
J. Grabis and M. Kirikova (Eds.): BIR 2011, LNBIP 90, pp. 19–28, 2011. 
© Springer-Verlag Berlin Heidelberg 2011 

Next Generation of Modelling Platforms 

Dimitris Karagiannis and Niksa Visic 

University of Vienna, Knowledge Engineering Research Group, Brünnerstr. 72, 
A-1210 Vienna, Austria 

{dk,nv}@dke.univie.ac.at 

Abstract. Future enterprise systems require an elaborate conceptual foundation 
that promotes a tight mutual alignment between information systems and 
business to effectively support business operations and managerial decision-
making. Thus a growing number of groups around the world show interest in 
modelling methods – either standard or individual ones – that satisfy the 
requirements of their domain and comply with the conceptual foundations. In 
order to analyze modelling methods in different domains, we introduce a generic 
modelling method specification framework that describes modelling methods on 
three major parts: (i) the modelling language that describes the syntax, semantics 
and notation, (ii) the modelling procedures that describe the methodology as well 
as (iii) algorithms and mechanisms that provide “functionality to use and 
evaluate” models described by a modelling language. Simultaneous to the raise 
of modelling methods there is a need for re-use, integration or combination of 
different modelling methods. The metamodelling approach is considered to 
provide the required concepts and mechanisms to combine different modelling 
methods for the so called Hybrid Method Engineering. The Next Generation 
Modelling Framework (NGMF) supports Hybrid Method Engineering, both on a 
conceptual and on a technical integration level. On conceptual level the NGMF 
provides mechanisms to encapsulate modelling methods and enable the hybrid 
use of different modelling languages. On technical level the Next Generation 
Modelling Platform provides functionality for modelling method engineering 
and modelling method application. The organizational framework is provided by 
the Open Model Initiative (OMI), which supports users in realizing and applying 
this approach based on three pillars: community, projects and foundations. 

Keywords: Metamodelling Platforms, Hybrid Modelling, Modelling Methods, 
Modelling Languages, ADOxx. 

1   Introduction 

Modern day system developers have some serious problems to contend with. The 
systems they develop are becoming increasingly complex as customers demand richer 
functionality delivered in ever shorter timescales. To add to that, nothing stays still: 
today’s “must have” technology rapidly becomes tomorrow’s legacy problem that must 
be managed along with everything else. Languages are the primary way in which 
system developers communicate, design and implement systems. Languages provide 
abstractions that can encapsulate complexity, embrace the diversity of technologies and 



20 D. Karagiannis and N. Visic 

design abstractions, and unite modern and legacy systems. The benefit of 
metamodelling is its ability to describe these languages in a unified way. This means 
that the languages can be uniformly managed and manipulated thus tackling the 
problem of language diversity. For instance, mappings can be constructed between any 
number of languages provided that they are described in the same metamodelling 
language. Using metamodels, many different abstractions can be defined and combined 
to create new languages that are specifically tailored for a particular application 
domain [19]. As a result productivity is greatly improved. 

Uses for a metamodel can be summarized as follows: define the syntax, notation 
(sometimes also called visual or graphical syntax) and semantics of a language, 
explain the language, compare languages, specify requirements for a tool for the 
language, specify a language to be used in a meta-tool, enable interchange between 
tools, enable mapping between models. 

1.1   Basic Definitions 

The notion of model goes beyond the narrow view of semi-formal diagram thus 
requiring much more precise definitions. The following definitions help us in 
understanding the concept of SUS, model, conceptual model, metamodel, and meta-
metamodel. 

A System under Study (SUS) is a delimited part of the world considered as a set of 
elements and interactions. A model, representation of a given SUS, is a directed 
multigraph that consists of set of nodes, a set of edges, and a mapping function 
between nodes and edges, where nodes may be connected with more than one edge, 
and is such that its reference model is a metamodel [24]. Conceptual model, also 
known as domain model, represents concepts (entities) and relations between them, 
and is independent of design or implementation concerns [26]. The aim of a 
conceptual model is to express the meaning of terms and concepts used by domain 
experts to discuss the problem, and to find the correct relationships between different 
concepts. The conceptual model attempts to clarify the meaning of various, usually 
ambiguous terms, and ensure that problems with different interpretations of the terms 
and concepts cannot occur. A metamodel is a model such that its reference model is a 
meta-metamodel [24]. In its broadest sense, a metamodel is a model of a modelling 
language, and it must capture the essential features and properties of the language that 
is being modelled. Thus, a metamodel should be capable of describing a language’s 
syntax, notation and semantics. A meta-metamodel is a model that is its own reference 
model (i.e. conforms to itself) [24]. It is the key to metamodelling as it enables all 
modelling languages to be described in a unified way, i.e., all metamodels are 
described by a single meta-metamodel. 

