Morsa: A Scalable Approach for Persisting and
Accessing Large Models*

Javier Espinazo Pagédn, Jesus Sanchez Cuadrado, and Jestus Garcia Molina

University of Murcia, Spain
{jespinazo, jesusc, jmolina}@um.es

Abstract. Applying Model-Driven Engineering (MDE) in industrial-
scale systems requires managing complex models which may be very
large. These models must be persisted in a scalable way that allows their
manipulation by client applications without fully loading them.

In this paper we propose Morsa, an approach that provides scalable
access to large models through load on demand; model persistence is
supported by a NoSQL database. We discuss some load on demand al-
gorithms and database design alternatives. A prototype that integrates
transparently with EMF is presented and its evaluation demonstrates
that it is capable of fully loading large models with a limited amount
of memory. Moreover, a benchmark has been executed, exhibiting bet-
ter performance than the EMF XMI file-based persistence and the most
representative model repository, CDO.

Keywords: model persistence, scalability, large models.

1 Introduction

During the last decade, the growing maturity of Model-Driven Engineering
(MDE) technologies is promoting their adoption by large companies [I][2], taking
advantage of their benefits in terms of productivity, quality and reuse. However,
applying MDE in this context requires industry-scale tools that operate with
very large and complex models. One such relevant operation is model persis-
tence and the corresponding access, which is typically supported by modeling
frameworks. A well-known example of a modeling framework is EMF[3].

One critical concern for the industrial adoption of MDE is the scalability
of tools when accessing large models. As noted by [, “scalability is what is
holding back a number of potential adopters”. Scalability may be tackled in
different ways. One approach is the modularization of modeling languages [4]
to keep models at a reasonable size. However, the complexity of large mod-
els makes it difficult to automatically divide them into parts that are easily
accessible [B]. For example, code models extracted from a legacy system be-
ing modernized may not be properly modularizable because of the complexity

* This work is funded by the Spanish Ministry of Science (project TIN2009-11555)
and Fundacién Séneca (grant 14954/BPS/10).

J. Whittle, T. Clark, and T. Kiithne (Eds.): MODELS 2011, LNCS 6981, pp. 77-P2] 2011.
© Springer-Verlag Berlin Heidelberg 2011

78 J. Espinazo Pagan, J. Sdnchez Cuadrado, and J. Garcia Molina

of their interconnections, hence having a scalable model persistence solution
would be mandatory [6]. In EMF models are usually stored in XMI files, which
have to be parsed in order to build models in memory. The usual EMF ap-
proach consists of a SAX parser that fully reads an XMI file and builds the
entire model in memory at once. This solution does not scale since large mod-
els may not be fully kept in memory, causing the parser to overflow the client.
Therefore handling large models requires some mechanism that allows the client
to load only the objects that it will use [B]. Model repositories are emerging
as persistence solutions for large models, providing remote model access with
advanced features such as concurrent access, transaction support and version-
ing; model repositories are discussed in Section [[l Currently, CDO is the most
mature repository for EMF; however, it does not scale properly as shown in
Section

Another concern that arises when client applications access persisted models
is tool integration. The integration between a persistence solution and any client
must be transparent, that is, it must conform to the standard model access in-
terface defined by the modeling framework (e.g. the Resource interface of EMF).
Moreover, it would be convenient for a persistence solution not to require any
preprocessing on the (meta)models in order to load or store them, e.g. requiring
source code generation for the persisted (meta)models [§][9] .

In this paper we present Morsa, a model persistence solution aimed at achiev-
ing scalability in large model access. While other approaches use object-relational
mappings [8], Morsa relies on a document-based NoSQL database to achieve
server scalability; moreover, document-based NoSQL provides a more natu-
ral model persistence backend than object-relational mappings since, for ex-
ample, many-to-many relationships are represented just as any other kind of
feature, while object-relational-mappings require intermediate tables. Morsa han-
dles client scalability using a load on demand mechanism supported by an ob-
ject cache which is configurable with different policies. We discuss how these
policies fit for common model traversals such as depth-first order and breadth-
first order. We contribute a prototype implementation for EMF [I0] that inte-
grates transparently with client tools such as model transformation languages.
Its evaluation demonstrates that it is capable of fully loading large models with a
limited amount of memory. Moreover, a benchmark has been executed, exhibit-
ing better performance than the EMF XMI file-based persistence and CDO.
In this paper we focus only on accessing models. Our implementation supports
storing models into the repository, but the details are out of the scope of this
paper.

The rest of the paper is structured as follows: Section [2lintroduces the NoSQL
movement and some terminology about models; Section [3 gives an overview of
our approach; Sections [l [and [6] discuss the database and loading algorithm
design, and the integration and implementation of our approach, respectively;
Sections [[and [§ comment the related work and the evaluation of Morsa and
finally Section [0 shows our conclusions and further work.

Morsa: A Scalable Approach for Persisting and Accessing Large Models 79
2 Background

As introduced in the previous section, this paper deals with the problem of per-
sisting and accessing large models. In this section, the basic concepts regarding
models and model persistence that will be used in the rest of the paper are
explained. Moreover, the NoSQL paradigm is introduced as an alternative to
relational databases and object-relational mappings for model persistence.

2.1 Metamodeling

A model is an instance of a metamodel which defines the metaclasses and rela-
tionships that the model elements conform to. It can also be seen as a directed
labeled graph, where each node represents an object (i.e., a model element) and
each edge represents a relationship between objects, which may be containment
or non-containment relationships. A containment relationship specifies a hierar-
chical transitive link between a parent object (source) and a child object (target),
defining tree-like structures. Given this graph nature, the concepts of ascendant,
descendant, sibling, breadth, depth, etc. common to this mathematical structure
can also be used for models. An object that has no ascendants is called a root
object.

Non-containment relationships define graph-like structures where objects may
refer to non-directly related objects (i.e. non-sibling model elements sharing at
least one ancestor). A special kind of non-containment relationship is instanceOf,
which links a model element to the metamodel element that it conforms to. Since
a metamodel is also an instance of a meta-metamodel (i.e. a metamodeling lan-
guage such as Ecore), it may also be seen as a labeled directed graph containing
objects that refer to each other, allowing for a homogeneous management of both
models and metamodels.

2.2 Model Persistence

Models can be stored into persistence solutions for permanent storage using dif-
ferent approaches. These persistence solutions may be regular files (e.g. XMI),
relational databases through object-relational mappings and, at a higher abstrac-
tion level, model repositories [8]. Modeling frameworks usually define persistence
interfaces that allow client applications to access persisted models, e.g. the EMF
Resource interface. These interfaces provide methods for fully loading, unload-
ing and storing models and in some cases, loading single objects (e.g. EMF Re-
source’s getEObject method). Storing a model consists in representing the object
graph in the persistence solution and loading a model consists in rebuilding that
graph at the client application. If the whole object graph is rebuilt, the model
is fully loaded; otherwise, if only a subgraph (i.e. model partition) is loaded, the
model is partially loaded. Client applications use these basic functions to access
models and traverse them for different purposes. For example: a model-to-model
transformation may search for a particular object that satisfies a given condition

80 J. Espinazo Pagan, J. Sdnchez Cuadrado, and J. Garcia Molina

and then traverse all its descedants; a model-to-code transformation may simply
traverse a whole model, processing each object once or twice, etc.

A persistence solution provides transparent integration when client applica-
tions may access it using the persistence interface defined by the corresponding
modeling framework without changing the models or metamodels, generating
persistence-specific source code for metamodels, or any other form of specific
pre or post-processing. For example, the XMI file-based persistence solution for
EMF does not require generating metamodel-specific Java classes because it may
use dynamic objects, which can be generically built at runtime.

2.3 The NoSQL Movement

The NoSQL [16] movement is composed of several specialized database paradigms
that are used in very large web application scenarios such as Facebook, Google,
Amazon, etc. In NoSQL, performance and scalability are more important than
the ACID properties (Atomicity, Consistency, Isolation, Durability), proposing
the BASE properties (Basically Available, Soft-state, Eventual consistency).
Given the objectual structure of the data that are stored in some web appli-
cations, object-relational mappings have become an expensive solution that re-
duces their performance, while the different NoSQL databases are best suited for
representing object models. There are also implementation differences between
traditional relational databases and NoSQL databases, such as memory-based
data storage instead of disk-based storage, logging and locking. [I1].

