problem has been studied in [2], who give a complex
protocol which takes O(n lg3 n lg lg n) rounds (motivation the problem for large
labels is also given in [2]). It proceeds by first learning topology of the network,
which invokes leader election protocol on network O(lg n) times. We observe
that one can conduct a DFS on the network, without learning neighborhood,
even if nodes have large labels. Once a leader has been elected, one can use
the technology developed in [3] to discover an undiscovered neighbor in O(lg n)
rounds and explore network in DFS like manner. The leader finally retransmits
collected messages to network by conducting another DFS. The problem of large
labels does not pose a challenge as Binary-search on a space of O(n) or O(nc)
size takes O(lg n) rounds.

2 Deterministic Gossiping in Bi-directional Networks
with Large Labels

We review a few standard sub-protocols from literature used by us.
(1) RB(n, nc): A deterministic protocol, which can be initiated by single source
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s or multiple sources, to transmit a message to all nodes of a directed network
of size n, when nodes can have large labels i.e., in range [1, . . . , nc]. It takes
O(n lg n lg lg n) rounds, [4]. (2) Estimate(h,X, Y ): Protocol initiated by a node
s, to discover if a neighbor exists with label belonging to Y , but not belong-
ing to X , using assistance of neighbor h (designed using technology in [3]). (3)
Binary-Select(h,X, [1, . . . , nc]): Initiated by s to select an undiscovered neigh-
bor of s, with label in range [1, . . . , nc]−X , in O(lg n) rounds using Estimate(.).
(4) Leader-Elect(N, [1, . . . , nc]: A standard protocol for nodes of N , to elect
the node with maximum label as their leader, using RB(n+1, nc), O(lg n)-times.

2.1 Gossiping in Bidirectional Networks with Large Labels

Protocol Bidirectional-Gossip proceeds in three stages:

1. All nodes execute Leader − Elect(N, [1, . . . , nc]) to elect a leader l.
2. l initiates the rest of the protocol. It designates a helper node h from its

neighborhood arbitrarily. Leader l explores the entire network, collecting
messages from each node using DFS as follows. Subset X is used to maintain
marked nodes. Initially, X = {l} is passed along with token to h. In ith step:
Let r be a node which received the token in the i− 1th Step, from node rh.
Then, r updates X = X

⋃{r} and set of messages collected so far. Using rh,
r attempts to discover a new undiscovered neighbor by executing Binary-
Select(h,X, [1, . . . , nc), for which two possibilities can happen:
– New node t is discovered: Token is passed to t, along with X = X

⋃{t},
set of messages and r identified as a helper to t.

– If no new node is discovered: Token is returned back, along with X , set
of messages to rh.

3. After token finally returns to s and it has no undiscovered neighbor, it ini-
tiates execution of DFS once more to disperse the collected messages.

We have:

Theorem 1. Deterministic protocol Large-Gossip takes O(n lg2 n lg lgn) rounds
to complete gossiping on all bidirectional networks of n nodes, when node labels
can have values in range [1, . . . , nc].

Formal description of the protocol and proof of correctness are available in [5].
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Devismes, Stéphane 148, 443
Dolev, Danny 163
Dolev, Shlomi 19, 223
Dourado, M.C. 178
Dubois, Swan 19

Elovici, Yuval 223

Faria, Daniel 326
Felstaine, Eyal 223
Freiling, Felix C. 208
Frey, Davide 193
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