Concepts mentioned here represent different tiers of abstractions of the real world, 
where SUS can be viewed as lowest or tier zero, and meta-metamodel as highest or 
tier three. 

1.2   DSLs vs. GPLs 

There is a variety of categories of languages. A distinction is often made between 
programming languages and modelling languages, but this distinction is currently 



 Next Generation of Modelling Platforms 21 

becoming more and more blurred since programs are treated as models, and some 
modelling languages may have the executability property. Another distinction is 
between General Purpose Languages (GPLs) and Domain Specific Languages (DSLs). 
UML, Java, and C# are examples of GPLs. SQL, HTML, and Excel are examples of 
DSLs. A DSL is a language designed to be useful for delimited set of tasks, i.e., they 
have a clearly identified, concrete problem domain, in contrast to GPLs that are 
supposed to be useful for much more generic tasks, crossing multiple application 
domains. Domain-Specific Modelling Language (DSML) is a special case of DSL that 
is used in domain of modelling (as outlined in [28] for Service Modelling). 

2   Metamodelling Platforms: An Overview 

Metamodelling approaches are an active research field and in the past 20 years serious 
application areas in the software and information technology industries have been 
found. Some of them are Enterprise Model Integration (EMI) [8] in the context of 
Enterprise Application Integration (EAI) [9], Model Integrated Computing (MIC) 
[10], modelling languages such as the Unified Modelling Language (UML) [11] 
based on Meta Object Facility (MOF) [12], and model driven development 
approaches such as Model Driven Architecture (MDA) [13]. 

Applying the research results of metamodelling approaches metamodelling 
platforms are developed, like ADOxx, industrial software like ADONIS [14], 
MetaEdit+ [15], modelling frameworks like Eclipse Modelling Framework (EMF) [7], 
and toolkits like Generic Modelling Environment (GME) [17]. 

ADOxx is an extensible, repository-based metamodelling platform, which offers a 
three-step modelling hierarchy with a rich meta-metamodel. ADOxx can be customized 
using metamodelling techniques and extended with custom components to build a 
modelling environment for a particular application domain. ADONIS is a modelling 
tool based on ADOxx for the domain of business process management [14]. The 
ADOxx platform kernel provides basic modules for managing models and metamodels. 
In addition, the ADOxx generic components for graphical and tabular model editing, 
for model analysis, for simulation, or for model comparison can be reused and 
customized in all solutions derived from ADOxx. Each ADOxx-based solution contains 
a solution-specific modelling language and may have additional set of solution specific 
components. The scripting language AdoScript provides mechanisms to define specific 
behavior and functionality. Mechanisms such as simulation or analysis are defined on 
meta-meta level and can be redefined on the metamodel level. 

MetaEdit+ is a completely integrated environment for building and using individual 
Domain-Specific Modelling (DSM) solutions [15]. Same as ADOxx, it offers a three-
step modelling hierarchy. The meta-metamodel forms the GOPRR model, offering the 
basic concepts Graph, Object, Property, Relationship and Role. A diagram editor, 
object & graph browsers, and property dialogs support the definition of a new 
modelling language without manual coding. 

OMG’s MOF [12], the open source EMF [7] and the Graphical Editor Framework 
(GEF) [16] are no meta-CASE tools themselves. With MOF the OMG created a meta-
metamodel standard, which provides a basis for defining modelling frameworks. 
UML [11] is an example of instantiated metamodel of the MOF. The EMF which was 



22 D. Karagiannis and N. Visic 

influenced by MOF is an open source Java based modelling framework and code 
generation facility for building tools and other applications based on a structured data 
model. Together with the GEF it provides a possibility to create a new modelling tool. 

The GME [17] is a configurable toolkit for creating DSM and program synthesis 
environments. The configuration is accomplished through metamodels specifying the 
modelling language of the application domain. The metamodelling language is based 
on the UML class diagram notation and OCL [18] constraints. The metamodels 
specifying the modelling language are used to automatically generate the target 
domain-specific environment. The generated domain-specific environment is then 
used to build domain models that are stored in a model database or in XML format. 
GME has a modular, extensible architecture that uses MS COM for integration. GME 
is easily extensible; external components can be written in any language that supports 
COM (C++, Visual Basic, C#, Python etc.). 