The most used NoSQL database paradigms are key-value stores and document
databases. Key-value stores have a simple data model in common: a map/dic-
tionary allowing users to put and request values by key. They favor scalability
over consistency and most of them omit rich querying and analytics features. A
well-known key-value store is Amazon’s Dynamo [12]. Document databases also
use keys and values, but they are encapsulated into top-level structures called
documents, which are schemaless. CouchDB [I3] and MongoDB [14] are the ma-
jor representatives of document databases. There is no standard query language
in NoSQL; querying capabilities vary from one product to another. For exam-
ple, CouchDB uses static view functions that implement the map/reduce data
processing scheme [15], requiring a view function for each possible query; Mon-
goDB uses a query-by-example approach through JSON documents and Dynamo
queries consist simply in requesting values by their keys. The NoSQL movement
has some features that are beneficial to our approach:

i. Scalable: as explained before, many MDE applications involve large models.
Applications involving large amounts of data representing object models
scale better in NoSQL than in relational databases [16].

ii. Schemaless: having no schemas means having no restrictions to co-evolve
metamodels and models. Relational repositories usually create database
schemas for each stored metamodel, difficulting their evolution and the con-
formance of existent models to the newer versions of their metamodels [§].

Morsa: A Scalable Approach for Persisting and Accessing Large Models 81

iii. Accessible: many NoSQL databases offer their data as JSON objects [I7]
through APIs that can be accessed via HT'TP calls. This provides additional
opportunities to access models from web browsers, web services, etc.

3 Overview

We propose Morsa, a persistence solution for managing large models. It relies
on a document-based NoSQL database and integrates transparently with mod-
eling frameworks. The architecture of our approach is shown in Figure[Il Morsa
consists of a client and a NoSQL-based persistence backend.

Client Modeling Framework _ I |
Application Persistence Interface []
i| Object - Cache | |
i| Cache Policy |

! Marsa Client

Fig. 1. Architecture of Morsa

The client side of Morsa supports tool integration through a driver that imple-
ments the modeling framework persistence interface, allowing client applications
to access models in a standard way. Since Morsa is aimed at accessing large
models, a load on demand mechanism has been designed to provide clients with
efficient partial load of large models, achieving scalability [5]. This mechanism
relies on an object cache that holds loaded model objects in order to reduce
database queries and manage memory usage; it is managed by a configurable
cache replacement policy that decides whether the cache is full or not and which
objects must be unloaded from the client memory if needed. Section [l discusses
the model loading algorithm and the different cache replacement policies. On
the server side, a NoSQL document database provides model persistence. We
have chosen this kind of database because it provides a simple and natural
way to map model elements (objects) to database elements (documents). More-
over, its schemaless architecture is beneficial for model persistence as stated
above.

A running example is used to illustrate the design of our approach. It is
based on the Grabats 2009 [I8] reverse engineering case study, which is aimed
at managing large models representing Java source code. A simplification of
the JavaMetamodel metamodel provided by the contest is shown in Figure [2]
representing Java projects, packages and types, and the source code declarations
that are defined inside compilation units (i.e., .java files). The proposed test case
was to retrieve every TypeDeclaration which contains a MethodDeclaration for
a static and public method with the declared type as its returning type.

82

4

J. Espinazo Pagan, J. Sdnchez Cuadrado, and J. Garcia Molina

| JavaModel H JavaProject H SourcePackage H CompilatienUnit I

:
> BodyDeclaration |44 TypeD ion |
MethodDeclaration

static : baclean tehenType:

pubdic : boalean

Fig. 2. Grabats 2009 contest JavaMetamodel metamodel simplification

Persistence Backend Design

Morsa relies on a document-based NoSQL database persistence backend. The
main decision in its design was to choose the granularity of the documents, that

is,

how many documents are needed to represent a model. We have considered

three alternatives of model granularity: one document per model, one document
per object and one document per model partition.

i.

ii.

iii.

A model can be represented as a single document. This is possible since the
document-based NoSQL paradigm allows documents to store any number of
objects, representing the structure of the model. However, this architecture
may not scale for large models because it implies loading an entire model
at once; it also has issues related to the maximum document size that some
databases like MongoDB impose. Besides, querying single objects or parti-
tions is cumbersome because nested objects are not globally visible.

The opposite design, that is, one document per object, does not exploit
the nesting capabilities of document-based NoSQL databases, but supports
querying individual objects. However, object relationships have to be imple-
mented using database references, that is, values that represent document
identifiers, which are less efficient in time than nested objects. The resulting
architecture would somehow resemble a relational schema, but it must be
kept in mind that NoSQL is schemaless, so foreign keys between documents
are far more flexible than the ones of the relational paradigm, since they
may refer to any kind of model object.

An intermediate solution would be to represent a model as a set of documents
representing model partitions. Each model partition would be composed of
objects that are always accessed together. Using partitions would speed up
model loading because less database connections would be needed to load an
entire model. Building these partitions requires access pattern analysis like
the one explained in [7]; however, since the database partition is static, no
optimal solution for every access pattern could be achieved.

Considering the previous discussion, we have designed Morsa using the second

choice, that is, a document per object. A Morsa document is composed of a <ID,
value, payload> tuple that where ID is the identifier of the object (object URI for
EMF), value cointains the values of the object’s features in a key-value format,
where the key is the name of the feature and the value is the serialization of

Morsa: A Scalable Approach for Persisting and Accessing Large Models 83

Metamode! Level EPackage EClass

INDEX
DOCUMENT

JavaModel;,

JavaModel, 7 P

e n
o e

/
i
I

r|_|

LA

Javahodel JavaProject SourcePackage
Model Level Index Index Index

Fig. 3. Persistence backend structure excerpt for the running example

its value as a string; finally, payload specifies persistence-related metadata, such
as references to the object’s metaclass, the model’s root object, etc. References
to other objects are serialized as document references to their IDs. An index
is created for every concrete metaclass, grouping their instances logically for
faster queries, both for the meta-metamodel (e.g. an index for each metaclass of
the Ecore meta-metamodel) and the metamodels (an index for each metaclass).
Metamodels and models are represented homogeneously: documents representing
model objects have references to the documents representing their corresponding
metaclasses.

A (meta)model is represented as an entry in an index document that maps
each (meta)model URI to an array of references to the documents that represent
its root objects. This design is particulary useful for metamodeling languages
like Ecore, where every object except the root ones must be contained by other
objects, thus saving space in the index document.

Figure[3shows an excerpt of the persistence backend structure for the running
example. At the metamodel-level, the index for EPackage holds the document
that corresponds to the root package of the JavaMetamodel (shown in Figure
2); this document references the documents that correspond to each metaclass
(JavaModel, JavaProject, SourcePackage, etc.), which are held by the EClass in-
dex. At the model level, there is an index for each metaclass. The index document
references a document representing a JavaModel, which is held by the JavaModel
index; this document references a document that represents a JavaProject in its
corresponding index and so on.

5 Model Loading

Our approach is intented to manipulate large models. In this paper we focus on
the task of model loading, which involves three scenarios that require different
approaches and algorithms: full load, single load on demand and partial load on
demand. The load on demand scenarios have been tackled using an object cache

84 J. Espinazo Pagan, J. Sdnchez Cuadrado, and J. Garcia Molina

managed by a cache replacement policy. Metamodels are always fully loaded
and kept in memory for efficiency reasons: they are relatively small compared
to models and it is worth loading them once instead of accessing the database
every time a metaclass is needed. Each object is identified in the database by
a global ID attribute (object URI in EMF). A mapping between loaded objects
and their IDs is held by the object cache in order to know which objects have
been loaded, preventing the driver to load them again.

Consider a model that is small or medium-sized, hence it can be kept in
memory by a client application. If the whole model is going to be traversed, it
would be a good idea to load the model once, saving communication time with
the persistence backend. We call this scenario full load and this is the way EMF
works when loading XMI files. We aim at supporting full load with the least
memory and time overhead possible. The Morsa full load algorithm works as
the one for load on demand, which will be explained below, but considering an
unlimited object cache, breadth and depth.

5.1 Load on Demand

Consider a model that is too large to be kept in memory by a client application;
consider also a model that can be kept in memory but only a part of it is going
to be traversed. A solution for both cases would be to load only the necessary
objects as they are needed and then unload them to save client memory. We call
this scenario load on demand. We define two kinds of load on demand: single
load on demand and partial load on demand.

A single load on demand algorithm fetches objects from the database one by
one. This behavior is preferred when the objects that need to be accessed are
not closely related (i.e, they are not directly referenced by relationships) and
memory efficiency is more important than network performance, that is, when
the round-trip time of fetching objects from the database is not relevant. The
resultant cache will be populated only with the traversed objects.

| cul: CompilationUnit | } depth = 1 2999 | oo

. 3000 | cud

L 3001 | tdO

I 1 TypeDeclaration I I 11 TypeDeclaration] L I 14 TypeDeclaration I }dep.'h =2 3002 | 1d1
breadth = 1 breadth = 2 breadth = 5 3003 | td2 objects

3004 | td3

| ma0 MethodDectaraticn | [10 FietdDectaration | } depth =3 et {1

(a) (b)

Fig. 4. Object loading in the running example: a) object model b) object cache

On the other hand, a partial load on demand algorithm fetches object clusters
from the database. The structure of a cluster is customizable: given a requested
object, its cluster may contain all its referenced objects, both directly and in-
directly within a certain depth and breadth values. For example, when loading

Morsa: A Scalable Approach for Persisting and Accessing Large Models 85

the model shown in Figure ll(a), a partial load on demand algorithm configured
with a maximum depth and breadth of 2 would load cu0 (depth 1) and its two
first contained TypeDeclaration objects, td0 and td1 (depth 2, breadth 2), but
not md0 nor fd0 (depth 3). This behavior is preferred when all the objects that
are related to an object will be traversed soon and memory efficiency is less im-
portant than network performance, that is, when the round-trip time of fetching
objects from the database is critical. The resultant cache will be populated with
the objects that have been traversed and those expected to be traversed in the
near future. This is a simple form of prefetching that tries to take advantage of
spatial locality. Our load on demand algorithm works as follows:

1. The client application requests an object by its ID

2. The Morsa driver fetches the document identified by that ID

3. A new object is created, filling its attributes with the values stored in the
document and its references with proxies whose URISs refer to the referenced
documents. A proxy is a special object that does not hold any feature value
but an URI (containing the object ID and some persistence metadata such as
database URL) that allows it to be resolved, i.e., filled with its actual values.
In EMF, the idea of proxy is used to represent cross-resource references

4. The new object and its proxies are stored in the object cache, mapping them
to their IDs

(a) If single load on demand is being used, go to step 5

(b) If partial load on demand is being used, the documents that correspond
to the proxies are fetched all at once, saving networking time. The Morsa
driver resolves these documents recursively following the two previous
steps. This process stops if the cache becomes full or if the maximum
depth and breadth is reached

5. If the cache becomes overloaded, some objects of the cache are unloaded

6. The new object is returned to the client application, which can use it as a
regular object. When a reference is navigated and its value is a proxy, the
resolution of that proxy is automatically requested, executing this algorithm

The size limit of the cache is configurable in terms of object counting, but
this limit is soft because some modeling frameworks such as EMF require objects
to have their references filled, that is, their values must be fetched in the form
of proxies or actual objects. For example, consider Figure [@ an object cache
containing 2999 elements is shown (b); its size limit is 3000 objects. Because the
modeling framework requires an object to be fully filled, when cu0 is loaded its
5 contained TypeDeclaration objects (td0..td4) must also be fetched as proxies,
causing the cache to be overloaded with 3005 objects.

Whenever the cache becomes overloaded, the exceeding objects must be un-
loaded. A cache replacement policy algorithm selects the objects to be unloaded.
Unloading an object also implies downgrading it to a proxy, i.e. unsetting all
its features. A proxy requires less memory than a resolved object and it may be
freed by the underlying language if it is not referenced by any other object.

86 J. Espinazo Pagan, J. Sdnchez Cuadrado, and J. Garcia Molina

5.2 Cache Replacement Policies

Asintroduced in the previous section, when the object cache becomes overloaded,
a cache replacement policy algorithm selects which objects will be unloaded to
free the client memory. We have considered four cache replacement policies:

i. A FIFO (First In-First Out) policy would unload the oldest objects in the
cache. This policy is useful when a model is traversed in depth-first order, but
only if the cache can hold the average depth of the model. On the contrary,
it would cause objects to be unloaded after being traversed and then loaded
again when requested for traversal.

ii. A LIFO (Last In-First Out) policy would unload the newest objects in the
cache. This policy is useful when a model is traversed in breadth-first order,
but only if the cache can hold the average breadth of the model. Both this
and the FIFO policies calculate the size of the partition directly contained by
the object that caused the cache overload and unloads that many objects. In
the example of Figure[d] a LIFO policy would unload the objects in positions
3001 to 3005, while a FIFO policy would unload first 5 objects in positions
1 to 5.

iii. A LRU (Less Recently Used) policy would unload the least used objects in
the cache. This policy is well known in the area of operating systems. It
would be equivalent to a FIFO policy for depth-first and breadh-first orders.

iv. A LPF (Largest Partition First) policy would unload all the objects that
conform the largest model partition contained in the cache. This is a conser-
vative solution that is useful when a model is traversed in no specific order.
It does not consider if the selected elements are going to be traversed so it
may lead to multiple loads of the same objects. This policy unloads at least
an amount of objects proportional to the maximum size of the cache.

The choice of which cache replacement policy is used is currently made by the
end-user. However, this choice could be automatically made by the Morsa driver
by analysis of (meta)models and access patterns (i.e. prefetching).

6 Integration and Implementation

Morsa is intented to be integrated with modeling frameworks and their applica-
tions. Our current prototype is integrated with EMF [3]. A transparent way of
achieving this integration is to design the Morsa driver as an implementation of
the persistence interface of the modeling framework (EMF Resource for EMF).
Persisting a model in Morsa is done without any preprocessing, since there is no
need of generating model-specific classes, modifiying metamodels or registering
them into the persistence solution, as opposed to other approaches [§][9][19].
Metamodels are seamlessly persisted if they are not already in the database.
Additional information for persistence configuration can optionally be passed
to the driver; Morsa uses the standard parameters of the EMF load and save
methods to pass this configuration information.

Morsa: A Scalable Approach for Persisting and Accessing Large Models 87

Morsa supports both dynamic and generated EMF. A dynamic model object
is generated at runtime using EMF dynamic objects (instances of DynamicEOb-
jectImpl) which use reflection to generically instantiate metaclasses. On the other
hand, a generated model object is an instance of a metamodel-specific class that
has been explicitly generated through an EMF generator model. Dynamic ob-
jects are preferred for tool integration since they do not require code generation.
Other approaches [§] support only generated model objects reimplementing part
of the EMF framework to handle persistency.

We have developed a prototype that exhibits some of the features described
previously: EMF integration, single and partial load on demand, FIFO, LIFO
and LPF cache replacement policies and full store. Its integration in EMF in-
cludes all the methods defined in the Resource interface and also methods for
parent resolution (i.e., obtaining the container object of a given object) and
special partial loading methods such as loading every instance of a metaclass.

We have chosen MongoDB [14] as the NoSQL database engine for our pro-
totype; however, its architecture could be easily implemented in other engines.
MongoDB has JSON access, dynamic queries (as opposed to the static views
of CouchDB), server-side Javascript programming and uses BSON [I7] objects
for communication which provide fast and bandwith-efficient object transfer be-
tween the client and the database. MongoDB uses collections to logically orga-
nize documents, like the indexes introduced in Section [A collection is a set
of documents which can be indexed by one or several attributes, allowing faster
document access.

7 Related Work

Model persistence is not a novel research field. As the interest in MDE has grown
many approaches have been proposed to solve this problem. The standard EMF
solution is to persist models in XMI resources, but there are other alternatives.
One approach is using binary indexed files [2I]. Another approach is to use model
repositories. A repository is a persistence solution remotely accesible by users and
tools. Repositories usually rely on databases and provide additional features such
as transactions and versioning. There are many EMF model repositories available
today, being the most mature ones CDO [§], ModelBus [19] and EMFStore [9].

The ModelBus repository is a web service application that manages an embed-
ded Subversion engine which implements the actual repository; however, Subver-
sion is not designed to be integrated in client applications that access to parts of
persisted elements, i.e., it does not support partial access to models. There have
been attempts to make model access scalable in ModelBus [22]; however, the
official release does not implement them. EMFStore implements a different ar-
chitecture but shares the same philosophy as Subversion: models are fully loaded
and stored by human clients using a GUI. This solution does not scale and it is
best suited for design environments.

Currently Connected Data Objects (CDO) is the only model repository that
is capable of managing large models using load on demand. CDO also provides

88 J. Espinazo Pagan, J. Sdnchez Cuadrado, and J. Garcia Molina

a rough version control system and EMF integration through its EMF Resource
implementation, CDOResource. However, CDO is not application-transparent.
First of all, we haven’t been able to make it work with dynamic model objects,
which is a severe drawback for its integration with EMF. Moreover, CDO requires
metamodels to be pre-processed in order to persist their instances. One kind
of pre-processing is to generate the Java model classes of a metamodel. This
allows CDO to work with legacy objects. The other kind is to generate CDO-
aware model classes from a generator model. This allows CDO to work with
native objects. The main difference between legacy and native objects is that
legacy objects cannot be demand-loaded or unloaded, having a huge impact on
performance as will be shown in the next section. Native objects are unloaded
from a CDO client when its memory becomes full using a soft reference approach,
i.e. an object is removed by garbage collector when no other object refers to it
with a reference that is not soft.