3   Hybrid Modelling  

The fundamental integration problem among metamodels (modelling languages) 
emerges when we try to join together vertically and/or horizontally different 
metamodels. Metamodels are (i) vertically different, when they vary in the level of 
details they describe, (ii) horizontally different, when their concepts on the same 
abstraction level describe different aspects of the system or the same aspect in a 
different way and (iii) both vertically and horizontally different, when they show 
characteristics of the previous two. No matter what kind of integration orientation is 
considered, there is a need to overcome syntactical, structural and semantic 
discrepancy of metamodels, in order to join their concepts together [25]. 

Syntactical heterogeneity [25] represents the difference in formats intended for the 
serialization of metamodels. Two metamodelling platforms can base their serialization 
mechanisms on different proprietary formats or even paradigms, e.g. having diverse 
relational, object oriented or XML based schemas. 

Structural heterogeneity [25] can be expressed through representational and 
schematic heterogeneity. Metamodels are represented using different metamodelling 
languages, i.e. meta-metamodels, each of them showing difference in its expressive 
power of available modelling primitives (classes, attributes, supported relationship 
types, etc.). Even when agreed on the common meta-metamodel, metamodels vary 
schematically when the same concepts being described are modelled in a different 
way (thus having different conceptual schemas). There are two primary reasons for 
schematic conflicts: equal concepts are modelled either with different modelling 
primitives or with different number of primitives. 

Semantic heterogeneity [25] includes differences in the meaning of the considered 
metamodel concepts. Concepts coming from different metamodels can use the same 
linguistic terms to describe different concepts or use different terms to describe the 
same concept etc. 

A modelling method consists of two components: a modelling technique, which is 
divided in a modelling language and a modelling procedure, and mechanisms & 
algorithms working on the models described by the modelling language (see Figure 1). 
The modelling language contains the elements with which a model can be described. A 



 Next Generation of Modelling Platforms 23 

modelling language itself is described by its syntax, semantics, and notation. The 
modelling procedure describes the steps applying the modelling language to create 
results, i.e., models [2]. The amount of requirements concerning defined syntactical 
rules and modelling steps is influenced by the automated processing that is planned on 
the created models. This processing is done with the help of mechanisms & algorithms 
that provide “functionality to use and evaluate” models. Basically, when such 
functionalities, enabling structural analysis (e.g. queries that return activities that meet 
some defined criteria like costs, delivery times) as well as simulation of models (e.g. 
prediction of cycle times or staff requirements) are defined for existing modelling 
techniques, the modelling methods are formed [1]. 

 

Fig. 1. Modelling methods, mechanisms and algorithms (Karagiannis & Kühn, 2002) 

The issue of merging two or more modelling methods (as outlined in [27]) into one 
can be addressed as Hybrid Method Engineering – a combined modelling approach, 
based on meta-modelling that takes into consideration the different perspectives of 
modelling languages (metamodels), and results in a comprehensive modelling 
framework. For this issue to be solved appropriately we need to go through several 
steps: (i) integration of modelling methods, (ii) support of standards, and (iii) merging 
of different modelling concepts. In the integration step we need to make sure that 
different modelling methods, or method chunks are integrable on a common platform. 
If modelling languages (metamodels) that are a part of modelling methods can be 
integrated, modelling methods can be integrated as well. In the support of standards 
step we need to check if available standards for modelling aspects are supported, i.e., 
compliance of models and metamodels to a standard, e.g. ITIL compliance validation. 
In the last step, merging of different modelling concepts, prerequisite is that the 
platform supports a combined view on concepts from different disciplines [3]. 

To support the concepts mentioned in this chapter, metamodelling platforms should 
be realized on a component-based, distributable, and scalable architecture [2]. An 
important element of metamodelling platform architecture is the meta-metamodel [5]. 
The meta-metamodel [2] defines general concepts available for method definition and 
method application such as metamodel, classes, relations, attributes, model types, etc. 



24 D. Karagiannis and N. Visic 

According to Karagiannis & Kühn, other important architectural elements of the 
metamodelling platform are: metamodel base, model base, mechanism base, 
persistency services, and access services. Metamodel base, model base and mechanism 
base are all based on meta-metamodel and they store, respectively, metamodels, 
models, and mechanisms. Persistency services support the durable storage of the 
various bases. These services abstract from concrete storage techniques and permit 
filling of modelling information in heterogeneous databases, file systems, web 
services, etc. Access services provide the open, bidirectional exchange of all 
metamodelling information with other systems, and cover all aspects concerning 
security such as access rights, authorization, en-/decryption, etc. 