There are other domains where large and complex data needs to be accessed;
for example, ontologies may be very large and complex and many solutions
have been proposed, such as creating higher-level descriptions [23], which may
be seen as a form of building views. Client scalability has been also tackled
in the field of object-relational mappings, proposing prefetching mechanisms
that load clusters of objects that will be used by the client application [24][25].
Object caching has also been a subject of study in the field of object databases,
with mathematical approaches to optimizing cache coherence, replacement and
invalidation [27][28]. Our approach could benefit from this reasearch to improve
caching and prefetching with adaptive mechanisms. Finally, as far as we know,
little or no research has been published on applying NoSQL to model persistence.

8 Evaluation

As stated in the previous section, CDO is the main alternative to our approach,
so the evaluation consisted in executing a set of test cases with Morsa, CDO and
the standard EMF XMI parser, comparing their performance results. We have
considered the models proposed in the Grabats 2009 contest [18]. They conform
to the JavaMetamodel metamodel that is shown simplified in Figure 2l There
are five models, from SetQ to Set4, each one larger than its predecessor (from
a 8.8MB XMI file with 70447 model elements representing 14 Java classes to a
646MB file with 4961779 model elements representing 5984 Java classes).

Two benchmarks have been executed: model access and model query. The
model access benchmark consists in traversing models in depth-first order and
breadth-first order. The model query benchmark executes the query proposed in
the Grabats contest, which searches for every class that declares a public static
method whose returning type is that same class. Each benchmark has been
executed using the EMF XMI loading facility, a CDO repository configured for
best speed and least memory footprint in legacy mode and native mode and
Morsa for least memory footprint and best speed using single and partial load
on demand. All tests have been executed under a Intel Corel5 760 PC at 2.80GHz

Morsa: A Scalable Approach for Persisting and Accessing Large Models 89

with 8GB of physical RAM running 64-bit Linux 2.6.35 and JVM 1.6.0. CDO
4.0 is configured using DBStore over a dedicated MySQL database and is used
in read-only mode in order to avoid versioning overhead.

8.1 Results

Table [shows the results for the model access test cases. Memory footprint
is shown in Megabytes and time is shown in seconds. The Opt column specifies
whether the configuration optimizes speed or memory. As expected, CDO Native
mode is more efficient than CDO Legacy mode, but still Morsa is faster and uses
less memory for all the models. Note that the minimum memory used by CDO
for the Set1 breadth-first order doubles the memory needed by XMI, while Morsa
uses 20% less memory than XMI. We haven’t been able to load the Set2 model
(271MB XMTI file, containing 2082481 model elements representing 1605 Java
classes) with CDO within a reasonable time (less than 45 minutes). The cache
replacement policies used for least memory footprint in Morsa were a LIFO
policy for breadth-first order and a FIFO policy for depth-first order. Cache size
was 900 objects for load on demand and unlimited for full load (best speed).
CDO was configured with a maximum available memory of 70MB for the SetO
model and 30MB and 100MB for the Setl in depth-first order and breadth-first
order, respectively, for the least memory footprint and unlimited memory for the
best speed. These configurations have been obtained empirically.

For all models (including Set3 and Set4, which are not shown), Morsa is much
slower than XMI, but still can load and traverse them entirely. In the best case
for the Set2 model, Morsa uses 17 times less memory than XMI spending 20
times more time. Note that with an unlimited cache, Morsa spends a similar
time than the best speed case with a small one (1.5% time difference). This is
due to the fact that with an unlimited cache, our prototype holds references to
every model object, difficulting garbage collection. On the other hand, a cache
with limited size unloads objects more often, facilitating the garbage collection.
Since we haven’t been able to store the Set3 and Set4 models in CDO, despite
assigning it the maximum available memory (Set2 could be stored, but causing an
exception on commit), the model access test cases for these models are not shown.
For these models, XMI is faster than Morsa but needs much more memory.

The potential of Morsa shows up not only with a limited amount of memory,
but also when models do not have to be completely traversed. For example, the
Grabats 2009 contest query, whose execution results are shown in Table[2, shows
that Morsa is more efficient in memory and time than CDO and XMI for this
particular task. These results illustrate that our approach can be very beneficial
for applications that do not need to process an entire model, such as certain
model transformations. An application can query Morsa for specific objects,
consuming less time and memory and achieving scalability. The query has been
implemented using dynamic EMF for Morsa and generated model classes for
CDO and XMI. CDO and Morsa allow querying the database for all instances of
a given metaclass and then traversing the results to check the query condition,
while XMI requires loading the entire model prior to its traversal.

90 J. Espinazo Pagan, J. Sdnchez Cuadrado, and J. Garcia Molina

Table 1. Performance results for the model access test cases

. Set0 Setl Set2
Order Opt Solution Mode Mem Time Mem Time Mem Time
- - XMI - 63 1.313 113 2.265 1257 15.632
Depth - CDO Legacy 162 32.156 516 91.136 - -
Breadth - CDO Legacy 172 31.609 444 92.160 - -

Depth Speed CDO Native 289 21.783 435 59.188 - -
Breadth Speed CDO Native 308 21.046 467 56.017 - -

- Speed Morsa Full 113 8.762 363 26.671 1300 317.331
Depth Mem CDO Native 59 31.218 87 80.594 - -
Depth Mem Morsa Single 25 12.130 32 32.348 92 313.027
Depth Mem Morsa Partial 30 14.163 29 39.197 98 410.829

Breadth Mem CDO Native 59 30.010 250 78.204 - -
Breadth Mem Morsa Single 32 18.889 90 31.530 400 322.045
Breadth Mem Morsa Partial 40 29.239 96 85.197 460 761.692

Table 2. Performance results for the query test case

Obt Solution Mode Set0 Setl Set2 Set3 Set4
p Mem Time Mem Time Mem Time Mem Time Mem Time
- XMI - 70 1.513 121 2.465 1265 16.023 2940 81.340 3512 141.752

Speed CDO Native 7 0.445 23 0.968 129 18.149 - - - -
Speed Morsa Single 5 0.706 8 0.985 168 9.724 205 26.760 254 29.339
Mem CDO Native 4 0.545 6 1.731 61 25.798 - - - -
Mem Morsa Single 5 0.706 5 1.518 36 14.822 96 36.944 59 40.129

9 Conclusions and Further Work

We have presented Morsa, a persistence solution aimed at achieving scalabil-
ity for client applications that access large models. Morsa uses load on de-
mand mechanisms to allow large models to be accessed without overflowing the
client application memory. We have developed several cache replacement policies
that cover different model access patterns. Server scalability is achieved using a
document-based NoSQL database, which is a novel feature since model reposito-
ries usually work with object-relational mappings. As far as we know, applying
document-based NoSQL databases to MDE has not been proposed before, and
is a promising approach to build industrial-scale model persistence solutions.

We have implemented a prototype for EMF that in its early development stage
shows promising performance results. An evaluation of our prototype is shown,
executing two benchmarks against large models and comparing its results with
the ones of XMI and the well-stablished CDO repository. This comparison shows
that Morsa suits better for partial model access and model querying than XMI
and CDO, and that it handles larger models than CDO does.

Our future work is to continue optimizing Morsa while implementing new
features. Among others, these features include: incremental store, that will allow
the client to store changes done to objects that are going to be unloaded, an
advanced query API, support for query languages such as OCL and making our
load on demand algorithms and cache replacement policies more adaptative by
collecting metadata information about the structure of the persisted models.

Morsa: A Scalable Approach for Persisting and Accessing Large Models 91

References

1.

10.
11.

12.
13.
14.
15.
16.
17.
18.

19.

20.
21.

22.

Mohagheghi, P., Fernandez, M.A., Martell, J.A., Fritzsche, M., Gilani, W.: MDE
Adoption in Industry: Challenges and Success Criteria. In: Chaudron, M.R.V. (ed.)
MODELS 2008. LNCS, vol. 5421, pp. 54-59. Springer, Heidelberg (2009)

Baker, P., Loh, S.C., Weil, F.: Model-Driven Engineering in a Large Industrial
Context — Motorola Case Study. In: Briand, L.C., Williams, C. (eds.) MoDELS
2005. LNCS, vol. 3713, pp. 476-491. Springer, Heidelberg (2005)

The Eclipse Modeling Framework, http://www.eclipse.org/emf

Kolovos, D., Paige, R., Polack, F.: Scalability: The Holy Grail of Model-Driven
Engineering. In: Chaudron, M.R.V. (ed.) MODELS 2008. LNCS, vol. 5421, pp.
35-47. Springer, Heidelberg (2009)

Selic, B.: Personal Reflections on Automation, Programming, Culture and Model-
based Software Engineering. Automated Software Engineering 15(3-4), 379-391
(2008)

Canovas, J., Garca, J.: An architecture-driven modernization tool for calculating
metrics. IEEE Software 27(4), 37-43 (2010)

Varro, G., Friedl, K., Varro, D.: Adaptive Graph Pattern Matching for MOdel
Transformations using Mode-sensitive Search Plans. ENTCS 152, 191-205 (2006)
The CDO Model Repository, http://www.eclipse.org/cdo

EMFStore: A model repository for EMF models. In: Proceedings of the 32nd
ACM/IEEE International Conference on Software Engineering, Cape Town (South
Africa) vol. 2, pp. 307-308 (2010), http://www.emfstore.org

Morsa prototype, http://www.modelum.es/morsa

Stonebraker, M.: SQL Databases vs NoSQL Databases. Communications of the
ACM 53(4), 10-11 (2010)

DeCandia, G., Hastorun, D., et al.: Dynamo: Amazon’s Higly-Available Key-value
Store. In: Proceedings of Twenty-First ACM SIGOPS Symposium on Operating
Systems Principles, pp. 205-220. ACM, New York (2007)

CouchDB: couchdb.apache.org

MongoDB, http://www.mongodb.org

Dean, J., Ghemawat, S.: MapReduce: simplified data processing on large clusters
(2004), http://labs.google.com/papers/mapreduce-osdi04

Strauch, C.: NoSQL Databases. Stuttgart Media University (2011),
http://www.christof-strauch.de/nosqldbs.pdf

JavaScript Object Notation, http://www.json.org

Grabats 2009 5th International Workshop on Graph-Based Tools: a reverse engi-
neering case study, Zurich (Switzerland) (July 2009),
http://is.tm.tue.nl/staff/pvgorp/events/grabats2009/

Blanc, X., Gervais, M.-P., Sriplakich, P.: Model Bus: Towards the Interoperability
of Modelling Tools. In: ABmann, U., Aksit, M., Rensink, A. (eds.) MDAFA 2003.
LNCS, vol. 3599, pp. 17-32. Springer, Heidelberg (2005),
http://www.modelbus.org

Binary JSON, http://www.bsonspec.org

Jouault, F., Sottet, J.: An AmmA/ATL Solution for the Grabats 2009 Reverse
Engineering Case Study. In: Grabats 2009 5th International Workshop on Graph-
Based Tools, Zurich, Switzerland (July 2009)

Sriplakich, P., Blanc, X., Gervais, M.: Collaborative Software Engineering on Large-
scale models: Requirements and Experience in ModelBus. In: Proceedings on the
2008 ACM Symposium on Applied Computing, pp. 674-681. ACM, New York
(2008)

http://www.eclipse.org/emf
http://www.eclipse.org/cdo
http://www.emfstore.org
http://www.modelum.es/morsa
http://www.mongodb.org
http://labs.google.com/papers/mapreduce-osdi04
http://www.christof-strauch.de/nosqldbs.pdf
http://www.json.org
http://is.tm.tue.nl/staff/pvgorp/events/grabats2009/
http://www.modelbus.org
http://www.bsonspec.org

92

23.

24.

25.

26.

27.

28.

J. Espinazo Pagan, J. Sdnchez Cuadrado, and J. Garcia Molina

Bhm, C., Lorey, J., Fenz, D., Kny, E., Pohl, M., Naumann, F.: Creating voiD
Descriptions for Web-scale Data. Winner of the 2010 Billion Triple Track Semantic
Web Challenge (2010)

Ibrahim, A., Cook, W.: Automatic by Traversal Profiling in Object Persistence
Architectures. In: Hu, Q. (ed.) ECOOP 2006. LNCS, vol. 4067, pp. 50-73. Springer,
Heidelberg (2006)

Han, W., Whang, K., Moon, Y.: A Formal Framework for Prefetching Based on
the Type-Level Access Pattern in Object-Relational DBMSs. IEEE Transactions
on Knowledge and Data Engineering 17, 1436-1448 (2005)

Chang, F., Dean, J., et al.: Bigtable: A Distributed Storage System for Structured
Data (2006)

Leong, H., Si, A.: On Adaptive Caching in Mobile Databases. In: Proceedings of
the 1997 ACM Symposium on Applied Computing, pp. 302-309. ACM, New York
(1997)

Rathore, R., Prinja, R.: An Overview of Mobile Database Caching (2008),
http://www-users.cs.umn.edu/ rohinip/Rohini Prinja/Research files/
8701Project.pdf

http://www-users.cs.umn.edu/~rohinip/Rohini_Prinja/Research_files/8701Project.pdf
http://www-users.cs.umn.edu/~rohinip/Rohini_Prinja/Research_files/8701Project.pdf

	Morsa: A Scalable Approach for Persisting and Accessing Large Models
	Introduction
	Background
	Metamodeling
	Model Persistence
	The NoSQL Movement

	Overview
	Persistence Backend Design
	Model Loading
	Load on Demand
	Cache Replacement Policies

	Integration and Implementation
	Related Work
	Evaluation
	Results

	Conclusions and Further Work
	References

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (Gray Gamma 2.2)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (ISO Coated v2 300% \050ECI\051)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Error
 /CompatibilityLevel 1.3
 /CompressObjects /Off
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJobTicket false
 /DefaultRenderingIntent /Perceptual
 /DetectBlends true
 /DetectCurves 0.1000
 /ColorConversionStrategy /sRGB
 /DoThumbnails true
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 1048576
 /LockDistillerParams true
 /MaxSubsetPct 100
 /Optimize true
 /OPM 1
 /ParseDSCComments true
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo true
 /PreserveFlatness true
 /PreserveHalftoneInfo false
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts false
 /TransferFunctionInfo /Apply
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 149
 /ColorImageMinResolutionPolicy /Warning
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 150
 /ColorImageDepth -1
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.50000
 /EncodeColorImages true
 /ColorImageFilter /DCTEncode
 /AutoFilterColorImages true
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.40
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /ColorImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 149
 /GrayImageMinResolutionPolicy /Warning
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 150
 /GrayImageDepth -1
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 1.50000
 /EncodeGrayImages true
 /GrayImageFilter /DCTEncode
 /AutoFilterGrayImages true
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.40
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /GrayImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 599
 /MonoImageMinResolutionPolicy /Warning
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 600
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.50000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName ()
 /PDFXTrapped /False