A strong model repository is composed of the metamodel, model & mechanism 
base, persistency services, access services, version control, and validation & 
verification mechanisms. Furthermore, the model repository needs to be designed to 
accommodate the reuse of already developed modelling method constructs, and to 
support pruning and slicing algorithms. If there are such prerequisites, hybrid 
modelling methods can be easily developed using chunks and pieces from the 
repository by binding them together into a new coherent whole using appropriate 
mapping and integration rules. 

4   MCG vs. MAS Metamodelling Platforms 

Every metamodelling platform is built around a concrete meta-metamodel. This can 
be a custom meta-metamodel, specifically developed for that platform, or it can be 
already specified meta-metamodel like MOF. Because most of the modelling 
platforms have similar foundation, i.e., meta-metamodel, we need to find other key 
characteristics for metamodelling platform comparison. 

Generally, we can divide metamodelling platforms in two groups: the ones that 
specialize in model based code generation (MCG), and the ones that specialize in 
model analysis & simulation (MAS). The other comparison can be based on value 
added to the metamodelling platforms, that is, extra features that are distinguishing 
one platform from the other. 

Most of the metamodelling platforms have additional features that are 
distinguishing them from other metamodelling platforms. After doing research on most 
popular metamodelling tools, including ADOxx, MetaEdit+, GME, and EMF, a list of 
important features was compiled (see Table 1). The most influential factors for 
defining this list of features are: (i) productivity (or rather rise in productivity), (ii) 
usefulness, and (iii) quality of the modelling tool produced. 

Model based code generation (MCG) metamodelling platforms support Model-
Driven Engineering (MDE) methodology. MDE is a software development 
methodology focused on creating and exploiting domain models. In MDE, we use 
models as the primary artifacts in the development process – we have source models 
instead of source code [20]. MDE raises the level of abstraction and hides complexity. 
Truly MDE uses automated transformations in a manner similar to the way a pure 
coding approach uses compilers. Once models are created, target code can be 
generated and then compiled or interpreted for execution. From a modeler’s  
 



 Next Generation of Modelling Platforms 25 

Table 1. List of features used to compare metamodelling platforms 

Feature Description 
Language Definition Approach Graphical, form-based, hybrid 
Specifying Notation Graphical, text-based, hybrid 
Syntax Highlighting & Debugging Support for highlighting, autocompleting, debugging 
Scripting Scripting support for advance customizing 
Import & Export Import & export of metamodels and models 
Integration with Other Tools APIs, Client-Side, Server-Side Integration 
Rich Notation More than simple symbols for nodes and arcs 
Dynamic Symbol Change Symbols change dynamically when model data changes 
Different Modelling Views Modelling, matrix, tabular view 

 
perspective, generated code is complete and it does not need to be modified after 
generation. For this approach to work, knowledge is not just in the models, but in the 
code generator and underlying framework. To raise the level of abstraction in MDE, 
both the modelling language and the generator need to be domain-specific, that is, 
restricted to developing only certain kind of applications. Focusing on a narrow area 
of interest makes it possible to map a language closer to the actual problem and makes 
full code generation realistic – sometimes that is difficult, if not impossible, to 
achieve with general-purpose modelling languages (UML, etc.). 

Model analysis & simulation (MAS) metamodelling platforms support Enterprise 
Modelling (EM) methodology, including areas like Enterprise Model Integration 
(EMI) and Enterprise Application Integration (EAI). EM is the abstract representation, 
description and definition of the structure, processes, information and resources of an 
identifiable business, government body, or other large organization [22]. It deals with 
the process of understanding an enterprise business and improving its performance 
through creation of enterprise models. This includes the modelling of the relevant 
business domain, business processes, and information technology. In BPM (Business 
Process Management) models are primarily used for analysis and simulation of the 
business processes, to find the means to improve their efficiency and quality. Another 
example of using enterprise models is sharing of knowledge between two or multiple 
parties (people, departments, companies, etc.). Because, enterprise models are 
primarily used for analysis & simulation, MAS metamodelling platforms are 
specialized for creating modelling methods, which are an upgrade on modelling 
languages, including modelling procedures, algorithms & mechanism (see Figure 1). 