 /CreateJDFFile false
 /Description <<
 /ARA <FEFF06270633062A062E062F0645002006470630064700200627064406250639062F0627062F0627062A002006440625064606340627062100200648062B062706260642002000410064006F00620065002000500044004600200645062A064806270641064206290020064406440637062806270639062900200641064A00200627064406450637062706280639002006300627062A0020062F0631062C0627062A002006270644062C0648062F0629002006270644063906270644064A0629061B0020064A06450643064600200641062A062D00200648062B0627062606420020005000440046002006270644064506460634062306290020062806270633062A062E062F062706450020004100630072006F0062006100740020064800410064006F006200650020005200650061006400650072002006250635062F0627063100200035002E0030002006480627064406250635062F062706310627062A0020062706440623062D062F062B002E0635062F0627063100200035002E0030002006480627064406250635062F062706310627062A0020062706440623062D062F062B002E>
 /BGR <FEFF04180437043f043e043b043704320430043904420435002004420435043704380020043d0430044104420440043e0439043a0438002c00200437043000200434043000200441044a0437043404300432043004420435002000410064006f00620065002000500044004600200434043e043a0443043c0435043d04420438002c0020043c0430043a04410438043c0430043b043d043e0020043f044004380433043e04340435043d04380020043704300020043204380441043e043a043e043a0430044704350441044204320435043d0020043f04350447043004420020043704300020043f044004350434043f0435044704300442043d04300020043f043e04340433043e0442043e0432043a0430002e002000200421044a04370434043004340435043d043804420435002000500044004600200434043e043a0443043c0435043d044204380020043c043e0433043004420020043404300020044104350020043e0442043204300440044f0442002004410020004100630072006f00620061007400200438002000410064006f00620065002000520065006100640065007200200035002e00300020043800200441043b0435043404320430044904380020043204350440044104380438002e>
 /CHS <FEFF4f7f75288fd94e9b8bbe5b9a521b5efa7684002000410064006f006200650020005000440046002065876863900275284e8e9ad88d2891cf76845370524d53705237300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c676562535f00521b5efa768400200050004400460020658768633002>
 /CHT <FEFF4f7f752890194e9b8a2d7f6e5efa7acb7684002000410064006f006200650020005000440046002065874ef69069752865bc9ad854c18cea76845370524d5370523786557406300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c4f86958b555f5df25efa7acb76840020005000440046002065874ef63002>
 /CZE <FEFF005400610074006f0020006e006100730074006100760065006e00ed00200070006f0075017e0069006a007400650020006b0020007600790074007600e101590065006e00ed00200064006f006b0075006d0065006e0074016f002000410064006f006200650020005000440046002c0020006b00740065007200e90020007300650020006e0065006a006c00e90070006500200068006f006400ed002000700072006f0020006b00760061006c00690074006e00ed0020007400690073006b00200061002000700072006500700072006500730073002e002000200056007900740076006f01590065006e00e900200064006f006b0075006d0065006e007400790020005000440046002000620075006400650020006d006f017e006e00e90020006f007400650076015900ed007400200076002000700072006f006700720061006d0065006300680020004100630072006f00620061007400200061002000410064006f00620065002000520065006100640065007200200035002e0030002000610020006e006f0076011b006a016100ed00630068002e>
 /DAN <FEFF004200720075006700200069006e0064007300740069006c006c0069006e006700650072006e0065002000740069006c0020006100740020006f007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400650072002c0020006400650072002000620065006400730074002000650067006e006500720020007300690067002000740069006c002000700072006500700072006500730073002d007500640073006b007200690076006e0069006e00670020006100660020006800f8006a0020006b00760061006c0069007400650074002e0020004400650020006f007000720065007400740065006400650020005000440046002d0064006f006b0075006d0065006e0074006500720020006b0061006e002000e50062006e00650073002000690020004100630072006f00620061007400200065006c006c006500720020004100630072006f006200610074002000520065006100640065007200200035002e00300020006f00670020006e0079006500720065002e>
 /ESP <FEFF005500740069006c0069006300650020006500730074006100200063006f006e0066006900670075007200610063006900f3006e0020007000610072006100200063007200650061007200200064006f00630075006d0065006e0074006f00730020005000440046002000640065002000410064006f0062006500200061006400650063007500610064006f00730020007000610072006100200069006d0070007200650073006900f3006e0020007000720065002d0065006400690074006f007200690061006c00200064006500200061006c00740061002000630061006c0069006400610064002e002000530065002000700075006500640065006e00200061006200720069007200200064006f00630075006d0065006e0074006f00730020005000440046002000630072006500610064006f007300200063006f006e0020004100630072006f006200610074002c002000410064006f00620065002000520065006100640065007200200035002e003000200079002000760065007200730069006f006e0065007300200070006f00730074006500720069006f007200650073002e>
 /ETI <FEFF004b00610073007500740061006700650020006e0065006900640020007300e4007400740065006900640020006b00760061006c006900740065006500740073006500200074007200fc006b006900650065006c007300650020007000720069006e00740069006d0069007300650020006a0061006f006b007300200073006f00620069006c0069006b0065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e00740069006400650020006c006f006f006d006900730065006b0073002e00200020004c006f006f0064007500640020005000440046002d0064006f006b0075006d0065006e00740065002000730061006100740065002000610076006100640061002000700072006f006700720061006d006d006900640065006700610020004100630072006f0062006100740020006e0069006e0067002000410064006f00620065002000520065006100640065007200200035002e00300020006a00610020007500750065006d006100740065002000760065007200730069006f006f006e00690064006500670061002e000d000a>
 /FRA <FEFF005500740069006c006900730065007a00200063006500730020006f007000740069006f006e00730020006100660069006e00200064006500200063007200e900650072002000640065007300200064006f00630075006d0065006e00740073002000410064006f00620065002000500044004600200070006f0075007200200075006e00650020007100750061006c0069007400e90020006400270069006d007000720065007300730069006f006e00200070007200e9007000720065007300730065002e0020004c0065007300200064006f00630075006d0065006e00740073002000500044004600200063007200e900e90073002000700065007500760065006e0074002000ea0074007200650020006f007500760065007200740073002000640061006e00730020004100630072006f006200610074002c002000610069006e00730069002000710075002700410064006f00620065002000520065006100640065007200200035002e0030002000650074002000760065007200730069006f006e007300200075006c007400e90072006900650075007200650073002e>
 /GRE <FEFF03a703c103b703c303b903bc03bf03c003bf03b903ae03c303c403b5002003b103c503c403ad03c2002003c403b903c2002003c103c503b803bc03af03c303b503b903c2002003b303b903b1002003bd03b1002003b403b703bc03b903bf03c503c103b303ae03c303b503c403b5002003ad03b303b303c103b103c603b1002000410064006f006200650020005000440046002003c003bf03c5002003b503af03bd03b103b9002003ba03b103c42019002003b503be03bf03c703ae03bd002003ba03b103c403ac03bb03bb03b703bb03b1002003b303b903b1002003c003c103bf002d03b503ba03c403c503c003c903c403b903ba03ad03c2002003b503c103b303b103c303af03b503c2002003c503c803b703bb03ae03c2002003c003bf03b903cc03c403b703c403b103c2002e0020002003a403b10020005000440046002003ad03b303b303c103b103c603b1002003c003bf03c5002003ad03c703b503c403b5002003b403b703bc03b903bf03c503c103b303ae03c303b503b9002003bc03c003bf03c103bf03cd03bd002003bd03b1002003b103bd03bf03b903c703c403bf03cd03bd002003bc03b5002003c403bf0020004100630072006f006200610074002c002003c403bf002000410064006f00620065002000520065006100640065007200200035002e0030002003ba03b103b9002003bc03b503c403b103b303b503bd03ad03c303c403b503c103b503c2002003b503ba03b403cc03c303b503b903c2002e>
 /HEB <FEFF05D405E905EA05DE05E905D5002005D105D405D205D305E805D505EA002005D005DC05D4002005DB05D305D9002005DC05D905E605D505E8002005DE05E105DE05DB05D9002000410064006F006200650020005000440046002005D405DE05D505EA05D005DE05D905DD002005DC05D405D305E405E105EA002005E705D305DD002D05D305E405D505E1002005D005D905DB05D505EA05D905EA002E002005DE05E105DE05DB05D90020005000440046002005E905E005D505E605E805D5002005E005D905EA05E005D905DD002005DC05E405EA05D905D705D4002005D105D005DE05E605E205D505EA0020004100630072006F006200610074002005D5002D00410064006F00620065002000520065006100640065007200200035002E0030002005D505D205E805E105D005D505EA002005DE05EA05E705D305DE05D505EA002005D905D505EA05E8002E05D005DE05D905DD002005DC002D005000440046002F0058002D0033002C002005E205D905D905E005D5002005D105DE05D305E805D905DA002005DC05DE05E905EA05DE05E9002005E905DC0020004100630072006F006200610074002E002005DE05E105DE05DB05D90020005000440046002005E905E005D505E605E805D5002005E005D905EA05E005D905DD002005DC05E405EA05D905D705D4002005D105D005DE05E605E205D505EA0020004100630072006F006200610074002005D5002D00410064006F00620065002000520065006100640065007200200035002E0030002005D505D205E805E105D005D505EA002005DE05EA05E705D305DE05D505EA002005D905D505EA05E8002E>
 /HRV (Za stvaranje Adobe PDF dokumenata najpogodnijih za visokokvalitetni ispis prije tiskanja koristite ove postavke. Stvoreni PDF dokumenti mogu se otvoriti Acrobat i Adobe Reader 5.0 i kasnijim verzijama.)
 /HUN <FEFF004b0069007600e1006c00f30020006d0069006e0151007300e9006701710020006e0079006f006d00640061006900200065006c0151006b00e90073007a00ed007401510020006e0079006f006d00740061007400e100730068006f007a0020006c006500670069006e006b00e1006200620020006d0065006700660065006c0065006c0151002000410064006f00620065002000500044004600200064006f006b0075006d0065006e00740075006d006f006b0061007400200065007a0065006b006b0065006c0020006100200062006500e1006c006c00ed007400e10073006f006b006b0061006c0020006b00e90073007a00ed0074006800650074002e0020002000410020006c00e90074007200650068006f007a006f00740074002000500044004600200064006f006b0075006d0065006e00740075006d006f006b00200061007a0020004100630072006f006200610074002000e9007300200061007a002000410064006f00620065002000520065006100640065007200200035002e0030002c0020007600610067007900200061007a002000610074007400f3006c0020006b00e9007301510062006200690020007600650072007a006900f3006b006b0061006c0020006e00790069007400680061007400f3006b0020006d00650067002e>
 /ITA <FEFF005500740069006c0069007a007a006100720065002000710075006500730074006500200069006d0070006f007300740061007a0069006f006e00690020007000650072002000630072006500610072006500200064006f00630075006d0065006e00740069002000410064006f00620065002000500044004600200070006900f900200061006400610074007400690020006100200075006e00610020007000720065007300740061006d0070006100200064006900200061006c007400610020007100750061006c0069007400e0002e0020004900200064006f00630075006d0065006e007400690020005000440046002000630072006500610074006900200070006f00730073006f006e006f0020006500730073006500720065002000610070006500720074006900200063006f006e0020004100630072006f00620061007400200065002000410064006f00620065002000520065006100640065007200200035002e003000200065002000760065007200730069006f006e006900200073007500630063006500730073006900760065002e>
 /JPN <FEFF9ad854c18cea306a30d730ea30d730ec30b951fa529b7528002000410064006f0062006500200050004400460020658766f8306e4f5c6210306b4f7f75283057307e305930023053306e8a2d5b9a30674f5c62103055308c305f0020005000440046002030d530a130a430eb306f3001004100630072006f0062006100740020304a30883073002000410064006f00620065002000520065006100640065007200200035002e003000204ee5964d3067958b304f30533068304c3067304d307e305930023053306e8a2d5b9a306b306f30d530a930f330c8306e57cb30818fbc307f304c5fc59808306730593002>
 /KOR <FEFFc7740020c124c815c7440020c0acc6a9d558c5ec0020ace0d488c9c80020c2dcd5d80020c778c1c4c5d00020ac00c7a50020c801d569d55c002000410064006f0062006500200050004400460020bb38c11cb97c0020c791c131d569b2c8b2e4002e0020c774b807ac8c0020c791c131b41c00200050004400460020bb38c11cb2940020004100630072006f0062006100740020bc0f002000410064006f00620065002000520065006100640065007200200035002e00300020c774c0c1c5d0c11c0020c5f40020c2180020c788c2b5b2c8b2e4002e>
 /LTH <FEFF004e006100750064006f006b0069007400650020016100690075006f007300200070006100720061006d006500740072007500730020006e006f0072011700640061006d00690020006b0075007200740069002000410064006f00620065002000500044004600200064006f006b0075006d0065006e007400750073002c0020006b00750072006900650020006c0061006200690061007500730069006100690020007000720069007400610069006b007900740069002000610075006b01610074006f00730020006b006f006b007900620117007300200070006100720065006e006700740069006e00690061006d00200073007000610075007300640069006e0069006d00750069002e0020002000530075006b0075007200740069002000500044004600200064006f006b0075006d0065006e007400610069002000670061006c006900200062016b007400690020006100740069006400610072006f006d00690020004100630072006f006200610074002000690072002000410064006f00620065002000520065006100640065007200200035002e0030002000610072002000760117006c00650073006e0117006d00690073002000760065007200730069006a006f006d00690073002e>
 /LVI <FEFF0049007a006d0061006e0074006f006a00690065007400200161006f00730020006900650073007400610074012b006a0075006d00750073002c0020006c0061006900200076006500690064006f00740075002000410064006f00620065002000500044004600200064006f006b0075006d0065006e007400750073002c0020006b006100730020006900720020012b00700061016100690020007000690065006d01130072006f00740069002000610075006700730074006100730020006b00760061006c0069007401010074006500730020007000690072006d007300690065007300700069006501610061006e006100730020006400720075006b00610069002e00200049007a0076006500690064006f006a006900650074002000500044004600200064006f006b0075006d0065006e007400750073002c0020006b006f002000760061007200200061007400760113007200740020006100720020004100630072006f00620061007400200075006e002000410064006f00620065002000520065006100640065007200200035002e0030002c0020006b0101002000610072012b00200074006f0020006a00610075006e0101006b0101006d002000760065007200730069006a0101006d002e>
 /NLD (Gebruik deze instellingen om Adobe PDF-documenten te maken die zijn geoptimaliseerd voor prepress-afdrukken van hoge kwaliteit. De gemaakte PDF-documenten kunnen worden geopend met Acrobat en Adobe Reader 5.0 en hoger.)
 /NOR <FEFF004200720075006b00200064006900730073006500200069006e006e007300740069006c006c0069006e00670065006e0065002000740069006c002000e50020006f0070007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e00740065007200200073006f006d00200065007200200062006500730074002000650067006e0065007400200066006f00720020006600f80072007400720079006b006b0073007500740073006b00720069006600740020006100760020006800f800790020006b00760061006c0069007400650074002e0020005000440046002d0064006f006b0075006d0065006e00740065006e00650020006b0061006e002000e50070006e00650073002000690020004100630072006f00620061007400200065006c006c00650072002000410064006f00620065002000520065006100640065007200200035002e003000200065006c006c00650072002000730065006e006500720065002e>
 /POL <FEFF0055007300740061007700690065006e0069006100200064006f002000740077006f0072007a0065006e0069006100200064006f006b0075006d0065006e007400f300770020005000440046002000700072007a0065007a006e00610063007a006f006e00790063006800200064006f002000770079006400720075006b00f30077002000770020007700790073006f006b00690065006a0020006a0061006b006f015b00630069002e002000200044006f006b0075006d0065006e0074007900200050004400460020006d006f017c006e00610020006f007400770069006500720061010700200077002000700072006f006700720061006d006900650020004100630072006f00620061007400200069002000410064006f00620065002000520065006100640065007200200035002e0030002000690020006e006f00770073007a0079006d002e>
 /PTB <FEFF005500740069006c0069007a006500200065007300730061007300200063006f006e00660069006700750072006100e700f50065007300200064006500200066006f0072006d00610020006100200063007200690061007200200064006f00630075006d0065006e0074006f0073002000410064006f0062006500200050004400460020006d00610069007300200061006400650071007500610064006f00730020007000610072006100200070007200e9002d0069006d0070007200650073007300f50065007300200064006500200061006c007400610020007100750061006c00690064006100640065002e0020004f007300200064006f00630075006d0065006e0074006f00730020005000440046002000630072006900610064006f007300200070006f00640065006d0020007300650072002000610062006500720074006f007300200063006f006d0020006f0020004100630072006f006200610074002000650020006f002000410064006f00620065002000520065006100640065007200200035002e0030002000650020007600650072007300f50065007300200070006f00730074006500720069006f007200650073002e>
 /RUM <FEFF005500740069006c0069007a00610163006900200061006300650073007400650020007300650074010300720069002000700065006e007400720075002000610020006300720065006100200064006f00630075006d0065006e00740065002000410064006f006200650020005000440046002000610064006500630076006100740065002000700065006e0074007200750020007400690070010300720069007200650061002000700072006500700072006500730073002000640065002000630061006c006900740061007400650020007300750070006500720069006f006100720103002e002000200044006f00630075006d0065006e00740065006c00650020005000440046002000630072006500610074006500200070006f00740020006600690020006400650073006300680069007300650020006300750020004100630072006f006200610074002c002000410064006f00620065002000520065006100640065007200200035002e00300020015f00690020007600650072007300690075006e0069006c006500200075006c0074006500720069006f006100720065002e>