5   The Open Model Initiative 

The Open Model Initiative (OMI) is an international scientific community, which 
focuses on the creation, design, evolution and processing of modelling methods and 
the models designed with them. The initiative is open-membership for all interested 
experts and organizations, and every ‘model’ which is considered to be useful for a 
specific purpose by any application domain. The results are public. 

OMI provides value both through the modelling and meta-modelling compiler 
ADOxx and also through the social and collaborative platform, by providing  
 



26 D. Karagiannis and N. Visic 

knowledge and communities of practice for the development of modelling methods 
and tools. Adjacent services like OM-TV, the OM-Repository, OM-Apps, OMIverse 
and OMIpedia give additional features to the initiative. 

OMI is structured through its activities in three pillars:  

• Community: where groups of individuals share common values and follow 
common goals. Organized in communities of practice for different domains, they 
provide value through competence, joint activities, shared practices and resources, 
sustained interaction, experiences and tools.  

• Projects; which can be either (a) modelling projects, thus creating model content 
for various domains and/or purposes (www.wikimodels.org) and (b) method 
engineering projects, where the conceptualization of new and further development 
of existing methods, development and deployment of IT-based modelling tools is 
realized (www.wikimethods.org), and 

• Foundations: which provide modelling languages and algorithms for the processing 
of models as well as IT-based modelling environments. Additionally this pillar 
supports designers to choose the right algorithms for the processing of methods and 
models. 

In other words, the OMI platform is a social computing platform which supports the 
communities through multiple different channels of communication, e.g., forums, 
blogs, wikis, etc. This model, as mentioned in [23] supports online human interaction 
and information flow so that communities are formed for ongoing collaboration and 
exchange of information and knowledge among their members. 

6   Conclusion 

A metamodel as an idea is introduced to raise the level of abstraction and to simplify 
the development of modelling languages, modelling methods, and finally, modelling 
tools. Raising the level of abstraction means making the metamodel flexible, that is, 
customizable by the metamodelling platform user. This user is sometimes called 
language engineer. The advantage of using flexible metamodels is direct mapping to 
the domain under study. There are also benefits that come in form of considerable 
savings in time and costs and increased quality of delivered solutions. 

Due to rapid changing business requirements such as faster time to market, shorter 
lifecycles, increased interdependencies between business partners, and tighter 
integration of the underlying information systems, the complexity in developing 
applications which deliver business solutions is continually growing [2]. This is the 
reason why the elements of an enterprise are managed more and more model-based, 
and why are metamodelling platforms getting an integral part of business engineering 
strategies and approaches. Well-known examples are international standards UML [11] 
and MOF [12], and metamodelling platforms like ADOxx and MetaEdit+ [15]. 
Additionally, domain specific languages, model transformation approaches, and 
lifecycle management within large model bases are active research issues.  

The other more specific research issue that needs attention is language engineering. 
Languages are hard to design. The effort that goes into producing a language definition 
can be overwhelming, particularly if the language is large or semantically rich. That is 



 Next Generation of Modelling Platforms 27 

why reusability is very important. By reusing, rather than re-inventing, it is possible to 
significantly reduce the time spent on development, allowing language designers to 
concentrate on the novel features of the language [19]. 

One of the less noticeable problems is that almost every modelling and 
metamodelling platform wants to do everything. Most underlying frameworks are 
very general. Additional functionality for a specific domain of application should be 
engineered upon the meta-metamodel of the metamodelling platform. That way a new 
generation of more specialized metamodelling platforms can be developed. 

References 

1. Karagiannis, D., Grossmann, W., Höfferer, P.: Open Model Initiative A Feasibility Study. 
University of Vienna, Department of Knowledge Engineering (September 2008) 

2. Karagiannis, D., Kühn, H.: Metamodelling platforms. In: Bauknecht, K., Tjoa, A.M., 
Quirchmayr, G. (eds.) EC-Web 2002. LNCS, vol. 2455, p. 182. Springer, Heidelberg 
(2002) 

3. Xu, T., Ma, W., Liu, L., Karagiannis, D.: Hybrid Modelling: Strategic Model and Business 
Processes in Active-i*. In: WGBP 2010, Vitoria, ES, Brazil (2010) 

4. Brumar, B.A., Popa, E.M.: Advanced techniques for metamodelling. In: Proceeding 
ICCOMP 2007 Proceedings of the 11th WSEAS International Conference on Computers 
World Scientific and Engineering Academy and Society (WSEAS) Stevens Point, 
Wisconsin, USA (2007) 