 /RUS <FEFF04180441043f043e043b044c04370443043904420435002004340430043d043d044b04350020043d0430044104420440043e0439043a043800200434043b044f00200441043e043704340430043d0438044f00200434043e043a0443043c0435043d0442043e0432002000410064006f006200650020005000440046002c0020043c0430043a04410438043c0430043b044c043d043e0020043f043e04340445043e0434044f04490438044500200434043b044f00200432044b0441043e043a043e043a0430044704350441044204320435043d043d043e0433043e00200434043e043f0435044704300442043d043e0433043e00200432044b0432043e04340430002e002000200421043e043704340430043d043d044b04350020005000440046002d0434043e043a0443043c0435043d0442044b0020043c043e0436043d043e0020043e0442043a0440044b043204300442044c002004410020043f043e043c043e0449044c044e0020004100630072006f00620061007400200438002000410064006f00620065002000520065006100640065007200200035002e00300020043800200431043e043b043504350020043f043e04370434043d043804450020043204350440044104380439002e>
 /SKY <FEFF0054006900650074006f0020006e006100730074006100760065006e0069006100200070006f0075017e0069007400650020006e00610020007600790074007600e100720061006e0069006500200064006f006b0075006d0065006e0074006f0076002000410064006f006200650020005000440046002c0020006b0074006f007200e90020007300610020006e0061006a006c0065007001610069006500200068006f0064006900610020006e00610020006b00760061006c00690074006e00fa00200074006c0061010d00200061002000700072006500700072006500730073002e00200056007900740076006f00720065006e00e900200064006f006b0075006d0065006e007400790020005000440046002000620075006400650020006d006f017e006e00e90020006f00740076006f00720069016500200076002000700072006f006700720061006d006f006300680020004100630072006f00620061007400200061002000410064006f00620065002000520065006100640065007200200035002e0030002000610020006e006f0076016100ed00630068002e>
 /SLV <FEFF005400650020006e006100730074006100760069007400760065002000750070006f0072006100620069007400650020007a00610020007500730074007600610072006a0061006e006a006500200064006f006b0075006d0065006e0074006f0076002000410064006f006200650020005000440046002c0020006b006900200073006f0020006e0061006a007000720069006d00650072006e0065006a016100690020007a00610020006b0061006b006f0076006f00730074006e006f0020007400690073006b0061006e006a00650020007300200070007200690070007200610076006f0020006e00610020007400690073006b002e00200020005500730074007600610072006a0065006e006500200064006f006b0075006d0065006e0074006500200050004400460020006a00650020006d006f0067006f010d00650020006f0064007000720065007400690020007a0020004100630072006f00620061007400200069006e002000410064006f00620065002000520065006100640065007200200035002e003000200069006e0020006e006f00760065006a01610069006d002e>
 /SUO <FEFF004b00e40079007400e40020006e00e40069007400e4002000610073006500740075006b007300690061002c0020006b0075006e0020006c0075006f00740020006c00e400680069006e006e00e4002000760061006100740069007600610061006e0020007000610069006e006100740075006b00730065006e002000760061006c006d0069007300740065006c00750074007900f6006800f6006e00200073006f00700069007600690061002000410064006f0062006500200050004400460020002d0064006f006b0075006d0065006e007400740065006a0061002e0020004c0075006f0064007500740020005000440046002d0064006f006b0075006d0065006e00740069007400200076006f0069006400610061006e0020006100760061007400610020004100630072006f0062006100740069006c006c00610020006a0061002000410064006f00620065002000520065006100640065007200200035002e0030003a006c006c00610020006a006100200075007500640065006d006d0069006c006c0061002e>
 /SVE <FEFF0041006e007600e4006e00640020006400650020006800e4007200200069006e0073007400e4006c006c006e0069006e006700610072006e00610020006f006d002000640075002000760069006c006c00200073006b006100700061002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400200073006f006d002000e400720020006c00e4006d0070006c0069006700610020006600f60072002000700072006500700072006500730073002d007500740073006b00720069006600740020006d006500640020006800f600670020006b00760061006c0069007400650074002e002000200053006b006100700061006400650020005000440046002d0064006f006b0075006d0065006e00740020006b0061006e002000f600700070006e00610073002000690020004100630072006f0062006100740020006f00630068002000410064006f00620065002000520065006100640065007200200035002e00300020006f00630068002000730065006e006100720065002e>
 /TUR <FEFF005900fc006b00730065006b0020006b0061006c006900740065006c0069002000f6006e002000790061007a006401310072006d00610020006200610073006b013100730131006e006100200065006e0020006900790069002000750079006100620069006c006500630065006b002000410064006f006200650020005000440046002000620065006c00670065006c0065007200690020006f006c0075015f007400750072006d0061006b0020006900e70069006e00200062007500200061007900610072006c0061007201310020006b0075006c006c0061006e0131006e002e00200020004f006c0075015f0074007500720075006c0061006e0020005000440046002000620065006c00670065006c0065007200690020004100630072006f006200610074002000760065002000410064006f00620065002000520065006100640065007200200035002e003000200076006500200073006f006e0072006100730131006e00640061006b00690020007300fc007200fc006d006c00650072006c00650020006100e70131006c006100620069006c00690072002e>
 /UKR <FEFF04120438043a043e0440043804410442043e043204430439044204350020044604560020043f043004400430043c043504420440043800200434043b044f0020044104420432043e04400435043d043d044f00200434043e043a0443043c0435043d044204560432002000410064006f006200650020005000440046002c0020044f043a04560020043d04300439043a04400430044904350020043f045604340445043e0434044f0442044c00200434043b044f0020043204380441043e043a043e044f043a04560441043d043e0433043e0020043f0435044004350434043404400443043a043e0432043e0433043e0020043404400443043a0443002e00200020042104420432043e04400435043d045600200434043e043a0443043c0435043d0442043800200050004400460020043c043e0436043d04300020043204560434043a0440043804420438002004430020004100630072006f006200610074002004420430002000410064006f00620065002000520065006100640065007200200035002e0030002004300431043e0020043f04560437043d04560448043e04570020043204350440044104560457002e>
 /ENU (Use these settings to create Adobe PDF documents best suited for high-quality prepress printing. Created PDF documents can be opened with Acrobat and Adobe Reader 5.0 and later.)
 /DEU <FEFF004a006f0062006f007000740069006f006e007300200066006f00720020004100630072006f006200610074002000440069007300740069006c006c0065007200200038002000280038002e0032002e00310029000d00500072006f006400750063006500730020005000440046002000660069006c0065007300200077006800690063006800200061007200650020007500730065006400200066006f00720020006f006e006c0069006e0065002e000d0028006300290020003200300031003000200053007000720069006e006700650072002d005600650072006c0061006700200047006d006200480020000d000d0054006800650020006c00610074006500730074002000760065007200730069006f006e002000630061006e00200062006500200064006f0077006e006c006f0061006400650064002000610074002000680074007400700073003a002f002f0070006f007200740061006c002d0064006f0072006400720065006300680074002e0073007000720069006e006700650072002d00730062006d002e0063006f006d002f00500072006f00640075006300740069006f006e002f0046006c006f0077002f00740065006300680064006f0063002f00640065006600610075006c0074002e0061007300700078000d0054006800650072006500200079006f0075002000630061006e00200061006c0073006f002000660069006e0064002000610020007300750069007400610062006c006500200045006e0066006f0063007500730020005000440046002000500072006f00660069006c006500200066006f0072002000500069007400530074006f0070002000500072006f00660065007300730069006f006e0061006c00200030003800200061006e0064002000500069007400530074006f0070002000530065007200760065007200200030003800200066006f007200200070007200650066006c00690067006800740069006e006700200079006f007500720020005000440046002000660069006c006500730020006200650066006f007200650020006a006f00620020007300750062006d0069007300730069006f006e002e000d>
 >>
 /Namespace [
 (Adobe)
 (Common)
 (1.0)
]
 /OtherNamespaces [
 <<
 /AsReaderSpreads false
 /CropImagesToFrames true
 /ErrorControl /WarnAndContinue
 /FlattenerIgnoreSpreadOverrides false
 /IncludeGuidesGrids false
 /IncludeNonPrinting false
 /IncludeSlug false
 /Namespace [
 (Adobe)
 (InDesign)
 (4.0)
]
 /OmitPlacedBitmaps false
 /OmitPlacedEPS false
 /OmitPlacedPDF false
 /SimulateOverprint /Legacy
 >>
 <<
 /AddBleedMarks false
 /AddColorBars false
 /AddCropMarks false
 /AddPageInfo false
 /AddRegMarks false
 /ConvertColors /ConvertToCMYK
 /DestinationProfileName ()
 /DestinationProfileSelector /DocumentCMYK
 /Downsample16BitImages true
 /FlattenerPreset <<
 /PresetSelector /MediumResolution
 >>
 /FormElements false
 /GenerateStructure false
 /IncludeBookmarks false
 /IncludeHyperlinks false
 /IncludeInteractive false
 /IncludeLayers false
 /IncludeProfiles false
 /MultimediaHandling /UseObjectSettings
 /Namespace [
 (Adobe)
 (CreativeSuite)
 (2.0)
]
 /PDFXOutputIntentProfileSelector /DocumentCMYK
 /PreserveEditing true
 /UntaggedCMYKHandling /LeaveUntagged
 /UntaggedRGBHandling /UseDocumentProfile
 /UseDocumentBleed false
 >>
]
>> setdistillerparams
<<
 /HWResolution [2400 2400]
 /PageSize [595.276 841.890]
>> setpagedevice