5. Kühn, H., Murzek, M.: Interoperability Issues in Metamodelling Platforms. In: 
Proceedings of the 1st International Conference on Interoperability of Enterprise Software 
and Applications (INTEROP-ESA 2005), Geneva, Switzerland. Springer, Heidelberg 
(2006) 

6. Open Model Initiative, http://www.openmodels.at/ 
7. Eclipse Modelling Framework Project (EMF), 

http://www.eclipse.org/modelling/emf/ 
8. Kühn, H., Bayer, F., Junginger, S., Karagiannis, D.: Enterprise Model Integration. In: 

Bauknecht, K., Tjoa, A.M., Quirchmayr, G. (eds.) EC-Web 2003. LNCS, vol. 2738, pp. 
379–392. Springer, Heidelberg (2003) 

9. Linthicum, D.S.: Enterprise Application Integration. Addison-Wesley, Reading (2000) 
10. Ledeczi, A., Maroti, M., Bakay, A., Karsai, G., Garrett, J., Thomason IV, C., Nordstrom, 

G., Sprinkle, J., Volgyesi, P.: The Generic Modelling Environment. In: Workshop on 
Intelligent Signal Processing at WISP 2001, Budapest, Hungary, May 17 (2001) 

11. Object Management Group: Unified Modelling Language, 
http://www.omg.org/spec/UML/ 

12. Object Management Group: Meta Object Facility, http://www.omg.org/mof/ 
13. Object Management Group: Model Driven Architecture, 

http://www.omg.org/mda/ 
14. ADONIS, http://www.boc-group.com/products/adonis/ 
15. MetaEdit+, http://www.metacase.com/ 
16. Graphical Editing Framework, http://www.eclipse.org/gef/ 
17. Generic Modelling Environment (GME), 

http://www.isis.vanderbilt.edu/projects/GME 
18. Object Constraint Language (OCL), http://www.omg.org/spec/OCL 



28 D. Karagiannis and N. Visic 

19. Clark, T., Evans, A., Sammut, P., Willans, J.: Applied Metamodelling - A Foundation for 
Language Driven Development, Version 0.1 (2004) 

20. Kelly, S., Tolvanen, J.-P.: Domain-Specific Modelling - Enabling Full Code Generation. 
Wiley-IEEE Computer Society Press (2008) 

21. Frank, U.: Multi-Perspective Enterprise Modelling (MEMO) - Conceptual Framework and 
Modelling Languages. In: Proceedings of the 35th Hawaii International Conference on 
System Sciences, HICSS 2002 (2002) 

22. Fox, M.S., Gruninger, M.: Enterprise Modelling. AI Magazine 19(3) (1998) 
23. Capuruço, R.A.C., Capretz, L.F.: A Unifying Framework for Building Social Computing 

Applications. In: Lytras, M.D., Damiani, E., Tennyson, R.D. (eds.) WSKS 2008. LNCS 
(LNAI), vol. 5288, pp. 11–21. Springer, Heidelberg (2008) 

24. Kurtev, I., Bezivin, J., Jouault, F., Valduriez, P.: Model-based DSL Frameworks. In: 
Companion to the 21st ACM SIGPLAN Conference on Object-Oriented Programming 
Systems, Languages, and Applications (OOPSLA 2006), Portland, Oregon, USA (2006) 

25. Zivkovic, S., Kühn, H., Karagiannis, D.: Facilitate Modelling Using Method Integration: 
An Approach Using Mappings and Integration Rules. In: ECIS 2007 Proceedings. Paper 
122 (2007) 

26. Moody, D.L.: Theoretical and practical issues in evaluating the quality of conceptual 
models: current state and future directions. Data & Knowledge Engineering 55, 243–276 
(2005) 

27. Utz, W., Woitsch, R., Karagiannis, D.: Conceptualisation of Hybrid Service Models: An 
Open Models Approach. In: The 4th International IEEE Workshop on Service Science and 
Systems, Held in Conjunction with COMPSAC 2011 (in press, 2011) 

28. Hrgovcic, V., Utz, W., Karagiannis, D.: Service Modeling: A Model Based Approach for 
Business and IT Alignment. In: The 5th International IEEE Workshop on Requirements 
Engineering for Services, held in Conjunction with COMPSAC 2011 (in press, 2011) 


	Next Generation of Modelling Platforms
	Introduction
	Basic Definitions
	DSLs vs. GPLs

	Metamodelling Platforms: An Overview
	Hybrid Modelling
	MCG vs. MAS Metamodelling Platforms
	The Open Model Initiative
	Conclusion
	References




